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ABSTRACT

Essay 1: CDS and Sovereign Bond Market Liquidity

During the recent debt crisis in Europe, policy makers responded to the
controversy surrounding CDS by implementing a series of policies that
banned CDS trading. I use these bans as quasi-natural experiments to
identify how derivative markets affect liquidity of the underlying cash
market. I document that a temporary CDS ban increased bond market
liquidity but a permanent ban instead decreased bond market liquidity.
To explain these patterns, I build a dynamic search-theoretic model of
over-the-counter bond and CDS markets that features an endogenous
liquidity interaction between the two markets. My model shows that these
opposing patterns are due to the fact that bond and CDS markets are
substitute markets in the short run but are complementary markets in
the long run. My results challenge existing theories of liquidity interaction
among multiple markets and the common perception that the CDS market
is a more liquid market than the bond market.

Essay 2: CDS as Sovereign Debt Collateral

A defining friction of sovereign debt is the lack of collateral that can back
sovereign borrowing. This paper shows that credit default swaps (CDS)
can serve as collateral and thereby support more sovereign borrowing. By
giving more bargaining power to lenders in ex-post debt renegotiations,
CDS becomes a commitment device for lenders to extract more repayment
from the debtor country. This ex-post disciplining effect during debt
renegotiations better aligns the sovereign’s ex-ante incentives with that
of the lender. CDS alleviates agency frictions that are present in any
lending contracts but are particularly difficult to mitigate in sovereign
debt context.

Essay 3: Currency Risk and Pricing Kernel Volatility1

A basic tenet of lognormal asset pricing models is that a risky currency is
associated with low pricing kernel volatility. Empirical evidence indicates
that a risky currency is associated with a relatively high interest rate.
Taken together, these two statements associate high-interest-rate curren-
cies with low pricing kernel volatility. We document evidence suggesting
that the opposite is true, thus contradicting a fundamental empirical re-
striction of lognormal models. Our identification strategy revolves around
using interest rate volatility differentials to make inferences about pric-
ing kernel volatility differentials. In most lognormal models the two are
monotonic functions of one another. A risky currency, therefore, is one
with relatively low pricing kernel volatility and relatively low interest rate

1 Joint work with Federico Gavazzoni and Chris Telmer
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volatility. In the data, however, we see the opposite. High interest rates
are associated with high interest rate volatility. This indicates that lognor-
mal models of currency risk are inadequate and that future work should
emphasize distributions in which higher moments play an important role.
Our results apply to a fairly broad class of models, including Gaussian
affine term structure models and many recent consumption-based models.
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ESSAY 1 : CDS AND SOVEREIGN BOND
MARKET LIQUIDITY

Abstract

During the recent debt crisis in Europe, policy makers responded
to the controversy surrounding CDS by implementing a series of
policies that banned CDS trading. I use these bans as quasi-natural
experiments to identify how derivative markets affect liquidity of
the underlying cash market. I document that a temporary CDS
ban increased bond market liquidity but a permanent ban instead
decreased bond market liquidity. To explain these patterns, I build a
dynamic search-theoretic model of over-the-counter bond and CDS
markets that features an endogenous liquidity interaction between
the two markets. My model shows that these opposing patterns are
due to the fact that bond and CDS markets are substitute markets
in the short run but are complementary markets in the long run.
My results challenge existing theories of liquidity interaction among
multiple markets and the common perception that the CDS market
is a more liquid market than the bond market.

1 INTRODUCTION

Are financial derivatives just redundant securities or do they affect the
underlying asset, and in what ways? The recent crises in the US and in
Europe and the policy debate surrounding these events illustrated our
limited understanding of the recent financial innovations and derivatives
such as credit derivatives and securitization. In this paper, I study both
empirically and theoretically how derivatives affect price and liquidity of
the underlying asset in a particular context: sovereign bond and credit
default swap (CDS) markets.2 The controversy surrounding CDS during
the debt crisis in Europe culminated in a series of policies that banned
“naked” purchases of CDS where investors buy CDS protection without
actually owning the underlying government bonds. These policies serve as
quasi-natural experiments that allow us to empirically identify the effect
of naked CDS trading on the underlying bonds.

2A buyer of a CDS protection pays a periodic fee until either the contract matures
or a default (or a similar event) occurs. In return, the protection seller transfers the
purchased amount of insurance in the event of default. The contract specifies the
reference entity, the contract maturity date, the insurance amount, and the events
that constitute a credit event.
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Using these bans and a diff-in-diff analysis, I document that permanent
versus temporary CDS bans had completely opposite effects on bond
market liquidity. When the EU voted in October 2011 to permanently
ban naked CDS referencing EU countries, countries affected by the ban
experienced a decrease in their bond market liquidity. When Germany
temporarily banned naked CDS in May 2010, this pattern reversed: bond
market liquidity temporarily increased instead.

To explain these opposing patterns and, consequently, shed light on
how CDS markets affect the underlying bond market, I build a dynamic
search-theoretic model of over-the-counter (OTC) bond and CDS markets.
My model shows that, for traders who want a long exposure to credit
risk, bond and CDS markets are substitute markets in the short run but
are complementary markets in the long run. Depending on the nature of
the ban, as a result, one effect dominates the other. When the CDS ban
is temporary, long traders temporarily substitute out of the CDS into the
bond market and bond liquidity temporarily increases. When the ban is
permanent, however, as traders are forced to exit the CDS market, they
pull out from the bond market also and bond liquidity decreases.

In the model, I capture the over-the-counter structure of bond and
CDS markets using the search and bilateral bargaining mechanism of
Duffie, Garleanu, and Pedersen (2005, 2007). A fraction of bond owners
are hit by a liquidity shock that requires them to sell their bonds. Locating
a buyer, however, involves search costs. When a seller finds a buyer, she
takes into account the difficulty of locating a buyer again and resorts to
selling her bond at a discounted price. Thus, as in the standard search
framework, search costs create an illiquidity discount in bond prices.

I study how CDSs affect this illiquidity discount by modeling two novel
features. The first is the presence of CDS markets. CDSs are derivative
assets while bonds are fixed supply assets, and trading CDS contracts
also involves search costs. Traders cannot directly short bonds but can
buy (naked) CDSs to short credit risk. This assumption captures the
fundamental difference between bond and CDS markets: it is cheaper
to short credit risk using the CDS market than the bond market. The
second novel feature is endogenous entry: the investors’ entry rate into
the underlying bond market endogenously adjusts to the introduction
(and the elimination) of the CDS market.

In this environment, the complementarity effect works as follows. For
traders looking to acquire a long position, selling CDSs and buying bonds
are two different ways to be exposed to credit risk and they can search
for a counterparty simultaneously in both the CDS and the bond market.
This ability to simultaneously search in both markets reduces the expected
search time of acquiring a long position in either market: long traders
now have twice as many potential counterparties and, hence, a higher
probability of finding a counterparty in either market. A marginal long
trader – who would have been deterred by the search cost when there
was just the bond market – is now willing to enter both the CDS and
the bond market. As a result, the CDS market is complementary to the
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bond market: the existence of naked CDS buyers increases bond market
liquidity by changing the ex-ante incentive of a marginal trader to enter
and search for a long position in either market. Permanently banning
naked CDS trading reverses this complementarity effect and eliminates
the positive externality on bond market liquidity: long traders are forced
to exit the CDS market but, by exiting the CDS market, they pull out
from the bond market also.

When the CDS ban is temporary, the benefit of adjusting entry and
exit into the bond and CDS markets (at the extensive margin) does not
outweigh the cost of doing so. As a result, the aggregate number of traders
across bond and CDS markets remains unchanged and there is only a
movement at the intensive margin between bond and CDS markets. Long
traders – who would have otherwise sold CDSs to the naked buyers –
temporarily resort to trading in the bond market by buying bonds and
thereby increase liquidity in the bond market.

The model mechanism critically relies on both endogenous entry and
search frictions in the CDS market. Without search frictions in the CDS
market, the CDS market is redundant: the existence of naked CDS buyers
does not affect bond market liquidity. Thus, trading frictions in the CDS
market create an interaction between bond and CDS markets that helps
rationalize the empirical patterns. Also, in the data transaction costs
in sovereign CDS markets are non-trivial: CDS bid-ask spreads are, on
average, ten times larger than bond bid-ask spreads. The importance of
trading frictions in the CDS market both in the model and in the data
challenges the common perception and a common assumption in recent
papers that the CDS market is a more liquid market. My results show
that this is not the case.

The fact that bond and CDS markets can be complementary markets
is a novel result in light of existing theoretical studies of the liquidity
interaction between multiple asset markets. These studies highlight the
migration (or equivalently, the substitution) effect. In these models, the
aggregate number of traders across markets is kept fixed and, consequently,
introducing additional markets necessarily results in a fragmentation and
migration of traders across multiple markets. I show that an important
interaction between multiple markets arises out of endogenizing traders’
entry decision at the extensive margin (consequently, the aggregate number
of traders across markets is endogenous) and this channel helps rationalize
the observed empirical patterns.

This paper contributes to the existing literature by providing the first
theoretical framework of over-the-counter trading in both the underly-
ing and derivative markets. The framework features an interdependent
endogenous bond and CDS market liquidity and can be used to analyze
topics of growing interest such as the CDS-bond basis and the relative
price discovery and to study how relative liquidity in bond and CDS
markets affect them. Although I apply the model to sovereign bond and
CDS markets, the model framework can applied to study a large class
of assets and their derivatives that are traded over-the-counter: currency,
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commodities, asset-backed securities, and other fixed-income assets (e.g.
corporate bond, interest rate). The controversy surrounding CDS during
the debt crisis highlighted the lack of theoretical frameworks of OTC
trading in both the underlying and derivative markets to help shape the
debate.

The second main contribution of the paper is empirical. Empirically
identifying how naked CDS trading affects the bond market is confounded
by two issues. First, a direct measure of the amount of naked CDS
purchases does not exist as we only observe the total amount of CDS
purchased (the sum of naked and covered). The second issue is identifying
causation as opposed to correlation. Using the CDS bans as quasi-natural
experiments circumvents these issues. My diff-in-diff analysis exploits the
realization of these bans, the timing of these bans, and the fact that some
countries were affected while others were not. I also use daily data that I
collected on over 3,200 individual bond issues across 66 government bond
markets and CDS data for 66 countries including CDS spreads, liquidity,
the amount of outstanding CDS, and the volume of CDS trade. Thus, the
analysis is to my knowledge the most comprehensive study of sovereign
bond and CDS markets.

This paper highlights a novel mechanism in which naked CDS buyers
directly affect liquidity of the underlying bond market. The most com-
monly posited effect of CDS on the bond market is the “covered” CDS
story: the ability to insure one’s bond portfolio by buying CDS is likely to
attract traders into the bond market and increase bond market liquidity.
As for the effect of naked CDS trading, a common hypothesis is that it
increases liquidity of the CDS market itself and, consequently, indirectly
increases bond market liquidity by making CDS a cheaper hedging tool.
These effects, however, cannot explain why permanent versus temporary
CDS bans would affect bond market liquidity differently. This paper
instead proposes a theory that rationalizes the opposite effects within the
same theoretical environment.

Another effect that my mechanism is distinct from is the basis trade.
In a basis trade, investors trade on an arbitrage opportunity arising from
how credit risk is priced in bond and CDS markets versus the theoretical
arbitrage relationship between the two securities. For example, if the CDS
price is too low relative to bond spreads, then a basis trading strategy
would involve buying bonds and buying CDS. Thus, the existence of the
CDS market, by creating a potential arbitrage opportunity, may increase
the amount of trade and liquidity in the bond market. But basis trades
necessarily involve a long position in one market (e.g. buying bonds as in
the example) but a short position in the other market (e.g. buying CDS).
In contrast, in my mechanism, there is an increase in the volume of trade
and liquidity in the bond market due to traders seeking a long position
in both markets.

Finally, an important policy implication of my results is that per-
manently banning naked CDS trading adversely affected bond market
liquidity, depressed bond prices, and thereby increased sovereign’s bor-
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rowing cost exactly when governments were trying to avert a liquidity
dry-up and credit risk spiral. This result is particularly important in the
context of a sovereign debt crisis.

1.1 Related Literature

This paper belongs to the search literature of financial assets beginning
with the seminal papers Duffie, Garleanu, and Pedersen (2005, 2007).
My framework is closely related to the extensions of their environment
to multiple assets by Vayanos and Wang (2007), Weill (2008) and, in
particular, it is a variant of Vayanos and Weill (2008)’s framework that
sheds light on the on-the-run phenomenon of Treasury bonds. I contribute
to this literature, first, by modeling over-the-counter trading in derivatives
in addition to trading in the underlying asset and, second, by endogenizing
the entry decisions of agents into the market for the underlying asset in
response to the introduction of the derivative market.

A related paper is Afonso (2011) who endogenizes the entry decisions
of traders but in a single market setting. My model differs by featuring
both multiple markets and endogenous entry and therefore sheds light
on the rate of entry into one market as a result of introducing another
market and on the mechanism through which traders migrate between
different markets.

A search theoretic paper applied specifically to CDS markets is Atke-
son, Eisfeldt, and Weill (2012) who in a static setting study how banks’
CDS exposure arises endogenously depending on their size and their
exposure to aggregate risk. In contrast, my paper focuses on naked CDS
and studies in a dynamic setting the feedback from the CDS market into
the bond market by allowing trade in both the bond and the CDS market
as opposed to just the CDS market. Oehmke and Zawadowski (2013)
explore how CDS affects bond prices in Amihud and Mendelson (1986)
type framework with exogenous trading frictions. In contrast, my model
features endogenous trading costs.

A related literature is equilibrium asset pricing models with exoge-
nous trading frictions (see, for example, Amihud and Mendelson (1986),
Acharya and Pedersen (2005)). My model features endogenous bond mar-
ket liquidity and thereby allows for an endogenous interaction and a
spillover between the underlying and the derivative markets.

A growing number of papers use reduced form approaches to price and
quantify liquidity risk in bond and CDS markets. Longstaff, Mithal, and
Neis (2005), Chen, Lesmond, and Wei (2007), Bao, Pan, and Wang (2011),
for example, study liquidity of corporate bond markets and Beber, Brandt,
and Kavajecz (2009) and Bai, Julliard, and Yuan (2012) of sovereign bond
markets. Tang and Yan (2007), Chen, Fabozzi, and Sverdlove (2010), and
Bongaerts, De Jong, and Driessen (2011) price liquidity risk in corporate
CDS markets, and Beber, Brandt, and Kavajecz (2009), Bai, Julliard, and
Yuan (2012) in sovereign CDS markets. These papers find a nontrivial
magnitude of illiquidity in CDS markets. This paper complements this
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literature in two ways: first, it provides a theoretical framework to study
bond and CDS liquidity, and, second, by using the CDS ban regulations,
it documents novel empirical patterns in how bond and CDS market
liquidity are interlinked.

Motivated by the theoretical arbitrage relation between how credit
risk is priced through bond prices versus through CDS spreads, a growing
number of papers study the joint dynamics of bond and CDS spreads, or
equivalently the CDS-bond basis, as well as the relative price discovery
mechanism in bond and CDS markets.3 These papers’ findings suggest
that on average the arbitrage relation holds. But when it does not and the
price of credit risk in these two markets deviates, where the price discovery
takes place (determined by which of the two prices leads the other) is
state dependent. In particular, one of the important determinants is the
relative liquidity in these markets. I add to this literature by providing
a tractable theoretical framework with endogenous liquidity interaction
between the two markets and, hence, precise implications on liquidity and
prices in both markets.

In empirically analyzing naked CDS bans, this paper is related to
Boehmer, Jones, and Zhang (2013) and Beber and Pagano (2013) who
document that short-selling bans on stocks during the financial crisis
adversely affected stock market liquidity. In contrast to these papers, I
study how regulations that restricted trade in one market affected another
related market and, thereby, make inferences on the underlying interaction
between the related asset markets.

My work is also related to the literature that studies how CDS affects
the issuer of the debt security on which these CDS contracts are written.
Empirical studies include Ashcraft and Santos (2009) and Subrahmanyam,
Tang, and Wang (2011) who study the effect on firms’ cost of borrowing
and credit risk, respectively.4 Also Das, Kalimipalli, and Nayak (2013)
document that corporate bond market liquidity did not improve with
the inception of the CDS market, while Massa and Zhang (2012) and
Shim and Zhu (2010) document that CDS markets increased corporate
bond market liquidity. In contrast, my paper identifies the effect of naked
CDS trading (as opposed to the CDS market in general) on bond market
liquidity and focuses on sovereign bond and CDS markets.

On the theoretical front, Arping (2013) and Bolton and Oehmke (2011)
formalize the tradeoffs associated with the empty creditor problem in
the context of corporate debt and Sambalaibat (2012) in the context of

3 Studies of the relative price discovery in corporate bond and CDS include Blanco,
Brennan, and Marsh (2005) and in sovereign bond and CDS: Fontana and Scheicher
(2010), Arce, Mayordomo, and Peña (2012), Ammer and Cai (2011), Calice, Chen,
and Williams (2011), Delatte, Gex, and López-Villavicencio (2011). More specifically
on the CDS-bond basis, see, for example, Blanco, Brennan, and Marsh (2005) and Bai
and Collin-Dufresne (2011). See ? for a survey of this literature.

4Ashcraft and Santos (2009) find CDS has beneficial effects on firms’ cost of borrowing
for safer firms but adverse effects for riskier firms as banks may lose the incentive to
monitor firms. Subrahmanyam, Tang, and Wang (2011) find CDS increases firms’ credit
risk which they attribute to protected creditors’ reluctance to restructure. Berndt and
Gupta (2009) find that borrowers, whose loans have been sold off, underperform.
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sovereign debt. Duffee and Zhou (2001) find that credit derivatives allevi-
ate the lemons problem associated with banks having private information
on their loans.5 Thompson (2007) and Parlour and Winton (2009) study
the tradeoffs that banks face in selling off versus insuring loans on their
balance sheets. Thus, these papers have focused on issues surrounding
covered CDS buyers who are directly exposed to the issuer’s default risk.
This paper instead focuses on how naked CDS buyers affect the issuer’s
cost of borrowing through their effect on bond liquidity and bond prices.6

This paper also contributes to the theoretical literature that studies
the distribution of liquidity and trade across multiple markets. Examples
that use information-based frameworks are Admati and Pfleiderer (1988),
Pagano (1989), and Chowdhry and Nanda (1991), while search-theoretic
ones are Vayanos and Wang (2007), Vayanos and Weill (2008), and Weill
(2008). A typical result in these papers is that traders endogenously
concentrate in one market and trade in the other market disappears. Mul-
tiple markets can co-exist under additional assumptions of heterogeneous
agents and heterogenous markets so that there is a “clientele” effect.7 The
focus of these papers has been the endogenous cross-sectional distribution
of liquidity and trade across markets and assets. This endogeneity, conse-
quently, is on the intensive margin (i.e. the number of traders can vary in
the cross-section but the aggregate number of traders is fixed), and hence,
the results of these papers are effectively partial equilibrium effects. In my
model, if the aggregate number of traders is kept fixed, then (similar to
these papers) with the introduction of the CDS market, traders migrate
from the bond market to the CDS market and bond market liquidity
decreases. However, my model also shows that if the aggregate number of
traders is endogenous to the introduction of an additional security (i.e. the
endogeneity is on the extensive margin), then the result is the opposite:
the number of traders and liquidity in the market for the underlying asset
increases.

More broadly, this paper belongs to the literature on the impact of
derivatives such as options and futures on the market for the underlying
assets. A majority of this literature is empirical.8 Theoretical frameworks
that study the effect of derivatives on liquidity of the underlying asset
market include Subrahmanyam (1991), Gorton and Pennacchi (1993), and
John, Koticha, Subrahmanyam, and Narayanan (2003) and they also get

5Duffee and Zhou (2001) also show that that credit derivatives adversely affect the
parallel loan sales market.

6Although I do not formally model the issuer’s borrowing cost in the primary debt
markets, He and Milbradt (2012) provide a formal treatment of the feedback loop
between credit risk, the issuer’s borrowing cost through the primary debt markets,
and liquidity of the secondary bond markets.

7For example, Pagano (1989) shows that if markets differ in their fixed entry cost, then
an equilibrium with multiple markets exists and has the following feature: the more
liquid market has a larger fixed cost of entry and is also the market where only large
traders (those needing a larger portfolio adjustment) are attracted to. This is because
the larger market has a bigger absorbing capacity (i.e. minimal price impact) and the
fixed entry cost can be spread over a large transaction size.

8 See, for example, Chakravarty, Gulen, and Mayhew (2004) and the survey article,
Mayhew (2000).
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the “migration” result as the above multiple market information-based
models.9 I add to the literature by endogenizing entry. Also, these papers
are based on Kyle (1985), Glosten and Milgrom (1985) type frameworks
where illiquidity arises from asymmetric information. The stylized OTC
search framework of my paper is better suited for sovereign bond markets
for two reasons. First, trade in sovereign bond markets is fragmented
across heterogenous bonds and, second, asymmetric information and
insider trading are less severe with respect to governments than with
respect to individual firms.

The paper is organized as follows. Section 2 presents the model envi-
ronment while Section 3 derives the main theoretical results. Section 4
describes the data and gives the institutional details on bond and CDS
markets. Section 5 documents the empirical patterns that motivate the
model. Section 6.1 discusses how the model implications rationalize the
observed empirical patterns and Section 7 concludes. All proofs are in the
Appendix.

2 MODEL

Agents are heterogenous in their valuation of asset cash flows. Their
valuations change randomly and thus generate trade in equilibrium. But
finding a counterparty to trade with involves search costs that endoge-
nously depend on the relative number of buyers and sellers. As a result,
asset owners resort to selling their asset at a discount, and search costs
create an illiquidity wedge in asset prices relative to the frictionless price.

In particular, time is continuous and goes from zero to infinity. Agents
are risk neutral, infinitely lived, and discount the future at the constant
rate r > 0. There is a bond with supply S that pays a coupon flow δb. In
addition, agents can trade CDS in which a buyer of a CDS contract pays
a premium flow pc, and in return benefits from an expected insurance
payment of δc. CDS allows both long and short positions to the underlying
credit risk: a buyer of a CDS contract has a short exposure while a seller
has a long exposure. I assume that bonds allow only a long exposure
and that agents cannot short bonds directly. The bond coupon flow can
be interpreted as an expected coupon flow: with intensity η the bond
defaults but otherwise pays a dollar of coupon. Hence, δb = (1 − η)$1.

9 Subrahmanyam (1991) and Gorton and Pennacchi (1993) using Kyle (1985) framework
show that stock index futures market and security baskets, respectively, lower liquidity
in the underlying stock market as some traders migrate to these derivative markets.
John, Koticha, Subrahmanyam, and Narayanan (2003) also get similar results using
Glosten and Milgrom (1985) framework to study the effect of options on stock market
liquidity. Brennan and Cao (1996) and Cao (1999) using Hellwig (1980) environment
show that options increase market depth of the underlying market. Other theoretical
frameworks that study the effect of derivatives on aspects other than liquidity include
Back (1993) and Biais and Hillion (1994). Back (1993) develops a framework based on
Kyle (1985) to study the effect of options on price volatility. Biais and Hillion (1994)
provide another information-based model of options and study their effect on price
informativeness of the underlying asset.
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Similarly, δc can be interpreted as an expected insurance payment: the
CDS contract pays out a dollar if there is a default on the coupon payment,
thus δc = η$1.

Agents’ utility valuations of assets switch randomly between high,
average, and low type where each type values the bond and CDS payoffs
as given in Table 1. Specifically, let θ = 1 denote a long position (exposed
to risk) through the bond or CDS market, θ = 0 no position, and θ = −1

a short position (i.e. bought CDS). An agent with θb ∈ {0, 1} shares
of the bond has a utility flow θb

(
δb + xbt

)
− |θb|y. An agent with CDS

position θc ∈ {−1, 0, 1} has a utility flow −θc (δc + xct) − |θc|y where
xbt ∈ {−xb, 0, xb} and xct ∈ {−xch, 0, xcl} are stochastic processes, and y is
the cost of risk bearing that is positive for both long and short positions.
An agent with {xbt = xb, x

c
t = −xch} is defined as a high type, with

{xbt = 0, xct = 0} as an average, and with {xbt = −xb, xct = xcl} as a low
type.

Parameters xb, xch, xcl can be interpreted as hedging benefits. High
types, for example, may have an idiosyncratic endowment that is negatively
correlated with the bond cash flow, while low types have an idiosyncratic
endowment that is positively correlated with the bond. Thus, a low type
agent would get an extra disutility of xb from holding the bond (θb = 1),
while a high type would get an extra utility xb. As CDS sellers (θc = 1), a
low type experiences a greater disutility paying out the insurance payment
(− (δc + xcl)− y) than a high type (− (δc − xch)− y). Conversely, as CDS
buyers (θc = −1), a low type benefits more from the insurance payment
((δc + xcl)− y) than a high type ((δc − xch)− y). Appendix A.1 gives a
simple example of how xb, xch, xcl can depend on the default intensity
of the bond. Section A.2 in the appendix formally shows how, in an
environment with risk averse agents, the hedging benefit is a function of
the risk aversion parameter, the correlation between agents’ idiosyncratic
endowment and the bond cash flow, and the riskiness of the bond.

Table 1: Valuation of bond and CDS payments by high, average, and low
type agents.

Agents are heterogenous in their valuation of bond and CDS cash flows. As shown
in the “Bond Owner” column, high type agents derive a higher utility from a long
exposure to the bond, while low type agents derive a disutility from a long exposure
to the bond. Conversely, low type agents derive a higher utility from a short position
(as shown in the “CDS Buyer” column), while high type agents derive a disutility from
a short position. As a result, in equilibrium high type agents search for long positions
while low type agents short credit risk. Average type agents are in between.

Types Bond Owner (θb = 1) CDS Buyer (θc = −1)

High δb + xb − y δc − xch − y
Average δb − y δc − y
Low δb − xb − y δc + xcl − y

Assumption 1. xch + xcl > 2y > xch
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Assumption 1 ensures that low valuation agents want to short by buying
CDS, while average types will not want to short. To see this, if a low
type agent buys CDS from a high type, the buyer’s flow surplus from the
transaction is (δc + xcl)−y−pc while the seller’s is pc−(δc − xch)−y. The
total surplus is then xch + xcl − 2y which is positive from Assumption 1.
If, instead, an average type buys CDS from a high type, the total surplus
is xch − 2y which is negative from Assumption 1.

There is an infinite mass of average valuation agents. A fixed flow 2Fh
of average types switches to a high type, and a flow Fl switch to a low
type. A high type agent enters to trade in the bond and the CDS market
only if the expected value of trading as a high type (denoted by Vhn) is at
least greater than the value of their outside option. I assume that half of
the agents that switch to a high type do not have an outside option and
hence always enter, while the other half has a positive opportunity cost
of entering denoted by Oh.10 Among these agents, let ρ be the fraction
that enter:

ρ =


1 Vhn(ρ) > Oh

[0, 1] if Vhn(ρ) = Oh

0 Vhn(ρ) < Oh.

(1)

Thus, the total flow of high types actually entering is (1 + ρ)Fh.11 Con-
versely, high types switch to an average type with Poisson intensity γd
while low types switch to an average type with Poisson intensity γu. Thus,
the steady state measure of high types is at least Fh

γd
while the steady

state measure of low type agents is Fl
γu
.

Assumption 2. Fh
γd
> S + Fl

γu

Assumption 2 ensures that high types are the marginal investors in
the bond.

2.1 The Bond and the CDS Market

Buyers and sellers in the bond market, whose measures are denoted by
τbb and τbs, meet at a rate λbτbbτbs where λb is the exogenous matching
efficiency of the bond market. Given the total meeting rate, buyers find
a seller with intensity qbs ≡ λbτbs, and sellers find a buyer with intensity
qbb ≡ λbτbb. Once matched, a buyer and a seller Nash-bargain over price
so that the buyer gets a fraction φ of the total gain from trade and the
seller gets the remaining surplus. Analogously, in the CDS market CDS
buyers find a seller with intensity qcs ≡ λcτcs, and sellers find a buyer with

10Afonso (2011) provides a more general setup in which there is a continuous distribution
of agents with different outside values. My setup would be a special case of this.

11The assumption that a portion of high types are always entering is for simplicity and
is a way to scale up the measure of high types in the economy so that even if ρ = 0,
the steady state measure of high types is greater than the steady state measure of low
types and the bond supply. This simplifies the derivation of existence and uniqueness
of the steady state equilibrium without affecting the main channels of the model.
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intensity qcb ≡ λcτcb where τcb and τcs are the measures of CDS buyers
and sellers, respectively.

2.2 Agent Types and Transitions

Table 2 shows the various types and their possible asset positions. µτ de-
notes the measure of an agent type τ ∈ T and T ≡ {hn, ln, hob, aob, hoc, aoc, lsc}
is the set of agent types. hn and ln are high and low non-owners, hob and
aob are high and average bond owners, hoc and aoc are high and average
types that have sold CDS, and lsc are low types who have bought CDS.

Table 2: Agent Types

An agent type is composed of their valuation type (high “h”, average “a”, low “l”)
and their asset position (θb, θc). Their asset position can be either a non-owner “n”:
(θb, θc) = (0, 0), a bond owner “ob”: (θb, θc) = (1, 0), a CDS seller “oc”: (θb, θc) = (0, 1),
or a CDS buyer “sc”: (θb, θc) = (0,−1).

(θb, θc)

(0, 0) (1, 0) (0, 1) (0,−1)

High µhn µhob µhoc
Average ∞ µaob µaoc
Low µln µlsc

Figure 1 shows the transitions between types. High types want an
exposure to the underlying credit risk by either buying a bond or selling
CDS. If they switch to an average type, they will try to liquidate their
existing long position by selling the bond or just exit the economy if they
did not have any existing positions. Average types do not want neither
a long nor a short exposure to risk so they just stay out of the markets.
Low types want a short exposure which is possible by buying CDS.

Since a high type non-owner (hn) wants a long exposure to credit
risk, he will search to buy a bond or sell CDS and find counterparties
with intensities qbs and qcb, respectively. Before he is even able to find a
counterparty, he may switch to an average type and exit the economy.
If he finds and trades with a bond-seller, he becomes a high type bond
owner, hob. He is happy to hold that position until he is hit by a liquidity
shock and becomes an average valuation, in which case he will become
a bond seller (aob) to liquidate his bond position. Upon finding a bond
buyer, he exits the market.

A high non-owner (hn) could also sell CDS (which occurs with intensity
qcb) and become a hoc type who has a long-exposure to credit risk. He
is happy with this long exposure unless he switches to an average type
and becomes one of aoc. As an average type, instead of remaining a CDS
seller, he will try to unwind his position by searching for another CDS
seller to take over his side of the trade at the original price. In practice,
this is called assignment or novation.
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Since a low non-owner (ln) wants to short credit risk, she searches
to buy CDS and finds a counterparty with intensity qcs and becomes a
CDS holder, lsc. If she switches to an average type, she terminates her
contract while her counterparty reverts back to an hn type and has to
start over his search.

Figure 1: Transitions Between Agent Types

The figure shows the transitions between agent types. A flow of (1 + ρ)Fh agents enter
the economy as high types and flow Fl as low types. High type agents are hit with a
liquidity shock (and become an average valuation) with intensity γd. Conversely, low
types switch to an average type with intensity γu. A trader seeking a long position (hn)
finds a counterparty in the bond and the CDS market with probabilities qbs and qcb,
respectively. A bond seller, aob, finds a buyer with probability qbb. A trader seeking to
establish a short position, ln, by buying CDS finds a counterparty with probability
qcs.

µhn

µln

∞

(1 + ρ)Fh γd

Fl γu

(0, 0)

µhob
qbs

µaob

γd

qbb

(1, 0)

µhoc

qcb

γu

µaoc

γd

γu + qcs

(0, 1)

µlsc
qcs

γu

(0,−1)

Given the search choices of agents, the measure of buyers and sellers
in the bond and CDS markets are: τbb = µhn, τbs = µaob, τcs = µhn,
τcb = µln + µaoc. Moreover, in the steady state, the measures of types are
constant and the in-flow of agents has to equate the out-flow for each
type as shown in Table 3.
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Table 3: Flow-ins and outs

In the steady state equilibrium, the measure of agent types is constant: a flow of agents
turning into a particular type (Flow-in) has to equal the flow of agents switching out
of that type (Flow-out).

Type Flow-in = Flow-out:

µhn (1 + ρ)Fh + γuµhoc = γdµhn + (qbs + qcb)µhn
µln Fl = γuµln + qcsµln
µhob qbsµhn = γdµhob
µaob γdµhob = qbbµaob
µhoc qcbµhn = γdµhoc + γuµhoc
µaoc γdµhoc = γuµaoc + qcsµaoc
µlsc qcsµln = γuµlsc

Bond market clearing imposes that the total of measure of bond owners
has to equal the bond supply:

µhob + µaob = S. (2)

CDS market clearing requires that the total number of CDS contracts
sold has to equal the number of CDS contracts purchased:

µhoc + µaoc = µlsc. (3)

2.3 Prices and Bargaining

Prices of bonds and CDS arise from bilateral bargaining between buyers
and sellers. Let Vτ denote the expected utility of type τ ∈ T . A bond
buyer’s marginal benefit of buying a bond is the increase in his expected
utility Vhob − Vhn and his marginal cost is the bond price pb. Thus, he
is willing to buy as long as the marginal benefit is greater than the
marginal cost: Vhob − Vhn ≥ pb, and the smaller the price is, the larger is
his surplus. Analogously, for a seller the marginal benefit of selling her
bond is the bond price, pb, and in return she is giving up the value of
being a bond owner, Vaob, which is the marginal cost. Hence, she will
sell as long as pb ≥ Vaob. Thus, the bond price has to lie in the interval:
Vaob ≤ pb ≤ Vhob − Vhn and the length of this interval is the total surplus
from trade. The buyer and the seller split the surplus proportional to their
respective bargaining powers: φ and 1 − φ. The greater the bargaining
power of the buyer (i.e. higher φ), the lower the bond price:

pb = φVaob + (1− φ) (Vhob − Vhn). (4)

Analogously, a CDS seller and a CDS buyer Nash-bargain over the
price such that the seller and the buyer get φ and 1− φ fraction of the
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total surplus, respectively. The buyer’s surplus is Vlsc−Vln and the seller’s
is Vhoc − Vhn. Thus, the CDS price is implicitly defined by:

Vhoc − Vhn = φ (Vlsc − Vln + Vhoc − Vhn) . (5)

A CDS seller who switches to an average, aoc, will choose to find another
CDS seller to take over his side of the trade (at the original price) and
exit with zero utility if 0− Vaoc > 0.

2.4 Value Functions

To determine the expected utilities of types, consider for example an hn
type. In a small time interval [t+ dt], he could (a) switch to an average
valuation (with probability γddt and get utility 0), (b) become a bond
owner (with probability qbsdt and get Vhob − pb), (c) become a CDS seller
(with probability qcbdt and get utility Vhoc), or (d) remain an hn with
probability:

Vhn = (1− rdt)
(
γddt(0) + qbsdt(Vhob − pb) + qcbdtVhoc

+ (1− γddt− qbsdt− qcbdt)Vhn
)
.

After simplifying and taking the continuous time limit, we get:

rVhn = γd(0− Vhn) + qbs(Vhob − pb − Vhn) + qcb(Vhoc − Vhn). (6)

The flow value equations for the other types are analogously derived and
are shown in Appendix (A).

2.5 Equilibrium

Definition 1. A steady state equilibrium is given by types’ measures
{µτ}τ∈T , prices {pb, pc}, entry decisions {ρ}, and value functions {Vτ}τ∈T
such that:

1. {µτ}τ∈T solve the steady state in-flow and out-flow equations in
Table 3.

2. Market clearing conditions (2) and (3) hold.

3. Entry decisions, {ρ}, solve (1).

4. Bond and CDS prices, {pb, pc}, solve (4) and (5).

5. Agents’ value functions, {Vτ}τ∈T , solve agents’ optimization problem
given by (6), and (A.14) – (A.19).

The next proposition shows that a unique steady state equilibrium
exists under the technical condition (7).
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Proposition 1. Suppose

xb −

(
xch + (xcl − 2y)

(
qcs+r+γu+γd
qcs+r+γu

))
(
r+γd+γu+qcsφl+qcbφh

qcbφh

) > 0. (7)

Then, for small search frictions there exists a unique equilibrium.

The proof is given in Appendix A. The proof of uniqueness involves
the following steps. Given ρ, Appendix A shows that the set of equations
that characterizes the dynamics of the population measures together with
the market clearing conditions has a unique solution. Given this solution
to the population measures, a linear system of equations characterizing
the agents’ value functions and prices uniquely determines {Vτ}τ∈T . Thus,
for any ρ ∈ [0, 1], Vhn is uniquely determined. The agent’s entry decision
can be either an interior solution or one of the two corner solutions (ρ = 0,
ρ = 1). To show that the agents’ entry decision has a unique solution, the
appendix shows that if (7) holds, Vhn is a strictly decreasing function of
ρ.

Existence can be established only in the frictionless limit (λb → ∞,
and λc → ∞) and involves verifying that all the conjectured optimal
trading strategies are indeed optimal. In particular, I first show that the
total surplus from trading the bond is positive: ωb = Vhob−Vhn−Vaob > 0.
By construction, this will ensure that a high type agent optimally chooses
to buy a bond, while an average type will not want to be a bondholder
and, if she had previously purchased a bond, will prefer to sell it. Second,
Appendix A shows that the total surplus from trading CDS is positive
ωc = Vhoc − Vhn + Vlsc − Vln > 0. This will imply that high type agents
will want to sell CDS while low type agents will want to buy CDS. Third,
I verify that average type agents will prefer to stay out of the markets
completely and not be a CDS buyer or a CDS seller: 0− Vaoc > 0. The
latter ensures that agents who have previously sold CDS when they were
high types will prefer to find another seller to take over his side of the
trade (at the original CDS price) and exit with zero utility.

3 THEORETICAL RESULTS

To fix ideas, I will be interchangeably referring to buyers in the bond
market (µhn) as liquidity providers. They also provide liquidity in the CDS
market by selling CDS. Conversely, the liquidity demanders in the bond
market are the bond sellers (µaob) and in the CDS market are the CDS
buyers (µln+µaoc). Note that the measure of these liquidity demanders and
providers arise endogenously depending on the endogenous entry decision
ρ, the efficiency of the matching functions λb and λc and the parameters
that determine flows into the economy, {Fh, Fl}, and transitions between
different valuations, {γd, γu}.
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Proposition 2. If the bond market is frictionless (λb → ∞), the bond
price is given by

pb =
δb + xb − y

r
(8)

and the CDS market does not affect the bond market.

Proposition (2) shows that without search frictions in the bond market,
the bond price is given by the present value of high types’ valuation of
the bond and, importantly, the CDS market does not affect the bond
market. In the frictionless limit, a bond owner – who gets a liquidity shock
and has a need to sell her bond – can do so instantaneously to another
high type. As a result, bonds are held only by agents who derive a high
utility from owning them and never by agents who have a low valuation.
Consequently, the bond price is given by the valuation of high type agents
since it is a weighted average of marginal valuations of the two types of
bond owners.

Proposition 3. The bond price is given by:

pb =
δb + xb − y

r
−
[
γd
xb
rk

+ φ (qbs + r)
xb
rk

]
︸ ︷︷ ︸

part of illiquidity discount

− (qbb + r) (1− φ)

rk
qcb∆hoc︸ ︷︷ ︸

discount due to CDS

(9)
where

∆hoc ≡
φ(−φqbsxb + kxc)

[r + γd + γu + qcs(1− φ) + φqcb] k − φqcbqbsφ
,

k ≡ r + γd + qbsφ+ qbb(1− φ).

Proposition (3) shows that with search frictions in the bond market
the bond price is lower than the frictionless price in (8). To see why, a
bond owner who gets a liquidity shock and has a need to sell her bond
faces a difficulty of locating a counterparty. Due to this wait, she is stuck
with a bond that she gets a disutility from. When she does find a buyer,
she takes into account the difficulty of locating a buyer again and resorts
to selling at a discounted price. Conversely, a potential bond buyer takes
into account this trading friction in case he has a liquidity need in the
future and has to reverse his trade and sell. If search costs are large, a
potential buyer is only willing to buy at a low price, and a bond seller
is also more willing to sell at a low price. Thus, search costs create an
illiquidity discount in the bond price given by the difference between (9)
and the frictionless price: the sum of the second and the third terms in
(9). In particular, the third term is the additional discount in the bond
price due bond buyers having the outside option of providing liquidity in
the CDS market (by selling CDS). Thus, we are interested in the sum of
the two terms which gives the total discount in the bond price created by
search costs.
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Definition 2. The illiquidity discount, d, in the bond price is defined by
the difference between the frictionless bond price (8) and the bond price
with search frictions present in the bond market (9):

d ≡ γd
xb
rk

+ φ (qbs + r)
xb
rk

+
(qbb + r) (1− φ)

rk
qcb∆hoc.

3.1 The Effect of CDS on Bond Market Liquidity

The next proposition gives the main theoretical result of the paper by
analyzing how the introduction of the CDS market affects the bond
illiquidity discount. It shows that the existence of naked CDS buyers
increases bond market liquidity and, consequently, bond and CDS markets
are complementary markets. In particular, when entry is endogenous and
CDS search frictions are not too severe (λc > λ̄c), the existence of the
CDS market lowers the illiquidity discount in the bond price. Figure 2
illustrates the result.

Proposition 4. In the equilibrium of Proposition (1), there exists λ̄c > 0

such that for all λc > λ̄c,

d (λc) ≤ dno cds.

The proof is given in Appendix A and the mechanism consists of the
following parts. First, for a given rate of entry, ρ, the introduction of the
CDS market increases the value of entering the economy as a high type
because now there are effectively twice as many counterparties (bond
sellers and CDS buyers) that the high type agent can provide liquidity
for. The probability of finding a counterparty in at least one of the two
markets is, therefore, greater than if there was just the bond market. This
is illustrated in Figure 3 by a vertically upward shift in Vhn(ρ) to the solid
red line. Attracted by the increase in the different ways of establishing a
long position and supplying liquidity, high type agents enter at a higher
rate.

Second, each additional entrant increases competition and lowers the
profit for every other high type agent. This is illustrated by the downward
slope of Vhn (ρ) in Figure 3. They enter until the marginal entrant is
indifferent between entering or not (where Vhn crosses the outside option,
Oh). The above two mechanisms imply that the existence of the CDS
market, in equilibrium, results in an increase in the number of high type
agents and the aggregate supply of liquidity (denoted by the increase in
ρ from ρnocds to ρcdsλc<∞ in Figure 3).

Third, the increase in the rate of entry creates a positive externality
in the bond market when the CDS market is subject to search frictions.
Figure 4 illustrates the increase in the rate of entry of high types due to the
introduction of the CDS market. If the CDS market is frictionless (λc →
∞), the increase in the measure of all high type agents,

(
ρcds − ρnocds

)
Fh
γd
,

is exactly equal to the total demand for CDS (the measure of all low
types, including those who have purchased CDS: Fl

γu
= µln + µlsc). This is
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because, upon entry, liquidity providers are able to locate and sell CDS
immediately to the flow of CDS buyers, and, as a result, the increase in
high types does not affect the bond market. But with search frictions, the
increase in high type agents is strictly greater than the potential total
demand for CDS ( Fl

γu
). When search frictions in the CDS market are high,

a CDS seller can extract more rent from a CDS buyer. Thus, the increase
in high type agents (the potential suppliers of CDS contracts) is greater
than the potential demand for CDS.

As a result of this increase in high types, bond sellers free ride on the
increased traffic of traders who are looking to establish a long position
by either selling CDS or buying bonds. Figure 5 illustrates how the CDS
market changes the bond market composition. Due to the increase in high
types, there are more bond buyers, and consequently fewer bond sellers.
Furthermore, as shown in Figure 6, the introduction of the CDS market
also increases the volume of trade in the bond market.

3.1.1 The Importance of CDS Search Frictions

The positive externality created by the CDS market only exists when
there are trading frictions in the CDS market. When the CDS market
is frictionless, it has no effect on the bond price or the bond market
composition: the number of bond buyers, sellers, or bond volume. As
illustrated in Figure 5, when trading frictions in the CDS market decrease
(λc →∞), the number of bond buyers and sellers (and hence bond volume)
converges back to the benchmark environment without CDS. Proposition
5 formally shows that if the CDS market is frictionless, then it does not
affect the illiquidity discount in the bond price.

Proposition 5. lim
λc→∞

d(λc) = dnocds.

3.1.2 The Importance of Endogenous Entry

With exogenous entry, the above mechanism exactly reverses: the intro-
duction of the parallel CDS market shrinks the size of the bond market as
some agents who would have otherwise bought bonds migrate to the CDS
market and sell CDS instead. Existing bond sellers effectively compete
with CDS buyers for the same set of traders that can provide liquidity
in either market. Due to fewer bond buyers, the congestion externality
and search costs increase for bond sellers. Thus, with exogenous entry the
effect of the CDS market is on the intensive margin: the total number of
market participants is fixed, and there is only migration or substitution
between the bond and the CDS market. With endogenous entry there is,
on the extensive margin, a larger overall flow of traders into both bond
and CDS markets. In particular, the increase in entry more than offsets
the migration (i.e. the substitution) effect: it replaces the bond buyers
that migrated to the CDS market and, due to search frictions in the CDS
market, results in even greater number of potential bond buyers.
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3.1.3 Model Implication on a Permanent CDS Ban

The above results showed that bond and CDS markets are complementary
markets: the existence of naked CDS buyers increases bond market liq-
uidity. These results imply that permanently banning naked CDS buyers
will reverse this positive effect and lead to a decrease in bond market
liquidity.

3.2 A Temporary Naked CDS Ban

So far I have compared the steady-state bond prices and bond market
liquidity in settings with and without CDS markets when the aggregate
number of market entrants can adjust towards these steady states. This
analysis can speak to the effect of a permanent ban on naked CDS
positions. In this section, I consider instead the immediate impact of a
temporary ban on purchasing naked CDS.

I model a temporary naked CDS ban as a one-time unexpected drop
in the number of naked CDS buyers. To focus on the immediate impact
of the shock, I assume that the flow of entrants remains fixed in the
short run as the economy rebounds back to the steady state equilibrium.
Time can be relabeled so that t = 0 corresponds to the time at which
this shock occurs. As the shock hits, the distribution of the measure of
types switches to {µτ (0)}τ∈T = {µ̄τ}τ∈T . I define {µ̄τ}τ∈T such that all
its elements are equal to the steady state measure of types except the
measure of naked CDS buyers is instead zero: µ̄ln = 0. The time-varying
equilibrium measure of hn type agents from this shock back to the steady
state is given by the solution to the following ODE:

.
µhn(t) = (1 + ρ)Fh + γuµhoc(t)− [γdµhn(t) + (qbs(t) + qcb(t))µhn(t)]

where the initial condition is given by {µτ (0)}τ∈T = {µ̄τ}τ∈T and the
entry rate ρ is kept fixed at the steady state level. The dynamics for the
measures of other agents are analogously characterized in (A.45)–(A.51).
Given this solution, agent hn’s value function evolves according to:

.

V hn(t) = rVhn(t)− [γd(0− Vhn(t)) + qbs(t) (Vhob(t)− Vhn(t)− pb(t))
+qcb(t)(Vhoc(t)− Vhn(t))]

where
pb(t) = φVaob(t) + (1− φ) (Vhob(t)− Vhn(t)),

Vhoc(t)− Vhn(t) = φ (Vlsc(t)− Vln(t) + Vhoc(t)− Vhn(t)) .

It is analogous for the other agents as shown in (A.52)–(A.58). Define
∆hob ≡ Vhob−Vhn, ωb ≡ Vhob−Vhn−Vaob, and ωc ≡ Vhoc−Vhn +Vlsc−Vln.
Then, we can rewrite all the ODEs for the value functions in terms of
∆hob, ωb and ωc, for example:

.

V hn(t) = rVhn(t)− [γd(0− Vhn(t)) + qbs(t)φωb(t) + qcb(t)φωc(t)]

19



In turn, the solution for ∆hob, ωb and ωc is given in Proposition 6.

Proposition 6. Given the solution to the time-varying dynamics of agent
measures, the dynamics for ∆hob and Vaob are given by :

∆hob =
δb + xb − y

r
−
ˆ ∞
t

e−r(s−t) ((γd + qbsφ)ωb + qcbφωc) ds,

Vaob =
δb − y
r

+

ˆ ∞
t

e−r(s−t)qbb (1− φ)ωbds,

where [
ωb(t)

ωc(t)

]
=

ˆ ∞
t

e−
´ s
t A(u)du

[
xb

xcl + xch − 2y

]
ds,

A(t) =

[
r + γd + qbsφ+ qbb (1− φ) qcbφ

qbsφ r + γd + γu + qcbφ+ qcs(1− φ)

]
.

3.2.1 Results

Figures 7 and 8 plot the transition dynamics of types’ measures and of
the bond illiquidity discount from the CDS ban shock at t = 0 back to the
steady state. The sudden drop in the number of naked CDS buyers frees
up their counterparties who would have otherwise provided them liquidity
by selling CDS. These liquidity providers temporarily substitute providing
liquidity in the CDS market with providing liquidity in the bond market
and trading as bond buyers. In turn, bonds sellers temporarily benefit
from the ban as they now find bond buyers more quickly and hence face
lower search costs. The temporary and sudden ban on naked CDS buyers,
as a result, leads to an immediate increase in bond market liquidity. In
the short term, for liquidity providers (i.e. the high type agents) bond
and CDS markets are substitute markets. 12

3.2.2 The Implicit Cost of Entry

The substitution effect arises because long traders resort to temporarily
trading in the bond market instead of exiting entirely from both markets
at the extensive margin. I arrive at this result by keeping the entry rate
fixed which is a reduced form way to capture an adjustment cost of entry.
Although I do not explicitly incorporate such adjustment cost of entry,
eq. 10 illustrates one possible way of incorporating it. Now, in addition
to comparing the value of entering Vhn(ρ) with the outside investment
opportunity Oh, high type agents have to take into account a cost of entry
that varies with the entry rate:

12As the ban is lifted, the number of traders searching to buy CDS increases until the
fraction of CDS buyers who finds a CDS seller equals the flow of new low type agents
entering the economy.
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ρ =


1 Vhn(ρ)− c(ρ) > Oh

[0, 1] if Vhn(ρ)− c(ρ) = Oh

0 Vhn(ρ)− c(ρ) < Oh.

(10)

where c′(ρ) > 0 and c′′(ρ) > 0. Figure 9 figuratively illustrates an example
of a such cost function. The temporary CDS ban leads to a small decrease
in the value of trading as a high type. When the scale of entry is already
large, due to the convexity of c(ρ), with a very small decrease in ρ, the
cost decreases by a lot. As a result, the entry rate does not have to change
much in response to a temporary ban. In contrast, with a permanent ban,
the decrease in the value of trading as a high type is large. In addition,
due to the convexity, as the entry rate ρ decreases, the resulting decrease
in the cost of entry becomes less responsive. As a result, the entry rate
has to decrease by a lot in response to a permanent ban. Alternatively,
we can also back out how the short-run dynamics of the cost of entry has
to look like from the dynamics of Vhn(ρss) as shown in 10.

4 DATA AND MARKET DESCRIPTIONS

4.1 Background on Sovereign Bond Market

Government bonds trade in over-the-counter markets. A trader in the
US, for example, shops for government bonds using phone calls, emails,
messages and quotes through Bloomberg.13 Locating a particular bond
issue can be at times impossible. In European government bond markets,
since their inception in 1988, MTS trading platforms have become an
increasingly important trading venue. The MTS system is an inter-dealer
trading platform that functions similar to electronic limit order markets
and is not accessible to individuals. Despite its similarity to equity markets,
trade is fragmented across heterogenous bonds and liquidity per bond is
low.14

4.2 Bond Market Data

The bond price data comes from Thomson Reuters and consists of daily
bid and ask price quotes for the period 2004-2012. Due to data access

13Trade in US Treasuries, however, is different than in other government bonds. See
discussion in Vayanos andWeill (2008) and Fleming and Mizrach (2009) for institutional
details specific to US Treasury markets.

14See Cheung, Rindi, and De Jong (2005) and Dufour and Skinner (2004) for more
information on MTS trading platforms. Also, Pelizzon, Subrahmanyam, Tomio, and
Uno (2013) analyze liquidity of Italian government bonds traded on MTS platforms.
Although the Italian government bond market is one of the largest and the most liquid
government bond markets, its liquidity, by daily trading volume and by the number of
trades per bond, is comparable to the US municipal bond and the US corporate bond
markets.
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limitation, I use bonds that have not matured as of August 2012. To
minimize differences across bonds, I use fixed coupon bonds. I exclude
floating rate coupon bonds, perpetual bonds, index and inflation-linked
bonds, and coupon strips. The final sample consists of 3,210 plain coupon
bonds across 67 sovereigns. Thomson Reuters’ bid and ask quotes are a
composite of quotes collected from various sources including individual
dealers, trade organizations such as the ICMA and IBoxx, and local
market sources. Bond prices are quoted as a percent of the par (or face)
value of the bond.15 As each sovereign will have multiple bond issues that
vary by maturity, currency, and coupon, prices are aggregated by taking
the average of all bond issues. For robustness, I consider other ways of
aggregating across bond issues including the average weighted by the
bond issue size, specific maturities, and maturity buckets.

Table 8 shows the overall descriptive statistics and Table 10 at the
country level. The average bond bid-ask spread across all bonds and
countries was 0.95% of the mid price (or 95 basis points). From the
country-level Table 10, we see a lot of cross-country difference in the
average bond bid-ask spread and that bid-ask spreads widen with credit
risk: Greece has the highest average bid-ask spread of 3.51% (351 bps)
while the U.S. has the lowest at 0.04% (4 bps).

4.3 Background on the CDS Market

As discussed before, credit default swaps are over-the-counter derivative
contracts that resemble insurance protection against a default or a similar
event (referred to as a “credit event”) on bonds of a specific firm or
government (the “reference entity”). A buyer of CDS protection pays
a periodic fee (equivalently, the CDS price, premium, or spread) until
either the contract matures or a credit event occurs. In return, the buyer
gets paid by the seller the protection amount that was purchased (called
“notional”) in the event of default or a similar event on any one of the
bonds covered by the contract of the reference entity. Thus, CDS contracts
are written on the level of firms and governments and not at an individual
bond level.16 The standard notional amounts are in the range of $10-20
million.17 Prices of CDS contracts are paid quarterly and are quoted as
annualized percentages of the contract notional.18 The contract specifies
the reference entity, the contract maturity, the notional amount, the set

15For example, if the bond price is 95, the bond is trading at 95 cents on the dollar.
16This means, for example, if you are a holder of bond “A” of Greek government and
Greece defaults on another bond “B” and both bonds are covered by the contract, you
will be still be paid out even if your bond “A” has not been defaulted on.

17This is comparable to the most common transaction sizes of 5, 10, 25 million euros in,
for example, the MTS Global Market (see Cheung, Rindi, and De Jong (2005)).

18For example, if the price of a CDS contract with $10 million notional is 200 basis
points, the protection buyer pays $0.2 million annually in quarterly installments of
$0.05 million. The price of a CDS contract can be thought of as, in its simplest form,
the probability of default times one minus the recovery rate. For example, if a one
year CDS contract is trading at 200 basis points, and the recovery rate was zero, then
the implied probability of default is 2%.
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of bonds of the reference entity covered by the contract, and the default
events that constitute a credit event. The standard credit events for
sovereign CDS are Failure to Pay and Debt Restructuring.19

Credit events are determined by the International Swaps and Deriva-
tives Association (ISDA), the governing body for the CDS market.20

Protection buyers get paid the difference between the notional and the
recovery value (effectively, the price of defaulted bonds) that is determined
through a special post-credit-event auction. For example, if an investor
bought CDS with a notional of $10 million and the recovery rate is 25%,
she receives $7.5 million in cash. ISDA finalizes the actual list of eligible
bonds that can be submitted into the auction, and oversees the auction.
At the end of the auction, all bonds submitted into the auction are bought
and sold at the same final bond price and this final price is the price or
the recovery rate that settles all CDS contracts on that reference entity.
In addition to receiving the cash portion, CDS buyers have the option of
requesting a “physical settlement” of contracts by selling the bond during
the auction.

4.4 CDS Data

I now describe the CDS data used in the paper. CDS price data comprises
of daily bid and ask price quotes from CMA for the five year maturity
contracts over the period 2004-2012. Following market standards, they are
reported in basis points. Table 8 summarizes the CMA CDS price data for
all sovereigns and Table 10 at the country level. CDS notional data comes
the Depository Trust and Clearing Corporation (DTCC) which provides
post trade electronic confirmation service to CDS market participants.
According to the DTCC, at least more than 90% of all worldwide trades in
the CDS market gets recorded in their information warehouse. The DTCC
provides historical data on both the volume of trade and the outstanding
amount of protection. The volume data is the total notional of all trades
on an average day per quarter for each sovereign over the period 2010
Q2 - 2012 Q2. The outstanding data consists of the outstanding gross
notional, net notional, and the number of contracts for each sovereign
over the period October 31, 2008 - July 28, 2012 at a weekly frequency.

19For corporate CDS, bankruptcy is an additional standard credit event. There are
three kinds of restructuring that vary by how restrictively they limit the set of eligible
bonds: Modified Restructuring (MR), Modified Modified Restructuring (MMR), and
Complete (or “old”, “full”) Restructuring (CR). MR is the most restrictive limiting
eligible bonds to have maturity of up to 30 month after the declaration of a credit
event, then MMR with 60 month maturity, and CR is the least restrictive with the
standard 30-year maturity limit on bonds. CDS on North American reference entities
usually feature MR (except CDS on high credit risk firms tend to completely exclude
any debt restructuring as a credit event), while CDS on European firms feature the
less restrictive MMR. Debt restructuring on CDS on sovereigns, on the other hand,
most commonly specify CR.

20Credit events are decided by the “determination committee” of ISDA which consists of
10 big dealer banks (e.g Bank of America, Barclays, BNP Paribas, Citibank, Credit
Suisse, Deutsche Bank, Goldman Sachs, JPMorgan, Morgan Stanley, and UBS) and
five buy side firms that tend to be hedge funds.

23



Table 9 summarizes the DTCC data for all sovereigns and Table 11 at the
country level. My analysis focuses on the outstanding CDS net notional
as the amount of CDS purchased.

5 EMPIRICAL RESULTS

In this section, I document the following patterns regarding sovereign
bond and CDS markets:

1. A greater amount of CDS purchased is associated with more liquid
bond market. Specifically, the amount of CDS net notional out-
standing is positively and significantly correlated with bond market
liquidity even after controlling for credit risk, and debt outstanding.
Consistent with this pattern, when the EU voted in October 2011 to
permanently ban naked CDS on governments of the EU countries,
countries affected by the ban experienced a decrease in their bond
market liquidity.

2. On May 18 2010, Germany temporarily banned naked buying of
CDS on governments of the Eurozone and the ban was effective
overnight. Immediately following the ban, the bond market liquidity
increased for the countries affected by the ban. Thus, the pattern
documented previously (that bond liquidity increases with more
CDS positions) reversed during the initial period of the ban.

5.1 Pattern 1: The Time-Series Pattern between CDS and Bond Market
Liquidity

5.1.1 Contemporaneous Regressions

I first document that the amount of CDS net notional outstanding is pos-
itively and significantly correlated with bond market liquidity (narrower
bond bid-ask spreads) controlling for credit risk and debt outstanding.

An empirical measure that captures the amount of naked CDS positions
in isolation does not exist. Therefore, I use CDS net notional outstanding
as a measure proportional to the overall amount of naked positions.
Figure 15 plots the time series pattern for Italy of CDS net notional and
the proportional bond bid-ask spread over 2008-2012. Overall, a greater
amount of CDS purchased is associated with narrower bond bid-ask
spreads, i.e. greater liquidity. However, both bond market liquidity and
the amount of CDS purchased are correlated with credit risk and the size
of the bond market. Table 13 shows for the sample of European Union
countries the results of regressing the bond bid-ask spread on CDS net
notional while controlling for credit risk (proxied by CDS price) and the
gross government debt outstanding. The coefficient estimate of CDS net
notional (-0.261, se: 0.0396) says that if CDS net notional increases by
one billion US dollar, the proportional bond bid-ask spread decreases by
0.261 (% of mid price), or by about one fourth of the average proportional
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bid-ask spread (the average was about 1.11% of the mid price as shown in
Table 12 of descriptive statistics).21 An alternative specification of CDS
net notional as the log of the ratio of CDS net notional to gross debt
outstanding gives qualitatively the same result.

5.1.2 Vector Autoregressions

As the regressions in Table 13 of contemporaneous variables do not neces-
sarily imply causation, in this section I carry out vector autoregressions
to explore the direction of causation. To summarize, VAR and VECM
results suggest that it is not just bond market liquidity driving CDS net
notional and that CDS net notional also affects bond market liquidity.

First, I test whether there is a cointegration relationship between
CDS price, CDS net notional and the bond bid-ask spread. If there is no
evidence of cointegration among the variables, I carry out the simpler
VAR-in-differences. For 14 out of 23 European Union countries, there
is no evidence of cointegration while for the other 9 there is. For the
former 14, Table 14 shows the results of the VAR-in-differences: it shows
the p-values of the Granger-causality tests. For 5 out of these 14, CDS
net notional Granger-causes bond bid-ask spreads, while for 2 out of 14,
bond liquidity Granger-causes CDS net notional. Thus, there is a stronger
evidence that CDS net notional affects bond market liquidity.

For the other 9 countries for which the variables are cointegrated, I
use vector error-correction models (VECM). The idea behind VECM is
that a long term equilibrium relationship exists between cointegrated
variables:

xt − α0 − α1µt − α2dt = 0

where xt is a measure of credit risk, µt is CDS net notional, and dt is
the proportional bond bid-ask spread. Changes in the variables can be
characterized as adjustments to deviations from this long term equilibrium
plus responses to the lagged changes:

∆xt = λx (xt−1 − α0 − α1µt−1 − α2dt−1) +

p−1∑
j=1

β1j∆xt−j +

p−1∑
j=1

δ1j∆µt−j +

p−1∑
j=1

γ1j∆dt−j,

∆µt = λnotl (xt−1 − α0 − α1µt−1 − α2dt−1) +

p−1∑
j=1

β2j∆xt−j +

p−1∑
j=1

δ2j∆µt−j +

p−1∑
j=1

γ2j∆dt−j,

∆dt = λbond (xt−1 − α0 − α1µt−1 − α2dt−1) +

p−1∑
j=1

β3j∆xt−j +

p−1∑
j=1

δ3j∆µt−j +

p−1∑
j=1

γ3j∆dt−j.

Gonzalo and Granger (1995) proposed a notion similar to Granger
causality in the VECM framework. The variable that adjusts less to the

21Throughout, the panel regression analyses with time series data adjust for the fact
that errors are correlated within country by including country fixed effects. In addition,
I capture any non-fixed effect by modeling AR(1) correlation structure in disturbances
to allow for the correlation between residuals to decay with time (as is the case with
time series data). Standard errors also allow heteroskedasticity and correlation of
disturbances across countries (e.g. Eurozone countries are more correlated with each
other than with a non-Eurozone country).
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deviation from the long term equilibrium would be considered to be the
more important driver of the long run equilibrium (i.e. it Granger-causes
the other variables in the long run). Conversely, the variable that adjusts
the most (indicated by a significant adjustment coefficient) has a more
transitory as opposed to a permanent effect on the other variables. Table
15 shows the adjustment coefficients and t-statistics for CDS net notional
and bond bid ask spreads. The t-statistics are generally bigger for the
bond bid-ask spread than for CDS net notional. This suggests that CDS
net notional affects bond market liquidity.

Next, I conjecture that changes in the amount of naked CDS positions
affect CDS market liquidity and explore whether CDS liquidity Granger-
causes bond market liquidity.22 Table 16 reports the results of the Granger-
causality tests. For 18 out 24 European Union countries, the CDS bid-ask
spread Granger-causes the bond bid-ask spread, whereas for only 10 out of
24 countries the bond bid-ask spread Granger-causes CDS bid-ask spread.

The above VAR and VECM results suggest that it is not just bond
market liquidity driving CDS net notional and that CDS net notional
also affects bond market liquidity.

5.2 Pattern 1 using The Permanent CDS Ban

In this subsection, I examine how bond market liquidity changed following
the EU’s decision to ban naked CDS. The above results relied on the
argument that changes in CDS net notional, keeping credit risk and debt
outstanding fixed, is attributable to changes in naked CDS positions.
The ban decision targeting naked CDS in particular helps to identify the
potential effect of naked positions on bond market liquidity.

5.2.1 The Description of the Ban

Throughout 2011, market participants faced uncertainty over whether
the EU would adopt measures to ban naked CDS. The uncertainty was
finally resolved on October 18, 2011 when, after months of negotiations,
the European Parliament and the EU states passed a law to permanently
ban naked CDS.23 The legislation applied to all CDS transactions refer-
encing governments of the EU regardless of the geographic location of the
transaction or the legal jurisdiction of the financial institution involved
in the transaction.24

22This set of regressions explores whether one market affects the other more and does
not focus on the sign of the correlation. The sign of the correlation is sensitive to
whether I use absolute CDS bid-ask spread or relative bid-ask spread (i.e. normalized
by the mid price).

23For the draft of the law (number: 16338/11 EF 152 ECOFIN 739 CODEC 1873) that
was agreed upon by the European Parliament and the Council of the European Union,
see http://register.consilium.europa.eu/pdf/en/11/st16/st16338.en11.pdf.

24It also applied to CDS referencing three other European Economic Area countries:
Iceland, Norway, Liechtenstein. But I will simply refer to the countries affected by the
ban as the EU although I am including these other three in the analysis.
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The final draft of the law was published March 2012 (Regulation EU
No 236/2012).25 Although the legislation was to be in effect beginning
November 1, 2012, the March 2012 regulation stated that traders who
enter new contracts after March 2012 would have to unwind them by
November 2012. Contracts entered into before March 2012 could remain
in place even beyond November 2012. Figure 11 compares the total CDS
purchased referencing EU governments versus countries not affected by
the ban. We see that the total amount of CDS purchased on EU sovereigns
started to dramatically decrease starting around the time the law was
passed and has been declining ever since. This decrease did not occur
for countries not affected by the ban. Thus, anticipating the difficulty of
renewing their contracts beyond March 2012, traders started to decrease
their activity already beginning fall of 2011.

I describe now the main restrictions that the legislation imposed. Mar-
ket participants were generally confused about how to actually interpret
and satisfy each of these restrictions. The legislation considered a CDS
purchase to be covered if it was hedging a portfolio of assets the value of
which had a historical correlation of at least 70% with the government
bond price over 12 months (or more) prior the CDS purchase. If a CDS
purchase could not satisfy this at the time of the purchase, it would be
considered naked and hence prohibited. The underlying portfolio could
consist of, for example, long positions with respect to private entities
within the reference entity country or even long positions through CDS
itself. The correlation requirement would be automatically satisfied if the
underlying position being hedged was governments bonds (at all federal
and local levels of the government), the liability of state enterprises, or
the liability of enterprises that are guaranteed by the sovereign. The
legislation exempted market making activities.

After the purchase, traders did not have to maintain the correlation
throughout the CDS contract since the price of the underlying portfolio
can vary. But the size of underlying positions had to remain “proportional”
to the amount of CDS purchased. In other words, a trader could not buy
bonds with an intent to sell them back once she purchases CDS.26 In

25Additional details emerged later with supplemental regulations EU No 826/2012 (29
June 2012), EU No 827/2012 (29 June 2012), and EU No 918/2012 (5 July 2012).
For these drafts, see http://ec.europa.eu/internal_market/securities/short_
selling/index_en.htm.

26In addition, the regulation had various disclosure requirements of short positions
through equity, sovereign bond and CDS markets. It also restricted short selling of
equity and attempted to restrict naked short selling of governments bonds. Naked
short selling is the sale of a security without having pre-borrowed. By definition, naked
short selling is limited and temporary since the short seller has to borrow or buy
the security to deliver it within the sale settlement period (usually 3 days or less).
Otherwise, it results in a delivery failure. According to Comotto (2010), naked short
selling of government bonds occurs rarely. When they do occur, it is intraday (for
few hours and the short sell is covered), or occur because of operational errors. The
regulation required that in order to short sell government bonds, a trader had to either
have “located” the bond or have pre-borrowed it. The pre-borrowing arrangement
prior to selling is the regular (covered) short selling and entails a contractual repo
claim to a bond. But the locate requirement is a soft constraint and does not involve
a contractual claim as it can be easily satisfied by email or phone. This regulation,
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terms of how the regulation was enforced, institutions were supposed to
be able to provide such evidence of hedging if they were asked.

5.2.2 The Effect of the Permanent Ban on Bond Market Liquidity

Now consider what happened to bond liquidity. Figure 12 shows that
following the ban bond market liquidity decreased for countries that were
affected by the ban. I formally show this with a difference-in-difference
analysis. I set the ban period, denoted by Tb, to be a four month period
starting the week after October 18th through the end February 2012. I
explore the following panel regression using four-months of data before
and after the ban of all countries:

dit = c+ γi + λt +X
′

itβ + δDi∈EU,t∈Tb + εit (11)

where dit is the bond bid-ask spread (% of the mid price) of country i
at time t, c is a constant, γi and λt are the coefficients on country and
time fixed effects, respectively, and Xit is a set of controls. Di∈euro,t∈Tb is
a dummy variable that equals one for the country-date observations for
which the ban was in place. Thus, the control group is countries outside
the EU (hence not affected by the ban) and the treatment group is the
EU countries. The coefficient of interest is δ: it measures the effect of the
CDS ban on liquidity of the European Union government bond markets.

Table 17 shows the regression results of (11) controlling for debt
outstanding and CDS price as a measure of credit risk. The coefficient
estimate of the EU CDS Ban (δ) in Column (1) is positive and statistically
significant (0.271, st. err: 0.105) and shows that the ban is associated with
27% increase in the proportional bid-ask spread.27 The average bid-ask
spread for the EU countries was about 1% of the mid price or $1 of round
trip transaction cost for every $100 of transaction. Relative to this average,
the round trip transaction cost increased 27% from $1 to $1.27. Columns
(1) and (2) show that including CDS price as a measure of credit risk
qualitatively does not change the results.

5.2.3 Alternative Specifications

To allow for the possibility that bond bid-ask spreads for different countries
followed different trends, Columns (3)-(6) allow for country specific trends.
Column (7) includes instead a group specific trend: treated and control
countries, as a group, followed different trends. We see that the observed
decrease in bond liquidity is robust to including country or group trends.
As a robustness, Column (5) excludes Greece as a potential outlier, and
Column (6) restricts the control group countries to just OECD countries.
Both give qualitatively the same result.

as a result, did not affect short selling of government bonds but mainly targeted the
CDS market.

27See Footnote 21 for discussion on standard errors. In addition, Table 23 shows the
regression results of collapsing the time series data into two pre and post ban periods
and finds qualitatively the same result using the OECD sample.
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We observe the total amount of CDS purchased and not covered and
naked purchases separately. Since the ban targeted naked CDS trading
in particular, the decrease in the total amount of CDS purchased during
this period should capture more a decrease in naked rather than covered
CDS purchases, and hence, should capture the amount of naked CDS
positions outstanding prior to the ban.28 Thus, if banning naked CDS
positions caused bond liquidity to decrease, a greater decrease in CDS
net notional should be associated with a greater increase in the bond
bid-ask spread. To check this hypothesis, Column (4) adds an interaction
term between the EU CDS Ban dummy variable with the change in
net notional following the ban, EU CDS Ban∗∆Notl. The positive and
the statistically significant coefficient of the interaction term shows that
among countries subject to the ban those that had potentially more naked
CDS positions outstanding prior to the ban experienced even a greater
widening of the bond bid-ask spread.

To check the hypothesis that the change in net notional following
the ban is correlated with more naked CDS positions prior to the ban,
Table 22 shows the correlation between the change in net notional during
this period and the past level of CDS net notional controlling for debt
outstanding and credit risk. We see a statistically significant positive
correlation for the EU countries but not for the non-EU countries.

5.2.4 Possible Endogeneity of Regulations

Short selling bans are usually imposed in times when regulators are
concerned with stability and liquidity in financial markets. If the regulation
was passed in anticipation of a decrease in liquidity, then the subsequent
observed decrease in bond liquidity following the ban may not be due to the
ban (while the ban itself was ineffective in improving market conditions).
However, this argument does not explain why liquidity increased following
the temporary German ban.

Nevertheless, since the ban targeted particularly the naked CDS buyers,
it still allows us to approximate the amount of naked CDS positions
that had existed before the ban by using the decrease in the total CDS
purchased following the ban. I check whether the cross-country variation
in the drop has an explanatory power for the bond liquidity level before
the ban for countries subject to the ban. Table 18 shows the estimates of
the following regression:

dit−1 = c+ γi + λt−1 +X
′

it−1β1 + β2∆i(t−1,t)Notl

+δDi∈EU,t∈Tb ∗∆i(t−1,t)Notl + εit−1.
(12)

28The legislation applied to new CDS contracts and not existing positions. So the
decrease in CDS net notional captures the maturation of CDS contracts that otherwise
would have been renewed had there not been the ban.
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We are interested in δ.29 We see from the estimate of β2 that normally
future changes in CDS net notional are not correlated with the past level
of bond liquidity. But the decrease in net notional that countries subject
to the ban experienced, specifically during the ban, is associated with a
higher level of bond liquidity (tighter bid-ask spreads) prior to the ban.
Thus, a potentially greater amount of naked CDS positions outstanding
prior to the ban is correlated with a higher pre-ban level of bond liquidity
controlling for the pre-ban levels of credit risk and debt outstanding.

5.3 Pattern 2: The Temporary CDS Ban

5.3.1 The Description of the Ban

On Tuesday May 18th 2010, Germany prohibited naked purchase of CDS
referencing Eurozone governments.30 As recent as month prior to the
ban Germany’s rhetoric had been that there is no need to ban naked
CDS trading. The regulation was unexpected by market participants and
was implemented within the same day that the media first reported it.
News about the ban first appeared around 1pm on Tuesday May 18 2010
through Reuters. But the official details of the legislation did not emerge
until late in the evening around 9:30pm. The regulation was effective from
midnight the same day (within two and half hours from the release of
the official statement) and was to be in effect through March 31, 2011.
However, later on July 27, 2010 the regulation was made permanent.

The regulation also banned naked short selling of 10 leading German
financial stocks and naked short selling of eurozone governments bonds
that were allowed to be listed on Germany’s domestic stock exchange.
The naked bond short selling restriction, as a result, applied to only a
few German and Austrian bonds.

The May 18th 2010 regulation did not specify the territorial scope of
the regulation. So it is not clear whether market participants interpreted
the regulation to apply to all transactions regardless of the geographic
location and the institution. According to Allen & Overy LLP and ISDA’s
conversations with BaFin (Germany’s financial regulatory body), BaFin
confirmed that the regulation applied to transactions where at least one
of the counterparties is located in Germany. It would not, for example,
apply to a transaction between the New York branch and London Branch
of Deutsche Bank.

5.3.2 Results

In this section, I explore how this regulation impacted bond market
liquidity. Figure 13 plots the cross country average of the bond bid-ask
spread. The dashed line shows the average for the EU countries not

29Since we are looking at the past level of bond liquidity, the interpretation of ∆Notl in
the current setup is different from the previous set-up.

30For the draft of the regulation, see http://www.bafin.de/SharedDocs/
Aufsichtsrecht/EN/Verfuegung/vf_100518_kreditderivate_en.html.
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affected by the ban (i.e. naked CDS referencing these countries could still
be purchased), while the solid line plots the average for the EU countries
affected by the ban (i.e. the Eurozone countries). Two vertical lines are
drawn for the week before the ban and the week of the ban. We can see
that for the countries affected by the ban, there was a large and sudden
narrowing of the bond bid-ask spread while this did not occur for the
countries not affected by the ban. Figure 14 in the Appendix demonstrates
the time series of CDS net notional around the ban.

To test this pattern formally, I carry out an exercise analogous to
the EU ban. I set the initial period of the ban, denoted by Tb, to be a
month long period starting the week after the ban inception.31 I explore
the following regression using four months of data before and after the
ban using the sample of EU countries:

dit = c+ γi + λt +X
′

itβ + δDi∈euro,t∈Tb + εit (13)

where dit is the bond bid-ask spread (% of mid), c is a constant, γi and
λt are the coefficients on country and time fixed effects, respectively, and
Xit is a set of controls. Di∈euro,t∈Tb is a dummy variable that equals one
for the country-date observations for which the ban was in place. The
control group is the non-Eurozone countries within the EU (hence not
affected by the ban) and the treatment group is the Eurozone countries.
Thus, the difference δ is the effect of the CDS ban on liquidity of the
Eurozone government bond markets.

Table 24 shows the regression results of (13). The coefficient estimate
of the CDS Ban (δ), as shown in columns (1) and (2), is negative and
statistically significant. During the initial period of the ban, countries
subject to the CDS ban experienced larger decrease in the bond bid-
ask spread relative to the countries not subject to the ban. Comparing
Column (1) and column (2) shows that including CDS price does not
make a difference. As Columns (3) and (6) show, controlling for country
or group specific trends, respectively, does not change the results. The
observed decrease in the bid-ask spread is also to robust to excluding
Greece as a potential outlier (Column (5)).

Since the ban targeted naked CDS in particular, the decrease in
CDS net notional following the ban should be associated more with the
amount of naked CDS positions that had existed before the ban than
the amount of covered CDS.32 Thus, if banning naked CDS positions
caused bond liquidity to increase, a larger drop in CDS net notional
should be associated with a larger decrease in the bond bid-ask spread.
Column (4) checks this hypothesis as a further robustness. It includes an

31Although the temporary ban was initially effective through March 2011, I restrict to a
narrower ban period to capture the immediate impact of the ban. Given that the ban
applied to institutions within Germany only, with more time, trades are likely to have
shifted to other European countries outside Germany.

32Similar to the EU ban, the legislation banned new CDS contracts and would not have
applied to existing CDS contracts. Thus, any decrease in net notional is capturing
more the maturation of CDS contracts that would have otherwise been renewed had
there not been the ban.
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interaction of CDS Ban dummy with the change in net notional following
the ban (CDS Ban ∗∆Notl). The negative and statistically significant
slope coefficient of the interaction term suggests that among countries
subject to the ban, those that had potentially more naked CDS positions
prior to the ban experienced an even greater decrease in the bid-ask
spread.

These results suggest that, first, naked CDS positions in particular have
an effect on bond market liquidity, and second, the positive correlation
between bond liquidity and the amount of CDS positions that we saw in
the previous section reversed during the initial period of the ban.

6 DISCUSS ION

6.1 Model Implications and the Empirical Patterns

I discuss now how the model mechanism rationalizes these contradictory
empirical patterns. The model suggests that, in the long term, bond
and CDS markets are complementary markets. Thus, when the CDS
market is shut down permanently, it adversely affects liquidity of the
bond market which is consistent with the observed decrease in bond
market liquidity after the permanent ban. Specifically, if the number of
naked CDS buyers permanently decreases for an exogenous reason (as
happened with the permanent EU ban), long traders – who would have
been counterparties to naked CDS buyers – are forced to exit the CDS
market. But by exiting the CDS market, they exit the bond market also.
As a result, bond liquidity and bond prices decrease. Importantly, bond
and CDS markets are complementary markets only in the presence of
search frictions in the CDS market. Hence, trading frictions in the CDS
market create an interaction between bond and CDS markets that helps
explain the empirical patterns.

In the short term, on the other hand, bond and CDS markets are
substitute markets. As a result, when the CDS market is shut down
temporarily, the immediate effect is an increase in bond market liquidity
which is consistent with the observed increase in bond liquidity following
the temporary German ban. This is because the migration effect (specif-
ically, its reverse) dominates: long traders do not exit at the extensive
margin but instead resort to temporarily trading in the bond market.
Bond sellers temporarily benefit from a greater number of bond buyers
who would have otherwise sold CDS.

6.2 The Distinction from Other Mechanisms

The mechanism of this paper is separate from other effects that CDS
markets might have on bond market liquidity. The most commonly thought
of effect is the “covered” CDS story: the ability to insure one’s bond
portfolio by buying CDS is likely to attract traders into the bond market
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and increase bond market liquidity. The most commonly thought of
effect of naked CDS trading is that it may increase liquidity of the CDS
market itself and, consequently, may indirectly increase bond market
liquidity by making CDS a cheaper hedging tool. These effects, however,
cannot explain why permanent versus temporary CDS bans would affect
bond market liquidity differently. This paper instead proposes a theory
that rationalizes the opposite effects of different bans within the same
theoretical environment.

Another effect that my mechanism is distinct from is the basis trade.
In a basis trade, investors trade on an arbitrage opportunity arising from
how credit risk is priced in bond and CDS markets versus the theoretical
arbitrage relationship between the two securities. For example, if the CDS
price is too low relative to bond spreads, then a basis trading strategy
would involve buying bonds and buying CDS. Thus, the existence of the
CDS market, by creating a potential arbitrage opportunity, may increase
the amount of trade and liquidity in the bond market. But basis trades
necessarily involve a long position in one market (e.g. buying bonds as in
the example) but a short position in the other market (e.g. buying CDS).
In contrast, in my mechanism, there is an increase in the volume of trade
and liquidity in the bond market due to traders seeking a long position
in both markets.

6.3 Search vs. Asymmetric Information

Another plausible effect of the CDS market is that as an instrument to
trade on negative news, shorting credit risk through the CDS market
may aggravate adverse selection problems in the bond market and may
amplify a potential “run” on sovereign bond markets. This, in turn, may
lead to a further liquidity dry-up in the bond market. Although plausible,
this mechanism on its own cannot explain why different bans would affect
bond liquidity differently.

In the above scenario, potential bond investors as a group may have
asymmetric information from what the sovereign knows about itself. It is
also possible that illiquidity arises from asymmetric information amongst
traders as in Kyle (1985) and Glosten and Milgrom (1985) type frameworks.
The search framework is better suited for sovereign bond markets for two
reasons. First, trade in sovereign bond markets are fragmented across
heterogenous bonds. Second, asymmetric information and insider trading
is less severe with respect to governments than with respect to individual
firms.

7 CONCLUS ION

This paper studies, both empirically and theoretically, the interaction
between bond and CDS markets, and, in particular, how naked CDS
trading affects liquidity of the underlying bond market. To identify how
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naked CDS trading affects bond market liquidity, I use two naked CDS
bans implemented in Europe as quasi-natural experiments and analyze
how they affected sovereign bond market liquidity. I document that the
2011 permanent EU ban adversely affected bond market liquidity but the
2010 temporary German instead increased bond market liquidity.

To reconcile these contradictory patterns, I build a search theoretic
framework with interdependent bond and CDS markets liquidity. I show
that, in the long term, bond and CDS markets are complementary markets.
The introduction of the CDS market creates a positive externality in the
bond market and increases bond market liquidity by attracting traders into
both the CDS and the bond market. This result implies that permanently
banning the CDS market will adversely affect bond market liquidity: by
pulling out from the CDS market, traders pull out from the bond market
also. But, in the short term, there is a substitutability between these
two markets so that when the CDS market is banned only temporarily,
instead of pulling out from both markets, traders temporarily migrate to
the bond market.

My paper shows that different CDS bans can have different effects on
liquidity of the underlying bond market. But the main policy implication
of the paper is that permanently banning naked CDS trading will, in
the long term, adversely affect bond market liquidity and hence increase
sovereigns’ cost of borrowing.

Key model ingredients that help reconcile the observed patterns are,
first, search frictions in the CDS market. The complementariness of bond
and CDS markets arises only in the presence of search frictions in the CDS
market. The CDS market is otherwise redundant and does not affect bond
market liquidity. The second key model ingredient is endogenous entry.
The fact that bond and CDS markets can be complementary markets
is a novel result in light of existing theoretical studies of the liquidity
interaction between multiple asset markets. These studies highlight the
migration (or equivalently, the substitution) effect. In these models, the
aggregate number of traders across markets is kept fixed and, consequently,
introducing additional markets necessarily results in a fragmentation and
migration of traders across multiple markets. My results show that an
important interaction between multiple markets arises out of endogenizing
the aggregate number traders across markets by endogenizing traders’
entry decision at the extensive margin.
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a APPENDIX : PROOFS

Agents’ flow value equations are analogously derived to (6):

rVln = γu(0− Vln) + qcs(Vlsc − Vln) (A.14)
rVhob = δb + xb − y + γd(Vaob − Vhob) (A.15)
rVaob = δb − y + qbb(0− Vaob + pb) (A.16)
rVhoc = pc − (δc − xch)− y + γd(Vaoc − Vhoc) + γu(Vhn − Vhoc) (A.17)
rVaoc = pc − δc − y + qcs(0− Vaoc) + γu(0− Vaoc) (A.18)
rVlsc = −pc + (δc + xcl)− y + γu (0− Vlsc) (A.19)

Proof of Proposition 1. The proof of uniqueness is shown in Lemma 1 and the proof of
existence is shown in Lemma 2.

Lemma 1. Suppose (7) holds, then the steady state equilibrium is unique.

Proof. First fix ρ, then using the in-flow out-flow equations and the market clearing conditions
(2) (3), µln, µhob, µaob, µhoc, µaoc, µlsc can be solved as a function of µhn:

µln =
Fl

γu + λcµhn
(A.20)

µhob =
Sλbµhn

λbµhn + γd
(A.21)

µaob = S − Sλbµhn
λbµhn + γd

(A.22)

µhoc =
λcFlµhn

γu (λcµhn + γd + γu)
(A.23)

µaoc =
γdFlλcµhn

γu (λcµhn + γu) (λcµhn + γd + γu)
(A.24)

µlsc =
λcFlµhn

γu (λcµhn + γu)
(A.25)

And µhn itself is a solution to:

(1 + ρ)Fh − γdµhn
(

Sλb
λbµhn + γd

+
λcFl

γu (λcµhn + γd + γu)
+ 1

)
= 0 (A.26)

The LHS of (A.26) is positive at µhn = 0, decreasing in µhn, and is negative for large µhn,
hence (A.26) has a unique positive solution. Thus, (A.26) uniquely determines µhn and has a
positive solution, while other µ’s are uniquely determined by (A.20)-(A.24). Next, once µ’s are
solved, the value functions and prices are uniquely determined by a linear system of equations:
(6),(A.14) -(A.19), and (4)-(5).

We are left with the endogenous entry decisions:

ρ =


1 Vhn (ρ) > Oh

[0, 1] if Vhn (ρ) = Oh

0 Vhn (ρ) < Oh

(A.27)

There are three cases: two corner solutions ρ = 0, and ρ = 1, and an interior solution. Next, I
show that Vhn is strictly decreasing in ρ, which will imply that under each case the equilibrium
is unique. The derivation in the proof of existence shows that:

Vhn =
qbsxbφ+ ∆hocqcb (r + γd + qbb(1− φ))

(r + γd) k
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where

∆hoc =
xch + (qcs + r + γu + γd)

xcl−2y
r+γu+qcs

− 1
kqbsφxb

(1−φ)qcs+r+γu+γd
φ + 1

kqcb (r + γd + (1− φ) qbb)

None of the µ’s other than µhn directly depend on ρ but depend only indirectly through µhn,
thus we write:

∂Vhn (ρ)

∂ρ
=
∂µhn
∂ρ

(
∂Vhn
∂qbs

∂qbs
∂µhn

+
∂Vhn
∂qbb

∂qbb
∂µhn

+
∂Vhn
∂qcb

∂qcb
∂µhn

+
∂Vhn
∂qcs

∂qcs
∂µhn

)
=
∂µhn
∂ρ

(
∂Vhn
∂qbs

∂ (λbµaob)

∂µhn
+
∂Vhn
∂qbb

∂ (λbµhn)

∂µhn
+
∂Vhn
∂qcb

∂λc (µaoc + µln)

∂µhn
+
∂Vhn
∂qcs

λc

)
=
∂µhn
∂ρ

(
∂Vhn
∂qbs

∂ (λbµaob)

∂µhn
+
∂Vhn
∂qbb

∂ (λbµhn)

∂µhn
+
∂Vhn
∂qcb

∂λc (µaoc + µln)

∂µhn
+
∂Vhn
∂qcs

λc

)
(A.28)

Next, I derive ∂Vhn
∂qbs

, ∂Vhn∂qbb
, ∂Vhn∂qcb

, and ∂Vhn
∂qcs

.

∂Vhn
∂qbb

= − qbs φh
(r + γd) k2

φlB

∂Vhn
∂qbs

=
φh (r + γd + qbbφl)

(r + γd) k2
B

∂Vhn
∂qcs

=
qcb (r + γd + qbbφl)

k (r + γd)C

(
− φlA
φhC

− (xcl − 2y) γd
(qcs + r + γu) 2

)
∂Vhn
∂qcb

=
A (r + γd + qbbφl)

k (r + γd)Cφh

(
r + γd + γu + qcsφl

C

)
where

B ≡ xb +
qcb
C

(
(r + γd + qbbφl)

k
qcb
A

C
−A− (r + γd + qbbφl)

k
xb

)
A ≡ xch +

(xcl − 2y) (qcs + r + γd + γu)

qcs + r + γu
− qbsxbφh
r + γd + qbsφh + qbbφl

C ≡ r + γd + γu + qcsφl
φh

+
qcb (r + γd + qbbφl)

k

From here, ∂Vhn
∂qcb

> 0 while ∂(λc(µaoc+µln))
∂µhn

< 0 implying that the third term in (A.28) is
negative. Since ∂Vhn

∂qcs
< 0, the fourth term (A.28) is also negative. But the sign of both ∂Vhn

∂qbs

and ∂Vhn
∂qbb

depend on the sign of B. Thus, consider B:

B = xb +
qcb
C

(r + γd + qbbφl)

k
qcb
A

C
− qcb
C
A− qcb

C

(r + γd + qbbφl)

k
xb

= xb

(
1− qcb

C

(r + γd + qbbφl)

k

)
−
(

1− qcb
C

(r + γd + qbbφl)

k

)
qcb
C
A

=

(
1− qcb

C

(r + γd + qbbφl)

k

)(
xb − qcb

A

C

)
First, 0 < qbbφl+γd+r

k < 1 and 0 < qcb
C < 1. To see the latter, let φl = φh, then C > qcs. From

Assumption 2:

µhn + µhoc + µhoc ≥
Fh
γd

> S +
Fl
γu
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But using the CDS market clearing condition, we have Fl
γu

= µln + µlsc = µln + (µhoc + µaoc).
Thus,

µhn + µhoc + µhob > S + µln + (µhoc + µaoc)

Cancel µhoc,
µhn + µhob > S + µln + µaoc

µhn > (S − µhob) + µln + µaoc > µln + µaoc

Hence, qcs > qcb and C > qcs > qcb. Thus, the term in the first bracket of B is positive. Now
consider the term in the second bracket of B, xb − qcb AC = xb − qcb∆hoc:

xb − qcb∆hoc = xb − qcb
xch + (xcl−2y)(qcs+r+γd+γu)

qcs+r+γu
− qbsφh

k xb
r+γd+γu+qcsφl

φh
+ qcb(r+γd+qbbφl)

k

= xb −
xch + (xcl − 2y)

(
1 + γd

qcs+r+γu

)
− qbsφh

k xb

r+γd+γu+qcsφl
qcbφh

+ k−qbsφh
k

=

(
r+γd+γu+qcsφl+qcbφh

qcbφh

)
xb −

(
xch + (xcl − 2y)

(
qcs+r+γu+γd
qcs+r+γu

))
r+γd+γu+qcsφl

qcbφh
+ k−qbsφh

k

The sign of the expression depends on the numerator:(
r + γd + γu + qcsφl + qcbφh

qcbφh

)
xb −

(
xch + (xcl − 2y)

(
qcs + r + γu + γd
qcs + r + γu

))
This expression is positive from (7). Thus, ∂Vhn∂qbs

> 0 and together with ∂µaob
∂µhn

< 0 implies that
the first term of (A.28) is negative. Also, since ∂Vhn

∂qbb
< 0, the second term of (A.28) is also

negative.
Finally from (A.26) and using the Implicit Function Theorem,

∂µhn
∂ρ

=
Fh

γd

(
sλbγd

(λbµhn+γd)2
+ λcfl(γd+γu)

γu(λcµhn+γd+γu)2
+ 1
)

Thus, ∂µhn∂ρ > 0, and, consequently, ∂Vhn(ρ)
∂ρ < 0.

Lemma 2. Existence

Proof. To show existence we verify that the conjectured optimal trading strategies are in fact
optimal. In particular, first, we show that the total surplus from trading the bond is positive:
ωb = Vhob − Vhn − Vaob > 0. By construction, this will ensure that individual surpluses to the
buyer and the seller of the bond are positive: a high type agent optimally chooses to buy the
bond, and an average type agent prefers to sell her bond. Second, we show that the total
surplus from trading CDS is positive ωc = Vhoc − Vhn + Vlsc − Vln > 0. This will imply that
the high type agents will want to sell CDS while low type agents want to buy CDS. Third,
we verify that the average type agents will prefer quit being a CDS seller: 0− Vaoc > 0. Thus,
agents who have previously sold CDS when they were high types will prefer to find another
seller to take over his side of the trade and exit the market with zero utility. I proceed by first
deriving ωb, ωc, Vaoc.

Subtracting rVln (A.14) from rVlsc (A.19) and defining ∆lsc ≡ Vlsc − Vln, we get:

∆lsc =
δc + xcl − y − pc
r + γu + qcs
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From (5):

∆hoc =
φ

1− φ
∆lsc =

φ

1− φ
δc + xcl − y − pc
r + γu + qcs

Also from the value function of Vaoc,

Vaoc =
pc − (y + δc)

r + γu + qcds
(A.29)

Using (A.17) and substituting in the expression for Vaoc:

rVhoc = pc − (δc − xch)− y + γd(
pc − (y + δc)

r + γu + qcds
− Vhoc)− γu∆hoc

Add γdVhoc to both sides:

(r + γd)Vhoc = pc − (δc − xch)− y +
pc − (y + δc)

r + γu + qcds
− γu∆hoc

Subtract (r + γd)Vhn from both sides:

(r + γd + γu)∆hoc = pc − (δc − xch)− y +
pc − (y + δc)

r + γu + qcds
− (r + γd)Vhn

Thus, we have three equations and three unknowns, ∆hoc, pc, Vhn:

∆hoc =
φ

1− φ
δc + xcl − y − pc
r + γu + qcs

(r + γd + γu)∆hoc = pc − (δc − xch)− y +
pc − (y + δc)

r + γu + qcds
− (r + γd)Vhn

Vhn =
qbsxbφ+ ∆hocqcb (r + γd + qbb(1− φ))

(r + γd) k
(A.30)

where the latter comes from the solution to the equations for Vhob, Vaob, and Vhn. The solution
for ∆hoc is given by:

∆hoc =
xch + (qcs + r + γu + γd)

xcl−2y
r+γu+qcs

− 1
kqbsφxb

(1−φ)qcs+r+γu+γd
φ + 1

kqcb (r + γd + (1− φ) qbb)
(A.31)

From here:
pc = δc + xcl − y −

1− φ
φ

(r + γu + qcs)∆hoc (A.32)

ωc =
1

φ
∆hoc

Using the solution to the equations for Vhob, Vaob, and Vhn:

ωb =
xb − qcb∆hoc

r + γd + φqbs + (1− φ)qbb
(A.33)

To consider small search frictions, define ε ≡ 1
λb

and n ≡ λc
λb
. We show existence for ε = 0.

Then by continuity, existence is established in the neighborhood of ε ≡ 0 or for small search
frictions. With the change of variables, (A.26) becomes:

(1 + ρ)Fh − γdµhn
(

S

µhn + εγd
+

nFl
γu (nµhn + ε(γd + γu))

+ 1

)
= 0 (A.34)

38



From (A.34), for any ρ ∈ [0, 1], µhn asymptotically converges to µhn = (1+ρ)Fh
γd

− (S + Fl
γu

)
therefore 0 < lim

λb,λc→∞
µhn < ∞ and lim

λb,λc→∞
qbb = ∞. This also implies from (A.22) that

lim
λb,λc→∞

µaob = 0 and qbs converges to a finite number. Analogously, lim
λb,λc→∞

qcs =∞ and from

(A.20) and (A.24): 0 < lim
λb,λc→∞

qcb <∞.

To show ωc > 0 using these limits, consider the numerator of ∆hoc:

xch + (qcs + r + γu + γd)
xcl − 2y

r + γu + qcs
− 1

k
qbsφxb

Using the above limits of qcs, qbs, and qbb, it converges to xch + xcl − 2y which is positive by
Assumption 1.

From (A.29), in order for Vaoc < 0, the CDS price has to be less than pc < δc + y. From
(A.31) and (A.32):

pc = (δc + xcl)− y −
(1− φh) (qcs + r + γu)

((
xch + (xcl−2y)(qcs+γd+r+γu)

qcs+r+γu

)
− xbqbsφh

k

)
φh

(
qcb(qbbφl+γd+r)

k + (1−φ)qcs+γd+r+γu
φh

)
This converges to δc + y− xch, which is less than δc + y. Thus, Vaoc < 0. Average types will not
want to buy CDS because the flow utility would be δc − y − pc. Given that pc → δc + y − xch,
this converges to xch − 2y which is negative by Assumption (1). To show ωb > 0, consider
the numerator of (A.33): xb − qcb∆hoc. Since 0 < lim qcb < ∞ and ∆hoc converges to zero,
xb − qcb∆hoc converges to xb > 0. The above results show existence for ε = 0. By continuity,
existence is also established near ε = 0.

Proof of Proposition 2. The bond price is pb = φ(Vhob − Vhn) + (1− φ)Vaob. Solving Vhob
and Vaob:

Vhob =
δb + xb − y

r
− γd (xb + qbb(1− φ)Vhn)

r(r + γd + qbb(1− φ))
(A.35)

Vaob =
δb + xb − y

r
− (r + γd) (xb + qbb(1− φ)Vhn)

r(r + γd + qbb(1− φ))
(A.36)

where from the earlier derivation:

Vhn =
qbsxbφ+ ∆hocqcb (r + γd + qbb(1− φ))

(r + γd) k
(A.37)

Thus, we derive the limits of q’s, and ∆hoc as λb →∞ for an arbitrary λc. With the change of
variable, ε ≡ 1

λb
, (A.26) becomes:

(1 + ρ)Fh − γdµhn
(

S

µhn + εγd
+

λcFl
γu (λcµhn + γd + γu)

+ 1

)
= 0

For ε = 0,
(1 + ρ)Fh

γd
− S − µhn

(
λcFl

γu (λcµhn + γd + γu)
+ 1

)
= 0 (A.38)

For any ρ ∈ [0, 1], the LHS of (A.38) is positive at µhn = 0, decreasing in µhn, and is negative
for large µhn, Hence, (A.38) has a positive finite solution, 0 < lim

λb→∞
µhn < ∞, and this

implies lim
λb→∞

qbb = ∞, and k → ∞. This also implies from (A.22) that lim
λb→∞

µaob = 0 and

qbs converges to a finite number. Analogously, lim
λb→∞

qcs = ∞ and from (A.20) and (A.24):

0 < lim
λb→∞

qcb <∞.
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Then as discussed above, the numerator of ∆hoc converges to a finite number, while
the denominator converges to ∞, thus, ∆hoc → 0. So Vhn → 0, hence Vhob → δb+xb−y

r ,
Vaob → δb+xb−y

r and pb → δb+xb−y
r .

Note that since Vhn → 0, ρ→ 0. This is why the assumption that there is some proportion
of high types who do not have an outside opportunity and always enter simplifies some of the
proofs. Otherwise, as high types enter at a smaller and smaller rate, the steady state measure
of high types can become smaller than S + Fl

γu
. As a result, the marginal investor of the bond

is not necessarily the high type and the frictionless price is not given by the valuation of the
high types.

Proof of Proposition 3. Combining (A.35)-(A.37) we get the bond price.

Proof of Proposition 4. Consider the interior solution Vhn(ρcds) = Oh. Since the bond price
is pb = φ(Vhob−Vhn) + (1−φ)Vaob, for an interior solution (V nocds

hn = V cds
hn = Oh) it is sufficient

to show that Vhob(qcdsbb ) > Vhob(q
nocds
bb ) and Vaob(qcdsbb ) > Vaob(q

nocds
bb ). From (A.35) and (A.36),

the derivative with respect to qbb:

∂Vhob
∂qbb

= −γd ((r + γd)Vhn − xb) (1− φ)

r (r + γd + qbb(1− φ))2

∂Vaob
∂qbb

= −(r + γd) ((r + γd)Vhn − xb) (1− φ)

r (r + γd + qbb(1− φ))2

Thus, the condition for both Vhob and Vaob to be increasing in qbb at qbb = qnocdsbb is: (r +
γd)Vhn − xb < 0 evaluated at qbb = qnocdsbb .

Without CDS, the solution for Vhn is

V nocds
hn =

qbsxbφ

(r + γd)(r + γd + qbsφ+ qbb(1− φ)
(A.39)

Rearranging we get:

(r + γd)Vhn =
qbsφ

(r + γd + qbsφ+ qbb(1− φ)
xb < xb

Next, we show that qbb = λbµhn increases with CDS. Consider the solution for Vhn:

V cds
hn =

xbq
cds
bs φh

kcds (γd + r)
+
qcb∆hoc (qbbφl + γd + r)

kcds (γd + r)
(A.40)

Compare this with (A.39). The fact that V nocds
hn = V cds

hn = Oh and that the second term of
(A.40) is asymptotically positive implies that:

xbq
cds
bs φh

kcds (γd + r)
<

xbqbsφh
k (γd + r)

The term xbqbsφh
k(γd+r) is strictly decreasing in µhn. Thus, it has to be the case that µcdshn > µnocdshn .

Now consider the corner solution ρ = 1. This will be the case when Vhn(ρ = 1) > Oh.
Keeping ρ fixed, when CDS matching efficiency λc decreases, Vhn increases. Thus, as λc
decreases, Vhn keeps increasing and even when ρ = 1, it increases beyond Oh. Now, keeping ρ
fixed, µhn is lower for some positive λc compared to the environment without CDS because
high types end up selling CDS instead of buying bonds. When it was an interior solution, there
was always enough entry so that the entry effect more than offset this congestion channel.
However, as λc decreases further, the value of providing liquidity in the CDS market increases
(Vhn increases) but at the boundary ρ = 1 everyone who could have entered has entered. So if
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λc is too small (CDS search frictions too high), then the partial equilibrium effect dominates.
As a result, bond liquidity and bond price is lower with CDS.

Proof of Proposition 5. Consider what (A.26) limits to for an arbitrary λb as λc →∞:

(1 + ρ)Fh
γd

−
(

Sλbµhn
λbµhn + γd

+
Fl
γu

+ µhn

)
= 0 (A.41)

The LHS of (A.41) is positive at µhn = 0, decreasing in µhn, and is negative for large µhn. Thus,
for any ρ, µhn is finite as λc →∞. As a result, µaob, qbs and qbb are finite. Since µln +µaoc → 0,
qcb is also finite. But qcs = λcµhn →∞ Thus, ∆hoc → 0.

When the solution is interior,

V cds
hn = V nocds

hn = Oh (A.42)

Then, using ∆hoc → 0 and (A.30):

xbq
cds
bs φh

kcds (γd + r)
=

xbq
nocds
bs φh

knocds (γd + r)
(A.43)

Since this expression is uniquely determined by µhn, it has to be that:

µcdshn = µnocdshn (A.44)

Thus, qbb = λbµhn is the same as without CDS. Consequently, from (A.35)-(A.36) and (A.42),
Vhob and Vaob are the same with or without CDS. Thus, when λc → ∞, the bond price is
the same as in the benchmark environment without CDS. For (A.44) to hold, from (A.41),
the entry rate (hence the measure of high types) increases enough to exactly offset the total
measure of low types Fl

γu
: (ρcds−ρnocds)Fh

γd
= Fl

γu
.

If entry is exogenous, lim
λc→∞

pb(λc) < pno cds
b because the measure of high types (hence the

measure of bond buyers) decreases due the existence of low types.

Proof of Proposition 6. The population measures evolve according to:

.
µhn(t) = (1 + ρ)Fh + γuµhoc(t)− [γdµhn(t) + (qbs(t) + qcb(t))µhn(t)] (A.45)
.
µln(t) = Fl − [γuµln(t) + qcsµln(t)] (A.46)
.
µhob(t) = qbsµhn(t)− γdµhob(t) (A.47)
.
µaob(t) = γdµhob(t)− qbbµaob(t) (A.48)
.
µhoc(t) = qcbµhn(t)− [γdµhoc(t) + γuµhoc(t)] (A.49)
.
µaoc(t) = γdµhoc(t)− [γuµaoc(t) + qcsµaoc(t)] (A.50)
.
µlsc(t) = qcsµln(t)− γuµlsc(t) (A.51)
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Value functions evolve according to:
.
V hn(t) = rVhn(t)− [γd(0− Vhn(t)) + qbs(t)φωb(t) + qcb(t)(Vhoc(t)− Vhn(t))] (A.52)
.
V ln(t) = rVln(t)− [γu(0− Vln(t)) + qcs(t)(Vlsc(t)− Vln(t))] (A.53)
.
V hob(t) = rVhob(t)− [δb + xb − y + γd(Vaob(t)− Vhob(t))] (A.54)
.
V aob(t) = rVaob(t)− [δb − y + qbb(t) (1− φ)ωb(t)] (A.55)
.
V hoc(t) = rVhoc(t)− [pc(t)− (δc − xcl)− y + γd(Vaoc(t)− Vhoc(t)) + γu(Vhn(t)− Vhoc(t))]

(A.56)
.
V aoc(t) = rVaoc(t)− [pc(t)− δc − y + qcs(t)(0− Vaoc(t)) + γu(0− Vaoc(t))] (A.57)
.
V lsc(t) = rVlsc(t)− [−pc(t) + (δc + xch)− y + γu (0− Vlsc(t))] (A.58)

Using the ODE for Vhob and Vhn:
.

∆hob = r∆hob − [δb + xb − y − (γd + qbsφ)ωb − qcbφωc]

Together with the ODE for Vaob:

.
ωb = −xb + (r + γd + qbsφ+ qbb (1− φ))ωb + qcbφωc (A.59)

Analogously, we get the ODE for ωc,

.
ωc = −xcl + qbsφωb + (r + γd + γu + qcbφ+ qcs(1− φ))ωc (A.60)

To solve for ωb and ωc, we write (A.59) and (A.60) in this form:[ .
ωb(t)
.
ωc(t)

]
= −

[
xb

xcl + xch − 2y

]
+A(t)

[
ωb(t)
ωc(t)

]
where

A(t) =

[
r + γd + qbsφ+ qbb (1− φ) qcbφ

qbsφ r + γd + γu + qcbφ+ qcs(1− φ)

]
Thus, the solution is: [

ωb(t)
ωc(t)

]
=

ˆ ∞
t

e−
´ s
t A(u)du

[
xb

xcl + xch − 2y

]
ds

From here, the solutions to the ODE for ∆hob and Vaob are given by:

∆hob =
δb + xb − y

r
−
ˆ ∞
t

e−r(s−t) ((γd + qbsφ)ωb + qcbφωc) ds

Vaob =
δb − y
r

+

ˆ ∞
t

e−r(s−t)qbb (1− φ)ωbds
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a.1 A Simple Example of Hedging Benefits

Let θ = 1 denote a long position (exposed to risk) through the bond or CDS market, θ = 0 no
position, and θ = −1 a short position (i.e. bought CDS). An agent with θb ∈ {0, 1} shares of
the bond has a utility flow:33

θb

(
δb + xbt

)
and an agent with CDS position θc ∈ {−1, 0, 1} has a utility flow:

− θc (δc + xct) (A.61)

where xbt ∈ {−xb, 0, xb} and xct ∈ {−xch, 0, xcl} are stochastic processes. I define an agent
with {xbt = xb, x

c
t = −xch} as a high type, with {xbt = 0, xct = 0} as an average, and with

{xbt = −xb, xct = xcl} as a low type.
The bond coupon flow, δb, can be interpreted as an expected coupon flow: with intensity η

the bond defaults but otherwise pays $1 of coupon. Hence, δb = (1− η)$1. Similarly, δc can be
interpreted as an expected insurance payment. A CDS contract pays out if there is default
on the coupon payment: with intensity η CDS pays $1 thus, δc = η$1. According to (A.61),
a high type values this as δc − xch while a low type values this as δc + xch. Thus, as a CDS
seller (θc = 1), a low type experiences a greater disutility paying out the insurance payment
− (δc + xcl) than a high type − (δc − xch). Conversely, as a CDS buyer (θc = −1), a low type
benefits more receiving the insurance payment (δc + xcl) than a high type (δc − xch). Tables
below show a simple example of how xb, xch, and xcl can depend on cash flow of the bond and
CDS, and the default intensity of the bond. A more formal derivation in Section A.2 shows
how, in an environment with risk averse agents, just two types of agents, and just the bond
market, the hedging benefits are a function of the risk aversion parameter, the correlation
between agents’ idiosyncratic endowment and the bond, and riskiness of the bond.

Table 4: The Expected Valuation of the Bond Payoff

Consider an example where with intensity, η, the bond defaults and pays no coupon, otherwise pays $1
of coupon. Hence, the expected coupon is δb = (1− η)$1. The table shows valuations of the bond cash
flow by high, average, and low types.

Utility Valuation

Bond Payoff High Ave Low

1− η $1 1 1 1
η $0 εh 0 −εl

Expected Valuation:

δb︷ ︸︸ ︷
(1− η) 1 +

xbh︷︸︸︷
ηεh

δb︷ ︸︸ ︷
(1− η)

δb︷ ︸︸ ︷
(1− η)−

xbl︷︸︸︷
ηεl

33For an expositional purpose, let us ignore y that is in section 2.
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Table 5: The Expected Valuation of the CDS Payoff as a CDS Buyer

With intensity η the bond defaults and CDS pays $1 and zero otherwise. Hence, the expected insurance
payment is δc = η$1. The table shows a simple example of utility valuations of the cash flow as a CDS
buyer by different types. In the default state, low types get an extra utility for extra $1 than high
types. Thus, in expectation, as a CDS buyer a low type benefits more receiving the insurance payment
(δc + xcl) than a high type (δc − xch).

Cash Flow of
CDS Buyer

Utility Valuations

High Ave Low

1− η $0 0 0 0
η $1 1− εh 1 1 + εl

Expected Valuation:
δc︷︸︸︷
η −

xch︷︸︸︷
ηεh

δc︷︸︸︷
η

δc︷︸︸︷
η +

xcl︷︸︸︷
ηεl

Table 6: The Expected Valuation of the CDS Payoff as a CDS Seller

With intensity η the bond defaults and CDS seller has to pay $1. The table shows a simple example of
utility valuations of the cash flow as a CDS seller by different types. In the default state, low types get
an extra disutility for paying out the insurance than high types. Thus, in expectation, as a CDS seller
a low type experiences a greater disutility paying out the insurance payment − (δc + xcl) than a high
type − (δc − xch).

Cash Flow of
CDS Seller

Utility Valuations

High Ave Low

1− η $0 0 0 0
η −$1 − (1− εh) −1 − (1 + εl)

Expected Valuation −(

δc︷︸︸︷
η −

xch︷︸︸︷
ηεh ) −

δc︷︸︸︷
η −(

δc︷︸︸︷
η +

xcl︷︸︸︷
ηεl )

a.2 A Formal Derivation of Hedging Benefits

In this section, I illustrate in a simpler environment a micro foundation for the liquidity shock
xb when the asset is risky and agents are risk averse. This derivation follows Vayanos and Weill
(2008) and Duffie, Gârleanu, and Pedersen (2007). I simplify the baseline model in the paper
by considering just two types (high and low) instead of three types (high, average, low), and
no CDS markets. I simplify the notation by denoting continuous time dependence y(t) as yt.

Agents have CARA utility preferences with risk aversion parameter α and time preference
rate of β. The risky asset has cumulative dividend process, Dt, of:

dDt = δdt+ σDdBt (A.62)

where Bt is a standard Brownian motion. Agents also have an idiosyncratic cumulative
endowment process:34

det = σe

[
ρtdBt +

√
1− ρ2

tdZt

]
where Zt is another standard Brownian motion independent of Bt. The high and low types
come in with the variable ρt ∈ {ρl, ρh} that is a two-state Markov chain with ρl > ρh. If ρt = ρl,
the agent is currently a low type agent which means her endowment process is highly correlated
with the asset’s dividend process, Dt, but if her type switches to a high type, ρt+∆t = ρh,

34The endowment process can have a trend component: det = µedt+ σe

[
ρtdBt +

√
1− ρ2

tdZt

]
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her endowment process will be less correlated with Dt.35 Analogous to the baseline model,
a low type agent switches to high type with intensity γu, and high type to low type with
intensity γu. We restrict the agent’s asset position to θt ∈ {θn, θo} where 0 < θn < θo. As
there are two correlation types and two possible asset positions, there are total of four agent
types: T = {hn, ln, hob, lob}. hn and ln are high and low types, respectively, who both hold θn
shares of the asset, while hob and lob are high and low types, respectively, who both hold θo
shares of the asset. Table 7 illustrates the switching probabilities from τt ∈ {hn, ln, hob, lob}
to τt+∆t ∈ {hn, ln, hob, lob}.

τt+∆t

hn ln hob lob

τt

hn (1− γddt− qbsdt) γddt qbsdt 0dt
ln γudt (1− γudt) 0 0
hob 0 0 (1− γddt) γddt
lob 0 qbbdt γudt (1− γudt− qbbdt)

Table 7: Switching probabilities from τt to τt+∆t ∈ {hn, ln, hob, lob}

An agent’s optimization problem is:

J(W0, τ0) = max
{ct}

E
ˆ ∞

0
e−βtu(ct)dt (A.63)

subject to:36

dWt = (rWt − ct + δθt) dt+ (σDθt + ρtσe) dBt + ση

√
1− ρ2

tdZt − pbdθt (A.64)

where Wt is the agent’s wealth process, W0 is given, pb is the asset price. J(W0, τ0) is the
maximized value of the objective function as a function of two state variables, the wealth
process and the agent type τ ∈ T .

Equation (A.63) can be written recursively as:37

J(Wt, τt) = max
c0

u(ct)∆t+ (1− β∆t)EJ(Wt+∆t, τt+∆t) (A.65)

35With three types, we could have a three-state Markov chain with, for example, ρt ∈ {−ρ, 0, ρ} for some
ρ > 0 where if ρt = ρ, an agent is low type, if ρt = 0, an agent’s endowment has no correlation, and if
ρt = −ρ an agent is high type as her endowment is negatively correlated with the risky asset (and she
would be willing to be exposed to the risky asset relative to the low type agent).

36(A.64) comes from dWt = (rWt − ct) dt+ dDtθt + det − pbdθt.
37This comes from observing that over a small time interval [0,∆t], (A.63) can be written as:

J(W0, τ0) = E
´∞

0
e−βtu(c∗t )dt = u(c∗0)∆t+ e−β∆tE

[´∞
∆t
e−β(t−∆t)u(c∗t )dt

]
where {c∗t } is the optimal consumption path. The term inside the expectations operation is

J(W∆t, τ∆t), thus J(W0, τ0) = max
c0

u(c0)∆t + e−β∆tEJ (W∆t, τ∆t). Similarly if we start at {Wt, τt}

and approximate e−β∆t ≈ 1− β∆t, we get (A.65).
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Deriving the Hamilton-Jacobi-Bellman (HJB) Equation

Next, we derive the Hamilton-Jacobi-Bellman (HJB) equation from (A.65). Subtract (1− β∆t) J(Wt, τt)
from both sides and divide by ∆t:

βJ(Wt, τt) = max
ct

u(ct) + (1− β∆t)E
[
J(Wt+∆t, τt+∆t)− J(Wt, τt)

∆t

]
In the limit as ∆t→ 0

βJ(Wt, τt) = max
ct

u(ct) + E
[
dJ(Wt, τt)

dt

]
The next step is deriving the expectation of the total differential of J(Wt, τt). We approximate
the total differential dJ(Wt, τt) by a Taylor expansion:

dJ(Wt, τt) = JW (Wt, τt)dWt +
1

2
JWW (Wt, τt)dW

2
t + Jτ (Wt, τt)dτt +

1

2
Jττ (Wt, τt)dτ

2
t

where dWt is given by A.64. Thus,

EdWt = (rWt − ct + µDθt + µη) dt− Pdθt

EdW 2
t = (σDθt + σηρt)

2 dt+ σ2
η

(
1− ρ2

t

)
dt =

(
(σDθt)

2 + 2σDθtσηρt + σ2
η

)
dt

EJτ (Wt, τt)dτt =


γddt (J(Wt, ln)− J(Wt, hn)) + qbsdt (J(Wt − P (θo − θn) , hob)− J(Wt, hn)) if τt = hn

γudt (J(Wt, hn)− J(Wt, ln)) if τt = ln

γddt (J(Wt, lob)− J(Wt, hob)) if τt = hob

γudt (J(Wt, hob)− J(Wt, lob)) + qbbdt (J(Wt + P (θo − θn) , ln)− J(Wt, lob)) if τt = lob

As all the dτt terms involve dt term, E1
2Jττ (Wt, τt)dτ

2
t = 0.

When τt = lob,

EdJ(Wt, lob) = JW (Wt, lob) (rWt − ct + δθo) dt+
1

2
JWW (Wt, lob)

(
(σDθo)

2 + 2σDθoσeρt + σ2
e

)
dt

+ γudt (J(Wt, hob)− J(Wt, lob)) + qbbdt (J(Wt + P (θo − θn) , ln)− J(Wt, lob))

Thus, the Hamilton-Jacobi-Bellman (HJB) equation when τt = lob:

βJ(Wt, lob) = max
ct

u(ct) + JW (Wt, lob) (rWt − ct + δθo) (A.66)

+
1

2
JWW (Wt, lob)

(
(σDθo)

2 + 2σDθoσeρt + σ2
e

)
+γu (J(Wt, hob)− J(Wt, lob)) + qbb (J(Wt + P (θo − θn) , ln)− J(Wt, lob))(A.67)

The HJB equations for the other types are derived analogously.

Proposition 7. Solutions for J(Wt, τt) are of the form:

J(Wt, τt) = −e−rα(Wt+Vτ+a)
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where Vτ τ ∈ T = {hn, ln, hob, lob} are given by:

rVlob = (k(θ0)− θ0xb) + γu
1− e−rα(Vhob−Vlob)

rα
+ qbb

1− e−rα(P (θo−θn)+Vln−Vlob)

rα

rVln = (k(θn)− θnxb) + γu
1− e−rα(Vhn−Vln)

rα

rVhob = k(θ0) + γd
1− e−rα(Vlob−Vhob)

rα

rVhn = k(θn) + γd
1− e−rα(Vln−Vhn)

rα
+ qbs

1− e−rα(−P (θo−θn)+Vho−Vhn)

rα

and k(θ) = δθ−1
2rα

(
σ2
Dθ

2 + 2σDθσeρh
)
, xb = rα (ρl − ρh)σDσe and ā = 1

r

(
log(r)
α − r−β

rα −
1
2rασ

2
e

)
.

Proof. Using the guessed functional form, J(Wt, τt) = −e−rα(Wt+Vτ+a), and the first order
condition of (A.66), we can solve for the optimal consumption rate for agent τ :38

cτ = − log (r)

α
+ r (W + Vτ + a)

Inserting the optimal consumption back into the HJB equation A.66 and using JW =
rαe−rα(W+Vτ+a) and JWW = −r2α2e−rα(W+Vτ+a):

−βe−rα(W+Vlob+a) = −elog(r)−rα(W+Vlob+a) + rαe−rα(W+Vlob+a)

(
log (r)

α
− r (Vlob + a) + δθo

)
−1

2
r2α2e−rα(W+Vlob+a)

(
(σDθo)

2 + 2σDθoσeρt + σ2
e

)
+ γu

(
−e−rα(W+Vhob+a) + e−rα(W+Vlob+a)

)
+qbb

(
−e−rα(W+P (θo−θn)+Vln+a) + e−rα(W+Vlob+a)

)
Cancel e−ra(W+a) and divide everything by e−rαVlob :

−β = −r + rα

(
log (r)

α
− r (Vlob + a) + δθo

)
− 1

2
r2α2

(
(σDθo)

2 + 2σDθoσeρt + σ2
e

)
+γu

(
−e−rα(Vhob−Vlob) + 1

)
+ qbb

(
−e−rα(P (θo−θn)+(Vln−Vlob)) + 1

)
Divide by −rα:

β 1
rα = rVlob + γu

e−rα(Vhob−Vlob) − 1

rα
+ qbb

e−rα(P (θo−θn)+(Vln−Vlob)) − 1

rα

− log (r)

α
+ ra+

1

α
−
(
δθo −

1

2
rα
(
σ2
Dθ

2
o + 2σDθoσeρt + σ2

e

))
Rearranging, we find the expression for ā:

0 = rVlob + γu
e−rα(Vhob−Vlob) − 1

rα
+ qbb

e−rα(P (θo−θn)+(Vln−Vlob)) − 1

rα

+rā− r1

r

(
log (r)

α
− r − β

rα
− 1

2
rασ2

e

)
−
(
δθo −

1

2
rα
(
σ2
Dθ

2
o + 2σDθoσeρt

))
Thus, defining ā ≡ 1

r

(
log(r)
α − r−β

rα −
1
2rασ

2
e

)
, we get:

0 = rVlob + γu
e−rα(Vhob−Vlob) − 1

rα
+ qbb

e−rα(P (θo−θn)+Vln−Vlob) − 1

rα
−
(
δθo −

1

2
rα
(
σ2
Dθ

2
o + 2σDθoσeρt

))
38FOC with respect to ct is: 0 = αe−αc − JW (Wt, τt). Using JW = rαe−rα(W+Vτ+a), re−rα(W+Vτ+a) =
e−αc. Rewrite it as: elog(r)e−rα(W+Vτ+a) = e−αc
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Add and subtract 1
2rα2σDθoσeρh:

0 = rVlob + γu
e−rα(Vhob−Vlob) − 1

rα
+ qbb

e−rα(P (θo−θn)+Vln−Vlob) − 1

rα

−
(
δθo −

1

2
rα
(
σ2
Dθ

2
o + 2σDθoσeρh

))
+ θ0rα (ρl − ρh)σDσe

Define: k(θ) ≡ δθ − 1
2rα

(
σ2
Dθ

2 + 2σDθσeρh
)
and xb ≡ rα (ρl − ρh)σDσe

0 = rVlob + γu
e−rα(Vhob−Vlob) − 1

rα
+ qbb

e−rα(P (θo−θn)+Vln−Vlob) − 1

rα
− (k(θ0)− θ0xb)

Rearranging:

rVlob = (k(θ0)− θ0xb) + γu
1− e−rα(Vhob−Vlob)

rα
+ qbb

1− e−rα(P (θo−θn)+Vln−Vlob)

rα
(A.68)

It’s similar to the other agent types.

Comparison to the Baseline Model

In the limit as α → 0, the general value function (A.68) satisfies the value functions with
risk-neutral agents of the baseline model of in the text of the paper. To see this, linearizing
(A.68) (using ez − 1 ≈ z) for small α, we get:

rVlob = (k(θ0)− θ0xb) + γu (Vhob − Vlob) + qbb (Vln − Vlob + pb (θo − θn)) (A.69)

(A.69) is analogous to the value functions of the baseline model with risk-neutral agents. Thus,
the baseline model is a reduced form approximation of the more general specification with risk
averse agents and risky assets.

The illiquidity shock or cost, xb = rα (ρl − ρh)σDσe, captures the risk aversion of agents
(α), the riskiness of the asset (σD) and the endowment (σe), and the difference in the correlation
of low and high types (ρl−ρh). The larger is any of these parameters, the larger is the illiquidity
cost.
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b APPENDIX : MODEL FIGURES

Figure 2: The Bond Illiquidity Discount

This figure illustrates the main result of the paper. It shows the difference in the bond illiquidity
discount with and without CDS as a function of the CDS market efficiency (λc). With the existence
of naked CDS buyers, the bond illiquidity discount (the solid blue line) is lower than the benchmark
without CDS (dashed red line). If the CDS market is frictionless (λc → ∞), the CDS market is
redundant and does not affect bond market liquidity.

λc

d(λc)

with CDS

no CDS

Figure 3: The Value of Trading as a High Type

The figure plots the value of trading as a long trader, Vhn, as a function of the entry rate (ρ). The
value increases with the introduction of the CDS market (the curve shifts up) and is higher with
search frictions present in the CDS market (λc <∞) than without search frictions in the CDS market
(λc =∞). The equilibrium entry rate is determined by the intersection of Vhn and their outside option
(the horizontal line at Oh).

ρ

Vhn(ρ)

cds with search, λc <∞
cds frictionless, λc =∞
no cds

Oh

ρnocds ρcdsλc=∞ ρcdsλc<∞
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Figure 4: The Rate of Entry

The diagram illustrates how the introduction of the CDS market affects the entry rate, ρ, of long
traders. By how much the entry rate increases depends on the total potential demand for CDS (i.e.
the steady state measure of low types, Flγu , who in equilibrium want to short credit risk) and the CDS
market matching efficiency, λc. The dashed line is the additional number of long traders in the economy
due to the existence of naked CDS buyers. As the CDS market is frictionless, λc →∞, the increase in
the measure of long traders exactly equals the demand for CDS (the horizontal line).

λc

Increase in high types,
(ρcds − ρnocds)Fh

γd

Demand for CDS, Fl
γu

Figure 5: The Effect of CDS on Bond Market Composition

The figure compares the relative composition of buyers and sellers in the bond market with (solid line)
and without CDS (dashed line) as a function of the CDS market efficiency (λc). The introduction of
the CDS market increases the number of bond buyers (left panel) and decreases the number of bond
sellers (right panel). If the CDS market is frictionless (λc →∞), the CDS market is redundant and
does not affect the bond market composition.

λc

with CDS

no CDS

No. of Bond Buyers, µhn

λc

no CDS
with CDS

No. of Bond Sellers, µaob
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Figure 6: The Effect of CDS on Bond Volume

The figure compares the volume of trade in the bond market with (solid line) and without CDS (dashed
line) as a function of the CDS market efficiency (λc). The introduction of the CDS market increases
bond market volume. If the CDS market is frictionless (λc →∞), the CDS market is redundant and
does not affect bond market volume.

λc

with CDS

no CDS

Bond Volume, λbµhnµaob

Figure 7: The Transition Dynamics of Types’ Measures After a Temporary CDS Ban

A temporary naked CDS ban is modeled as a shock to the steady at time t = 0 that sets the number
of naked CDS buyers to zero (as can be seen in the left panel). The figure plots the time varying
equilibrium path back to the steady state number of CDS buyers (the left panel), bond buyers (the
middle panel), and bond sellers (the right panel).

tt = 0

No. of CDS Buyers

tt = 0

No. of Bond Buyers

tt = 0

No. of Bond Sellers

Figure 8: The Transition Dynamics of Bond Illiquidity

A temporary naked CDS ban is modeled as a shock to the steady at time t = 0 that sets the number of
naked CDS buyers to zero. The figure plots the short run dynamics of the bond illiquidity discount. With
a temporary naked CDS ban, the illiquidity discount temporarily decreases (i.e. liquidity increases).

tt = 0

The Bond Illiquidity Discount
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Figure 9: Cost of Entry

ρ

Vhn(ρ)

with cds
temporary ban, t = 0

permanent ban

Oh + c(ρ)

ρperm ρtem
ρcds

Figure 10: The Implicit Short-run Dynamics of the Cost of Entry c(ρ(t))

tt = 0

c APPENDIX : DATA TABLES

Table 8: Descriptive Statistics: Prices and Bid-Ask Spreads in Bond and CDS Markets

This table shows the descriptive statistics for the bond and CDS data for the period 2004Q1-2012Q1
across 65 sovereigns. Bond prices are quoted as a percent of the par (or face) value of the bond; for
example, if the bond price is 95, the bond is trading at 95 cents on the dollar. “Bond Mid Price” is the
average of the bid and the ask prices, and “Bond Price Bid-Ask (% of Par)” is the absolute bid-ask
spread (the ask price minus the bid price). For example, if the ask and bid prices are 100.92 (% of
par) and 100.00 (% of par), respectively, then “Bond Price Bid-Ask (% of Par)” would be 0.92 (%
of par). “Bond Price Bid-Ask (% of Mid)” is the bid-ask spread as a percent of the mid price. Bond
prices were also converted to yield-to-maturity. “Bond Mid Yield (%)” is the average of the bid and ask
yields. Prices of CDS contracts are quoted in annualized percentages of the contract notional. Following
market standards, they are reported in basis points. “CDS Mid (b.p.)” is the average of the bid and ask
CDS prices (in basis points), “CDS Bid-Ask (b.p.)” is the absolute bid-ask spread in basis points, while
“CDS Bid-Ask (% of Mid)” is the bid-ask spread as a percent of the mid price.

Mean St. Dev. Min Max No obs.

(1) Bond Mid Price (% of Par) 106.56 13.75 27.94 166.67 1478
(2) Bond Price Bid-Ask (% of Par) 0.92 1.01 0.02 17.08 1478
(3) Bond Price Bid-Ask (% of Mid) 0.95 1.46 0.02 33.02 1478
(4) Bond Mid Yield (%) 5.37 2.93 -7.14 33.12 1478
(5) CDS Mid (b.p.) 205.20 438.87 1.73 10433.54 1478
(6) CDS Bid-Ask (b.p.) 15.11 43.73 1.00 1158.71 1478
(7) CDS Bid-Ask (% of Mid) 13.67 16.41 0.89 102.68 1478
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Table 9: Descriptive Statistics: DTCC CDS Transactions Data

This table shows the descriptive statistics for the volume of trade in the CDS market (for an average
day per quarter over 2009-2012) and the outstanding amount of CDS contracts and their total notional
(gross and net) over 2008-2012. “Average Daily Number of Trades” is the daily total number of CDS
trades; “Average Daily Notional” is the total notional of all trades per day in million $, this is effectively
the daily volume of trade in the CDS market; “Daily Not’l (annual’d), % of Gross” is the daily CDS
notional (annualized: daily CDS notional times 250 trading days) as percent of the outstanding gross
notional, this is effectively CDS turnover. “Gross Government Debt” is the general government gross
debt outstanding in million USD from World Bank Quarterly External Debt Statistics, and “Gross Not’l
as % of Gross Debt” is the outstanding gross notional as percent of the outstanding gross government
debt. Other variables are self explanatory. All CDS related data in this table comes from DTCC.

Mean St. Dev. Min Max No obs.

(1) Average Daily Number of Trades 12.37 16.01 0.00 116.00 418
(2) Average Daily Notional (mln $) 162.66 240.02 2.50 1600.00 421
(3) Outstanding Gross Notional (mln $) 40007.57 47584.39 1659.32 310852.44 726
(4) Outstanding Net Notional (mln $) 3889.49 4789.88 251.42 27828.78 726
(5) Daily Not’l (annual’d), % of Gross 77.16 48.58 8.53 358.12 421
(6) Outstanding Number of Contracts 2829.47 2751.65 92.44 13324.67 726
(7) Gross Government Debt (bln $) 859.58 2511.51 5.75 16777.28 726
(8) Gross Not’l as % of Gross Debt 27.93 36.77 0.04 254.07 726
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Table 10: Descriptive Statistics at the Country Level: Bond and CDS Price Data

This table shows for each country the average of the variables in Table 8. See Table 8 for the description
and units. The column numbers correspond to the row numbers of Table 8.

Bond Price Bond Yield CDS Price

(1) (2) (3) (4) (5) (6) (7)
mid ba ba/mid mid mid ba ba/mid

Argentina 72.43 1.62 2.72 13.72 1239.13 38.14 2.42
Australia 104.05 0.31 0.28 4.93 60.69 6.07 10.87
Austria 104.74 0.42 0.39 3.83 46.33 3.55 41.33
Bahrain 98.54 0.75 0.76 5.73 249.16 19.50 8.25
Belgium 109.22 0.66 0.62 3.89 59.83 4.11 38.01
Brazil 119.65 0.92 0.77 6.92 213.88 6.88 2.88
Bulgaria 114.46 0.64 0.58 4.80 167.74 12.05 11.20
Chile 103.42 0.66 0.63 4.66 65.00 9.40 22.62
China 101.98 0.67 0.65 4.22 62.00 4.88 10.95
Colombia 115.95 1.59 1.39 7.10 211.30 9.34 4.33
Costa Rica 119.45 4.12 3.47 3.89 197.59 30.20 15.57
Croatia 101.19 0.59 0.59 5.16 166.80 13.85 13.42
Czech Republic 102.34 0.61 0.60 3.94 58.23 6.54 28.49
Denmark 108.94 0.39 0.35 2.89 57.49 5.49 11.66
Dominican Republic 110.47 2.70 2.48 6.76 300.21 69.52 23.75
Egypt 102.97 1.54 1.60 4.77 314.71 18.94 6.59
El Salvador 105.87 2.06 1.98 7.18 274.42 39.01 14.79
Finland 106.38 0.43 0.40 2.91 37.49 4.54 14.10
France 110.24 0.18 0.16 3.44 45.51 2.93 32.14
Germany 109.84 0.13 0.11 3.22 27.43 2.56 35.64
Greece 104.98 2.40 3.51 6.39 818.63 42.67 11.78
Guatemala 118.69 2.01 1.66 5.10 177.20 39.00 23.87
Hong Kong 103.67 0.57 0.55 3.55 41.00 6.39 25.31
Hungary 96.63 0.74 0.79 5.88 174.75 6.48 10.14
Iceland 93.33 1.23 1.39 7.96 217.21 26.14 29.66
Indonesia 108.68 0.86 0.82 7.61 233.24 14.31 5.46
Iraq 85.98 1.27 1.50 7.28 394.34 57.35 14.42
Ireland 95.69 0.97 1.06 5.81 357.07 14.03 5.29
Israel 105.57 0.94 0.88 4.09 87.65 10.58 16.24
Italy 109.38 0.50 0.46 4.08 93.76 3.82 12.89
Japan 104.00 0.17 0.17 1.11 73.68 4.70 8.44
Korea 107.47 0.19 0.20 1.82 91.72 5.15 7.86
Latvia 93.66 1.65 1.87 6.16 429.42 30.63 6.34
Lebanon 106.20 1.68 1.63 6.23 382.96 33.16 8.26
Lithuania 98.00 1.26 1.43 6.00 316.98 24.72 7.15
Malaysia 104.82 0.30 0.29 3.63 99.32 4.90 4.99
Mexico 114.38 0.82 0.71 5.63 121.50 4.63 4.50
Morocco 97.19 1.77 1.87 5.55 185.87 29.48 14.71
Netherlands 107.87 0.23 0.21 3.02 53.04 5.06 11.70
New Zealand 110.79 0.39 0.32 4.40 76.08 7.42 9.68
Norway 107.97 0.39 0.36 2.95 25.49 3.78 15.79
Pakistan 82.80 1.91 2.64 10.90 799.65 143.97 15.33
Panama 117.79 1.83 1.56 6.38 168.40 11.67 6.91
Peru 113.10 1.12 1.03 6.30 180.66 11.20 5.86
Philippines 113.87 0.85 0.75 7.15 252.18 10.60 3.81
Poland 100.51 0.70 0.75 4.68 89.43 5.89 15.13
Portugal 98.19 0.98 1.25 5.50 236.77 9.40 13.58
Qatar 134.87 1.11 0.83 5.49 74.20 10.98 22.23
Romania 96.85 1.18 1.30 6.66 333.36 18.21 5.00
Russia 141.36 1.08 0.89 6.31 176.96 5.48 3.39
Slovak Republic 102.15 0.83 0.81 4.05 61.13 7.68 27.72
Slovenia 101.36 0.64 0.65 4.17 125.56 11.55 9.90
South Africa 105.26 0.75 0.73 5.86 129.57 7.86 7.68
Spain 101.41 0.44 0.44 4.01 178.11 5.69 4.45
Sweden 112.51 0.51 0.43 3.29 48.22 4.96 12.27
Switzerland 115.25 0.88 0.75 1.37 46.37 8.18 17.34
Thailand 99.14 0.17 0.17 3.27 125.07 6.25 5.00
Tunisia 112.98 0.33 0.29 6.08 164.16 17.77 11.10
Turkey 109.08 0.83 0.80 6.47 245.00 6.95 2.49
Ukraine 93.94 1.09 1.46 8.38 623.08 40.56 5.71
United Kingdom 110.11 0.11 0.11 3.55 69.20 4.46 7.59
United States 112.41 0.04 0.04 1.12 44.22 5.53 12.95
Uruguay 114.84 1.55 1.41 4.53 165.57 58.68 36.77
Venezuela 94.68 1.52 1.82 10.20 762.27 25.27 3.53
Vietnam 102.48 0.95 0.94 6.46 240.06 16.83 7.91
Total 106.56 0.92 0.95 5.37 205.20 15.11 13.67
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Table 11: Descriptive Statistics at the Country Level: DTCC CDS Transactions Data

This table shows for each country the average of the variables in Table 9. See Table 9 for the description
and units. The column numbers correspond to the row numbers of Table 9.

(1) (2) (3) (4) (5) (6) (7) (8)
Trades D Notl Gross

Notl
Net Notl Vol/Notl Contracts Debt Notl/Debt

Argentina 14.12 127.04 51128.71 2005.88 58.24 5402.24 188.84 27.08
Australia 10.25 124.96 12737.10 2340.57 175.90 1223.64 281.64 3.96
Austria 9.50 178.57 41462.82 6926.69 88.43 1788.86 280.22 14.66
Belgium 17.25 227.83 34689.50 5587.55 123.53 1692.91 468.85 7.30
Brazil 38.75 527.42 149945.74 13773.91 78.98 10976.56 1357.57 11.11
Bulgaria 4.25 34.95 17604.31 1174.65 46.10 1792.73 7.79 226.22
Chile 1.00 9.28 4103.50 542.42 48.62 433.87 19.01 24.20
China 22.14 207.20 36183.67 4467.73 107.63 3738.12 1544.44 2.43
Colombia 4.75 59.82 29955.13 2067.81 47.40 3100.72 99.13 30.58
Croatia 2.25 20.31 6957.01 645.65 63.36 940.07 25.55 27.00
Czech Republic 1.62 17.69 9335.36 997.29 40.09 780.84 75.92 12.18
Denmark 6.12 69.65 11402.03 2294.45 110.66 753.61 136.85 8.24
Egypt 4.62 22.66 3301.37 703.38 161.85 739.48 173.73 1.87
Finland 2.00 49.24 11795.68 2080.52 80.33 466.75 115.71 9.88
France 48.00 751.06 70524.73 13530.02 183.61 3107.82 2185.89 3.14
Germany 20.75 442.33 74806.12 14204.94 114.96 2273.48 2689.71 2.74
Greece 20.50 207.10 66021.98 6544.82 66.61 3331.57 443.55 14.76
Hong Kong . . 1705.10 586.40 . 125.00 77.59 2.20
Hungary 18.00 171.53 55362.56 3580.07 67.98 4734.15 105.87 52.29
Iceland 1.12 6.85 8041.10 899.64 22.67 1112.89 12.11 67.58
Indonesia 12.88 103.98 34771.02 2347.58 69.79 4404.34 185.00 18.89
Ireland 15.88 183.73 34660.07 4495.52 109.56 1844.76 189.18 18.09
Israel . . 7972.05 867.66 . 883.76 167.06 4.71
Italy 54.12 905.55 239173.95 22927.95 84.49 6439.61 2508.14 9.50
Japan 23.62 235.73 32841.52 5118.98 123.33 3094.66 11924.96 0.26
Korea 23.12 191.78 58609.57 4194.89 78.47 6289.65 333.95 17.75
Latvia 1.38 11.14 8331.06 714.38 30.89 1029.60 9.35 89.78
Lebanon 0.88 4.71 2005.05 455.91 56.65 320.46 53.27 3.76
Lithuania 1.12 8.31 5260.09 701.13 35.15 614.79 13.48 39.43
Malaysia 4.62 44.52 18993.22 1173.03 58.22 2380.99 135.32 14.29
Mexico 22.62 279.96 105715.77 6966.41 59.23 8762.12 453.09 23.27
Netherlands 4.38 72.67 16643.36 2796.76 84.04 790.74 509.03 3.24
New Zealand 0.62 5.51 2717.42 523.38 48.08 295.47 51.96 5.24
Norway 1.12 24.57 6416.15 979.87 79.21 285.46 218.75 2.87
Panama 1.38 10.58 6971.72 697.17 35.68 972.53 10.91 63.88
Peru 7.50 72.46 22014.63 1820.25 71.59 2264.87 36.77 59.83
Philippines 11.00 109.23 62354.69 2678.16 46.00 7256.49 85.65 74.09
Poland 9.88 109.15 29995.43 2105.51 76.54 2724.02 255.38 11.63
Portugal 22.12 281.60 56096.89 6853.02 104.09 2621.39 220.90 25.05
Qatar 3.00 27.77 6131.54 531.59 93.73 784.09 44.61 15.15
Romania 3.75 34.62 15876.14 1235.60 49.70 1662.19 49.92 32.64
Russia 24.38 250.19 104350.07 4944.82 59.21 7566.12 177.79 60.91
Slovak Republic 1.00 10.21 8968.89 926.96 25.48 699.42 35.92 24.92
Slovenia 0.75 7.79 4180.75 797.17 40.03 352.02 20.06 20.62
South Africa 10.25 103.94 38728.05 2199.24 62.20 4264.44 124.45 32.33
Spain 62.12 909.26 116133.54 14820.21 156.35 4801.36 893.63 12.71
Sweden 3.75 64.69 15142.33 2889.23 86.27 819.05 187.70 7.99
Thailand 4.75 41.41 18196.95 1146.42 57.15 2513.53 138.68 13.24
Tunisia 0.25 3.12 1998.25 285.63 36.28 306.24 19.27 10.36
Turkey 25.12 311.98 152490.26 5697.12 53.85 10097.13 298.35 51.23
Ukraine 7.50 78.70 45877.98 1636.15 44.92 3781.47 51.81 92.49
United Kingdom 18.00 248.77 43986.36 8077.81 103.85 2830.08 1733.67 2.43
United States 4.50 101.24 16403.97 3143.99 121.84 663.41 14319.44 0.11
Venezuela 13.62 135.78 50593.94 2003.41 60.89 5017.19 126.20 40.71
Vietnam 3.25 29.03 7980.77 613.96 79.06 1166.30 55.00 14.46
Total 12.37 162.66 40007.57 3889.49 77.16 2829.47 859.58 27.93
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Table 12: Descriptive Statistics: the EU

The table shows the descriptive statistics for the weekly observations of the bond bid-ask spread (% of
the mid price), CDS price (% of notional), CDS net notional (in billion USD) over the period October
2008 - March 2012 for the sample of European Union countries.

Mean St. Dev. Min Max No obs.

Bond Bid-Ask (% of mid) 1.16 2.22 0.04 35.64 3913
CDS Price (% of Notl) 2.45 6.00 0.17 208.58 3932
CDS Net Notional (bln $) 5.40 5.98 0.45 29.46 3932

Table 13: The Bond Bid-Ask Spread and CDS Net Notional: the EU

The table reports the coefficient estimates from generalized least squares regressions with both country
and time fixed effects for the sample of EU countries. The dependent variable is the bond market
bid-ask price spread (% of the mid price). The main variable of interest is CDS net notional outstanding
(CDS Notional) in billions of USD. Control variables are CDS price (% of notional) as a measure of
credit risk, CDS Price, and gross government debt outstanding in billion USD, Gross Debt. Column (3)
shows an alternative specification of CDS net notional (CDS Notional/Debt) as the log of the ratio
of CDS net notional to gross debt outstanding. Standard errors are given in parentheses and allow
disturbances to have heteroskedasticity, contemporaneous correlation across countries, and AR(1) serial
correlation within countries.

Dependent Variable: Bond Bid-Ask
(1) (2) (3)

CDS price 0.106∗∗∗ 0.105∗∗∗ 0.106∗∗∗
(0.0129) (0.0127) (0.0130)

CDS Notional -0.111∗∗∗ -0.261∗∗∗
(0.0174) (0.0396)

Gross Debt 0.00296∗∗∗
(0.000461)

CDS Notional/Debt -0.357∗∗∗
(0.0492)

Week FE Yes Yes Yes

Country FE Yes Yes Yes

No. obs 3913 3913 3913
No. countries 24 24 24
R2 0.59 0.60 0.58
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

56



Table 14: Granger Causality: CDS Net Notional and Bond Bid-Ask Spreads

The table reports Granger causality test results from the underlying vector autoregressive regressions:

∆yt = β0 +
p−1∑
j=1

∆yt−j + ∆εt

where yt is a vector of three variables: 1) CDS price, 2) the absolute CDS bid-ask spread, and 3) the
bond bid-ask (% of mid). The reported results are for the set of countries for which Johansen trace
statistics cannot reject the null that there is no cointegration among the variables. The lag order,
p, is selected to optimize Akaike information criterion for each country. The table reports p-values
of the Wald test statistics of the null hypotheses that, in column 1, H0: the bond market bid-ask
spread does not Granger-cause the CDS net notional, and in column 2, H0: CDS net notional does not
Granger-cause the bond bid-ask spread. We see that for 5 out of 14, CDS net notional Granger-causes
bond bid-ask spreads, while for only 2 out of 14, bond liquidity Granger-causes CDS net notional.

Bond Causes CDS CDS Causes Bond

Austria 0.04 0.20
Belgium 0.33 0.07
Croatia 0.19 0.03
Finland 0.61 0.07
Greece 0.95 0.90
Hungary 0.91 0.04
Ireland 0.67 0.19
Italy 0.54 0.04
Latvia 0.97 0.17
Lithuania 0.00 0.19
Poland 0.44 0.30
Slovak_Republic 0.65 0.84
Slovenia 0.42 0.66
Spain 0.74 0.46

Table 15: VECM: CDS Net Notional and Bond Bid-Ask Spreads

The table reports adjustment coefficients (λCDS and λbond) for the underlying VECM specification:

∆xt = λx (xt−1 − α0 − α1µt−1 − α2dt−1) +
p−1∑
j=1

β1j∆xt−j +
p−1∑
j=1

δ1j∆µt−j +
p−1∑
j=1

γ1j∆dt−j

∆µt = λCDS (xt−1 − α0 − α1µt−1 − α2dt−1) +
p−1∑
j=1

β2j∆xt−j +
p−1∑
j=1

δ2j∆µt−j +
p−1∑
j=1

γ2j∆dt−j

∆dt = λbond (xt−1 − α0 − α1µt−1 − α2dt−1) +
p−1∑
j=1

β3j∆xt−j +
p−1∑
j=1

δ3j∆µt−j +
p−1∑
j=1

γ3j∆dt−j

where x is credit risk, µ is CDS net notional, and d is the bond bid-ask spread. The reported results are
for the set of countries for which the the Johansen trace test statistics rejects the null hypothesis that
the cointegration rank is at most zero and cannot reject that the null hypothesis that cointegration rank
is at most 1. The lag order, p, is selected to optimize Akaike information criterion for each country.

λbond t-Stat λCDS t-Stat

Bulgaria -0.18 -4.40 0.01 0.46
Czech Republic -0.16 -6.17 0.02 2.15
Denmark 0.00 0.53 0.00 0.40
France -0.09 -2.16 0.95 1.77
Germany -0.59 -5.93 -0.65 -0.80
Netherlands -0.45 -6.53 -0.22 -1.30
Portugal -0.03 -1.10 -0.03 -2.47
Romania 0.01 0.61 0.00 3.73
United Kingdom -0.31 -3.88 -1.55 -2.62
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Table 16: Granger Causality: CDS Bid-Ask Spreads and Bond Bid-Ask Spreads

The table reports Granger causality test results from the underlying vector autoregressive regressions:

yt = β0 +
p∑
j=1

yt−j + εt

where yt is a vector of three variables: 1) the first difference in CDS price, 2) the absolute CDS bid-ask
spread, and 3) the bond bid-ask (% of mid). The lag order, p, is selected to optimize SBIC for each
country. The table reports p-values of the Wald test statistics of the null hypotheses that, in column 1,
H0: the bond market bid-ask spread does not Granger-cause the CDS bid-ask spread, and in column 2,
H0: CDS bid-ask spread does not cause the bond bid-ask spread.

Bond Causes CDS CDS Causes Bond

Austria 0.08 0.01
Belgium 0.15 0.14
Bulgaria 0.00 0.00
Croatia 0.42 0.00
Czech_Republic 0.00 0.00
Denmark 0.22 0.15
Finland 0.53 0.26
France 0.05 0.00
Germany 0.00 0.00
Greece 0.00 0.00
Hungary 0.27 0.00
Ireland 0.10 0.20
Italy 0.01 0.01
Latvia 0.22 0.00
Lithuania 0.11 0.00
Netherlands 0.58 0.00
Poland 0.33 0.00
Portugal 0.00 0.00
Romania 0.00 0.00
Slovak_Republic 0.45 0.26
Slovenia 0.51 0.94
Spain 0.72 0.03
Sweden 0.18 0.09
United_Kingdom 0.67 0.01
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Table 17: The Effect of the Permanent EU Ban on Contemporaneous Bond Illiquidity

This set of regressions explores the effect of the permanent EU-wide ban on naked CDS trading on
bond market liquidity. The table shows coefficient estimates from generalized least squares regressions
with both country and time fixed effects. The dependent variable is the bond market bid-ask spread
(% of the mid price). The main variable of interest is EU CDS Ban dummy variable that equals
one for country-date observations for which the CDS ban was in place. Control variables are CDS
price as % of notional as a measure of credit risk, CDS Price, and gross debt outstanding in trillion
USD, Gross Debt. Columns (1) and (2) compare whether including CDS price makes a difference.
Columns (3)-(6) have country specific trends, while Column (7) allows for a group specific trend
instead. Column (4) allows for a “treatment” intensity by incorporating an interaction between the ban
dummy and the decrease in net notional between the ban period and before the ban period, ∆Notl
(in billion USD). Column (5) excludes Greece as a potential outlier. Column (6) restricts the sample
to OECD countries only. Standard errors are given in parentheses and allow disturbances to have
heteroskedasticity, contemporaneous correlation across countries, and AR(1) serial correlation within
countries.

Dependent Variable: Bond Bid-Ask
(1) (2) (3) (4) (5) (6) (7)

Gross Debt -0.288∗∗∗ -0.418∗∗∗ -0.505∗∗∗ -0.466∗∗ -0.113∗∗∗ -0.726∗∗∗ -0.654∗∗∗
(0.104) (0.0798) (0.0818) (0.232) (0.0378) (0.232) (0.0860)

EU CDS Ban 0.271∗∗∗ 0.786∗∗∗ 0.652∗∗∗ 0.419∗ 0.314∗∗∗ 0.780∗∗ 0.959∗∗
(0.105) (0.241) (0.196) (0.218) (0.0482) (0.335) (0.442)

CDS Price 0.123∗∗∗ 0.0391 0.0401 0.328∗∗∗ 0.0384 0.122∗∗∗
(0.00423) (0.0447) (0.0360) (0.0690) (0.0359) (0.00502)

EU CDS Ban∗∆Notl 0.647∗∗
(0.316)

Week FE Yes Yes Yes Yes Yes Yes Yes

Country FE Yes Yes Yes Yes Yes Yes Yes

Country Trends No No Yes Yes Yes Yes No

Group Trends No No No No No No Yes

No. obs 2457 1802 1802 1560 1772 900 1802
No. countries 63 62 62 52 61 30 62
R2 0.57 0.87 0.90 0.90 0.89 0.90 0.88
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 18: The Effect of the Permanent EU Ban on Past Bond Illiquidity

This set of regressions explores the effect of the permanent EU-wide ban on naked CDS trading on
bond market liquidity before the ban. The table shows coefficient estimates from generalized least
squares regressions with both country and time fixed effects. The dependent variable is lagged bond
market bid-ask spread (% of the mid price). The main variable of interest is EU CDS Ban∗∆Notl that
is an interaction of the decrease in net notional and a dummy variable that equals one for country-date
observations for which the CDS ban was in place. Control variables are lagged CDS price as % of
notional as a measure of credit risk, CDS Price, and lagged gross debt outstanding in trillion USD,
Gross Debt. Column (3) excludes Greece as an outlier. Standard errors are given in parentheses and
allow disturbances to have heteroskedasticity, contemporaneous correlation across countries.

Dependent Variable: Lagged Bond Bid-Ask
(1) (2) (3)

L4.CDS Price 0.203∗∗∗ 0.204∗∗∗ 0.633∗∗∗
(0.0516) (0.0511) (0.0267)

L4.Gross Debt 6.055∗∗ 5.982∗∗ -11.54∗∗∗
(2.932) (2.909) (1.449)

∆Notl 0.0166 0.0566 0.0144
(0.0858) (0.0635) (0.0664)

EU CDS Ban∗∆Notl -0.334∗∗∗ -0.279∗∗
(0.0613) (0.115)

Week FE Yes Yes Yes

Country FE Yes Yes Yes

No. obs 156 156 153
No. countries 52 52 51
R2 0.99 0.99 0.98
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 19: The Permanent EU Ban and Bond Illiquidity: Expanding the Data Sample
Period

This set of regressions explores the effect of the permanent EU wide ban of naked CDS trading on bond
market liquidity. The main specification in the paper used 4-months of data pre and post October 18,
2011 (the CDS ban legislation vote date). This table shows the effect of increasing the sample size from
4-months to 6, 9, and 12 months in columns (1)-(3), respectively. The table shows coefficient estimates
from generalized least squares regressions with both country and time fixed effects. The dependent
variable is the bond market bid-ask spread (% of the mid price). The main variable of interest is EU
CDS Ban dummy variable that equals one for country date observations for which CDS ban was in
place. Control variables are CDS price as % of notional as a measure of credit risk, CDS Price, and
gross debt outstanding in trillion USD, Gross Debt. Greece is excluded as a potential outlier. Standard
errors are given in parentheses and allow disturbances to have heteroskedasticity, contemporaneous
correlation across countries, and AR(1) serial correlation within countries.

Dependent Variable: Bond Bid-Ask
(1) (2) (3)

CDS Price 0.343∗∗∗ 0.343∗∗∗ 0.288∗∗∗
(0.0301) (0.0299) (0.0217)

Gross Debt -0.0823∗∗∗ -0.0307 -0.0372
(0.0181) (0.0401) (0.0315)

banEU 0.320∗∗∗ 0.140∗ 0.0996∗∗
(0.0698) (0.0718) (0.0448)

Week FE Yes Yes Yes

Country FE Yes Yes Yes

Country Trends Yes Yes Yes

No. obs 2313 3045 3781
No. countries 61 61 62
R2 0.87 0.86 0.83
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 20: The Permanent EU Ban and Bond Illiquidity: Excluding Greece

This set of regressions repeats the main exercise in the paper by restricting the sample to OECD
countries. It explores the effect of the permanent EU wide ban of naked CDS trading on bond market
liquidity. The table shows coefficient estimates from generalized least squares regressions with both
country and time fixed effects. The dependent variable is the bond market bid-ask spread (% of the
mid price). The main variable of interest is EU CDS Ban dummy variable that equals one for country
date observations for which CDS ban was in place. Control variables are CDS price as % of notional as
a measure of credit risk, CDS Price, and gross debt outstanding in trillion USD, Gross Debt. Columns
(1) and (2) compare whether including CDS price makes a difference. Columns (1)-(3) have country
specific trends, while Column (4) has group specific trend. Columns (3) allows for “treatment” intensity
by incorporating interaction between the ban dummy and the decrease in net notional between the ban
period and before the ban period, ∆Notl (in billion USD). Standard errors are given in parentheses
and allow disturbances to have heteroskedasticity, contemporaneous correlation across countries, and
AR(1) serial correlation within countries.

Dependent Variable: Bond Bid-Ask
(1) (2) (3) (4)

Gross Debt -0.0908 -0.113∗∗∗ -0.109∗ -0.103∗∗∗
(0.0608) (0.0378) (0.0630) (0.0239)

EU CDS Ban 0.190∗∗ 0.314∗∗∗ 0.253∗∗ 0.436∗∗∗
(0.0953) (0.0482) (0.124) (0.0853)

CDS Price 0.328∗∗∗ 0.434∗∗∗ 0.408∗∗∗
(0.0690) (0.0761) (0.0361)

EU CDS Ban∗∆Notl 0.239∗∗∗
(0.0803)

Week FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Country Trends Yes Yes Yes No

Group Trends No No No Yes

No. obs 2418 1772 1530 1772
No. countries 62 61 51 61
R2 0.84 0.89 0.89 0.82
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 21: The Permanent EU Ban and Bond Illiquidity: OECD Sample

This set of regressions repeats the main exercise in the paper by excluding Greece as a potential outlier.
It explores the effect of the permanent EU wide ban of naked CDS trading on bond market liquidity.
The table shows coefficient estimates from generalized least squares regressions with both country and
time fixed effects. The dependent variable is the bond market bid-ask spread (% of the mid price). The
main variable of interest is EU CDS Ban dummy variable that equals one for country date observations
for which CDS ban was in place. Control variables are CDS price as % of notional as a measure of
credit risk, CDS Price, and gross debt outstanding in trillion USD, Gross Debt. Columns (1)-(2) have
country specific trends, while Column (3) has a group specific trend. Column (2) allows for “treatment”
intensity by incorporating the interaction between the ban dummy and the decrease in net notional
between the ban period and before the ban period, ∆Notl (in billion USD). Standard errors are given
in parentheses and allow disturbances to have heteroskedasticity, contemporaneous correlation across
countries, and AR(1) serial correlation within countries.

Dependent Variable: Bond Bid-Ask
(1) (2) (3)

CDS Price 0.0384 0.0387 0.121∗∗∗
(0.0359) (0.0358) (0.0339)

Gross Debt -0.726∗∗∗ -0.759∗∗∗ -0.754∗∗∗
(0.232) (0.240) (0.188)

EU CDS Ban 0.780∗∗ 0.606∗∗ 0.966∗∗
(0.335) (0.247) (0.393)

EU CDS Ban∗∆Notl 0.582∗
(0.300)

Week FE Yes Yes Yes

Country FE Yes Yes Yes

Country Trends Yes Yes No

Group Trends No No Yes

No. obs 900 870 900
No. countries 30 29 30
R2 0.90 0.91 0.89
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 22: Correlation between the change in notional during the ban and notional before
the ban

This table checks the cross-country correlation between the decrease in CDS net notional during the
ban and the level of net notional before the ban, Notl(t-1). The change in net notional is constructed as
the level of net notional averaged over the ban period minus the level of net notional averaged over the
pre-ban period. The correlation controls for the pre-ban levels of debt outstanding, Gross Debt(t-1),
and credit risk measured by CDS price, CDS Price(t-1). EU is a dummy variable that equals 1 for the
EU countries. For the EU countries, the correlation is significant while for the non-EU countries there
is no significant correlation.

Dependent Variable: Change in Net Notional
(1)

Notl(t-1) -0.0312
(0.0361)

EU -0.144
(0.238)

EU∗ Notl(t-1) 0.0838∗∗
(0.0394)

Gross Debt(t-1) -0.0142
(0.0356)

CDS Price(t-1) 0.0346∗
(0.0201)

Constant 0.0673
(0.178)

No. obs 54
R2 0.24
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 23: Collapsing the time series into pre and post ban.

This set of regressions collapses the time series data into an average pre and post ban for each country.
The table shows coefficient estimates from OLS regressions with country fixed effects. The dependent
variable is the bond market bid-ask spread (% of the mid price). The main variable of interest is EU
dummy variable that equals one for countries subject to the CDS ban. Control variables are CDS price
as % of notional as a measure of credit risk, CDS Price, and gross debt outstanding in trillion USD,
Gross Debt. Standard errors are given in parentheses. They allow disturbances to have heteroskedasticity
and are clustered at the EU level. Column (1) uses the whole sample of countries, and column (2)
restricts to OECD countries only.

Dependent Variable: Bond Bid-Ask
(1) (2)

EU 0.0810 0.139∗∗∗
(0.211) (0.004)

Gross Debt 0.147 -0.0459∗
(0.135) (0.054)

CDS Price 0.276∗∗ 0.269∗∗∗
(0.028) (0.001)

No. obs 60 30
R2 0.75 0.97
p-values in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 24: The Effect of the Temporary German Ban on Bond Illiquidity

This set of regressions explores the effect of May 2010 German ban on naked CDS trading on bond
market liquidity. The table shows coefficient estimates from generalized least squares regressions with
both country and time fixed effects. The dependent variable is the bond market bid-ask spread (%
of the mid price). The main variable of interest is CDS Ban dummy variable that equals one for
country-date observations for which the CDS ban was in place. Control variables are CDS price as %
of notional as a measure of credit risk, CDS Price, and gross debt outstanding in trillion USD, Gross
Debt. ∆Notl is the decrease in net notional between the ban period and before the ban period and
captures “treatment” intensity. Columns (1) and (2) compare whether including CDS price makes a
difference. Columns (3)-(5) have country specific trends, while Column (6) allows for a group specific
trend instead. Column (4) allows for a “treatment” intensity by incorporating an interaction between
the ban dummy and the decrease in net notional between the ban period and before the ban period,
∆Notl (in billion USD). Column (5) excludes Greece as a potential outlier. Standard errors are given
in parentheses and allow disturbances to have heteroskedasticity, contemporaneous correlation across
countries, and AR(1) serial correlation within countries.

Dependent Variable: Bond Bid-Ask
(1) (2) (3) (4) (5) (6)

Gross Debt 2.033∗∗∗ 1.453∗∗∗ 0.425∗ 0.570 0.473 -0.0634
(0.120) (0.309) (0.237) (0.562) (0.310) (0.0488)

CDS Ban -0.216∗∗∗ -0.217∗∗∗ -0.233∗∗∗ -0.143∗∗∗ -0.0757∗∗ -0.219∗∗∗
(0.0572) (0.0589) (0.0584) (0.0482) (0.0382) (0.0575)

CDS Price 0.235∗ 0.110 0.114 0.151∗∗ 0.229∗
(0.124) (0.148) (0.139) (0.0666) (0.125)

CDS Ban∗∆Notl -0.304∗∗
(0.119)

Week FE Yes Yes Yes Yes Yes Yes

Country FE Yes Yes Yes Yes Yes Yes

Country Trends No No Yes Yes Yes No

Group Trends No No No No No Yes

No. obs 816 740 740 740 706 740
No. countries 24 24 24 24 23 24
R2 0.74 0.81 0.85 0.85 0.93 0.81
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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d APPENDIX : DATA FIGURES

Figure 11: The Permanent EU Naked CDS Ban and the Amount of CDS Purchased,
2011.01 - 2012.08

The solid line plots the total CDS purchased (CDS net notional, $bln) across countries that were
subject to the EU ban. The dashed line plots the total for countries that were not affected by the ban
and CDS could still be purchased. The vertical line is drawn at October 18, 2011 and shows when the
EU passed the naked CDS ban legislation.
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Figure 12: The Permanent EU Naked CDS Ban and Bond Illiquidity, 2011.01 - 2012.08

The vertical line drawn at October 18, 2011 shows when the EU passed the naked CDS ban legislation.
The solid line plots the cross-country average bond bid-ask spread (% of the mid price) for the countries
subject to the ban (the EU countries). The dashed line plots the average bond bid-ask spread for
countries that were not affected by the ban (outside the EU). We see that the countries affected by the
ban experienced an increase in their bond bid-ask spread.
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Figure 13: The Temporary CDS Ban and Bond Illiquidity, Mar 2010 - Aug 2010

The solid line plots the cross-country average bond bid-ask spread (% of the mid price) for the EU
countries that were subject to the ban (i.e. Eurozone countries). The dashed line shows the average for
the EU countries not affected by the ban (i.e. naked CDS referencing these countries could still be
purchased). The vertical lines are drawn at the week before and after the German ban is instituted.
We see that the countries affected by the ban experienced an immediate decrease in their bond bid-ask
spread.
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Figure 14: The Temporary German CDS Ban and the Amount of CDS Purchased, Mar
2010 - Aug 2010

The solid line plots the time series of the total CDS net notional ($billion) across EU countries that
were subject to the ban (i.e. Eurozone countries). The dashed line shows the total for EU countries
that were not affected by the ban (i.e. naked CDS referencing these countries could still be purchased).
The vertical lines are drawn at the week before and after the German ban is instituted.
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Figure 15: Bond (il)liquidity and CDS Net Notional, Italy (Dec 2008 - Aug 2012)
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Table 25: Anecdotal Evidence of How the EU Ban Affected the Bond Market

In February 2013, the European Securities and Market Authority (ESMA) surveyed market participants
on the effects of the EU naked CDS ban. Below are some responses to Question 15 in the survey
that asked Have you noticed any effect of the prohibition on entering into an uncovered sovereign
CDS transaction on the price and on the volatility of the sovereign debt instruments? For more
information on the survey and the responses received from private institutions and industry associations
see: http://www.esma.europa.eu/consultation/Call-evidence-evaluation-Regulation-short-selling-and-
certain-aspects-credit-default-sw#responses and ESMA (2013).

The German Banking Industry Committee:
“The market has become less liquid; the bid-offer spread has widened. Volatility is
unchanged, but has tended to shift to the spot/cash markets.”

The Association for Financial Markets in Europe (AFME) and the International Swaps and
Derivatives Association (ISDA):

“Market participants have already observed that seemingly due to the SSR Reg-
ulation (restrictions it imposed on sovereign debt and sovereign CDS markets),
Asian participation in the European bond market fell by around 50% immediately
after the introduction of the SSR, thus demonstrating neatly one adverse impact
of the SSR in general in driving investors away.”

“Some buy side market participants have already remarked that even though there
is still liquidity in sovereign debt, it is more difficult to source this liquidity.”

Alternative Investment Management Association (AIMA) and Managed Funds Association
(MFA):

“Some of our members have reported that they have stopped trading European
sovereign CDS and bonds, given the regulatory and reputational risks.”

“Restrictions on CDS positions over the medium term will generally make it more
difficult for sovereign issuers to borrow through long-dated securities, leading to a
shortening of the average maturity profile of sovereign issuance as investors seek
to limit their risk exposure, thereby increasing the vulnerability of sovereigns to
short term liquidity and funding crises. This sentiment is reflected in the responses
to AIMA and MFA’s poll of their members.”

“At worst, the ban could ultimately undermine liquidity in the underlying sovereign
debt markets, undermining the ability of sovereigns to raise finance through debt
issuance.”

Deutsche Bank

“We observed anecdotally that as investors began to understand the details of the
regulation, cash volumes reduced with a resultant increase in volatility, although
this was not significant.”

70

http://www.esma.europa.eu/consultation/Call-evidence-evaluation-Regulation-short-selling-and-certain-aspects-credit-default-sw#responses
http://www.esma.europa.eu/consultation/Call-evidence-evaluation-Regulation-short-selling-and-certain-aspects-credit-default-sw#responses


ESSAY 2 : CDS AS SOVEREIGN DEBT
COLLATERAL

Abstract

A defining friction of sovereign debt is the lack of collateral that
can back sovereign borrowing. This paper shows that credit default
swaps (CDS) can serve as collateral and thereby support more
sovereign borrowing. By giving more bargaining power to lenders
in ex-post debt renegotiations, CDS becomes a commitment device
for lenders to extract more repayment from the debtor country.
This ex-post disciplining effect during debt renegotiations better
aligns the sovereign’s ex-ante incentives with that of the lender.
CDS alleviates agency frictions that are present in any lending
contracts but are particularly difficult to mitigate in sovereign debt
context.

1 INTRODUCTION

With the recent sovereign debt crisis in Europe, sovereign credit default
swaps (CDSs) have been blamed by politicians and regulators for in-
creasing borrowing costs and exacerbating the debt crisis.39 In May 2010,
regulators in Germany temporarily banned the purchase of CDS on Euro
zone government bonds by those who do not own the underlying bond,
and in October 2011 the ban was made permanent and applicable across
the European Union. An implicit argument in these criticisms and policy
actions is that CDSs can somehow affect the underlying borrower. Most
of the existing literature on credit derivatives, however, focuses on the
incentive problems between the lender and the insurer while abstracting
from the effect on the borrower. But why might CDSs matter for the
borrower? How might the lender’s insurance activity affect the incentives
and the welfare of the sovereign borrower?

This paper’s answer is straightforward. The existence of CDS can give
lenders more leverage in ex-post renegotiations. This alleviates ex-ante
borrowing constraints, provides more external capital to the debtor coun-

39Credit default swaps are over-the-counter derivative contracts where the seller of the
contract pays the buyer of the contract a pre-specified amount (called notional) when
a credit event occurs (such as default by a firm or a government). In return, the buyer
of the contract pays a periodic fee until either the contract matures or a credit event
occurs. The contract specifies, among other things, the reference entity, the contract
maturity date, the notional amount, and the events that constitute as a credit event.
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try, increases investment and, therefore, welfare. CDS can be beneficial
for the borrower. The effect of CDS on ex-post renegotiations is especially
crucial in sovereign debt context because it is difficult to collateralize
sovereign debt.

We derive this result using a framework with an agency problem
between the lender and the sovereign borrower. The model features two
frictions characteristic to sovereign debt. First, due to the lack of inter-
national law for sovereign bankruptcy, sovereign governments often get
away without fully repaying their debt and this debt reduction is achieved
through renegotiations with lenders.40 Second, due to asymmetric infor-
mation about the sovereign’s actions - such as investment - which in turn
affect the repayment ability of the sovereign, the incentives of the borrower
and the lender are misaligned. The asymmetric information, together with
the inability of the lender to credibly deny any debt reduction, gives rise
to a moral hazard problem on the part of the borrower: knowing that in
a low-output state a debt reduction will be reached, the borrower does
not invest enough to avoid a low future output.

In this setting, we find that insurance serves as a commitment device
for the lender. By giving credibility to lender’s threat to walk away
from debt renegotiations and let the sovereign default, CDS improves
the lender’s bargaining power during debt renegotiations. This increased
leverage of the lender enables him to extract more repayment even in bad
states of the world, which in turn allows the lender to ex-ante offer better
loan contracts (e.g. with lower borrowing cost) compared to an uninsured
lender. As bad output states are even less attractive to the borrower,
the incentives of the borrower and the lender are better aligned and the
borrower invests more efficiently. Thus, insurance has a disciplining effect
on the borrower: it increases investment and lowers the probability of
default and cost of borrowing. As a result, CDS alleviates the moral
hazard problem and improves welfare.

These results are based on the assumption that lenders are the only
agents purchasing insurance. In reality, there are investors, so called
’naked buyers’, who purchase insurance but do not own the underlying
bond. How robust are our findings if we allow for investors that purchase
insurance but do not lend to the sovereign? We find that the existence
of naked buyers impacts the debtor country only if the CDS market is
concentrated (e.g. a monopoly) but not if it is perfectly competitive as
we had assumed up to this point. If the insurer is a monopolist, he can
indirectly affect the borrower’s investment through the insurance contract
offered to the lender. The insurance seller not only earns a profit from
insuring the lender but also from insuring the naked buyer where, by

40Benjamin and Wright (2009) constructed a database covering 90 defaults and renego-
tiations by 73 countries that occurred over the period of 1989-2006. Argentina, for
example, defaulted in 2001 on its $94 billion international bonds, which, according to
Benjamin and Wright (2009) estimates, led to creditor losses of 63% of the value of
the debt.
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assumption, the latter is affected by the borrower’s investment.41 The
insurance seller designs the insurance contract so as to induce the level of
investment that maximizes his total profit. Thus, the existence of naked
buyers can result in over-investment. Importantly, our analysis points to
the importance of the CDS market structure for whether the existence of
naked buyers affects the borrower.

Related Literature

This paper is related to sovereign debt models with agency frictions. We
model the asymmetric information friction similar to Atkeson (1991) and
Gertler and Rogoff (1990), while the debt renegotiation framework is
similar to Yue (2010). This paper shows how derivative financial contracts
that exist today can help mitigate agency frictions that sovereign debt
contracts are mired with.

The framework of our model is similar to the standard moral hazard
model in corporate finance with a lender and an entrepreneur who needs
financing for a project (see, for example, Repullo and Suarez (1998),
Tirole (2006)).42 If the entrepreneur exerts effort, the project is more
likely to succeed, but the entrepreneur’s effort is noncontractible. There
is an intermediate date at which the lender can choose to either liquidate
the project, if he suspects that the entrepreneur shirked, or continue the
project. If the lender can credibly commit to liquidate the project, the
entrepreneur will exert more effort. But the lender’s threat to liquidate is
not credible ex-post, thus creating a moral hazard. Various mechanisms
have been suggested that can make the lender’s threat credible and
discipline the borrower. Hart and Moore (1995), for example, suggest
making the original lenders senior to new lenders who might come in and
provide funding to continue the project. Dewatripont and Tirole (1994)
argue for a diversity of tough and soft claim-holders and Berglof and von
Thadden (1994) show that short term lending can have a disciplining
effect. Our paper suggests that insurance against default is another form
of a such disciplining mechanism.

There is a growing literature on CDS. Most of the corporate CDS
literature addresses asymmetric information between lenders and insurers
about the loans on which the lenders purchase insurance.43 However,

41The naked buyer, we assume, has cash flows that are positively correlated to that of
the sovereign’s: his cash flow is high in the state where the sovereign’s output is high
and low in the sovereign’s low output state. Then, by assumption, the probability that
the naked buyer has a high cash flow increases with the borrower’s investment; in
other words, the borrower’s investment affects the utility of the naked buyer. Thus,
the naked buyer’s utility (and hence the profit extracted by the insurer) depends not
only on the naked buyer’s own insurance but also on the insurance purchased by the
lender since the latter affects the borrower’s investment.

42See the discussion in Tirole (2006), section 5.5.
43See, for example, Duffee and Zhou (2001), Morrison (2005), Thompson (2007), Par-
lour and Winton (2009). See Acharya and Johnson (2007) for empirical support for
asymmetric information problems between lenders and insurers. For an overview of
the CDS market, see Stulz (2010) and Weistroffer, Speyer, Kaiser, and Mayer (2009);

73



sovereign debt is less prone to this type of asymmetric information since
if information about a country is available to international lenders, then it
is likely to be available to insurers. In contrast, our paper focuses on the
effect of CDSs on the borrower-lender relationship. As our paper sheds
light on CDS’s effect on the probability of default, it is also related to
papers that study its effect on financial stability. Instefjord (2005) finds
that CDSs can lead to banks taking on more risk. Allen and Carletti
(2006) show that if banks face the same liquidity demand, credit risk
transfer is beneficial, but if banks face an idiosyncratic risk, then credit
risk transfer can increase the risk of financial crises.

This paper, however, is most closely related to Arping (2013) and
Bolton and Oehmke (2011) who both show the disciplining effect of CDSs
in a framework with firm agency problems. The agency problems in these
models are moral hazard (noncontractible effort) in Arping (2013) and
strategic default (nonverifiable cash flow) in Bolton and Oehmke (2011).
In both, the threat of liquidation motivates the borrower to repay, however
the possibility of renegotiating before the lender’s liquidation decision
creates a credibility issue on the part of the lender to actually carry
out the liquidation ex-post. Thus, similar to our paper, CDS plays as a
commitment device to carry out the threat if necessary.

The novelty of this paper lies in the application to sovereign debt.
These models are specific to corporate debt and bankruptcy and, hence,
do not capture the salient features of sovereign debt that distinguish it
from corporate debt. First, although the threat to liquidate is a standard
modeling feature in corporate finance literature, in sovereign debt, there
is no such concept as going to a court to liquidate or take control over a
country or a government. Even if that were possible, in a corporate setting
all the assets of a firm can serve as collateral, whereas in a sovereign
context the amount of seizable assets is negligible. Instead, what impels
sovereigns to repay is reputational costs of default such as the potential
increase in borrowing costs, loss of trade relations, and domestic banking
crises.

Second, Bolton and Oehmke (2011)’s strategic default setting results
in the borrower trying to default and renegotiate when the borrower’s
cash flow is high. In sovereign debt context, sovereigns instead default and
renegotiate during recessions when they are actually facing repayment
difficulties than in high revenue states. Sovereign debt agency frictions
are better captured with a moral hazard problem where the sovereign
does not take sufficient measures (e.g. enough investment or policy effort
to improve macroeconomic performance) to avoid repayment difficulties
in the future.

Third, to create an interim renegotiation stage, Arping (2013) makes
effort observable (although still not contractible) which is the key as-
sumption of his model that drives his results. Since in our model the
borrower’s investment is neither detectable nor enforceable, it allows us to

and for an overview more specific to sovereign CDS, see Ranciere (2001), Packer and
Suthiphongchai (2003) and Verdier (2004).
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analyze the impact of CDS in a standard moral hazard agency framework.
Furthermore, debt renegotiation in Arping (2013) occurs before output is
realized but sovereign debt renegotiations occur after the sovereign finds
out that it will be facing repayment difficulties (i.e. after the output real-
izes). Thus, our model better captures these crucial differences between
sovereign and corporate debt. Nevertheless, our paper compliments the
existing literature and is able to show that the disciplining effect of CDS
carries over to an environment that is specific to sovereign debt.

The next section lays out, first, the frictionless benchmark economy,
followed by private information environment where we characterize the
moral hazard problem. Then we introduce the insurance market and give
our main result that demonstrates CDS’s disciplining role. In appendix B.1,
we show that insurance is inconsequential unless both private information
and bargaining are present. Section 3 relaxes the perfectly competitive
environment by considering a monopolistic insurer and looks at how the
existence of naked buyers affects the debtor country. The last section
concludes while the proofs of the results are relegated to the appendix.

2 MODEL

Consider a small open economy representing the debtor country. There
are two dates: t={0,1}. The borrower is risk neutral and does not discount,
U(c0, c1) = c0 +E0c1, and can invest I at date 0 to earn a random output
at date 1. The distribution of the output depends on the amount invested
at date 0: output is high, y1 = yh, with probability π(I) and low, y1 = yl,
with probability (1 − π(I)) where π′(I) > 0, π′′(I) < 0, π(0) = 0, and
π′(0)(yh−yl) > 1.44 Thus, the probability of the high state is increasing in
investment. The borrower has zero endowment at date 0, but can borrow
by trading one-period zero-coupon bonds with risk neutral competitive
foreign lenders. We denote the face value and the price of the bond as B
and q respectively. B > 0 means the sovereign country is a net borrower:
he receives qB ≥ 0 consumption goods at date 0 and has to repay B at
date 1 regardless of the state realized. The raised funds, qB, can be used
for either consumption or investment, thus his date 0 consumption is:
c0 = qB − I.

The borrower has an incentive to repay at date 1 because if he defaults
in full, he loses a fraction of his output, pyl. This cost of default can
be interpreted as a reduced form for costs associated with temporary
exclusion from credit markets, trade disruptions, or foreign investors’ lack
of confidence. If the borrower repays the loan, his consumption is:

cnd1 = y1 −B
44The last condition implies that positive investment is efficient.
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While if he defaults in full, his consumption is:

cd1 = y1(1− p)

We assume that the cost of default in the good output state is high
enough to deter any default, while too low in the bad state. Thus a default
can occur only in the bad state, which is an assumption consistent with
the sovereign debt stylized fact that debtor countries typically default
when they are in a recession.45 In particular, the borrower defaults in
the bad state by negotiating a debt reduction with the lender. If such a
debt reduction agreement is reached, the borrower is able to avert the
default cost. An interpretation of this assumption is that the ability of the
sovereign to reach an agreement with the lenders is perceived positively
by the market and prevents further loss of confidence by investors or trade
partners.46 From here on, we refer to defaults to mean partial defaults
that occur through debt renegotiation when yl is realized and the ex-ante
probability of default is 1− π(I). If an agreement is reached, 1− α and α
are the shares of yl going to the borrower and the lender respectively.47

Figure 16 shows the timeline of the model as well as the subgame that
gets played out at date 1 once the borrower has borrowed and invested at
date 0. When yl is realized, a debt reduction agreement will be reached
(as pointed out by the arrow) since the lender will prefer getting αyl over
nothing and for the borrower the bargaining outcome will be at least
better than suffering the output loss pyl. While, if yh is realized, the
borrower will repay in full as indicated by the arrow.

The loan contract signed by the borrower and the lender at date 0
will take into account the bargaining outcome of the subgame when yl is
realized at date 1. The borrower’s expected utility is:

c0 + βE0c1 = (qB − I) + π(I)(yh −B) + (1− π(I))yl(1− α)

And the lender’s zero-profit condition is:

π(I)B + (1− π(I))αyl = qB

Next, we proceed by characterizing the outcome of the ex-post bargaining
problem which will then be used to solve for the equilibrium loan contract
and investment.

45This fact can be reproduced in a dynamic model with a risk averse borrower. For
a risk averse borrower, when output is already low, it hurts more to further lower
consumption by paying off his debt. As our model is a two-period model with a risk
neutral borrower, we resort to assuming this result. Nevertheless, we show in appendix
B.2 that the results of this section hold in a more general setting where the borrower
defaults and bargains both in the high and low states.

46A more general approach would be to have two types of default costs: one for partial
default and a more costly one for full default, but for our purposes only the relative
difference in default costs matters. Thus, we can assume the cost of partial default
(i.e. for reaching a renegotiation agreement) is zero.

47This assumption is made for simplicity since usually debt renegotiations are over
reductions of the actual debt, i.e. the borrower pays back α share of the original debt,
B. Thus, more general approach would be for them to bargain over min(B, yl).
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Figure 16: Model timeline

2.0.1 The Nash Bargaining Problem

Following the general approach of Yue (2010), we model the partial default
(i.e. debt renegotiation or restructuring) that occurs when yl is realized as
an outcome from a Nash bargaining problem. We assume that the lender
and the borrower have an equal bargaining power. If they fail to reach
an agreement, the threat point for the borrower is being penalized by pyl
and for the lender it is getting nothing. Thus, their respective surpluses
from bargaining are:

∆B(a) = (1− a)yl − (1− p)yl
∆L(a) = ayl

The Nash bargaining solution is given by:

α = arg max
a∈[0,1]

∆B(a)∆L(a)

s.t. ∆B(a) ≥ 0 i.e. ayl ≤ pyl

∆L(a) ≥ 0 i.e. ayl ≥ 0

Solving the above problem we get:

α =
1

2
p

To interpret this result, since the lender’s threat to the borrower is that
the borrower’s endowment will decrease by pyl, they are really bargaining
over how to split pyl. Hence the outcome from bargaining is to split pyl in
half because we have assumed that they have an equal bargaining power.

Now let us characterize the equilibrium debt level, bond price, and
investment under the full information setting which we call the first best
allocation. Because the lenders are competitive they compete to maximize
the borrower’s utility.
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Definition 3. The first best contract (qFB, BFB, IFB) is the optimal
contract achieved under full information, bargaining setting. It maximizes
the borrower’s payoff subject to the lender’s zero-profit condition:

max
I,q,B

(qB − I) + π(I)(yh −B) + (1− π(I))yl(1− α) (PFB)

s.t. π(I)(B) + (1− π(I))αyl = qB (2.1)
qB − I ≥ 0

where α = 1
2
p.

Solving this, IFB and BFB are given by:

π′(IFB)(yh − yl) = 1 (2.2)

BFB =
IFB − (1− π(IFB))αyl

π(IFB)

c0 = qFBBFB − IFB = 0

Equation (2.2) says that the borrower invests such that the marginal
benefit of increasing investment (an increase in date 1 consumption) equals
the marginal cost (a decrease in date 0 consumption). If I was lower than
IFB, an additional investment would yield extra date 1 consumption that
more than compensates for the decrease in date 0 consumption.4849 Next
let us introduce private information and characterize the moral hazard
problem it creates.

2.1 Private Information

Under private information, the borrower’s output is observable, but his
investment and consumption decision is not observable, and hence cannot
be contracted upon. In this case, if the borrower is offered the first best
loan contract (BFB, qFB), the borrower will not invest IFB since his
optimization problem is:

max
I

(qFBBFB − I) + π(I)(yh −BFB) + (1− π(I))yl(1− α)

48In this setup, there is no point in borrowing more than IFB, investing IFB, and
consuming the rest, qB − IFB , since the borrower will have to repay this amount back
in full in the high state. Thus, we can safely restrict our attention to the case where
he will borrow qB = IFB and invest all of it without consuming any.

49Note that the lender is ex-ante competitive but ex-post non-competitive and hence
bargain with the borrower. This is a feature common in sovereign debt bargaining
models. A motivation for this is that potential new lenders, afraid that a troubled
borrower is going to default on somebody (including themselves), do not lend until
they see the borrower repay the incumbent lender. Thus, until some repayment is
made to the incumbent lender, the borrower cannot access the competitive loan market
and the incumbent lender has some market power over the borrower. Kovrijnykh
and Szentes (2007) show formally how this lender’s switch from competitive in the
pre-default stage to noncompetitive ex-post can arise endogenously when old debt
is senior to new debt. Nevertheless, we have checked that the main intuition of our
model that CDS can alleviate moral hazard would still hold if the lender have as much
bargaining power ex-ante as ex-post.
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where FOC with respect to I gives:

π′(I)(yh − yl − (BFB − αyl)) = 1 (2.3)

Comparing (2.3) with (2.2), we see that as long as BFB ≥ αyl, due to the
concavity of π(I), the borrower will invest less than IFB and consume
the rest.

To see the intuition, with the loan contract (qFB, BFB) the borrower
has secured himself the consumption profile of yh−BFB in the good state
and yl(1− α) in the bad state regardless of his investment. Thus, he can
cheat and consume, unobserved by the lender, some of the qFBBFB that
he was supposed to invest. This is the moral hazard problem.

Before characterizing the second best contract, the functional form of
π(I) is assumed to be: π(I) =

√
I where I is investment as a fraction of

the steady state output.5051 Given this functional form, the parameter
condition under which the borrower has an incentive to invest less than
the first best, BFB ≥ αyl, is:52

(yh − yl)2 ≥ 2pyl (2.4)

We assume that condition (2.4) holds, hence, the borrower has an incentive
to cheat and there is moral hazard problem. Since the lender will not break
even with the first best contract, the lender has to offer a contract that
accounts for a such behavior of the borrower (i.e. it has to be incentive
compatible) while still maximizing the borrower’s utility and the lender
himself breaks even.

Definition 4. The second best (SB) loan contract (qSB, BSB) and in-
vestment, ISB, under private information and bargaining is an incentive
compatible contract given by the solution to Program PSB:53

max
q,B,I

qB − I + π(I)(yh −B) + (1− π(I))(yl − αyl) (PSB)

s.t. π′(I)(yh −B − (1− α)yl) = 1 (ICB)
π(I)B + (1− π(I))αyl = qB (IRL)
c0 = qB − I ≥ 0

where, as before, α = 1
2
p. (IRL) is the lender’s zero profit condition and

(ICB) is the incentive compatibility constraint.
50All the other variables are in steady state output units as well.
51For a general specification, π(I) = Iγ where γ < 1, there is no analytical solution, but
we have computationally checked that the main results of our paper still hold. For
example, Figure 19 looks qualitatively the same for γ < 1.

52

B
FB ≥ αyl ⇔

IFB − (1− π(IFB)αyl

π(IFB)
≥ αyl ⇔ I

FB − αyl + π(I
FB

)αyl ≥ π(I
FB

)αyl

⇔ I
FB ≥ αyl. For π(I) = I

γ and γ = 0.5
√
IFB =

1

2
(yh − yl)⇒ (yh − yl)

2 ≥ 2pyl

53The appendix shows that the constraint c0 ≥ 0 will hold with equality.
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Comparing (2.2) with (ICB), we see that since π(I) is concave, the
second best investment will be less than the first best as long as: BSB ≥
1
2
pyl. Thus, the moral hazard problem constrains borrowing and results in

an investment less than the first best. The utility achieved under private
information will always be less than under full information because of the
extra (IC) constraint.

2.2 Credit insurance

Up to now, the results on moral hazard are standard.54 Now let us
introduce an insurance market where the lender can buy a protection
against default from risk neutral competitive CDS insurers. An insurance
contract with notional, i, insures the lender up to the amount i in case
of a credit event. A credit event here is defined as a full default by the
borrower, in other words the lender has not agreed to any debt reduction.
We assume the lender’s insurance activity is observable by the borrower.55

When negotiations fail, the lender now receives i instead of getting
nothing; thus, an insurance improves his outside option and the lender’s
surplus from bargaining is now:

∆L(a) = ayl − i

Figure ?? reflects this change.
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Figure 17: Date 1 subgame with insurance

54See, for instance, Atkeson (1991) and Gertler and Rogoff (1990).
55We implicitly rule out the lender and the borrower together falsifying the credit event
so that the lender still gets paid by the borrower some amount while lying to the
insurer about the credit event and getting an insurance payment. Thus, we assume a
credit event is contractible. A similar situation that we rule out is the lender and the
insurer negotiating ex-post so that the insurer pays less than what was contracted; in
return, the lender does not reject debt restructuring and gets paid by the borrower
also.
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Now when the low output yl is realized, the bargaining outcome
depends on the amount of insurance purchased, i. Solving the bargaining
problem as before, the share the lender extracts from the borrower is:

α(i) =
1

2
p+

1

2yl
i if i ≤ pyl (2.5)
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Figure 18: Nash Bargaining Solution

Figure 18 shows the solution graphically. If i = 0, we are back to the
no insurance case. On the interval i ∈ [0, pyl), as the amount of insurance
purchased increases, the lender’s share increases and will be strictly larger
than the insurance itself i (i.e. the 45 ◦ line). The lender will strictly prefer
restructuring over insurance. When i = pyl, α(i)yl crosses the 45 ◦ line
and the payment from the borrower (in case of restructuring) will exactly
equal the insurance amount (in case of default). Thus, the lender will
be indifferent between receiving the pyl from the borrower (by accepting
restructuring) or from the insurer (by rejecting restructuring) and we
model the lender’s decision as choosing the best mixed strategy. Whether
the lender accepts or rejects, the borrower’s endowment decreases by the
same amount (because the borrower either has repaid pyl or defaulted
and was penalized by pyl). If i > pyl, the most the lender can get from the
borrower is pyl, thus the lender will reject any restructuring and trigger
insurance, and the borrower will suffer an output loss of pyl.

To characterize the zero-profit conditions of the lender and the insurer,
we first subdivide i into three intervals based on what the lender will do
on each interval as discussed above: 1) i ≤ pyl, the lender always accepts
restructuring, 2) i = pyl, the lender is indifferent between accepting or
rejecting and getting insurance, and 3) i > pyl, the lender claims insurance.
The lender’s zero-profit condition when he purchases insurance is:

π(I)B + (1− π(I))cL = qB +m (2.6)

where cL is the lender’s consumption in the low state. On the first interval,
since the lender restructures and does not claim insurance, the payment
from the insurer is zero. Thus, m = (1 − π(I))0 = 0, cL = α(i)yl, and
cB = (1 − α(i))yl where cB is the borrower’s consumption in the low
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output state.56 When indifferent, the lender uses a mixed strategy (ω,
(1 − ω)) where ω is the probability he will accept restructuring and
(1 − ω) is the probability he will claim insurance. Insurance premium
then is m = (1 − π(I))(1 − ω)i while cL = ωα(i)yl + (1 − ω)i and
cB =

(
ω(1− α(i)) + (1− ω)(1− p)

)
yl = (1− p)yl. On the third interval,

since the borrower defaults, the insurer pays the lender the full i (cL = i)
and m = (1− π(I))i while cB = (1− p)yl.

We now characterize the equilibrium when an insurance market exits.

Definition 5. The optimal loan contract (q, B), I, and i when there
exists an insurance market is such that it is incentive compatible for the
borrower and maximizes the borrower’s utility subject to the zero profit
conditions of the lender and the insurer.

max
q,B,I,i,ω

(qB − I) + π(I)(yh −B) + (1− π(I))cB (PSB,ins)

s.t. π′(I)(yh −B − cB) = 1

π(I)B + (1− π(I))cL = qB +m

c0 = qB − I ≥ 0

where m, cB, and cL in each of the three intervals of i are:

m =


(1− π(I))0 = 0

(1− π(I))(1− ω)i

(1− π(I))i

cB =


(1− α(i))yl
(1− p)yl
(1− p)yl

if i < pyl
if i = pyl
if i > pyl

cL =


α(i)yl if i < pyl
ωα(i)yl + (1− ω)i if i = pyl
i if i > pyl

and α(i) is given by (2.5).

From solving the above problem, we arrive at the main results of our
paper that compares the effects of insurance to the second best without
insurance:

Proposition 8. The optimal insurance is: i∗ = min{1
2
(yh−yl)2−pyl, pyl}.

Specifically:

if (yh − yl)2 < 4pyl, then it’s an ’interior’ solution: i∗ =
1

2
(yh − yl)2 − pyl

(2.7)

if (yh − yl)2 ≥ 4pyl, then it’s a ’corner’ solution: i∗ = pyl (2.8)

Proof. See appendix

Figure 19 demonstrates the result by showing the borrower’s utility
as a function of i. In Figure 19(a), condition (2.7) holds, in which case i∗

is given by an interior solution on the interval [0, pyl]. In this case, the
56See the end of section 2.1 for more discussion about insurance premium equalling zero.
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constraint il ≤ plyl does not bind, allowing il to be as high as it needs
to be, and there is a complete alleviation of moral hazard: I ins = IFB.
Whereas in Figure 19(b), condition (2.8) holds and the borrower’s utility is
strictly increasing in i on the interval [0, pyl]. Thus, the optimal insurance
is given by the corner solution i∗ = pyl, in which case moral hazard is only
partially alleviated. When i = pyl, the lender plays a mixed strategy, but
the borrower’s utility is increasing in ω, hence the best mixed strategy is
the degenerate one: ω = 1. When i > pyl, the borrower would be worse
off than the second best. This is because pyl - the amount the borrower
gets penalized by - is a deadweight cost that no one benefits from; it is
better if it instead gets used to repay the loan.

Proposition 9. Comparing Program PSB,ins with the benchmark without
CDS:

(i) The borrower is better off: U ins ≥ USB.
(ii) Investment increases: I ins ≥ ISB, and the probability of default

(1− π(I)) decreases.
(iii) The borrower is more indebted: Bins ≥ BSB.
(iv) The bond price increases: qins ≥ qSB, or equivalently, the borrowing

cost decreases.

Proof. See appendix
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Figure 19: Optimal Insurance

The intuition for Proposition 9(i) is as follows. As long as there is the
moral hazard problem given by condition (2.4), the existence of insurance
improves the borrower’s welfare. This is because it turns out that (2.4)
is also the condition for U ′(i = 0) > 0, and hence a positive level of
insurance is pareto optimal. Condition (2.4) is satisfied if, for instance, yl
is small compared to yh or the volatility of output is high.

Proposition 9(ii) shows that the lender’s insurance activity disciplines
the borrower. In the bad state, if the borrower’s offer is not high enough
compared to lender’s insurance, debt reduction negotiation will fail and
the borrower will be penalized. To avoid being penalized, the borrower
will have to pay more than when insurance did not exist. Consequently,
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the low output state looks less attractive to the borrower, thus he will
invest more (i.e. closer to the first best amount) to avoid it.

Since the borrower finds it optimal to invest more to avoid the bad
outcome, Proposition 9(iii) illustrates that it requires more borrowing (an
increase in the face value of the bond). Thus, as CDS alleviates agency
frictions, the sovereign is able to raise more capital.

As CDS’s disciplining effect induces the borrower to invest more,
Proposition 9(iv) shows that the probability of the high state (hence full
repayment) increases. Moreover, the borrower pays more in the low state.
As a result, the bond price is higher and the sovereign’s borrowing cost is
lower.

Discussion of the corner solution. When i∗ = pyl (Figure 19(b)),
the lender buys just enough insurance to make him indifferent between
accepting the debt restructuring α(i∗) = pyl and rejecting it and triggering
an insurance payment. This amount of insurance lets him extract the
maximum possible amount from the borrower. Although ex-post he will be
indifferent between accepting or rejecting the debt restructuring, ex-ante
it is optimal to always get repaid by the borrower and not file a claim
with the insurer (i.e. play the degenerate mixed strategy: ω = 1). That
way the insurance premium is the cheapest possible (zero, to be specific),
hence the borrowing cost is the lowest possible. In Figure 4(b), we can
see that any ω < 1 would not be an equilibrium since for such ω, there is
an ε such that U(i∗ − ε) > U(ω|i = pyl). Thus, we implicitly assume that
the lender can credibly commit to, ex-post, always accept the payment
from the borrower and not the insurer although he is indifferent.57 In
the end, the reason an insurance makes a difference is that, before with
no insurance as an outside option, the lender could not credibly reject
a partial repayment and punish the borrower. But now he can credibly
reject any restructuring offer less than the insurance purchased.

Remark on insurance premium. Insurance in this context becomes a
costless mechanism to extract the maximum repayment possible from
the borrower. The reason for the zero price for an insurance contract
is due to the assumptions that the only credit event is a full default
and that there are only two output realizations where in the low output
state the borrower ends up, in equilibrium, paying partially. Thus, in
equilibrium, there is never a full default and the insurer never has to
make any payment. But the zero cost of insurance does not have to be
taken literally. As shown in Figure 20, if the support of the output has a
state where the output realized is zero and the sovereign does not have
any means to pay, then there is an automatic default in that state. Thus,
there is always a state in which insurance will be paid out to the lender
so that the insurance premium will be positive. Although this kind of

57If the lender’s credibility is an issue, a policy implication could be to limit i ≤ pyl − ε
where ε is a small number. Then, the insurance purchased would be i = pyl − ε, which
would be slightly less than the share achieved in negotiations with that amount of
insurance as the outside option: α(i) = pyl − ε

2 . The outcome in this case will still be
better than the second best.
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Figure 20: Date 1 subgame with insurance with three states

general setting may be desirable, the main results are likely to be the
same.

2.3 Restructuring

So far we have assumed that only a full default is a credit event. In this
section, we relax this assumption and allow debt restructuring to be a
credit event also.58

If there is a debt restructuring and the lender files a claim with the
insurer, the payment made from the insurer is the incured loss up to i
which is the difference between i and the recovery value. In particular,
if αyl is the recovery value (what the lender receives from the borrower
through debt restructuring), then the insurer pays the remaining i−αyl.59

Thus, when a debt restructuring is a credit event, the lender is always
indifferent between accepting the partial repayment αyl and getting the
remaining i − αyl from the insurer versus completely rejecting a debt

58Market participants follow credit event definitions developed by the International
Swaps and Derivative Association (ISDA) as a legal framework. In ISDA definitions,
restructuring is included as a credit event in sovereign CDSs as long as it was due to a
deterioration in the creditworthiness of the sovereign. But a voluntary restructuring is
not included and there is an ambiguity in terms of what constitutes as a voluntary. It is
common now for sovereigns to offer voluntary exchange offers as a way to reduce debt
payments. Even though the lender often has no other option but to accept the offer and
the exchange entails a deterioration in the creditworthiness of the sovereign (e.g. an
extension in the maturity or a reduction in the interest payments), the creditor could
be considered to have agreed to the restructuring. There have not been many cases
of restructuring and subsequent CDS payment triggers to help us draw conclusions.
One exception is the New York court case, Eternity Global Master Fund vs. Morgan
Guaranty, regarding Argentina’s debt restructuring in November of 2001 before its
actual default in December of 2001. The november debt exchange entailed both
lower yields and longer maturity. Following the debt exchange, Eternity demanded
payments from Morgan Guaranty, the protection seller, arguing that there was a debt
restructuring but Morgan Guaranty argued that it was not a credit event because it
was voluntary. Eventually, the court ruled on Morgan’s side. See Verdier (2004) for
more discussion.

59This is analogous to cash settlement.
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reduction (and having the borrower default in full) and getting the insured
amount, i, in full from the insurer:

cL =

{
αyl + (i− αyl) = i if accepts restructuring
i if rejects restructuring

Thus, α cannot be uniquely determined from the bargaining problem
because the lender’s surplus from bargaining is always zero.

However, the borrower’s optimal repayment in the low state can
be uniquely determined from the perspective of date 0. Let us denote
the repayment in the bad state as α̃, where the tilde is to notationally
distinguish it from α, which was determined from the bargaining problem.
Since the lender is always indifferent, suppose he accepts restructuring
with a probability ω and rejects it with a probability 1− ω. Then we can
solve solve α̃ along with the optimal loan contract, investment, ω, and
insurance that maximizes the borrower’s utility subject to the incentive
compatibility constraint and the zero-profit conditions of the lender and
the insurer:

max
q,B,I,α̃,ω,i

(qB − I) + π(I)(yh −B) + (1− π(I)){ω(1− α̃)yl + (1− ω)(1− p)yl}

s.t. π′(I)
(
yh −B − {ω(1− α̃)yl + (1− ω)(1− p)yl}

)
= 1

π(I)B + (1− π(I))
(
ω(αyl + (i− α̃yl)) + (1− ω)i

)
= qB +m

m = (1− π(I))
(
ω(i− α̃yl) + (1− ω)i

)
c0 = qB − I ≥ 0

i ≥ α̃yl

Solving this problem, the optimal α̃ and ω are:

ω∗ = 1 and α̃∗ = min

(
(yh − yl)2

4yl
, p

)
Remember that when restructuring was not a credit event, the optimal
insurance was i∗ = min{1

2
(yh− yl)2− pyl, pyl}, so that α(i∗) = 1

2
p+ i∗

2y
=

min
( (yh−yl)2

4yl
, p
)
. Thus, the optimal repayment when yl is realized is exactly

the same as when restructuring was not a credit event and there is as
much alleviation of moral hazard as before. Thus, the optimal investment
and utility achieved does not depend on whether restructuring is a credit
event or not.

Although ex-post, at date 1, the lender would be indifferent between
accepting any restructuring α̃ ≤ α̃∗ (since he will be compensated by the
insurer up to i on the remaining (i− α̃yl)), ex-ante it is optimal to not
accept any α̃ < α̃∗ so that there is as much alleviation of moral hazard
as possible. This outcome hinges upon the lender’s credibility to ex-post
do what was ex-ante optimal. Nevertheless, how does insurance make a
difference in this case? Before, a lender’s threat that he will reject any
α̃ < α̃∗ was not credible because without insurance he strictly preferred
accepting restructuring over rejecting it. But now, insurance makes the
lender’s threat credible precisely because the lender is now indifferent.
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The only difference in results from allowing restructuring to be a credit
event is that there is no unique equilibrium insurance level as long as
i ≥ α̃∗y. Suppose i > α̃∗y and consider the zero-profit conditions of the
lender and the insurer after substituting in ω∗ = 1:

π(I)B + (1− π(I))(α̃∗yl + (i− α̃∗yl)) = qB +m (2.9)
m = (1− π(I))(i− α̃∗yl) (2.10)

From (2.10), the higher the payment from the insurer, i− α̃∗y, the higher
the insurance price, m. But, from (2.9), the increase in the insurance price
gets exactly offset by the increase in the lender’s consumption when yl is
realized. So there would be no point in purchasing i > α̃∗y.

3 NAKED CDS BUYERS

We have assumed so far that the lenders are the only ones that purchase
insurance when in reality there are ’naked buyers’ who purchase insurance
but do not own the underlying bond. In this section we consider how the
results of the previous section change with the existence of naked buyers.

We assume that the naked buyer has cash flows correlated with the
output of the sovereign: his endowment is high in state H and low in state
L. He is risk averse and buys sovereign CDS to insure against the low
output state. These assumptions are motivated by the following example:
suppose that an investor has an investment in a Greek firm but CDSs
on the firm itself do not exist or are relatively illiquid. He could instead
purchase CDS on a Greek government bond because during the states of
the world where the government is struggling, the private sector is likely
to be struggling as well.60

If the CDS market is perfectly competitive, as in the previous section,
then the existence of naked buyers does not affect the lender-borrower
contract. Even if the insurer is a monopolist but the naked buyer is
risk neutral, then again the existence of naked buyers does not make
any difference. Thus, we assume that the CDS market is imperfectly
competitive (the CDS seller is a monopolist, to be specific) and that the

60There could be other reasons for naked buying. One reason could be due to heterogenous
beliefs about the likelihood of default: an investor might think that a particular
government or company is more or less likely to default than is suggested by CDS
prices. Another reason could be due to the fact that CDS trading is often done through
dealers who buy and sell CDS without holding the underlying security. For example,
suppose bank X with Greek government bonds wants to decrease its exposure to
default risk and purchases CDS from bank A. Bank A wants to hedge its increased
exposure so it purchases CDS on Greek government bond from another party, Bank B.
Bank B does the same as Bank A and purchases CDS from Bank Y. Bank Y, on the
other hand, is willing to bear the risk of Greek default and hence does not purchase
CDS. In this example, banks X and Y were the end users of CDS while banks A and
B acted as the dealers and would be considered ’naked buyers’ as they purchased CDS
without actually holding the underlying security. Dealers contribute to the liquidity of
CDS market as they eliminate the need for Bank X, in our example, to directly find
the end user, Bank Y, who is willing to take the opposite position of Bank X.
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naked buyer is risk averse. We first show how the problem changes when
the insurer is a monopolist instead of perfectly competitive and this will
be our new “benchmark.” Then we introduce naked buyers and compare
the result with that of the benchmark scenario without the naked buyers.

3.1 Benchmark: A Monopolist Insurer

The lender’s problem is the same as before: he is choosing the loan contract
that maximizes the borrower’s utility and is incentive compatible for the
borrower. But now the monopolist insurer makes the lender take-it-or-
leave-it offer for insurance contract so that the lender takes the price
and the quantity of insurance as given. Let (il,ml) denote the insurance
contract bought by the lender. Then, the lender’s problem is:

U(il,ml) ≡ max
q,B,I

(qB − I) + π(I)(yh −B) + (1− π(I))(1− α(il))yl

s.t. π′(I)(yh −B − (1− α(il))yl) = 1

π(I)B + (1− π(I))α(il)yl = qB +ml

c0 = qB − I ≥ 0

il ≤ pyl

Note that the resulting investment, debt level, and bond price will be
functions of insurance level il and price ml: I(il,ml), B(il,ml), q(il,ml).

The equilibrium insurance level and insurance price will be determined
by the monopolist’s profit maximization problem. The insurer maximizes
his profit subject to the lender’s individual rationality constraint: if the
lender purchases insurance, it has to make him (and hence the borrower)
at least better off than without the insurance. The insurer’s profit is just
the price charged for the insurance as we have previously explained at
the end of section 2.2.

Definition 6. The equilibrium insurance bought, imonl , and premium
charged, mmon

l , when the insurer is a monopolist will be the solution to
Program PBenchmark:

{imonl ,mmon
l } ≡ arg max

il,ml

ml (PBenchmark)

s.t. U(il,ml) ≥ USB

where USB is the borrower’s utility achieved when the lender does not
purchase any insurance, USB = U(il = 0,ml = 0), and is the same as the
second best of the previous section.

From the equilibrium insurance level and insurance price we can derive
the equilibrium investment level Imon ≡ I(imonl ,mmon

l ). Proposition 10
compares the equilibrium investment level when the insurer is a monop-
olist, Imon, with the equilibrium investment level when the insurer is
perfectly competitive, I ins:
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Proposition 10.

ISB ≤ Imon = I ins = IFB if 2plyl ≤ (yh − yl)2 ≤ 4plyl
ISB ≤ Imon = I ins < IFB if (yh − yl)2 > 4plyl

Proof. See Appendix

Thus the equilibrium investment level is exactly the same as when the
insurer was competitive (Imon = I ins). Consequently, Imon ≥ ISB which
means insurance still alleviates the moral hazard problem and increases
the social welfare. The increase in social welfare is exactly the same as
before but, in contrast to the previous section, the increased welfare only
goes to the insurer and none to the borrower. The insurer achieves this
through a higher insurance price while keeping the borrower’s payoff the
same as the second best. Because the lender is now paying a higher price
for the insurance, the lender accounts for this in the bond price he charges
the borrower; thus compared to the last section borrowing cost is higher
when the insurer is a monopolist.

3.2 Naked CDS Buyers

We now introduce naked buyers who are risk averse and have cash flows
that are correlated with that of the sovereign’s: its cash flow is likely
to be high when the sovereign has a high output state realization and
vice versa. The naked buyer’s cash flow is ch with probability π(I) and cl
with probability 1− π(I). Thus, implicit in this assumption is that the
sovereign’s action (i.e. investment) affects the naked buyer’s cash flow:
the probability of the high cash flow state is increasing in the sovereign’s
investment. We assume the naked buyer buys a type of CDS where a
restructuring is considered a credit event. If the naked buyer buys a CDS
where only full default is a credit event, then it will not provide him with
any insurance since a full default never occurs in equilibrium. Let (in,mn)

denote the insurance contract sold to the naked buyer. Thus, when yl is
realized and there is a debt restructuring, the insurance pays in minus
the recovery value α(il)yl to the naked buyer. When yh is realized there is
no credit event and hence no payments from the insurer. The insurance
premium, mn, is paid in both states. The naked buyer’s consumption is:

c =

{
ch −mn if yh
cl + in − α(il)yl −mn if yl

Therefore, the naked buyer has the following expected utility:

UN(in,mn) = π(I)u(ch −mn) + (1− π(I))u(cl + in − α(il)yl −mn)

The insurer now maximizes his profit over two sets of insurance
contracts: one for the lender (il,ml) and one for the naked buyer (in,mn).
Each insurance contract has to be individually rational: the lender is at
least better off with (il,ml) than without it, and the naked buyer is also
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at least better off with insurance (in,mn) than without it. We assume
that the insurer can tell apart between the lender and the naked buyer
such that incentive compatibility constraints (that the naked buyer will
prefer the contract designed for him rather than the one for the lender
and vice versa) are not imposed.61

Definition 7. The equilibrium insurance contracts (i∗l ,m
∗
l ) and (i∗n,m

∗
n)

and hence the equilibrium investment level when there is a naked buyer
who buys insurance are given by the solution to Program Pspec:

max
il,ml,in,mn

ml +mn − (1− π(I))(in − α(il)yl) (Pspec)

s.t. U(il,ml) ≥ USB (IRL)
UN(in,mn) ≥ UN(0, 0) (IRN)

The main result of this section is given next.

Proposition 11. If the parameter condition is such that (A.9) holds,
then in equilibrium there is an over-investment (I∗ ≥ Imon) relative to
the benchmark case (PBenchmark) without the naked buyers and the cost
of borrowing is lower (q∗ ≥ qmon).

Proof. See appendix.

To see the intuition, let us first simplify Program Pspec. The appendix
shows that both of the individual rationality constraints of Program Pspec
bind. Moreover, in − α(il)yl = ch − cl. Denote σc ≡ ch − cl. Then after
some algebra, Program Pspec becomes:

max
il,mn

ml(il) +mn − (1− π(I(il)))σc

s.t. u(ch −mn) = π(I(il))u(ch) + (1− π(I(il)))u(cl) (3.1)

We can further simplify by solving for mn from eq. (3.1) and substituting
it into the objective function. Program Pspec boils down to maximizing
over only one variable which is the lender’s insurance level:

max
il

ml(il) +mn(il)− (1− π(I(il)))σc

61This is because the problem becomes analytically intractable with the lender’s incentive
compatibility constraint. By design the naked buyerÕs insurance contract is incentive
compatible: the naked buyer will prefer the contract designed for him rather than
the one for the lender. In equilibrium there is only a debt restructuring and never
a full default and the naked buyerÕs insurance contract includes restructuring as a
credit event while the lenderÕs does not. We have checked numerically that imposing
lender’s incentive compatibility constraints do not qualitatively change our results.
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Figure 21: Naked Buyers

The objective function of the insurer (i.e. his total profit) is comprised
of profits from insuring both the lender, ml(il), and the naked buyer,
mn(il) − (1 − π(I(il)))σc. Figure 21 shows a stylized representation of
the insurer’s problem: it plots the insurer’s profit as a function of the
insurance sold to the lender (il). In panel (a), the parameter conditions
are such that the profit function from insuring the naked buyer is to
the left of the lender’s meaning that the maximum profit received from
the naked buyer occurs at a lower il than the profit from the lender. To
determine the optimal insurance level for the lender, i∗l , we know from
looking at the graph that i∗l will not be less than the level that maximizes
the profit from insuring the naked buyer (denoted by ia) because if it is,
then by increasing il the insurer can increase the profit he receives both
from the naked buyer and the lender.

Similarly, i∗l cannot be greater than imonl , the level that maximizes the
profit from the lender. Thus, i∗l will be between ia and imonl . In fact, i∗l will
be where the marginal benefit of an extra il (increase in profit received
from the lender) equals the marginal cost (decrease in profit from the
naked buyer). More importantly, i∗l will be less than imonl which was the
equilibrium insurance in the no-naked-buyers case: m′l(imonl ) = 0. Since
investment is an increasing function of il, the equilibrium investment
is lower than without the naked buyer: I∗ < Imon . The equilibrium
investment of the no-naked-buyers case resulted in as much alleviation
of moral hazard as possible (e.g. Imon = IFB if corner solution); thus
when I∗ < Imon the existence of a naked buyer impedes the alleviation of
moral hazard. In panel (b), the parameter conditions are the opposite of
panel (a). By the same arguments, we have that i∗l ≥ imonl and hence an
over-investment.

What is going on is that due to insuring the naked buyer, the insurer
profits from insuring not only the lender but also the naked buyer where
the profit from the latter is affected by the borrower’s investment. Since
the insurer can indirectly control the borrower’s investment through the
insurance contract offered to the lender, (il,ml), the insurer chooses (il,ml)

and hence the borrower’s investment to maximize the sum of the two
profits. Depending on the naked buyer’s preferences and cash flows ch and
cl, it can be more profitable to induce a higher borrower investment as in
panel (b) or a lower borrower investment as in panel (a). For example,
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when the cash flow of the naked buyer in the low state (cl) is very low,
the insurer will have to pay out a larger claim, σc, to the naked buyer in
the low state since the optimal insurance for the naked buyer completely
smoothes his consumption across states. In this case, it is more profitable
to the insurer to induce a higher borrower investment so that the state in
which he has to make a large net transfer occurs with a lower probability.

4 CONCLUS ION

Motivated by the concerns raised over the use of credit default swaps
during the recent European sovereign debt crises, we ask: could credit
default swaps be beneficial for the debtor country, and if so, why? We find
that CDSs can be beneficial for the borrower because they can serve as a
disciplining mechanism in an environment with debtor moral hazard and
debt renegotiation. Specifically, the moral hazard problem arises from the
assumption of private information about the borrower’s investment, and,
as a consequence, results in credit rationing and suboptimal investment
level. In this framework, we find that insurance serves as a commitment
device for a lender to credibly reject low levels of repayment from the
borrower, thereby, increasing the lender’s bargaining power in ex-post
debt renegotiations. The increased bargaining power of the lender, in turn,
alleviates ex-ante borrowing constraints, provides more external capital
to the debtor country, and increases investment and, hence, welfare. Thus,
the existence of an insurance market alleviates the moral hazard problem
by better aligning the lender and borrower’s incentives.

Using this framework, we also analyze the effect of naked buyers who
do not lend directly to the sovereign. If there are naked buyers who
purchase insurance, our analysis shows that the market structure of the
insurer’s market could be important. If the insurer’s market is relatively
competitive, our model suggests that the existence of naked buyers should
have no impact on the debtor country. While if the insurer’s market
is concentrated, the existence of naked buyers could either lead to an
over-investment or impede the alleviation of moral hazard. Nevertheless,
this paper raises some issues in favor of CDS, thus putting a larger onus
on those who call for regulation to come up with serious analyses of the
detrimental aspects of CDSs.
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a APPENDIX : PROOFS

Claim 1. c0 = 0 in Program PSB of section 2.1.62

Proof. The Lagrangian is given by:

L = qB − I + π(I)(yh −B) + (1− π(I))(yl − αyl)
+ µ[π′(I)(yh −B − (1− α)yl)− 1]

+ ψ[π(I)B + (1− π(I))αyl − qB]

+ λ[qB − I]

The first order conditions with respect to I, B, and q are:

−1+π′(I)(yh−B−(1−α)yl)+µπ′′(I)(yh−B−(1−α)yl)+ψπ′(I)(B−αyl)−λ = 0 (FOCI)

q − π(I)− µπ′(I) + ψ[π(I)− q] + λq = 0 (FOCB)

B − ψB + λB = 0 (FOCq)

λ(qB − I) = 0

Suppose λ = 0, then from the FOC with respect to q,

ψ = 1

From the FOC with respect to I, µπ′′(I)/π′(I) = −ψπ′(I)(B − αyl) < 0 which implies
µ > 0 since π′′(I) < 0. However, from the FOC with respect to B, µπ′(I) = 0 but this is a
contradiction since π′(I) > 0 and µ > 0.

We first solve for the optimal investment and the utility achieved without insurance (i.e.
the second best) which will be used to compare to the case with insurance. Then Proposition 8
will follow from Lemmas 3 and 4 shown below. First, solving the second best contract, we get:{

π′(I)(yh −B − (1− αSB)yl) = 1
π(I)B + (1− π(I))αSByl = I

Rearranging it we get, {
B = − 1

π′(I) + yh − (1− αSB)yl

B = I−(1−π(I))αSByl
π(I)

Together they imply,
√
ISB =

yh − yl +
√

(yh − yl)2 + 12αSByl
6

and consequently the borrower’s utility is:

USB =
(yh − yl)2

9
+

(yh − yl)
√

(yh − yl)2 + 12αSByl
9

− αSByl
3

+ yl

Lemma 3. Let i1 be the optimal insurance on the interval i ≤ pyl. If (yh − yl)2 ≥ 4pyl, then
α = p and i1 = pyl. If (yh − yl)2 < 4pyl, then α = (yh−yl)2

4yl
, and i1 = 1

2(yh − yl)2 − pyl

Proof. We first find the optimal investment, the loan, and the utility level for a fixed insurance
i on the interval [0, pyl] and denote them as I1(i), B1(i), and U1(i), respectively. Then we find
i that maximizes U1(i) on the interval [0, pyl], i.e. i1 ≡ arg maxU1(i).

62The same argument holds for Program PSB,ins.
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I1(i), B1(i) for a fixed i on [0, pyl] are given by the solution to:{
π′(I)(yh −B − (1− α(i))yl) = 1
π(I)B + (1− π(I))α(i)yl = I

Rearranging it, {
B = − 1

π′(I) + yh − (1− α(i))yl

B = I−(1−π(I))α(i)yl
π(I)

Together they imply: √
I1(i) =

1

6
(yh − yl +

√
(yh − yl)2 + 12α(i)yl) (A.1)

The utility achieved for a given i is then:

U1(i) =π(I)yh − π(I)B + (1− π(I))(yl − α(i)yl)

=
1

9
(yh − yl)2 +

1

9
(yh − yl)

√
(yh − yl)2 + 12α(i)yl −

1

3
α(i)yl + yl

We now solve for i such that ∂U1
∂i = ∂U1

∂α
∂α
∂i = 0. Since α(i) = 1

2p+ 1
2yl
i, ∂α∂i > 0. Then α such

that ∂U1
∂α = 0 is given by:

α =
(yh − yl)2

4yl

This implies:

α =

{
(yh−yl)2

4yl
if (yh − yl)2 < 4pyl

p if (yh − yl)2 ≥ 4pyl

and consequently,

i1 =

{
1
2(yh − yl)2 − pyl if (yh − yl)2 < 4pyl
pyl if (yh − yl)2 ≥ 4pyl

Lemma 4. Let Ū1 and Ū2 be the utilities achieved with the optimal insurance on the intervals
i ≤ pyl and i ≥ pyl, respectively. Then Ū1 ≥ Ū2.

Proof. Let Ī1, B̄1, and Ū1 be the values achieved with the optimal insurance i1, i.e. Ī1 ≡ I1(i1),
B̄1 ≡ B1(i1), and Ū1 ≡ U1(i1). Likewise, let Ī2, B̄2, and Ū2 be the optimal values on i ≥ pyl.
We show the proof by the following four steps: (i) solve for Ī2, (ii) show B̄1 ≤ B̄2, (iii) show
Ī1 ≥ Ī2, and then as a consequence: (iv) Ū1 ≥ Ū2.

Step (i). Solve for Ī2

We do the same as in Lemma 3 but constraining insurance to be at least greater than pyl. We
first solve for the optimal investment I2(i) for a fixed insurance i for i ≥ pyl:{

π′(I)(yh −B − (1− p)yl) = 1
π(I)B = I

Rearranging it we get, {
B = − 1

π′(I) + yh − (1− p)yl
B = I

π(I)

Together they imply, √
I2(i) =

yh − yl + pyl
3

=
yh − yl

3
+
pyl
3

(A.2)
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Note that investment in this case does not depend on i. Thus, Ī2 is given by (A.2).

Step (ii). Proof of B̄1 ≤ B̄2

B̄2 =
π(I)

I
=
yh − yl + pyl

3

For the interior case, where 1
4(yh − yl)2 ≤ pyl:

B̄1 = −2
√
I1 + yh − (yl − α(i1)yl) = αyl =

1

4
(yh − yl)2 ≤ pyl

B̄2 ≥
(yh − yl)2 + pyl

3
≥ 3pyl

3
= pyl

where the last inequality is due to the moral hazard condition. Thus, B̄1 ≤ B̄2.
For the corner case:

B̄1 = −
(yh − yl) +

√
(yh − yl)2 + 12pyl

3
+ yh − yl + pyl

⇒ B̄1 − B̄2 =
1

3
(yh − yl)−

√
(yh − yl)2 + 12pyl

3
+

2

3
pyl

Suppose B̄1 − B̄2 > 0, then:

(yh − yl) + 2pyl >
√

(yh − yl)2 + 12pyl

Rearranging it,
pyl(yh − yl) + (pyl)

2 > 3pyl (A.3)

But the LHS of (A.3) is:

pyl(yh − yl) + (pyl)
2 ≤ pyl(yh − yl) + pyl = pyl(yh − yl + 1) ≤ 2pyl

which is a contradiction, thus, B̄1 ≤ B̄2.

Step (iii). Proof of Ī1 ≥ Ī2

For the interior solution case:
α(i1)yl =

1

4
(yh − yl)2

√
Ī1 =

√
I1(i1) =

1

6
(yh − yl +

√
4(yh − yl)2) =

yh − yl
2

=
yh − yl

3
+
yh − yl

6

From the moral hazard condition (yh − yl)2 ≥ 2pyl and using the fact that yh − yl ≤ 1:

yh − yl
6

≥ pyl
3

For the corner solution case where (yh − yl)2 ≥ 4pyl:

α(i1)yl = pyl

π′(Ī1)(yh − B̄1 − (1− p)yl) = 1

π′(Ī2)(yh − B̄2 − (1− p)yl) = 1

Thus, due to the concavity of π(I), when B̄1 ≤ B̄2, we have Ī1 ≥ Ī2.

Step (iv). Proof of Ū1 ≥ Ū2
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Using (i), (ii), and (iii) it is straightforward to see the result from:

Ū1 = π(Ī1)(yh − B̄1) + (1− π(Ī1))(1− p)yl = π ¯(I1)(yh − B̄1 − (1− p)yl) + (1− p)yl
Ū2 = π(Ī2)(yh − B̄2) + (1− π(Ī2))(1− p)yl = π(Ī2)(yh − B̄2 − (1− p)yl) + (1− p)yl

Proof of Proposition 9(i) . U ins is the maximum utility achieved when an insurance market
exits. Thus, U ins = Ū1 since we have shown that Ū1 ≥ Ū2. But using the solution of the
second best contract we have: USB = U1(i)|i=0, but U1(i)|i=0 ≤ maxi U1(i) ≡ Ū1 and the
result follows.

Proof of Proposition 9(ii). From the solution to the second best contract: ISB = I1(i = 0).
But I1(i) is increasing in insurance on [0, pyl] from (A.1) in Lemma 1.1.

Proof of Proposition 9(iii).

B(i) = − 1

π′(I(i))
+ yh − (1− α(i))yl = −2

√
I(i) + yh − yl +

1

2
pyl +

1

2
i

= −1

3
(yh − yl +

√
(yh − yl)2 + 6pyl + 6i) + yh − yl +

1

2
pyl +

1

2
i

We find that B(i) is convex since

B′′(i) = 3((yh − yl)2 + 6pyl + 6i)−
3
2 > 0

We will that show i∗ is less than imin where B′(imin) = 0

B′(i) = − 1√
(yh − yl)2 + 6pyl + 6i

+
1

2
= 0

This implies,

imin =
2

3
− yh − yl

6
− pyl

For the interior solution case where i∗ = yh−yl
2 − pyl, (yh − yl)2 ≤ 1. Hence,

yh − yl
2

≤ 2

3
− yh − yl

6

For the corner solution case, since i∗ = pyl ≤ yh−yl
2 − pyl, the same argument as for the interior

solution holds.

Proof of Proposition 9(iv). Since q = I
B , the proof is a corollary of Propositions 9(ii) and

9(iii).

Proof of Proposition 10. First, we show that the lender’s IR constraint binds in Program
PBenchmark:

max
il,ml

ml

s.t. U(il,ml) ≥ USB

where USB = (yh − yl)2/9 + (yh − yl)
√

(yh − yl)2 + 6plyl/9− plyl/6 + yl.
In the lender’s problem, the constraint qB − I ≥ 0 binds as before, so B and I can be

solved as functions of il and ml from:{
π′(I)(yh −B − (1− α(il))yl) = 1
π(I)B + (1− π(I))α(il)yl = I +ml
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To simplify the complexity of the notations, let us define:

σy ≡ yh − yl

u ≡ USB − yl
x(il,ml) ≡

√
I(il,ml)

I and U are given by:

√
I(il,ml) =

σy +
√
σ2
y + 12(1

2plyl + 1
2 il −ml)

6

U(il,ml) = −ml − I(il,ml) +
√
I(il,ml)σy + yl

= −ml − x(il,ml)
2 + x(il,ml)σy + yl

Then Program PBenchmark becomes:

max
il,ml

ml

s.t. −ml − x(il,ml)
2 + x(il,ml)σy + yl ≥ USB

il ≤ plyl

The first order conditions are:

FOCml : 1 + λ1(−1− 2xxm + xmσy) = 0

FOCil : λ1(−2xxil + xilσy) + λ2 = 0

where λ1 and λ2 are the Lagrange multipliers on the first and second constraints respectively.
We see from FOCml that if λ1 = 0, we get a contradiction. Thus, the constraint binds.

Next, we see from FOCil that x =
σy
2 , that is I = IFB . To solve for the optimal insurance,

we first solve for ml as a function of il. It can be shown that:

ml(il) = −3

2

(
u+

1

6
(plyl + il)

)
+
σy
2

√
2u+ plyl + il

Then Program PBenchmark boils down to:

max
il

ml(il)

il ≤ plyl

Taking the first order condition with respect to il, optimal imonl is given by:

1 = σy
1√

plyl + imonl + 2u

From here,
imonl = min{−2u+ σ2

y − plyl, plyl}

To check again that
√
Imon = 1

2σy for the interior case:

m(imonl ) = −3

2

(
1

6
σ2
y +

2

3
u

)
+

1

2
σ2
y =

1

4
σ2
y − u
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1

2
(plyl + imonl )−ml(i

mon
l ) = −u+

1

2
σ2
y −

1

4
σ2
y + u =

1

4
σ2
y

Plug the above in the expression for I:

√
I(imonl ,ml) =

σy
√
σ2
y + 3σ2

y

6
=

1

2
σy

The corner solution case.
U(il,ml) ≥ USB

−Imon + (yh − yl)
√
Imon −ml − yl ≥ −ISB + (yh − yl)

√
ISB − yl

− Imon + (yh − yl)
√
Imon ≥ ml − ISB + (yh − yl)

√
ISB (A.4)

From (A.4) we see that the borrower over-invests,

Imon ≥ ISB

Proof of Proposition 11. To simplify the notation, define: σc ≡ ch − cl, xm ≡ ∂x(il,ml)
∂ml

,

and xi ≡ ∂x(il,ml)
∂il

. The proof consists of four steps.

Step 1: We show that in Program Pspec the individual rationality constraints bind and that
in − α(il)yl = ch − cl.

max
il,ml,in,mn

ml +mn − (1− x(il,ml))(in − (plyl + il)/2

s.t. −ml − x(il,ml)
2 + x(il,ml)σy + yl ≥ USB

x(il,ml)
√
ch −mn + (1− x(il,ml))

√
cl + in − (plyl + il)/2−mn ≥

x(il,ml)u(ch) + (1− x(il,ml))u(cl)

il ≤ plyl

Let λ1, λ2, and λ3 be the Lagrange multipliers of the above three constraints respectively. The
first order conditions are:
FOCml :

1 + xm(in−(plyl + il)/2) + λ1(−1− 2xxm + xmσy) + λ2xm
(√
ch −mn−√

cl + in − (plyl + il)/2−mn − (
√
ch −

√
cl)
)

= 0

FOCil :

xi
(
in − (plyl + il)/2

)
+ (1− x)/2 + λ1(−2xxi + xiσy) + λ2

(
xi
(√
ch −mn

−
√
cl + in − (plyl + il)/2−mn − (

√
ch −

√
cl)
)
− (1− x)/2

2
√
cl + in − (plyl + il)/2−mn

)
+ λ3 = 0

FOCmn :

1− 1

2
λ2

( x√
ch −mn

+
1− x√

cl + in − (plyl + il)/2−mn

)
= 0
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FOCin :

(1− x) = λ2
1− x

2
√
cl + in − (plyl + il)/2−mn

Then from either FOCmn or FOCin , λ2 6= 0. And from both FOCmn and FOCin we have
that: √

ch −mn =
√
cl + in − (plyl + il)/2−mn

This implies: in − (plyl + il)/2 = ch − cl and λ2 = 2
√
ch −mn. Suppose λ1 = 0, then using

λ2 = 2
√
ch −mn, FOCml becomes:

1 + xmσy − 2xm
√
ch −mn(

√
ch −

√
cl) = 0 (A.5)

Rearranging,
√
ch −mn =

xiσc − 1
2

2xi(
√
ch −

√
cl)

(A.6)

And since λ2 6= 0,
√
ch −mn = x

√
ch + (1− x)

√
cl. Plug this in to (A.6):

2(x(
√
ch −

√
cl)

2 +
√
ch(
√
ch −

√
cl)) = σc −

√
σ2
y + 12(

1

2
plyl +

1

2
il −ml) (A.7)

Define a ≡
√
σ2
y + 12(1

2plyl + 1
2 il −ml) then from (A.7),

(
σy
3

+
a

3
)(
√
ch −

√
cl)

2 + 2
√
ch(
√
ch −

√
cl) = σc − a

Rearranging,

a =
σc − 2

√
ch(
√
ch −

√
cl)− σy

3 (
√
ch −

√
cl)

2

1
3(
√
ch −

√
cl)2 + 1

=
−(
√
ch −

√
cl)

2 − σy
3 (
√
ch −

√
cl)

2

1
3(
√
ch −

√
cl)2 + 1

≤ 0

which is a contraction.

Step 2: After the simplifications from step 1, in this step we derive the optimal insurance
contracts (il, ml), (in, mn) and λ1.
They are given by the following five equations:

FOCml : 1 + xmlσc + λ1(−1− 2xxm + xmσy)− 2
√
ch −mnxm(

√
ch −

√
cl) = 0

FOCil : σc + λ1(−2x+ σy)− 2
√
ch −mn(

√
ch −

√
cl) = 0

FOCin & FOCmn : in =
1

2
(py + il) + σc

−ml − x2 + xσy − u = 0
√
ch −mn = x(

√
ch −

√
cl) +

√
cl (A.8)

From FOCml and FOCil :

1 + xmσc +
2
√
ch −mn(

√
ch −

√
cl)− σc

−2x+ σy
(−1) + (2

√
ch −m(

√
ch −

√
cl)− σc)xm

−2
√
ch −mnxm(

√
ch −

√
cl) = 0

Rearranging,
2
√
ch −mn(

√
ch −

√
cl)− σc = −2x+ σy

Then the above together with (A.8) implies

2x(
√
ch −

√
cl)

2 + 2
√
cl(
√
ch −

√
cl)− σc = −2x+ σy
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which rearranged becomes,

x =
1
2(σyσc)−

√
cl(
√
ch −

√
cl)

1 + (
√
ch −

√
cl)2

Define g ≡
1
2

(σyσc)−
√
cl(
√
ch−
√
cl)

1+(
√
ch−
√
cl)2

, then

x(il) = x(il,ml(il)) =
(
σy

√
σ2
y + 6(plyl + il)− 12ml(il))

)
/6

=
(
σy

√
σ2
y + 9(plyl + il) + 18u− 2σy

√
9(plyl + il) + 18u

)
/6

Setting x(il) equal to g, il can be solved as:

il = 4g2 − 2u− plyl

Thus, the optimal insurance contract is given by:

i∗l = min{4g2 − 2u− pyl, plyl}

m∗l =

 −u− g
2 + σyg if il ≤ plyl

−3
2

(
u+ 1

3plyl

)
+

σy
2

√
2u+ 2plyl if il = plyl

i∗n =
1

2
(plyl + i) + σc = min{2g2 − u+ σc, plyl + σc}

m∗n =ch − (x(
√
ch −

√
cl) +

√
cl)

2

Step 3: Over and under-investment

Consider the following four cases:

Case 1: max{σ2
y − 2u− pyl, 4g2 − 2u− pyl} ≤ pyl

Case 2: 4g2 − 2u− pyl ≤ pyl ≤ σ2
y − 2u− pyl

Case 3: σ2
y − 2u− pyl ≤ pyl ≤ 4g2 − 2u− pyl

Case 4: pyl ≤ min{σ2
y − 2u− pyl, 4g2 − 2u− pyl}

Case 1. In this case, both imon and i∗l are given by the respective interior solutions. There is
an over-investment if Imon = 1

2σy ≤ g = I∗, an under-investment if otherwise. For example, if
ch = yh and cl = yl, the condition g ≥ 1

2σy boils down to whether 1 ≥ σy.
Case 2. Here, imon = plyl, i.e. it is a corner solution while i∗l is an interior solution. Then:

Imon =
σy
6

+
1

6

√
σ2
y + 18(plyl + u)− 2σy

√
18(plyl + u) and I∗ = g

Thus, there is an over-investment if

g ≥ σy
6

+
1

6

√
σ2
y + 18(plyl + u)− 2σy

√
18(plyl + u) (A.9)

and an under-investment if otherwise.
Case 3. In this case, σy ≤ 4g2, thus imon ≤ i∗. Also ml(il) attains maximum at imon(il) and is
concave, thus ml(i

∗) ≤ ml(i
mon). Hence, Imon ≤ I∗

Case 4. imon = i∗ = plyl, thus again ml(i
mon) = ml(i

∗), hence Imon = I∗.

Step 4: Cost of borrowing
Cases 1 and 3. Since imonl = σ2

y − 2u− plyl,

π′(Imon)(yh −Bmon − (1− α(imon))yl) = 1
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As π′(Imon)(yh − yl) = 1, we get,

Bmon = α(imon)yl

Using the solution to the bargaining outcome,

Bmon = α(imon)yl =
1

2
pyl +

1

2
imon

Compare this to the bond face level without naked CDS buyers:

B∗ = −2
√
I∗ + yh − yl +

1

2
pyl +

1

2
i∗

The difference is given by:

Bmon −B∗ =
1

2
(imon − i∗) + 2

√
I − (yh − yl)

Thus, Bmon ≥ B∗ if an over-investment and since q = I
B , the cost of borrowing is lower.

Case 2.
Bmon = −2

√
Imon + (yh − yl) +

1

2
plyl +

1

2
imon

Again compare this to the bond face level without naked CDS buyers:

Bmon −B∗ = −2(
√
Imon −

√
I∗) +

1

2
(plyl − i∗)

If an over-investment: −(
√
Imon −

√
I∗) ≥ 0 which implies Bmon −B∗ ≥ 0. Thus, again cost

of borrowing is lower. If an under-investment: it is analytically intractable in this case to show
the result about cost of borrowing, so we resort to checking this computationally.
Case 4:
Imon = I∗, thus qmon = q∗ and the cost of borrowing is the same.

b APPENDIX : EXTENS IONS

b.1 The need for both bargaining and private information

Bargaining but no private information

The equilibrium under full information, bargaining setting without the insurance market is
already given by Program PFB. The equilibrium when there exists an insurance maximizes
the borrower’s utility subject to the zero-profit conditions of the lender and the insurer:

max
q,B,I,i,ω

(qB − I) + π(I)(yh −B) + (1− π(I))cB (PFB,ins)

s.t. π(I)B + (1− π(I))cL = qB +m

c0 = qB − I ≥ 0

where m, cB, and cL in each of the three intervals of i are:

m =


(1− π(I))0 = 0
(1− π(I))(1− ω)i
(1− π(I))i

cB =


(1− α(i))yl
(1− p)yl
(1− p)yl

cL =


α(i)yl if i < pyl
ωα(i)yl + (1− ω)i if i = pyl
i if i > pyl

and α(i) is given by (2.5).
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Solving this problem, the optimal investment is given by:

π′(I)(yh − yl) = 1 (B.1)

which is exactly the same as when the insurance market did not exist. Moreover, the utility of
the borrower, given by U = −I + π(I)yh + (1− π(I))yl, does not depend on insurance and is
also exactly as it was before without the insurance. Thus, the lender’s credit insurance activity
does not matter.

The intuition. First, the lender will not buy insurance that is more than pyl. Since the
borrower will at most pay pyl, when i > pyl, the lender will prefer full default so that he
can get i > pyl from the insurer. However, this increases the cost of insurance and, due to
the lender’s break-even condition, the lender passes down to the borrower the insurance cost
through higher borrowing cost.63

By the same argument, ω = 1. Thus, we can narrow down i to i ≤ pyl in which case m = 0,
cL = α(i)yl, and cB = (1− α(i))yl. Substituting them in, Program PFB,ins boils down to:

max
q,B,I,i

(qB − I) + π(I)(yh −B) + (1− π(I))(1− α(i))yl

s.t. π(I)B + (1− π(I))α(i)yl = qB

c0 = qB − I ≥ 0

From here, it is straight forward to see that investment is given by (B.1). However, B and q
will be functions of i:64

B(i) =
1

π(I)

(
I − (1− π(I))α(i)yl

)
q =

I

B(i)

q =
I

B(i)

For i = 0, we are back to Program PFB, while for 0 < i ≤ pyl all insurance does is make
the borrower pay more in the low-output state. Paying more in the low-output state lowers
the borrowing cost, or, equivalently, increases the bond price. So without borrowing as much
(i.e. B is lower) he is able to raise the same funds, qB, such that: qB = IFB = IFB

∗ . But
the borrower’s investment and utility does not change with i and, hence, there is no unique
optimal insurance level as long as i ≤ pyl. In the end, insurance does not matter because we
still do not have a friction that constrains borrowing and results in a suboptimal investment.

Private information but no bargaining

We now shut off bargaining and show that the CDS market does not make a difference in a
private information but full default setting. The optimal contract without the existence of an
insurance market is given by the solution to:

max
q,B,I

qB − I + π(I)(yh −B) + (1− π(I))yl(1− p)

s.t. π′(I)(yh −B − yl(1− p)) = 1

π(I)B + (1− π(I))0 = qB (B.2)
c0 = qB − I ≥ 0

63The pyl that the borrower gets penalized by is a deadweight cost that no one benefits from; it is better
if it instead gets used to repay back the loan.

64We can again safely assume qB − I = 0 as before.
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Now with an insurance market:

max
q,B,I,i

qB − I + π(I)(yh −B) + (1− π(I))yl(1− p)

s.t. π′(I)(yh −B − yl(1− p)) = 1

π(I)B + (1− π(I))i = qB +m (B.3)
m = (1− π(I))i (B.4)
c0 = qB − I ≥ 0

Note that (B.3) and (B.4) together gives you exactly (B.2). Thus, the two problems are the
same and the lender’s insurance activity does not affect the borrower’s behavior. This is because
without bargaining, the lender’s credibility to penalize is no longer in question: the borrower
automatically gets penalized when yl is realized.

b.2 Default and Bargaining in Both States {H, L}

In this section, we relax the assumption that the borrower and the lender do not bargain when
yh is realized. We first characterize the first and the second best environment without CDS
and the next subsection analyzes how CDS affects the investment level. Figure ?? illustrates
the change.

���������

yl

Y1

bargaining
succeeds

�
�

�
��	

(1− αl)yl
αlyl

bargaining
fails

@
@
@
@@
(1− pl)yl
0

Borrower:
Lender:

XXXXXXXXX

yh

bargaining
succeeds

bargaining
fails

�
�
�

��	
yh − αhB

αhB

@
@
@
@@

(1− ph)yh
0

Figure 22: Bargaining in both states

The bargaining problem in the low state is the same as before. The bargaining problem in
the high state is given by: max

αh
∆B∆L. Consider the product of the bargaining surpluses:

∆B∆L =
(
yh − αhB − (1− ph)yh

)
αhB = (−αhB + phyh)αhB = −B2α2

h + phyhBαh

Maximizing this with respect to αh, we get αh = phyh
2B , which implies (B.5).

αhB =
phyh

2
(B.5)

The first best environment is characterized as:

max
q,B,I

qB − I + π(I)(yh − αhB) + (1− π(I))(1− αl)yl

s.t. π(I)αhB + (1− π(I))αlyl = qB

qB − I ≥ 0
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Similarly, the second best is the following:

max
q,B,I

qB − I + π(I)(yh − αhB) + (1− π(I))(1− αl)yl

s.t. π′(I)(yh − αhB − (1− αl)yl) = 1

π(I)αhB + (1− π(I))αlyl = qB

qB − I ≥ 0

Substituting in the solutions to the bargaining problem in to the second best environment:

max
q,B,I

qB − I + π(I)(yh −
1

2
phyh) + (1− π(I))(yl −

1

2
plyl)

s.t. π′(I)
(
yh −

1

2
phyh − (yl −

1

2
plyl)

)
= 1 (B.6)

π(I)αhB + (1− π(I))αlyl = qB

qB − I ≥ 0

With CDS

We now allow the lender to buy CDS insurance. Figure ?? illustrates the change in the ex-post
bargaining problem.
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Figure 23: Bargaining in both states with insured lender

The product of the bargaining surpluses in the high state changes to:

∆B∆L =
(
yh − αhB − (1− ph)yh

)(
αhB − ih

)
= (−αhB + phyh)(αhB − ih)

= −B2α2
h + (phyhB + ihB)αh − phyhi

Maximizing this with respect to αh, we get αh(ih) = phyh+ih
2B which implies (B.7).

αh(ih)B =
phyh

2
+
ih
2

(B.7)

104



The second best equilibrium with CDS is characterized by the following problem.

max
q,B,I,ih,il

qB − I + π(I)(yh −
1

2
(phyh + ih)) + (1− π(I))(yl −

1

2
(plyl + il))

s.t. π′(I)(yh − αhB − (1− αl)yl) = 1

π(I)αhB + (1− π(I))αlyl = qB

qB − I ≥ 0

il ≤ plyl
ih ≤ phyh

Substituting in the solutions to the bargaining problem in both states:

max
q,B,I,ih,il

qB − I + π(I)(yh −
1

2
(phyh + ih)) + (1− π(I))(yl −

1

2
(plyl + il))

s.t. π′(I)
(
yh −

1

2
(phyh + ih)− (yl −

1

2
(plyl + il)

)
= 1 (B.8)

π(I)
(1

2
phyh +

1

2
ih
)

+ (1− π(I))
(1

2
plyl +

1

2
il
)

= qB (B.9)

qB − I ≥ 0

il ≤ plyl
ih ≤ phyh

Note that if ih = il, comparing (B.8) with the second best equivalent without CDS (B.6),
the borrower will choose the same investment level as in the second best; in other words, the
lender’s insurance activity will not matter. This is because the borrower’s consumption in both
states goes down by exactly the same amount (1

2 ih or 1
2 il). Thus, the optimal il and ih will

have to be different to induce the borrower to invest an amount other than the second best.
We now solve for the optimal insurance level. Comparing (B.8) with the second best

equivalent (B.6) rewritten here:

π′(I)
(
yh − yl −

1

2
(phyh − plyl)−

1

2
(ih − il)

)
= 1

π′(I)
(
yh − yl −

1

2
(phyh − plyl)

)
= 1

we see that due to the concavity of π(I), CDS increases investment and thereby alleviates
moral hazard only if −1

2(ih − il) ≥ 0 or il > ih. In fact the bigger the difference il − ih is, the
bigger the investment. I is increasing in il and we can set ih = 0.

Substituting (B.9) into the objective function and canceling terms, we get:

max
I,il
− I + π(I)yh + (1− π(I))(1− yl) (B.10)

s.t. π′(I)
(
yh −

1

2
phyh − (yl −

1

2
(plyl + il)

)
= 1 (B.11)

il ≤ plyl

Since we have assumed that π(I) =
√
I, (B.11) implies:

√
I =

1

2

(
yh − yl −

1

2
(phyh − plyl) +

1

2
il

)
Substituting the above equation into the objective function (B.10) and maximizing with respect
to il we get:

il = min
{
phyh − plyl, plyl

}
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Thus, the borrower’s utility is increasing in il up until il = phyh − plyl. When il = phyh − plyl,
the moral hazard is completely alleviated since I(il) = IFB. However, we have the constraint
il ≤ plyl and if the parameters are such that plyl ≤ phyh − plyl, then the constraint will bind
and the optimal il equals plyl and UFB ≥ U ins ≥ USB. Nevertheless, U ins ≥ USB and the
main result of the paper that the lender’s insurance activity has a disciplining effect holds in
this slightly more general setting. An issue here is the fact that q and B are not identified
separately because B is not a control variable anymore. Because of bargaining in both states,
how much the borrower ends up repaying is fixed: 1

2phyh in the high state and 1
2plyl in the low

state regardless of the investment level or how much was borrowed initially qB.

b.3 Uncompetitive Lender

We have assumed in the benchmark model that lenders are competitive. In this section we
relax this assumption and instead consider a lender who has a bargaining power and extracts
a positive expected surplus from the loan contract. First, consider the ex-post renegotiation
where the bargaining power of the lender and the borrower are β and 1− β, respectively:

max
α

(
(1− α)yl − (1− p)yl

)β(
αy

)1−β

Solving for α,

β(−αy + py)β−1(αy)β(−y) + (1− β)(−αy + py)β(αy)−βy = 0

This boils down to
α = (1− β)p

We now use this ex-post renegotiation outcome to solve for the first-best investment level.
Thus, consider the first-best environment without private information:

max
q,B,I,i

UβL1−β (B.12)

st: qB − I ≥ 0 (B.13)
L ≥ 0 (B.14)
U ≥ 0 (B.15)

where
U = qB − I + π(I)(yh −B) + (1− π(I))(1− α)yl − yl

L = π(I)B + (1− π(I))αyl − qB

Throughout I assume that the parameter conditions are such that U ≥ 0 and L ≥ 0 are
satisfied. Also, let qB = I:

max
B,I

(
π(I)(yh −B) + (1− π(I))(1− α(i))yl − yl

)β(
π(I)B + (1− π(I))α(i)yl − I

)1−β

(B.16)

Define x ≡ π(I), and with the change of variables, we get:

max
B,x

(
x(yh −B) + (1− x)(1− α)yl − yl

)β(
xB + (1− x)αyl − x2

)1−β
(B.17)
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The first order conditions with respect to B:

βUβ−1L1−β(−x) + (1− β)UβL−βx = 0 (B.18)

This implies: βU−1L = (1− β). The first order condition with respect x is:

FOCx : βUβ−1L1−β(yh −B − (1− α)yl) + (1− β)UβL−β(B − αyl − 2x) = 0 (B.19)

These two FOCs combine to get: x = π(I) = σ
2

We now consider the environment with private insurance and show that the borrower’s
investment is lower than the first-best.

max
B,I

(
π(I)(yh −B) + (1− π(I))(1− α)yl − yl

)β(
π(I)B + (1− π(I))αyl − I

)1−β
(B.20)

st: π′(I)(yH −B − (1− α)yL) = 1 (B.21)

With the change of variables,

max
B,x

(
x(yh −B) + (1− x)(1− α)yl − yl

)β(
xB + (1− x)αyl − x2

)1−β
(B.22)

st: B = −2x+ σ + αyl (B.23)

Substituting in the expression for B into the borrower utility,

U = x(2x+ (1− α)yl) + (1− α)y − x(1− α)yl − yl = 2x2 − αyl

Using the constrain in the lender utility,

L = −2x2 + σx+ αylx+ (1− x)αyl − x2 = −3x2 + σx+ αyl (B.24)

= −3

(
x− σ +

√
σ2 + 12αyl

6

)(
x− σ −

√
σ2 + 12αyl

6

)
(B.25)

We show by contradiction that the borrower’s investment is lower than the first-best.
Suppose x = π(I) > 1

2σ. The moral hazard condition boils down to:

σ2 ≥ 4αyl ⇒ 12αyl ≤ 3σ2 ⇒ σ +
√
σ2 + 12αyl

6
≤ 1

2
σ

Then L < 0 but this is a contradiction. Thus, ISB ≤ IFB.
Thus far we did not have CDS. Now let us allow lenders to buy insurance,

max
q,B,I,i

UβL1−β (B.26)

π′(I)(yH −B − (1− α(i))yL) = 1 (B.27)
qB − I ≥ 0 (B.28)
i ≤ py (B.29)
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Again we assume qB − I ≥ 0 binds,

max
B,I,i

(
π(I)(yh −B) + (1− π(I))(1− α(i))yl

)β(
π(I)B + (1− π(I))α(i)yl − I

)1−β

(B.30)

π′(I)(yH −B − (1− α(i))yL) = 1 (B.31)
i ≤ py (B.32)

With the change of variables,

max
B,x,i

(
x(yh −B) + (1− x)(1− α(i))yl

)β(
xB + (1− x)α(i)yl − I

)1−β
(B.33)

st: B = −2x+ σ + αyl (B.34)
i ≤ py (B.35)

Substituting in the objective function the expression for B:

max
x,i

(
2x2 − α(i)yl

)β(
− 3x2 + σx+ α(i)yl

)1−β
(B.36)

st: i ≤ py (B.37)

We can analogously derive the renegotiation outcome,

α(i)yl = βi+ (1− β)pyl

Thus, the first order conditions are,

FOCx : βUβ−1L1−β4x+ (1− β)UβL−β(−6x+ σ) = 0

FOCi : βUβ−1L1−β(−β) + (1− β)UβL−β(β) = 0

They imply,

βU−1L4x = (1− β)(6x− σ)

βU−1L = (1− β)

Combining these two, we get:

x = π(I) =
1

2
σ

Thus, the borrower’s investment level in the second best environment with CDS is the same as
the first best environment. This shows that the main result of the paper holds even when the
lender has a bargaining power.
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ESSAY 3 : CURRENCY RISK AND PRIC ING
KERNEL VOLATIL ITY

Joint with Federico Gavazzoni and Chris Telmer

Abstract

A basic tenet of lognormal asset pricing models is that a risky
currency is associated with low pricing kernel volatility. Empirical
evidence indicates that a risky currency is associated with a rela-
tively high interest rate. Taken together, these two statements asso-
ciate high-interest-rate currencies with low pricing kernel volatility.
We document evidence suggesting that the opposite is true, thus
contradicting a fundamental empirical restriction of lognormal
models. Our identification strategy revolves around using interest
rate volatility differentials to make inferences about pricing ker-
nel volatility differentials. In most lognormal models the two are
monotonic functions of one another. A risky currency, therefore,
is one with relatively low pricing kernel volatility and relatively
low interest rate volatility. In the data, however, we see the op-
posite. High interest rates are associated with high interest rate
volatility. This indicates that lognormal models of currency risk are
inadequate and that future work should emphasize distributions in
which higher moments play an important role. Our results apply
to a fairly broad class of models, including Gaussian affine term
structure models and many recent consumption-based models.

1 INTRODUCTION

Currency risk is tricky. Unlike many financial securities, volatility and risk
can be very different things. Consider the following anecdote. Producers
of apples and bananas face supply shocks. The supply shocks become
manifest in the relative price of fruit, the cost of one banana in units of
apples. The producers, therefore, face price risk ... a positive supply shock
to apples decreases the relative price of apples. Now consider volatility.
Suppose that the apple shocks are volatile relative to the banana shocks.
Apple producers notice two things: (i) the relative price of bananas isn’t
doing them any favors; it goes down whenever they get a bad shock, (ii)
the supply shocks that they face are dominating the variability in the
relative price. These apple producers therefore view the price of bananas
as being risky. If you offer them a derivative security that has its value tied
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to the price of bananas, they will demand a risk premium in order to buy
it. Banana producers, of course, face a reciprocal sort of situation. They
notice that the relative price of bananas goes in their favor when they get
a bad shock. A banana derivative security represents a hedge for them and
they will pay an insurance premium in order to buy it. However, because
the supply shocks that they face have relatively small volatility, this
insurance premium will be small relative to the risk premium demanded
by the apple producers. The equilibrium price will tend to — remember,
this is an anecdote — feature a positive risk premium for bananas. Herein
lies the tricky business. The high volatility commodity, apples, enjoys
relatively low relative price risk.

If you replace apples and bananas with the pricing kernel for dollars
and pounds, and the relative price of bananas with the price of one pound
in units of U.S. dollars, you now understand what currency risk is in any
lognormal model. The currency with the relatively volatile pricing kernel
will pay a relatively low risk premium (in fact, negative). Many recent
statistical models of the term structure of interest rates fall into this
category. If you assume that financial markets are complete you can go
further and replace “currency” with “country.” In any complete-markets,
lognormal equilibrium model, the country with the relatively volatile
nominal marginal rate of substitution will have a currency that pays a
negative risk premium. Many recent consumption-based asset pricing
models fall into this category. High volatility in marginal utility growth
coincides with low currency risk.

Algebraically, currency risk in lognormal models takes the form

Et st+1 − ft =
1

2

(
Var t logmt+1 − Var t logm∗t+1

)
, (1.1)

where st and ft are the log spot and forward exchange rates (price of
pounds in units of dollars), and mt and m∗t are respectively, the dollar
and pound pricing kernels (derivation provided below). The left-hand-side
is the (continuously compounded) expected excess return on pounds. We
call it the currency risk premium on the pound. The right-hand-side is the
pricing kernel conditional volatility differential. Eq. (1.1) says that the
pound will pay a positive risk premium if its pricing kernel has relatively
low volatility. Empirically, the LHS seems to be increasing in the pound
less dollar interest rate differential. This is the “carry trade evidence.” The
question we ask is whether or not lognormal models are consistent with
the carry trade evidence. This amounts to evaluating the restriction that
high interest rate currencies have low pricing kernel volatility.

The pricing kernel, of course, is not observable. So neither is the
volatility difference on the RHS of Eq. (1.1). Many previous papers have
attempted to relate the LHS to the volatility of the currency depreciation
rate, st+1 − st. As we’ll see below, this amounts to relating the risk
premium to the volatility of the difference,

Var t
(
st+1 − st

)
= Var t

(
logmt+1 − logm∗t+1

)
,
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not the difference in the volatility from Eq. (1.1). So, strictly speaking,
it’s the wrong measure of volatility. Other papers have have implicitly
evaluated Eq. (1.1) by formulating a specific model of mt and m∗t and
asking whether or not the model can account for the carry trade evidence.
If it can then, if the model is in the lognormal class that we consider
(many have been), Eq. (1.1) holds by construction.

Our approach is to try to say something that is not so strongly tied to
one particular model. We do so by associating the RHS with the interest
rate volatility differential in the following way. We outline conditions under
which

Var t(mt+1) > Var t(m∗t+1)⇔ Var t(it+1) > Var t(i∗t+1) (1.2)

If this condition is true, then we can say that currency risk is associated
with a negative interest-rate volatility differential. A risky currency (in a
lognormal model) is one with relatively low interest rate volatility. This
is the restriction that we actually evaluate.

Figure 24 illustrates our question graphically. It is an adaptation
of Table 1 from Lustig, Roussanov, and Verdelhan (2011) (LRV). We
construct five portfolios of currencies by constructing a monthly sort by
the level of interest rates. Figure 24 reports the annualized average excess
return, vis-a-vis the U.S. dollar, on each of the currency portfolios. We
see what LRV, Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011)
and many others have documented; the ‘carry-trade’ of funding a long-
position in a high-interest-rate currency by borrowing in a low-interest-rate
currency seems to pay a positive excess expected return. Our question,
then, is this. If Figure 1 also plots, for each portfolio, the average interest
rate volatility of all the currencies in the portfolio, then, according to Eq.
(1.2), the line should be decreasing. Is it?

Figure 24: Currency Risk and Return

The solid black line (left axis) reports the sample mean of the excess return on 5
interest-rate sorted currency portfolios, similar to that reported in Lustig, Roussanov,
and Verdelhan (2011). The red dashed line (right axis) is, qualitatively, what lognormal
pricing kernel models predict that pricing kernel and interest rates volatility should
look like.
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We find evidence suggesting that it is not. High expected return seems
to be associated with high pricing kernel volatility. This implies one of
two things. Either there is something wrong with method of inferring
what the pricing kernel volatility differential in Eq. (1.1) looks like, or
there’s something wrong with conditional lognormality. We argue that
the latter is most likely. We conclude that models of currency risk should
incorporate departures from lognormality. Our results are supportive of
recent work by Brunnermeier, Nagel, and Pedersen (2008) and others that
emphasize conditional skewness and leptokurtosis.

It is important to understand that, while Eqns. (1.1) and (1.2) hold for
any lognormal model, the particular pricing kernels for which they do must
be carefully defined. Section 2 therefore begins with some background
and a precise statement of which models our results restrict, and which
they do not. Section 3 develops the overall affine Gaussian structure and
articulates our main results using two theorems. Section 4 describes our
data, Section 5 our results, and Section 6 concludes.

2 NOTATION AND BASIC APPROACH

We begin with a simple derivation of Eq. (1.1). The pricing kernel for claims
denominated in U.S. dollars (USD) is mt+1, so that Etmt+1Rt+1 = 1 for
all (gross) USD-denominated asset returns, Rt+1, realized between dates t
and t+ 1. The analogous pricing kernel for claims denominated in foreign
currency (say, British pounds, GBP) is m∗t+1 and GBP-denominated
returns are R∗t+1. Both mt and m∗t exist by virtue of no-arbitrage, but are
only unique if markets are complete. For any of these pricing kernels, one
period, continuously-compounded USD and GBP interest rates, it and i∗t ,
satisfy

it = − logEtmt+1 (2.1)
i∗t = − logEtm

∗
t+1. (2.2)

The date-t nominal spot exchange rate, USD per GBP, is St. Since
the USD pricing kernel must also price USD-denominated returns on
GBP-denominated assets, no-arbitrage implies that, for any mt+1,

Et
(
mt+1

St+1

St
R∗t+1

)
= 1. (2.3)

Consider one particular USD pricing kernel, mt+1, along with the observ-
able process St+1/St. Define

m∗t+1 = mt+1
St+1

St
(2.4)

and note that, by construction, Etm∗t+1R
∗
t+1 = 1, so that this particular

m∗t+1 is a legitimate pricing kernel GBP-denominated claims. If markets
are incomplete, then there are other legitimate GBP pricing kernels. This
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is discussed in the next section. Express Eq. (2.4) in terms of natural
logarithms:

st+1 − st = logm∗t+1 − logmt+1, (2.5)

where st ≡ logSt, so that the LHS is the (continuously-compounded)
depreciation rate of the USD. The one-period forward exchange rate and
its logarithm are Ft and ft. Subtract Eq. (2.2) from Eq. (2.1) and invoke
covered interest parity, ft − st = it − i∗t :

ft − st = − logEtmt+1 − (− logEtm
∗
t+1). (2.6)

Take the conditional mean of Eq. (2.5), and subtract from it Eq. (2.6):

Et st+1 − ft =
(

logEtmt+1 − Et logmt+1

)
−
(

logEtm
∗
t+1 − Et logm∗t+1

)
=

1

2

(
Var t logmt+1 − Var t logm∗t+1

)
, (2.7)

where the last equation holds if we assume that mt and m∗t are jointly,
conditionally lognormal.65 It is the same as Eq. (1.1) from the introduction.
The LHS is the risk premium on GBP : the (continuously-compounded)
expected excess return on borrowing USD and investing the proceeds in
GBP. The RHS says that, in this class of models, a necessary condition for
GBP to be risky is that its pricing kernel exhibit relatively low volatility.

Note that a great deal of empirical work — from older papers such as
Domowitz and Hakkio (1985) to newer papers such as Chernov, Graveline,
and Zviadadze (2012) — has focused on the conditional variance of
the exchange rate, Var t(st+1 − st). Similarly, Brunnermeier, Nagel, and
Pedersen (2008) focus on Skewt(st+1 − st). While these moments are
certainly interesting in-and-of-themselves, the combination of Eqns. (2.5)
and (2.7) indicate that they emphasize moments of the difference, whereas
currency risk is more directly about the difference of the moments. Sorting
this out (in a new way) is the focal point of our paper.

2.1 Incomplete Markets

Eq. (2.7) holds by no-arbitrage for given processes mt and St+1/St, and
for the particular no-arbitrage pricing kernel, m∗t , defined by Eq. (2.4).
If markets are complete then these things are all unique and any two
will tell you the third. If not, then there is a multiplicity that one must
consider.

Our approach is to fix models for mt and m∗t and then use Eq. (2.4) to
compute the depreciation rate, St+1/St = m∗t+1/mt+1. The multiplicity can
be represented by a random variable ηt+1 such that exp(ηt+1)m∗t+1/mt+1

65Backus, Foresi, and Telmer (2001), page 286, Eq. (12), shows the more general
expression, involving higher-order moments. This will play a key role later, in Section
#.
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is also a legitimate depreciation rate. Complete markets imposes that
ηt+1 = 0. No arbitrage imposes that

Et
(
mt+1Rt+1

)
= Et

(
mt+1e

−ηt+1Rt+1

)
= 1

Et
(
m∗t+1R

∗
t+1

)
= Et

(
m∗t+1e

ηt+1R∗t+1

)
= 1

for all asset returns, Rt+1 and R∗t+1, denominated in USD or GBP, respec-
tively. These conditions restrict the admissible ηt processes in important
ways but still leave open a potentially large set of admissible exchange rate
processes that are consistent with no-arbitrage and the fixed processes mt

and m∗t . However, if we restrict attention to affine term structure models,
then all elements of this set are observationally equivalent and we can
set ηt = 0 without loss of generality (Backus, Foresi, and Telmer (2001),
Proposition 1 and subsequent discussion on page 289). In this sense, our
results apply to any Gaussian affine term structure model of currency risk
(e.g., Backus, Foresi, and Telmer (2001), Bakshi and Chen (1997), Bansal
(1997), Brenna and Xia (2006), Frachot (1996), Lustig, Roussanov, and
Verdelhan (2011), and Saá-Requejo (1994)).

What exactly does this mean? The presumption of a two-currency
affine term structure model is that all predictable and unpredictable
movements in log bond prices and the depreciation rate are spanned
by the model’s state variables and innovations, respectively. Hence, the
residual ηt obeys the same affine structure as mt and m∗t . Hence, we can
redefine m∗t , say, to encapsulate the residual, use the result in combination
with the original mt and Eq. (2.4) to define St+1/St, and the mapping
between identifiable parameters and moments of the data will be identical
to the case of ηt = 0. Basically, if we restrict ourselves to Gaussian affine
models in which parameter values are identified only via moments of
bond prices and exchange rates, then, conditional on the specifications for
mt and m∗t , the distinction between complete and incomplete markets is
moot. From a macroeconomic perspective, this might seem like throwing
out the baby with the bathwater.66 From the perspective of the large
literature on statistical term structure models, perhaps not.

2.2 Changing Units Versus Changing Countries

When can we associate Eq. (1.1) with countries, not just currencies?
Only when markets are complete. Only then does Eq. (??) describe an
equilibrium condition in which marginal rates of substitution of domestic
and foreign representative agents are equated, pointwise, via the change
of units process, St+1/St. This is, of course, a restrictive assumption. But
it is employed by a large majority of recent consumption-based models
that employ either the Campbell and Cochrane (1999) or the Bansal
and Yaron (2004) machinery to a multi-country setting. Recent examples
include Alvarez, Atkeson, and Kehoe (2009), Bansal and Shaliastovich

66The bathwater is the difficult job of identifying ηt using, say, consumption data. The
baby is what we might learn by doing so.
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(2013), Colacito and Croce (2011), Stathopoulos (2012) and Verdelhan
(2010). These are models in which Eq. (2.4) describes a unique relation-
ship between marginal rates of substitution and exchange rates, and in
which the pricing kernels are jointly lognormal (thanks in some cases to
linearizations such as that from Hansen, Heaton, and Li (2008)). In most
cases these models work in the sense that calibrated versions of them are
consistent with the standard set of carry-trade facts. This means that,
necessarily, Eq. (1.1) applies and that high risk is associated with low
pricing kernel volatility. We will show that, for this class of models, data
on interest rate volatility differentials calls this relationship into question
and thus poses a challenge to these models.

2.3 A Very Rough Approximation

Eq. (2.7) tells us that the currency risk premium is the difference between
two unobservable variables. Many papers, of course, have written down
an explicit (lognormal) model of mt and m∗t under which this difference
is a function of observables. A successful model has been one with an
interest rate differential, it − i∗t , that is negatively correlated with the
volatility difference, Var t logmt+1 − Var t logm∗t+1. Our goal, instead, is
to derive an empirical measure of this variance difference that applies
more generally than to just one, particular (lognormal) model. We begin
with a very informal derivation, intended to get at the main idea. In the
next section we provide a tight, formalized analysis showing that what
we do here applies much more generally.

With lognormality, Eq. (2.1) implies that the period-ahead domestic
interest rate is

it+1 = −Et+1 logmt+2 −
1

2
Var t+1 logmt+2. (2.8)

Suppose that variation in conditional mean is relatively small. This is
not as unreasonable as it might sound, at least for our question. Backus,
Foresi, and Telmer (2001) show that Fama (1984) necessary conditions for
resolving the forward premium anomaly translate into conditions stating
that ‘variance in pricing kernel variance must be larger than variance in
pricing kernel means.’ Papers by and show that something similar is
implied by the Campbell-Shiller, Fama-Bliss term structure regressions.
Thus ignoring the first term in Eq. (2.8) we have

Var t it+1 ≈
1

4
Var tVar t+1 logmt+2.

Suppose that the conditional variance of the conditional variance isn’t
too different from the the conditional variance. For some processes, this
is sensible. For example, for the canonical square-root process, xt+1 =

µ+ ϕxt + σx
1/2
t εt+1, we have that Var tVar t+1xt+2 = σ2Var txt+1 = σ4xt.

For other processes — e.g., an autoregression with stochastic volatility,
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but where the volatility is homoskedastic — it makes no sense. Ignoring
the latter,

Var t it+1 ≈
1

4
Var t logmt+1. (2.9)

This is the main idea. Perhaps we can learn something about pricing
kernel volatility by simply estimating interest rate volatility?

Suppose that this is valid. Substitute it into Eq. (2.7):

Et st+1 − ft ≈ 2
(
Var t it+1 − Var t i∗t+1

)
.

In most lognormal models the LHS is a linear function of the interest rate
differential:

a+ b
(
it − i∗t

)
≈ 2
(
Var t it+1 − Var t i∗t+1

)
. (2.10)

There is overwhelming empirical evidence indicating that b < 0. This is
the ‘Uncovered Interest Rate Parity (UIP)’ regression evidence first found
by Bilson (1981), Fama (1984) and Tryon (1979). It is the basis for the
foreign currency ‘carry trade.’ Assume that a = 0.67 Eq. (2.10) implies
that, according to lognormal models, (i) the interest rate differential,
it− i∗t and the volatility differential, Var t it+1−Var t i∗t+1, should have the
opposite sign, and (ii) they should be negatively correlated.

Figure 26 shows results that are representative of our main findings. It
shows that, for a classic ‘carry trade’ pair of currencies — USD and the
Australian dollar (AUD) — restrictions (i) and (ii) seem to be strongly
at odds with the data. Much more often than not, the LHS and RHS of
Eq. (2.10) have the same sign. Moreover, they are positively correlated at
0.52.

Interest rate differentials and interest rate volatility differentials appear
to be positively related. The high-interest rate currency — the carry-trade
recipient currency that pays a positive risk premium — also appears to
be the high interest-rate-volatility currency. This isn’t the case for every
currency pair and time period but, as we exhaustively demonstrate in
Section 5, it is much more the rule than the exception. Our approximation,
Eq. (2.9), suggests that we can restate this. The high-interest rate currency
appears to be the high pricing-kernel-volatility currency. This is a stark
contradiction of any lognormal model of currency risk.

We now tighten up the approximation from Section 2.3 and show
precisely under what conditions high interest rate volatility is necessarily
associated with high pricing kernel volatility.

67This is implied by the UIP evidence if (i) b = −1, (ii) UIP holds unconditionally, and
(iii) the unconditional mean of the interest rate differential is zero, E(it − i∗t ) = 0. For
many currency pairs all of these conditions are empirically plausible (Engel (2011)
provides some up-to-date evidence and his survey paper, Engel (1996), is a standard
reference for a more exhaustive survey). For those for which they are not, our story is
basically unchanged once we subtract out an innocuous mean.
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3 AFFINE MODELS

The Duffie and Kan (1996) class of lognormal, affine pricing kernel mod-
els can be specified as follows. Uncertainty in the domestic country is
described by the k-dimensional vector of state variables z that follows a
square-root model:

zt+1 = (I − Φ)θ + Φzt + Σ(zt)
1/2εt+1,

where {ε} ∼ NID(0,1), Σ(zt) is a k × k diagonal matrix with a typical
element given by σi(zt) = αi + β>i zt, where βi has nonnegative elements,
and Φ is a k×k stable matrix with positive diagonal elements. The process
for z requires that the volatility functions, σi(z), be positive, which places
additional restrictions on the parameters. The pricing kernel is

− logmt+1 = δ + γ>zt + λ>Σ(zt)
1/2εt+1, (3.1)

where the k × 1 vector γ is referred to as the “factor loadings” for the
pricing kernel, and the k × 1 vector λ is referred to as the “price of risk”
vector.

Using Eq. (2.1), together with the dynamics of the pricing kernel from
Eq. (3.1), the interest rate is

it+1 =

(
δ − 1

2

k∑
j=1

λ2
jαj

)
+

(
γ> − 1

2

k∑
j=1

λ2
jβ
>
j

)
zt+1.

The conditional variance of the home pricing kernel is

Var t(mt+1) =
(
λ>Σ(zt)

1/2
)
Var t(εt+1)

(
λ>Σ(zt)

1/2
)>

= λ>Σ(zt)λ =
k∑
j=1

λ2
jσj(zt),

and the conditional variance of the home interest rate is

Var t(it+1) =

(
γ> − 1

2

k∑
j=1

λ2
jβ
>
j

)
Σ(zt)

(
γ> − 1

2

k∑
j=1

λ2
jβ
>
j

)>

=
k∑

n=1

(
γn −

1

2

k∑
j=1

λ2
jβn,j

)2

σn(zt).

Similarly to the domestic country, the foreign country is described by a
k-dimensional vector z∗. Foreign parameters are denoted with an asterisk.
It is straightforward to derive the expressions for the foreign pricing kernel,
m∗ and the foreign interest rate, i∗.
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3.1 Theorems

Under what conditions can we say that

Var t(mt+1) > Var t(m∗t+1)⇔ Var t(it+1) > Var t(i∗t+1)? (3.2)

The validity — or not — of result (3.2) is in general parameter dependent.
However, for two special cases which are ubiquitous in the term structure
and the currency risk premium literature, it turns out that we can say a
fair bit.

Theorem 1 (Symmetric Coefficients). Let Ω (Ω∗) denote the vector
containing the home (foreign) parameters. Let Ω = Ω∗, λ 6= 0 and(
γ> − 1

2

∑k
j=1 λ

2
jβ
>
j

)
6= 0. Then (Σ(zt)− Σ(z∗t )) is positive definite if and

only if Vart(mt+1) > Vart(m∗t+1), if and only if Vart(it+1) > Vart(i∗t+1).

The proof is in Appendix A. Theorem 1 says that, with symmetric
coefficients, a relatively large conditional variance of the home state
variables is associated with a relatively large conditional variance of the
home pricing kernel and a relatively large conditional variance of the
home interest rate. A given ranking in the conditional variance of the
state variables in each country is associated with the same ranking in the
conditional variance of the pricing kernels and the conditional variance of
the interest rates.

As an example, consider the single-factor (per-country) case, k = 1.
Theorem 1 simplifies to

Var t(zt+1) > Var t(z∗t+1)⇔ Var t(mt+1) > Var t(m∗t+1)

⇔ Var t(it+1) > Var t(i∗t+1),

which can be read as “high conditional variance at home means high
conditional variance in the home kernel and high conditional variance in
the home interest rate.”

Theorem 2 (Common Factors). Consider the case of common factors,
zt = z∗t . Assume that γ = γ∗, β = β∗, and that there exists a strong
enough ‘precautionary savings motive’ associated with both the domestic
and foreign pricing kernels, so that

γ> − 1

2

k∑
j=1

λ2
jβ
>
j < 0 and γ> − 1

2

k∑
j=1

(λ∗j)
2β>j < 0.

Suppose that the prices of risk λ and λ∗ can be ordered, so that either
λ > λ∗ or λ < λ∗. Then, |λ| > |λ∗| if and only if Vart(mt+1) > Vart(m∗t+1)

if and only if Vart(it+1) > Vart(i∗t+1).

The proof is in Appendix A. Theorem 2 says that, with common factors,
a sufficient condition for the conditional variance of the domestic pricing
kernel to be larger than the conditional variance of the foreign pricing
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kernel is that the price of risk of each of the home state variables is at least
as large (in absolute value) than the price of risk of each of the foreign
state variables. When this is the case, a strong enough precautionary
saving demand in each country delivers a larger conditional variance of
the home interest rate, relative to the conditional variance of the foreign
interest rate. For the theorem to hold, symmetry in the factor loadings
and in the sensitivity of the conditional variances to the state variables is
required.

The condition that γ>− 1
2

∑k
j=1 λ

2
jβ
>
j < 0 (and its foreign counterpart)

is usually referred to in the literature as a strong enough precautionary
savings motive. Lustig, Roussanov, and Verdelhan (2011) is an example
of Theorem 2 at work. They show that an affine model with a common
factor, common coefficients across countries with the exception of the
price of risk, and a precautionary saving motive that is strong enough in
each country delivers interest rate and exchange rate dynamics that are
consistent with the carry trade facts. Hence, the assumptions of Theorem
2 are not stringent at all. They must be satisfied for an affine model of
the Duffie-Kan class to fit the data.

As an example, consider the single factor case, k = 1. Here, a stronger
result is available. Under the conditions of Theorem 2

|λ| > |λ∗| ⇔ Var t(mt+1) > Var t(m∗t+1)⇔ Var t(it+1) > Var t(i∗t+1),

where now λ and λ∗ are scalars. In words, in a world with one single com-
mon factor, when all other coefficients are symmetric, having a relatively
large home price of risk (in absolute value) means having a relatively high
domestic kernel volatility and a relatively high interest rate volatility.

4 DATA AND ESTIMATION

For our main analysis, we use data for 114 countries on 3-month treasury
bill yields, forward and spot exchange rates from Global Financial Data
(GFD) for the period 1950-2009. As a comparison, we also use eurocur-
rency interest rates for 27 countries from the Financial Times/ICAP
(FT/ICAP), 1975-2009. Appendix B provides details. The number of
countries is extensive, but, obviously, we do not have data for all countries
and time periods, and the relevance of many of the countries for our
question is questionable. We therefore report results for a number of
different subsamples of time and country. Our main result is not sensitive
to either.

We estimate a GARCH model for interest rate volatility. Details on
the estimation procedure are given in Appendix B. We report results for
both bilateral currency pairs and portfolios of currencies. The latter are
formed in a manner identical to Lustig, Roussanov, and Verdelhan (2011),
by sorting on interest rate levels at a monthly frequency.
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5 RESULTS

In the introduction we used Figure 24 to illustrate our main question:
is pricing kernel volatility decreasing in the interest rate differential, as
lognormal theory predicts it should? Figure 25 answers our question. We
conduct the exact same exercise as Lustig, Roussanov, and Verdelhan
(2011). We sort currencies by interest rate and, each month, form 5 port-
folios. Figure 25 plots the time-averaged excess return on each portfolio,
and the time-averaged interest rate volatility. Both are increasing as we
move from low to high interest rate portfolios. The answer to the question
is no.

Figure 25: High Interest Rates are Associated with High Interest Rate
Volatility

The solid black line (left axis) is the same as that in Figure 24 from the introduction.
It is the sample mean of the excess return on 5 interest-rate sorted currency portfolios,
similar to that reported in Lustig, Roussanov, and Verdelhan (2011). The red dashed
line (right axis) is, the time-averaged interest rate volatility on each of the portfolios.
The class of lognormal models described in Section 3 restrict the red line to be
decreasing if the black line is increasing. The data are, therefore, inconsistent with
lognormal models in this dimension.
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The remainder of our empirical work simply consists of further sub-
stantiating the point of Figure 25 by considering different samples and
data sources. Figure 27 shows average volatility for the currency portfolios
for a number of different subsamples, starting from 1950, 1975, 1987 and
1995. Figure 28 reports analogous results for bilateral currency pairs.
Figure 29 compares results across the GFD and FT/ICAP data sources.
In all cases, we see robust evidence of high interest rates differentials
being associated with high interest rate volatility differentials.

6 CONCLUS ION

We have shown that Gaussian models of currency risk face an empirical
challenge. A high interest rate differential seems to be associated with a
high interest-rate volatility differential. In a broad class of Gaussian models
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of the pricing kernel, this is inconsistent with (i) the empirical observation
that high interest rates are associated with high excess expected returns,
and (ii) the theoretical restriction that high excess expected returns accrue
to the low volatility pricing kernel. This inconsistency derives from some
conditions under which interest rate volatility and pricing kernel volatility
are positively related. These conditions are not exhaustive. But they
are satisfied by some models that are prominent in the literature. This
suggests that we either enrich these models, or consider non-Gaussian
alternatives.

We’ve couched our analysis in terms of trying to observe directly the
difference in the moments of pricing kernels. This stands in contrast to
much existing work, which tends to be based on moments of the difference
in pricing kernels (e.g., the variance of the exchange rate). We find our
approach useful in that it emphasizes something fundamental about what
currency risk is, while at the same time providing some links to other
asset pricing models and results such as those from the literature on the
term structure of interest rates. Nevertheless, we admit that ours does
have the flavor of many previous papers that have gone searching for
the unicorn by trying to identify the magical pricing kernel using very
few assumptions and very little data (i.e., asset return data only). An
alternative interpretation, therefore, is as follows.

Ever since Bilson (1981), Fama (1984) and Tryon (1979) discovered
the existence of excess expected returns in currency markets, many mod-
els have been developed to account for this behavior. The first models
focused almost exclusively on the UIP regression coefficient. For sub-
sequent models the bar has been raised higher. Other moments of the
joint distribution of exchange rates, interest rates, consumption and so
on have been emphasized. Sharpe ratios on traded currency portfolios
have been emphasized. Our results can be viewed as simply suggesting
one more moment: the interest-rate volatility differential. There is clear
evidence on this, and it places very binding restrictions on state-of-the-art
models. Moreover, it seems (to us) to be a particularly important moment.
There is a clear link to theory and this link might be pointing us to
non-Gaussian behavior, something that has been strongly emphasized
in the recent literature on crashes, disasters and the like. We like this
moment.

Finally, we close with a broad, interpretive point. Currency risk is
a particular type of “change of units risk.” In Gaussian models, an in-
escapable characteristic of this is that high risk is associated with low
volatility. If the units that I care about are subject to relatively volatile
shocks, then financial securities with payoffs denominated in these units
will pay a negative risk premium (relative to the other units in question).
Our goal has been to ask if this characteristic fits the facts. To find out,
one must first take a stand on what are “the units that I care about.” The
obvious answer (to an economist) is “real marginal utility units,” where
the word “real” makes clear that this is “marginal utility per unit of goods.”
We have circumvented this, focusing instead on nominal marginal utility
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units: “utils per dollar.” We’ve done this because most financial securities
are denominated in dollars, not in goods. We must therefore be silent on
whether or not Gaussian models of real exchange rates fit the facts. But
we can say something about nominal models, which, one-way-or-another,
have been most prevalent in the literature. We find evidence suggesting
that nominal exchange rate risk is more than just a Gaussian phenomenon.
We also note that, while our data have not addressed them, Gaussian
models of real marginal utility have become more and more prevalent in
the literature ever since Hansen, Heaton, and Li (2008) developed their
linearization of the recursive class of preferences. Much of the long-run
risk literature initiated by Bansal and Yaron (2004) features models that
are conditionally Gaussian. A prominent example featuring exchange
rates is Bansal and Shaliastovich (2013). Our approach is easily applied
in this setting, and will feature relative consumption volatility in addition
to interest rate volatility. This is work-in-progress.
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a APPENDIX : PROOFS OF THEOREMS

Proof of Theorem 1.
Note that, since (Σ(zt)− Σ(z∗t )) is diagonal, positive definiteness requires σj(zt) ≥ σj(z

∗
t ),

for every j, with at least one strict inequality (i.e. ∃i such that σi(zt) > σi(z
∗
t )). Now, when

Ω = Ω∗, we have
Var t(mt+1)− Var t(m∗t+1) = λ> (Σ(zt)− Σ(z∗t ))λ.

Therefore, by the definition of positive definiteness, we have

(Σ(zt)− Σ(z∗t )) is positive definite ⇔ Var t(mt+1) > Var t(m∗t+1),

whenever λ 6= 0. Similarly,

Var t(it+1)− Var t(i∗t+1) =

γ> − 1

2

k∑
j=1

λ2
jβ
>
j

 (Σ(zt)− Σ(z∗t ))

γ> − 1

2

k∑
j=1

λ2
jβ
>
j

> .
Again, positive definiteness gives

(Σ(zt)− Σ(z∗t )) is positive definite ⇔ Var t(it+1) > Var t(i∗t+1),

whenever
(
γ> − 1

2

∑k
j=1 λ

2
jβ
>
j

)
6= 0. Last, let a 6= 0 be any k × 1 vector and note that the

matrix (Σ(zt)− Σ(z∗t )) is diagonal. Therefore,

a> (Σ(zt)− Σ(z∗t )) a =
k∑
j=1

a2
j (σ(zt)− σ(z∗t )) > 0⇔ σj(zt) ≥ σj(z∗t ), for every j

with at least one strict inequality associated with a non zero element of a.

Proof of Theorem 2.

Var t(mt+1)− Var t(m∗t+1) = (λ2 − (λ∗)2)> diag{Σ(zt)}

which, under the assumption that λ and λ∗ can be ordered, is positive if and only if λ2 > (λ∗)2,
that is |λ| > |λ∗|. Moreover,

Var t(it+1)− Var t(i∗t+1) =

γ> − 1

2

k∑
j=1

λ2
jβ
>
j

2

−

γ> − 1

2

k∑
j=1

(λ∗j )
2β>j

2> diag{Σ(zt)}

which, under the conditions that γ = γ∗, β = β∗, γ> − 1
2

∑k
j=1 λ

2
jβ
>
j < 0, and γ> −

1
2

∑k
j=1(λ∗j )

2β>j < 0 is positive if only if λ2 > (λ∗)2, that is |λ| > |λ∗|.

b APPENDIX : DATA

b.1 Interest Rates

Our main analysis is done with 3-month treasury bill yields for 114 countries from Global
Financial Data (GFD) for the period 1950-2009 as it is the most comprehensive interest rate
data available. As a robustness check, we also use eurocurrency interest rates from FT/ICAP
through Datastream. FT/ICAP data consists of data for 27 mostly developed countries where
for many of them data starts in 1975.
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Here we document the availability of various interest rates data from Datastream and why
we thought FT/ICAP was the best interbank interest rate data available. In Datastream, the
two sources for eurocurrency interest rates are FT/ICAP and ICAP while the British Bankers
Association (BBA) gives the London interbank rates (LIBOR).68 Each have different set of
countries and data years.

In 2006, Financial Times (FT) stopped providing euro currency rates to Datastream for the
FT/ICAP series (for which Datastream mnemonic all starts with “EC”) series. So Datastream
continued these same series by splicing them with Intercapital (or ICAP, but formerly Garban
Information Services (GS)) data so that starting in 2006, FT/ICAP and ICAP series are
identical. For the countries for which GS is not available (e.g. Hong Kong, Singapore, South
Africa), Tullett Prebon (TP) data was used instead. The TP data itself starts in 2006. The
source column in Datastream’s Navigator is not very informative. If the name of the series
has FT/ICAP/TR, the source column will say “Thomson Reuters” but the source is really
FT spliced with ICAP. If the name series has FT/TP, the source column appropriately says
Tullett Prebon. The ones that have “dead” in the name have FT as the source and are dead
series because neither ICAP nor TP has data on these countries. In Table 26, the countries of
these dead series start with Greece and end with Thailand. For all the ICAP series (which
start with ”GS....”), the source column says ”Thomson Reuters” but it is actually all ICAP.

A Datastream documentation file regarding this discontinuation of FT series gives al-
ternative series that can be used instead. This list includes above mentioned ICAP, Tullett
Prebon, BBA LIBORs, as well as “locally supplied” rates which are interbank rates from mainly
national sources. These rates from national sources can be found under “National Interest
Rates.” The column “Alt IB” in Table 26 demonstrates the starting dates of the specific series
that were listed in this document although there can be more than one interbank type rate
under “National Interest Rates”.

Datastream has various interest rate data under ”National Sources.” In the future, our
treasury bill yields data from GFD could be potential supplemented with the combination
of Eurocurrency rates (mainly, FT/ICAP) and interbank rates from national sources. A
Datastream documentation about risk free rates discusses this:

A risk free interest rate is the internal rate of return that can be obtained by
investing in a financial instrument without (or very limited) credit risk. Normally
this will relate to a short term investment in a financial instrument backed by the
government. These money market securities bear no credit risk and have a limited
re-investment risk, when the investment is rolled over for another short term
period. In general we recommend the (annualized) yield on 3-month treasury bills,
as the best instrument to use for any analysis involving risk free rates. However,
for currencies where no liquid treasury bill market exists (or this market is subject
to institutional distortions), interbank rates such as LIBOR or EURIBOR rates
can be used. These do, however, bear a minimal credit risk inherent to the banks
active in the market. Currencies with liquid repo-markets where the general
collateral is a risk free long-term government bond, offer another alternative for
an interest rate wich comes closest to ’risk-free’, but are not available for as many
currencies as interbank rates. A good example of this latter altenative is the
Japanese ’Gensaki’ market. The series we recommend for the main markets are
detailed on the following table.

Column titled “Risk Free” in Table 26 demonstrates starting dates for the series specified in
the document. Not shown in the table are Datastream’s recommendations for risk free rates
on Russia, China, Korea, Pakistan, Taiwan, Argentina, Brazil, Chile, Mexico and Venezuela
also. Overall, this recommended list is not comprehensive (even few of the series above is

68There is also Tullett Prebon through Datastream that provides eurocurrency rates, but their data
starts in 2006 only.
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suspended) and one would have to manually go through the various interest rates available
for each country under “National Interest Rates” and pick the most relevant rate (most likely
some interbank rate is the best) in order to supplement GFD data.

Lastly, for the seven (for BBA, it is six) euro legacy countries, since the introduction of the
Euro in 1999, GS, EC, and BBA interest rates are identical across these countries. Obviously,
we will not have the same problem with GFD treasury yields data.

Table 26: This table compares various interest rates data available from Datastream (the
first five columns) with GFD data. “nmiss” stands for the number of missing months.

Market FT/ICAP ICAP BBA Alt IB ”Risk Free” GFD

Start Start Start Start Start Start End nmiss

Australia 1997 1988 1986 1987 1977 1950 2009 3
Canada 1975 1995 1990 1992 1981 1950 2009 1
Denmark 1985 1995 2003 1989 1993 1976 2007 29
Hong Kong 1997 1986 1991 2009 1
Japan 1978 1995 1986 1996 1960 2009 1
New Zealand 1997 1988 2003 1987 1989 1978 2009 3
Norway 1997 1995 1986 1986 1984 2009 1
Singapore 1988 1987 1989 1987 2009 1
South Africa 1997 2000 1950 2009 1
Sweden 1997 1995 2006 1993 1994 1955 2009 1
Switzerland 1975 1995 1986 1974 1950 1980 2009 3
United Kingdom 1975 1995 1986 1975 1972 1950 2009 1
United States 1975 1995 1986 1971 1955 1950 2009 1
Other Western European 1999 1999 1998 1999 1999 1984 2009 2
Belgium 1978 1995 1950 2009 2
France 1975 1995 1989 1950 2009 61
Germany 1975 1995 1986 1953 2009 2
Italy 1978 1995 1990 1950 2009 2
Netherlands 1975 1995 1991 1950 2009 2
Portugal 1992 1995 1994 1985 2009 2
Spain 1992 1996 1990 1982 2009 2
Greece 1999 1980 2009 2
India 1999 1999 1994 1993 2009 1
Indonesia 1997 2001 1985 2000 2003 72
Malaysia 1997 1994 1998 1961 2009 1
Philippines 1999 1976 2009 3
Thailand 1997 2005 1995 1977 2009 88

Total 27 18 16 18 15 27
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Table 27: The remaining 87 GFD interest rates (mainly treasury yields). “nmiss” stands
for number of missing months.

Market Start End nmiss Market Start End nmiss

ALBANIA 1994 2009 4 KOREA, REPUBLIC OF 1987 2009 2
ALGERIA 1998 2009 5 KUWAIT 1979 2005 59
ANGOLA 2000 2009 3 KYRGYZSTAN 1994 2009 3
ARGENTINA 2002 2009 16 LATVIA 1994 2008 16
ARMENIA 1995 2009 3 LEBANON 1977 2009 4
AUSTRIA 1960 1990 228 LITHUANIA 1994 2009 4
AZERBAIJAN 1997 2009 9 MACEDONIA 1997 2009 3
BAHAMAS 1971 2009 3 MADAGASCAR 2000 2009 3
BAHRAIN 1987 2009 3 MALTA 1987 2009 3
BANGLADESH 1984 2009 29 MAURITIUS 1996 2009 3
BARBADOS 1966 2009 5 MEXICO 1978 2009 6
BELIZE 1978 2009 4 MOLDOVA, REPUBLIC OF 1995 2009 3
BOLIVIA 1994 2009 6 MONGOLIA 2006 2008 20
BOTSWANA 1996 2009 3 MONTENEGRO 2004 2009 3
BRAZIL 1965 2009 62 MOROCCO 2008 2009 4
BULGARIA 1992 2008 23 MOZAMBIQUE 2000 2009 4
BURUNDI 2001 2009 29 NAMIBIA 1991 2009 8
CAPE VERDE 1998 2009 3 NEPAL 1981 2008 17
CENTRAL AFRICAN REPUBLIC 1996 2004 139 NICARAGUA 2003 2007 24
CHILE 1997 2009 2 NIGERIA 1970 2009 229
CHINA 2002 2009 1 PAKISTAN 1991 2009 1
COLOMBIA 1998 2009 2 POLAND 1991 2009 1
COSTA RICA 1996 2009 3 ROMANIA 1994 2005 51
CROATIA 2000 2009 3 RUSSIAN FEDERATION 1994 2009 18
CYPRUS 1975 2008 21 RWANDA 1999 2009 5
CZECH REPUBLIC 1993 2009 5 SAUDI ARABIA 1991 2008 12
EGYPT 1991 2009 1 SERBIA 1997 2009 34
EL SALVADOR 2001 2005 51 SIERRA LEONE 1965 2008 12
ETHIOPIA 1985 2008 12 SLOVAK REPUBLIC 1993 2007 24
FIJI 1975 2009 4 SLOVENIA 1998 2009 5
GEORGIA 2001 2005 54 SRI LANKA 1981 2009 1
GHANA 1978 2009 9 SWAZILAND 1981 2006 45
GUYANA 1972 2009 6 TAIWAN 1974 2009 3
HAITI 1996 2009 2 TANZANIA, UNITED REPUBLIC OF 1993 2009 5
HONDURAS 1998 2000 108 TRINIDAD AND TOBAGO 1964 2009 7
HUNGARY 1988 2009 3 TUNISIA 1990 2009 2
ICELAND 1987 2009 2 TURKEY 1985 2009 3
IRAQ 2004 2009 3 UGANDA 1980 2009 3
IRELAND 1969 2009 2 URUGUAY 1992 2009 49
ISRAEL 1992 2009 2 VENEZUELA 1996 2003 72
JAMAICA 1953 2009 3 VIET NAM 1997 2009 9
JORDAN 2000 2009 36 ZAMBIA 1978 2009 3
KAZAKHSTAN 1994 2009 2 ZIMBABWE 1962 2009 11
KENYA 1972 2009 8

b.2 Exchange Rate Data

Our main exchange rate data is from GFD for 172 countries for the period 1950-2009. This
dataset is most comprehensive compared to three different data sources of forward and
spot exchange rates available through Datastream: Barclays Bank PLC (BBI), Tenfore, and
WM/Reuters (WMR). For each of these sources, full sample of countries and data years vary
and are a lot more limited compared to GFD as shown in the table belows.
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Table 28: Exchange rate data sources from Datastream

WM/R Tenfore Barclays WM/R Tenfore Barclays

Argentine Peso 2004 Latvian Lat 2004
Australian Dollar 1996 1990 1984 Lithuanian Lita 2004
Austrian Schilling 1996 Malaysian Ringgit 1996
Belgian Franc 1996 Maltese Lira 2004
Brazilian Real 2004 Mexican Peso 1996
Bulgarian Lev 2004 Moroccan Dirham 2004
Canadian Dollar 1996 1990 1984 New Zealand Dollar 1996 1990 1984
Chilean Peso 2004 Norwegian Krone 1996 1990 1984
Chinese Yuan Renminbi 2002 Omani Rial 2004
Colombian Peso 2004 Pakistani Rupee 2004
Croatian Kuna 2004 Peruvian Nuevo Sol 2004
Cyprian Pound 2004 Philippine Peso 1996 2006
Czech Koruna 1996 1996 Polish Zloty 2002 1996
Danish Krone 1996 1990 1984 Portuguese Escudo 1996
Dutch Guilder 1996 Qatari Riyal 2004
Egyptian Pound 2004 Romanian Leu 2004 2008
Estonian Kroon 2004 Russian Federation Rouble 2004
Euro 1998 1990 1999 Saudi Arabian Riyal 1996 1990
Finnish Markka 1996 Singaporean Dollar 1996 1990 1984
French Franc 1996 Slovak Koruna 2002
German Mark 1996 Slovenian Tolar 2004
Greek Drachma 1996 South African Rand 1996 1990 1983
Hong Kong Dollar 1996 1990 1983 Spanish Peseta 1996
Hungarian Forint 1997 Swedish Krona 1996 1990 1984
Icelandic Krona 2004 2006 Swiss Franc 1996 1990 1983
Indian Rupee 1997 Taiwanese Dollar 1996
Indonesian Rupiah 1996 Thai Baht 1996 1995
Irish Punt or Pound 1996 Tunisian Dinar 2004
Israeli Sheqel 2004 2006 Turkish Lira 1996 2006
Italian Lira 1996 Ukrainian Hryvnia 2004 2008
Japanese Yen 1996 1990 1983 United Arab Emirates Dirham 1996 1995
Jordanian Dinar 2004 United Kingdom Pound 1996 1990 1983
Kazakh Tenge 2004 Venezuelan Bolivar 2004
Kenyan Shilling 2004
Korean Won 2002 Total 69 25 13
Kuwaiti Dinar 1996 1990
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Table 29: The countries that get included in the various data period subsamples. One
means it is included, zero otherwise. For example, countries with ones in the column for
1975 means these were the countries that had non-missing interest rate data in Jan 1975

all 1975 1987 1995 all 1975 1987 1995

ALB 1 0 0 1 KOR 1 0 1 1
DZA 1 0 0 0 KWT 1 0 1 1
AGO 1 0 0 0 KGZ 1 0 0 1
ARG 1 0 0 0 LVA 1 0 0 1
ARM 1 0 0 0 LBN 1 0 1 1
AUS 1 1 1 1 LTU 1 0 0 1
AUT 1 1 1 0 MKD 1 0 0 0
AZE 1 0 0 0 MDG 1 0 0 0
BHS 1 1 1 1 MYS 1 1 1 1
BHR 1 0 0 1 MLT 1 0 0 1
BGD 1 0 1 1 MUS 1 0 0 0
BRB 1 1 1 1 MEX 1 0 1 1
BEL 1 1 1 1 MDA 1 0 0 0
BLZ 1 0 1 1 MNG 1 0 0 0
BOL 1 0 0 1 MNE 1 0 0 0
BWA 1 0 0 0 MAR 1 0 0 0
BRA 1 1 1 1 MOZ 1 0 0 0
BGR 1 0 0 1 NAM 1 0 0 1
BDI 1 0 0 0 NPL 1 0 1 1
CAN 1 1 1 1 NLD 1 1 1 1
CPV 1 0 0 0 NZL 1 0 1 1
CAF 1 0 0 0 NIC 1 0 0 0
CHL 1 0 0 0 NGA 1 0 0 1
CHN 1 0 0 0 NOR 1 0 1 1
COL 1 0 0 0 PAK 1 0 0 1
CRI 1 0 0 0 PHL 1 0 1 1
HRV 1 0 0 0 POL 1 0 0 1
CYP 1 1 1 1 PRT 1 0 1 1
CZE 1 0 0 1 ROU 1 0 0 1
DNK 1 0 1 1 RUS 1 0 0 1
EGY 1 0 0 1 RWA 1 0 0 0
SLV 1 0 0 0 SAU 1 0 0 1
ETH 1 0 1 1 SRB 1 0 0 0
EUR 1 0 1 1 SLE 1 1 1 1
FJI 1 1 1 1 SGP 1 0 0 1
FRA 1 1 1 1 SVK 1 0 0 1
GEO 1 0 0 0 SVN 1 0 0 0
DEU 1 1 1 1 ZAF 1 1 1 1
GHA 1 0 1 1 ESP 1 0 1 1
GRC 1 0 1 1 LKA 1 0 1 1
GUY 1 1 1 1 SWZ 1 0 1 1
HTI 1 0 0 0 SWE 1 1 1 1
HND 1 0 0 0 CHE 1 0 1 1
HKG 1 0 0 1 TWN 1 1 1 1
HUN 1 0 0 1 TZA 1 0 0 1
ISL 1 0 0 1 THA 1 0 1 0
IND 1 0 0 1 TTO 1 1 1 1
IDN 1 0 0 0 TUN 1 0 0 1
IRQ 1 0 0 0 TUR 1 0 1 1
IRL 1 1 1 1 UGA 1 0 1 1
ISR 1 0 0 1 GBR 1 1 1 1
ITA 1 1 1 1 USA 1 1 1 1
JAM 1 1 1 1 URY 1 0 0 1
JPN 1 1 1 1 VEN 1 0 0 0
JOR 1 0 0 0 VNM 1 0 0 0
KAZ 1 0 0 1 ZMB 1 0 1 1
KEN 1 1 1 1 ZWE 1 1 1 1
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Table 30: Descriptive statistics of GFD interest rates and the computed volatility. The
volatility is based on the entire interest rate data available for that country. The last
column (nobs) shows the number of consecutive months with non-missing data.

rate vol

min max mean std min max mean std nobs

ALB 5.05 38.23 12.32 8.32 0.19 4.34 0.70 0.68 183
DZA 0.09 10.13 3.72 3.75 0.42 1.70 0.57 0.26 135
AGO 2.80 134.00 55.13 47.86 1.04 25.02 6.10 5.76 110
ARG 1.10 59.77 10.02 8.81 - - - - 22
ARM 3.24 80.42 22.85 20.02 0.42 17.20 3.57 3.85 170
AUS 0.75 19.40 6.30 4.19 0.08 2.72 0.34 0.41 717
AUT 3.61 10.38 6.63 1.66 0.10 0.81 0.14 0.06 373
AZE 3.92 22.10 11.76 4.37 0.97 3.03 1.54 0.46 144
BHS 0.06 9.90 4.44 2.56 0.28 1.73 0.55 0.26 463
BHR 0.69 9.98 4.73 2.18 0.14 0.52 0.24 0.08 269
BGD 1.86 11.50 8.03 1.80 0.10 1.07 0.19 0.17 205
BRB 0.24 16.02 5.88 2.42 0.17 1.75 0.37 0.25 513
BEL 0.34 14.03 6.18 2.83 0.12 1.67 0.25 0.16 718
BLZ 3.22 14.46 6.38 3.06 0.03 2.27 0.18 0.32 370
BOL 0.75 26.60 11.69 5.69 0.85 3.87 1.18 0.45 187
BWA 8.16 14.31 12.39 0.98 0.19 0.79 0.28 0.11 165
BRA 8.65 933.60 68.71 115.38 1.42 185.95 10.15 21.50 295
BGR 2.12 1232.75 48.10 131.98 6.08 1006.04 24.15 82.10 194
BDI 6.41 19.84 9.85 3.05 0.11 1.17 0.47 0.30 66
CAN 0.20 20.90 5.69 3.73 0.11 1.77 0.38 0.28 719
CPV 2.00 11.08 5.69 2.29 0.14 1.51 0.43 0.32 142
CAF 2.08 3.73 2.63 0.57 - - - - 12
CHL 0.46 19.17 6.73 4.49 0.24 4.55 0.86 0.77 149
CHN 1.21 4.50 2.63 0.91 0.31 1.28 0.39 0.16 96
COL 4.35 52.64 13.75 9.33 0.26 6.38 1.33 1.55 108
CRI 3.33 24.50 15.44 4.90 1.10 5.50 1.37 0.56 163
HRV 1.90 7.60 4.27 1.62 0.31 1.03 0.50 0.17 107
CYP 2.46 6.23 5.30 0.84 0.02 1.04 0.07 0.11 400
CZE 1.66 15.54 5.75 3.71 0.16 1.52 0.31 0.22 193
DNK 2.00 20.70 9.94 5.90 0.40 4.62 0.60 0.48 380
EGY 5.26 19.40 10.53 3.26 0.03 3.79 0.44 0.53 228
SLV 2.82 6.99 3.77 0.95 - - - - 56
ETH 0.04 12.00 3.83 3.71 0.02 6.74 0.35 0.71 284
EUR 0.34 11.75 5.81 3.03 0.07 1.10 0.27 0.19 311
FJI 0.07 18.65 4.06 2.74 0.05 5.47 0.67 0.81 417
FRA 0.37 18.92 6.31 3.71 0.08 1.77 0.36 0.26 600
GEO 9.95 58.44 31.79 14.05 - - - - 55
DEU 0.34 12.05 4.39 2.02 0.15 1.55 0.32 0.17 683
GHA 9.38 46.75 22.22 10.27 0.53 7.69 1.05 0.93 376
GRC 0.72 25.50 11.44 6.13 0.18 6.55 0.44 0.60 359
GUY 2.84 33.75 10.67 6.91 0.04 12.99 0.44 0.95 420
HTI 4.00 27.83 16.42 7.36 1.53 6.26 2.07 0.90 157
HND 13.97 18.00 14.71 1.31 - - - - 26
HKG -0.08 12.24 3.53 2.27 0.27 3.14 0.56 0.45 223
HUN 5.55 35.30 16.81 8.95 0.52 2.90 1.01 0.47 251
ISL 4.44 34.30 11.46 6.53 0.27 5.01 1.01 0.93 270
IND 3.39 14.00 8.19 2.53 0.57 1.71 0.81 0.25 204
IDN 3.50 14.50 8.97 2.42 - - - - 48
IRQ 1.20 22.00 11.63 6.32 2.16 3.91 2.56 0.46 70
IRL 0.31 39.94 8.07 4.60 0.32 15.05 0.88 1.27 480
ISR 0.29 17.96 8.73 4.54 0.23 1.58 0.58 0.28 215
ITA 0.31 22.08 7.48 5.19 0.05 2.44 0.43 0.42 718
JAM 1.75 51.98 12.81 10.16 0.23 6.48 0.97 1.11 682
JPN 0.00 8.27 3.78 2.50 0.03 0.64 0.14 0.13 600
JOR 2.05 6.88 4.93 1.71 0.23 0.80 0.35 0.12 71
KAZ 2.09 318.78 28.70 60.71 0.17 29.70 2.48 4.87 188
KEN 0.11 70.64 11.98 9.39 0.43 8.72 1.39 1.36 405
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Table 31: Descriptive statistics of GFD interest rates and the computed volatility. The
volatility is based on the entire interest rate data available for that country. The last
column (nobs) shows the number of consecutive months with non-missing data.

rate volatility

min max mean std min max mean std nobs

KOR 2.48 19.20 9.78 4.78 0.21 1.56 0.61 0.33 275
KWT 0.60 8.87 6.12 1.78 0.03 1.19 0.18 0.19 311
KGZ 3.47 216.50 28.94 36.62 1.79 33.82 6.19 5.79 190
LVA 2.30 33.98 8.11 8.06 0.50 4.67 0.94 0.74 173
LBN 2.54 34.18 12.34 5.72 0.12 7.86 0.66 0.95 382
LTU 1.96 37.00 8.81 8.46 0.21 1.09 0.42 0.25 115
MKD 4.66 18.00 8.63 2.72 0.33 2.47 0.67 0.43 143
MDG 3.92 24.04 12.49 5.01 0.53 3.64 0.85 0.57 111
MYS 1.82 9.98 4.39 1.35 0.04 1.48 0.18 0.18 588
MLT 1.46 5.49 4.26 0.81 0.04 0.88 0.10 0.11 264
MUS 3.68 12.91 8.50 2.32 0.26 1.71 0.51 0.24 155
MEX 4.56 153.91 29.03 25.98 0.46 13.42 2.39 2.35 251
MDA 1.21 74.30 19.73 13.39 1.99 6.98 2.94 1.25 176
MNG 5.56 7.91 6.93 0.77 - - - - 27
MNE 0.45 10.80 2.65 3.59 0.17 2.65 0.65 0.58 64
MAR 3.24 3.70 3.46 0.16 - - - - 21
MOZ 7.15 31.65 16.70 6.53 1.53 8.99 1.93 0.93 117
NAM 6.66 21.68 11.60 3.22 0.35 1.79 0.54 0.23 217
NPL 0.62 12.88 5.48 2.62 0.03 1.76 0.50 0.40 332
NLD 0.23 13.80 4.36 2.63 0.10 1.61 0.34 0.25 718
NZL 2.62 27.20 9.51 4.74 0.11 3.92 0.63 0.67 380
NIC 1.02 6.50 3.91 1.83 - - - - 55
NGA 2.00 27.50 12.95 5.42 0.00 8.69 0.79 0.94 220
NOR 0.10 15.75 7.09 3.85 0.30 9.93 0.70 0.99 312
PAK 1.21 17.42 10.05 3.80 0.21 1.79 0.59 0.30 226
PHL 2.92 43.39 12.50 6.57 0.26 5.91 1.05 0.96 399
POL 3.90 49.02 16.57 12.10 0.16 7.64 1.06 1.31 224
PRT 0.31 22.19 7.54 5.07 0.15 1.16 0.38 0.22 292
ROU 7.82 179.94 48.65 32.35 5.11 39.99 9.25 6.77 140
RUS 0.26 355.80 33.46 59.80 1.53 3.00 1.70 0.21 114
RWA 5.24 12.85 9.57 1.80 0.24 2.21 0.57 0.35 128
SAU 1.12 7.16 4.41 1.65 0.16 0.75 0.29 0.12 207
SRB 4.20 99.25 17.52 12.85 0.78 5.92 1.57 0.97 108
SLE 3.80 95.20 16.56 14.98 0.34 23.59 1.46 2.26 519
SGP 0.20 4.90 1.90 1.17 0.16 1.30 0.46 0.22 265
SVK 1.95 26.00 9.36 5.90 0.15 5.81 1.17 1.12 180
SVN 0.55 12.70 6.37 3.30 0.08 1.47 0.47 0.27 96
ZAF 1.00 22.15 8.06 5.11 0.08 1.91 0.34 0.31 719
ESP 0.31 15.27 7.39 4.40 0.15 1.45 0.36 0.24 329
LKA 6.54 21.30 13.08 3.20 0.40 3.07 0.94 0.49 345
SWZ 4.93 19.50 10.83 3.27 0.53 1.90 0.77 0.26 293
SWE 0.13 18.00 6.46 3.78 0.25 3.70 0.53 0.39 660
CHE 0.00 9.30 3.30 2.43 0.09 1.05 0.36 0.22 358
TWN 0.17 14.99 5.46 3.18 0.08 2.52 0.27 0.32 428
TZA 2.60 62.30 13.25 11.01 0.69 11.80 2.36 1.90 189
THA 1.02 19.32 6.19 4.12 0.10 3.28 0.40 0.59 156
TTO 2.30 12.11 5.92 2.52 0.04 1.44 0.18 0.22 535
TUN 4.02 11.62 7.38 2.17 0.45 0.93 0.46 0.05 239
TUR 7.92 159.44 56.71 32.63 1.07 25.30 7.21 5.85 170
UGA 2.97 43.50 16.74 11.90 0.86 10.88 1.73 1.34 358
GBR 0.42 16.27 6.77 3.58 0.18 1.29 0.48 0.28 719
USA 0.01 15.52 4.77 2.87 0.13 1.97 0.37 0.29 719
URY 2.26 146.47 26.98 25.14 1.12 9.09 2.96 2.20 87
VEN 8.89 57.05 21.98 10.40 2.58 13.77 3.60 1.70 86
VNM 3.34 15.60 7.06 2.67 0.21 4.49 0.54 0.62 147
ZMB 4.38 181.78 26.51 26.56 1.14 36.66 3.10 4.38 382
ZWE 3.05 525.00 34.97 78.92 1.60 259.00 5.55 18.79 566
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Table 32: The whole sample of countries. This table shows for each portfolio 1 through
5 the average 3-month change in log spot exchange rates (i.e. the appreciation of the
foreign currency) ∆s, the average interest rate relative to USD i∗ − i, the average
log 3 month excess return rx, and the average volatility of interest rates σ(i∗). All
moments are annualized and in percentage points. In brackets are standard deviations.
The average excess return and volatility of interest rates are plotted in the left panels of
figure 27.

1 2 3 4 5 Total

Spot Change: ∆s -1.028 -0.184 -1.845 -3.797 -2.935 -1.955
(13.03) (13.83) (14.32) (13.85) (46.44) (24.15)

i∗ − i -1.594 0.0685 1.724 3.823 9.282 2.660
(2.004) (1.882) (2.231) (3.326) (8.661) (5.820)

Excess Return: rx -2.713 -0.143 -0.207 -0.0346 6.667 0.716
(13.70) (14.03) (14.33) (13.68) (46.56) (24.48)

Volatility: σ(i∗) 0.301 0.308 0.426 0.548 1.079 0.533
(0.134) (0.146) (0.212) (0.337) (0.979) (0.560)

Table 33: The sample of countries that had interest rate data on January 1975. This
table shows for each portfolio 1 through 5 the average 3-month change in log spot
exchange rates (i.e. the appreciation of the foreign currency) ∆s, the average interest
rate relative to USD i∗ − i, the average log 3 month excess return rx, and the average
volatility of interest rates σ(i∗). All moments are annualized and in percentage points.
In brackets are standard deviations. The average excess return and volatility of interest
rates are plotted in the left panels of figure 27.

1 2 3 4 5 Total

Spot Change: ∆s -0.805 0.627 -0.776 -5.063 -9.395 -3.082
(11.85) (14.42) (19.64) (19.66) (21.48) (18.15)

i∗ − i -2.292 -0.570 1.082 3.438 11.60 2.653
(2.416) (2.198) (2.024) (2.446) (7.739) (6.304)

Excess Return: rx -3.241 0.0177 0.244 -1.677 2.506 -0.430
(12.47) (14.80) (19.86) (19.62) (21.24) (18.00)

Volatility: σ(i∗) 0.303 0.305 0.415 0.511 1.372 0.581
(0.158) (0.142) (0.260) (0.383) (0.927) (0.621)
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Table 34: The sample of countries that had interest rate data on January 1987. This
table shows for each portfolio 1 through 5 the average 3-month change in log spot
exchange rates (i.e. the appreciation of the foreign currency) ∆s, the average interest
rate relative to USD i∗ − i, the average log 3 month excess return rx, and the average
volatility of interest rates σ(i∗). All moments are annualized and in percentage points.
In brackets are standard deviations. The average excess return and volatility of interest
rates are plotted in the left panels of figure 27.

1 2 3 4 5 Total

Spot Change: ∆s -0.443 1.060 0.0293 -4.578 -6.897 -2.166
(11.75) (17.22) (16.03) (13.65) (54.49) (27.87)

i∗ − i -0.964 0.725 2.394 5.551 17.18 4.977
(1.609) (1.764) (2.165) (2.630) (7.755) (7.571)

Excess Return: rx -1.555 1.753 2.385 0.926 10.66 2.834
(12.11) (17.26) (15.92) (13.35) (53.12) (27.47)

Volatility: σ(i∗) 0.321 0.308 0.401 0.684 1.912 0.725
(0.139) (0.131) (0.225) (0.397) (1.050) (0.800)

Table 35: The sample countries that had interest rate data on January 1995. This table
shows for each portfolio 1 through 5 the average 3-month change in log spot exchange
rates (i.e. the appreciation of the foreign currency) ∆s, the average interest rate relative
to USD i∗ − i, the average log 3 month excess return rx, and the average volatility of
interest rates σ(i∗). All moments are annualized and in percentage points. In brackets
are standard deviations. The average excess return and volatility of interest rates are
plotted in the left panels of figure 27.

1 2 3 4 5 Total

Spot Change: ∆s -0.861 1.839 -0.740 -4.033 -0.234 -0.806
(11.84) (14.77) (13.07) (13.27) (41.09) (21.91)

i∗ − i -1.144 0.408 2.171 5.311 13.56 4.062
(1.172) (1.040) (1.229) (1.928) (4.855) (5.781)

Excess Return: rx -2.152 2.220 1.373 1.218 13.80 3.292
(12.14) (14.80) (12.92) (12.82) (40.06) (22.10)

Volatility: σ(i∗) 0.278 0.288 0.433 0.645 1.371 0.603
(0.0753) (0.0918) (0.119) (0.187) (0.419) (0.461)
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c APPENDIX : F IGURES

Figure 26: U.S. and Australian Interest Rates: Volatility and Spread

GARCH estimates of U.S. and Australian interest rate volatility appear in the upper left panel. Interest
rates appear in the upper-right panel. U.S. data are the blue dashed-lines and Australian data are the
green solid lines. The lower panel plots the differences, U.S. minus Australia from the two top panels.
The red dashed line is the volatility difference and the the black solid line is the interest rate differential,
divided by 5. Lognormal models predict that, in the lower panel, the lines appear on opposite sides of
zero, and are negatively correlated. By-and-large, the opposite seems to be true. The correlation is 0.52.
Data source: 3-month interbank deposits from Global Financial Data (www.globalfinancialdata.com).
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Figure 27: Average Volatility of Currency Portfolios

GFD interest rates, the whole sample.
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Figure 28: GFD Interest Rates: Bilateral Currency Pairs
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Figure 29: Data Source Comparison: GFD Versus FT/ICAP

GFD interest rates, the same set of countries (and years) that is in the FT/ICAP interest rate data
source in below figure.
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The difference in volatilities between GFD and FT/ICAP interest rates (especially in early 1980’s) is
due to how different the GFD and FT/ICAP interest rates look even for the same country and the
same date. Good examples were BEL, FRA, and ITA. So in below two figures we re-plot the above two
figures without BEL, FRA, and ITA, after which the average volatility figure looks similar (in scale)
between GFD and FT/ICAP.

GFD interest rates without BEL, FRA, ITA.

1 2 3 4 5
0.2

0.4

0.6

0.8

1

Portfolio Number

Volatility

1975 1980 1986 1992 1998 2004
0

1

2

3

4

5

6
Volatility time series

 

 
p1 p3 p5

FT/ICAP interest rates without BEL, FRA, ITA.

1 2 3 4 5
0.2

0.4

0.6

0.8

1

Portfolio Number

Volatility

1975 1980 1986 1992 1998 2004
0

0.5

1

1.5

2

2.5

3

3.5
Volatility time series

 

 
p1 p3 p5

136



Figure 30: Implied Volatility of Options on Interest Rate Futures
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