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Abstract

In the first essay, I present a parsimonious consumption-based asset pricing model that ex-

plains the pricing of equity index options. The model has two key ingredients, a recursive

utility function that overweights left-tail outcomes and a process for endowment volatility

that allows for shocks with different persistence levels. The utility function produces a

high price for tail risks and allows the model to replicate the implied volatility smirk in

times of high uncertainty, during which extreme events are more likely. In times of low

uncertainty the smirk arises due to mean reversion in volatility, which results in substantial

volatility feedback and a conditional return distribution that is strongly left-skewed. The

presence of multiple shock frequencies gives the variance premium the ability to predict

returns over short horizons and the price-dividend ratio the ability to predict returns over

long horizons, as in the data. Consistent with recent empirical evidence, the equity and

variance premiums in the model arise predominantly from a high price of tail risk.

The second essay (joint with Jan Schneemeier, University of Chicago) investigates the role

of time-varying stock return volatility in a consumption and portfolio choice problem for a

life-cycle investor facing short-selling and borrowing constraints. Faced with a benchmark

investment strategy that conditions on age and wealth only, we find that an investor is

willing to pay a fee of up to 1% - 1.5% of total life time consumption in order to optimally

condition on volatility. Tilts in the optimal asset allocation in response to volatility shocks

are considerably more pronounced than tilts in response to wealth shocks, and almost as

important as life-cycle effects. Lastly, we find that the correlation between volatility and

permanent labor income shocks may explain the low equity share of young households in

the data.

The third essay analyzes whether cross-sectional differences in the variance premium and

the implied volatility smirk are related to the underlying firms’ exposure to market variance

risk and common idiosyncratic variance (CIV) risk. Using both cross-sectional regressions

and sorts based on firms’ loadings, I find that firms whose variance co-moves more with

market variance have steeper smirks and larger (less negative) variance premia. The latter

finding is surprising in light of the fact that the variance premium of the market is believed

to be negative. I show that the result persists in different sub-samples and that it is robust

to various ways of estimating variance loadings. Exposure to CIV is not related to firm

level option prices in a robust way.
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Chapter 1

Tails, Fears, and Equilibrium

Option Prices

1.1 Introduction

Prices of equity index options provide significant information about the composition of risk

premia in financial markets. A key observations is that deep out-of-the-money (OTM) in-

dex put options appear overpriced from the perspective of standard models. This suggests

that investors are more concerned with large declines in the aggregate stock market than

typically assumed. Indeed, recent nonparametric estimates in Bollerslev and Todorov

[2011] show that about two thirds of the average equity premium represent compensation

for extreme left tail events, defined as returns of −10% or less over the horizon of a few

weeks. This finding is puzzling because such returns occur very infrequently in the data.

I show that investors’ fear of extreme events can account for average option prices in a

consumption-based asset pricing model with fundamentals that are conditionally Gaus-

sian. The representative agent has Epstein-Zin (1989) utility with generalized disappoint-

ment aversion (GDA) risk preferences (Routledge and Zin 2010). Relative to the more

commonly-used recursive utility function with expected utility (EU) risk aggregation, GDA

can overweight lower-tail outcomes in the distribution over future aggregate wealth and

produce a high price of tail risk. Cash flows (consumption and dividend growth) have

constant means and time-varying volatility. Volatility follows the multifractal process of

Calvet and Fisher [2001, 2004], which allows for shocks with different persistence levels

and generates substantial volatility feedback in equilibrium, i.e. large endogenous return

1
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jumps.1 The combination of tail risk resulting from volatility feedback and the aversion

to such risks implied by GDA preferences allows the model to replicate the steep implied

volatility smirk implied by option prices.

The model successfully reproduces a number of additional stylized facts of asset markets

and the equity index option market in particular, including (1) the high average equity

premium, (2) the low risk-free rate, (3) the large excess volatility of returns relative to

fundamentals, (4) the predictive ability of the price-dividend ratio for excess returns over

long horizons, (5) the high excess kurtosis of monthly returns and the low excess kurtosis

of annual returns (6) the high average variance premium2 and its ability to predict excess

returns over short horizons and (7) the time-series moments of option prices, which are re-

flected in the term structure of variance swap rates. At the same time, the model remains

tightly parameterized.

In the model, the probability of disappointments increases in times of high macroeconomic

uncertainty, during which extreme events are more likely. When disappointments occur,

they tend to be accompanied by large negative returns that trigger payoffs to out-of-the-

money put options. Puts thus provide a hedge against disappointments and the investor is

willing to pay a large insurance premium for them in states of high uncertainty. In times of

low uncertainty, disappointments are rare and insurance premia only account for a small

part of put option prices. In these states the IV smirk instead arises from mean reversion

in the conditional volatility of cash flows. Specifically, when volatility is low and therefore

expected to increase, the price-dividend ratio is expected to decrease because volatility

carries a negative price of risk in the model. As reductions in the price-dividend ratio

translate into negative returns, the conditional return distribution is left-skewed when

volatility is low.3 In these states, the model produces a steep implied volatility curve due

to the relatively high likelihood of negative return jumps rather than due to high insurance

premia.

1Calvet and Fisher [2007] have previously shown that a model with recursive utility with EU risk
preferences generates substantial volatility feedback. Different from the present paper, these authors focus
on a model where multifractal volatility affects dividends but not consumption. In this case, volatility risks
are not priced because they do not affect the pricing kernel.

2The variance premium equals the difference between the risk-neutral and statistical expectations of
future market variance. Details are discussed in Section 3.3.

3For similar reasons, the conditional return distribution (under the statistical measure) is right-skewed
when volatility is high. All else equal, this makes the IV curve flat or even upward sloping. However, I
show that the effect of GDA preferences is strong enough to induce strong left-skewness in the risk neutral
distribution when volatility is high.
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I show that the magnitude of the conditional return skewness depends crucially on the

nature of endowment volatility. When volatility is modeled as a persistent AR(1) process,

mean reversion occurs too slowly to have a strong impact on the conditional skewness

of short horizon returns. Instead, it affects the conditional skewness at longer horizons.

A model with AR(1) volatility (and GDA preferences) therefore produces an IV curve

that is steep at long maturities but too flat at short maturities. In contrast, multifractal

volatility allows for mean reversion at different time scales. In particular, the shocks with

low persistence levels mean revert quick enough to produce substantial return skewness at

short horizons, and they allow the model to match the steep IV curve at both short and

long maturities.

To summarize the dynamics of option prices I turn to variance swaps, i.e. forward contracts

on realized stock market variance (see Section 3.3 for more details). These instruments

can be replicated from portfolios of equity index options and they display some revealing

patterns about the shocks that drive option prices. Specifically, swaps with a monthly

maturity are considerably more volatile and less persistent than swaps with an annual

maturity. Additionally, the autocorrelation functions of swap rates display pronounced

long-memory behavior – a well-known feature of return volatility (Ding, Granger, and En-

gle 1993). The model is able to capture these complex time series features despite relying

on a very parsimonious endowment specification. In particular, the multifractal volatility

process depends on only four parameters, regardless of the number of volatility compo-

nents. I show that these parameters can be calibrated such that the model provides almost

an exact match for the term structure of variance swap rates. In contrast, the dynamics of

option prices are counterfactual when cash flow volatility is modeled as a AR(1) process.

The present model is the first, to my knowledge, to replicate the term structure of variance

swap rates in an equilibrium setting.

Return predictability arises in the model from the interaction between time-varying risk

(stochastic endowment volatility) and time-varying risk aversion. As previously empha-

sized by Routledge and Zin [2010], GDA preferences are capable of producing time-

variation in effective risk aversion when combined with a persistent state variable. In the

present economy, endowment volatility (the state variable) equals the product of several

volatility components with different persistence levels. All else equal, when a component

with a given frequency is currently in its high state, the conditional endowment volatility

is higher and there is a greater chance of disappointing tail events. The overweighting

of tail events in the GDA utility function raises the agent’s effective risk aversion when

these outcomes are more likely to occur, which results in higher expected returns. However,
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volatility components with different frequencies have a different effect on expected returns.

Specifically, less persistent shocks alter expected returns over short horizons whereas more

persistent shocks alter expected returns over long horizons. As time-variation in the price-

dividend ratio is mainly driven by persistent shocks, it is a good predictor of long horizon

returns. On the other hand, the (1-month) variance premium has considerably more ex-

posure to transient shocks, making it a better predictor of short horizon returns. These

implications for the term structure of risk premia agree with the empirical results of Martin

[2013], who derives a lower bound on the equity premium from option prices and concludes

that the equity premium has both a business cycle component and a higher-frequency com-

ponent.

To assess the level of effective risk aversion implied by different risk preference calibrations,

I conduct a welfare analysis in the spirit of Lucas [1987]. Specifically, I hold the param-

eters controlling time preference and the endowment calibration constant, and consider

various risk preference calibrations that all match the historical equity premium. The set

of alternatives includes the (pure) disappointment aversion (DA) model of Gul [1991] as

well as the EU model, i.e. the Epstein-Zin specification used by Bansal and Yaron [2004].

For each economy, I then compute the welfare costs of heteroscedasticity risk as well as the

welfare costs of total endowment risk. The results show that the GDA agent is less risk

averse overall, but that he is considerably more averse to stochastic volatility than both

EU and DA agents. The reason is that for a constant endowment variance, the extreme

tail outcomes constituting a disappointment for the GDA agent are very rare and risk pre-

mia are close to zero. In line with the empirical findings of Bollerslev and Todorov [2011]

discussed above, risk premia in the model therefore primarily arise from the aversion to

extreme tail risks.

The rest of the paper is structured as follows. Section 2.1.1 points to connections with

the existing literature. In Section 3.3, I discuss the option dataset, define option-related

statistics, and present the set of stylized option market facts that serves as the empiri-

cal target. The model and the associated solution technique are shown in Section 2.2,

whereas Section 3.4 shows calibration results and discusses the model mechanism. Sec-

tion 1.5 illustrates how option pricing implications and effective risk aversion change for

nested preference specifications, thereby shedding additional light on the mechanism. The

appendix contains details on both the data and the model solution technique.



Chapter 1. Tails, Fears, and Equilibrium Option Prices 5

1.1.1 Related Literature

Rare disasters and option prices. An alternative mechanism for increasing the impor-

tance of tail risks is the rare disaster framework of Rietz [1988] and Barro [2006]. While

the assumption of a Peso problem greatly improves the asset pricing implications of sim-

ple representative agent models, Backus, Chernov, and Martin [2011] point out that the

implied volatility smirk in these models is far steeper and lower than in the data. These

authors argue that, contrary to the large and rare disasters assumed in Barro’s calibration,

equity index options imply relatively small and frequent consumption disasters. A recent

paper by Seo and Wachter [2013] shows that a model with stochastic disaster intensity and

recursive references can reconcile this conflicting evidence and generate a more realistic

smirk. Du [2011] shows that a combination of rare disasters and external habit formation

in preferences also produces a smirk, but his results only focus on options on the consump-

tion claim. In order to generate realistic prices of OTM puts, the above papers rely on

the strong assumption that there is no default on option payoffs in the case of a macroe-

conomic disaster. In contrast, the current model increases the importance of tail risk by

increasing its price rather than its quantity, i.e. it does not assume a Peso problem. As a

consequence, the most severe drops in consumption are far less extreme and the no-default

assumption is less restrictive.

Long run risks and option prices. A number of prior papers also build on Bansal and

Yaron [2004] to study the implied volatility smirk or the variance premium. These studies

extend the cash flow dynamics of the basic long run risks model by allowing for stochastic

volatility-of-volatility (Bollerslev, Tauchen, and Zhou [2009]) or jumps in the conditional

moments of consumption and dividend growth (Benzoni, Collin-Dufresne, and Goldstein

[2011], Drechsler and Yaron [2011], Drechsler [2013]). Incorporating jumps into the state

variable processes increases the quantity of tail risk because they map into endogenous

jumps in returns. For example, a negative jump in the expected growth rate of dividends

induces a discrete reduction in the price-dividend ratio and therefore a negative jump in

returns. Additional extensions add time-varying risk aversion by incorporating jumps in

investor confidence (Shaliastovich [2009]) or the degree of uncertainty aversion (Drechsler

[2013]). In this line of work, jumps in returns result from jumps in risk aversion. The

present model models endowment volatility as a Markov chain and therefore also allows

for discrete changes in volatility that map into endogenous return jumps. Different from

the long run risks model, I do not rely on persistent variation in the mean of consumption

growth to generate high average risk premia, and I generate countercyclical effective risk

aversion by specifying GDA preferences.
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Nature and pricing of consumption volatility shocks. Nakamura, Sergeyev, and

Steinsson [2012] estimate a long run risks model based on the international consumption

data of Barro and Ursua [2008] (without using any asset market data) and find strong

evidence in favor of priced consumption volatility shocks. Boguth and Kuehn [2013] find

similar evidence based on the cross-section of U.S. consumption data alone and they do

not assume a particular asset pricing model. Tamoni [2011] provides empirical evidence for

the presence of consumption volatility shocks with highly heterogeneous persistence levels,

and he shows that models with a single shock frequency have counterfactual implications

for the long-run relationship between consumption growth volatility and expected returns

in the data. In agreement with this empirical evidence, time-variation in risk premia in the

present model is driven by consumption volatility shocks with different persistence levels.

1.2 Stylized Facts of Equity Index Options

This section discusses the option dataset and presents the set of stylized option market

facts that serves as a target for the model. Specifically, I focus on moments of equity index

options and variance swap rates with different maturities, as well as the variance premium

and its predictive power for excess returns.

1.2.1 Data Sources

The option dataset, which spans the period from January 2, 1990 to December 31, 2012,

was obtained from Market Data Express, a subsidiary of the Chicago Board Options

Exchange (CBOE). It contains end-of-day information for all option contracts traded on

the CBOE for which the S&P 500 index is the underlying asset. Variables include trading

volume, open interest, and the daily open, high, low, and last sales prices. The exercise

style of the options is European. On average, the dataset contains observations on 852

different option contracts per day, which amounts to approximately 5m total observations.4

I apply standard filters to the data (see Appendix A for details). For estimating the realized

variance of market returns, I use tick-by-tick transaction prices of S&P500 futures for the

same sample period, which were obtained from TICKDATA.

1.2.2 Variance Swap Rates

A variance swap is a forward contract on the underlying’s future variance. At maturity,

the seller (floating leg) pays the asset’s realized variance, defined as the sum of squared

4The average number of daily observations increased from 270 in 1990 to 2600 in 2012.
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Figure 1.1: Equity Index Option Markets, 1990-2012
Figure 1.1 shows time series of option-related statistics. The top panel shows variance swap
rates of maturities 1 and 12 months, expressed in annualized variance units. The middle panel
shows the 1-month variance premium, expressed in monthly variance units. The lower panel
shows the slope of the implied volatility (IV) curve, defined as the difference between the IV for
a standardized moneyness of −1 and the IV for an at-the-money option. IVs are expressed in
annualized standard deviation units. The time series for swaps and IVs are daily, whereas the

time series for the variance premium is monthly. Shaded regions represent NBER recessions.

daily log returns over the term of the contract, i.e.

RVt:t+τ =

τ∑
i=1

r2
t+i, (1.1)

where τ denotes the number of trading days. The buyer (fixed leg) pays the variance

swap rate St(τ), which is agreed upon at contract initiation.5 The variance swap rate can

therefore be interpreted as the (forward) price of the underlying’s realized variance. In

the absence of arbitrage opportunities, the swap rate equals the risk neutral conditional

expectation of future variance, i.e.

St(τ) = EQ
t [RVt:t+τ ]. (1.2)

5In reality, payments are netted. Also, the difference between RV and S is typically multiplied by a
factor that converts variances to annual units, as well as a notional. These details are irrelevant for the
purposes of this paper.
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Figure 1.2: The volatility and persistence of variance swap rates
Figure 1.2 shows moments of variance swap rates, expressed in annualized variance units. The
sample is daily and spans 1990-2012. Swap rates are expressed in annualized variance units. To
compute the autocorrelation function, I create multiple overlapping monthly samples, compute

the autocorrelation function for each sample, and then average across estimates.

The swap payoff can be replicated with a static portfolio of European options and a dy-

namic, self-financing position in the underlying and a bond. It follows that the price of

the option portfolio equals the variance swap rate. The proof is an extension of the classic

Breeden and Litzenberger [1978] result, which asserts that the second derivative of the

call price with respect to the strike price X equals the risk neutral density evaluated at X

and multiplied by the price of a risk-free bond6 (see Britten-Jones and Neuberger [2000],

Jiang and Tian [2005] and Carr and Wu [2009]). Using this replication result, which also

underlies the CBOE’s volatility index VIX, I compute synthetic variance swap rates for

various maturities (τ ’s in the notation above). Specifically, for each day of the sample,

I compute swap rates for all available option maturities and linearly interpolate them to

constant maturities from 1 to 12 months. Further details of the implementation are dis-

cussed in Appendix A.

The top panel of Figure 1.1 shows the daily time series of variance swap rates of maturities

of one and twelve months. Both series and very countercyclical and peak in the Fall

of 2008 after the collapse of Lehman Brothers. Further, the one-month swap rate is

both more volatile and less persistent than the 12-months swap rate. This feature is

illustrated further in Figure 1.2. Panel A shows standard deviation of variance swap rates

for maturities of 1, 2, ..., 12 months. The standard deviation falls monotonically in the

swap horizon. The high volatility of short maturity swaps indicates the presence of some

high-frequency shocks that partially average out at the longer horizons. Panel B shows

the autocorrelation function for maturities 1, 6, and 12 months, and for monthly lags up

6 ∂
2C(k)

∂k2
|k=X = e−rT fQ(X), where C(k) denotes the price of a call with strike k, r denotes the risk-free

rate, and T denotes the maturity of the option.
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to two years. The autocorrelation of all lags increases monotonically in the swap horizon.7

Further, the autocorrelation of all swap maturities declines very slowly with the lag length,

which reflects the well-known long-memory property of return variances (Ding, Granger,

and Engle [1993]). The slow decay indicates the presence of some low-frequency shocks

with very long-lasting effects. The model presented in this paper captures the dynamics

of variance swaps with a process for endowment variance that features shocks at different

time-scales.

1.2.3 The Variance Premium

Using the Euler equation, the τ -period variance swap rate can be decomposed into the

statistical expectation of realized variance and the variance premium8, i.e.

St(τ) = Et[RVt:t+τ ] +
Covt[Mt:t+τ , RVt:t+τ ]

Et[Mt:t+τ ]︸ ︷︷ ︸
variance premium

, (1.3)

where Mt:t+τ denotes a τ -period pricing kernel. Measuring the (conditional) variance pre-

mium empirically requires an estimate of both the variance swap rate and the conditional

expectation of realized variance. For the latter, I first compute a time series of monthly

realized variance estimates from tick-by-tick transaction data, and then I estimate a sim-

ple time series model based on the realized variance series (see, e.g. Andersen, Bollerslev,

Diebold, and Ebens [2001] and Andersen, Bollerslev, Diebold, and Labys [2003]). The dif-

ference between the one-month variance swap rate and the one-step-ahead forecast from

the time-series model serves as a proxy for the 1-month variance premium. Details are

contained in Appendix A. For comparability with previous studies, I express the variance

premium in monthly variance units.

The middle panel of Figure 1.1 shows the monthly time series of the variance premium,

which is positive in all but 2 out of 275 months in the sample. The mean variance premium

equals 11.29, which amounts to almost 40% of the average realized variance. The large

magnitude of the premium suggests that variance swaps provide a hedge for macroeconomic

7Using option data for 12 major international equity indices, Foresi and Wu [2005] document that short
term option prices (expressed as IVs) are both more volatile and less persistent than long term option
prices. These patterns are therefore a robust empirical feature of equity index options in that they hold
for both (synthetic) variance swap rates and simple implied volatilities.

8Note that, while the equity premium equals the difference between the physical and risk neutral
expectations of future returns, i.e. Et[Rt+1]−Rft = Et[Rt+1]−EQ

t [Rt+1], Equation 1.3 defines the variance
premium as the difference between the risk neutral and the physical expectations of future realized variance,
i.e. St(1)−Et[RVt:t+1] = EQ

t [RVt:t+1]−Et[RVt:t+1]. I use this ”reversed” definition because it makes the
variance premium positive and because it corresponds to the convention in most of the previous literature.
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Table 1.1: The Variance Premium and Expected Returns

Horizon (in m) 1 3 6

β̂ 0.89 0.88 0.65
t-statistic 2.10 4.10 3.29
R2 (%) 2.53 6.49 6.52

Table 1.1 presents return predictability regressions. Excess returns of horizons 1, 3, and 6 months are
regressed on the one-month variance premium. Regressions with horizons > 1 month use overlapping data.
T-statistics are Newey and West [1987] (HAC) adjusted using 2 ∗ (h− 1) lags.

risks. In other words, the market variance correlates positively with investors’ marginal

utility (see Equation 1.3).

Table 1.1 show predictability regressions for excess returns, which I measure as the differ-

ence between the value-weighted CRSP return and the yield of a 30 day Treasury bill. The

variance premium can account for 2.5% of the return variation at the monthly horizon,

and for about 6.5% at horizons of 3 and 6 months. Compared to other known predictors,

these magnitudes are quite large for the short time horizons. Thus, the equity premium

and the variance premium appear to share common factors. The model in this paper

captures this co-movement via time-variation in effective risk aversion, which results from

the interaction of GDA risk preferences and a persistent process for endowment variance.

1.2.4 The Implied Volatility Smirk

Throughout the paper, I express option prices in terms of Black-Scholes implied volatil-

ities (IVs) and I graph them against standardized moneyness. I measure standardized

moneyness as

standardized moneyness =
ln(X/St)√
St(τ)/τ

,

where X denotes the option’s strike price and St the underlying’s price. The division by√
St(τ)/τ converts moneyness (ln(X/St)) to standard deviation units. This standardiza-

tion allows for an easy comparison of the IV curve across option maturities.9 A standard-

ized moneyness of −1 is equivalent to a one standard deviation drop in the stock price.

I interpolate observed IVs to a fixed grid of standardized moneyness from −2 to 1 and

maturities from 1 to 12 months. The bounds of the grids are chosen such that it is covered

by liquid options on most days in the sample. As before, details are discussed in Appendix

9Many papers graph IVs against simple moneyness (ln(X/St)). This is helpful for comparing the IV
curve across different points in time. On the other hand, it makes it more challenging to compare it across
option maturities. For example, if one considers a moneyness range of [−10%,+10%], the endpoints of this
range correspond to fairly extreme price moves at the monthly horizon, but to much more common moves
at the annual horizon. I follow Carr and Wu [2003] and Foresi and Wu [2005] in using a standardized
moneyness measure.
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Figure 1.3: The Implied Volatility Smirk, 1990-2012
Figure 1.3 shows average (Black-Scholes) implied volatilities as a function of the options’ relative

moneyness. The sample is daily and spans 1990-2012.

A.

Figure 1.3 shows the IV curve for option maturities of 1, 6, and 12 months. According

to the Black-Scholes model, IVs across all strikes and maturities should be equal to the

volatility of the underlying asset. In the data, IVs are considerably higher for low strikes

(for low values of standardized moneyness). Additionally, the figure shows that both the

level and the slope of the IV smirk are increasing in maturity. This fact is well-known –

see e.g. Foresi and Wu [2005], who show that the same pattern holds for 12 major interna-

tional equity markets. Deviations from log-normality (in the risk-neutral distribution) are

therefore more severe at longer horizons. The model presented in this paper captures the

smirk via the interaction of GDA risk preferences and a multifractal process for cash flow

volatility, which results in a high price for tail risks and large conditional return skewness.

1.3 Model

1.3.1 The Economy

Preferences. Following Epstein and Zin [1989], the representative agent’s time t utility,

Vt, is given by the constant elasticity of substitution recursion

Vt = [(1− β)Cρt + βµρt ]
1
ρ . (1.4)
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The parameters β and ρ capture time preferences, whereas the function µt ≡ µt(Vt+1)

captures risk preferences. µt equals the certainty equivalent of random future utility using

the time t conditional probability distribution. I omit the argument for notational conve-

nience. The certainty equivalent features Generalized Disappointment Aversion (GDA) as

in Routledge and Zin [2010] (hereafter RZ), and it is defined by the implicit function

u(µt) = Et

[
u(Vt+1)

]
− θEt

[(
u(δµt)− u(Vt+1)

)
1{Vt+1 ≤ δµt}

]
, (1.5)

where

u(x) =


xα

α for α ≤ 1, α 6= 0

log(x) for α = 0
, (1.6)

and where 1{·} denotes the indicator function. Equation 1.5 nests two well-known pref-

erence specifications as special cases. First, for θ = 0 the second term drops out and risk

preferences simplify to expected utility (hereafter EU). In this case, the certainty equiva-

lent is given by the explicit function µt = (Et[V
α
t+1])

1
α (or µt = elog(Vt+1) for α = 0) and the

utility function equals the Epstein-Zin specification used in Bansal and Yaron [2004]. Sec-

ond, for δ = 1 and θ 6= 0 risk preferences simplify to Gul’s (1991) model of disappointment

aversion (hereafter DA).10 In this case, all outcomes that fall below the certainty equiva-

lent are considered disappointing and receive a penalty. The magnitude of the penalty is

governed by the parameter θ. GDA preferences, which represent the most general version

of Equation 1.5 (θ 6= 0 and δ 6= 0), place the disappointment threshold further into the tail

of the (conditional) distribution of Vt+1. In particular, only realizations of Vt+1 that fall

below a fraction δ of the certainty equivalent µt are considered disappointing. In Sections

3.4 and 1.5, I use the nested cases to highlight why GDA is needed for realistic option prices.

RZ show that the solution to the representative agent’s portfolio optimization problem

yields the pricing kernel

Mt+1 = β

(
Ct+1

Ct

)ρ−1(Vt+1

µt

)α−ρ( 1 + θ1 {Vt+1 ≤ δµt}
1 + δαθ1Et [1 {Vt+1 ≤ δµt}]

)
. (1.7)

Notice that for θ = 0, the last term cancels and the pricing kernel simplifies to EU, i.e.

the most common form of Epstein-Zin. Relative to that simpler case, the GDA pric-

ing kernel overweighs left tail outcomes. These outcomes (for which Vt+1 ≤ δµt) receive a

weight that is (1+θ) times as large as the weight for other outcomes (for which Vt+1 > δµt).

10The asset pricing implications of recursive utility with DA risk preferences have been analyzed by
Epstein and Zin [2001] in an endowment economy and by Campanale, Castro, and Clementi [2010] in a
production economy.
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Cash Flows. The log growth rates of consumption and dividends are given by

∆ct+1 =µ+ σtε
c
t+1

∆dt+1 =µ+ σtϕε
d
t+1

(1.8)

where µ is the mean growth rate, εc and εd are standard normals with correlation %,

and ϕ is a scaling factor that allows dividends to be more volatile than consumption.

Endowment variance follows the Markov Switching Multifractal (MSM) process of Calvet

and Fisher [2001, 2004], which allows for a large number of states while remaining tightly

parameterized. Specifically, σ2
t equals the product of several variance components (and a

constant), given by

σ2
t = σ2

K∏
k=1

Mk,t. (1.9)

For tractability, components are assumed to be mutually independent. Each of the K

variance componentsMk,t (M for multiplier) follows a two state Markov chain with state

space {1 − ν, 1 + ν}, which is identical for all components. The parameter ν ∈ (0, 1) de-

termines the high and low state. Since each component has two states, the Markov chain

for σ2
t has N = 2K states. However, due to the fact that all components share the same

state space, σ2
t can only take on K + 1 different values.11 In the benchmark calibration I

set K = 6, so that there are 64 states and 7 possible variance values.

The heterogeneity between components lies in their persistence levels. The transition

matrix for the kth component is given by

Pk =

[
1− γk/2 γk/2

γk/2 1− γk/2

]
, (1.10)

i.e. it is completely characterized by one parameter. To prevent the number of parameters

from growing with the number of variance components (K), the parameters are modeled

via the recursion

γk = 1− (1− γk−1)b, (1.11)

where γ1 ∈ (0, 1) and b ∈ (1,∞). Variance components with a higher index have higher

γ’s and are therefore less persistent. The three parameters (ν, γ1, b) control the volatility

and persistence levels of all components, regardless of how many components there are.12

Since the transition matrices are symmetric, each component is equally likely to be in

11The possible values of σ2
t are given by σ2(1−ν)0(1 +ν)K , σ2(1−ν)1(1 +ν)K−1, ...,σ2(1−ν)K(1 +ν)0,

i.e. between 0 and K components in the low state and the others in the high state
12All else equal, increasing ν makes the high and low states more heterogeneous, which increases the

volatility of σ2
t . Increasing γ1 makes each component less persistent (by increasing γk for al k), thereby

making σ2
t less persistent. Increasing b leads to a faster growth rate between γk’s, i.e. the persistence level
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the high and low state in the long run, so that E[Mk,t] = 1
2(1 − ν) + 1

2(1 + ν) = 1 for

all k. The assumed independence between components therefore implies that E[σ2
t ] =

σ2
∏K
k=1E[Mk,t] = σ2, so that the parameter σ2 controls the mean of the process.

Discussion. I briefly discuss the determinants of a disappointing outcome. Note that the

disappointment event Vt+1 ≤ δµt can be written as

∆ct+1 + log

(
λVt+1

λVt

)
≤ log

(
δµt
Vt

)
, (1.12)

where λVt = Vt/Ct equals the utility-consumption ratio. The state of the volatility process

affects the two terms on the LHS in opposite ways. All else equal, when volatility com-

ponent Mk,t is currently in its high state, the conditional consumption growth volatility

σt is also higher. This increases the disappointment probability because it increases the

likelihood of low ∆ct+1-values. On the other hand,Mk,t being in its high state also implies

the possibility that it switches to its low state, which in turn results in a positive jump

in log
(
λVt+1

λVt

)
(volatility carries a negative price of risk). This possibility decreases the

disappointment probability. Clearly, which effect dominates is a quantitative question.

I show in Section 1.4.5 that the former channel prevails in my calibration, so that the

conditional disappointment probability is increasing in the level of endowment volatility.

Lastly, fluctuations in σt may also induce time-variation in the relative disappointment

threshold on the RHS. However, I find that this variation is quantitatively negligible for a

wide range of preference parameters and endowment processes.13

1.3.2 Solution

The model solution is exact, i.e. it does not rely on any log-linear approximations. It is

characterized by a set of N × 1 vectors that contain the values of the endogenous objects

for each of the model’s N states. All asset prices in the model can be expressed as simple

matrix products, and the associated matrices can be computed in closed-form. Because

these derivations are algebraically involved, I defer them to Appendices B and C. In the

remainder of this section, I define asset prices and show the form of the associated matrix

products.

declines faster when moving to a higher k. This makes components more heterogeneous, and it also makes
σ2
t less persistent.
13In the benchmark calibration of Section 3.4, the RHS is equal to −0.0369 up to four decimals in all

states. Numerically, I find that the relative threshold is also close to being constant for different calibrations
of the model in Routledge and Zin [2010] (who model consumption growth as a 2-state Markov chain), as
well as a version of the present model for which endowment variance is described by an AR(1) in logs.
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Notation. Denote the transition matrix of the Markov chain for σt by P and the cumu-

lative distribution function of a standard normal by Φ(·). Let � denote the Hadamard

(element-wise) matrix product and let ιN and 1N denote a N × 1 vector of ones and a

N ×N matrix of ones respectively.

Pricing Kernel. Denote the utility-consumption and certainty equivalent-consumption

ratios by λVt ≡ Vt/Ct and λµt ≡ µt/Ct. Like all endogenous objects in the model, each of

these ratios can take on N different values. The appendix shows how to express the value

function (Equation 1.4) and the certainty equivalent (Equation 1.5) in terms of λVt , λµt ,

and εct+1. Following the approach of Bonomo, Garcia, Meddahi, and Tedongap [2011], I

integrate out εct+1, so that the remaining system consists of 2N (nonlinear) equations in 2N

unknowns. The solution has to be found numerically. However, this is fast, even for large

values of N ,14 and a solution is guaranteed to exist as long as the period utility function

u(·) is continuous. The ratios λVt and λµt can be used to re-write the disappointment event

as

Vt+1 ≤ δµt ⇔
λVt+1

λµt
e∆ct+1 ≤ δ ⇔ εct+1 ≤

log
(
δλµt
λVt+1

)
− µ

σct
≡ φct+1, (1.13)

where I have defined the disappointment threshold φct+1. After some simple algebra, Mt+1

can be expressed as

Mt+1 = βe(α−1)∆ct+1

(
λVt+1

λµt

)α−ρ(
1 + θ1{εct+1 ≤ φct+1}
1 + δαθEt[Φ

(
φct+1

)
]

)
, (1.14)

which is a known function of the Markovian state (and εct+1). The pricing kernel can now

be used to solve for asset prices via the Euler equation.

Risk-free Bonds. The price of a risk-free 1-period zero coupon bond, given by

Bt(1) ≡ Et[Mt+1],

can be computed in vector form as

B(1) = (P �Ab) · ιN ,

where the N ×N matrix Ab is defined in the appendix. To compute multi-period variance

swap rates, one also needs the price of multi-period bonds. The price of a τ -period zero

14On a Windows machine with 12GB RAM and an Intel I7-X980 chip, computing the solution takes less
than a second for N = 26 = 64 states and about 25 seconds for N = 28 = 1024 states.
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can be computed recursively in vector form as

B(τ) = (P �Ab) · B(τ − 1).

Equity. Denote the price of the dividend claim (equity) by St. The price-dividend ratio,

given by

λdt ≡
St
Dt

= Et

[
Mt+1

St+1 +Dt+1

Dt

]
,

can be computed in vector form as

λd = (IN − P �Ad)−1 · (P �Ad) · ιN ,

where the N ×N matrix Ad is defined in the appendix.

Variance Swap Rates and Variance Premium. Let rt+1 = log
(
St+1

St

)
denote the log

ex-dividend return. The τ -period variance swap rate equals the risk-neutral expectation

of future realized variance, i.e.

Vt(τ) ≡ EQt

[
τ∑
h=1

r2
t+h

]
= Et

[
Mt+τ

τ∑
h=1

r2
t+h

]
Bt(τ)−1.

The 1-period swap rate can be computed in vector form as

V(1) = (P �Aν) · ιN ,

where the N × N matrix Aν is defined in the appendix. The τ -period swap rate can be

computed in vector form as

V(τ) = B(τ)−1 �
τ∑
h=1

V(h, τ),

where

• with a slight abuse of notation, B(τ)−1 denotes the element-wise inverse of the vector

containing τ -period bond prices.

• V(1, 1) ≡ V(1) equals the 1-period swap rate.

• V(1, τ) = (P �Aν) · B(τ − 1) for τ > 1.

• V(h, τ) = (P �Ab) · V(h− 1, τ − 1) for h > 1 and τ > 1.
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The (1-month) variance premium is defined as the difference between the one month

variance swap rate and the analogous expectation under the physical measure, i.e. V Pt =

EQt
[∑τ

h=1 r
2
t+h

]
− EPt

[∑τ
h=1 r

2
t+h

]
.

Call Options. The (relative) price of a 1-period call option with strike price X and

moneyness K ≡ X
St

is given by

Ct(1,K) ≡ 1

St
× Et [Mt+1 max (0, St+1 −X)] = Et [Mt+1 max (0, ert+1 −K)] .

It can be computed in vector form as

C(1,K) = (P �Ac(K)) · ιN ,

where the N ×N matrix Ac(K), which is a function of the option’s moneyness, is defined

in the appendix. The price of a τ -period call equals

Ct(τ,K) ≡ Et

[(
τ∏
h=1

Mt+h

)
max

(
0, exp

(
τ∑
h=1

rt+h

)
−K

)]
.

Because the max-operator cannot be factored into τ single-period terms, the expectation

cannot be evaluated recursively. More importantly, the expectation for a τ -period option

involves N τ possible paths for the Markov chain, so that an analytical solution becomes

quickly intractable as τ grows. I therefore compute multi-period option prices via Monte

Carlo simulation. Specifically, starting from each of the N states, I simulate 100 million

paths of both the Markov chain and (εc, εd), use them to compute the pricing kernel and

the option payoff, and evaluate the expectation in the associated Euler equation as the

average across paths.15 To convert model-based option prices into Black-Scholes implied

volatilities, I use the model-implied interest rate and dividend-yield.

1.3.3 Small Sample Statistics

In the remainder of the paper, I produce small sample statistics for different model cal-

ibrations and compare them to the data. Specifically, I simulate 100, 000 samples of the

same length as the data, compute the statistic of interest in each sample, and report the

median value. For statistics that appear in tables (rather than figures), a model-based

90% confidence interval is reported in addition. The longest available dataset for cash

flow and standard asset pricing moments is annual and spans 83 years (= 996 months).

15I repeated this procedure for different seeds of the random number generator to ensure that the Monte
Carlo error is negligible given the number of paths.
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The option data spans 23 years (= 276 months). All model-based calibration results are

based on small samples whose lengths match these empirical counterparts.

In constructing annualized moments, I closely follow Beeler and Campbell [2012] and

Bansal, Kiku, and Yaron [2012]. Consumption and dividend growth rates are computed

by adding twelve monthly consumption and dividend levels, and then taking the growth

rate of the sum. Annual log stock returns are the sum of monthly values, while log

price-dividend ratios use prices measured from the last month of the year. Because the

price-dividend ratio in the data divides by the previous year’s dividends, I multiply the

price-dividend ratio in the model by the dividend in that month and divide by the dividends

over the previous year. The annual risk-free rate is the sum of the four quarterly risk-free

rates within a year.

1.4 Results

1.4.1 Calibration

I calibrate the model at the monthly frequency. All calibration targets equal small sample

medians. The parameters µ and σ2 are chosen to match the mean and volatility of annual

consumption growth, ϕ is set to match the volatility of annual dividend growth, and %

is set to match the correlation between the two endowments. The parameters governing

the volatility and persistence of the endowment variance (ν, γK , b) naturally have a large

effect on the dynamics of the conditional return variance, which are in turn reflected in

the dynamics of variance swap rates. I calibrate them to match as good as possible the

volatilities and autocorrelation functions of variance swaps with different maturities.16 I

use K = 6 variance components in the MSM process. The calibration implies a first-order

autocorrelation of 0.82 for σt, with persistence levels that range from 0.5 to 0.994 for the

individual components. Given a time-discount factor of β = 0.961/12, I set ρ to match the

mean risk-free rate. The implied elasticity of intertemporal substitution equals ρ−1 = 0.49.

Lastly, the GDA parameters θ and δ are chosen jointly to match the equity premium and

the variance premium. I refer to the full model as the GDA-MSM model.

16I find that preference parameters have a negligible effect on the autocorrelations of variance swap
rates (see Section 1.4.6). This theoretical finding agrees with the empirical fact that both the physical
return variance and variance swap rates (which represent a form of risk-neutral variance) display similar
long-memory behavior.
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Table 1.2: Calibrations

GDA-MSM β ρ θ δ α

0.96
1
12 0.49−1 43.2 0.9625 0

σ2 ν γK b µ % ϕ

0.0082 0.33 0.5 2.6 0.015 0.53 5.2

EU-MSM β ρ θ δ α

0.96
1
12 0.353−1 0 − −18.38

σ2 ν γK b µ % ϕ

0.0082 0.33 0.5 2.6 0.015 0.53 5.2

GDA-AR1 β ρ θ δ α

0.96
1
12 0.687−1 13.44 0.927 0

E[σ2
t ] std[σ2

t ] AC1[σ2
t ] µ % ϕ

6.30×
10−3

5.78×
10−3

0.98 0.015 0.53 5.2

Table 1.2 reports the configuration of investors’ preferences and the time-series parameters that describe
the endowment process. The model is calibrated at a monthly decision interval.

In order to illustrate the role of the two main model components, I also show results for

two alternative economies. First, The EU-MSM model consists of the MSM endowment

(calibrated as in the benchmark model) and recursive utility with expected utility risk

preferences. I set β = 0.961/12 and choose ρ to match the mean risk-free rate. The

curvature parameter α is chosen to match the average equity premium. Second, the

GDA-AR1 model combines GDA preferences with an AR(1) process for log endowment

variance17. To fit the process into the Markov switching environment, I discretize it with

the method of Rouwenhorst [1995]. I use 51 states and calibrate the process to a first-order

autocorrelation of 0.98. The mean of σ2
t is chosen to match the mean volatility of annual

consumption growth and the volatility of σ2
t is set to the same value as in the other two

economies. All three calibrations are summarized in Table 1.2.

1.4.2 Cash Flows

The top panel of Table 1.3 shows moments of annual cash flows. Except for the mean of

dividend growth, the models are calibrated to match the first two endowment moments

17Note that the long run risks literature typically models cash flow volatility as an AR(1) in levels rather
than in logs. The log specification has the advantage that volatility cannot become negative. Additionally,
it allows for a cleaner comparison with the multifractal process, whose unconditional distribution is right-
skewed and resembles that of a log normal distribution.
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exactly. I follow the convention in the previous literature of assuming that consumption

and dividend growth have the same mean. The fact that cash flows are modeled without

time-variation in conditional means implies that their first-order autocorrelations are close

to the ones of a time-aggregated continuous-time random walk, which equals 0.25 (see

Working [1960]). The Table shows this is a good approximation for dividend growth rates,

whose empirical autocorrelation of 0.2 is close to the median model estimate of 0.23 in all

three economies. Only the autocorrelation of consumption growth falls slightly out of the

model-implied 90% confidence interval.

1.4.3 Basic Asset Prices

The middle panel of Table 1.3 presents the model implications for annual asset pricing

moments. All three models are calibrated to match the equity premium and the risk-free

rate exactly. For both GDA models, the volatility of returns falls inside the model-implied

90% confidence interval, whereas the volatility is too low in the EU model. The reason is

that the time-varying risk aversion generated by GDA results in more variability in the

equity premium and therefore more volatile returns. The effect of GDA shows up even

stronger in the volatility of the risk-free rate. With EU preferences, there is little time-

variation in the conditional mean of the pricing kernel and rft displays much less volatility

than in the data. The upper end of the EU-MSM confidence interval equals 0.51, which is

less than a fifth of the data value. In contrast, the risk free rate volatility of 1.88% in the

benchmark model is close to its data counterpart, which comfortably falls in the model-

based confidence interval. In the GDA-AR1 model, the risk-free rate is twice as volatile as

in the data, which shows that the slow-moving nature of the AR(1) process results in too

much time-variation in the conditional mean of Mt when combined with GDA preferences.

Lastly, all three models are successful at replicating the high mean and persistence of the

log price-dividend ratio, but fall somewhat short of matching its volatility.

Because the main goal of my paper is to explain features of index options, it appears

important to ensure that the model’s implications for the quantity of tail risk are not

counterfactual. The Table shows that the kurtosis of both annual and monthly returns in

the GDA-MSM model are very close to their data counterparts. At the 1 month horizon,

the kurtosis equals 8.37 in the model and 9.45 in the data. At the 12 month horizon, the

value falls to 3.77 in the model and 3.54 in the data. The model therefore successfully

replicates the non-normality of short-horizon returns and the fact that this feature con-

siderably weakens at longer horizons. A comparison with the EU-MSM model shows that

part of the kurtosis in monthly returns stems from the large weight that GDA places on

tail outcomes. In particular, GDA generates larger price jumps in response to changes in

endowment volatility, i.e. more volatility feedback. I discuss this channel in more detail

in Section 1.4.5, where I explicitly compute tail probabilities in all three models.
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Figure 1.4: Returns and Disappointments
Figure 1.4 shows the unconditional density of monthly ex-dividend log returns (dashed line, right
axis), as well the the probability of disappointment conditional on a given return (solid line, left

axis).

1.4.4 Variance Premium

The bottom panel of Table 1.3 shows moments of the 1-month variance premium. Both

GDA models are calibrated to match the average variance premium exactly. The same

is not possible for the EU model18, whose sole risk preference parameter (α) was chosen

to match the equity premium. To illustrate the source of the variance premium in the

GDA models, it is helpful to consider the relationship between returns and the proba-

bility of disappointments. Equation 1.12 showed that disappointments are caused by a

combination of negative innovations in consumption growth and positive innovations in

endowment volatility. Because consumption and dividend growth share the same volatility

process as well as (imperfectly) correlated innovations, disappointments tend to coincide

with negative returns. This is illustrated in Figure 1.4, which shows the unconditional re-

turn distribution (dashed line, right axis) along with the probability of a disappointment

conditional on a given return (solid line, left axis), both for the GDA-MSM model19. It

is clear that the lower a given return, the higher the chance that it is associated with a

disappointment. Because strongly negative returns also result in a large realized variance

(large payoffs to variance swaps), variance swaps embed a large insurance premium.

18Drechsler and Yaron [2011] present a model with EU risk preferences that does match both the equity
premium and the variance premium. Whereas the present model features jumps in the conditional variances
of cash flows (due to the discrete nature of the Markov chain), their model additionally assumes jumps
in the conditional means of cash flows. Jumps have a larger effect on the variance premium than on the
equity premium because the return variance is convex in returns. Drechsler and Yaron are thus able to
match both risk premia by assuming a lower curvature parameter of α = −8.5 (vs. −18.38 in the present
EU model) and considerably more jump risk.

19The plot looks very similar for the GDA-AR1 model.
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Figure 1.5: Implied Volatility Smirk
Figure 3.1 shows average (Black-Scholes) implied volatilities for option maturities of 1 and 12
months, and relative moneyness of -2 to 1. Volatilities are expressed in annualized percentage
units. The top row shows results for the benchmark model (GDA-MSM), whereas the bottom
panel shows results for the EU-MSM and GDA-AR1 models. Small-sample model statistics are
computed from 100, 000 samples whose length equals that of the data – see Section 1.3.3. The

sample spans 1990-2012.

1.4.5 Option Prices

Figure 3.1 shows the empirical and model-based implied volatility (IV) curve for 1-month

(left column) and 12-month (right column) maturities. The full model (top rows) provides

a very good match for the empirical IV curve. At the 1-month maturity, options with a

relative moneyness of −2 have an IV of about 26.0%, both in the model and in the data.

At-the-money options have an IV of 17% in the model, close to the data value of 18%.

At the 12-month maturity, the GDA-MSM model provides a similarly good match for the

data, replicating the higher level of the curve relative to the shorter maturity. It is worth

emphasizing that the IV curve did not serve as a calibration target for the model.

The bottom row of Figure 3.1 shows the IV curve for the two alternative economies. The
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Figure 1.6: Conditional 1-Month Implied Volatility Smirk
Figure 1.6 shows the implied volatility smirk conditional on values of the endowment variance
σt. Volatilities are expressed in annualized percentage units. Each plot shows the IV curve at

the 10th, 50th, and 90th percentile of σt for a different model.

EU-MSM model (dotted lines) implies a slight smirk, but its level and slope fall short

of the data counterparts for both maturities. Nevertheless, it is noteworthy that the EU

model can produce a smirk at all because Benzoni, Collin-Dufresne, and Goldstein [2011]

have shown that the IV curve is almost exactly horizontal in the basic long run risks

(LRR) model. The LRR model is based on the same utility function but an autoregres-

sive process for endowment variance. Average option prices therefore seem to support the

presence of multifractal variance risks in cash flows. The GDA-AR1 model (dash-dotted

lines) provides a good match for the level of the IV curve at both maturities, which was

expected from the fact that the model matches the average variance premium. The model

is further capable of matching the steep slope of the IV curve at the annual maturity, but

it produces a curve that is too flat at the 1-month maturity.

To understand why the full model is able to replicate the smirk, I plot conditional IV

curves. Figure 1.6 shows 1-month implied volatilities, conditional on different percentiles
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of the endowment volatility σt.
20 In the GDA-MSM model (top-left panel), the curve has

a noticeably negative slope at the 10th, 50th, and 90th percentiles of σt. The steep uncon-

ditional IV curve therefore results from the fact that the curve is relatively steep in most

states. This is an attractive feature of the model because the slope of the curve is nearly

always significantly positive in the data (see Figure 1.1). In contrast to the benchmark

model, the slope of the IV curve becomes flat for certain regions of σt in both alternative

economies. In the EU-MSM model (top-right panel), the slope is negative when endow-

ment volatility is low but close to zero when it is high. In the GDA-AR1 model (bottom

panel), the conditional slopes behave in the exact opposite way, being strongly negative

when endowment volatility is high but close to zero when it is low. These differences can

be explained by time-variation in the conditional disappointment probability as well as

time-variation in the distribution of (endogenous) return jumps, which in turn result from

changes in σt.

In what follows, I show that (1) in the two models with GDA preferences, the smirk is

steep for high values of σt due to a high conditional disappointment probability and (2)

in the two models with MSM volatility, the smirk is steep when volatility is low due to

a high probability of large negative returns. To quantify the effect of the two channels,

Table 1.4 shows conditional return moments and conditional tail probabilities under both

the statistical measure (P) and the risk-neutral measure (Q).21 As in Figure 1.6, all num-

bers are conditional on percentiles of σt (I omit the 50th percentile to save space). For

comparability with the IV plots, I express tail thresholds in standard deviation units.

States of low endowment volatility. Notice from Table 1.4 that when volatility is at

its 10th percentile, the return distribution in the two MSM models is strongly left-skewed

and leptokurtic under P. In the benchmark model, the conditional skewness (kurtosis)

equals −2.57 (23.51) whereas it equals −2.05 (23.39) in the EU-MSM model. The higher

moments are also reflected in a considerably larger probability of left tail outcomes rela-

tive to right tail outcomes in both models. For example, in the GDA-MSM (EU-MSM)

model, there is a chance of 1.78% (1.22%) of observing a return of less than minus two

standard deviations but only a chance of 0.34% (0.28%) of observing a return of more

than plus two standard deviations. In contrast, the conditional return distribution in the

GDA-AR1 model is close to normal with a skewness of −0.08 and a kurtosis of 3.13. The

left-skewness in the MSM models results from mean reversion in endowment volatility:

20In the MSM models, σt only takes on K + 1 = 7 different values (with different probabilities). The
10th percentile is given by the states in which exactly one component is in its high state. The IV curve at
the 10th percentile of σt equals the mean curve across these states. The curve is computed similarly at the
other two percentiles.

21The risk neutral density can be computed from call prices using the result of Breeden and Litzenberger
[1978], who show that it equals the second derivative of the call price with respect to the strike price,
divided by the price of a risk-free bond of equal maturity. I compute call prices on a fine grid of strikes
and compute the second derivative via finite differences.
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Table 1.4: Conditional Moments and Tail Probabilities

Model σt-pct Dist. Moments Tail Probabilities

std skew kurt < −3 < −2 > 2 > 3

GDA-MSM 10 P 2.63 −2.57 23.51 1.29 1.78 0.34 0.17
Q 2.91 −3.57 34.25 1.61 2.13 0.30 0.15

90 P 8.31 0.16 4.05 0.04 0.60 1.48 0.20
Q 11.12 −0.51 3.68 1.35 6.94 0.96 0.11

EU-MSM 10 P 2.33 −2.05 23.39 0.75 1.22 0.28 0.11
Q 2.93 −3.43 25.40 1.79 2.44 0.18 0.05

90 P 7.39 0.12 3.64 0.14 1.68 2.90 0.44
Q 7.43 −0.11 3.64 0.49 3.18 1.52 0.14

GDA-AR1 10 P 2.23 −0.08 3.13 0.22 2.56 1.92 0.13
Q 2.23 −0.08 3.14 0.24 2.74 1.82 0.12

90 P 9.93 −0.05 3.90 0.06 0.80 0.89 0.02
Q 13.57 −0.74 3.70 1.34 9.43 0.58 0.01

Table 1.4 shows conditional moments and tail probabilities of 1-month ex-dividend log returns for the
physical (P) and risk-neutral (Q) distributions. All quantities condition on a given percentile of the endow-
ment volatility σt. Returns are expressed in monthly percent, i.e. a standard deviation of 2.63 represents
2.63% per month. Return thresholds are measured in standard deviation units, where the square root of
the 1-month variance swap rate is used to measure the conditional standard deviation. Probabilities are
expressed in percent, i.e. 1.29 stands for 1.29%.

When σt increases as expected, it induces a decrease in the price dividend ratio and there-

fore a negative return. In particular, the less persistent volatility components in the MSM

models mean-revert fast enough to induce large negative return jumps and a conditional

return distribution that is strongly left-skewed at the 1-month horizon. In contrast, mean

reversion occurs too slowly in the GDA-AR1 model to have a significant effect on returns

over short horizons.22

For the risk neutral distribution (Q), the moments and tail probabilities at the 10th per-

centile of σt are similar to those under P in both GDA models. As one may guess from this

result, disappointment aversions plays a minor role in states with low endowment volatility.

The conditional disappointment probability only equals 0.0001% in the GDA-MSM model

and it essentially equals zero in the GDA-AR1 model. The fact that the two MSM models

produce a large smirk in the low volatility states is therefore primarily a consequence of

the MSM process rather than the preference specification. Put differently, OTM puts are

expensive because there is relatively more left tail risk than right tail risk when volatility

is low. Insurance premia play a minor role in these states.

22At the annual return horizon, mean reversion has a stronger effect in the GDA-AR1 model, resulting
in conditional return skewness (kurtosis) of −0.44 (3.95). The higher skewness contributes to the model’s
ability to produce a reasonable IV curve for options with a 12-month maturity (see Figure 3.1). For
comparison, the skewness (kurtosis) of annual returns equals −0.79 (5.02) in the GDA-MSM model and
−0.58 (4.64) in the EU-MSM model, both conditional on σt being at its 10th percentile.
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States of high endowment volatility. Mean-reversion in volatility has the opposite

effect when σt is at its 90th percentile, resulting in positive rather than negative return

jumps on average. In both MSM models, the conditional return distribution is there-

fore slightly right-skewed under P. All else equal, right-skewness makes the smirk flat or

even increasing. However, in the two models with GDA preferences, high volatility states

are also associated with an increased disappointment probability. This probability equals

0.33% in the GDA-MSM model and 0.51% in the GDA-AR1 model.23 As a consequence,

the conditional return distribution is significantly left-skewed under the risk-neutral mea-

sure in both GDA models. Table 1.4 shows that the amplification of left tail probabilities

under Q is especially pronounced for the most extreme tails. For example, returns of −3

standard deviations or less are 1.35
0.04 ≈ 34 times as likely under Q than under P in the

GDA-MSM model and 1.34
0.06 ≈ 22 times as likely in the GDA-AR1 model. In contrast,

the ratio only equals 0.49
0.14 ≈ 4 in the EU-MSM model because an EU investor is much

less focused on tail events. The fact that the two GDA models produce a large smirk in

the high volatility states is therefore a consequence of the utility function rather than the

process for endowment variance. In other words, OTM puts are expensive because they

embed a large insurance premium when volatility is high.

Lastly, it is interesting to note that the results in Table 1.4 are broadly consistent with the

empirical findings of Bollerslev and Todorov [2011]. These authors look at nonparametric

estimates of tail probabilities under both measures and find that large negative returns

have a much higher probability under the risk neutral measure. GDA preferences represent

a possible explanation for this finding.

1.4.6 The Term Structure of Variance Swap Rates

Figure 1.7 presents moments of variance swap rates for maturities from 1 to 12 months.

Panel A shows the mean of swap rates as a function of the swap maturity. Longer-term

swaps have a slightly higher mean compared to short-term swaps, indicating the presence

of a term premium in swap rates.24 All three models can replicate this increasing pattern

in mean swap rates, but only the GDA models matches their level. The level is too low

in the EU-MSM model because both the variance premium (see Section 1.4.4) and the re-

turn volatility (see Table 1.3) fall below their respective data counterparts, whereas these

moments are matched well in the other two models.

23A comparison with the disappointment probabilities at the low σt percentile shows that the conditional
disappointment probability is increasing in the endowment variance. Recall from the discussion following
Equation 1.12 on page 14 that this conclusion was not clear ex ante because endowment volatility has two
opposing effects on the conditional disappointment probability.

24The (annualized) variance of realized returns is very close to constant across return horizons, both in
the data and in the two models. The term premium in swap rates therefore arises due to higher variance
premia at longer return horizons.
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Figure 1.7: Moments of variance swap rates
Figure 1.7 shows moments of variance swap rates with maturities between 1 to 12 months. Small-
sample model statistics are computed as discussed in Section 1.3.3. The sample spans 1990-2012.

The remaining panels of Figure 1.7 illustrate the volatility and persistence of swaps with

different maturities. Panels B and C show the volatility and first-order autocorrelation of

swap rates as a function of the swap maturity, whereas Panel D shows the autocorrelation

function of 1-month swap rates. These moments served as a calibration target for the

parameters controlling the volatility and persistence of the MSM endowment variance,

i.e. (ν, γK , b). Both MSM models are able to replicate the higher volatility and lower

persistence of short term swaps, as well as the long-memory behavior reflected in the au-

tocorrelation function. The GDA-MSM model is additionally able to replicate the high

level of the volatility because its state-dependent risk aversion induces time-variation in

the variance premium, which makes swap rates more volatile. The same is not true for

the EU model. As I will discuss in the next section, this feature of the GDA model also

endows the variance premium with large predictive power for excess returns.

The success of the MSM models in replicating moments of the term structure of swap rates

is due to the presence of both high-frequency and low-frequency shocks in the variance

process. The less persistent shocks increase the volatility of variance over short horizons
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but they average out over longer horizons, making the long end of the term structure

less volatile and more persistent. Calvet and Fisher [2004] have previously shown that

the MSM process exhibits an autocorrelation structure that mimics the one of a long

memory process. While this is a feature of the endowment variance, it is inherited by

the endogenously determined variance swap rates in the present model. In contrast, the

GDA-AR1 model relies on a single shock frequency and therefore it cannot match the

dynamics of variance swap rates.

1.4.7 Return Predictability

The data section highlighted that the variance premium has high predictive power for ex-

cess returns over horizons of a few month. The top panel of Table 1.5 shows the results of

running the same regressions on simulated model data. I report the slope coefficients and

R2s for predictive regressions of log excess returns on the (one-month) variance premium

for return horizons of one, three and six months. As in the data, the GDA-MSM model-

based slope coefficients are falling in the return horizon and the R2s are quite large for the

short horizons. Further, all median model estimates are close to their data counterparts.

In the EU-MSM model, the median slope estimates and R2s fall considerably below the

data values because the model does not generate time-variation in effective risk aversion.

On the other hand, the GDA-AR1 model implies considerably too much predictability,

producing R2s that exceed their data counterparts by a factor of 3 to 5. The large degree

of predictability results from too much time-variation in the conditional disappointment

probability, which also showed up in the very high volatility of the risk-free rate (see Table

1.3) and the an IV smirk that is extremely steep in high volatility states but essentially

flat in low volatility states (see Figure 1.6).

In addition to the short-horizon predictive power of the variance premium, it is well-

known that the price-dividend ratio has high predictive power over horizons that span

several years. In the bottom panel of Table 1.5, I report the results of regressing excess

returns of horizons one, three and five years on the log price-dividend ratio. As in the

data, the price dividend ratio in the GDA-MSM model has large predictive power for ex-

cess returns. The median R2s in the model rise from 6.3% at the annual horizon to 14.5%

at the 5-year horizon. The EU-MSM model produces substantially less predictability. In

particular, the median R2 equals 1.5% at the 1-year horizon and it only rises to 5.2%

at the 5-year horizon. These numbers are very similar to the ones implied by the long

run risks model of Bansal, Kiku, and Yaron [2012], which is based on the same utility

function. On the other hand, the GDA-AR1 model once again produces considerably too

much predictability. For example, the median R2 of 21.82% at the 1-year horizon exceeds

its data counterpart by a factor of six.
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An interesting aspect of the results in Table 1.5 is that the variance premium and the

price-dividend ratio differ in terms of their ability to predict returns over different hori-

zons. The variance premium is a successful predictor over short horizons (it produces a

R2 of 6.4% at the quarterly horizon in the GDA-MSM model), whereas the price-dividend

ratio works better at longer horizon (it produces a R2 of 6.3% at the annual horizon). The

model successfully captures this challenging dimension of the data because it incorporates

variance shocks with different persistence levels. As discussed above, an increase in en-

dowment variance leads to an increase in the probability of disappointments and higher

expected returns. However, the nature of this effect differs substantially across variance

components. This is illustrated in Figure 1.8, which shows expected 1-month returns at

different horizons conditional on one of the multipliers being in its high state. The panels

differ in terms of the multipliers being considered. Conditional on the most persistent

component being in its high state, returns are expected to be high over a long horizon

(top-left panel). On the other hand, expected returns only increase over a short horizon

conditional on the least persistent component being in its high state (bottom-right panel).

How do these differences help in reconciling the differences in the predictive ability of the

variance premium and the price-dividend ratio? Because the price-dividend ratio reflects

the riskiness of cash flows over the long-run, it is strongly affected by persistent shocks and

much less strongly affected by transient shocks. Specifically, the log price-dividend ratio

equals 3.11 conditional on component 1 being high and 3.33 conditional on component 1

being low. On the contrary, it only changes from 3.22 to 3.23 when conditioning on the

most transient component (component 6) being high rather than low. Because changes in

the price dividend ratio are mostly associated with changes in persistent variance compo-

nents, it is a better predictor over long horizons than over short horizons.

As the (one-month) variance premium equals the conditional covariance between realized

return volatility and the pricing kernel over the next month (see Equation 1.3), its value

depends more strongly on transient shocks than on persistent shocks. Specifically, the vari-

ance premium equals 11.99 conditional on component 1 being high and 11.53 conditional

on component 1 being low. In contrast, it changes from 15.70 to 7.82 when conditioning

on the most transient component (component 6) being high rather than low. The variance

premium is therefore a better predictor over short horizons than over long horizons.

Lastly, Figure 1.8 shows that GDA risk preferences increase the importance of transient

shocks relative to EU. For example, the intercept in the bottom-right panel (the expected

1-month return conditional on component 6 being in its high state) equals 6.87% the GDA

model but only 6.36% in the EU model. Relative to the unconditional expected return of

about 5.8%, transient shocks therefore increase the expected return by twice as much in
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Figure 1.8: Shock Frequencies and Expected Returns
Figure 1.8 shows the expectation of the (annualized) 1-month log return at time t+h conditional
on the kth variance component being in the high state at time t (not conditioning on values of the
other components). Component 1 has the highest persistence and component 6 has the lowest
persistence. Dash-dotted lines refer to the EU model whereas solid lines refer to the GDA model.

The unconditional mean return equals about 5.8% in both models.
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the GDA model than in the EU model. On the other hand, the most persistent variance

component affects expected returns equally for both preference specifications (top-left

panel).25

1.5 Additional Results

This section illustrates additional details about the model mechanism. First, I contrast

the option pricing implications of the GDA model with those of the two nested cases, i.e.

DA and EU risk preferences. Next, I quantify the risk aversion implied by different pref-

erence specifications and show explicitly that risk premia in the GDA-MSM model arise

predominantly from aversion against tail risk. The analysis further shows that GDA pref-

erences imply less risk aversion than both nested preference specifications when calibrated

to match the equity premium.

1.5.1 The degree of tail sensitivity and option prices

The main mechanism for matching option prices in the present model is the high aversion

toward tail risk implied by GDA preferences. In particular, risk aversion in the benchmark

calibration is almost entirely determined by disappointment aversion because the period

utility function, u(x) = log(x) has very little curvature. Furthermore, the disappointment

threshold is set to a relatively low value of δ = 0.9625, which implies an unconditional dis-

appointment probability of 0.075% or about once per century.26 This section investigates

the importance of these choices for quantitatively matching option prices.

I begin by considering the role of the low disappointment threshold. Relative to the nested

case of (pure) disappointment aversion (DA) risk preference, the GDA model shifts the

disappointment threshold further into the left tail of the distribution, thereby lowering the

probability of disappointment.27 In the first experiment, I show how the variance premium

and the implied volatility curve change as one gradually moves from a GDA calibration

with a low threshold parameter (δ = 0.95) to pure DA (δ = 1). I keep the curvature

parameter α fixed at the benchmark value of 0. To make the comparisons meaningful, I

25A recent paper by Dew-Becker, Giglio, Le, and Rodriquez [2013] shows that recursive utility with EU
risk preferences imply risk prices for low persistence shocks that are too low relative to what is implied
by variance swap rates. The higher price for such shocks under GDA preferences represents a potential
solution for this problem, and it likely contributes to the present model’s ability to capture the dynamics
of swap rates.

26It should be noted that, while disappointing outcomes are overweighted in the utility computation
ex-ante, the fact that an outcome is disappointing has no effect ex-post. In other words, events that fall
just below and just above the disappointment threshold are not associated with systematically different
changes in the price-dividend ratio or systematically different returns.

27DA preferences imply an unconditional disappointment probability of 39.7%, or about once per quarter
when calibrated to match the equity premium.
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simultaneously adjust the disappointment magnitude θ so that the model-implied equity

premium remains unchanged. In other words, I consider a set of economies that differ in

terms of their risk preference calibrations, but not in their ability to match the historically

observed equity premium. The left panel of Figure 1.9 shows the results. In all LHS

panels, the horizontal axis is identical and scaled to be in units of δ. The MSM endow-

ment calibration as well as the parameters controlling time preference are kept unchanged.

Panel A of Figure 1.9 shows that the average variance premium equals zero with DA pref-

erences (δ = 1). As δ is lowered, the variance premium increases and reaches the data value

of 11.29 at the benchmark disappointment threshold of 0.9625. The reason for this effect

is that the return variance is a convex function of the return itself, which implies that it

is predominantly determined by extreme values. As the disappointment threshold is low-

ered, the utility function puts increasingly more weight on a smaller set of left-tail events,

which are associated with large negative returns (see Section 1.4.4). Because variance

swaps have high payoffs in these states, lowering δ increases the risk premium associated

with them. Similar to the effect on the variance premium, both the level of the 1-month

implied volatility curve (Panel C) and its slope (Panel E) are much too low for the DA

model, increase as δ is lowered, and are close to their data counterparts for the benchmark

calibration.28 The level shift can be explained by the higher variance premium as well as

the fact that lower δ values lead to more volatility feedback and therefore a higher return

volatility. For example, the standard deviation of annual returns equals 14.7% for δ = 1

and it increases to 18.2% for δ = 0.95. The slope of the IV curve changes with the dis-

appointment threshold for a similar reason as the variance premium, i.e. as δ is lowered,

the agent’s focus shifts toward more extreme returns, which makes put options with low

strike prices particularly valuable.

In the second experiment, I illustrate the effect of changing the disappointment magnitude

θ, and I adjust the curvature parameter α to hold the equity premium constant. The

disappointment threshold δ is held fixed at the benchmark value of 0.9625. The results are

shown in the right column of Figure 1.9, where the horizontal axis is scaled to be in units

of θ. For α < 0, the period utility function equals u(x) = xα/α. The value θ = 0, shown

at the left end of the plots, corresponds to expected utility (EU) risk preferences, i.e. the

most popular version of Epstein-Zin.29 EU preferences imply a very low variance premium

(Panel B), as well as an implied volatility curve that is both too low (Panel D) and too

flat (Panel F) relative to the data. These results agree with those of previous studies

that investigate option prices in the long run risks framework. As the disappointment

magnitude is increased (and the curvature parameter lowered), risk aversion is increasingly

28I define the slope as the IV with a relative moneyness of −2 minus the at-the-money IV.
29The calibration is slightly different from the EU model in Section 3.4 because ρ is held fixed at the

benchmark GDA calibration rather than that of the EU model. This is done to ensure that the benchmark
GDA calibration appears among the considered cases.
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Figure 1.9: Tail Sensitivity of Preferences and Option Prices
Figure 1.9 shows how option-related moments change for different preference calibrations. All
considered parameter combinations (shown on the horizontal axis) imply a mean annual equity
premium equal to the historical average from 1930-2012. The graphs on the left consider changes
in the disappointment threshold δ and include pure disappointment aversion (δ = 1) as a special
case. The graphs on the right consider changes in the disappointment magnitude θ and include
expected utility risk preferences (θ = 0) as a special case. Solid (red) lines show model-implied
quantities, while dashed (black) lines show data equivalents. Panels A and B show the mean
variance premium, Panels C and D show the at-the-money implied volatility, and Panels E and F
show the steepness of the IV smirk, defined as the mean IV for options with a relative moneyness
of −2 minus the mean IV for at-the-money options. Model-implied statistics equal small sample

medians, computed as described in Section 1.3.3.



Chapter 1. Tails, Fears, and Equilibrium Option Prices 36

determined by aversion to tail outcomes, which moves all three statistics closer to their

data counterparts. Taken together, the results in this section illustrate that matching

average option prices clearly requires GDA preferences (δ < 1 and θ > 0).

1.5.2 The degree and nature of risk aversion of a GDA agent

What is the degree of effective risk aversion implied by the benchmark GDA calibration?

How does the answer compare to the one for the nested risk preference specifications of

pure disappointment aversion (DA) and expected utility (EU)? To answer these questions,

I conduct a welfare analysis in the spirit of Lucas [1987]. Consider the following thought

experiment. You are facing the consumption process described in Section 2.2 for t, t+1, ....

Parameter values are calibrated as shown in Table 1.2. How much would you pay to

eliminate the risk inherent in the consumption process? More precisely, suppose you were

offered to trade your current endowment for a consumption stream with the same current

level of consumption but no future shocks (so that ∆cs = µ for s = t + 1, t + 2, ...).

What is the maximum fraction of the mean consumption level that you would give up for

this trade? Denote this fraction by ∆t, and denote the value function evaluated at the

alternative endowment by V t. Then ∆t is defined by

∆t = 1− Vt

V t

= 1− λVt

λ
V
t

, (1.15)

where λVt = Vt/Ct and λ
V
t = V t/Ct. For the deterministic endowment, there is no time-

variation in the state, V t and µt grow at a constant rate of eµ, and nothing is disappointing.

Using these facts, the value function can be computed in closed form30, which allows me

to write Equation 1.15 as

∆t = 1− λVt
(

1− β
1− βeµρ

)− 1
ρ

. (1.16)

Note that ∆t depends on the state via λVt . Similarly, ∆t depends on risk preferences via

λVt . This latter fact allows me to use ∆t to compare the degree of risk aversion across

different risk preference calibrations. The results of this exercise are illustrated in Fig-

ure 1.10, where solid lines show the unconditional mean of ∆t (the dashed lines will be

discussed shortly). As in Section 1.5.1, all considered risk preference calibrations imply a

mean equity premium equal to the historical mean.

The left panel considers changes in the disappointment threshold (δ) in order to contrast

GDA with DA. The horizontal axis, which is identical to the one for the comparative

30Dividing the certainty equivalent (Equation 1.5) by Ct implies that λ
µ

= λ
V
eµ, which can be substi-

tuted into the value function (Equation 1.4) to yield λ
V

=
(

1−β
1−βeµρ

) 1
ρ

. Note that the value function is

time-invariant in this case because there is no time-variation in the state.
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Figure 1.10: Welfare measures
Figure 1.10 shows welfare measures for different risk preference calibrations. All considered
parameter combinations (shown on the horizontal axis) imply a mean annual equity premium
equal to the historical average from 1930-2012. The endowment and time-preference parameters

equal those of the benchmark GDA model calibration.

statics results in Figure 1.9, is scaled to be in units of δ. The equity premium is held

constant by adjusting the disappointment magnitude (θ) for each value of δ (the curvature

parameter α is held constant at the benchmark value of α = 0). The figure shows that

the degree of risk aversion, as measured by E[∆t], is monotonically and nearly linearly

increasing in δ. GDA thus implies less risk aversion than DA.

The right panel considers changes in the disappointment magnitude (θ) in order to con-

trast GDA with EU risk preferences. The horizontal axis is scaled to be in units of θ. The

equity premium is held constant by adjusting the curvature parameter, α, for each value of

θ (the disappointment threshold δ is held constant at the benchmark value of δ = 0.9625).

In this case risk aversion is linearly decreasing in θ, which implies that a GDA agent is

less risk averse than an agent with EU preferences. To the extend that a low level of risk

aversion is preferred because it corresponds more closely to estimates commonly found in

Microeconomic studies, GDA risk preferences appear preferable compared to either DA or

EU preferences.

To gain a clearer understanding about the interaction between risk preferences and stochas-

tic endowment volatility in determining effective risk aversion, I compute a second, related

welfare measure. Specifically, I consider an alternative endowment that sets volatility con-

stant, so that ∆ct+1 = µ + σεct+1. As above, I ask how much the agent would give up in

order to trade the benchmark endowment for this alternative endowment.31 The results

31Different from the previous case, no closed-form solution exists for the value function for this alter-

native endowment, so that λ
V

has to be computed numerically. The computation mimics the one for the
benchmark model discussed in Section 1.3.2.
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are shown with dashed lines in Figure 1.10. The following three features of the plot are

helpful for understanding the mechanism of the GDA model:

1. (Left panel) The DA agent (δ = 1) would give up close to nothing to eliminate

the heteroscedasticity of his endowment (the dashed line is close to zero). The

reason is that the disappointment threshold for DA equals the certainty equivalent,

which implies that even outcomes close to the center of the distribution (of Vt+1) are

considered disappointing. Shifting probability mass from the tails of the endowment

distribution toward the center by removing stochastic volatility leads to no reduction

in risk because these outcomes continue to be disappointing.

2. (Left panel) For sufficiently low disappointment thresholds (δ less than about 0.975),

the GDA agent would give up just as much for eliminating stochastic volatility as he

would give up for eliminating endowment risk all together (the two lines overlap for

low δ’s). This is due to the fact that without stochastic volatility, the probability

of extreme tail outcomes becomes very small, so that nearly no outcomes are disap-

pointing. Specifically, the i.i.d. endowment implies an unconditional disappointment

probability of less than once per 100, 000 years and risk premia that are very close

to zero. Eliminating stochastic volatility is therefore just as valuable as eliminating

all risk.

3. (Right panel) Starting from EU (θ = 0), increasing the disappointment magnitude

increases the amount the GDA agent would give up for eliminating stochastic volatil-

ity. This holds true despite the fact that his overall degree of risk aversion (solid

line) is decreasing in θ, which shows that tail risks account for a larger fraction of

overall risk premia under GDA.

Overall, the results in this section illustrate that GDA implies somewhat less risk aversion

than both DA and EU risk preferences. At the same time, the GDA agent is more averse

to tail outcomes, generating a higher price of tail risk.

1.6 Conclusion

The model presented in this paper provides a parsimonious explanation for a broad set of

stylized facts in equity and equity index option markets, including the implied volatility

smirk. In times of low macroeconomic uncertainty, volatility feedback leads to substantial

left-skewness in the conditional return distribution and the smirk arises from a relatively

high probability of (endogenous) negative return jumps. In these states, the conditional

disappointment probability is low and insurance premia play a minor role for option prices.

In times of high uncertainty, the probability of disappointing tail events increases. Because
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these events tend to coincide with negative returns, OTM put options provide a hedge

against disappointments and a steep implied volatility smirk arises from the insurance

premium in puts. In line with the empirical evidence in Bollerslev and Todorov [2011],

equity and variance premia in the model arise primarily from the representative agent’s

aversion to tail risk. In particular, the model is able to increase the importance of tail

risks without assuming a Peso problem. Lastly, model solutions for one-period options

and variance swaps of arbitrary horizons can be obtained in closed form, which makes the

framework suitable for structural estimation based on derivative data. This avenue will

be explored in future work.



Chapter 2

Optimal Volatility Timing: A

Life-Cycle Perspective

2.1 Introduction

Stock market volatility varies over time. How should investors use this fact in their asset

allocation decisions? To what extend does the optimal allocation of savings to risky and

riskless assets change over time to reflect changes in volatility? What is the economic

value of “volatility timing”? In this paper, we study these questions in a life-cycle portfo-

lio choice model.

We base our analysis on a fairly streamlined life-cycle framework which is extended to

allow for heteroscedasticity in stock returns. In each period, a household with Epstein and

Zin (1989) preferences receives stochastic labor income and chooses optimal consumption

and portfolio shares subject to borrowing and short-selling constraints. Labor income in-

cludes both an individual-specific and an aggregate component where the latter is allowed

to covary with the stock market (i.e. stock returns and volatility). The household can

invest in a risk-free bond as well as in a risky stock. We estimate a joint process for

returns, return volatility, and the aggregate component of labor income based on annual

U.S. data from 1930 to 2012. Based on the estimated data generating process and a wide

range of preference parameters, there are three main results: (a) Households are willing

to give up as much as 1% - 1.5% of total life-time consumption to optimally condition on

volatility.1 (b) Variation in return volatility leads to strong reactions in investors’ optimal

equity holdings. For instance, a negative one standard deviation volatility shock reduces

the equity share by up to 17 percentage points. (c) A small increase in the correlation

1This fee is relative to a benchmark strategy that conditions on age and wealth only.

40



Chapter 2. Optimal Volatility Timing 41

between volatility and labor income (relative to the estimated value) can explain the low

equity share by young households observed in the data.

Relative to the previous literature (reviewed in detail in the next section), one of our main

contributions is to explicitly estimate a (significant) joint process for returns, volatility,

and (aggregate) labor income. In addition to the well known negative return/volatility

correlation2, the interplay between stochastic volatility and labor income is particularly

important for our results. Return volatility affects labor income growth both via the con-

temporaneous correlation in innovations and through its effect on the conditional mean.

Both channels lead to a negative relationship between the investment opportunity set and

the return on human capital:3 As returns become more volatile, current and future labor

income tends to decrease. This renders human capital less bond-like and reduces house-

holds’ equity holdings.4

We analyze the impact of stochastic volatility on households’ optimal portfolio choices.

We make three main findings with respect to the equity share. First, relative to conven-

tional life-cycle models without stochastic volatility, investors’ equity holdings decrease

more rapidly over the early stages of the life cycle. This is due to the stronger (nega-

tive) relationship between returns and changes in human capital. Second, volatility is an

important determinant of optimal portfolio shares. Whereas age is known to be a signif-

icant determinant for the optimal equity share, we show that volatility is almost equally

important. Lastly, households reduce their equity share strongly in response to (positive)

volatility shocks for two reasons. On the one hand and not surprisingly, stocks are now

riskier and hence less attractive.5 On the other hand, a rise in volatility also reduces

agents’ human capital, which in turn amplifies the negative effect on stock holdings.

To judge the economic importance of stochastic volatility, we compute the dynamic con-

sumption fee a household would be willing to pay to implement the optimal policies. We

find that this fee lies between 0.95% and 1.58% of total life-time consumption. Inter-

estingly, the fee tends to decline with higher values of both the investor’s elasticity of

intertemporal substitution (EIS) and the risk aversion coefficient. Even though the EIS

does not impact optimal equity holdings, it plays an important role for the economic value

of volatility timing. As low EIS investors have a high preference for smooth consumption,

2The fact is well known, and it is usually ascribed to either the leverage effect (Black [1976]) or the
volatility feedback effect (see, e.g. French, Schwert, and Stambaugh [1987] and Campbell and Hentschel
[1992]).

3Human capital is defined as the present discounted stream of future labor income.
4The bond-like behavior of human capital is a well known feature of conventional life-cycle models. See

e.g. Cocco, Gomes, and Maenhout [2005].
5It is economically plausible to expect changes in risk (volatility) to be associated with changes in

expected returns. This implies that stocks need not be less attractive when volatility is high. In the
estimation we allow for this risk/return trade-off.
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they are willing to sacrifice a lot to implement volatility timing.

The rest of the paper is organized as follows: In Section 2.1.1 we review the related

literature. We set up the life-cycle framework in Section 2.2 and discuss the estimation

results in Section 2.3. Section 3.4 shows the effects of stochastic volatility on portfolio

decisions and welfare. Section 2.6 concludes.

2.1.1 Connections with Prior Literature

A small literature analyzes the implications of stochastic volatility for asset allocation

decisions. Fleming, Kirby, and Ostdiek [2001] consider a short-horizon investor who al-

locates funds on a daily basis across stocks, bonds, gold, and cash. A mean-variance

strategy based on a rolling window estimate of the conditional covariance matrix is shown

to produce a higher Sharpe ratio than a strategy based on the unconditional covariance

matrix. Fleming, Kirby, and Ostdiek [2003] show that the performance of this trading

rule improves further when intra-daily return data is used in the estimation of the con-

ditional covariance matrix. The mean-variance preference specification implies that the

higher Sharpe ratio maps one-to-one into higher utility gains. Our paper also studies the

economic value of volatility timing, but our framework considers the dynamic problem of

a long-horizon (life-cycle) investor. Chacko and Viceira [2005] and Liu [2007] both ana-

lyze the effect of stochastic volatility in the portfolio choice problem of (unconstrained)

long horizon investors in a continuous-time setting. Chacko and Viceira show that the

intertemporal hedging demand resulting from stochastic volatility is quantitatively small

for a recursive utility investor and a wide range of preference parameters. Liu [2007] stud-

ies a power utility investor and different processes for stochastic volatility and also finds

modest hedging demands. Different from the latter two papers, we focus on the economic

value of volatility timing rather than the magnitude of the intertemporal hedging demand.

Similar to Chacko and Viceira [2005], we estimate a data generating process based on

low-frequency return data. However, in the spirit of Fleming, Kirby, and Ostdiek [2003],

our estimation strategy additionally utilizes the information contained in high-frequency

returns. Relative to Chacko and Viceira [2005], this results in a more precise estimate

of the conditional return variance, which is reflected in (a) highly significant parameter

estimates and (b) higher values for the estimated vol-of-vol and the correlation between

return and volatility innovations. Chacko and Viceira [2005] show that higher values for

these parameters increase the intertemporal hedging demand.

Our article also relates to the vast life-cycle literature (e.g. Cocco, Gomes, and Maenhout

[2005], Gomes and Michaelides [2005], Gourinchas and Parker [2002], and Viceira [2001]),
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which analyzes the optimal consumption and portfolio choice of households that are sub-

ject to non-insurable labor income shocks. These papers arrive at two main conclusions.

First, optimal stock holdings heavily depend on age. Younger households optimally invest

a lot in stocks because they hold large positions in human capital, which is perceived as

relatively risk-free. As retirement approaches, human capital gradually diminishes and

households reallocate funds from stocks to bonds. Second, the optimal equity allocation

is highly sensitive to the correlation between income and stock returns. When this corre-

lation is high, human capital is very similar to stocks and optimal portfolios incorporate

a lower equity share. Our paper sheds additional light on these two main findings. First,

we show that tilts in the optimal portfolio share induced by stochastic volatility are as

pronounced as tilts induced by the life cycle. Second, we show that the correlation between

return volatility and labor income is much larger than the one between returns and labor

income. Reductions in labor income are therefore associated with a deterioration of the

investment opportunity set, which makes labor income riskier than assumed in previous

models.

Two recent papers investigate the implications of time-variation in the macroeconomic

environment in a life-cycle framework. Koijen, Nijman, and Werker [2010] study the

welfare gains a household can realize by exploiting bond return predictability and Lynch

and Tan [2011] analyze optimal portfolios in the presence of business-cycle variation in

the volatility of households’ labor income shocks. Similarly, we contribute to the life-cycle

literature by analyzing the effects of time-varying investment opportunities in the form of

heteroscedasticity in stock returns.

2.2 Model

Environment

We consider a life-cycle investor who starts working at age 0, retires at age K, and lives for

T periods. As is common, we interpret the modeled age as true age minus 20. Preferences

are defined over a single consumption good and have the standard Epstein and Zin [1989]

form,

Vt = [(1− β)Cρt + βµρt ]
1
ρ , (2.1)

where the certainty equivalent function

µt = Et
[
V α
t+1

] 1
α (2.2)

is defined over random future utility using the time t conditional probability distribution.

The conventional interpretation is that ρ < 1 captures time preference (the intertemporal

elasticity of substitution is 1/(1− ρ)) and α < 1 captures risk aversion (the coefficient of
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relative risk aversion is 1−α). Time-additive expected utility is a special case with α = ρ.

Log labor income is modeled as

yt =

ft + pt if t ≤ K

λ+ fK + pK if t > K
(2.3)

pt = pt−1 + et (2.4)

where ft is a deterministic function of age that captures the hump-shaped pattern in la-

bor income over the life-cycle, et ∼ N
(
−1

2σ
2
p, σ

2
p

)
represents a shock to permanent labor

income, and λ equals the (log) replacement ratio. The functional form implies that re-

tired households receive a constant fraction of their last pre-retirement income. Following

the previous life-cycle literature, we calibrate ft to the average income of households in

the Panel Study of Income Dynamics (PSID). It is common in the life-cycle literature to

additionally include a transitory shock in the labor income process, but we omit this for

parsimony because we find it to be quantitatively unimportant for our results.6

The agent can invest in two assets, a risk-free asset with constant log return rf , and a

risky asset whose excess log return and variance are given by

rt+1 − rf = mt +
√
vtε

r
t+1 (2.5)

ln vt+1 = γ0 + γ1 ln vt + σvε
v
t+1 (2.6)

where εrt and εvt denote standard normal innovations and mt denotes the conditional ex-

pected excess return.7 Volatility is modeled as an AR(1) in logs rather than levels to

allow for positive skewness, which results in occasional volatility spikes, as in the data.

We allow for correlation between the innovations in pt, rt, and ln vt. Correlation between

εrt and εvt captures the well-known leverage effect, i.e. the empirical regularity that market

returns are negatively correlated with innovations in volatility. Correlation between εvt

and et captures business cycle variation in individual labor income.

The investor’s (financial) wealth at age t, which we denote by Xt, evolves according to

Xt+1 = Ste
rt+1 +Bte

rf + eyt+1 , (2.7)

6We have solved a version of the model with idiosyncratic shocks, calibrated as in Cocco, Gomes, and
Maenhout (2005). The addition of this shock has almost no effect on any of our quantitative results.

7In the estimation we allow the conditional mean to vary with return volatility.
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where St and Bt denote the time t position in the risky asset and the risk-free asset

respectively. The budget constraint is given by

Xt = Ct + St +Bt. (2.8)

Finally, we impose the short selling restrictions

St ≥ 0 (2.9)

Bt ≥ 0 (2.10)

to prevent the agent to borrow against his future labor income.

Individual-Specific Parameters

The model is calibrated at an annual horizon. To parameterize the function ft, we use the

estimates for a “high-school individual” in Cocco, Gomes, and Maenhout [2005] which are

based on PSID data. The deterministic income profile is modeled as:

ft = α0 + α1τ + α2
τ2

10
+ α3

τ3

100
(2.11)

where τ = t + 20 the household’s (true) age. The parameters are set to α0 = −2.1700,

α1 = 0.1682, α2 = −0.0323, and α3 = 0.0020. Households retire at age K = 65 and receive

a fraction λ = 0.68212 of their (last) pre-retirement income after that. For all quantitative

results, we set the subjective discount rate to β = 0.96 and the standard deviation of the

permanent labor shock to σp = 0.15.

We show most of our numerical results for a broad range for the coefficient of relative

risk aversion γ and the EIS ψ. This is done to better understand the role of stochastic

volatility for different preference specifications.8

Maximization Problem and Solution Method

The investor’s consumption savings problem is to maximize life-time utility (equations

2.1 and 2.2) subject to the laws of motion for labor income, stock returns, stock return

volatility, and wealth (equations 2.3-2.7), as well as the budget constraint (equation 2.8)

and the short selling and borrowing constraints (equations 2.9 and 2.10). Because the

value function is linearly homogeneous, we can normalize Vt, e
yt , Xt, St, and Bt by ept ,

which reduces the number of state variables by one. The remaining state variables are age

(t), return volatility (vt), and normalized wealth (Xte
−pt). Because the agent dies with

certainty after age T , we have VT+1 = 0. We can now use this value function to compute

8In few cases, we focus on the results for γ = 10 and ψ = 0.5 to make qualitative statements.
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the policy rules for the previous period, and given these, obtain the corresponding value

function. This procedure is then iterated backwards.

The model solution is based on a discretized state space with 50 grid points for normalized

financial wealth (Xte
pt) and 21 grid points for ln vt. We confirmed that using a higher

number of points has only a marginal effect on the solution. The grid for Xt is constructed

so that points are denser for lower values, where the value function has more curvature.

The grid for ln vt consists of Gaussian quadrature nodes. Cubic spline interpolation is

used to evaluate the value function at off-grid values. Expectations over (et, ε
r
t , ε

v
t ) are

evaluated using a trivariate Gaussian quadrature with 5 nodes for each et and εrt and 11

points for εvt . Once again, increasing the number of nodes has a very small effect on the

solution. While the agent has to choose consumption as well as his holdings of both the

risk-free asset and the risky asset, the budget constraint (equation 2.8) implies that there

are only two independent choices. We maximize over consumption and the equity share

Et ≡ St
St+Bt

, which has the advantage that it is bounded between 0 and 1. To carry out the

maximization, we use an iterated grid search method that starts with a relatively rough

grid and then moves to subsequently finer grids in determining the utility maximizing

choices for C∗t and E∗t .

Model Simulation

To illustrate the quantitative implication of the model, we simulate a cross-section of 1 mil-

lion households and compute “population” moments by averaging across households. We

follow Wachter and Yogo [2010] in drawing an initial level of wealth (relative to permanent

income) from a lognormal distribution for each household. Based on Wachter and Yogo’s

estimates for the subsample of stockholders in the Survey of Consumer Finances, we set

the mean of normalized wealth to 0.988 and the standard deviation of its logarithm to

1.370. Given draws for initial normalized wealth (Xte
−pt) and log return variance (ln vt),

we then iterate through the life-cycle, draw a set of shocks (et, ε
r
t , ε

v
t ) at each age, and use

linear interpolation to evaluate policies at off-grid values for wealth and variance. After

the simulation, we reverse the normalization of all variables by using the simulated paths

for pt.

2.3 Estimation

We estimate the joint process for the shock to permanent labor income (equation 2.4),

stock returns (equation 2.5), and return variance (equation 2.6) based on annual U.S.

data from 1930-2012. Labor data is taken from the BEA, and our definition of aggregate

labor income is identical to the one in Lettau and Ludvigson [2001]. We use value-weighted

returns on the CRSP portfolio to measure the return on the risky asset and the 90 day
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Treasury yield to measure the risk-free rate.

Following Campbell, Cocco, Gomes, and Maenhout [2001], we decompose the permanent

labor income shock (in equation 2.4) as

eit = −1

2
σ2
p + ξt + ωit,

where ωit ∼ N
(
0, σ2

ω

)
represents an idiosyncratic component and ξt ∼ N(0, σ2

ξ ) represents

an aggregate component.9 We assume that individual labor income covaries with aggregate

variables (stock returns and stock return volatility) only through its aggregate component,

and we estimate the covariance structure based on (de-meaned) aggregate labor income

growth. Our estimates can therefore be interpreted as the average covariances across the

U.S. workforce.10

An important issue in estimating the data generating process is that most stochastic

volatility models – including ours – yield insignificant parameter estimates when estimated

based on low-frequency return data alone.11 To overcome this problem, we adopt an

estimation strategy that utilizes the information contained in daily returns. In particular,

we incorporate a “measurement equation” that relates the conditional variance of annual

returns to the annual realized variance.12 The measurement equation is given by

log(RVt+1) = θ + log(vt) + σRV ε
v
t+1, (2.12)

where RVt denotes the realized variance in year t, defined as the sample variance of daily

returns. The assumption underlying equation 2.12 is that the conditional variance of the

annual return also determines the conditional mean of realized variance over the year.13

9Note that σ2
p ≡ Var(eit) = Var(ξt+ωit) = σ2

ξ +σ2
ω. We set E[eit] = − 1

2
σ2
p to ensure that E [exp(eit)] =

1.
10An alternative would be to estimate the average covariance structure based on a panel data set. For

example, Campbell, Cocco, Gomes, and Maenhout [2001] regress the average income growth rate across
households in the Panel Study of Income Dynamics (PSID) data on the (de-meaned) excess stock returns
in order to estimate the correlation between individual labor income and returns. By averaging across
households, idiosyncratic shocks “wash out”, so that the resulting estimate can be interpreted as the
average correlation across households. Compared to this approach, aggregate data has the advantage that
it reflects a larger population and that it is available for a longer sample. A disadvantage is that we are
not able to compute the correlations for different educational groups, which is possible in the PSID data.

11As an example of this problem for monthly and annual data, see the estimation results in Table 1 of
Chacko and Viceira [2005].

12A number of recent papers have used a similar approach for estimating stochastic volatility models
based on daily data (see Hansen, Huang, and Shek [2012], Koopman and Scharth [2013], and Christoffersen,
Feunou, Jacobs, and Meddahi [2013]). This literature computes the daily realized variance from intra daily
data, and incorporates it into a measurement equation for the conditional variance of daily returns. We
apply the same idea to low frequency data and augment the model with a third equation for labor income.

13We include an intercept because the average realized variance of daily returns differs noticeably from
the standard deviation of annual returns in our sample. Without a constant, the average value of vt would
be forced to equal the average realized variance.



Chapter 2. Optimal Volatility Timing 48

Table 2.1: Maximum Likelihood Estimates of the DGP

rt+1 − rf = r + χr
(

log(vt)−
γ0

1− γ1

)
+
√
vtε

r
t+1

log(vt+1) = γ0 + γ1 log(vt) + σvε
v
t+1

ξt+1 = χξ
(

log(vt)−
γ0

1− γ1

)
+ σξε

ξ
t+1

log(RVt+1) = θ + log(vt) + σRV ε
v
t+1

Parameter r χr γ0 γ1 χξ θ
Estimate 0.053 0.009 −1.639 0.512 −0.021 −0.635
t-statistic [2.107] [0.120] [−3.297] [3.666] [−1.910] [−3.203]

Parameter σv σξ σRV corr[εr, εv] corr[εr, εξ] corr[εv, εξ]
Estimate 0.460 0.059 0.697 −0.537 0.130 −0.329
t-statistic [7.119] [21.161] [10.472] [−6.090] [1.222] [−2.395]

Table 2.1 shows maximum likelihood parameter estimates and t-statistics based on asymptotic standard
errors for the process driving stock returns, volatility, and the aggregate component of labor income.
Innovations are assumed to be normally distributed, correlated with each other within a period, and
serially uncorrelated. Annual and daily returns are value-weighted CRSP returns. Realized variance is
computed as the sample variance of daily returns within each year. Annual labor income, which is defined
as in Lettau and Ludvigson [2001], is taken from the BEA, it is deflated using the CPI, and log growth
rates are de-meaned before the estimation. The sample spans 1930-2012.

Realized variance – which is observable – can therefore be used to estimate the current

value of the latent variance. Instead of describing variance as a weighted average of past

squared returns – as in standard GARCH models – our model implies that variance equals

a weighted average of past realized variance.14 Because the realized variance of daily re-

turns is a better proxy for the latent return variance than the squared annual return, we

obtain a more accurate estimate of the latent variance. As we show next, this results in

highly significant estimates of the parameters that govern volatility dynamics.

As in Lynch and Tan [2011], we allow the conditional means of both returns and the ag-

gregate component of permanent labor income growth to change over the business cycle.

While Lynch and Tan specify that these conditional means depend on the dividend yield,

we model them as varying with volatility. The first channel captures the risk-return trade-

off whereas second channel captures countercyclicality in expected labor income growth.

The functional forms for both conditional means are shown in table 2.1.

14To see this, note that we can write log(vt) = γ0 + γ1 log(vt−1) + σv
[

log(RVt)−θ−log(vt−1)

σRV

]
=[

γ0 − θ σv
σRV

]
+
[
γ1 − σv

σRV

]
log(vt−1) + σv

σRV
log(RVt) = ... = const.+ σv

σRV

∑∞
i=0

[
γ1 − σv

σRV

]i
log(RVt−i).
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Maximum likelihood estimates for the joint process are shown in Table 2.1. The estimates

of the unconditional mean of excess returns (r) and the parameters governing the volatil-

ity dynamics (γ0, γ1, σv) are all statistically significant. Furthermore, the mean effect of

volatility on labor income growth (χξ) is negative and significant at the 10% level. As in

much of the existing literature, the risk-return tradeoff (χr) is insignificant. The estimates

imply a mean equity premium of 5.3%, an unconditional excess return volatility of 20.0%,

and a first-order autocorrelation of 47.7% for the conditional return volatility. For compar-

ison, the historical equity premium in our sample equals 5.4%, the excess return volatility

equals 19.9%, and the first-order autocorrelation of annual realized volatility equals 67.5%.

Like many previous studies, we find the correlation between innovations in volatility and

innovations in returns to be negative. Interestingly, despite the low annual frequency of

our model, the coefficient is highly statistically significant with a t-statistic of −6.090.

This results from the fact that we incorporated information from daily return data, which

leads to a much more precise volatility estimate compared to estimates that are filtered

from annual data alone. Because negative returns are associated with a deterioration of

the investment opportunity set (higher volatility), equity in our model is riskier than in

models without stochastic volatility.

Innovations in volatility are also significantly negatively correlated with innovations in the

aggregate component of labor income, with a point estimate of −0.329 and a t-statistic of

−2.395. Labor income is therefore riskier than in models without stochastic volatility.

Lastly, we find the correlation between innovations in returns and innovations in the

aggregate component of labor income to be positive but insignificant. We calibrate the

standard deviation of the total innovation in labor income, std(ξt +ωit), to 0.15, the value

used in Gomes and Michaelides [2005]. Together with the estimate of corr[εr, εξ], this

implies a correlation of 0.051 between the innovation in returns and the total innovation in

labor income.15 The value of this correlation is very important for the model’s implications

for the equity share, because it determines how “stock like” labor income behaves. A higher

correlation implies that household prefer to hold less equity. Because estimates in previous

papers span a fairly wide range of values, we investigate the robustness of our main results

with respect to this number in Section 2.4.3.

15corr[ξt + ωit, rt] = cov[ξt+ωit,rt]
std[ξt+ωit]×std[rt]

= cov[ξt,rt]
std[ξt+ωit]×std[rt]

= corr[ξt,rt]×std[ξt]×���std[rt]
std[ξt+ωit]×���std[rt]

= 0.130×0.059
0.150

=
0.051.
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Figure 2.1: The Equity Share over the Life-Cycle
Figure 2.1 shows the life cycle profile of average equity holdings for γ = 10 and ψ = 0.5.

2.4 Results

In Section 2.4.1, we characterize optimal portfolio shares in the presence of stochastic

volatility. Section 2.4.2 shows the utility gains an investor can achieve by optimally con-

ditioning on volatility. We discuss the effects of cross-sectional heterogeneity (in labor

income) on equity holdings for young households in Section 2.4.3.

2.4.1 Optimal Life-Cycle Portfolio Choice with Stochastic Volatility

Figure 2.1 displays the optimal allocation to stocks and bonds over the life cycle. To con-

struct the plot, the equity share, St/(St +Bt), is averaged over different values of wealth,

volatility, and permanent income at each age. The graph shows that the optimal equity

share decreases over the life cycle. Early in life, most agents invest fully in stocks and hit

the borrowing constraint. This is explained by their large position in human capital, which

is a closer substitute for bonds than for stocks. As human capital is gradually depleted

over time, agents start investing in bonds. Relative to many previous life-cycle models

(e.g. Cocco, Gomes, and Maenhout [2005] and Gomes and Michaelides [2005]), the equity

decreases earlier and at a higher rate in our model. This indicates that the presence of

stochastic volatility leads to a faster depletion of investors’ human capital. As a result,

their implicit bond position decays quickly so that they shift more funds away from stocks

towards bonds.
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Figure 2.2: Tilts in the Optimal Equity Share
Figure 2.2 shows tilts in the optimal equity share for γ = 10 and ψ = 0.5. Wealth and volatility

percentiles are age-specific.

Figure 2.2 shows the response of the optimal conditional asset allocation to changes in

financial wealth and conditional volatility. The left panel shows the equity share for in-

vestors in the 25th and 75th (age-specific) wealth percentile, respectively. It is apparent

that wealth has very little effect on the optimal portfolios. For example, a 40-year-old

investor in the 25th wealth percentile optimally holds 32% in equity, and the fraction in-

creases only to 34% in the 75th wealth percentile. The right panel shows the optimal

equity share in the 25th and 75th percentiles of volatility. In contrast to wealth, volatility

is a very important state variable for optimal portfolios. A 40-year-old investor optimally

holds 39% in equity when volatility is at its 25th percentile and 24% when volatility is at

its 75th percentile. Interestingly, this inter-quartile spread is relatively constant over the

life cycle.

To better understand the dynamic response of households’ optimal choices to different

types of shocks, we plot impulse response functions for a 40-year-old household. Figure

2.3 shows the results for the equity share (first row), the consumption-wealth ratio (second

row), and the ratio of human capital to total wealth (third row). We study the dynam-

ics of these quantities in response to orthogonal one standard deviation shocks to returns

(first column), permanent labor income (second column), and log-volatility (third column).

We observe that a positive return shock leads to negative responses for all three variables.

In particular, the equity share decreases by about 0.5% on impact and returns slowly to

its pre-shock level. The response in the consumption-wealth ratio is weaker, but more

persistent. The economic mechanism can be best understood by looking at the last figure

in the first column. As mentioned earlier, the human capital share measures the house-

holds’ implicit holding of a risk-free asset. Since a positive return shock decreases only the
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Figure 2.3: Impulse Response Functions
Figure 2.3 shows how the equity share (first row), the consumption-wealth ratio (second row), and
the human capital share (third row) react to a one standard deviation shock in the innovation to
returns (εr), the innovation in permanent labor income (εp), and the innovation in log-volatility
(εv), respectively. The left column considers return shocks, the middle column considers labor
income shocks, and the right column considers volatility shocks. The plots show the impact
of the shocks at age 40. We computed the average difference in the two series (shocked and

un-shocked) across all sample paths. We used γ = 10 and ψ = 0.5 for all plots.

denominator (expected future labor income remains unaffected16), this ratio goes down.

Consequently, investors hold a lower implicit position in the risk-free asset. This, in turn,

increases their demand for bonds which leads to a decline in the equity share. As human

capital slowly returns to its stationary value, the (negative) impact on equity holdings

diminishes as well. Interestingly, the consumption-wealth ratio falls only by about 0.15%.

Thus, households use a small part of the growth in wealth, to increase consumption. The

remainder is used as precautionary savings.

Turning to the second column, we observe that a negative income shock leads to the same

patterns as a positive return shock. Thus, both equity holdings and the consumption-

wealth ratio decrease persistently. Again, the first is affected more strongly than the

latter. Again, the human capital share is key to understanding these responses. A nega-

tive shock to permanent income reduces households’ expected future income stream and

16Note that there is also a “discount rate” effect on human capital as household’s consumption stream
is affected by the shock. However, this effect is (numerically) relatively small in our setup.
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Table 2.2: Volatility Shocks and the Optimal Equity Share

Age = 25 Age = 40 Age = 55 Age = 70

H
HHH

HHψ
γ

5 10 5 10 5 10 5 10

1/γ −0.40 −15.60 −16.08 −9.79 −16.85 −8.59 −15.59 −10.40
0.5 −0.60 −15.67 −16.08 −9.94 −16.82 −8.87 −15.61 −11.42
1.5 −1.42 −15.32 −16.55 −10.29 −16.82 −9.38 −15.28 −13.60

Table 2.2 shows the impact of a one standard deviation shock to log volatility on the equity share for
different preference specifications and different stages of the life cycle.

therefore their human capital. As a result, the human capital share drops by almost 3%

on impact. Similar to before, this implies a lower implicit holding of debt through human

capital which reduces investors’ demand for equity. In anticipation of lower future income,

agents reduce the consumption share and increase precautionary savings.

The third column shows the responses to a positive volatility shock. There are two main

differences compared to the return and income shock discussed before. First, the equity

share drops dramatically by about 10% as the shock is realized. Second, the effect on

the both the consumption-wealth and the human capital ratio are only modest. Hence,

the unexpected rise in volatility mainly affects the bond/equity trade-off. There are two

economic mechanisms behind this result. On the one hand, higher volatility renders equity

riskier and hence less attractive. On the other hand, the last figure in the third column

shows that a volatility shock also negatively affects households’ human capital share. Intu-

itively, higher volatility today (and in future periods) raises investors’ marginal utility and

therefore leads to a lower value of discounted labor income (human capital). Consequently,

households implicitly hold less of the risk-free asset. Both channels imply less demand for

stocks and thus a lower equity share.

Figure 2.3 illustrated that, for a particular preference calibration, the optimal equity share

is reduced significantly after a positive shock to volatility. In Table 2.2, we show that the

same conclusion continues to hold for a broad set of alternative preference parameters.

Here we present the response in the equity share as volatility is shocked by one standard

deviation for three ages, two levels of risk aversion (γ), and three levels of elasticity of

intertemporal substitution (ψ). We can observe that changes in ψ only imply minor

changes in the optimal equity share. A change in γ, however, leads to strongly different

responses. At age 25 investors with low risk aversion (γ = 5) are mostly borrowing

constrained, i.e. their actual unconstrained equity share greatly exceeds 100%. Therefore,

only a small group of agents is unconstrained which enables them to respond to changes in

volatility. For γ = 10 most agents are not constrained and hence an increase in volatility

leads to a large response in the equity share. At higher ages when more or less all agents
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Table 2.3: The Economic Value of Volatility Timing

H
HHH

HHγ
ψ

1/γ 0.5 1.5

5.0 1.58 1.50 1.38
10.0 1.43 1.21 0.95

Table 2.3 shows the consumption fee (defined in equation (2.13)) as a percentage of life-time consumption.

are unconstrained, less risk averse investors reduce their equity holdings more. This can

be explained by the fact that these investors have a weaker desire to build up a buffer

stock against negative future shocks.

2.4.2 The Economic Value of Volatility Timing

In the previous section we showed that changes in the conditional stock market volatil-

ity have a strong effect on households’ optimal asset allocation. We next examine the

economic benefit of following this “volatility-timing” strategy. Specifically, we consider a

benchmark strategy that conditions on age and wealth (as, e.g. in Cocco, Gomes, and

Maenhout [2005] and Gomes and Michaelides [2005]), and we compute the utility gain a

household can realize by additionally conditioning on volatility.

Denote the value function corresponding to the optimal policies by V (X, t, v) and the value

function corresponding to the benchmark policies by Ṽ (X, t, v).17 We define the utility

gain as

χ(X, v) ≡ 1− Ṽ (X, 0, v)

V (X, 0, v)
, (2.13)

which equals the maximum proportional consumption fee that a 20-year-old household

is willing to pay in order to implement the optimal policies over his life time. Stated

differently, if a household is allowed to condition on volatility but simultaneously has to

relinquish the fraction χ of his current and future consumption (in every state), he would

be indifferent to following the benchmark strategy.18

Table 2.3 presents the consumption fee for different combinations of relative risk aversion

(γ) and EIS (ψ). Results are averaged over both wealth and volatility. The table shows

that for γ ∈ {5, 10} and ψ ∈ { 1
γ , 0.5, 1.5}, households would give up between 0.95% and

17Note that, even though the suboptimal policies are independent of volatility, Ṽ does in general depend
on vt. This is due to the dependence of the conditional expectation on ln vt.

18An equivalent interpretation is that the fee represents the maximum fraction of total wealth (present
discounted value of future consumption) that the household would pay in order to optimally condition on
volatility.
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1.58% of their total wealth in order to optimally condition on volatility. We observe two

basic patterns: fees are decreasing in both γ and ψ. The decrease in γ can be explained

by the fact that less risk-averse agents react more strongly to changes in volatility (see

Table 2.2). As a result, the welfare gain from conditioning on volatility is larger for agents

with a smaller γ. In contrast, the results presented in Table 2.2 indicate that changes in

ψ do not lead to different responses in investors’ portfolios. Nonetheless, Table 2.3 shows

a large spread in fees across different values for ψ. This can be reconciled by the fact that

agents with a low ψ coefficient are very reluctant to substitute consumption over time.

Volatility timing allows agents to reduce the variance of total financial wealth (and hence

consumption) by changing the equity share as volatility changes. Therefore, volatility

timing is more valuable for households with a low EIS.

To put the magnitude of the consumption fee into perspective, we compare it to the results

in Cocco, Gomes, and Maenhout [2005]. These authors construct a life-cycle model similar

to ours but with time-additive power utility and homoscedastic returns. They compute

the consumption fee for optimally conditioning on age and wealth relative to a benchmark

that utilizes the popular practitioner portfolio allocation rule “equity share = 100−age”.

For a coefficient of relative risk aversion of 10 and various perturbations of the economic

environment, Cocco, Gomes, and Maenhout find fees between 0.28% and 1.07%. Our

finding for the same value of γ exceeds the upper end of this range. Ignoring time-variation

in volatility can therefore be considered more costly than following a rule of thumb in an

environment without stochastic volatility.

2.4.3 Household Heterogeneity and the Equity Share of Young House-

holds

Identifying the empirical relationship between age and average equity holdings is difficult

because age, time, and cohort effects cannot be separately identified. Nevertheless, exist-

ing evidence suggests that the equity share is approximately constant among different age

groups (see Gomes and Michaelides [2005]). Contrary to this finding, standard life-cycle

models predict that young households should hold close to 100% of their investments in

equities.19 In this section, we analyze whether cross-sectional differences in the correlation

between individual labor income and aggregate variables (returns and volatility) may be

19It is not clear whether this is a result of suboptimal behavior or model-misspecification. Nevertheless,
one focus of the more recent life-cycle literature has been to find model mechanisms to explain the low
average equity holdings of young households. In particular, Gomes and Michaelides [2005] achieve low
equity holdings at young ages through the combination of (fixed) stock market participation costs and
investor heterogeneity. Lynch and Tan [2011] get a similar result by introducing counter-cyclical labor
income volatility and predictability in stock returns. On the other hand, Benzoni, Collin-Dufresne, and
Goldstein [2007] assume a cointegrating relationship between labor income and dividends in order to
increases the correlation between stock returns and changes in human capital. This makes human capital
more stock-like, especially for young households.
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Figure 2.4: The Effect of Different Parameter Values on the Equity Share
Figure 2.4 shows the average equity share (as a function of age) for different values of corr[εrt , et].
The first value equals our estimate (based on aggregate labor data). The second value of 0.15
equals the value considered in Gomes and Michaelides [2005]. In the left panel, we show a
calibration with corr[v, r] = corr[v, e] = χr = χξ = 0, so that volatility is independent of both
labor income and returns. The right panel shows the benchmark model. We used γ = 10 and

ψ = 0.5 for both plots.

able to account for the low equity share of young households.

In our first experiment, we examine how the optimal equity share responds to perturba-

tions in the correlation between innovations in returns and labor income (corr[εrt , et]). As

discussed in Section 2.3, we estimate a value of about 0.05 for this correlation based on

aggregate labor data. However, it is well-known that there exists large cross-sectional het-

erogeneity in the data. For example, Davis and Willen [2000a,b] find that the correlation

increases with education and ranges from about −0.25 to 0.25. Because our model focuses

on stockholders, and because stock-ownership is strongly positively correlated with edu-

cation, it appears reasonable to consider a value that exceeds our empirical estimate. In

Figure 2.4, we set corr[εrt , et] to 0.15, the value used in Gomes and Michaelides [2005]. The

left panel shows the effect for a model in which volatility is independent of both returns

and labor income.20 Confirming results in the prior literature, the increase in corr[εrt , et]

has a negative but small effect on the equity share.21 In particular, the effect is very

similar at different stages of the life-cycle. The right panel of Figure 2.4 shows how the

increase in corr[εrt , et] effects the equity share in the benchmark model (for which volatility

is correlated with labor income and returns). We find that it has a considerably larger

effect on young households than in the model with independent volatility. For example,

while equity share decreases from 99.6% to 89.3% in the later model, it drops from 97.2%

20Specifically, we set corr[v, r] = corr[v, e] = χr = χξ = 0 in the alternative model. Note that this model
still features heteroscedastic stock returns.

21Benzoni, Collin-Dufresne, and Goldstein [2007] show that this is due to the fact that the long-run
correlation between stock returns and changes in human capital are too low.
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Figure 2.5: The Effect of Changing χξ

Figure 2.5 shows the average equity share (as a function of age) for different values of χξ. The
value of corr[r, e] is set to 0.15 in all three scenarios. We used γ = 10 and ψ = 0.5.

to 64.7% in the benchmark model.

Encouraged by the previous results, our second experiment examines the effect of a per-

turbation in the correlation between labor income and return volatility. Because labor

income of stockholders is known to have an above-average correlation with returns, it is

reasonable to assume that is it also more correlated with return volatility. In Figure 2.5,

we continue to use a value of 0.15 for corr[εrt , et], and we simultaneously increase the effect

of volatility on the conditional mean of labor income growth (χξ) by either 50% or 100%.

We observe that increases in χξ result in a flatter life-cycle profile, i.e. they have a larger

effect on the equity share of young households than on the equity share of middle-aged

households.

The results presented in this section show that heteroscedasticity in stock returns rep-

resents a potential explanation for the low equity share of young households. However,

the findings are only suggestive because we have not explicitly estimated the correlation

between individual labor income and volatility based on household level income data. We

leave a more detailed examination of this issue for future research.
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Figure 2.6: Return Predictability and Volatility Timing
Figure 2.6 shows the effect of an increased degree of return predictability. The left panel shows
the economic value of volatility timing (defined in Equation 2.13) as a function of the standard
deviation of expected returns. The right panel shows the optimal equity share as a function of
age for different volatility percentiles for the highest considered degree of return predictability.

Preference parameters are set to γ = 10 and ψ = 0.5.

2.5 Discussion

2.5.1 The Degree of Return Predictability

The estimation results in Section 2.3 imply a negligible risk-return trade-off, i.e. expected

returns do not fluctuate significantly with the conditional return volatility. While this

finding is in line with much of the prior empirical literature, it is conceivable that pre-

dictability is simply hard to detect in small samples due to a large degree of noise in

realized returns. In this section, we therefore evaluate how the economic value of volatility

timing changes when one allows for a tighter relationship between risk and return, as it is

implied by many leading asset pricing models.22

Note that the degree of return predictability in our model is controlled by the parameter

χr. The estimated parameter value implies that expected excess returns have a standard

deviation of 0.46%.23 We consider increases in χr (and therefore the standard deviation

of expected returns) up to a factor of fifteen. Values at the upper end of this range imply

that the volatility of the equity premium is about as large as its mean, which corresponds

to typical estimates (Cochrane [2011]).24 All other parameters are held fixed at our esti-

mates, i.e. we alter the degree of return predictability without changing the dynamics of

22For example, in the class of Long Run Risk models (Bansal and Yaron [2004]), expected returns and
expected return volatility both depend positively on endowment volatility. Consequentially, these models
suggest that the conditional return volatility is a good predictor of excess returns.

23std
[
Et[rt+1 − rf

]
= χr × std[log(vt)] = χr × σν√

1−γ21
= 0.009× 0.460√

1−0.5122
= 0.0046

24Note that, in the data, this time-variation is largely orthogonal to the conditional return volatility and
rather associated with the price-dividend ratio.
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return volatility. The left panel of Figure 2.6 illustrates the value of volatility timing as a

function of the standard deviation of expected returns.

The leftmost point on the graph, corresponding to our estimate, implies a consumption fee

of about 1.2%. In this case, agents reduce their equity share in response to positive shocks

to volatility to avoid the increased risk of stock market investments. As we begin moving

to the right on the graph, such increases in volatility are accompanied by larger increases

in expected returns. Initially, the increased reward of stock investments has an offsetting

effect on the increased risk, so that volatility timing is less beneficial. However, for large

degrees of return predictability (towards the right end of the graph), changes in expected

returns more than offset changes in volatility and conditioning becomes more valuable

again. In this region, agents effectively conduct market timing rather than volatility tim-

ing. This is illustrated in the right panel of Figure 2.6, which shows the equivalent of the

benchmark results in 2.2, i.e. the equity share as a function of age for different volatility

percentiles. For high values of return volatility (dashed line) households hold more rather

than less equity, which is the opposite of the benchmark result illustrated in Figure 2.2.

The above analysis shows that is is not clear whether an increase in return predictability

relative to our estimation results in a higher or lower value of volatility timing. The effect

depends on the relative predictability of volatility and expected returns.

2.6 Conclusion

We solve a life-cycle model with idiosyncratic labor income shocks and stochastic volatil-

ity. First, we look at the effects on quantities and find that shocks to stochastic volatility

lead to significant responses in equity holdings. Subsequently, we measure the economic

importance of volatility timing. Relative to a benchmark strategy that conditions only on

wealth and age, investors are willing to give up as much as 1.58% of life-time consumption

to time volatility. Lastly, we explore the sensitivity of our findings with respect to two

variables: the correlation between returns and labor and the correlation between volatil-

ity and labor. Figure 2.4 and Figure 2.5 suggest that optimal equity holdings are highly

sensitive to these three channels. In particular, the combination of a higher return/labor

correlation and a higher effect of volatility on expected labor income leads to low and flat

equity share during working age.

Recent empirical evidence in Guvenen, Ozkan, and Song [2013] shows that persistent labor

income shocks feature counter-cyclical skewness. It would be interesting to add this feature

to the present model and analyze how it interacts with stochastic volatility in returns.
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Because counter-cyclical skewness would make labor income riskier in times of high stock

market volatility, we suspect that it would increase the economic value of volatility timing

and the model’s ability to replicate the low equity share of young households in the data.



Chapter 3

Undiversifiable Variance Risk and

Individual Equity Options

3.1 Introduction

Index options imply a steeper implied volatility smirk and more negative variance pre-

mia than equity options, and there exist large cross-sectional differences in these features

across firms (Bakshi, Kapadia, and Madan [2003] and Carr and Wu [2009]). In this pa-

per, I investigate the relationship between the observed cross-sectional differences and the

underlying firms’ exposure to systematic variance risk.

The analysis is motivated by the fact that option prices depend strongly on the under-

lying’s variance dynamics, and the observation that part of individual firms’ variance is

systematic. A natural conjecture is therefore that firm-level variance premia represent

compensation for bearing systematic variance risk. Similarly, the implied volatility smirk

could depend on exposure to systematic risk to the extend that it arises from risk premia

rather than simply higher (co-)moments of returns (see, e.g. Drechsler [2013] and Schrein-

dorfer [2013]). I distinguish between two sources of systematic variance risk. First, in the

presence of a factor structure in returns (e.g., Fama and French [1993]), time-variation in

factor variances results in time-variation in individual firms’ return variances. Second, it

has been shown that the variances of idiosyncratic returns (factor model residuals) share a

common component (e.g., Campbell, Lettau, Malkiel, and Xu [2001] and Herskovic, Kelly,

Lustig, and Van Nieuwerburgh [2014]). While the variance of idiosyncratic returns is di-

versifiable in large equity portfolios, its common component is non-diversifiable in option

portfolios. Financial intermediaries may therefore demand a risk premium for bearing

common idiosyncratic variance (CIV) risk.

61
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My empirical analysis is based on fifty-five S&P 100 components that have continuous

option quotes over 1996-2012. I begin by computing holding period returns of synthetic

variance swaps as a measure of firms’ variance premia, as well as a measure of the slope of

each firm’s implied volatility smirk. Next, I estimate each firm’s exposure the two sources

of variance risk by regressing its realized variance on the realize variance of the market and

a CIV factor. To do so, I compute daily realized variances for the individual stocks and

for the market from intra-daily price quotes, and I construct a novel daily CIV factor. The

fact that the new CIV measure is observable at the daily frequency allows me to estimate

conditional loadings based on relatively short windows of daily data.

Evidence from both Fama-MacBeth regressions and sorts based on the estimated loadings

suggest that firms’ exposure to market variance has a significant effect on their option

prices. First, firms with higher loadings have steeper smirks. This finding is consistent

with the leverage effect in market returns and a factor structure in individual stock re-

turns, and it confirms simple unconditional results in Christoffersen, Fournier, and Jacobs

[2013]. Second, larger loadings on market variance are associated with larger (less nega-

tive) variance premia. This findings is very surprising because it is well-known that market

variance carries a negative price of risk (see, e.g. Bakshi and Kapadia [2003] and Carr and

Wu [2009]). I show that the result is robust in subsamples and to different specifications

and data frequencies for estimating loadings. Firms’ exposure to CIV is not significantly

related to their variance premia, and the evidence regarding the smirk is mixed.

3.1.1 Related Literature

A few papers have previously investigated the empirical relationship between systematic

risk and individual equity option prices. The closest paper is Carr and Wu (2009), who

document a significantly negative relationship between firms’ loadings on market variance

and their variance premia for a set of 35 stocks and 5 stock indices over 1996-2003. I repli-

cate their result in Section 3.4.4 and show that it is not robust to excluding the indices or

to measuring loadings from variances rather than log variances. Measuring loadings from

level variances results in a significantly positive relationship in their sample, which agrees

with my finding. Duan and Wei [2008] focus on a set of 30 stocks over 1991-1995 and

show that firms with a larger systematic risk proportion, defined as systematic variance

over total variance, have steeper IV smirks and larger differences between option-implied

and historical volatilities. An auxiliary result in Duan and Wei’s paper shows a negative

(but insignificant) relationship between CAPM betas and the differences between option-

implied and historical volatilities. While the authors interpret this finding as indicating

that beta is not suited as a measure of systematic risk, I note that the negative sign is con-

sistent with the relationship documented in the present paper. Driessen, Maenhout, and

Vilkov [2009] investigate the differential pricing of equity and index options and conclude
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that the former carry smaller risk premia because they are less exposed to market-wide

correlation risk. Different from their paper, I focus on cross-sectional differences across

firms rather than a comparison between equity and index options.

A related literature documents patterns in equity option returns that are puzzling because

they appear to be unrelated to known risk factors. Cao and Han [2013] show that delta-

hedged option returns are negatively related to the level of idiosyncratic volatility of the

underlying stocks, while Goyal and Saretto [2009] show that options on stocks with a large

difference between historical realized volatility and at-the-money implied volatility earn

significantly higher returns that options on stocks with a small difference. In contrast,

the finding documented in my paper is puzzling because differences in variance premia are

related to the underlyings firms’ exposure to systematic variance risk.

Lastly, my paper relates to a large literature on CIV (see, e.g. Campbell, Lettau, Malkiel,

and Xu [2001], Brandt, Brav, Graham, and Kumar [2009], and Bekaert, Hodrick, and

Zhang [2012]) and the relationship between idiosyncratic volatility and stock returns (see,

e.g. Ang, Hodrick, Xing, and Zhang [2006, 2009] and Fu [2009]). Complimentary to this

literature, I investigate whether firms’ exposure to CIV affects risk premia embedded in

their equity options.

3.2 Framework

This section presents a simple factor model for returns and return variances to motivate

the empirical analysis. Assume that the cross-section of excess stock returns has a linear

factor structure,

rit = β′iFt + εit, (3.1)

where Ft denotes a set of return factors and εit is a firm-specific shock that is uncorrelated

with Ft and across firms. The conditional variance is given by

V art−1[rit] = β′iV art−1[Ft]βi + V art−1[εit], (3.2)

which shows that any heteroscedasticity in the return factors gets inherited by individual

firm returns. Because there is strong evidence for a negative price of market variance (Co-

val and Shumway [2001], Bakshi and Kapadia [2003], and Carr and Wu [2009]), Equation

3.2 suggests that firms with higher market betas have variance premia that are smaller

(more negative). In Section 3.4, I document the puzzling fact that the opposite is true for

17-year sample of fifty-three large firms with liquid option markets.
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Assume further that there is a common factor in the variance of idiosyncratic returns,

V art−1[εit] = γiGt−1 + ηit−1 (3.3)

Firm i’s total variance is given by

V art−1[rit] = β′iV art−1[Ft]βi + γ′iGt−1 + ηit−1. (3.4)

The first two terms result in co-movement between the variances of individual firms while

the third term is purely idiosyncratic. The rest of the paper analyzes the pricing of the

two systematic components.

For the empirical analysis, I focus on the pricing of the variance of a single return factor

(the excess return on the market) and a single common idiosyncratic variance (CIV) factor.

However, as is common, I allow for the possibility that there are additional return factors

by computing CIV based on the residuals from a multi-factor model.

3.3 Data

In Section 3.3.1, I discuss data sources as well as the measures for the implied volatility

smirk and the variance premium. Section 3.3.2 discusses the construction of the common

idiosyncratic variance (CIV) factor and the estimation of firms’ loadings on CIV and

market variance.

3.3.1 Option Data and Characteristics

End-of-day implied volatility (IV) surface data is taken from OptionMetrics.1 The sample

spans 1996-2012 and it contains data for 53 firms that (i) were part of the S&P 100 for at

least consecutive 10 years during 1996-2012 and (b) have continuous option observations

over 1996-2012. Variables include the option’s implied volatility, price, strike, maturity

and delta.

To measure the slope of the IV curve, for each day (t) and each firm (i), I regress IVs on

deltas and days to maturity,

IVi,t,l = ai,t + bi,t ·∆i,t,l + ci,t ·DTMi,t,l + εi,t,l, (3.5)

1OptionMetrics computes IV’s based on a binomial tree model that accounts for the early exercise
premium, and interpolates them to a fixed grid of maturities and option deltas. Delta serves as a measure
of the options’ moneyness. Calls (puts) with a delta of 0.5 (−0.5) are roughly at-the-money, whereas
options with deltas less than 0.5 in absolute value are out-of-the-money.
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Figure 3.1: Implied Volatility as a Function of Delta, Intel Corp.
This figure shows average implied volatility over 1996-2012 as a function of option delta for Intel
Corp. Implied volatilities are taken from OptionMetrics (they account for the early exercise
premium), and they are based on out-of-the-money calls and puts with a maturity of 30 days.

where l denotes an option available for firm i on day t, ∆ denotes the call-equivalent delta

(delta for calls and one plus delta for puts), and DTM denotes days to maturity. I include

all observations that are out-of-the-money and have less than 6 month to maturity. The

measure of firm i’s smirk on day t is given by bi,t, with larger values corresponding to a

steeper curve. For the analysis in Section 3.4, I compute monthly smirks by averaging the

daily values within each month. The same measure of the smirk has been used previously

by Christoffersen, Fournier, and Jacobs [2013]. An alternative measure of the smirk would

be the difference between the IV of an out-of-the-money put and the IV of an at-the-

money option. The approach used in the present paper has the advantage that it is based

on a large number of observations, which makes it more robust. It also avoids having to

specify a particular moneyness level for the out-of-the-money option, which involves a very

subjective choice. Figure 3.1 illustrates the mean IV as a function of ∆ for Intel Corp.,

and Table 3.3.1 shows the average value of bi,t for all 53 firms. As previously documented

by Bakshi, Kapadia, and Madan [2003], the average smirk on individual stocks is positive

and shows large cross-sectional variation.

Measuring the variance premium (VP) requires both an estimate of the firm’s realized

variance and the corresponding variance swap rate. I estimate each firm’s daily realized

variance (RVi,t) from five-minute returns based on national best bid and offer quotes,

computed by examining all exchanges offering quotes on a given stock. Intra-daily quote

data is taken from the TAQ database. I apply common filters for minimizing the effect of

microstructure noise and recording errors. For the main analysis in Section 3.4, I further
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Table 3.1: Option Characteristics

Ticker Company Name b RV VSR ln( RV
V SR

)

×10 ×100 ×100 ×100

1 AA Alcoa Inc. 0.84 16.52 16.86 -16.86

2 AEP American Electric Power Co 0.90 7.14 6.43 -12.35

3 ALL The Allstate Corp. 0.92 11.92 11.71 -10.06

4 AMGN Amgen, Inc. 1.06 12.34 13.23 -19.81

5 AVP Avon Products, Inc. 0.78 12.59 12.97 -21.32

6 AXP American Express Co 1.24 14.46 14.16 -19.83

7 BA The Boeing Co 0.89 10.69 10.55 -13.02

8 BAX Baxter International Inc. 0.74 8.56 8.35 -18.05

9 BHI Baker Hughes Inc. 0.95 20.00 19.11 -5.80

10 BMY Bristol-Myers Squibb Co 0.83 10.09 8.94 -8.90

11 CI CIGNA Corp. 0.84 14.41 15.10 -27.28

12 CL Colgate-Palmolive Co 0.76 6.88 6.50 -7.65

13 CPB Campbell Soup Co 0.58 7.09 7.38 -19.25

14 CSC Computer Sciences Corp. 0.94 14.27 15.81 -28.51

15 CSCO Cisco Systems, Inc. 1.20 18.01 19.65 -20.75

16 DD Du Pont De Nemours And Co 0.95 9.84 8.79 2.05

17 DIS The Walt Disney Co 0.98 11.56 10.94 -17.26

18 DOW Dow Chemical 1.09 12.37 13.09 -16.92

19 EMC EMC Corp. 0.99 24.49 22.32 -5.50

20 ETR Entergy Corp. 0.59 6.62 7.59 -25.11

21 F Ford Motor Co 1.39 24.02 23.47 -15.66

22 FDX FedEx Corp. 0.89 9.99 11.14 -21.36

23 GD General Dynamics Corp. 0.83 7.61 8.07 -15.49

24 GE General Electric Co 1.18 11.03 10.72 -13.49

25 HAL Halliburton Co 0.99 21.40 20.09 -5.53

26 HD The Home Depot, Inc. 1.08 12.27 11.69 -12.56

27 HPQ Hewlett-Packard Co 0.94 16.86 15.74 -10.79

28 IBM International Business Machines 0.95 9.02 9.48 -23.50

29 INTC Intel Corp. 0.96 16.47 15.97 -12.79

30 IP International Paper Co 0.96 14.40 14.03 -6.31

31 JNJ Johnson & Johnson 0.88 5.46 5.43 -17.09

32 KO The Coca-Cola Co 0.81 6.02 6.20 -13.41

33 LTD Limited Brands Inc. 1.44 17.35 17.52 -11.40

34 MCD McDonald’s Corp. 0.84 7.70 7.41 -8.71

35 MMM 3M Co 0.89 7.00 6.83 -9.89

36 MO Altria Group Inc. 0.92 8.06 8.97 -21.15

37 MRK Merck & Co., Inc. 0.90 9.34 8.28 -7.61

38 MSFT Microsoft Corp. 0.91 10.20 11.21 -20.09

39 NSC Norfolk Southern Corp. 0.85 13.10 11.73 -0.98

40 PEP PepsiCo, Inc. 0.79 7.02 6.17 -4.42

41 PFE Pfizer Inc. 0.82 9.10 8.82 -12.49

42 PG The Procter & Gamble Co 0.86 7.01 5.67 -7.59

Continued on next page
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Table 3.1 – continued from previous page

Ticker Company Name b RV VSR ln( RV
V SR

)

×10 ×100 ×100 ×100

43 RSH RadioShack Corp. 1.14 25.19 24.21 -19.50

44 SLB Schlumberger Limited 0.87 14.97 14.44 -8.18

45 SO The Southern Co 0.69 5.33 5.59 -17.84

46 TXN Texas Instruments Inc. 1.06 21.89 19.69 -2.80

47 UTX United Technologies Corp. 0.98 8.62 8.44 -12.19

48 VZ Verizon Communications Inc. 0.98 8.16 7.79 -8.77

49 WMB Williams Companies, Inc. 1.02 33.33 24.11 -13.28

50 WMT Wal-Mart Stores, Inc. 0.84 8.53 8.18 -7.99

51 WY Weyerhaeuser Co 0.98 12.17 12.33 -12.04

52 XOM Exxon Mobil Corp. 0.87 6.91 6.43 -7.19

53 XRX Xerox Corp. 1.18 21.16 21.90 -9.44

This table shows mean option characteristics for the set of fifty three firms over 1996-

2012. The slope of the implied volatility curve, measured via Equation 3.5, is denoted

by b. The realized variance (RV) and the variance swap rate (VSR) are both expressed

in annualized variance units. The variance premium is measured as the log of the

realized variance over the month divided by the variance swap rate at the end of the

previous month.

require monthly RV estimates, which I compute by adding the daily estimates within a

given month.

Synthetic variance swap rates (VSR) are computed similar to the VIX index via a dis-

cretization of the formula

V SRt,T =
2

T − t

∫ ∞
0

Θt(K,T )

Bt(T )K2
dK, (3.6)

where Θt(K,T ) denotes the time-t price of an out-of-the-money option with strike K and

maturity T and Bt(T ) denotes the time-t price of a bond paying one dollar at T . I use

IV surface data for the 30 day maturity. Following Carr and Wu [2009], the IVs reported

by OptionMetrics are converted into option prices using the Black-Scholes model (rather

than a binomial tree model) in order to strip option prices of the early exercise premium.2

I use the extrapolation method of Jiang and Tian [2005] for evaluating the integral, i.e. I

set implied volatilities outside of the observed strike range equal to the endpoint values of

the observed range.

2All of my results are quantitatively similar if I instead use the option prices reported by OptionMetrics,
which are computed from IVs based on a binomial model that incorporates the early exercise premium.
The approach of Carr and Wu [2009] conforms more closely to the theory underlying the replication of
variance swap rates, which is based on European options.
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Figure 3.2: Systematic Variance Factors, 1996-2012
This figure shows weekly time series of the two variance factors. The top panel shows the realized
variance of the market and the bottom panel shows the common idiosyncratic variance factor.
Both series are expressed in annualized variance units. Shaded regions mark NBER recessions.

The (log) variance premium is measured as ln(RVt:t+21/V SRt)×100, where V SRt denotes

the swap rate at the end of month t and RVt:t+21 equals the RV over the following month.

The log variance premium can be interpreted as the continuously compounded excess

return (in percent) to going long the variance swap contract and holding it to maturity.

This is the measure used for most of the analysis in Carr and Wu [2009], making my results

comparable to theirs. Table 3.3.1 shows the mean annualized realized variances, VSR and

the VP for all firms. With one exception, all of the variance premia are negative. This

finding is in line with Carr and Wu [2009], who find the great majority of the stocks in

their 1996-2003 sample to have a negative mean variance premium.

3.3.2 Estimating Exposure to Sources of Systematic Variance Risk

As discussed in Section 3.2, I consider two sources of undiversifiable variance risk, the

common variance of idiosyncratic returns from a factor model and the variance of the

market.
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The daily common idiosyncratic variance (CIV) factor is computed as the value-weighted

squared daily idiosyncratic return across all stocks in the CRSP universe. Specifically,

on each day of the sample, I estimate the Fama-French model based on the most recent

quarter (63 days) of daily data for each firm:3

ri,s − rfs = b0i,t + b1i,tMKTs + b2i,tSMBs + b3i,tHMLs + ei,s for s ∈ {t− 62, ..., t},

where the variable MKT represents the excess return on the market portfolio, SMB is the

size factor, and HML is the value factor. Next, I compute the CIV as the cross-sectional

value-weighted squared residual on the last day in the three month window,

CIVt =

Nt∑
i=1

wi,te
2
i,t,

where Nt denotes the number of available CRSP firms on day t,4 and wi,t denotes firm

i’s market capitalization relative to that of all Nt firms. Value-weighted averages of id-

iosyncratic returns have been used previously as measures of CIV by Campbell, Lettau,

Malkiel, and Xu [2001] and Bekaert, Hodrick, and Zhang [2012]. Different from the pre-

vious studies, I use the squared daily residual as an estimate of firm i’s daily residual

variance. Obviously, this estimate is very noisy because it is based on a single observation.

Nevertheless, the law of large numbers ensures that the noise in individual firms’ estimates

becomes negligible when taking the cross-sectional average across a large number of firms.

To illustrate that CIV represents a sensible measure of the common variation in the vari-

ance of idiosyncratic returns, I compare it to a common idiosyncratic variance factor based

on the monthly idiosyncratic variance measure of Ang, Hodrick, Xing, and Zhang [2006].

In particular, I estimate the Fama-French model based on the daily observations within

each calendar month and compute firm i’s monthly idiosyncratic return variance based on

the sample variance of all daily residuals for the month. Next, I compute the monthly CIV

factor as the cross-sectional average, weighted by the market weights at the end of the

previous month (see also Bekaert, Hodrick, and Zhang [2012]). The resulting series has a

correlation of 0.987 with the time-aggregated series of the daily CIV measure used in the

present paper. The crucial difference of the daily measure proposed here is that it enables

me to estimate loadings on the factor based on a short rolling window of daily observations.

3The subscript t on the coefficients denotes the fact that they are estimated on a rolling window that
ends on day t.

4In order for a firm to be included in the analysis on day t, I require that a minimum of 57 ≈ 0.9× 63
daily return observations are available over the past 63 days. Small, infrequently traded stocks are therefore
excluded from the sample.
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The realized variance of the market (RVM,t) is computed based on five-minute returns on

S&P500 futures, which were obtained from TICKDATA. Figure 3.2 shows time-series for

both the realized variance of the market (top panel) and the CIV factor (bottom panel).

For better visibility, I aggregate both series to a weekly frequency. For comparison, I

overlay the CIVAng factor in the bottom panel, which has a monthly frequency. It is clear

that, apart from the different frequency, both series behave very similarly.

Having obtained time-series for each firm’s realized variance as well the realized variance

of the market and the CIV factor, I estimate each firm’s exposure to the two sources of

systematic variance risk from

RVi,s = β0
i,t + βMi,tRVM,s + βCIVi,t CIVs + εi,s for s ∈ {t− 62, ..., t}. (3.7)

The regression is run at the end of each month based on daily data for the previous quarter,

resulting in a monthly time series for βMi,t and βCIVi,t . A 3-month window is appropriate

because earnings announcements, which represent a mostly idiosyncratic event with a

large effect on individual firms’ variances, occur on a quarterly basis. The mean R2’s of

regression 3.7 for individual firms range from 9% to 36% with a cross-sectional median of

21%. This shows that a substantial part of the time-variation in individual firms’ variances

can be attributed to the two variance factors.

3.4 Results

In this section, I investigate the relationship between firms’ loadings on the two undi-

versible variance factors and characteristics of their option prices. My main finding is

that firms whose variance co-moves stronger with market variance have steeper implied

volatility smirks and larger (less negative) variance premia. This pattern is illustrated

with cross-sectional regressions as well as sorts based on the estimated loadings. It holds

across different subsamples and it is robust to different approaches for estimating loadings.

Exposure to common idiosyncratic variance impacts neither the variance premium nor the

smirk in a robust fashion.

3.4.1 Fama-MacBeth Regressions

I cross-sectionally regress monthly option characteristics of each firm on its latest available

risk loadings,

yi,t+1 = λ0,t+1 + λ1,t+1β̂
M
i,t + λ2,t+1β̂

CIV
i,t + ei,t+1, (3.8)

where yi,t+1 denotes either the variance premium or the smirk in month t+1 and the load-

ings (β̂Mi,t , β̂
CIV
i,t ) are estimates based on data up to the end of month t from the first pass
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Table 3.2: Fama-MacBeth Regressions

This table reports cross-sectional regressions of option characteristics on lagged estimated loadings on the
two variance factors. Panel A shows results for the variance premium and panel B shows results for the
implied volatility smirk. Loadings are obtained from 3-month rolling window time-series regressions of firm
i’s realized variance on the realized variance of the market and the common idiosyncratic variance factor,
using daily data (see Equation 3.7). I report time-series averages of the second-stage coefficients. t-statistics
are reported in brackets and are based on Newey and West [1987] standard errors using 3 lags. Regression
specifications I and II are univariate, whereas specification III uses both loadings as regressors. The table
shows results for the full sample (1996-2012) as well as two subsamples (1996-2003 and 2004-2012).

1996-2012 1996-2003 2004-2013

I II III I II III I II III

A: VP

βM 2.42 2.50 2.59 2.99 2.27 2.07
[4.79] [4.69] [3.74] [4.17] [3.11] [2.68]

βCIV 0.14 -0.58 0.16 -1.45 0.11 0.19
[0.26] [-1.04] [0.20] [1.77] [0.16] [0.25]

B: Smirk

βM 0.08 0.09 0.04 0.05 0.12 0.13
[4.09] [4.95] [5.12] [4.97] [3.34] [4.14]

βCIV 0.03 0.02 0.01 0.00 0.05 0.05
[1.99] [1.37] [0.54] [0.01] [2.10] [2.09]

regression (Equation 3.7). As explained in Section 3.3, the variance premium in month

t + 1 is measured by the holding period return of a one-month variance swap purchased

at the end of month t, and the smirk is measured by the average of daily slope estimates

(from Equation 3.5) over month t + 1. The results of the Fama-MacBeth regressions for

the full sample and two subsamples are presented in Table 3.2. Specifications I and II

show the univariate effect of each loading separately, whereas specification III estimates

the effects jointly.

The table shows that exposure to CIV is not related to the variance premium. The effect

of βCIV is insignificant for all samples and regression specifications, with the exception of

the early sample, where the effect is marginally significant in the joint specification (with

a t-statistic of 1.77). Furthermore, while exposure to CIV is significantly related to the

smirk in the full sample (with a t-statistic of 1.99), the effect is not robust across sub-

samples and it becomes insignificant in the bivariate specification. Overall, the evidence

in Table 3.2 therefore suggests that exposure to CIV does not play an important role for

option prices.

Exposure to market variance, on the other hand, has a very significant positive effect on

both the variance premium and the smirk. In the full sample, the coefficient on βM has a

t-statistic of 4.79 (4.69) in the univariate (bivariate) regression for the variance premium

and a t-statistic of 4.09 (4.95) for the smirk. Furthermore, the effect remains significant in
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both subsamples, both for the univariate and the bivariate regression specification. The

positive association between market variance exposure the the slope of the smirk is con-

sistent with the evidence in Christoffersen, Fournier, and Jacobs [2013], who show that

unconditional estimates of market betas are significantly positively related to the average

smirk among DJIA firms. The results in Table 3.2 show that their result continues to hold

when one allows for time-variation in loadings. The positive association between market

variance exposure the the variance premium implies that firms with larger loadings carry

larger (less negative) variance premia. This is very surprising because it is well-known

that market variance carries a negative price of risk. One would therefore expect firms

whose variance co-moves stronger with the variance of the market to carry larger absolute

variance premia.

An important concern about the above inference stems from the two-stage estimation

procedure, which implies that regressors are measured with noise. While the reported

t-statistics correct for autocorrelation and heteroscedasticity as in Newey and West [1987],

they do not account for errors-in-variables. Unfortunately, appropriate adjustments are

only known under restrictive distributional assumptions and are therefore not feasible in

the present case. In the next section, I show that the same results arise for an inference

procedure that produces conservative results in the presence of errors-in-variables, namely

a simple sorting exercise based on the estimated loadings.

3.4.2 Sorts

At the end of each month, I use the most recent estimate of either βM or βCIV from

regression 3.7 to sort firms into five groups, and I compute the average variance premium

and the average smirk within each group. I then compute the time series average of

the characteristics for each group, as well as for the difference in characteristics between

groups five and one and the associated t-statistic. This procedure yields conservative re-

sults in the presence of errors in the sorting variable, because such errors cause some firms

to be assigned to the wrong group in each period. An additional advantage relative to

cross-sectional regressions lies in the fact that sorts are robust to outliers in the estimated

loadings. The results of the sorting exercise are presented in Table 3.5, both for the full

sample and two subsamples.

Panel A shows that both the variance premium and the smirk are positively related to βM ,

confirming the result of the Fama-MacBeth regressions. For the full sample, the variance

premium increases monotonically from −18.80 for stock with low βM (group 1) to −9.72

for stocks with high βM (group 5). The difference between groups five and one is highly

statistically significant with a t-statistic of 5.47. It is also economically large, implying
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Table 3.3: Option characteristics of firms sorted by variance loadings

This table shows average option characteristics of five groups of firms, sorted monthly by their loadings
on the two variance factors. Loadings are obtained from 3-month rolling window time-series regressions
of firm i’s realized variance on the realized variance of the market and the common idiosyncratic variance
factor, using daily data (see Equation 3.7). I then sort firms into five groups based on the estimated βM

(Panel A) and βΓ (Panel B) and determine the average characteristic within each groups over the following
month. Groups one and five contain 10 firms each, whereas groups two through four contain 11 firms. For
loadings measured up to the end of month t, the smirk and variance swap rates are also measured at the
end of month t, whereas realized variance is computed over the subsequent month. t-statistics for the 5−1
difference are shown in brackets and are based on Newey and West [1987] standard errors using 3 lags.

1996-2012 1996-2003 2004-2012

β VP smirk β VP smirk β VP smirk

A: Sort on βM

1 (Low) -0.62 -18.80 0.83 -0.36 -19.58 0.70 -0.86 -18.11 0.93
2 0.43 -13.73 0.87 0.44 -11.95 0.79 0.42 -15.29 0.94
3 0.78 -12.17 0.91 0.78 -10.01 0.78 0.77 -14.07 1.03
4 1.24 -12.14 0.98 1.28 -10.44 0.82 1.20 -13.63 1.11
5 (High) 3.55 -9.72 1.13 4.13 -8.17 0.96 3.03 -11.08 1.27

5-1 9.08 0.30 11.40 0.26 7.03 0.34
[t− stat] [5.47] [5.97] [4.28] [6.08] [3.52] [3.92]

B: Sort on βCIV

1 (Low) -0.25 -15.58 0.94 -0.28 -14.56 0.81 -0.23 -16.47 1.05
2 0.15 -12.92 0.86 0.14 -11.95 0.74 0.16 -13.78 0.96
3 0.34 -11.94 0.90 0.34 -10.04 0.78 0.35 -13.62 1.02
4 0.65 -11.28 0.96 0.64 -10.39 0.83 0.66 -12.07 1.08
5 (High) 2.78 -15.02 1.05 2.49 -13.22 0.91 3.04 -16.61 1.18

5-1 0.56 0.12 1.35 0.10 -0.14 0.13
[t− stat] [0.43] [2.95] [0.81] [1.67] [-0.07] [2.54]

that the average return of variance swaps in group one is twice as large as in group five.

Similarly, the smirk increases monotonically from 0.83 in group one to 1.13 in group five,

and the difference is highly significant with a t-statistic of 5.97. Lastly, note that the five

minus one difference for both the variance premium and the smirk remains statistically

significant at the 1% level in the two subsamples.

The above results show that firms with larger historical loadings on market variance have

larger (less negative) future variance premia. Given the negative price of market variance

risk, this represents a puzzle only to the extend that loadings are persistent, so that high

loadings and large variance premia occur contemporaneously. To check whether this is in-

deed the case, I compute loadings from the daily realized variances over the post-formation

month. Table 3.4 shows the results. While the spread in post-formation loadings (denoted

by βMpost) is less pronounced that the spread in historical loadings shown in table 3.5, the

difference in loadings between group 5 (equal to 1.66) and group 1 (equal to 0.80) remains

large. The table further shows that firms in group 5 have a substantially higher realized
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Table 3.4: Characteristics of firms sorted by βM

This table shows transition probabilities as well as different characteristics of firms sorted by βM . βMpost is
measured from regression 3.7, using daily data over the post formation month. RVpost is measured from
intra-daily data over the post formation month. The leverage ration (denoted by ”Lev”) is defined as book
debt over book debt plus market equity. Data on book debt is from COMPUSTAT. t-statistics for the
5 − 1 difference are shown in brackets and are based on Newey and West [1987] standard errors using 3
lags.

Prob(transition to Portfolio) βMpost RVpost Lev

1 2 3 4 5 ×100

1 (Low) 0.61 0.21 0.08 0.06 0.04 0.80 10.61 0.38
2 0.19 0.48 0.20 0.08 0.04 0.85 9.03 0.34
3 0.08 0.21 0.45 0.21 0.05 0.75 10.33 0.33
4 0.05 0.09 0.22 0.48 0.17 0.94 12.77 0.42
5 (High) 0.04 0.04 0.06 0.20 0.67 1.66 20.70 0.72

5-1 0.86 10.09 0.34
[t− stat] [4.05] [4.90] [3.11]

variance (denoted by RVpost) and a higher leverage ratio (denoted by ”Lev”) in the post-

formation month. I also computed the mean firm size and the mean book-to-market ratio

and found them to be very close to constant across the five groups (results not shown).

Lastly, the transition probability matrix shows that firms in the extreme groups remain

in the same group with a probability of approximately 2/3, which implies that loadings

exhibit relatively high persistence. This suggests that extreme loadings are not typically

the result of outlier observations in the firms’ variance series.

Panel B of Table 3.5 presents results for sorts based on βCIV . As in the Fama-MacBeth

regressions, exposure to CIV has no detectable effect on the variance premium, with the

5− 1 spread being insignificant in all samples. The effect on the smirk is not clear. While

the 5 − 1 spread is at least marginally significant in all samples, the mean smirk is not

monotone across the five groups.

3.4.3 Robustness: Alternative Loading Estimates

For the main analysis, I computed loadings based on a three-month window of daily data

for firm level realized variances and the two variance factors (see Equation 3.7). In this

section, I illustrate that the results are robust to estimating loadings (1) based on first-

differenced variances, (2) based on log variances (3) based on a 12 month window of weekly

variance data (4) based on a univariate regression that excludes CIV and (5) based on a

3 month window of daily returns, i.e. a loading estimate from the CAPM. Because sorts

based on estimated loadings produce more robust results than cross-sectional regressions, I

focus on the former to save space. Further, I show robustness results for sorts based on βM

only, because βCIV did not result in consistent findings across cross-sectional regressions
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Table 3.5: Option Characteristics of Firms Sorted by βM : Alternative Loading
Estimates

This table repeats the sorting analysis presented in Table 3.5 based on alternative estimates of βM .
Loadings are estimated based on alternate versions of regression 3.7. Panel A contains the benchmark
results. In Panel B, loadings are estimated from a regression of ∆RVi,t on ∆RVM,t and ∆CIVt. Panel C
estimates regression 3.7 based on log variances. Panel D is based on a 1 year window of weekly variance
series. Weekly variances are computed by summing the daily values within the week, both for firm level
realized variances and for the two variance factors. Panel E contains results for univariate βMt estimates,
i.e. estimates from a regression that excludes CIVt. For Panel F, loadings are estimated from the CAPM,
using a 3 month window of daily returns.

A: Daily, levels B: Daily, 1st differences C: Daily, logs

β VP smirk β VP smirk β VP smirk

1 (Low) -0.62 -18.80 0.83 -1.03 -17.55 0.86 0.15 -16.39 0.90
2 0.43 -13.73 0.87 0.29 -13.59 0.83 0.27 -12.07 0.90
3 0.78 -12.17 0.91 0.63 -12.67 0.93 0.34 -12.00 0.92
4 1.24 -12.14 0.98 1.09 -11.94 0.98 0.42 -13.09 0.97
5 (High) 3.55 -9.72 1.13 3.56 -10.78 1.11 0.53 -13.11 1.03

5-1 9.08 0.30 6.77 0.25 3.28 0.13
[t− stat] [5.47] [5.97] [4.06] [5.12] [2.11] [3.96]

D: Weekly, levels E: Daily, levels, univar. F: Daily, returns

β VP smirk β VP smirk β VP smirk

1 (Low) -0.27 -19.36 0.82 -0.23 -18.68 0.80 0.37 -17.12 0.77
2 0.76 -14.64 0.82 0.53 -13.62 0.86 0.64 -12.66 0.85
3 1.20 -11.03 0.93 0.89 -12.50 0.92 0.87 -12.17 0.91
4 1.81 -10.65 1.02 1.38 -11.47 0.99 1.12 -12.26 1.03
5 (High) 4.19 -11.07 1.13 3.90 -10.33 1.15 1.59 -12.44 1.15

5-1 8.29 0.31 8.35 0.35 4.67 0.38
[t− stat] [5.14] [7.10] [5.54] [6.24] [3.03] [6.74]

and sorts.

Table 3.5 shows the results. For comparison, the benchmark results are repeated in Panel

A. Panel B shows that results do not change substantially when loadings are estimated

based on the first differences of the variance series rather than their levels. For the results

in Panel C, loadings are computed by running regression 3.7 in logs instead of levels,

which has the effect of downweighting observations with large variance values in the loading

estimation. To the extend that large variance values are caused by noisy observations, this

approach may lead to more precise (and therefore more informative) loading estimates.

However, it is also conceivable that large variance values are informative about important

shocks, in which case it may be harmful to decrease the weight on these observations.

The results show that the 5− 1 spreads for both the variance premium and the smirk are

reduced relative to the benchmark, which suggests that downweighting large observations

may not be a desirable approach in this case. Regardless, both spreads remain positive and

statistically significant. Panel D shows that results remain very similar to the benchmark

when loadings are estimated based on weekly data and a 52-week rolling window. The

5− 1 difference changes from 9.08 to 8.29 for the variance premium and from 0.30 to 0.31
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for the smirk, and both spreads remain highly statistically significant. Furthermore, the

mean characteristics continue to increase almost monotonically from group one to group

5. Similarly, estimating βM univariately, i.e. by excluding CIV from regression 3.7, has a

negligible effect on the results (Panel E). Lastly, Panel F shows the results of sorting based

on CAPM betas, which equal
√
βM under certain conditions (see Section 3.2). While the

5− 1 spread for the variance premium becomes somewhat smaller in this case, it remains

positive and significant at the 1% level. The spread for the smirk remains close to the

benchmark value.

3.4.4 Comparison with Carr and Wu [2009]

The positive association between loadings on market variance and the variance premium

is surprising in light of the fact that the variance premium on the market is negative.

Additionally, my result contradicts the findings of Carr and Wu [2009], who document a

significantly negative relationship. In this section, I revisit their finding to understand the

source of the difference in results.

There are several important differences between Carr and Wu’s approach and the one in

the present paper. First, their sample spans 1996-2003 while mine spans 1996-2012. As I

have documented in Sections 3.4.1 and 3.4.2 this difference has an immaterial effect on my

result, i.e. the relationship between market variance exposure and firms’ variance premia

is very similar in the earlier sample. Second, Carr and Wu consider a different set of asset,

consisting of 35 firms and 5 stock indices, while I focus on 53 firms. In both papers, the

set of firms is chosen to include only firms with a very liquid option market. I investigate

the effect of including indices among the test assets below. Third, the authors estimate

loadings from an unconditional regression of firm i’s monthly log realized variance on the

monthly log realized variance of the market. Monthly realized variances are computed

based on daily data. In contrast, I allow for time-variation in loadings by estimating them

based on rolling window regressions from daily realized variances, which I compute based

on intra-daily return data. The use of intra-daily data results in more precise estimates

of spot variances than daily data (see, e.g. Andersen, Bollerslev, Diebold, and Labys

[2003]), which in turn allows me to capture time-variation in loadings in a precise fashion.

Further, I have shown in Section 3.4.3 that my result is robust to measuring loadings

based on logged variables rather than levels. Below, I examine the robustness of Carr and

Wu’s approach to measuring loadings from variances expressed in levels. Fourth, Carr and

Wu compute variance swap rates from actual option quotes, while I use OptionMetrics’s

implied volatility surface data. I show below that my approach results in a stronger rela-

tionship between variance premia and loadings when applied to Carr and Wu’s sample.
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Carr and Wu [2009] estimate the following relationship between firms’ mean variance

premia and their unconditional loadings on market variance (see their Equation 13)

V P i = 0.006
[0.09]

− 0.328
[−2.96]

βMi + ei, R2 = 18.4%, (3.9)

with t-statistics shown in brackets. I begin by replicating Carr and Wu’s results with the

exception that I continue to rely on IV surface data for computing synthetic variance swap

rates and obtain

V P i = 0.112
[2.17]

− 0.324
[−3.81]

βMi + ei, R2 = 27.6%. (3.10)

While my regression yields a very similar negative slope coefficient, the use of variance

swap rates computed based on IV surface data results in a somewhat higher R2 and t-

statistic on the slope coefficient.5 Because my interest lies in cross-sectional differences

in equity options rather than index options, I exclude the 5 stock indices and re-run the

regression based on the 35 stocks in Carr and Wu’s sample,

V P i = − 0.008
[−0.17]

− 0.053
[−0.65]

βMi + ei, R2 = 1.3%. (3.11)

Regression 3.11 shows that the strength of the previous result is driven almost entirely

by the inclusion of the five stock indices. While the sign of the slope coefficient remains

negative when excluding indices, it becomes insignificant and the R2 drops from 27.6%

to 1.3%. Next, I investigate the importance of measuring variance loadings based on log

variances rather than levels. Continuing to focus on the set of 35 firms, I find6

V P i = − 0.106
[−4.60]

+ 0.016
[3.69]

βMi + ei, R2 = 29.2%, (3.12)

showing that Carr and Wu’s finding is not robust to measuring variances in levels. Mea-

suring loadings in levels instead results in a positive and significant coefficient estimate as

well as a very high R2, mimicking the result of the present paper.

3.5 Conclusion

This paper investigates the relationship between cross-sectional differences in the variance

premium and the implied volatility smirk and the underlying firms’ exposure to market

5A potential explanation for this finding is that with raw data, there is a lot of cross-sectional variation
in the range of strikes across firms, whereas the range is equal across firms when using the IV surface. The
reason is that OptionMetrics interpolates and extrapolated the raw data to a fixed grid of option deltas to
construct the surface.

6When I instead run this regression based on all of Carr and Wu’s 40 assets (including the 5 stock
indices), I obtain a slope coefficient of 0.026 with a t-statistic of 4.25 and an R2 of 32.2%. This shows
that both the inclusion of the stock indices and the measurement of loadings based on logged variances in
necessary to obtain a significantly negative slope coefficient in Carr and Wu’s sample.
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variance risk and common idiosyncratic variance (CIV) risk. While I find no robust rela-

tionship between exposure to CIV and equity options, I document the puzzling fact that

exposure to market variance risk is associated with a larger (less negative) variance pre-

mium. I show that this effect persists in sub-samples and that it is robust to numerous

approaches for estimating loadings. The finding suggests that variance premia in equity

options are inconsistent with a factor model for returns and a negative variance premium

for the market.
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Data

Filters applied to option data

Observations with the following characteristics were removed.

1. Non-standard expiration dates

2. PM-settled options

3. Options with less than a week to expiration

4. Observations with error codes 999 (for ask) and 998 (for bid)

5. Observations whose bid-ask spread exceeds 10 times the bid

6. Singles (a call without matching put or a put without matching call)

7. The option’s mid quote violates simple no arbitrage bounds. I allow for a small

margin of error to reflect the fact that the assumed risk-free rate may not exactly

reflect the prevailing lending rate for option brokers.

I further manually remove a few observations with obvious data errors.

Computing synthetic variance swap rates

With two exceptions, I use the same procedure that the CBOE uses to compute the VIX

in order to compute synthetic variance swap rates. While the VIX is based on maturities

bracketing 30 calendar days, I apply the same approach to compute swap rates with

maturities of 30, 60, ..., 360 days. The two exceptions are:

79
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• The CBOE’s replication formula is based on in-the-money options only, because

these options are most liquid. The at-the-money price level equals the forward price

of the S&P 500, which is inferred from option data. Andersen, Bondarenko, and

Ganzalez-Perez [2012] have documented that the CBOE’s procedure for doing so

lacks a certain robustness. Because I find that this problem becomes more severe at

longer maturities, I use the approach suggested by Andersen et al. for inferring the

forward price.

• I follow Jiang and Tian [2005] in approximating the integral over strike prices beyond

the observed strike range. Once again, I find this to be particularly important at

longer maturities.

Steps for estimating the variance premium

• To estimate a time-series of daily realized variance estimates, I implement the realized

kernel estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard [2008]. The

basic idea of the estimator is akin to that of a HAC covariance estimator such

as the well-known example by Newey and West [1987], i.e. it corrects for non-

zero autocorrelations at higher lags. Based on the recommendations in Barndorff-

Nielsen, Hansen, Lunde, and Shephard [2008] as well as subsequent papers by the

same authors, I use a Parzen kernel and sample in business time (using every Xth

transaction) in such a way that observations lie 60 seconds apart on average.

• I then produce one-month-ahead variance forecasts from a time-series model. Specif-

ically, I follow Drechsler and Yaron [2011] in first computing a time series of monthly

variance estimates by aggregating the daily estimates1, and then projecting the

monthly realized variance onto its first lag and the variance swap rate at the end of

the previous month. The OLS estimates for the model are as follows

RVt:t+22 = 0.00
[0.16]

+ 0.34
[4.73]

RVt−22:t + 0.47
[7.63]
Vt(22), R2

adj = 50.4%

T-statistics are Newey-West (HAC) corrected using three lags.

• The one-step-ahead forecast from the time series model serves an an estimate of the

conditional expectation of next-month realized variance. The difference between this

estimate and the one-month variance swap rate proxies for the conditional variance

premium.

1The aggregation approach of Drechsler and Yaron [2011] is to sum up the daily estimates within each
month. This has the disadvantage that the monthly estimates vary not only because the variance changes
from month to month, but also because the number of trading days differs across months. Because the
second source of variation is not what I intend to capture, I instead estimate the monthly variance as 22
times the average daily estimate within each month.
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Steps for computing implied volatilities on a fixed grid

• On any day in the sample, I first compute the (Black-Scholes) IV and the stan-

dardized moneyness for all available options. To standardize moneyness, I use the

previously computed variance swap rate with the same maturity as the option.

• I then use a Gaussian kernel to interpolate IV to a fixed grid of relative moneyness

from −2 to 1 and maturities from 1 to 12 months. This is the same procedure used by

OptionMetrics to compute its well-known implied volatility surface.2 I use a kernel

weight of 0.05 in the maturity dimension (measured as the log of days to maturity)

and a weight of 0.005 in the moneyness dimension, both of which are similar to the

values used by OptionMetrics.

Data for annual cash flows and basic asset prices

Data for annual cash flows and asset prices are equivalent to those in Bansal, Kiku, and

Yaron [2012] and Beeler and Campbell [2012] – extended to the end of 2012 – with one

exception: I add the four quarterly ex-ante estimates of the risk-free rate within each year

to compute the annual risk-free rate instead of multiplying the first-quarter estimate by

four. The alternative corresponds more closely to the model-equivalent, which is based on

the sum of the risk-free rates within the year, both in my paper and in the above-cited

papers.

2OptionMetrics expresses IV as a function of maturity and the option’s delta.
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Model solution details

The model solution is characterized by the N × 1 vectors

λV , λµ, λd,B(τ), λc(τ,K),V(τ),

for τ ∈ N+ and K ∈ R+. Section 1.3.2 describes the general procedure of solving for these

vectors. This appendix contains the algebraic details. In deriving the solutions, I consider

the more general endowment

∆ct+1 =µct + σctε
c
t+1

∆dt+1 =µdt + σdt ε
d
t+1,

which allows for arbitrary Markov-switching processes for both the mean and the volatility

of (∆c,∆d). The model in the main text is a special case given by µct = µdt = µ, σct = σt,

and σdt = ϕσt.

Notation

Throughout the appendix, denote the cumulative density function (cdf) of a standard

normal by Φ(·), and let the number of arguments indicate whether the cdf is univariate or

bivariate. Let 1{·} denote the indicator function. Denote the Hadamard (element-wise)

matrix product by �. Lastly, define

µcdt ≡(α− 1)µct + µdt

σcdt ≡
1

2
(α− 1)2(σct )

2 +
1

2
(σdt )2 + (α− 1)σctσ

d
t

The derivations presented below makes extensive use of the the following Lemma, the

proof of which is contained in Appendix C.
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Lemma 1. Let x, y be standard normal with correlation ρ, and let a, b, r, s be constants.

Then

(a)

E[erx+sy1{x ≤ a}] = e
1
2

(r2+2ρrs+s2)Φ(a− r − ρs)

(b)

E[erx+sy1{a ≤ y}] = e
1
2

(r2+2ρrs+s2) [1− Φ(a− ρr − s)]

(c)

E[erx+sy1{x ≤ a}1{b ≤ y}] = e
1
2

(r2+2ρrs+s2) [Φ(a− r − ρs)− Φ(a− r − ρs, b− ρr − s)]

(d)

E
[
erxy21{x ≤ a}

]
= e

r2

2 (1 + r2ρ2)Φ(a− r)− e
2ra−a2

2
(r + a)ρ2

√
2π

≡ Ω(r, a)

(e)

E [erxy1{x ≤ a}] = ρe
r2

2

(
rΦ(a− r)− 1√

2π
e−

(a−r)2
2

)
≡ Γ(r, a)
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Solving for the Utility Ratios – λV and λµ

Using the law of iterated expectations, the expectation in the pricing kernel (Equation

1.7) can be written as Et [1 (Vt+1 ≤ δµt)] = Et[Φ
(
φct+1

)
]. Dividing the value function in

Equation 1.4 by Ct gives

λVt = [(1− β) + β(λµt )ρ]
1
ρ . (B.1)

Dividing the certainty equivalent in Equation 1.5 by Ct and re-arranging terms gives

λµt =


Et

[
eα∆ct+1

(
λVt+1

)α 1+θ1{εct+1≤φct+1}
1+θδαEt[Φ(φct+1)]

] 1
α

, for α ≤ 1, α 6= 0

exp

(
Et

[
(log(λVt+1)+∆ct+1)(1+θ1{εct+1≤φct+1})−θ log(δ)1{εct+1≤φct+1}

1+θEt[Φ(φct+1)]

])
, for α = 0

(B.2)

The expectation over εct+1 can be evaluated by using Lemma 1a. In the case α ≤ 1, α 6= 0,

the objects in the lemma are given by r = ασct , s = 0, and a = φct+1. To solve the case of

α = 0, note that for ε ∼ N(0, 1), E[ε1{ε ≤ a}] =
∫ a
−∞ εf(ε)dε = − 1√

2π
e−

ε2

2

∣∣a
−∞ = −Φ′(a).

It follows that

λµt =


Et

[
(λVt+1)

α

1+θδαEt[Φ(φct+1)]
eαµ

c
t+

1
2
α2(σct )

2

(
1 + θΦ(φct+1 − ασct )

)] 1
α

, for α ≤ 1, α 6= 0

exp

(
Et

[
(log(λVt+1)+µct)(1+θΦ(φct+1))−σct θΦ′(φct+1)−θ log(δ)Φ(φct+1)

1+θEt[Φ(φct+1)]

])
, for α = 0

(B.3)

Given a guess for λV and λµ, the remaining expectation in equation B.3 can be evaluated

as a matrix product. The system of equations in B.1 and B.3 has to be solved numerically.
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Solving for Bond Prices – B(τ)

The price of a one-period bond equals

Bt(1) =Et [Mt+1]

=Et

[
βe(α−1)∆ct+1

(
λVt+1

λµt

)α−ρ(
1 + θ1{εct+1 ≤ φct+1}
1 + δαθEt[Φ

(
φct+1

)
]

)]

=Et

[
βe(α−1)µct+

1
2

(α−1)2(σct )
2

(
λVt+1

λµt

)α−ρ(
1 + θΦ(φct+1 − (α− 1)σct )

1 + δαθEt[Φ
(
φct+1

)
]

)]
,

(B.4)

where the last equality uses the law of iterated expectations and Lemma 1a with r =

(α− 1)σct , s = 0, and a = φct+1. Prices of multi-period bonds can be expressed recursively

as

Bt(τ) ≡ Et[Mt:t+τ ] =Et

[
τ∏
h=1

Mt+h

]
= Et

[(
τ−1∏
h=1

Mt+h

)
Et+τ−1[Mt+τ ]

]

To evaluate the remaining expectations, denote the term in equation B.4 inside the ex-

pectation by abij when the Markov chain is in state i at time t in in state j at time t+ 1.

Collect the terms abij in a matrix Ab. Then bond prices can be written in matrix form as

B(1) =(P �Ab) · ιN

B(τ) =(P �Ab) · B(τ − 1)

Solving for the Price-Dividend Ratio – λd

After dividing by Dt, the Euler equation for the dividend claim is given by

λdt ≡
St
Dt

=Et

[
Mt+1

St+1 +Dt+1

Dt

]
=Et

[
β

(
λVt+1

λµt

)α−ρ(
1 + θ1{εct+1 ≤ φct+1}
1 + δαθEt[Φ

(
φct+1

)
]

)
e(α−1)∆ct+1+∆dt+1

(
λdt+1 + 1

)]

One can integrate out (εct+1, ε
d
t+1) by using the law of iterated expectations. Applying

Lemma 1a with r = (α− 1)σct , s = σdt , and a = φct+1 yields

λdt = Et

[
β

(
λVt+1

λµt

)α−ρ(
1 + θΦ(φct+1 − (α− 1)σct − %σdt )

1 + δαθEt[Φ
(
φct+1

)
]

)
eµ

cd
t +σcdt︸ ︷︷ ︸

≡adij

(
λdt+1 + 1

)]
,

where µcdt and σcdt were defined under ”Notation”. To evaluate the remaining expectation

and to solve for λd, denote the term pre-multiplying (λdt+1 + 1) inside the expectation by

adij when the Markov chain is in state i at time t in in state j at time t + 1. Collect the
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terms adij in a matrix Ad. Then the expectation can be evaluated in matrix form as

λd =[P �Ad � (1N + ιN (λd)′)]ιN

=[P �Ad]ιN + [(P �Ad)� (ιN (λd)′)]ιN

=[P �Ad]ιN + (P �Ad)λd

⇔ λd =(IN − P �Ad)−1[P �Ad]ιN
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Solving for One-Period Call Prices – C(1,K)

The (relative) price of a 1-period call with moneyness K equals

Ct(1,K) ≡ Et
[
Mt+1 max

(
0,
St+1

St
−K

)]
,

The call payoff is triggered if

St+1

St
> K ⇔

λdt+1

λdt
e∆dt+1 > K ⇔ εdt+1 >

log

(
K

λdt
λdt+1

)
− µdt

σdt
≡ φdt+1(K),

where I have defined the payoff threshold φdt+1(K). The call price can now be written as

Ct(1,K) =Et

[
Mt+1

(
λdt+1

λdt
e∆dt+1 −K

)
1
{
φdt+1(K) < εdt+1

}]

=Et

[
βe(α−1)∆ct+1

(
λVt+1

λµt

)α−ρ(
1 + θ1{εct+1 ≤ φct+1}
1 + δαθEt[Φ

(
φct+1

)
]

)(
λdt+1

λdt
e∆dt+1 −K

)
1
{
φdt+1(K) < εdt+1

}]

To integrate out (εct+1, ε
d
t+1), one has to use the law of iterated expectations in combination

with Lemma 1 several times. Specifically, the above expression contains four additive parts

containing normal innovations. To keep notation manageable, I first integrate over the

normal terms in each of these four expressions separately.

Et

[
e(α−1)∆ct+1+∆dt+11

{
φdt+1(K) < εdt+1

}]
=Et

[
eµ

cd
t +σcdt (1− Φ(φdt+1(K)− (α− 1)%σct − σdt ))︸ ︷︷ ︸

≡χ1
t+1

]

Et

[
e(α−1)∆ct+11

{
φdt+1(K) < εdt+1

}]
=Et

[
e(α−1)µct+

1
2

(α−1)2(σct )
2
(1− Φ(φdt+1(K)− (α− 1)%σct ))︸ ︷︷ ︸
≡χ2

t+1

]

Et

[
e(α−1)∆ct+1+∆dt+11{εct+1 ≤ φct+1}1

{
φdt+1(K) < εdt+1

}]
= Et

[
eµ

cd
t +σcdt

(
Φ(φct+1 − (α− 1)σct − %σdt )− Φ(φct+1 − (α− 1)σct − %σdt , φdt+1(K) + γρσct − σdt )

)
︸ ︷︷ ︸

≡χ3
t+1

]

Et

[
e(α−1)∆ct+11{εct+1 ≤ φct+1}1

(
φdt+1(K) < εdt+1

)]
= Et

[
e(α−1)µct+

1
2

(α−1)2(σct )
2
(

Φ(φct+1 − (α− 1)σct )− Φ(φct+1 − (α− 1)σct , φ
d
t+1(K)− (α− 1)%σct )

)
︸ ︷︷ ︸

≡χ4
t+1

]

Using these terms, the call price can be written as

Ct(1,K) =Et

[
β

1 + δαθEt[Φ
(
φct+1

)
]

(
λVt+1

λµt

)α−ρ
×
(
λdt+1

λdt
(χ1
t+1 + θχ3

t+1)−K(χ2
t+1 + θχ4

t+1)

)]
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and using similar notation as above, it can be evaluated for each K as

C(1,K) = (P �Ac(K)) · ιN

Solving for Variance Swap Rates – V(τ)

The τ -period variance swap rate is given by

Vt(τ) = EQt

[
τ∑
h=1

r2
t+h

]
=Et [Mt:t+τ ]−1 × Et

[
Mt:t+τ

τ∑
h=1

r2
t+h

]

=Bt(τ)−1 ×
τ∑
h=1

Et
[
Mt:t+hMt+h:t+τr

2
t+h

]
=Bt(τ)−1 ×

τ∑
h=1

Et
[
Mt:t+hr

2
t+hEt+h [Mt+h:t+τ ]

]
=Bt(τ)−1 ×

τ∑
h=1

Et

[
Mt:t+hr

2
t+hλ

b
t+h(τ − h)

]
︸ ︷︷ ︸

≡Vt(h,τ)

The terms Vt(h, τ), for h ≤ τ and h, τ ≥ 2, can be computed recursively as

Vt(h, τ) =Et [Mt+1Vt+1(h− 1, τ − 1)] ,

and evaluated in matrix form as

V(h, τ) = (P �Ab) · V(h− 1, τ − 1)

where the matrix Ab was defined under ”Solving for Bond Prices”. The recursion begins

with the terms Vt(1, κ) for κ = 1, ..., τ , which can be computed as

Vt(1, κ) =Et
[
Mt+1r

2
t+1Bt+1(κ− 1)

]
=Et

[
βe(α−1)∆ct+1

(
λVt+1

λµt

)α−ρ(
1 + θ1{εct+1 ≤ φct+1}
1 + δαθEt[Φ

(
φct+1

)
]

)
× Bt+1(κ− 1)

×

log

(
λdt+1

λdt

)2

+ (µdt )
2 + (σdt )2(εdt+1)2 + 2µdtσ

d
t ε
d
t+1 + 2 log

(
λdt+1

λdt

)
(µdt + σdt ε

d
t+1)

],
where Bt+1(0) = 1. To integrate out (εct+1, ε

d
t+1), one has to use the law of iterated

expectations in combination with Lemma 1 several times. For notational convenience, I

first integrate over the normal terms in parts of the above expression individually, and I
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subsequently combine terms. First, using Lemma 1d with r = (α− 1)σct and a =∞,

Et

[
e(α−1)∆ct+1(εdt+1)2

]
= e(α−1)µtΩ ((α− 1)σct ,∞)︸ ︷︷ ︸

≡ξ1,t+1

,

where Ω(·, ·) was defined in Lemma 1d. Note that Ω(r,∞) = e
r2

2 (1+r2ρ2).1 Second, using

Lemma 1d with r = (α− 1)σct and a = φct+1,

Et

[
e(α−1)∆ct+11{εct+1 ≤ φct+1}(εdt+1)2

]
= Et

[
e(α−1)µctΩ

(
(α− 1)σct , φ

c
t+1

)︸ ︷︷ ︸
≡ξ2,t+1

]
.

Third, using Lemma 1e with r = (α− 1)σct and a =∞,

Et

[
e(α−1)∆ct+1εdt+1

]
= e(α−1)µtΓ ((α− 1)σct ,∞)︸ ︷︷ ︸

≡ξ3,t+1

.

Note that Γ(r,∞) = rρe
r2

2 . Forth, using Lemma 1e with r = (α− 1)σct and a = φct+1,

Et

[
e(α−1)∆ct+11{εct+1 ≤ φct+1}εdt+1

]
= Et

[
e(α−1)µtΓ

(
(α− 1)σct , φ

c
t+1

)︸ ︷︷ ︸
≡ξ4,t+1

]
,

Lastly, using Lemma 1a with r = (α− 1)σct , s = 0, and a = φct+1,

Et

[
e(α−1)∆ct+11{εct+1 ≤ φct+1}

]
= Et

[
e(α−1)µct+

1
2

(α−1)2(σct )
2
Φ(φct+1 − (α− 1)σct )

]
.

Using this last result as well as the ξ-terms, Vt(1, κ) can be written as

Vt(1, κ) = Et

[
Bt+1(κ− 1)×

{
βe(α−1)µct+

1
2

(α−1)2(σct )
2

(
λVt+1

λµt

)α−ρ(
1 + θΦ(φct+1 − (α− 1)σct )

1 + δαθEt[Φ
(
φct+1

)
]

)

×

log

(
λdt+1

λdt

)2

+ (µdt )
2 + 2 log

(
λdt+1

λdt

)
µdt

]

+

(
β

1 + δαθEt[Φ
(
φct+1

)
]

)(
λVt+1

λµt

)α−ρ

×

(
(σdt )2(ξ1,t+1 + θξ2,t+1) +

[
2µdtσ

d
t + 2 log

(
λdt+1

λdt

)
σdt

]
(ξ3,t+1 + θξ4,t+1)

)}]

To evaluate the remaining expectation, denote the term in the curly brackets by aνij when

the Markov chain is in state i at time t in in state j at time t + 1. Collect the terms aνij

1This holds because in the second term of Ω, the exponential factor goes to zero faster that the latter
factor goes to infinity.
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in a matrix Aν . Then the expectation can be evaluated in matrix form as

V(1, κ) = (P �Aν) · B(κ− 1)

At this point one can apply the above recursion to compute V(h, κ) for h > 1. Lastly,

variance swap rates can be computed by summing appropriate terms.
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Proof of Lemma 1

Proof, parts a-c. All three results are special cases of the following more general result

E[erx+sy1{a ≤ x ≤ b}1{c ≤ y ≤ d}] = e
1
2

(r2+2ρrs+s2) [Φ(b∗, d∗) + Φ(a∗, c∗)− Φ(a∗, d∗)− Φ(c∗, b∗)] ,

where a∗ = a − r − ρs, b∗ = b − r − ρs, c∗ = c − ρr − s, and d∗ = d − ρr − s. In what

follows, I prove this more general case.

E[erx+sy1{a ≤ x ≤ b}1{c ≤ y ≤ d}] =
1

2π
√

1− ρ2

∫ b

a

∫ d

c
e
rx+sy−x

2−2ρxy+y2

2(1−ρ2) dydx

I next re-write the exponent. This is easier in matrix notation. Define t = [r s]′, z = [x y]′,

Σ ≡

[
1 ρ

ρ 1

]
, and ϕ ≡ Σt =

[
r + sρ

s+ rρ

]
. Then

rx+ sy − x2 − 2ρxy + y2

2(1− ρ2)
=t′z − 1

2
z′Σ−1z

=
1

2

(
z′t+ t′z − z′Σ−1z

)
=

1

2

(
z′Σ−1ϕ+ ϕ′Σ−1z − z′Σ−1z

)
=

1

2

(
z′Σ−1ϕ− (z − ϕ)′Σ−1z

)
=

1

2

(
ϕ′Σ−1ϕ+ (z − ϕ)′Σ−1ϕ− (z − ϕ)′Σ−1z

)
=

1

2

(
ϕ′Σ−1ϕ− (z − ϕ)′Σ−1(z − ϕ)

)
=

1

2
t′Σt− 1

2
(z − ϕ)′Σ−1(z − ϕ)

Note that t′Σt = r2 + 2ρrs+s2. Let v = z1−ϕ1 = x− r−sρ and w = z2−ϕ2 = y−s− rρ
so that dv = dx and dw = dy. Plugging back the re-written exponent along with this

91
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change of variables yields the result:

E[erx+sy1{a ≤ x ≤ b}1{c ≤ y ≤ d}] =e
1
2

(r2+2ρrs+s2) 1

2π|Σ|1/2

∫ b−r−sρ

a−r−sρ

∫ d−s−rρ

c−s−rρ
e
v2−2ρvw+w2

2(1−ρ2) dwdv

The special cases are obtained by noting that

1. Φ(−∞, x) = Φ(x,−∞) = 0

2. Φ(∞, x) = Φ(x,∞) = Φ(x)

�
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Proof, part d.

E
[
erxy21{x ≤ a}

]
=

∫ a

−∞

∫ ∞
−∞

erxy2 1

2π
√

1− ρ2
e
−x

2−2ρxy+y2

2(1−ρ2) dydx

The exponent can be written as

rx− x2 − 2ρxy + y2

2(1− ρ2)
=rx− x2(1− ρ2) + ρ2x2 − 2ρxy + y2

2(1− ρ2)

=− x2 − 2rx

2
− y2 − 2(ρx)y + (ρx)2

2(1− ρ2)

=
r2

2
− (x− r)2

2
− (y − ρx)2

2(1− ρ2)

Let z = y−ρx√
1−ρ2

, which implies dz = dy√
1−ρ2

and y2 = z2(1 − ρ2) + 2ρ
√

1− ρ2xz + ρ2x2.

Substituting the re-written exponent along with the change of variables gives

E
[
erxy21{x ≤ a}

]
=

∫ a

−∞

∫ ∞
−∞

(
z2(1− ρ2) + 2ρ

√
1− ρ2xz + ρ2x2

) 1

2π
e
r2

2
− (x−r)2

2
− z

2

2 dzdx

=e
r2

2

∫ a

−∞
e−

(x−r)2
2

1√
2π

(∫ ∞
−∞

(
z2(1− ρ2) + 2ρ

√
1− ρ2xz + ρ2x2

) 1√
2π
e−

z2

2 dz

)
dx

=e
r2

2
1√
2π

∫ a

−∞
e−

(x−r)2
2
(
1− ρ2 + ρ2x2

)
dx,

where the last equality used the fact that z ∼ N(0, 1). Now let w = x− r, which implies

dw = dx and x2 = w2 + 2wr + r2, so that

E
[
erxy21{x ≤ a}

]
=e

r2

2
1√
2π

∫ a−r

−∞
e−

w2

2
(
1− ρ2 + ρ2(w2 + 2wr + r2)

)
dw

=e
r2

2

(
(1− ρ2 + ρ2r2)Φ(a− r) + ρ2

∫ a−r

−∞
w2 1√

2π
e−

w2

2 dw + 2ρ2r

∫ a−r

−∞
w

1√
2π
e−

w2

2 dw

)
=e

r2

2

(
(1− ρ2 + ρ2r2)Φ(a− r) + ρ2

∫ a−r

−∞
w2 1√

2π
e−

w2

2 dw − 2ρ2re−
(a−r)2

2

)
The remaining integral can be evaluated using integration by parts.

1√
2π

∫ a−r

−∞
(−w)︸ ︷︷ ︸
≡u

(−we−
w2

2 )︸ ︷︷ ︸
≡dv

dw = − 1√
2π
we−

w2

2

∣∣∣∣a−r
−∞

+

∫ a−r

−∞

1√
2π
e−

w2

2 dw =
a− r√

2π
e−

(a−r)2
2 + Φ(a− r)

Substituting this back in and combining terms gives the result.

�
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Proof, part e.

E [erxy1{x ≤ a}] =

∫ a

−∞

∫ ∞
−∞

erxy
1

2π
√

1− ρ2
e
−x

2−2ρxy+y2

2(1−ρ2) dydx

The exponent can be written as

rx− x2 − 2ρxy + y2

2(1− ρ2)
=rx− x2(1− ρ2) + ρ2x2 − 2ρxy + y2

2(1− ρ2)

=− x2 − 2rx

2
− y2 − 2(ρx)y + (ρx)2

2(1− ρ2)

=
r2

2
− (x− r)2

2
− (y − ρx)2

2(1− ρ2)

Let z = y−ρx√
1−ρ2

, which implies dz = dy√
1−ρ2

and y = z
√

1− ρ2 + ρx. Substituting the

re-written exponent along with the change of variables gives

E [erxy1{x ≤ a}] =

∫ a

−∞

∫ ∞
−∞

(
z
√

1− ρ2 + ρx
) 1

2π
e
r2

2
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2
− z

2

2 dzdx

=e
r2

2

∫ a
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e−
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2

1√
2π

(∫ ∞
−∞

(
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√

1− ρ2 + ρx
) 1√

2π
e−

z2

2 dz

)
dx

=ρe
r2

2
1√
2π

∫ a

−∞
xe−

(x−r)2
2 dx,

where the last equality used the fact that z ∼ N(0, 1). Now let w = x− r, which implies

dw = dx, so that

E [erxy1{x ≤ a}] =ρe
r2

2
1√
2π

∫ a−r

−∞
(r + w)e−

w2

2 dw

=ρe
r2

2

(
rΦ(a− r) +

1√
2π

∫ a−r

−∞
we−

w2

2 dw

)
=ρe

r2

2

(
rΦ(a− r)− 1√

2π
e−

(a−r)2
2

)
�
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