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Abstract

My dissertation studies the impact of economic linkages among market participants on equilib-

rium outcomes such as asset prices and returns as well as investors’ welfare.

The first essay—titled “Inter-firm Relationships and Asset Prices”—studies the asset pricing

properties that stem from the propagation of shocks within a network economy and the extent to

which such a propagation mechanism quantitatively explains asset market phenomena. I show that

changes in the propagation of shocks within a network economy are important to understanding

variations in asset prices and returns, both in the aggregate and in the cross section. A calibrated

model that matches features of customer-supplier networks in the U.S. as well as dynamic features

of macroeconomic variables generates a persistent component in expected consumption growth and

stochastic consumption volatility similar to the Long-Run Risks Model of Bansal and Yaron (2004).

In the cross section, firms that are more central in the network command higher risk premium than

firms that are less central. In the time series, firm-level return volatilities exhibit a high degree of

comovement.

Implicit economic linkages among market participants also arise due to the existence of frictions

in financial markets. The second essay—titled “Basket Securities in Segmented Markets”—studies

the design and welfare implications of basket securities issued in markets with limited investor

participation. Profit-maximizing intermediaries exploit investors’ inability to trade freely across

different markets, so they choose which market to specialize in. I show that when there is only one

intermediary, the equilibrium may not be constrained efficient. Increasing competition among in-

termediaries increases the variety of baskets issued, but does not always improve investors’ welfare.

Although competition increases the variety of baskets issued, many of these baskets are redundant,

in the sense that coordination among intermediaries could improve investors’ risk-sharing oppor-
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tunities. The equilibrium basket structure depends on institutional features of a market such as

depth and gains from trade.

The third essay—titled “Imperfect Information Transmission from Banks to Investors: Real Im-

plications” and joint with Nicolás Figueroa (Universidad Católica de Chile) and Oksana Leukhina

(University of Washington)—proposes a general equilibrium model that features characteristics of

securitization markets and study the interaction of information transmission in secondary loan mar-

kets and screening effort at loan origination. We show that increasing collateral values and asset

complexity helps to explain the following pre-2008 crisis observations: (1) lax screening standards,

(2) intensified ratings shopping, (3) rating inflation, and (4) the decline in the differential between

yields on assets with low and high ratings. Contrary to conventional wisdom, we find that regu-

latory policies, such as mandatory rating and mandatory rating disclosure, may exacerbate credit

misallocation.
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Neklyudov, Emilio Osambela, Maŕıa Patricia Recalde, Maxime Roy, Alexander Schiller, and David

Schreindorfer. Finally, I thank Lawrence Rapp for his help with all the administrative issues during

the Ph.D. program.

iii



Contents

Abstract i

Acknowledgement iii

1 Inter-firm Relationships and Asset Prices 4

1.1 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 The network of inter-firm relationships Gn and firms’ cash-flows . . . . . . . . 9

1.1.3 Changes in shock propagation within Gn . . . . . . . . . . . . . . . . . . . . . 12

1.2 Distribution of Consumption Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Equilibrium Asset Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Description of Data and Customer-Supplier Networks . . . . . . . . . . . . . 20

1.4.2 Selecting the rest of parameter values . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Implications of the Calibrated Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.1 Asset Market Phenomena, Network Economies, and Long-Run Risks . . . . . 26

1.5.2 Firms’ Centrality and the Cross-Section of Risk Premia . . . . . . . . . . . . 27

1.5.3 Factor Structure on Firm-Level Return Volatility . . . . . . . . . . . . . . . . 28

1.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Basket Securities in Segmented Markets 30

2.1 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



2.1.2 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Constrained Efficient Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Trading Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Investors i’s optimal portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Efficiency of trading allocations . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Competition Among Intermediaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Imperfect Information Transmission from Banks to Investors: Real Implications

(with Nicolás Figueroa and Oksana Leukhina) 46

3.1 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Borrowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.2 Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.3 Investors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Equilibrium Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Rating Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Rating Strategies and Credit Allocation . . . . . . . . . . . . . . . . . . . . . 59

3.2.3 Existence and Uniqueness of Equilibrium . . . . . . . . . . . . . . . . . . . . 60

3.2.4 Comparison to the Constrained Efficient Allocation . . . . . . . . . . . . . . 60

3.2.5 Comparative Statics Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Policy Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 Mandatory Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.2 Mandatory Rating Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Appendices 70

2



Appendix A Inter-firm Relationships and Asset Prices 71

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 Simulation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.3 Network Economies and Long-Run Risks . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.4 Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Appendix B Basket Securities in Segmented Markets 100

B.1 Planner’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.2 Trading Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.2.1 Investors’ Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.2.2 Intermediary’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.3 Competition among intermediaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Appendix C Imperfect Information Transmission from Banks to Investors:

Real Implications 107

C.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.1.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.1.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.1.3 Proof of Proposition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.1.4 Proof of Proposition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C.1.5 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C.1.6 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.1.7 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.1.8 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.1.9 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.1.10 Proof of Proposition 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.1.11 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.1.12 Proof of Proposition 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 121

3



Chapter 1

Inter-firm Relationships and Asset

Prices

Inter-firm relationships, such as strategic alliances, joint ventures, R&D partnerships, and

customer-supplier relationships, are prevalent in modern economies. A growing body of empirical

work highlights the importance of these relationships in the case of firms’ distress and shows that

they may serve as propagation mechanisms of negative shocks to individual firms.1 For instance,

consider South Africa’s platinum miners’ strike in 2014, which affected the world’s top platinum

producers, Anglo American Platinum, Impala Platinum, and Lonmin. First, platinum production

decreased. Because platinum is used in many industrial applications such as oil cracking, some

manufacturing firms may have faced higher production costs, as they needed to restructure their

production given the lack of platinum. This, in turn, may have increased costs for some wholesale

firms which, in turn, may have decreased some retailers’ profits. Namely, a negative shock to a firm

(or group of them) may spread to others via inter-firm relationships, and in doing so, potentially

alter aggregate economic growth and volatility as well as asset prices and risk premia.

In this paper, I study the asset pricing properties that stem from the propagation of shocks

within a fixed network economy and the extent to which such a propagation quantitatively explains

asset market phenomena. To do so, I develop a dynamic, network-based equilibrium model in

which the propagation of shocks determine, in large part, firms’ cash-flow growth rates. To get a

1See Hertzel et al., 2008, Boone and Ivanov, 2012, and Barrot and Sauvagnat, 2014.
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sense of the quantitative impact in asset prices of such a propagation mechanism, I calibrate the

model to match features of customer-supplier networks in the U.S. as well as dynamic features of

macroeconomic variables. To the best of my knowledge, this study is among the first to explore the

extent to which the propagation of shocks within a fixed network economy quantitatively explains

asset market phenomena.

The main finding of this paper is that changes in the propagation of shocks within a fixed network

economy are important to understand variations in asset prices and returns, both in the aggregate

and in the cross section. In the aggregate, a calibrated model generates a persistent component in

expected consumption growth and stochastic consumption volatility similar to those in Bansal and

Yaron, 2004. As in Bansal and Yaron, 2004, these two features, together with Epstein-Zin-Weil

preferences, help explain characteristics of aggregate asset market data such as the equity premium

and the low risk-free rate. The calibrated model also helps in understanding the cross section of

expected returns, because it provides a mapping between firms’ quantities of risk and firms’ location

in the network. For instance, firms that are more central in the network command a higher risk

premium than firms that are less central. On average, firms in the highest quintile of centrality

yield an annual excess return of 1% over those firms in the lowest quintile. This prediction is aligned

with empirical results documented by Ahern, 2013 in the network of intersectoral trade. In the

time series, firm-level return volatilities exhibit a high degree of comovement—which is consistent

with evidence documented by Herskovic et al., 2014 and Duarte et al., 2014.

The main features of the model are as follows. The economy is composed of n firms whose cash-

flow growth rates vary stochastically over time. In an otherwise standard dynamic endowment

economy, firms’ cash-flow growth rates are related via a network of inter-firm relationships, such as

a supply chain, which is exogenous and fixed.2 Each relationship generates benefits that increase

a firm’s cash-flow growth rate. However, relationships also increase a firm’s exposure to negative

shocks that affect other firms. In other words, the more relationships a firm is engaged in, the

more benefits a firm receives and the higher its exposure to negative shocks that affect other

firms in the network. To be more concrete, each firm faces a negative shock to its cash-flow

2The network of inter-firm relationships is assumed to be fixed for two reasons: (a) tractability, and (b) to capture
the long-term nature of some customer-supplier relationships that allow connected firms to circumvent difficulties in
contracting due to unforeseen contingencies, asymmetries of information, and specificity on firms’ investments, e.g.
Williamson, 1979; Williamson, 1983.
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growth rate, independently of others, with probability q—which is time-invariant and equal across

firms—at very beginning of each period. Then, these negative shocks spread from one firm to

another via inter-firm relationships in a probabilistic manner. In particular, a negative shock

to firm i at period t propagates to firm j at t if there exists a sequence of relationships that

connects firms i and j in which each relationship in the sequence transmits shocks at period t. For

simplicity, each relationship potentially transmits shocks, independently of all other relationships,

with probability pt at period t. The value of pt captures the relative importance of relationship-

specific investments made by the average firm in a network economy. The higher the value of

pt, the more important relationships are on average, and the higher the likelihood that shocks

propagate through the economy at period t. To allow changes in the propagation of shocks within

the network, the propensity of inter-firm relationships to transmit shocks, pt, is allowed to vary

over time. As a consequence, the volatility of aggregate cash-flows and the correlation among firms’

cash-flows are time-varying. Temporal changes in pt capture changes in production technologies

and complementarities among firms’ activities. The pricing is done by a representative agent with

Epstein-Zin-Weil preferences to embed the time-varying cash-flow correlation structure—which is

endogeneously generated by the network—in a standard asset pricing model.

The above framework has two important properties. First, cash-flow growth rates are inde-

pendent across firms in the absence of relationships. Second, if only one sequence of relationships

connects two firms, the longer the sequence, the smaller the correlation between their cash-flow

growth rates. Namely, the more distant two firms are in the network economy, the less related their

cash-flows.

The distribution of consumption growth is shaped by two characteristics within the model:

(a) the topology of the network of relationships and (b) the propensity of relationships to transmit

shocks. Because the network is fixed, the calibrated model is able to generate a persistent component

in expected consumption growth and stochastic consumption volatility as long as the propensity of

relationships to transmit shocks, pt, exhibits persistent time variation. The persistent time variation

in pt in the calibrated model is motivated by the high persistence exhibited by macroeconomic

variables that proxy for the level of input specificity faced by the average firm within the U.S.

economy. As Barrot and Sauvagnat, 2014 show, input specificity is an important driver of the

propagation of shocks within customer-supplier networks. Suppliers of specific inputs are more
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difficult to replace in case of distress, and, thus, shocks may propagate more easily from one firm

to another.3

In the cross section, shocks to central firms have a higher likelihood of affecting more firms

than do shocks to less central firms. As a consequence, central firms are procyclical, whereas less

central firms serve as a hedge against aggregate risk and command lower risk premium. Changes

in the propensity of relationships to transmit shocks drive fluctuations in growth opportunities

and uncertainty across firms. These fluctuations translate into changes in stock prices and returns,

which produces a factor structure in returns and returns volatilities at the firm level.

This paper contributes to several strands of the literature. First, it develops a new theoretical

framework that relates to a growing body of work focused on understanding the effects of economic

linkages in asset pricing properties. Buraschi and Porchia, 2012 show that firms more central

in a market-based network have lower price dividend ratios and higher expected returns. Using

the network of intersectoral trade, Ahern, 2013 shows that firms in more central industries have

greater exposure to systematic risk. Unlike these papers, my study uses relationships at the firm

level to explore the asset pricing properties that stem from the propagation of shocks within a

network between firms’ cash-flow and the extent to which changes in such a propagation mechanism

quantitatively explain asset market phenomena. Using customer-supplier networks, Kelly, Lustig,

and Nieuwerburgh, 2013 propose that the size distribution and firm volatility distribution are

intimately linked. However, they do not explore the equilibrium asset pricing implications of such

networks. In a contemporaneous paper, Herskovic, 2015 focuses on efficiency gains that come from

changes in the input-output network and how those changes are priced in equilibrium. This paper,

on the other hand, focuses on how changes in the propagation of shocks within a fixed network

alter equilibrium asset prices, risk premia, and stock return volatilities across firms.

I also add to a body of work that explores how granular shocks may lead to aggregate fluc-

tuations in the presence of linkages among different sectors of the economy, e.g. Carvalho, 2010,

Gabaix, 2011b, Acemoglu et al., 2012; Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015a, Carvalho

and Gabaix, 2013, among others. This literature focuses mostly on analyzing changes in aggregate

3To calibrate the model, I use the time series of R&D/GDP and the number of patents created in the U.S. as
measures of the degree of input specificity faced by the average firm in the U.S. The ratio R&D/GDP aims to proxy
for the intensity of relationship-specific investments faced by the average firm, whereas the number of patents proxies
for how easily the average firm can substitute its inputs whenever a supplier is under distress.
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economic variables due to changes in the input-output network rather than exploring the asset

pricing implications of linkages among firms. This paper expands this literature by exploring the

asset pricing implications of linkages at the firm level and studying how changes in the propagation

of shocks within a network affect aggregate variables as well as asset pricing, both in the aggregate

and in the cross-section.

The rest of the paper is organized as follows. Section 1.1 explains the baseline model. Section

1.2 describes aggregate output and consumption growth within the baseline model. Section 1.3

derives expressions for the market return, the risk-free rate, the price of risk, firms’ stock prices,

and firms’ quantity of risk in large network economies. Section 1.4 uses data on customer-supplier

networks in the U.S. as well as macroeconomic variables related to the propagation of shocks within

these networks to calibrate the baseline model. Section 1.5 shows that changes in the propagation

of shocks within large network economies are quantitatively important to understand variations in

asset prices and returns, both in the aggregate and in the cross section. Section 1.6 concludes. All

proofs, unless otherwise stated, appear in the Appendix.

1.1 Baseline Model

1.1.1 The Environment

Consider an economy with one perishable good and an infinite time horizon. Time is discrete and

indexed by t ∈ {0, 1, 2, · · · }. The economy is populated by a large number of identical infinitely-lived

individuals who are aggregated into a representative infinitely-lived investor with Epstein-Zin-Weil

preferences who owns all assets in the economy. In each period, the single good is produced by n

infinitely-lived Lucas, 1978 trees, henceforth firms, with n being potentially large. In an otherwise

standard dynamic endowment economy, firms’ cash-flows are related via a network of inter-firm

relationships. Interdependencies among firms’ cash-flows can be conveniently described by a graph

consisting of a set of nodes—which represent firms—together with lines or edges joining certain

pairs of nodes—which represent inter-firm relationships. To fix notation, let Gn = (Fn,Rn) denote

the network of inter-firm relationships among n firms, where Fn denotes the set of firms and Rn

denotes the set of inter-firm relationships among them. Because I focus on the effect of Gn on

asset prices rather than on strategic network formation, inter-firm relationships are exogenously

8



determined and fixed before t = 0.4

1.1.2 The network of inter-firm relationships Gn and firms’ cash-flows

Firms’ cash-flows vary stochastically over time and depend on the network of inter-firm relation-

ships, Gn. The following reduced form formulation of firms’ cash-flows captures a simple trade-off

in a parsimonious manner. The more relationships a firm is engaged in, the more benefits a firm

receives and the higher its exposure to negative shocks that propagate through the network. Let

yi,t+1 denote firm i’s cash-flow at t + 1, and Yt ≡
∏n

i=1 y
1/n
i,t denote the aggregate output of the

economy at t.5

ASSUMPTION 1. I assume that yi,t+1 follows

log

(
yi,t+1

Yt

)
≡ α0 + α1di − α2

√
nε̃i,t+1 , i ∈ {1, · · · , n} (1.1)

where parameters α0, α1 and α2 are non-negative and equal across firms. Parameter di represents

the number of relationships of firm i in Gn, i.e. firm i’s degree in Gn. This parameter may differ

across firms. The term
√
n is included as a normalization factor in equation (1.1), which helps to

characterize the equilibrium distribution of aggregate consumption growth later on. Uncertainty in

yi,t+1 is introduced by a Bernoulli random variable ε̃i,t+1, which equals one if firm i faces a negative

shock at t+ 1 and zero otherwise. Given that

log

(
yi,t+1

Yt

)
= log

(
yi,t+1

yi,t

)
+ log

(
yi,t
Yt

)
(1.2)

parameter α2 in equation (1.1) measures the instantaneous decrease in a firm’s cash-flow growth

when a firm faces a negative shock, whereas parameter α1 captures the benefits a firm receives

4See Demange and Wooders, 2005, Goyal, 2007 and Jackson, 2008 for a detailed description of network formation
models.

5The definition of Yt implies that positive aggregate production requires positive production by each firm. To
assume that Yt ≡∏n

i=1 y
1/n
i,t is similar to assuming that Yt is proportional to

∑n
i=1 yi,t if n is sufficiently large and all

yi,t �= 0. The argument follows from applying a first order Taylor series expansion to log (Yt) in which aggregate output,

Yt ≡∑n
i=1 yi,t. A different way of justifying that Yt ≡ ∏n

i=1 y
1/n
i,t is to consider that every firm produces a different

perishable good and each good is necessary to produce other goods in the economy. In such an environment, one
obtains asset pricing properties similar to the ones obtained in this paper if the representative investor has preferences
over a Cobb-Douglas consumption aggregator of the form Ct ≡ ∏n

i=1 c
1/n
i,t , where ci,t represents consumption of the

good produced by firm i at time t.
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from each relationship it engages in. Parameter α0 in equation (1.1) captures the parts of firms’

cash-flow growth that are unrelated to benefits or costs associated to inter-firm relationships.6

To complete the description of yi,t+1, it is necessary to understand how inter-firm relationships

affect the distribution of ε̃i,t+1 at t+1. Such a distribution is determined by the following random-

network model. First, each firm faces a negative shock to its cash-flow growth, independently of

other firms, with probability q at the very beginning of each period. A negative shock to firm i at

t+1 propagates to firm j at t+1 if there exists a path of relationships in Gn that connects firms i

and j in which each relationship in the path transmits shocks at t+1. A path is a sequence of inter-

firm relationships that connects a sequence of firms that are each distinct from one another. Each

relationship transmits shocks, independently of all other relationships, with probability p̃t+1 at t+1.

Variable p̃t+1 may vary over time.7 I only allow negative shocks to propagate in a probabilistic

manner throughout the network to focus on the propagation of shocks in the case of firms’ distress.

However, equation (1.1) can be modified so that positive and negative shocks propagate over the

economy. The main results continue to hold as long as the decrease in firms’ cash-flows due to

negative shocks is larger than the increase in firms’ cash-flow due to positive shocks.

The value of p̃t+1 captures the importance of restrictions on alternative sources of substitutable

inputs for the average firm as well as the importance of relationship-specific investments made by the

average firm at t+1. The higher the value of p̃t+1, the more important relationships are on average,

and the higher the likelihood that shocks are transmitted via relationships at t+1. For example, in

the context of supply chains, Barrot and Sauvagnat, 2014 show that input’s specificity, switching

costs, and complementaries among firms’ activities may allow negative shocks to individual firms

to propagate and affect other firms in a production chain. The existence of switching costs may

6Blume et al., 2013 analyze a similar trade-off in a static environment. They focus, however, on the strategic
network formation features of economies in which agents receive benefits from the set of direct links they form, but
these links expose them to the risk of being affected by cascades of failures. They provide asymptotic bounds on the
welfare of both optimal and stable networks and show that very small amounts of “over-linking” may impose large
losses in welfare to networks’ participants.

7This random-network model can be thought of as a variation of either a reliability network or a bond percolation
model in each period. In a typical reliability network model, the edges of a given network are independently removed
with some probability. Remaining edges are assumed to transmit a message. A message from node i to j is transmitted
as long as there is at least one path from i to j after edges removal—see Colbourn, 1987 for more details. Similarly,
in a bond percolation model, edges of a given network are removed at random with some probability. Those edges
that are not removed are assumed to percolate a liquid. The question in percolation is whether or not the liquid
percolates from one node to another in the network—which is similar to the problem of transmitting a message in a
reliability context. For more details see Grimmett, 1989, Stauffer and Aharony, 1994 and Newman, (2010, Chapter
16.1).
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prevent firms from restructuring their production sufficiently fast when they need to replace a

supplier who is under distress, so negative shocks tend to spread from one firm to another.

To sum up, equation (1.1) captures the potential consequences of some inter-firm relationships

in a simple manner. Despite the fact that firms may use relationships to increase their growth

opportunities via efficiency gains, these relationships may have additional consequences because

they may also increase a firm’s exposure to negative shocks that affect a broader set of firms in

the economy. In fact, for a given set of parameters, it follows from equation (1.1) that a firm’s

expected cash-flow growth rate is initially an increasing function of the number of relationships of a

firm, but then it becomes a decreasing function of the number of relationships of a firm because the

benefits associated with relationships are eventually overcompensated by the increase in exposure

to negative shocks. Despite the fact that equation (1.1) is a reduced form formulation, this feature

of firms’ expected cash-flow growth can also be obtained within an equilibrium context, e.g. Goyal

and Moraga-González, 2001.

Given the topology of Gn, the joint distribution of the sequence {ε̃i,t+1}ni=1 at t+1 is determined

by two parameters: q, p̃t+1. Further, the marginal distribution of ε̃i,t+1 at t + 1, conditional on

p̃t+1, depends on q as well as the topology of Gn and the location of firm i in Gn. In other words,

P
(
ε̃i,t+1 = 1

∣∣p̃t+1

)
= f (q, topology of Gn, location of firm i in Gn) (1.3)

where P
(
ε̃i,t+1 = 0

∣∣p̃t+1

)
= 1 − P

(
ε̃i,t+1 = 1

∣∣p̃t+1

)
, and f(·) is a mapping characterized by the

random-network model described above—which may be hard to describe in closed-form for general

network topologies as n increases.

Despite the fact that the above mapping is hard to characterize for large n, some of its properties

are easy to describe given its formulation. First, in the absence of relationships, P
(
ε̃i,t+1 = 1

∣∣p̃t+1

)
=

P (ε̃i,t+1 = 1) = q , ∀ i and t + 1, so cash-flow growth rates are independent and identically dis-

tributed across firms over time. Second, if only one path of relationships exists between two firms,

the longer the path, the smaller the correlation between their cash-flows growth rates. Thus, the

more distant two firms are in a network in which there is at most one path between any two firms,

the less related their cash-flows are. Having this feature—which is sometimes called correlation

decay, e.g. Gamarnik, 2013—helps a great deal to obtain numerical solutions when n is large.
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1.1.3 Changes in shock propagation within Gn

Given a network Gn, the correlation structure among firms’ cash-flows depends, in large part,

on the propensity of relationships to transmit shocks, p̃t. Sufficiently small values of p̃t imply that

shocks tend to remain locally confined and affect only negligible fractions of the economy, whereas

sufficiently large values of p̃t imply that shocks may affect a large fraction of the economy for some

network topologies and, thus, alter the distribution of the pricing kernel.

To capture temporal changes in production technologies and complementaries among firms’

activities, p̃t is allowed to vary over time and follows a two state ergodic Markov process, taking

on either the value pL or pH , with 0 ≤ pL < pH < 1. The transition probability matrix of p̃t, Ωp,

is defined by

P(p̃t+1 = pH |p̃t = pH) = ψ(1− φ) + φ , (1.4)

P(p̃t+1 = pH |p̃t = pL) = ψ(1− φ)

where ψ is the unconditional probability that p̃t = pH . Parameter φ, which measures the persistence

in p̃t, satisfies 0 ≤ φ < 1, so p̃t is positively autocorrelated. If φ = 0, then p̃t’s are i.i.d. over time.

As φ tends to 1, p̃t’s become perfectly positively correlated over time.

1.2 Distribution of Consumption Growth

Two components of the model are important to understanding equilibrium asset prices: (a) the

topology of the network Gn, and (b) the propensity of relationships to transmit shocks. Before I

discuss the cross-sectional asset pricing properties that stem from the propagation of shocks within

Gn, I study how changes in these two components affect the distribution of aggregate consumption

growth and, thus, alter the distribution of the pricing kernel. Let Δc̃t+1 ≡ log
(
C̃t+1

Ct

)
and x̃t+1 ≡

log
(
Yt+1

Yt

)
be the log consumption and output growth at t+1, respectively. In equilibrium, Δc̃t+1 =

12



x̃t+1. It follows from the definition of aggregate output and equation (1.1) that,

Δc̃t+1 = x̃t+1 = log

(
n∏

i=1

(
yi,t+1

Yt

)1/n
)

=
n∑

i=1

1

n
log

(
yi,t+1

Yt

)

= α0 + α1

(
1

n

n∑
i=1

di

)
︸ ︷︷ ︸−α2

√
n

(
1

n

n∑
i=1

ε̃i,t+1

)
︸ ︷︷ ︸

= α0 + α1 d̄ − α2

√
n W̃n,t+1 , (1.5)

where d̄ denotes the average number of relationships per firm in the economy, whereas W̃n,t+1

denotes the average number of firms affected by negative shocks at t+ 1. It follows from equation

(1.5) that the distribution of Δc̃t+1 is determined by the distribution of
√
nW̃n,t+1. Because the

distribution of
√
nW̃n,t+1 is affected by p̃t+1 and the topology of Gn, these two components also

affect the distribution of Δc̃t+1.

To appreciate the importance of p̃t+1 and the topology of Gn in shaping the distribution of Δc̃t+1,

consider the case in which there are no relationships. In this case, {ε̃i,t+1}ni=1 is a sequence of i.i.d.

Bernoulli random variables, so nW̃n,t+1 follows a Binomial distribution. By the Lindeberg-Lévy

Central Limit Theorem,
√
nW̃n,t+1 is normally distributed as n grows large. Provided the absence

of relationships, the realization of p̃t+1 is irrelevant to determining the distribution of Δc̃t+1. It

then follows from equation (1.5) that the unconditional mean and variance of Δc̃t+1 are (α0 −α2q)

and q(1− q)α2
2, respectively.

In the presence of relationships, however, p̃t+1 and the topology of Gn affect the distribution

of consumption growth in two important ways. First, all moments of the distribution of Δc̃t+1 at

t + 1 potentially depend on the realization of p̃t+1 and the topology of Gn. Second, the sequence

{ε̃i,t+1}ni=1 at t + 1 is a sequence of dependent random variables, so the conditions under which

a Central Limit Theorem (CLT) holds may not be satisfied for large n. In fact, relationships

may generate convoluted interdependencies among firms’ cash-flows, which it makes difficult to

characterize the distribution of Δc̃t+1 for general network topologies and large n.

In general, there is no guarantee that Δc̃t+1 is normally distributed, despite the fact that Δc̃t+1
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comes from aggregating shocks to individual firms, as in Acemoglu, Ozdaglar, and Tahbaz-Salehi,

2015a. In fact, for a large variety of network topologies, simulation shows that the distribution

of Δc̃t+1 may differ from a normal distribution for large n. In particular, if p̃t+1 is sufficiently

close to 1 and Gn is locally connected—i.e., there is at least one path between any two firms in an

arbitrarily large neighborhood around any given firm—then a non-negligible fraction of the economy

is almost surely affected by shocks to individual firms. Therefore, the distribution of Δc̃t+1 may

exhibit thicker tails than a normal distribution would. Figure A.1 illustrates the previous point.

Figure A.1(a) depicts an economy with n = 5 firms, whereas figure A.1(b) depicts the empirical

probability density function of
√
nW̃n,t+1 for different values of p̃t+1. As figure A.1(b) shows,

the distribution of
√
nW̃n,t+1 may differ from a normal distribution for large values of p̃t+1. In

particular, as p̃t+1 tends to one, the distribution of
√
nW̃n,t+1 tends to be bimodal.

Despite the existence of relationships and the convoluted dependencies they may generate among

firms’ cash-flows, the topology of Gn and p̃t+1 can be restricted so that Δc̃t+1 is normally distributed

as n grows large. In such a case, keeping track of temporal changes of the whole distribution of

Δc̃t+1 is equivalent to keeping track of temporal changes in only averages and standard deviations.

In particular, if shocks tend to remain locally confined—i.e., shocks only propagate over fractions

of the economy that become negligible as n grows large—the sequence {ε̃i,t+1}ni=1 at t+1 becomes

a sequence of weakly dependent random variables to which a CLT can be applied. Then, the

dynamics of consumption growth can be recast as a version of Hamilton, 1989’s Markov-switching

model.

To fix the notation, let Gn+1 denote the network Gn, to which I add one new firm and all

the relationships the new firm may have with existing firms within Gn. The following proposition

imposes sufficient conditions on: (a) the limiting topology of the sequence of networks {Gn}∞n=1,

G∞ ≡ limn→∞ Gn, and (b) the propensity of relationships to transmit shocks, p̃t+1, so that Δc̃t+1

is normally distributed as n grows large.

PROPOSITION 1 (Asymptotic Normality of Δc̃t+1). Given q > 0 and a sequence of networks

of inter-firm relationships, {Gn}n≥1, with limiting topology G∞, define pc as

pc(G∞) = sup
p∈(0,1)

{
p : lim

n→∞Pq(n) = 0
}

(1.6)
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where Pq(n) denotes the probability that a shock to any given firm within Gn also affects αn firms

via shock propagation, with α > 0. If p̃t+1 < pc(G∞), then
√
nW̃n,t+1 and Δc̃t+1 are normally

distributed at t+ 1 as n grows large.

Let μc,t+1 and σc,t+1 denote the mean and volatility of Δc̃t+1, conditional on knowing p̃t+1 at

t + 1. Under the conditions of proposition 1, the distribution of Δc̃t+1 can be characterized in

terms of the pair (μc,t+1, σc,t+1). Because the network is fixed, the dynamics of (μc,t+1, σc,t+1) is

fully determined by the dynamics of p̃t+1. Thus, the economy follows a Markov process with a

continuum of values for aggregate consumption and its growth rate, Δc̃t+1, but only two values for

the first two moments of the distribution of Δc̃t+1, as in Kandel and Stambaugh, 1991.

The following corollaries provide a more detailed characterization of those large network economies

in which Δc̃t+1 is normally distributed. In particular, they report the limiting topology of the se-

quence of networks {Gn}∞n=1, G∞, and the value of the critical probability pc in proposition 1.

Corollary 1 focuses on large networks in which all firms have the same number of relationships.

COROLLARY 1 (Symmetric Networks). Given a sequence of networks of inter-firm relationships,

{Gn}n≥1, with limiting topology G∞,8

• pc = 1− 2 sin
(
π
18

) ≈ 0.65 if G∞ is the two dimensional honeycomb lattice.

• pc =
1
2 if G∞ is the two dimensional square lattice.

• pc = 2 sin
(
π
18

) ≈ 0.34 if G∞ is the two dimensional triangular lattice.

• pc =
1

z−1 if G∞ is the Bethe lattice with z neighbors per each firm.

Figure A.2 illustrates each of the network economies considered in corollary 1. Corollary 2

focuses on large networks in which the number of relationships may differ across firms.

COROLLARY 2 (Asymmetric Networks). Given a sequence of networks of inter-firm relation-

ships, {Gn}n≥1,

• pc = 1
branching number of G∞ if G∞ is a tree. The branching number of a tree is the average

number of relationships per firm in a tree.9

8A lattice is a graph whose drawing can be embedded in R
n. The two dimensional honeycomb lattice is a graph

in 2D that resembles a honeycomb. The two dimensional square lattice is a graph that resembles the Z
2 grid. The

two dimensional triangular lattice is a graph in 2D in which each node has 6 neighbors.
9A tree is a network in which any two firms are connected by exactly one path. A forest is a network whose

components are trees.
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• pc =
1
eM

if Gn is sparse and locally treelike. Gn is said to be sparse if the number of relationships

in Gn increases linearly with n, as n increases. Gn is said to be locally treelike if an arbitrarily

large neighborhood around any given firm takes the form of a tree. Parameter eM is the

leading eigenvalue of the matrix

Mn =

⎛⎜⎝ An In −Dn

In 0

⎞⎟⎠ (1.7)

where An is the adjacency matrix of Gn, i.e. the n × n matrix in which Aij = 1 if there is a

relationship between firms i and j and zero otherwise. In is the n×n identity matrix, and Dn

is the diagonal matrix that contains the number of relationships per firm along the diagonal.

1.3 Equilibrium Asset Prices

To see what the network Gn and p̃t+1 imply for equilibrium asset prices, both in the aggregate

and in the cross-section, I embed the cash-flows correlation structure that is endogenously generated

by the network in a standard asset pricing model. The representative investor has Epstein-Zin-Weil

recursive preferences to account for asset pricing phenomena that are challenging to address with

power utility preferences. The asset pricing restrictions on the gross return of firm i, R̃i,t+1, are

Et

(
M̃t+1R̃i,t+1

)
= 1 (1.8)

where M̃t+1 ≡
[
β
(
eΔc̃t+1

)−ρ
] 1−γ

1−ρ
[
R̃a,t+1

] 1−γ
1−ρ−1

represents the pricing kernel at t+ 1 and R̃a,t+1 is

the gross return on aggregate wealth—an asset that delivers aggregate consumption as its dividend

each period. Parameter ρ > 0, ρ �= 1, represents the inverse of the inter-temporal elasticity of

substitution, γ > 0 is the coefficient of relative risk aversion for static gambles, and β > 0 measures

the subjective discount factor under certainty.10

To solve the model, I look for equilibrium asset prices so that price-dividend ratios are stationary,

as in Mehra and Prescott, 1985, Weil, 1989, and Kandel and Stambaugh, 1991, among many

10If γ = ρ, these recursive preferences collapse to the standard case of VNM time-additive expected utility. The
functional form of the Euler equation when ρ = 1 is different from the one shown in equation (1.8). See Weil, (1989,
Appendix A) for details. I use the standard terminology to describe γ and ρ. However, Garcia, Renault, and Semenov,
2006 and Hansen et al., 2007 indicate that this interpretation may not be correct if ρ �= γ.
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others. Because equilibrium values are time invariant functions of the state of the economy—which

is determined by the state of the propensity of relationships to transmit shocks—the index t can

be eliminated. Hereinafter, c denotes the current level of aggregate consumption, y denotes the

current level of aggregate output, and s denotes the current state of the propensity of relationships

to transmit shocks.

I first solve for the price of aggregate wealth and the risk-free rate. These expressions are then

used to solve for equilibrium asset prices and expected excess returns in the cross-section. The

conditions under which proposition 1 and corollaries 1 or 2 hold are not needed to be satisfied in

what follows. If those conditions are satisfied, however, the conditional expectations that appear in

the following propositions can be computed in closed-form. Otherwise, I use simulation to compute

those conditional expectations.

The following proposition determines the current price of aggregate wealth.

PROPOSITION 2 (Price of Aggregate Wealth). Let Pa(c, s) denote the current price of aggregate

wealth. Pa(c, s) = wa
sc, where w

a
s is the solution of the following non-linear system of equations,

wa
s = β

⎛⎝ ∑
s′∈{H,L}

ωs,s′E
(
e(1−γ)Δc̃t+1

∣∣ps′) (wa
s′ + 1)

1−γ
1−ρ

⎞⎠
1−ρ
1−γ

, s = {H,L} (1.9)

where E
(·∣∣ps′) denotes the conditional expectation operator if the propensity of relationships to

transmit shocks during the next period is ps′, and ωs,s′ represents the (s, s′) element of Ωp.

I restrict my analysis to the set of model primitives in which the existence of a non negative

solution of (1.9) is ensured.11 The expected period gross return of aggregate wealth in the current

11Provided that eΔc̃t is positive for all t, parameters ρ and γ need to be restricted so that the function h(·) defined
as

h (wai ) ≡ β

⎛⎝ ∑
j∈{H,L}

ωi,jE
(
e(1−γ)Δc̃t+1

∣∣pj) (waj + 1)
1−γ
1−ρ

⎞⎠
1−ρ
1−γ

is continuous. If h(·) is continuous, the system of equations (1.9) has a solution by Brouwer’s Fixed Point Theorem.
Further restrictions in the set of parameter values can be imposed such that the solution of the system of equations
is unique.
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state is then

E (Ra|s) =
∑

s′∈{H,L}
ωs,s′

wa
s′ + 1

wa
s

E

(
eΔc̃t+1

∣∣ps′) , s = {H,L} . (1.10)

It follows from equations (1.9) and (1.10) that the price and expected period return of aggregate

wealth are driven by the dynamics of p̃t. In particular, temporal changes in p̃t convey temporal

changes in the distribution of aggregate consumption growth, which, in turn, manifest in the price

and the expected period return of aggregate wealth. The dynamics of p̃t, parameterized by ψ and

φ, also impact the price and the expected period return of aggregate wealth via ωs,s′, because these

two parameters determine: (a) how frequently the economy is in a state in which relationships

transmit shocks more often, and (b) how frequently changes in the propensity of relationships to

transmit shocks occur.

I next consider the risk-free asset, which pays one unit of the consumption good during the next

period with certainty.

PROPOSITION 3 (Risk-free Rate). Let Rf (s) denote the period gross return of the risk-free

asset in the current state. Rf (s) solves

1

Rf (s)
= β

1−γ
1−ρ

⎛⎝ ∑
s′∈{H,L}

ωs,s′E
(
e−γΔc̃t+1

∣∣ps′)(wa
s′ + 1

wa
s

) ρ−γ
1−ρ

⎞⎠ s = {H,L} (1.11)

where wa
s are the solutions of the system of equations (1.9).

It follows from equation (1.11) that the equilibrium risk-free rate is also driven by the dynamics

of p̃t, because changes in p̃t drive changes in the distribution of consumption growth and prices of

aggregate wealth.

Using the previous expressions, I now study what the network Gn and p̃t imply for the cross-

section of asset prices and risk premia. The following proposition determines the (ex-dividend)

stock price of firm i and its expected period return.

PROPOSITION 4 (Firms’ Stock Prices and Expected Period Returns). Let Pi(y, s) denote the

current (ex-dividend) stock price of an asset that delivers firms i’s cash-flows as its dividend each

period. For large n, Pi(y, s) = vi(s)y, where vi(s) is the solution of the following linear system of
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equations

vi(s) = β
1−γ
1−ρ ex̄+

σ2x
2

⎛⎝ ∑
s′∈{H,L}

ωs,s′

(
wa
s′ + 1

wa
s

) ρ−γ
1−ρ

E

(
e(τ−γ)Δc̃t+1

∣∣ps′) vi(s′)
⎞⎠ (1.12)

+ β
1−γ
1−ρ eα0+α1di

⎛⎝ ∑
s′∈{H,L}

ωs,s′

(
wa
s′ + 1

wa
s

) ρ−γ
1−ρ

E

(
e−γΔc̃t+1

∣∣ps′) [1− πi(ps′)]

⎞⎠
where πi(ps′) ≡ E

(
ε̃i,t+1

∣∣p̃t+1 = ps′
)
and s = {H,L}. Moreover, the expected one period gross

return of firm i is given by

E

(
R̃i,t+1

∣∣s) =
1

vi(s)

⎛⎝ ∑
s′∈{H,L}

ωs,s′
{
vi(s

′)E
(
ex̃t+1

∣∣ps′)+ eα0+α1di (1− πi(ps′))
}⎞⎠ .(1.13)

To appreciate the importance of the location of a firm in Gn in asset prices and returns, suppose

Gn is symmetric. Then, di = d̄ and πi = π̄ ≥ q for all i. It then follows from the second term in the

right hand side of (1.12) that all firms have the same price in a given period. As equation (1.12)

shows, differences in prices across firms arise solely from differences in the location of firms in

Gn. Differences in prices across firms are driven not only by the number of relationships of a firm,

captured by di, but also by the set of firms to which a firm is connected, captured by πi. The

same applies for the cross-section of expected excess returns. Differences in expected excess returns

across firms arise solely from differences across the location of firms in Gn. To understand the

cross-section of firms’ risk premia, equation (1.8) can be rewritten as a beta pricing model,

E

(
R̃i,t+1

∣∣s)−Rf (s) =

⎛⎝Cov
(
R̃i,t+1, M̃t+1

∣∣s)
Var

(
M̃t+1

∣∣s)
⎞⎠

︸ ︷︷ ︸
⎛⎝−Var

(
M̃t+1

∣∣s)
E

(
M̃t+1

∣∣s)
⎞⎠

︸ ︷︷ ︸
(1.14)

β
i,M̃

(s) λ
M̃
(s)

where β
i,M̃

(s) and λ
M̃
(s) denote the quantity of risk in firm i and the price of risk in state s,

respectively. The following proposition determines λ
M̃
(s).

PROPOSITION 5 (Conditional Price of Risk: λ
M̃
(s)). The conditional price of risk in state s,
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λ
M̃
(s), equals

λ
M̃
(s) =

1

Rf (s)
−Rf (s)

⎛⎝β2( 1−γ
1−ρ

) ∑
s′∈{H,L}

ωs,s′

(
wa
s′ + 1

wa
s

)2
(
ρ−γ
1−ρ

)
E

(
e−2γΔc̃t+1

∣∣ps′)
⎞⎠(1.15)

where Rf (s) denotes the period gross return of the risk-free asset in state s.

As equation (1.15) shows, the price of risk is time-varying, because the propensity of relation-

ships to transmit shocks varies over time. Changes in p̃t introduce changes in the distribution of

aggregate consumption growth, in the price of aggregate wealth, and in the risk-free rate, which,

in turn, manifest in changes of the price of risk. To compute firms’ quantities of risk, one can

rearrange equation (1.14), which yields

β
i,M̃

(s) =
E

(
R̃i,t+1

∣∣s)−Rf (s)

λ
M̃
(s)

(1.16)

so that firms’ conditional quantities of risk can be computed from using equations (1.11), (1.13),

and (1.15). As a consequence, firm i’s quantity of risk is driven by (a) firm i’s location in Gn, which

alters E

(
R̃i,t+1

∣∣s), and (b) the dynamics of p̃t and topology of Gn, which alter Rf (s), λM̃ (s) and

E

(
R̃i,t+1

∣∣s).12
1.4 Calibration

So far, the model illustrates how the propagation of shocks within a network economy alters

equilibrium asset prices. I now calibrate the model to get a sense of the extent to which such a

propagation mechanism quantitatively explains asset market phenomena. Section 1.4.1 describes

the data and the strategy I use to calibrate the network Gn. Section 1.4.2 describes the selection

of the rest of parameters in the model.

1.4.1 Description of Data and Customer-Supplier Networks

I use annual data on customer-supplier relationships among U.S. firms to pin down the topology

of Gn. Statement of Financial Accounting Standards (SFAS) No.131 requires firms to report the

12In an unreported proposition I also compute firms’ quantities of risk as a function of the primitives of the model.
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existence of customers who represent more than 10% of their annual sales. This information is

available on COMPUSTAT files. However, these files tend to list only abbreviations of customers’

names. I then resort to the Cohen and Frazzini, 2008 dataset on customer-supplier relationships—a

subset of the COMPUSTAT database—in which firms’ principal customers are uniquely identified.13

Their dataset consists of 6,425 different firms, considers common stocks, and represents 26,781

unique annual customer-supplier relationships from 1980 to 2005. Customer-supplier relationships

last about 3 years on average, and the distribution of firms’ size resembles the size distribution of the

CRSP universe over the sample period. The size distribution of firms’ principal customers, however,

is tilted toward large companies. The average customer size is above the 90th size percentile of

CRSP firms.

To proxy for those relationships that relate firms’ cash-flow growth rates, I consider customer-

supplier relationships in which a customer represents at least 20% of a firm’s annual sales. My

results, however, do not qualitatively change if I decrease that threshold from 20% to 10%. Using

this data, I construct undirected and non-weighted customer-supplier networks at the annual fre-

quency over the sample period where two firms are connected in a given year if one firm represents

at least 20% of another firm’s sales during that year. Figures A.3(a) and A.3(b) depict the customer-

supplier networks in 1980 and 1986 respectively, in which nodes represent firms and the size of each

node is proportional to the number of customer-supplier relationships a firm takes part in. Table

A.2 illustrates some of the characteristics of the time series of customer-supplier networks. The

average number of firms per network is 388, whereas, on average, there are 281 customer-supplier

relationships per network. As in many economic and social networks, the number of relationships

varies dramatically across firms.

To select the benchmark topology for Gn, I generate a large network with n = 400 firms

so that such a network simultaneously matches some of the characteristics of the time series of

customer-supplier networks reported in Table A.2. In particular, the selected topology for Gn

matches the average size of each of the five largest components and the average empirical degree

distribution of customer-supplier networks. I restrict the topology of Gn to be one with no cycles so

that firms’ probabilities of facing negative shocks in each state of the economy—{πi(ps)}ni=1 with

13Data available at: http://www.econ.yale.edu/∼ af227/
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ps ∈ {pL, pH} in equations (1.12) and (1.13)—are easy to compute.14 Such restriction seems to be

innocuous, because cycles are not frequent in the customer-supplier dataset. Figure A.4(a) depicts

the topology of the benchmark economy, whereas figure A.4(b) depicts its degree distribution.

Selecting the network topology using this data has one important caveat. Because many firms

in the economy, as well as their relationships, are not included in this dataset, one may be able to

construct, in the most favorable case, a network that closely resembles only a small fraction of the

aggregate economy. This is because firms need to be sufficiently large to be publicly traded and

to represent at least 20% of the annual sales of a publicly traded company. To partially ensure

that the topology selected in the benchmark economy provides a fair representation of the network

that underlies the aggregate U.S. economy, I compare the benchmark network with networks that

are uncovered using BEA input-output tables. As table A.6 shows, the network in the benchmark

economy does a good job at representing some features of the U.S. input-output network, and in

doing so, potentially provides a reasonable representation of the aggregate U.S. economy.15

1.4.2 Selecting the rest of parameter values

Given the network topology uncovered in section 1.4.1, I calibrate the rest of the parameters

in the model at the monthly frequency to be consistent with the empirical literature. Table A.3

reports the key parameter values in the calibrated model.

For the sake of illustration, these parameters can be separated into four groups. Parameters

in the first group define the preferences of the representative investor, which I select in line with

Bansal and Yaron, 2004 so that β = 0.997, γ = 10 and ρ = 0.65 (IES ≈ 1.5).

Parameters in the second group define the dynamics of firms’ cash-flows. I use annual data

on earnings per share from COMPUSTAT to proxy for firms’ cash-flows. I restrict my focus

14A cycle consists of a sequence of firms starting and ending at the same firm, with each two consecutive firms in
the sequence directly connected to each other in the network.

15It is an empirical issue whether a network uncovered using BEA input-output tables provides a sensible repre-
sentation of the network structure that underlies the U.S. economy—I leave this for future research. Another way to
uncover the underlying network using the framework in this paper is to use probabilistic graphical models, which are
commonly used to represent statistical relationships in large and complex systems, since my baseline model predicts
certain behavior of returns covariances across stocks. For instance, one may calibrate the network using a graphical
lasso estimator (GLASSO) to match observed returns covariances. In doing so, one estimates an undirected and tem-
porally invariant network by estimating a sparse inverse covariance matrix using a lasso (L1) penalty as in Friedman,
Hastie, and Tibshirani, 2008. The basic estimation strategy assumes that observations have a multivariate Gaussian
distribution with mean μ and covariance matrix Σ. If the ijth component of Σ−1 is zero, then variables i and j are
conditionally independent, given the rest of the variables, which is graphically represented as the lack of an edge
between variables i and j in Gn. The normality assumption can be relaxed as in Liu et al., 2012.
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to firms mentioned in the customer-supplier dataset, because the value of parameters {di}ni=1 in

equation (1.1)—which correspond to the number of relationships of firms—is available only for those

firms. To estimate parameters α0, α1 and α2 in equation (1.1), I run cross-sectional OLS regressions

at the annual frequency and then compute their equivalents at the monthly frequency. To run such

cross-sectional regressions, I need to determine whether firm i faces a negative shock in a given

year. To do so, I explore the temporal variation of firms’ cash-flows and run time series regressions

at the firm level, correcting for the existence of linear time trends.16 By doing so, I identify the

years in which each firm faces a negative shock. This allows me to compute annual estimates for

α0, α1 and α2 from 1980 to 2004, which are depicted in figure A.5.17 I then set parameters α0, α1

and α2 to be equal to the time series average estimates. Thus, α0 = 0.3, α1 = 0.1 and α2 = 0.07.18

Parameters in the third group define the process followed by the propagation of shock within

a network economy. The calibration of these parameters has only limited guidance from prior

studies. There are five parameters in this group: the coefficient that measures how frequently firms

face negative idiosyncratic shocks, q; the values that p̃t may take in each period, pL and pH ; the

coefficient that measures how frequently relationships exhibit high propensity to transmit shocks,

ψ; and the coefficient that measures the persistence of the stochastic process followed by p̃t, φ. I

choose the benchmark values in this group by either using available studies or matching important

moments in data.19

To select parameter φ, I explore the time variation of macroeconomic variables that proxy for

the degree of input specificity in the U.S., motivated by evidence in Barrot and Sauvagnat, 2014.

Barrot and Sauvagnat, 2014 posit that input specificity is a key driver of the propagation of shocks

16Namely, I run the following time series regression at the firm level,

log

(
yi,t
Yt−1

)
= β0 + β1 ∗ t+ εt. (1.17)

I consider that firm i faces a negative shock at year t if log
(
yi,t
Yt−1

)
is below the value predicted by regression (1.17)

for more than one standard deviation of the residuals computed from (1.17).
17Estimates of α0, α1, and α2 are statistically significant for most of the years within the sample. In particular,

out of 25 years in the sample, α0, α1, and α2 are statistically significant at the 95%, 12, 8, and 20 years, respectively.
18To determine the benchmark values of α0, α1, and α2 at the monthly frequency, I assume that yi,year =

12×yi,month, with i ∈ {1, · · · , n}. Provided that data on firms’ cash-flows is at the annual frequency, this assumption
facilitates the computation of parameters α0, α1, and α2 at the monthly frequency because Yyear = 12 × Ymonth so

that log
(
yi,year+1

Yyear

)
= log

(
yi,month+1

Ymonth

)
.

19A similar strategy is used in Zhang, 2005 to pin down parameters to which there is only limited guidance from
prior studies.
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within supply chains. Their idea is simple. The more specific the inputs a firm uses, the more

difficult it is to restructure its production if it needs to replace a supplier who is under distress,

and, thus, the more likely it is that such a firm is affected by shocks to its suppliers. It is, then,

natural to think that the higher the degree of input specificity faced by the average firm in the

economy, the higher the likelihood that negative shocks spread from one firm to another within a

customer-supplier network. To proxy for the degree of input specificity faced by the average firm

in the network economy, I use the ratio of non federally funded R&D/GDP and the number of

patents created in the U.S. These two measures aim to proxy for (i) the relative importance of

relationship-specific investments made by the average firm, and (ii) how easily the average firm can

substitute suppliers who are under distress.20 Figure A.6 depicts the time series for R&D/GDP

from 1953 to 2002 in the U.S. as well as the number of patents created in the U.S. from 1963 to 2009.

I then set φ = 0.925 so that the time series followed by the propensity of relationships to transmit

shocks is as persistent as the time series of either R&D/GDP or the number of patents created in

the U.S.21 Finally, I select the rest of the parameters in this group by matching important moments

in data. In particular, parameters q, pL, pH , and ψ are chosen so that the first two moments of

the time-aggregated annual growth rates of consumption and dividends generated by the calibrated

model are similar to those of observed annual data. I then set q = 0.2, pL = 0.38, pH = 0.45, and

ψ = 0.5.

Parameters in the fourth group define the difference between aggregate output and consumption

growth. Within the baseline model, output growth equals consumption growth at equilibrium. To

provide a more realistic description of dividends and improve the fit of the calibrated model to data,

I augment the baseline model so that consumption and dividends are two different processes within

the benchmark economy. Similar to many others, including Cecchetti, Lam, and Mark, 1993, Abel,

20Barrot and Sauvagnat, 2014 construct three measures of suppliers’ specificity in their study. The first measure
uses information that classifies inputs as differentiated or homogeneous, depending on whether they are sold on
an organized exchange or not. The second measure uses suppliers’ R&D expenses to capture the importance of
relationship-specific investments, whereas the third measure uses the number of patents issued by suppliers to capture
restrictions on alternative sources of substitutable inputs.

21To pin down the persistence of these time series, I fit autoregressive processes to the time series of non-federal
R&D/GDP and the time series of the number of patents created in the U.S. by selecting the complexity of the model
using the Akaike information criterion. The fitted AR models are both highly persistent. In particular, the fitted AR
model for the number of patents in the U.S has a persistence parameter equal to 0.93, whereas the fitted AR model
for R&D/GDP has a persistence parameter equal to 0.85. Because input’s specificity may vary across industries, I
also analyze (in unreported results) the time series of the average R&D/GDP and find that the time series of the
average R&D/GDP is as persistent as the time series of R&D/GDP.
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1999, Campbell, 1999; Campbell, 2003, and Bansal and Yaron, 2004, I assume that dividend and

consumption growth jointly satisfy,

(x̃t+1 − x̄) = τ (Δc̃t+1 − c̄) + σxξ̃t+1 , (1.18)

where x̄ and c̄ are constant and represent the unconditional means of log output and consumption

growth, respectively. Parameter τ > 0 and ξ̃t+1 is i.i.d. normal with mean zero and unit vari-

ance. Thus, the representative investor is implicitly assumed to have access to labor income in

the augmented model. For simplicity, ξ̃t+1 is independent of both Δc̃t+1 and variables {ε̃i,t+1}ni=1.

As in Abel, 1999, parameter τ represents the leverage ratio on equity. If x̄ = c̄ = σx = 0, then

aggregate consumption and dividend growth are specified as in Abel, 1999. If x̄ = c̄ = σx = 0 and

τ = 1, then the market portfolio is a claim to total wealth and the baseline model is recovered. I

set c̄ = 0.019/12 and x̄ = 0.038/12 so that the unconditional means of consumption and dividend

growth generated by the benchmark economy are similar to the ones found in data. I follow Bansal

and Yaron, 2004 and set τ = 3. I set σx = 0.0262 so that the volatility of dividends generated by

the benchmark economy is similar to the one found in data.

Despite the fact that aggregate output and consumption are two different processes within the

augmented model, both of these processes are still determined, in large part, by the propagation

of shocks within the network. In particular, the distribution of x̃t+1 is fully determined by the

propagation of shocks as equation (1.5) shows, whereas the distribution of Δc̃t+1 is also determined

by the propagation of shocks as equation (1.18) states.

1.5 Implications of the Calibrated Model

This section studies the asset market implications of the calibrated model. It shows that changes

in the propagation of shocks, within networks of inter-firm relationships that resemble customer-

supplier networks, are quantitatively important to understanding variations in asset prices and

returns, both in the aggregate and in the cross section.
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1.5.1 Asset Market Phenomena, Network Economies, and Long-Run Risks

Table A.4 exhibits moments generated under the benchmark parameterization. Table A.4 sug-

gests that the model does a reasonable job at matching important asset pricing moments as well

as moments of consumption and dividend growth. The benchmark parameterization delivers an

average annual log consumption growth of 1.8%, an annual volatility of log consumption growth

of 4.7%, an average annual log dividend growth of 3.8%, and an annual volatility of log dividend

growth of 14.9%, all values similar to those found in data. It also delivers an average market return

of 12%, an annual volatility of the market return of 18.92%, an average risk-free rate of 2.16%, an

annual volatility of the risk-free rate of 0.7%, an annual equity premium of 10%, and a Sharpe ratio

of 0.52. With the exception of the volatility of the risk-free rate and Sharpe ratio, all values are

aligned with those found in data.

Besides matching the above moments, the calibrated model generates a persistent component

in expected consumption growth and stochastic consumption volatility similar to those assumed

by the Long-Run Risks Model (LRR) of Bansal and Yaron, 2004. As Bansal and Yaron, 2004 and

Bansal, Kiku, and Yaron, 2012 show, these two features, together with Epstein-Zin-Weil preferences,

help to quantitatively explain an array of important asset market phenomena.22 Table A.5 reports

means and volatilities based on 300 simulated economies over 620 monthly observations of several

similarity measures between time series generated with either the calibrated model or the LRR

model. As table A.5 suggests, both models generate similar time series for expected consumption

growth and stochastic consumption volatility.

It is important to appreciate that the persistent component in expected consumption growth

and stochastic consumption volatility are endogenously generated within my model rather than

exogenously imposed, as in many asset pricing models. The calibrated model generates these two

features because the propensity of relationships to transmit shocks follows a persistent process,

that is consistent with data, and inter-firm relationships are long-term. Despite the fact that these

two features are endogenously generated, I do not claim that my model provides a complete micro-

22Since Bansal and Yaron, 2004, several authors have used the long-run risk framework to explain an array of
market phenomena. For instance, Kiku, 2006 provides an explanation of the value premium within the long-run risks
framework. Drechsler and Yaron, 2011 show that a calibrated long-run risks model generates a variance premium
with time variation and return predictability that is consistent with data. Bansal and Shaliastovich, 2013 develop
a long-run risks model that accounts for bond return predictability and violations of uncovered interest parity in
currency markets.
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foundation of long-run risks. The reason is that inter-firm relationships are exogenous and fixed

within my model. Nonetheless, this model provides a novel link between equilibrium asset prices and

the propagation of firm level shocks within networks that resemble customer-supplier networks, that

is consistent with the existence of long-run risks. The model suggests that changes in technologies

and complementaries among firms activities within network economies are quantitatively relevant

to understanding variations in asset prices and returns. This is particularly important in modern

economies provided the high degree of interconnectedness among firms. In doing so, the model

provides a new perspective on the potential sources of long-run risks. The framework presented

in this paper is also able to nest long-run risk models under suitable assumptions as Appendix C

demonstrates.

1.5.2 Firms’ Centrality and the Cross-Section of Risk Premia

Besides helping to explain aggregate asset market phenomena, the model helps to understand

the cross-section of expected returns because it provides a mapping between firms’ quantities of

priced risk and firms’ importance in the network. To measure the importance of a firm in the inter-

firm relationships network, I define the centrality of firm i at time t as the expected number of firms

that can be affected by a shock to firm i at time t. This measure captures the relative importance

of firm i in transmitting shocks over the economy. Shocks to firm i may alter aggregate output and

consumption growth to the extent to which they propagate over a non-negligible fraction of the

economy and, thus, alter firm i’s risk premium. If the economy contains no cycles, the centrality

of firm i at period t, χi,t, equals to

χi,t =

Li∑
d=1

nji p̃
j
t (1.19)

where nji denotes the number of firms that are at a distance j from firm i in Gn; and p̃t denotes the

realization of p̃t at time t. Firms i and k are said to be at a distance j if the shortest path between

i and k has length j. Li denotes the largest distance between any given firm within Gn and firm
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i.23

Figure A.7(a) shows firms’ conditional risk premia as a function of firms’ centrality. It follows

from figure A.7(a) that firms that are more central in the network command higher risk premium

than firms that are less central. Figure A.7(b) shows firms’ conditional quantity of risk, β
i,M̃

, as

a function of firms’ centrality. It follows from figure A.7(b) that firms that are more central have

higher quantity of risk than firms that are less central. Shocks to central firms have higher likelihood

of affecting more firms on average than do shocks to less central firms. As a consequence, central

firms tend to be procyclical, whereas less central firms serve as a hedge against aggregate risk and,

thus, command lower risk premium. On average, firms in the highest quintile of centrality yield an

annual excess return of 1% over those firms in the lowest quintile—which is aligned with empirical

results documented by Ahern, 2013 within the network of intersectoral trade.24

1.5.3 Factor Structure on Firm-Level Return Volatility

The calibrated model also generates a high degree of common time variation in return volatilities

at the firm level, which is aligned with recent empirical evidence, e.g. Herskovic et al., 2014, Duarte

et al., 2014. To facilitate comparison with evidence documented by Herskovic et al., 2014, figure

A.8 illustrates annual total return volatility at the firm level averaged within start-of-year size

quintiles. As figure A.8 shows, firms of all size exhibit similar time series volatility patterns. On

average, the first principal component of the cross-section of annual return volatility accounts for

99% of the variance. Within the model, the existence of this factor structure is not surprising,

because fluctuations in the propensity of relationships to transmit shocks drive changes in growth

23If the network contains no cycles, the probability that k firms that are at a distance j from firm i are also affected
by shocks to firm i at period t, Pji (k), is given by

P
j
i (k) =

(
nji
k

) (
p̃jt

)k (
1− p̃jt

)nj
i−k

The expected number of firms that are at a distance j from firm i and are also affected by a shock to firm i at period
t is nji p̃

j
t . As a consequence, the expected number of firms that can be affected by shocks to firm i is given by (1.19).

If there is no path between firm i and other firms within Gn, define Li = ∞.
24The 1% excess return comes from 200 simulated economies over 1100 monthly observations. I disregard the first

100 observations in each simulation to eliminate the potential bias coming from the initial condition. At the beginning
of each year, I sort firms into five quintiles based on centrality and form five equally weighted portfolios, which I keep
over the next twelve months. The 1% excess return corresponds to the average annual return of a strategy that goes
long in the portfolio with those firms with the highest centrality and short in the portfolio with those firms with the
lowest centrality. Despite that Ahern, 2013 uses a different network to compute his results, Table A.6 shows that the
network topologies used by Ahern, 2013 are similar to the network topology used in this paper.
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opportunities and uncertainty across firms, which translate into changes in prices and returns at the

firm level. Provided that returns respond to a common factor—given by the propensity p̃t—firm

level return volatilities inherit a factor structure.25

1.6 Concluding Remarks

This paper suggests that the propagation of firm level shocks within network economies are

quantitatively important to understanding asset prices and returns, both in the aggregate and

in the cross-section. Changes in either the network that underlies the aggregate economy or the

propensity of relationships to transmit shocks within a fixed network may alter aggregate variables,

such as output and consumption, which, in turn, alter equilibrium asset prices and returns.

I show that a calibrated model that matches features of customer-supplier networks in the U.S. as

well as features of macroeconomic variables that aim to proxy for the propagation of firm level shocks

within these networks, generates a persistent component in expected consumption growth and

stochastic consumption volatility similar to that of the Long-Run Risk Model of Bansal and Yaron,

2004. As Bansal and Yaron, 2004 and Bansal, Kiku, and Yaron, 2012 show, these two features,

together with Epstein-Zin-Weil preferences, help to explain characteristics of aggregate asset market

data such as the equity premium and low risk-free rate. The model also helps in understanding

the cross-section of expected returns, as it provides a mapping between firms’ quantities of priced

risk and firms’ importance in the network. In the cross section, firms that are more central in the

network command higher risk premium than firms that are less central. Shocks to central firms

have higher likelihood of affecting more firms on average than do shocks to less central firms. As

a consequence, central firms tend to be procyclical, whereas less central firms serve as a hedge

against aggregate risk and, thus, command lower risk premium. In the time series, firm-level

return volatilities exhibit a high degree of comovement. These two features are consistent with

recent empirical evidence.

25Recent empirical evidence also suggests the existence of common time variation in firm level idiosyncratic volatil-
ities, e.g. Herskovic et al., 2014, Duarte et al., 2014. In unreported results, I explore the extent to which firm level
idiosyncratic volatilities exhibit a factor structure within the calibrated model. After removing the market as a com-
mon factor of return volatilities, the high degree of common time variation in firm level return volatilities tends to
disappear. On average, the first principal component of the cross-section of annual idiosyncratic volatility accounts
only for 3% of the variance (see figure A.8(b)).
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Chapter 2

Basket Securities in Segmented

Markets

Over the past four decades, there has been a substantial increase of financial innovation and

investor demand—both institutional and retail—for securities that pool different assets and whose

value is determined as an aggregate of the values of those assets. The large variety of asset-backed

securities, such as collateralized debt obligations and mortgage-backed securities, as well as index

funds and exchange-traded funds, shows the prevalence of basket securities in modern financial

markets.

In this paper, I explore how basket securities develop in an incomplete market setting where

profit-maximizing intermediaries are involved in financial innovation. Specifically, I study the design

and welfare implications of basket securities issued in markets with limited investor participation.

The questions I address are: Which baskets are optimal for profit-maximizing intermediaries, what

are the welfare implications associated with introducing such baskets, and how does competition

among multiple intermediaries affect equilibrium outcomes? My analysis provides a link between

the institutional features of a market, such as depth and gains from trade, and the types of basket

securities that emerge in equilibrium.

In perfect capital markets the bundling activity is irrelevant. In reality, however, there are many

reasons that investors do not replicate basket securities by themselves. In the literature, asymmetric

information, transaction costs, and market incompleteness have been cited as possible explanations
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for the existence of basket securities, e.g. Subrahmanyan, 1991, Gorton and Pennacchi, 1993, Allen

and Santomero, 1997, and DeMarzo, 2005a.1 However, the cost of information and transaction costs

have continuously decreased during the last thirty years, while the demand for basket securities

has grown almost exponentially. In this paper, then, I focus on market incompleteness, in the

sense that investors have limited access to capital markets as in Rahi and Zigrand, 2009; Rahi and

Zigrand, 2010.

The assumption of limited investor participation also better captures features of today’s most

active basket security markets. For example, in some ABSs markets—such as CDOs and MBSs—

many of the characteristics of the underlying assets are public information. More important, the

selection of the underlying assets and the posterior tranching of these baskets are chosen by profit-

maximizing intermediaries. However, it is not easy for a retail investor to become an intermediary,

because it requires excellent distribution channels and setup costs that are typically large. ETFs are

another important example of limited investor participation, because limited arbitrage trading is at

the core of ETFs creation.2 Only “authorized participants,”—typically large brokers or investment

banks—are effectively able to arbitrage price differentials between ETFs and their underlying basket.

If an ETF is trading at a premium compared to its underlying basket, only authorized participants

can create ETF shares and deliver the underlying basket, whereas other investors cannot participate

in the creation-redemption process and need instead to rely on short-long strategies.

The main features of the model are as follows. I consider a one-period economy in which

trading occurs at beginning of the period and payoffs are realized at end of the period. There is

one consumption good, two market segments, and initially two assets—which (random) payoffs are

in units of the consumption good. A continuum of measure one of risk-averse investors is associated

with each segment. Each segment is endowed with only one asset. If trading across segments is

free, investors share risk perfectly and the equilibrium allocation is Pareto optimal. If markets

are segmented, however, this is not necessarily true, because marginal valuations are typically not

equalized at equilibrium. To capture market segmentation, trading across segments is not allowed.

1If investors are asymmetrically informed, a basket security may reduce uninformed investors’ trading losses
because the adverse selection costs associated with baskets are typically lower than those associated with individual
securities. In terms of transactions costs, basket securities are desirable because high transaction costs make it
expensive for individual investors to replicate diversified portfolios on their own.

2In the U.S. major ETFs are more traded than any other security. ETFs’ sponsors during the last five years have
continually increased the variety of investment objectives and the number of funds offered. For more details about
the growth of ETFs see Deville, 2008, Ferri, 2009 and Gastineau, 2010.
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However, there is a risk-neutral intermediary with the ability to trade with both segments and who

offers shares of one new security—the basket—in exchange for shares of the two initial assets. A

basket consists of a linear combination of the two initial assets. The combination of assets is chosen

by the profit-maximizing intermediary.

The first question I address is whether a monopoly intermediary would simply issue a basket to

complete both market segments. The answer is not necessarily. If one asset has a small expected

payoff, the issuer may not find it worthwhile to serve all investor types but instead choose to tailor

her basket to one investor type. When designing a basket, the issuer seeks to both increase trading

volume and increase the basket payoff—incentive which comes from the intermediary’s “skin in the

game.” Provided that the issuer cares only about her intermediation profits, her incentives may

not be aligned with those of investors. Thus, the equilibrium is not always constrained efficient.3

Because competition among intermediaries may improve investors’ welfare, I then ask what

happens when intermediaries’ barriers to entry are lowered. In that case, different basket securi-

ties may coexist in equilibrium. Many of them, however, are redundant, in the sense that coor-

dination among intermediaries may improve investors’ risk-sharing opportunities. However, the

non-cooperative nature of intermediaries’ competition prevents coordination.

This paper relates to two strands of the literature: one on optimal security design, and the other

on the creation of basket securities. Excellent surveys of security design in an incomplete market

framework are Allen and Gale, 1994 and Duffie and Rahi, 1995. So far, the main focus in the

literature has been on innovations introduced by agents who do not trade the securities they create.

In practice, however, agents involved in financial innovation are often profit-seeking institutions

that actively make markets and trade their securities across markets, e.g. Allen and Santomero,

1997. Duffie and Jackson, 1989 and Ross, 1989 are among the first studies to consider this profit-

maximizing feature. In particular, Duffie and Jackson, 1989 study the incentives of exchanges

that lead them to offer one contract rather than another. Ross, 1989 studies investment banks’

incentives to bundle securities to lower searching costs. Further, Rahi and Zigrand, 2009; Rahi

and Zigrand, 2010 study a general equilibrium model similar to mine. In Rahi and Zigrand, 2009,

investors have limited access to capital markets, and strategic issuers make profits by exploiting

3Elul, 1995 shows that in almost every incomplete market economy with more than one consumption good and
with sufficiently many uninsured states of nature, one can introduce a set of assets that might make all agents
worse-off.
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mispricings across markets.

The second related strand of literature is on the creation of basket securities. This literature has

focused mainly on either asymmetric information or transaction costs as the cause of the creation

of basket securities. For example, Gorton and Pennacchi, 1990; Gorton and Pennacchi, 1993 argue

that baskets decrease uninformed investors’ trading losses. Baskets decrease uninformed investors’

“lemons” problem, in the sense that baskets split individual securities cash flows and eliminate the

private information informed investors may have about individual securities. Along the same lines,

Subrahmanyan, 1991 shows that strategic liquidity traders may prefer baskets rather than individual

securities. DeMarzo, 2005a, on the other hand, considers the problem of an intermediary who

may have superior information about the value of her assets and provides conditions under which

intermediaries sell pools of assets, some of which are purchased by other informed intermediaries

who then further pool and tranche them. Pooling and tranching allows intermediaries to leverage

their capital more efficiently, enhancing the returns on their private information.

The rest of the paper is organized as follows. Section 2.1 describes the baseline model. Section

2.2 analyzes the constrained efficient allocation as a benchmark. Section 2.3 solves for the market-

mediated equilibrium and characterizes its properties. Section 2.4 analyzes the effect of competition

among intermediaries. Finally, section 2.5 concludes. The derivations of formulas, unless otherwise

stated, appear in the Appendix.

2.1 Baseline Model

2.1.1 The Environment

Consider a one-period economy with one consumption good. Two assets, indexed by i = {1, 2},
are traded at the beginning of the period, pay at the end of the period—in units of the consumption

good—and are in unit net supply. There are two market segments populated by a continuum of

investors with CARA utility with absolute risk aversion γ ≥ 0. Prior to trading, investors in

segment one—hereafter investors one—are endowed with all asset 1, whereas investors in segment

two—hereafter investors two—are endowed with all asset 2. Let x̃i denote the (random) payoff of

asset i.
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ASSUMPTION 2. Assets’ payoff follow

⎡⎢⎣x̃1
x̃2

⎤⎥⎦ ∼ N

⎛⎜⎝
⎡⎢⎣μ1
μ2

⎤⎥⎦ ,
⎡⎢⎣ σ21 ρσ1σ2

ρσ1σ2 σ22

⎤⎥⎦
⎞⎟⎠ (2.1)

where μi and σ
2
i denote the mean and variance of asset i’s payoff. Parameter ρ ∈ (−1, 1) denotes

the correlation between x̃1 and x̃2.

To capture market segmentation, trading across market segments is not allowed. Besides in-

vestors, there is one profit-maximizing intermediary who can trade with investors in both segments.

In exchange for shares of asset i, the intermediary offers shares of a new security to both segments.

The new security consists of a basket that contains a fraction αi ∈ (0, 1) of asset i.4 If b̃ denotes

the (random) payoff of the basket, then

b̃ =
2∑

i=1

αix̃i (2.2)

The intermediary charges an exogenous intermediation fee θ ≥ 0 per each share of the basket she

sells. Parameter θ represents the effective segmentation investors encounter when investing across

different markets. If θ tends to zero, investors trade at almost no cost across markets and the

equilibrium allocation tends to be Pareto optimal. However, as θ departs away from zero, trading

across segments gets costly, but potentially more profitable for the intermediary, and investors’

marginal valuations may not be equalized at equilibrium.

2.1.2 Agents

Investors

Let αi be the fraction of asset i that investors i trade in exchange for shares of the basket

and let bi ∈ [0, 1] denote the fraction of the basket that investors i buy. The optimal portfolio of

4An intermediary may need both first-class distribution channels and time to market a basket to see whether
there is enough demand. As a consequence, issuing several baskets at the same time may prove too costly for the
intermediary, and thus, the intermediary may offer at most one basket.
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investors i, (α∗
i , b

∗
i ), solves

max
(αi,bi)

E

[
−e−γc̃i

]
(2.3)

st. c̃i = (1− αi)x̃i + bi

⎛⎝⎡⎣ 2∑
j=1

αj x̃j

⎤⎦− θ

⎞⎠
1 ≥ bi ≥ 0 , 1 ≥ αi ≥ 0

Investors are not allowed to short-sell the basket. Otherwise, they can complete their segments at

no cost and the intermediary’s activity is redundant.

The Intermediary

Before trading, a risk-neutral intermediary decides the basket structure—defined by fractions

(αd
1, α

d
2)—to maximize her profits. If π̃ denotes the (random) profits of the intermediary, it is

assumed that

π̃ = β

(
2∑

i=1

αd
i x̃i

)
+ θ (b1 + b2) (2.4)

where β ≥ 0 measures the intermediary’s “skin in the game” and θ ≥ 0 represents the basket

transaction fee. Thus, the intermediary cares about the expected payoff of the basket as well as its

trading volume. The basket selected by the intermediary solves

max
(αd1 ,α

d
2)

E [π̃] = β

(
2∑

i=1

αd
i μi

)
+ θ (b1 + b2) (2.5)

st. αub
i ≥ αd

i ≥ αlb
i , i = {1, 2}

E [π̃∗] ≥ 0

where αub
i and αlb

i denote the upper and lower bounds of αd
i such that bi (αi, αj) is well-defined—i.e.

0 ≤ bi ≤ 1. The term π̃∗ is the profit of the intermediary evaluated at the basket that maximizes her

expected profits. Thus, the last restriction represents the intermediary’s participation constraint.
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2.1.3 Equilibrium

In equilibrium, agents maximize their expected utility at the end of period subject to their

respective trading constraints.

DEFINITION 1. An equilibrium is an array of fractions, {α1, b1, α2, b2, α
d
1, α

d
1}, such that:

(E1) Investor’s maximization: Investors i’s portfolio (αi, bi) solves (2.3).

(E2) Intermediary’s maximization: The basket (αd
1, α

d
2) solves (2.5).

(E3) Market clearing: αi = αd
i and (1− αi) + αi

(∑2
j=1 bj

)
= 1, i = {1, 2}.

2.2 Constrained Efficient Allocation

This section explores the constrained efficient allocation as a benchmark. Consider a benevolent

planner who needs to allocate resources among investors and the intermediary. The planner’s

problem can be restated as

max
(α1,b1,α2,b2)

E

[
−e−γc̃1

]
(2.6)

st. E

[
−e−γc̃2

]
= u0

E [π̃] = π0

where c̃i = (1−αi)x̃i + bi

([∑2
j=1 αjx̃j

]
− θ

)
and (1−αi)+αi

(∑2
j=1 bj

)
= 1, i = {1, 2}. The last

restriction in problem (2.6) implies

α2 =

(
π0 − θ

βμ2

)
−
(
μ1
μ2

)
α1 (2.7)

whereas (1 − αi) + αi

(∑2
j=1 bj

)
= 1 implies b2 = 1 − b1. Provided that payoffs are normally

distributed and investors have CARA utility, solving problem (2.6) is equivalent to solving

max
(α1,b1)

E [c̃1]− γ

2
Var [c̃1] (2.8)

st. E [c̃2]− γ

2
Var [c̃2] = u∗0
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Solving problem (2.8) yields

(1− α1 + α1b1) =
μ1

γσ21

(
1− b1 + ρb1

σ2
σ1

μ1

μ2

) − σ2
σ1

(
ρσ1(1− b1) + b1σ2

μ1

μ2

)
(
σ1(1− b1) + ρb1σ2

μ1

μ2

)α2b1 (2.9)

which relates the fraction of asset 1 held by investors one, (1− α1 + α1b1), to the fraction of asset

2 held by investors one in the constrained efficient allocation.

2.3 Trading Equilibrium

This section studies the allocation that arises from the equilibrium of a market-mediated

exchange—henceforth trading equilibrium. I then compare the trading equilibrium allocation and

the constrained efficient allocation to understand the extent to which the market provides the right

instruments for investors’ risk-sharing.

2.3.1 Investors i’s optimal portfolio

Provided that assets’ payoff are normally distributed and investors have CARA utility, maxi-

mizing investor i’s expected utility is equivalent to maximizing the investor i’s certain equivalent

E [c̃i]− γ
2Var [c̃i]. As a consequence, the first order conditions of investors i are given by:

μi − γ
(
[1− αi + αibi]σ

2
i + αjbiρσiσj

)
= 0 (2.10)

αiμi + αjμj − θ − γ
(
[1− αi + αibi][αiσ

2
i + ρσiσjαj ] + biαjσj[ραiσi + αjσj]

)
= 0 (2.11)

with j �= i. Equation (2.10) implies that the fraction of asset i held by investors i, (1− αi + αibi),

equals

[1− αi + αibi] =
μi
γσ2i

− αjbi

(
ρ
σj
σi

)
(2.12)
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Using equation (2.12) in equation (2.11) yields that the fraction of asset j held by investors i, αjbi,

equals

αjbi =

(
μj − ρμi

σj
σi

)
γσ2j (1− ρ2)

− θ

γαjσ2j (1− ρ2)
, with |ρ| �= 1 (2.13)

Using equation (2.13) in equation (2.12) yields

1− αi + αibi =
μi
γσ2i

− ρ
σj
σi

⎧⎨⎩
(
μj − ρμi

σj
σi

)
γσ2j (1− ρ2)

− θ

γαjσ2j (1− ρ2)

⎫⎬⎭ , with |ρ| �= 1 (2.14)

If θ → 0, it follows directly from equation (2.14) that

(1− αi + αibi) → μi
γσ2i

− ρ
σj
σi

⎧⎨⎩
(
μj − ρμi

σj
σi

)
γσ2j (1− ρ2)

⎫⎬⎭ =
1

γ(1− ρ2)

{
μi
σ2i

− ρ
μj
σiσj

}
(2.15)

and thus, the fraction of asset i held by investors i is increasing in μi, σj and decreasing in γ and

μj. If ρ
μj
σj
< 2μi

σi
, then ∂(1−αi+αibi)

∂σi
≤ 0 so the fraction of asset i held by investors i is decreasing in

σi. On the other hand, if ρ
μj
σj
> 2μi

σi
, the fraction of asset i held by investors i is increasing in σi. If

2ρμi >
μj
σj
(1 + ρ2), then ∂(1−αi+αibi)

∂ρ ≥ 0 so the fraction of asset i held by investors i is increasing

in ρ. On the other hand, if 2ρμ1 <
μj
σj
(1 + ρ2), then the fraction of asset i held by investors i is

decreasing in ρ.

If θ → 0, it follows directly from equation (2.13) that

αjbi →
(
μj − ρμi

σj
σi

)
γσ2j (1− ρ2)

(2.16)

and thus, then the fraction of asset j held by investors i is increasing in μj, σi and decreasing in

γ and μi. Moreover, if 2
μj
σj
> ρμi

σi
, then the fraction of asset j held by investors i is decreasing in

σj. On the other hand, if 2
μj
σj
< ρμi

σi
, then the fraction of asset j held by investors i is increasing

in σj . If ρ < 1
2 , then the fraction of asset j held by investors i is decreasing in ρ. If ρ > 1

2 and

μi
σi
σ2j (2ρ− 1) > 2μj , then the fraction of asset j held by investors i is increasing in ρ.
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ASSUMPTION 3. The primitives of the model satisfy

ρμi
σj
σi

< μj , and

γσ2j (1− ρ2) + θ ≤ μj − ρμi
σj
σi

, and

4θγσ2j (1− ρ2) ≤
(
μj − ρμi

σj
σi

)2

with j �= i and i = {1, 2}.

REMARK 1. It follows from equation (2.13) that bi is well-defined if and only if αi ∈
[
αlb
i , α

ub
i

]
,

with

αlb
i =

θ

μj − ρμi
σj
σi

αub
i =

(
μj − ρμi

σj
σi

)
−
√(

μj − ρμi
σj
σi

)2 − 4θγσ2j (1− ρ2)

2γσ2j (1− ρ2)

Assumption 3 ensures that αub
i is a real number smaller than 1 and αlb

i ≥ 0.

2.3.2 Equilibrium

In equilibrium αi = αd
i and

∑2
i=1 bi = 1. As a consequence, the fractions (αd

1, α
d
2) selected by

the intermediary at equilibrium solve

max
(αd1 ,α

d
2)

E [π̃] = β

(
2∑

i=1

αiμi

)
+ θ (2.17)

st. αub
i ≥ αd

i ≥ αlb
i , i = {1, 2}

E [π̃∗] ≥ 0

Therefore, if β > 0, then (αub
1 , α

ub
2 ) maximizes the expected profits of the intermediary. Moreover,

(αub
1 , α

ub
2 ) corresponds to the basket that emerges in the trading equilibrium. If β = 0, then all

baskets (αd
1, α

d
2) ∈

[
αlb
1 , α

ub
1

]× [
αlb
2 , α

ub
2

]
are equilibria because they yield the same expected profit

for the intermediary.

If β > 0, μ1 �= μ2, and σ1 �= σ2, then α1 �= α2 so that the intermediary tailors her basket to
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one segment to maximize her profits. If there are not clear gains from tailoring the basket—for

instance, μi = μ̄ and σi = σ̄—the intermediary offers a basket with a fraction ᾱ of each asset, with

ᾱ =
μ̄−√

μ̄2(1− ρ)− 4θγσ̄2(1 + ρ)

2γσ̄2(1 + ρ)
(2.18)

In this case, both investor types trade the same fraction of their assets in exchange for the basket,

and thus, the basket replicates the market portfolio as every investor holds the same portfolio after

trading.

If β = 0, the intermediary does not have “skin in the game” and all baskets (αd
1, α

d
2) ∈

[
αlb
1 , α

ub
1

]×[
αlb
2 , α

ub
2

]
yield the same expected profit for the intermediary. As a consequence, the basket that

replicates the market portfolio is one of the infinitely many equilibria. From this discussion follows

PROPOSITION 6. If β > 0, then the basket does not necessarily replicate the market portfolio as

the intermediary tailors her basket to maximize her profits. If β = 0, then the basket that replicates

the market portfolio is one potential equilibrium.

2.3.3 Efficiency of trading allocations

Provided that investors are not allowed to trade across segments, markets are incomplete. If

markets are incomplete, there is no reason to expect that the trading equilibrium is constrained

efficient. To assess the efficiency of trading allocations, I compare these allocations to the con-

strained efficient allocations and explore the conditions under which such allocations are equal so

that markets provide the right instruments for investors’ risk-sharing.

To perform such a comparison it is sufficient to compare the allocations of one investor type

because of the symmetry of the problem. Consider i = 1. It follows from comparing the allocations

in equations (2.9) and (2.12) that the trading allocation equals the constrained efficient allocation

if and only if

σ2
σ1

μ1
μ2

→ 1 and ρ→ 1

In this case, the relationship between the fraction of asset 1 held by investors one and the fraction
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of asset 2 held by investors one is given by

(1− α1 + α1b1) → μ1
γσ21

− σ2
σ1
α2b1 (2.19)

As a consequence, the allocations attained as the outcome of a market-mediated equilibrium tend

not to be constrained efficient. Therefore, there are many cases when the price mechanism is

perfectible. It then follows

PROPOSITION 7. Baskets are not always constrained efficient. However, as investors initial

endowments become similar—i.e. σ2
σ1

μ1

μ2
→ 1 and ρ → 1—the basket allows investors to achieve

constrained efficient allocations.

2.4 Competition Among Intermediaries

Because the price mechanism is perfectible, introducing competition among intermediaries may

increase investors’ welfare. This section studies the impact of competition on: (a) the composition

of the basket, and (b) investors’ welfare.

For simplicity, consider an economy with two intermediaries in which each intermediary issues at

most one basket. Before trading, intermediaries face a strategic environment that can be framed as

a two-stage non-cooperative game. In the first stage, intermediaries choose whether or not to enter

each market segment. At the end of the first stage, intermediaries observe who entered each segment.

In the second stage, intermediaries select the composition of their baskets to maximize their profits.

Immediately after, investors observe the composition of the baskets and choose whether or not to

trade shares of their assets in exchange for shares of the baskets available in each segment.

Baskets and intermediaries are indexed by k = {1, 2}. Let αik denote the fraction of asset

i in basket k, with
∑2

k=1 αik = αi. Let bik denote the fraction of basket k bought by investors

i, with
∑2

i=1

∑2
k=1 bik = 1. For simplicity, consider that both intermediaries charge the same

41



intermediation fee θ ≥ 0. The problem faced by intermediary one is given by5

max
(α11,α21)

E [π̃1] = β

(
2∑

i=1

αi1μi

)
+ θ

(∑
i=1

bi1

)
(2.20)

st. αub
i1 ≥ αi1 ≥ αlb

i1 , i = {1, 2}

E [π̃∗1] ≥ 0

where π̃∗1 is intermediary one’s profit evaluated at the basket that maximizes her expected profits,

whereas αub
i1 and αlb

i1 denote the upper and lower bounds of αi1 so that bi1 are well-defined, i = {1, 2}.
Provided that

∑2
i=1

∑2
k=1 bik = 1 at equilibrium, solving problem 2.20 is equivalent to solving

max
(α11,α21)

E [π̃1] = θ + β

(
2∑

i=1

αi1μi

)
− θ

(∑
i=1

bi2

)
(2.21)

st. αub
i1 ≥ αi1 ≥ αlb

i1 , i = {1, 2}

E [π̃∗1 ] ≥ 0

Assume the primitives of the model are such that problem 2.21 has an interior solution. Then the

basket that maximizes the expected profits of intermediary one, (α∗
11, α

∗
21), satisfies the first order

conditions

βμ1 = θ
∂

∂α11

(∑
i=1

bi2

)∣∣∣∣∣
α11=α∗

11

(2.22)

βμ2 = θ
∂

∂α21

(∑
i=1

bi2

)∣∣∣∣∣
α21=α∗

21

(2.23)

To compute the derivatives on the right hand side of equations (2.22) and (2.23), it is necessary

to characterize the demand of both investor types for basket 2. To characterize those demands, it

becomes handy to analyze the first order conditions of investors i ’s maximization problem, given

5Provided the symmetry, the problem faced by intermediary two is analogous.
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by the following equations:

1− αi +

[
2∑

k=1

αikbik

]
=

μi
γσ2i

−
(
ρ
σj
σi

)[ 2∑
k=1

αjkbik

]
, with j �= i (2.24)[

2∑
k=1

αjkbik

]
=

μj − ρμi
σj
σi

γσ2j (1− ρ2)
− θ

γ
(∑2

k=1 αjk

)
σ2j (1− ρ2)

(2.25)

Note that equation (2.25) implies that

α21b11 + α22b12 =
μ2 − ρμ1

σ2
σ1

γσ22(1− ρ2)
− θ

γ
(∑2

k=1 α2k

)
σ22(1− ρ2)

, and (2.26)

α11b21 + α12b22 =
μ1 − ρμ2

σ1
σ2

γσ21(1− ρ2)
− θ

γ
(∑2

k=1 α1k

)
σ21(1− ρ2)

(2.27)

Differentiating equation (2.26) with respect to α11 and α21 implies

α11 : α21
∂b11
∂α11

+ α22
∂b12
∂α11

= 0 (2.28)

α21 : b11 + α21
∂b11
∂α21

+ α22
∂b12
∂α21

=
θ

γ
(∑2

k=1 α2k

)2
σ22(1− ρ2)

(2.29)

whereas differentiating equation (2.27) with respect to α11 and α21 implies

α11 : b21 + α11
∂b21
∂α11

+ α12
∂b22
∂α11

=
θ

γ
(∑2

k=1 α1k

)2
σ21(1− ρ2)

(2.30)

α21 : α11
∂b21
∂α21

+ α12
∂b22
∂α21

= 0 (2.31)

Using equations (2.28) and (2.30) into equation (2.22) yields

α11

α12
=

1
∂b21
∂α11

{
θ

γα12α2
1σ

2
1(1− ρ2)

− α21

α22

∂b11
∂α11

− b21
α12

− β
μ1
θ

}
(2.32)

Similarly, using equations (2.29) and (2.31) into equation (2.23) yields

α21

α22
=

1
∂b11
∂α21

{
θ

γα22α2
2σ

2
2(1− ρ2)

− α11

α12

∂b21
∂α21

− b11
α22

− β
μ2
θ

}
(2.33)
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Solving the system of equations (2.32) and (2.33) yields

α∗
11 = φ1 × α∗

12 (2.34)

α∗
21 = φ2 × α∗

22 (2.35)

where φ1 and φ2 are two positive constants.6

If φ1 = φ2, then the two baskets are equivalent in their spanning role. In other words, both

intermediaries issue the same basket. On the other hand, if φ1 �= φ2, then intermediaries issue

different baskets. In that case, however, the increased variety of baskets issued does not always

improve investors’ welfare. The coexistence of several baskets may be redundant, in the sense that

cooperation among issuers may increase investors’ welfare. To see this, suppose that intermediaries

cooperate and perfectly split the market demand so that each basket serves one investor type.

These baskets potentially allow investors to achieve constrained efficient allocations. It follows

from inspection, however, that such a situation may not be sustained at equilibrium. To see this,

suppose intermediary i tailors her basket such that investors i strictly prefers basket i over basket

j, with j �= i and i = {1, 2}. If trading between intermediaries is not allowed, then basket j cannot

be composed of asset i, since only investors i are endowed with asset i. Because investors demand

baskets only for risk-sharing purposes, no investor type will demand such customized baskets.

On the other hand, if trading between intermediaries is allowed, investors may not buy baskets

shares if the sum of the intermediation fees is sufficiently high. Therefore, investors may benefit

from cooperation between intermediaries. However, the non-cooperative character of competition

among intermediaries prevents cooperation, as φ1 �= φ2 for most primitives of the model. Thus,

issuers tend to introduce redundant baskets which do not necessarily increase investors’ risk-sharing

opportunities. It then follows

PROPOSITION 8. Under duopoly competition, intermediaries tend to introduce different baskets

that do not necessarily increase investors’ risk-sharing opportunities.

6See appendix for the formal definition of both constants as a function of the primitives of the model.
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2.5 Concluding Remarks

I present a general equilibrium model of basket securities in segmented markets and explore the

design and welfare implications of the introduction of these securities for different investor types.

If there is one intermediary, I find that the market-mediated equilibrium may not be constrained

efficient, because the intermediary not only seeks to maximize trading volume but also seeks to

increase the payoff of the basket—incentive that comes from her “skin in the game.” I then analyze

how competition among intermediaries affects the basket structure and investors’ welfare. I show

that competition can generate the coexistence of several baskets that do not necessarily improve

investors’ risk-sharing opportunities.
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Chapter 3

Imperfect Information Transmission

from Banks to Investors: Real

Implications

with Nicolás Figueroa and Oksana Leukhina

The five year economic expansion leading up to the 2008 financial crisis witnessed an unprece-

dented growth of securitization markets. Several empirical papers—e.g., Keys et al., 2010b, Pur-

nanandam, 2011, Bord and Santos, 2011, Keys, Seru, and Vig, 2012—document that the spectacular

rise of securitization directly contributed to relaxed screening standards, which lends support to

economists’ public opinion regarding the adverse consequences of securitization on the originator’s

incentives to screen their borrowers, e.g., Stiglitz, 2007, Blinder, 2007.1 Despite the evidence de-

scribed above, our theoretical understanding of the real implications of markets for loan-backed

assets remains limited, as noted by Gorton and Metrick, 2011. To fill this gap, we propose a

general equilibrium model with borrowers, banks, and investors to study the real implications of

the information asymmetry between banks, whose screening choices impact economic activity, and

1Purnanandam, 2011 uncovers the fact that banks with greater involvement in secondary markets originated
excessively poor-quality mortgages. Keys et al., 2010b and Keys, Seru, and Vig, 2012 explore loan variation to
borrowers with credit scores around 620—a threshold commonly used in securitization. They find that loans with
credit scores of 620+ default at the rate 10-25% higher than loans with credit scores of 620-. Mian and Sufi, 2009
provide evidence from zip-code level data on subprime lending. Using data from the U.S. Shared National Credit
Program, Bord and Santos, 2011 find that loans sold to CLOs at the time of issue are more likely to default.
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investors in secondary markets, who provide funds and bear the risks.

The main features of the model are as follows. Borrowers, heterogenous in their credit worthi-

ness, rely on bank financing to develop their projects. Borrowers’ credit worthiness is unobserved

to investors. Banks alone have the technology to screen and identify repaying borrowers at loan

origination. Banks are heterogenous in their screening costs, which are unobserved to investors. To

raise funds, banks sell a fraction of their loans to investors in secondary markets. Because investors

do not possess information about borrowers’ credit worthiness, banks may use a costly imperfect

rating technology to transmit information about the quality of their loans to investors in a credible

manner. Profit-maximizing banks choose whether or not to screen, rate, and disclose their ratings

in secondary markets. Finally, banks and investors trade in competitive secondary loan markets,

where loan prices are determined, which in turn, determine banks’ screening and rating incentives.

Our main findings are as follows. First, it is the price differential between loans with different

credit ratings that disciplines banks’ screening at loan origination. Therefore, understanding what

determines this price differential is crucial for understanding credit allocation in the economy. If

the rating technology was perfect, i.e., the true loan type would be revealed with certainty, the

first best outcome would be achieved. However, since the rating technology is imperfect, the price

differential between loans with different ratings is not sufficiently large to induce an efficient level of

screening. Interestingly, we find that a credit rating’s informativeness decreases as more holders of

low quality loans use the rating technology. This in turn reduces both the price differential between

assets with different ratings and banks’ screening at loan origination.

Second, we find that: (1) an increase in banks’ collateral values, (2) an increase in the fraction

of repaying borrowers, (3) a decrease in banks’ skin in the game, and (4) a decrease in credit

ratings’ precision all unambiguously reduce banks’ screening efforts at loan origination. A decrease

in credit ratings’ precision deserves further comment. This exercise aims to reflect an increase

in the complexity of assets offered in secondary markets.2 The direct implication is that, since

rating mistakes are more likely to happen, banks with low quality loans tend to shop for ratings

more intensely. Such strategic behavior further reduces credit ratings’ informativeness, which in

turn reduces the price differential on loans with different credit ratings, and thus relaxes banks’

screening at loan origination.

2Such increase in asset complexity may be implemented by banks through securitization.
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Our model provides new insights on the following pre-2008 financial crisis’ observations: (1)

lax lending standards, (2) more intense use of ratings (shopping for ratings), (3) the rise in default

probabilities conditional on investment grade ratings (inflation rating), and (4) a drop in the dif-

ferential between yields on assets with high and low ratings. The first observation seems to be

common to all credit expansions and exacerbated by the rise of secondary markets in the pre-2008

crisis period, e.g., Asea and Blomberg, 1998, Berger and Udell, 2004, Lown and Morgan, 2006 and

Rajan, 1994. The second observation refers to the idea that issuers may expend resources to ensure

that their assets receive high ratings. Thus, banks may expend resources to acquire information

on how to best structure their securities, e.g., Brunnermeier, 2009, or solicit ratings from several

agencies and disclose only the best rate. Bongaerts, Cremers, and Goetzmann, 2012, Griffin, Nick-

erson, and Tang, 2013 and Benmelech and Dlugosz, 2009b find evidence consistent with the rating

shopping idea. Benmelech and Dlugosz, 2009a, Benmelech and Dlugosz, 2009b and Griffin and

Tang, 2012 provide empirical evidence consistent with the third observation. Several theoretical

models rationalize inflation rating via rating shopping, e.g. Faure-Grimaud, Peyrache, and Que-

sada, 2009, Skreta and Veldkamp, 2009, Farhi, Josh, and Tirole, 2013. What is novel in our model

is the presence of a feedback effect on screening effort at the loan origination stage. Finally, figures

C.1 and C.2 provide evidence consistent with the fourth observation.3

We also analyze two policies of interest: (1) mandatory rating and (2) mandatory rating disclo-

sure. Interestingly, both policies turn out to be counterproductive. With mandatory rating, banks

with low quality assets increase their rating activity, which decreases the informativeness of a good

rating, which in turn, reduces banks’ screening efforts at loan origination and exacerbates credit

misallocation. With mandatory rating disclosure, banks that sell low quality assets are encouraged

to rate their assets because the payoff of assets with high ratings is much larger than the payoff

of assets with low ratings. Therefore, the rating activity intensifies, once again reducing the infor-

mativeness of a good rating, which reduces both banks’ screening efforts at loan origination and

3In addition, Benmelech and Dlugosz, 2009a find that most of such CLOs were initially rated as AAA using data
on 744 cash-flow CLOs issued from 2000 to 2007. In their sample as a whole, 71% of issuance is rated AAA; 5% is
AA, 6% is A, 5% is BBB, 2% is BB, 0.1% is B, and 11% is NR(unrated). Along the same lines, Griffin and Tang, 2012
document that most CDOs notes issued prior to mid-2007 were AAA rated. Using data from one of the three major
credit rating agencies, they access to information about 916 CDOs issued between Jan 1997 and Dec 2007 with total
note face value of 612.8 billion. From the 916 CDOs, they obtain data about 5,466 rated tranches. Among all rated
issuances, 84.1% are AAA, 14.5% are non-AAA investment grade (6.0% AA, 4.6% A, and 4.0% BBB), and 1.4% are
below investment grade. The average CDO has 75.5% rated AAA (super-senior tranches are counted as AAA rated).
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banks’ incentives to rate their assets. This further aggravates the level of credit misallocation in

the economy.

We contribute to the literature on information in secondary loan markets through the analysis of

how the strategic behavior of loan originators alters information transmission in secondary markets.

In our model, there is a natural rate of information garbling, given by the imperfect nature of

the rating technology. However, this natural rate is augmented by banks who hold low quality

loans and rate them, strategically hiding low credit ratings, and therefore decreasing credit ratings’

informativeness. Skreta and Veldkamp, 2009 model the idea of shopping for ratings, and study the

interaction between ratings and asset prices. However, they assume that investors are naive, in the

sense that investors do not consider the possibility that loan originators hide information.

As in Holmstrom and Tirole, 1997, we assume that banks have access to a special technology,

which allows them to screen their borrowers. As such, banks are not simply channels through

which savings are allocated to borrowers, but firms that use their technologies to maximize their

own profits. As with any firm, their use of screening and the rating technology are dictated by

prices, which determine banks’ screening activity and, hence, both credit allocation and aggregate

productivity for the whole economy.4

The rest of the paper is organized as follows. Section 3.1 describes the baseline model. Sec-

tion 3.2 characterizes the equilibrium, its existence and uniqueness, compares the equilibrium out-

come in a decentralized economy to the constrained efficient allocation, and presents comparative

statistics results and their empirical relevance. Section 3.3 studies mandatory rating and manda-

tory rating disclosure policies. Finally, section 3.4 concludes. All proofs, unless otherwise stated,

appear in the Appendix.

3.1 Baseline Model

Consider an economy populated by risk-neutral borrowers, banks, and investors. Borrowers rely

on bank financing to develop their projects, and their credit worthiness is costly observed. Banks

alone have the technology to screen and identify repaying borrowers. To raise funds, banks sell a

4In Holmstrom and Tirole, 1997 banks can monitor projects they finance.
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fraction 0 < (1 − ρ) ≤ 1 of their loans to investors in competitive secondary markets.5 Because

investors in secondary markets do not possess information about the credit worthiness of borrowers

that underlie loans, banks may use a rating technology—which reveals the true type of a borrower

that underlies a loan with probability r—to transmit information about the quality of their loans

in a credible manner. The importance of studying the macroeconomic implications of this type of

informational asymmetry between banks and investors is discussed in Gorton, 2009. Our goal is

to examine its implications for the allocation of loanable funds, i.e., the composition of financed

borrowers.

The model period can be subdivided into three stages occurring in the following order.

1. Screening of Borrowers. Banks choose whether or not to engage in costly screening

of borrowers when originating loans, taking prices in secondary markets as given. Upon

origination, banks learn a borrower’s credit worthiness. This stage determines the composition

of borrowers.

2. Rating of Assets. Banks choose whether or not to engage in costly rating of their loans,

taking prices in secondary markets as given. This stage determines how much information is

produced to mitigate the information asymmetry between banks and investors in secondary

markets.

3. Trade in Secondary Markets. Banks and investors trade in competitive secondary mar-

kets, in which loan prices are determined.

3.1.1 Borrowers

There is a continuum of measure 1 of potential borrowers of unobserved type, each of whom

seeks financing in the amount of 1 unit of funds to develop their projects. Potential borrowers are

of unobservable type θ ∈ {G,B}, represented in proportions μ0 and (1− μ0), respectively. Let Wθ

denote the repayment of a borrower of type θ on a loan. We assume that only borrowers of type G

fully repay their loans. In other words,

ASSUMPTION 4. WG > 1 > WB

5We take the presence of secondary loan markets as given and we do not attempt to explain their emergence,
e.g Parlour and Plantin, 2008.
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3.1.2 Banks

There is a continuum of measure 1 of profit-maximizing banks, heterogeneous in their screening

cost k ∼ F [0, 1] , which is unobserved to investors. F is continuous and represents the cumulative

distribution function of banks’ screening costs. Each bank faces its own pool of potential borrowers

of type θ ∈ {G,B}, represented in proportions μ0 and 1− μ0, respectively. Banks have the option

of using the screening technology at cost k, which guarantees financing of a borrower of type G.

Otherwise, banks make loans at random. Lending to a borrower of type θ may also be interpreted

as standing in for extending a large basket of loans that generates Wθ as total repayment.

Once the borrower is financed, a bank learns its type with certainty. However, information about

the type of borrower that underlies a loan is not available to investors in secondary markets.6 To

convey that information in a credible manner, banks decide whether or not to employ a rating

technology at fixed cost c, which reveals the true loan type with probability 1
2 < r < 1. Because

banks holding a loan with an underlying borrower of type G are more likely to obtain a good

rating, ratings are valuable signals in secondary markets, and thus, loans with a good rating sell at

a premium.

ASSUMPTION 5. c < (1− ρ) (WG −WB)

Paying c to rate a loan may be interpreted as engaging in a costly process that results, with

some positive probability, in the enhancement of the perceived value of a bank’s loan in secondary

markets. In practice, the process of getting all rating agencies to assign a good rating—e.g., AAA

rating—to a large share of a loan basket is costly because it involves hiring consultants to obtain

information regarding the rating process of each agency as well as decomposing the loan basket into

tranches in a way that maximizes positive outcomes. Our assumption r > 1
2 captures the idea that

banks with better loans are more likely to succeed in this process. We also assume that bad ratings

are available for free to all banks, which rules out the signalling value of bad ratings and ensures

that only good ratings are revealed in equilibrium.7 Because investors do not observe the screening

6In theory, the information asymmetry between banks and investors may be resolved if originating banks retain the
most risky junior tranche of their loan basket, thereby sending a credible signal to asset buyers, e.g., DeMarzo, 2005b.
In practice, however, retaining a junior tranche does not appear to accomplish this purpose, as it can be combined
with shorting of a senior tranche. However, the senior tranches are the ones typically retained, e.g., Beltran, Cordell,
and Thomas, 2013. Rating agencies, on the other hand, are used extensively to signal asset values.

7Later on, we relax this assumption when studying mandatory rating disclosure in section 3.3.
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cost of originating banks, prices in secondary markets are conditioned only on the presence of a

good rating.

Banks’ Rating and Screening Decision

In what follows, we analyze banks’ rating and screening decisions. Let PGR and PNR denote the

price on a loan with a good rating and no rating—or a hidden bad rating—in secondary markets,

respectively. Taking these prices as given, banks choose their screening and rating strategies to

maximize their profits.

Rating Strategy:

Let fθ denote the probability that a bank with a loan with an underlying borrower of type

θ—henceforth loan of type θ—uses the rating technology. Consider a bank with a loan of type B.

If the bank rates its loan, it receives a good rating with probability (1 − r), reveals it and sells a

fraction (1− ρ) of the loan at (1− ρ)PGR. On the other hand, the bank receives a bad rating with

probability r, hides it and sells a fraction (1 − ρ) of the loan at (1 − ρ)PNR. A bank that holds

a loan of type B chooses to rate it, if the expected gain of selling a fraction (1 − ρ) of the loan

exceeds the cost of using the rating technology. If the expected gain falls short of the associated

costs, on the other hand, a fraction (1 − ρ) of the loan is sold with no rating attached to it, while

the mixed strategy is possible otherwise. In other words,

fB = 1 (1− ρ) ([(1− r)PGR + rPNR]− PNR) > c,

fB = 0 if ... < c,

fB ∈ (0, 1) ... = c.

(3.1)

We restrict attention to the range of parameter values that ensure that banks with loans of type G

always rate their loans at equilibrium, i.e., fG = 1:

(1− ρ) (rPGR + (1− r)PNR − PNR) > c (3.2)

Screening Strategy

Taking prices PGR and PNR as given, banks choose whether or not to screen their potential

borrowers. Banks are heterogenous in their screening cost k, with k ∼ F [0, 1]. Let Rθ denote
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the expected payoff of a bank that finances a borrower of type θ. Because a bank with a loan of

type G always rates its loan, the expected payoff from financing a borrower of type G is given in

equation (3.3). With probability r, the bank obtains a type G rating, reveals it, and sells a fraction

(1−ρ) of the loan for (1−ρ)PGR. With probability (1− r), the bank obtains a type B rating, hides

it, and sells a fraction (1 − ρ) of the loan for (1 − ρ)PNR. Because the bank holds a fraction ρ of

the loan, the bank also obtains ρWG. The expenses are the rating cost associated with the fraction

of the loan that is sold in secondary markets (1 − ρ)c and the loan amount 1. The situation for

banks that finance type B borrowers is similar, and the expected payoff from financing a borrower

of type B is given in equation (3.4). With probability (1− r) fB, the bank obtains a type G rating,

reveals it, and sells a fraction (1− ρ) of the loan for (1− ρ)PGR. With probability [1− (1− r)fB],

the bank sells a fraction (1− ρ) of the loan for (1− ρ)PNR. The latter case includes both, the case

of the unlucky rating draw and the case of forgoing the use of the rating technology. Because the

bank holds a fraction ρ of the loan, the bank also obtains ρWB. The expenditures are the expected

rating costs (1− ρ)fBc and the loan amount 1. Therefore,

RG = (1− ρ) [rPGR + (1− r)PNR − c] + ρWG − 1, (3.3)

RB = (1− ρ) [(1− r)fBPGR + [1− (1− r)fB]PNR − fBc] + ρWB − 1. (3.4)

A bank that decides to screen its potential borrowers finances a borrower of type G with certainty.

If that bank faces a screening cost of k, its ex-ante expected payoff is RG−k. On the other hand, a

bank that does not screen its borrowers lends at random, and, thus, it lends to a borrower of type

G with probability μ0. The ex-ante payoff for this bank is then μ0RG+(1−μ0)RB . Because banks

are profit-maximizing and risk-neutral, a bank that faces a screening cost of k chooses to screen

whenever

RG − k ≥ μ0RG + (1− μ0)RB (3.5)

and lends at random otherwise. As a consequence, the bank that is indifferent between these two
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choices—i.e. the marginal screener—is the bank with a screening cost

k̄ = (1− μ0)(RG −RB) (3.6)

= (1− μ0) [(1− ρ) {[r − (1− r)fB][PGR − PNR]− c(1− fB)}+ ρ(WG −WB)]

Therefore, banks that face small screening costs, e.g., k < k̄, screen and finance only borrowers of

type G. Banks that face large screening costs do not screen, and, thus, they finance borrowers of

type G with probability μ0. Because banks’ screening costs are described by F , the measure of

borrowers of type G financed in equilibrium—which we denote by μ(PGR,PNR) to emphasize its

dependence on prices—is given by

μ (PGR, PNR) = F (k̄) + (1− F (k̄))μ0. (3.7)

Provided that Wθ is related to the productivity of a project developed by a borrower of type θ,

the equilibrium object μ (PGR, PNR) may be interpreted as the average productivity of a sector

that relies on bank financing. As equation (3.7) states, banks directly affect aggregate productivity

through the credit allocation margin because they perform the important service of screening

borrowers—in the spirit of Boyd and Prescott, 1986 and Holmstrom and Tirole, 1997.

3.1.3 Investors

A large number of risk-neutral investors buy loans in competitive secondary markets. Because

investors have neither information regarding the type of borrowers that underlie loans nor banks’

screening costs, investors’ beliefs regarding loans types are conditioned only on ratings.

Investors’ Beliefs and Loan Prices in Secondary Markets

Let PrG|GR denote the probability that a loan with a good rating is a loan of type G. Let

PrG|NR denote the probability that a loan with no rating is a loan of type G. Considering loans

correctly and incorrectly rated, PrG|GR is given by the fraction of loans of type G among loans that

received a good rating. Similarly, PrG|NR is given by the fraction of loans of type G among loans
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with no rating. In other words,

PrG|GR =
μrfG

μrfG + (1− μ)fB(1− r)
, (3.8)

PrG|NR =
μ[(1− fG) + (1− r)fG]

μ[(1− fG) + (1− r)fG] + (1− μ)[(1 − fB) + fBr]
. (3.9)

where μ denotes the fraction of borrowers of type G financed at loan origination. Because markets

are competitive, investors make zero profits, which implies that prices on loans on secondary markets

reflect their expected payoffs. In other words,

PGR = WGPrG|GR +WB [1− PrG|GR] = PrG|GRΔW +WB , (3.10)

PNR = WGPrG|NR +WB [1− PrG|NR] = PrG|NRΔW +WB , (3.11)

where ΔW =WG −WB . Investors are then willing to pay a premium for loans with a good rating.

The size of that premium depends on the beliefs that a good rating induces about the quality of

the borrower that underlies a loan.8

3.1.4 Equilibrium

Thus far, we have described banks’ optimal rating and screening strategies for given prices PGR

and PNR. We have also discussed how PGR and PNR are related to investors’ beliefs regarding

loans types. To complete our definition of equilibrium, we also require that investors’ beliefs are

consistent with equilibrium outcomes.

DEFINITION 2. An equilibrium is given by a screening cost cutoff k̄∗—which defines the marginal

screener—, rating strategies f∗G = 1 and f∗B, a measure of borrowers of type G financed at loan orig-

ination, μ∗, investors’ beliefs
{
Pr∗G|GR, P r

∗
G|NR

}
, and prices P ∗

GR and P ∗
NR satisfying the following

conditions:

1. Given prices P ∗
GR and P ∗

NR, banks with screening costs k ≤ k̄∗ find it optimal to screen their

borrowers and to rate their loans according to f∗θ . Namely, the screening condition (3.5) holds

8This premium could be interpreted as Duffie’s (2009) lemon premium, where an offer by a bank to sell a loan is
associated with a drop in price, since it is assumed that the bank has private information. There is also the moral
hazard premium, where a sale is associated with a drop in price because the bank has fewer incentives to control the
credit risk of the loan, which we do not consider in this paper.
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with “≥” for these banks while rating conditions (3.1) and (3.2) are satisfied.

2. Given prices P ∗
GR and P ∗

NR, banks with screening costs k > k̄∗ find it optimal to lend at

random and to rate their loans according to f∗θ . Namely, the screening condition (3.5) holds

with ” < ” for these banks while rating conditions (3.1) and (3.2) are satisfied.

3. The fraction of borrowers of type G financed at loan origination, μ∗, is determined by banks’

optimal screening strategies, as summarized by k̄∗:

μ∗ = F (k̄∗) + (1− F (k̄∗))μ0. (3.12)

4. Given investors’ beliefs
{
Pr∗G|GR, P r

∗
G|NR

}
, prices P ∗

GR and P ∗
NR reflect expected payoffs as

described in equations (3.10) and (3.11).

5. Investors’ beliefs
{
Pr∗G|GR, P r

∗
G|NR

}
are consistent with the equilibrium outcomes so that

equations (3.8) and (3.9) hold (whenever possible).

3.2 Equilibrium Characterization

We solve for the equilibrium quantities and prices as follows. We first study banks’ rating

strategy in section 3.2.1. Given a measure of borrowers of type G financed at loan origination, μ,

we derive the optimal rating strategy f∗B as a function of screening costs, c, banks’ skin in the game,

ρ, borrowers’ payoff differential ΔW , and the precision of the rating technology, r, in Lemma 1.

Then, we study the behavior of f∗B as a function μ∗—the equilibrium measure of borrowers of type

G financed at loan origination—in Lemma 2 to understand how credit allocation impacts banks’

rating activity. Once the equilibrium relationship f∗B (μ∗) is derived, section 3.2.2 characterizes the

cutoff k̄∗(μ∗), which defines the set of banks that screen their borrowers. In section 3.2.3, μ∗ is

found as a fixed point of equation (3.12). Its existence and uniqueness are derived in Proposition 9.

Section 3.2.4 compares the credit allocation in the decentralized economy to the constrained efficient

allocation. Finally, section 3.2.5 derives the partial effects of changes in the primitives of the model

on credit allocation at equilibrium.
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3.2.1 Rating Strategy

We now characterize the rating strategy, fB, for a fixed μ. It is helpful in understanding how

the rating accuracy, r, and the cost of screening relative to the payoff differential, defined as

c̃ ≡ c

(1− ρ)ΔW
, (3.13)

affect the rating decision. Note that it is the cost of screening relative to the payoff differential

that matters here, because the rating decision depends on the rating cost relative to the price gain

implied by the positive rating outcome, (1 − ρ)(PGR − PNR), which, in turn, reflects the payoff

differential, (1− ρ)ΔW .

LEMMA 1 (Rating Strategies fB and fG as a function of r, ρ, c, and ΔW ). For a given measure

of borrowers of type G financed at loan origination, μ, the rating strategy fB can be summarized as

follows:

fB =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 c̃ < μ(1−μ)(1−r)(2r−1)

[r−μ(2r−1)][μ(2r−1)+(1−r)]

fmix
B ∈ (0, 1) if μ(1−μ)(1−r)(2r−1)

[r−μ(2r−1)][μ(2r−1)+(1−r)] < c̃ < (1−r)(1−μ)
1−rμ

0 (1−r)(1−μ)
1−rμ < c̃,

where fmix
B =

c̃(1−2μr)+μ(1−r)−
√

(c̃+μ)2−μ2r(2−r)−(6−4r)c̃rμ
2c̃(1−r)(1−μ) .9 Moreover,

fG = 1 if c̃ <
r (1− μ)

1− rμ
.

Figure C.2 helps to illustrate lemma 1. For μ = 1
2 , it depicts the optimal rating strategy, in the

space of parameters r and c̃. Generally speaking, small values of c̃ induce holders of loans of type

B to rate their loan because the rating technology is imperfect, and, thus, holders of loans of type

B may obtain a good rating. Increasing r increases the precision of the rating technology, thereby

reducing the likelihood of incorrectly rated loans. In general, increasing r reduces the incentives to

rate loans of type B, except for the lower left hand corner of figure C.2 where the lower curve is

upward sloping due to the dominant effect of (1− ρ)(PGR − PNR).

9In light of (3.1) , fmixB is found from (1− ρ)(1− r)ΔWΔPr = c, after substituting investors’ beliefs from (3.10)
and (3.11).
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We now study how credit allocation impacts the rating activity. Because we focus on the

parameter space that ensures that fG = 1 in equilibrium, the range of admissible μ is between 0

and

μ̄ ≡ r − c̃

r(1− c̃)
,

which is found by solving for μ from (1) rewritten with equality. Lemma 2 gives a general charac-

terization of the optimal rating strategy fB (μ) : [0, μ̄] → [0, 1] as function of μ. We show that if

μ = 0, then fB = 0. fB is increasing for small values of μ and may or may not reach 1 before it

becomes a decreasing function of μ. For sufficiently large values of μ, fB = 0 and stays at zero as

μ increases further.

LEMMA 2 (Rating strategy fB as a function of μ). If c̃ ≤ (1− r) (2r − 1) , then

fB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

fmix
B (μ) ∈ (0, 1)

1

fmix
B (μ) ∈ (0, 1)

0

if

μ = 0,

μ ∈ (0, μ1) ,

μ ∈ (μ1, μ2) ,

μ ∈ (μ2, μ3) ,

μ ≥ μ3,

where constants μ1, μ2, and μ3 are defined as

μ1 =
1

2
− 1

2

(1− r) (2r − 1) − c̃

(2r − 1) (c̃+ 1− 2c̃r − r)
(3.14)

μ2 =
1

2
+

1

2

(1− r) (2r − 1) − c̃

(2r − 1) (c̃+ 1− 2c̃r − r)

μ3 =
1− r − c̃

1− r − rc̃
.

Moreover, fB is an increasing function of μ in the interval (0, μ1) and a decreasing function of μ

in the interval (μ2, μ3).

If instead c̃ > (1− r) (2r − 1) , then

fB (μ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

fmix
B (μ) ∈ (0, 1)

0

if

μ = 0,

μ ∈ (0, μ3) ,

μ ∈ (μ3, μ̄) ,
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and fB is an increasing function of μ in the interval (0, μmax) and a decreasing function of μ in the

interval (μmax, μ3), where μmax is defined as

μmax =
1

2

(1− r)2 − c̃2

(1− r)2 − c̃ (2r − 1) (1− r)
.

To understand the shape of fB(μ), recall that banks’ rating activity is disciplined by the pre-

mium paid in secondary markets on loans with a good rating, which in turn depends on the

informativeness of a good rating, defined as ΔPr ≡ PrG|GR − PrG|NR. If μ is small, there are very

few loans of type G in secondary markets, so a good rating does little to raise investors’ beliefs

regarding a loan’s quality. At these low levels of μ, an increase in μ has a positive effect on the

informativeness of a good rating, as good ratings become more valuable signals. The opposite

happens for large values of μ, implying that most loans are of type G, and so an increase in μ

deteriorates the value of a good rating.

3.2.2 Rating Strategies and Credit Allocation

To understand how banks’ rating activity impacts credit allocation, it is illustrative to analyze

the cutoff k̄,

k̄ = (1− μ0) [RG −RB ] (3.15)

= (1− μ0)(1 − ρ) [(PGR − PNR) (r − (1− r) fB)− (1− fB) c] + (1− μ0)ρΔW

= (1− μ0)(1 − ρ)

⎡⎢⎣ΔW [
PrG|GR − PrG|NR

]︸ ︷︷ ︸
ΔPr

(r − (1− r) fB)− (1− fB) c

⎤⎥⎦+ (1− μ0)ρΔW

which defines the marginal screener. It follows from the second line in equation (3.15) that it is

the price differential between loans with a good rating and loans with no ratings, PGR −PNR, that

disciplines banks’ screening effort at loan origination. Because the price differential is proportional

to the informativeness of a good rating, ΔPr, if ΔPr is large, then a good rating implies a large

gain in the perceived quality of the loan in secondary markets, and, thus, more banks screen their

borrowers. On the other hand, if ΔPr is small, then the premium on a loan with a good rate is

not sufficiently large, and, thus, fewer banks screen their borrowers.
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3.2.3 Existence and Uniqueness of Equilibrium

To solve for the equilibrium measure of borrowers of type G financed at loan origination, we

need to solve for equation (3.12). The equilibrium relationship k̄∗ (μ∗) is obtained from (3.15) by

substituting for investors’ beliefs from equations (3.8) and (3.9) and using the equilibrium relation-

ship fB (μ), summarized in Lemma 2. To prove the existence and uniqueness of the equilibrium, it

suffices to show that there is a unique solution μ∗ to equation (3.12). The proof is formalized in

Proposition 9.

PROPOSITION 9 (Existence and uniqueness of equilibrium). Denote the right hand side of the

equilibrium condition (3.12) by H : [0, μ̄] → [μ0, 1] ,

H(μ) ≡ F (k̄(μ)) +
[
1− F (k̄ (μ)

]
μ0. (3.16)

Assume

F ((1− μ0)ρ[c+ΔW ]) + [1− F ((1− μ0)ρ[c+ΔW ])]μ0 < μ̄.

If c̃ ≤ (1− r) (2r − 1) , then also assume

(1− ρ)f̄(1− μ0)
2ΔW

(2r − 1)2

r (1− r)

√
1− r − c̃/ (2r − 1)

1− r − c̃ (2r − 1)
/

(
1− r

1− r − c̃ (2r − 1)

)2

< 1,

where f̄ ≡ sup
k∈[0,1]

F ′(k). Then H ′(μ) ≤ 1 and there exists a unique equilibrium.

3.2.4 Comparison to the Constrained Efficient Allocation

It is instructive to compare equilibrium outcomes in the decentralized economy to the con-

strained efficient allocation to see whether the market may induce the optimal level of screening.

To do so, we need to specify a few more details about the production structure of the economy. For

simplicity, assume that c is simply a transfer from banks to the rating technology and there are

no additional costs associated with borrowers’ production—apart from the unit of funds extended.

Suppose further that a loan to a borrower of θ results in output production in the amount of Yθ,

where YG > YB. Finally, assume WG −WB ≤ YG − YB.
10 The economy total output is then given

10This relationship would hold under either debt or equity financing contracts. Modeling the bank contracts in
more detail is outside the scope of this paper and irrelevant for our analysis.
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by:

Y = F (k̄)YG + (1− F (k̄))(μ0YG + (1− μ0)YB)−
∫ k̄

0
kdF (k) − 1. (3.17)

The first two terms in equation (3.17) represent the total output produced by all borrowers, whereas

the last two terms represent inputs involved in screening and in the production of borrowers’

projects.

The constrained efficient allocation is given by the screening activity k̄ that maximizes Y in

equation (3.17)—which corresponds to the choice of a benevolent planner who owns the banking

technology and optimally chooses the level of screening at loan origination. The social marginal

gain of screening by any bank is (1−μ0)(YG − YB), because borrowers of type G are financed with

probability μ0 even if a bank does not screen. The marginal cost for a given bank is k. Therefore,

it is socially optimal for a bank with screening cost k to screen whenever (1 − μ0)(YG − YB) > k.

The most productive bank faces a screening cost k = 0; therefore, it is always efficient for such

a bank to screen. On the other hand, the least productive bank faces a screening cost of 1.

If (1 − μ0)(YG − YB) > 1, then even the least productive bank should screen, and so should

the rest of the banks. Otherwise, there exists a cutoff marginal screener k̄ef ∈ (0, 1) satisfying

k̄ef = (1− μ0)(YG − YB). Formally, the socially efficient marginal screener is given by

k̄ef = min{(1− μ0)(YG − YB), 1} (3.18)

and the implied socially efficient measure of credit allocation is given by

μef = F (k̄ef ) +
[
1− F (k̄ef )

]
μ0. (3.19)

In the decentralized economy, it is never the case that all banks screen, i.e., we have k̄ < 1. If

this was the case, all loans would be resold at WG, which would imply that banks would have no

incentives to screen—which is a contradiction. Moreover, even if kef < 1, the level of screening in

the decentralized economy falls short of the socially efficient level as long as r < 1 as Proposition 10

shows.

PROPOSITION 10 (Comparison to the Constrained Efficient Outcomes). In equilibrium, the
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level of screening activity is less than efficient, and resources are misallocated,

k̄∗ < k̄ef and μ∗ < μef ,

whenever r < 1.

3.2.5 Comparative Statics Analysis

This section derives the partial effects of changes in the primitives of the model on the equilib-

rium level of resource allocation, μ∗. We first analyze the changes introduced in μ∗ by a change in

ΔW—which can be interpreted as changes in either the relative productivity of repaying borrowers

or a change in the value of collateral recovered in the case of defaulting borrowers.

The intuition suggests that an increase in ΔW should increase the measure of banks that screen

as it directly increases RG −RB. This is, indeed, true if the parameter values are such that banks

with loans of type B choose a pure rating strategy, i.e., fB ∈ {0, 1}. In other words, for small

changes in ΔW , the rating behavior of banks with loans of type B remains unaffected, so no

additional effects are operating. In the case of a mixed rating strategy, however, the positive direct

effect of ΔW on screening activity may be offset by an increase in the rating activity of banks with

loans of type B as lemma 3 shows.

LEMMA 3 (Comparative statics of k̄∗ and μ∗ with respect to the loan payoff differential, ΔW ).

The following effects on screening effort k̄∗ and the measure of borrowers of type G financed μ∗ hold

in equilibrium:

a) If fB(μ
∗) ∈ (0, 1) and

[
1 + c

∂fmix
B

∂ΔW

]
≤ 0, then k̄∗ and μ∗ are weakly decreasing functions of

ΔW .

b) If fB(μ
∗) ∈ (0, 1) and

[
1 + c

∂fmix
B

∂ΔW

]
> 0, then k̄∗ and μ∗ are increasing functions of ΔW .

c) If fB(μ
∗) ∈ {0, 1}, then k̄∗ and μ∗ are strictly increasing functions of ΔW.

Within our model, the rise in collateral values in the mortgage market leading up to the 2008

crisis can be interpreted as a decline in ΔW , as more value would be recovered from defaulting

borrowers in the case of higher housing prices. As a consequence, our model provides insight into
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why the rise in collateral values in mortgage markets worked to weaken banks’ screening incentives

when originating mortgage loans, thereby contributing to a worsening pool of financed borrowers.

We now analyze the impact of changes in the precision of the rating technology, r, on screening

activity and, therefore, on credit allocation. As lemma 4 shows, changes in r have an unambiguous

effect on screening and credit allocation. An increase in the rating precision directly increases the

payoff to screening by increasing the probability that banks with loans of type G receive a good

rating and sell at a premium as well as decreasing the probability that banks with loans of type B

are incorrectly rated and sell at a premium.

LEMMA 4 (Comparative statics of k̄∗ and μ∗ with respect to the rating precision, r). In equilib-

rium, screening effort k̄∗ and the measure of borrowers of type G financed μ∗ are strictly increasing

functions of r.

Figure C.3 numerically illustrates the effects on equilibrium quantities of decreasing the rating

precision, which can be interpreted as a result of increased asset complexity—a widespread phe-

nomenon that took place prior to the 2008 financial crisis. In all panels of figure C.3, r decreases

as we move along the horizontal axis. As figure C.3 (panel b) shows, as r decreases, fB tend to

increase because banks with loans of type B rate their loans more often provided that ratings

are less accurate. For a sufficiently precise rating, however, banks holding loans of type B never

rate their loans, whereas for a sufficiently small rating precision, everyone engages in rating. The

informativeness of a good rating, depicted in figure C.3 (panel f), decreases through the direct

effect of ratings becoming more prone to error. But in the region where banks with loans of type

B play a mixed rating strategy, the informativeness of a good rate decreases faster and, therefore,

the premium paid on loans with a good rate declines faster. In such a region, investors’ beliefs

deteriorate due to both—the direct effect of less precise ratings and the indirect effect of intensified

rating behavior. This is also the region where the fraction of banks screening and the measure of

loans of type G financed decline most rapidly as shown in figure C.3 (panels a and b). This is not

surprising, because the screening decision depends on the premium paid on loans with a good rate

as well as on the probability of obtaining a good rating, both of which decline.

It is important to note that the measure of loans with a good rate may increase in equilibrium,

despite the fact that the actual measure of loans of type G financed at loan origination declines as
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figure C.3 (panels a and e) show. Such equilibrium behavior is due to the intensified use of ratings

by banks holding loans of type B. As the rating precision decreases and more banks rate their

loans—hoping to obtain a good rating in order to sell at a premium—, the measure of loans with

a good rate increases.

The above comparative statics analysis helps rationalize several phenomena observed prior to

the 2008 financial crisis, such as: (1) lax screening standards; (2) an intensified use of ratings,

or shopping for a high rating; (3) the rise in default probability on loan baskets with investment

grade—securities which can be interpreted as loans with high rates within the model—as shown

in figure 3 (panel d); and (4) historically low spreads between high yield and investment grade

securities—spreads that can be interpreted as the price differential between loans with a good

rating and loans with no rating within the model—as shown in figure C.3 (panel f). Figure C.3

(panel e) even suggests that the fraction of assets receiving an investment grade may rise despite

the worsening of credit allocation.

To complete our comparative analysis, it remains to consider changes in the cost of rating, c,

banks’ skin in the game, ρ, and the initial distribution of borrowers’ types, μ0. Lemma 5 studies

the effect of changes in c on screening and credit allocation.

LEMMA 5 (Comparative statics of k̄∗ and μ∗ with respect to the rating cost, c). The following

effects on screening effort, k̄∗, and the measure of borrowers of type G that get financed, μ∗, hold

in equilibrium:

a) If fB(μ
∗) = 0, then k̄∗ and μ∗ are strictly decreasing functions of c.

b) If fB(μ
∗) ∈ (0, 1), then k̄∗ and μ∗ are strictly increasing functions of c.

c) If fB(μ
∗) = 1, then k̄∗ and μ∗ are independent of c.

Because fG = 1, as the cost of rating c increases, holding a loan of type G becomes relatively

less profitable compared to holding a loan of type B if fB < 1, thereby weakening the incentive

to screen. Thus, if fB = 0, then k̄∗ and μ∗ are strictly decreasing functions of c. If fB = 1,

however, the incentives to screen are unaffected because both loan types are rated with certainty,

so the rating costs increase by the same amount, and, thus, k̄∗ and μ∗ are independent of c. If

fB ∈ (0, 1), there is an extra effect associated with an increase in c. An increase in c reduces the
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rating incentive of holders of loans of type B, thereby increasing the informativeness of a good

rating and the incentive to screen. As lemma 5 shows, this effect dominates other effects, and, thus,

k̄∗ and μ∗ are strictly increasing functions of c if fB ∈ (0, 1).

We now analyze the impact of changes in banks’ skin in the game, ρ, on screening activity and,

therefore, on credit allocation. As lemma 6 shows, changes in ρ have an unambiguous effect on

screening and credit allocation. An increase in banks’ skin in the game increases directly the payoff

to screening.

LEMMA 6 (Comparative statics of k̄∗ and μ∗ with respect to banks’ skin in the game, ρ). In

equilibrium, screening effort, k̄∗, and the measure of borrowers of type G financed, μ∗, are strictly

increasing functions of ρ.

Finally, we present what may be the most surprising result. An improvement in the initial pool

of borrowers, μ0, may lead to a worse credit allocation, μ∗. On the one hand, an increase in μ0 has

a direct positive effect on μ∗. Ceteris paribus, it increases the measure of borrowers of type G in

the economy as equation (3.12) states. On the other hand, there is an indirect effect through banks’

screening behavior. The better the ex-ante distribution of borrowers, the weaker banks’ screening

incentives.

LEMMA 7 (Comparative statics k̄∗ and μ∗ with respect to the initial distribution of borrowers,

μ0). Let ΔR ≡ RG−RB. The following effects on screening effort k̄∗ and the measure of borrowers

of type G that get financed, μ∗, hold in equilibrium:

a) k̄∗ is a strictly decreasing function of μ0.

b) μ∗ is a weakly increasing function of μ0 if and only if

1− F (k̄(μ∗)) ≥ (1− μ0)Fk(k̄(μ
∗))ΔR(μ∗). (3.20)

Condition (3.20) captures the relative size of the two effects. The positive direct effect accounts

for 1 − F (k̄), as it operates only through measure 1 − F (k̄) of banks that lend at random. The

negative indirect effect equals (1 − μ0)Fk(k̄)ΔR and accounts for the measure of banks that do

not screen anymore—given the increase in μ0—, Fk(k̄), multiplied by the expected loss due to lax

screening activity, (1− μ0)ΔR.
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3.3 Policy Experiments

This section analyzes mandatory rating and mandatory rating disclosure as two policies that

may align the decentralized equilibrium allocation with the constrained efficient one. We find that,

contrary to conventional wisdom, both policies worsen credit misallocation.

3.3.1 Mandatory Rating

Consider a mandatory rating policy in which all loans sold in secondary markets must be rated.

As a consequence, if a bank does not show its rating, then it means that this bank did not receive

a good rating. Within our model, this is equivalent to setting fB = fG = 1. Let μ∗MR denote the

measure of borrowers of type G financed at loan origination under the mandatory rating regime. It

then follows from the model equilibrium,

PROPOSITION 11 (Mandatory Rating). Under the mandatory rating policy, the misallocation

of resources worsens, i.e.,

μ∗MR ≤ μ∗ ≤ μef .

and the following comparative statics results hold:

∂μ∗MR

∂r
> 0,

∂μ∗MR

∂ρ
> 0,

∂μ∗MR

∂c
= 0,

∂μ∗MR

∂ΔW
> 0.

and
∂μ∗

MR
∂μ0

> 0 if and only if inequality (3.20) holds.

Thus, under mandatory rating, the rating activity of holders of loans of type B is intensified,

thereby decreasing the informativeness of a good rating, which in turn, decreases the premium paid

on loans with good ratings, discouraging screening at loan origination and further exacerbating

credit misallocation.

3.3.2 Mandatory Rating Disclosure

We now consider a mandatory rating disclosure policy in which banks are free to choose whether

or not to rate their loans. However, should a rating be obtained, it must be disclosed. In this case,

investors can differentiate among loans with a good rating, loans with a bad rating, and unrated
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loans, all of which potentially trade at distinct prices that we denote by PGR, PBR, and PNR,

respectively.

A bank with a loan of type G chooses to rate it, i.e., fG = 1, if and only if

(1− ρ) [rPGR + (1− r)PBR − PNR] > c. (3.21)

As in the benchmark model, we consider only the range of parameter values for which fG = 1.

Similarly, a bank with a loan of type B chooses to rate it, i.e., fB = 1, if and only if

(1− ρ) [(1− r)PGR + rPBR − PNR] > c. (3.22)

Banks’ expected payoffs from lending to a borrower of type θ ∈ {B,G} are then given by

RG = (1− ρ) [fG [rPGR + (1− r)PBR − c] + (1− fG)PNR] + ρWG − 1, (3.23)

RB = (1− ρ) [fB [(1− r)PGR + rPBR − c] + (1− fB)PNR] + ρWB − 1. (3.24)

For a given measure of loans of type G financed at loan origination, μ, and strategies (fG, fB),

investors’ beliefs must satisfy

PrG|GR =
μrfG

μrfG + (1− μ)fB(1− r)
, (3.25)

PrG|BR =
μ(1− r)fG

μ(1− r)fG + (1− μ)fBr
, (3.26)

PrG|NR =
μ(1− fG)

μ(1− fG) + (1− μ)(1− fB)
. (3.27)

where PrG|GR, PrG|BR and PrG|NR denote the probabilities that a loan with a good, bad, and

no rating is a loan of type G, respectively. Competition among investors implies that prices are

determined as the expected payoffs. Thus, we have

PGR = WGPrG|GR +WB[1− PrG|GR] = ΔWPrG|GR +WB , (3.28)

PBR = WGPrG|BR +WB [1− PrG|BR] = ΔWPrG|BR +WB, (3.29)

PNR = WGPrG|NR +WB[1− PrG|NR] = ΔWPrG|NR +WB. (3.30)
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Other than the fact that three types of loans are traded in secondary markets, the equilibrium in

the economy with mandatory rating disclosure is defined as in the benchmark model. In other words,

taking RG and RB—as defined in equations (3.23) and (3.24)—banks make screening decisions.

Then, the measure of borrowers of type G finance at equilibrium is found as a solution to μ =

F (k̄(μ)) + (1− F (k̄(μ)))μ0, where k̄ ≡ (1− μ0)(RG −RB).

Lemma 8 shows that under mandatory rating disclosure fB is never 0. In other words, banks

with loans of type B always weakly prefer to rate their loans.11 The intuition is as follows. Assume

that fB = 0 and fG > 0. In this case, disclosing any rating, whether it is good or bad, indicates

that a loan is of type G. As a consequence, loan prices incentivize banks with loans of type B to

rate their loan, which contradicts the assumption that fB = 0.

LEMMA 8 (Rating strategy fB as a function of r, ρ, c, and ΔW ). For a given measure of

borrowers of type G financed at loan origination, μ, the rating strategy fB can be summarized as

follows:

fB =

⎧⎪⎨⎪⎩ 1 c̃ < μr(1−r)
[μr+(1−μ)(1−r)][μ(1−r)+(1−μ)r]

fmix
B ∈ (0, 1) if μr(1−r)

[μr+(1−μ)(1−r)][μ(1−r)+(1−μ)r] ≤ c̃ < 1

where the mixed strategy is given by fmix
B = μ

(
r(1−r)(1+2c̃)−c̃+

√
c̃2(1−2r)2−2c̃(1−2r)2r(1−r)+r2(1−r)2

2c̃r(1−r)(1−μ)

)
.

The main result is formalized in proposition 12. We show that, under mandatory rating disclo-

sure, the incentive to screen weakens, and credit misallocation gets even worse. Intuitively, holders

of loans of type B are encouraged to rate their assets, as the lack of an observable rating can no

longer be passed off as an undisclosed false rating. Therefore, rating activity intensifies, thereby

reducing the informational value of a good rating, decreasing the expected return to screening, and

compounding the credit misallocation in the economy.

PROPOSITION 12 (Mandatory Rating Disclosure). Let μ∗MD denote the proportion of borrowers

of type G financed at loan origination under a mandatory rating disclosure policy. Under the

mandatory rating disclosure policy, the resource misallocation worsens, i.e.,

μ∗MD ≤ μ∗.
11An equilibrium in which fB = fG = 0 is possible, but we do not consider such a case.
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3.4 Concluding Remarks

We develop a general equilibrium model to study the interaction of information production in

secondary loan markets and screening intensity at loan origination. The model provides insight

into why screening efforts at loan origination may be less than optimal, and shows that screening

efforts unambiguously decrease as a result of a rise in collateral values, an increase in the fraction of

repaying borrowers, a decrease in ratings’ precision, and a decrease in banks’ skin in the game. The

model provides new insight into several pre-2008 financial crisis empirical observations, such as: (1)

lax screening standards, (2) intensified ratings shopping, (3) rating inflation, and (4) the decline in

the differential between yields on assets with low and high ratings. Finally, we also investigate the

role of mandatory rating and mandatory rating disclosure. We find that, at odds with conventional

wisdom, both policies may exacerbate credit misallocation.
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Appendix A

Inter-firm Relationships and Asset

Prices

A.1 Proofs

This section contains the proofs of propositions and corollaries in the paper. The following computations consider

two assumptions:

• Firm i’s output at time t+ 1, yi,t+1, follows

log

(
yi,t+1

Yt

)
≡ α0 + α1di − α2

√
nε̃i,t+1 (A.1)

where ε̃i,t+1 denotes a Bernoulli random variable which equals one if firm i faces a negative shock at t + 1

and zero otherwise. For a given Gn, parameter di denotes firm i’s degree. Parameters α0, α1 and α2 are

non-negative real numbers.

• Let x̃t+1 ≡ log
(
Yt+1

Yt

)
be the log output growth rate of the economy at time t+1, and let Δc̃t+1 ≡ log

(
C̃t+1

Ct

)
,

be the log aggregate consumption growth rate. The processes for x̃t+1 and Δc̃t+1 satisfy

x̃t+1 − x∗ = τ (Δc̃t+1 − c∗) + σxξ̃t+1 (A.2)

where x̄ and c̄ are real numbers, τ > 0, σx > 0; and ξ̃t+1
d−→ i.i.d. N (0, 1). Variable ξ̃t+1 is independent of

Δc̃t+1 and {ε̃i,t+1}ni=1 at t+ 1.

To simplicity notation, define x̄ ≡ x∗ − τc∗. Let st denote the state of p̃t at period t. Given Gn, st determines

the distributions of aggregate output and consumption growth at period t. Provided that p̃t varies over time, the

distributions of aggregate output and consumption growth vary over time as well, and the dynamics of the moments

of these distributions satisfy the Markov property.
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Sketch of proof of Proposition 1 and Corollaries 1 and 2. Given a sequence of network topologies {Gn}∞n=1, with lim-

iting topology G∞, and the realization of p̃t at time t, the goal is to find the conditions under which
√
nW̃n,t is

normally distributed as n grows large.

Without loss of generality, fix t so that subscript t on the sequence {ε̃i,t}ni=1 can be eliminated. If the sequence

of Bernoulli random variables {ε̃i}ni=1 is independent, the Lindeberg-Lévy central limit theorem implies that
√
nW̃n

is normally distributed as n grows large. Consequently, if p̃t = 0 firms’ cash-flows are independent and
√
nW̃n is

asymptotically normally distributed.

In the presence of inter-firm relationships, however, cash-flows of connected firms are correlated if p̃t > 0. De-

spite that the sequence {ε̃i}ni=1 may be dependent,
√
nW̃n may still be asymptotically normally distributed if the

dependence among variables {ε̃i}ni=1 is sufficiently weak in a sense to be defined.

To better understand the main idea behind the proof, it is illustrative to review statistical concepts such as

α-mixing, stationary processes and m-dependent sequences. I do so in what follows. For the sequence {ε̃i}ni=1, let αn

be a non-negative number such that

∣∣P(A ∩ B)− P(A)P(B)
∣∣ ≤ αn (A.3)

with A ∈ σ(ε̃1, · · · , ε̃k), B ∈ σ(ε̃k+n, ε̃k+n+1, · · · ), k ≥ 1 and n ≥ 1; where σ(·) denotes the σ-algebra defined on

the power set of {0, 1}n ≡ {0, 1} × · · · × {0, 1}. The sequence {ε̃i}ni=1 is said to be α-mixing if αn → 0 as n grows

large. In other words, ε̃k and ε̃k+n are approximately independent for large n. The sequence is said to be stationary

if the distribution of (ε̃l, ε̃l+1, · · · , ε̃l+j) does not depend on l. If {ε̃i}ni=1 is α-mixing and stationary,
√
nW̃n follows a

normal distribution as n grows large—see Billingsley, (1995, Theorem 27.4). A special case of the above result occurs

if there exists an ordering of the sequence {ε̃i}ni=1 such that the dependence between variables ε̃k and ε̃j decreases

as the distance between them increases in such an ordering. In particular, if there exists such an ordering and a

positive m ≥ 0 such that (ε̃1, · · · , ε̃k) and (ε̃1,k+s, · · · , ε̃k+s+l) are independent whenever s > m, the sequence {ε̃i}ni=1

is said to be m-dependent in which case
√
nW̃n follows a normal distribution for large n. An independent sequence

is 0-dependent using this terminology.

In what follows, I apply the same idea behind a m-dependent sequence. In particular, I impose that negative

shocks tend to remain locally confined as n grows large so that there always exist an index ordering I that makes

the sequence {ε̃i}i∈I to be m-dependent, in the sense described above.

For a given network topology, let 0 < pc ≤ 1 be a real number such that for all p̃t < pc, negative shocks only

spread over clusters of firms of finite size. Provided that the size of such clusters becomes negligible compared to the

size of the economy as n grows large, and there is an infinite number of small clusters, all independent among each

other,
√
nW̃n is normally distributed as n grows large. For instance, define m as the largest expected diameter of

such clusters and the corresponding index ordering I such that whenever s > m, (ε̃1, · · · , ε̃k) and (ε̃1,k+s, · · · , ε̃k+s+l)
are independent in {ε̃i}i∈I .

To find the threshold pc, it is illustrative to compute the probability that at least one negative shock spreads

over n− 1 different firms. Let Pn denote such a probability. Given how shocks spread from one firm to another, Pn
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equals

Pn = (1− (1− q)n)P [there is at least one open walk connecting n firms ] (A.4)

≈ (1− e−nq)P [there is at least one open walk connecting n firms ] (for large n)

where q is the probability that a firm faces a negative idiosyncratic shock. A walk is a sequence of relationships which

connect a sequence of firms that may not be all distinct from one another. A walk is considered to be open at t if all

the relationships that compose the walk transmit negative shocks at t.

I focus on the limit of Pn as n grows large. Provided that 0 < q < 1, the first term in the right-hand side of (A.4)

tends to 1 as n → ∞ at an exponential rate. As a consequence, if the second term in the right-hand side of (A.4)

tends to 0 as n grows large, negative idiosyncratic shocks tend to remain locally confined since, almost surely, no

firm belongs to an infinite open walk. Then, to determine the conditions under which a CLT-type of result applies is

related to determine the probability, as n→ ∞, that a given firm belongs to an infinite open walk. Given a sequence

{Gn}n, with limiting distribution G∞, define pc as

pc(G∞) = sup
p∈(0,1)

{
p : lim

n→∞
Pn = 0

}
(A.5)

I write pc = pc(G∞) since pc may depend on the network topology in the limit. Therefore, if p̃t < pc then
√
nW̃n

follows a normal distribution as n grows large since all open walks are almost surely finite and their size distribution

has a tail which tend to decrease with n sufficiently fast.1

To prove normality, condition p̃t < pc may be stronger than necessary. Imposing such a condition, however,

greatly facilitates the proof since the determination of pc has been extensively studied in percolation theory, e.g.

Grimmett, 1989 and Stauffer and Aharony, 1994. In percolation, pc is sometimes called the critical probability or

critical phenomenon of the model, because it indicates the arrival of an infinite connected component as n → ∞
within a particular model.

To illustrate how pc can be determined, consider the following two simple examples:

• Imagine n firms are arranged in a straight line and each relationship may transmit shocks with probability p.

The probability that the line is open is pn, which tends to zero as n→ ∞, so that pc = 1.

• Suppose n firms are arranged in a circle. The probability that the circle is open tends to zero as n → ∞.

Think about putting the endpoints of an infinitely line together. Thus, pc = 1.

Taking results from bond percolation, Table A.1 reports critical probabilities for several symmetric network

topologies. As Table A.1 shows, pc varies across networks. For instance, if G∞ is the two dimensional honeycomb

lattice then pc = 1− 2 sin
(
π
18

) ≈ 0.65 whereas if G∞ is the two dimensional square lattice then pc =
1
2
.

The previous analysis determines conditions under which
√
nW̃n is normally distributed for some large symmetric

networks. But what happens in other network topologies? In particular, under what conditions is
√
nW̃n asymptot-

1For instance, if Gn = L
d, where L

d represents the d-dimensional lattice, the probability that an open walk has
size n is proportional to exp (−ζ(p)n)—see Grimmett, (1989, Chapters 5 and 7).
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ically normally distributed in large asymmetric networks? Using random walks on trees, Lyons, 1990 shows that if

G∞ is a tree then

pc =
1

branching number of G∞
(A.6)

where the branching number of a tree is the average number of branches per node in a tree.2 A tree is a connected

graph in which two given nodes are connected by exactly one path. A tree is said to be z-regular if each node has

degree z. If G∞ is an z-regular tree, the average number of branches per node is z−1 so pc =
1
z−1

; which is consistent

with Table A.1.3

One can generalize the previous result for topologies where G∞ is sparse and locally treelike. Gn is said to be

sparse if Gn has m edges and m = O(n). Notation m = O(n) indicates that m grows, at most, linearly with n so

there exists a positive number c such that
∣∣m
n

∣∣ < c for all n. Namely, Gn is sparse if only a small fraction of the

possible n(n−1)
2

edges are present. G∞ is said to be locally treelike if in the limit an arbitrarily large neighborhood

around any node takes the form of a tree. Using the previous idea and reformulating percolation in trees as a message

passing process, Karrer, Newman, and Zdeborová, 2014 shows that if G∞ is sparse and locally treelike then

pc =
1

εH
(A.7)

where εH is the leading eigenvalue of the 2n× 2n matrix

M =

⎛⎝ A I−D

I 0

⎞⎠ (A.8)

where A is the adjacency matrix that represents Gn, I is the n×n identity matrix, and D is the diagonal matrix with

the number of relationships per firm along the diagonal, e.g. Karrer, Newman, and Zdeborová, 2014. Parameter eH

is always real. For a sparse network this matrix is also sparse, with only 2m + 2n nonzero elements, which permits

rapid numerical calculation of the leading eigenvalue. For the network that characterize the benchmark economy one

obtains

eH = 1 → pc ≈ 1 (A.9)

branching number = 1.185 → pc ≈ 0.85 (A.10)

2For a concrete definition of the branching number see Lyons, (1990, page 935).
3To motivate the previous result, it is informative to compute the percolation threshold in the Bethe lattice with

z neighbors per every node. Start at the root and check whether there is a chance of finding an infinite open path
from the root. Starting from the root, one has (z − 1) new edges emanating from each new node in each layer of the
lattice. Each of these (z − 1) new edges leads to one new node, which is affected with probability p. On average,
(z − 1)p nodes are affected at each layer of the lattice. If (z − 1)p < 1 then the average number of affected nodes
decreases in each layer by a factor of (z− 1)p. As a consequence, if (z− 1)p < 1 the probability of finding an infinite
open path goes to zero exponentially in the path length. Thus, pc =

1
z−1

for the Bethe lattice with z neighbors for
every node.
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Proof of Proposition 2. I look for an equilibrium such that the price dividend ratio is stationary. I conjecture that if

c is the current aggregate consumption and s the current state of p̃t, then Pa(c, s) = was c, in which Pa is the price

of aggregate wealth and was a number that depends on state s. If st = s and st+1 = s′, the realized gross return at

time t+ 1 of the asset that delivers aggregate consumption as its dividend each period, R̃a,t+1, equals

R̃a,t+1 =
P̃a,t+1 + C̃t+1

Pa,t
=

was′ + 1

was

C̃t+1

Ct
(A.11)

Setting R̃i,t+1 = R̃a,t+1 in equation (1.8) yields,

Et

⎛⎜⎝[β( C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

⎞⎟⎠ = 1

⇒ E

⎛⎜⎝[β( C̃t+1

Ct

)−ρ] 1−γ
1−ρ
[
was′ + 1

was

C̃t+1

Ct

] 1−γ
1−ρ ∣∣∣∣ps

⎞⎟⎠ = 1 (A.12)

Provided that st follows a Markov process, equation (A.12) can be rewritten as

β
1−γ
1−ρ

⎛⎝ ∑
s′=H,L

ωs,s′E

((
C̃t+1

Ct

)1−γ ∣∣∣∣ps′
)(

was′ + 1

was

) 1−γ
1−ρ

⎞⎠ = 1 (A.13)

Reordering equation (A.13) yields,

was = β

⎛⎝ ∑
s′=H,L

ωs,s′E
(
e(1−γ)Δc̃t+1

∣∣ps′) (was′ + 1)
1−γ
1−ρ

⎞⎠
1−ρ
1−γ

s = H,L (A.14)

which completes the proof.

REMARK 2. If
√
nW̃n,t+1 is normally distributed, then

E

(
e(1−γ)Δc̃t+1

∣∣s) = exp

(
(1− γ)(α0 + α1d̄− α2μs − x̄)

τ
+

(1− γ)2

2

(
α2
2σ

2
s − σ2

x

τ 2

))
s = H,L(A.15)

where

μH ≡ lim
n→∞

E

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣p̃t+1 = pH

)
and σ2

H ≡ lim
n→∞

Var

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣p̃t+1 = pH

)

μL ≡ lim
n→∞

E

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣p̃t+1 = pL

)
and σ2

L ≡ lim
n→∞

Var

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣p̃t+1 = pL

)

and the above constants are assumed to be finite so that equation (A.15) is well-defined.

REMARK 3 (Price of Market Return). If consumption and output growth differ I compute the price of the market

return as follows. I conjecture that if y is the current aggregate output and s the current state of p̃t, then Pm(c, s) =

wms y, where Pm is the price of the market portfolio and wms a number that depends on state s. If st = s and st+1 = s′,

then the realized gross return at time t + 1 of the asset that delivers aggregate output as its dividend each period,
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R̃m,t+1, equals

R̃m,t+1 =
P̃m,t+1 + Yt+1

Pm,t
=

wms′ + 1

wms

Yt+1

Yt
(A.16)

Setting R̃i,t+1 = R̃m,t+1 in equation (1.8) yields,

Et

⎛⎜⎝[β( C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

−1

R̃m,t+1

⎞⎟⎠ = 1

⇒ E

⎛⎜⎝[β( C̃t+1

Ct

)−ρ] 1−γ
1−ρ
[
was′ + 1

was

(
C̃t+1

Ct

)] 1−γ
1−ρ

−1(
wms′ + 1

wms
X̃t+1

) ∣∣∣∣ps
⎞⎟⎠ = 1 (A.17)

where X̃t+1 =
Yt+1

Yt
. Provided that st follows a Markov process, equation (A.17) can be rewritten as

β
1−γ
1−ρ

⎛⎝ ∑
s′={H,L}

ωs,s′E

((
C̃t+1

Ct

)−γ

X̃t+1

∣∣∣∣ps′
)(

was′ + 1

was

) 1−γ
1−ρ

−1 (
wms′ + 1

wms

)⎞⎠ = 1 (A.18)

Reordering equation (A.18) yields,

wms = β
1−γ
1−ρ

⎛⎝ ∑
s′∈{H,L}

ωs,s′E
(
e−γΔc̃t+1+x̃t+1

∣∣ps′)(was′ + 1

was

) 1−γ
1−ρ

−1

(wms′ + 1)

⎞⎠ s = {H,L} (A.19)

It follows from (A.2) that −γΔc̃t+1 + x̃t+1 = x̄+ (τ − γ)Δc̃t+1 + σxξ̃t+1. Therefore, (A.19) equals to

wms = β
1−γ
1−ρ ex̄+

σ2
x
2

⎛⎝ ∑
s′∈{H,L}

ωs,s′E
(
e(τ−γ)Δc̃t+1

∣∣ps′)(was′ + 1

was

) 1−γ
1−ρ

−1

(wms′ + 1)

⎞⎠ s = {H,L} (A.20)

Proof of Proposition 3. Setting R̃i,t+1 = Rf in equation (1.8) yields,

E

⎛⎜⎝[β( C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

−1
∣∣∣∣ps
⎞⎟⎠ =

1

Rf (s)
, s = {H,L} . (A.21)

Provided that st follows a Markov process and Pa(c, s) = was c, the left hand side of equation (A.21) can be rewritten

as the following sum

β
1−γ
1−ρ

⎛⎝ ∑
s′=H,L

ωs,s′E

((
C̃t+1

Ct

)−γ ∣∣∣∣ps′
)(

was′ + 1

was

) ρ−γ
1−ρ

⎞⎠
Therefore,

1

Rf (s)
= β

1−γ
1−ρ

⎛⎝ ∑
s′=H,L

ωs,s′E
(
e−γΔc̃t+1

∣∣ps′)(was′ + 1

was

) ρ−γ
1−ρ

⎞⎠ , s = {H,L}
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which completes the proof

Proof of Proposition 4. Consider st = s and st+1 = s′. Equation (1.8) can be rewritten as,

Pi,t = Et

(
M̃t+1

(
P̃i,t+1 + yi,t+1

))
i = 1, · · · , n (A.22)

where

M̃t+1 ≡
[
β

(
C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

−1

represents the pricing kernel. Dividing equation (A.22) by Yt yields

Pi,t
Yt

= Et

(
M̃t+1X̃t+1

P̃i,t+1

Yt+1

)
+ Et

(
M̃t+1

yi,t+1

Yt

)
i = 1, · · · , n (A.23)

which can be rewritten as

vi,t = Et

(
M̃t+1X̃t+1vi,t+1

)
+ Et

(
M̃t+1

yi,t+1

Yt

)
i = 1, · · · , n (A.24)

with vi,t ≡ vi(s) ≡ Pi,t

Yt
. Provided that st follows a Markov process and Pa(c, s) = was c, the first term in the right

hand side of equation (A.24) can be rewritten as

Et

(
M̃t+1X̃t+1vi,t+1

)
= β

1−γ
1−ρ ex̄+

σ2
x
2

⎛⎝ ∑
s′=H,L

ωs,s′

(
was′ + 1

was

) ρ−γ
1−ρ

E

(
e(τ−γ)Δc̃t+1

∣∣ps′) vi(s′)
⎞⎠ (A.25)

whereas the second term in the right hand side of equation (A.24) can be rewritten as

Et

(
M̃t+1

yi,t+1

Yt

)
= eα0+α1diEt

(
M̃t+1e

−α2
√
nε̃i,t+1

)
(A.26)

The expectation term in the right hand side of equation (A.26) can be written as

Et

(
M̃t+1e

−α2
√
nε̃i,t+1

)
= β

1−γ
1−ρ

⎛⎝ ∑
s′=H,L

ωs,s′E

((
C̃t+1

Ct

)−γ

e−α2
√
nε̃i,t+1

∣∣∣∣ps′
)(

was′ + 1

was

) ρ−γ
1−ρ

⎞⎠
= β

1−γ
1−ρ

⎛⎝ ∑
s′=H,L

ωs,s′E

(
e−γΔc̃t+1−α2

√
nε̃i,t+1

∣∣∣∣ps′)(was′ + 1

was

) ρ−γ
1−ρ

⎞⎠
As a consequence,

vi(s) = β
1−γ
1−ρ ex̄+

σ2
x
2

⎛⎝ ∑
s′=H,L

ωs,s′

(
was′ + 1

was

) ρ−γ
1−ρ

E

(
e(τ−γ)Δc̃t+1

∣∣ps′) vi(s′)
⎞⎠

+ β
1−γ
1−ρ eα0+α1di

⎛⎝ ∑
s′=H,L

ωs,s′E

(
e−γΔc̃t+1−α2

√
nε̃i,t+1

∣∣∣∣ps′)(was′ + 1

was

) ρ−γ
1−ρ

⎞⎠ i = 1, · · · , n
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Define πi(s
′) ≡ E [ε̃i,t+1|st+1 = s′]. It is worth noting that

−γΔc̃t+1 − α2

√
nε̃i,t+1 = −γ

⎛⎝ 1

τ

⎧⎨⎩α0 + α1d̄− α2

⎛⎝∑
j �=i

ε̃j,t+1√
n

⎞⎠− σxξ̃t+1 − x̄

⎫⎬⎭
⎞⎠

︸ ︷︷ ︸
−α2

√
n
(
1− γ

τn

)
ε̃i,t+1

= −γ Δc̃−i,t+1 − α2

√
n
(
1− γ

τn

)
ε̃i,t+1(A.27)

Since Δc̃−i,t+1 and ε̃i,t+1 are independent

E

(
e−γΔc̃−i,t+1−α2

√
n(1− γ

τn )ε̃i,t+1

∣∣∣∣s) = E

(
e−γΔc̃−i,t+1

∣∣ps){πi(s)e−α2
√
n(1− γ

τn ) + (1− πi(s))
}

≈ E

(
e−γΔc̃t+1

∣∣ps) (1− πi(s)) (A.28)

where the last approximation is accurate for large n. If the distribution of Δc̃t+1 is known, the expectation of

−γΔc̃t+1 − α2
√
nε̃i,t+1 can be approximated using equation (A.28). Therefore,

vi(s) = β
1−γ
1−ρ ex̄+

σ2
x
2

⎛⎝ ∑
s′=H,L

ωs,s′

(
was′ + 1

was

) ρ−γ
1−ρ

E

(
e(τ−γ)Δc̃t+1

∣∣ps′) vi(s′)
⎞⎠

+ β
1−γ
1−ρ eα0+α1di

⎛⎝ ∑
s′=H,L

ωs,s′E
(
e−γΔc̃t+1

∣∣ps) (1− πi(s))

(
was′ + 1

was

) ρ−γ
1−ρ

⎞⎠ i = 1, · · · , n

which completes the proof

Proof of Proposition 5. Recall

Var
(
M̃t+1

∣∣s) = E

(
M̃2
t+1

∣∣s)− E
2
(
M̃t+1

∣∣s) (A.29)

The first term in the right hand side of equation (A.29) can be rewritten as

E

(
M̃2
t+1

∣∣s) = β
2
(

1−γ
1−ρ

)⎛⎝ ∑
s′=H,L

ωs,s′E

((
C̃t+1

Ct

)−2γ ∣∣∣∣ps′
)(

was′ + 1

was

)2
(

ρ−γ
1−ρ

)⎞⎠ (A.30)

Provided that λm(s) ≡ −
Var

(
M̃t+1

∣∣s)
E

(
M̃t+1

∣∣s) and E

(
M̃t+1

∣∣s) = 1
Rf (s)

, it then follows from equation (A.29) that

λm(s) =
1

Rf (s)
−Rf (s)

⎛⎝β2
(

1−γ
1−ρ

) ∑
s′=H,L

ωs,s′

(
was′ + 1

was

)2
(

ρ−γ
1−ρ

)
E

(
e−2γΔc̃t+1

∣∣ps′)
⎞⎠ , s = {H,L}

which completes the proof
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A.2 Simulation of the Model

This section describes the algorithm I use to compute firms’ probabilities of facing negative shocks in each state

of nature so one can compute asset prices and returns at the firm level using proposition 4. Let st denote the

state of p̃t at period t. To simplify the computation of probabilities {πi(st)}ni=1, I restrict the topology of Gn. In

general topologies, computing {πi(st)}ni=1 is hard, because the number of states that need to be considered increases

exponentially with n. In economies with no cycles, however, computing {πi(st)}ni=1 is easier. In those economies,

computing {πi(st)}ni=1 can be framed as a recursive problem as the following algorithm describes.

Algorithm Firms Probabilities (Gn, p̃t, q)

(∗ Description: Algorithm that computes firms’ probabilities of facing negative shocks if Gn is a forest ∗)
Input: Gn (a forest), p̃t, q.

Output: The set of probabilities of firms facing a negative shock at time t, {πi(st)}ni=1

1. for each firm i ∈ Gn

2. Determine the subgraph of Gn wherein firm i participates. Denote such a graph as Ti and label firm i

as its root.4

3. if firm i has a no connections

4. return πi(st) = q

5. else return Prob(i,Ti,p̃t,q)

where Prob(i,Ti,p̃t,q) corresponds to the following recursive program,

Algorithm Prob(i,Ti,p̃t,q)

(∗ Description: Recursive algorithm that computes firm i’s probability of facing a negative shock ∗)
Input: A node i in Gn, the tree Ti wherein node i is the root, p̃t and q.

Output: πi(st)

1. Determine the set of children of node i in Ti, say Ci.5

2. if Ci = ∅
3. return πi(st) = q

4. else if every node in Ci has no children

5. return πi(st) = q + (1− q)
(
1− (1− p̃tq)

|Ci|
)

6. else return πi(st) = q + (1− q)
(
1−∏k∈Ci

(1− p̃tProb(k, Ti,k, p̃t, q))
)

6

where Ci denotes the cardinality of set Ci.

4Note that such a graph is a tree provided that Gn is a forest.
5In a rooted tree, the parent of a node is the node connected to it on the path to the root. Every node except

the root has a unique parent. A child of a node v is a node of which v is the parent.
6Tree Ti,k denotes the branch of tree Ti that starts at node k.
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In economies with no cycles, it is also simple to compute the first two moments of the distribution of
√
nW̃n,t+1

at t+ 1. Let μs, σ
2
s denote the mean and variance of

√
nW̃n,t+1 if st+1 = s, respectively. In other words,

μs = lim
n→∞

E

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣s
)

= lim
n→∞

n∑
i=1

πi(s)√
n

s = L,H (A.31)

and

σ2
s = lim

n→∞
Var

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣s
)

(A.32)

= lim
n→∞

⎧⎨⎩ 1

n

n∑
i=1

πi(s) (1− πi(s)) +
1

n

∑
(i,j)∈Rn

Cov
(
ε̃i,t+1, ε̃j,t+1

∣∣st = s
)⎫⎬⎭ s = L,H

The second equation can be simplified further. If there exists a path between firm i and j after edges are removed

at time t + 1 then ε̃i,t+1 = ε̃j,t+1. If there is no path between firm i and j in Gn, variables ε̃i,t+1 and ε̃j,t+1 are

independent. It then follows,

Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is a path between i and j

]
= Vart [ε̃i,t] + E

2
t [ε̃i,t] = πi(s)(1− πi(s)) + π2

i (s)

Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is no path between i and j

]
= Et [ε̃i,t]Et [ε̃j,t] = πi(s)πj(s)

Hence,

Et [ε̃i,tε̃j,t] = Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is a path between i and j

]
P [there is a path between i and j at t]

+ Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is no path between i and j

]
P [there is no path between i and j at t]

=
(
πi(s)(1− πi(s)) + π2

i (s)
)
Pij(s) + πi(s)πj(s) (1−Pij(s))

where Pij(s) ≡ P [there is a path between i and j if st = s]. Thus,

Covt [ε̃i,t, ε̃j,t] = Et [ε̃i,tε̃j,t]− Et [ε̃i,t]Et [ε̃j,t]

=
(
πi(s)(1− πi(s)) + π2

i (s)
)
Pij(s) + πi(s)πj(s) (1−Pij(s))− πi(s)πj(s)

= πi(s) (1− πj(s))Pij(s)

Therefore,

σ2
s = lim

n→∞

⎧⎨⎩ 1

n

n∑
i=1

πi(s) (1− πi(s)) +
1

n

∑
(i,j)∈Rn

πi(s) (1− πj(s))Pij(s)

⎫⎬⎭ s = L,H

To compute Pij(s) I need to determine the set of paths that connect firms i and j on Gn. If there is more than one

path connecting firm i and j, computing Pij(s) is difficult, because shocks can be transmitted by any of those paths

which may be of different length. On the other hand, if there is only one path connecting any two given firms, say

firm i and j, Pij(s) is a function of the length of the unique path connecting firms i and j. It then becomes handy
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to restrict the topology of Gn so that it does not have cycles. The following remark describes Pij(s) when Gn is a

forest.

REMARK 4. Suppose Gn is a forest, namely there are no cycles. Then, every component of Gn is a tree. Provided

that any two given firms are jointed by a unique path (in case such a path exists),

Pij(s) =

⎧⎪⎪⎨⎪⎪⎩
p̃
li,j
t where li,j is the length of the (unique) path between i and j in Gn

0 there is no path between i and j

(A.33)

A.3 Network Economies and Long-Run Risks

This section shows how the baseline model can be recast so that it generates dynamics that are consistent with

long-run risks models. In what follows, both the mean and volatility of firms’ growth rate of cash-flows have a

persistent component. I use approximations similar to those used by Campbell and Shiller, 1989 and Bansal and

Yaron, 2004 to derive approximated solutions for equilibrium asset prices.

Recall that Pi,t+1 is the share price of firm i at t + 1. For simplicity assume x̄ = σx = 0 and τ = 1 so that the

following two conditions hold at equilibrium

Pa,t+1 =
n∑
i=1

Pi,t+1 (A.34)

c̃t+1 =
n∏
i=1

y
1/n
i,t+1 (A.35)

Define

gi,t+1 ≡ log

(
yi,t+1

ct

)
, gt+1 ≡ log

(
c̃t+1

ct

)
(A.36)

zi,t+1 ≡ log

(
Pi,t+1

c̃t+1

)
, zt+1 ≡ log

(
Pa,t+1

c̃t+1

)
(A.37)

Provided Yt+1 definition, it follows

gt+1 =

n∑
i=1

1

n
gi,t+1 (A.38)

Using first order Taylor approximations yields

zt+1 ≈ w0 +
n∑
i=1

wizi,t+1 (A.39)

where wi ≈ E

(
zi,t∑n

j=1 zj,t

)
, and

∑n
i=1 wi = 1. The term w0 is selected to ensure that first order approximations hold

in levels as well. Define the continuous return of firm i at t+ 1 as

ri,t+1 ≡ log

(
Pi,t+1 + yi,t+1

Pi,t

)
(A.40)
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and the continuous return on aggregate wealth at t+ 1 as:

ra,t+1 ≡ log

(
Pa,t+1 + c̃t+1

Pa,t

)
(A.41)

Using first order Taylor approximations yields7

ri,t+1 ≈ ki + ρizi,t+1 − zi,t + ρigt+1 + (1− ρi)gi,t+1 (A.42)

ra,t+1 ≈ km − zt + ρmzt+1 + gt+1 (A.43)

where {ki}ni=1 and km ensure that first order approximations hold in levels as well. Provided gi,t+1 definition, gi,t+1

can be approximated by

gi,t+1 ≈ xi,t + σi,tηi,t+1 (A.44)

where

xi,t ≡ α0 + α1di − α2Et [ε̃i,t+1] (A.45)

σ2
i,t ≡ α2

2Et [ε̃i,t+1] (1− Et [ε̃i,t+1]) (A.46)

Note that xi,t determines Et[gi,t+1] and σi,t determines the conditional volatility of gi,t+1, given the information at

time t. Provided that Gn does not vary over time and p̃t follows a two state ergodic Markov process, the processes

that xi,t and σ
2
i,t follow can be approximated by:

xi,t+1 ≈ μ0 + μ1xi,t + μ2σi,tζp,t+1 (A.47)

σ2
i,t+1 ≈ ν0 + ν1σ

2
i,t + ν2σpζp,t+1 (A.48)

where 0 < μ1 < 1, μ2 > 0, 0 < ν1 < 1 and ν2 > 0. Variable ζp,t+1
d−→ N (0, 1) represents the uncertainty coming

from unexpected changes in p̃t+1. Variables ηi,t+1
d−→ N (0, 1) represents the uncertainty coming from idiosyncratic

productivity shocks at the firm level, with ηi,t+1 ⊥⊥ ηj,t+1, ∀ j �= i. In the baseline model, parameter q is related to

variables ηi,t+1 in the approximated solution. Provided how negative shocks are propagated, ηi,t+1 ⊥⊥ ζp,t+1, ∀ i.8

With the above definitions and approximations at hand, I now study the asset pricing implication of inter-firm

7Approximation (A.43) follows directly from Bansal and Yaron, 2004 which in turns follows from the dividend-
ratio model of Campbell and Shiller, 1989. Approximation (A.42) follows from Campbell and Shiller, 1989 once
noting that

ri,t+1 ≈ ki + log

(
yi,t
Pi,t

)
− ρi log

(
yi,t+1

Pi,t+1

)
+ log

(
yi,t+1

yi,t

)
= ki + log

(
yi,t
ct−1

ct
Pi,t

ct−1

ct

)
− ρi log

(
yi,t+1

ct

ct+1

Pi,t+1

ct
ct+1

)
+ log

(
yi,t+1

ct

ct
ct−1

ct−1

yi,t

)
= ki + ρizi,t+1 − zi,t + ρigt+1 + (1− ρi)gi,t+1

8Let x̃ and ỹ be two random variables. I write x̃ ⊥⊥ ỹ to denote that x̃ is independent of ỹ.
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relationships. The pricing kernel equals

mt+1 ≡ θ ln(δ)− θ

ψ
gt+1 + (θ − 1)ra,t+1 (A.49)

I derive firm i’s price and return using the pricing kernel and the standard first order condition

Et [exp (mt+1 + ri,t+1)] = 1 (A.50)

I first solve for the return of the market portfolio ra,t+1 substituting ri,t+1 by ra,t+1. Then I solve for the risk-free

rate. Finally I solve for the risk premium of firm i, ∀ i ∈ {1, · · · , n}.
Return of the Market Portfolio: Following Bansal and Yaron, 2004 I conjecture that firm i’s logarithm of

the price-consumption ratio follows:

zi,t = a0 + a1xi,t + a2σ
2
i,t (A.51)

To solve for constants a0, a1 and a2 I use equations (A.38), (A.39) and (A.43) into the Euler equation (A.50). Since

ηi,t+1, ζp,t+1 are conditionally normal, ∀ i ∈ {1, · · · , n}, ra,t+1 and mt+1 are also normal. Exploiting this normality,

I write down the Euler equation in terms of the state variables {xi,t, σi,t}ni=1. As the Euler equation must hold for

all values of the states variables, the terms involving xi,t must satisfy:

1

n

(
1− 1

ψ

)
− wia1 + ρma1μ1wi = 0 (A.52)

ASSUMPTION 6. Consider that
∑n
i=1 wixi,t ≈ 1

n

∑n
i=1 xi,t.

It is worth noting that if most firms in Gn have a similar number of connections, then assumption 6 is satisfied.

For instance, if Gn is regular, i.e. all firms have the same degree, then wi ≈ 1
n
for most firms in Gn. If assumption 6

is satisfied, I then can rewrite equation (A.52) as

wi

(
1− 1

ψ

)
− wia1 + ρma1μ1wi ≈ 0 (A.53)

as a consequence,

a1 ≈
(
1− 1

ψ

)
1− μ1ρm

(A.54)

ASSUMPTION 7. Assume that for most firms in Gn, σi,t ≈ σ2
i,t.

Using assumption 7 and collecting all the terms that involve σ2
i,t yields

−wia2 + ρmwia2ν1 +
θ

2

(
1

n

)2 (
1− 1

ψ

)2

+
θ

2
ρ2mw

2
i

(
a21μ

2
2 + a1μ2a2ν2σp

) ≈ 0 (A.55)

If assumption 6 is satisfied and n is sufficiently large, then wi ≈ w2
i for most firms. Then equation (A.55) can be
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rewritten as

−a2 + ρma2ν1 +
θ

2

(
1− 1

ψ

)2

+
θ

2
ρ2m
(
a21μ

2
2 + a1μ2a2ν2σp

) ≈ 0 (A.56)

It then follows,

a2 ≈
θ
2

((
1− 1

ψ

)2
+ ρ2ma

2
1μ

2
2

)
1− ν1ρm + θ

2
ρ2ma1μ2ν2σp

(A.57)

Given the solution for zi,t the innovation to the return of aggregate wealth is given by

ra,t+1 − Et[ra,t+1] ≈ ρm

(
a1μ2

(
n∑
i=1

wiσi,t

)
+ a2ν2σp

)
ζp,t+1 +

1

n

n∑
i=1

σi,tηi,t+1

≈ ρm

(
a1μ2

(
n∑
i=1

wiσi,t

)
+ a2ν2σp

)
ζp,t+1 +

n∑
i=1

wiσi,tηi,t+1

= ρmΔp,tζp,t+1 +

n∑
i=1

wiσi,tηi,t+1 (A.58)

where Δp,t ≡ a1μ2

(∑n
i=1 wiσi,t

)
+ a2ν2σp. The conditional variance of aggregate wealth is given by

Vart[ra,t+1] ≈ ρ2mΔ2
p,t +

n∑
i=1

w2
i σ

2
i,t (A.59)

Hereinafter, I assume that assumptions 6 and 7 are satisfied.

Pricing Kernel: Using equations (A.38) and (A.43), I rewrite the pricing kernel in terms of the state variables,

mt+1 ≡ θ ln(δ)− θ

ψ
gt+1 + (θ − 1)ra,t+1 (A.60)

≈ θ ln(δ)− θ

ψ

(
n∑
i=1

wi(xi,t + σi,tηi,t+1)

)

+ (θ − 1)

(
km − w0 −

n∑
i=1

wi
(
a0 + a1xi,t + a2σ

2
i,t

))

+ (θ − 1)ρm

(
w0 +

n∑
i=1

wi (a0 + a1μ0 + a1μ2xi,t + a1μ2σi,tζp,t+1)

)

+ (θ − 1)ρm

(
n∑
i=1

wi
(
a2ν0 + a2ν1σ

2
i,t + a2ν2σpζp,t+1

))

+ (θ − 1)

(
n∑
i=1

wi(xi,t + σi,tσi,t+1)

)

Innovations to the pricing kernel are then given by

mt+1 − Et[mt+1] ≈ λm,q

(
n∑
i=1

wiσi,tηi,t+1

)
+ λm,pΔp,tζp,t+1 (A.61)

where λ’s represent the aggregate market prices of risk for each source of risk, namely {ηi,t+1}ni=1 and ζp,t+1, which
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are defined as

λm,q ≡ θ

(
1− 1

ψ

)
− 1

λm,p ≡ (θ − 1)ρm

It follows from equation (A.61) that the conditional variance of the pricing kernel is given by

Vart[mt+1] ≈ λ2
m,q

(
n∑
i=1

w2
i σ

2
i,t

)
+ λ2

m,pΔ
2
p,t (A.62)

Equity Premium: The risk premium of the market return (aggregate wealth) is determined by the conditional

covariance between the market portfolio and the pricing kernel. It then follows

Et[ra,t+1 − rf,t] = −Covt (mt+1 − Et[mt+1], ra,t+1 − Et[ra,t+1])− 1

2
Vart(ra,t+1) (A.63)

Using equations (A.58) and (A.61) into the above equation yields

Et[ra,t+1 − rf,t] ≈ −
(
λm,q +

1

2

)( n∑
i=1

w2
i σ

2
i,t

)
− ρm

(
λm,p +

ρm
2

)
Δ2
p,t (A.64)

Risk-free Rate: As in Bansal and Yaron, 2004 the risk-free rate satisfies

rf,t = − ln(δ) +
1

ψ
Et[gt+1] +

1− θ

θ
Et[ra,t+1 − rf,t]− 1

2θ
Vart[mt+1] (A.65)

Using equations (A.62) and (A.64) into the above equation yields,

rf,t ≈ − ln(δ) +
1

ψ

(
n∑
i=1

wixi,t

)

− 1− θ

θ

((
λm,q +

1

2

)( n∑
i=1

w2
i σ

2
i,t

)
+ ρm

(
λm,p +

ρm
2

)
Δ2
p,t

)

− 1

2θ

(
λ2
m,q

(
n∑
i=1

w2
i σ

2
i,t

)
+ λ2

m,pΔ
2
p,t

)
(A.66)

Risk Premium in the Cross-Section: As with the market portfolio, the risk premium of firm i is determined

by the conditional covariance between firm i’s return and the pricing kernel. It then follows

Et[ri,t+1 − rf,t] = −Covt (mt+1 − Et[mt+1], ri,t+1 − Et[ri,t+1])− 1

2
Vart(ri,t+1) (A.67)
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It becomes handy to compute the innovations on firm i’s return. Using equation (A.42) it can be shown

ri,t+1 − Et[ri,t+1] ≈ ρi (a1μ2σi,t + a2ν2σp) ζp,t+1

+ ρi

⎛⎝ n∑
j �=i

wjσj,tηj,t+1

⎞⎠+ (1− ρi(1− wi))σi,tηi,t+1

= ρi∇p,tζp,t+1 + ρi

⎛⎝ n∑
j �=i

wjσj,tηj,t+1

⎞⎠+ (1− ρi(1−wi))σi,tηi,t+1 (A.68)

where ∇p,t ≡ a1μ2σi,t + a2ν2σp. It then follows from equation (A.68)

Vart(ri,t+1) ≈ ρ2i∇2
p,t + ρ2i

n∑
j �=i

w2
jσ

2
j,t + (1− ρi(1− wi))

2σ2
i,t (A.69)

Using equations (A.61), (A.68) and (A.69) into (A.67) yields

Et[ri,t+1 − rf,t] ≈ −ρi
⎛⎝ n∑
j �=i

w2
jσ

2
j,t

⎞⎠(λm,q + ρi
2

)
−

(
λm,qwi +

1

2
(1− ρi(1− wi))

)
(1− ρi(1− wi))σ

2
i,t

− ρi∇p,t

(
λm,pΔp,t +

ρi
2
∇p,t

)
(A.70)

Topology of Gn and the Cross-Section of Risk Premia: Let ei denote a measure of centrality of firm i

in Gn. For example, ei may represent a firm degree, closeness, betweenness or eigenvector centrality. Differentiating

equation (A.70) with respect to ei yields

∂Et[ri,t+1 − rf,t]

∂ei
≈ −2ρi

⎛⎝ n∑
j �=i

wjσj,t
∂σj,t
∂ei

⎞⎠(λm,q + ρi
2

)
− 2

(
λm,qwi +

1

2
(1− ρi(1− wi))

)
(1− ρi(1− wi)) σi,t

∂σi,t
∂ei

− ρiλm,p∇p,t
∂Δp,t

∂ei
− ρi (λm,pΔp,t + ρi∇p,t)

∂∇p,t

∂ei
(A.71)

where
∂∇p,t

∂ei
= a1μ2

∂σi,t
∂ei

and
∂Δp,t

∂ei
= a1μ2

(∑n
k=1 wk

∂σk,t

∂ei

)
.

As Bansal and Yaron, 2004, consider γ = 10 and ψ = 1.5. Thus, a1 > 0 and θ < 0. As a consequence,

• λm,p < 0

• λm,q < 0

• λm,q +
ρi
2
< 0

• λm,qwi +
1
2
(1− ρi(1− wi)) < 0

If either μ2, ν2 or σp are sufficiently large such that a2 > 0 then

• ∇p,t > 0

• λm,pΔp,t + ρi∇p,t < 0
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Consider further that σk,t are weakly increasing functions of ei, ∀ k ∈ {1, · · · , n}. If the following sum

− 2ρi

⎛⎝ n∑
j �=i

wjσj,t
∂σj,t
∂ei

⎞⎠(λm,q + ρi
2

)
− ρiλm,p∇p,ta1μ2

⎛⎝ n∑
j �=i

wj
∂σj,t
∂ei

⎞⎠
is greater than

− 2

(
λm,qwi +

1

2
(1− ρi(1− wi))

)
(1− ρi(1− wi)) σi,t

∂σi,t
∂ei

− ρiλm,p∇p,ta1μ2wi
∂σi,t
∂ei

− ρia1μ2
∂σi,t
∂ei

(λm,pΔp,t + ρi∇p,t)

Then
∂Et[ri,t+1−rf,t]

∂ei
≥ 0. If the above inequality holds, then firm i is more procyclical than firms with centrality

scores smaller than ei, because shocks to firm i tend to affect a higher number of firms in the economy than do shocks

to firms with scores smaller than ei. In such an environment, an increase on firm i’s centrality increases the effect

that firm i plays on aggregate volatility, which is measured by terms
(∑n

j �=i wjσj,t
∂σj,t
∂ei

)
and

(∑n
j �=i wj

∂σj,t
∂ei

)
. The

increase in risk tends to overcompensate the increase in firm i’s growth opportunities. On the other hand, firms with

small ei tend to be less procyclical than firms with large ei, and thus they serve as a hedge to aggregate risk.

A.4 Tables and Figures

This section contains the tables and figures mentioned in the paper and in the appendix.

Table A.1
Critical probability for different symmetric network topologies

The table reports critical probabilities for different symmetric network topologies. Besides reporting the two examples

described in Appendix A, the table reproduces a subset of the values reported in Stauffer and Aharony, (1994, Table

1). The first column reports the topology of G∞. The second column reports the number of neighbors of any given

node in G∞. The third column reports the critical probability, pc(G∞). Despite that G∞ may be highly connected, if

p̃t < pc(G∞) then no infinite component emerges as n→ ∞, and thus
√
nW̃n is asymptotically normally distributed.

For illustrative purposes, figure A.2(a) depicts a 2D Honeycomb lattice, figure A.2(b) depicts a 2D Squared lattice;

figure A.2(c) depicts a 2D Triangular lattice and figure A.2(d) depitcs a Bethe lattice with z = 3. The Bethe lattice

of degree z is defined as an infinite tree in which any node has degree z. For n finite such topologies are called Cayley

Trees.

Topology of G∞ Number of neighbors pc(G∞)

Infinite Line (1D lattice) 2 1
Infinite Circle 2 1
2D Honeycomb lattice 3 1− 2 sin

(
π
18

)
2D Squared lattice 4 1

2

2D Triangular lattice 6 2 sin
(
π
18

)
Bethe lattice z 1

z−1
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Table A.2
Characteristics of Customer-Supplier Networks

The table reports characteristics of customer-supplier networks generated at the annual frequency using the Cohen

and Frazzini, 2008 dataset from 1980 to 2004. Two firms are connected in the network of year t if one of them

represents at least 20% of the other firm’s sales during year t. The number of components (clusters) in each network

is computed via two consecutive depth-first searches. Provided that degree distributions exhibit fat tails, one can

approximate them via power law distributions at least in the upper tail. Namely, the probability of a given degree

d in the network of year t, Pt(d), can be expressed as P
t (d) = atd

−ξt , where at > 0 and ξt > 1 are parameters to

be estimated. The last row shows the average and standard deviation of the MLE estimators for ξt, over the sample

period.

Characteristic Mean Standard Deviation

Number of firms per customer-supplier network 388 178
Number of relationships per customer-supplier network 281 154
Number of components per network 122 47
Size of the largest component 30 13
Size of the second largest component 24 11
Size of the third largest component 12 8
Size of the fourth largest component 9 7
Size of the fifth largest component 6 4
Exponent of fitted power law to the degree distribution 3.06 0.28

Table A.3
Benchmark Parameterization

The table reports the list of parameter values in the benchmark parametrization. I set c̄ = 0.019/12 and x̄ = 0.038/12

so that the unconditional means of consumption and dividend growth generated by the benchmark economy are

similar to the ones found in data. I follow Bansal and Yaron, 2004 and I set τ = 3. I set σx = 0.0262 to match the

volatility of dividends. I divide the rest of parameter values into three groups. Parameters in the first group define

the preferences of the representative investor: β represents the time discount factor; γ represents the coefficient of

relative risk aversion for static gambles; and ρ represents the inverse of the inter-temporal elasticity of substitution.

Parameters in the second group describe firms’ cash-flows: α0 measures the part of firms’ cash-flows unrelated to

inter-firm relationships; α1 measures the marginal benefit a firm receives from each relationship; and α2 measures

the decrease in a firm’s cash-flow if a firm faces a negative shock. Given a network topology, parameters in the

third group define the stochastic process that determines the propagation of shocks within the network economy: pL

and pH are the values that the propensity of relationships to transmit negative shocks; q measures how frequently

firms face negative idiosyncratic shocks; ψ measures how frequently relationships exhibit high propensity to transmit

negative shocks; and φ measures the persistence of the stochastic process followed by p̃t.

Preferences Firms’ Cash-flows Propagation of shocks
β γ ρ α0 α1 α2 pL pH q ψ φ
0.997 10 0.65 0.3 0.1 0.07 0.38 0.45 0.2 0.5 0.925
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Table A.4
Moments under the Benchmark Parameterization

The table reports the first two moments of consumption and dividend growth as well as a set of key asset pricing

moments. Column Data reports moments found in data. Column Model reports moments generated under the

benchmark parametrization described in Table A.3. Column BY2004 reports moments generated under the Long-

Run Risks Model of Bansal and Yaron, 2004. Data on consumption and dividends is obtained from Robert Shiller’s

website http://www.econ.yale.edu/ shiller/data.htm. Moments on the return on aggregate wealth, risk-free rate,

equity premium and Sharpe ratio are based on data from 1928 to 2014 and obtained from Aswath Damodaran’s

website: http://pages.stern.nyu.edu/∼adamodar/. The annual return on aggregate wealth is approximated by the

annual return of the S&P 500 while the yield on three month T-bills is used to proxy for the return on the risk-free

asset.

Moments Data Model BY2004

Average annual log of consumption growth rate 1.9% 1.9% 1.8%
Annual volatility of log consumption rate 3.5% 4.7% 2.8%
Average annual log dividend growth rate 3.8% 3.8% 1.8%
Annual volatility of the log dividend growth rate 11.63% 14.9% 12.3%
Average annual market return (S&P 500) 11.53% 12% 7.2%
Annual volatility of the market return 19% 18.92% 19.42%
Average annual risk-free rate (3 month T-Bill) 3.53% 2.16% 0.86%
Annual volatility of risk-free rate 3% 0.7% 0.97%
Average annual equity risk premium 8% 10% 6.33%
Average annual Sharpe ratio 0.4 0.52 0.33
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Table A.5
Similarities between the calibrated model and the LRR model

The table reports averages and standard deviations of similarity measures between time series generated with either

the calibrated model or the benchmark parameterization in the LRR model of Bansal and Yaron, 2004. To compute

these measures I assume that the propensity of inter-firm relationships to transmit negative shocks follows: p̃t+1 =

0.4 + 0.925(p̃t − 0.4) + 0.006εt+1, where εt+1 is standard normal and i.i.d over time. Such an AR(1) process can be

approximated by the 2-states Markov chain followed by p̃t in the benchmark parameterization. To compute averages

and standard deviations, I sample from the calibrated model and the LRR model to construct two finite-sample

empirical distributions for each similarity measure: one for expected consumption growth, Et [Δc̃t+1], and one for the

conditional volatility of consumption growth, Volt [Δc̃t+1]. Reported values are based on 300 simulated samples over

620 periods. The first 500 periods in each sample are disregarded to eliminate bias coming from the initial condition.

All similarity measures report scores computed as 1
1+distance

, where distance is defined according to each similarity

measure. Let XT = (X1, · · · , XT ) and YT = (Y1, · · · , YT ) denote realizations from two time series, X = {Xt} and

Y = {Yt}. The first and second similarity measures focus on the proximity between X and Y at specific points

of time. The euclidean distance (ED) is defined as
√∑T

t=1(Xt − Yt)2, whereas the dynamic time warping (DTW)

distance is defined as minr
(∑m

i=1 |Xai − Ybi |
)
, where r = ((Xa1 , Yb1), · · · , (Xam , Ybm)) is a sequence of m pairs that

preserves the order of observations, i.e. ai < aj and bi < bj if j > i. DTW seeks to find a mapping such that the

distance between X and Y is minimized. This way of computing distance allows two time series that are similar

but locally out of phase to align in a non-linear manner. The third measure focuses on correlation-based distances.

It uses the partial autocorrelation function (PACF) to define distance between time series. In particular, distance

is defined as
√

(ρ̂Xt − ρ̂Yt)
′Ω(ρ̂Xt − ρ̂Yt) where Ω is a matrix of weights, whereas ρ̂Xt and ρ̂Yt are the estimated

partial autocorrelations of X and Y , respectively. The fourth and fifth measures assume that an specific model

generates both time series. The idea is to fit the specific model to each time series and then measure the dissimilarity

between the fitted models. The fourth measure computes the distance between two time series as the Euclidean

distance between the truncated AR operators. In this case, distance is defined as
√∑k

j=1(ej,Xt − ej,Yt)2 where

eXt = (e1,Xt , · · · , ek,Xt) and eYt = (e1,Yt , · · · , ek,Yt) denote the vectors of AR(k) parameter estimators for X and

Y , respectively. The fifth measure computes dissimilarity between two time series in terms of their linear predictive

coding in ARIMA processes as in Kalpakis, Gada, and Puttagunta, 2001. The last measure defines distance based

on nonparametric spectral estimators. Let fXT and fYT denote the spectral densities of XT and YT , respectively. In

this case, the dissimilarity measure is given by a nonparametric statistic that checks the equality of the log-spectra

of the two time series. It defines distance as
∑n
k=1

[
Zk − μ̂(λk)− 2 log(1 + eZk−μ̂(λk))

]
−∑n

k=1

[
Zk − 2 log(1 + eZk)

]
,

where Zk = log(IXT (λk)) − log(IYT (λk)), and μ̂(λk) is the local maximum log-likelihood estimator of μ(λk) =

log(fXT (λk))− log(fYT (λk)) computed with local lineal smoothers of the periodograms. All similarity measures are

computed using the R package TSclust (see Montero and Vilar, 2014).

Et [Δc̃t+1] Volt [Δc̃t+1]
Similarity measure Mean Standard Deviation Mean Standard Deviation

Euclidean Distance (ED) 0.958 0.012 0.974 0.008
Dynamic Time Warping 0.758 0.091 0.723 0.105
PACF 0.736 0.043 0.743 0.043
ED in AR 0.908 0.100 0.910 0.097
Linear predictive in ARIMA 0.726 0.325 0.729 0.313
Spectral distance 1.0 0.000 1.0 0.000
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Table A.6
Eigenvector Centrality Summary Statistics

The table reports averages of summary statistics for log(eigenvector centrality). To compute averages in the third

and fourth columns, I use customer-supplier data on years 1982, 1987, 1992, 1997 and 2002 to be consistent with the

years used by Ahern, 2013. Using data reported in Ahern, (2013, Internet Appendix Table II), the second column

present averages of the statistics for log(eigenvector centrality) in inter-sectoral trade networks. The third column

presents averages in annual customer supplier networks in which two firms are connected if one firm represents at

least 10% of the other firm’s annual sales. The fourth column presents averages in annual customer supplier networks

in which two firms are connected if one firm represents at least 20% of the other firm’s annual sales. The fifth column

reports the statistics for log(eigenvector centrality) in the network of the calibrated economy.

Statistic Inter-sectoral Customer Supplier Customer Supplier Calibrated
Networks Networks (10%) Networks (20%) Network

Number of sectors/firms 474 750 382 400
Mean −6.68 −6.74 −6.62 −6.09
Standard Deviation 1.48 1.07 1.31 1.71
Skewness 0.87 4.04 3.28 1.54
Kurtosis 4.45 18.50 12.38 3.70
Minimum −10.21 −7.01 −7.01 −7.01
1st Percentile −9.39 −7.01 −7.01 −7.01
25th Percentile −7.71 −7.01 −7.01 −7.01
Median −6.85 −7.01 −7.01 −6.09
75th Percentile −5.90 −7.01 −7.01 −6.42
99th −2.27 −1.83 −1.67 −2.30
Maximum −0.17 −0.46 −0.34 −0.74
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Appendix B

Basket Securities in Segmented

Markets

This section contains the derivations of the formulas presented in the paper. Let x̃i denote the (random) payoff

of asset i, i = {1, 2}. Let αi denote the fraction of asset i in the basket. If b̃ denotes the (random) payoff of the

basket, then b̃ =
∑2
i=1 αix̃i. Let bi ∈ [0, 1] denote the fraction of the basket that investors i buy, i = {1, 2}. If π̃

denotes the (random) profits of the intermediary, it is assumed that

π̃ = β

(
2∑
i=1

αix̃i

)
+ θ (b1 + b2) (B.1)

where β ≥ 0 measures the intermediary’s “skin in the game” and θ > 0 represents a basket transaction fee.

B.1 Planner’s Problem

The planner’s problem can be restated as

max
(α1,b1,α2,b2)

E

[
−e−γc̃1

]
(B.2)

st. E

[
−e−γc̃2

]
= u0

E [π̃] = π0

where c̃i = (1 − αi)x̃i + bi
([∑2

j=1 αj x̃j
]
− θ
)
and (1 − αi) + αi

(∑2
j=1 bj

)
= 1, i = {1, 2}. Parameter γ measures

investors’ risk aversion. The last restriction in problem (B.2) implies

α2 =

(
π0 − θ

βμ2

)
−
(
μ1

μ2

)
α1 (B.3)
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whereas (1−αi)+αi
(∑2

j=1 bj
)
= 1 implies b2 = 1−b1. Provided that payoffs are normally distributed and investors

have CARA utility, solving problem (B.2) is equivalent to solving

max
(α1,b1)

E [c̃1]− γ

2
Var [c̃1] (B.4)

st. E [c̃2]− γ

2
Var [c̃2] = u∗

0

where α2 =
(
π0−θ
βμ2

)
−
(
μ1
μ2

)
α1 and b2 = 1− b1. The lagrangian of problem (B.4) is given by

L = (1− α1 + α1b1)μ1 + α2b1μ2 − θb1 − γ

2

{
(1− α1 + α1b1)

2σ2
1 + 2(1− α1 + α1b1)α2b1ρσ1σ2 + α2

2b
2
1σ

2
2

}
(B.5)

−λ
(
α1b2μ1 + (1− α2 + α2b2)μ2 − θb2 − γ

2

{
(1− α2 + α2b2)

2σ2
2 + 2(1− α2 + α2b2)α1b2ρσ1σ2 + α2

1b
2
2σ

2
1

}− u∗
0

)
where λ ≥ 0 is the Lagrange multiplier. Define

y = α2b1 + λ(1− α2 + α2b2)

z = (1− α1 + α1b1) + λα1b2

The first order conditions are given by:

α1 : −μ1(1 + λ) + γσ1

(
σ1b2 + ρb1σ2

μ1

μ2

)
z + γσ2

(
ρσ1b2 + b1σ2

μ1

μ2

)
y = 0 (B.6)

b1 : (α1μ1 + α2μ2 − θ)(1 + λ)− γσ2 (α1σ1ρ+ α2σ2) y − γσ1 (α1σ1 + α2σ2ρ) z = 0 (B.7)

λ : E [c̃2]− γ

2
Var [c̃2] = u∗

0 (B.8)

Equation (B.6) can be rewritten as

−μ1 + γσ1

(
σ1b2 + ρb1σ2

μ1

μ2

)
[1− α1 + α1b1] + γσ2

(
ρσ1b2 + b1σ2

μ1

μ2

)
α2b1 (B.9)

= λ

{
μ1 − γσ1

(
σ1b2 + ρb1σ2

μ1

μ2

)
α1b2 − γσ2

(
ρσ1b2 + b1σ2

μ1

μ2

)
[1− α2 + α2b2]

}

whereas equation (B.7) can be rewritten as

α1μ1 + α2μ− θ − γσ2 (α1σ1ρ+ α2σ2)α2b1 − γσ1 (α1σ1 + α2σ2ρ) [1− α1 + α1b1] (B.10)

= λ {−(α1μ1 + α2μ2 − θ) + γσ2 (α1σ1ρ+ α2σ2) [1− α2 + α2b2] + γσ1 (α1σ1 + α2σ2ρ)α1b2}

Differentiating equation (B.8) with respect to b2 yields

−(α1μ1 + α2μ2 − θ) + γσ2 (α1σ1ρ+ α2σ2) [1− α2 + α2b2] + γσ1 (α1σ1 + α2σ2ρ)α1b2 = 0 (B.11)

Thus, equation (B.10) implies

(1− α1 + α1b1) =
(α1μ1 + α2μ2 − θ)− γσ2(α1σ1ρ+ α2σ2)α2b1

γσ1(α1σ1 + α2σ2ρ)
(B.12)
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which relates the fraction of asset one held by investors one, (1 − α1 + α1b1), to the fraction of asset two held by

investors one, α2b1. A similar relationship can be found, noting that if equation (B.8) is satisfied, then λ = 0 at the

optimum. It then follows from equation (B.9),

(1− α1 + α1b1) =
μ1

γσ2
1

(
1− b1 + ρb1

σ2
σ1

μ1
μ2

) − σ2

σ1

(
ρσ1(1− b1) + b1σ2

μ1
μ2

)
(
σ1(1− b1) + ρb1σ2

μ1
μ2

)α2b1 (B.13)

If σ2
σ1

μ1
μ2

→ 1 and ρ→ 1, it then follows from equation (B.13)

(1− α1 + α1b1) → μ1

γσ2
1

− σ2

σ1
α2b1 (B.14)

B.2 Trading Equilibrium

B.2.1 Investors’ Problem

The optimal portfolio of investors one, (α∗
1, b

∗
1), solves

max
(α1,b1)

E

[
−e−γc̃

]
(B.15)

st. c̃ = (1− α1)x̃1 + b1

([
2∑
i=1

αix̃i

]
− θ

)
1 ≥ b1 ≥ 0 , 1 ≥ α1 ≥ 0

Provided that assets’ payoff are normally distributed and investors have CARA utility, maximizing expected utility

is equivalent to maximizing the certain equivalent E [c̃] − γ
2
Var [c̃]. As a consequence, the first order conditions of

investors one are given by:

μ1 − γ
(
[1− α1 + α1b1]σ

2
1 + α2b1ρσ1σ2

)
= 0 (B.16)

α1μ1 + α2μ2 − θ − γ
(
[1− α1 + α1b1][α1σ

2
1 + ρσ1σ2α2] + b1α2σ2[α1ρσ1 + α2σ2]

)
= 0 (B.17)

Equation (B.16) implies that the fraction of asset one held by investors one, (1− α1 + α1b1), equals

1− α1 + α1b1 =
μ1

γσ2
1

− α2b1ρ
σ2

σ1
(B.18)

Using equation (B.18) in equation (B.17) implies that the fraction of asset 2 held by investors one, α2b1, equals

α2b1 =

(
μ2 − ρμ1

σ2
σ1

)
γσ2

2(1− ρ2)
− θ

γα2σ2
2(1− ρ2)

, with |ρ| �= 1 (B.19)

Using equation (B.19) in equation (B.18) yields

1− α1 + α1b1 =
μ1

γσ2
1

− ρ
σ2

σ1

⎧⎨⎩
(
μ2 − ρμ1

σ2
σ1

)
γσ2

2(1− ρ2)
− θ

γα2σ2
2(1− ρ2)

⎫⎬⎭ , with |ρ| �= 1 (B.20)
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It follows directly from equation (B.20) that if θ → 0 then

(1− α1 + α1b1) → μ1

γσ2
1

− ρ
σ2

σ1

⎧⎨⎩
(
μ2 − ρμ1

σ2
σ1

)
γσ2

2(1− ρ2)

⎫⎬⎭ =
1

γ(1− ρ2)

{
μ1

σ2
1

− ρ
μ2

σ1σ2

}
(B.21)

Therefore, if θ → 0, then the fraction of asset one held by investors one is increasing in μ1, σ2 and decreasing in γ and

μ2. If ρμ2
σ2

< 2μ1
σ1

, then ∂(1−α1+α1b1)
∂σ1

≤ 0 so the fraction of asset one held by investors one is decreasing in σ1. On

the other hand, if ρμ2
σ2
> 2μ1

σ1
, the fraction of asset one held by investors one is increasing in σ1. If 2ρμ1 >

μ2
σ2

(1+ρ2),

then ∂(1−α1+α1b1)
∂ρ

≥ 0 so the fraction of asset one held by investors one is increasing in ρ. On the other hand, if

2ρμ1 <
μ2
σ2

(1 + ρ2), then the fraction of asset one held by investors one is decreasing in ρ.

It follows directly from equation (B.19) that if θ → 0, then

α2b1 →
(
μ2 − ρμ1

σ2
σ1

)
γσ2

2(1− ρ2)
(B.22)

Therefore, if θ → 0, then the fraction of asset two held by investors one is increasing in μ2, σ1 and decreasing in γ

and μ1. Moreover, if 2μ2
σ2

> ρμ1
σ1

, then the fraction of asset two held by investors one is decreasing in σ2. On the

other hand, if 2μ2
σ2
< ρμ1

σ1
, then the fraction of asset two held by investors one is increasing in σ2. If ρ <

1
2
, then the

fraction of asset two held by investors one is decreasing in ρ. If ρ > 1
2
and μ1

σ1
σ2
2(2ρ− 1) > 2μ2, then the fraction of

asset two held by investors one is increasing in ρ.

Because the problem of investors two is symmetric, the fraction of asset two held by investors two, (1−α2+α2b2),

equals

1− α2 + α1b2 =
μ2

γσ2
2

− α1b2ρ
σ1

σ2
(B.23)

whereas the fraction of asset one held by investors two, α1b2, equals

α1b2 =

(
μ1 − ρμ2

σ1
σ2

)
γσ2

1(1− ρ2)
− θ

γα1σ2
1(1− ρ2)

(B.24)

B.2.2 Intermediary’s Problem

The basket—defined by fractions (α1, α2)—selected by the intermediary solves

max
(α1,α2)

E [π̃] = β

(
2∑
i=1

αiμi

)
+ θ (b1 + b2) (B.25)

st. αubi ≥ αi ≥ αlbi , i = {1, 2}

E [π̃∗] ≥ 0

where π̃∗ is the intermediary’s profit evaluated at the basket that maximizes the intermediary’s expected profits.

Thus, the last restriction represents the intermediary’s participation constraint.

103



Equations (B.19) and (B.24) imply that the intermediary’s expected profits are given by:

E [π̃] = β

(
2∑
i=1

αiμi

)
+ θ

⎛⎜⎜⎜⎝α2

(
μ2 − ρμ1

σ2
σ1

)
− θ

γα2
2σ

2
2(1− ρ2)︸ ︷︷ ︸
b1

+
α1

(
μ1 − ρμ2

σ1
σ2

)
− θ

γα2
1σ

2
1(1− ρ2)︸ ︷︷ ︸
b2

⎞⎟⎟⎟⎠ (B.26)

Because b1 + b2 = 1 at equilibrium the basket that maximizes intermediary’s expected profits is given by (αub1 , α
ub
2 ).

B.3 Competition among intermediaries

Baskets and intermediaries are indexed by k = {1, 2}. Let αik denote the fraction of asset i in basket k, with∑2
k=1 αik = αi. Let bik denote the fraction of basket k bought by investors i, with

∑2
i=1

∑2
k=1 bik = 1. The first

order conditions of investors i ’s maximization problem are given by

1− αi +

[
2∑
k=1

αikbik

]
=

μi
γσ2

i

−
(
ρ
σj
σi

)[ 2∑
k=1

αjkbik

]
, with j �= i (B.27)[

2∑
k=1

αjkbik

]
=

μj − ρμi
σj
σi

γσ2
j (1− ρ2)

− θ

γ
(∑2

k=1 αjk
)
σ2
j (1− ρ2)

(B.28)

For simplicity consider the problem faced by intermediary one—the problem faced by intermediary two is analo-

gous. The basket—defined by fractions (α11, α21)—selected by intermediary one solves

max
(α11,α21)

E [π̃] = β

(
2∑
i=1

αi1μi

)
+ θ

(∑
i=1

bi1

)
(B.29)

st. αubi1 ≥ αi1 ≥ αlbi1 , i = {1, 2}

E [π̃∗] ≥ 0

where π̃∗ is the intermediary’s profit evaluated at the basket that maximizes her expected profits, whereas αubi1 and

αlbi1 denote the upper and lower bounds of αi1 so that bi1 are well-defined. Provided that
∑2
i=1

∑2
k=1 bik = 1 at

equilibrium, solving problem B.29 is equivalent to solving

max
(α11,α21)

E [π̃] = θ + β

(
2∑
i=1

αi1μi

)
− θ

(∑
i=1

bi2

)
(B.30)

st. αubi1 ≥ αi1 ≥ αlbi1 , i = {1, 2}

E [π̃∗] ≥ 0

Assume the primitives of the model are such that problem B.30 has an interior solution. The basket that maximizes
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the expected profits of intermediary one, (α∗
11, α

∗
21), satisfies the first order conditions

βμ1 = θ
∂

∂α11

(∑
i=1

bi2

) ∣∣∣
α11=α

∗
11

(B.31)

βμ2 = θ
∂

∂α21

(∑
i=1

bi2

) ∣∣∣
α21=α

∗
21

(B.32)

Note that equation (B.28) implies that

α21b11 + α22b12 =
μ2 − ρμ1

σ2
σ1

γσ2
2(1− ρ2)

− θ

γ
(∑2

k=1 α2k

)
σ2
2(1− ρ2)

, and (B.33)

α11b21 + α12b22 =
μ1 − ρμ2

σ1
σ2

γσ2
1(1− ρ2)

− θ

γ
(∑2

k=1 α1k

)
σ2
1(1− ρ2)

(B.34)

Differentiating equation (B.33) with respect to α11 and α21 implies

α11 : α21
∂b11
∂α11

+ α22
∂b12
∂α11

= 0 (B.35)

α21 : b11 + α21
∂b11
∂α21

+ α22
∂b12
∂α21

=
θ

γ
(∑2

k=1 α2k

)2
σ2
2(1− ρ2)

(B.36)

whereas differentiating equation (B.34) with respect to α11 and α21 implies

α11 : b21 + α11
∂b21
∂α11

+ α12
∂b22
∂α11

=
θ

γ
(∑2

k=1 α1k

)2
σ2
1(1− ρ2)

(B.37)

α21 : α11
∂b21
∂α21

+ α12
∂b22
∂α21

= 0 (B.38)

Using equations (B.35) and (B.37) into equation (B.31) yields

α11

α12
=

1
∂b21
∂α11

{
θ

γα12α2
1σ

2
1(1− ρ2)

− α21

α22

∂b11
∂α11

− b21
α12

− β
μ1

θ

}
(B.39)

Similarly, using equations (B.36) and (B.38) into equation (B.32) yields

α21

α22
=

1
∂b11
∂α21

{
θ

γα22α2
2σ

2
2(1− ρ2)

− α11

α12

∂b21
∂α21

− b11
α22

− β
μ2

θ

}
(B.40)

Using equations (B.39) and (B.40) yields

α11

α12
=

1

1−
( ∂b11

∂α11

∂b21
∂α21

∂b11
∂α21

∂b21
∂α11

) { 1
∂b21
∂α11

[
θ

γα12α2
1σ

2
1(1− ρ2)

− β
μ1

θ
− b21
α12

−
∂b11
∂α11

∂b11
∂α21

(
θ

γα22α2
2σ

2
2(1− ρ2)

− β
μ2

θ
− b11
α22

)]}

As a consequence,

α∗
11 = φ1 × α∗

12 (B.41)

α∗
21 = φ2 × α∗

22 (B.42)
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where

φ1 =
1

1−
( ∂b11

∂α11

∂b21
∂α21

∂b11
∂α21

∂b21
∂α11

) { 1
∂b21
∂α11

[
θ

γα12α2
1σ

2
1(1− ρ2)

− β
μ1

θ
− b21
α12

−
∂b11
∂α11

∂b11
∂α21

(
θ

γα22α2
2σ

2
2(1− ρ2)

− β
μ2

θ
− b11
α22

)]}
, and

φ2 =
1

∂b11
∂α21

{
θ

γα22α2
2σ

2
2(1− ρ2)

− φ1
∂b21
∂α21

− b11
α22

− β
μ2

θ

}
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Appendix C

Imperfect Information Transmission

from Banks to Investors:

Real Implications

C.1 Proofs

C.1.1 Proof of Lemma 1

Rating strategy fB:

Case 1 fB = 1: It follows from (3.1) , that this strategy is optimal whenever (1 − ρ)(1 − r) (PGR − PNR) > c.

Substituting for prices from the zero profit conditions (3.10) and (3.11) , we have

(1− ρ)(1− r)ΔWΔPr > c,

where ΔPr ≡ PrG|GR −PrG|NR. Using equations (3.10) and (3.11) and fB = 1 in the above inequality yields:

(1− ρ)(1− r)ΔW

[
μr

μr + (1− μ)(1− r)
− μ(1− r)

μ(1− r) + r(1− μ)

]
> c, or

(1− r)
μ(1− μ)(2r − 1)

(r − μ(2r − 1))(μ(2r − 1) + (1− r))
>

c

(1− ρ)ΔW
. (C.1)

Case 2 fB = 0: Following the same steps as in Case 1, we find this strategy is optimal whenever

(1− ρ)(1− r)ΔWΔPr < c.
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Substituting for beliefs from the consistency conditions and for fB = 0, we obtain

(1− ρ)(1− r)ΔW

[
1− μ(1− r)

μ(1− r) + (1− μ)

]
< c, or

(1− r)

[
1− μ

1− rμ

]
<

c

(1− ρ)ΔW
. (C.2)

Case 3 fB ∈ (0, 1): The mixed strategy is optimal whenever

(1− ρ)(1− r)ΔWΔPr = c.

Substituting into the above equality for beliefs from (3.10) and (3.11) gives

(1− r)

[
μr

μr + (1− μ)fB(1− r)
− μ(1− r)

μ(1− r) + (1− μ)[(1− fB) + fBr]

]
=

c

(1− ρ)ΔW
.

The positive solution of the above equation is given by

fmixB =
c̃ (1− 2μr) + μ (1− r)−

√
(c̃+ μ)2 − μ2r (2− r)− (6− 4r) c̃rμ

2c̃ (1− r) (1− μ)
. (C.3)

The optimal strategy fB is given by fmixB derived above, but bounded by 0 from below and 1 from above.

Thus we have fB ∈ (0, 1) whenever

(1− r)
μ(1− μ)(2r − 1)

(r − μ(2r − 1))(μ(2r − 1) + (1− r))
<

c

(1− ρ)ΔW
< (1− r)

[
1− μ

1− rμ

]
.

The first inequality in the expression above is derived by setting fmixB < 1 whereas the second inequality is

derived by setting fmixB > 0.

Rating strategy fG:

To ensure that fG = 1, we must impose that

(1− ρ)rΔWΔPr > c.

Because (1− ρ)rΔWΔPr > (1− ρ)(1− r)ΔWΔPr ≥ c, the above inequality holds whenever fB > 0.

However, on the space of parameters that implies fB = 0, we need an additional restriction. Substituting for

ΔPr in the case of fB = 0 and simplifying, we obtain

(1− ρ)rΔWΔPr = (1− ρ)rΔW

[
1− μ

1− rμ

]
> c.

C.1.2 Proof of Lemma 2

Note that μ1 < μmax < μ2 < μ3 < μ̄. The proof follows from Lemma 1 after recognizing that μ1 and μ2 denote the

solutions of fmixB = 1, whereas μ3 is the solution to fmixB = 0. Whether fmixB is an increasing or decreasing function
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of μ follows directly from the fact that fmixB is an inverted parabola maximized at μmax. If c̃ > (1− r) (2r − 1), then

fmixB never reaches 1. On the other hand, if c̃ ≤ (1− r) (2r − 1), then fmixB exceeds 1 on the interval (μ1, μ2) , so that

fB = 1 within that range.

C.1.3 Proof of Proposition 9

Because H(·) is continuous, there exists at least one fixed point of H(·) whenever H(0) > 0 and H (μ̄) < μ̄. The

fixed point is unique if H ′ (μ) < 1 on the entire range of μ ∈ (0, μ̄). The constants μ1, μ2, μ3, and μ̄ used in the proof

are defined in Lemma 2.

Existence

Recall the definition of H : [0, μ̄] → [μ0, 1] given in (3.16) :

H(μ) = F (k̄ (μ)) +
[
1− F (k̄ (μ)

]
μ0.

We substitute for the marginal screener in the expression above using

k̄ (μ) = (1− μ0) {(1− ρ) [ΔWΔPr(μ) [r − (1− r) fB (μ)]− (1− fB (μ)) c] + ρΔW } (C.4)

and

ΔPr (μ) =
μr

μr + (1− μ)fB (μ) (1− r)
− μ(1− r)

μ(1− r) + (1− μ)[(1− fB (μ)) + fB (μ) r]

which come from equations (3.8) and (3.9).

We use the resulting expression to find H (0). We know from Lemma 1 that fB (0) = 0 and fG (0) = 1. Hence,

ΔPr (0) = 1−μ
1−μr and k̄ (0) = (1− μ0)

{
(1− ρ)

[
ΔW

(
1−μ
1−μr

)
r − c

]
+ ρΔW

}
> 0. As a consequence,

H (0) = F (k̄(0)) +
[
1− F (k̄(0))

]
μ0 > F (0) + [1− F (0)]μ0 > 0.

Our next objective is to find H (μ̄) . By Lemma 1, fB (μ̄) = 0 and fG (μ̄) = 1. Hence, ΔPr (μ̄) = 1−μ̄
1−rμ̄ and

k̄ (μ̄) = (1− μ0) {(1− ρ) [ΔWΔPr (μ̄) [r − (1− r) fB (μ̄)]− (1− fB (μ̄)) c] + ρΔW } =

= (1− μ0)

{
(1− ρ)

[
ΔWr

1− μ̄

1− rμ̄
− c

]
+ ρΔW

}
= (1− μ0)(1− ρ)

[
ΔWr

1− r−c̃
r(1−c̃)

1− r−c̃
1−c̃

− c

]
+ (1− μ0)ρΔW

= (1− μ0)(1− ρ)

[
ΔWr

c̃

r
− c

]
+ (1− μ0)ρΔW = (1− μ0)

{
(1− ρ)

[
c

1− ρ
− c

]
+ ρΔW

}
= (1− μ0)ρ[c+ΔW ] > 0.

By assumption,

H (μ̄) = F ((1− μ0)ρ[c+ΔW ]) + [1− F ((1− μ0)ρ[c+ΔW ])]μ0 < μ̄.
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As a consequence, H (0) > 0 and H (μ̄) < μ̄, which implies that equation μ = H (μ) has at least one solution.

Uniqueness

Now we discuss uniqueness. Differentiating H (μ) , yields

H ′ (μ) = (1− μ0)Fk̄
∂k̄

∂μ
.

Range 1. First, consider the highest admissible range of μ ∈ (μ3, μ̄) , where fB = 0 by Lemma 1. Substituting for

fB into (C.4) and differentiating, we obtain ∂k̄
∂μ

= −(1−μ0)(1−ρ)r(1−r)ΔW
(1−rμ)2 and, therefore,

H ′ (μ) = −Fk̄(1− ρ)(1− μ0)
2

(
r(1− r)ΔW

(1− rμ)2

)
≤ 0.

Range 2. If c̃ ≤ (1− r) (2r − 1), consider μ ∈ (0, μ1) and μ ∈ (μ2, μ3) . If instead c̃ > (1− r) (2r − 1), consider

the entire range of μ ∈ (0, μ3) . By Lemma 1, we have fB ∈ (0, 1) for these values of μ, and, therefore,

ΔPr = c
(1−ρ)(1−r)ΔW . Substituting this into (C.4) and differentiating gives us ∂k̄

∂μ
= 0, and therefore,

H ′ (μ) = 0.

Range 3. It remains to consider the range μ ∈ (μ1, μ2) , relevant only if parameters satisfy c̃ ≤ (1− r) (2r − 1) . By

Lemma 1, fB = 1. Substituting that into (C.4) and differentiating, we obtain

∂k̄

∂μ
= (1− ρ)(1− μ0)ΔW

r (2r − 1)2 (2μ− 1) (r − 1)

(r − μ(2r − 1))2(μ(2r − 1) + (1− r))2
,

which implies

H ′ (μ) = (1− ρ)Fk̄(1− μ0)
2ΔW

(2r − 1)2(1− 2μ)r(1− r)

(r − μ(2r − 1))2(μ(2r − 1) + (1− r))2
=

= (1− ρ)Fk̄(1− μ0)
2ΔW

(2r − 1)2(1− 2μ)r(1− r)

r2 (1− r)2
(
1 + μ (1− μ)

(
r2+(1−r)2
r(1−r) − 2

))2 . (C.5)

which is a decreasing function of μ, with a zero at μ = 0.5. If instead μ ≥ 0.5, then H ′ (μ) ≤ 0. If μ < 0.5,

then H ′ (μ) > 0, and it is maximized out at μ1. Therefore, we can bound H ′ (μ) on the range of μ ∈ (μ1, 0.5)

by setting H ′ (μ1) < 1. To do so, note that using the definition of μ1 in (3.14) , we can simplify the expression

μ1 (1− μ1) to

μ1 (1− μ1) =
c̃r (1− r)

(2r − 1) (1− r − c̃ (2r − 1))
.
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Substituting this into expression (C.5), we obtain

H ′ (μ) < H ′ (μ1) = (1− ρ)Fk̄(1− μ0)
2ΔW

(2r − 1)2
√

(1−r)(2r−1)−c̃
(2r−1)(c̃+1−2c̃r−r)

r (1− r)
(
1 + c̃r(1−r)

(2r−1)(1−r−c̃(2r−1))

(
r2+(1−r)2
r(1−r) − 2

))2
= (1− ρ)Fk̄(1− μ0)

2ΔW
(2r − 1)2

√
(1−r)(2r−1)−c̃

(2r−1)(1−r−c̃(2r−1))

r (1− r)
(

1−r
(1−r−c̃(2r−1))

)2 <

= (1− ρ)f̄(1− μ0)
2ΔW

(2r − 1)2
√

(1−r)−c̃/(2r−1)
(1−r−c̃(2r−1))

r (1− r)
(

1−r
(1−r−c̃(2r−1))

)2 < 1,

where f̄ = supk∈[0,1] F
′ (k) and the last inequality is satisfied by assumption.

To summarize, we found that H (μ) is weakly decreasing on the entire range of μ ∈ (0, μ̄) if c̃ > (1− r) (2r − 1)

and on the range of μ ∈ (0.5, μ̄) if c̃ ≤ (1− r) (2r − 1) . In all cases, H ′ (μ) < 1, which ensures that equation μ = H (μ)

has exactly one solution.

C.1.4 Proof of Proposition 10

First consider the case where (1−μ0)(YG−YB) ≥ 1 and so k̄ef = 1.We want to show that k̄∗ < k̄ef = 1. Suppose

not. If k̄∗ = 1, then μ∗ = 1, and, thus, PGR(μ
∗) = PNR(μ

∗) = WG. This, in turn, implies that no bank will choose

to engage in costly screening, i.e., k̄∗ = 0, which is a contradiction.

Now consider the case where (1 − μ0)(YG − YB) < 1 and so k̄ef = (1 − μ0)(YG − YB). In equilibrium, we have

k̄ = (1− μ0)(RG −RB), where

RG −RB = (1− ρ) [ΔWΔPr[r− (1− r)fB ]− (1− fB)c] + ρΔW

≤ ΔW [(1− ρ)rΔPr + ρ] < ΔW,

where the last inequality holds because 0 < ρ < 1 and 0 < rΔPr < 1. Provided that ΔW ≤ ΔY , it then follows that

k̄ef > k̄∗ which completes the proof.

C.1.5 Proof of Lemma 3

From the equilibrium condition μ∗(ΔW ) = H(μ∗(ΔW ),ΔW ), we obtain

∂μ∗

∂ΔW
=

HΔW

1−Hμ
.

By Proposition 9, we know that 1−Hμ > 0. Therefore, the sign of ∂μ∗
∂ΔW

is determined by the sign of HΔW .

Recalling the definition of H from (3.16),

H(μ,ΔW ) = F (k̄(μ,ΔW )) + (1− F (k̄(μ,ΔW )))μ0,
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we see that H(μ, ·) is increasing in ΔW if and only if k̄(μ, ·) is increasing in ΔW .

Recalling the expression for the marginal screener from (C.4) ,

k̄(μ,ΔW ) = (1− μ0)(RG(μ,ΔW )−RB(μ,ΔW ))

= (1− μ0)(1− ρ){[r − (1− r)fB(μ,ΔW )]ΔWΔPr (μ,ΔW )− (1− fB(μ,ΔW )c)}+ (1− μ0)ρΔW,

note that ΔW enters it through two channels.

First, a higher ΔW implies that borrowers of type G repay relatively more compared to borrowers of type B,

thereby directly increasing RG −RB as well as the incentive to screen. Second, ΔW affects k̄ indirectly by inducing

changes in the rating intensity fB . There are two cases to consider.

Case 1. Suppose that fB(μ
∗) ∈ (0, 1). Then ΔWΔPr = c

(1−ρ)(1−r) , and, therefore,

k̄(μ,ΔW )) = (1− μ0)(1− ρ)

{
(r − (1− r)fB)

c

(1− ρ)(1− r)
− (1− fbc)

}
+ (1− μ0)ρΔW,

As a consequence,

∂k̄

∂ΔW
= ρ(1− μ0)

[
1 + c

∂fB
∂ΔW

]

and thus, if
[
1 + c ∂fB

∂ΔW

]
> 0 then k̄∗ and μ∗ are increasing in ΔW . Otherwise, k̄∗ and μ∗ are decreasing in ΔW .

Case 2. Suppose that fB(μ
∗) ∈ {0, 1}. Then fB is constant in the neighborhood of μ∗, and only the positive

direct effect of ΔW remains. It then follows that ∂k̄∗
∂ΔW

> 0 and ∂μ∗
∂ΔW

> 0.

C.1.6 Proof of Lemma 4

From the equilibrium condition μ∗(r) = H(μ∗(r), r), we obtain

∂μ∗

∂r
=

Hr

1−Hμ
.

By Proposition 9, we know that 1−Hμ > 0. Therefore, the sign of ∂μ
∗

∂r
is determined by the sign of Hr.

Recalling the definition of H ,

H(μ, r) = F (k̄(μ, r)) + (1− F (k̄(μ, r)))μ0,

we see that H(μ, ·) is increasing in r if and only if k̄(μ, ·) is increasing in r. Recalling the expression for the marginal

screener,

k̄(μ, r) = (1− μ0)(RG(μ, r)−RB(μ, r)) (C.6)

= (1− μ0)(1− ρ){(r − (1− r)fB(μ, r))ΔWΔPr (μ, r)− (1− fB)c}+ (1− μ0)ρΔW,

we see that r enters through two channels. An increase in the rating precision, r, directly increases the payoff to
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screening by increasing the probability that holders of loans of type G receive a good rating and sell loans at a

premium in secondary markets. In addition, an increase in r decreases the probability that holders of loans of type

B receive a good rating and sell at a premium.

There is also an indirect effect working through fB , which influences the premium paid on a loan with a good

rate. In particular, there are two cases to consider.

Case 1. Suppose that fB ∈ (0, 1). Then ΔWΔPr = c
(1−ρ)(1−r) . As a consequence, ΔPr is increasing in r, and,

hence, the premium paid on loans with a good rate also increases with r. In particular, if we substitute for ΔPr into

(C.6) we obtain k̄ = (1− ρ) 2r−1
1−r cμ0 + ρΔW (1− μ0), which is clearly increasing in r. Thus, ∂k̄

∗
∂r

> 0 and ∂μ∗
∂r

> 0.

Case 2. Suppose that fB ∈ {0, 1}. Then fB is constant in the neighborhood of μ∗, and, therefore,

∂(RG −RB)

∂r
= (1− ρ)

[
(1 + fB)ΔWΔPr+(r − (1− r)fB)ΔW

∂ΔPr

∂r

]
> 0,

which implies that ∂k̄∗
∂r

> 0 and ∂μ∗
∂r

> 0.

C.1.7 Proof of Lemma 5

From the equilibrium condition μ∗(c) = H(μ∗(c), c), we obtain

∂μ∗

∂c
=

Hc

1−Hμ
.

By Proposition 9, we know that 1−Hμ > 0. Therefore, the sign of ∂μ
∗

∂c
is determined by the sign of Hc.

Recalling the definition of H ,

H(μ, c) = F (k̄(μ, c)) + (1− F (k̄(μ, c)))μ0,

we see that H(μ, ·) is increasing in c if and only if k̄(μ, ·) is increasing in c.

Recalling the expression for the marginal screener,

k̄(μ, c) = (1− μ0)(RG(μ, c)−RB(μ, c))

= (1− μ0)(1− ρ){(r − (1− r)fB(μ, c))ΔWΔPr (μ, c)− (1− fB)c}+ (1− μ0)ρΔW,

we see that c enters through several channels. First, it directly increases the cost of rating a loan, and in doing so, it

decreases k̄∗. However, c also indirectly affects k̄∗ through fB(μ, c) and ΔPr (μ, c). There are three cases to consider.

Case 1. Suppose that fB = 0. Then fB remains constant at 0 in the neighborhood of μ∗, and we have

k̄ = (1− μ0)(1− ρ)[rΔWΔPr−c] + (1− μ0)ρΔW,

which is strictly decreasing in c, so the result follows.

Case 2. Suppose fB ∈ (0, 1). Then ΔWΔPr = c
(1−ρ)(1−r) . Substituting into the above expression, we obtain

k̄ = (1− ρ) 2r−1
1−r cμ0 + ρΔW (1− μ0), which is an increasing function of c, and, thus, the result follows.
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Case 3. Suppose that fB = 1. Then fB remains constant at 1 in the neighborhood of μ∗, and we have

k̄ = (1− μ0) [(1− ρ)(2r − 1)ΔWΔPr+ρΔW ] .

Because ΔPr depends on c only through fB , which is fixed at 1, we have that k̄ is independent of c.

C.1.8 Proof of Lemma 6

From the equilibrium condition μ∗(ρ) = H(μ∗(ρ), ρ), we obtain

∂μ∗

∂ρ
=

Hρ

1−Hμ
.

By Proposition 9, we know that 1−Hμ > 0. Therefore, the sign of ∂μ
∗

∂ρ
is determined by the sign of Hρ.

Recalling the definition of H ,

H(μ, ρ) = F (k̄(μ, ρ)) + (1− F (k̄(μ, ρ)))μ0,

we see that H(μ, ·) is an increasing function of ρ if and only if k̄(μ, ·) is increasing in ρ.

Recalling the expression for the marginal screener,

k̄(μ, ρ) = (1− μ0)(RG(μ, c)−RB(μ, ρ))

= (1− μ0)(1− ρ){(r − (1− r)fB(μ, ρ))ΔWΔPr (μ, ρ)− (1− fB(μ, ρ))c}+ (1− μ0)ρΔW,

we see that ρ enters through several channels. First, it directly increases k̄∗ because an increase in ρ increases banks’

skin in the game, and, thus, banks’ screening incentives increase. However, ρ also indirectly affects k̄∗ through fB(μ, ρ)

and ΔPr (μ, ρ). There are two cases to consider.

Case 1. Suppose that fB ∈ {0, 1}. Then fB remains constant at either 0 or 1 in the neighborhood of μ∗, and we

have

k̄ = (1− μ0)(1− ρ){(r − (1− r)fB(μ, ρ))ΔWΔPr (μ, ρ)− (1− fB(μ, ρ))c}+ (1− μ0)ρΔW,

which is strictly increasing in ρ because (r − (1− r)fB)ΔPr < 1, so the result follows.

Case 2. Suppose fB ∈ (0, 1). Then ΔWΔPr = c
(1−ρ)(1−r) . Substituting into the above expression, we obtain

k̄ = (1− ρ) 2r−1
1−r cμ0 + ρΔW (1− μ0), which is an increasing function of c, and, thus, the result follows.

C.1.9 Proof of Lemma 7

From the equilibrium condition μ∗(μ0) = H(μ∗(μ0), μ0), we obtain

∂μ∗

∂μ0
=

Hμ0

1−Hμ
.
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By Proposition 9, we know that 1−Hμ > 0. Therefore, the sign of ∂μ
∗

∂μ0
is determined by the sign of Hμ0 .

Recalling the definition of H ,

H(μ, μ0) = F (k̄(μ, μ0)) + (1− F (k̄(μ, μ0)))μ0,

we obtain

∂H

∂μ0
= 1 + (1− μ0)Fk(k̄)

∂k̄

∂μ0
− F (k̄)

= (1− F (k̄)) + (1− μ0)Fk(k̄)
∂k̄

∂μ0
. (C.7)

Employing the expression for the marginal screener, k̄(μ, μ0) = (1−μ0)ΔR, we obtain
∂k̄
∂μ0

= −ΔR+(1−μ0)
∂ΔR
∂μ0

,

and, thus,

∂H

∂μ0
= (1− F (k̄)) + (1− μ0)Fk(k̄)

[
−ΔR+ (1− μ0)

∂ΔR

∂μ0

]
.

Because ∂ΔR
∂μ0

= 0, it follows from the above equation that

∂H

∂μ0
= (1− F (k̄))− (1− μ0)Fk(k̄)ΔR.

We then have that μ∗ is a weakly increasing function of μ0 if

μ0 ≥ 1−
[
1− F (k̄)

Fk(k̄)

]
1

ΔR(μ∗)
,

and a weakly decreasing function of μ0 otherwise.

C.1.10 Proof of Proposition 11

The first result is direct from the observation that the premium PGR − PNR is decreasing in fB , and, therefore,

the right hand side of the equilibrium condition

μ = F (k̄(μ)) + (1− F (k̄(μ)))μ0

is smaller under the policy of mandatory rating. It then follows that the fixed point under mandatory rating must

be smaller than the fixed point found in the baseline model. The comparative statics results follow immediately from

Lemmas 3 to 7 proved for the benchmark model after substituting for fB = 1.

C.1.11 Proof of Lemma 8

Because r > 1
2
, it follows from equations (3.21) and (3.22) that fG ≥ fB . We first rule out the case of fB = 0.

Suppose there exists an equilibrium in which fB = 0. Because we consider the parameter space that yields fG = 1,

substituting for fB = 0 and fG = 1 into the beliefs expressions (3.25) and (3.26), we obtain PrG|GR =PrG|BR = 1

and PrG|NR = 0. It follows from equations (3.28) to (3.30) that PGR = PBR =WG and PNR =WB. Substituting for
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prices into (3.22) , we see that it is optimal for holders of poor quality assets to rate as long as (1− ρ)ΔW > c, which

holds by assumption 5. This contradicts our supposition that there exists an equilibrium in which fB = 0.

The remaining cases are: (a) fG = fB = 1 and (b) fG = 1 and fB ∈ (0, 1). Both cases imply PrG|NR = 0 and

PNR =WB.

Consider case (a). For both types of loans to be rated, it must be the case that (1−ρ)(rPGR+(1−r)PBR−WB) > c

and (1 − ρ)((1 − r)PGR + rPBR −WB) > c. Because r > 1
2
, the latter condition is sufficient to ensure that both

conditions hold. Substituting for prices and beliefs and using fG = fB = 1 in (1− ρ)((1− r)PGR + rPBR −WB) > c

yields

c̃ <
μr(1− r)

[μr + (1− μ)(1− r)][μ(1− r) + (1− μ)r]
.

where c̃ ≡ c
(1−ρ)ΔW .

Consider case (b). In this case, banks with loans of type B are indifferent between rating and not rating, i.e.,

(1− ρ)((1− r)PGR + rPBR − PNR) = c

Substituting for prices, beliefs and fG = 1 into the above expression, we obtain

(1− r)μr

μr + (1− μ)fB(1− r)
+

(1− r)μr

μ(1− r) + (1− μ)fBr
= c̃.

If we solve for fB from the equation above we get fmixB = μ

(
r(1−r)(1+2c̃)−c̃+

√
c̃2(1−2r)2−2c̃(1−2r)2r(1−r)+r2(1−r)2

2c̃r(1−r)(1−μ)

)
.

Setting fmixB > 0 simplifies to c̃ < 1, whereas setting fmixB < 1 simplifies to c̃ > μr(1−r)
[μr+(1−μ)(1−r)][μ(1−r)+(1−μ)r] .

C.1.12 Proof of Proposition 12

The equilibrium proportion of borrowers of type G financed at loan origination is given by a fixed point of H(μ).

Because H(·) is a contraction, we only need to show that H(·) under voluntary disclosure is larger (pointwise) than

H(·) under mandatory disclosure to prove the result. Because H(μ) = F (k̄(μ))(1− μ0) + μ0, it suffices to show that

k̄ is larger (pointwise) under voluntary disclosure than under mandatory disclosure. Because k̄ is decreasing in fB ,

it is enough to show that fB is smaller (pointwise) under voluntary disclosure than under mandatory disclosure to

prove the result.

In both cases (mandatory and voluntary disclosure) fB is simply a truncation between the solution to the

indifference condition of type B borrower and the natural limits 0 and 1. For mandatory disclosure, fB is the solution

to:

(1− ρ)(1− r)

(
μr

μr + (1− μ)fB(1− r)
+

rμ

μ(1− r) + (1− μ)fBr

)
= c̃,

whereas for voluntary disclosure fB is the solution to:

(1− ρ)(1− r)

(
μr

μr + (1− μ)fB(1− r)
− μ(1− r)

μ(1− r) + (1− μ)(1− fB + fBr)

)
= c̃.

It is then easy to see that fB is larger under mandatory disclosure because the second term is positive in the first

116



equation above, whereas the term is negative in the second equation above. Thus, the result follows.
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C.2 Figures
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Montero, Pablo and José A. Vilar (2014). “TSclust: An R Package for Time Series Clustering”.

Journal of Statistical Software 62.1, pp. 1–43.

Newman, Mark E.J. (2005). “Power laws, Pareto distributions and Zipf’s law”. Contemporary

Physics 46, pp. 323–351.

Newman, M.E.J. (2010). Networks: An Introduction. Oxford University Press.

Newman, M.E.J. and M. Girvan (2004). “Finding and evaluating community structure in networks”.

Phys. Rev. E 69.

Ng, Chee K., Janet Kiholm-Smith, and Richard L. Smith (1999). “Evidence on the Determinant of

Credit Terms used in Interfirm Trade”. Journal of Finance 54, pp. 1109–1129.

Nowicki, Krzysztof (1989). “Asymptotic Normality of Graph Statistics”. Journal of Statistical Plan-

ning and Inference 21, pp. 209–222.

Oberfield, Ezra (2013). “Business Networks, Production Chains, and Productivity: A Theory of

Input-Output Architecture”. Unpublished Manuscript.

Osborne, Martin and Ariel Rubinstein (1994). A Course in Game Theory. The MIT Press.

Ozsoylev, Han and Johan Walden (2011). “Asset pricing in large information networks”. Journal

of Economic Theory 146, pp. 2252–2280.

Ozsoylev, Han et al. (2014). “Investor Networks in the Stock Market”. Review of Financial Studies

27, pp. 1323–1366.

133



Parlour, Christine and Guillaume Plantin (2008). “Loan Sales and Relationship Banking”. Journal

of Finance 63, pp. 1291–1314.

Pennacchi, George (1988). “Loan Sales and the Cost of Bank Capital”. Journal of Finance 43,

pp. 375–396.

Purnanandam, Amiyatosh (2011). “Originate-to-distribute Model and the Subprime Mortgage Cri-

sis”. Review of Financial Studies 24.6, pp. 1881–1915.

Rahi, Rohit and Jean-Pierre Zigrand (2009). “Strategic Financial Innovation in Segmented Mar-

kets”. Review of Financial Studies 22.

— (2010). “Arbitrage Networks”. Mimeo, LSE.

Rajan, Raghuram G. (1994). “Why Bank Credit Policies Fluctuate: A Theory and Some Evidence”.

The Quarterly Journal of Economics 109.2, pp. 399–441.

Rietz, Thomas (1988). “The Equity Risk Premium: A Solution”. Journal of Monetary Economics

22, pp. 117–131.

Rochet, Jean-Charles and Jean Tirole (1996). “Interbank Lending and Systemic Risk”. Journal of

Money, Credit and Banking 28, pp. 733–762.

Ross, Stephen (1989). “Presidential Address: Institutional Markets, financial marketing and finan-

cial innovation”. Journal of Finance 22.

Ross, Stephen A. (1976). “The arbitrage theory of capital asset pricing”. Journal of Economic

Theory 13, pp. 341–360.

Rouwenhorst, K. Geert (1995). “Asset pricing implications of equilibrium business cycle models”.

In: Frontiers of Business Cycle Research. Ed. by Thomas F. Cooley. Princeton University Press,

pp. 294–320.

Sharpe, William F. (1964). “Capital asset prices: A theory of market equilibrium under conditions

of risk”. Journal of Finance 19, pp. 425–442.

Shavell, Steven (1994). “Acquisition and Disclosure of Information Prior to Sale”. RAND Journal

of Economics 25.1, pp. 20–36.

Shea, John (2002). “Complementarities and Comovements”. Journal of Money, Credit and Banking

34, pp. 412–433.

Skreta, Vasiliki and Laura Veldkamp (2009). “Rating shopping and asset complexity: A theory of

ratings inflation”. Journal of Monetary Economics 56.5, pp. 678–695.

134



Soon, Spario Y. T. (1996). “Binomial Approximation for Dependent Indicators”. Statistica Sinica

6, pp. 703–714.

Stanton, Richard and Nancy Wallace (2010). “CMBS Subordination, Ratings Inflation, and the

Crisis of 2007–2009”. NBER Working Paper Series 16206.

Stauffer, Dietrich and Amnon Aharony (1994). Introduction to Percolation Theory. Second. Taylor

and Francis.

Stiglitz, Joseph (2007). “Houses of Cards”. The Guardian October 9.

Stokey, Nancy L., Robert E. Lucas, Jr., and Edward C. Prescott (1989). Recursive Methods in

Economic Dynamics. Harvard University Press.

Subrahmanyan, Avanidhar (1991). “A Theory of Trading in Stock Index Futures”. Review of Fi-

nancial Studies 4.

Tauchen, George (1986a). “Finite State Markov-Chain Approximations to Univariate and Vector

Autoregressions”. Economic Letters 20, pp. 177–181.

— (1986b). “Finite State Markov-Chain Approximations to Univariate and Vector Autoregres-

sions”. Economic Letters 20, pp. 177–181.

Tauchen, George and Robert Hussey (1991). “Quadrature-Based Methods for Obtaining Approxi-

mate Solutions to Nonlinear Asset Pricing Models”. Econometrica 59, pp. 317–396.

Tsai, Jerry and Jessica Wachter (2015). “Disaster Risk and its Implications for Asset Pricing”.

NBER Working Paper 20926.

Tufano, Peter (1989). “Financial innovation and first mover advantages”. Journal of Financial

Economics 25.

— (2003). “Financial innovation”. Handbook of the Economics and Finance 25.

Vissing-Jorgensen, Annette (2002). “Limited asset market participation and the elasticity of in-

tertemporal substitution”. Journal of Political Economy 110.

Wachter, Jessica A. (2013). “Can time-varying risk of rare disasters explain aggregate stock market

volatility?” Journal of Finance 68, pp. 987–1035.

Wagner, Wolf (2010). “Diversification at financial institutions and systemic crises”. Journal of

Financial Intermediation 19, pp. 373–386.

Wang, Jessie (2015). “Distress Dispersion and Systemic Risk in Networks”. Unpublished Manuscript.

135



Weil, Philippe (1989). “The Equity Premium Puzzle and the Risk-Free Rate Puzzle”. Journal of

Monetary Economics 24, pp. 401–421.

West, Douglas B. (2001). Introduction to Graph Theory. 2nd Edition. Pearson Prentice Hall.

Williamson, Oliver E. (1979). “Transaction-Cost Economics: The Governance of Contractual Rela-

tions”. Journal of Law and Economics 22, pp. 233–261.

— (1983). Markets and Hierarchies: Analysis and Antitrust Implications. New York: Free Press.

Zhang, Lu (2005). “The Value Premium”. Journal of Finance 60, pp. 67–103.

136


	Dissertation Ramirez.pdf
	caramire_Tepper_2016
	Abstract
	Acknowledgement
	Inter-firm Relationships and Asset Prices
	Baseline Model
	The Environment
	The network of inter-firm relationships Gn and firms' cash-flows
	Changes in shock propagation within Gn

	Distribution of Consumption Growth
	Equilibrium Asset Prices
	Calibration
	Description of Data and Customer-Supplier Networks
	Selecting the rest of parameter values

	Implications of the Calibrated Model
	Asset Market Phenomena, Network Economies, and Long-Run Risks
	Firms' Centrality and the Cross-Section of Risk Premia
	Factor Structure on Firm-Level Return Volatility

	Concluding Remarks

	Basket Securities in Segmented Markets
	Baseline Model
	The Environment
	Agents
	Equilibrium

	Constrained Efficient Allocation
	Trading Equilibrium
	Investors i's optimal portfolio
	Equilibrium
	Efficiency of trading allocations

	Competition Among Intermediaries
	Concluding Remarks

	Imperfect Information Transmission from Banks to Investors: Real Implications (with Nicolás Figueroa and Oksana Leukhina)
	Baseline Model
	Borrowers
	Banks
	Investors
	Equilibrium

	Equilibrium Characterization
	Rating Strategy
	Rating Strategies and Credit Allocation
	Existence and Uniqueness of Equilibrium
	Comparison to the Constrained Efficient Allocation
	Comparative Statics Analysis

	Policy Experiments
	Mandatory Rating
	Mandatory Rating Disclosure

	Concluding Remarks

	Appendices
	Appendix Inter-firm Relationships and Asset Prices
	Proofs
	Simulation of the Model
	Network Economies and Long-Run Risks
	Tables and Figures

	Appendix Basket Securities in Segmented Markets
	Planner's Problem
	Trading Equilibrium
	Investors' Problem
	Intermediary's Problem

	Competition among intermediaries

	Appendix Imperfect Information Transmission from Banks to Investors: Real Implications
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Proposition 11
	Proof of Lemma 8
	Proof of Proposition 12

	Figures

	Bibliography


