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Abstract 

Biofuels have received legislative support recently in California’s Low-Carbon Fuel 

Standard and the Federal Energy Independence and Security Act.  Both discuss new fuel types, 

but neither provides methodological guidelines for dealing with the inherent uncertainty in 

evaluating their potential life-cycle greenhouse gas emissions.  Emissions reductions are based 

on point estimates only.  This work develops a Monte Carlo simulation to estimate life-cycle 

emissions distributions from ethanol and butanol from corn or switchgrass.  Life-cycle emissions 

distributions for each of the modelled feedstock and fuel pairings span an order of magnitude or 

more.  Corn ethanol emissions range from 50 to 200 g CO2e/MJ, and each feedstock-fuel 

pathway studied shows some probability of greater emissions than a distribution for gasoline.  

Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to 

forecast given this high degree of uncertainty in life-cycle emissions.  Incorporating uncertainty 

in the decision making process can illuminate the risks of policy failure (e.g., increased 

emissions), and a calculated risk of failure due to uncertainty can be used to inform more 

appropriate reduction targets in future biofuel policies.  The current practice of modelling 

cellulosic biomass yields based on point values that have been aggregated over space and over 

time conceal important energy supply risks related to depending on biomass for transportation 

energy, particularly those related to local drought conditions.  Using switchgrass as a case study, 

this work quantifies the variability in expected yields over time and space with a switchgrass 

growth model and historical weather data.  Even with stable, productive states, yields vary from 

5 to 20 Mg/ha.  Yields are likely to be reduced with increased temperatures and weather 

variability induced by climate change.  Thus, variability needs to be a central part of biomass 

systems modelling so that risks to energy supplies are acknowledged and risk mitigation 



 iii 

strategies or contingency plans are considered.  Irrigation, a potential risk mitigation strategy, 

can very often negate the impacts of drought, although system-wide irrigation is an expensive 

method to stabilize crops (costing $0.10 to $1.90/gallon).  Unless many surplus acres of 

cellulosic crops are planted, there will be insufficient ethanol to meet the EISA targets 10 to 25% 

of the time under rain-fed conditions.  Thinking in terms of yield ranges, not point estimates, is 

essential in planning a long-term energy system dependent on biomass.  
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Chapter 1.   Introduction 

1.1 Research Motivation 

The US energy portfolio is presently undergoing an interesting transition.  In contrast to 

past energy shifts, there are three key motivating factors: reducing oil consumption, increasing 

the percentage of resources used that are domestic, and decreasing greenhouse gas (GHG) 

emissions.  The need to reduce GHG emissions largely distinguishes the current push for new 

energy sources and technologies from previous efforts to find low cost, domestic energy options, 

and has certainly helped diversify the primary energy sources used for electricity and for 

transportation.  The electricity sector has seen a ten-fold increase in installed wind capacity in the 

past decade because it is domestic (and therefore politically attractive), has lower GHG 

emissions than major incumbent fuels, and, perhaps most importantly, is comparatively 

inexpensive versus other renewable electricity generating technologies.  The transportation 

sector has seen increased use of biofuels for similar reasons. 

Biomass is only a small part of the energy mix, and is likely to remain so in the future.  

Projections by the US Energy Information Administration (EIA) suggest that biomass will be a 

persistent supporting character in the US energy portfolio, thanks to state and federal legislation 

supporting or mandating its use.  By its nature as a biological resource rather than one more 

strongly dependent on technological development and industry, the biomass energy sector has 

interesting non-traditional features.  There are no wind versus food debates, nor are there global 

agricultural shifts and carbon emissions directly precipitated by increased US battery production.  

Though there are implementation challenges related to other renewable energy technologies and 

types, recommendations regarding increasing the use of biomass energy need to be carefully 
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scrutinized from several different, often unrelated directions so that unintended, known negative 

consequences are avoided wherever foresight allow. 

By necessity, this dissertation covers only a small number of the myriad issues 

surrounding biomass energy used for ground transportation in the United States.  The focus of 

this work is uncertainty and variability in estimates for life-cycle greenhouse gas emissions from 

biofuels, and variability in forecasts for future cellulosic biomass availability.  Following a 

quantitative assessment of the uncertainty in life-cycle GHG emissions from several biofuel 

pathways, the discussion focuses on the degree to which uncertainty and variability can be 

addressed in biomass system models is discussed in the context of biofuel policy 

implementation.  This is follow by suggestions regarding how policy might be improved given 

persistent uncertainty in emissions reductions or feedstock supplies.  Though this work is 

motivated directly by US bioenergy policy, the findings and methods presented here should be 

relevant to other similarly complex models, and not restricted specifically to biomass systems. 

1.2 Research Questions 

The issues mentioned above are discussed in the following three chapters.  In more detail, 

the following research questions are asked and answered: 

Chapter 2: Uncertainty in Life-Cycle Greenhouse Gas Emissions from Biofuels 

1. What is the quantitative uncertainty associated with life-cycle greenhouse gas 

emission estimates for current (corn ethanol) and proposed biofuels (switchgrass 

ethanol, butanol)? 

2. Which model input parameters (e.g., indirect land use change) are the most 

important in determining this range in output values? 

3. Are there emissions reductions expected when shifting from bio-ethanol to bio-

butanol? 

Chapter 3: Uncertainty and Biofuel Policy Designs 
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1. What is the probability that the revised Renewable Fuel Standard (based on 

deterministic life-cycle GHG emissions models) included in the Energy 

Independence and Security Act will succeed in reducing transportation emissions 

associated with the production of corn- and switchgrass-based biofuels? 

2. What potential policy design incorporates uncertainty in emissions estimates (for 

the RFS and LCFS) so that the likelihood of emissions reductions occurring can 

be evaluated? 

Chapter 4: Consequences of Uncertainty in Biofuel Feedstock Supply 

1. What are the weather-related supply risks to switchgrass grown in the continental 

United States?  How do these risks change with future climate change? 

2. To what degree can these supply risks be mitigated with the use of irrigation?  

And at what cost? 

3. How does this variability affect biofuel system recommendations and policy 

compliance based on point estimates? 

The fifth and final chapter in this dissertation summarizes the results that answer these questions, 

and provides commentary on how some of the challenges related to biomass energy might be 

dealt with.  The last chapter concludes with some suggestions for future work related to the 

analyses presented in this dissertation. 

1.3 Background 

1.3.1 Biomass Energy for Transportation in the US 

In the US, the primary biofuel used in transportation is ethanol made from corn.  In 2011, 

13.9 billion gallons of corn ethanol were produced, as shown in Figure 1 [1].  This is substantial 

growth from the 1981 production level of 83 million gallons when ethanol was used as a fuel 

additive to improve engine performance [2].  The 1981 volume of ethanol used about 1% of US 

corn, whereas the volume in 2011 accounted for more than 25% of total US corn use [3].  The 

US now produces more ethanol than any other country, having overtaken Brazil (where ethanol 
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is made out of sugarcane) in 2005.  In 2011, about 5.5 billion gallons of ethanol were produced 

in Brazil.  Biodiesel, made primarily out of soybeans, is the second category of biofuels used in 

the US.  In 2011, 970 million gallons of biodiesel were produced.  This is substantial growth 

from an initial production volume of 9 million gallons in 2001 [4].  Together, current ethanol and 

biodiesel volumes are small compared to liquid fossil fuels (less than 7% of fuel consumption), 

but biofuels are projected to be a growing part of the energy mix as petroleum use remains 

largely flat as shown in the Annual Energy Outlook (AEO) projections in Figure 2 [5]. 

 

Figure 1.  Ethanol and biodiesel production volumes over time. 

 

Figure 2.  AEO projections for liquid fuel sources through 2035. 

0!

5!

10!

15!

1980! 1985! 1990! 1995! 2000! 2005! 2010!

A
nn

ua
l P

ro
du

ct
io

n 
!

(m
ill

io
n 

ga
llo

ns
)!

Ethanol!
Biodiesel!

0!

5!

10!

15!

20!

25!

2008! 2013! 2018! 2023! 2028! 2033!

M
ill

io
n 

ba
rr

el
s 

pe
r d

ay
!

Year!

Domestic crude 
production!

Net crude imports!

Non-petroleum supply!

Other petroleum supply!



 5 

The capacity and expertise for these volumes evolved, in part, due to efforts by the US 

Departments of Energy (DOE) and of Agriculture (USDA) to make biofuels an economic 

alternative to imported oil [6].  The US DOE program started shortly after the oil embargo of the 

late 1970s, when alternative transportation fuels first became a national priority.  A wide variety 

of non-food crop options, from woody biomass to agricultural residues to organic waste matter, 

were considered as candidate feedstocks from which to produce ethanol or biodiesel as part of 

the US DOE’s Bioenergy Feedstock Development Program [7].  Field test results placed Populus 

genus trees (of which poplars are an example) as the top candidate for woody biomass, and 

Panicum virgatum, or switchgrass, as a good grass candidate.  The aim of the program was to 

find crops that could produce high, stable yields with little input across much of the United 

States.  For switchgrass, yields from test plots across the country (results reported in [8]) inform 

models predicting locations and yields for future cellulosic ethanol systems.  DOE research by 

the Genomic Science Program is now focused on engineering biomass to be easily broken down 

into individual sugars during the fuel production process, and on improving the efficiency of the 

cellulosic ethanol production phase where those sugars are fermented to ethanol [9].  For an 

interesting case study on how breeding programs, as well as field-level knowledge and practice 

improvements, can affect yields and feasible growing locations, Olmstead and Rhode [10] 

present the shifting wheat frontier in North America over the past 70 years in the face of a 

changing climate. 

The USDA program to support biofuels started in the 1990s, and is operated out of the 

USDA’s Office of Energy Policy and New Uses.  This group has funded studies into net energy 

balance, and techno-economic performance for corn and cellulosic ethanol production.  These 
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serve as the basis of many government and private studies on the merits of corn ethanol and soy 

biodiesel (see [11] for a list of publications). 

1.3.2 Ethanol Production 

All biomass feedstocks contain polymeric sugars, though types and quantities vary across 

species.  These plant sugars are broken down into individual molecules (monomerized) and 

fermented into ethanol.  Lignin, ash and other compounds are also present in most biomass 

feedstocks [12].  Lignin is a complex grouping of molecules that is not readily broken down, as it 

provides structure, rather than energy storage, for the plant.  In lignocellulosic fuel production, 

lignin is an important source of process energy. 

In the case of starchy feedstocks such as corn, the major sugar polymer (starch) is 

relatively easy to hydrolyze into individual glucose molecules and ferment.  This is one key 

reason why US ethanol is currently produced from corn rather than cellulosic crops.  In the case 

of lignocellulosic feedstocks such as switchgrass, there are two primary sugar polymers: 

cellulose and hemicellulose.  Cellulose is difficult to monomerize due to its crystalline structure.  

Hemicellulose saccharification is more difficult than starch but easier than cellulose due to its 

lesser degree of organization at the molecular level [13].  When these cellulosic sugar polymers 

are monomerized, the fermentation process is similar to corn ethanol production, though 

different enzymes are required to process the new sugar types in addition to glucose. 

1.3.3 Policy and Biofuel Use 

The capacity for world-leading biofuel production was enabled through policies 

encouraging or mandating the use of biofuels, and the presence of biofuel production subsidies.  

At the federal level, ethanol blenders have received tax credits in the range of $0.40 to 

$0.60/gallon since the 1980s.  At the end of 2011, corn ethanol was subsidized at $0.45/gallon 
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while cellulosic ethanol was subsidized at $1.01/gallon.  At this point, the policy defining the 

corn ethanol credit was allowed to lapse.  Currently, corn ethanol is not subsidized in the US, 

while cellulosic ethanol persists.  The tariff on imported ethanol (previously set at $0.54/gallon) 

also lapsed at the end of 2011, so the corn ethanol industry finds itself in somewhat new 

circumstances.  It will be interesting to see how the ratio between domestic and imported ethanol 

changes with time. 

 

Figure 3.  EISA volume mandates over time by fuel type. 
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3.  For biofuels to qualify in each category, they must meet life-cycle greenhouse gas emissions 

reduction targets defined in the RFS.  These targets are 20% for corn ethanol, 50% for both 

cellulosic ethanol and bio-diesel, and 60% for the other advanced biofuel category (summarized 

in Table 1).  The life-cycle emissions from each fuel type are calculated by the US 

Environmental Protection Agency (US EPA).  They found that corn ethanol not using coal offers 

between 16 and 47% emissions reductions (depending on production assumptions), and 

switchgrass ethanol offers a 128% emissions reduction [15].  An important note, all corn ethanol 

production facilities that existed before 2007 when this act came into force are not required to 

produce ethanol that meets this 20% reduction target, but their output is counted towards the 

annual totals.   

Table 1.  GHG reduction requirements under EISA. 

Fuel Classification % Decrease in Emissions Baseline Fuel Type 
Bio-diesel 50 Diesel 
Renewable biofuel 20 Gasoline 
Cellulosic biofuel 60 Gasoline 
Other Advanced biofuel 50 Diesel/Gasoline 

 

In California, a Low-Carbon Fuel Standard (LCFS) was implemented in 2007 [16].  This 

policy requires state-wide life-cycle GHG emissions from transportation fuels to be 10% lower 

than a base case where only fossil fuels are used.  The California Air Resources Board (CARB) 

calculates life-cycle emissions for all candidate alternative fuels (including biofuels, electricity, 

and hydrogen) as well as emissions for the incumbent gasoline and diesel.  They report (to four 

significant figures) that the gasoline blend used in California emits 95.86 g CO2e/MJ, diesel 

94.71 g CO2e/MJ, corn ethanol produced in California using natural gas for process heat and 

drying the distiller’s dried grains (‘California; Dry Mill; Dry DDGS, NG’ in the CARB lookup 
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table) emits 88.90 g CO2e /MJ, and the otherwise equivalent corn ethanol produced in the 

Midwest emits 98.40 g CO2e /MJ [17].  The fuels evaluated under this policy are more 

specifically defined than they are in the RFS; specific process characteristics and locations are 

used rather than nationally representative corn ethanol as defined in the RFS. 

There are, of course, biofuel policies in other countries.  The UK’s Renewable Transport 

Fuels Obligation and the European Union’s Renewable Energy Directive also depend on the 

results of life-cycle assessments of biofuels and incumbent fossil fuels to quantify greenhouse 

gas emissions reductions. 

1.3.4 Life-Cycle Assessment 

Life-cycle assessment (LCA) has become an important tool for environmental policy 

makers, playing a crucial role in the development of the California LCFS [18] and the RFS 

defined in EISA.  Life-cycle assessment began as framework to assist in determining 

environmental impacts of a product by accounting for emissions to the environment from each 

stage in the supply chain, the use phases, and the end-of-life treatment of the product.  The 

precise activities included in the analysis are defined as the system boundary.  This approach, 

termed a process-based LCA, was initially used to assist in comparing and deciding between two 

similar products; Coca-Cola commissioned an early LCA study to compare and evaluate 

different product packaging types [19].  A functional unit is necessary to compare different 

products that fulfill the same general function for a fair comparison.  In the Coca-Cola case, this 

could be something like amount of material needed to hold 12oz of beverage.  The process-based 

LCA has since been developed into an ISO (International Organization for Standardization) 

standard, which guides the practice [20]. 



 10 

An economic input-output LCA (EIO-LCA) approach was developed to address 

shortcomings in process-based models, such as cut-off error related to setting too small a system 

boundary.  Given an economic input-output table, which relates economic inputs and outputs 

between all tracked sectors of an economy, all of the upstream economic activities related so 

some amount of produced good or service (defined by monetary units) can be quantified.  

Economic activities of each sector in a region or country are assigned environmental impacts, so 

some portion of the total environmental impacts throughout the supply chain can be allocated to 

the economic activity caused by one particular product or service of interest [21].  The 

environmental impacts discussed in relationship to biofuels so far have been limited to climate 

change caused by greenhouse gas emissions, but these impacts can also include eutrophication, 

acidification, or human toxicological impacts. 

1.3.4.1 Uncertainty in LCA Models 

Assessing life-cycle greenhouse gas emissions from biofuels is more complex than 

comparing aluminum cans to glass bottles.  Modelling such a complex system introduces new 

challenges to the LCA framework.  During the course of any systems modelling, including LCA, 

modellers must make many decisions regarding what will or will not be included in the system, 

data sources most appropriate to characterize the system, and methods to estimate values for 

which no data are available.  As a result, life-cycle analysts evaluating the same product or 

service may make different decisions in these areas and arrive at different and sometimes 

disparate conclusions.  This is particularly troublesome because these different results may 

suggest different courses of actions for decision makers.  Large, complex systems frequently 

require many modelling decisions to be made, which can make it difficult to arrive at the “true” 
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value that quantifies the impact of product or service.  Understanding and addressing the 

magnitude of the uncertainty in model output is essential for robust decision-making. 

Uncertainty in the life-cycle assessment context can be broadly categorized as either 

parameter uncertainty or model uncertainty.  Parameter uncertainty results from not precisely 

knowing a specific input value.  This can result from: unavailable data for which proxy data must 

be used; measurement error on collected data; or, data that vary temporally or geographically for 

the system under analysis.  Model uncertainty is broader in scope compared to parameter 

uncertainty.  Model uncertainty results from not knowing how to construct (parts of) a 

mathematical model to represent a real-world process.  Some examples of model uncertainty 

include emissions allocation from a process between multiple co-products; the evolution of 

economically-mediated production impacts over space and/or time; the choice of what global 

warming potentials to use in calculating climate change impacts; and, the choice of which 

processes to include or exclude from the analysis (i.e., defining the system boundary). 

Quantitative methods to deal with uncertainty in LCA, as suggested by many previous 

studies and summarized by Lloyd and Ries [22] and Williams and colleagues [23], include 

probabilistic simulation, intervals, scenario modeling, fuzzy data sets and analytical uncertainty 

propagation.  When dealing with parameter uncertainty, probability distributions are specified 

using data and/or expert judgments, then simulation methods and uncertainty importance 

analyses are used to establish uncertainty in output [24].  Quantifying the range or impact of 

model uncertainty is often more challenging than parameter uncertainty, as many difficulties of 

model uncertainty cannot be addressed by any amount of data collection, especially those 

projecting future system developments.  Often the best that can be done is to perform a scenario 

analysis by constructing all reasonable and feasible models, and then using the least and greatest 
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output values to establish bounds on quantitative model results.  In the biofuels context, 

recognizing uncertainty complicates a decision maker’s task of choosing among fuel types; 

however, neglecting uncertainty in favor of (relative) simplicity can lead to policy failure. 

1.4 Challenges to Biomass Use for Energy 

1.4.1 Food Versus Fuel Debate 

The United Nations declared an emergency in late 2007 due to global food price spikes, 

after which time many studies were undertaken to investigate the causes.  In a World Bank 

policy report, Mitchell found that 70 to 75% of the increase in the price of food commodities 

from 2002 to 2008 can be attributed to the increase in biofuel production from grains and 

oilseeds in both the United States and in Europe [25].  A Congressional Research Service report 

similarly forecast that EISA (and other global biofuel policies) would substantially impact food 

prices [26].  The price of corn in the US as reported by the USDA National Agricultural 

Statistics Service (NASS) shows an increasing trend from 2007 onward in Figure 4.  The push to 

increase cellulosic ethanol rather than corn ethanol is partially motivated by this need to divert 

less food grain from nutrition to biofuels. 

 

Figure 4.  Average monthly corn prices from January 2002 to July 2012. 
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1.4.2 Unfavourable Land Use Changes 

Prior to about 2007, most life-cycle assessment studies found both corn ethanol and soy 

biodiesel to have greenhouse gas emissions benefits when compared to gasoline or conventional 

diesel, so long as natural gas was used instead of coal to provide production process heat in a 

reasonably efficient plant [27], [28].  Two key studies were released in 2007 and 2008 that 

challenged this conclusion.  The first study, by Fargione and colleagues, suggested that planting 

more corn (or other biomass feedstocks) to satisfy growing biofuel demand alters the landscape 

if it was not previously used for agricultural purposes.  The change often resulted in a substantial 

release of carbon into the atmosphere [29].  They examined planting choices in South America 

and the United States, and defined and calculated a “biofuel carbon debt” to illustrate how long 

various biofuels must be produced and used until the initial loss of terrestrial carbon is offset by 

the GHG emissions reductions from the displacement of liquid fossil fuels.  This process was 

called direct land use change (DLUC). 

The second, by Searchinger and colleagues, investigated carbon release from indirect 

land use change (ILUC), or, land use change caused by changing economic conditions related to 

increased demand for biofuel crops [30].  For example, corn becomes more valuable as the US 

consumes more due to increasing corn ethanol production.  As a globally traded commodity, this 

change induces increased corn production abroad.  The increased corn production could be on 

agricultural land, or it could be on land that was previously grassland, or forest.  As with 

domestic land use change, this too causes a transfer of carbon into the atmosphere, and takes 

decades, if not centuries, of biofuel use to repay this debt. 

With strategies such as those highlighted by Tilman and colleagues [31] and discussed in 

greater detail by a National Academies report [32], biofuels can be produced in a way offers 
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greenhouse gas reductions while sidestepping some of food price impacts.  These publications 

highlight the need to use agricultural crop wastes or low-input grasses planted on unused 

agricultural lands in order to avoid land use change issues and competition with food crops.  

They also highlight using otherwise unexploited organic matter in municipal solid waste streams, 

which, if utilized, again sidesteps the crucial issues of food for fuel and agricultural land 

competition. 

1.4.3 Crop Supply Risks from Drought 

Biomass supplies are at risk due to natural variability in yields caused by changing local 

meteorological (or other) conditions.  Biomass yield variability has not been dealt with 

extensively, or quantitatively, in the literature to date that discusses various futures for the 

biofuels industry.  A review of insurance statistics provides some insight into the reasons for 

crop losses. 

 

Figure 5.  Distribution of total FCIC crop insurance indemnities from 2000 to 2011 
across cause of loss description. 

The Federal Crop Insurance Corporation (FCIC) covers the loss of many crop types for a wide 
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USDA’s Risk Management Agency, which operates and manages the FCIC [33], and show 

percentages representing total indemnities by cause of loss from the period 2000 to 2011.  

Drought is the single most costly cause of crop loss in the US.  Drought may be a particular 

challenge for new, cellulosic crops because they have not benefited from years of breeding 

programs to increase drought resistance (such as that which has benefited food crops like corn 

and wheat), and because cellulosic biomass systems planned and assessed by researchers are 

assumed to be rain-fed only. 

1.4.3.1 Drought Indices 

The term ‘drought’ means different things to different people, depending on what is 

affected by drought.  If rainfall is the primary concern, then a lack of precipitation is enough to 

declare drought conditions.  If other flows of water, such as surface and subsurface water, affect 

the outcome of concern, those flows would be considered in addition to direct precipitation when 

evaluating drought.  If evapotranspiration on a field is the metric of concern, then temperature 

conditions also play into whether or not drought conditions have taken hold. 

To resolve the potential ambiguity surrounding the term drought, standardized drought 

indices are used to indicate the severity and geographic extent of water deficiency (or excess).  In 

the US, a commonly used drought index is the Palmer Drought Severity Index (PDSI).  This is a 

hydrological drought index defined by Palmer in 1965 [34] in response to a recognized need for 

an index which could be compared between regions and drought events over time.  Though 

initially identified as a meteorological index, it fulfills the current definition of a hydrological 

index.  The PDSI considers precipitation, evapotranspiration (which is also dependent on 

temperature), and ground-level water flows, all of which affect soil moisture levels. 



 16 

Alley provides a solid critique of the PDSI calculation methodology, highlighting some 

assumptions of convenience made in evapotranspiration modelling, difficulty in defining 

regional factors to normalize the index geographically and temporally, and the convoluted 

relationship between empirical data and the resulting index value [35]. 

A meteorological index called the Standardized Precipitation Index (SPI) was introduced 

by McKee in the mid 1990s to address some of the shortcomings of the PDSI [36].  The 

calculation steps (laid out nicely in [37]) are as follows:   

1. Generate time series data for cumulative precipitation over a region of interest.  Common 

timespans for which to calculate cumulative data are 1, 2, 3, 6, 9, 12, and 24 months (all 

timespans for which the National Climatic Data Center (NCDC) performs SPI 

calculations).  For example, a January SPI-1 data set would include total rainfall for every 

January in the time period of interest, whereas an SPI-3 data set (three months) might 

include total rainfalls from June to August. 

2. Fit a probability distribution function, usually a two- or three-parameter gamma function, 

to historical precipitation data for a region of interest. 

3. Generate a cumulative distribution function from the parameters obtained in the fit.  Input 

the CDF output (values between 0 and 1) to an inverse standard normal distribution to get 

standard precipitation index values. 

By using a standard normal distribution for the index, familiar statistics are meaningful, 

such as 0 indicating median rainfall, or ± 0.68 for one standard deviation more or less 

precipitation than historically expected in the specific region of interest.  The calculation 

methodology is also straightforward enough that the SPI can be calculated for a custom 

geographic area so long as sufficient time series data on precipitation are available.  The 

relationship between SPI and precipitation is illustrated for three states, using historical monthly 

rainfall data from 1895 to 2011, in Figure 6.  SPI and precipitation data are taken from the 

NCDC [38]. 
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Figure 6.  SPI-3 (April to June) and SPI-6 (January to June) plotted against rainfall 
for three states.  Dashed vertical lines indicate median six-month rainfall. 

Figure 6 illustrates, among other things, when precipitation is expected to occur in each 

state.  In Iowa, more precipitation falls in the first three months of the year than in the second, as 

the median 3-month total increases from 280 to 400 mm.  The opposite is true in Tennessee, 

where the 6-month median is more than twice the 3-month median.  This sort of figure also 

illustrates the range of expected precipitation values based on the slopes of the lines.  The 6-

month Tennessee values cover a much wider range than the 6-month Texas values, for example.  

The three 3-month curves are close in slope. 
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inhospitable state.  As a result of this national approach to westward expansion, irrigation was 

given favourable treatment in policy.  Water rights in the west follow prior appropriation 

doctrine, meaning the first to use a water resource for a productive application (i.e., agriculture) 

was given legal right to use that water going forward.  Additionally, federally managed water 

made available for agriculture is very inexpensive to farmers and does not factor into the 

economic decision making of the individual farmer.  Somewhat counter-intuitively, the value of 

that water to agricultural consumers is generally much lower than the value of water to industrial 

or residential consumers.  If new agricultural consumers have no water appropriated to them (for 

example, in states or locations were there is not a lot of existing irrigation, such as the 

Southeast), and must compete with non-agricultural interests, water costs could be much greater 

than they are for western farmers.  There is also interesting discussion surrounding the changing 

public opinion on the subject of national water priorities shifting away from agriculture.  As a 

result of these complexities, no specific water prices or rights issues are dealt with quantitatively 

in this dissertation.  
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Again last night I had that strange dream, 
Where everything was exactly how it seemed. 
Concerns about the world getting warmer. 
People thought that they were just being rewarded 
For treating others as they'd like to be treated, 
For obeying stop signs and curing diseases, 
For mailing letters with the address of the sender. 
Now we can swim any day in November. 

 

“Sleeping In”, The Postal Service 



 20 

Chapter 2. Uncertainty in Life-Cycle Greenhouse Gas Emissions from 

Biofuels1 

2.1 Abstract 

Biofuels have received legislative support in California’s Low-Carbon Fuel Standard and the 

Federal Energy Independence and Security Act.  Both discuss new fuel types, but neither 

provides methodological guidelines for dealing with the inherent uncertainty in evaluating 

potential life-cycle greenhouse gas emissions from biofuels, as emissions reductions are based on 

point estimates only.  This work demonstrates the use of Monte Carlo simulation to estimate life-

cycle emissions distributions from ethanol and butanol from corn or switchgrass.  Modelled 

distributions of life-cycle emissions for each feedstock and fuel pairing span an order of 

magnitude or more.  Using a streamlined life-cycle assessment, corn ethanol emissions range 

from 50 to 200 g CO2e/MJ, and each feedstock-fuel pathway studied shows some probability of 

greater emissions than a distribution for gasoline.  Potential GHG emissions reductions from 

displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty 

in life-cycle emissions.  This overall uncertainty is driven by the importance and uncertainty of 

emissions due to indirect land use change. 

2.2 Introduction 

Two pieces of legislation were recently passed in the US, the 2007 Energy Independence 

and Security Act (EISA) and the 2007 California Low-Carbon Fuel Standard (CA LCFS) [14], 

[16].  The renewable fuel standard (RFS) included in EISA addresses both national security 

                                                
1 This chapter is based on the following published paper:  Mullins, K. A., Griffin, W. M., and Matthews, H. S. 
(2011) Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels, Environ. Sci. 
Technol 45, 132–138. 
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issues related to petroleum supply and the threats of anthropogenic climate change, specifying 

types of fuels, volumes required, and fuel life-cycle GHG reduction requirements.  The life-cycle 

targets for expected corn and switchgrass ethanol emissions are 20% and 60% lower than 

gasoline, respectively.  The CA LCFS requires the state fuel mix to have 10% lower emissions 

than would occur from fossil fuels alone by 2020 and promotes the use of life-cycle analysis to 

categorize acceptable fuel-process combinations.  These acts require only the use of point 

estimates of emissions for each fuel classification.  This reflects historic trends in the literature 

for biofuel life-cycle emissions calculations.  Many studies aim to refine current models to 

produce increasingly precise emissions estimates, and mainly cover current- and near-term fuel 

types (primarily ethanol and biodiesel) and feedstocks (for example [39-41]).  Encouragingly, 

several recently published studies have begun to address uncertainty in modeling biofuel systems 

[42], [43].  Both use Monte Carlo simulation as a tool to investigate the range of potential values 

for biofuel pathways and influential parameters in the model. Neither paper addresses indirect 

land use change (ILUC) or the policy implications of recent legislation given the uncertainty. 

Although legislation acknowledges uncertainty and variation in input parameters, 

particularly related to land use change emissions, no quantitative methodology that deals with the 

uncertainty is prescribed.  This is troublesome for two reasons: first, using only single values 

disregards the ranges and uncertainty of data used to generate the point estimate (such as a mean 

value), and second, new fuel life cycles can only be predicted, not measured. 

Based on trends in biofuel research, new fuel life cycles will need to be evaluated in the 

near future.  This next generation research generally addresses two topics: new fuel types and 

non-fermentative production methods [44-49].  These papers reveal that longer-chain alcohols, 

particularly butanol and its isomers, are attractive alternatives to ethanol due to higher energy 
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density (28 MJ/L LHV versus 21 MJ/L for ethanol) and greater compatibility with current fuel 

distribution infrastructure.  The literature also describes how modifying microbial metabolism 

can produce these new fuel types.  These novel production methods have little to no production-

scale data (particularly at mandated fuel volumes), making life-cycle emissions difficult to 

predict and their contribution to compliance with renewable or low-carbon fuel standards even 

more difficult to forecast. 

This chapter uses a streamlined life-cycle emissions model with Monte Carlo simulation 

to quantify the uncertainty in life-cycle GHG emissions associated with ethanol and butanol 

production from both corn and switchgrass feedstocks.  The focus of this work is not to put forth 

a set of emissions values or ranges but to raise discussion concerning the implications of basing 

policy on life-cycle emissions data or methods that are uncertain. 

2.3 Methods 

Life-cycle assessment [20] allows for a holistic characterization of a process.  This work 

utilizes a streamlined approach [50] focusing on the major life-cycle stages with respect to 

greenhouse gas emissions.  This model considers six life-cycle stages: land use change; 

feedstock production; feedstock transportation; fuel production; fuel distribution; and, fuel 

combustion.  These are illustrated in Figure 7.  The functional unit of this study is 1 MJ fuel 

produced. 
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Figure 7.  Ethanol life-cycle assessment system boundary. 

The fuel production stage is central to this model, as the processes and resulting 

emissions depend on both feedstock and fuel.  A thermodynamic model of maximum fuel yield 

from each feedstock provides a lower bound for feedstock quantity required per MJ fuel output.  

Contrasting these bounds with realistic fuel yields used in current models demonstrates the 

impact of technology and/or efficiency improvements on life-cycle emissions.  To overcome the 

lack of production data for new fuels and production methods, production processes are based on 

currently modeled processes from the literature.  Production energy demands are assumed to 

scale with fuel energy output.  The upstream stages (land use change, feedstock production and 

transportation) depend only on feedstock type, with feedstock quantity depending on the 

thermodynamic model. Downstream stages (fuel distribution and combustion) depend on fuel 

type.  Emission factors for upstream and downstream emissions are taken from the literature, and 

summarized in the following sections and in Appendix A.  Life-cycle fossil fuel emissions 

factors are taken from Argonne’s GREET model [51] and are common across all feedstock-fuel 

pairs to facilitate inter-fuel comparisons. 

Five model runs are discussed in this paper.  The first case is a set of point estimates used 
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distributions for select input assumptions for use in Monte Carlo simulation (Table 6).  The third 

is a modification of the Monte Carlo simulation (second scenario) that differs only in assuming 

maximum theoretical fuel yield values.  The fourth is a modification of the second scenario that 

differs only in assuming a lower modal value in the switchgrass yield parameter distribution.  

The fifth scenario differs from the second only in excluding indirect land use change emissions 

(i.e., assuming zero ILUC emissions), while keeping the DLUC and carbon sequestration 

distributions. 

2.3.1 Determining Fuel Yields 

Biochemically converting feedstock to fuel can be broken into two steps: conversion of 

feedstock to sugar(s) (hydrolysis), and conversion of sugar to fuel (fermentation).  Details, 

including sugar types and non-sugar components, are included in Appendix A. 

In corn, starch can be hydrolyzed, or ‘cooked’, using steam and amylase.  In switchgrass, 

hemicellulose is separated from cellulose and hydrolyzed using some combination of steam and 

dilute acid or base.  An enzyme such as cellulase or a high-concentration acid solution catalyzes 

cellulose hydrolysis [13].  This model assumes 90% yield (base case) of hydrolysate for both 

feedstocks.  Once hydrolyzed, monomeric sugars can be converted to an alcohol (i.e., fuel) with 

an assumed 95% glucose conversion efficiency, and 85% efficiency for all other sugar types 

[52]. 

The fuel yield model for calculating maximum theoretical yields, by mass, is detailed in 

Appendix A.  Ethanol has the highest theoretical mass yield at 51% and an energy density of 27 

MJ/kg (LHV).  Butanol has a lower mass yield than ethanol at 41%, but a higher energy density 

at 33 MJ/kg. 
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Using corn as feedstock, ethanol requires 114 g and butanol 115 g feedstock/MJ fuel (98 

g/MJ with complete hydrolysis and fermentation).  Using switchgrass, ethanol requires 129 g and 

butanol 130 g/MJ, compared to 104 and 105 g/MJ fuel, respectively, under ideal yields.  

Feedstock mass requirements are approximately constant across these two fuel types (and across 

all simple alcohols, see Appendix A).  This has important implications for upstream greenhouse 

gas emissions.  Feedstock quantity drives upstream emissions as well as emissions from the 

feedstock-to-sugar stages of fuel production. 

Assuming average yields of 17 Mg dry matter (dm)/ha switchgrass [8] and 9.8 Mg dm/ha 

corn [53] and non-idealized hydrolysate and fuel yields, land requirements are approximately 

0.01 m2 corn/MJ fuel and 0.007 m2 switchgrass/MJ fuel. 

2.3.2 Land Use Change 

Land use change resulting from biofuel life-cycle activities can be divided into two 

categories: direct land use change (DLUC) and, indirect land use change (ILUC).  For EISA, the 

EPA performed an LCA for both corn and switchgrass ethanol, among other feedstock-fuel pairs 

[54].  Base case emissions factors for DLUC and ILUC for corn and ILUC for switchgrass are 

taken from this study, scaled based on increased fuel yield per hectare (89% for corn, 73% for 

switchgrass) to account for decreased land demand under higher feedstock yield and fuel 

conversion yields based on the assumptions made in this model.  DLUC and ILUC emissions are 

0.30 and 5.5 Mg CO2e/ha/year respectively.  Note that corn growth provides no soil carbon 

sequestration.  This model takes switchgrass DLUC emissions to be a combination of direct 

conversion emissions from the California LCFS study [18], totaling 2 Mg CO2e/ha/year, and a 

soil carbon sequestration value of 2 Mg CO2e/ha/year from [8].  These assumed land use 
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conversion and soil carbon sequestration emissions balance, which approximately matches the 

slight negative total calculated by the EPA study [54]. 

These land use emission factors are 30-year totals, undiscounted and amortized evenly 

over the time period (following Searchinger [30] and one EPA scenario).  Time period and 

discount rate both impact land use emissions factors, but are not examined here (see [54] or [55] 

for an analysis of these variables).  That said, work done by Schwietzke et al. suggests that 

emissions timings are not of critical importance given uncertainty in other parameters [56]. 

2.3.3 Feedstock Production 

GHG emissions result from fossil fuel consumption to power the harvesting process and 

from the production and use of fertilizers.  Farming emissions are taken from the GREET model, 

totaling 46 g CO2e/kg corn and 7g CO2e/kg switchgrass. 

Fertilizer production is fossil fuel intensive, generating 3 kg CO2e/kg N [51].  Corn 

requires more fertilizer than switchgrass, averaging about 150 kg N/ha [57] versus 74 kg N/ha 

[58]. 

Fertilizer application produces N2O emissions via direct and indirect mechanisms.  Direct 

emissions result from the nitrification-denitrification cycle on the field.  Nitrogen is applied in 

the form of ammonium (NH4
+), which is oxidized to nitrate (NO3

-) by soil microbes.  N2O is a 

leaked intermediary of this oxidization and a by-product of the subsequent reduction of nitrate to 

N2.  Decomposition of uncollected crop residues also produces N2O, which is included in 

feedstock production emissions.  Indirect emissions are also a result of this nitrification-

denitrification process, but the reaction takes place off the field.  Nitrogen is volatized to 

ammonia and NOx and deposited elsewhere, or transported by leaching and runoff.  Estimates of 

switchgrass nitrogen requirements have increased over time as the relationship between nitrogen 
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and deep root formation becomes better understood, so recent N2O emissions estimates tend to 

be higher than previous.  These emissions are modeled based on IPCC definitions (see [59])  and 

calculation methods.  Emissions are 100 g CO2e/kg corn and 68 g CO2e/kg switchgrass, from 

IPCC Equations 11.6 and 11.7, using listed values for corn and field grasses (IPCC report Table 

11.2), and assumed nitrogen application rates and feedstock yields. 

2.3.4 Fuel Production 

The production process varies by feedstock input and fuel output.  As a result, modeling 

this life-cycle stage requires four semi-distinct models for each of corn or switchgrass butanol or 

ethanol.  Figure 8 shows process steps for fuel production for corn and switchgrass as feedstocks.  

Process steps unique to each fuel include fermentation and fuel concentration/purification.  

Differing enzyme activity for fermentation and differing degrees of fuel solubility in water 

necessitate unique concentration/purification activities and process energy. 

 

Figure 8.  Fuel production processes. 
Arrows indicate mass flow, and dashed boxes indicate stages where energy 
requirements are unique to the fuel type even with the same feedstock. 
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The corn ethanol process is assumed to be the USDA’s corn dry-grind model [60].  

Process electricity is from the grid and process heat is generated by natural gas combustion.  To 

keep production systems between fuels as consistent as possible, the model maintains common 

process steps from the USDA model for butanol, replacing only the fermentation and fuel 

concentration/purification steps with those modeled by Wu [61].  This model assumes butanol is 

the sole fuel produced (allowing a closer comparison with corn) whereas Wu’s process yields 

acetone, butanol and ethanol (ABE).  ABE production process energy is used to approximate 

energy to produce maximum yield butanol.  Energy use by stage is listed in Table 2, and total 

energy requirements are 0.46 MJ/MJ corn ethanol and 0.70 MJ/MJ corn butanol. 

Table 2.  Energy requirements for corn ethanol production. 

 Electricity 
(MJ/MJ fuel) 

Heat 
(MJ/MJ fuel) 

 Ethanol Butanol Ethanol Butanol 
Feedstock Handling 0.0051 0.0051 0 0 
Hydrolysis 0.0019 0.0019 0.071 0.071 
Fermentation 0.0034 0.013 0 0.46 
Fuel Distillation 0.0005 0 0.17 0 
Co-Product Handling 0.027 0.021 0.18 0.13 
Total 0.038 0.041 0.42 0.66 

 

Production of fuel from corn yields distiller’s dried grains with solubles (DDGS), a co-

product marketable as animal feed.  Consistent with EISA and CA LCFS, system expansion is 

used to model emissions credits for DDGS displacement of soy meal.  This value is 15 g 

CO2e/MJ fuel, taken as an average value from GREET and BESS (summarized by [41]). 

The switchgrass ethanol process is that of Aden et al. [52].  Non-fermentable portions of 

the feedstock and un-fermented sugars are supply process energy; they are combusted to 

generate steam for process heat and to drive a turbine.  This model uses a 68% efficient boiler to 

provide steam, with surplus heat going to drive an 85% efficient turbine.  In the case of 

insufficient energy available from these switchgrass components (e.g., the scenario where fuel 
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production efficiency is maximized), the model considers two sources of supplemental process 

energy: additional switchgrass fed directly into the boiler, or natural gas and grid electricity (as is 

the case for corn fuels).  Emissions for switchgrass as an energy source are based on upstream 

emissions from this model, 0.3 kg CO2e/kg switchgrass from base-case assumptions.  In the case 

of excess electricity, surplus electricity is sold to the grid for credit (0.2 kg CO2e/MJ).  

Switchgrass energy content is based on expected composition [12] and energy density of each 

compositional element as listed in [52]. 

Cellulosic butanol is possible (see [62-64]), but no large-scale production models 

currently exist.  Butanol production energy requirements are estimated by taking Wu’s 

fermentation and distillation energies and replacing those steps in Aden’s model, adjusted to 

account for the saccharification of cellulose within the fermentation step.  Energy use by stage is 

listed in Table 3, and total energy requirements for switchgrass ethanol are 0.58 MJ/MJ and 0.82 

MJ/MJ for butanol. 

Table 3.  Energy requirements for switchgrass ethanol production. 

 Electricity  
(MJ/MJ fuel) 

Heat 
(MJ/MJ fuel) 

 Ethanol Butanol Ethanol Butanol 
Feedstock Handling and Hydrolysis 0.015 0.015 0.15 0.15 
Fermentation and Distillation 0.043 0.043 0.37 0.61 
Total 0.058 0.058 0.52 0.76 

 

2.3.5 Fuel Distribution 

Post-production emissions depend only on fuel type, not on feedstock.  Point estimate 

GREET model values for modal distribution (e.g., train, truck) and fuel type consumed by mode 

were assumed, listed below in Table 4 and Table 5.  Ethanol emissions are 1.2 g CO2e/MJ, 20% 

greater than those of butanol per functional unit due to the higher volumetric energy density of 

butanol. 
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Table 4.  Modal distributions assumed for butanol and ethanol. 

Mode % 
Distance 

(mi) 
There 

(Btu/ton-mi) 
Back 

(Btu/ton-mi) 
Barge 40% 520 431 328 
Pipe 0 600 253 0 
Rail 40% 800 270 0 
Truck 20% 80 1099 1099 
Truck 100% 30 1099 1099 

 
Table 5.  Distribution of energy sources for each fuel transportation mode. 

 Barge Pipeline Rail Truck 
Diesel 0% 20% 100% 100% 
Residual Oil 100% 50% 0% 0% 
Natural Gas 0% 24% 0% 0% 
Electricity 0% 6% 0% 0% 

 

2.3.6 Fuel Combustion 

Following prior work (such as [39-41]), the only source of carbon in the fuel is assumed 

to be from the source feedstock, which in turn was provided by environmental carbon, so the 

CO2 released is assumed to replace exactly that which was used to produce the feedstock.  Thus, 

net combustion emissions are zero. 

2.3.7 Monte Carlo Simulation 

The simulation methodology is guided by a well-known reference on uncertainty [65].  

Distributions are fitted where sufficient data are available (e.g., crop yields) or assigned based on 

min/max and modal values to model parameters.  Monte Carlo simulations enable an 

investigation into how input uncertainty propagates through the life-cycle emissions model.  The 

model code for Matlab is included in Appendix B.  These distributions and underlying data 

sources are summarized in Table 6.  The greatest uncertainty is associated with the land use 

change emissions, the N2O emissions factors, and production emissions, where greater 
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uncertainty is associated with the switchgrass and the butanol pathways, as fuels from 

switchgrass and butanol from any feedstock are currently unproven processes at any sort of large 

scale. 

Table 6.  Parameters for Monte Carlo simulation. 

Parameter Distribution Unit Data Source(s) and Notes 
Parameters Common to Both Feedstocks 
Emissions Factor, 
Direct N2O 

Triangular  
(0.003, 0.01, 0.03) 

 Factor in direct N2O calculations using IPCC 2006 
methodology [59] 

Emissions Factor, 
Indirect N2O 

Triangular  
(0.002, 0.01, 0.05) 

 Factor in indirect N2O calculations using IPCC 2006 
methodology [59] 

Hydrolysis yield Uniform  
(0.85, 0.95) 

 [66] 

Glucose yield Uniform  
(0.85, 1.0) 

 Yield of both fuels assumed the same. Ethanol yield of 
this magnitude is near-term realistic, butanol yield 
longer-term.  Yield data from [66] 

Other sugar yield Uniform 
(0.75, 0.9) 

 Includes: Arabinose, Xylose, Mannose, Galactose.  
Yield of both fuels assumed the same. Ethanol yield of 
this magnitude is near-term realistic, butanol yield 
longer-term.  Yield data from [66] 

Parameters for Corn as Feedstock 
Corn yield Beta 

(α=21.62, β=5.86, 
[0,14.3]) 

Mg dm/ha Fit to USDA corn-for-grain 2007 county-level data for 
Midwestern states (IL, IN, IO, KA, MI, MN, MO, NE, 
ND, OH, SD, WI)  

Corn starch content Triangular  
(62.6,67.3,72) 

%w [60], [67] 

Indirect Land Use 
Change emissions 

Triangular  
(0, 5.5, 11.7) 

Mg CO2e 
/ha/year 

Mode: [54].  Lower bound 0 and upper bound from 
[30] 

Direct Land Use 
Change emissions 

Triangular  
(0, 0.3, 4.5) 

Mg CO2e 
/ha/year 

Mode: [54].Lower bound 0 and upper bound from [29] 

Nitrogen Application Triangular  
(141,150,160) 

kg N/ha [57] 

Production electricity, 
ethanol 

Triangular  
(0.023, 0.038, 0.049) 

MJ/MJ etOH Mode: [60] model.  Literature survey [68] provides 
lower bound from his work, upper bound from [69] 

Production heat, 
ethanol 

Triangular  
(0.32, 0.42, 0.51) 

MJ/MJ etOH Mode from [60] model.  Literature survey from [68] 
provides lower bound from his work, upper bound 
from [69] 

Production electricity, 
butanol 

Uniform  
(0.031, 0.051) 

MJ/MJ buOH Base case from [61] model.  Upper and lower points 
taken as % higher and lower than likely value from 
ethanol model. 

Production heat, 
butanol 

Uniform  
(0.50, 0.83) 

MJ/MJ buOH Base case from [61] model.  Upper and lower points 
taken as % higher and lower than likely value from 
ethanol model. 

Parameters for Switchgrass as Feedstock 
Switchgrass yield Beta 

(α=21.62, β=5.86, 
[0,21.6]) 

Mg dm/ha Yield data for sample plots from [8] used to calculate 
appropriate distribution mean.  Distribution shape 
parameters assumed the same as from USDA 2007 
corn data. 

Switchgrass yield 
(Scenario 4 only) 

Triangular 
(5.2, 12.9, 21.6) 

Mg dm/ha Lower bound from [58], mode from [70], upper bound 
as above [8] 

Glucan content Triangular  
(31.0, 34.4, 37.2) 

%w [12] 

Xylan content Triangular  
(20.6, 22.9, 26) 

%w [12] 
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Parameter Distribution Unit Data Source(s) and Notes 
Mannan content Triangular  

(0.29, 0.32, 0.36) 
%w [12] 

Galactan content Triangular  
(0.67, 1.0, 1.2) 

%w [12] 

Arabinan content Uniform  
(2.6, 3.4) 

%w [12] 

Lignin content Triangular  
(17.3, 19.2, 21.1) 

%w [12] 

Indirect Land Use 
Change emissions 

Triangular  
(0, 1.7, 15) 

Mg CO2e 
/ha/year 

Mode: [54].  Lower bound 0 and upper bound from 
[30] 

Direct Land Use 
Change emissions 

Triangular  
(0, 2, 4.5) 

Mg CO2e 
/ha/year 

Mode: [54].  Lower bound 0 and upper bound 
from[29]. 

Carbon sequestration Triangular  
(0.73, 1.95, 4) 

Mg CO2e 
/ha/year 

[71], [72] 

Nitrogen Application Triangular  
(55, 74, 100) 

kg N/ha [72] for upper and lower bounds, [58] for mode 

Production energy, 
ethanol 

Uniform 
(0.44, 0.72) 

MJ/MJ etOH [52] for expected value, [73] for lower bound and 
range (from presented literature review).  Assume 
constant split between heat and elec as total varies. 

Production energy, 
butanol 

Uniform  
(0.63 1.20) 

MJ/MJ buOH [52], [61].  Percentage below and above likely value 
taken from etOH distribution to provide lower value, 
doubled to provide upper production value.  Assume 
constant split between heat and electricity as total 
varies. 

 

2.4 Results and Discussion 

2.4.1 Model Calibration 

Total point estimate emissions of 45 g CO2e/MJ for corn ethanol, which excludes the land 

use stage, from this model are comparable to other studies with similar system boundaries ([41], 

[51], [74] find 41, 58 and 60 g CO2e/MJ respectively).  Corn butanol emissions are about 20% 

higher than those of corn ethanol, which is consistent (though greater) than the difference in one 

other corn butanol LCA [61].  Higher butanol life-cycle emissions are mainly due to higher fuel 

production emissions and a lower DDGS emissions credit compared to corn ethanol.  The 

upstream stages for corn ethanol and butanol are common.  Complete point estimate life-cycle 

emissions for each feedstock-fuel pathway are broken down by stage in Appendix A, with net 

emissions summarized in Table 7. 
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2.4.2 Simulation Results 

Figure 9 shows PDFs for six combinations of feedstock, fuel type and production energy 

source.  Mean values are summarized in Table 7, and complete distribution statistics are included 

in Appendix A.  

Four cases for switchgrass (SW) as feedstock are investigated in this model: two using 

fossil fuels in the form of grid electricity and natural gas for heat (noted with [FF]) for 

production process energy, and two using the direct combustion of switchgrass for heat and 

electricity (noted with [SWf]).  Switchgrass ethanol production sees an electricity surplus 

because the energy in the lignin and unfermented sugars is greater than the heat and electric 

energy required in the production process.  As a result, the pathway has negative production 

emissions due to a grid electricity displacement credit.  The SW EtOH [FF] and [SWf] cases are 

very similar because a supplementary source of energy is required only under a small set of 

simulated input values.  Butanol production energy demand exceeds the amount available in 

lignin and unfermented sugars; therefore, external energy is required.  Fossil fuel emissions 

factors are greater than that of switchgrass (0.02 kg CO2e/MJ), accounting for the large 

production emissions difference between the two butanol cases.  
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Table 7.  Summary of total emissions from point estimate and Monte Carlo 
simulations. 

Model (Shorthand) 

Point 
Estimate 
Scenario 

Emissions 
(g CO2e/MJ) 

Mean Emissions from Monte Carlo (MC) Simulations 

Base MC 
Scenario 

(g CO2e/MJ) 

MC, max fuel 
yield 

(g CO2e/MJ 
(%)) 

MC, lower SW 
yield 

(g CO2e/MJ 
(%)) 

MC, no ILUC 
(g CO2e/MJ 

(%)) 
Corn ethanol  
(Corn etOH) 101 112 97 (-13%)1 n/a 63 (-44%) 

Corn butanol  
(Corn buOH) 119 131 115 (-12%) n/a 81 (-38%) 

Switchgrass ethanol, 
fossil fuel production 
energy  
(SW etOH [FF]) 

18 50 68 (+36%) 71 (+42%) 6 (-88%) 

Switchgrass ethanol, 
switchgrass production 
energy  
(SW etOH [SWf]) 

18 48 59 (+23%) 69 (+44%) 4 (-92%) 

Switchgrass butanol, 
fossil fuel production 
energy  
(SW buOH [FF]) 

48 90 98 (+9%) 112 (+24%) 46 (-49%) 

Switchgrass butanol, 
switchgrass production 
energy  
(SW buOH [SWf]) 

31 76 77 (+1%) 99 (+30%) 32 (-58%) 

1- the percentages in MC with max fuel yield, MW with lower SW yield, and MC with no ILUC are changes 
from the Base MC Scenario. 
 

Maximizing fuel yield presents diverging impacts for corn- and switchgrass-based fuels.  

As shown in Table 7 Column 3, mean GHG emissions decrease for corn by more than 10%.  

Upstream emissions decrease due to decreased land demands resulting from lower feedstock 

requirements.  In contrast, GHG emissions for switchgrass-based fuels increase with increasing 

fuel yields.  While upstream emissions decrease with decreased land demands, the unfermented 

sugars that provide process energy (and potentially an electricity displacement credit) vanish 

with maximum fuel yields.  The result is that all feedstock-fuel pathways require supplementary 

process energy, thereby producing GHG emissions rather than receiving a GHG credit.  The 

increased process emissions outweigh the decreased upstream emissions, resulting in increased 

total emissions for the switchgrass pathways. 
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Maximizing fuel yield presents diverging impacts for corn- and switchgrass-based fuels.  

As shown in Table 7 Column 3, mean GHG emissions decrease for corn by more than 10%.  

Upstream emissions decrease due to decreased land demands resulting from lower feedstock 

requirements.  In contrast, GHG emissions for switchgrass-based fuels increase with increasing 

fuel yields.  While upstream emissions decrease with decreased land demands, the unfermented 

sugars that provide process energy (and potentially an electricity displacement credit) vanish 

with maximum fuel yields.  The result is that all feedstock-fuel pathways require supplementary 

process energy, thereby producing GHG emissions rather than receiving a GHG credit.  The 

increased process emissions outweigh the decreased upstream emissions, resulting in increased 

total emissions for the switchgrass pathways. 

 

Figure 9.  Probability distributions for total GHG emissions.   
Curve identifications list shorthand for feedstock type, fuel type and production 
energy source (if necessary) as listed in Table 7. 

The switchgrass emissions distributions are wider than those of corn due to greater 

uncertainty associated with this less proven cellulosic production pathway.  This model assumes 

that the switchgrass distribution has the same negatively skewed shape as corn.  When this 
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distribution is adjusted to reflect lower yields found in the literature than assumed in the base 

case (assigning a new yield distribution with lower bound 5.2 Mg/ha from Schmer et al. [58], 

mode 12.9 Mg/ha from Wullschleger et al. [70] and keeping the upper bound constant), both the 

mean values of the swichgrass-based fuels and the uncertainty associated with the output 

distributions are greater.  Figure 10 shows the impact of these yield change on the switchgrass 

ethanol PDF.   

 

Figure 10.  Impact of shifting the mean switchgrass yield on final emissions 
probability distribution. 

Feedstock yield determines upstream emissions, which include the highly uncertain 

ILUC emissions (distribution mode adjusted to 2.3 Mg CO2e/ha/year to account for the lowered 

yield), so changes here have substantial impacts on the expected life-cycle emissions, as shown 

in the mean value changes in Table 7 Column 4. For switchgrass to provide convincingly low 

carbon fuels, yields must be carefully tracked because of their large impact on emissions 

calculations. 

As mentioned previously, there is no correlation assumed between the parameters input 

into the Monte Carlo simulation.  Generally, when correlation is introduced into these 

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

-50 0 50 100 150 200 250 

Pr
ob

ab
ili

ty
 

GHG Emissions (g CO2e/MJ) 

SW
 Ethanol (lower yield) 

S
W

 E
th

an
ol

 (h
ig

he
r y

ie
ld

) 

Mean 
49 

Mean 
69 



 37 

simulations, the standard deviation of the distributions decrease while the mean remains about 

the same.  This outcome is illustrated nicely in a paper by Bojacá and Schrevens discussing 

stochastic sampling under correlation when modelling parameter uncertainty in these sorts of 

models [75].  The impact of correlation on the interpretation of the model results presented here 

is that the mean values for the various fuels would remain in the same rank order, and in the 

same category regarding whether or not the fuel has greater or less emissions than gasoline.  

With less variance in output distributions for life-cycle greenhouse gas emissions for each fuel, 

there is less overlap between distributions, so the likelihood that corn will have greater emissions 

than gasoline will increase, and the likelihood that switchgrass ethanol has lower emissions than 

gasoline will increase, because of their relative positions compared to the gasoline distribution. 

2.4.3 Model Sensitivity to Input Parameters 

The sensitivity of the total life-cycle greenhouse gas emissions to each of the input 

parameter distributions (listed in Table 6) is calculated using Spearman’s rank-order correlation.  

Table 8 shows this correlation coefficient as well as the percent contribution to variance for the 

uncertain input parameters for the ethanol fuel pathways presented above, with a cut-off value at 

a 1% threshold.  Butanol data are similar, and are included in Appendix A.  If better 

characterized, it is this ordered list of parameters most influential in driving emissions that offers 

the greatest opportunity to decrease the overall uncertainty associated with life-cycle biofuel 

emissions. 

The ILUC emissions factor is overwhelmingly the key parameter for each scenario, due 

to both the high contribution to total emissions from ILUC and the high degree of ILUC 

uncertainty (i.e., wide distribution of possible values).  Improving the economic models that 

forecast indirect land use change and associated emissions presents an opportunity to greatly 
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increase the confidence with which biofuels emissions can be predicted.  This, of course, 

assumes ILUC uncertainty can be substantially reduced with better knowledge; some argue much 

of this uncertainty is irreducible, at least in the near future [76], so an emissions range that spans 

an order of magnitude may be the best one can anticipate. 

Table 8.  Percent contribution to variance and rank order correlation values for 
three ethanol pathways. 

Parameter 
Corn ethanol SW etOH FF SW etOH SWf 

ConV (%)/ ROVC 
ILUC emissions factor 85.1% 0.91 66.2% 0.79 70.5% 0.81 
DLUC emissions factor   4.6% 0.21 5.0% 0.22 
Soil C sequestration factor   2.8% -0.16 3.0% -0.17 
Direct N2O emissions 
factor 4.1% 0.20 2.7% 0.16 2.9% 0.17 

Feedstock yield 6.7% -0.25 1.8% -0.13 1.9% -0.13 
Production energy   17.0% 0.40 13.4% 0.36 
Glucose conversion 
efficiency 2.2% -0.15     

Hydrolysis efficiency   3.0% 0.17 2.0% 0.14 
 

The direct N2O emissions factor plays a significant role in total emissions for all 

feedstock-fuel pathways. IPCC [59] is not the only source admitting uncertainty in N2O 

emissions from nitrogen fertilizer.  In a widely cited paper, Crutzen et al. [77] suggest total N2O 

emissions are 5 to 8% of applied N (by mass), which is greater than the total using the IPCC 1% 

factor in each of the direct and indirect N2O calculations.  Using the ranges, rather than point 

estimates, listed in the IPCC report, this 5 to 8% range falls within the possible emissions in this 

model.  So, it is really the mode that is controversial. 

The only difference between the two switchgrass cases is the greater influence of the 

production energy parameter in the fossil fuel case (FF).  This is a result of the grid electricity 

emission factor, as discussed above.  Corn ethanol is more sensitive to corn yield than 
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switchgrass (SW) fuels to switchgrass yield, likely because of the increased upstream emissions 

from corn than from switchgrass. 

The shape of each life-cycle emissions distribution (Figure 9) reflects the influence of 

these key parameters.  For example, the ILUC emissions factors for corn are more symmetric 

than for switchgrass, which are positively skewed.  There is corresponding symmetry and skew 

in distributions for corn fuels and switchgrass (SWf) fuels, respectively. 

To further explore the impacts of the identified key variables, each was fixed, in turn, and 

the resulting overall life-cycle emissions for the corn ethanol case are presented in Figure 11.  

The variables are all fixed at an extreme value, the 95th percentile, with the base case presented 

as the first distribution plotted.  Three variables which are in some way an efficiency (hydrolysis 

efficiency, feedstock yield, and starch content in feedstock composition) will shift the 

distribution towards lower emissions values when pegged at a high value because their output is 

negatively correlated with the final distribution; when the system runs more efficiently in some 

regard, emissions decrease.  The other four variables are positively correlated with the final 

output, so when they are pegged at a high value, the output distribution is shifted towards higher 

emissions values.  Fixing the ILUC parameter has the greatest impact by one measure: it shifts 

the median value the most, and completely relocates the inter-quartile range.  Fixing the 

feedstock yield at a high value reduces the variance to the greatest degree.  This is because so 

many impacts through the upstream stages of the life cycle depend on the area of land per unit 

feedstock produced.  DLUC and N2O volatization are second and third to ILUC in terms of how 

substantial the inter-quartile shift is. 
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Figure 11.  Impact on the distribution for corn ethanol of fixing each of the listed 
key parameters at their 95th percentile value.2 

2.4.4 Butanol Compared with Ethanol 

This chapter considers butanol from the greenhouse gas reduction perspective rather than 

from an economic perspective.  In light of the Monte Carlo simulation results (see Figure 9), it 

seems butanol will have higher greenhouse gas emissions than ethanol produced from the same 

feedstock.  The upstream emissions will be essentially the same for both fuel types, as they 

depend on are feedstock, and both fuel types require about the same mass of feedstock per unit of 

energy output (105 g switchgrass/MJ or 115 g corn/MJ).  Though ethanol has a higher theoretical 

conversion efficiency than butanol (51% versus 41% by weight as a theoretical maximum), 

butanol has a higher energy density, so the input mass per unit energy output is very close [78].  

                                                
2 For this, and future, boxplots, the ranges are calculated as follows:  The box, from bottom to top, indicates the 25th 
(Q1), 50th and 75th (Q3) percentile values from the data plotted.  The interquartile range (IQT) is Q3 – Q1.  The 
whisker below is defined as Q1 – 1.5IQT and the whisker above is defined as Q3 + 1.5IQT.  Outliers fall outside of 
this whisker range. 
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The production emissions for butanol are higher than those of ethanol because butanol is more 

difficult to separate from water than ethanol, so, with currently available separation techniques, 

butanol will always require greater energy input than ethanol.  In the downstream (distribution) 

phase of the life cycle, butanol does have an advantage over ethanol in greenhouse gas 

emissions.  Due to its increased volumetric energy density, it costs less energy to transport 

butanol than ethanol; however, the distribution is such a small portion of total life-cycle 

emissions that this does not shift the balance in butanol’s favour. 

Note that this overall conclusion concerning buthanol is similar to that found by Wu et al. 

[61], though more favourable yields for butanol are assumed in this study.  However, the US 

EPA found opposite results in the most recent RFS analysis document [15].  The EPA study 

suggests that corn ethanol offers 7-32% emissions reductions from gasoline, where corn butanol 

offers 20-40% reductions.  Though several model assumptions differ between this work and that 

done by the EPA, the difference is largely due to assumptions of lower natural gas use in the fuel 

production stage; 0.66 MJ natural gas/MJ butanol (this study) versus 0.27 MJ natural gas 

energy/MJ butanol (EPA).  This difference suggests that there is further research needed into the 

production requirements of butanol, as different assumptions arise from an as-of-yet unproven 

fuel type and lead to completely different comparative conclusions. 
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This isn't your song. This isn't your music. 
How can they be wrong when  
by committee they choose it all? 
They choose it all. 
 

“Plasticities”, Andrew Bird 
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Chapter 3. Uncertainty and Biofuel Policy Designs3 

3.1 Abstract 

Previous research has established substantial uncertainty in life-cycle greenhouse gas 

emissions from biofuels and fossil fuels, though biofuel uncertainty is much greater.  Given this 

uncertainty, some method by which to evaluate energy policies based on point estimate life-cycle 

assessment (LCA) data is necessary.  This chapter establishes a ‘risk of policy failure’ 

framework to quantitatively assess the likelihood of a policy achieving its goals given 

uncertainty in regulated emissions.  This framework is applied to the Energy Independence and 

Security Act of 2007 (EISA), and concludes that there is a meager 10% probability that corn 

ethanol (including indirect land use change, ILUC, emissions) will meet the 20% reduction 

target, and a 40% probability that switchgrass ethanol will meet its 60% reduction target.  If 

ILUC is excluded from the system boundary, the likelihood these fuels will meet their target 

emissions reductions is 70 and 95%, respectively.  In considering California’s Low-Carbon Fuel 

Standard, data collected is insufficient to reduce emissions uncertainty to a degree where point 

estimates are an appropriate regulatory yardstick.  The policy failure framework could be 

modified and applied to this type of policy as well, provided emissions distributions are 

calculated for each regulated fuel type. 

3.2 Introduction 

Building upon the results from the previous chapter, this chapter discusses how biofuel 

policies interact with the uncertainty in biofuel emissions.  Two policies are discussed, the 
                                                

3 This chapter is based in part on the following published papers:   
Mullins, K. A., Griffin, W. M., and Matthews, H. S. (2011) Policy implications of uncertainty in modeled life-cycle 
greenhouse gas emissions of biofuels, Environ. Sci. Technol 45, 132–138. 
Kocoloski, M., Mullins, K. A., Venkatesh, A., and Griffin, W. M. (2012) Addressing Uncertainty in Life-Cycle 
Carbon Intensity in a National Low-Carbon Fuel Standard, Energy Policy. 
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renewable fuel standard (RFS) included in the Energy Independence and Security Act of 2007 

(EISA), and the low-carbon fuel standard (LCFS) as implemented in California.  Their structures 

differ, so each policy as affected by emissions uncertainty in different ways.  The LCFS includes 

more narrowly defined fuel types than does the RFS, so before discussing how uncertainty could 

be built into the policy, this work examines whether or not the increased amount of data 

necessary (or possible to acquire) to define these specific fuel pathways obviates the need to 

even include uncertainty in the policy design.  The chapter concludes with a discussion of the 

current legal battle over the implementation of the LCFS in California and some reflections on 

what this might mean for LCA in policy going forward. 

3.2.1 Two Policies, Both Alike in Dignity4 

There are two policy designs used in the US that specifically address the use of biofuels 

for transportation: an RFS such as included in EISA [14] and an LCFS as is legislated in 

California [16].  Broad carbon taxes or cap-and-trade programs are other approaches to address 

carbon emissions from the transportation sector; however, these policy designs are most often 

discussed in a much broader context than a single sector, so they will not be specifically 

discussed in this dissertation.  Both the RFS and LCFS aim to increased biofuel usage with the 

expectation that greenhouse gas emissions will be reduced when compared to a fossil fuel-based 

business as usual case, but each takes a different approach to achieve this end. 

The RFS increases biofuel usage in the transportation sector with specific volume 

mandates.  The volumes increase over time, with goals in 2022 of 15 billion gallons of advanced 

biofuel (i.e., corn ethanol) and 22 billion gallons of other advanced biofuels (mostly cellulosic 

ethanol with some biodiesel) [14] which have life-cycle greenhouse has emissions lower than the 

                                                
4 In fair America where we set our scene 
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incumbent fuel they replace (gasoline or diesel) as determined by the EPA (summarized 

previously in Section 1.3.3 and Figure 3).  The reasoning is that if billions of gallons of lower-

emissions biofuels are used, the relative gasoline and diesel shares of fuel consumption will 

decrease and greenhouse gas emissions will be avoided by this policy intervention. 

The LCFS encourages, rather than requires, increased biofuels usage by mandating a 

state-wide fuel mix GHG emissions intensity reduction target.  Instead of fixing a volume, the 

weighted average GHG emissions intensity of the fuel mix is fixed.  The reasoning here is that 

some set of lower-carbon fuels will be used to reduce the GHG emissions from the average MJ 

of fuel used in a region by the target percentage.  The target in California is 10% less than GHG 

emissions under a fossil fuel only scenario.  Most biofuel types identified by the California Air 

Resources Board (CARB) have lower GHG emissions per unit fuel energy (“carbon intensity”) 

than gasoline, so they are one category available to lower that carbon intensity value.  Other 

alternative fuel types included are electricity, liquefied or compressed natural gas, or hydrogen 

[79].  The regulated entity here is the fuel blender, who choses the types and composition of the 

fuels sold to the market.  In this system, blenders have the capability to sell or buy allowances.  

For example, if one blender has used a set of fuels that offers only an 8% reduction, they can buy 

allocations of carbon intensity from a blender who has achieved a reduction in carbon intensity 

greater than 10%.  This policy style has been described in literature as an improvement over a 

strictly command-and-control style biofuel policy like the RFS, primarily due to increased 

flexibility in possible low-carbon fuel choices and a resulting decrease in cost per ton CO2 

avoided [80], [81]. 

Both policies both have their shortcomings.  Emissions reductions from both designs are 

vulnerable to general increases in the fuel usage.  In the RFS case, if gasoline and diesel use 
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outpace the increase in low-carbon biofuel usage, meaning an increase in percentage 

composition of biofuels in the national fuel mix is not achieved, carbon emissions will increase.  

Thompson and colleagues [82] find that the decrease in price of gasoline due to reduced demand 

caused by an increase in biofuel use from the EISA RFS actually induces increased global 

gasoline consumption and increased global GHG emissions.  This type of indirect emissions 

impact is not considered in either the RFS or the LCFS.  Holland et al. [81] present an economic 

analysis, comparing different flavours of LCFS-designed policy alongside other policy 

interventions that aim to decrease transportation CO2 emissions, and arrive at similar 

conclusions; emissions reductions are not obtained because the overall amount of fuel consumed 

can increase, even though the fuel mix is changed to include more low-carbon fuels. 

One challenge faced by policy designers is how uncertainty in life-cycle emissions 

estimates affects the usefulness of policies based on specific numerical emissions reductions 

targets, and the robustness of emissions reductions claims. 

3.3 Risk of Policy Failure Framework 

Consider a case where the mean value for a fuel just meets some legislated percentage 

decrease (target) requirement from a life-cycle fossil fuel emissions value.  This fuel would be 

accepted under legislation.  However, with a high degree of uncertainty there is a possibility that 

the alternative fuel’s emissions would be higher than the required target.  Also, depending on the 

aggressiveness of the RFS or LCFS reduction target and the level of uncertainty surrounding the 

biofuel, there may be some non-zero probability that biofuel emissions are actually greater than 

those of the fossil fuel it intends to replace; its use could actually increase emissions.  This 

probability is illustrated in Figure 12 for two representative biofuels with differing distribution 

widths (the distribution width of Fuel 2 being greater than that of Fuel 1).  A failure of policy 
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occurs if emissions are greater with a biofuel than with the displaced fossil fuel.  The policy 

could also fail if the reductions do not meet the required target. 

 

Figure 12.  Probabilities of “policy failure” given policy emissions target exactly met 
for two different biofuels. 

This exercise demonstrates the required trade-off between policy aggressiveness and 

confidence in obtaining some reduction in emissions.  A reduction target for Fuel 1 of only 10% 

has a probability of increased emissions of 0.36, where a 20% target has a probability of only 

0.13.  The change in probability with change in percentage is a direct result of the shape of the 

emissions distributions for each biofuel, so distribution with a lower variance or a smaller right 

tail will yield a faster decrease in the probability of policy failure (or degree of confidence in 

policy success).  Under current policies based on point estimates, a level of confidence in 

emissions reduction is an unintended consequence of the target reduction level (either on a per-

fuel basis, or for the overall fuel mix). 

Considering this issue in a probabilistic way allows one to ask more nuanced questions 

about which fuel is preferable.  Given the complexity and uncertainty in modelling 
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environmental impacts of biofuels, a sophisticated decision making approach seems more 

appropriate than simply deciding that a whole category of fuels is acceptable based on a single 

value estimates of its impacts through the life cycle. 

Perhaps a more responsible policy design approach is to perform an uncertainty analysis 

(such as the Monte Carlo analysis demonstrated here) on the feedstock-fuel pathways of interest, 

choose an “acceptable” degree of confidence in reductions occurring (on the x-axis), and then 

legislate a corresponding percentage target (on the y-axis). 

3.4 Incorporating ‘Risk of Policy Failure’ in Current Policy Designs 

3.4.1 Renewable Fuel Standard 

The renewable fuel standard design simply compares two fuels (a biofuel to an 

incumbent such as gasoline or diesel), so the impact of including uncertainty can be assessed by 

replacing a point estimate with a probability distribution in the comparison.  This in effect 

replaces the question - “Is the new fuel better or worse than the target?” with a more nuanced one 

-  “What is the likelihood that the new fuel of better or worse than the target?” 
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Figure 13.  Probabilities that each fuel type will meet a specified reduction target.  
EISA targets for corn (20%) and switchgrass (60%) ethanol are specifically 
indicated. 

Figure 13 presents the likelihood that biofuel emissions will be less than or equal to the 

RFS target emissions levels (i.e., meet the target), defined as a percentage decrease from 

gasoline, as the policy target becomes more aggressive (i.e., as the percentage increases).  In this 

comparison, illustrated in Figure 14, distributions for the biofuels are taken from the previous 

chapter, and the distribution for gasoline is taken from Venkatesh et al. [83], acknowledging that 

this is a comparison between two uncertain quantities.  From Figure 13, corn ethanol has a 

probability of lower emissions than gasoline of 0.25 (which is at the y-intercept, or the 0% 

point), and an even lower chance of meeting the 20% EISA target.  The fuel with the lowest 

GHG emissions, switchgrass ethanol (SWf), is very likely to have lower emissions than gasoline 

(p = 0.9) but it does not meet EISA target of a 60% decrease; the likelihood of lower emissions 

than the target is about 0.4. 
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Figure 14.  Comparison between emissions distributions for corn and switchgrass 
ethanols and gasoline. 

Including indirect land use change emissions is somewhat controversial (see [84] for 

some discussion). If ILUC emissions are simply not included as part of the life cycle, biofuels 

show greater promise to reduce GHG emissions.  Taking the distributions into account (Figure 

13, dashed curves), a randomly selected gallon of corn ethanol has a probability of almost 0.7 of 

meeting the 20% reduction target.  Switchgrass butanol shows almost the same probability of 

meeting its 60% reduction target, while switchgrass ethanol looks very likely to surpass the 

target.  ILUC emissions are of particular importance as they have the greatest influence on life-

cycle emissions (as discussed in Chapter 2) and will tip the decision for or against each of the 

ethanol types modeled here. ILUC, then, requires particular attention in order to reduce the 

possibility of making the wrong policy recommendation. 

3.4.2 Low-Carbon Fuel Standard 

The LCFS designed for California offers an opportunity to reduce the uncertainty 

associated with biofuels because it disaggregates biofuels into more precisely defined fuel types, 
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such as Midwestern corn ethanol with process heat from coal.  Additionally, some data from fuel 

produces and blenders are reported to the government, in an opt-in program, so that they can 

prove which fuel types they used and get the appropriate carbon intensity (less than the default) 

assigned to their fuel blend.  The potential for increased data means there is potential to reduce 

the uncertainty in GHG emissions. 

As discussed previously in Chapter 2, there are a handful of key parameters that 

determine the magnitude and variance of fuel GHG emissions.  These conclusions inform the 

parameters for which more and better data are desirable.  Unfortunately, not all parameters are 

uncertain for the same reason.  Three categories can be helpful in defining the parameters, and 

will influence how uncertainty might be addressed: 

Spatial or temporal variability: A category particularly relevant to agricultural systems, 

this source of uncertainty in an input parameter results from not knowing a precise ‘where’ or 

‘when’ with which to define the data required in a model.  From Chapter 2, feedstock yield and 

composition varies by time and place.  Hydrolysis efficiency and production energy vary by 

ethanol plant, and vary in time as plant conditions improve due to technology advancements, or 

degrade due to plant age.  These can be measured and verified. 

Data limitations: This represents uncertainty that can theoretically be reduced with 

sufficient time and effort, but where parameters cannot be easily measured due to limitations in 

data quality or aggregation along the supply chain.  For biofuels, feedstock production 

characteristics such as feedstock yield and nitrogen fertilizer application rate have a significant 

impact on carbon intensity estimates, but it may be difficult to determine appropriate values for 

the feedstock used at a particular biorefinery.  Some ethanol refineries may establish contracts 

with specific farms to meet their feedstock requirements, but obtaining data on feedstock yields 
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or fertilizer application rates at the farm level may be problematic if farmers are hesitant to 

provide precise operational data.  Additionally, feedstock of unknown provenance presents an 

insurmountable obstacle. 

Scientific uncertainty:  An input parameter is uncertain because the underlying physical 

process, or the system which determines the parameter value, is not known or not well 

understood.  Until these issues are resolved with improved understanding or models, the 

parameter uncertainty cannot be resolved.  Land use change emissions and the nitrogen 

volatization rate would fall into this category.  Due to the complexity of the systems being 

modeled, validating land use change estimates may be virtually impossible.  Nitrogen 

volatization could be better understood with better field level tests; however, obtaining sufficient 

data to characterize each field providing biofuel feedstock will be a challenge even when the 

volatization models are sound.  The nitrogen volatization parameter would then suffer from data 

limitations.  Perhaps the only way to deal with scientific uncertainty in policy design is to 

commit to updating regulatory targets regularly in order incorporate the best science to date. 

The degree to which increased data availability can reduce the uncertainty in emissions 

can be tested by fixing “knowable” parameters at some fixed value (e.g., median, lower or upper 

bound) and measuring the change in the resulting life-cycle emissions distribution.  At best, this 

list includes the parameters influenced by spatial or temporal variability and data limitations: 

• Feedstock sugar composition 

• Hydrolysis efficiency 

• Production energy requirements 

• Field-level nitrogen application rate 

• Crop yield 
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As shown in Figure 15, if the distributions for ethanol from corn and from switchgrass for 

which data could be reported are fixed at their mean values, there is not a substantial reduction in 

distribution width, nor does the median value shift very far.  This suggests that the design of the 

LCFS offers limited potential to reduce uncertainty in emissions for the biofuels considered. 

 

Figure 15.  Distributions including the base case simulation and a simulation where 
“knowable” values are fixed at the parameter distribution mean. 

The question, then, of how an LCFS-type policy can be improved to better account for 

uncertainty arises as intensive data reporting/collection is insufficient.  Similar to the RFS 

analysis, the LCFS policy can be examined by replacing point estimates with probability 

distributions.  That said, it is not possible to calculate a simple probability of policy failure a 

priori – a percentage reduction target for the whole transportation system can be achieved in 

many different ways; fuel types used and the quantity of each type are both sets of data necessary 

to evaluate the probability of failure.  One way to estimate a probability of policy failure is to 

generate a year-end (or other reporting period length) distribution representing the regional fuel 

mix.  This is done by sampling distributions for each fuel used in the region based on how often 
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it is used (or perhaps weighted by energy, or volume, depending on the functional unit of the 

study).  Statistics of interest, including mean emissions, standard deviation, etc., can be 

considered alongside the expected reduction target.  Using the reduction target and this PDF will 

produce a probability of failure statistic.  This approach is illustrated in Figure 16. 

 

Figure 16.  Methodological illustration of how to calculate the probability of policy 
failure for an LCFS.   
Individual fuel types are on the left, with the weighted, total PDF of all fuels on the 
right.  Vertical lines indicate (from right to left): business-as-usual emissions, 10% 
reduction target, and new distribution mean. 

The methodology illustrated in Figure 16 requires a distribution of life-cycle greenhouse 

gas emissions to be calculated for each fuel type considered in the policy.  This thesis and work 

published by Venkatesh et al. ([83], [85]) can be an example method to follow to generate such 

distributions, and the important parameters identified therein can be helpful to future modellers 

identify key variables before constructing complex Monte Carlo simulation models. 

3.5 Legal Action and the LCFS Policy Framework 

In 2009, two suits by two different groups of plaintiffs were filed in a U. S. District Court 

in California against the California Air Resources Board’s (CARB) Low-Carbon Fuel Standard.  
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The first was put forth by the National Petrochemical and Refiners Association, the American 

Trucking Association, the Center for North American Energy Security, and the Consumer 

Energy Alliance.  The second was filed by the Rocky Mountain Farmers Union, Redwood 

County Minnesota Corn and Soybean Growers, Penny Newman Grain Inc., Growth Energy, the 

Renewable Fuels Association, Rex Nederend, the Fresno County Farm Bureau, the Nisei 

Farmers League and the California Dairy Campaign.  In general, the first group represents fossil 

fuel interests, while the second represents ethanol interests. 

The suits were similar, and are addressed by the same summary ruling delivered in 

December 2011 by Judge Lawrence O’Neill.  The Rocky Mountain Farmers Union suit has three 

arguments, namely that LCFS implementation is unconstitutional because it violates the 

Supremacy Clause and the dormant Commerce Clause, and it violates provisions in the Clean 

Air Act.  Each of these three arguments, as presented by the plaintiffs, and the response from 

CARB are discussed briefly in the following paragraphs.  All information is taken from motions 

submitted by the Renewable Fuel Association plaintiffs and responses from Judge O’Neill [86], 

[86], [87]. 

One important feature of EISA is that bio-refineries that were operating or were under 

construction in 2007 (the year of legislation) are not obligated to prove emissions reductions 

versus gasoline.  CARB’s LCFS does not grandfather the older ethanol plants in, thereby 

“penalizing” them in a way that Congress did not.  The plaintiffs argue that this is in violation of 

the Supremacy Clause (Article VI, Clause 2 of the Constitution), which states that federal law 

must be followed when conflicts between federal and state or local laws arise; federal law trumps 

state law.  The issue the plaintiffs allude to here is that corn ethanol that is treated favourably 

under federal laws is treated unfavourable under state laws. 
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To implement the LCFS, CARB assigns carbon intensities to a list of different fuel 

pathways.  Midwestern corn ethanol, in most pathways, has a higher carbon intensity than 

California corn ethanol, which in turn has a higher carbon intensity than Brazilian sugarcane 

ethanol [17].  The plaintiffs argue that the higher Midwest values are due to factors outside of the 

producer’s control, such as transportation distances and electricity grid mix – this amounts to 

California trying to influence through internal regulation the decisions that are made in other 

states.  Furthermore, to receive this carbon intensity rating, or to change a carbon intensity rating, 

regulated entities must get approval from CARB.  Essentially, this means California is an 

“arbiter of interstate transportation of fuel and feedstocks”, which it has no grounds to do under 

the Commerce Clause.  This clause means that the federal government can regulate interstate 

commerce, but no specific state can do so unless specific conditions are met. 

The Clean Air Act gives the Environmental Protection Agency (EPA) the authority to 

ensure that biofuels regulation does not end up with any geographic restrictions on where 

biofuels can be sold.  The LCFS does just this in restricting what types of fuels will be sold in 

California. 

The plaintiffs argue that the material harm they suffer because of this legislation is not 

offset by any benefits.  Higher carbon fuels will simply be sold in markets outside of California 

(the issue of emissions shuffling), so GHG emissions will not be substantially changed by the 

LCFS.  Additionally, any emissions reductions expected to be achieved by this legislation will be 

negligible on a global scale, so there will not even be indirect benefits to anyone. 

The defendants (CARB) argue that the framework they use to evaluate the carbon 

intensity of fuels is indiscriminately applied; it is identical regardless of where the fuel comes 

from.  The data used, of course, depend on location.  With respect to regulating the activities of 
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out-of-state, they argue that the LCFS simply creates a market for biofuels, so it does not directly 

regulate any decisions made by farmers, ethanol producers, etc. out of state.  Beyond this, 

Congress gave California the authority to regulate fuels and fuel additives for emissions controls 

purposes when they wanted to enact stricter emissions limits than exist federally.  They argue 

that this means Congress has already authorized California to affect interstate commerce. 

Judge O’Neill ruled that the LCFS does directly discriminate against out-of-state ethanol, 

and therefore agrees that the LCFS violates the Commerce Clause.  This conclusion was reached 

because the availability of lower-carbon electricity in California favours Californian ethanol and 

puts other ethanol at a price disadvantage, and penalizing transportation distances necessitated by 

interstate commerce hinders interstate commerce.  Judge O’Neill found that that CARB did not 

make a compelling case that GHG emissions reductions could only be achieved through LCFS, a 

discriminatory policy.  He suggests that alternatives discussed by experts, such as a carbon tax 

on fossil fuels or increased vehicle efficiency, should have been discussed and considered. 

The fact that Midwest ethanol and California ethanol are chemically/physically identical, 

and that they have identical tailpipe emissions is mentioned many times throughout the 

documents to weaken the case for discriminating between in- and out-of-state ethanol.  However, 

when CARB tried to use the fact that it has Congressional permission to regulate fuels and fuel 

additives (which affect emissions) to support their claim that they are already not subject to the 

Commerce Clause in this area, the Plaintiffs rebut by saying that the LCFS does not quantify 

chemical properties in the same way that previous legislation did, so that Congressional 

permissions does not apply to greenhouse gas emissions.  In my non-expert legal opinion, this 

seems to stem from the fact that GHGs are global pollutants, and LCA metrics are not the 

traditional environmental metrics used in environmental regulations.  So, there seems to be space 
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for precedent setting here since regulators and lawmakers don’t seem to know precisely how to 

deal with them. 

Evidence of imperfect understanding of the purpose of life cycle assessment, the science 

of climate change (and therefore motivation) behind the LCFS.  The Judge’s Ruling to Plaintiffs 

contained the following (emphasis mine): 

“The Rocky Mountain Plaintiffs contend that instead of focusing on local GHG 

emissions, like smog in the Central Valley, the LCFS has a purpose and aim that 

is broader than its territory.” 

The plaintiffs and the Judge discuss how greater transportation distances penalize Midwest 

ethanol; this is confusing, as emissions from transportation make up a very small percentage of 

total life-cycle emissions.  The only exhibit provided by the ethanol plaintiffs is a copy of the 

LCFS, including the carbon intensity look-up tables, so there are no citations to understand what 

specific data motivate their points.  It seems reasonable to conclude that the case made by CARB 

did not sufficiently address this error. 

This turn of events is unfortunate, but not because the California LCFS was going to be a 

shining example of effective and efficient climate change legislation; the research presented and 

cited in this thesis raises a number of issues surrounding the deficiencies.  Some of those 

deficiencies could be addressed through some policy redesign suggested here and elsewhere.  In 

my view, the unfortunate turn of events was the apparently poor explanation and defence of life 

cycle thinking as the way of quantifying carbon emissions in legislation, and how improved 

future policies based in life cycle analyses, or any sort of systems analysis which casts a wide 

net, may be subject to prejudice by those who are not well versed in the methods simply because 

of this precedent.  
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Come on little plants, we’re groovin’ in the sunlight 
Spread your leaves and dance, reach up for the blue sky 
Soak up all the water, I won’t leave your roots dry 
Drink it up now baby, let your cells multiply 
 
Photosynthesis is my favorite chemical reaction 
When the plants are growing it gives me so much satisfaction 
Chlorophyll’s the green stuff, I just can’t get enough 
Building up your cell walls, so you grow up big and tall 
 

“Photosynthesis”, The Hot Toddies 
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Chapter 4. Consequences of Uncertainty in Biofuel Feedstock Supply 

4.1 Abstract 

The current practice of modelling cellulosic biomass yields based on point values that 

have been aggregated over space and over time obscures important risks related to depending on 

biomass for transportation energy, particularly those related to local drought conditions.  Using 

switchgrass as a case study, this work quantifies the variability in expected yields over time and 

space with a switchgrass growth model and historical weather data.  Even with stable, productive 

states, yields vary from 5 to 20 Mg/ha.  Yields are likely to be reduced with increased 

temperatures and weather variability induced by climate change.  Variability needs to be a 

central part of biomass systems modelling so that risks to energy supplies are acknowledged and 

risk mitigation strategies or contingency plans can be considered.  Irrigation, one risk mitigation 

strategy, can very often negate the impacts of drought, although system-wide irrigation is an 

expensive method to stabilize crop yields (costing $0.10 to $1.90/gallon).  Unless many surplus 

acres of cellulosic crops are planted, there will be insufficient ethanol to meet the EISA targets 

10 to 25% of the time under rain-fed conditions. 

4.2 Introduction 

The Energy Independence and Security Act of 2007 (EISA), in addition to implementing 

a renewable fuel standard, addresses the issue of the United States’ undesired dependence on 

foreign sources of oil [14].  In addition to reducing greenhouse gas emissions from the 

transportation sector, as discussed extensively in the previous two chapters, EISA requires 

increased biofuel usage to address this energy security issue.  The concept of energy security is 

not new, and has motivated US energy policy for some time, so it is surprising that the term is 
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often used without being precisely defined.  Those approaching the energy security topic from an 

economic perspective investigate topics like fossil energy supply diversity, demand resiliency, or 

the impact of oil supply fluctuations on US GDP [88-90].  Economists working in this area 

actively debate the feasibility of energy security.  Many argue that moving away from imported 

oil is going to be a major challenge in the near- to mid-term [91], [92].  Researchers and policy 

makers who advocate biofuels as a way to reduce oil consumption and reduce the US 

dependence on unstable foreign oil sources take as given that a shift towards biofuels will reduce 

the risks in fuel availability, or simply have chosen not to specifically define the term ‘energy 

security’ in their context (for example, [80], [93], [94]).  Energy security in relation to biomass is 

defined in this chapter as having a stable enough feedstock supply to adequately provide ethanol 

in quantities required to satisfy legislated volume targets. 

Discussions in literature do not sufficiently acknowledge that a change in the domestic 

energy portfolio to include biomass does not necessarily translate to a reduction in risk.  A 

change in the energy supply portfolio brings different supply risks, which may or may not be 

preferable to the previous set of risks (e.g., fossil fuel supply disruptions due to infrastructure 

damage).  The three dominant alternative energy sources, wind, sun and biomass, are each 

subject to natural temporal variation.  This variability results in chronic resource shortages.  

Intermittency in biomass can result from periods of water or temperature stress on the crop.  Of 

the two, a lack of water is the most important [8].  This issue has received less attention than 

either wind or solar, in part because the possible interventions in wind and solar electricity are 

similar (commonly addressed with fossil backup energy during times of deficiency [95] or some 

sort of energy storage technology [96]) and because of the shorter time the system could 
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conceivably be “down” due to the forces of nature.  Biomass shortages are likely to occur on the 

annual time scale rather than hours or days. 

Biomass intermittency has received some attention in literature, but this has been in the 

context of chemical and industrial process design.  To maintain a financially viable bio-

processing facility, Kou and Zhao [97], [98] and Mu et al. [99] recommend facilities be designed 

to accommodate variability in feedstock input quantity and/or composition.  Otherwise, they 

cannot maintain a stable output of ethanol (potentially in addition to other products). 

Crop availability issues are likely to be exacerbated over time, as a number of studies 

report that drought severity and frequency is predicted to increase under many future climate 

scenarios (see [100], [101] for two examples).  Tied into this are expectations of increasing 

temperatures, and increasingly variable temperatures [102].  Water stresses will increase both 

due to meteorological changes, and due to a general increase in water demand from growth in 

most major demand sectors, as discussed by Roy and colleagues [103].  This could lead to 

chronic, multi-year biomass shortages.  These could be very costly, given that annual crop 

insurance payments for drought alone are on the order of billions of dollars (see Figure 5) [33].  

If the number of planted acres to consider or insure increases with a move towards more energy 

crops, these social costs are likely to increase.  They will be borne increasingly to support an 

emerging bio-energy sector rather than food or fibre as was previously the primary, if not 

exclusive, reason for social support.  Crop subsidies, then, need to be compared with energy 

subsidies in addition to USDA food/fibre subsidies. 

This chapter takes switchgrass as a case study crop to examine the supply risks related to 

dryland energy crop farming by using observed, historical weather data to model crop yields.  

The calculated crop yields provide insight into how significant an issue this variability might be 
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locally, and in terms of national biofuel availability.  In light of the changing climate issues, 

simulated weather data are used to explore how yields may change under different expected 

climate conditions.  Finally, crop loss risk mitigation through irrigation is explored in terms of 

technical potential and cost effectiveness, and alternative mitigation strategies such as 

researching increasingly drought-resistant cultivars or ethanol storage are discussed qualitatively. 

4.2.1 Regions of Interest 

Energy security is generally considered at the national level.  Drought is usually regional, 

and yet can have national significance.  As such, it is necessary to approach the analysis of crop 

availability knowing the areas most likely to produce bioenergy feedstocks, and how weather-

related risks, which vary across the country, affect these production areas.  In this yield analysis, 

the US is disaggregated at the state level, with weather data from one city from each continental 

state assumed to represent the overall trends in that state. 

Projections of spatial biomass supply by Agricultural Statistical District (ASD) are 

available from the Policy Analysis System (POLYSYS) model [104].  This model is commonly 

used to as a source for projected crop locations and prices (for some examples, see [6], [105-

108]).  POLYSYS is an economic-based modelling framework developed at the University of 

Tennessee, the USDA, and Oklahoma State University for use in assessing US agricultural and 

energy policies.  It simulates the U.S. agricultural sector’s response to various bioenergy-

planning decisions influenced by policy, economics, etc. in the form of regional crop planting 

decisions.  There are 305 ASDs in the continental United States, and they are defined as groups 

of counties that share similar agricultural practices and climate conditions.  The model uses a 

comprehensive set of input parameters that include crop demand and costs, agricultural income 

and livestock characteristics to predict crop supply by ASD.  Supply changes over time use 
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estimates for base yields for seven regions, to which annual yield gains are applied (summarized 

in Table 9). 

Table 9.  Assumed yield percentage gains and actual yields over time for the 
POLYSYS model. 

Region Annual yield  
gains 

Yields (Mg/ha) 
Base 2015 2022 2025 2030 

Northeast 1.50% 10.9 12.5 13.7 14.2 14.2 
Appalachia 5% 13.1 19.6 24.2 26.2 26.2 
Corn Belt 3% 13.4 17.4 20.2 21.4 21.4 
Lakes States 1.50% 10.7 12.4 13.5 14.0 14.0 
Southeast 5% 12.3 18.4 22.7 24.6 24.6 
South Plains 5% 9.6 14.4 17.8 19.3 19.3 
Northern Plains 1.50% 7.8 8.9 9.8 10.1 10.1 

 

 

Figure 17.  Increasing switchgrass production over time ($95/ton, high ethanol 
demand scenario in POLYSYS). 

Figure 17 shows projected switchgrass production quantities for these seven regions.  The 
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all of these regions contain the same number of states or counties.  The region in which each 

state falls is listed in Appendix A.  States are categorized into one of the seven regions by having 

the same expected base yields and annual yield gains (due to crop breeding and research).  The 

Corn Belt has the highest base yield in 2006 at 5.98 ton/acre (13.4 Mg/ha), but by 2020 (year 

when yield gains are assumed to plateau), Appalachia and the Southeast have the highest 

expected yields at 11.7 and 11 ton/acre (26.2 and 24.6 Mg/ha) respectively (summarized for all 

regions in Table 9 above).  These yields are quite optimistic based on reported and modelled 

yields (see Section 4.4.1 below).  Figure 18 illustrates ASD-level yields for the year 2022 plotted 

in Figure 17 above, included to demonstrate the general areas in which switchgrass is expected to 

be grown.  This picture does not change substantially through time.  The top five states by 

estimated switchgrass production in 2030 are, in descending order, Missouri, Kentucky, 

Arkansas, Illinois, and Oklahoma.  No switchgrass is expected to be grown in the West under 

rain-fed conditions. 

 

Figure 18.  Distribution of switchgrass growth across POLYSYS regions ($95/ton, 
2022 high ethanol demand scenario). 
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4.3 Methodology 

An overview of how each distinct model (identified in a green box) built or implemented 

in this chapter relates to each other, and the values that flow between them, is presented in Figure 

19.  Section numbers below each model correspond to the chapter section in which they are 

presented.  The white boxes represent input data and output results. 

 

Figure 19.  Overall data flow diagram.  Section numbers indicate where the models 
are explained in this chapter. 
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determine cash flow differences between the irrigation and non-irrigation to evaluate that 

decision. 

4.3.1 Switchgrass Yield Model 

The switchgrass growth model built here, as defined by Grassini et al. [109], was 

published with the intention of generating annual crop yield values that could be used to inform 

energy policy models and discussions.  Nair and colleagues present a review of many different 

crop models [110], highlighting that model results are improving, but there is still a need for 

better input data and better model calibration.  So, the overall yield trends observed in this 

chapter are reliable, but specific yield values should not be taken as precise predictions.  It is 

important to keep in mind that the annual yield time series output by this model vary due to 

changes in precipitation and temperature (which drive drought conditions), and not to other 

factors such as an overabundance of local water or acute weather phenomena (such as hail) noted 

in Figure 5 because the model is not equipped to deal with these situations (i.e., there is no ‘hail’ 

module).  Variability over time would be greater if these other causes for crop loss were 

included, and could be a fruitful line of investigation for future work. 

The switchgrass growth model is composed of five interacting modules (described in 

detail below), and operates at a daily time step, calculating daily biomass production.  Inputs 

include daily rainfall, mean, high, and low temperatures, and solar insolation, as well as 

information about soil characteristics and crop growth performance.  Thirty years of daily data 

are used as the historical meteorological data set.  Data from one city in a relatively agricultural 

area from each state are taken, so one location is assumed to be representative of the whole state 

(as often there are records for only one to a handful of cities available for each state).  A closer 

examination of variability within states would provide important information regarding how 
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uniform yields are across the state and how reasonable the single city assumption is.  The city 

selected from each state is listed in Appendix A.  The historical data are taken from the database 

assembled by the USDA for use in their weather generating software, GEM [111].  These data 

include daily observations for maximum and minimum temperature, precipitation, and solar 

radiation.  Mean daily temperatures are calculated as the average between high and low values. 

A complete list of input parameters to the switchgrass yield model is included in 

Appendix A.  When daily biomass accumulation values (output in g/m2) are summed over an 

entire growing season, the result is an annual crop yield value.  When many years are modelled, 

variability in yield over time can be assessed.  The Grassini model is not publically available as a 

stand-alone program or as code, so a model was built in Matlab.  The code is available in 

Appendix C for others to use if they wish.  The five interacting modules mentioned previously 

are defined as follows: 

Module 1 - Crop development index: The development of the switchgrass is modelled as 

a sigmoidal (s-shape) function (bounded by 0, not yet developing and 1, meaning fully mature).  

It is affected only by daily mean temperature in relation to cultivar-specific temperature 

parameters, including optimal temperature, and temperatures above or below which no 

development occurs.  Daily, incremental development is tracked and is taken as input to various 

other modules. 

Module 2 - Leaf area index (LAI) expansion: The LAI is a dimensionless index that 

describes the fullness of the canopy.  It affects rainfall partitioning in the soil and water balance 

function, and the rate of conversion of solar radiation to biomass (i.e., crop growth).  The LAI 

value depends on the crop development stage index and a water stress factor. 



 69 

Module 3 - Soil water balance: The soil water balance model is the most complex of the 

five.  There are five sub-modules within this function.  Rainfall can be intercepted by the canopy 

(a function of the leaf area index) and not be available to the soil layer.  Heavy rainfall can result 

in water lost to surface runoff - the top layer can hold 110% of capacity right after rainfall, and 

the excess will runoff.  Water evaporates from the upper layer of soil, in a quantity that depends 

on temperature, solar radiation intensity, LAI, and previous water concentration in the upper soil 

layer.  Water transpires through the plant during growth, in a quantity determined by existing 

biomass/development stage and temperature.  Water for transpiration can come from either the 

top or bottom soil layer.  Finally, excess water that may be in the top soil layer at the end of a 

day filters down to the bottom layer so that it is not oversaturated.  These four water flows are 

tracked through each day, and are graphed for a sample year (1971) in Iowa in Figure 20 and 

Figure 21, illustrating all of the possible water behaviours. 

 

Figure 20. Soil water depth changes over time for Iowa data, 1971. 
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Figure 21.  Fraction of available water holding capacity (FAWHC) filled over time 
for Iowa, 1971 data. 
‘SL1’ indicates the thinner, top layer of soil, and ‘SL2’ indicates the lower, deeper 
level of soil. 
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soil water can make up for some lack of rain during the growing season, and a deficit of soil 

water can make that situation worse.  This fraction varies from 0 to 1.  The fraction of available 

water holding capacity (FAWHC) filled at the date of AGI is assumed to decreases as the SPI 

decreases.  An FAWHC of 0.6 corresponds to the median precipitation scenario (SPI median 

value is 0, from Section 1.4.3.1), as this is taken as the default value for the model runs in 

Grassini et al. [109].  It seems unlikely that even in a severe drought scenario the top two meters 

of soil would be completely dry, so the model was run assuming no precipitation at all, over 

various FAWHC at growth initiation (FAWHCAGI) values.  For a range of FAWHCAGI values, the 

FAWHC of the lower soil layer at the time of growth completion asymptotically approaches a 

value of 0.1, while top layer is constantly exhausted of moisture.  As a result of this information, 

FAWHCAGI is assumed to decrease linearly from 0.6 to 0.1 with a decrease in precipitation 

scenario likelihood, and increase from 0.6 to 1 with an increase in precipitation scenario 

likelihood.  

Irrigation is modelled in one of two ways, depending on the irrigation technology used.  

Irrigation can be introduced in this model by increasing rainfall (it falls from above the canopy 

and can therefore be intercepted at that state), or the irrigation water can be introduced below the 

canopy level so that the first interaction in the model is at the soil surface water saturation check.  

Using central pivot irrigation (discussed below in Section 4.3.3), the former approach is used.  At 

each time step (each day), the model checks to see if the soil moisture (FAWHC) is below a 

specified threshold.  If it is, 25 mm of water is added to the model value (at one of the two places 

explained previously).  This corresponds to about 1in of water, a value assumed based on 

irrigation information from the USDA Irrigation Guide [113] and soil layer assumptions.  Using 

this irrigation decision criterion, the amount of water used and the yield increase that results from 



 72 

irrigation does not vary significantly if less or more water is applied per irrigation event.  The 

only change of significance is the number of irrigation events; if less water is applied, it has to be 

applied more often.  This would affect only the operations costs of the system. 

4.3.2 Weather Generation Model 

To assess the impacts of a changing climate on switchgrass yields, which also begins to 

address the assumption that past yields will be equal to future yields made in many models, this 

chapter includes a simulation of weather data based on historical data, but in which certain 

parameters have been modified so that the output weather data are representative of a changed, 

future climate.  As stated previously, this exercise is intended to show changing trends in yields, 

not to suggest exact magnitudes for the changes in variability or expected values for yields in any 

region. 

Weather simulation programs have been tools for modellers for the past 30 years.  They 

output data such as the maximum and minimum temperatures, precipitation, wind speed, dew 

point and solar radiation.  Many used for applications that requite daily data, such as this crop 

yield model, are built upon a stochastic simulation method for temperature, precipitation and 

solar radiation suggested by C. W. Richardson, as described in [114] and [115], and more fully 

defined as the WGEN model by Richardson in [116].  The simulated weather data are based 

upon historical data from a particular region and time period, and time series are often generated 

when empirical data are not available over a sufficiently long time period for the modeller’s 

purposes. 

In most daily weather generation models, temperature and solar radiation data are 

conditioned on precipitation.  Precipitation is modelled in two parts: whether or not there is any 

precipitation (dry or wet conditions; a binary random variable), and when there is precipitation, 
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how much falls.  In the commonly used Richardson model, the wet or dry state is simulated as a 

Markov process; the status of the current day depends on the status of the previous day(s).  In its 

simplest form, it uses a first-order Markov model, meaning the status is conditioned only on the 

previous day; if it was dry yesterday, the likelihood that it will be dry today is P1, and the 

likelihood it is wet is (1-P1), where P1 is based on this historical data.  Higher order models have 

been used by more recent studies, though to more accurately reproduce long wet or dry spells 

(see excellent discussion in [117]).  The quantity of precipitation on wet days is generally 

modelled using either an exponential function or a two-parameter gamma function, as both 

heavily weigh small amounts of precipitation but skew positively to allow for the low probability 

of much higher precipitation quantities.  With the precipitation time series generated, 

temperature and solar radiation data are then modelled using a first-order linear auto-regressive 

model.  Means and standard deviations for each temperature time series, conditioned on 

precipitation, are calculated over some relevant time period (daily, weekly, monthly) across all 

years of historical data (i.e., two means for each two-week period are calculated, {μdry σdry}i and 

{μwet σwet}i).  Time series of residuals are generated for each of maximum temperature, minimum 

temperature and solar radiation using the standard deviations calculated.  This residual value is 

modified by a lagged correlation matrix (modified based on what temperatures and solar 

radiation happened the previous day) and to which a simultaneous correlation matrix (modified 

based on what the other meteorological values of the same day) of normally distributed errors is 

added.  Finally, the means and standard deviations calculated from the initial, historical data are 

added to these modified temperature and radiation residuals.  Basically, these correlations ensure 

that if it was hot and sunny yesterday, today is more likely (relative to average that time of year) 

to be hot and sunny than not, and if it is very sunny, it is more likely to be hot (relative to 
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average that time of year) than not.  The means ensure that the larger trends over time are 

preserved. 

The simulated data for this analysis are generated using methods for precipitation and 

temperature from Chen and colleagues [118], who implement the Richardson model as described 

above (using a second-order Markov chain), but additionally implement a /smoothing algorithm 

to reduce jaggedness in the mean temperature profiles.  The jaggedness arises because the 

temperature means are calculated for two-week time periods, so each year is characterized by a 

set of 26 max/min temperatures.  Without any modifications, there tends to be a jump between 

the temperature on the last day of one period and the first day of the next period.  The smoothing 

algorithm simply reduces this jump.  This particular implementation of the Richardson model 

was used because Chen and colleagues have graciously made the Matlab code available online.  

To simplify the model and hasten calculation time, a less sophisticated model for solar radiation 

is used.  Means and standard deviations for solar radiation data are calculated using dry days, and 

a scaling factor is used to simulate radiation for wet days, following methods described by Zhang 

et al. [119].  In summary, simulated weather data used as input to the switchgrass yield model 

(results in Section 4.4.3) use: 

• Second-ordered Markov chain to generate precipitation occurrence patterns; 

• Two-parameter gamma distribution to generate precipitation magnitude data, 

smoothed to reduce gaps between successive two-week periods; 

• Conditional relationship between the maximum and minimum temperatures; and, 

• Scaling factor of 0.5 to scale mean daily solar radiation on dry days for wet days. 

Given this weather simulation program from Chen et al., certain parameters in the model 

are modified in order to produce a climate that is changed from the historical climate.  The 
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following scenarios are examined, with data presented in the form of box plots to illustrate key 

statistics: 

1. Base case weather, simulated using historical data (sources and locations 

described previously) and unmodified parameters (so that yields from simulated, 

modified climate data are not compared to historical data) 

2. A higher temperature case, based on a scenario used in a future US drought study 

[103].  In the weather generation model, mean values for Tmin and Tmax time 

series. [�temp+2] are modified as suggested in the Roy study. 

3. A higher variability in temperature case, based on results shown in a study on 

temperature anomalies by Hansen [102].  This is implemented though modified 

standard deviation values for Tmin and Tmax  [1.2�temp  and 1.3�temp] as shown 

in the Hansen study. 

4. A higher dry- and wet-spell length scenario.  Rather than modify precipitation 

amounts, which vary regionally (see [101]), the impacts of increased dry or wet 

spell length are examined.  This is accomplished by modifying the transition 

probabilities for precipitation occurrence in the Markov matrices, making it 10% 

(relative, not percentage points) more likely that there will be longer dry spells, or 

wet spells.  This is done not specifically following a procedure undertaken in 

another study, or using empirical data found elsewhere, but as a way to compare 

the yield sensitivity to spell length alongside temperature modifications. 

By using the three modifications in some combination with each other, six scenarios (in addition 

to the base case simulation results) are compared in the following section.  The results are only 

compared among themselves in order to get a sense of the sensitivity of crop yields to different 

changes in climate conditions and see if there are general trends to anticipate.  These simulated 

weather data are not used in the yield model with the irrigation option enabled, so there is no cost 

comparison between current yields and future, climate changed yields.  Cash flow values from 

those yield time series seem too speculative to be of much use quantitatively, but this analysis 
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could be done in the future with a more comprehensive assessment of specific, local climate 

change in each state or region. 

4.3.3 Irrigation Cost Model 

Irrigation costs are modelled from the perspective of an individual, private farmer who 

has two options: install irrigation and mitigate the risks of low yields (thereby increasing relative 

revenue) or do not install irrigation.  Yields under irrigated conditions are modelled for each state 

using the same 30 years of historical weather data from a city in each state as were input to the 

yield model to assess yield variability (presented without irrigation in Figure 23).  The irrigated 

farm will expect higher yields than the non-irrigated farm, but will have to bear increased 

farming costs due to capital investment in irrigation infrastructure and associated operating costs.  

Annual net after tax cash flow values are compared between the irrigation and the non-irrigation 

scenarios to assess how often irrigation provides (undiscounted) financial benefits, and provide 

insight into how the farmer might make a decision into whether or not to invest irrigation (or 

some other technology to increase yields, not discussed quantitatively here). 

Irrigating can be separated into two stages: drawing water from a source (either ground or 

surface), and distributing that water on the fields to irrigate (three options).  Ground water 

requires the installation and operation of well and water pump.  Surface water requires a smaller 

pump than well water, as there is usually not much vertical distance for the water to travel.  The 

three different irrigation systems considered here are as follows: 

• Flood irrigation.  Water is pumped through pipes with spaced gates that can be slid open 

to allow water to flow in channels between row crops, perpendicular to the length of the 

pipe.  This is the least expensive to install, and the least water efficient.  Maximum area is 

about 160 acres (65 ha) per system. 
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• Central pivot irrigation (CPI).  This is a sprinkler type of irrigation, where water is 

sprayed on the crops from above.  The water pipe pivots around a central tower.  

Maximum area is about 125 acres (51 ha). 

• Subsurface drip irrigation (SDI).  Water is slowly released to the root zone of the crop by 

perforated pipes buried below the surface of the field.  This is the most expensive system 

to install, and the most water efficient.  Maximum area is about 125 acres. 

For all types of irrigation used in this model, well-drawn water is the option used, based 

on the predominance of well water use for irrigated agriculture in the states of interest (for 

example, 66% in Texas, 95% in Kansas, 82% in both Oklahoma and Arkansas [120]).  In these 

states, the percent of acreage irrigated in 2007 was 15, 10, 4, and 54% respectively[121].  

Nationally, 56 of the 400 million acres of cropland are irrigated [122]. 

The system design and costs are the same across all states, and are based on a review of 

irrigation cost planning literature published by Agricultural Extension Services in several states 

of interest (Texas, Kansas, Arkansas, Tennessee), as well as an irrigation guide put out by the 

USDA and an excellent (though somewhat old – published 1996) report that the NRC put 

together on the current state of irrigation in the US and anticipated challenges for the future 

[120], [123-126]. 

All specific values assumed are presented in Appendix A.  The model assumed well 

water pumps are powered by natural gas, because the energy cost is less than electric motors.  A 

central pivot irrigation system is the case carried through the results and discussion section, with 

values for flood irrigation and sub-surface drip irrigation included in Appendix A for 

completeness.  SDI is much more expensive that CPI ($200,000 system cost versus $76,000), so 

the economics are much less favourable with that option.  Flood irrigation infrastructure is less 
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expensive at $5,000, but do not include the potentially necessary land leveling (so that water 

flows to all parts of the field).  Additionally, this method requires furrows between the rows of 

crops, but switchgrass is not likely to be planted in neat rows (one of the reasons it offers better 

erosion resistance than something like corn [72]).  Both are reasons why flood irrigation is not 

emphasized in detail in this chapter. 

In this study, the capital expenses are paid for through a loan with a payback period that 

coincides with the lifetime of the infrastructure (15 years for irrigation infrastructure, 25 years 

for the well).  Items that vary yearly are the revenue from crop sales, and operating expenses 

related to labour, energy, and water use.  System maintenance and insurance are yearly expenses, 

but are assumed to be a fixed percent of initial capital costs.  Other items do not vary year upon 

year. 

Note that the price assumed for switchgrass ($102/Mg) is quite high, but is the estimate 

for the lowest value farmers would be willing to accept to grow switchgrass, according to an 

NAS report assessing the Renewable Fuel Standard [107].  High crop prices will, in general, tend 

to encourage more farmers to choose to grow switchgrass, and will push the individual farmer 

towards irrigating once the decision to plant switchgrass has been made.  As expected revenue 

increases (with increasing crop production), the value of crops lost to drought will increase, so 

irrigation will make better financial sense.  Note also that the assumed national cost of water, at 

$20/acre-foot, is low compared to the cost to non-agricultural consumers and to the value of 

water conservation activities, which can be in the hundreds of dollars per acre-foot range [127].  

Both of these values are explored in a sensitivity analysis in the following section. 

Also note that in this model the price of switchgrass does not vary with supply, even 

though supply can vary substantially from year to year.  Drought years, which cause low yields, 
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would certainly shift the supply curve and apply upward pressure on market prices.  This is 

challenging to model because there are no large bioenergy crop markets upon which to base 

economic relationships of supply and demand.  In general, prices would increase in low supply 

years, and decrease in high supply years.  Comparing this to a flat price assumption, revenue 

losses would be less in low supply years, and revenue gains would also be less in high supply 

years, resulting in an overall blunting of revenue spikes in either direction.  However, acreage 

may not be as easily switched to switchgrass as something like corn because the crop stand takes 

about 3 years to reach expected productivity levels [8], which supports the assumption that 

farmers are making planting decisions based on expected prices years ahead.  Additionally, the 

issues assessed here regarding irrigation require a planning horizon of several decades, so it 

seems reasonable that the farmer would make decisions using an expected long-run price. 

In the cost results discussions below, no net present values (NPV) are calculated.  Unless 

the discount rate is very low, the proximity of cash flows to the present is important to the 

outcome; this is why capital investments are depreciated quickly, so that tax breaks arrive earlier 

than later.  In this case, cash flows are weather dependent, and cannot be predicted.  If drought 

occurs right after irrigation is installed, and yield benefits are realized quickly, the NPV might 

strongly suggest irrigation be installed.  If that same drought occurs towards the end of the 

project lifetime, the same yield benefits would barely register in the NPV calculation so the 

decision could be a resounding no to an irrigation decision.  In the discussion, an average annual 

undiscounted cash flow (the expected next-year cash flow to a farmer) is used to inform decision 

making.  Given possible future weather conditions and yields, the farmer makes a decision to 

irrigate based on whether or not the next year is expected to be more or less profitable under 

irrigation. 
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4.4 Results and Discussion 

4.4.1 Model Validation 

McLaughlin and Kszos [8] report a summary of the yields found across the US from the 

DOE’s switchgrass evaluation test plots.  At each of test plot site, between two and 12 different 

switchgrass cultivars were planted and harvested yearly (or twice yearly) to establish expected 

yields and to determine which cultivars performed better in which areas.  Their paper presents 

average annual yield by location, and maximum and minimum annual harvests for the two top 

performing cultivars in each location.  Anywhere from two to nine years of yield data inform the 

reported mean, maximum, and minimum values.  In Figure 22, yield results for select states from 

the switchgrass yield model (described in Section 4.3.1) using the historical data (plotted in the 

figure with grey bars) are compared with field test yields in the same states (coloured bars) from 

this McLaughlin and Kszos paper in order to establish some context for modelled values. 

 

Figure 22.  Switchgrass yield model output (grey) compared to reported yields by 
McLaughling and Kszos. 
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In all but two ‘McLaughlin’ locations, mean annual yields from the two highest yielding 

cultivars are presented in the journal article, and plotted in Figure 22.  In Texas (‘TX, 

Stephenville’) and Iowa (‘IA’), results for only one cultivar are available (hence the missing bar 

in the chart for these locations).  The error bars on the McLaughlin data are the range in average 

yield values for the two cultivars for the span of the trials.  The ‘Modelled’ series of data are the 

mean values from 30-years’ modelled yields in each state.  The error bars represent the minimum 

and maximum annual average yields in that state over those 30 years.  As such, the grey error 

bars encompass more yields than the McLaughlin error bars because they cover more years of 

data. 

The empirical data all fall within the range of values from the modelled data, though the 

mean modelled values tend to be higher than the mean empirical values (four of seven states).  

This may be because, as discussed earlier, the model does not capture many of the reasons why 

crop yields vary and are lower than expected under ideal conditions.  The mean modelled values 

also tend to be more consistent from state to state than the empirical values; this is likely because 

of relatively few region-specific characteristics in the model are not able to fully capture the non-

climatic changes from site to site. 

4.4.2 Yield Variability 

In the following sections, results from the switchgrass yield model (defined in Section 

4.3.1) are presented and discussed.  Boxplots showing yield variability over the 30 years of 

meteorological data are presented in Figure 23. The data are taken from 1961 to 1990 for one 

location from each state in the continental US (listed in Appendix A).  These data show there are 

a wide range of median values across these states.  There is also substantial variability at each 

location modelled; almost all of the interquartile ranges (the 25th to 75th percentile range) cover at 
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least 5 Mg/ha, and some cover upwards of 10 Mg/ha.  For mean values around 15 Mg/ha, this 

translates to a variability of 30 to 60% in many locations.  States in the Southwest and the 

Northwest are generally well below states in all other regions.  Additionally, all but one outliers 

falls at the low end of the yield values (South Carolina is the exception), not the high end. 

To further investigate the relationship between mean value and variability, in Figure 24 

mean yield values for each state of the 30 years of data (plotted in Figure 23) are plotted against 

their standard deviations.  States with extreme values (highest or lowest means or standard 

deviations) are noted in the figure; New York has the highest variability, Arkansas has the 

lowest, West Virginia has the highest yields and Connecticut the lowest.  Given a goal of reliably 

high yields, states towards the upper left corner of the graph (low variability, high mean yield) 

would be preferred over states in the lower right (high variability, low mean yield).  The front of 

points (states) between increasing mean and increasing standard deviation are also included in 

Figure 24, and include Arkansas, Mississippi, Minnesota, and West Virginia.  There are no 

strong geographic trends upon which to make recommendations based on this comparison. 
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Figure 24.  Plot of mean yield versus standard deviation for yields using 30 years of 
historical weather. 

 

Figure 25.  Correlation of historical model yield between some relevant states, listed 
by state abbreviation and FIPS code. 
Bold values are statistically significant.  Green indicates a positive correlation, red 
indicates a negative correlation. 

One important aspect of the historical time series comparisons that is not maintained in 

the simulated weather data presented in the following section is regional correlation.  
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Meteorological variables generated in the weather simulation are not modelled with any 

correlation, simultaneous or past, between locations, even though correlations do exist.  

Correlations in yields based on historical data are presented for select, relevant states in Figure 

25.  In this figure, green cells indicate a positive correlation, and red cells indicate a negative 

correlation, and the colour gradient indicates the strength of the correlation.  The statistically 

significant correlation values are bolded.  Some neighbouring states demonstrate significant 

correlation, though not all do.  All but one of the statistically significant correlations are positive; 

the lone negative value is between Minnesota and Alabama.  That most correlations of note are 

positive and are between about 0.4 and 0.8 suggest that there are not a lot of obvious 

opportunities to diversify planting locations so as to reduce the likelihood that everywhere 

switchgrass is grown will have low yields at the same time.  This highlights the potential for 

widespread, simultaneous yield decreases. 

The POLYSYS dataset breaks yield values and projected yield increases (as a percent of 

the initial yield assumption) across the US into seven regions, discussed in Section 4.2.1.  The 

region to which each state belongs is summarized in Appendix A.  Disregarding yield variability 

within each state over time, the variability of the statistics of central tendency (median or mean) 

over all of the locations within one POLYSYS region suggests that a regional aggregation across 

3 to 11 states misses some key data.  For example, in the plains regions, separated into North 

Plains and Southern Plains, mean yields in each state that makes up these regions vary from 

about 8 (lowest mean yield out of the mean yields from the 8 states in the SP region) to 18 

(highest mean yield of the same 8 states) and from about 7 to 15 Mg/ha, respectively, as shown 

in the ‘lowest’ and ‘highest’ columns of data in Table 10.  Taking the mean of means suggests 

the SP region should be modelled with a 9.4 Mg/ha yield and the NP region with an 11.8 Mg/ha 
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yield.  Using these mean regional values completely neglects the different productivity levels of 

the constituent states.  Considering yield variability over time in one location also illustrates a 

shortcoming of neglecting temporal variability.  The mean yield across states in the Southeast 

(SE) region for this 30-year period is 14.9 Mg/ha (assuming equal contribution from each state).  

If, for example, the very dry meteorological conditions of 1987 arise, the Southeast yield would 

instead be only 8.1 Mg/ha, a decrease of about 45% from that mean value. 

Table 10.  Modelled yields as aggregated to POLYSYS regional definitions. 

POLYSYS Region 
States 
Within 

30-yr Mean Yield Values (Mg/ha) 
Mean Lowest Highest 

Southeast (SE) 11 14.9 13.3 16.8 
Southern Plains (SP) 8 9.4 7.2 14.9 
Northeast (NE) 8 13.6 11.1 16.8 
Corn Belt (CB) 7 14.7 13.8 17.1 
Great Lakes (Lake) 3 15.5 14.7 16.6 
Appalachia (App) 3 14.8 12.4 19.3 
North Plains (NP) 8 11.8 8.1 17.8 

 

In general, models are built and plans are made based on temporally and spatially 

aggregated yields.  Modellers’ recommendations do not include how to deal with a 1987 

(exceptional) sort of year, or how the developing biomass industry in Tennessee might deal with 

its outlier 1.2 Mg/ha yield in a year with very little precipitation (the lowest outlier in Figure 23).  

Yield variability needs to be a central part of models predicting biomass yields so that these 

issues spur consideration of the consequences of variability on model recommendations, and so 

that the biomass community begins to consider mitigation options, and contingency plans. 

4.4.3 Modified Climate Scenarios 

The previous results and discussions are all based on switchgrass yields generated using 

historical data.  This section explores and challenges the assumption that past data can be used as 
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a proxy for future data based on changing climatic conditions.  Other factors that could and 

probably will affect future energy crop yields include better varieties (with improved drought 

tolerance, pest resistance, etc.) through research and better field-level operational knowledge.  

Those are not dealt with quantitatively in this dissertation, but would help to offset trends of 

lower yields and higher variability. 

Figure 26 presents yield distributions for three states (Tennessee, Texas and Iowa) 

generated with the seven different cases of simulated weather data per state defined in Section 

4.3.2.  The first case is the base case, and presents yields calculated from simulated weather data 

(based on historical data for that state).  The other six use weather data generated from a 

modified simulator.  Cases two through five show modified temperature data: the second with 

increased mean temperature, the third and fourth with increasing temperature variability, and the 

fifth, with temperature both increased and more variable.  The final two distributions relate to 

changed precipitation patters (but not precipitations quantities per precipitation event).  In the 

sixth distribution, the probability of the precipitation status continuing is increased (i.e., if it 

rained for the past day or two, the likelihood that it will continue to rain is increased, with the 

same modification for two or three days of dry conditions).  In the seventh, the increased wet- or 

dry-spell likelihood is combined with warmer temperatures.  Though overarching conclusions 

cannot be made from just these three states, it is apparent that these states are affected in 

different ways by the six changed climate scenarios. 

Tennessee is perhaps the least affected of the three locations shown here; the median 

value across the scenarios is remarkably constant, shifting only by about 1 or 2 Mg/ha.  The 

lower yields, and what qualifies as an outlier changes the most for this state.  Based on the 

results, the combination precipitation spell-length and temperature scenario increase has the 
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greatest effect here.  In Texas, none of the temperature modifications have a pronounced effect, 

but modifying precipitation patterns does.  In Iowa, scenarios with temperature increases show 

the greatest change in median yields, rather than temperature variance or precipitation pattern 

modification. 
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Figure 26.  Yield distributions for 100 years of simulated weather data under 
various climate assumptions for Iowa, Tennessee, and Texas. 
T+2: Mean temperature increase by 2C 
1.2sig: Standard deviation (st. dev.) for temperature increased by 20% 
1.3sig: St. dev. for temperature increased by 30% 
Precip: Transition between wet-wet and dry-dry more 10% more likely 
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Data for all 48 states modelled are aggregated into plots of mean yield versus standard 

deviation (as done previously in Figure 24) for each of the seven climate scenarios modelled, 

presented in Figure 27.  The yield values for each state are average values from the 100 

simulated years of meteorological data.  Standard deviation values are calculated using the 100 

single-year yields for each state.  The base case data are plotted on the top set of axes, with the 

modified climate scenarios on the six sets of axes below.  The centre of mass on each plot is 

included, relative to the centre of mass for the base case, to indicate trends.  Increasing the 

temperature standard deviation by 20% (‘1.2sigma’) results in the smallest change in the data.  

Increasing the temperature standard deviation by 30% (‘1.3sigma’) has a greater impact, 

suppressing some of the highest mean yield values.  Modifying the precipitation patterns tends to 

decrease the mean yields as well, though it also produces the highest single state average yield 

value, and it tends to increase standard deviation.  Increasing mean temperature by 2°C (‘T+2’) 

also tents to lower yield values.  When the temperature is lower and more variable (‘1.3sigma, 

T+2’), the points show slightly reduced range of mean values and slightly wider range of 

standard deviation values, though the centroid is not much changed from either of those 

scenarios run individually.  Finally, modifying precipitation patterns and increasing expected 

temperatures has the greatest effect on the mean and standard deviation statistics; the overall 

mean yield (centroid y value) is about 20% lower than the base case, and the points are 

increasingly concentrated around the mean standard deviation (centroid x value). 
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Figure 27.  Comparison of mean and standard deviations for yields for all states, for 
each of the seven simulated weather scenarios.   
Y-axis values are yields (Mg/ha) and x-axis values are standard deviations.  Solid 
blue dots are the centroids of the data.  The hollow blue dot is the centroid of the 
base case, plotted on the other scenarios for comparison.  Each grey point 
represents one state. 

From the results plotted, it seems that as the climate warms and becomes increasingly 

variable, yields will tend to decrease in many states.  Using historical yield data in projections 

without adjusting for these climate changes will lead to yield over-predictions.  To compensate 

for ongoing over-predictions, increased acreage will have to be dedicated to switchgrass in 
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volume targets).  The impact on yield variability is much less consistent between the different 

climate cases, so no general conclusions or trends can really be drawn from the results presented 

here. 

One factor related to climate change that can have a positive effect on agricultural yields 

is the CO2 fertilization effect.  As discussed by Lobell and colleagues [128], some plants, like 

wheat or rice, will have higher yields because more CO2 is available to convert to biomass.  

Wheat and rice have C3 photosynthetic pathways, meaning that carbon conversion is directly 

related to CO2 concentration (and to temperature).  In contrast, C4 plants, like switchgrass or 

corn, tightly control the CO2 concentration at the uptake site, so changing atmospheric conditions 

are not expected to affect maximum yields [129].  Ongoing research into the indirect impacts of 

increased CO2 concentrations on yield, particularly in conjunction with drought conditions, 

suggests that water use efficiency is increased under drought conditions and higher CO2 

concentrations, so drought impacts on yields may be blunted somewhat [130].  The precise 

relationship between water stress, CO2 and cellulosic crop yields is as of yet undetermined, but 

will certainly factor into this sort of model in the future. 

4.4.4 Risk Mitigation through Irrigation 

4.4.4.1 Reduction in Yield Variability 

Irrigation was chosen as the technological option to mitigate the expected yield 

variability due to drought.  The impact will depend on several parameters, most importantly how 

much water is applied and which of temperature or water stress is the primary cause of yield 

reductions.  The impact of adding the option of irrigation is illustrated for three sample states in 

Figure 28.  Here, yield time series data generated using the same historic meteorological data as 

was used previously (to generate Figure 23, for example), but different FAWHC criteria are 
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applied over the 30-year period to yield different data series.  As the criterion increases, 

irrigation water (at 25 mm per irrigation event) is applied more frequently during the growing 

season during dry years, so yields increase.  One could read these graphs as showing that the top 

lines, with highest FAWHC values, express yield estimates in the presence of sufficient water, 

while the bottom lines estimate yields (often) with a deficit of water.  By applying irrigation, the 

deficit can be erased and converge back to the higher levels.  These series can be thought of as 

the technical potential to increase yield; water is applied when the criteria is met regardless of 

actual water availability. 
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Figure 28.  Impact of irrigation on historic model yields from Tennessee, Texas, and 
Iowa. 

Several lessons can be learned from these time series graphs.  First, not all variability is 
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the incremental gains are less and less.  Figure 29 plots the absolute mean yield gain over 30 

years (relative to the no irrigation, historical meteorological data scenario) against standard 

deviation for each state, to provide information about how absolute mean and variability 

statistics change relative to one another.  Figure 30 plots the total uncertainty (defined as the 

maximum yield value minus the minimum) as a percent of the mean yield value over the 30 

years for each state in which switchgrass is expected to be grown, and is therefore a relative 

measure of mean to variability in each location.  In Figure 29, for criterion 0.1, the dispersion of 

data points is basically identical to the no irrigation case, as the centroids overlap.  As the 

criterion increases, the cloud of points slowly shifts towards lower standard deviations and 

higher mean values, with the decrease in standard deviation much more pronounced than the 

increase in mean.  Beyond the 0.5 criteria, the distribution of the data points does not change 

substantially, indicating that the crops have sufficient water and are not advantaged by more.  

This is supported by the results plotted in Figure 30.  Given that most of the yield gains to be had 

are had by the time the 0.4 FAWHC irrigation criteria is applied, this time series (out of the six 

possible irrigation time series per state) is used as the ‘irrigation’ case in each location for the 

irrigation cost and risk mitigation discussions that follow in Sections 4.4.5 and 4.4.6. 
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Figure 29.  Comparison of mean and standard deviation statistics for 48 US states 
under increasing soil water availability (FAWHC criteria).  
Y-axis values are yields (Mg/ha) and x-axis values are standard deviations.  Solid 
blue dots are the centroids of the data.  The hollow blue dot is the centroid of the ’30 
Year Historical’ data, plotted on the other scenarios for comparison.  Each grey 
point represents one state. 
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Figure 30.  Total uncertainty (maximum – minimum yield) per state as a fraction of 
the mean yield over 30 years.  Plotted are the no irrigation case and the seven 
different FAWHC criteria values use for irrigation decisions. 

Figure 31 plots all annual yield data modelled from historical data for all states against 

the corresponding June PDSI value for un-irrigated and irrigated (criteria 0.4) yield values.  The 

‘curve fit’ line is not meant to suggest a linear model, but rather to illustrate the changing 

correlation between yield and increasing PDSI values (i.e., decreasing drought severity) with and 

without irrigation.  Irrigation as a risk mitigation measure is quite effective at shifting the very 

low yield values upwards.  The relationship between yield and PDSI is much less strong under 

irrigation, but there is still a spread in yield values (now 5 to 30 Mg/ha instead of about 0 to 30 

Mg/ha).  These values are now dependent on things other than severe water deficiency (such as 

temperature). 
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Figure 31.  Yearly yield data for 1961 to 1990 for all continental states plotted 
against corresponding June PDSI values. 

4.4.4.2 Water Consumption 

Another important way to evaluate the irrigation scenarios is to directly compare the 

amount of water applied with the mean increase in yields, so switchgrass can be considered in 

some context with water applied to other US crops.  This comparison is facilitated by the plot in 
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South Plains states), some amount of water is applied every year.  In the other states, where 

irrigation water is applied to less benefit, it is not used every year because of sufficient rainfall, 

so a 100 mm annual average results from many years of 0 mm applied, and a few years with 

hundreds of mm water applied. 

 

Figure 32.  Comparison between percent change in annual mean yield and mean 
annual applied irrigation water (both means over 30 years). 

To better understand states included in the high water application, high yield cloud of 

points, the data from Figure 32 criteria series 0.4 are plotted in Figure 33, but the series are now 

defined by which POLYSYS region contains the state (POLYSYS regions defined above in 

Table 10, Appendix A).  These data are plotted on a logarithmic x-axis (linear y-axis) so that the 

points are more easily distinguishable.  The two most water deficient regions are the Northern 

Plains (NP) and the South Plains (SP), as such, in those regions the greatest yield increases can 

be obtained, but at the greatest investment of water, because the yields were so low to begin 

with.  At the other end of the plot fall states with a low potential for applied water to result in a 

substantial increase in the mean yield.  Here, the opposite situation occurs; yields are 

comparatively high and stable under rain-fed conditions in the Southeast (SE) and in the Corn 
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Belt (CB), so there is not often substantial water deficiency and opportunities for added water to 

greatly increase yields.   

 

Figure 33.  Comparison between absolute change in mean yield over 30 years and 
mean applied irrigation water (0.4 FAWHC criteria), categorized by POLYSYS 
yield region. 
Note that the x-axis is logarithmic. 
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primary US crops, it can be concluded that the 50 to 150 mm average annual water applied to 

switchgrass, which is generally assumed to be a rain-fed crop in the less water scarce states (such 

as in the Southeast or the Corn Belt) in order to manage the risk of switchgrass yield variability 

is comparable to irrigation water amounts applied to other key US crops.  The amount of 

irrigation water necessary to grow switchgrass in an otherwise unfavourable location, such as the 

250 to 400 mm necessary the Southwest, is not that much above the needs of these traditional 

irrigated crops. 

 

Figure 34.  Irrigation water applied to key US crops. 
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final after tax cash flow value, it is the cost of the system that drives the annual after tax cash 

flow values.  Operating expenses are almost always less than financing expenses.  Water costs 

are generally less than 10% of the total operating costs (given $20/acre-foot water costs), so 

water use is of little concern to the famer.  The cash flows presented in Figure 35 are for a central 

pivot irrigation system.  The trade-off between increased yields and comparative cash flow gains 

or losses is plotted in Figure 36.  The changes are calculated as the difference in yields and after-

tax cash flow values between otherwise equivalent irrigated and non-irrigated farms in each 

state. 

The expected annual after tax cash flow difference between the irrigated and the non-

irrigated farm is negative for 37 of 48 states (illustrated in Figure 35), and the average annual 

after tax flow values per state expressed as a dollar per acre on the top set of axes in Figure 36.  

These results mean that, for a state in which a negative cash flow value is calculated, a farmer in 

that state will expect to earn less money next year if irrigation is installed than if it is not.  This 

suggests that investing in irrigation would not be viewed by a private, risk-neutral farmer as an 

effective risk mitigation measure to protect revenues in the face of drought.  The risk tolerance of 

the farmer would impact how attractive the prospect of increased yields from irrigation might be, 

with a risk seeking farmer more likely to gamble on near-term high returns, and a risk averse 

farmer less likely. 
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Figure 35.  Key cash flow differences for each state using central pivot irrigation.  
Differences are between an irrigated farm and a non-irrigated farm. 

The first panel in Figure 36, titled ‘Base assumptions’ shows essentially a linear 

relationship between mean annual cost difference per acre and yield change.  When yield 

increases are greater, installing irrigation becomes increasingly attractive because, under crop 

and water price assumptions, spending between 5 and 20 cents on water yields $1 in increased 

switchgrass.  For 11 of the 48 states modelled, the mean annual after tax cash flow value is 

greater if irrigation is installed at the expense of the farmer, meaning irrigation is used in most, if 

not all, years, so the increased yields (bought with cheap water) outweigh the capital costs.  By 

and large, these states are all in the West.  This result is consistent with the fact that corn is 

profitably grown with irrigation in Arizona, but not in Iowa.  For the rest of the states, water is 

equally inexpensive, and switchgrass prices are equally high, but there is enough rainfall most of 

the time to suggest that irrigation generates a return on the investment for only a few years out of 

30.  In these states, farmers would not opt to install irrigation on their own because the expected 

annual cash flow for an irrigated acre is less than a non-irrigated acre.  The trend here is that the 
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states with small potential yield increases (i.e., the states where the yields are usually fairly high) 

such as Iowa, Arkansas or Missouri, show the biggest negative mean annual cost difference. 

The smaller four plots (A to D) in Figure 36 explore the relationship between the 

expected annual after tax cash flow differences, switchgrass prices and water prices.  The yield 

differences remain the same across all sensitivity plots because the amount of water applied (and 

all other yield model input parameters) remains constant.  Dropping switchgrass prices by half to 

$51/Mg (plot A) makes the average annual cash flow differences negative for all states.  Not 

even in the Southwest, where large, irrigation-induced yield gains are had, can the cost of 

installing and operating irrigation be justified.  The trend is still that the mean annual cost 

difference is much smaller for the water scarce regions where there is high potential for more 

water to bring great yield increases.  In panel B, when water prices are increased to a point about 

halfway between agricultural and residential prices, and switchgrass is kept at $102/Mg, the 

trend changes.  Now to see $1 in increased switchgrass production, more than $1 must be spent 

on water.  This trend is more pronounced with ever-higher water prices in panel C.  When 

switchgrass prices are halved and water prices are set at $100/acre-foot (panel D), the 

switchgrass return on water invested is about 1:1, with it being above some years and below 

others, so the relationship between yield gained and money lost clusters around the -$120 to -

$130/acre range. 



 105 

 

Figure 36.  Mean annual cost differences (between irrigated and non-irrigated) 
farms in all states versus mean annual yield differences.  Thirty years historical data 
used to model yields. 

In practice, the farmer’s decision to irrigate is not as straightforward as this.  If the farmer 

has no irrigation equipment, a decision to install and begin irrigation (after dealing with 

acquiring a reliable source of water) must be made.  Once irrigation is installed, there is a further 
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those water rights to a consumer who may be willing to pay more than the expected revenue 

increase from higher yields.  This behaviour has been observed in California, where irrigation is 

given water rights priority.  Farmers for whom irrigation provides relatively low added value are 

selling their water allocations to nearby industry or residential consumers [120].  This is 

important in this context.  If farmers choose not to water their crop of switchgrass, but instead 

sell the water rights to the highest bidder, then switchgrass yields are not stabilized even with 

installed irrigation infrastructure.  The government would not only have to overcome the 

negative expected annual cash flow values identified here to encourage switchgrass yield 

stabilization, but also the alternative markets for water.  The conditions under which a farmer 

might decide to sell or lease water rights under drought conditions rather than irrigate to reduce 

crop losses would be driven by the value of the increased yields under irrigation, and the value of 

the water to another user (such as an industrial consumer).  From an energy security standpoint, 

in order to ensure that irrigation is used to reduce switchgrass supply risks during drought, some 

measures would be needed to assure farmers irrigate rather than sell their water rights.  This 

could mean water use restrictions, which could be very unpopular politically and socially, or 

possibly government payment in an amount competitive with what interested parties are offering 

for their water rights.  Examining the relationship between water market prices and energy crop 

prices, alongside water rights and allocation as they vary by region, would be an excellent area 

for further research. 

4.4.6 Subsidy for Supply Risk Reduction 

From the previous section, it is apparent that, in states where studies (such as those based 

on the POLYSYS model) expect that rain-fed switchgrass will be grown (i.e., not the West or the 

Northeast, according to Figure 18), farmers will not be otherwise incentivized to install irrigation 
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even with optimistic switchgrass prices and low water prices.  This means yield variability 

caused by drought will not be taken care of by market-based private decisions unless an external 

incentive, such as a government subsidy, is provided.  This could take the form of a tax credit, a 

loan guarantee, or some sort of direct payment to cover a portion of the irrigation installation 

(i.e., capital) expenses.  The subsidy should not cover operating costs.  If operating costs are 

effectively reduced, farmers might be less sensitive to water prices and use more water for 

irrigation than they would otherwise.  Realistically, there is no simple way to ensure that farmers 

irrigate to the FAWHC 0.4 level (as presented in Section 4.4.4.1 and assumed to be the irrigation 

scenario in the following sections) rather than to the 0.7 level once irrigation infrastructure has 

been installed, but at the very least the subsidy design can avoid specifically incentivizing more 

water use.  A second implementation issue is whether  

Regardless of the specific mechanism, the subsidy has to cover the amount of money that 

the switchgrass farmer expects to lose if irrigation is installed and operated so that the decision to 

install and operate will be made by the private farmer.  Based on the results presented above (see 

the first graph in Figure 36), this value varies by state.  For example, farmers in Tennessee would 

expect to earn $140/ha (or $57/acre) less if irrigation was installed and operated than if it was 

not.  So, the farmer would have to receive $140/ha farmed through a subsidy program in order to 

decide to install and operate the irrigation system. 

Biomass feedstock yield stability is related to energy security, and energy security is 

something that the government is willing to spend money to increase.  For example, the US DOE 

estimates that $3.50/barrel oil capital costs were invested for the US strategic petroleum reserve 

in Louisiana and Texas, which is currently filled to capacity at 727 million barrels, for which the 

US government paid an average of $29.76/barrel oil each [132].  There is, then, reason to believe 



 108 

that irrigation could be subsidized to stabilize switchgrass yields and biofuel availability.  Unlike 

with previous discussions in this study, which presents yields at a state location level, this 

requires yields and biomass availability to be aggregated to the national level, as national goals 

(such as EISA) drive the use of cellulosic ethanol. 

To aggregate to a national level, some way of distributing acreage across the states must 

be set.  A POLYSYS database distribution case that corresponds produces sufficient switchgrass 

to meet the EISA 2022 cellulosic ethanol target of 16 billion gallons (distribution shown in 

Figure 18) is used to calculate the relative distribution of switchgrass across all states (many of 

which produce zero switchgrass).  Note that each distribution case is established based on three 

primary criteria in POLYSYS: a price for switchgrass, an ethanol demand level, and a 

switchgrass yield level (‘expected’ or ‘high’).  The set of input assumptions that result in 

sufficient switchgrass for 16 billion gallons is not unique.  However, based on work by Wakeley, 

who showed that the choice of a specific POLYSYS scenario that yields 16 billon gallons of 

ethanol does not make a substantial difference in where the switchgrass is grown [133].  

However, this assumption is an area for further investigation to see how the national aggregate 

yield varies based on how much switchgrass comes for each state to get an idea of how the 

national availability of switchgrass varies over time.  This is not possible when using only point 

estimates for broad regions of the country as the POLYSYS database does.  For the chosen 

POLYSYS case ($95/Mg switchgrass, high yield, high ethanol demand), 19 states grow some 

switchgrass.  Instead of using the potentially ambitious and highly aggregated POLYSYS yields, 

the modelled switchgrass yields from previous sections here are used to calculate an annual, 

national, switchgrass production amount.  The mass of switchgrass produced in each state in 

which the crop is planted is included in Table 11. 
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Table 11.  Distribution of land among switchgrass producing states, and expected 
biomass production to generate 16 billion gallons ethanol. 

State Percent Area 
Mean Yield 

(Mg/ha) St. Dev. 
Expected Biomass 

(106 Mg) 
OK 12.9% 14.9 3.39 19.2 
KY 10.7% 14.3 4.28 15.3 
AR 9.4% 15.0 3.31 14.0 
TN 8.7% 14.1 5.77 12.3 
MO 8.2% 14.8 4.48 12.1 
MS 7.1% 16.2 3.75 11.5 
AL 6.0% 15.3 4.58 9.2 
TX 7.1% 12.3 5.13 8.7 
ND 5.6% 13.2 6.11 7.4 
LA 4.2% 15.3 4.20 6.4 
GA 3.9% 14.9 4.49 5.8 
VA 4.0% 13.3 5.44 5.3 
KS 3.1% 13.8 4.68 4.2 
NC 2.1% 13.7 5.00 2.9 
NY 1.8% 14.7 6.24 2.6 
WV 1.3% 19.3 5.57 2.4 
SC 1.6% 15.0 4.46 2.4 
MN 1.2% 17.8 3.90 2.2 
SD 1.2% 13.4 4.70 1.6 

 

Two average national yield time series are plotted in Figure 37, one assuming no 

irrigation anywhere, and one assuming irrigation installed everywhere.  The expected non-

irrigated yields are always lower than the irrigated.  The national aggregate non-irrigated case 

shows higher minimum yields than do the individual states involved (the low outliers shown in 

Figure 23), as not every state has record lows simultaneously.  There is, however, still substantial 

variability at this aggregate level, with non-irrigated yields ranging from 9.9 to 19 Mg/ha with a 

mean of 14.6 Mg/ha; uncertainty as a percent of mean is 61%.  When irrigation can be used 

everywhere (an upper bound for yields and stability) the variability is substantially reduced but 

certainly not eliminated, as mean yields range from 14 to 20 Mg/ha; uncertainty as a percent of 

mean is reduced to 33% with a mean of 16.6 Mg/ha.  The error bars included here are not a 
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standard error measure, but rather show the highest and lowest state values for each of the two 

scenarios (irrigated or not irrigated).  As expected, the highest values of the error bars (both 

above and below the mean value) on the irrigation series are higher than the error bars on the 

non-irrigated series. 

 

Figure 37.  National average yields generated with historical data for no irrigation, 
and for complete irrigation coverage. 
Error bars indicate the single highest and lowest yield each year out of the states 
included. 

Of principal interest is how this yield variability, even when state yields are aggregated to 

a national level, affects the supply of ethanol.  The last major assumption is how many acres are 

planted in each state, using the established relative distribution of acreage from the POLYSYS 

scenario excerpted (discussed above).  If mean, 30-year unirrigated yields from each state are 

used, 24.7 million acres are required across the US to hit the EISA 16 billion gallon per year 

target.  Using the unirrigated time series in Figure 37, there is insufficient switchgrass biomass 

produced to meet the hard EISA target 50% of the time.  This is one data point plotted in Figure 

38.  Since irrigation increases yields and reduces variability, the likelihood of meeting the EISA 
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target can be evaluated as a function of how much of the total area is irrigated, and under the 

assumption that the government would not necessarily seek to continually manage or mitigate all 

of the potential risk.  Here, irrigation is applied as a percentage of the area in each state (as 

calculated above); the absolute area in each state that is irrigated is different because all states 

have different acreages planted with switchgrass, but the same percent of the total area planted 

with switchgrass for all states has irrigation infrastructure installed.  If all of the switchgrass 

acres are irrigated, 97% of the time the ethanol volume target can be met. 

If, alternatively, risk mitigation is done through planting more switchgrass acreage (i.e., if 

assumed yield values lower than mean are used to determine or predict acreage), then the 

likelihood of under producing ethanol goes down because more switchgrass tends to be produced 

every year.  In Figure 37, the impacts of overplanting can be seen in the non-irrigated case (0% 

irrigation, or the y-intercept), as the likelihood of meeting the EISA target increases as more and 

more switchgrass acres are planted.  The acres planted for each curve in this figure (which is 

based on a different assumed yield per acre) are summarized in Table 12.  Additionally, the 

amount of irrigation needed in order to guarantee that sufficient switchgrass (and thus ethanol) 

will be available to meet the target decreases as the switchgrass acreage increases.  Note that in 

the “overplanting” scenarios, if eventual yields in those years are higher than expected it could 

put downward pressure on market prices of switchgrass.  This effect is not modelled here.  In 

Figure 37, the curves step sharply upwards because only 30 years of data are used, and would be 

smooth with a longer time series.  The 30 years of historical data, rather than yields from 

simulated weather data, are necessary to preserve the correlations in yields between states. 
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Figure 38.  Percent of years (out of 30) during which the amount of ethanol is below 
the target 16 billion gallons due to yield variability. 
Different series result from different mean values used to calculate switchgrass 
acreage per state. 

One aspect of the trade-off that is not illustrated in Figure 38 is the total cost to the 

government from the subsidy required to get farmers to irrigate all of those acres.  Recall that 

payment necessary to offset the cost of the irrigated system over the non-irrigated system varies 

by state (top panel in Figure 36).  The total costs to install and operate irrigation over some fixed 

percentage of switchgrass acres increases with each planting acreage scenario (where each curve 

in Figure 38 represents one scenario), as more acres are necessary when you assume lower yields 

per acre while holding constant the necessary amount of biomass.  The system subsidy costs are 

summarized in Table 12, assuming 100% of the acres are covered with irrigation infrastructure.  
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policy makers decide that they need to be guaranteed sufficient ethanol to meet a specific volume 

target.  If this approach is taken, it is more likely that some level of risk would be tolerable, and 

that level of risk could be achieved though the combination of irrigation and overplanting.  Using 

the curves in Figure 38 can assist in choosing how much of each irrigation or overplanting 

strategy to implement; a horizontal line at the desired risk level cuts through the various planting 

scenario curves at different irrigation levels.  Each intersection point (defined by risk, planting 

level, and irrigation level) from this exercise would have a different system subsidy cost which 

would have to factor in to the decision making process.  Because the percentage of switchgrass 

acreage covered by irrigation is modelled as consistent from state to state, while the total acres 

from state vary, the costs reported in Table 12 will scale linearly with the percent of acres 

covered by irrigation systems.  This trade-off exercise illustrated in Figure 38 is most useful if 

the volume targets are strictly enforced.  Currently, they are not.  Cellulosic fuel targets have 

been waived since the RFS began because these fuels are not economically viable at a scale big 

enough to satisfy the volume targets, even with subsidies. 

Table 12.  Summary of annual system costs, acreage, and water use for 100% 
irrigated acres. 

 Annual System Subsidy 
[billions] 

Acres of Switchgrass 
[millions] 

Annual Water Use 
[million acre-feet] 

Mean yields 1.67 24.7 74.6 
95% of mean 1.76 26.0 78.5 
90% of mean 1.86 27.4 82.9 
85% of mean 1.97 29.0 87.8 
80% of mean 2.09 30.8 93.3 

 

4.4.6.1 Cost Effectiveness of a Switchgrass Irrigation Subsidy Program 

External financial support from the government is required, but that support translates to 

expected increases in yields (shown in Figure 36).  As a result, a subsidy per gallon of ethanol 
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can be calculated as a measure of policy cost effectiveness.  Continuing with Tennessee as an 

example, a $140/ha subsidy results in an expected switchgrass yield increase of 2.3 Mg/ha.  

Assuming 110 gallons of ethanol can be produced per Mg switchgrass [133], this means the cost 

effectiveness of the subsidy program in Tennessee is $0.55/gallon ethanol.  Distributions for 

these cost effectiveness values over all 19 likely switchgrass states are plotted in Figure 39, with 

a variety of different switchgrass and water price scenarios.  The state with the least expensive 

subsidy would be New York, which requires $52/ha to see an increase of 3.5 Mg/ha, which 

would cost $0.13/gal ethanol.  The second-to-least expensive state would be South Dakota, 

which needs $95/ha to yield an increase of 3.0 Mg/ha.  The cost effectiveness here would be 

$0.29/gallon.  Unfortunately, these two states are expected to have a low acreage percentage, at 

1.8 and 1.2% respectively.  In contrast, North Dakota farmers would be incentivized on their 

own to install irrigation, so no subsidy would be required as they expect $93/ha returns on their 

own irrigation investment, and 5.6% of all switchgrass acres would be in that state. 

 

Figure 39.  Distribution of government subsidy values across states growing 
switchgrass to satisfy EISA targets under various switchgrass and water price 
assumptions. 

$102/Mg, $20/af $50/Mg, $20/af $50/Mg, $50/af $50/Mg, $100/af

0

0.5

1

1.5

2

2.5

3

3.5

4

Pricing Scenario

Su
bs

id
y 

($
/g

al
lo

n 
et

ha
no

l)



 115 

Generally, if the price of a gallon of gasoline is considered to be around the current 2012 

$4/gallon mark (or $5.20/gallon ethanol to be energy equivalent), these additional costs seem 

quite high.  To add some more relevant context to these values, first consider that another 

agricultural subsidy, crop insurance, pays out between $15 and $45/acre based on the data 

presented in Figure 5 for all causes.  Recall the subsidy for irrigation for relevant states is 

somewhere between $90 and $200/acre.  With the addition of irrigation, the drought portion of 

the crop insurance disbursement would not have to be paid, so the additional spending would be 

less than the calculated $90 to $200/acre because of this expected reduction in crop insurance 

payments. 

Since the ethanol produced from this energy feedstock is replacing petroleum products, 

the externalities associated with oil consumption that are avoided through the increased 

consumption of ethanol are also relevant for comparison.  This calculation is nicely detailed in a 

study by Michalek at al. [134], who draw from work done by others in the area.  The oil 

premium is composed of three values: value related to oil supply disruptions avoided, as 

disruptions result in reduced economic output in the short term, value related to the US’s 

monopsony of oil (reducing consumption will reduce world oil price, meaning the remaining oil 

purchased is cheaper), and finally value related to avoided military engagements in order to 

improve oil supply security.  Ranges for each are $0.02 to 0.28, $0.03 to 0.45, and $0.03 to 

0.16/gallon gasoline from [89], [135], [136].  The total oil premium, then, is $0.12 to 0.89/gallon 

gasoline.  If the same impacts are assumed to extend to ethanol, at an energy equivalent level, 

this translates to $0.08 to 0.62/gallon ethanol.  Taking data from the first boxplot in Figure 39, 

the cost effectiveness of the irrigation subsidy program (removing the negative subsidy state of 

North Dakota) range from about $0.10 to $1.90/gallon.  Since there is substantial overlap in these 
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two ranges, irrigating in select states could be a cost effective way to manage energy security 

risks. 

4.4.7 Alternative Risk Mitigation Strategies 

Though irrigation as a risk mitigation strategy was discussed extensively, there are 

certainly many other approaches that could be taken instead of, or in conjunction with, irrigation.  

Other alternatives may be more attractive than irrigation as water scarcity becomes increasingly 

important in the agriculture and energy sectors.  One option is to aggressively pursue a research 

program aimed at increasing the drought tolerance of switchgrass and other cellulosic energy 

crops through crop breeding and genetics programs.  Using an approach similar to that used 

earlier to compare irrigated to non-irrigated switchgrass, the willingness to pay for potential yield 

gains due to increased drought tolerance could be examined.  The US DOE started a research 

program that included this goal through its Genomic Science Program [9].  In conjunction with 

strategic irrigation, there is potential for biomass supply risks to be substantially reduced in the 

future. 

Another option is to store surplus biomass and/or ethanol during peak production years to 

help during lean production years.  This would be particularly useful if the overplanting strategy 

discussed in Section 4.4.6, as the surplus switchgrass grown there is unused and essentially 

wasted.  Unfortunately, this option is quite challenging to implement.  Biomass has low energy 

density by volume, so it is expensive to transport and store unless it is dried and densified near 

where it is harvested.  This, of course, adds a substantial cost into the supply chain.  A study 

investigating co-firing of biomass with coal in electricity generating stations found that 

herbaceous biomass densification costs $16 to 22/dry Mg and storage would be an additional 

$18/dry Mg [137].  A non-densified storage option is simply to plant reserve acreage of biomass 
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energy feedstocks that would be harvested only if necessary.  Biomass is stored, living and 

aboveground.  This hinges on the assumption of available land (using, for example, conservation 

reserve program land) and that these supplemental acres would have high enough yields, either 

despite drought conditions or poor soil conditions, that harvesting would be worth the expense. 

If, instead, all of the switchgrass (or other cellulosic crop) is converted to ethanol during 

peak production years, the ethanol could be stored.  This, too, is challenging because of difficulty 

in storing large quantities of ethanol, as it is volatile and hygroscopic.  Unlike the strategic oil 

reserve, which is analogous to a strategic ethanol reserve, ethanol must be stored under 

controlled environmental conditions in fabricated stainless steel tanks rather than simply stored 

or left underground until the need to extract and process arises, as is the case with oil.  This, of 

course, assumes that these commodities could be stored for potentially many years until needed, 

which does not seem feasible.  To provide some context, expected Nth-generation ethanol plants 

modelled by McAloon and colleagues for the DOE and the USDA include 10 days worth of 

storage for the input feedstock, and 12 day of ethanol storage [69].  Storing on the order of years, 

rather than months, is well outside of what is currently practiced for either feedstock or finished 

product. 

A flexible, rather than fixed, biofuel volume target changes what risks need to be 

mitigated.  If the volume target is lowered in years of low ethanol production, compliance is not 

a concern, but satisfying transportation energy demand that would have been satisfied with 

cellulosic ethanol is.  This could be done through increased ethanol imports, which are more 

attractive now that the import tariffs have lapsed.  The economics of a sharp increase in US 

demand (such as would happen if one growing season was very poor due to drought) on 

international ethanol markets need to be considered in evaluating the merits of this response.  
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Alternatively (or additionally), oil imports or domestic production would have to increase in 

order to supplement ethanol production.  This would likely have undesirable impacts on 

increasing oil prices.  Under a high-ethanol future, it is possible domestic refineries will either 

downsize in response to decreased demand for petroleum products, or, reconfigure the relative 

amount of each petroleum product output as they optimizing production for non-transportation 

products in markets less affected by high ethanol use.  In the event of an ethanol shortage in this 

scenario, there may be issues in producing enough gasoline or diesel to make up the energy 

shortfall.  Note that the response scenario in which imported ethanol is used to supplement 

shortfalls in domestic production could have drastically different GHG emissions implications 

than the scenario in which oil is used.  Even if the volume target is flexible, GHG emissions 

reductions are still a policy goal, so these impacts should be considered when evaluating the 

response scenario. 
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Chapter 5. Conclusions 

5.1 Research Questions, Brief Answers 

Chapter 2: Uncertainty in Life-Cycle Greenhouse Gas Emissions from Biofuels 

1. What is the quantitative uncertainty associated with life-cycle greenhouse gas emission 

estimates for current (corn ethanol) and proposed biofuels (switchgrass ethanol, butanol)? 

The life-cycle greenhouse gas emissions from the production of corn ethanol are 

estimated to range between 50 and 200 g CO2e/MJ, from the production of corn butanol between 

60 and 220 g CO2e/MJ, from the production of switchgrass ethanol using fossil fuel for process 

heat, between -25 and 140 g CO2e/MJ, and the production of switchgrass butanol using fossil 

fuel for process heat, between 10 and 180 g CO2e/MJ. 

2. Which model input parameters (e.g., indirect land use change) are the most important in 

determining this range in output values? 

The emissions due to indirect land use change are far and away the most important in the 

uncertainty analysis, because the mean contribution is so great and the uncertainty surrounding 

the true value ILUC emissions is so great.  The contribution to variance from ILUC for corn 

ethanol is 85%, and 66% for switchgrass ethanol.  Production energy requirements are the 

second most important factor for fuels produced using switchgrass.  The direct N2O emissions 

factor is significant for corn and switchgrass fuels, contributing 3 to 4% of the variance.  

Unfortunately, of the factors listed here, only the production energy can be ascertained with 

enough certainty to be reduced to a point estimate.  ILUC and N2O emissions will best be 

represented as a distribution of values for the near future as the models from which those output 

values are taken are improved. 

3. Are there emissions reductions expected when shifting from bio-ethanol to bio-butanol? 
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Even under optimistic production energy assumptions, the emissions that result from the 

energy necessary to produce and extract butanol outweigh the lower upstream emissions from 

the lower feedstock quantity needed per unit of energy output.  So, no, there are not emissions 

reductions to be had from switching to butanol at this point.  There are, of course, other 

advantages given butanol’s increased compatibility with current engines and fuel distribution 

infrastructure when compared to ethanol. 

Chapter 3: Uncertainty and Biofuel Policy Designs 

1. What is the probability that the revised Renewable Fuel Standard (based on deterministic 

life-cycle GHG emissions models) included in the Energy Independence and Security Act will 

succeed in reducing transportation emissions associated with the production of corn- and 

switchgrass-based biofuels? 

When the ‘probability of failure’ framework is applied to the Energy Independence and 

Security Act of 2007, there is a 10% probability that corn ethanol (including indirect land use 

change emissions) will meet the reduction targets, and a 40% probability that switchgrass ethanol 

will meet its more aggressive reduction target.  If indirect land use change emissions are 

excluded from the system boundary, these fuels are much more likely to satisfy emissions 

reductions targets.   

2. What potential policy design incorporates uncertainty in emissions estimates (for the RFS 

and LCFS) so that the likelihood of emissions reductions occurring can be evaluated? 

Both the RFS and LCFS type policies can be modified to accommodate uncertainty in 

emissions estimates instead of only point estimates.  For each, percent reduction targets could 

continue to play a central role in the policy, but the policy makers must additionally set a 

minimum desired probability of policy failure.  In the case of the RFS, a fuel could be assessed 

on both criteria; one with an acceptable mean reduction and which has a low enough variability 

so as to pass the probability of failure test as well would be acceptable.  In the case of the LCFS, 



 122 

one way to estimate a probability of policy failure is to generate a year-end (or other reporting 

period length) distribution representing the regional fuel mix.  This is done by sampling 

distributions for each fuel used in the region based on how often it is used (or perhaps weighted 

by energy, or volume, depending on the functional unit of the study).  Statistics of interest, 

including mean emissions, standard deviation, etc. can be considered alongside the expected 

reduction target.  Using the reduction target and this PDF will produce a probability of failure 

statistic. 

Chapter 4: Consequences of Uncertainty in Biofuel Feedstock Supply 

1. What are the weather-related supply risks to switchgrass grown in the continental United 

States?  How do these risks change with future climate change? 

Using 30 years of historical data to simulate yields, there are several low yield years for each 

state (only 10 to 20% of expected yield in that year), suggesting that a deficiency in crop 

availability will happen chronically; it does not take a 1-in-100 year sort of situation for national 

yields to drop by 20 to 30%. 

As the climate warms and is increasingly variable, yields will tend to decrease in many 

states, so using historical yield data in projections without adjusting for these changes in climate 

will lead to yield over-predictions.  If these impacts are taken into account, increased acreage for 

cellulosic crops are necessary to maintain the same expected output. 

2. To what degree can these supply risks be mitigated with the use of irrigation?  And at what 

cost? 

The drop in switchgrass supply due to unfavourable weather conditions can largely be 

addressed with the use of irrigation.  All of the very low yields (something like 10% of the 

expected value) are addressed with irrigation in the states where switchgrass and other cellulosic 

crops are expected to be grown.  Unfortunately, these yield gains come at a high social cost; $50 
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to $100/acre (or $0.12 to 1.90/gallon ethanol gained) given $102/Mg switchgrass and $20/acre-

foot water prices.  In comparison, the crop insurance program paid out between $15 and $45 and 

acre from 2000 to 2011, and energy security premiums associated with oil could be somewhere 

between $0.08 and $0.62/gallon of ethanol. 

3. How does this variability affect biofuel system recommendations and policy compliance 

based on point estimates? 

Modelling cellulosic biomass yields based on point values that have been aggregated over 

space and over time obviate important risks related to depending on biomass for transportation 

energy.  If variability is not a central part of modelling, no attention is drawn to the possibility 

for substantial drops in available ethanol compared to what is expected, and the need to think 

about consequences, mitigation strategies, and contingencies just never arises.  Unless many 

surplus acres of cellulosic crops are planted, under rain-fed conditions there will be insufficient 

ethanol to meet the EISA targets 10 to 25% of the time.  Thinking in terms of yield ranges, not 

point estimates, is essential in planning a long-term energy system dependent on biomass.   

5.2 Discussion 

The recommendation that comprehensively assessing uncertainty and variability in 

making recommendations to policy makes has certainly been discussed before, and in more 

detail (see [138] and [65] for excellent discussion).  That said, biomass offers an interesting case 

study, providing concrete examples of the challenges that the analyst faces in how to model a 

system in as detailed and complex a way as necessary to capture what is known and what is not 

yet known, and the challenges that policy designers face in how to make a policy that does 

recognize uncertainty in the specific benefits the policy will achieve while still setting specific, 

actionable targets. Monte Carlo simulation paired with assessing the likelihood of some policy 
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target failing, or the ‘probability of policy failure’ framework discussed earlier and implemented 

through this dissertation, is a reasonable way to balance these two demands. 

A theme through this dissertation is assessing and synthesizing work done by others to 

evaluate how increasing model complexity (where necessary) allows for a more comprehensive 

evaluation the merits of biomass energy.  It is essential that the modelling community 

periodically assess how simplifying assumptions made early in research efforts of biomass (e.g., 

setting the system boundary to exclude land use changes, or assuming cellulosic feedstocks will 

be rain-fed) to make sure that recommendations to decision makers continue to be robust.  This 

is particularly relevant in the case of biofuels because the science and understanding behind 

models has evolved fairly quickly.  In conjunction with this, it is necessary for policy to be 

allowed to address potentially rapid changes in things like greenhouse gas emissions 

requirements built into energy policy.  There is a role here, for the modelling community, to 

assist on this front as well. 

5.3 Future Work 

Like any involving academic endeavor, the research for this thesis revealed more new 

and worthwhile questions than it answered.  Below are some of the more interesting issues raised 

during the course of this dissertation that could be addressed by future work. 

1. Indirect land use change is the single greatest contributor to life-cycle GHG emissions from 

the production of corn ethanol, and it is also the least certain.  One challenge to policy 

makers trying to counteract these emissions is that they occur primarily in other parts of the 

world, so US policy cannot directly affect the decisions that lead to indirect land use change.  

One strategy is to offset the carbon release in other countries with carbon uptake in the US 

through a targeted biomass planting effort.  Areas with low soil carbon and minimal 
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aboveground biomass might offer the greatest potential for carbon storage.  This program 

could be implemented at the national or the state jurisdiction, depending on which public 

lands would be pulled into use for this program.  National goals (EISA targets) are driving 

corn ethanol production, so it seems more likely that federal money, rather than state, would 

be spent on this program. 

2. Increased ethanol consumption causes US gasoline consumption to decrease.  This applies 

downward pressure to the price of oil globally, which in turn induces increased oil 

consumption.  As discussed previously based on the literature, this indirectly increases GHG 

emissions (a rebound effect) and should be considered as an additional indirect impact of 

biofuel usage.  Another indirect GHG emissions impact that should be evaluated is the 

impact of increased biofuel production on food prices and food consumption.  As mentioned, 

food price increases can partially be attributed to increases in biofuel production.  The next 

step would be to link food price changes to changes in consumption habits.  For example, if 

DDGS used as animal feed increases in price, meat will increase in price, and final 

consumers may shift away from meat consumption.  The opposite could also happen, where 

DDGS become less expensive as more is available, causing meat to become cheaper.  

Existing literature on GHG emissions from different dietary choices (such as the study 

published by Weber and Matthews [139]) could be used to estimate GHG emissions changes 

due to changing dietary choices indirectly induced by biofuel production increases. 

3. Many issues of water are very important in thinking about how to mitigate crop loss due to 

drought.  While these are acknowledged here, they are not treated quantitatively.  Coupling 

water availability data (or projections) with the irrigated crop yield model would provide a 

more realistic idea of how much risk could actually be mitigated during drought years, and 
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what fraction these yields make up out of the technical potential.  The yield model could be 

run with some sort of water budget as an additional criterion to satisfy during the growing 

season.  Coupled with this would be to have supply-sensitive water prices in the model.  

These data may be more difficult to come by. 

4. Though challenging, the nuances of water rights allocation and management across different 

parts of the country would add a lot of depth to this analysis.  Understanding this system 

would allow for a farmer’s decision between irrigating and selling water rights to other 

demands to be modelled, making the decision model more complex and more realistic. 

5. An economic analysis of price volatility of biofuels that result from supply variability should 

be compared to oil price volatility to actually get at one of the primary motivations for 

biofuels: energy security in the form of price stability. 

6. The irrigation subsidy is only roughly defined in this dissertation.  Several desired 

characteristics of a subsidy, such as infrastructure being supported rather than operating 

costs, are mentioned, but many details need to be specified before further analysis of policy 

feasibility or effectiveness can be undertaken.  Of particular importance is how to prioritize 

who gets subsidized, and when.  The ‘who’ might be prioritized based on several categories: 

expected yield gains, expected variability before and after irrigation, risk tolerance of 

farmers, site specific conditions (which might allow for a less expensive system to be 

installed), and data on water sources and existing demands.  Data for some of these have 

been generated during the course of this study, but many remain to be assembled.  This issue 

of when the subsidy happens, whether it be upfront or uniform over time, may affect farmers’ 

responses to a possible subsidy program.  A fixed amount of money up front (to assist with 

the irrigation infrastructure installation) is generally viewed more favourable than an amount 
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spread over time due to discounting even if NPVs are equal between these two scenarios, so 

participation may be higher with an initial lump sum.  This approach may also more clearly 

indicate that the financial support is for capital expenses, where an annual payment could 

easily be used to offset operating expenses.  As previously discussed, this may lessen the 

impact of water prices on the irrigation decision, which can lead to unnecessarily and 

undesirably high water consumption. 

7. Over-planting switchgrass (or other cellulosic crops) was discussed as an alternative risk 

mitigation strategy.  A negative aspect of this approach mentioned previously is the 

downward pressure on switchgrass prices due to overproduction in some years.  One way to 

address this aspect is to expand the demand for switchgrass through co-firing at coal 

electricity generating stations, where equipment can handle up to 10% biomass by mass.  

Drying and densification would have to occur before combustion, adding cost and emissions, 

but this approach may offer a beneficial use of surplus cellulosic crops.  Work would need to 

be done to estimate how cost effective this strategy would be, and how the capacity to use 

biomass in coal plants compares to the expected amount of surplus switchgrass.  
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Fuel Properties and Yields for Simple Alcohols, Alkanes 
All biomass feedstocks contain polymeric sugars, where types and quantities vary across 

species.  Lignin, ash and other chemicals are also present in most biomass feedstocks.  Lignin is 

a complex grouping of molecules that cannot be readily broken down and provides structure, 

rather than energy storage, for the plant.  In lignocellulosic fuel production, it is an important 

source of process energy. 

In the case of starchy feedstocks such as corn, the major sugar polymer (starch) is 

relatively easy to hydrolyze.  In the case of lignocellulosic feedstocks such as switchgrass, there 

are two primary sugar polymer types: cellulose and hemicellulose.  Cellulose is difficult to 

monomerize due to its crystalline structure [1].  Hemicellulose saccharification is more difficult 

than that of starch but easier than cellulose due to its lower degree of organization.  Sugar types 

in each of these polymers are listed below. 
Table 1.  Sugar polymer compositions for starch, hemicellulose, and cellulose listed in 
increasing order of hydrolysis difficulty. 

Sugar Polymer 
Classification 

Component 
Polymer/Monomer Role in Model 

Starch Starch/Glucose Assumed sole source of sugar from corn. 
Hemicellulose Six-Carbon Sugars: 

  Mannan/Manose 
  Galactan/Galactose 
Five-Carbon Sugars: 
  Arabinan/Arabinose 
  Xylan/Xylose 

Assumed source of sugar from switchgrass. 

Cellulose Six-Carbon Sugar: 
  Glucan/Glucose 

Assumed source of sugar from switchgrass. 

 

Sugar content of some promising domestic feedstocks are presented in Figure 1.  

Feedstocks are primarily C6 sugars, with total sugar content ranging from 0.67 to 0.78 kg 

sugar/kg feedstock [2].  Based on sugar content, less corn is required per MJ than switchgrass. 
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Figure 1.  Sugar content of some promising domestic feedstocks are presented in SI Figure 1.  
Feedstocks are primarily C6 sugars, with total sugar content ranging from 0.67 to 0.78 kg 
sugar/kg feedstock.  Based on sugar content, less corn is required per MJ than switchgrass. 

Batch, industrial production processes are limited by carbon, energy or reducing 

equivalents (electrons).  In bioprocess engineering, yields of cells and metabolic products can be 

modeled by balancing the flow of these elements.  Depending on the process (aerobic or 

anaerobic) carbon can come from organic molecules or CO2, and electrons from organic or 

inorganic molecules.  Electrons flow from donor to a terminal acceptor, generating energy for 

cell synthesis and for product formation in the process [3]. 

When a sugar is used to produce a simple alcohol, it functions as both carbon source and 

electron donor.  Figure 2 shows reactions of glucose to ethanol (C2H6O) and to butanol (C4H10O).  

The reactions are exothermic (not requiring additional energy).  An excess of carbon is indicated 

by CO2 as reaction product. 

Glucose half reaction: 6 CO2 + 24 e- + 24 H+ -->  1 C6H12O6 + 6 H2O 
 
Ethanol half reaction: 2 CO2 + 12 e- + 12 H+ -->  1 C2H6O + 3 H2O 
Complete reaction: C6H12O6 --> 2 C2H6O + 2 CO2  ΔGrxn= -212 kJ/mol 
        Yield (%w): 51.1% 
 
Butanol half reaction: 4 CO2 + 24 e- + 24 H+ -->  1 C4H10O + 7 H2O 
Complete reaction:  C6H12O6 -->  C4H10O + 2 CO2 + H2O  ΔGrxn= -275 
kJ/mol 
        Yield (%w): 41.1% 

Figure 2.  Electron balancing for ethanol and butanol from glucose.  Excess energy and 
carbon are demonstrated in the complete reactions.  Energies calculated using the method in 
[4]. 
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Opposite trends in mass yield and energy density are apparent for simple alcohols and 

alkanes.  Combining these data reveal kg feedstock/MJ fuel output values that vary by 

approximately 1%.  This result indicates that no particular fuel type offers an advantage in 

minimizing upstream emissions.  Relative production emissions per MJ will have the largest 

impact in determining which fuel may have lower life-cycle emissions. 

 
Figure 3.  Comparison of mass yield and energy density trends for alcohols and alkanes.  
Alcohols have superior yields, while alkanes have superior energy density. 

 
Table 2.  Parameter estimates for the biofuels life-cycle greenhouse gas emissions model. 

Parameter Value Unit Data Source(s) and Notes 
Parameters Common to Both Feedstocks 
Emissions Factor, Direct N2O 0.01  Factor in direct N2O calculations using IPCC 2006 

methodology [5] 
Emissions Factor, Indirect N2O 0.01  Factor in indirect N2O calculations using IPCC 

2006 methodology [5] 
Land use change emissions time frame 30 year Common to [6], [7] 
Ethanol yield from C5 and C6 sugars 0.511 kg/kg Calculated value. 
Butanol yield from C5 and C6 sugars 0.411 kg/kg Calculated value. 
Ethanol energy density 21.4 MJ/L LHV, [8] 
Butanol energy density 28 MJ/L LHV, [8] 
Gasoline life-cycle emissions 0.086 kg CO2e/MJ [8] 
Diesel life-cycle emissions 0.091 kg CO2e/MJ [8] 
LPG life-cycle emissions 0.082 kg CO2e/MJ [8] 
Natural gas life-cycle emissions 0.060 kg CO2e/MJ [8] 
Residual Oil life-cycle emissions 0.093 kg CO2e/MJ [8] 
Electricity production emissions 0.197 kg CO2e/MJ [8], US national grid average 
Parameters for Corn as Feedstock 
Corn Yield 9.8 Mg dm/ha Average of USDA corn-for-grain 2007 county-

level data for Midwestern states (IL, IN, IO, KA, 
MI, MN, MO, NE, ND, OH, SD, WI) [9] 

Corn starch content 67.3 %w [10] 
Indirect Land Use emissions 5.5 Mg CO2e 

/ha/year 
[11] 
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Parameter Value Unit Data Source(s) and Notes 
Direct Land Use emissions 0.3 Mg CO2e 

/ha/year 
[11] 

Nitrogen Application 150 kg N/ha [12] 
Truck transport distance with feedstock 40 mi (one way) [8] 
Truck transport emissions 1713 Btu/ton-mi [8], Diesel fuel type combusted 
Production electricity, ethanol 0.038 MJ/MJ etOH [10] 
Production heat, ethanol 0.42 MJ/MJ etOH [10] 
Production electricity, butanol 0.041 MJ/MJ buOH [13] 
Production heat, butanol 0.66 MJ/MJ buOH [13] 
Co-product credit (DDGS) 15 g CO2e/MJ [8], [14] 
Parameters for Switchgrass as Feedstock 
Switchgrass yield 17 Mg dm/ha Yield data for sample plots from [15] used to 

calculate appropriate distribution mean.  
Distribution shape parameters assumed the same as 
from USDA 2007 corn data . 

Glucan 34.4 %w [2] 
Xylan 22.9 %w [2] 
Mannan 0.32 %w [2] 
Galactan 1.0 %w [2] 
Arabinan 3.01 %w [2] 
Lignin 19.2 %w [2] 
Indirect Land Use emissions 1.7 Mg CO2e 

/ha/year 
[11] 

Direct Land Use emissions 2 Mg CO2e 
/ha/year 

[11] 

Carbon sequestration 1.95 Mg CO2e 
/ha/year 

[16] 

Nitrogen Application rate 74 kg N/ha [17] 
Production energy, ethanol 0.52 MJ/MJ etOH [18] 
Percentages to electricity, heat 10/90%  [18] 
Production energy, butanol 0.82 MJ/MJ buOH [13], [18] 
Percentages to electricity, heat 7/93%  [13], [18] 
Production plant boiler efficiency 68%  [18] 
Production plant turbine efficiency 85%  [18] 
Lignin energy content 21.8 MJ/kg [18] 
Non-sugar, non-lignin components’ energy 
content 

10 MJ/kg [18] 

 

Point estimates of emissions for each of the life-cycle stages are included below in Figure 

4.  Upstream emissions (including the switchgrass credit for soil carbon sequestration) are 

consistent across fuel types.  Feedstock quantity drives upstream emissions, and feedstock 

demand per MJ ethanol and butanol are approximately equal (see ‘Determining Fuel Yields’ 

section above), resulting in similar upstream emissions.  This is an important factor to consider 

going forward in developing new fuels, particularly since upstream emissions are the majority of 

life-cycle emissions.  A particular fuel type’s relative candidacy as ‘renewable’ or ‘low carbon’ 

will depend mostly on production emissions for any given feedstock amount required. 

Differences between feedstocks for one fuel type are apparent throughout the life cycle.  

Corn fuels shows greater life-cycle emissions than corresponding switchgrass in all stages except 

DLUC.  New land is expected to be used for switchgrass as biofuel feedstock, whereas existing 
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corn is expected to be diverted to fuel production.  Even if corn process energy were produced 

from switchgrass (SWf) instead of fossil energy sources (FF), the two cases modeled for the 

switchgrass fuels, upstream emissions would still push total corn emissions higher than 

switchgrass (SW)-based fuels. 

 
Figure 4.  Life-cycle emissions by stage/source using point estimates for parameters and 
emissions factors.  Horizontal lines show EISA gasoline emissions (93 g) and 20% and 60% 
reduction values.  Results are grouped by feedstock type, with horizontal axis labels listing 
shorthand for fuel type and fuel production energy source (if needed) as listed in Table 1.  
Production credit results from system expansion allocation; surplus grid electricity for 
switchgrass, and DDGS credit for corn. 

The following results (Table 3 Table 4) summarize the output from the Monte Carlo 

simulation. 
Table 3.  Distribution statistics for the base case Monte Carlo simulation as output by 
Crystal Ball modeling software. 

Statistic 
Corn 
buOH 

Corn 
etOH 

SW buOH 
FF 

SW buOH 
SWf 

SW etOH 
FF 

SW etOH 
SWf 

Trials 10,000 10,000 10,000 10,000 10,000 10,000 
Mean 0.131 0.112 0.09 0.076 0.049 0.048 
Median 0.129 0.111 0.088 0.07 0.047 0.046 
Mode '--- '--- '--- '--- '--- '--- 
Standard 0.029 0.028 0.034 0.036 0.033 0.032 
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Statistic 
Corn 
buOH 

Corn 
etOH 

SW buOH 
FF 

SW buOH 
SWf 

SW etOH 
FF 

SW etOH 
SWf 

Deviation 
Variance 0.001 0.001 0.001 0.001 0.001 0.001 
Skewness 0.2754 0.2805 0.251 0.6 0.3084 0.3468 
Kurtosis 2.93 2.9 2.83 3.02 2.82 2.88 
Coeff. of 
Variability 0.2211 0.2518 0.3762 0.4711 0.6584 0.6649 
Minimum 0.056 0.039 -0.01 -0.01 -0.052 -0.052 
Maximum 0.265 0.248 0.225 0.244 0.17 0.169 
Mean Std. 
Error 0 0 0 0 0 0 

 
Table 4.  Sensitivity results for butanol. 

Parameter Corn butanol SW buOH FF SW buOH SWf 
ILUC emissions factor 82.5% 0.89 61.8% 0.77 78.7% 0.87 
DLUC emissions factor   4.2% 0.20 5.8% 0.24 
Soil C sequestration factor   2.5% -0.15 2.4% -0.15 
Direct N2O emissions factor 4.0% 0.20 2.3% 0.15 3.0% 0.17 
Feedstock yield 6.6% -0.25 1.5% -0.12 2.0% -0.14 
Production energy 3.5% 0.18 26.3% 0.50 7.4% 0.27 
Glucose conversion 
efficiency 2.1% -0.14     
Hydrolysis efficiency       

 

Irrigation Cost Model 
Table 5. Capital and operating cost assumptions based primarily on Kansas data, confirmed 
(generally) from other state data. 

Costs (2011)     

   
 

Farm Per acre 
Getting water 

  Well (300 ft) $32,000  
 Pump & gearhead (8", 245 

ft.) $27,500  
 Power unit (NG) $12,500  
 Water meter $1,350  
 Connectors $2,500  
 TOTAL $75,850  $607  

   Irrigation system 
  



 7 

Central pivot 
  7-tower pivot system $62,000  

 Pipe, electrical, etc. $9,815  
 TOTAL $71,815  $575  

   Flood $5,125  
 TOTAL $5,125  $41  

   SDI 
  System components $184,192  

 Equipment use, labour $18,425  
 TOTAL $202,617  $1,621  

 
Table 6.  Cash flow model input assumptions.  Blue values indicate the specific number will 
change based on either changing irrigation system type (central pivot, flood, or subsurface 
drip) or water source (well or surface).  Capital costs are detailed in Table 5 below. 

ASSUMPTIONS       

 
Value Unit Notes 

Financing 
Irrigation loan period 15 years  
Well loan period 25 years  
Interest rate 6% 

 
 

Tax rate 15% 
 

 
Insurance percentage 2% 

 
 

Irrigation maintenance 0.50% 
 

 
Power unit maintenance 3% 

 
 

Discount rate 12% 
  Depreciation period Same as loan period for each type of equipment 

Well capital cost $75,850  
 

 
Irrigation system capital cost $71,815  

 
 

    Farm operations 

Size 125 acres 
Central pivot size (Flood: 
160 acres) 

Well depth 300 ft 
 Water use per irrigation event 1 in  

Labour 0.1 
hr/acre/even
t 

 Water per event 0.7 in/day/event  

    Commodities 
NG price: 3.5 $/mcf 

 Elec price: 0.06 $/kWh 
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Water cost: 20 $/acre-foot 
 Labour cost: $13  /hour 
 Switchgrass price 102 $/Mg NAS break-even price 

 

Switchgrass Yield Model  
 Below are listed the default values for various key input parameters according to the 

Grassini model definitions [19]. 
Tmin = 13;  
Tmax = 42;  
Topt = 33;        % [C] Grassini, cultivar characteristics 
Rmax = 0.037;     % Blackwell cultivar, see Grassini Table 1 
MAXLAI = 10;      % Value from within noted range of 7.5 to 17.7 
RUE = 4.7;        % Grassini, from Kiniry et al. (1999) 
SL1_depth = 150;  % [mm] 
SL2_depth = 1450; % [mm] to give a total root depth of 1.6m 
AWHC_SL1 = 0.15;  % Assumed soil characteristics 
AWHC_SL2 = 0.12;  % Assumed soil characteristics 
K_coeff = 0.48;   % Extinction coefficient for total incoming solar radiation 
FAWHC_SL1 = 0.6;  % Default from Grassini 
FAWHC_SL2 = 0.6;  % Default from Grassini 

 
Table 7. Data related to the states modelled in the yield model. 

FIPS State City Elevation 
[m] 

Region 
(Climate) 

Region 
(POLYSYS) 

Percent Area 
(POLYSYS) 

1 AL Montgomery 203 SE SE 6.0% 
2 AZ Phoenix 1112 SW SP 0.0% 
3 AR Little Rock 264 S SE 9.4% 
4 CA Sacramento 26 W SP 0.0% 
5 CO Alamosa 7536 SW SP 0.0% 
6 CT Hartford 100 NE NE 0.0% 
7 DE Wilmington 78 NE NE 0.0% 
8 FL Tallahassee 69 SE SE 0.0% 
9 GA Macon 360 SE SE 3.9% 

10 ID Boise 2867 NW NP 0.0% 
11 IL Springfield 613 C CB 0.0% 
12 IN Indianapolis 807 C CB 0.0% 
13 IA Mason 1224 ENC CB 0.0% 
14 KS Dodge 2528 S CB 3.1% 
15 KY Lexington 987 C SE 10.7% 
16 LA Shreveport 259 S SE 4.2% 
17 ME Caribou 623 NE NE 0.0% 
18 MD Baltimore 154 NE App 0.0% 
19 MA Worchester 987 NE NE 0.0% 
20 MI Lansing 839 ENC Lake 0.0% 
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21 MN Rochester 1319 ENC NP 1.2% 
22 MS Meridian 308 S SE 7.1% 
23 MO Colombia 886 C CB 8.2% 
24 MT Lewiston 4147 WNC NP 0.0% 
25 NE Norfolk 1545 WNC CB 0.0% 
26 NV Elko 5075 W SP 0.0% 
27 NH Concord 345 NE NE 0.0% 
28 NJ Newark 29 NE NE 0.0% 
29 NM Albuquerque 5311 SW SP 0.0% 
30 NY Syracuse 406 NE Lake 1.8% 
31 NC Raleigh 439 SE SE 2.1% 
32 ND Minot 1712 WNC NP 5.6% 
33 OH Columbus 833 C CB 0.0% 
34 OK Tulsa 676 S SP 12.9% 
35 OR Salem 200 NW NP 0.0% 
36 PA Harrisburg 348 NE App 0.0% 
37 RI Providence 62 NE NE 0.0% 
38 SC Colombia 227 SE SE 1.6% 
39 SD Huron 1289 WNC NP 1.2% 
40 TN Knoxville 981 C SE 8.7% 
41 TX Waco 508 S SP 7.1% 
42 UT Cedar City 5616 SW SP 0.0% 
43 VT Burlington 341 NE NE 0.0% 
44 VA Richmond 164 SE SE 4.0% 
45 WA Spokane 2365 NW NP 0.0% 
46 WV Elkins 1948 C App 1.3% 
47 WI Madison 859 ENC Lake 0.0% 
48 WY Cheyenne 6141 WNC NP 0.0% 

 

Sample Switchgrass Yield Under Irrigation  
The first column lists years (out of 30) in which irrigation was used on at least one day.  The 

second column lists the total number of days over the 30-year period where irrigation is used, 

and from which the total water amount is calculated. 
Table 8.  Irrigation use data, and yield improvement for three sample states. 

 
Years with 
irrigation 

Irrigation 
days 

Total water 
[m] 

Change in 
Average 

Yield [%] 

Change in 
Minimum 
Yield [%] 

Criteria: 0.4  
Tennessee 13 51 2.25 14 90 
Texas 18 69 3.45 18 83 
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Iowa 15 45 2.25 9 85 
Criteria: 0.5  
Tennessee 20 81 4.05 19 91 
Texas 23 106 5.30 23 85 
Iowa 23 78 3.90 12 85 
Criteria: 0.6  
Tennessee 23 108 5.40 21 92 
Texas 25 141 7.05 26 86 
Iowa 25 110 5.50 14 87 
Criteria: 0.7  
Tennessee 26 138 6.90 23 92 
Texas 28 176 8.80 28 86 
Iowa 28 143 7.15 16 87 
 

 

References 
[1] M. E. Himmel, S.-Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, 

and T. D. Foust, “Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels 
Production,” Science, vol. 315, no. 5813, pp. 804–807, Feb. 2007. 

[2] US DOE Biomass Program, “Biomass Feedstock Composition and Property Database.” 
US Department of Energy. 

[3] J. VanBriesen, “Evaluation of methods to predict bacterial yield using thermodynamics,” 
Biodegradation, vol. 13, no. 3, pp. 171–190, 2002. 

[4] M. L. Mavrovouniotis, “Estimation of standard Gibbs energy changes of 
biotransformations,” Journal of Biological Chemistry, vol. 266, no. 22, pp. 14440–
14445, 1991. 

[5] C. De Klein, R. Novoa, S. Ogle, K. Smith, P. Rochette, T. Wirth, B. McConkey, A. 
Mosier, and K. Rypdal, “N2O Emissions from Managed Soils, and CO2 Emissions from 
Lime and Urea Application,” in 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories, vol. 4, no. 11, Hayama, Japan: IPCC, 2006, pp. 1–54. 

[6] T. Searchinger, R. Heimlich, R. A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. 
Tokgoz, D. Hayes, and T.-H. Yu, “Use of U.S. croplands for biofuels increases 
greenhouse gases through emissions from land-use change,” Science, vol. 319, no. 5867, 
pp. 1238–1240, Feb. 2008. 

[7] J. Fargione, J. Hill, D. Tilman, S. Polasky, and P. Hawthorne, “Land Clearing and the 
Biofuel Carbon Debt,” Science, vol. 319, no. 5867, pp. 1235–1238, Feb. 2008. 

[8] M. Wang, “Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation 
(GREET) Model.” Argonne National Lab. 

[9] USDA Economic Research Service, “Feed Grains Database.” United States Department 
of Agriculture. 

[10] J. Kwiatkowski, A. J. Mcaloon, F. Taylor, and D. B. Johnston, “Modeling the process 
and cost of fuel ethanol production by the corn dry-grind process,” Industrial Crops and 
Products, vol. 23, pp. 288–296, Apr. 2006. 

[11] US EPA, “Draft Regulatory Impact Assessment: Changes to Renewable Fuel Standard,” 



 11 

Office of Transportation and Air Quality, Assessment and Standards Division, 2009. 
[12] J. O. Paz, W. D. Batchelor, B. A. Babcock, T. S. Colvin, S. D. Logsdon, T. C. Kaspar, 

and D. L. Karlen, “Model-based technique to determine variable nitrogen for corn,” 
Agricultural Systems, vol. 61, pp. 69–75, Jul. 1999. 

[13] M. Wu, M. Wang, J. Liu, and H. Huo, “Assessment of potential life-cycle energy and 
greenhouse gas emission effects from using corn-based butanol as a transportation fuel,” 
Biotechnology Progress, vol. 24, no. 6, pp. 1204–1214, 2008. 

[14] R. J. Plevin, “Modeling Corn Ethanol and Climate,” Journal of Industrial Ecology, vol. 
13, no. 4, pp. 495–507, Aug. 2009. 

[15] S. B. McLaughlin and L. A. Kszos, “Development of switchgrass (Panicum virgatum) as 
a bioenergy feedstock in the United States,” Biomass and Bioenergy, vol. 28, no. 6, pp. 
515–535, Jun. 2005. 

[16] S. B. McLaughlin and M. E. Walsh, “Evaluating environmental consequences of 
producing herbaceous crops for bioenergy,” Biomass and Bioenergy, vol. 14, no. 4, pp. 
317–324, 1998. 

[17] M. Schmer, K. Vogel, R. Mitchell, and R. Perrin, “Net energy of cellulosic ethanol from 
switchgrass,” Proceedings of the National Academy of Sciences, vol. 105, no. 2, p. 464, 
2008. 

[18] A. Aden, M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, and B. Wallace, 
“Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-
Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover,” 
National Renewable Energy Laboratory, Jun. 2002. 

[19] P. Grassini, E. Hunt, R. B. Mitchell, and A. Weiss, “Simulating Switchgrass Growth and 
Development under Potential and Water-Limiting Conditions,” Agronomy Journal, vol. 
101, no. 3, pp. 564–571, 2009. 

 



 
 
 
 
 
 
 
 
 

Appendix B 



function [C_eth SW_swf SW_ff] = biofuel_MC_fixed 
  
% Biofuel GHG Emissions Model, Monte Carlo Simulation 
% Kimberley Mullins 
% Last update: April 30, 2011 
% 
% Organization: 
%   Definition of variables and calculation of underlying model parameters (such as yield values) 
%   Land use change emissions 
%   Crop harvesting and transportation emissions 
%   Fuel production and distribution 
%  
% Datasets: 
%   Crops:  1. Corn 
%           2. Switchgrass 
%           3. Corn stover 
%   Fuels:  !. Ethanol 
%           2. Butanol 
  
  
samples = 10000; 
  
% TEST POINTS FOR NLCFS ANALYSIS 
% Overwrite distributions with point values for select parameters 
NLCFS = 1; 
  
%%%% EMISSIONS FACTORS %%%% 
  
% Unit: kg CO2e/MJ unless otherwise noted (elec) 
EF.FFname = {'Gasoline'; 'Diesel'; 'LPG'; 'NG'; 'Resid Oil'; 'Elec_kg/MJ'; 'Elec_kg/kWh'}; 
EF.FFvalue = [0.086; 0.091; 0.082; 0.06; 0.093; 0.197; 0.71]; 
%EF.FFname = {'Gasoline'; 'Diesel'; 'LPG'; 'Coal'; 'Resid Oil'; 'Elec_kg/MJ'; 'Elec_kg/kWh'}; 
%EF.FFvalue = [0.086; 0.091; 0.082; 0.12; 0.093; 0.197; 0.71]; 
  
%%%% FUEL CHARACTERISTICS, YIELDS %%%% 
  
% Unit: MJ/L 
EtOH.MJperL = 21.4; 
EtOH.MJperkg = 26.8; 
EtOH.yield = 0.511; % by mass (g fuel/g sugar), from thermo calcs 
  
BuOH.MJperL = 28; 
BuOH.MJperkg = 33.11; 
BuOH.yield = 0.4111; % by mass (g fuel/g sugar), from thermo calcs 
  
% Hydrolysis 
ConvEff.Glc.pt = 0.95; 
ConvEff.Hyd.pt = 0.9; 
ConvEff.Oth.pt = 0.85; 
  
ConvEff.Glc.dst = unifrnd(0.85,1,samples,1); 
ConvEff.Hyd.dst = unifrnd(0.85,0.95,samples,1); 
ConvEff.Oth.dst = unifrnd(0.75,0.9,samples,1); 
  
%%%% FEEDSTOCK CHARACTERISTICS %%%% 
  
% Yield values 
  
SW.yield.pt = 240; % Mg d.m./ha 
C.yield.pt = [9.842 180]; % Mg d.m./ha then bu/acre 
  
% Switchgrass yield distribution.  Beta [a=21.62, b=5.86, range [0,21.6]] 
SW.yield.dst = (21.6-0)*betarnd(21.62,5.86,samples,1); 
% SW.yield.dst = trirnd(5.2,12.9,21.6,samples); 
% SW.yield.dst = 240*ones(samples,1); 
  
% Corn yield distribution.  Beta [a=21.62, b=5.86, range [0,14.3]] 
C.yield.dst = (14.3-0)*betarnd(21.62,5.86,samples,1); 
% C.yield.dst = C.yield.pt(1)*ones(samples,1); 
  
% Corn stover yield distribution. Based on 1:1 grain to stover ratio 
% Adjusted to meet requirement to leave some stover on field (5 Mg/ha as 
% calculated from Sheehan et al. (2004) 



CS.yield.dst = C.yield.dst - 5; 
for k = 1:samples, 
    if CS.yield.dst(k) < 0, 
        CS.yield.dst(k) = 0; 
    end 
end 
clear k; 
  
% Percentage feedstock composition 
  
% C5 Sugars: Arabinan and Xylan, C6 sugars: Mannan, Galactan, Glucan 
% Order:      Lignin Arabin. Xylan Mannan Galact. Glucan Else 
SW.ptsugar = [0.192  0.03    0.229  0.003  0.01    0.344    0.192]; 
CS.ptsugar = [0.192  0.0238  0.1971 0.0048 0.0089  0.3643   0.2091]; 
%SW.PointSugar(7) = 1-sum(SW.PointSugar); 
  
%  Energy content in MJ/kg 
SW.sugarE =  [21.83  14.73   15.18 18.68  11.53   14.73  10.05]; 
SW.MJperkg.pt = SW.ptsugar*SW.sugarE'; 
CS.sugarE = SW.sugarE; 
CS.MJperkg.pt = CS.ptsugar*CS.sugarE'; 
  
C.ptsugar =  [0      0       0     0      0       0.673  0.327]; 
  
% Based on data fit from Bioenergy Feedstock Composition Database 
  
SW.composition(:,1) = trirnd(0.173,0.211,0.192,samples); % lignin 
SW.composition(:,2) = unifrnd(0.026,0.034,samples,1); % arabinan 
SW.composition(:,3) = trirnd(0.206,0.26,0.229,samples); % xylan 
SW.composition(:,4) = trirnd(0.0029,0.0036,0.0032,samples); % mannan 
SW.composition(:,5) = trirnd(0.0067,0.012,0.01,samples); % galactan 
SW.composition(:,6) = trirnd(0.31,0.372,0.344,samples); % glucan 
SW.composition(:,7) = zeros(samples,1)+1; 
for i=1:6, 
    SW.composition(:,7) = SW.composition(:,7)-SW.composition(:,i); % else 
end 
  
C.gluc = trirnd(0.626,0.72,0.673,samples); 
  
CS.composition = zeros(samples,7); 
  
for i=1:7, 
    CS.composition(:,i) = CS.ptsugar(i) .* ones(samples,1); 
end 
  
%%%% TRANSPORTATION MODE CHARACTERISTICS %%%% 
  
% Modal distribution for fuels 
%      Perct. Dist  There        Back 
%             (mi)  (Btu/ton-mi) (Btu/ton-mi) 
Mode = [0.4,  520,   431,        328; 
        0,    600,   253,        0; 
        0.4,  800,   270,        0; 
        0.2,  80,    1099,       1099; 
        1,    30,    1099,       1099]; 
  
% Distribution of energy sources for each transportation mode     
%          Barge Pipeline Rail Truck Truck2    
Mode_FF = [0,    0,       0,   0,    0; % Gasoline 
           0,    0.2,     1,   1,    1; % Diesel 
           0,    0,       0,   0,    0; % LPG 
           0,    0.24,    0,   0,    0; % NG 
           1,    0.5,     0,   0,    0; % Residual Oil 
           0,    0.06,    0,   0,    0; % Electricity 
           0,    0,       0,   0,    0];% Elec (other unit) 
        
% Emissions factors for each fuel 
% Unit: g CO2e/MJ 
for i=1:5, 
    Mode_EF(i) = Mode(i,2)*sum(Mode(i,3:4))/(2000/2.2)/10^6*1055*(Mode_FF(:,i)'*EF.FFvalue); 
end 
  
% FUEL CONVERSION ENERGY FACTORS 



  
% fuel production parameters 
C.EtOH.ProductionElectricity.dst=trirnd(0.023,0.049,0.038,samples);     % MJ/MJ ethanol 
C.EtOH.ProductionHeat.dst=trirnd(0.32,0.51,0.42,samples);               % MJ/MJ ethanol 
C.BuOH.ProductionElectricity.dst=unifrnd(0.031,0.051,samples,1);        % MJ/MJ butanol 
C.BuOH.ProductionHeat.dst=unifrnd(0.50,0.83,samples,1);                 % MJ/MJ butanol 
  
SW.EtOH.ProductionEnergy.dst=unifrnd(0.44,0.72,samples,1);              % MJ/MJ ethanol 
SW.BuOH.ProductionEnergy.dst=unifrnd(0.63,1.20,samples,1);              % MJ/MJ butanol 
  
CS.EtOH.ProductionEnergy.dst=unifrnd(0.44,0.72,samples,1);              % MJ/MJ ethanol 
CS.BuOH.ProductionEnergy.dst=unifrnd(0.63,1.20,samples,1);              % MJ/MJ butanol 
  
% convert to single matrix to keep consistent with biofuel_point 
% conventions 
C.ProdE.dst=[C.EtOH.ProductionElectricity.dst C.EtOH.ProductionHeat.dst 
C.BuOH.ProductionElectricity.dst C.BuOH.ProductionHeat.dst]; 
SW.ProdE.dst=[SW.EtOH.ProductionEnergy.dst SW.BuOH.ProductionEnergy.dst]; 
CS.ProdE.dst=[CS.EtOH.ProductionEnergy.dst CS.BuOH.ProductionEnergy.dst]; 
  
clear i; 
  
% ALLOCATION FACTORS 
  
mass_allocation = CS.yield.dst ./ (C.yield.dst + CS.yield.dst); % ratio of CS pulled off to total 
mass 
%energy_allocation =  
  
if NLCFS == 1, 
    %SW.yield.dst = ones(samples,1).*SW.yield.pt; 
    %C.yield.dst = ones(samples,1).*C.yield.pt(1); 
     
    ConvEff.Glc.dst = ones(samples,1).*ConvEff.Glc.pt; 
    ConvEff.Hyd.dst = ones(samples,1).*ConvEff.Hyd.pt; 
    ConvEff.Oth.dst = ones(samples,1).*ConvEff.Oth.pt; 
  
    SW.composition(:,1) = ones(samples,1).*0.192; % lignin 
    SW.composition(:,2) = ones(samples,1).*0.03; % arabinan 
    SW.composition(:,3) = ones(samples,1).*0.229; % xylan 
    SW.composition(:,4) = ones(samples,1).*0.003; % mannan 
    SW.composition(:,5) = ones(samples,1).*0.01; % galactan 
    SW.composition(:,6) = ones(samples,1).*0.344; % glucan 
    SW.composition(:,7) = ones(samples,1).*0.192; % else 
    C.gluc = ones(samples,1).*0.673;     
     
    C.EtOH.ProductionElectricity.dst=ones(samples,1).*0.0408;     % MJ/MJ ethanol 
    C.EtOH.ProductionHeat.dst=ones(samples,1).*0.4514;               % MJ/MJ ethanol 
    C.BuOH.ProductionElectricity.dst=ones(samples,1).*0.0428;        % MJ/MJ butanol 
    C.BuOH.ProductionHeat.dst=ones(samples,1).*0.6869;                 % MJ/MJ butanol 
    SW.EtOH.ProductionEnergy.dst=ones(samples,1).*0.58;              % MJ/MJ ethanol 
    SW.BuOH.ProductionEnergy.dst=ones(samples,1).*0.82;              % MJ/MJ butanol 
    % convert to single matrix to keep consistent with biofuel_point 
    % conventions 
    C.ProdE.dst=[C.EtOH.ProductionElectricity.dst C.EtOH.ProductionHeat.dst 
C.BuOH.ProductionElectricity.dst C.BuOH.ProductionHeat.dst]; 
    SW.ProdE.dst=[SW.EtOH.ProductionEnergy.dst SW.BuOH.ProductionEnergy.dst]; 
     
end     
  
  
%% Hydrolysis Calculations 
  
% For switchgrass, fuelyield in kg feedstock/MJ fuel 
  
% Step1: SW.arabinan * 1000 / 132 
% Step2: ... * 150 g/mol C5 sugar 
% Step3: ... * 0.511 * hydrol eff * other sugar eff [g C5 sugar] 
% Step4: ... /1000 * 26.8 MJ/kg 
  
EtOH.kgSWperMJ.dst = 1./((EtOH.yield*EtOH.MJperkg).*(... 
    (150/132).*sum(SW.composition(:,2:3),2).*ConvEff.Hyd.dst.*ConvEff.Oth.dst... 
    + (180/162).*sum(SW.composition(:,4:5),2).*ConvEff.Hyd.dst.*ConvEff.Oth.dst... 
    + (180/162).*SW.composition(:,6).*ConvEff.Hyd.dst.*ConvEff.Glc.dst)); 



  
BuOH.kgSWperMJ.dst = 1./((BuOH.yield*BuOH.MJperkg).*(... 
    (150/132).*sum(SW.composition(:,2:3),2).*ConvEff.Hyd.dst.*ConvEff.Oth.dst... 
    + (180/162).*sum(SW.composition(:,4:5),2).*ConvEff.Hyd.dst.*ConvEff.Oth.dst... 
    + (180/162).*SW.composition(:,6).*ConvEff.Hyd.dst.*ConvEff.Glc.dst)); 
  
EtOH.kgCperMJ.dst = 
1./((EtOH.yield*EtOH.MJperkg).*((180/162).*C.gluc.*ConvEff.Hyd.dst.*ConvEff.Glc.dst)); 
BuOH.kgCperMJ.dst = 
1./((BuOH.yield*BuOH.MJperkg).*((180/162).*C.gluc.*ConvEff.Hyd.dst.*ConvEff.Glc.dst)); 
  
EtOH.kgCSperMJ.dst = 1./((EtOH.yield*EtOH.MJperkg).*(... 
    (150/132).*sum(CS.composition(:,2:3),2).*ConvEff.Hyd.dst.*ConvEff.Oth.dst... 
    + (180/162).*sum(CS.composition(:,4:5),2).*ConvEff.Hyd.dst.*ConvEff.Oth.dst... 
    + (180/162).*CS.composition(:,6).*ConvEff.Hyd.dst.*ConvEff.Glc.dst)); 
  
BuOH.kgCSperMJ.dst = 1./((BuOH.yield*BuOH.MJperkg).*(... 
    (150/132).*sum(CS.composition(:,2:3),2).*ConvEff.Hyd.dst.*ConvEff.Oth.dst... 
    + (180/162).*sum(CS.composition(:,4:5),2).*ConvEff.Hyd.dst.*ConvEff.Oth.dst... 
    + (180/162).*CS.composition(:,6).*ConvEff.Hyd.dst.*ConvEff.Glc.dst)); 
  
%% Land Use Change Emissions 
  
time = 30; %years, consistent with other studies (EPA, Searchinger) 
  
% ha domestic / MJ fuel value (vector) 
% = Fuel yield MJ/kg divided by  kg / ha [Yield] 
% From Hydrolysis,  From Yield Assumptions 
  
% Emissions factors 
C.ILUC_ef.dst = trirnd(0,351,165,samples); % Mg CO2e/ha corn harvested 
C.DLUC_ef.dst = trirnd(0,135,9.1,samples); 
  
% SW.ILUC_ef.dst = trirnd(0,450,50.1,samples); % Mg CO2e/ha switchgrass harvested 
SW.ILUC_ef.dst = trirnd(0,450,70,samples); 
SW.DLUC_ef.dst = trirnd(0,135,60,samples); 
SW.Seq_ef.dst = -trirnd(21.9,120,58.5,samples); 
  
CS.ILUC_ef.dst = zeros(samples,1); % Mg CO2e/ha corn stover harvested 
CS.DLUC_ef.dst = (mass_allocation) .* trirnd(0,135,9.1,samples); % allocation by mass 
     
     
% Emissions output (in g CO2e/MJ fuel) 
% Mg CO2e/ha (30 year total) * kg feedstock/MJ * ha/kg feedstock(/d.m. conversion) / time 
  
CEtOH.ILUC.MC = C.ILUC_ef.dst*10^6 .* EtOH.kgCperMJ.dst ./ (C.yield.dst.*1000./0.87) ./ time; 
CEtOH.DLUC.MC = C.DLUC_ef.dst*10^6 .* EtOH.kgCperMJ.dst ./ (C.yield.dst.*1000./0.87) ./ time; 
CBuOH.ILUC.MC = C.ILUC_ef.dst*10^6 .* BuOH.kgCperMJ.dst ./ (C.yield.dst.*1000./0.87) ./ time; 
CBuOH.DLUC.MC = C.DLUC_ef.dst*10^6 .* BuOH.kgCperMJ.dst ./ (C.yield.dst.*1000./0.87) ./ time; 
  
SWEtOH.ILUC.MC = SW.ILUC_ef.dst*10^6 .* EtOH.kgSWperMJ.dst ./ (SW.yield.dst.*1000) ./ time; 
SWEtOH.DLUC.MC = SW.DLUC_ef.dst*10^6 .* EtOH.kgSWperMJ.dst ./ (SW.yield.dst.*1000) ./ time; 
SWEtOH.Seq.MC = SW.Seq_ef.dst*10^6 .* EtOH.kgSWperMJ.dst ./ (SW.yield.dst.*1000) ./ time; 
SWBuOH.ILUC.MC = SW.ILUC_ef.dst*10^6 .* BuOH.kgSWperMJ.dst ./ (SW.yield.dst.*1000) ./ time; 
SWBuOH.DLUC.MC = SW.DLUC_ef.dst*10^6 .* BuOH.kgSWperMJ.dst ./ (SW.yield.dst.*1000) ./ time; 
SWBuOH.Seq.MC = SW.Seq_ef.dst*10^6 .* BuOH.kgSWperMJ.dst ./ (SW.yield.dst.*1000) ./ time; 
  
CSEtOH.ILUC.MC = CS.ILUC_ef.dst*10^6 .* EtOH.kgCSperMJ.dst ./ (CS.yield.dst.*1000./0.87) ./ time; 
CSEtOH.DLUC.MC = CS.DLUC_ef.dst*10^6 .* EtOH.kgCSperMJ.dst ./ (CS.yield.dst.*1000./0.87) ./ time; 
CSBuOH.ILUC.MC = CS.ILUC_ef.dst*10^6 .* BuOH.kgCSperMJ.dst ./ (CS.yield.dst.*1000./0.87) ./ time; 
CSBuOH.DLUC.MC = CS.DLUC_ef.dst*10^6 .* BuOH.kgCSperMJ.dst ./ (CS.yield.dst.*1000./0.87) ./ time; 
  
CEtOH.LUC.MC = CEtOH.ILUC.MC + CEtOH.DLUC.MC; 
CBuOH.LUC.MC = CBuOH.ILUC.MC + CBuOH.DLUC.MC; 
SWEtOH.LUC.MC = SWEtOH.ILUC.MC + SWEtOH.DLUC.MC + SWEtOH.Seq.MC; 
SWBuOH.LUC.MC = SWBuOH.ILUC.MC + SWBuOH.DLUC.MC + SWBuOH.Seq.MC; 
CSEtOH.LUC.MC = CEtOH.ILUC.MC + CEtOH.DLUC.MC; 
CSBuOH.LUC.MC = CBuOH.ILUC.MC + CBuOH.DLUC.MC; 
  
% clear time; 
  
%% Feedstock Production Emissions - CODE: FeedP 
%  Columns: 



%  1. Nitrogen Fertilizer Production Emissions 
%  2. Field-level N2O Emissions (converted to CO2e) 
%  3. Farming Equipment Emissions 
  
C.N.dst = trirnd(141,160,150,samples); % kg N/ha 
SW.N.dst = trirnd(55,100,74,samples); 
CS.N.dst = mass_allocation.*trirnd(141,160,150,samples); 
  
if NLCFS == 1, 
    C.N.dst = ones(samples,1).*150; 
    SW.N.dst = ones(samples,1).*74; 
end 
  
% Nitrogen Fertilizer Production Emissions 
%  g CO3e/kg N * kg N/ha land * ha/kg feedstock * kg feedstock/MJ fuel 
  
EF.CO2perkgN = 3000; % g CO2e/kg N fertilizer produced 
                     % same as in Point Estimate file 
                      
CEtOH.FeedP.MC(:,1) = EF.CO2perkgN .* C.N.dst .* EtOH.kgCperMJ.dst ./ (C.yield.dst*1000/0.87); 
CBuOH.FeedP.MC(:,1) = EF.CO2perkgN .* C.N.dst .* BuOH.kgCperMJ.dst ./ (C.yield.dst*1000/0.87); 
  
SWEtOH.FeedP.MC(:,1) = EF.CO2perkgN .* SW.N.dst .* EtOH.kgSWperMJ.dst ./ (SW.yield.dst*1000); 
SWBuOH.FeedP.MC(:,1) = EF.CO2perkgN .* SW.N.dst .* BuOH.kgSWperMJ.dst ./ (SW.yield.dst*1000); 
  
CSEtOH.FeedP.MC(:,1) = EF.CO2perkgN .* CS.N.dst .* EtOH.kgCSperMJ.dst ./ 
(CS.yield.dst*1000/0.87); 
CSBuOH.FeedP.MC(:,1) = EF.CO2perkgN .* CS.N.dst .* BuOH.kgCSperMJ.dst ./ 
(CS.yield.dst*1000/0.87); 
  
% Field-Level Emissions, CORN 
%  g CO2e/MJ fuel 
  
N2OEF_Dir.dst = trirnd(0.003,0.03,0.01,samples); 
N2OEF_Indir.dst = trirnd(0.002,0.05,0.01,samples); 
N2OEF_gasf.pt = 0.1; % consider adding trirnd(0.03,0.3,1,samples) 
  
% direct emissions, N application 
CN2O(:,1) = N2OEF_Dir.dst.*C.N.dst*1000; % g N2O-N/ha farmed 
SWN2O(:,1) = N2OEF_Dir.dst.*SW.N.dst*1000; 
CSN2O(:,1) = N2OEF_Dir.dst.*CS.N.dst*1000; % g N2O-N/ha farmed 
  
% direct emissions, crop residues 
%  F_cr = crop_yield*%_renew*(R_ag*N_ag*(1-%_removal) + R_bg*N_bg 
CN2O(:,2) = ( C.yield.dst*1000*1*(1.09*0.006*(1-0)+0.22*0.007) ).*N2OEF_Dir.dst*1000; % g N2O-
N/ha 
SWN2O(:,2) = ( SW.yield.dst*1000*1*(0.3*0.015*(1-0)+0.8*0.007) ).*N2OEF_Dir.dst*1000; 
CSN2O(:,2) = ( CS.yield.dst*1000*1*(1.09*0.006*(1-0)+0.22*0.007) ).*N2OEF_Dir.dst*1000; % g N2O-
N/ha 
  
% indirect emissions, N application 
%  kg N/ha * indirect EF * some factor... 
CN2O(:,3) = C.N.dst .* N2OEF_Indir.dst .* N2OEF_gasf.pt * 1000; % g N2O-N/ha 
SWN2O(:,3) = SW.N.dst .* N2OEF_Indir.dst .* N2OEF_gasf.pt * 1000; 
CSN2O(:,3) = CS.N.dst .* N2OEF_Indir.dst .* N2OEF_gasf.pt * 1000; % g N2O-N/ha 
  
CEtOH.FeedP.MC(:,2) = sum(CN2O,2)*298*(44/28) .* EtOH.kgCperMJ.dst ./ (C.yield.dst*1000/0.87); 
CBuOH.FeedP.MC(:,2) = sum(CN2O,2)*298*(44/28) .* BuOH.kgCperMJ.dst ./ (C.yield.dst*1000/0.87); 
SWEtOH.FeedP.MC(:,2) = sum(SWN2O,2)*298*(44/28) .* EtOH.kgSWperMJ.dst ./ (SW.yield.dst*1000); 
SWBuOH.FeedP.MC(:,2) = sum(SWN2O,2)*298*(44/28) .* BuOH.kgSWperMJ.dst ./ (SW.yield.dst*1000); 
CSEtOH.FeedP.MC(:,2) = sum(CSN2O,2)*298*(44/28) .* EtOH.kgCSperMJ.dst ./ 
(CS.yield.dst*1000/0.87); 
CSBuOH.FeedP.MC(:,2) = sum(CSN2O,2)*298*(44/28) .* BuOH.kgCSperMJ.dst ./ 
(CS.yield.dst*1000/0.87); 
  
  
% farming machinery used 
%  [1,196 g CO2e/bu corn * conv => kg CO2e/kg corn] * kg corn/MJ fuel 
CEtOH.FeedP.MC(:,3) = (1196*(2.2/56)).*EtOH.kgCperMJ.dst; 
CBuOH.FeedP.MC(:,3) = (1196*(2.2/56)).*BuOH.kgCperMJ.dst; 
  
CSEtOH.FeedP.MC(:,3) = (1196*(2.2/56)).*EtOH.kgCSperMJ.dst; 
CSBuOH.FeedP.MC(:,3) = (1196*(2.2/56)).*BuOH.kgCSperMJ.dst; 



  
%  1394.4 MJ diesel/ha SW * kg CO2/MJ diesel * Mg SW/ha * kg SW/ MJ fuel 
SWEtOH.FeedP.MC(:,3) = (1394.4*1000*EF.FFvalue(2)).*EtOH.kgSWperMJ.dst ./ (SW.yield.dst*1000); 
SWBuOH.FeedP.MC(:,3) = (1394.4*1000*EF.FFvalue(2)).*BuOH.kgSWperMJ.dst ./ (SW.yield.dst*1000); 
  
clear F_cr CN2O SWN2O CSN2O; 
  
%% Feedstock Transportation Emissions 
  
dist1 = 10; % miles 
dist2 = 40; 
  
CEtOH.FeedT.MC = (2*(1713*dist1 + 
2199*dist2)/10^6/907.19*1055*EF.FFvalue(2)*1000).*EtOH.kgCperMJ.dst; 
CBuOH.FeedT.MC = (2*(1713*dist1 + 
2199*dist2)/10^6/907.19*1055*EF.FFvalue(2)*1000)*BuOH.kgCperMJ.dst; 
SWEtOH.FeedT.MC = (2*(1713*dist2)/10^6/907.19*1055*EF.FFvalue(2)*1000).*EtOH.kgSWperMJ.dst; 
SWBuOH.FeedT.MC = (2*(1713*dist2)/10^6/907.19*1055*EF.FFvalue(2)*1000).*BuOH.kgSWperMJ.dst; 
CSEtOH.FeedT.MC = (2*(1713*dist2)/10^6/907.19*1055*EF.FFvalue(2)*1000).*EtOH.kgCSperMJ.dst; 
CSBuOH.FeedT.MC = (2*(1713*dist2)/10^6/907.19*1055*EF.FFvalue(2)*1000).*BuOH.kgCSperMJ.dst; 
  
clear dist1 dist2; 
  
%% Fuel Production Emissions 
  
% Corn  
C.CoProdCredit = [-15        -11.8]; % (g CO2e/MJ fuel) 
  
CEtOH.FuelP.MC = C.ProdE.dst(:,1).*EF.FFvalue(6)*1000 + C.ProdE.dst(:,2).*EF.FFvalue(4)*1000 + 
C.CoProdCredit(1); 
CBuOH.FuelP.MC = C.ProdE.dst(:,3).*EF.FFvalue(6)*1000 + C.ProdE.dst(:,4).*EF.FFvalue(4)*1000 + 
C.CoProdCredit(2); 
  
% Switchgrass 
% Calculation of SW.wasteMJperkg brought over from biofuel_point model 
% Max. potential sugar quantity 
SW.maxsugar(1:2)=SW.ptsugar(2:3)/132*1000*150; %arabinose and xylose (g/kg SW) 
SW.maxsugar(3:5)=SW.ptsugar(4:6)/162*1000*180; %mannose, galactose, glucose 
  
% sum(SW.maxsugar(1:2)) % C5 sugars 
% sum(SW.maxsugar(3:5)) % C6 sugars 
  
% Unfermented polymeric sugars (lost at hydrolysis step) 
SW.unfermentedpoly(1:2)=SW.ptsugar(2:3)*(1-ConvEff.Hyd.pt)*1000; 
SW.unfermentedpoly(3:5)=SW.ptsugar(4:6)*(1-ConvEff.Hyd.pt)*1000; 
  
% Unfermented monomeric sugars (lost at fermentation step) 
SW.unfermentedmono(1:2)=(SW.ptsugar(2:3)*1000-SW.unfermentedpoly(1:2))*150/132*(1-
ConvEff.Oth.pt); 
SW.unfermentedmono(3:4)=(SW.ptsugar(4:5)*1000-SW.unfermentedpoly(3:4))*180/162*(1-
ConvEff.Oth.pt); 
SW.unfermentedmono(5)=(SW.ptsugar(6)*1000-SW.unfermentedpoly(5))*180/162*(1-ConvEff.Glc.pt); 
  
C5energy=0.0049; 
C6energy=0.0051; 
  
SW.wasteMJperkg.pt = sum(SW.unfermentedpoly*SW.sugarE(2:6)'/1000) + 
sum(SW.unfermentedmono(1:2))*C5energy ... 
    + sum(SW.unfermentedmono(3:5))*C6energy; 
  
EtOH.availE.dst=(SW.ptsugar(1)*SW.sugarE(1) + SW.ptsugar(7)*SW.sugarE(7) + 
SW.wasteMJperkg.pt).*EtOH.kgSWperMJ.dst; 
BuOH.availE.dst=(SW.ptsugar(1)*SW.sugarE(1) + SW.ptsugar(7)*SW.sugarE(7) + 
SW.wasteMJperkg.pt).*BuOH.kgSWperMJ.dst; 
  
%  Fraction of total input energy to electricity 
SWetohElec = 0.1; 
SWbuohElec = 0.0746; 
  
%  Energy production efficiency values 
boiler_eff = 0.68; 
turbine_eff = 0.85; 
  



%  SW emissions factor 
%   Units: g CO2e/kg SW used 
SW.EF.dst = 1000*(SW.ILUC_ef.dst + SW.DLUC_ef.dst + SW.Seq_ef.dst)*1000/time./(1000*SW.yield.dst) 
... 
    + sum(SWEtOH.FeedP.MC,2)./EtOH.kgSWperMJ.dst ... 
    + SWEtOH.FeedT.MC./EtOH.kgSWperMJ.dst; 
  
SW_EF = SW.EF.dst; 
  
%  ethanol energy requirements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
EtOH.steam.reqd = SW.ProdE.dst(:,1).*(1-SWetohElec); 
EtOH.steam.avail = EtOH.availE.dst.*boiler_eff; 
EtOH.steam.surplus = EtOH.steam.avail - EtOH.steam.reqd; 
  
EtOH.elec.reqd = SW.ProdE.dst(:,1).*SWetohElec; 
  
% index iterated structures to reduce runtime 
EtOH.elec.avail=zeros(samples,1); 
EtOH.steam.SWneeded=zeros(samples,1); 
EtOH.elec.surplus=zeros(samples,1); 
EtOH.elec.SWneeded=zeros(samples,1); 
EtOH.steam.FFemissions=zeros(samples,1); 
  
for i=1:samples 
    if EtOH.steam.surplus(i)>0, 
        EtOH.elec.avail(i) = EtOH.steam.surplus(i)*turbine_eff; 
        EtOH.steam.SWneeded(i) = 0; 
    else 
        EtOH.elec.avail(i) = 0; 
        EtOH.steam.SWneeded(i) = EtOH.steam.reqd(i)/boiler_eff/SW.MJperkg.pt; 
    end 
  
    EtOH.elec.surplus(i) = EtOH.elec.avail(i) - EtOH.elec.reqd(i); 
  
    if EtOH.elec.surplus(i)<0, 
        EtOH.elec.SWneeded(i) = -EtOH.elec.surplus(i)/(boiler_eff*turbine_eff)/SW.MJperkg.pt; 
    else 
        EtOH.elec.SWneeded(i) = 0; 
    end 
  
    % emissions calculations 
    if EtOH.steam.surplus(i)<0 
        EtOH.steam.FFemissions(i) = -EtOH.steam.surplus(i)/boiler_eff*EF.FFvalue(4)*1000; 
    else 
        EtOH.steam.FFemissions(i) = 0; 
    end 
end 
  
EtOH.elec.FFemissions = -EtOH.elec.surplus*EF.FFvalue(6)*1000; 
  
%  butanol energy requirements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
BuOH.steam.reqd = SW.ProdE.dst(:,2).*(1-SWbuohElec); 
BuOH.steam.avail = BuOH.availE.dst*boiler_eff; 
BuOH.steam.surplus = BuOH.steam.avail - BuOH.steam.reqd; 
  
BuOH.elec.reqd = SW.ProdE.dst(:,2).*SWbuohElec; 
  
% index iterated structures to reduce runtime 
BuOH.elec.avail=zeros(samples,1); 
BuOH.steam.SWneeded=zeros(samples,1); 
BuOH.elec.surplus=zeros(samples,1); 
BuOH.elec.SWneeded=zeros(samples,1); 
BuOH.steam.FFemissions=zeros(samples,1); 
  
for i=1:samples 
    if BuOH.steam.surplus(i)>0, 
        BuOH.elec.avail(i) = BuOH.steam.surplus(i)*turbine_eff; 
        BuOH.steam.SWneeded(i) = 0; 
    else 
        BuOH.elec.avail(i) = 0; 
        BuOH.steam.SWneeded(i) = -BuOH.steam.surplus(i)/boiler_eff/SW.MJperkg.pt; 
    end 



  
    BuOH.elec.surplus(i) = BuOH.elec.avail(i) - BuOH.elec.reqd(i); 
  
    if BuOH.elec.surplus(i)<0, 
        BuOH.elec.SWneeded(i) = -BuOH.elec.surplus(i)/(boiler_eff*turbine_eff)/SW.MJperkg.pt; 
    else 
        BuOH.elec.SWneeded(i) = 0; 
    end 
  
    % emissions calculations 
    if BuOH.steam.surplus(i)<0 
        BuOH.steam.FFemissions(i) = -BuOH.steam.surplus(i)/boiler_eff*EF.FFvalue(4)*1000; 
    else 
        BuOH.steam.FFemissions(i) = 0; 
    end 
end 
  
BuOH.elec.FFemissions = -BuOH.elec.surplus*EF.FFvalue(6)*1000; 
  
SWEtOH.FuelP.MC(:,1) = EtOH.elec.FFemissions + EtOH.steam.FFemissions; 
for i=1:samples 
    if (EtOH.elec.SWneeded(i)+EtOH.steam.SWneeded(i))>0, 
        SWEtOH.FuelP.MC(i,2) = (EtOH.elec.SWneeded(i)  + EtOH.steam.SWneeded(i))*SW.EF.dst(i); 
    else 
        SWEtOH.FuelP.MC(i,2) = EtOH.elec.FFemissions(i); 
    end 
end 
  
SWBuOH.FuelP.MC(:,1) = BuOH.elec.FFemissions + BuOH.steam.FFemissions; 
for i=1:samples 
    if (BuOH.elec.SWneeded(i)+BuOH.steam.SWneeded(i))>0, 
        SWBuOH.FuelP.MC(i,2) = (BuOH.elec.SWneeded(i)  + BuOH.steam.SWneeded(i))*SW.EF.dst(i); 
    else 
        SWBuOH.FuelP.MC(i,2) = BuOH.elec.FFemissions(i); 
    end 
end 
  
  
% Corn stover ---------------------------------------------------------- 
% Calculation of SW.wasteMJperkg brought over from biofuel_point model 
% Max. potential sugar quantity 
CS.maxsugar(1:2)=CS.ptsugar(2:3)/132*1000*150; %arabinose and xylose (g/kg SW) 
CS.maxsugar(3:5)=CS.ptsugar(4:6)/162*1000*180; %mannose, galactose, glucose 
  
% sum(SW.maxsugar(1:2)) % C5 sugars 
% sum(SW.maxsugar(3:5)) % C6 sugars 
  
% Unfermented polymeric sugars (lost at hydrolysis step) 
CS.unfermentedpoly(1:2)=CS.ptsugar(2:3)*(1-ConvEff.Hyd.pt)*1000; 
CS.unfermentedpoly(3:5)=CS.ptsugar(4:6)*(1-ConvEff.Hyd.pt)*1000; 
  
% Unfermented monomeric sugars (lost at fermentation step) 
CS.unfermentedmono(1:2)=(CS.ptsugar(2:3)*1000-CS.unfermentedpoly(1:2))*150/132*(1-
ConvEff.Oth.pt); 
CS.unfermentedmono(3:4)=(CS.ptsugar(4:5)*1000-CS.unfermentedpoly(3:4))*180/162*(1-
ConvEff.Oth.pt); 
CS.unfermentedmono(5)=(CS.ptsugar(6)*1000-CS.unfermentedpoly(5))*180/162*(1-ConvEff.Glc.pt); 
  
CS.wasteMJperkg.pt = sum(CS.unfermentedpoly*CS.sugarE(2:6)'/1000) + 
sum(CS.unfermentedmono(1:2))*C5energy ... 
    + sum(CS.unfermentedmono(3:5))*C6energy; 
  
EtOH.availE.dst=(CS.ptsugar(1)*CS.sugarE(1) + CS.ptsugar(7)*CS.sugarE(7) + 
CS.wasteMJperkg.pt).*EtOH.kgCSperMJ.dst; 
BuOH.availE.dst=(CS.ptsugar(1)*CS.sugarE(1) + CS.ptsugar(7)*CS.sugarE(7) + 
CS.wasteMJperkg.pt).*BuOH.kgCSperMJ.dst; 
  
%  Fraction of total input energy to electricity 
CSetohElec = SWetohElec; 
CSbuohElec = SWbuohElec; 
  
% %  Energy production efficiency values 
% boiler_eff = 0.68; 



% turbine_eff = 0.85; 
  
%  SW emissions factor 
%   Units: g CO2e/kg SW used 
CS.EF.dst = 1000*(CS.ILUC_ef.dst + CS.DLUC_ef.dst)*1000/time./(1000*CS.yield.dst) ... 
    + sum(CSEtOH.FeedP.MC,2)./EtOH.kgCSperMJ.dst ... 
    + CSEtOH.FeedT.MC./EtOH.kgCSperMJ.dst; 
  
CS_EF = CS.EF.dst; 
  
%  ethanol energy requirements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
EtOH.steam.reqd = CS.ProdE.dst(:,1).*(1-CSetohElec); 
EtOH.steam.avail = EtOH.availE.dst.*boiler_eff; 
EtOH.steam.surplus = EtOH.steam.avail - EtOH.steam.reqd; 
  
EtOH.elec.reqd = CS.ProdE.dst(:,1).*CSetohElec; 
  
% index iterated structures to reduce runtime 
EtOH.elec.avail=zeros(samples,1); 
EtOH.steam.CSneeded=zeros(samples,1); 
EtOH.elec.surplus=zeros(samples,1); 
EtOH.elec.CSneeded=zeros(samples,1); 
EtOH.steam.FFemissions=zeros(samples,1); 
  
for i=1:samples 
    if EtOH.steam.surplus(i)>0, 
        EtOH.elec.avail(i) = EtOH.steam.surplus(i)*turbine_eff; 
        EtOH.steam.CSneeded(i) = 0; 
    else 
        EtOH.elec.avail(i) = 0; 
        EtOH.steam.CSneeded(i) = EtOH.steam.reqd(i)/boiler_eff/CS.MJperkg.pt; 
    end 
  
    EtOH.elec.surplus(i) = EtOH.elec.avail(i) - EtOH.elec.reqd(i); 
  
    if EtOH.elec.surplus(i)<0, 
        EtOH.elec.CSneeded(i) = -EtOH.elec.surplus(i)/(boiler_eff*turbine_eff)/CS.MJperkg.pt; 
    else 
        EtOH.elec.CSneeded(i) = 0; 
    end 
  
    % emissions calculations 
    if EtOH.steam.surplus(i)<0 
        EtOH.steam.FFemissions(i) = -EtOH.steam.surplus(i)/boiler_eff*EF.FFvalue(4)*1000; 
    else 
        EtOH.steam.FFemissions(i) = 0; 
    end 
end 
  
EtOH.elec.FFemissions = -EtOH.elec.surplus*EF.FFvalue(6)*1000; 
  
% %  butanol energy requirements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% BuOH.steam.reqd = SW.ProdE.dst(:,2).*(1-SWbuohElec); 
% BuOH.steam.avail = BuOH.availE.dst*boiler_eff; 
% BuOH.steam.surplus = BuOH.steam.avail - BuOH.steam.reqd; 
%  
% BuOH.elec.reqd = SW.ProdE.dst(:,2).*SWbuohElec; 
%  
% % index iterated structures to reduce runtime 
% BuOH.elec.avail=zeros(samples,1); 
% BuOH.steam.SWneeded=zeros(samples,1); 
% BuOH.elec.surplus=zeros(samples,1); 
% BuOH.elec.SWneeded=zeros(samples,1); 
% BuOH.steam.FFemissions=zeros(samples,1); 
%  
% for i=1:samples 
%     if BuOH.steam.surplus(i)>0, 
%         BuOH.elec.avail(i) = BuOH.steam.surplus(i)*turbine_eff; 
%         BuOH.steam.SWneeded(i) = 0; 
%     else 
%         BuOH.elec.avail(i) = 0; 
%         BuOH.steam.SWneeded(i) = -BuOH.steam.surplus(i)/boiler_eff/SW.MJperkg.pt; 



%     end 
%  
%     BuOH.elec.surplus(i) = BuOH.elec.avail(i) - BuOH.elec.reqd(i); 
%  
%     if BuOH.elec.surplus(i)<0, 
%         BuOH.elec.SWneeded(i) = -BuOH.elec.surplus(i)/(boiler_eff*turbine_eff)/SW.MJperkg.pt; 
%     else 
%         BuOH.elec.SWneeded(i) = 0; 
%     end 
%  
%     % emissions calculations 
%     if BuOH.steam.surplus(i)<0 
%         BuOH.steam.FFemissions(i) = -BuOH.steam.surplus(i)/boiler_eff*EF.FFvalue(4)*1000; 
%     else 
%         BuOH.steam.FFemissions(i) = 0; 
%     end 
% end 
%  
% BuOH.elec.FFemissions = -BuOH.elec.surplus*EF.FFvalue(6)*1000; 
%  
CSEtOH.FuelP.MC(:,1) = EtOH.elec.FFemissions + EtOH.steam.FFemissions; 
for i=1:samples 
    if (EtOH.elec.CSneeded(i)+EtOH.steam.CSneeded(i))>0, 
        CSEtOH.FuelP.MC(i,2) = (EtOH.elec.SWneeded(i)  + EtOH.steam.CSneeded(i))*CS.EF.dst(i); 
    else 
        CSEtOH.FuelP.MC(i,2) = EtOH.elec.FFemissions(i); 
    end 
end 
%  
% SWBuOH.FuelP.MC(:,1) = BuOH.elec.FFemissions + BuOH.steam.FFemissions; 
% for i=1:samples 
%     if (BuOH.elec.SWneeded(i)+BuOH.steam.SWneeded(i))>0, 
%         SWBuOH.FuelP.MC(i,2) = (BuOH.elec.SWneeded(i)  + BuOH.steam.SWneeded(i))*SW.EF.dst(i); 
%     else 
%         SWBuOH.FuelP.MC(i,2) = BuOH.elec.FFemissions(i); 
%     end 
% end 
  
%% Fuel Distribution Emissions 
  
CEtOH.FuelD.MC = Mode_EF*Mode(:,1) / EtOH.MJperkg *1000; 
CBuOH.FuelD.MC = Mode_EF*Mode(:,1) / BuOH.MJperkg *1000; 
  
SWEtOH.FuelD.MC = CEtOH.FuelD.MC; 
SWBuOH.FuelD.MC = CBuOH.FuelD.MC; 
  
CSEtOH.FuelD.MC = CEtOH.FuelD.MC; 
CSBuOH.FuelD.MC = CBuOH.FuelD.MC; 
  
  
%% Fuel Combustion Emissions 
  
CEtOH.FuelC = 0; 
CBuOH.FuelC = 0; 
SWEtOH.FuelC = 0; 
SWBuOH.FuelC = 0; 
CSEtOH.FuelC = 0; 
CSBuOH.FuelC = 0; 
  
clear NLCFS; 
  
%% Summary Statistics from MC Run 
  
% Summary Table 
  
disp('   C EtOH   C BuOH    SW EtOH    SW BuOH   CS EtOH'); 
  
Summary_MC_mean=zeros(8,4); 
  
Summary_MC_mean(1,1)=mean(CEtOH.DLUC.MC); 
Summary_MC_mean(1,2)=mean(CBuOH.DLUC.MC); 
Summary_MC_mean(1,3)=mean(SWEtOH.DLUC.MC); 
Summary_MC_mean(1,4)=mean(SWBuOH.DLUC.MC); 



Summary_MC_mean(1,5)=mean(CSEtOH.DLUC.MC); 
  
Summary_MC_mean(2,1)=mean(CEtOH.ILUC.MC); 
Summary_MC_mean(2,2)=mean(CBuOH.ILUC.MC); 
Summary_MC_mean(2,3)=mean(SWEtOH.ILUC.MC); 
Summary_MC_mean(2,4)=mean(SWBuOH.ILUC.MC); 
Summary_MC_mean(2,5)=mean(CSEtOH.ILUC.MC); 
  
Summary_MC_mean(3,3)=mean(SWEtOH.Seq.MC); 
Summary_MC_mean(3,4)=mean(SWBuOH.Seq.MC); 
  
Summary_MC_mean(4,1)=mean(sum(CEtOH.FeedP.MC,2)); 
Summary_MC_mean(4,2)=mean(sum(CBuOH.FeedP.MC,2)); 
Summary_MC_mean(4,3)=mean(sum(SWEtOH.FeedP.MC,2)); 
Summary_MC_mean(4,4)=mean(sum(SWBuOH.FeedP.MC,2)); 
Summary_MC_mean(4,5)=mean(sum(CSEtOH.FeedP.MC,2)); 
  
Summary_MC_mean(5,1)=mean(CEtOH.FeedT.MC); 
Summary_MC_mean(5,2)=mean(CBuOH.FeedT.MC); 
Summary_MC_mean(5,3)=mean(SWEtOH.FeedT.MC); 
Summary_MC_mean(5,4)=mean(SWBuOH.FeedT.MC); 
Summary_MC_mean(5,5)=mean(CSEtOH.FeedT.MC); 
  
Summary_MC_mean(6,1)=mean(CEtOH.FuelP.MC); 
Summary_MC_mean(6,2)=mean(CBuOH.FuelP.MC); 
Summary_MC_mean(6,3)=mean(sum(SWEtOH.FuelP.MC(:,1),2)); 
Summary_MC_mean(6,4)=mean(sum(SWBuOH.FuelP.MC(:,1),2)); 
Summary_MC_mean(6,5)=mean(sum(CSEtOH.FuelP.MC(:,1),2)); 
  
Summary_MC_mean(7,1)=mean(CEtOH.FuelD.MC); 
Summary_MC_mean(7,2)=mean(CBuOH.FuelD.MC); 
Summary_MC_mean(7,3)=mean(SWEtOH.FuelD.MC); 
Summary_MC_mean(7,4)=mean(SWBuOH.FuelD.MC); 
Summary_MC_mean(7,5)=mean(CSEtOH.FuelD.MC); 
  
Summary_MC_mean(8,1)=CEtOH.FuelC; 
Summary_MC_mean(8,2)=CBuOH.FuelC; 
Summary_MC_mean(8,3)=SWEtOH.FuelC; 
Summary_MC_mean(8,4)=SWBuOH.FuelC; 
Summary_MC_mean(8,5)=CSEtOH.FuelC; 
  
Summary_MC_mean 
  
%%  
  
CEtOH_final = CEtOH.ILUC.MC + CEtOH.DLUC.MC + CEtOH.FeedP.MC(:,1) + CEtOH.FeedP.MC(:,2)+... 
    CEtOH.FeedP.MC(:,3) + CEtOH.FeedT.MC + CEtOH.FuelP.MC + CEtOH.FuelC; 
CBuOH_final = CBuOH.ILUC.MC + CBuOH.DLUC.MC + CBuOH.FeedP.MC(:,1) + CBuOH.FeedP.MC(:,2)+... 
    CBuOH.FeedP.MC(:,3) + CBuOH.FeedT.MC + CBuOH.FuelP.MC + CBuOH.FuelC; 
  
SWEtOHFF_final = SWEtOH.ILUC.MC + SWEtOH.DLUC.MC + SWEtOH.Seq.MC + SWEtOH.FeedP.MC(:,1) + ... 
    SWEtOH.FeedP.MC(:,2) + SWEtOH.FeedP.MC(:,3) + SWEtOH.FeedT.MC + SWEtOH.FuelP.MC(:,1) + 
SWEtOH.FuelC; 
  
SWBuOHFF_final = SWBuOH.ILUC.MC + SWBuOH.DLUC.MC + SWBuOH.Seq.MC + SWBuOH.FeedP.MC(:,1) +... 
    SWBuOH.FeedP.MC(:,2) + SWBuOH.FeedP.MC(:,3) + SWBuOH.FeedT.MC + SWBuOH.FuelP.MC(:,1) + 
SWBuOH.FuelC; 
  
SWEtOHSWf_final = SWEtOH.ILUC.MC + SWEtOH.DLUC.MC + SWEtOH.Seq.MC + SWEtOH.FeedP.MC(:,1) + ... 
    SWEtOH.FeedP.MC(:,2) + SWEtOH.FeedP.MC(:,3) + SWEtOH.FeedT.MC + SWEtOH.FuelP.MC(:,2) + 
SWEtOH.FuelC; 
  
SWBuOHSWf_final = SWBuOH.ILUC.MC + SWBuOH.DLUC.MC + SWBuOH.Seq.MC + SWBuOH.FeedP.MC(:,1) +... 
    SWBuOH.FeedP.MC(:,2) + SWBuOH.FeedP.MC(:,3) + SWBuOH.FeedT.MC + SWBuOH.FuelP.MC(:,2) + 
SWBuOH.FuelC; 
  
CSEtOHFF_final = CSEtOH.ILUC.MC + CSEtOH.DLUC.MC + CSEtOH.FeedP.MC(:,1) + 
CSEtOH.FeedP.MC(:,2)+... 
    CSEtOH.FeedP.MC(:,3) + CSEtOH.FeedT.MC + CSEtOH.FuelP.MC(:,1) + CSEtOH.FuelC; 
CSEtOHCSf_final = CSEtOH.ILUC.MC + CSEtOH.DLUC.MC + CSEtOH.FeedP.MC(:,1) + 
CSEtOH.FeedP.MC(:,2)+... 
    CSEtOH.FeedP.MC(:,3) + CSEtOH.FeedT.MC + CSEtOH.FuelP.MC(:,2) + CSEtOH.FuelC; 
  



C_eth = CEtOH_final; 
SW_ff = SWEtOHFF_final; 
SW_swf = SWEtOHSWf_final; 
  
% CSBuOH_final = CSBuOH.ILUC.MC + CSBuOH.DLUC.MC + CSBuOH.FeedP.MC(:,1) + 
CSBuOH.FeedP.MC(:,2)+... 
%     CSBuOH.FeedP.MC(:,3) + CSBuOH.FeedT.MC + CSBuOH.FuelP.MC + CSBuOH.FuelC; 
  
  
%totals_mean=sum(Summary_MC_mean) 
  
% Mean value for each of the final distributions (g CO2e/MJ fuel) 
%       Ethanol           Butanol 
totals=[mean(CEtOH_final) mean(CBuOH_final);         % Corn feedstock 
        mean(SWEtOHFF_final) mean(SWBuOHFF_final);   % SW feedstock, FF production fuel 
        mean(SWEtOHSWf_final) mean(SWBuOHSWf_final)] % SW feedstock, SW production fuel 
  
% %% Stacked bar chart 
% %  complicated because Matlab can't display negative values! 
% %  still needs work to display the negative region properly 
figure 
  
ax1 = subplot(2,1,1,'XTickLabel',[]); 
bar(Summary_MC_mean'.*(Summary_MC_mean'>0),'stacked') 
ylabel('Life-cycle emissions, (g CO2e/MJ)') 
ax2 = subplot(2,1,2 ); 
bar(Summary_MC_mean'.*(Summary_MC_mean'<0),'stacked') 
lim1 = get(ax1,'YLim'); 
lim2 = get(ax2,'YLim'); 
pos = get(ax2,'position'); 
maxh = 1-2*pos(2); 
posh = maxh*sum(abs(lim2))/sum(abs(lim1)+abs(lim2)); 
set(ax2,'position',[pos(1:3) posh]) 
set(ax1,'position',[pos(1) pos(2)+posh pos(3) maxh-posh]) 
  
legend('DLUC','ILUC','Sequestration','Farming','Feed. Transp.','Fuel Prod.','Fuel dist.','Fuel 
Comb.',... 
    'Location','NorthEast','Location',[0.6657 0.5568 0.235 0.3271]) 
xlabel('Fuel Pathway') 
set(gca,'XTickLabel',{'Corn EtOH','Corn BuOH','SW EtOH','SW BuOH'})  
% ylabh = get(gca,'YLabel'); 
% set(ylabh,'Position',get(ylabh,'Position') + [0 0 0.8]); 
  
% %% Modify values for shifted lognormal distribution 
%  
% theta_CS_csf = (min(CS_csf)*max(CS_csf)-(median(CS_csf))^2) / (min(CS_csf)+max(CS_csf)- 
2*(median(CS_csf))); 
% theta_CS_ff = (min(CS_ff)*max(CS_ff)-(median(CS_ff))^2) / (min(CS_ff)+max(CS_ff)- 
2*(median(CS_ff))); 
% theta_SW_EF = (min(SW_EF)*max(SW_EF)-(median(SW_EF))^2) / (min(SW_EF)+max(SW_EF)- 
2*(median(SW_EF))); 
%  
% mod_CS_csf = CS_csf - theta_CS_csf; 
% mod_CS_ff = CS_ff - theta_CS_ff; 
% mod_SW_EF = SW_EF - theta_SW_EF; 
 
!



 
 
 
 
 
 
 
 
 

Appendix C 



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
% Source: Grassini et al. Agrnomy Journ. 101 (3) 2009 pp. 564-571   % 
% Switchgrass crop growth model                                     % 
%                                                                   % 
% Coded by: K. Mullins                                              % 
% Last updated: June 7, 2012                                        % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
  
% Input units: T in C 
%              R in MJ/m2 per day 
%              AWHC in mm/mm 
  
clear all; 
  
% Read in data.  Years 1991 to 2005 correspond to year 1 to 15. 
% Year 16 is all average year. 
% Meteorological order, rows 5 to 10:  
% precip (mm), mean temp (C), max temp (C), min temp (C), Solar (MJ/m^2 per 
% day) 
meteo_data_orig=csvread('data/IA_MC_basecase.csv',1,0); 
 
year = 8; 
start_row = 1 + 365*(year-1); 
end_row = 365*year; 
meteo_data_year = meteo_data_orig(start_row:end_row,6:10); 
  
% Determine AGI given 365 days of temperature data 
counter = 1; 
while mean(meteo_data_year(counter:(counter+14),2)) < 13, % 13C requirement 
    counter = counter + 1; 
end 
  
AGI_date = counter + 14; 
  
% Extract only relevant data 
rainfall = meteo_data_year(AGI_date:end,1); 
T = meteo_data_year(AGI_date:end,2); 
Thigh = meteo_data_year(AGI_date:end,3); 
Tlow = meteo_data_year(AGI_date:end,4); 
R = meteo_data_year(AGI_date:end,5); 
  
  
% Global parameters that define various environmental, crop parameters for 
% the simulation 
global Tmin Tmax Topt Rmax MAXLAI RUE SL1_depth SL2_depth AWHC_SL1 AWHC_SL2 K_coeff Elev 
ASE_count irr_amount; 
  
Tmin = 13; Tmax = 42; Topt = 33; % [C] Grassini, cultivar characteristics 
Elev = 551.7;     % [m] 
Rmax = 0.037;     % Blackwell cultivar, see Grassini Table 1 
MAXLAI = 10;      % Value from within noted range of 7.5 to 17.7 
RUE = 4.7;        % Grassini, from Kiniry et al. (1999) 
SL1_depth = 150;  % [mm] 
SL2_depth = 1450; % [mm] to give a total root depth of 2m 
AWHC_SL1 = 0.15;  % WAG at this point... based on PowerPoint soil water lesson 
AWHC_SL2 = 0.12;  % same... 
K_coeff = 0.48;   % Extinction coefficient for total incoming solar radiation 
FAWHC_SL1 = 0.6;  % Default from Grassini 
FAWHC_SL2 = 0.6;  % Default from Grassini 
ASE_count = 1;    % Counter for evapouration type [day] 
irr_amount = 0;   % [mm] 
   
% Initialize various counters, variables 
day = 1; 
dev_stage = 0; 
  
while (dev_stage(day) < 1) && (day + AGI_date < 365), 
    % Each iteration is one day in the development 
                          % Loop runs until development stage = 1 (crop 
                          % fully mature)                       
                           
    % Calculate, output water stress factors, temperature stress factor 
    [ WSF_LAI(day) WSF_RUE(day) TSF_RUE(day) ] = stresses(T(day), FAWHC_SL1(day), 



FAWHC_SL2(day));     
     
    % Calculate leaf area index 
    LAI(day) = LAI_function( dev_stage(day), WSF_LAI(day) ); 
     
    % Calculate biomass growth 
    biomass(day) = crop_growth(dev_stage(day), R(day), LAI(day), WSF_RUE(day), 
TSF_RUE(day)); 
     
    % Calculate crop development progress as 'development stage' variable 
    dev_stage(day+1) = crop_development(T(day), dev_stage(day)); 
     
    % Calculate soil-water balance 
    [FAWHC_SL1(day+1) FAWHC_SL2(day+1) SL1_water(day) SL2_water(day) evap_track(day) 
ETo_track(day) transp_track(day) overflow(day) canopy_track(day) runoff_track(day) 
irr_track(day)] = ... 
       soil_water_balance( LAI(day), rainfall(day), T(day), Tlow(day), Thigh(day),... 
       R(day), FAWHC_SL1(day), FAWHC_SL2(day), biomass(day)); 
     
    ASE_track(day) = ASE_count; 
    day = day + 1; 
     
    if day + AGI_date > 365, % exit condition if crop never fully matures in the year 
        display('Break condition met')         
    end 
     
end 
  
for i = 1:length(biomass), 
    cum_biomass(i) = sum(biomass(1:i)); 
end 
  
% Final yield value, rainfall over growth period 
biomass_Mg = cum_biomass(end)*10000/10^6; 
display('calc.d biomass') 
  
growth_rainfall = sum(rainfall(1:day-1)); 
  
display('growth rainfall') 
  
  
% Extra stuff 
  
% Change units from in to mm, F to C, extract only relevant data 
% rainfall = temp1(AGI_date:end)*25.4; 
% T = (temp2(AGI_date:end) - 32)*5/9; 
% Thigh = (temp3(AGI_date:end) - 32)*5/9; 
% Tlow = (temp4(AGI_date:end) - 32)*5/9; 
% R = temp5(AGI_date:end); 
!
!
!
function dev_stage = crop_development( T, dev_stage) 
% Crop Development module 
  
global Tmin Tmax Topt Rmax; 
  
alpha = log(2)/log( (Tmax - Tmin)/(Topt - Tmin) ); 
  
f_T = (2*(T - Tmin)^alpha*(Topt - Tmin)^alpha - (T - Tmin)^(2*alpha))/(Topt-
Tmin)^(2*alpha); 
  
if T <= Tmin, 
    f_T = 0; 
end 
  
if T >= Tmax, 
    f_T = 0; 
end 
  
r = Rmax*f_T; % daily growth rate 
  
dev_stage = dev_stage + r; 



  
end 
!
!
function LAI = LAI_function( dev_stage, WSF_LAI ) 
% LAI Expansion module 
  
global MAXLAI; 
  
LAI = (1.27*exp(-4.51*exp(-2.94*dev_stage)))*MAXLAI*WSF_LAI; % dimensionless, [0, 1] 
  
end 
!
!
!
function [FAWHC_SL1 FAWHC_SL2 SL1_water SL2_water evaporation ETo transpiration overflow 
canopy_loss runoff irr_track] = ... 
    soil_water_balance( LAI, rainfall, T, Tlow, Thigh, R, FAWHC_SL1, FAWHC_SL2, biomass) 
  
global SL1_depth SL2_depth AWHC_SL1 AWHC_SL2 K_coeff Elev ASE_count irr_amount; 
  
% Water balance at the end of the day assumes the following happens in 
% chronological order: rains, evaporation, then transpiration. 
  
% How the day starts 
SL1_water = FAWHC_SL1*AWHC_SL1*SL1_depth; % [mm] 
SL2_water = FAWHC_SL2*AWHC_SL2*SL2_depth; 
  
% Choice to irrigate 
if FAWHC_SL2 < 0.6,                             %%% CHANGE HERE FOR SENSITIVITY ANALYSIS 
    rainfall = rainfall + irr_amount; 
    irr_track = 1; 
else 
    irr_track = 0; 
end 
  
% Module 1: Loss due to canopy interception 
max_canopy_loss = 1; %mm 
if rainfall > 0, 
    canopy_loss = max_canopy_loss*(1-exp(-0.4*LAI)); % [mm] 
else 
    canopy_loss = 0; 
end 
  
% Module 2: Loss due to surface runoff 
if (rainfall-canopy_loss) >= 200*0.1, 
    runoff = ((rainfall - 200*0.1)^2)/(rainfall+800*0.1); % [mm] 
else 
    runoff = 0; 
end 
  
% Module 3: Evaporation 
s = 2504*exp(17.27*T/(T+237.2))/(T+237.3)^2; % slope of vapour pressure saturation curve 
[kPa/C] 
lambda = 2.501 - 0.002361*T; % latent heat of vaporization [MJ/kg] 
P_atm = 101.3*((293-0.0065*Elev)/293)^5.26; % atmospheric pressure [kPa] 
gamma = 1.013E-3*P_atm/(0.622*lambda); % psychrometric constant [kPa/C] 
rho = 1000; % density, kg/m^3 
alpha = 1.26; % Priestley and Taylor (1972) [] 
  
ETo = alpha*s/(s+gamma)*R/(rho*lambda)*1000; % [mm] crop evapotranspiration 
PSE = ETo*exp(-K_coeff*LAI); % potential evaporation 
  
if FAWHC_SL1 > 0.5, 
    evaporation = PSE; % actual evaporation (ASE in article) 
    ASE_count = 1; 
else 
    evaporation = PSE*(sqrt(ASE_count)-sqrt(ASE_count-1)); 
    ASE_count = ASE_count + 1; 
end 
  
% Module 4: Transpiration 



VPD = 0.611*exp(17.27*Thigh/(Thigh + 237.3)) - 0.611*exp(17.27*Tlow/(Tlow + 237.3)); % 
vapor pressure deficit 
transpiration = biomass/(7.44/(0.75*VPD)^-0.42); % [mm] 
% note that biomass value already accounts for water and temperature stresses 
  
% Module 5: Water "height" balance 
% SL1 calculations first, with overflow going down to SL2 
SL1_water = SL1_water + rainfall - canopy_loss - runoff; % water that soil layer 1 sees 
FAWHC_SL1 = SL1_water / (AWHC_SL1*SL1_depth); 
  
overflow = 0; 
  
if FAWHC_SL1 > 1.1, % check for "saturation" (beyond alowable fraction) 
    overflow = (FAWHC_SL1 - 1.1)*AWHC_SL1*SL1_depth; % if over 1.1, flows to second layer 
    FAWHC_SL1 = 1.1;  
    SL2_water = SL2_water + overflow; 
    FAWHC_SL2 = SL2_water / (AWHC_SL2*SL2_depth); 
end 
  
if FAWHC_SL2 > 1.1, % if layer 2 saturated, water lost below roots 
    FAWHC_SL2 = 1.1; 
end  
  
SL1_water = FAWHC_SL1*AWHC_SL1*SL1_depth; 
SL2_water = FAWHC_SL2*AWHC_SL2*SL2_depth; 
  
SL1_water = SL1_water - evaporation; % evaporation, only from layer 1 
if SL1_water < 0, 
    SL1_water = 0; 
end  
  
FAWHC_SL1 = SL1_water / (AWHC_SL1*SL1_depth); 
FAWHC_SL2 = SL2_water / (AWHC_SL2*SL2_depth); 
  
SL1_water = SL1_water - transpiration; % transpiration first from 1, then 2 
if SL1_water < 0, 
    SL2_water = SL2_water + SL1_water; % take deficit from previous calc. 
    SL1_water = 0; 
    if SL2_water < 0, 
        SL2_water = 0; end 
end  
  
FAWHC_SL1 = SL1_water / (AWHC_SL1*SL1_depth); 
FAWHC_SL2 = SL2_water / (AWHC_SL2*SL2_depth); 
  
if FAWHC_SL2 > 1.1, 
    FAWHC_SL2 = 1.1; 
end 
  
end 
!
!
!
function biomass = crop_growth(dev_stage, R, LAI, WSF_RUE, TSF_RUE) 
% Biomass production, [g/m^2 per day] 
  
global RUE; 
  
% Photosynthetically Active Radiation Intecepted 
k = 0.65;  % extinction coefficient 
PARINT = R*0.45*(1-exp(-k*LAI)); 
biomass = RUE*PARINT*WSF_RUE*TSF_RUE; % g dry matter 
  
end 
!
!
!
function [ WSF_LAI WSF_RUE TSF_RUE] = stresses(T, FAWHC_SL1, FAWHC_SL2) 
  
global SL1_depth SL2_depth; 
  
% Water stress factors 



FAWHC_avg = (SL1_depth/(SL1_depth+SL2_depth)*FAWHC_SL1 + 
SL2_depth/(SL1_depth+SL2_depth)*FAWHC_SL2)/2; 
WSF_LAI = 1/(1 + 270*exp(-32.2*FAWHC_avg)); 
WSF_RUE = 1/(1 + 9*exp(-15.3*FAWHC_avg)); 
  
% Temperature stress factors 
TSF_RUE = -0.42 + 0.067*T; 
  
if T < 6.4, 
    TSF_RUE = 0; end 
  
if T > 21, 
    TSF_RUE = 1; end 
  
end 
!


