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Abstract 
 

Though essential for informed decision-making, it is challenging to estimate the public health 

impacts of air quality because it must address the complicated atmospheric processes of air 

pollutants: emissions, dispersion, chemistry, and removal. Employing a chemical transport model 

(CTM) is the most rigorous way to address these atmospheric processes. The first part of this 

thesis analyzed the potential risk of ammonia emissions from post-combustion carbon capture 

and storage (CCS) technology using a CTM. It was found that, if not controlled properly, CCS 

ammonia may create a serious public health problem, substantially compromising the benefit of 

reducing carbon dioxide. The results will guide the level of appropriate control for a wide range 

of future scenarios. CTMs are expensive from a computational standpoint and, therefore, beyond 

the reach of policy analysis for many types of problems. On the other hand, current tools used for 

policy analysis fall short of the rigor of CTMs and may lead to biased results. To address this 

gap, we developed the Estimating Air Pollution Social Impacts Using Regression (EASIUR) 

method, which builds parameterizations that predict per-tonne social cost and intake fraction at 

any location in the United States like a CTM with negligible computational costs. With tagged 

CTM simulations, the EASIUR method builds a dataset of air quality impacts for a large number 

of representative emissions sources in the United States and then derives parameterizations for 

those results. We used an “average plume,” a generic PM2.5 plume generated from CTM results, 

to describe the exposed population over large receptor areas around an emissions source. The 

parameterizations have intuitive functional forms with population and common atmospheric 

variables; their coefficients explain key underlying mechanisms. Out-of-sample evaluations meet 

the ‘excellent’ criteria of a common air quality model performance metric in most cases, with 
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some exceptions meeting the ‘good’ criteria. We found that the average seasonal per-tonne social 

costs in the United States are $150,000-180,000/t EC, $21,000-34,000/t SO2, $4,200-15,000/t 

NOx, and $29,000-85,000/t NH3. It is hoped that the EASIUR model will be of great use in 

policy research that involves changes in air quality. 
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Chapter 1. Introduction 
 

1.1 Motivation 

It was not long ago when people did not even recognize such a thing as air pollution. Those who 

survived the infamous 1948 Donora smog remember (Davis, 2002) that a lot of workers and 

families in Donora did try to carry on their normal routines until people started to get sick and to 

die during the tragic smog event; for example, a school football team was having a game even 

though they could hardly see each other. Burning of fossil fuel, the main cause of modern air 

pollution, had—at least to some people—rather positive connotations, such as making a living 

and building a new community, as well as technological and economic development. However, 

after the occurrence of serious air pollution episodes, state and federal governments started to 

take regulatory actions beginning in early 1960s. Arguably the landmark event was the 

establishment of the Clean Air Act in 1970, which rolled out the basic structure of air quality 

regulation in the United States (Ashford and Caldart, 2008). 

Now it is common sense that air pollution has adverse effects on human health and the natural 

environment. If exposed to air pollution, people may get sick or die early. It also affects the 

natural environment by causing problems such as eutrophication, acidification, agricultural 

productivity loss, and visibility degradation, which consequently affect associated human 

welfare. Epidemiological studies found out that fine particulate matter having a diameter of 

2.5  µμm or less (PM2.5) is strongly associated with adverse health impacts such as cardiovascular 

and respiratory diseases (Pope et al., 2002, 2004; Pope and Dockery, 2006). The PM2.5 impacts 



 

2 

on premature death, when monetized, account for more than 90% of the social cost (U.S. EPA, 

1999, 2011). 

Still, it is challenging to quantify the social costs of air quality. Once emitted, it is not easy to 

track air pollutants. Air pollutants travel in the atmosphere and usually undergo complex 

chemical reactions with other pollutants under varying meteorological conditions until they are 

subsequently removed from the atmosphere by precipitation (though this results in different 

problems such as eutrophication and acidification), affecting polluters or non-polluters alike 

along the way with to varying degrees. 

A chemical transport model (CTM) is the most realistic tool to model air quality. A CTM, 

implemented with up-to-date scientific knowledge, can simulate the transport, chemical 

conversion, and removal process of air pollutants at a detailed spatial and temporal resolution. 

By its nature, a CTM is computationally burdensome. Employing a CTM requires high 

computational costs as well as expertise in atmospheric science. 

In this work, I explore the potential risk of air quality degradation from an emerging 

technology using a CTM. Then, a new method of tapping the performance of CTMs without 

their computational burden was developed. Finally, based on this method, a fully working set of 

air quality social cost models was built and presented. 

1.2 Objectives 

This thesis has three main objectives. The first one is to quantify and assess the potential air 

quality risk of carbon capture and storage technology. It has been worried for a long time that 

amine scrubbing, one of the most promising CCS technologies, may create an air quality 

problem (Eide-Haugmo et al., 2009; Koornneef et al., 2010; Rao and Rubin, 2002). It is 

necessary address the potentially large uncertainty surrounding the performance of emerging 
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technology and the level of its deployment. Since the future environment would have different 

emissions and the associated chemical processes in the atmosphere would also change, it would 

also be necessary to explore uncertainty created by the changing emissions in the future. 

The second objective is to develop a method to predict like a CTM without computational 

burden. A CTM is a superb tool, but it is usually beyond the reach of the policy research 

community mainly because of the complexity and computational burden of CTMs. There are 

reduced-form models, which are easy-to-use and fast, some of which are used in many important 

policy studies such as the Hidden Costs of Energy (National Research Council, 2010). But the 

current reduced-form models are usually based on an air quality model that is overly simplistic 

or outdated for important areas. Or, some tools consistent with up-to-date science have a limited 

spatial or sectoral resolution. Therefore, it would be extremely useful if there were a general 

purpose social cost tool that could predict like CTMs but in a computationally efficient manner. 

To develop such a method is the second object of this thesis. 

The third objective is to provide a new set of fully working models based on the method that is 

developed in this thesis. The estimation of air quality social cost involves several components, 

i.e. not only the air quality simulation but also translating the air quality to public health impacts 

and associated valuation process. The derived models would need to address each major 

component so that they work flexibly depending on potential applications. 

1.3 Overview 

Chapter 2 describes an application of a CTM to explore the potential risk of an emerging 

technology, post-combustion carbon capture technology. Major sources of uncertainty are 

addressed so that the results can guide a wide range of future scenarios. In Chapter 3, a new 

method was developed to derive simple parameterizations from CTM simulation results so that 
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one can estimate the social cost of air quality quickly and accurately. Based on the 

accomplishments made in the Chapter 3, Chapter 4 builds a set of new social cost models for 

four major air pollutants (elemental carbon, sulfur dioxide, nitrogen dioxides, and ammonia). In 

Chapter 5, the key findings from this work are summarized and recommendations for future 

work are presented. 
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Abstract

Post-combustion carbon capture and storage (CCS) technologies could increase

ambient concentrations of fine particulate matter (PM2.5) due to their ammonia

emissions. Deployment of amine scrubbing to capture 2.0 Gt CO2/year, for example,

could emit 0.48 Tg NH3/year in the United States at an ammonia emissions rate

typical of current pilot plants. Employing a chemical transport model, we found that

this amount of ammonia would cause an increase of 2.0 µg PM2.5/m
3 in nonattainment

areas during wintertime, which would be troublesome for PM2.5-burdened areas.

In contrast, PM2.5 changes were much lower in other seasons as expected from

inorganic PM2.5 thermodynamics. Wintertime PM2.5 increases in nonattainment

areas were fairly linear at a rate of 3.4 µg PM2.5/m
3 per 1 Tg NH3, allowing these

results to be applied to other CCS emissions scenarios. The PM2.5 impacts are uncertain

by 10-20% depending on future emissions of SO2, NOx, and NH3. The public health

costs of CCS NH3 emissions were evaluated to be $31-68/t CO2, which are similar

to the social cost of carbon emissions avoided. Since the costs of solvent loss to

CCS operators are lower than the social costs of CCS ammonia, there is a regulatory

interest to limit ammonia emissions from CCS.



Chapter 2. Implications of Ammonia Emissions from Post-Combustion Carbon Capture for Airborne PM2.5

2.1 Introduction1

Carbon capture and storage (CCS) technology is considered an important potential climate change

mitigation option (IPCC, 2014; Metz et al., 2005; Bachu, 2008). Amine scrubbing is currently

the most mature post-combustion capture technology (Rochelle, 2009). Ammonia-based CO2

capture, which use aqueous ammonia as a solvent for CO2 instead of amines, is another promising

post-combustion option since it may have energy and cost advantages over the amine-based

system (Versteeg and Rubin, 2011a).

There have been various environmental concerns associated with using amines for CCS (Rao

et al., 2004). One that is the focus of this study is that amine scrubbing could create an air quality

problem associated with its ammonia emissions. Ammonia is a significant precursor of PM2.5 (Pinder

et al., 2007; Ansari and Pandis, 1998), which refers to particulate matter having a diameter of

2.5 µm and smaller. Exposures to PM2.5 pollution are strongly associated with increases in mortality

and morbidity (Pope and Dockery, 2006).

The other concern is that amine systems produce a hazardous waste. Amines react with

acid gas impurities such as SO2, SO3, NO2 and HCl to form corrosive heat-stable salts (HSS).

While some amines can be released from HSS for reuse by adding a strong alkali, the remaining

HSS must be treated as a hazardous waste. In addition, amines emitted to the atmosphere may

react with NOx to form nitrosamines, which are known carcinogens. Carcinogenic nitrosamine

formation is also a concern, though it is not likely since nitrosamines are broken down rapidly by

photolysis under sunlight (Ge et al., 2011a) and nitrosamines were not detected in an experimental

study on amines emitted by amine-based CO2 capture technology (Nielsen et al., 2011; Bråten

et al., 2009). Lastly, ammonia emissions may also increase nitrogen deposition. Nitrogen burdened

ecosystems could suffer from eutrophication and acidification by CCS ammonia (Bouwman

et al., 1997).

The role of ammonia in PM2.5 formation is largely determined by nonlinear interactions

between SO2, NOx, NH3, and their products (Pinder et al., 2007; West et al., 1999; Ansari and

1This work is currently under review for publication in Environmental Science & Technology.
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Pandis, 1998), A unit ammonia emission from CCS may result in highly variable impacts on

PM2.5 concentrations depending on the ambient concentrations of these species as shown in

Figure A-1. Once emitted to the air, ammonia may remain in the gas phase if sulfuric acid and

nitric acid are not available, which therefore causes no change in PM2.5 concentrations. If unneutralized

sulfuric acid exists, ammonia first reacts with it to form PM sulfate ((NH4)2SO4). Because unneutralized

sulfuric acid already exists overwhelmingly in the particle phase, this reaction increases PM2.5

concentrations only marginally by replacing hydrogen with ammonium. If sulfate is neutralized,

however, any remaining ammonia may form PM nitrate (NH4NO3) by reacting with nitric acid.

The formation of ammonium nitrate may be limited either by ammonia or by nitric acid. When

ammonia is the limiting reagent, the ammonium nitrate PM can be attributed to its emission, and

a unit of ammonia creates much more PM2.5 mass by PM nitrate formation than by neutralizing

sulfate. Since PM nitrate formation is favored at cold temperatures, ammonia emissions may

create a significant amount of PM2.5 in winter or at night. Therefore, changes in ammonia emissions

will tend to have stronger impacts on PM2.5 in regions where ammonia is limiting PM nitrate

formation, which has cold temperatures, lower SO2 emissions, higher NOx emissions, and intermediate

ammonia levels (sufficient to neutralize sulfate but limiting for ammonium nitrate formation).

Such conditions occur regularly in the eastern United States in winter (Pinder et al., 2007; West

et al., 1999; Ansari and Pandis, 1998).

Since the role of ammonia in PM2.5 formation in the atmosphere is sensitive to ambient

co-pollutants and atmospheric conditions, it is necessary to employ a chemical transport model

to understand the impacts of CCS ammonia on ambient PM2.5 concentrations. Though there have

been studies looking into the environmental impacts of amine capture systems (Koornneef et al.,

2010; Veltman et al., 2010; Eide-Haugmo et al., 2009; Pehnt and Henkel, 2009; Schreiber et al.,

2009; Koornneef et al., 2008; Thitakamol et al., 2007; IEA GHG, 2006; Khoo and Tan, 2006;

Rao and Rubin, 2002), no study has been done yet to explore the actual physical and chemical

interactions of the emitted ammonia in the atmosphere, which determine their consequences to

society.

This study focuses on the amine system using monoethanolamine (MEA, C2H7NO), an
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amine solvent used widely in industrial applications, but the results are readily applied to other

post-combustion capture systems such as an ammonia-based process. We focus on ammonia

emissions though CCS may reduce SO2-related PM2.5 substantially from forming HSS because,

independent of any decision to deploy CCS, the normal processes of air quality regulation (U.S.

EPA, 2010; Pinder et al., 2008; Cofala et al., 2006) will continue to reduce SO2 emissions. Furthermore,

once the decision to deploy CCS is made, the SO2 reductions come “for free” whereas regulators

and operators are left with a separate decision about how much to control the associated ammonia

emissions, which we seek to inform in our analysis. This study does not consider the potential

contribution of amines themselves to PM2.5 creation (Ge et al., 2011b; Nielsen et al., 2011) due

to the lack of data on emissions and atmospheric chemistry of amines. It has also been suggested

that ammonia and/or amines contribute to the number concentration of ultrafine particles by

enhancing the rates and frequencies of new particle formation events (Kulmala et al., 2013; Ge

et al., 2011a; Smith et al., 2010; Napari et al., 2002), but this chemistry is still highly uncertain

and is not considered here. The potential acid-catalyzed oligomerization, a role of sulfate in

organic PM2.5 formation, is also not considered because it is uncertain, its overall importance

to ambient PM2.5 is not known (Hallquist et al., 2009), and it has not been adopted in chemical

transport models.

This study aims to evaluate the potential changes in PM2.5 concentrations and resulting

health impacts from amine scrubbing CCS in the United States. We estimated the ammonia

emissions under an aggressive amine scrubbing deployment scenario in 2050. Then, we simulated

PM2.5 concentrations with and without CCS ammonia for 2050. Several additional simulation

analyses were carried out to test the sensitivity of our results to major uncertainties. Finally, the

health impacts and associated social costs of the PM2.5 changes were evaluated. All monetary

values in this study were converted to year 2010 US dollars unless otherwise noted.
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2.2 Ammonia Emissions from Amine Scrubbing

Ammonia is created from the oxidative degradation of amine in the amine scrubbing process (Rao

et al., 2004; Chi and Rochelle, 2002). It was reported that 30-50% of the amine lost in the process

oxidizes to ammonia (Rao et al., 2004; Knudsen et al., 2009). Figure 2.1 summarizes the amine

loss rates reported in the literature. Current pilot-scale applications show amine loss rates of

0.5-2 kg MEA/t CO2. Pilot-scale natural gas power plants equipped with the Fluor Daniel Econamine

system reported 1.5 kg MEA/t CO2 (Rubin, 2011; Rao et al., 2004), 1.6 kg MEA/t CO2 (Chapel

et al., 1999) and 0.5-2 kg MEA/t CO2 (Suda et al., 1992). A pilot-scale coal-fired power plant

with an amine system reported losses of 1.4 kg MEA/t CO2 (Knudsen et al., 2009). However,

other studies suggest that the amine loss could be smaller in the future. An expert elicitation

study (Rao et al., 2006) reported that experts on amine-based CCS expected losses to be 0.05-2

kg MEA/t CO2 by 2015 assuming modest R&D. A commercial power plant was able to reduce

the solvent loss to 0.35 kg/t CO2 using the amine solvent called KS-1 and further down to 0.1-0.2

kg/t CO2 by modifying operational conditions (Mimura et al., 2002). Based on engineering

modeling, U.S. NETL (U.S. NETL, 2010) reported a loss rate of 0.1 kg MEA/t CO2. We could

not find a clear difference in ammonia emissions between coal and natural gas plants.

This study selected an ammonia emission rate of 0.24 kg NH3/t CO2 based on a supercritical

pulverized coal power plant model with amine scrubbing (Rubin et al., 2005), which includes

a typical water wash. The performance of the plant model was reported in the IPCC Special

Report on Carbon Capture and Storage (Metz et al., 2005). Although amine scrubbing operations

may achieve lower emissions, we have deliberately selected this value because it is supported by

current operations and we wish to evaluate whether CCS has the potential to create air quality

problems. Since amines and ammonia are highly soluble in water, their emissions are technically

controllable, and control strategies can be designed depending on the economics of and/or regulations

on amine scrubbing.

The other important variable is the level of CCS deployment in 2050, which is difficult to

estimate because amine scrubbing systems are only now being demonstrated at the commercial
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Figure 2.1: Amine loss rates reported or estimated in the literature. An ammonia emissions of
0.24 kg NH3/t CO2 was chosen for this study, which was reported in Rubin et al. (2005) based on a coal
power plant model assuming an amine loss rate of 1.5 kg MEA/t CO2 (Rao et al., 2004).

scale and carbon mitigation plans are not yet clear in the United States nor in most other nations.

Figure 2.2 shows the context for the CCS deployment assumed in this study. Based on the IPCC

SRES A2 scenario (Nakićenović et al., 2000), Toth and Rogner (2006) estimated that technical

potential of CCS in the United States would be 3.6 Gt CO2/year in the power sector in 2050

under the A2-IMAGE scenario and 1.8 Gt CO2 under the A2-AIM scenario. Riahi et al. (2004)

reported that OECD90, defined as all members of OECD in 1990, would capture 3.5-5.9 Gt

CO2 in 2050. About 50% of this potential, 1.7-2.9 Gt CO2, would come from the United States,

reflecting coal primary energy consumption in 2000 (Morita). The Energy Modeling Forum

22 study (Fawcett et al., 2009) reported that coal electricity production with CCS ranges from

2.8-6.7 EJ/year among six models for United States transition scenarios targeting 80% emissions

reductions below 1990. This would be equivalent to 0.7 Gt CO2/year to 1.8 Gt CO2/year if they

are captured by the coal power plant model that we assumed for the CCS ammonia emissions

above. All these deployment levels are not limited to post-combustion technology or amine

scrubbing systems.

To estimate the potential air quality problem from CCS ammonia, we assumed that amine
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scrubbing in the United States would capture 2.0 Gt CO2/year from coal-fired power plants and

large industrial facilities in 2050. This assumption represents a future with aggressive amine

scrubbing deployment since the amount is similar to the CCS deployment levels comprised of

all CCS technologies in the scenario studies mentioned above but is realized with only amine

scrubbing. The amount of captured CO2 we assumed is similar to the amount of CO2 emitted

by coal power plants alone annually from 2005-2008 (U.S. EIA, 2011). The CO2 emissions

from natural gas power plants were 320-360 Gt CO2/year during the same period. Recent shale

gas development and new air quality regulations may force old power plants to retire and result

in more intensive use of natural gas in electricity generation. Though a natural gas combined

cycle (NGCC) emits about half the carbon dioxide to generate a unit of electricity compared to

conventional coal plants (U.S. NETL, 2010; Rubin and Zhai, 2012), it would be necessary to

equip a portion of the NGCC fleet with CCS to achieve large (∼80%) GHG reductions (Fawcett

et al., 2009).

From the two factors assumed above, the NH3 emissions per CO2 captured, 0.24 kg NH3/t

CO2, and the amount of CO2 captured with amine scrubbing, 2.0 Gt CO2/year, the amount of
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ammonia emitted from amine scrubbing CCS was estimated to be 0.48 Tg NH3/year. This amount

of CCS ammonia is ∼10% of the current anthropogenic ammonia emissions in the United States,

which are 3.5-4.0 Tg NH3/year (Pinder et al., 2006).

Non-CCS NH3 emissions are larger in spring and summer than in other seasons since animal

husbandry and synthetic fertilizer application are dominant sources of NH3 (Pinder et al., 2006).

Thus the CCS NH3 emissions would result in a relatively larger increase of NH3 in winter than

in summer, precisely when PM2.5 concentrations are most sensitive to ammonia emissions.

2.3 Emissions Scenarios and Sensitivity Simulations

2.3.1 Main Scenarios

We have designed three main scenarios to explore the role of CCS ammonia based on reasonable

current and future concentration levels of ambient SO2, NOx, and non-CCS NH3 as shown in

Figure A-2. We focused on these three species since the effect of CCS ammonia on ambient

PM2.5 depends on their relative availability as discussed above.

The first one is Current, which corresponds to the current air quality resulting from the

emissions database of year 2005 (U.S. EPA, 2011c), which was built for an U.S. EPA’s regulatory

impact assessment (U.S. EPA, 2010). The database includes emissions from Canada and Mexico

and from marine vessels over the oceans. But in the following scenarios we did not change these

emissions but only those emitted on the land over the contiguous U.S. domain.

Next, No-CCS-NH3 2050 represents a future with significant CCS deployment with no

CCS NH3 emissions. Since the future emissions of SO2, NOx and NH3 would be reduced by

CCS or normal air quality regulation (U.S. EPA, 2010; Pinder et al., 2008; Cofala et al., 2006),

we assumed that the net impact of these factors is that 85% of SO2 point emissions relative to

2005, 50% of SO2 area emissions, 50% of NOx emissions, and 30% of NH3 emissions would be

reduced by 2050. Amine-based CCS removes almost all SO2 because SO2 reacts with amines

to form HSS. Therefore, a future with high CCS adoption would easily achieve an 85% reduction

of SO2 point emissions by 2050. Though more difficult than SO2 point sources, SO2 area emissions

16



2.3. Emissions Scenarios and Sensitivity Simulations

and NOx emissions may also achieve significant reductions. Though NH3 emissions are not

currently regulated, a 30% reduction in NH3 emissions is assumed since NH3 reduction is a

cost-effective PM2.5 control measure and regulatory interest in it has increased (Pinder et al.,

2007; Aneja et al., 2009; McCubbin et al., 2002).

Lastly, CCS-NH3 2050 is the same as the No-CCS-NH3 2050 scenario just described but

with the additional 0.48 Tg NH3/year of CCS ammonia as estimated above. Assuming large SO2

sources represent the locations of future CCS plants, either coal plants or other big industrial

sources, we added CCS NH3 to the largest SO2 point sources, which in total account for the

amount of SO2 emissions by electricity generation in our emissions inventory (U.S. EPA, 2011c).

We distributed CCS ammonia to the SO2 point sources proportionally to their SO2 emissions on

an hourly basis.

2.3.2 Sensitivity to Future Emissions, to CCS Ammonia Emissions and Locations,

and to Climate Change

We did sensitivity analyses to address four major uncertainties associated with our main scenarios

developed above. One is the future emissions of SO2, NOx, and non-CCS NH3. In order to explore

this uncertainty, two more sets of emissions scenarios are developed—High-sensitivity and

Low-sensitivity—as shown in Table A-1. Since it is computationally too expensive to run

CAMx with many possible emissions combinations, the two scenarios are developed based on

the understanding of inorganic PM2.5 thermodynamics discussed above. High-sensitivity represents

a future combination of SO2, NOx, and non-CCS NH3 emissions that would result in more PM2.5

formation per unit CCS ammonia emissions and Low-sensitivity represents one that would result

in less PM2.5 formation. SO2 is assumed to decrease by 95% for High-sensitivity considering a

thorough reduction of SO2 by amine scrubbing and other measures and by 70% for Low-sensitivity

considering a future that would capture a substantial amount of CO2 from natural-gas burning

facility while keeping a part of coal generations without CCS. NOx is assumed to decrease by

70% for Low-sensitivity considering aggressive efforts and by 20% for High-sensitivity considering

modest control efforts. And non-CCS NH3 is assumed to be reduced by 50% for High-sensitivity
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considering the cost effectiveness of NH3 control (Aneja et al., 2009; Pinder et al., 2007; McCubbin

et al., 2002) and by 0% for Low-sensitivity considering no action for NH3 control.

The other major uncertainty is the amount of ammonia emitted from CCS. Despite nonlinearities

in the thermodynamics of inorganic PM2.5, we assume that the impacts will be approximately

proportional to emissions. To test the linearity of impacts on ambient PM2.5 concentrations over

the range of possible CCS ammonia emissions, CAMx was run for CCS-NH3 2050, Low-sensitivity,

and High-sensitivity scenarios that have 6.25%, 25%, and 200% of the CCS ammonia emissions

assumed in CCS-NH3 2050 scenario.

Thirdly, in order to test the sensitivity of our results to the spatial distribution of CCS NH3,

we performed an additional sensitivity simulation in which we added the CCS ammonia to large

NOx point sources. This also allows us to look at the case of deploying CCS to natural gas power

plants and other large natural gas burning facilities as well as coal plants.

Lastly, future temperature increase may affect our results. Under the most warming climate

scenario called as Representative Concentration Pathways 8.5, climate models estimate the mean

U.S. temperature may increase by 2○C by 2050 on average (mel, 2014). We analyzed a case for

an increase of 2○C for the entire simulation domain as a bounding scenario.

2.4 Methods

2.4.1 Air Quality Simulations

We used the Comprehensive Air Quality Model with Extension (CAMx) version 5.41 (ENVIRON,

2012) to simulate the air quality of the scenarios. CAMx is a state-of-the-art CTM that simulates

horizontal and vertical advection, dispersion, wet and dry deposition, gas and liquid phase chemistry,

and aerosol formation and growth. We used the CAMx air quality modeling platform, which

was developed and evaluated in a U.S. EPA’s regulatory impact analysis (U.S. EPA, 2010). The

platform covers the continental United States with 36 km×36 km horizontal grid resolution and

14 vertical layers reaching up to 16 km, which is fine enough for PM2.5 human health impact

analysis (Thompson et al., 2014). The initial and boundary conditions were provided by a global
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chemical transport model (U.S. EPA, 2011a). The platform demonstrated the good performance

of simulating inorganic species (U.S. EPA, 2011a), which are key pollutants for this study. Figure A-3

presents CAMx results, showing simulated PM2.5 concentrations with our 2005 database.

We ran CAMx for the whole year period for the three main scenarios. But due to high computational

costs we limited our sensitivity cases to four months (January, April, July, and October). We

ran seven days before each simulation period as ramp-up to minimize the effect from initial

conditions. Special attention is paid to the PM2.5 nonattainment areas designated for 1997 and

2006 standards (U.S. EPA, 2014) (Figure A-4), which are referred to here as PM2.5-burdened

areas.

2.4.2 Public Health Impacts

The health impacts from CCS-related PM2.5 increases were quantified using standard methods

adopted by U.S. EPA (U.S. EPA, 2011b, 1999). First, we estimated the changes in mortality

rate for the changes in PM2.5 concentrations associated with air quality improvements in 2050

(Current to No-CCS-NH3 2050) and with CCS ammonia impacts (No-CCS-NH3 2050 to CCS-NH3

2050). We used the concentration-response relations from the two latest landmark cohort-based

PM-mortality studies; for each PM2.5 concentration increase of 10 µg PM2.5/m
3, Lepeule et al.

(2012) reported that all-cause mortality increases by 14% (95% confidence interval: 7-22%) and

Krewski et al. (2009) reported 6% (95% confidence interval: 4-8%). We quantified only at the

PM2.5 impact on mortality because PM2.5 accounts for more than 90% of monetized costs (U.S.

EPA, 2011b, 1999; National Research Council, 2010). Second, we estimated the number of

premature deaths by multiplying population by the changed mortality rates. We used the year

2040 population forecast provided in the environmental Benefits Mapping and Analysis Program

(BenMAP) (Abt Associates, Incorporated, 2012) based on Woods & Poole Economics Inc. (2012),

which is 37% larger than the population in 2010. Though our scenarios were developed for 2050,

we used the BenMAP population forecast for 2040, the most recent available. Finally, we multiplied

the number of premature deaths by the value of a statistical life (VSL), which is people’s willingness-to-pay

to avoid premature death. We used a Weibull distribution having a mean VSL of $8 million,
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Figure 2.3: Monthly changes in PM2.5 concentrations. U.S. domain indicates the concentrations in the
continuous U.S. in the simulation grid, not including oceans and other countries like Mexico and Canada.

which is recommened by U.S. EPA (U.S. EPA, 2010). We carried out Monte Carlo simulations,

each with 5,000 iterations, to explore uncertainties surrounding concentration-response relation

and VSL.

2.5 Results

2.5.1 PM2.5 Impacts

The monthly changes in PM2.5 concentrations are presented in Figure 2.3. The assumed air

quality controls between now and 2050 result in a significant reduction of 3.4 µg/m3 in PM2.5

(Current to No-CCS-NH3 2050) on annual average over the nonattainment areas and 1.7 µg/m3

over the contiguous United States domain. The annual PM2.5 concentrations increase due to CCS

(between No-CCS-NH3 2050 and CCS-NH3 2050) are smaller but significant: 0.72 µg/m3 over

nonattainment areas and 0.20 µg/m3 over U.S. domain. To better visualize the CTM results,

difference maps of PM2.5 concentrations are presented in Figures A-5 and 2.4. Summary of the

PM concentrations of all scenarios are also presented in Table S2.

Whereas the projected PM2.5 reduction is the least in January and the largest in July (Figure A-5),

the PM2.5 increase from CCS ammonia is the largest in January and the lowest in July (Figure 2.4).

This result agrees with the known PM2.5 thermodynamics discussed above; wintertime PM2.5
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Figure 2.4: Estimated increase in PM2.5 concentrations by CCS ammonia in 2050. PM2.5 increase is most
sensitive to ammonia emissions during wintertime and relatively insensitive during summertime.

is sensitive to additional ammonia emissions and summertime PM2.5 is sensitive to reductions

in SO2 emissions (Pinder et al., 2007; West et al., 1999; Ansari and Pandis, 1998). In winter,

the impacts of CCS ammonia offset 86% of the projected future air quality improvements for

the nonattainment areas and 38% for the U.S. domain. In summer, by contrast, CCS ammonia

offsets 1% for the nonattainment areas and 3% for the U.S. domain. The PM2.5 increases in

nonattainment areas in spring and fall by CCS ammonia are about 20% of the increase in winter.

PM2.5 concentrations increase linearly over a wide range of CCS ammonia for all four

months as shown in Figures 2.5 and A-6. The slope in January is 3.4 µg PM2.5/m
3 per Tg NH3/year

for nonattainment areas and 1.1 µg PM2.5/m
3 per Tg NH3/year for the U.S. domain. The sensitivity

of PM2.5 increase to CCS ammonia is also linear in other months though the slopes are shallower.

Figure A-6 (a) shows that the impact of CCS ammonia on PM2.5 shows a modest sensitivity to
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non-CCS NH3) and the amount of ammonia emitted by amine scrubbing.

the mix of other pollutants: SO2, NOx, and non-CCS NH3. In addition, our results are found not

to sensitive to the location of CCS ammonia and the temperature increase as shown in Figures A-7

and A-8.

2.5.2 Estimation and Valuation of Premature Deaths

The projected changes in annual premature deaths and their valuations are presented in Figure A-9.

Two mean estimates calculated based on the two epidemiological studies are presented as estimated

range here. Comparing improved air quality in 2050 without CCS ammonia to the present, the

number of annual premature deaths is expected to decrease by 51,000-120,000, which is valued

at $410 billion to $930 billion. Under the increased PM2.5 from CCS ammonia, the number of

annual premature deaths attributed to CCS ammonia is estimated to be 7,600-17,000, valued at

-$61 billion to -$140 billion. Given the seasonality of the PM2.5 response discussed previously,

68% of the annual-average PM2.5 increase resulted from wintertime PM2.5 changes with a negligible

contribution from summertime changes.

Based on these results, the per unit social health costs of CCS ammonia is calculated to be

$130,000-280,000/t NH3. Wintertime CCS NH3 are higher at $340,000-770,000/t NH3. On a

basis of CO2 captured, the costs of CCS ammonia are calculated to be $31-68/t CO2 per year and

$82-186/t CO2 during the winter.
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2.6 Discussion

This paper has explored the air quality and human health impacts that could be imposed by ammonia

emissions from amine-based post-combustion CO2 capture processes. First, we estimated potential

ammonia emissions based on current emission factors and analyzed the possible changes in

concentrations of fine particulate matter (PM2.5), of which ammonia is a major precursor, with

a state-of-science chemical transport model, CAMx. Then we estimated the premature mortality

associated with the PM2.5 formation and monetized the impacts. In this study, we focused on the

formation of PM2.5 from CCS ammonia but did not look at emissions of amines per se. Though

it would be reasonable to assume that amines would have similar impacts per mole of nitrogen

emitted, we could not test this due to lack of relevant data. This study also did not consider the

effects of ammonia or amines on number concentrations of ultrafine particles via nucleation,Ge

et al. (2011a); Kulmala et al. (2013); Smith et al. (2010); Napari et al. (2002) or the concerns

over possible formation of carcinogenic nitrosamines by amines in the atmosphere.Ge et al.

(2011a); Rao and Rubin (2002); Nielsen et al. (2010) Both processes are poorly understood at

the current time.

We found that ammonia emissions from amine-based carbon capture systems at emissions

rates typical of current pilot plants would create a significant increase in PM2.5 concentrations,

resulting in worrisome public health impacts. With an emission factor of 0.24 kg NH3/t CO2, a

substantial deployment of amine scrubbing to coal power plants to capture 2 Gt CO2/year would

emit 0.48 Tg NH3/year in the U.S. This amounts to 14% of annual ammonia emissions or 34%

of winter emissions of the U.S. in 2005. This scenario is intentionally chosen to result in high

ammonia emissions, but sensitivity to differing emissions rates was analyzed. Such emissions

would increase the winter PM2.5 concentrations in nonattainment areas by 2.0 µg/m3 on average

and up to 4.3 µg/m3 in some locations.

The PM2.5 increase for the CCS emissions considered here would significantly compromise

air quality. Especially, the winter time PM2.5 increase can offset in nonattainment areas 86% of

all future air quality improvement including the contribution of CCS to large SO2 reductions.
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An increased PM2.5 concentration of 2.0 µg/m3 is significant when one considers that current

nonattainment areas often seek to cut 1-2 µg/m3 to meet the PM2.5 National Ambient Air Quality

Standards (NAAQS). It may also cause other areas to slip into nonattainment, especially if more

stringent NAAQS standards are adopted in the future.

This work has examined the key uncertainties governing the impacts of CCS NH3, which is

summarized in Table A-3. Because CCS ammonia emissions are uncertain and because ammonia

impacts depend on the levels of co-pollutants available from other sources, we performed a sensitivity

analysis over a wide range of CCS ammonia emissions and potential emissions of co-pollutants

(SO2, NOx, and non-CCS NH3) as shown in Figure A-6. We showed that PM2.5 impacts are

fairly linear with CCS ammonia emissions, and concentrations increase with CCS ammonia

at a rate of 3.4 µg/m3 per Tg NH3 in nonattainment areas in January. The PM2.5 increase in

nonattainment areas in January could vary by −18% to +10% depending upon the future emissions

of the co-pollutants. The approximately linear response is useful; since ammonia emissions from

future systems may be lower than current pilot plants, the PM2.5 impacts considered here may

be scaled accordingly, noting that Figure A-6 shows somewhat higher unit impacts for smaller

CCS emissions. In addition, our results are not sensitive to the location of CCS ammonia and

the potential temperature increase from climate change (Figures A-7 and A-8). As is always the

case with PM2.5 health valuations, uncertainties in concentration-response relations and VSL are

significant (−90% to +160%).

Our per-tonne costs, $130,000-280,000/t NH3, are relatively bigger than those in the literature.

This would be mainly because PM2.5 formation is more sensitive to ammonia emissions in the

atmosphere in 2050 that we assumed and we used 2040 population forecast, which is 37% larger

than 2010 population. The following values are converted to 2010 USD and metric tonne from

their reported units. With the Response Surface Model,U.S. EPA (2006) an air quality model,

Fann et al. (2009) reported social costs per ton of NH3 emitted from mobile sources was $120,000/t

NH3 at the national level and $52,000-170,000/t NH3 over nine urban areas based on a concentration

response relationLaden et al. (2006) similar to Lepeule et al.Lepeule et al. (2012) For area source

NH3, they estimated the social health cost of $46,000/ton NH3 at the national level. With a reduced-form
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air quality model, Muller et al. (2011) reported the costs of NH3 for all US counties using a VSL

similar to this study and a concentration-response relationPope et al. (2002) similar to Krewski et

al.Krewski et al. (2009) They vary from $2,200/t NH3 (5th percentile) to $130,000/t NH3 (95th

percentile) with a mean of $38,000/t NH3.

In terms of the social cost in the absence of controls on ammonia emissions, the PM2.5

problem resulting from CCS ammonia emissions could be compared to the climate benefits of

the avoided CO2 emissions. Using a standard method of valuing PM2.5 mortality, we estimated

the social cost of CCS ammonia at $31-68 per tonne CO2 captured. Estimates of the social cost

of carbon, which includes CO2 damages on human health, property, and ecosystem services,

are uncertain and vary widely, but a U.S. government interagency working group estimated the

social cost of carbon in 2050 to be $28-102/t CO2.U.S. IAWG (2013) When compared to these

estimates, the public health impacts from CCS ammonia emissions are significant in comparison

to the climate benefits from CO2 emissions reductions from CCS and deserve close attention in

the future. CCS ammonia impacts could be minimized compared to CO2 benefits by reducing

CCS NH3 emission factors below those used here.

Operators of CCS facilities have some natural incentives to reduce amine losses. For a

solvent loss rate of 1.5 kg MEA/t CO2 and an assumed amine solvent cost of $2,250/t MEA,U.S.

NETL (2010) the amine consumption costs about $3.4/t CO2. However, our analysis shows that

the PM2.5 social costs are still much higher than the private costs borne by the operators in the

form of solvent makeup. Therefore, it makes sense for regulators to impose limits on ammonia

and amine emissions from CCS in order to protect the public interest. Since 68% of the burden

occurs in winter and virtually none during the summer, it could be considered to enforce more

stringent ammonia controls on a seasonal basis.

The concerns noted here suggest a need to proceed cautiously, but the air quality impacts

of CCS ammonia are not necessarily prohibitive of the technology. Since ammonia is highly

soluble in water, it is not technically difficult to control by installing more or better water wash

units. Water wash units are already included in plant design mainly to reduce solvent loss from

mechanical entrainment and evaporation.U.S. NETL (2010) Water wash systems could be better
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designed to minimize ammonia and amine emissions to the atmosphere in addition to the current

purpose of minimizing solvent losses. If CCS ammonia is managed, for example, at the current

ammonia control level of the selective catalytic reduction system (2-10 ppm), our estimate for

the PM2.5 impact from CCS ammonia is reduced by a factor of ten.

We based our analysis on MEA systems because this capture technology is reasonably well

understood, but the results are readily applicable to other post-combustion capture systems such

as an ammonia-based process. Although little information is currently available about ammonia

leakage from such systems, the impacts per unit ammonia emitted could be applied to these

systems given such data. Since the material cost of ammonia is much lower than MEA in terms

of solvent costs per tonne of CO2 captured,Versteeg and Rubin (2011b) an ammonia-based CCS

power plant may afford to lose more solvent to the atmosphere than an amine-based one. Therefore,

there would be an even stronger need for regulatory intervention to protect the public health.

In summary, widespread deployment of CCS technology could result in significant unwanted

increases in PM2.5 levels and potentially other impacts on air quality as well. There is a need for

regulators to be pro-active in considering appropriate emissions-based standards to avoid such

an outcome. Currently, there is no federal regulation on ammonia emissions from power plants.

Emissions-based standards low enough to prevent significant air quality degradation will incur

some cost but should be technically feasible, and the impact assessment performed here provides

quantitative guidance for what level of control is appropriate.
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A Appendix: Additional Figures and Tables

Ammonium sulfate PM formation: SO2 PM2.5 mass net increase
↓

NH3 (g) + 1
2 H2SO4 (s)

cold T
ÐÐÐ→ 1

2 (NH4)2SO4 (s)
PM2.5 [g/mol]: 0 49 66 +17

Ammonium nitrate PM formation: NOx
↓

NH3 (g) + HNO3 (g)
cold T
ÐÐÐ→ NH4NO3 (s)

PM2.5 [g/mol]: 0 0 80 +80

Remaining as gas:

NH3 (g)
PM2.5 [g/mol]: 0 0

Figure A-1: Potential reactions of ammonia (NH3) with sulfuric acid (H2SO4) and nitric acid (HNO3) in
the atmosphere. Values below each species indicate the molecular weight of components in the particulate
phase, and the right-hand column indicates the very different effect each pathway has on ambient PM2.5
concentrations. Ammonia first reacts with sulfuric acid to form ammonium sulfate ((NH4)2SO4) PM, and
the remaining free ammonia, if any, may react with nitric acid to form ammonium nitrate (NH4NO3) PM.
Ammonia remains as a gas if there is no SO2 and NOx.
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Figure A-2: Emissions assumptions for the three main scenarios. Current represents current emissions as
of 2005, No-CCS-NH3 2050 corresponds to the projected emissions in 2050 assuming an aggressive CCS
deployment as well as future air-quality improvement efforts, and CCS-NH3 2050 assumes that additional
NH3 is emitted by amine scrubbing. The additional ammonia from CCS is 14% of the 2005 ammonia
emissions. NH3, mainly emitted from agricultural sources like livestock and fertilizer, shows a strong
seasonal variation. The relative increase is much larger in winter than in summer, which is 34% relative to
the 2005 emissions or 48% relative to the 2050 scenario emissions.
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Figure A-3: Average PM2.5 concentrations in 2005 estimated by CAMx.

Table A-1: Emissions assumptions for High-sensitivity and Low-sensitivity scenarios.

Scenario
Emissions reduction relative to Current scenario

SO2 NOx Non-CCS NH3

No-CCS-NH3 2050 85%a 50% 30%
High-sensitivity 95% 20% 50%
Low-sensitivity 70% 70% 0%
a No-CCS-NH3 2050 assumes 85% reduction of SO2 for point emissions and 50%

reduction for area emissions while the point and area emissions of other scenarios
are reduced by the same reduction rate of their scenarios.
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Chapter 2. Implications of Ammonia Emissions from Post-Combustion Carbon Capture for Airborne PM2.5

Figure A-4: PM2.5 nonattainment areas in the CAMx domain. Red squares show the CAMx grid cells
that correspond to PM2.5 nonattainment counties designated for 1997 and 2006 standards, representing
PM2.5-burdened areas. The 1997 annual PM2.5 standard required the 3-year average of annual mean
PM concentrations under 15 µg/m3 and the 3-year average of the annual 98th percentile 24-hour
concentrations under 65 µg/m3. In 2006, U.S. EPA strengthened the 24-hour standard to 35 µg/m3. In
2012, the annual standard was tightened to 12 µg/m3.
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Figure A-5: Projected air quality improvements in 2050 under No-CCS-NH3 2050 scenario relative to
Current.
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Figure A-6: Sensitivity analysis of PM2.5 increase resulting from CCS ammonia to future levels of
co-pollutants (SO2, NOx, and non-CCS NH3) and the amount of ammonia emitted by amine scrubbing.
Low-sensitivity and High-sensitivity cases were done only for January. PM2.5 increase by CCS ammonia
is linear over a wide range. (a) is the same as Figure 5 and presented here again for an easy comparison.
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Figure A-7: PM2.5 concentrations increased by CCS ammonia in January. The results of sensitivity cases
(b) and (c) do not show a big difference in the magnitude and spatial distribution of the PM2.5 increase.
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Figure A-8: Sensitivity cases of adding CCS ammonia to large NOx point sources and of 2○C temperature
increase. The results show modest differences in January, when the CCS ammonia impacts are the most
important.
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Figure A-9: Estimated changes in premature deaths from the PM2.5 changes based on two epidemiological
studies and their valuations. Box and whiskers represent only the uncertainties surrounding the
concentration-response relations and the value of a statistical life. The top and the bottom of a box
are 25th and 75th percentiles, and the middle band is the median. The whiskers show 90% confidence
intervals and the red squares in the boxes show the means of the estimates.
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Table A-3: Summary of uncertainties

All domain Nonattainment Area

Future CCS NH3 emissions (January)a 1.1 µg/tNH3 3.4 µg/tNH3

Future co-pollutants emissions (January)a −20 % to +13 % −18 % to +10 %
2 ○C temperature increase from climate change (January)a −24 % −18 %
CCS NH3 emitted at NOx point sources (January)a −4 % +15 %

Concentration-Response (Krewski et al, 2009)b −33 % to +33 %

Concentration-Response (Lepeule et al, 2012)b −50 % to +57 %

Value of a Statistical Lifeb −90 % to +160 %

a based on sensitivity CAMx simulations
b based on 95% confidence intervals
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Chapter 3. Building Computationally Efficient 
Models for Air Pollution Social Impacts from 
Chemical Transport Models 

 

Abstract 

Though essential for informed decision-making, it is challenging to estimate the public health 

impacts of air quality because any analysis must address the complicated atmospheric 

processes that determine the concentrations of air pollutants: emissions, dispersion, chemistry, 

and removal. Employing a chemical transport model (CTM), the most rigorous way to 

address the atmospheric processes, is expensive from a computational standpoint and, 

therefore, beyond the reach of policy analysis for many types of problems. On the other hand, 

current reduced-form tools used for policy analysis fall short of the rigor of CTMs and may 

lead to biased results. To address this gap, we developed the Estimating Air Pollution Impacts 

Using Regression (EASIUR) method, which builds parameterizations that predict per-tonne 

social cost and intake fraction at any location in the United States. The prediction 

performance is similar to a CTM but it requires negligible computation cost. With tagged 

CTM simulations, the EASIUR method builds a dataset of air quality impacts for a large 

number of representative emissions sources in the United States and then derives 

parameterizations for those results. As a proof-of-concept, we performed tagged simulations 

for elemental carbon and sulfur dioxide emissions from 100 source locations and developed 

regression models to explain the resulting social costs and intake fractions as a function of 

exposed population and other key atmospheric variables. We presented two methods of 

characterizing exposed population: the population ring method and the average plume 

method. While both methods perform well, the average plume method produced better 
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parameterizations with the adjusted R2 of 0.97 for elemental carbon and 0.91 for sulfur 

dioxide. We also explore the effect of meteorological variability on the proposed impacts and 

the length of simulations required to average over this variability. Lastly, we also determine 

the level of emission perturbations to a CTM that may be considered “marginal”. The 

EASIUR method will help tap the latest atmospheric science for application in policy 

research. 

3.1 Introduction 

Accurate estimation of the impact of air quality on society is valuable to decision making. 

Human activities such as generating electricity, heating and cooling, and transportation cause 

air pollution, imposing burdens on humans and the natural environment. In 2010, ambient 

particulate matter pollution was the 9th leading burden of disease in 2010 globally (Lim et al., 

2012) and the 8th in the United States (US Burden of Disease Collaborators, 2013). Fine 

particulate matter (PM2.5) is strongly related with cardiovascular health effects and 

cardiopulmonary morbidity and mortality (Pope and Dockery, 2006). Ambient PM2.5 is 

composed of primary (directly emitted) and secondary (chemically produced from gaseous 

precursors) species. The major precursors for secondary PM2.5 include sulfur dioxides (SO2), 

nitrogen oxides (NOx), ammonia (NH3), and volatile organic compounds (VOCs). Accurate 

estimation of public health effects from these pollutants would help society better understand 

the life-cycle costs of human activities, assisting in making decisions on how to control them 

by weighing associated costs and benefits to society’s welfare. 

A common metric for the impact on human and natural environment is the monetized social 

cost of air quality estimated based on the bottom-up assessment that follows the impact 

pathway of certain emissions to their ultimate consequences (Spadaro and Rabl, 1999). This is 

a standard method used by U.S. EPA in the benefit-cost analysis reports of the Clean Air Act 
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(U.S. EPA, 1999, 2011e) and many other regulatory impact analyses. According to the impact 

pathway analyses (National Research Council, 2010; U.S. EPA, 1999, 2011e), premature 

mortality associated with PM2.5 accounts for more than 90% of the monetized damages of air 

quality on public health and the environment. The social cost of certain emissions varies 

substantially largely depending on how the emissions form PM2.5 and how many people are 

exposed to the created PM2.5. 

Figure 3-1 illustrates the steps involved in the pathway analysis focused on the PM2.5 impact 

on premature death. It starts with estimating the changes in PM2.5 concentrations from a given 

emissions based on an air quality simulation. Epidemiological studies present the so-called 

concentration-response relations, from which the changes in mortality resulting from the 

changes in PM2.5 concentrations are estimated. Finally, based on the Value of a Statistical Life 

(VSL), which is people’s willingness to pay to avoid the risk of premature death, the health 

effects are monetized. 

Another common metric is the intake fraction, which has been widely used in exposure 

analysis research (Bennett et al., 2002). For atmospheric emissions, the intake fraction is the 

fraction of emissions that are inhaled by an exposed population. While the social cost 

involves the estimation of air pollutant exposure to health effects and the valuation of the 

effects, the intake fraction is focused on characterizing the emissions-to-intake relationship. 

The most rigorous way to perform the air quality simulation step in  

Figure 3-1 would be to employ a state-of-the-science chemical transport model (CTM). A 

CTM is a numerical computer simulation that simulates the emissions, transport, chemical 

reactions, and removal processes of atmospheric particles and gases with detailed spatial and 

temporal resolution. Compared to simpler air quality models discussed below, CTMs usually 

simulate air quality consistent with up-to-date science and with detailed representations of the 

physical and chemical processes.  With CTMs, it is common to use a ‘brute-force’ method to 



 51 

estimate the air quality for a technology or policy measure, which runs a CTM twice, once for 

a base case and again for an alternative case with different input, e.g. changed emissions 

under a new policy. The CTM results for the two cases are compared to estimate the changes 

in air quality. 

But employing a CTM often involves an high computational cost; for example, simulating 

the air quality of the United States for one day with a CTM, Comprehensive Air Quality 

Model with extensions (CAMx), at a spatial resolution used for regulatory impact assessment 

takes about 8 hours with one CPU on a GNU/Linux workstation (ENVIRON, 2012). 

Therefore, it is simply infeasible to run a CTM hundreds or more times for uncertainty 

analysis, optimization, and the like, which are often necessary in technology assessment and 

policy research. 

Due to CTM’s computational requirements, several computationally efficient, reduced form 

models have been developed. The Climatological Regional Dispersion Model (CRDM) 

(Latimer, 1996) is a widely used one. Popular social cost tools like the Air Pollution Emission 

Experiments and Policy Analysis Model (APEEP) and AP2 (Muller and Mendelsohn, 2007; 

Muller, 2011), Co–Benefits Risk Assessment screening model (COBRA) (U.S. EPA, 2013), 

and regression models for power plants (Levy et al., 2009) are derived from CRDM 

simulations. Addressing key atmospheric processes, CRDM estimates the contributions of 

emissions from a given “source” county to annual-average PM2.5 concentrations at all other 

(~3,000) “receptor” counties in the United States. Based on CRDM, APEEP provides in a 

spreadsheet the social cost estimates, in terms of dollar per ton of emissions, for all counties 

in the United States for primary PM2.5, PM10, sulfur dioxide, nitrogen oxides, ammonia, and 

VOCs. According to our back-of-the-envelope calculation, assuming 8 CPU-hours per 

simulation day, it would take about 6,000 CPU-years to generate the APEEP social costs with 

CAMx in a brute-force way. 
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Despite their computationally efficiency, however, CRDM’s atmospheric algorithms have 

limitations. First, its time resolution may be overly simple for air quality health impact 

analysis. Using annual-average meteorological input and emissions, CRDM may not be able 

to describe the formation of inorganic PM, which involves atmospheric oxidation and 

sensitive thermodynamic interactions among inorganic species (Ansari and Pandis, 1998; 

Blanchard et al., 2000; West et al., 1999) as well as the transport and removal processes. All 

of these processes, notably the thermodynamic interactions that control inorganic PM2.5 

formation, are nonlinear and depend strongly on seasonal, synoptic, and diurnal variability in 

the atmosphere. Furthermore, CRDM’s treatment of organic PM assumes that it is composed 

mostly of primary organic PM, which it treats as non-volatile and inert, with a smaller 

contribution of secondary organic PM formed based on total VOC emissions (Grosjean and 

Seinfeld, 1989). This treatment is now outdated as of today’s understanding. It has been found 

that a substantial part of primary organic PM evaporates and some of the evaporated organic 

species return to the particle phase (Robinson et al., 2007). It was also found that, contrary to 

previous modeling, organic PM is predominantly secondary rather than primary (Goldstein 

and Galbally, 2007; Zhang et al., 2007) and that intermediate volatile organic compounds, 

formerly unrecognized source of organic PM, are found to be very potent in forming 

secondary PM (Robinson et al., 2007), challenging the validity of using the total VOC as a 

predictor of secondary organic PM. Lastly, CRDM’s county-based spatial resolution would be 

too coarse for big counties. Especially, since the size of counties in the western states of the 

U.S is much bigger than others, CRDM may not work well for the western states. 

There are also reduced-form models built based on CTMs, but the computational limitations 

of CTMs necessarily limits their spatial and sectoral resolution. The Response Surface Model 

(RSM) (U.S. EPA, 2006) was developed by applying a multidimensional kriging method to a 

dataset of PM2.5 concentrations, which was estimated by the Community Multi-scale Air 
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Quality (CMAQ) model (Byun and Schere, 2006) for a comprehensive set of different 

emissions combinations. However, the RSM can estimate the changes in PM2.5 concentrations 

only for 12 sectors emissions in nine urban areas and the rest continental U.S, though the 

RSM makes CTM-like predictions. There are also regression models built using 40 CMAQ 

runs that predict with the size of nearby population $/ton health impacts of power plants in 

some parts of the U.S. (Buonocore et al., 2014), but their models were not tested outside of its 

subject power plants and their regions. 

Our goal is to overcome these limitations and produce estimates of social cost with the high 

spatial resolution of APEEP but based on a state-of-the-art CTM. Our new method estimates 

the per-tonne social cost and the intake fraction with a prediction performance similar to a 

state-of-the-science CTM but without a high computational requirement. Having the same 

spatial resolution of its underlying CTM, it produces spatially better estimates than the 

county-based resolution of CRDM-based models. We also wanted to build a model that is not 

only simple and easy to use but also intuitive and interpretable, so that it does not work as a 

black box. We refer to this new method as Estimating Air Pollution Social Impacts Using 

Regression (EASIUR). The basic approach is to generate a dataset of per-tonne social cost 

and intake fraction with ‘tagged’ CTM simulations (further described below) and to 

parameterize the health impacts using regression. 

In this paper, we present the method of building the EASIUR method. Based on a dataset 

created by running a set of simulations with a state-of-the-science CTM, the EASIUR model 

is generated by parameterizing the societal impacts of air quality in terms of dollar per tonne 

of emissions and the intake fraction with population and key atmospheric variables. The 

model is focused on estimating the societal impacts from a marginal change in emissions 

because new policy or technology often involves such marginal changes, and this is a 

commonly used metric. As a proof-of-concept, this study focused on the method development 
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focused on the health impact of the area emissions of elemental carbon and sulfur dioxide in a 

July time period. All the monetary values in this paper are reported in year 2010 U.S. dollar 

unless otherwise noted. 

3.2 Method 

3.2.1 Overview 

We used a regional-scale three-dimensional chemical transport model, the Comprehensive Air 

Quality Model with extensions (CAMx) (ENVIRON, 2012), to generate a database of air 

pollution impact measures (per-tonne social cost and intake fraction) for elemental carbon and 

sulfur dioxide for 100 representative locations in the United States. Then, we sought simple 

regression approaches that explain the variability in these impacts based on surrounding 

population as well as atmospheric variables that characterized chemistry and dispersion. We 

tried two approaches to characterize the PM2.5 exposures resulting from a given emissions. 

The first is based simply on population within certain distances from the given emissions 

source but does not rigorously account for the lower PM2.5 concentrations and exposures 

further away from a given source. The second approach remedies this limitation by 

constructing average plumes from simulation results to account for the complex spatial 

distribution of PM2.5 concentrations downwind from a source. In addition, we analysed how 

the changes in PM2.5 concentrations and per-tonne social costs changes over different time 

periods, which may provide a guideline for the simulation period relevant for public health 

impact analysis. 

3.2.2 The CAMx Chemical Transport Model 

We used an air quality modeling platform, CAMx (U.S. EPA, 2011a), developed for a major 

regulatory impact analysis of U.S. EPA (U.S. EPA, 2011d). CAMx simulates the formation, 



 55 

chemical transformation, transport and removal processes of primary and secondary PM2.5 and 

their precursors (ENVIRON, 2012). We ran CAMx version 5.41 (ENVIRON, 2012) instead 

of version 5.3 that was originally used in the platform. Besides a few bug fixes, this version is 

essentially the same as version 5.3, because we used the same chemistry configuration as in 

the original platform. The modeling platform has been comprehensively evaluated and 

showed good performance of estimating the PM2.5 concentrations associated with elemental 

carbon and sulfur dioxides, the species of our interest in this study, as well as other major 

species (U.S. EPA, 2011a). 

The platform domain covers the contiguous United States and adjacent Mexico and Canada 

with a horizontal grid resolution of 36 km × 36 km and 14 vertical layers reaching up to 100 

mb (about 16 km), which is fine enough for PM2.5 public health impact analysis (Thompson et 

al., 2014; Thompson and Selin, 2012). The emission inventory (U.S. EPA, 2011b) represents 

year 2005 emissions, which also includes emissions from adjacent Mexico and Canada. 

Meteorological input data for year 2005 were simulated by MM5 (Grell et al., 1995). The 

initial and boundary conditions were provided by GEOS-Chem (version 7-04-11), a global-

scale chemical transport model (http://acmg.seas.harvard.edu/geos/). 

In order to maximize our computing resources, we used a CAMx analysis module, the 

Particulate Matter Source Apportionment Technology (PSAT) (Koo et al., 2009). PSAT is a 

tagged species method, which “tags” and then tracks the fate of specific emissions to calculate 

their contributions to PM2.5 concentrations at downwind receptor locations. With PSAT, we 

could simulate the changes in PM2.5 concentrations from increased emissions of elemental 

carbon and sulfur dioxides in many locations in a single CAMx run. PSAT reduced both 

computation time and disk space by a factor of 10 compared to a common brute-force 

method. 
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3.2.3 Calculation of Social Cost and Intake Fraction 

3.2.3.1  Social Cost 

We used a standard impact pathway method to calculate the per-tonne social cost as shown in 

Figure 3-1. Once a CTM calculates the changes in PM2.5 concentrations on annual average 

(𝛥𝑐!,!, in µg m-3) at each grid cell (x, y) of the simulation domain from given emissions, the 

changes in mortality (𝛥𝑦!,!, in # of premature deaths) can be estimated by a health-impact 

function, Eq. (1), which has a log-linear functional form derived from epidemiological studies 

(Hubbell et al., 2009; Abt Associates Inc., 2010, Appendix C). 

𝛥𝑦!,! = 𝑦!,!! ⋅ 1−
1

exp 𝛽 ⋅ 𝛥𝑐!,!
 (1) 

where 𝑦!,!!  is the baseline mortality at (x, y), which is the product of the baseline mortality 

rate and the population at (x, y). 𝛽 is the concentration-response relation defined as follows: 

𝛽 =
ln𝑅
10  (2) 

where R is the relative risk reported by epidemiological studies, that is, the changes in 

mortality rate over a PM2.5 increase of 10 µμg/m!. 

As our basis, we used the relative risk of 1.06 (95% confidence interval (CI): 1.04-1.08) 

reported by Krewski et al. (2009) (The random effects Cox Model for all causes in their 

Commentary Table 4). However, we parameterized the relative risk in our models to cover the 

95% confidence intervals reported by Krewski et al. (2009) as well as Lepeule et al. (2012), 

which reported the relative risk of 1.14 (95% CI: 1.07-1.22). The two studies are the latest 

follow-up studies respectively from two landmark cohort-based studies of PM2.5 impacts on 

mortality, the American Cancer Society (ACS) and the Harvard Six Cities (H6C) studies. 

The two cohorts have different characteristics (Krewski et al., 2003). The ACS cohort is 

much larger and cover broader geographical areas than the H6C cohort that were enrolled 
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from a small number of eastern U.S. cities, which are more SO2 burdened from coal burning 

than the west. But the H6C cohort is randomly sampled and, therefore, represents the U.S. 

population better while the ACS cohort is biased toward better educated and more affluent 

than average. Because the H6C areas are more focused on eastern U.S., the H6C relative risk 

may not be good for nationwide estimation, especially producing biased estimates in the west. 

Conversely, ACS-based estimates may be biased in the east (Fann and Risley, 2013). 

The next step is the valuation of the changed mortality using VSL (V, in $). The per-tonne 

social cost (S, in $/t) is calculated as follows: 

𝑆 =
𝛥𝑦!,!×𝑉  !,!

𝐸  (3) 

where E is the amount of emissions in metric ton. We used $8 million for VSL in our 

analysis. This is the mean of a VSL distribution based on 26 VSL studies, which a U.S. EPA 

economic analysis guideline recommends (U.S. EPA, 2010). This VSL is based on 1990 

income level. For a given year, income growth needs to be accounted for because the 

elasticity of the willingness-to-pay is positive, or people are willing to pay more to avoid a 

premature death as their income increases (U.S. EPA, 2010). We provided U.S. EPA’s 

standard income growth adjustment factors together with GDP deflators in Table B-11. We 

did not discount for delayed timing of premature death after being exposed to PM2.5 because 

Schwartz et al. (2008) showed the effects of PM2.5 on mortality occur immediately, within two 

years. 

3.2.3.2  Intake Fraction 

The intake fraction (𝑖𝐹, in ppm) is defined as the mass ratio of emissions inhaled by exposed 

population. iF was calculated as follows:  
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    𝑖𝐹 =
𝐵 ⋅ 𝑃!,! ⋅ 𝛥𝑐!,!

𝐸
!,!

 (4) 

where B is the volumetric breathing rate (m3/person/day), 𝑃!,! is the population at (x, y), and 

𝛥𝑐!,! and 𝐸 are the same as in Eqs. (1) and (3). For EC, an inert primary species, it is the 

mass ratio of EC inhaled by population to EC emitted. For SO2, a precursor to secondary PM, 

it is the ratio of PM2.5 formed from SO2 and inhaled by population to the amount of SO2 

emitted on a mass basis. We used a population mean breathing rate of 14.6 m3 /person/day for 

B, which we derived by weighting U.S. EPA’s recommended long-term age-specific 

breathing rate (U.S. EPA, 2011c) with 2010 US Census population. 

3.2.4 Generating a Regression Dataset from Air Quality Simulations 

We built a set of social costs and intake fractions for 100 CAMx source grid cells that are 

randomly selected based on their population. The size of an exposed population would be the 

largest contributor to the variability of social costs, and the selected locations would represent 

the different size of population across the domain. We ran CAMx to estimate the per-tonne 

social costs and intake fractions at the 100 locations as described in Section 3.3.2.3. 

First, we mapped the 2010 block-level U.S. Census data to the CAMx spatial grid using the 

PopGrid software version 4.3 (available at http://www.epa.gov/air/benmap/). We created two 

population grids that match the ages of the cohorts of the two studies: one has population of 

30 year old or older, matching the cohort of the ACS study, and the other has population of 25 

year old or older, matching the H6C. Later we analyzed the difference from these two 

population sets, but the selection of the 100 source grid cells for CAMx simulation was done 

based on the population of 30 years and older. 

Second, we selected two sets of 50 CAMx source cells randomly based on the CAMx 

population grid as shown in Figure 3-2. One set was used for building regression models and 
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the other for independent out-of-sample evaluation. In order to evenly spread out sample 

locations across different population densities, a stratified random sampling method was used; 

five locations were randomly selected at every 10th percentile of population among non-zero 

population cells to select 50 locations per set. The same location was not selected for both 

sets. We simulated one 50-location set in one CAMx PSAT run. 

Third, since we are interested in the air quality impacts from marginal emissions, we 

explored a range of emissions rates to see which would be considered “marginal.” Above a 

certain size of emissions, the PM2.5 increase per emissions may change due to nonlinearities in 

the chemistry (e.g. above a certain size of ammonia emissions where sulfate at a region gets 

fully neutralized, more PM nitrate may form for the same amount of additional ammonia 

emissions.) and will not be relevant for marginal emissions. If the size of additional emissions 

is too small for the numerical precision of CAMx, CAMx results may not be reliable, and the 

results will be noisy due to numerical round-off error in the computational model. We 

aggregated area and point source emissions at each grid cell and calculated the annual-average 

emissions (𝐸) of EC and SO2 among non-zero emissions cells. Then, we ran a base case 

CAMx PSAT simulation for the 50 training sample locations and ran additional simulations 

with the emissions of 𝐸×4!   (𝑘 = −4,… , 0) added at each location. Based on this sensitivity 

results, we chose 𝐸×4!! as the basis of our modeling, which is 6.6 kg/day for EC and 192 

kg/day for SO2. 

Then, we also ran CAMx for the test sample set with the same additional emissions of EC 

and SO2 and the social costs and intake fractions were calculated for the test set. In the end, 

we have calculated the per-tonne social costs and the intake fractions of the 100 locations. 

Later, we explored regression models that best predict the per-tonne social costs and the 

intake fractions calculated here. 
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Each simulation was done for a 40-day period of June 21 to July 30, but we discard the first 

10 days (June 21-30) of results to avoid the results from being distorted from initial 

conditions and used only the July 30-day output for our analysis. Since EC is inert, we added 

the marginal emissions of both EC and SO2 at the same run. The changes in PM2.5 from EC 

emissions were calculated only with EC concentrations, but the changes in PM2.5 from SO2 

were calculated by comparing the sum of CAMx PM2.5 species though SO2 would not actively 

react with others in summer time (Ansari and Pandis, 1998; Blanchard et al., 2000; West et 

al., 1999). 

In addition, we analyzed how the changes in PM2.5 concentrations and social costs change 

over different lengths of simulation. Even with PSAT, running a CTM is computationally 

expensive. This analysis will guide the length of CTM simulation that would sufficiently 

represent the public health impacts. 

3.2.5 Model Development with Regression 

In the air quality impact estimation, it is crucial to characterize how people would be exposed 

to PM2.5 created by certain emissions. The closer a population to the emission source, the 

higher the PM2.5 concentrations they would usually be exposed to, with the details depending 

on prevailing wind direction, wind speed, as well as chemical factors governing PM2.5 

formation. However, because a substantial fraction of PM2.5 may be transported over hundreds 

kilometer or more, we need to include the large number of people in a large downwind region. 

The degree and shape of PM2.5 concentrations will vary by atmospheric conditions and the 

characteristics of an air pollutant in question. 

We built linear regression models with two methods to describe exposed downwind 

populations. The first, simpler approach uses as explanatory variables population sizes within 

certain radii from the emissions source. The second, more detailed approach uses an exposed 
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population metric that is calculated by weighting population around the emissions source 

based on expected PM2.5 concentrations using an “average plume” constructed from CTM 

outputs. 

We also included atmospheric variables in regression for both population methods. 

Atmospheric variables may explain the conditions associated with PM2.5 formation, dilution, 

and removal. We tried to choose the variables that are commonly available and familiar to 

potential users. 

We used the Akaike information criterion (AIC), a metric of comparing the quality of 

different regression models, to select a model from a pool of potential model specifications. 

We present out-of-sample evaluation based on fractional bias and fractional error, which are 

common performance evaluation metrics for air quality models (Morris et al., 2005). They are 

good metrics to evaluate a wide range of estimates because the fractional bias and the 

fractional error are bounded between -200% to +200% and 0-200%, respectively. They are 

defined as follows: 

Fractional  Bias =
2
𝑁

𝑃! − 𝑂!
𝑃! + 𝑂!

!

!

 (5) 

Fractional  Error =
2
𝑁

𝑃! − 𝑂!
𝑃! + 𝑂!

!

!

 (6) 

where Pi are the social costs or intake fractions predicted from our regression model for the 

test samples, Oi are those computed directly from the CTM results, and N is the number of 

training samples. Using the criteria of Morris et al. (2005), a model is considered ‘excellent’ 

with fractional bias ≤ 15% and fractional error ≤ 35%, ‘good’ with fractional bias ≤ 30% 

and fractional error ≤ 50%, and ‘average’ with fractional bias ≤ 60% and fractional error 

≤ 75%. Additionally, we also report the normalized mean bias and the normalized mean 

error:  
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Normalized  Mean  Bias =
(𝑃! − 𝑂!)!

!

𝑂!!
!

 (7) 

Normalized  Mean  Error =
𝑃! − 𝑂!!

!

𝑂!!
!

 (8) 

 

3.2.5.1  Population Ring Method 

This method explores whether simple population variables and atmospheric variables can 

explain the health impacts. The basic regression model has the following log-linear form: 

ln 𝑆 = 𝛼 + 𝛽! ln𝑃!! + 𝛾!! ln𝐴! ,        𝑖 = 1,… ,𝑛, 𝑗 = 1,… ,𝑚,    (9) 

ln 𝑖𝐹 = 𝛼 + 𝛽! ln𝑃!! + 𝛾!! ln𝐴! ,        𝑖 = 1,… ,𝑛, 𝑗 = 1,… ,𝑚,    (10) 

where 𝛼, 𝛽!’s, and 𝛾!’s are regression coefficients. 𝑆 is the per-tonne social cost at a given 

location, 𝑖𝐹 is the intake fraction. 𝑃! is a population ring, the size of population between two 

distances from source, 𝑟!!! and 𝑟! ,  with 𝑟! = 0 (further discussed below). 𝐴!’s are atmospheric 

variables, for which we tried surface atmospheric pressure, temperature, wind speed, 

precipitation, and humidity. 𝐴! values are from at the surface layer of the CAMx grid at an 

emission source cell, which are averaged over the simulation period, i.e. 30 days. We 

assumed that atmospheric conditions at a source cell represent the conditions of area affected 

by emissions. 

We explored the number of population variables 𝑃! from one to three by increasing the size 

of 𝑟! by a step of 36 km, a unit cell size of the CAMx grid, up to 30×36  km. For one-ring 

models, we varied 𝑟! from 1 to 30 steps (or 30×36 km). For two-ring, 𝑟! was varied from 1 to 

10 steps and 𝑟! from 𝑟! to 30 steps. For three-rings, 𝑟! was varied from 1 to 10 steps, 𝑟! from 

𝑟! to 20, and 𝑟! from 𝑟! to 30. When calculating population, we used the distance between 

grid cell centers; the whole population in one cell is counted in or not depending on the 
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distance between the cell’s center and a source cell’s center. Fitting each ring model with all 

the possible combinations of atmospheric variables 𝐴!, we tried to find the number of 𝑟!’s and 

their values and 𝐴!’s that produce the best model performance. 

3.2.5.2  Average Plume Method 

The population ring method just outlined has the obvious limitation that it implicitly assumes 

that the people within a certain ring around the emissions source are all exposed to the same 

PM2.5 perturbation. In reality, the resulting PM2.5 exposure depends strongly on wind direction 

and decreases with downwind distance. An approach that divides the population ring into 

several wedges and treating them as separate variables was considered, but regression models 

quickly become complicated as the number of population variables increases. As a more 

rigorous alternative, we developed the average plume method. 

We constructed an average plume per each pollutant from the PM2.5 concentration plumes 

of the training 50 locations after aligning their average wind directions. The average plume 

represents the generic shape and varying intensity of PM2.5 concentrations. By weighting 

population around emissions source with this plume, we derived a population variable that 

capture exposed population with varying degree around the emission source. 

To generate the average plume, the spatial distribution of PM2.5 concentrations for all 50 

training samples were: 1) put on a common grid (a 91×91 array covering 3,276 km × 3,276 

km) with the origin as the emissions source; 2) rotated so that the average wind direction is 

aligned to the same direction; 3) normalized so each had the same net PM2.5 impacts. After 

these procedures, the 50 plumes were averaged to obtain a generic spatial distribution of PM2.5 

impacts. 

When applied to calculate a weighted population, this average plume was placed at a given 

emissions source on the CAMx source grid and rotated by the average wind direction at the 
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source. Then, the weighted population was calculated by multiplying the placed average 

plume with the population array cell by cell. 

Using the weighted plume, we fitted the following regression models: 

ln 𝑆 = 𝛼 + 𝛽 ln𝑃! + 𝛾!! ln𝐴!,  j =1, ..., m,    (11) 

ln 𝑖𝐹 = 𝛼 + 𝛽 ln𝑃! + 𝛾!! ln𝐴!,  j =1, ..., m,    (12) 

where 𝑃! is the sum of population around the emissions source weighted by the average 

plume, 𝐴!’s are the same atmospheric variables as in Eq. (9), and 𝛼, 𝛽, and 𝛾!’s are the 

regression coefficients. With weighted population, we fitted Eqs. (11) and (12) with all the 

subsets of 𝐴!’s. 

3.3 Results and Discussion 

Table B-1 provides the summary statistics of the dataset generated for the 100 sample 

locations. Figure B-1 presents the correlation matrix plot of selected parameters, which were 

used for regression. The social costs and the intake fractions of EC and SO2 vary substantially 

over about two orders of magnitude depending the location of the emissions source. The 

atmospheric variables in Table B-1 are the average values for July 1-30 period. They are 

calculated from the data taken from the lowest model layer from the meteorological fields 

used as CAMx inputs. Because the meteorological fields report zero humidity for some cells, 

we added 0.0002 g/m3, the minimum non-zero value, to all humidity values before the natural 

log transformation. 

As mentioned in Section 3.2.4, we calculated social costs and intake fractions at the 50 

training sample locations over a wide range of emissions, 0.41-420 kg/day for EC and 12-

12,300 kg/day for SO2. If the size of perturbation is not marginal, the per-ton social costs or 

intake fractions will be substantially different for a different size of perturbation. However, as 

shown in  
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Figure 3-1 and B-2, the per-tonne social costs and intake fractions of both EC and SO2 at 

most places do not vary much for the range except a few locations where SO2 social cost 

results show signs of numerical noise for the smallest emissions perturbations. Therefore, the 

entire range of emissions we explored is small enough to be “marginal.” The social costs and 

intake fractions in Table B-1 were calculated with the fixed amount of emissions, 6.6 kg/day 

for EC and 192 kg/day for SO2 as described in Section 3.2.3. 

While both population ring and average plume methods produced models that perform very 

well, regression models derived from the average plume method are better. Many of our 

analyses show similar results for both social cost and intake fractions because the log-linear 

equation of Eq. (3) for social cost is virtually linear like Eq. (4) for intake fraction to marginal 

changes in PM2.5 concentrations. We mainly present the results for the social cost models and 

included the intake fraction results in Appendix. 

3.3.1 Population Ring Regression Models 

Based on the AIC, we chose the regression models presented in Table 3-1 and 3-2 for social 

cost models and intake fraction models, respectively. They have two population variables, one 

near emission source and the other far from the source. Figure 3-4 and B-3 show the goodness 

of fit and the out-of-sample evaluation. Both EC and SO2 social cost models perform very 

well; they have a high goodness of fit as represented by their high adjusted coefficients of 

determination (Adj. R2). The social cost models meet the ‘excellent’ performance criteria. The 

intake fraction models also meet the ‘excellent’ criteria except that the fractional error for the 

EC intake fraction model slightly misses the requirement for ‘excellent.’ The prediction 

intervals relative to predicted value are a big bigger than a factor of two for EC and less than a 

factor of two for SO2. 
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The population variables show that both EC and SO2 have a long-range impact of hundreds 

of kilometers. The population variables of the SO2 model are larger than those of the EC 

model because SO2 travels farther to forms PM from atmospheric oxidation than EC, which is 

directly emitted as PM. The radius of the first population ring of EC models for both social 

cost and intake fraction is 36 km and that of the second ring is 252 km while they are 180 km 

and 360 km for SO2 social cost and 252 km and 972 km for SO2 intake fraction, respectively. 

Figure 3-5 and B-4 are tornado diagrams that show the sensitivity of the regression 

parameters. As expected, population ring variables are strongly correlated with the health 

impacts. For both EC and SO2, three atmospheric variables substantially explain the 

variability of the impacts: atmospheric pressure, temperature, and precipitation. The 

atmospheric pressure is strongly positively correlated, which turned out to be a proxy of 

population density. Because the pressure we used is not adjusted for elevation, pressure is 

strongly correlated with surface elevation. The population density is generally high in the 

coastal areas but it is generally very low in the mountainous areas and high plains such as the 

Great Basin and the Great Plains. The temperature variable has a negative coefficient. With a 

higher surface temperature, air pollutants are mixed higher vertically and, in turn, more 

diluted, resulting in less population exposure to the pollutants. Precipitation is also negatively 

correlated because precipitation causes air pollutants to be removed by wet deposition. 

Humidity did not appear strong in regression, though we suspected it would in SO2 models 

because atmospheric water vapor is the source of hydroxyl radical (OH-), the dominant 

oxidant converting SO2 to sulfate PM. 

Figure 3-6 and B-5 present the performance of the regression models we have explored. 

Each point in the figures represents the performance of a model specification with the 

adjusted R2 as well as the fractional bias and the fractional error calculated with the test 

samples. Fitting with two population rings produced better models than one population ring 
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for EC. For SO2, though the best two-ring models were better than the best one-ring models, 

the improvement was small. For both EC and SO2, the best three-ring models were virtually 

no better than the best two-ring models. Table B-2 to B-5 present the regression results of the 

best seven model specifications (i.e. those with lowest AIC), showing the overall composition 

of parameters and the coefficients of the best candidates. 

3.3.2 Average Plume Models 

Accounting for varying degree of PM2.5 concentrations and dispersion by wind, weighting 

population with average plumes seem to better describes exposed population than population 

rings. Figure 3-7 shows the average plume weight for EC and SO2. Though both plumes affect 

area large downwind region, the exposure resulting from EC emissions is closer to the source 

than for SO2. This is because EC is emitted as PM directly while SO2 emitted as gas takes 

time to form sulfate PM by atmospheric oxidation. The cumulative distributions of the 

average plumes in Figure 3-7 show how EC and SO2 spread out. For EC, the average plume 

weight at the emission source cell (36×36 km2) is 18%, but for SO2, it is only 1.5%, 

suggesting the impact of SO2 is hardly local. The area covering the top 50% of the impact, or 

the average plume weight, is about 2.9 ⋅ 10! km2 for EC and 8.3 ⋅ 10! km2 for SO2. For 90%, 

it is about 1.8 ⋅ 10! km2 for EC and about 5.6 ⋅ 10! km2 for SO2. 

The average plume method further improved model performance. The best average plume 

models are presented in Table 3-1 and B-2 for the social cost models and intake fraction 

models, respectively. Figure 3-7. Average plumes constructed with the CTM results of the 

training samples. 

Figure 3-8 and B-6 show the goodness of fit and the out-of-sample evaluation. The 

performance of both social cost and intake fraction models is better than that of population 

ring models; they have a higher goodness of fit as represented by their higher adjusted R2 of 
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0.97 for EC and 0.91 for SO2. The average plume models meet the ‘excellent’ criteria further 

than population ring models. Figure 3-7. Average plumes constructed with the CTM results of 

the training samples. 

Figure 3-8 and B-6 show that the 95% prediction intervals (orange bars) are mostly within a 

factor of two for both EC and SO2, though those of SO2 models are larger. Figure 3-9 and B-7 

show the sensitivity of social cost and intake fraction to regression parameters of average 

plume models. The population variable produces the widest variability for both EC and SO2. 

Atmospheric variables show similar characteristics as in population ring models. Atmospheric 

pressure is strongly positively correlated as a proxy to population density as in the population 

ring models. Temperature is negatively correlated, showing its role of governing vertical 

mixing. Wind speed appears negatively significant in EC models, showing its negative 

correlation with population parameters shown in Figure B-1; the areas of high altitude are 

usually windy but less populated. Wind speed may also be related with its role for dispersion; 

the higher the wind speed, the more PM2.5 dispersed to less weighted areas. Wind speed does 

not appear in SO2 models, showing the effect of SO2 is spread out such that local wind speed 

does not help the regression much. Precipitation is negatively correlated, explaining the 

removal by wet deposition. Humidity did not appear important for both EC and SO2. 

Each average plume model in Table 3-1 and 3-2 was chosen by AIC among 256 regression 

specifications per species. The performance of model specifications we explored is presented 

in Figure 3-10 and B-8. Table B-6 to B-9 present the regression results of the seven lowest 

AIC model specifications, showing the overall composition of parameters and their 

coefficients of best candidates. 



 69 

3.3.3 Relative Risk and Adult Population 

Given the uncertainty in the PM2.5 relative risk factor, it is convenient to be able to adjust our 

social cost estimates upward or downward for relative risk values other than the ones we used 

here. We derived a relative risk adjustment factor (FR) to adjust for a different relative risk 

Though the health impact function, Eq. (1), is log-linear, the function is virtually linear for the 

range of PM2.5 concentrations and relative risks relevant for social costs. We calculated the 

social costs of the 100 sample locations for a range of relative risk (R), 1.04 to 1.22 with a 

step of 0.02, which covers the 95% confidence intervals for relative risks reported by the two 

studies, Krewski et al. (2009) and Lepeule et al. (2012). Then, for all R’s, we calculated the 

ratio of the social cost with a relative risk (SR) to the social cost with the relative risk of the 

base value (S1.06). We found that the ratio (SR/S1.06) for each relative risk was almost identical 

among samples. As shown in Figure 3-11, we defined the relative risk adjustment factor (FR) 

with the ratio, 𝑆!/𝑆!.!": 

𝐹! =
𝑆!
𝑆!.!"

= −15.1+ 15.2𝑅. (13) 

By multiplying FR, our social cost models can be used to produce estimates for a different 

relative risk. 

Next, we found that the social cost difference between using population of age 30 or older 

matching the ACS study and population of age 25 or older matching the H6C study is 

negligible. As shown in Figure 3-12, using the H6C-matching population produced only about 

0.9% larger social costs on average than using the ACS. This result is reasonable because the 

baseline mortality of young adults aged 25-30 would be low and adding this value to social 

cost estimation would not produce much of an effect. The change stemming from the small 

difference in population cohort may be ignored. 
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3.3.4 Social Costs and the Length of the Simulation Period 

We compared the 15-day simulation results to the 31-day results and did not discover a large 

difference between the two. Figure 3-13 presents how the PM2.5 formation and social costs 

change from different simulation lengths from one day to 31 days. Figure 3-13 (a) and (b) 

show that the changes in PM2.5 formation from the marginal emissions of EC and SO2 become 

steady state in about 15 days, showing variability of 15% for EC and 20% for SO2 

consistently afterwards. Figure 3-13 (c) to (f) show that the PM2.5 concentrations of the 15-day 

simulation are mostly <20% different from those of 31-day simulations, similar to the 

variability after 15 day in (a) and (b). The social costs of the 15-day simulation show 

somewhat bigger difference of 20-40% compared to the 31-day. 

In order to analyze how the effects of simulation length on regression, we derived 

regression models for the 15-day simulation dataset in the same way as the 31-day. The two 

different periods did not produce a big difference, which is presented in Table B-10. The EC 

model of the 15-day has the same parameters as that of the 31-day while the SO2 model has 

somewhat different parameters. However, they have very similar adjusted R2 values. Error 

metrics were also similar, though the 31-day results generally have somewhat smaller errors.  

In summary, a 15-day simulation would be sufficient to represent the public health impacts of 

EC and SO2 of the July period. 

3.3.5 Summary 

Combining all the results, we present social cost models and intake fraction models for EC 

and SO2 here as a summary. Because the average plume method models perform better than 

the population ring models, we present the average plume models. The social cost models are 

generalized for VSL and relative risk from the regression results: 

𝑆!"  = 3.7!" ⋅ 𝑃!!.!" ⋅ 𝑃!.! ⋅ 𝑇!!" ⋅ 𝐶 + 0.0002 !!.!"# ⋅𝑊!!.!" ⋅ 𝑉 ⋅ 𝐹!    (14)  
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𝑆!"!   = 1.0!" ⋅ 𝑃!!.!" ⋅ 𝑃!.! ⋅ 𝑇!!" ⋅ 𝐶 + 0.0002 !!.!"# ⋅ 𝑉 ⋅ 𝐹!    (15)  

where 𝑆!" is the social cost of EC [$/t], 𝑆!!! is the social cost of SO2 [$/t], Pw is population 

weighted by average plume in Figure 3-7. Average plumes constructed with the CTM results 

of the training samples. [# of people], P is atmospheric pressure [hPa; 1 hPa = 100 Pa = 1 

mb], T is temperature [K], C is precipitation [g/m3], W is wind speed [m/s], V is the value of a 

statistical life [$/person] that is adjusted for dollar year and income growth (provided in Table 

B-11), and FR is the relative risk adjustment factor defined in Eq. (13). Precipitation C [g/m3] 

can also be converted from a more common metric of precipitation d [mm/day]: 𝐶   =   26.3 ⋅

𝑑. 

The intake fraction models are summarized as follows: 

𝑖𝐹!"   = 1.4!" ⋅ 𝑃!!.!" ⋅ 𝑃!.! ⋅ 𝑇!!" ⋅ 𝐶 + 0.0002 !!.!"# ⋅𝑊!!.!"#   (16)  

𝑖𝐹!"!   = 2.8!" ⋅ 𝑃!!.!" ⋅ 𝑃!.! ⋅ 𝑇!!" ⋅ (𝐶 + 0.0002)!!.!"#   (17)  

where 𝑖𝐹!" is the intake fraction for EC [ppm] and 𝑖𝐹!"! is for SO2 [ppm]. 

3.4 Conclusions 

We proposed the Estimating Air pollution Social Impacts Using Regression (EASIUR) 

method that parameterize per-tonne social cost and intake fraction from a dataset generated 

from a chemical transport model. The treatment of atmospheric processes in current popular 

reduced form models such as APEEP is overly simplistic, while scientifically rigorous CTMs 

are computationally too expensive for practical use. By contrast, our methods predict results 

consistent with CTMs without requiring intensive computation. Moreover, they are easy to 

update as CTMs evolve with continuing scientific advancements. As a proof-of-concept, we 

develop impact models (social cost and intake fraction) for summertime emissions of 

elemental carbon and sulfur dioxide. As part of the development process, we have 

investigated the appropriate size of the emissions perturbations to derive “marginal” social 
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costs, the length of the simulations required to average over meteorological variability, and 

two methods for characterizing exposed populations in the regions surrounding the emissions. 

We generated per-tonne social costs and intake fractions with a state-of-the-science CTM, 

CAMx, for 100 representative locations in the United States. In order to generate the dataset 

for multiple locations with one CTM run, tagged simulations were used. Next, we built linear 

regression models to predict the estimated public health effects with population and key 

atmospheric variables. The derived parameterizations show very good performance. We 

generalized our parameterizations for a different choice of relative risk over a range relevant 

to public health impacts and showed a small difference in population cohort can be ignored. 

In addition, we found that a 15-day CTM simulation produced social costs and 

parameterizations very similar to a 31-day simulation, which can be a guideline for an 

appropriate length of simulation for the public health analysis of air quality. 

We presented two methods of characterizing exposed populations: the first is the population 

ring method which uses the size of the population within a certain distance from an emission 

source; and the second is the average plume method which weights population with a generic 

plume derived from CTM results. We showed that models derived from the average plume 

method work better. For example, the adjusted R2 of EC social cost model improved from 

0.91 to 0.97 and the fractional error from 0.35 to 0.18. The average plume models perform 

very well, showing a high goodness of fit (e.g. the adjusted R2 of 0.97 for EC social cost 

model and 0.91 for SO2 social cost model) and meeting an ‘excellent’ performance criteria 

based on fractional bias and fractional error from out-of-sample evaluation (Morris et al., 

2005). 

The EASIUR method overcomes several limitations of current models. First of all, the 

EASIUR parameterizations predict like an up-to-date chemical transport model, which is the 

most rigorous and realistic way of simulating air quality. The EASIUR model, therefore, 
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overcomes the limited treatment of atmospheric processes in reduced form models. Second, it 

is not computationally expensive like its underlying CTMs, opening the possibility for 

application to questions where CTMs are computationally too expensive to employ. For 

example, the model could be employed for policy research concerned with designing optimal 

emission strategies among many options, an uncertainty analysis that may require a Monte 

Carlo simulation over policy or technological options. Third, the EASIUR model can evolve 

as current understanding of atmospheric science improves because the EASIUR model is 

relatively easy to re-derive from an up-to-date chemical transport model. Fourth, the spatial 

resolution of the EASIUR model may produce more consistent estimates than county-based 

models built based on CRDM because county size varies substantially, something to consider 

especially with regards to counties in the western U.S. that may be too big to act as a single 

unit for social cost analysis. As an illustration, we generated with our average plume models 

the maps for social cost and intake fraction in Figure B-9, which provide more relevant 

estimates for areas in the west than county-based estimates. Figure B-9 shows our model may 

provide air pollution impacts on the U.S. population for emissions such as from marine 

vessels near coastal areas or emissions from neighboring countries. Lastly, the EASIUR 

model is not presented as a black box.  The functional form of the model and its coefficients 

are intuitive, assisting model users to understand key underlying mechanisms. 

As a paper focused on method development, the models presented in this paper have 

limitations. First, they are based only on a one-month period for July 2005. As the physical 

and chemical behaviors of air pollutants would change substantially season by season, future 

work will build models with seasonal or monthly resolution. Second, we currently built 

models only for EC and SO2. These species are sufficient to illustrate that the EASIUR 

method can account for the PM2.5 exposures that depend on atmospheric transport, dispersion, 

removal, and oxidation chemistry such as that which converts SO2 to PM sulfate. Application 
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to other species is possible but will require additional work; for example, to model inorganic 

PM species (sulfur dioxide, nitrogen oxides, and ammonia) one needs to account for nonlinear 

thermodynamic interactions that control PM formation (Ansari and Pandis, 1998; Blanchard 

et al., 2000; West et al., 1999). Lastly, the presented models are built based on area emission 

sources. Since large point sources usually have tall stacks, it would be necessary to explore 

the role of stack characteristics such as height, flow rate, and temperature. But this is out of 

the scope of this paper. 

In this paper, we have shown that a linear regression on tagged simulation results from a 

chemical transport model could produce impact models with excellent performance. The 

models parameterized with exposed population and basic atmospheric variables predict the 

public health effect of air quality like a CTM without high computational costs. The models 

can be of great use to policy and technology research efforts that involve air quality. 
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Table 3.1: Results for the social cost regression models

Variable
Population Ring Method Average Plume Method

EC SO2 EC SO2

Intercept 79⋆⋆ 100⋆⋆⋆ 66⋆⋆⋆ 110⋆⋆⋆

(23) (19) (13) (17)

ln (Population ring 1)a 0.16⋆⋆⋆ 0.15⋆⋆ - -
[# of people] (0.024) (0.049) - -
{r1 [km]} {36} {180} - -

ln (Population ring 2)b 0.34⋆⋆⋆ 0.17⋆⋆ - -
[# of people] (0.049) (0.061) - -
{r2 [km]} {252} {360} - -

ln (Weighted population) - - 0.75⋆⋆⋆ 0.68⋆⋆⋆

[# of people] - - (0.037) (0.080)

ln (Temperature) −22⋆⋆⋆ −25⋆⋆⋆ −18⋆⋆⋆ −27⋆⋆⋆

[K] (4.1) (3.5) (2.4) (3.0)

ln (Pressure) 7.2⋆⋆⋆ 6.6⋆⋆⋆ 5.5⋆⋆⋆ 6.0⋆⋆⋆

[hPa] (0.93) (0.79) (0.54) (0.71)

ln (Ṕrecipitationc) −0.095⋆⋆ −0.056⋆ −0.032+ −0.053⋆

[g m−3] (0.031) (0.026) (0.018) (0.021)

ln (Wind speed) - −0.13 −0.12⋆ -
[m s−1] - (0.076) (0.053) -

Adj. R2 0.91 0.89 0.97 0.91
Fractional bias 0.051 0.043 0.052 0.0024
Fractional error 0.35 0.33 0.18 0.26
Normalized mean bias −0.14 −0.19 0.051 −0.17
Normalized mean error 0.35 0.41 0.16 0.32

95% prediction intervald [0.46, 2.18] [0.52, 1.93] [0.64, 1.56] [0.57, 1.76]

95% confidence intervald [0.78, 1.29] [0.78, 1.28] [0.86, 1.17] [0.83, 1.21]

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, a Population (≥ age 30)
within r1 (r < r1), b Population (≥ age 30) between r1 and r2 (r1 ≤ r < r2), c Ṕrecipitation = Precipitation +
0.0002 (shifted for log transformation), d Average intervals relative to predicted value.
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Table 3.2: Results for the intake fraction regression models

Variable
Population Ring Method Average Plume Method

EC SO2 EC SO2

Intercept 69⋆ 89⋆⋆⋆ 58⋆⋆⋆ 97⋆⋆⋆

(26) (20) (13) (17)

ln (Population ring 1)a 0.17⋆⋆⋆ 0.23⋆⋆⋆ - -
[# of people] (0.026) (0.048) - -
{r1 [km]} {36} {252} - -

ln (Population ring 2)b 0.36⋆⋆⋆ 0.21+ - -
[# of people] (0.054) (0.11) - -
{r2 [km]} {252} {972} - -

ln (Weighted population) - - 0.81⋆⋆⋆ 0.74⋆⋆⋆

[# of people] - - (0.037) (0.082)

ln (Temperature) −21⋆⋆⋆ −25⋆⋆⋆ −17⋆⋆⋆ −25⋆⋆⋆

[K] (4.6) (3.6) (2.4) (3.1)

ln (Pressure) 6.4⋆⋆⋆ 6.6⋆⋆⋆ 4.5⋆⋆⋆ 5.5⋆⋆⋆

[hPa] (1.0) (0.80) (0.54) (0.73)

ln (Ṕrecipitationc) −0.13⋆⋆⋆ −0.088⋆⋆ −0.053⋆⋆ −0.083⋆⋆⋆

[g m−3] (0.034) (0.028) (0.018) (0.022)

ln (Wind speed) - - −0.084 -
[m s−1] - - (0.053) -

Adj. R2 0.89 0.87 0.97 0.91
Fractional bias 0.035 0.042 0.028 −0.0073
Fractional error 0.37 0.31 0.18 0.28
Normalized mean bias −0.18 −0.21 0.019 −0.16
Normalized mean error 0.39 0.40 0.16 0.32

95% prediction intervald [0.42, 2.37] [0.50, 1.99] [0.64, 1.56] [0.56, 1.79]

95% confidence intervald [0.76, 1.33] [0.79, 1.28] [0.86, 1.17] [0.83, 1.22]

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, a Population within r1
(r < r1), b Population between r1 and r2 (r1 ≤ r < r2), c Ṕrecipitation = Precipitation + 0.0002 (shifted for log
transformation), d Average intervals relative to predicted value.
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Changes in 
PM2.5 Concentration 

Changes in 
Mortality Rate 

Change in 
Premature Deaths 

Social Cost 

Emissions 

1. Air Quality Simulation 

2. Concentration-Response Function 

3. Population exposed to PM2.5 

4. Value of a Statistical Life 

Figure 3.1: The four steps in the impact pathway analysis of air quality social cost.

: Training sample : Test sample

Figure 3.2: The air quality social cost modeling domain and the selected sample locations. CAMx
simulated this domain in a 148×112 grid that has a horizontal cell size of 36 km×36 km. The sample
locations were selected randomly based on the size of population. The training samples were used to build
regression models and the test samples for out-of-sample evaluation.
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Figure 3.3: Social costs over a range of marginal emissions. Each line represents the per-tonne social
costs of one sample location. For the 50 training sample locations, the per-tonne social costs were
calculated over a range of E ⋅4−k(k = 0, ...,4), where E is the average emissions of area and point sources.
The ratios of S, the per-tonne social cost for given emissions at a sample location, over S, the average
of S over all E are on the y-axis. The EC social costs mostly stay constant over the range of marginal
emissions and start to slightly diverge at the smallest perturbation. The SO2 social costs also stay largely
constant except that a few locations become unstable at the lowest emissions, E ⋅ 4−4. We chose E ⋅ 4−2 as
our modeling basis.
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(b) EC: Out-of-sample evaluation
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(c) SO2: Fitted values
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(d) SO2: Out-of-sample evaluation

Figure 3.4: The performance and evaluation of population ring social cost models. On the x-axis are
values estimated with CTM results and on the y-axis are values calculated by the regression model.
(a) and (c) show the fitted values with 50 training sample locations. (b) and (d) show the out of sample
evaluation done with 50 test samples. Yellow error bars present 95% prediction intervals and green error
bars 95% confidence intervals.
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Figure 3.5: Sensitivity of social costs to the variables of the population ring social cost models. Each
range presents the ratio of social costs calculated with 5th (blue) and 95th (red) percentiles of a variable
in the 100 samples to one calculated with its mean, S0.
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(a) One ring: 928 EC models (b) One ring: 928 SO2 models

(c) Two rings: 6,912 EC models (d) Two rings: 6,912 SO2 models

(e) Three rings: 67,488 EC models (f) Three rings: 67,488 SO2 models

Figure 3.6: Evaluation of population ring method social cost models. Each circle shows the adjusted R2

from regression and the fractional bias and fraction error with the 50 test samples. ‘Excellent’ and ‘Good’
evaluation criteria are as defined by Morris et al. (2005).
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(b) EC: Cumulative distribution
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(c) SO2: Average plume
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(d) SO2: Cumulative distribution

Figure 3.7: Average plume weights constructed with the CTM results of the training samples. PM2.5
concentrations or plumes of the 50 training samples are aligned to the arrow direction and normalized.
This shows both pollutants travel over a large distance, though EC plume is relatively more local than
SO2.
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(b) EC: Out-of-sample evaluation
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(c) SO2: Fitted values
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(d) SO2: Out-of-sample evaluation

Figure 3.8: The performance and evaluation of average plume social cost models. On the x-axis are values
estimated with CTM results and on the y-axis are values calculated by the regression model. (a) and (c)
show the fitted values with 50 training sample locations. (b) and (d) show the out of sample evaluation
done with 50 test samples. Yellow error bars present 95% prediction intervals and green error bars 95%
confidence intervals.
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Figure 3.9: Sensitivity of social costs to the variables of the average plume social cost models. Each range
presents the ratio of social costs calculated with 5th (blue) and 95th (red) percentiles of a variable in the
100 samples to one calculated with its mean, S0.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fractional Error

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

Fr
ac

ti
on

al
Bi

as

Excellent

Good

0.88

0.90

0.92

0.94

0.96

A
dj

.R
2

(a) EC

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fractional Error

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

Fr
ac

ti
on

al
Bi

as

Excellent

Good

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
dj

.R
2

(b) SO2

Figure 3.10: Evaluation of average plume method social cost models. ‘Excellent’ and ‘Good’ criteria are
as defined by Morris et al. (2005).

88



1.05 1.10 1.15 1.20
Relative Risk, R

1.0

1.5

2.0

2.5

3.0

F R
=

S R S 1
.0

6

Log-linear function

Linear fit

FR = SR
S1.06

= –15.1 + 15.2R

Figure 3.11: Social cost over a range of relative risks. The range covers the 95% confidence intervals of
relative risks reported by two land-mark cohort-based epidemiological studies, Krewski et al. (2009) and
Lepeule et al. (2012).
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Figure 3.12: Social costs and two population age cohorts. The social costs at the 100 sample locations
using population of age 30 or older, S30, were compared those using population of age 25 or older, S25.
S30 matches the American Cancer Society study cohort (Krewski et al., 2009) and S25 the Harvard Six
Cities study cohort (Lepeule et al., 2012). X-axis shows the values of S30 and y-axis the ratios of S25 to
S30. At all locations, the difference was only 0.9% on average.
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(b) SO2: ∆PM2.5 over time
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(c) EC: ∆PM2.5 over a different period
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(d) SO2: ∆PM2.5 over a different period
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(e) EC: Social cost over a different period
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(f) SO2: Social cost over a different period

Figure 3.13: PM2.5 concentrations and social costs over different lengths of simulation. Each line
indicates each sample location. Ci is the sum of the CAMx grid of the changes in average PM2.5
concentrations for a given day. Ci is the average of Ci’s over the entire time period. Cd is the sum of
the CAMx grid of the average changes in PM2.5 concentrations for a given simulation period (e.g. from
day one to day d). Cd is the sum of the average changes in PM2.5 concentrations for the entire period. S
is the per-tonne social cost calculated for a given simulation period. S is the per-tonne social cost for the
entire period. The red dashed line indicates the 2.5% truncated means and the shaded area covers the 95%
confidence intervals of the means.
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B Appendix: Additional Figures and Tables

Table B-1: Summary of the dataset generated for the 100 sample locations

Social Cost [$ t−1] Intake Fraction [ppm] Pressure Temperature Precipitation Wind Speed Humidity
EC SO2 EC SO2 [hPa] [K] [g m−3] [m s−1] [ppm]

mean 63,000 18,000 0.93 0.26 965 297 0.077 2.0 18,000
std 84,000 27,000 1.3 0.38 73 4.4 0.086 1.2 6,100
min 5,600 2,900 0.092 0.046 741 286 0.0 0.092 8,400
25% 9,400 4,800 0.13 0.070 929 295 0.016 1.1 11,000
50% 36,000 10,000 0.50 0.14 993 298 0.048 2.0 18,000
75% 92,000 19,000 1.2 0.29 1,020 300 0.11 2.6 22,000
max 650,000 210,000 10 2.7 1,050 307 0.44 6.3 29,000
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Table B-2: Evaluations of EC social cost models from the population ring method

Model† (1)‡ (2) (3) (4) (5) (6) (7)

r1 36 36 36 36 36 36 36
r2 252 252 252 252 216 288 216

Intercept 79⋆⋆ 74⋆⋆ 77⋆⋆ 75⋆⋆ 71⋆⋆ 78⋆⋆ 76⋆⋆

ln (Popr1) 0.16⋆⋆⋆ 0.16⋆⋆⋆ 0.16⋆⋆⋆ 0.16⋆⋆⋆ 0.15⋆⋆⋆ 0.18⋆⋆⋆ 0.15⋆⋆⋆

ln (Popr2) 0.34⋆⋆⋆ 0.33⋆⋆⋆ 0.34⋆⋆⋆ 0.33⋆⋆⋆ 0.32⋆⋆⋆ 0.35⋆⋆⋆ 0.32⋆⋆⋆

ln (Pres) 7.2⋆⋆⋆ 7.2⋆⋆⋆ 7.5⋆⋆⋆ 7.1⋆⋆⋆ 7.4⋆⋆⋆ 7.0⋆⋆⋆ 7.5⋆⋆⋆

ln (Temp) −22⋆⋆⋆ −21⋆⋆⋆ −22⋆⋆⋆ −21⋆⋆⋆ −21⋆⋆⋆ −21⋆⋆⋆ −22⋆⋆⋆

ln (Prec) −0.095⋆⋆ −0.11⋆⋆ −0.089+ −0.11⋆ −0.10⋆⋆ −0.100⋆⋆ −0.087⋆

ln (Wind) - −0.12 - −0.12 −0.14 - -
ln (Humid) - - −0.072 0.022 - - -

AIC 47 47 49 49 49 49 50
Adj. R2 0.91 0.91 0.90 0.91 0.90 0.90 0.90
F. Bias 0.051 0.076 0.053 0.076 0.070 0.050 0.040
F. Error 0.35 0.34 0.36 0.34 0.36 0.36 0.37
† Seven models with lowest AIC, ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, r1: the first

population ring radius [km], r2: the second population ring radius [km], Popr1 : Population (≥ age 30) < r1 [# of people], Popr2 : r1 ≤

Population (≥ age 30) < r2 [# of people], Pres: Pressure [hPa], Temp: Temperature [K], Prec: Precipitation + 0.0002 [gm−3] (shifted for

log transformation), Wind: Wind speed [ms−1], Humid: Humidity [ppm], AIC: Akaike information criterion, Adj. R2: Adjusted R2, F.

Bias: Fractional bias, F. Error: Fractional error.

Table B-3: Evaluations of EC intake fraction models from the population ring method

Model† (1)‡ (2) (3) (4) (5) (6) (7)

r1 36 36 36 36 36 36 36
r2 252 252 288 252 288 252 216

Intercept 69⋆ 65⋆ 68⋆ 65⋆ 65⋆ 64⋆ 65⋆

ln (Popr1) 0.17⋆⋆⋆ 0.16⋆⋆⋆ 0.18⋆⋆⋆ 0.16⋆⋆⋆ 0.18⋆⋆⋆ 0.16⋆⋆⋆ 0.15⋆⋆⋆

ln (Popr2) 0.36⋆⋆⋆ 0.36⋆⋆⋆ 0.38⋆⋆⋆ 0.37⋆⋆⋆ 0.38⋆⋆⋆ 0.36⋆⋆⋆ 0.35⋆⋆⋆

ln (Pres) 6.4⋆⋆⋆ 6.4⋆⋆⋆ 6.2⋆⋆⋆ 6.9⋆⋆⋆ 6.1⋆⋆⋆ 6.6⋆⋆⋆ 6.8⋆⋆⋆

ln (Temp) −21⋆⋆⋆ −20⋆⋆⋆ −21⋆⋆⋆ −21⋆⋆⋆ −20⋆⋆⋆ −20⋆⋆⋆ −21⋆⋆⋆

ln (Prec) −0.13⋆⋆⋆ −0.13⋆⋆⋆ −0.13⋆⋆⋆ −0.11⋆ −0.14⋆⋆⋆ −0.13⋆ −0.12⋆⋆

ln (Wind) - −0.088 - - −0.083 −0.084 -
ln (Humid) - - - −0.14 - −0.072 -

AIC 57 58 58 59 60 60 60
Adj. R2 0.89 0.88 0.88 0.88 0.88 0.88 0.88
F. Bias 0.035 0.054 0.035 0.039 0.053 0.055 0.025
F. Error 0.37 0.37 0.38 0.38 0.37 0.37 0.39
† Seven models with lowest AIC, ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, r1: the first

population ring radius [km], r2: the second population ring radius [km], Popr1 : Population < r1 [# of people], Popr2 : r1 ≤ Population

< r2 [# of people], Pres: Pressure [hPa], Temp: Temperature [K], Prec: Precipitation + 0.0002 [gm−3] (shifted for log transformation),

Wind: Wind speed [ms−1], Humid: Humidity [ppm], AIC: Akaike information criterion, Adj. R2: Adjusted R2, F. Bias: Fractional bias,

F. Error: Fractional error.
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Table B-4: Evaluations of SO2 social cost models from the population ring method

Model† (1)‡ (2) (3) (4) (5) (6) (7)

r1 180 252 252 252 180 252 252
r2 360 1,044 972 1,008 612 936 972

Intercept 100⋆⋆⋆ 110⋆⋆⋆ 110⋆⋆⋆ 110⋆⋆⋆ 100⋆⋆⋆ 110⋆⋆⋆ 100⋆⋆⋆

ln (Popr1) 0.15⋆⋆ 0.22⋆⋆⋆ 0.22⋆⋆⋆ 0.22⋆⋆⋆ 0.16⋆⋆ 0.22⋆⋆⋆ 0.21⋆⋆⋆

ln (Popr2) 0.17⋆⋆ 0.20+ 0.19+ 0.19+ 0.19⋆ 0.17+ 0.17
ln (Pres) 6.6⋆⋆⋆ 6.9⋆⋆⋆ 7.0⋆⋆⋆ 7.0⋆⋆⋆ 6.6⋆⋆⋆ 7.0⋆⋆⋆ 6.9⋆⋆⋆

ln (Temp) −25⋆⋆⋆ −26⋆⋆⋆ −27⋆⋆⋆ −27⋆⋆⋆ −25⋆⋆⋆ −27⋆⋆⋆ −26⋆⋆⋆

ln (Prec) −0.056⋆ −0.057⋆ −0.054⋆ −0.055⋆ −0.062⋆ −0.051+ −0.063⋆

ln (Wind) −0.13 - - - −0.14+ - −0.095
ln (Humid) - - - - - - -

AIC 28 29 29 29 29 29 29
Adj. R2 0.89 0.88 0.88 0.88 0.88 0.88 0.88
F. Bias 0.043 0.048 0.050 0.049 0.058 0.054 0.066
F. Error 0.33 0.32 0.32 0.32 0.33 0.32 0.32
† Seven models with lowest AIC and with fractional bias ≤ 0.3, ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p <

0.05, + p < 0.1, r1: the first population ring radius [km], r2: the second population ring radius [km], Popr1 : Population (≥ age 30) < r1

[# of people], Popr2 : r1 ≤ Population (≥ age 30) < r2 [# of people], Pres: Pressure [hPa], Temp: Temperature [K], Prec: Precipitation +

0.0002 [gm−3] (shifted for log transformation), Wind: Wind speed [ms−1], Humid: Humidity [ppm], AIC: Akaike information criterion,

Adj. R2: Adjusted R2, F. Bias: Fractional bias, F. Error: Fractional error.

Table B-5: Evaluations of SO2 intake fraction models from the population ring method

Model† (1)‡ (2) (3) (4) (5) (6) (7)

r1 252 252 252 252 180 252 252
r2 972 1,044 936 1,008 360 684 648

Intercept 89⋆⋆⋆ 88⋆⋆⋆ 91⋆⋆⋆ 88⋆⋆⋆ 87⋆⋆⋆ 87⋆⋆⋆ 88⋆⋆⋆

ln (Popr1) 0.23⋆⋆⋆ 0.24⋆⋆⋆ 0.23⋆⋆⋆ 0.24⋆⋆⋆ 0.17⋆⋆ 0.23⋆⋆⋆ 0.23⋆⋆⋆

ln (Popr2) 0.21+ 0.22+ 0.20+ 0.21+ 0.19⋆⋆ 0.15+ 0.14+

ln (Pres) 6.6⋆⋆⋆ 6.6⋆⋆⋆ 6.6⋆⋆⋆ 6.6⋆⋆⋆ 6.4⋆⋆⋆ 6.4⋆⋆⋆ 6.4⋆⋆⋆

ln (Temp) −25⋆⋆⋆ −25⋆⋆⋆ −25⋆⋆⋆ −25⋆⋆⋆ −24⋆⋆⋆ −24⋆⋆⋆ −24⋆⋆⋆

ln (Prec) −0.088⋆⋆ −0.091⋆⋆ −0.085⋆⋆ −0.089⋆⋆ −0.075⋆⋆ −0.081⋆⋆ −0.079⋆⋆

ln (Wind) - - - - - - -
ln (Humid) - - - - - - -

AIC 33 33 33 33 34 34 34
Adj. R2 0.87 0.87 0.87 0.87 0.87 0.87 0.87
F. Bias 0.042 0.039 0.047 0.040 0.0057 0.050 0.047
F. Error 0.31 0.31 0.31 0.31 0.33 0.33 0.33
† Seven models with lowest AIC and with fractional bias ≤ 0.3, ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p <

0.05, + p < 0.1, r1: the first population ring radius [km], r2: the second population ring radius [km], Popr1 : Population < r1 [# of people],

Popr2 : r1 ≤ Population < r2 [# of people], Pres: Pressure [hPa], Temp: Temperature [K], Prec: Precipitation + 0.0002 [gm−3] (shifted for

log transformation), Wind: Wind speed [ms−1], Humid: Humidity [ppm], AIC: Akaike information criterion, Adj. R2: Adjusted R2, F.

Bias: Fractional bias, F. Error: Fractional error.
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Table B-6: Evaluations of EC social cost models from the average plume method

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 66⋆⋆⋆ 65⋆⋆⋆ 77⋆⋆⋆ 64⋆⋆⋆ 76⋆⋆⋆ 66⋆⋆⋆ 70⋆⋆⋆

ln (Popw) 0.75⋆⋆⋆ 0.76⋆⋆⋆ 0.76⋆⋆⋆ 0.75⋆⋆⋆ 0.77⋆⋆⋆ 0.77⋆⋆⋆ 0.77⋆⋆⋆

ln (Pres) 5.5⋆⋆⋆ 6.2⋆⋆⋆ 5.5⋆⋆⋆ 5.7⋆⋆⋆ 5.5⋆⋆⋆ 6.1⋆⋆⋆ 5.6⋆⋆⋆

ln (Temp) −18⋆⋆⋆ −18⋆⋆⋆ −19⋆⋆⋆ −17⋆⋆⋆ −19⋆⋆⋆ −18⋆⋆⋆ −18⋆⋆⋆

ln (Wind) −0.12⋆ −0.095+ −0.086+ −0.12⋆ - - -
ln (Prec) −0.032+ - - −0.027 - - −0.018
ln (Humid) - −0.23 - −0.058 - −0.19 -

AIC −10.0 −8.7 −8.4 −8.0 −7.3 −6.9 −6.5
Adj. R2 0.97 0.97 0.97 0.97 0.97 0.97 0.97
F. Bias 0.052 0.062 0.072 0.052 0.044 0.033 0.026
F. Error 0.18 0.18 0.18 0.18 0.18 0.18 0.18
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [#

of people]: Populatation (≥ age 30) weighted with average plume, Pres: Pressure [hPa], Temp: Temperature [K], Prec: Precipitation +

0.0002 [gm−3] (shifted for log transformation), Wind: Wind speed [ms−1], Humid: Humidity [ppm], AIC: Akaike information criterion,

Adj. R2: Adjusted R2, F. Bias: Fractional bias, F. Error: Fractional error.

Table B-7: Evaluations of EC intake fraction models from the average plume method

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 58⋆⋆⋆ 61⋆⋆⋆ 55⋆⋆⋆ 54⋆⋆⋆ 55⋆⋆⋆ 55⋆⋆⋆ 76⋆⋆⋆

ln (Popw) 0.81⋆⋆⋆ 0.83⋆⋆⋆ 0.83⋆⋆⋆ 0.82⋆⋆⋆ 0.83⋆⋆⋆ 0.83⋆⋆⋆ 0.83⋆⋆⋆

ln (Pres) 4.5⋆⋆⋆ 4.6⋆⋆⋆ 5.8⋆⋆⋆ 5.0⋆⋆⋆ 5.3⋆⋆⋆ 5.8⋆⋆⋆ 4.5⋆⋆⋆

ln (Temp) −17⋆⋆⋆ −18⋆⋆⋆ −18⋆⋆⋆ −17⋆⋆⋆ −17⋆⋆⋆ −17⋆⋆⋆ −20⋆⋆⋆

ln (Wind) −0.084 - - −0.077 - −0.044 -
ln (Prec) −0.053⋆⋆ −0.043⋆ - −0.040 −0.026 - -
ln (Humid) - - −0.39⋆ −0.16 −0.22 −0.41⋆ -

AIC −9.9 −9.2 −8.9 −8.5 −8.3 −7.7 −4.4
Adj. R2 0.97 0.97 0.97 0.97 0.97 0.97 0.97
F. Bias 0.028 0.0095 0.030 0.029 0.014 0.044 0.052
F. Error 0.18 0.18 0.18 0.18 0.18 0.18 0.17
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw

[# of people]: Populatation weighted with average plume, Pres: Pressure [hPa], Temp: Temperature [K], Prec: Precipitation + 0.0002

[gm−3] (shifted for log transformation), Wind: Wind speed [ms−1], Humid: Humidity [ppm], AIC: Akaike information criterion, Adj.

R2: Adjusted R2, F. Bias: Fractional bias, F. Error: Fractional error.
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Table B-8: Evaluations of SO2 social cost models from the average plume method

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 110⋆⋆⋆ 110⋆⋆⋆ 110⋆⋆⋆ 110⋆⋆⋆ 110⋆⋆⋆ 110⋆⋆⋆ 130⋆⋆⋆

ln (Popw) 0.68⋆⋆⋆ 0.71⋆⋆⋆ 0.70⋆⋆⋆ 0.67⋆⋆⋆ 0.68⋆⋆⋆ 0.71⋆⋆⋆ 0.67⋆⋆⋆

ln (Pres) 6.0⋆⋆⋆ 7.2⋆⋆⋆ 6.5⋆⋆⋆ 5.9⋆⋆⋆ 6.4⋆⋆⋆ 7.2⋆⋆⋆ 6.0⋆⋆⋆

ln (Temp) −27⋆⋆⋆ −27⋆⋆⋆ −26⋆⋆⋆ −26⋆⋆⋆ −26⋆⋆⋆ −27⋆⋆⋆ −30⋆⋆⋆

ln (Wind) - - - −0.052 −0.041 −0.0023 -
ln (Prec) −0.053⋆ - −0.037 −0.058⋆ −0.044 - -
ln (Humid) - −0.45⋆ −0.21 - −0.17 −0.46⋆ -

AIC 13 14 14 14 16 16 17
Adj. R2 0.91 0.91 0.91 0.91 0.91 0.91 0.90
F. Bias 0.0024 0.029 0.0068 0.013 0.014 0.030 0.053
F. Error 0.26 0.26 0.26 0.26 0.26 0.26 0.26
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [#

of people]: Populatation (≥ age 30) weighted with average plume, Pres: Pressure [hPa], Temp: Temperature [K], Prec: Precipitation +

0.0002 [gm−3] (shifted for log transformation), Wind: Wind speed [ms−1], Humid: Humidity [ppm], AIC: Akaike information criterion,

Adj. R2: Adjusted R2, F. Bias: Fractional bias, F. Error: Fractional error.

Table B-9: Evaluations of SO2 intake fraction models from the average plume method

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 97⋆⋆⋆ 91⋆⋆⋆ 97⋆⋆⋆ 91⋆⋆⋆ 92⋆⋆⋆ 93⋆⋆⋆ 130⋆⋆⋆

ln (Popw) 0.74⋆⋆⋆ 0.76⋆⋆⋆ 0.74⋆⋆⋆ 0.76⋆⋆⋆ 0.78⋆⋆⋆ 0.80⋆⋆⋆ 0.73⋆⋆⋆

ln (Pres) 5.5⋆⋆⋆ 6.2⋆⋆⋆ 5.5⋆⋆⋆ 6.2⋆⋆⋆ 7.4⋆⋆⋆ 7.4⋆⋆⋆ 5.5⋆⋆⋆

ln (Temp) −25⋆⋆⋆ −25⋆⋆⋆ −25⋆⋆⋆ −25⋆⋆⋆ −26⋆⋆⋆ −26⋆⋆⋆ −30⋆⋆⋆

ln (Wind) - - −0.0098 0.0065 - 0.061 -
ln (Prec) −0.083⋆⋆⋆ −0.063⋆ −0.084⋆⋆⋆ −0.062+ - - -
ln (Humid) - −0.26 - −0.27 −0.68⋆⋆ −0.67⋆⋆ -

AIC 16 17 18 19 20 21 28
Adj. R2 0.91 0.91 0.91 0.91 0.90 0.90 0.88
F. Bias −0.0073 −0.0019 −0.0054 −0.0030 0.037 0.019 0.073
F. Error 0.28 0.28 0.28 0.27 0.27 0.27 0.28
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw

[# of people]: Populatation weighted with average plume, Pres: Pressure [hPa], Temp: Temperature [K], Prec: Precipitation + 0.0002

[gm−3] (shifted for log transformation), Wind: Wind speed [ms−1], Humid: Humidity [ppm], AIC: Akaike information criterion, Adj.

R2: Adjusted R2, F. Bias: Fractional bias, F. Error: Fractional error.
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Table B-10: Comparison of regression results: 31-day simulation v.s. 15-day simulation

Variable
30-day simulation 15-day simulation
EC SO2 EC SO2

Intercept 66⋆⋆⋆ 110⋆⋆⋆ 68⋆⋆⋆ 110⋆⋆⋆

(13) (17) (14) (18)

ln (Weighted population) 0.75⋆⋆⋆ 0.68⋆⋆⋆ 0.78⋆⋆⋆ 0.75⋆⋆⋆

[# of people] (0.037) (0.080) (0.046) (0.085)

ln (Temperature) −18⋆⋆⋆ −27⋆⋆⋆ −18⋆⋆⋆ −27⋆⋆⋆

[K] (2.4) (3.0) (2.6) (3.1)

ln (Pressure) 5.5⋆⋆⋆ 6.0⋆⋆⋆ 5.7⋆⋆⋆ 8.0⋆⋆⋆

[hPa] (0.54) (0.71) (0.66) (0.99)

ln (Ṕrecipitationc) −0.032+ −0.053⋆ −0.036⋆ -
[g m−3] (0.018) (0.021) (0.016) -

ln (Wind speed) −0.12⋆ - −0.13⋆ -
[m s−1] (0.053) - (0.062) -

ln (Humidity) - - - −0.50⋆⋆

[ppm] - - - (0.18)

Adj. R2 0.97 0.91 0.96 0.92
Fractional bias 0.052 0.0024 0.035 −0.038
Fractional error 0.18 0.26 0.21 0.30
Normalized mean bias 0.051 −0.17 0.034 −0.24
Normalized mean error 0.16 0.32 0.20 0.37

95% prediction intervald [0.64, 1.56] [0.57, 1.76] [0.59, 1.71] [0.55, 1.83]

95% confidence intervald [0.86, 1.17] [0.83, 1.21] [0.83, 1.20] [0.82, 1.22]

Mean 63,000 18,000 62,000 20,000
Std 84,000 27,000 82,000 33,000

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, c Ṕrecipitation =
Precipitation + 0.0002 (shifted for log transformation), d Average intervals relative to predicted value.
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Table B-11: U.S. EPA standard GDP deflator and income growth adjustment factors (extracted from
BenMAP (U.S. EPA, 2014))

Year GDP Deflator Income Growth Adj.

1980 0.479 -
1981 0.528 -
1982 0.560 -
1983 0.578 -
1984 0.603 -
1985 0.625 -
1986 0.636 -
1987 0.660 -
1988 0.687 -
1989 0.720 -
1990 0.759 1.000
1991 0.791 0.992
1992 0.815 0.998
1993 0.839 1.003
1994 0.861 1.013
1995 0.885 1.017
1996 0.911 1.024
1997 0.932 1.034
1998 0.947 1.039
1999 0.967 1.043
2000 1.000 1.039
2001 1.028 1.044
2002 1.045 1.050
2003 1.069 1.056
2004 1.097 1.063
2005 1.134 1.069
2006 1.171 1.075
2007 1.204 1.081
2008 1.250 1.087
2009 1.246 1.093
2010 1.266 1.100
2011 - 1.112
2012 - 1.123
2013 - 1.134
2014 - 1.144
2015 - 1.155
2016 - 1.164
2017 - 1.174
2018 - 1.183
2019 - 1.192
2020 - 1.201
2021 - 1.209
2022 - 1.217
2023 - 1.225
2024 - 1.233
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Figure B-1: Correlation matrix plot of selected parameters. All the values are natural log transformed.
Pearson’s correlation coefficients are on the upper right. sEC and sSO2: social cost [$/t] of EC and
SO2. iEC and iSO2: intake fraction [ppm] of EC and SO2. pEC and pSO2: population [# of people]
weighted for social cost with the average plume of EC and SO2. ptEC and ptSO2: population [# of
people] weighted for intake fraction with the average plume of EC and SO2. pres: pressure [hPa], temp:
temperature [K], prec: precipitation + 0.0002 [g m−3] (shifted for log transformation), wind: wind speed
[m s−1], humi: humidity [ppm].
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Figure B-2: The intake fractions over a range of marginal emissions. Each line represents the per-tonne
social costs of one sample location. For the 50 training sample locations, the per-tonne social costs were
calculated over a range of E ⋅4−k(k = 0, ...,4), where E is the average emissions of area and point sources.
The ratios of iF , the per-tonne social cost for given emissions at a sample location, over iF , the average
of iF over all E are on the y-axis. The EC social costs mostly stay constant over the range of marginal
emissions and start to slightly diverge at the smallest perturbation. The SO2 social costs also stay largely
constant except that a few locations become unstable at the lowest emissions, E ⋅ 4−4. We chose E ⋅ 4−2 as
our modeling basis.

99



Chapter 3. Building Computationally Efficient Models for Air Pollution Social Impacts from Chemical Transport
Models

10–2 10–1 100 101

CAMx-based estimate [ppm]

10–2

10–1

100

101

Pa
ra

m
et

er
iz

ed
es

ti
m

at
e

[p
pm

]

(a) EC: Fitted values
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(b) EC: Out-of-sample evaluation
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(c) SO2: Fitted values
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(d) SO2: Out-of-sample evaluation

Figure B-3: The performance and evaluation of intake fraction population ring method models. On the
x-axis are values estimated with CTM results and on the y-axis are values calculated by the regression
model. (a) and (c) show the fitted values with 50 training sample locations. (b) and (d) show the out of
sample evaluation done with 50 test samples. Yellow error bars present 95% prediction intervals and green
error bars 95% confidence intervals.
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Figure B-4: Sensitivity of social costs to the variables of the population ring intake fraction models.
Each range presents the ratio of intake fraction calculated with 5th (blue) and 95th (red) percentiles of a
variable in the 100 samples to one calculated with its mean, iF0.
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(a) One ring: 928 EC models (b) One ring: 928 SO2 models

(c) Two rings: 6,912 EC models (d) Two rings: 6,912 SO2 models

(e) Three rings: 67,488 EC models (f) Three rings: 67,488 SO2 models

Figure B-5: Evaluation of population ring method intake fraction models. Each circle shows the adjusted
R2 from regression and the fractional bias and fraction error with the 50 test samples. ‘Excellent’ and
‘Good’ evaluation criteria are as defined by Morris et al. (2005).
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(a) EC: Fitted values
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(b) EC: Out-of-sample evaluation
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(c) SO2: Fitted values
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(d) SO2: Out-of-sample evaluation

Figure B-6: Intake fraction average plume models’ performance and evaluation. On the x-axis are values
estimated with CTM results and on the y-axis are values calculated by the regression model. (a) and (c)
show the fitted values with 50 training sample locations. (b) and (d) show the out of sample evaluation
done with 50 test samples. Yellow error bars present 95% prediction intervals and green error bars 95%
confidence intervals.
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Figure B-7: Sensitivity of social costs to the variables of the average plume intake fraction models.
Each range presents the ratio of intake fraction calculated with 5th (blue) and 95th (red) percentiles of a
variable in the 100 samples to one calculated with its mean, iF0.
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Figure B-8: Evaluation of average plume method intake fraction models. ‘Excellent’ and ‘Good’ criteria
are as defined by Morris et al. (2005).
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(c) EC intake fraction map
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(d) SO2 intake fraction map

Figure B-9: Air quality health effect maps for EC and SO2. These maps are estimated by the regression
models built using the average plume method. The estimate at a location on the map shows the social cost
from the emissions at the location imposed on population nearby areas. The estimates are based on $8.8M
for VSL (adjusted for income level in 2010) and 1.06 for the relative risk.
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Chapter 4. Parameterization of Social Costs of 
Elemental Carbon and Inorganic Particulate 
Matter Precursors 

 

Abstract 

A state-of-the-art chemical transport model (CTM) is too computationally expensive for many 

policy applications. Current reduced-form models either rely on overly simple atmospheric 

algorithms or have limited spatial or sectoral resolution. We developed a set of parameterizations 

for air quality social cost and intake fractions for primary PM2.5 and three secondary PM2.5 

precursors (sulfur dioxide, nitrogen oxides, and ammonia), which give similar predictions like a 

CTM but are much more computationally efficiently. We used “the Estimating Air pollution 

Social Impacts Using Regression” (EASIUR) method, which builds parameterizations from 

running linear regressions on a dataset created for 100 representative locations in the United 

Stated using “tagged” CTM simulations. We used an “average plume,” a generic PM2.5 plume 

generated from CTM results, to describe exposed population over large receptor areas around an 

emissions source. The parameterizations have intuitive functional forms with population and 

commonly measured atmospheric variables such as temperature, pressure, precipitation, wind 

speed, and humidity. The coefficients explain key underlying mechanisms. Including total 

sulfate, total nitrate, and total ammonia improved the inorganic models further. Out-of-sample 

evaluations meet the ‘excellent’ criteria of a common air quality model performance metric (i.e., 

fractional bias ≤ 0.15 and fractional error ≤ 0.35) in most cases with some exceptions meeting 

the ‘good’ criteria (i.e., fractional bias ≤ 0.30 and fractional error ≤ 0.50). We found that the 



 

107 

average seasonal per-tonne social costs in the United States are $150,000-180,000/t EC, $21,000-

34,000/t SO2, $4,200-15,000/t NOx, and $29,000-85,000/t NH3. The social cost of EC is much 

larger than other species. Generally, wintertime social costs are the highest and summertime are 

the lowest, but for SO2 it was opposite. The parameterizations presented in this work will be of a 

great use in policy research that involves changes in air quality. 

4.1 Introduction 

Estimating the effect of air quality on human health and the natural environment is an essential 

part of air quality policy assessment and design. Many assessments have sought to quantify these 

damages, most notably the U.S. EPA’s series of the benefit cost analyses of the Clean Air Act 

(U.S. EPA, 1997, 1999, 2011e) and regulatory impact analyses like one performed for the Cross-

State Air Pollution Rule (U.S. EPA, 2011d). PM2.5, particulate matter having the diameter of 2.5 

µμm or less, is strongly associated with premature mortality (Beelen et al., 2014; Crouse et al., 

2012; Krewski et al., 2009; Lepeule et al., 2012). Characterizing the PM2.5 impacts on mortality 

is especially important because the impacts account for more than 90% of the monetized cost of 

worsening air quality (U.S. EPA, 1999, 2011e). 

PM2.5 could be divided into two categories: primary and secondary species. “Primary” PM2.5, 

such as elemental carbon is directly emitted as particle. However, a substantial fraction of PM2.5 

consists of secondary species, which are chemically produced in the atmosphere from gaseous 

precursors. Secondary PM2.5 includes inorganic PM2.5, which is produced from sulfur dioxide, 

nitrogen oxides, and ammonia, as well as most organic PM2.5 (Zhang et al., 2007). Although 

active research efforts are underway to find out where the toxicity of PM2.5 comes from (e.g. 

chemical composition or particle size) (Franklin et al., 2008; Harrison et al., 2004), there are not 
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definitive epidemiological evidences yet to differentiate the effects from different species (Bell, 

2012), and PM2.5 is currently regulated on a mass concentration basis (U.S. EPA, 2013a). 

The social cost and intake fraction are common metric for evaluating the public health impacts 

of air quality. The social cost of air quality is defined as the monetized damages from air 

pollution, which is estimated as follows (U.S. EPA, 1999, 2011e). Air quality simulation tracks 

the emissions of an air pollutant and its physical and chemical processes in the atmosphere and 

determine PM2.5 concentrations exposed to population. Then, the number of premature deaths in 

exposed population is estimated based on so-called concentration-response relations reported by 

epidemiological studies. The mortality is monetized with the value of a statistical life, people’s 

willingness-to-pay to avoid the mortality risk. By dividing the monetized value by the amount of 

emissions, the per-tonne social cost in obtained. Intake fraction (Bennett et al., 2002) is a metric 

of characterizing the emissions-to-intake relationship, which is defined as the fraction of the 

amount of air pollutant or its precursors emitted that are inhaled by an exposed population.  

Especially, per-tonne social cost and intake fraction for “marginal” emissions are highly 

convenient for policy research because policy scenarios usually involves “marginal” changes in 

emissions. Social cost or population intake can be easily evaluated by multiplying marginal 

social costs or intake fraction by the changes in emissions, assuming that the public health 

impacts respond linearly to emissions. Per-tonne social cost or intake fraction should be used 

carefully considering the ranges of emissions that they stay linear. 

One of the major technical challenges estimating the per-tonne social cost and intake fraction 

is to estimate the changes in air quality because, once air pollutants are emitted to the 

atmosphere, they may affect a large area reaching thousands of kilometers downwind while 

undergoing complex physical and chemical processes. As computer systems are getting more 
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powerful and cheap, chemical transport models (CTMs) play a critical role in the social cost 

analysis (U.S. EPA, 1999, 2011d, 2011e) in determining how emissions changes impact air 

quality because CTMs are the most sophisticated and realistic models that usually reflect the up-

to-date atmospheric science. CTMs divide the atmosphere into a three-dimensional grid of boxes, 

calculate the atmospheric processes of transport, chemical reactions, and removal in each boxes, 

and estimate the concentrations of key air pollutants and their precursors at a high temporal 

resolution typically of 15 minutes or less. Due to detailed characterization of air quality, CTMs 

require huge computational costs, which inevitably result in compromises in spatial domain 

covered, time period simulated, and/or spatial resolution. 

Therefore, it is not surprising that the existing social cost models based on sophisticated CTMs 

have a limited spatial or sectoral resolution though they perform like their underlying CTMs. 

U.S. EPA’s Response Surface Model (RSM) (U.S. EPA, 2006) is such a model built with a 

multidimensional kriging method based on simulation outputs generated by CMAQ (Byun and 

Schere, 2006), a chemical transport model. The social costs derived from RSM are limited 

spatially and sectorally, that is, to national and nine urban areas and to emissions changes in 12 

sectors. Buonocore et al (2014) provided regression models that parameterized the social cost 

with populations around a power plant based on a set of CMAQ simulations for about 50 power 

plants in some parts of the U.S. Their study was limited to 40 CMAQ runs and their models may 

be probably hard to be applied outside of the power plants in the study region. 

Because of the complexity and computational costs of CTMs, policy research often relies on 

reduced-form models. Perhaps the most widely used tool is the Climatological Regional 

Dispersion Model (CRDM) (Latimer, 1996), which is a Gaussian-dispersion-based source-

receptor air quality model used in popular social cost models (Muller, 2011; Muller and 
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Mendelsohn, 2007; U.S. EPA, 2013b) as well as in air quality social cost studies (Levy et al., 

2009; Shadbegian et al., 2007; U.S. EPA, 2004). CRDM provides the marginal change in annual-

average PM2.5 concentrations in every U.S. county for an incremental emissions of PM2.5 

precursor in one county. Based on annual-average meteorology and some seasonal adjustments, 

CRDM handles dispersion, wet and dry deposition, and first-order chemical conversion for 

primary and secondary PM2.5 species. 

However, CRDM’s annual time resolution may be overly simple, perhaps producing 

substantial biases for species with highly nonlinear behaviors. As an example, inorganic PM2.5 

and its precursors may not work well because they travel a long distance and associated chemical 

processes vary regionally and are sensitive to meteorological conditions (Ansari and Pandis, 

1998; Blanchard et al., 2000; West et al., 1999), which cannot be easily captured by the Gaussian 

approach that assumes the conditions at the location of emissions stay constant. Furthermore, it 

was recently found that there are much more secondary organic PM2.5 than previously thought 

(Goldstein and Galbally, 2007; Robinson et al., 2007; Zhang et al., 2007) and that the total 

volatile organic compounds (VOC) are a bad predictor of organic PM2.5 formation (Jathar et al., 

2014), which makes CRDM’s PM2.5 predictions from VOC badly outdated as of today’s science. 

In addition, CRDM’s county-based spatial resolution may produce biases for larger and 

heterogeneous counties, such as those in the western United States. 

We previously explored methods of building a model called the Estimating Air Pollution 

Social Impacts Using Regression (EASIUR) model (Chapter 3), which tries to overcome the 

limitations of both chemical transport models and current reduced-form models. The basic 

approach is to derive a regression model from a set of CTM simulations. We ran “tagged” 

simulations (Koo et al., 2009; Wagstrom et al., 2008), which enabled to create a large dataset 
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with limited simulation runs, reducing the computational requirement over a factor of 50. A 

“tagged” simulation tracks emissions from multiple “sources” and calculates their contributions 

at all “receptor” locations for each “source,” which allowed us to simulate the air quality of 50 

locations with one CTM run. The EASIUR model predict like CTMs at the computational speed 

and ease-of-use of reduced-form models. An important merit of the EASIUR model approach is 

that the model can evolve as the underlying CTMs improve because the EASIUR model can be 

rebuilt from an improved CTM. This would be especially important for organic PM2.5 because 

the understanding of organic aerosols has changed substantially recently and is expected to 

improve further in the future. 

This paper describes the method of building the EASIUR model and present a complete set of 

per-tonne social cost and intake fraction parameterizations for the four species that dominate the 

formation of inorganic PM2.5: elemental carbon, sulfur dioxide, nitrogen oxide, and ammonia. 

We explore the sensitivity of social cost to emissions characteristics and simulation periods and 

discuss other sources of uncertainty. 

4.2 Method 

The overall goal of the EASIUR approach is to produce easy-to-use linear regressions for social 

costs and intake fractions models that are derived from state-of-the-art CTM simulation outputs. 

To develop a representative set of emissions perturbations, we ran CAMx, a CTM, to calculate 

per-tonne social costs and intake fractions at 100 locations randomly chosen in the U.S. domain. 

We ran regression analysis to parameterize the resulting social costs and intake fractions with 

population and atmospheric variables. We used ‘average plumes’ (described below) generated 

from CTM output to characterize the exposed population used in regression. We ran additional 

several sets of CAMx simulations to explore the sensitivity of air quality impacts to emissions 
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characteristics and simulation period. All monetary values in this paper are in year 2010 USD 

unless otherwise noted. 

4.2.1 The CAMx Chemical Transport Model 

We used the Comprehensive Air Quality Model with extensions (CAMx) version 5.41 

(ENVIRON, 2012), a regional-scale three dimensional chemical transport model. CAMx was run 

with the input database developed for a U.S. EPA’s regulatory impact analysis (U.S. EPA, 

2011d) and evaluated comprehensively (U.S. EPA, 2011a).  The base year of the input database 

is 2005. The meteorology was generated by MM5 (Grell et al., 1995). Emissions inventory (U.S. 

EPA, 2011b) was prepared primarily based on the 2005 National Emissions Inventory version 2 

(http://www.epa.gov/ttn/chief/net/2005inventory.html). The inventory also includes 

anthropogenic and biogenic emissions from Mexico and Canada. Using this air quality 

simulation platform, we simulated the United States domain in a 148×112 grid (shown in Figure 

4.1) with a horizontal resolution of 36×36 km2 and 14 vertical layers reaching up to about 16 

km, which is an appropriate resolution for PM2.5 public health effects (Thompson and Selin, 

2012). 

The Particulate Source Apportionment Technology (PSAT) (Koo et al., 2007) is a CAMx 

extension that substantially reduces the computational burden associated with the large number 

of emissions perturbations simulations required here. PSAT is a “tagging” algorithm that tracks 

the contributions of emissions separately from multiple designated cells to PM2.5 concentrations 

in the CAMx grid. With PSAT, we tracked such contributions from emissions at 50 locations in 

one CAMx simulation, only requiring about a tenth of computation time and disk space 

compared to a common brute force simulation. 
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4.2.2 Generating the Social Cost and Intake Fraction Modeling Dataset 

We generated a dataset of social cost and intake fractions for emissions stemming from 100 

sample CAMx grid cells using the tagged CAMx PSAT simulations. We divided these 100 

locations into two sets of 50, one for training the regression models and the other for out-of-

sample testing. These locations are shown in Figure 4.1. We anticipate that most of the 

variability in social costs results from the number of people exposed, so the training sets should 

include emissions in both densely and sparsely populated regions. To accomplish this, five 

locations for each sample set were randomly selected at every 10th population percentile among 

CAMx cells where population is not zero. 

We calculated the changes in PM2.5 concentrations from “marginal” emissions by comparing a 

simulation with base case emissions and a simulation with the “marginal” emissions. The choice 

of the size of “marginal” emissions is important because CAMx may not simulate properly for 

too small values due to its numerical precision limit or the PM2.5 impacts may not be linear above 

large emissions due to nonlinear atmospheric processes. After we explored the sensitivity to the 

size of perturbation over a wide range (See Chapter 3.3 and Chapter 4.3.3), we added for 

perturbation cases one sixteenth (or about 6.25%) of annual average emissions (𝐸) for each 

species (EC: 6.6 kg/day, SO2: 190 kg/day, NOx: 270 kg/day, and NH3: 69 kg/day) to each sample 

location. Even though each emissions perturbation is relatively small, perturbation experiments 

for each inorganic species (SO2, NOx, and NH3) were run in separate sets from each other to 

avoid nonlinear interactions. EC perturbation cases were included in SO2 perturbation cases 

because EC does not react chemically in the atmosphere. The changes in PM2.5 concentrations 

were calculated by comparing the sum of inorganic PM2.5 concentrations between base case and 

perturbation case for SO2, NOx, and NH3 and by comparing just EC concentrations for EC. Each 
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CAMx simulation was run for the entire 2005 year in a set of four separate seasonal simulations. 

We refer winter season defined here as January, February, and March; spring as April, May, and 

June; summer as July, August, and September; and fall as October, November, and December. 

Each simulation period includes 10 days from the prior month for model spin-up to prevent 

distorted results from initial conditions, and these 10 days are not included in the analysis. 

We calculated the social cost of air quality with a standard method used in U.S. EPA’s 

regulatory impact analyses (U.S. EPA, 1999, 2011e) (see Chapter 3.2.3). From CAMx 

simulations, we calculated the changes in PM2.5 resulting from emissions at the 100 sample grid-

cell locations by comparing PM2.5 concentrations from a base case and a perturbations case. We 

compared only EC concentrations for EC emissions perturbations but, for SO2, NOx, and NH3 

emissions, we examined all CAMx PM2.5 species to account for interactions between these 

species. Then, the changes in premature death from the changes in PM2.5 concentrations were 

calculated based on cohort-based PM2.5 epidemiological studies. We used concentration-response 

relations from each latest follow-up studies from the two landmark studies; we used Krewski et 

al. (2009) as our basis but also generalized our results to Lepeule et al. (2012). The estimated 

changes in premature mortality were monetized by using $8M for the value of a statistical life 

(VSL), which U.S. EPA recommends based on 26 value-of-life studies (U.S. EPA, 2010). Later, 

our results are also generalized for the choice of VSL. Finally, by dividing the monetized value 

by the added marginal emissions, per-tonne social cost at each sample location is calculated per 

species as well as per season. 

The intake fraction (Bennett et al., 2002) is defined as the mass ratio of the PM2.5 inhaled by 

population to the emissions of its precursor: 
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    𝑖𝐹 =
𝐵 ⋅ 𝑃!,! ⋅ 𝛥𝑐!,!

𝐸
!,!

 (1) 

where B is the volumetric breathing rate (m3/person/day), 𝑃!,! is the population at a grid cell (x, 

y), 𝛥𝑐!,! is the change in PM2.5 concentration at that grid cell, and 𝐸 is the emissions perturbation 

from the upwind cell. We used a population mean value, 14.6 m3/person/day, for 𝐵, which was 

derived by weighting U.S. EPA’s recommended long-term age-specific breathing rate (U.S. 

EPA, 2011c) with 2010 US Census population. 

4.2.3 The Parameterization Approach of the EASIUR Method 

Our parameterization is based on a log linear functional form as follows: 

ln 𝑆 = 𝛼 + 𝛽 ⋅ ln𝑃! + 𝛾! ⋅ ln𝐴!
!

, 𝑖 = 1,… , 𝑘 (2) 

ln 𝑖𝐹 = 𝛼 + 𝛽 ⋅ ln𝑃! + 𝛾! ⋅
!

ln𝐴! , 𝑗 = 1,… , 𝑙 (3) 

where 𝑆 is the per-tonne social cost [$/t], 𝑖𝐹 is intake fraction [ppm], 𝑃! is population weighted 

with an average plume (described below), and 𝐴! and 𝐴! are atmospheric variables. 𝛼,𝛽,  and 𝛾! 

are regression coefficients. For 𝐴!, we tried temperature [K], surface atmospheric pressure [hPa], 

wind speed [m/s], humidity [ppm], daily average precipitation [g/m3], cloud optical depth 

(dimensionless), and vertical diffusivity [m/s2]. The daily average precipitation (𝐴!), which is the 

precipitation water content [g/m3] in the CAMx surface layer of 38 m depth, can be converted 

from a common precipitation metric (𝑑) [mm]: 𝐴! = 26.3 ⋅ 𝑑. We used daily average value for 

each season for all Aj’s. Each season’s dataset was separately fitted per species. 

It is crucial and challenging to precisely describe an exposed population in a simple way. In 

general, PM2.5 and its precursors are transported hundreds of kilometers or more, so population 
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density in the source grid cell is insufficient by itself to characterize the exposed population. 

Population near the emissions source will be exposed to higher levels of pollutants than those 

further from the source. But the size of exposed population increases as air pollutants travel 

farther from the source though they may be exposed to lower concentrations. Since different 

species undergo different chemical processes, they also differ in how far downwind their impacts 

are felt, which make it more complicated to characterize the population exposure. Therefore, a 

successful approach for dealing with this should weight population nearer a source more heavily 

and should also differ by pollutant type. We developed two methods in Chapter 3: the population 

ring method and the average plume method. Though both methods worked well, the latter 

worked better and, therefore, we used the average plume method. 

An average plume resulting from a PM2.5 precursor describes the spatial distribution of PM2.5 

impacts around a generic emissions source, which accounts for transport, dispersion, chemical 

conversions, and removal over affected area. An average plume is computed for each precursor 

and season. To generate the average plume, the spatial distribution of PM2.5 impacts for all 50 

training samples were: 1) put on a common grid with the origin as the emissions source; 2) 

rotated so that the prevailing wind direction was in the x-direction; 3) normalized so each had the 

same net PM2.5 impacts. After these procedures, the 50 plumes are averaged to obtain a generic 

spatial distribution of PM2.5 impacts in a season for a given source. A weighted population, 𝑃! in 

Eqs. 2 and 3, is calculated by placing an average plume to a source location of interest after 

aligning dominant wind direction and summing the product a plume value with corresponding 

population cell by cell. 

We expected that it would be challenging to parameterize social cost and intake fraction when 

the inorganic species (SO2, NOx, and NH3) interact with each other through nonlinear acid-base 
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neutralization (Ansari and Pandis, 1998; Blanchard et al., 2000). For example, when ammonia, 

an important atmospheric base, is emitted, it may remain as a gas if sulfuric acid or nitric acid 

does not exist, forming no PM2.5. But if unneutralized sulfuric acid exists, ammonia neutralizes 

sulfuric acids, forming ammonium sulfate PM ( NH! !SO!). If excess ammonia exists after 

neutralizing sulfuric acid, it forms ammonium nitrate PM (NH!NO!), which is enhanced by low 

temperature and high relative humidity. What complicates the estimation of PM2.5 formation is 

that one mol of ammonia adds about 5 times more PM2.5 mass by forming ammonium nitrate PM 

than ammonium sulfate PM. Therefore, the same amount of emissions may form different 

amount of PM2.5 depending on the availability of ambient sulfur dioxide, nitrogen oxide, and 

ammonia. PM nitrate formation is common during wintertime in the eastern United States. In 

California, PM nitrate formation is common all the time because of NOx emissions from urban 

mobile sources mixed with ammonia emissions from large agricultural areas (Hand et al., 2012; 

Pitchford et al., 2009; Chow et al., 1994). Though the inorganic system is well understood 

(Ansari and Pandis, 1998; Blanchard et al., 2000; West et al., 1999), the PM2.5 formation is not 

easy to predict because of its nonlinear nature. 

Considering the complexity of inorganic PM2.5, we also tried as an atmospheric parameter (Ai 

in Eqs. 2-3) total sulfate (TS   ≡   SO!!! [mol/m3]), total nitrate (TN   ≡   HNO! + NO!! [mol/m3]), 

and total ammonia (TA   ≡   NH! + NH!! [mol/m3]). Two more parameters, the gas ratio (GR) and 

the adjusted gas ratio (adjGR), were also considered. GR(Ansari and Pandis, 1998) is an 

effective indicator describing the thermodynamic regime of the inorganic PM system as defined 

as follows: 

GR =
free  ammonia
total  nitrate =

TA− 2 ⋅ TS
TN  (4) 
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And, adjGR (Pinder et al., 2008a) is an indicator that is similar but better to describe conditions 

where sulfate is not fully neutralized. 

adjGR =
TA− DSN ⋅ TS

TN  (5) 

where DSN is the degree of sulfate neutralization (DSN ≡ ( NH!! − [NO!!])/[SO!!!]). When 

sulfate is fully neutralized, DSN = 2. 

We fitted Eqs. (2) and (3) with all the possible combinations of selected parameters. We used 

the Akaike information criterion (AIC) to select the best models. AIC, a measure of the relative 

regression performance, favors the goodness of fit but also penalizes for the number of 

parameters to discourage overfitting (Akaike, 1974). With the test 50 samples, we evaluated the 

chosen models with the model performance criteria suggested by Morris et al., (2005), which are 

commonly used to evaluate air quality models. The criteria are based on fractional bias and 

fractional error, which are defined as follows: 

Fractional  bias =
2
𝑁

𝑃! − 𝑂!
𝑃! + 𝑂!

!

!

 (6) 

Fractional  error =
2
𝑁

𝑃! − 𝑂!
𝑃! + 𝑂!

!

!

 (7) 

where 𝑃! is prediction, 𝑂! is CAMx-based estimate, and 𝑁 is the number of test samples. 

Performance is considered ‘excellent’ for fractional bias ≤ ±0.15 and fractional error ≤ 0.35, 

‘good’ for fractional bias ≤ ±0.3 and fractional error ≤ 0.5, and ‘average’ for fractional bias 

≤ ±0.6 and fractional error ≤ 0.75. We also report normalized mean bias and normalized mean 

error as defined below: 

Normalized  Mean  Bias =
(𝑃! − 𝑂!)!

!

𝑂!!
!

 (8) 
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Normalized  Mean  Error =
𝑃! − 𝑂!!

!

𝑂!!
!

 (9) 

 

4.2.4 Sensitivity of Air Quality Impacts to Emission Characteristics and 

Simulation Period 

We explored the sensitivities of public health impacts to several factors. First, how per-tonne 

social cost and intake fraction change over a range of emissions was explored to analyze the 

range where our results would remain valid because they may not remain linear above a certain 

range due to nonlinear atmospheric responses. Compared to what we have done in Chapter 3, we 

here analyzed more species for more time periods over a wider range of emissions. We ran 

simulations to include all inorganic species (EC, SO2, NOx, and NH3) for one month period per 

season by changing the perturbation size over a range of 𝐸×4! for 𝑖 = −4,… ,1, where 𝐸 is the 

annual average emissions of non-zero emissions CAMx grid cells. 

The other sensitivity analysis was done for the length of simulation time periods. We explored 

how social cost estimates at the 100 sample locations vary with the length of the CTM simulation 

to see how social cost and intake fraction converge over the time period. This can inform the 

variability of PM2.5 formation and associated health impacts over different time periods. In 

addition, it would provide a guideline for the appropriate length of CTM simulations relevant for 

public health impact analysis, showing what simulation length could represent a certain season or 

month. 

Lastly, the social costs of point sources are compared to those of area sources since point 

emissions are usually emitted at an elevated height and would have different consequences than 

area emissions. It is likely that emissions made at an elevated stack may result in lower marginal 
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damages compared to the same amount of emissions made at the ground level if emissions occur 

nearby densely populated areas since more PM2.5 may travel farther to less populated areas. 

Conversely, elevated emissions at less populated areas may results in higher marginal damages 

because PM2.5 may travel farther to reach more population downwind. CAMx point sources have 

various information such as location, stack height, stack diameter, stack exit temperature, and 

flow rate. Since it is not easy to evaluate how all these factors affect our results, we chose one 

case of having a median stack. The hypothetical stack has a height of 20 m, a diameter of 0.8 m, 

an exit temperature of 555 K, a flow rate of 45,000 m3/h. We ran additional simulations by 

adding this hypothetical stack at the training sample locations with the same additional emissions 

(𝐸/16) as in area emissions cases. We compared the social costs of point emissions to those of 

area emissions. 

4.3 Results and Discussion 

4.3.1 Average Plumes 

Figure 4.2 shows the average plumes of the four species for summer season. To give a sense of 

scale, they were put on a map with their center on Pittsburgh. A complete set of average plumes 

for all seasons together with cumulative distributions are presented in Figures C-18 to C-21. The 

average plumes show the general characteristics of an air pollutant’s dispersion and chemical 

conversion. The impacts of elemental carbon and ammonia emissions are nearer to the sources 

than sulfur dioxide and nitrogen oxides (i.e. 50% of EC and NH3 weights covers about 200-300 

km from source while 50% of SO2 and NOx covers 700-1000 km). Emitted directly as particle, 

EC travels less than the other gaseous PM precursors. Ammonia has a higher impact near the 

emissions source because ammonia gas partitions to the aqueous phase much more readily than 
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SO2 and NOx and, therefore, affects nearby source location more with dry depositions. The 

impact of sulfur dioxide and nitrogen oxides is more widely spread out because they need to 

undergo atmospheric oxidation to form PM2.5. All the plumes are skewed to the right from the 

aligned wind direction, which is caused by the rotation of the Earth, that is, the Coriolis effect. 

However, even the weight of elemental carbon and ammonia at the source cell (36 km × 36 

km) is less than 20% and a substantial fraction covers a large area. For example, the area 

covering 80% of the EC weight reaches about 700-1,000 km from source. The weight of NOx 

and SO2 at the source grid cell is only 1-3% and 80% of the weights reach about 2,000 km from 

source. Average plumes show that it is important to address the exposure PM2.5 levels that 

change over a large area. A little caveat is that average plumes are not directly translated to 

health damages. It still needs to account for where the population lies for a given source location 

as well as for regional differences in PM2.5 formation (i.e. PM2.5 formation would be different 

depending on atmospheric conditions). 

4.3.2 Generated Dataset of Social Cost and Intake Fraction 

Social costs and intake fractions calculated from CAMx simulations are presented in Figures 4.3 

and C-1. The summary statistics of social costs, intake fractions, and associated parameters of 

the sample locations are presented in Tables C-1 to C-8. The social costs and intake fractions 

show the seasonal and chemical characteristics of the species. The public health impacts of 

elemental carbon are much higher than those of others because EC is emitted directly as PM 

while others form PM chemically in the atmosphere. In winter, all the species show higher 

impacts as well as narrower variability, showing the role of low temperature in reducing the 

vertical mixing height, which makes air pollutants less diluted vertically in winter. Such a trend 
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is even stronger for NOx and NH3, which is due to more PM nitrate formation from cold 

temperature in wintertime. 

Correlation matrix plots of selected variables are presented in Figures C-2 to C-9. The maps of 

meteorological variables we used in parameterization—pressure, temperature, precipitation, 

wind speed, humidity, total sulfate, total nitrate, and total ammonia—are presented in Figures C-

10 to C17. Note that there was one negative social cost and one negative intake fraction for NOx 

in spring and summer. Because the number is small, we did not include them for simplicity in 

our regression as well as in the summary statistics. 

4.3.3 The EASIUR Model 

In Tables 4.1-4.8, we present one set of the EASIUR model for elemental carbon but two sets for 

inorganic species. One regression model set is ‘simple,’ having fewer parameters with more 

intuitive coefficients. With TS, TN, and TA as additional parameters, the other set has a ‘better-

fit’, having a better prediction performance but their coefficients are not intuitive because the 

additional parameters are correlated with other parameters. Though simpler models may be 

easier to use and better to understand the key mechanisms behind estimates, the better prediction 

would be more valuable in application. However, since the emissions of sulfur dioxide and 

nitrogen oxides are decreasing in recent years and expected to decrease substantially further in 

the future (Pinder et al., 2008b; U.S. EPA, 2011d), the “better-fit” models may not be used with 

input data from a different year because the presented models are tuned with TS, TN, and TA 

estimated from emissions in 2005. 

EC parameterizations for both social cost and intake fraction have a high goodness of fit as 

represented by the high adjusted R2 of mostly about 0.9 or higher as shown in Table 4.1 and 4.2. 

The scatter plot of out-of-sample evaluations for EC social cost models presented in Figure 4.4 
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shows the comparison between social costs estimated by regression models and those directly 

estimated from CAMx results for the 50 test sample locations. The independent test shows that 

the simple one-equation models predict the computationally expensive CTM-based estimates 

very well with tight prediction intervals less than a factor of two. The out-of-sample tests of all 

EC models meet the ‘excellent’ criteria. Additional scatter plots of out-of-sample evaluations 

together with those of comparing fitted values to CTM estimates are presented in Figure C-22 

and C-23. 

Parameterizations of SO2, NOx, and NH3 also show good performance in general. The high 

adjusted R2 values are mostly about 0.8 or higher, with the exception of winter and fall SO2 and 

NOx models, which were expected to be difficult due to their nonlinear nature. As shown in 

Figure 4.5, adding TS, TN, and TA improves the adjusted R2 for SO2 and NOx in winter and fall, 

which are the worst cases, as well as NH3 in spring and summer. Figure 4.6 and 4.7 present the 

out-of-sample evaluations for ‘simple’ and ‘better-fit’ models. The out-of-sample tests also show 

that the model performance improves with the additional parameters in the ‘better-fit’ models. 

Even with additional parameters, summer NOx models produce relatively high fractional errors, 

meeting the ‘good’ criteria. Note that social costs of NOx in summer tend to be low (i.e. the 

median value is just $690/t NOx) and, therefore, the high variability of NOx social cost estimates 

may not be a problem in policy analysis.  In addition, the out-of-sample test figure also shows 

that the worst cases are not unacceptable. Despite the lowest adjusted R2, the winter SO2 models 

predictions are mostly within a factor of two compared to CTM-based estimates and their 

prediction intervals are also tight, about a factor of two, comparable to other seasons. In spring 

and summer, when the nonlinear chemistry is weak, SO2 models perform better than NOx and 

NH3. As summarized in Figure 4.8, all the “better-fit” models meet the ‘excellent’ criteria except 
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that the NOx models in summer and fall meet the ‘good’ criteria. All the “simple” models are 

‘excellent’ or ‘good’ except for the summer NOx model. Additional scatter plots of out-of-

sample evaluations together with those of comparing fitted values to CTM estimates are 

presented in Figure C-24 and C-35. 

In most models, weighted population, temperature, and pressure appeared as very significant 

parameters. As expected, weighted population is positively correlated, representing the size of 

exposed population, which is shown in the correlation matrix plots in Figure C-2 to C-9. 

Exceptions are NOx and SO2 models in January (further discussed below). Temperature is 

strongly negatively correlated in all models except winter SO2 ‘simple’ model. This would be 

because the higher temperature the higher boundary mixing layer height, which results in more 

vertical dilution of PM2.5. Surface atmospheric pressure is positively correlated. The pressure 

values we used are not sea level adjusted and strongly correlated with surface elevation as can be 

seen in Figure C-10. This means that pressure is a proxy variable for population because 

population density is low not only in the mountainous areas such as the Rocky Mountains and 

the Appalachian Mountains but also in the high plateaus such as the Great Basin and the Great 

Plains while many densely populated urban areas are in coastal areas. The correlation plots show 

that pressure is correlated with weighted population. 

Precipitation, wind speed, and humidity appear in many parameterizations, though they are 

often not statistically significant. Precipitation generally has negative coefficients, indicating its 

role in wet deposition, the dominant PM2.5 removal mechanism. An exception is summer NH3 

models, which may be because precipitation keeps NH3 in the aqueous phase by suppressing 

active summertime NH3 volatilization from high temperature.  Wind speed generally has 

negative coefficients. Though it may be related with the role of wind in dispersion, wind speed 
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seems to be more negatively correlated with population density, as shown the consistent negative 

correlations with population variables in correlation plots. Figure C-13 also shows that the windy 

areas are located along the Rocky Mountains as well as some under-populated part of the 

Midwest. Humidity is generally positively correlated. This would also be related with population 

because coastal areas are more humid than mountainous areas, which is similar to pressure. 

However, humidity has a negative coefficient in all summer models, which would be because 

humidity is more positively related to precipitation rather than population and, therefore, 

indicates the PM removal from precipitation. Correlation plots show that humidity is positively 

correlated with pressure as well as weighted population and that humidity is most strongly 

positively correlated with precipitation in summer. Though not shown in results, we tried cloud 

optical depth for its potential role in photochemical processes but it did not appear statistically 

significant. We also tried interaction terms among variables, but the improvement was limited 

and they were not included. 

In ‘better fit’ models, total sulfate, total nitrate, and total ammonia are found to be significant 

parameters in many models. But their coefficients are difficult to interpret because they are 

correlated with each other as well as with weighted population, pressure, and humidity, as shown 

in the correlation matrix plots. The correlated parameters describe exposed population better as a 

whole. However, some of their signs remain reasonable. Their role looks partly correlated with 

atmospheric chemistry. TS has positive coefficients in NH3 models. Since ammonia neutralizes 

sulfate to form ammonium sulfate PM2.5, ammonia may form PM2.5 more easily if more sulfate is 

available. TS has negative coefficients in NOx models, which would be because sulfate would 

more readily react with ammonia, which would limit PM nitrate formation. 
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Adjusted R2 values of SO2 and NOx winter models are lower than those of others, though they 

meet the ‘excellent’ and ‘good’ criteria. This was expected due to the nonlinear thermodynamic 

system of inorganic species as discussed above. We tried the gas ratio, the adjusted gas ratio, and 

the degree of sulfate neutralization as parameter, but they did not substantially improve those 

model as well as others. Because SO2 and NOx affects a large span of area as can be seen in the 

shape of their average plumes, it may not be easy to estimate their PM2.5 formation with the gas 

ratio or the adjusted gas ratio at the source. We did not include them for simplicity and because 

the associated chemistry is also partly represented by TS, TN, and TA. 

We used the Akaike information criterion (AIC) as a measure to select a model specification 

from the combinations of selected parameters. As a summary, we presented the adjusted R2, 

fractional bias, and fractional error of each model candidates in Figures C-36 to C-43. Tables C-

9 to C-64 show seven model specifications having the lowest AIC for each parameterization. The 

figures and tables show the performance space where models vary over and how regressions 

improve with the inclusion of TS, TN, and TA. 

4.3.4 The Effect of the Size of Marginal Emissions 

Figure C-44 shows the results of our sensitivity simulations for the size of additional emissions, 

showing the range of “marginal” emissions, where estimates from our parameterizations remain 

constant. The results show that per-tonne social cost and intake fraction are not sensitive to the 

size of perturbation over a wide range. Elemental carbon did not change much for the entire 

range we tested, which is expected because elemental carbon is inert. For SO2, NOx, and NH3, 

they did not change much for the entire range of 𝐸 ⋅ 4!! or larger. Note that most values of 𝑆/𝑆 

deviated from one in Figure C-44 are caused by the big numerical noise at the lowest emissions 

size and, therefore, all the species have only one or two places that are not stable over the range. 
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For the smallest perturbation, 𝐸 ⋅ 4!!, they become unstable, with the exception of EC. This is 

because the size is small enough to go beyond the numerical precision of CAMx. Because social 

cost and intake fraction are not sensitive to the perturbation size, our parameterizations would 

work well for the range we have explored. Though the sensitivity test was done only for January 

and July, the result would be similar for April and October, which are meteorologically between 

January and July. 

4.3.5 Uncertainty and Variability within a Simulation Period 

Figures C-45 shows the relative PM2.5 level of each day throughout the simulation period, which 

presents what the variability of PM2.5 level created by the marginal emissions (𝐸 ⋅ 4!!) becomes. 

Figure C-46 and C-47 shows the PM2.5 levels and social costs relative to those at the end of each 

season. The figures show that EC and SO2 social costs mostly stay the same throughout each 

season with a variability of less than 30% or up to 50% in about 15 day of simulation. PM2.5 

levels from NOx and NH3 changes from 30% to 50% within a season time period. This would be 

because even within a season the sensitivity of PM nitrate formation changes. The change is 

most noticeable in spring for NOx and fall for NOx and NH3; in spring, PM nitrate formation 

become less common at the end of the season than the beginning, and in fall, vice versa. The 

variability of PM2.5 level from NOx and NH3 is generally larger when PM nitrate formation is 

common. The figures would be useful to find the uncertainty of our parameterizations for 

emissions at a specific time; for example, NOx estimates from the same NOx winter 

parameterization can be in fact different by a factor of two. In order to reduce the uncertainty, 

parameterizations can be derived in a finer time period, e.g. monthly instead of seasonal. The 

same analysis was done for intake fraction, but they showed essentially the same results and are 

not presented. 
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4.3.6 The Effect of Point Emissions Compared to Area Emissions 

We found that marginal damages from point sources with a common stack height (20 m) are very 

similar to those from area sources. Figure C-49 shows the comparison of social costs from area 

and point emissions (the intake fractions show the essentially same results and are not 

presented). EC estimates of point sources are about 6-9% less than those of area emissions. But 

point source estimates were virtually the same as area source estimates for other species. This is 

an expected result because once emitted or created PM2.5 spread out over a large area as shown in 

the shape of average plumes in Figure 4.2 and C-18 to C21. Therefore, point emissions would 

generally result in health effects similar to area emissions. 

However, our results may not be applicable to large emitters with tall stacks because the 20 m-

high hypothetical stack we added is just one typical case. Even though the stack represents a 

majority, 64%, of point sources in our emissions database by number, it accounts for only 5% of 

SO2 and 15% of NOx emissions in terms of the amount of emissions. In addition, those large 

emitters have much higher stack heights, which ranges from 90 m to 370 m. In order to evaluate 

the effect of stack characteristics of large point emitters such as power plants and industrial 

facilities, a more systematic sensitivity analysis for stack characteristics would be necessary. 

4.3.7 Generalization for VSL and Relative Risk 

Our analysis is based on the relative risk of 1.06, that is, 6% increase in mortality per 10-µμg/m! 

increase of PM2.5 concentrations, which was reported by Krewski et al. (2009) (Random effects 

Cox Model for all causes in Commentary Table 4). But Chapter 3.3.3 showed that for the range 

of the relative risk from 1.02 to 1.22, which covers the 95% confidence intervals of the relative 

risks reported by both Krewski et al. (2009) and Lepeule et al. (2012). The social cost can be 

adjusted by the following factor, 𝐹!: 
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𝐹! =
𝑆!
𝑆!.!"

= −15.1+ 15.2𝑅, (10) 

where 𝑅 is a relative risk of interest, 𝑆! is the social cost estimated with the relative risk 𝑅, and 

𝑆!.!" is the social cost estimated with the relative risk of 1.06. This is because the log-linear 

relation between PM2.5 and mortality is almost linear for a range of PM2.5 relevant to its effect on 

mortality. By multiplying 𝐹! to the social cost models presented above, social cost can be 

estimated for a wide range of relative risks. 

In addition, while the cohort of Krewski et al. (2009) is taken from the adult population aged 

30 or older, Lepeule et al. (2012) is based on the adult population of age 25 or older. But we 

previously also showed in Chapter 3.3.3 that the five-year age difference makes less than a 1% 

difference. The difference caused by the small difference in population cohort may be small 

enough to be ignored. 

Our analysis is based on $8M for the Value of a Statistical Life. Since VSL is just a multiplier, 

it is straightforward to generalize our parameterizations. It would need to multiply a factor, 𝐹!, 

defined in the following: 

𝐹! =
𝑉
$8M (11) 

U.S. EPA recommends the social cost be adjusted not only for inflation but also for income 

level (U.S. EPA, 2010). That is because as people get richer, they are willing to pay more to 

avoid of a premature death. For reference, we included US EPA’s standard GDP deflator and 

income growth adjustment factors in Table B-11. Our parameterizations are based on 1990 

income level. The social cost would need to be adjusted for income accordingly if necessary. 
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4.3.8 Major Sources of Uncertainty in EASIUR marginal damages 

There are five major sources of uncertainty or error affecting social cost and intake fraction 

estimated by our parameterizations: the quality of the chemical transport model, CAMx, itself; 

the uncertainty and errors introduced by the EASIUR regressions to capture CAMx results; the 

concentration-response relation; the value of a statistical life; and breathing rate. We discuss how 

these factors would affect our parameterizations here. Naturally, the concentration-response 

relationship and value of a statistical life affect the social costs whereas breathing rate affects the 

intake fraction. 

Air quality simulation is a complicated process that involves many uncertainties such as those 

associated with emissions inventory, meteorology input, and chemical and physical algorithms. 

Because of the computational burden of running CTMs, it is very difficult to quantify 

uncertainties using some of the systematic and rigorous approaches often applied (e.g. with the 

Monte Carlo method) and, therefore, the uncertainty of CTMs is usually reported by comparing 

CTM’s predictions against observations. According to the evaluation of our air quality modeling 

platform with monitoring network (U.S. EPA, 2011a), for sulfate and nitrate, the bias averaged 

over subregions (Northeast, Midwest, Southeast, and Central) between observation and 

prediction is 5-30% and, in some cases, up to 60%. For ammonium, the bias is 10-20%. For 

elemental carbon, there are over-predictions up to 100%, which is largely, however, due to the 

different definition of EC in CAMx and observations as well as emissions inventory (U.S. EPA, 

2011a). In addition, we use the CTM results in a relative manner, that is, comparing a base case 

and a perturbed case, which may sometimes reduce the bias introduced by CTMs when 

compared to comparisons between predictions and observations in absolute values (National 

Research Council, 2002). However, in general, a cautious approach would be to use the biases 
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and error of the CTM compared to observations as indicators of uncertainty in the CTM’s 

simulation of marginal changes in air quality. The 95% prediction intervals of EASIUR marginal 

estimates are generally about a factor of two or three depending on species and season, which is 

similar or larger than the size of differences between CAMx’s predictions and observations. 

(Prediction intervals presented in the regression results indicate the uncertainty range that a 

predicted value may lie within while confidence intervals show the uncertainty range of the mean 

of predicted values; prediction intervals are always larger than confidence intervals.) Therefore, 

the 95% prediction intervals of EASIUR marginal estimates would sufficiently represent the 

uncertainty introduced by air quality simulations. 

The concentration-response relation is also an important source of uncertainty for social cost 

estimates. Since we are relying on PM2.5 epidemiological studies on mortality, associated 

uncertainty could be explored by the confidence intervals of relative risks reported by the 

original studies. For example, Krewski et al. (2009) reported 0.04-0.08 for the 95% confidence 

intervals of the mean estimate of the relative risk, 0.06. Lepeule et al. (2012) reported the 

confidence intervals of 0.07-0.22 for the mean, 1.14. Using the linear relationship of Eq. (10), the 

range of uncertainty from the concentration response relation could be quantified. 

The value of a statistical life also needs to be addressed for social cost uncertainty. U.S. EPA 

(U.S. EPA, 2010) recommends using $8M VSL for benefit analysis, which is the central estimate 

from a Weibull distribution fitted with 26 value-of-life studies. A standard way of exploring VSL 

uncertainty would be a Monte Carlo method with the original Weibull distribution, parameters of 

which are location=0, scale=5.32 ⋅ 10!, and shape=1.51, for VSL in 1990 USD. 

Breathing rate is an important factor for quantifying intake fraction. Apte et al. (2012) showed 

that intake fraction varied 10-16% under a range of reasonable breathing rate assumptions 
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including a rate very similar to our chosen value. This range of uncertainty would also be 

relevant to our intake fraction models. In addition, U.S. EPA (2011c) provides detailed 

uncertainty ranges for breathing rate for different population subgroups, which could be used to 

quantify the uncertainty in detail. 

These uncertainties will play out differently in different applications, and users of these 

estimates should consider the following factors. First, how spatially distributed are the emissions 

in question? As discussed above, national average social costs will tend to have lower 

uncertainties than those for a single source at a specific location. Second, what are the key 

species driving social costs? Uncertainties in some species (e.g. NOx) will be larger than others. 

Third, do uncertainties in concentration-response and value of statistical life matter or do they 

cancel out? When ranking PM2.5 health damages from two different emissions scenarios, these 

factors and their uncertainties will cancel. When evaluating emissions control costs or other 

economic costs versus monetized health damages, these relatively large uncertainties matter. 

4.4 Applications and Comparisons 

4.4.1 The Burden of Air Quality Social Cost and Intake Fraction of the United 

States 

Using EASIUR, we have generated the map of annual per-tonne social cost and intake fraction in 

Figures 4.9 and 4.10 and seasonal maps in Figures C-50 to C-57. The social costs were 

calculated based on the relative risk of 1.06 and the VSL of $8.8M, which is obtained from 

adjusting the VSL of $8M for 2010 income level. The social costs and intake fractions in Canada 

and Mexico include the public health impact on U.S. population only. Note that the high social 

costs and intake estimates for NOx and SO2 in the maps may not be accurate because the size of 
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emissions from large NOx and SO2 point sources are beyond the range of “marginal” emissions 

we tested above. 

We compared the EASIUR estimates with APEEP, a commonly used database of social costs. 

Based on CRDM, a reduced-form air quality model, APEEP provides a per-ton social cost for 

every U.S. county. We generated the EASIUR estimates for each county and compared with 

their corresponding APEEP values, which is presented in Figure 4.11. We used the most recent 

APEEP values for area sources reported in Muller et al. (2011), which were adjusted for dollar 

year, metric tonne, and VSL. Note that AP2 (Muller, 2011) is a stochastic version of APEEP and 

that the mean values of AP2 estimates are similar to APEEP estimates. For EC, EASIUR and 

APEEP produce similar variability, though the EASIUR estimates are generally about two times 

higher than the APEEP. For other species, the spatial correlation between the two models is 

lower; especially, they were the most different for NOx. Since we have controlled for 

concentration-response function and valuation, the differences between APEEP and EASIUR are 

primarily attributable to their underlying air quality modeling systems. 

U.S. EPA estimates for area sources are shown in Figure 4-11, using data from Fann et al., 

(2012), which estimated per-ton social costs for 17 emissions sectors using CAMx PSAT. To 

compare to the EPA’s national-average values, we compute average social costs by averaging 

our spatially resolved results, weighted by emissions in each grid cell. U.S. EPA’s estimates are 

about two times bigger than the EASIUR averages for EC; 40% bigger for SO2; and 40% smaller 

for NOx. As both the EASIUR and Fann et al. (2012) values are derived from CTMs, both may 

be considered state-of-the-art. Therefore, even for nationally averaged social costs, we assign an 

uncertainty of approximately a factor of two. 
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We also analyzed the difference between EASIUR and APEEP spatially, as shown in Figure 

C-58. EASIUR generally produces larger estimates for EC except some parts of southern 

California. For SO2, EASIUR’s estimates are larger in the substantial part of the Midwest and the 

Southwest but smaller in many densely populated areas. For NOx, EASIUR produces larger 

values for the east but the smaller values for the west except near the coast. NH3 shows a trend 

similar to SO2, but the differences are generally larger. 

4.4.2 Application of EASIUR to Estimate the Social Costs of Emissions from 

Electricity Generation 

As an example application of EASIUR, the life cycle social costs of emissions from electricity 

generation were estimated. For comparison, they were also estimated with a recent version of 

APEEP (Muller et al., 2011) and compared with those estimated by EASIUR. The emissions of 

direct PM2.5, SO2, NOx, and NH3 from five categories associated with the life cycle of electricity 

generation were taken from the 2005 National Emissions Inventory 

(http://www.epa.gov/ttnchie1/net/2005inventory.html). The categories are power generation, 

energy pipelines, oil & gas extraction, coal mining, and petroleum refineries. Table C-65 shows 

the summary of emissions and Figures C-59 to C-63 shows the geographical distribution of 

emissions of four species (EC, SO2, NOx, and NH3) for each category. 

Since EASIUR’s marginal damages are provided on a 148x112 grid that covers the U.S., the 

location of each emission source from the inventory was matched to the corresponding EASIUR 

grid location. For APEEP, the location was matched to the corresponding APEEP county since 

APEEP’s marginal damages are provided on a county basis. The social costs were calculated by 

multiplying marginal damages from EASIUR and APEEP by the amount of each emission. Note 

that, strictly speaking, it is inaccurate to apply marginal damages from both EASIUR and 
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APEEP to a large total amount of emissions (i.e. entire emissions from a sector), but this is a 

rough approximation made elsewhere (National Research Council, 2010), and we adopt it here as 

well. The social costs from both models were adjusted to use the same VSL ($8.8M). Because 

EASIUR currently provides marginal damages only for area sources while APEEP provides 

marginal damages for point sources of three different height levels (0-250m, 250-500m, and 

>500m) in addition to area source, two estimates are made with APEEP: one with area source 

marginal damages for all emission categories and the other with 250-500m point source damages 

for power generation and petroleum refineries and area source damages for others. The first one 

is a fairer comparison between EASIUR and APEEP since it relies on area source damages from 

both models while the second one would produce more accurate damages of electricity 

generation for APEEP. 

Figure 4.12 summarizes the aggregate social costs of the life cycle of electricity generation. 

EASIUR produced generally larger estimates than APEEP. In Figure 4.12, APEEP Area is an 

estimate made based on area source marginal damages for all sectors and APEEP Point/Area is 

based on point source marginal damages for power generation and petroleum refineries and area 

source marginal damages for the other three sectors. EASIUR and APEEP produced similar 

estimates, $480B with EASIUR and $450B with APEEP Area, for the social cost of electricity 

generation. Power generation dominates the social costs, accounting for ~95% of the total values. 

The similarity of the two estimates is probably in part fortuitous. We saw earlier (Section 4.3.9 

and Figure 4.11) that EASIUR and APEEP produced very similar social cost estimates for SO2 

on average compared to other species. Since SO2 from power generation dominates the social 

costs in both cases (accounting for 68% and 81% of total damages estimated by EASIUR and 
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APEEP Area, respectively), the totals largely reflect their agreement for SO2. However, 

estimates for other species are more different. 

Comparisons of aggregate social cost by species and sector are summarized in and Tables 4.10 

and 4.11. Both tables contain the same estimates for EASIUR while Table 4.11 is based on 

APEEP point source estimates for power generation and petroleum refineries. In Table 4.10, 

while APEEP produced only 10% bigger estimates for SO2 than EASIUR, it produced 51% less 

for EC, 47% less for NOX, and 55% larger for NH3. In Table 4.11, where APEEP’s point source 

estimates are used for power generation and petroleum refineries, APEEP produced a 

substantially lower estimate of social costs: $290B for the aggregate damages. APEEP produced 

26% less estimates for SO2 than EASIUR, but 78% less for EC, 57% less for NOX, and 47% less 

for NH3. Future work will have to investigate whether EASIUR social costs decrease by a similar 

amount when elevated sources are accounted for. 

The results suggest that differences between EASIUR and APEEP are likely around a factor of 

two even when averaged over emissions in each category. However, the difference would be 

substantially bigger when comparisons are made at a subregional level. Figures C-64 to C-70 

compares the social costs of EASIUR and APEEP at emission locations for each category. The 

figures show EASIUR produces systematically higher estimates for EC than APEEP in most 

locations. However, EASIUR and APEEP compare differently depending on regions for other 

species. 

Depending on geographical distribution of emissions, the comparisons between the two 

models vary substantially. Despite the different marginal damages from the two models, SO2 

emissions are made across the domain as shown in Figure C-68, canceling out the spatial 

differences when averaged. However, emissions from limited geographical areas produce 
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substantially different results. The large aggregate difference for NH3 from oil and gas 

extraction, APEEP’s being 750% higher than EASIUR, is found because emissions are 

concentrated in California as (Figure C-61), where APEEP provides much bigger marginal 

damages than EASIUR (Figure C-66). The social costs of NOx from oil & gas extraction is also 

quite different those of other sector NOx emissions. While APEEP generally produced 61-37% 

smaller social costs for NOx than EASIUR, APEEP produced 30% larger social costs for NOx 

from the oil and gas extraction. This is because the majority of emissions are made in areas like 

South Central regions (Figure C-61). Therefore, while national average social cost estimates 

probably have an overall uncertainty of approximately a factor of two, more specialized 

applications for problematic species (e.g. NH3) over limited regions may be uncertain by a factor 

of 6-8. 

APEEP’s estimates based on point source estimates suggest that EASIUR needs to address the 

elevation of point sources more rigorously. The sensitivity simulations in this work (Section 

4.3.6) showed that 20 m-high point sources produced virtually the same social costs as area 

sources. However, the difference may be substantial for a higher elevation (e.g. 200 m or higher, 

which is relevant for power plants and industrial facilities). At a location that is closer to densely 

populated areas and, therefore, has high marginal social costs, marginal damages for a high point 

source would be lower because elevated emissions may transport PM2.5 farther and population 

exposure nearby the location would be lower than area emissions. Conversely, elevated 

emissions where nearby population is not big may result in causing more damages farther from 

the source. In short, in a future work, EASIUR would need to address the effect of emission 

height more rigorously. 
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4.5 Conclusions 

We presented a set of parameterizations for estimating the public health impacts of air quality, 

which was derived by the Estimating Air pollution Social Impacts Using Regression (EASIUR) 

method. The parameterizations can estimate the per-tonne social costs and intake fractions for 

four inorganic species (elemental carbon, sulfur dioxide, nitrogen oxides, and ammonia) 

anywhere in the United States. The predictions are similar to a chemical transport model (CTM), 

but do not have the associated high computational burdens. The EASIUR method derives the 

parameterizations by (1) generating per-tonne social costs and intake fractions at 100 

representative sample locations from a set of  “tagged” CTM simulations; (2) building a 

normalized average plume per species for each season from CTM results, which is a generic 

shape of PM2.5 plume created by the “marginal” emissions of PM2.5 precursors; and (3) deriving 

parameterizations from linear regressions on social costs and intake fractions with population 

weighted by the average plume and common atmospheric variables. Regression models show a 

high goodness of fit, 0.9 or higher in most cases, and the predictions intervals of estimates are 

tight, generally within a factor of two or smaller. 

We provided two sets of parameterizations: ‘simple’ and ‘better-fit.’ The ‘simple’ models are 

parameterized with weighted population, temperature, pressure, precipitation, wind speed, and 

humidity. Weighted population using an average plume of a specific PM2.5 precursor and season 

characterizes well the dispersion and chemical conversions of air pollutants. Temperature 

explains the role of governing the vertical mixing height. Precipitation explains the PM2.5 

removal by precipitation. However, though there are some exceptions such as humidity in 

summer models, pressure, wind speed, and humidity represent the population density rather than 

atmospheric chemistry, as shown in their correlation with population variables. The ‘better-fit’ 
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models additionally have the parameters of total sulfate (TS), total nitrogen (TN), and total 

ammonia (TA). While ‘better-fit’ models predict better than ‘simple’ models, plugging-in data 

from a different year may produce biased results because they are tuned to the TS, TN, and TA 

of year 2005, which are expected to change substantially in future years in the United States 

(Pinder et al., 2008b; U.S. EPA, 2011d). 

It was shown that marginal damages from EASIUR are substantially different (i.e. a factor of 

two or much more) from those from APEEP, a current popular tool, depending on species and 

location. Though the two models may produce similar aggregate social cost estimates for 

emissions made over a geographically large region (e.g. a national level), they may result in 

different policy implications for emissions made at a sub-regional level (e.g. a state level or 

smaller). 

The EASIUR models showed that the performance of state-of-the-science chemical transport 

models could be tapped to policy analysis without computational burdens. Moreover, model 

users would not have to treat the parameterizations as a black box because the coefficients of 

model parameters are intuitive, describing underlying key mechanisms. We hope that the 

parameterizations in this work will be of a great use in policy research that involves changes in 

air quality. We included a User’s Guide for the EASIUR model in Appendix D. 
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Figure 4.1: The domain of air quality simulation and the selected sample locations. CAMx simulated this
domain in a 148×112 grid that has a horizontal cell size of 36 km×36 km. The sample locations were
randomly selected based on the size of population where population is not zero. The training samples
were used to build regression models and the test samples for out-of-sample evaluation.
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(c) NOx: average plume weight
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(d) NH3: average plume weight

Figure 4.2: Average plumes for summer. PM2.5 concentrations or plumes of the training samples were
aligned by wind direction to the same direction (the arrow in the figure) and normalized so that they sum
to one. To give a sense of scale, the center of a plume is put on Pittsburgh.
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Figure 4.3: Social costs at the 100 sample locations. The bottom and top of the box are the first and third
quartile, and the red band inside the box indicates median. Whiskers show 1.5 × IQR (interquartile range)
below the first quartile and beyond the third quartile.
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Figure 4.4: Out-of-sample evaluation of EC social cost models. Dashed lines indicate a factor of two and
solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars show
95% confidence intervals.
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Chapter 4. Parameterization of Social Costs of Elemental Carbon and Inorganic Particulate Matter Precursors

Table 4.1: EC social cost model regression results.

Variable Winter Spring Summer Fall

Intercept 86⋆⋆ 72⋆⋆⋆ 73⋆⋆⋆ 72⋆⋆⋆

(25) (13) (10) (20)

ln (Weighted Population) 0.61⋆⋆⋆ 0.72⋆⋆⋆ 0.74⋆⋆⋆ 0.60⋆⋆⋆

[# of people] (0.047) (0.035) (0.034) (0.052)

ln (Temperature) −20⋆⋆⋆ −19⋆⋆⋆ −19⋆⋆⋆ −17⋆⋆⋆

[K] (5.0) (2.4) (2.0) (3.8)

ln (Pressure) 3.7⋆⋆⋆ 5.4⋆⋆⋆ 6.0⋆⋆⋆ 3.1⋆⋆⋆

[hPa] (0.64) (0.65) (0.52) (0.78)

ln (Humidity) 0.70⋆ 0.37⋆ - 0.64⋆

[ppm] (0.30) (0.15) - (0.30)

Adj. R2 0.92 0.97 0.97 0.90
Fractional Bias 0.11 0.057 0.0034 0.10
Fractional Error 0.19 0.19 0.16 0.21
Normalized Mean Bias 0.052 −0.0066 −0.039 0.025
Normailzed Mean Error 0.19 0.16 0.13 0.17
95% PIa [0.61, 1.64] [0.67, 1.49] [0.67, 1.49] [0.60, 1.68]

95% CIa [0.86, 1.17] [0.88, 1.14] [0.89, 1.12] [0.85, 1.17]

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, Weighted Population: population

(≥ age 30) weighted by average plume, Ṕrecipitation = precipitation + 0.0002 (shifted for log transformation),

Winter ≡ Januanry + February + March, Spring ≡ April + May + June, Summer ≡ July + August + September,

Winter ≡ October + November + December, a Average intervals relative to predicted value.
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Table 4.2: EC intake fraction model regression results.

Variable Winter Spring Summer Fall

Intercept 74⋆⋆ 46⋆⋆⋆ 54⋆⋆⋆ 25⋆

(26) (9.9) (13) (12)

ln (Weighted Population) 0.65⋆⋆⋆ 0.76⋆⋆⋆ 0.80⋆⋆⋆ 0.66⋆⋆⋆

[# of people] (0.048) (0.036) (0.032) (0.057)

ln (Temperature) −19⋆⋆⋆ −16⋆⋆⋆ −17⋆⋆⋆ −9.2⋆⋆⋆

[K] (5.2) (2.0) (2.3) (2.5)

ln (Pressure) 2.9⋆⋆⋆ 5.5⋆⋆⋆ 5.8⋆⋆⋆ 2.9⋆⋆⋆

[hPa] (0.65) (0.57) (0.57) (0.79)

ln (Humidity) 0.70⋆ - −0.30⋆ -
[ppm] (0.31) - (0.13) -

Adj. R2 0.91 0.97 0.97 0.88
Fractional Bias 0.10 0.064 −0.0036 0.085
Fractional Error 0.19 0.19 0.16 0.21
Normalized Mean Bias 0.029 −0.014 −0.056 −0.011
Normailzed Mean Error 0.21 0.16 0.14 0.20
95% PIa [0.60, 1.66] [0.66, 1.51] [0.68, 1.46] [0.57, 1.76]

95% CIa [0.85, 1.17] [0.89, 1.13] [0.89, 1.13] [0.85, 1.18]

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, Weighted Population:

population weighted by average plume, Ṕrecipitation = precipitation + 0.0002 (shifted for log transformation),

Winter ≡ Januanry + February + March, Spring ≡ April + May + June, Summer ≡ July + August + September,

Winter ≡ October + November + December, a Average intervals relative to predicted value.
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Chapter 4. Parameterization of Social Costs of Elemental Carbon and Inorganic Particulate Matter Precursors

Table 4.3: SO2 social cost model regression results.

Variable
Simple Better-fit

Winter Spring Summer Fall Winter Spring Summer Fall

Intercept 86⋆ 120⋆⋆⋆ 110⋆⋆⋆ 92⋆⋆⋆ 77⋆ 89⋆⋆⋆ 76⋆⋆⋆ 150⋆⋆⋆

(38) (12) (11) (20) (34) (12) (13) (19)

ln (Popw) - 0.40⋆⋆⋆ 0.54⋆⋆⋆ 0.19⋆ - 0.34⋆⋆⋆ 0.45⋆⋆⋆ 0.54⋆⋆⋆

[# of people] - (0.050) (0.059) (0.089) - (0.060) (0.076) (0.099)

ln (Temp) −19⋆ −28⋆⋆⋆ −26⋆⋆⋆ −21⋆⋆⋆ −14⋆ −23⋆⋆⋆ −19⋆⋆⋆ −35⋆⋆⋆

[K] (7.5) (2.2) (2.0) (3.8) (6.8) (2.4) (2.8) (4.0)

ln (Pres) 3.0⋆⋆⋆ 6.3⋆⋆⋆ 6.3⋆⋆⋆ 3.9⋆⋆⋆ - 6.2⋆⋆⋆ 6.8⋆⋆⋆ 5.1⋆⋆⋆

[hPa] (0.79) (0.54) (0.51) (0.79) - (0.58) (0.55) (0.67)

ln (Prec) - −0.052⋆ −0.064⋆⋆ - - - - −0.10⋆

[g/m3] - (0.025) (0.022) - - - - (0.041)

ln (Wind) −0.14+ −0.070⋆ - 0.10 −0.15⋆ −0.074⋆ - -
[m/s] (0.069) (0.030) - (0.069) (0.071) (0.029) - -

ln (Humi) 0.96⋆ 0.50⋆⋆⋆ - 0.85⋆⋆ 1.0⋆ 0.30⋆ −0.71⋆⋆ 1.9⋆⋆⋆

[ppm] (0.45) (0.14) - (0.29) (0.43) (0.13) (0.22) (0.30)

ln (TS) - - - - −0.25⋆ - 0.32⋆ −0.58⋆⋆⋆

[µmol/m3] - - - - (0.11) - (0.13) (0.11)

ln (TN) - - - - 0.47⋆⋆⋆ 0.094+ - -
[µmol/m3] - - - - (0.090) (0.049) - -

ln (TA) - - - - −0.24⋆ −0.092⋆⋆ −0.10⋆⋆ -
[µmol/m3] - - - - (0.11) (0.033) (0.031) -

Adj. R2 0.38 0.95 0.93 0.69 0.54 0.96 0.95 0.81
F. Bias 0.10 0.13 0.0051 0.083 0.00087 0.13 0.063 −0.0084
F. Error 0.28 0.24 0.21 0.24 0.26 0.24 0.21 0.25
N. Bias 0.016 0.12 −0.11 0.023 −0.081 0.10 −0.034 −0.081
N. Error 0.30 0.30 0.26 0.26 0.28 0.30 0.25 0.27
95% PIa [0.48, 2.08] [0.72, 1.38] [0.68, 1.48] [0.60, 1.66] [0.53, 1.90] [0.73, 1.38] [0.69, 1.44] [0.67, 1.50]

95% CIa [0.80, 1.26] [0.89, 1.13] [0.89, 1.13] [0.83, 1.20] [0.79, 1.26] [0.88, 1.13] [0.87, 1.15] [0.86, 1.17]

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, Popw: population (≥ age 30) weighted by average plume,

Pres: pressure, Temp: temperature, Prec = precipitation + 0.0002 (shifted for log transformation), Wind: wind speed, Humi: humidity, TS: total

sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], F.

Bias: fractional bias, F. Error: fractional error, N. Bias: normalized mean bias, N. Error: normalized mean error, Winter ≡ Januanry + February +

March, Spring ≡ April + May + June, Summer ≡ July + August + September, Winter ≡ October + November + December.
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Table 4.4: NOx social cost model regression results.

Variable
Simple Better-fit

Winter Spring Summer Fall Winter Spring Summer Fall

Intercept 55⋆⋆ 150⋆⋆⋆ 200⋆⋆⋆ 100⋆⋆⋆ 99⋆ 76⋆⋆⋆ 180⋆⋆⋆ 170⋆⋆⋆

(17) (24) (30) (25) (40) (16) (28) (36)

ln (Popw) 0.37⋆⋆ 0.98⋆⋆⋆ 1.1⋆⋆⋆ 0.59⋆⋆ 0.36⋆⋆ 0.63⋆⋆⋆ 0.65⋆⋆ 0.95⋆⋆⋆

[# of people] (0.13) (0.10) (0.19) (0.18) (0.11) (0.094) (0.21) (0.17)

ln (Temp) −19⋆⋆⋆ −40⋆⋆⋆ −51⋆⋆⋆ −29⋆⋆⋆ −23⋆⋆ −21⋆⋆⋆ −41⋆⋆⋆ −45⋆⋆⋆

[K] (3.4) (4.5) (5.7) (5.1) (8.0) (3.3) (5.9) (7.3)

ln (Pres) 8.1⋆⋆⋆ 9.6⋆⋆⋆ 12⋆⋆⋆ 8.8⋆⋆⋆ 4.1⋆⋆ 6.9⋆⋆⋆ 7.1⋆⋆⋆ 8.1⋆⋆⋆

[hPa] (1.3) (1.2) (1.5) (1.5) (1.5) (1.0) (1.9) (1.6)

ln (Prec) - - −0.12+ - - 0.079+ −0.17⋆⋆ -
[g/m3] - - (0.066) - - (0.040) (0.063) -

ln (Wind) - −0.084 - 0.24 - −0.088 −0.24⋆ 0.21+

[m/s] - (0.062) - (0.15) - (0.053) (0.12) (0.12)

ln (Humi) - 0.85⋆⋆ - - 0.88+ - - 1.9⋆⋆

[ppm] - (0.27) - - (0.50) - - (0.56)

ln (TS) - - - - −0.48⋆⋆⋆ - - −0.95⋆⋆⋆

[µmol/m3] - - - - (0.13) - - (0.19)

ln (TN) - - - - 0.50⋆⋆⋆ 0.55⋆⋆⋆ 0.38⋆⋆ -
[µmol/m3] - - - - (0.097) (0.080) (0.11) -

ln (TA) - - - - - −0.20⋆⋆ - 0.31⋆⋆

[µmol/m3] - - - - - (0.064) - (0.092)

Adj. R2 0.72 0.94 0.86 0.65 0.82 0.96 0.88 0.79
F. Bias 0.25 0.17 0.11 0.22 0.061 0.12 0.068 −0.020
F. Error 0.36 0.33 0.49 0.36 0.27 0.28 0.47 0.38
N. Bias 0.25 0.25 −0.068 0.23 −0.016 0.14 −0.20 −0.063
N. Error 0.38 0.50 0.69 0.42 0.23 0.37 0.51 0.41
95% PIa [0.38, 2.63] [0.48, 2.09] [0.32, 3.13] [0.33, 3.05] [0.45, 2.23] [0.57, 1.77] [0.35, 2.86] [0.41, 2.42]

95% CIa [0.75, 1.35] [0.78, 1.30] [0.70, 1.44] [0.69, 1.48] [0.74, 1.36] [0.81, 1.24] [0.68, 1.49] [0.70, 1.45]

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, Popw: population (≥ age 30) weighted by average plume,

Pres: pressure, Temp: temperature, Prec = precipitation + 0.0002 (shifted for log transformation), Wind: wind speed, Humi: humidity, TS: total

sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], F.

Bias: fractional bias, F. Error: fractional error, N. Bias: normalized mean bias, N. Error: normalized mean error, Winter ≡ Januanry + February +

March, Spring ≡ April + May + June, Summer ≡ July + August + September, Winter ≡ October + November + December.
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Table 4.5: NH3 social cost model regression results.

Variable
Simple Better-fit

Winter Spring Summer Fall Winter Spring Summer Fall

Intercept 190⋆⋆⋆ 99⋆⋆ 54⋆ 210⋆⋆⋆ 160⋆⋆⋆ 89⋆⋆⋆ 75⋆⋆ 160⋆⋆⋆

(32) (35) (27) (31) (30) (16) (23) (25)

ln (Popw) 0.81⋆⋆⋆ 0.90⋆⋆⋆ 0.78⋆⋆⋆ 0.64⋆⋆⋆ 0.77⋆⋆⋆ 0.81⋆⋆⋆ 0.81⋆⋆⋆ 0.50⋆⋆⋆

[# of people] (0.077) (0.10) (0.10) (0.075) (0.075) (0.058) (0.085) (0.069)

ln (Temp) −41⋆⋆⋆ −22⋆⋆ −15⋆⋆ −43⋆⋆⋆ −34⋆⋆⋆ −18⋆⋆⋆ −18⋆⋆⋆ −31⋆⋆⋆

[K] (6.5) (6.5) (5.1) (5.8) (6.1) (3.2) (4.4) (4.9)

ln (Pres) 4.0⋆⋆⋆ 2.4 4.8⋆⋆⋆ 3.5⋆⋆ 3.4⋆⋆⋆ 2.7⋆ 4.5⋆⋆ 2.0+

[hPa] (0.88) (1.7) (1.3) (0.99) (0.89) (1.0) (1.4) (1.0)

ln (Prec) −0.26⋆ - 0.21⋆⋆ −0.14⋆ −0.19+ - 0.16⋆⋆ -
[g/m3] (0.10) - (0.061) (0.064) (0.099) - (0.055) -

ln (Wind) −0.11+ −0.13 −0.31⋆⋆ −0.21⋆ - −0.13⋆ −0.17⋆ −0.12
[m/s] (0.059) (0.090) (0.11) (0.086) - (0.050) (0.085) (0.083)

ln (Humi) 1.7⋆⋆⋆ 0.93⋆ - 1.9⋆⋆⋆ 1.2⋆⋆ - - 1.2⋆⋆

[ppm] (0.40) (0.39) - (0.41) (0.39) - - (0.37)

ln (TS) - - - - 0.37⋆⋆⋆ 1.3⋆⋆⋆ 0.84⋆⋆⋆ 0.44⋆⋆⋆

[µmol/m3] - - - - (0.097) (0.12) (0.20) (0.12)

ln (TN) - - - - - −0.24⋆⋆ −0.24⋆ -
[µmol/m3] - - - - - (0.077) (0.097) -

ln (TA) - - - - −0.12+ −0.33⋆⋆⋆ −0.32⋆⋆⋆ -
[µmol/m3] - - - - (0.068) (0.058) (0.064) -

Adj. R2 0.90 0.83 0.85 0.88 0.92 0.95 0.92 0.90
F. Bias −0.030 −0.25 −0.23 −0.0039 0.037 0.075 −0.048 0.081
F. Error 0.33 0.35 0.40 0.39 0.25 0.21 0.21 0.31
N. Bias −0.22 −0.45 −0.45 −0.26 −0.11 0.013 −0.14 −0.14
N. Error 0.34 0.46 0.48 0.41 0.24 0.17 0.19 0.31
95% PIa [0.53, 1.89] [0.35, 2.90] [0.36, 2.76] [0.52, 1.93] [0.56, 1.79] [0.57, 1.75] [0.46, 2.19] [0.54, 1.84]

95% CIa [0.79, 1.27] [0.70, 1.44] [0.72, 1.40] [0.79, 1.27] [0.80, 1.26] [0.81, 1.24] [0.73, 1.39] [0.79, 1.27]

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, Popw: population (≥ age 30) weighted by average plume,

Pres: pressure, Temp: temperature, Prec = precipitation + 0.0002 (shifted for log transformation), Wind: wind speed, Humi: humidity, TS: total

sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], F.

Bias: fractional bias, F. Error: fractional error, N. Bias: normalized mean bias, N. Error: normalized mean error, Winter ≡ Januanry + February +

March, Spring ≡ April + May + June, Summer ≡ July + August + September, Winter ≡ October + November + December.

152



Table 4.6: SO2 intake fraction model regression results.

Variable
Simple Better-fit

Winter Spring Summer Fall Winter Spring Summer Fall

Intercept −20⋆⋆⋆ 110⋆⋆⋆ 100⋆⋆⋆ 64⋆ 59 88⋆⋆⋆ 66⋆⋆⋆ 59⋆⋆

(5.3) (14) (11) (25) (43) (18) (15) (21)

ln (Popw) - 0.44⋆⋆⋆ 0.60⋆⋆⋆ 0.20+ - 0.46⋆⋆⋆ 0.56⋆⋆⋆ 0.44⋆⋆⋆

[# of people] - (0.057) (0.062) (0.11) - (0.084) (0.079) (0.11)

ln (Temp) - −28⋆⋆⋆ −26⋆⋆⋆ −18⋆⋆⋆ −13 −25⋆⋆⋆ −19⋆⋆⋆ −17⋆⋆⋆

[K] - (2.5) (2.1) (4.6) (8.5) (3.6) (3.0) (4.8)

ln (Pres) 2.7⋆⋆ 6.4⋆⋆⋆ 5.9⋆⋆⋆ 3.9⋆⋆⋆ - 6.3⋆⋆⋆ 6.5⋆⋆⋆ 2.9⋆⋆

[hPa] (0.78) (0.61) (0.53) (0.94) - (0.63) (0.65) (1.0)

ln (Prec) - −0.082⋆⋆ −0.11⋆⋆⋆ - - −0.050 −0.044 -
[g/m3] - (0.028) (0.024) - - (0.032) (0.033) -

ln (Wind) - −0.047 - 0.12 −0.20⋆ −0.068⋆ 0.070+ -
[m/s] - (0.033) - (0.083) (0.089) (0.033) (0.041) -

ln (Humi) - 0.39⋆ - 0.67+ 1.0+ 0.41+ −0.71⋆ 1.1⋆⋆

[ppm] - (0.15) - (0.35) (0.55) (0.21) (0.27) (0.32)

ln (TS) - - - - −0.42⋆⋆ −0.17+ 0.30⋆ −0.55⋆⋆⋆

[µmol/m3] - - - - (0.14) (0.093) (0.13) (0.11)

ln (TN) - - - - 0.51⋆⋆⋆ 0.096 - 0.28⋆⋆

[µmol/m3] - - - - (0.11) (0.063) - (0.089)

ln (TA) - - - - −0.26+ −0.079+ −0.11⋆⋆ −0.15⋆

[µmol/m3] - - - - (0.14) (0.042) (0.032) (0.071)

Adj. R2 0.19 0.94 0.93 0.58 0.41 0.95 0.95 0.77
F. Bias 0.049 0.14 0.0085 0.083 −0.030 0.11 0.052 −0.039
F. Error 0.26 0.23 0.21 0.25 0.29 0.24 0.22 0.26
N. Bias −0.046 0.16 −0.085 0.024 −0.11 0.10 −0.026 −0.10
N. Error 0.30 0.31 0.25 0.27 0.32 0.29 0.26 0.27
95% PIa [0.40, 2.47] [0.69, 1.44] [0.66, 1.51] [0.55, 1.83] [0.44, 2.25] [0.70, 1.42] [0.69, 1.46] [0.64, 1.57]

95% CIa [0.84, 1.19] [0.88, 1.14] [0.88, 1.14] [0.81, 1.25] [0.75, 1.34] [0.86, 1.16] [0.86, 1.17] [0.84, 1.20]

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, Popw: population weighted by average plume, Pres:

pressure, Temp: temperature, Prec = precipitation + 0.0002 (shifted for log transformation), Wind: wind speed, Humi: humidity, TS: total sulfate

(≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], F. Bias:

fractional bias, F. Error: fractional error, N. Bias: normalized mean bias, N. Error: normalized mean error, Winter ≡ Januanry + February +

March, Spring ≡ April + May + June, Summer ≡ July + August + September, Winter ≡ October + November + December.
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Table 4.7: NOx intake fraction model regression results.

Variable
Simple Better-fit

Winter Spring Summer Fall Winter Spring Summer Fall

Intercept 38⋆ 140⋆⋆⋆ 200⋆⋆⋆ 83⋆⋆ 86⋆ 77⋆⋆⋆ 180⋆⋆⋆ 130⋆⋆

(18) (25) (34) (27) (40) (16) (32) (38)

ln (Popw) 0.39⋆⋆ 1.1⋆⋆⋆ 1.1⋆⋆⋆ 0.61⋆⋆ 0.40⋆⋆⋆ 0.71⋆⋆⋆ 0.61⋆ 0.89⋆⋆⋆

[# of people] (0.14) (0.11) (0.21) (0.20) (0.11) (0.100) (0.24) (0.18)

ln (Temp) −17⋆⋆⋆ −39⋆⋆⋆ −52⋆⋆⋆ −27⋆⋆⋆ −23⋆⋆ −23⋆⋆⋆ −40⋆⋆⋆ −36⋆⋆⋆

[K] (3.6) (4.6) (6.4) (5.4) (8.1) (3.4) (6.7) (8.3)

ln (Pres) 7.4⋆⋆⋆ 9.7⋆⋆⋆ 11⋆⋆⋆ 8.4⋆⋆⋆ 3.8⋆ 6.6⋆⋆⋆ 6.3⋆⋆ 6.4⋆⋆

[hPa] (1.3) (1.3) (1.7) (1.6) (1.5) (1.1) (2.1) (1.9)

ln (Prec) - - −0.16⋆ - - - −0.22⋆⋆ -
[g/m3] - - (0.074) - - - (0.071) -

ln (Wind) - - - 0.26 - −0.086 −0.25+ -
[m/s] - - - (0.16) - (0.054) (0.13) -

ln (Humi) - 0.67⋆ - - 1.0⋆ - - 1.6⋆⋆

[ppm] - (0.29) - - (0.50) - - (0.56)

ln (TS) - - - - −0.62⋆⋆⋆ - - −1.1⋆⋆⋆

[µmol/m3] - - - - (0.13) - - (0.19)

ln (TN) - - - - 0.53⋆⋆⋆ 0.53⋆⋆⋆ 0.43⋆⋆ 0.35⋆⋆

[µmol/m3] - - - - (0.098) (0.084) (0.13) (0.11)

ln (TA) - - - - - −0.19⋆⋆ - -
[µmol/m3] - - - - - (0.065) - -

Adj. R2 0.68 0.93 0.82 0.61 0.81 0.96 0.85 0.79
F. Bias 0.24 0.17 0.090 0.21 0.028 0.14 0.040 −0.038
F. Error 0.34 0.34 0.52 0.38 0.27 0.29 0.48 0.40
N. Bias 0.24 0.29 −0.100 0.23 −0.047 0.21 −0.23 −0.099
N. Error 0.37 0.55 0.72 0.45 0.24 0.40 0.52 0.43
95% PIa [0.36, 2.77] [0.46, 2.16] [0.28, 3.60] [0.31, 3.25] [0.44, 2.25] [0.55, 1.83] [0.31, 3.27] [0.42, 2.40]

95% CIa [0.74, 1.37] [0.78, 1.29] [0.67, 1.51] [0.67, 1.51] [0.74, 1.36] [0.80, 1.25] [0.65, 1.56] [0.72, 1.41]

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, Popw: population weighted by average plume, Pres:

pressure, Temp: temperature, Prec = precipitation + 0.0002 (shifted for log transformation), Wind: wind speed, Humi: humidity, TS: total sulfate

(≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], F. Bias:

fractional bias, F. Error: fractional error, N. Bias: normalized mean bias, N. Error: normalized mean error, Winter ≡ Januanry + February +

March, Spring ≡ April + May + June, Summer ≡ July + August + September, Winter ≡ October + November + December.
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Table 4.8: NH3 intake fraction model regression results.

Variable
Simple Better-fit

Winter Spring Summer Fall Winter Spring Summer Fall

Intercept 180⋆⋆⋆ 110⋆⋆ 50+ 190⋆⋆⋆ 150⋆⋆⋆ 80⋆⋆⋆ 23 170⋆⋆⋆

(29) (34) (26) (27) (28) (17) (30) (27)

ln (Popw) 0.83⋆⋆⋆ 1.0⋆⋆⋆ 0.84⋆⋆⋆ 0.67⋆⋆⋆ 0.81⋆⋆⋆ 0.86⋆⋆⋆ 0.83⋆⋆⋆ 0.60⋆⋆⋆

[# of people] (0.068) (0.083) (0.10) (0.065) (0.070) (0.062) (0.080) (0.068)

ln (Temp) −41⋆⋆⋆ −23⋆⋆⋆ −16⋆⋆ −42⋆⋆⋆ −35⋆⋆⋆ −18⋆⋆⋆ −8.8 −36⋆⋆⋆

[K] (5.7) (6.3) (4.9) (5.0) (5.7) (3.3) (6.0) (5.5)

ln (Pres) 3.5⋆⋆⋆ - 4.1⋆⋆ 3.0⋆⋆ 3.1⋆⋆⋆ 1.9+ 4.2⋆⋆ 2.0⋆

[hPa] (0.77) - (1.3) (0.85) (0.82) (1.1) (1.3) (0.91)

ln (Prec) −0.25⋆⋆ - 0.21⋆⋆ −0.15⋆⋆ −0.21⋆ - 0.24⋆⋆⋆ −0.099+

[g/m3] (0.088) - (0.059) (0.055) (0.092) - (0.063) (0.057)

ln (Wind) −0.094+ - −0.27⋆ −0.21⋆⋆ - −0.11+ −0.12 −0.15⋆

[m/s] (0.052) - (0.10) (0.075) - (0.053) (0.080) (0.075)

ln (Humi) 1.8⋆⋆⋆ 1.1⋆⋆ - 1.8⋆⋆⋆ 1.4⋆⋆⋆ - −0.95+ 1.4⋆⋆⋆

[ppm] (0.35) (0.33) - (0.35) (0.36) - (0.50) (0.38)

ln (TS) - - - - 0.28⋆⋆ 1.2⋆⋆⋆ 1.0⋆⋆⋆ 0.27⋆

[µmol/m3] - - - - (0.090) (0.12) (0.23) (0.12)

ln (TN) - - - - - −0.18⋆ −0.17+ -
[µmol/m3] - - - - - (0.082) (0.090) -

ln (TA) - - - - −0.098 −0.35⋆⋆⋆ −0.36⋆⋆⋆ -
[µmol/m3] - - - - (0.064) (0.061) (0.060) -

Adj. R2 0.92 0.82 0.85 0.90 0.93 0.95 0.93 0.91
F. Bias −0.030 −0.28 −0.23 −0.0064 0.022 0.066 −0.036 0.044
F. Error 0.31 0.36 0.39 0.37 0.25 0.22 0.22 0.32
N. Bias −0.25 −0.48 −0.46 −0.29 −0.16 −0.048 −0.14 −0.22
N. Error 0.35 0.49 0.48 0.41 0.28 0.18 0.22 0.36
95% PIa [0.57, 1.76] [0.36, 2.80] [0.37, 2.68] [0.56, 1.77] [0.58, 1.72] [0.55, 1.80] [0.48, 2.07] [0.57, 1.74]

95% CIa [0.81, 1.23] [0.76, 1.33] [0.73, 1.38] [0.81, 1.23] [0.81, 1.24] [0.80, 1.26] [0.73, 1.38] [0.80, 1.25]

⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Standard errors in parentheses, Popw: population weighted by average plume, Pres:

pressure, Temp: temperature, Prec = precipitation + 0.0002 (shifted for log transformation), Wind: wind speed, Humi: humidity, TS: total sulfate

(≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], F. Bias:

fractional bias, F. Error: fractional error, N. Bias: normalized mean bias, N. Error: normalized mean error, Winter ≡ Januanry + February +

March, Spring ≡ April + May + June, Summer ≡ July + August + September, Winter ≡ October + November + December.
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Figure 4.5: Comparison of ‘simple’ and ‘better-fit’ models. Adding TS, TN, and TA parameters
substantially improves the winter and fall models of SO2 and NOx as well as the spring and summer
models of NH3.
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(a) SO2: Winter
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(b) SO2: Spring
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(c) SO2: Summer
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Figure 4.6: Out-of-sample evaluation of ‘simple’ social cost models. Dashed lines indicate a factor of two
and solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars
show 95% confidence intervals.
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Figure 4.7: Out-of-sample evaluation of ‘better-fit’ social cost models. Dashed lines indicate a factor of
two and solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars
show 95% confidence intervals.
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(b) ‘Better-fit’ social cost models
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(c) ‘Simple’ intake fraction models
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(d) ‘Better-fit’ intake fraction models

Figure 4.8: Summary of model evaluations. Numbers (1, 4, 7, and 10) indicate corresponding season
models (winter, spring, summer, and fall). ‘Excellent’ and ‘Good’ model performance criteria are shown
as suggested by Morris et al. (2005). ‘Better-fit’ SO2, NOx, and NH3 models have TS, TN, and TA as
additional parameters. Same EC models are presented on both sides. With the additional parameters,
model performance improves.
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Chapter 4. Parameterization of Social Costs of Elemental Carbon and Inorganic Particulate Matter Precursors

Table 4.9: Average social costs and intake fractions in the United States.

Social cost [$/t] Intake Fraction [ppm]

EC SO2 NOx NH3 EC SO2 NOx NH3

Winter 180,000 23,000 15,000 85,000 2.8 0.30 0.21 1.2
Spring 150,000 31,000 10,000 33,000 2.3 0.44 0.15 0.46
Summer 150,000 34,000 4,200 29,000 2.4 0.47 0.057 0.43
Fall 170,000 21,000 9,700 64,000 2.6 0.29 0.13 0.87

Annual 170,000 27,000 9,700 46,000 2.5 0.38 0.14 0.64
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(a) EC: Per-tonne social cost [$/t] (b) EC: Annual social cost [$/km2]

(c) SO2: Per-tonne social cost [$/t] (d) SO2: Annual social cost [$/km2]

(e) NOx: Per-tonne social cost [$/t] (f) NOx: Annual social cost [$/km2]

(g) NH3: Per-tonne social cost [$/t] (h) NH3: Annual social cost [$/km2]

Figure 4.9: Map of social costs at the point of emissions estimated using the relative risk of 1.06
and the VSL of $8.8M. The left-hand figures show the average per-tonne social costs estimated with
corresponding season models. The right-hand side figures show the annual intake values calculated by
multiplying the intake fraction of each season with its corresponding seasonal emissions.
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Chapter 4. Parameterization of Social Costs of Elemental Carbon and Inorganic Particulate Matter Precursors

(a) EC: Intake fraction [$/t] (b) EC: Annual intake [g/km2]

(c) SO2: Intake fraction [$/t] (d) SO2: Annual intake [g/km2]

(e) NOx: Intake fraction [$/t] (f) NOx: Annual intake [g/km2]

(g) NH3: Intake fraction [$/t] (h) NH3: Annual intake [g/km2]

Figure 4.10: Map of intake fractions at the point of emissions. The left-hand figures show the average
intake fractions of four estimates estimated with corresponding season models. The right-hand side
figures show the annual intake values calculated by multiplying the intake fraction of each season with
its corresponding seasonal emissions.
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(a) EC (b) SO2

(c) NOx (d) NH3

Figure 4.11: Comparison of EASIUR with others. The APEEP values are based on Muller et al (2011).
The dotted red lines are reported by Fann et al (2012) for area sources. All the values are further adjusted
to match dollar year, income growth, VSL, and tonne unit with the EASIUR estimates. Solid green lines
indicate emission-weighted average EASIUR values for U.S. emissions (not including those from ocean,
Canada, and Mexico).
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Figure 4.12: Social costs from the life cycle of electricity generation. APEEP Area is based on marginal
damages for area sources from APEEP for all sectors. APEEP Area/Point is based on marginal damages
for mid-height (250-500 m) point sources from APEEP for petroleum refineries and power generation and
marginal damages for area sources for all other sectors.

Table 4.10: Social costs [$] from the life cycle of electricity generation. For APEEP, marginal damages
for area sources were used for all sector emissions.

Coal Energy Oil & Gas Petroleum Power Total
mining Pipelines extraction refineries generation

EC
EASIUR 5.7E+08 1.4E+09 3.9E+08 6.6E+09 1.0E+11 1.1E+11
APEEP 2.3E+08 6.5E+08 2.1E+08 4.2E+09 4.8E+10 5.3E+10
A/Ea 0.41 0.48 0.54 0.64 0.48 0.49

SO2

EASIUR 5.8E+07 1.1E+09 1.2E+09 7.7E+09 3.2E+11 3.3E+11
APEEP 6.2E+07 1.2E+09 9.4E+08 1.2E+10 3.5E+11 3.7E+11
A/E 1.07 1.02 0.78 1.55 1.11 1.12

NOx

EASIUR 1.6E+07 2.9E+09 9.0E+08 1.7E+09 3.6E+10 4.1E+10
APEEP 6.4E+06 1.8E+09 1.2E+09 9.0E+08 2.2E+10 2.6E+10
A/E 0.39 0.62 1.30 0.54 0.62 0.63

NH3

EASIUR 4.6E+07 1.0E+08 3.6E+06 4.4E+08 2.5E+09 3.1E+09
APEEP 4.4E+07 1.1E+08 2.7E+07 2.4E+09 2.2E+09 4.8E+09
A/E 0.95 1.13 7.48 5.43 0.89 1.55

Total
EASIUR 6.9E+08 5.5E+09 2.5E+09 1.6E+10 4.5E+11 4.8E+11
APEEP 3.5E+08 3.7E+09 2.3E+09 1.9E+10 4.2E+11 4.5E+11
A/E 0.50 0.68 0.94 1.19 0.93 0.94

a A ratio of APEEP-based estimates to EASIUR-based estimates.
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Table 4.11: Social costs [$] from the life cycle of electricity generation. For APEEP, marginal damages
for medium height (250-500m) point sources were used for petroleum refineries and power generation but
marginal damages for area sources were used for the other sectors.

Coal Energy Oil & Gas Petroleum Power Total
mining Pipelines extraction refineries generation

EC
EASIUR 5.7E+08 1.4E+09 3.9E+08 6.6E+09 1.0E+11 1.1E+11
APEEP 2.3E+08 6.5E+08 2.1E+08 1.4E+09 2.2E+10 2.4E+10
A/Ea 0.41 0.48 0.54 0.21 0.22 0.22

SO2

EASIUR 5.8E+07 1.1E+09 1.2E+09 7.7E+09 3.2E+11 3.3E+11
APEEP 6.2E+07 1.2E+09 9.4E+08 5.7E+09 2.3E+11 2.4E+11
A/E 1.07 1.02 0.78 0.74 0.74 0.74

NOx

EASIUR 1.6E+07 2.9E+09 9.0E+08 1.7E+09 3.6E+10 4.1E+10
APEEP 6.4E+06 1.8E+09 1.2E+09 5.4E+08 1.4E+10 1.8E+10
A/E 0.39 0.62 1.30 0.32 0.40 0.43

NH3

EASIUR 4.6E+07 1.0E+08 3.6E+06 4.4E+08 2.5E+09 3.1E+09
APEEP 4.4E+07 1.1E+08 2.7E+07 6.1E+08 8.4E+08 1.6E+09
A/E 0.95 1.13 7.48 1.39 0.34 0.53

Total
EASIUR 6.9E+08 5.5E+09 2.5E+09 1.6E+10 4.5E+11 4.8E+11
APEEP 3.5E+08 3.7E+09 2.3E+09 8.2E+09 2.7E+11 2.9E+11
A/E 0.50 0.68 0.94 0.50 0.60 0.60

a A ratio of APEEP-based estimates to EASIUR-based estimates.
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C Appendix I: Additional Figures and Tables
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Figure C-1: Intake fractions at the 100 sample locations. The bottom and top of the box are the first and
third quartile, and the red band inside the box indicates median. Whiskers show 1.5 × IQR (interquartile
range) below the first quartile and beyond the third quartile.
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Table C-1: Summary of social costs and selected parameters for winter.

sEC sSO2 sNOX sNH3 pEC pSO2 pNOX pNH3 pres temp prec wind humi ta tn ts

count 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
mean 85,000 20,000 9,400 58,000 23,000 18,000 19,000 22,000 935 276 0.074 1.6 6,300 0.080 0.90 0.022
std 91,000 10,000 6,700 86,000 31,000 14,000 17,000 30,000 73.9 6.3 0.040 1.1 2,700 0.063 0.74 0.014
min 16,000 5,400 770 6,600 2,000 3,400 2,800 2,200 707 264 0.014 0.15 3,200 0.0064 0.024 0.0054
25% 27,000 13,000 4,000 12,000 5,800 8,100 7,600 6,100 897 271 0.042 0.69 4,500 0.022 0.23 0.0075
50% 59,000 19,000 7,700 32,000 14,000 13,000 13,000 13,000 963 275 0.071 1.3 5,400 0.070 0.75 0.019
75% 110,000 24,000 14,000 69,000 31,000 22,000 24,000 31,000 993 280 0.10 2.2 7,000 0.14 1.4 0.035
max 760,000 64,000 26,000 680,000 270,000 100,000 120,000 260,000 1,020 293 0.24 6.0 17,000 0.29 3.2 0.051

* sEC, sSO2, sNOX, and sNH3: per-tonne social cost (using $8M VSL and the relative risk of 1.06 per 10 µg PM2.5/m
3) [$/t] of EC, SO2, NOx,

and NH3. pEC, pSO2, pNOX, and pNH3: population (of ≥ age 30) [# of people] weighted with the average plume of EC, SO2, NOx, and NH3, pres:
pressure [hPa], temp: temperature [K], prec: precipitation + 0.0002 [g/m3] (shifted for log transformation), wind: wind speed [m/s], humi: humidity
[ppm], ta: total ammonia [µmol/m3], tn: total nitrate [µmol/m3], ts: total sulfate [µmol/m3].

Table C-2: Summary of social costs and selected parameters for spring.

sEC sSO2 sNOX sNH3 pEC pSO2 pNOX pNH3 pres temp prec wind humi ta tn ts

count 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100
mean 63,000 17,000 4,000 28,000 24,000 18,000 19,000 22,000 932 289 0.083 1.7 11,000 0.095 0.35 0.024
std 82,000 15,000 5,500 56,000 36,000 14,000 18,000 33,000 72.5 5.1 0.041 1.2 4,000 0.077 0.38 0.016
min 5,900 3,100 150 2,000 1,800 3,900 3,400 2,300 710 276 0.0002 0.045 5,700 0.011 0.022 0.0068
25% 11,000 7,400 420 3,000 4,800 8,100 7,300 5,300 896 286 0.059 0.84 8,000 0.029 0.056 0.0089
50% 36,000 14,000 1,900 8,800 14,000 14,000 14,000 14,000 959 289 0.082 1.3 11,000 0.082 0.25 0.020
75% 87,000 21,000 5,000 30,000 34,000 25,000 27,000 32,000 990 292 0.11 2.2 14,000 0.15 0.45 0.036
max 640,000 100,000 26,000 440,000 310,000 110,000 140,000 280,000 1,010 302 0.24 7.0 23,000 0.39 1.9 0.059

* Look at Table C-1 for parameter definitions.

Table C-3: Summary of social costs and selected parameters for summer.

sEC sSO2 sNOX sNH3 pEC pSO2 pNOX pNH3 pres temp prec wind humi ta tn ts

count 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100
mean 68,000 19,000 2,200 28,000 23,000 18,000 17,000 22,000 934 296 0.066 1.9 17,000 0.097 0.20 0.025
std 86,000 21,000 3,700 54,000 37,000 14,000 15,000 33,000 71.2 4.5 0.046 1.1 5,500 0.080 0.29 0.019
min 6,600 3,500 89 1,500 1,800 3,600 3,600 2,200 717 286 0.0003 0.12 8,300 0.011 0.0091 0.0051
25% 12,000 7,600 270 2,800 4,500 7,400 7,300 5,500 899 293 0.033 1.2 12,000 0.027 0.030 0.0080
50% 44,000 14,000 690 6,000 14,000 13,000 12,000 13,000 961 296 0.056 1.9 18,000 0.085 0.10 0.018
75% 98,000 24,000 2,500 24,000 31,000 25,000 23,000 29,000 992 298 0.093 2.5 22,000 0.15 0.26 0.035
max 680,000 160,000 22,000 380,000 320,000 100,000 120,000 290,000 1,010 306 0.28 6.0 28,000 0.43 1.7 0.080

* Look at Table C-1 for parameter definitions.

Table C-4: Summary of social costs and selected parameters for fall.

sEC sSO2 sNOX sNH3 pEC pSO2 pNOX pNH3 pres temp prec wind humi ta tn ts

count 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
mean 80,000 17,000 5,900 44,000 22,000 17,000 17,000 22,000 935 281 0.076 2.0 8,200 0.067 0.50 0.016
std 80,000 8,700 4,400 59,000 30,000 13,000 13,000 29,000 72.6 5.6 0.066 1.2 2,700 0.057 0.44 0.011
min 8,400 4,800 390 3,600 2,100 3,500 3,400 2,400 710 271 0.0057 0.19 5,100 0.0063 0.023 0.0038
25% 27,000 12,000 2,500 9,800 5,900 8,700 7,200 5,700 897 276 0.036 1.2 6,200 0.023 0.15 0.0057
50% 58,000 16,000 4,800 24,000 13,000 14,000 14,000 13,000 961 280 0.049 1.7 7,400 0.061 0.40 0.015
75% 110,000 21,000 8,000 51,000 31,000 23,000 24,000 30,000 990 284 0.10 2.5 9,600 0.10 0.74 0.024
max 620,000 58,000 18,000 450,000 250,000 88,000 91,000 240,000 1,010 295 0.34 6.9 21,000 0.40 2.0 0.043

* Look at Table C-1 for parameter definitions.
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Table C-5: Summary of intake fractions and selected parameters for winter.

iEC iSO2 iNOX iNH3 pEC pSO2 pNOX pNH3 pres temp prec wind humi ta tn ts

count 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
mean 1.2 0.29 0.14 0.84 38,000 30,000 32,000 37,000 935 276 0.074 1.6 6,300 0.080 0.90 0.022
std 1.5 0.15 0.096 1.4 52,000 23,000 27,000 50,000 73.9 6.3 0.040 1.1 2,700 0.063 0.74 0.014
min 0.25 0.036 0.012 0.11 3,400 5,900 4,900 3,700 707 264 0.014 0.15 3,200 0.0064 0.024 0.0054
25% 0.42 0.19 0.056 0.17 10,000 14,000 13,000 11,000 897 271 0.042 0.69 4,500 0.022 0.23 0.0075
50% 0.84 0.25 0.11 0.46 23,000 23,000 23,000 23,000 963 275 0.071 1.3 5,400 0.070 0.75 0.019
75% 1.6 0.33 0.20 0.96 54,000 38,000 42,000 54,000 993 280 0.10 2.2 7,000 0.14 1.4 0.035
max 12 1.0 0.37 11 440,000 170,000 200,000 430,000 1,020 293 0.24 6.0 17,000 0.29 3.2 0.051

* iEC, iSO2, iNOX, and iNH3: intake fraction [ppm] of EC, SO2, NOx, and NH3. pEC, pSO2, pNOX, and pNH3: population [# of
people] weighted with the average plume of EC, SO2, NOx, and NH3, pres: pressure [hPa], temp: temperature [K], prec: precipitation +
0.0002 [g/m3] (shifted for log transformation), wind: wind speed [m/s], humi: humidity [ppm], ta: total ammonia [µmol/m3], tn: total
nitrate [µmol/m3], ts: total sulfate [µmol/m3].

Table C-6: Summary of intake fractions and selected parameters for spring.

iEC iSO2 iNOX iNH3 pEC pSO2 pNOX pNH3 pres temp prec wind humi ta tn ts

count 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100
mean 0.92 0.25 0.058 0.41 40,000 30,000 32,000 38,000 932 289 0.083 1.7 11,000 0.095 0.35 0.024
std 1.3 0.21 0.078 0.86 60,000 24,000 29,000 54,000 72.5 5.1 0.041 1.2 4,000 0.077 0.38 0.016
min 0.090 0.046 0.0023 0.028 3,000 6,700 5,700 3,900 710 276 0.0002 0.045 5,700 0.011 0.022 0.0068
25% 0.16 0.11 0.0067 0.044 8,400 14,000 13,000 9,100 896 286 0.059 0.84 8,000 0.029 0.056 0.0089
50% 0.54 0.20 0.029 0.12 24,000 24,000 24,000 23,000 959 289 0.082 1.3 11,000 0.082 0.25 0.020
75% 1.3 0.32 0.073 0.46 57,000 42,000 44,000 54,000 990 292 0.11 2.2 14,000 0.15 0.45 0.036
max 10 1.3 0.36 6.9 510,000 180,000 230,000 470,000 1,010 302 0.24 7.0 23,000 0.39 1.9 0.059

* Look at Table C-5 for parameter definitions.

Table C-7: Summary of intake fractions and selected parameters for summer.

iEC iSO2 iNOX iNH3 pEC pSO2 pNOX pNH3 pres temp prec wind humi ta tn ts

count 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100
mean 1.00 0.28 0.032 0.40 39,000 30,000 28,000 37,000 934 296 0.066 1.9 17,000 0.097 0.20 0.025
std 1.4 0.29 0.054 0.84 61,000 24,000 25,000 55,000 71.2 4.5 0.046 1.1 5,500 0.080 0.29 0.019
min 0.11 0.056 0.0012 0.024 3,200 6,200 6,200 3,800 717 286 0.0003 0.12 8,300 0.011 0.0091 0.0051
25% 0.17 0.11 0.0040 0.039 7,900 13,000 13,000 9,300 899 293 0.033 1.2 12,000 0.027 0.030 0.0080
50% 0.61 0.19 0.0090 0.091 23,000 22,000 20,000 22,000 961 296 0.056 1.9 18,000 0.085 0.10 0.018
75% 1.3 0.34 0.033 0.36 54,000 42,000 40,000 50,000 992 298 0.093 2.5 22,000 0.15 0.26 0.035
max 11 2.0 0.35 6.0 540,000 170,000 200,000 490,000 1,010 306 0.28 6.0 28,000 0.43 1.7 0.080

* Look at Table C-5 for parameter definitions.

Table C-8: Summary of intake fractions and selected parameters for fall.

iEC iSO2 iNOX iNH3 pEC pSO2 pNOX pNH3 pres temp prec wind humi ta tn ts

count 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
mean 1.2 0.25 0.087 0.63 37,000 29,000 30,000 36,000 935 281 0.076 2.0 8,200 0.067 0.50 0.016
std 1.3 0.13 0.066 0.94 49,000 21,000 22,000 48,000 72.6 5.6 0.066 1.2 2,700 0.057 0.44 0.011
min 0.11 0.066 0.0060 0.056 3,700 5,900 5,700 4,200 710 271 0.0057 0.19 5,100 0.0063 0.023 0.0038
25% 0.41 0.17 0.037 0.14 10,000 15,000 13,000 10,000 897 276 0.036 1.2 6,200 0.023 0.15 0.0057
50% 0.82 0.22 0.071 0.33 23,000 23,000 24,000 22,000 961 280 0.049 1.7 7,400 0.061 0.40 0.015
75% 1.6 0.30 0.12 0.71 52,000 40,000 41,000 50,000 990 284 0.10 2.5 9,600 0.10 0.74 0.024
max 9.9 0.90 0.33 7.1 410,000 150,000 150,000 400,000 1,010 295 0.34 6.9 21,000 0.40 2.0 0.043

* Look at Table C-5 for parameter definitions.
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Figure C-2: Correlation matrix plot of selected parameters for winter social cost dataset. All the values are
natural log transformed. Pearson’s correlation coefficients are on the upper right. Look at Table C-1 for
parameter definitions.
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Figure C-3: Correlation matrix plot of selected parameters for spring social cost dataset. All the values are
natural log transformed. Pearson’s correlation coefficients are on the upper right. Look at Table C-1 for
parameter definitions.
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Figure C-4: Correlation matrix plot of selected parameters for summer social cost dataset. All the values
are natural log transformed. Pearson’s correlation coefficients are on the upper right. Look at Table C-1
for parameter definitions.
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Figure C-5: Correlation matrix plot of selected parameters for fall social cost dataset. All the values are
natural log transformed. Pearson’s correlation coefficients are on the upper right. Look at Table C-1 for
parameter definitions.
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Figure C-6: Correlation matrix plot of selected parameters for winter intake fraction dataset. All the
values are natural log transformed. Pearson’s correlation coefficients are on the upper right. Look at Table
C-5 for parameter definitions.
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Figure C-7: Correlation matrix plot of selected parameters for spring intake fraction dataset. All the
values are natural log transformed. Pearson’s correlation coefficients are on the upper right. Look at Table
C-5 for parameter definitions.
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Figure C-8: Correlation matrix plot of selected parameters for summer intake fraction dataset. All the
values are natural log transformed. Pearson’s correlation coefficients are on the upper right. Look at Table
C-5 for parameter definitions.
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Figure C-9: Correlation matrix plot of selected parameters for fall intake fraction dataset. All the values
are natural log transformed. Pearson’s correlation coefficients are on the upper right. Look at Table C-5
for parameter definitions.
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Figure C-10: Pressure of the United States in 2005. Daily mean values are presented.
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Figure C-11: Temperature of the United States in 2005. Daily mean values are presented.
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Figure C-12: Precipitation of the United States in 2005. Daily mean values are presented.
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Figure C-13: Wind speed of the United States in 2005. Daily mean values are presented.
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Figure C-14: Humidity of the United States in 2005. Daily mean values are presented.
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Figure C-15: Total sulfate of the United States in 2005. Daily mean values are presented.
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Figure C-16: Total nitrate of the United States in 2005. Daily mean values are presented.
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Figure C-17: Total ammonia of the United States in 2005. Daily mean values are presented.
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(a) Winter: average plume weight
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(c) Spring: average plume weight
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(d) Spring: cumulative distribution
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(e) Summer: average plume weight
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(f) Summer: cumulative distribution
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(g) Fall: average plume weight
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Figure C-18: EC average plume weights constructed with the CTM results of the 50 training samples.
PM2.5 concentrations or plumes of the training samples were aligned by wind direction to the same
direction (the arrow in the figure) and normalized so that they sum to one. To give a sense of scale, the
center of a plume is put on Pittsburgh.
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(a) Winter: average plume weight
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(c) Spring: average plume weight
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(d) Spring: cumulative distribution
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(e) Summer: average plume weight
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(g) Fall: average plume weight
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Figure C-19: SO2 average plume weights constructed with the CTM results of the 50 training samples.
PM2.5 concentrations or plumes of the training samples were aligned by wind direction to the same
direction (the arrow in the figure) and normalized so that they sum to one. To give a sense of scale, the
center of a plume is put on Pittsburgh.
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(c) Spring: average plume weight
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(d) Spring: cumulative distribution
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(e) Summer: average plume weight

10–610–510–410–310–210–1100

Weight

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

W
ei

gh
t
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(g) Fall: average plume weight
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(h) Fall: cumulative distribution

Figure C-20: NOx average plume weights constructed with the CTM results of the 50 training samples.
PM2.5 concentrations or plumes of the training samples were aligned by wind direction to the same
direction (the arrow in the figure) and normalized so that they sum to one. To give a sense of scale, the
center of a plume is put on Pittsburgh.
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(a) Winter: average plume weight
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(b) Winter: cumulative distribution
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(c) Spring: average plume weight

10–610–510–410–310–210–1100

Weight

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

W
ei

gh
t

(d) Spring: cumulative distribution
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(e) Summer: average plume weight
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(f) Summer: cumulative distribution
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(g) Fall: average plume weight
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(h) Fall: cumulative distribution

Figure C-21: NH3 average plume weights constructed with the CTM results of the 50 training samples.
PM2.5 concentrations or plumes of the training samples were aligned by wind direction to the same
direction (the arrow in the figure) and normalized so that they sum to one. To give a sense of scale, the
center of a plume is put on Pittsburgh.
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(g) Fall: Fitted values
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(h) Fall: Out-of-sample test

Figure C-22: Performance of EC social cost model. Dashed lines indicate a factor of two and solid line
indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars show 95%
confidence intervals. The right-hand side figures are also presented in Figure 4.4.
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(h) Fall: Out-of-sample test

Figure C-23: Performance of EC intake fraction model. Dashed lines indicate a factor of two and solid
line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars show 95%
confidence intervals.
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(h) Fall: Out-of-sample test

Figure C-24: Performance of SO2 social cost ‘simple’ model. Dashed lines indicate a factor of two and
solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars show
95% confidence intervals.
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(h) Fall: Out-of-sample test

Figure C-25: Performance of SO2 social cost ‘better-fit’ model. Dashed lines indicate a factor of two and
solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars show
95% confidence intervals.
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(h) Fall: Out-of-sample test

Figure C-26: Performance of NOx social cost ‘simple’ model. Dashed lines indicate a factor of two and
solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars show
95% confidence intervals.
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(g) Fall: Fitted values
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(h) Fall: Out-of-sample test

Figure C-27: Performance of NOx social cost ‘better-fit’ model. Dashed lines indicate a factor of two and
solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars show
95% confidence intervals.
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(h) Fall: Out-of-sample test

Figure C-28: Performance of NH3 social cost ‘simple’ model. Dashed lines indicate a factor of two and
solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars show
95% confidence intervals.

192



103 104 105

CAMx-based estimate [$/t]

103

104

105
Pa

ra
m

et
er

iz
ed

es
ti

m
at

e
[$

/t
]

(a) Winter: Fitted values

103 104 105

CAMx-based estimate [$/t]

103

104

105

Pa
ra

m
et

er
iz

ed
es

ti
m

at
e

[$
/t

]

(b) Winter: Out-of-sample test

103 104 105

CAMx-based estimate [$/t]

103

104

105

Pa
ra

m
et

er
iz

ed
es

ti
m

at
e

[$
/t

]

(c) Spring: Fitted values

103 104 105

CAMx-based estimate [$/t]

103

104

105

Pa
ra

m
et

er
iz

ed
es

ti
m

at
e

[$
/t

]

(d) Spring: Out-of-sample test

103 104 105

CAMx-based estimate [$/t]

103

104

105

Pa
ra

m
et

er
iz

ed
es

ti
m

at
e

[$
/t

]

(e) Summer: Fitted values

103 104 105

CAMx-based estimate [$/t]

103

104

105

Pa
ra

m
et

er
iz

ed
es

ti
m

at
e

[$
/t

]

(f) Summer: Out-of-sample test

103 104 105

CAMx-based estimate [$/t]

103

104

105

Pa
ra

m
et

er
iz

ed
es

ti
m

at
e

[$
/t

]

(g) Fall: Fitted values

103 104 105

CAMx-based estimate [$/t]

103

104

105

Pa
ra

m
et

er
iz

ed
es

ti
m

at
e

[$
/t

]

(h) Fall: Out-of-sample test

Figure C-29: Performance of NH3 social cost ‘better-fit’ model. Dashed lines indicate a factor of two and
solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars show
95% confidence intervals.
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(h) Fall: Out-of-sample test

Figure C-30: Performance of SO2 intake fraction ‘simple’ model. Dashed lines indicate a factor of two
and solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars
show 95% confidence intervals.
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(h) Fall: Out-of-sample test

Figure C-31: Performance of SO2 intake fraction ‘better-fit’ model. Dashed lines indicate a factor of two
and solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars
show 95% confidence intervals.
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(h) Fall: Out-of-sample test

Figure C-32: Performance of NOx intake fraction ‘simple’ model. Dashed lines indicate a factor of two
and solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars
show 95% confidence intervals.
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(h) Fall: Out-of-sample test

Figure C-33: Performance of NOx intake fraction ‘better-fit’ model. Dashed lines indicate a factor of two
and solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars
show 95% confidence intervals.
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(h) Fall: Out-of-sample test

Figure C-34: Performance of NH3 intake fraction ‘simple’ model. Dashed lines indicate a factor of two
and solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars
show 95% confidence intervals.
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(b) Winter: Out-of-sample test

10–2 10–1 100 101

CAMx-based estimate [ppm]

10–2

10–1

100

101

Pa
ra

m
et

er
iz

ed
es

ti
m

at
e

[p
pm

]

(c) Spring: Fitted values
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(d) Spring: Out-of-sample test
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(e) Summer: Fitted values
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(f) Summer: Out-of-sample test
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(g) Fall: Fitted values
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(h) Fall: Out-of-sample test

Figure C-35: Performance of NH3 intake fraction ‘better-fit’ model. Dashed lines indicate a factor of two
and solid line indicates unbiased prediction. Orange bars show 95% prediction intervals and blue bars
show 95% confidence intervals.
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(c) Summer
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(d) Fall

Figure C-36: Evaluations of EC social cost models. Each circle indicates a regression model. ‘Excellent’
and ‘Good’ model performance criteria are shown as suggested by Morris et al. (2005).
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Table C-9: Evaluations of winter EC social cost models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 86⋆⋆ 91⋆⋆⋆ 85⋆⋆ 90⋆⋆ 33⋆⋆⋆ 32⋆⋆ 32⋆⋆

ln (Popw) 0.61⋆⋆⋆ 0.65⋆⋆⋆ 0.61⋆⋆⋆ 0.65⋆⋆⋆ 0.63⋆⋆⋆ 0.65⋆⋆⋆ 0.63⋆⋆⋆

ln (Pres) 3.7⋆⋆⋆ 3.5⋆⋆⋆ 3.7⋆⋆⋆ 3.6⋆⋆⋆ 3.4⋆⋆⋆ 3.3⋆⋆⋆ 3.5⋆⋆⋆

ln (Temp) −20⋆⋆⋆ −21⋆⋆⋆ −20⋆⋆⋆ −21⋆⋆⋆ −9.2⋆⋆⋆ −8.9⋆⋆⋆ −9.0⋆⋆⋆

ln (Wind) - - 0.016 0.017 - - 0.020
ln (Prec) - −0.10 - −0.10 - −0.062 -
ln (Humid) 0.70⋆ 0.79⋆ 0.69⋆ 0.78⋆ - - -

AIC −0.034 0.0046 1.8 1.9 3.5 4.8 5.3
Adj. R2 0.92 0.92 0.92 0.92 0.91 0.91 0.91
F. Bias 0.11 0.10 0.11 0.10 0.095 0.088 0.094
F. Error 0.19 0.18 0.19 0.18 0.18 0.17 0.18
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-10: Evaluations of spring EC social cost models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 72⋆⋆⋆ 70⋆⋆⋆ 70⋆⋆⋆ 72⋆⋆⋆ 49⋆⋆⋆ 46⋆⋆⋆ 47⋆⋆⋆

ln (Popw) 0.72⋆⋆⋆ 0.72⋆⋆⋆ 0.72⋆⋆⋆ 0.72⋆⋆⋆ 0.72⋆⋆⋆ 0.71⋆⋆⋆ 0.71⋆⋆⋆

ln (Pres) 5.4⋆⋆⋆ 5.3⋆⋆⋆ 5.4⋆⋆⋆ 5.2⋆⋆⋆ 6.2⋆⋆⋆ 6.2⋆⋆⋆ 6.1⋆⋆⋆

ln (Temp) −19⋆⋆⋆ −19⋆⋆⋆ −19⋆⋆⋆ −19⋆⋆⋆ −16⋆⋆⋆ −15⋆⋆⋆ −15⋆⋆⋆

ln (Wind) - −0.037 - −0.041 - - −0.040
ln (Prec) - - 0.0061 −0.0085 - 0.036 -
ln (Humid) 0.37⋆ 0.37⋆ 0.36⋆ 0.39⋆ - - -

AIC −21 −20 −19 −19 −17 −17 −16
Adj. R2 0.97 0.97 0.97 0.97 0.97 0.97 0.97
F. Bias 0.057 0.063 0.057 0.064 0.051 0.052 0.058
F. Error 0.19 0.19 0.19 0.18 0.21 0.20 0.20
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-11: Evaluations of summer EC social cost models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 73⋆⋆⋆ 74⋆⋆⋆ 67⋆⋆⋆ 73⋆⋆⋆ 68⋆⋆⋆ 62⋆⋆⋆ 74⋆⋆⋆

ln (Popw) 0.74⋆⋆⋆ 0.73⋆⋆⋆ 0.74⋆⋆⋆ 0.74⋆⋆⋆ 0.73⋆⋆⋆ 0.74⋆⋆⋆ 0.73⋆⋆⋆

ln (Pres) 6.0⋆⋆⋆ 5.9⋆⋆⋆ 6.2⋆⋆⋆ 6.0⋆⋆⋆ 6.2⋆⋆⋆ 6.5⋆⋆⋆ 5.9⋆⋆⋆

ln (Temp) −19⋆⋆⋆ −19⋆⋆⋆ −18⋆⋆⋆ −19⋆⋆⋆ −18⋆⋆⋆ −18⋆⋆⋆ −19⋆⋆⋆

ln (Wind) - −0.034 - - −0.040 - −0.036
ln (Prec) - - - 0.0031 - 0.029 −0.0039
ln (Humid) - - −0.090 - −0.12 −0.22 -

AIC −21 −20 −19 −19 −18 −18 −18
Adj. R2 0.97 0.97 0.97 0.97 0.97 0.97 0.97
F. Bias 0.0034 0.012 −0.00079 0.0047 0.0083 0.0051 0.011
F. Error 0.16 0.16 0.17 0.16 0.16 0.17 0.16
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-12: Evaluations of fall EC social cost models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 72⋆⋆⋆ 65⋆⋆ 72⋆⋆ 37⋆⋆ 30⋆ 65⋆ 36⋆⋆

ln (Popw) 0.60⋆⋆⋆ 0.59⋆⋆⋆ 0.60⋆⋆⋆ 0.61⋆⋆⋆ 0.59⋆⋆⋆ 0.59⋆⋆⋆ 0.62⋆⋆⋆

ln (Pres) 3.1⋆⋆⋆ 3.1⋆⋆⋆ 3.1⋆⋆⋆ 3.7⋆⋆⋆ 3.6⋆⋆⋆ 3.1⋆⋆⋆ 3.7⋆⋆⋆

ln (Temp) −17⋆⋆⋆ −15⋆⋆ −17⋆⋆⋆ −10⋆⋆⋆ −8.7⋆⋆ −15⋆⋆ −9.9⋆⋆⋆

ln (Wind) - - −0.00056 - - −0.0030 0.029
ln (Prec) - 0.029 - - 0.062 0.030 -
ln (Humid) 0.64⋆ 0.57+ 0.64⋆ - - 0.57+ -

AIC 5.3 6.9 7.3 8.0 8.3 8.9 9.8
Adj. R2 0.90 0.90 0.90 0.89 0.89 0.89 0.89
F. Bias 0.10 0.10 0.10 0.089 0.097 0.11 0.084
F. Error 0.21 0.21 0.21 0.20 0.21 0.21 0.20
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.
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(a) Winter: ‘simple’ models
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(b) Winter: ‘better-fit’ models
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(c) Spring: ‘simple’ models
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(d) Spring: ‘better-fit’ models
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(e) Summer: ‘simple’ models
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(f) Summer: ‘better-fit’ models
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(g) Fall: ‘simple’ models
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(h) Fall: ‘better-fit’ models

Figure C-37: Evaluations of SO2 social cost models. Each circle indicates a regression model. ‘Excellent’
and ‘Good’ model performance criteria are shown as suggested by Morris et al. (2005).
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Chapter 4. Parameterization of Social Costs of Elemental Carbon and Inorganic Particulate Matter Precursors

Table C-13: Evaluations of winter SO2 social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 86⋆ 91⋆ 86⋆ 72+ 95⋆ 12 −6.7
ln (Popw) - - 0.0066 - 0.095 - -
ln (Pres) 3.0⋆⋆⋆ 3.2⋆⋆⋆ 3.0⋆⋆ 3.6⋆⋆⋆ 2.8⋆ 2.9⋆⋆ 2.4⋆⋆

ln (Temp) −19⋆ −20⋆ −19⋆ −17⋆ −20⋆ −3.8 -
ln (Wind) −0.14+ −0.14+ −0.14+ - −0.13+ −0.13+ −0.11
ln (Prec) - −0.092 - - −0.13 - -
ln (Humid) 0.96⋆ 1.1⋆ 0.96⋆ 0.92+ 1.1⋆ - -

AIC 40 41 42 42 43 43 43
Adj. R2 0.38 0.38 0.37 0.34 0.37 0.33 0.32
F. Bias 0.10 0.091 0.10 0.093 0.095 0.078 0.048
F. Error 0.28 0.26 0.28 0.27 0.25 0.25 0.26
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-14: Evaluations of winter SO2 social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 77⋆ 95⋆ 80⋆ 79⋆ 96⋆ 77⋆ 8.5⋆⋆⋆

ln (Popw) - 0.23 - 0.029 0.23 - -
ln (Pres) - - - - 0.35 −0.025 -
ln (Temp) −14⋆ −18⋆ −14⋆ −14⋆ −19⋆ −14+ -
ln (Wind) −0.15⋆ −0.19⋆ −0.16⋆ −0.16⋆ −0.19⋆ −0.15⋆ −0.16⋆

ln (Prec) - −0.22+ −0.081 - −0.22+ - -
ln (Humid) 1.0⋆ 1.3⋆⋆ 1.1⋆ 1.0⋆ 1.3⋆⋆ 1.0⋆ -
ln (TS) −0.25⋆ −0.37⋆⋆ −0.26⋆ −0.27⋆ −0.38⋆⋆ −0.25⋆ −0.16
ln (TN) 0.47⋆⋆⋆ 0.45⋆⋆⋆ 0.49⋆⋆⋆ 0.46⋆⋆⋆ 0.43⋆⋆ 0.48⋆⋆⋆ 0.49⋆⋆⋆

ln (TA) −0.24⋆ −0.25⋆ −0.26⋆ −0.24⋆ −0.23+ −0.24+ −0.34⋆⋆

AIC 27 27 28 29 29 29 29
Adj. R2 0.54 0.56 0.54 0.53 0.55 0.53 0.50
F. Bias 0.00087 −0.0034 −0.012 0.0045 0.00089 0.00048 0.022
F. Error 0.26 0.24 0.25 0.26 0.24 0.26 0.24
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-15: Evaluations of spring SO2 social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 120⋆⋆⋆ 100⋆⋆⋆ 110⋆⋆⋆ 110⋆⋆⋆ 81⋆⋆⋆ 84⋆⋆⋆ 81⋆⋆⋆

ln (Popw) 0.40⋆⋆⋆ 0.39⋆⋆⋆ 0.40⋆⋆⋆ 0.41⋆⋆⋆ 0.40⋆⋆⋆ 0.41⋆⋆⋆ 0.40⋆⋆⋆

ln (Pres) 6.3⋆⋆⋆ 6.7⋆⋆⋆ 6.8⋆⋆⋆ 6.6⋆⋆⋆ 7.4⋆⋆⋆ 7.5⋆⋆⋆ 7.4⋆⋆⋆

ln (Temp) −28⋆⋆⋆ −26⋆⋆⋆ −26⋆⋆⋆ −28⋆⋆⋆ −22⋆⋆⋆ −23⋆⋆⋆ −22⋆⋆⋆

ln (Wind) −0.070⋆ −0.046 - - −0.048 - −0.050
ln (Prec) −0.052⋆ - - −0.028 - - −0.0056
ln (Humid) 0.50⋆⋆⋆ 0.36⋆⋆ 0.37⋆⋆ 0.44⋆⋆ - - -

AIC −42 −39 −38 −38 −32 −32 −30
Adj. R2 0.95 0.95 0.95 0.95 0.94 0.94 0.94
F. Bias 0.13 0.12 0.11 0.12 0.12 0.11 0.12
F. Error 0.24 0.23 0.23 0.23 0.24 0.24 0.24
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-16: Evaluations of spring SO2 social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 89⋆⋆⋆ 110⋆⋆⋆ 98⋆⋆⋆ 120⋆⋆⋆ 89⋆⋆⋆ 99⋆⋆⋆ 110⋆⋆⋆

ln (Popw) 0.34⋆⋆⋆ 0.41⋆⋆⋆ 0.36⋆⋆⋆ 0.40⋆⋆⋆ 0.35⋆⋆⋆ 0.41⋆⋆⋆ 0.42⋆⋆⋆

ln (Pres) 6.2⋆⋆⋆ 6.5⋆⋆⋆ 6.2⋆⋆⋆ 6.3⋆⋆⋆ 6.2⋆⋆⋆ 6.8⋆⋆⋆ 6.5⋆⋆⋆

ln (Temp) −23⋆⋆⋆ −27⋆⋆⋆ −24⋆⋆⋆ −28⋆⋆⋆ −23⋆⋆⋆ −25⋆⋆⋆ −27⋆⋆⋆

ln (Wind) −0.074⋆ −0.083⋆⋆ −0.081⋆⋆ −0.070⋆ −0.074⋆ −0.066⋆ −0.084⋆⋆

ln (Prec) - −0.044+ −0.025 −0.052⋆ - - −0.045+

ln (Humid) 0.30⋆ 0.52⋆⋆⋆ 0.39⋆ 0.50⋆⋆⋆ 0.31+ 0.41⋆⋆ 0.55⋆⋆

ln (TS) - - - - −0.011 - −0.026
ln (TN) 0.094+ - 0.068 - 0.094+ - -
ln (TA) −0.092⋆⋆ −0.048 −0.077+ - −0.091⋆ −0.059+ −0.046

AIC −44 −43 −43 −42 −42 −42 −41
Adj. R2 0.95 0.95 0.95 0.95 0.95 0.95 0.95
F. Bias 0.13 0.14 0.13 0.13 0.12 0.14 0.13
F. Error 0.24 0.24 0.24 0.24 0.24 0.24 0.24
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-17: Evaluations of summer SO2 social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 110⋆⋆⋆ 100⋆⋆⋆ 94⋆⋆⋆ 110⋆⋆⋆ 94⋆⋆⋆ 100⋆⋆⋆ 110⋆⋆⋆

ln (Popw) 0.54⋆⋆⋆ 0.56⋆⋆⋆ 0.57⋆⋆⋆ 0.55⋆⋆⋆ 0.58⋆⋆⋆ 0.56⋆⋆⋆ 0.52⋆⋆⋆

ln (Pres) 6.3⋆⋆⋆ 6.5⋆⋆⋆ 7.0⋆⋆⋆ 6.3⋆⋆⋆ 7.0⋆⋆⋆ 6.6⋆⋆⋆ 6.4⋆⋆⋆

ln (Temp) −26⋆⋆⋆ −25⋆⋆⋆ −24⋆⋆⋆ −26⋆⋆⋆ −24⋆⋆⋆ −25⋆⋆⋆ −27⋆⋆⋆

ln (Wind) - - - 0.0055 0.031 0.012 -
ln (Prec) −0.064⋆⋆ −0.048 - −0.063⋆ - −0.045 -
ln (Humid) - −0.14 −0.36⋆ - −0.35⋆ −0.15 -

AIC −23 −22 −21 −21 −20 −20 −17
Adj. R2 0.93 0.93 0.93 0.93 0.93 0.93 0.92
F. Bias 0.0051 0.0062 0.017 0.0043 0.011 0.0047 0.029
F. Error 0.21 0.21 0.21 0.21 0.21 0.21 0.21
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-18: Evaluations of summer SO2 social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 76⋆⋆⋆ 83⋆⋆⋆ 76⋆⋆⋆ 82⋆⋆⋆ 91⋆⋆⋆ 91⋆⋆⋆ 79⋆⋆⋆

ln (Popw) 0.45⋆⋆⋆ 0.44⋆⋆⋆ 0.46⋆⋆⋆ 0.50⋆⋆⋆ 0.46⋆⋆⋆ 0.49⋆⋆⋆ 0.46⋆⋆⋆

ln (Pres) 6.8⋆⋆⋆ 6.4⋆⋆⋆ 6.7⋆⋆⋆ 7.1⋆⋆⋆ 6.7⋆⋆⋆ 6.9⋆⋆⋆ 7.0⋆⋆⋆

ln (Temp) −19⋆⋆⋆ −20⋆⋆⋆ −19⋆⋆⋆ −21⋆⋆⋆ −22⋆⋆⋆ −22⋆⋆⋆ −20⋆⋆⋆

ln (Wind) - - 0.041 0.063 - 0.052 -
ln (Prec) - −0.035 - - −0.045 −0.035 -
ln (Humid) −0.71⋆⋆ −0.57⋆ −0.73⋆⋆ −0.71⋆⋆ −0.51+ −0.56⋆ −0.70⋆⋆

ln (TS) 0.32⋆ 0.32⋆ 0.34⋆ 0.37⋆⋆ 0.34⋆ 0.37⋆⋆ 0.32⋆

ln (TN) - - - −0.057 −0.045 −0.066 −0.025
ln (TA) −0.10⋆⋆ −0.098⋆⋆ −0.11⋆⋆ −0.098⋆⋆ −0.090⋆⋆ −0.090⋆⋆ −0.10⋆⋆

AIC −31 −30 −30 −30 −30 −30 −29
Adj. R2 0.95 0.95 0.95 0.95 0.95 0.95 0.95
F. Bias 0.063 0.054 0.057 0.071 0.066 0.067 0.070
F. Error 0.21 0.21 0.21 0.22 0.21 0.21 0.21
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-19: Evaluations of fall SO2 social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 92⋆⋆⋆ 100⋆⋆⋆ 96⋆⋆⋆ 95⋆⋆⋆ 110⋆⋆⋆ 91⋆⋆⋆ 98⋆⋆⋆

ln (Popw) 0.19⋆ 0.13 - 0.19⋆ 0.14 - -
ln (Pres) 3.9⋆⋆⋆ 3.9⋆⋆⋆ 4.6⋆⋆⋆ 3.9⋆⋆⋆ 3.9⋆⋆⋆ 4.8⋆⋆⋆ 4.7⋆⋆⋆

ln (Temp) −21⋆⋆⋆ −23⋆⋆⋆ −22⋆⋆⋆ −22⋆⋆⋆ −23⋆⋆⋆ −22⋆⋆⋆ −23⋆⋆⋆

ln (Wind) 0.10 - - 0.10 - 0.040 -
ln (Prec) - - - −0.015 −0.016 - −0.011
ln (Humid) 0.85⋆⋆ 0.91⋆⋆ 0.87⋆⋆ 0.88⋆⋆ 0.95⋆⋆ 0.83⋆⋆ 0.89⋆⋆

AIC 1.5 1.9 2.8 3.4 3.8 4.4 4.7
Adj. R2 0.69 0.69 0.67 0.69 0.68 0.67 0.67
F. Bias 0.083 0.099 0.089 0.082 0.097 0.082 0.088
F. Error 0.24 0.25 0.26 0.23 0.25 0.25 0.25
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-20: Evaluations of fall SO2 social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 150⋆⋆⋆ 130⋆⋆⋆ 140⋆⋆⋆ 100⋆⋆⋆ 91⋆⋆⋆ 120⋆⋆⋆ 120⋆⋆⋆

ln (Popw) 0.54⋆⋆⋆ 0.47⋆⋆⋆ 0.56⋆⋆⋆ 0.37⋆⋆⋆ 0.36⋆⋆⋆ 0.47⋆⋆⋆ 0.45⋆⋆⋆

ln (Pres) 5.1⋆⋆⋆ 4.2⋆⋆⋆ 5.1⋆⋆⋆ 3.4⋆⋆⋆ 3.0⋆⋆ 4.1⋆⋆⋆ 3.8⋆⋆

ln (Temp) −35⋆⋆⋆ −30⋆⋆⋆ −34⋆⋆⋆ −24⋆⋆⋆ −21⋆⋆⋆ −28⋆⋆⋆ −27⋆⋆⋆

ln (Wind) - - 0.045 - - 0.056 -
ln (Prec) −0.10⋆ −0.074 −0.10⋆ - - −0.066 −0.062
ln (Humid) 1.9⋆⋆⋆ 1.7⋆⋆⋆ 1.8⋆⋆⋆ 1.4⋆⋆⋆ 1.2⋆⋆⋆ 1.6⋆⋆⋆ 1.5⋆⋆⋆

ln (TS) −0.58⋆⋆⋆ −0.54⋆⋆⋆ −0.56⋆⋆⋆ −0.45⋆⋆⋆ −0.43⋆⋆⋆ −0.51⋆⋆⋆ −0.51⋆⋆⋆

ln (TN) - 0.067 - 0.12⋆ 0.20⋆ 0.076 0.13
ln (TA) - - - - −0.084 - −0.062

AIC −20 −20 −19 −19 −19 −19 −19
Adj. R2 0.81 0.81 0.80 0.80 0.80 0.81 0.81
F. Bias −0.0084 −0.020 −0.012 −0.016 −0.013 −0.026 −0.017
F. Error 0.25 0.25 0.25 0.25 0.25 0.25 0.25
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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(a) Winter: ‘simple’ models
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(b) Winter: ‘better-fit’ models
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(c) Spring: ‘simple’ models

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fractional Error

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

Fr
ac

ti
on

al
Bi

as

0.0

0.2

0.4

0.6

0.8

A
dj

.R
2

(d) Spring: ‘better-fit’ models
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(e) Summer: ‘simple’ models

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fractional Error

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

Fr
ac

ti
on

al
Bi

as

0.0

0.2

0.4

0.6

0.8

A
dj

.R
2

(f) Summer: ‘better-fit’ models
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(g) Fall: ‘simple’ models
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(h) Fall: ‘better-fit’ models

Figure C-38: Evaluations of NOx social cost models. Each circle indicates a regression model. ‘Excellent’
and ‘Good’ model performance criteria are shown as suggested by Morris et al. (2005).
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Table C-21: Evaluations of winter NOx social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 55⋆⋆ 61⋆⋆ 71 55⋆⋆ 79 61⋆⋆ 72
ln (Popw) 0.37⋆⋆ 0.36⋆⋆ 0.37⋆⋆ 0.37⋆ 0.36⋆ 0.35⋆ 0.38⋆

ln (Pres) 8.1⋆⋆⋆ 7.8⋆⋆⋆ 8.1⋆⋆⋆ 8.0⋆⋆⋆ 7.8⋆⋆⋆ 7.8⋆⋆⋆ 8.1⋆⋆⋆

ln (Temp) −19⋆⋆⋆ −19⋆⋆⋆ −22⋆ −19⋆⋆⋆ −23⋆ −19⋆⋆⋆ −22⋆

ln (Wind) - −0.077 - - −0.079 −0.078 -
ln (Prec) - - - −0.0036 - 0.010 −0.020
ln (Humid) - - 0.20 - 0.23 - 0.23

AIC 67 68 69 69 70 70 71
Adj. R2 0.72 0.72 0.71 0.71 0.71 0.71 0.71
F. Bias 0.25 0.26 0.26 0.25 0.26 0.26 0.26
F. Error 0.36 0.36 0.36 0.36 0.36 0.36 0.36
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-22: Evaluations of winter NOx social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 99⋆ 32⋆ 82+ 110⋆ 37⋆ 89⋆ 33⋆

ln (Popw) 0.36⋆⋆ 0.34⋆⋆ 0.34⋆⋆ 0.37⋆⋆ 0.35⋆⋆ 0.35⋆⋆ 0.36⋆⋆

ln (Pres) 4.1⋆⋆ 3.3⋆ 3.5⋆ 4.3⋆⋆ 3.4⋆ 3.6⋆ 4.2⋆⋆

ln (Temp) −23⋆⋆ −9.1⋆⋆ −19⋆ −25⋆⋆ −10⋆⋆ −21⋆ −10⋆⋆

ln (Wind) - - - −0.085 −0.089 −0.093 -
ln (Prec) - - - - - - -
ln (Humid) 0.88+ - 0.66 0.91+ - 0.68 -
ln (TS) −0.48⋆⋆⋆ −0.38⋆⋆ −0.44⋆⋆ −0.53⋆⋆⋆ −0.43⋆⋆ −0.49⋆⋆ −0.43⋆⋆

ln (TN) 0.50⋆⋆⋆ 0.66⋆⋆⋆ 0.62⋆⋆⋆ 0.48⋆⋆⋆ 0.65⋆⋆⋆ 0.62⋆⋆⋆ 0.45⋆⋆⋆

ln (TA) - −0.22 −0.15 - −0.24+ −0.17 -

AIC 48 49 49 49 50 50 50
Adj. R2 0.82 0.81 0.82 0.82 0.81 0.82 0.81
F. Bias 0.061 0.069 0.066 0.066 0.075 0.073 0.060
F. Error 0.27 0.25 0.26 0.29 0.26 0.29 0.24
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-23: Evaluations of spring NOx social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 150⋆⋆⋆ 150⋆⋆⋆ 160⋆⋆⋆ 160⋆⋆⋆ 100⋆⋆⋆ 98⋆⋆⋆ 97⋆⋆⋆

ln (Popw) 0.98⋆⋆⋆ 0.99⋆⋆⋆ 0.99⋆⋆⋆ 1.00⋆⋆⋆ 1.00⋆⋆⋆ 0.98⋆⋆⋆ 0.99⋆⋆⋆

ln (Pres) 9.6⋆⋆⋆ 9.7⋆⋆⋆ 9.3⋆⋆⋆ 9.7⋆⋆⋆ 12⋆⋆⋆ 11⋆⋆⋆ 12⋆⋆⋆

ln (Temp) −40⋆⋆⋆ −41⋆⋆⋆ −42⋆⋆⋆ −41⋆⋆⋆ −32⋆⋆⋆ −31⋆⋆⋆ −31⋆⋆⋆

ln (Wind) −0.084 - −0.11 - - −0.090 -
ln (Prec) - - −0.048 −0.011 - - 0.062
ln (Humid) 0.85⋆⋆ 0.86⋆⋆ 0.98⋆⋆ 0.89⋆⋆ - - -

AIC 40 40 41 42 48 48 48
Adj. R2 0.94 0.94 0.94 0.93 0.92 0.92 0.92
F. Bias 0.17 0.15 0.17 0.15 0.14 0.15 0.14
F. Error 0.33 0.33 0.34 0.33 0.34 0.34 0.33
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-24: Evaluations of spring NOx social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 76⋆⋆⋆ 81⋆⋆⋆ 73⋆⋆⋆ 69⋆ 86⋆⋆⋆ 67⋆ 79⋆⋆⋆

ln (Popw) 0.63⋆⋆⋆ 0.64⋆⋆⋆ 0.64⋆⋆⋆ 0.62⋆⋆⋆ 0.65⋆⋆⋆ 0.62⋆⋆⋆ 0.65⋆⋆⋆

ln (Pres) 6.9⋆⋆⋆ 7.1⋆⋆⋆ 7.0⋆⋆⋆ 7.0⋆⋆⋆ 7.0⋆⋆⋆ 7.2⋆⋆⋆ 7.1⋆⋆⋆

ln (Temp) −21⋆⋆⋆ −23⋆⋆⋆ −21⋆⋆⋆ −20⋆⋆⋆ −23⋆⋆⋆ −20⋆⋆ −22⋆⋆⋆

ln (Wind) −0.088 - −0.089 −0.085 −0.11⋆ - -
ln (Prec) 0.079+ 0.096⋆ 0.083+ 0.089+ - 0.11⋆ 0.099⋆

ln (Humid) - - - −0.10 - −0.19 -
ln (TS) - - −0.048 - - - −0.036
ln (TN) 0.55⋆⋆⋆ 0.54⋆⋆⋆ 0.56⋆⋆⋆ 0.57⋆⋆⋆ 0.52⋆⋆⋆ 0.58⋆⋆⋆ 0.55⋆⋆⋆

ln (TA) −0.20⋆⋆ −0.18⋆⋆ −0.20⋆⋆ −0.21⋆⋆ −0.16⋆ −0.19⋆⋆ −0.18⋆⋆

AIC 14 16 16 16 17 17 17
Adj. R2 0.96 0.96 0.96 0.96 0.96 0.96 0.96
F. Bias 0.12 0.11 0.11 0.12 0.12 0.10 0.099
F. Error 0.28 0.27 0.28 0.28 0.29 0.27 0.27
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-25: Evaluations of summer NOx social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 200⋆⋆⋆ 210⋆⋆⋆ 210⋆⋆⋆ 220⋆⋆⋆ 230⋆⋆⋆ 190⋆⋆⋆ 210⋆⋆⋆

ln (Popw) 1.1⋆⋆⋆ 1.0⋆⋆⋆ 1.0⋆⋆⋆ 1.1⋆⋆⋆ 0.98⋆⋆⋆ 1.1⋆⋆⋆ 1.0⋆⋆⋆

ln (Pres) 12⋆⋆⋆ 11⋆⋆⋆ 12⋆⋆⋆ 11⋆⋆⋆ 11⋆⋆⋆ 13⋆⋆⋆ 12⋆⋆⋆

ln (Temp) −51⋆⋆⋆ −51⋆⋆⋆ −52⋆⋆⋆ −53⋆⋆⋆ −54⋆⋆⋆ −48⋆⋆⋆ −52⋆⋆⋆

ln (Wind) - −0.12 - - −0.13 - −0.042
ln (Prec) −0.12+ −0.14⋆ - −0.16 −0.19+ - -
ln (Humid) - - - 0.32 0.45 −0.43 -

AIC 82 83 84 84 85 85 86
Adj. R2 0.86 0.85 0.85 0.85 0.85 0.85 0.84
F. Bias 0.11 0.13 0.15 0.11 0.13 0.14 0.16
F. Error 0.49 0.50 0.51 0.50 0.50 0.49 0.50
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-26: Evaluations of summer NOx social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 180⋆⋆⋆ 170⋆⋆⋆ 180⋆⋆⋆ 180⋆⋆⋆ 140⋆⋆⋆ 180⋆⋆⋆ 140⋆⋆⋆

ln (Popw) 0.65⋆⋆ 0.66⋆⋆ 0.64⋆⋆ 0.65⋆⋆ 0.70⋆⋆ 0.84⋆⋆⋆ 0.85⋆⋆⋆

ln (Pres) 7.1⋆⋆⋆ 7.4⋆⋆⋆ 7.1⋆⋆⋆ 7.1⋆⋆⋆ 8.6⋆⋆⋆ 8.0⋆⋆⋆ 9.1⋆⋆⋆

ln (Temp) −41⋆⋆⋆ −38⋆⋆⋆ −40⋆⋆⋆ −41⋆⋆⋆ −32⋆⋆⋆ −42⋆⋆⋆ −35⋆⋆⋆

ln (Wind) −0.24⋆ −0.24+ −0.24⋆ −0.24+ −0.19 - -
ln (Prec) −0.17⋆⋆ −0.15 −0.17⋆ −0.17⋆ - −0.13⋆ -
ln (Humid) - −0.22 - - −0.94⋆ - −0.81+

ln (TS) - - - −2.3 ⋅ 10−5 - - -
ln (TN) 0.38⋆⋆ 0.40⋆⋆ 0.39⋆⋆ 0.38⋆⋆ 0.42⋆⋆ 0.31⋆⋆ 0.36⋆⋆

ln (TA) - - −0.019 - - - -

AIC 74 75 75 76 76 76 77
Adj. R2 0.88 0.88 0.88 0.88 0.88 0.87 0.87
F. Bias 0.068 0.066 0.070 0.068 0.079 0.046 0.056
F. Error 0.47 0.47 0.47 0.47 0.47 0.47 0.47
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Chapter 4. Parameterization of Social Costs of Elemental Carbon and Inorganic Particulate Matter Precursors

Table C-27: Evaluations of fall NOx social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 100⋆⋆⋆ 120⋆⋆⋆ 130⋆⋆ 97⋆⋆⋆ 160⋆⋆ 110⋆⋆⋆ 120⋆

ln (Popw) 0.59⋆⋆ 0.47⋆⋆ 0.59⋆⋆ 0.58⋆⋆ 0.49⋆⋆ 0.47⋆⋆ 0.59⋆⋆

ln (Pres) 8.8⋆⋆⋆ 8.7⋆⋆⋆ 8.1⋆⋆⋆ 8.5⋆⋆⋆ 7.9⋆⋆⋆ 8.4⋆⋆⋆ 8.1⋆⋆⋆

ln (Temp) −29⋆⋆⋆ −31⋆⋆⋆ −34⋆⋆⋆ −27⋆⋆⋆ −37⋆⋆⋆ −29⋆⋆⋆ −31⋆⋆

ln (Wind) 0.24 - 0.23 0.24 - - 0.23
ln (Prec) - - - 0.072 - 0.078 0.052
ln (Humid) - - 0.51 - 0.65 - 0.38

AIC 81 82 82 82 83 83 84
Adj. R2 0.65 0.63 0.64 0.64 0.63 0.63 0.64
F. Bias 0.22 0.26 0.23 0.23 0.27 0.27 0.24
F. Error 0.36 0.38 0.38 0.38 0.40 0.40 0.39
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-28: Evaluations of fall NOx social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 170⋆⋆⋆ 150⋆⋆⋆ 150⋆⋆⋆ 130⋆⋆ 200⋆⋆⋆ 160⋆⋆⋆ 180⋆⋆⋆

ln (Popw) 0.95⋆⋆⋆ 0.81⋆⋆⋆ 0.89⋆⋆⋆ 0.84⋆⋆⋆ 0.92⋆⋆⋆ 0.84⋆⋆⋆ 0.96⋆⋆⋆

ln (Pres) 8.1⋆⋆⋆ 6.3⋆⋆ 6.9⋆⋆ 6.2⋆⋆ 8.4⋆⋆⋆ 6.8⋆⋆ 8.2⋆⋆⋆

ln (Temp) −45⋆⋆⋆ −37⋆⋆⋆ −39⋆⋆⋆ −34⋆⋆⋆ −49⋆⋆⋆ −41⋆⋆⋆ −46⋆⋆⋆

ln (Wind) 0.21+ - 0.18 0.12 - - 0.20
ln (Prec) - - - - - - −0.021
ln (Humid) 1.9⋆⋆ 1.5⋆⋆ 1.7⋆⋆ 1.4⋆ 2.1⋆⋆⋆ 1.7⋆⋆ 2.0⋆⋆

ln (TS) −0.95⋆⋆⋆ −0.93⋆⋆⋆ −0.92⋆⋆⋆ −0.89⋆⋆⋆ −1.0⋆⋆⋆ −0.97⋆⋆⋆ −0.97⋆⋆⋆

ln (TN) - 0.34⋆⋆ 0.16 0.35⋆⋆ - 0.22 -
ln (TA) 0.31⋆⋆ - 0.20 - 0.26⋆⋆ 0.12 0.30⋆⋆

AIC 56 57 57 58 58 58 58
Adj. R2 0.79 0.79 0.79 0.79 0.78 0.79 0.79
F. Bias −0.020 −0.00051 −0.030 −0.016 0.016 −0.0040 −0.022
F. Error 0.38 0.40 0.38 0.38 0.41 0.40 0.38
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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(b) Winter: ‘better-fit’ models
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(c) Spring: ‘simple’ models
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(e) Summer: ‘simple’ models
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(f) Summer: ‘better-fit’ models
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(g) Fall: ‘simple’ models
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(h) Fall: ‘better-fit’ models

Figure C-39: Evaluations of NH3 social cost models. Each circle indicates a regression model. ‘Excellent’
and ‘Good’ model performance criteria are shown as suggested by Morris et al. (2005).
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Chapter 4. Parameterization of Social Costs of Elemental Carbon and Inorganic Particulate Matter Precursors

Table C-29: Evaluations of winter NH3 social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 190⋆⋆⋆ 180⋆⋆⋆ 180⋆⋆⋆ 170⋆⋆⋆ 58⋆⋆⋆ 50⋆⋆⋆ 62⋆⋆⋆

ln (Popw) 0.81⋆⋆⋆ 0.80⋆⋆⋆ 0.69⋆⋆⋆ 0.69⋆⋆⋆ 0.80⋆⋆⋆ 0.80⋆⋆⋆ 0.72⋆⋆⋆

ln (Pres) 4.0⋆⋆⋆ 4.6⋆⋆⋆ 4.4⋆⋆⋆ 5.0⋆⋆⋆ 3.6⋆⋆ 4.1⋆⋆⋆ 3.9⋆⋆⋆

ln (Temp) −41⋆⋆⋆ −40⋆⋆⋆ −39⋆⋆⋆ −37⋆⋆⋆ −14⋆⋆⋆ −13⋆⋆⋆ −15⋆⋆⋆

ln (Wind) −0.11+ - −0.11+ - −0.10 - −0.10
ln (Prec) −0.26⋆ −0.27⋆ - - −0.17 −0.18 -
ln (Humid) 1.7⋆⋆⋆ 1.7⋆⋆⋆ 1.5⋆⋆⋆ 1.5⋆⋆ - - -

AIC 25 27 31 33 42 42 42
Adj. R2 0.90 0.90 0.89 0.88 0.86 0.86 0.86
F. Bias −0.030 −0.035 −0.0041 −0.010 −0.058 −0.063 −0.038
F. Error 0.33 0.32 0.33 0.32 0.30 0.30 0.30
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-30: Evaluations of winter NH3 social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 160⋆⋆⋆ 170⋆⋆⋆ 180⋆⋆⋆ 160⋆⋆⋆ 160⋆⋆⋆ 170⋆⋆⋆ 160⋆⋆⋆

ln (Popw) 0.77⋆⋆⋆ 0.76⋆⋆⋆ 0.73⋆⋆⋆ 0.78⋆⋆⋆ 0.77⋆⋆⋆ 0.66⋆⋆⋆ 0.67⋆⋆⋆

ln (Pres) 3.4⋆⋆⋆ 4.0⋆⋆⋆ 3.1⋆⋆ 3.4⋆⋆⋆ 3.6⋆⋆ 3.0⋆⋆ 3.3⋆⋆⋆

ln (Temp) −34⋆⋆⋆ −37⋆⋆⋆ −37⋆⋆⋆ −34⋆⋆⋆ −34⋆⋆⋆ −35⋆⋆⋆ −32⋆⋆⋆

ln (Wind) - - - −0.048 - - -
ln (Prec) −0.19+ −0.19+ −0.16 −0.21⋆ −0.20+ - -
ln (Humid) 1.2⋆⋆ 1.4⋆⋆⋆ 1.5⋆⋆⋆ 1.2⋆⋆ 1.2⋆⋆ 1.3⋆⋆⋆ 1.1⋆⋆

ln (TS) 0.37⋆⋆⋆ 0.35⋆⋆⋆ 0.28⋆⋆ 0.34⋆⋆ 0.37⋆⋆⋆ 0.33⋆⋆⋆ 0.40⋆⋆⋆

ln (TN) - −0.11 - - −0.026 - -
ln (TA) −0.12+ - - −0.13+ −0.098 - −0.086

AIC 16 17 18 18 18 18 19
Adj. R2 0.92 0.92 0.92 0.92 0.92 0.91 0.91
F. Bias 0.037 0.035 −0.00084 0.039 0.040 0.018 0.049
F. Error 0.25 0.26 0.26 0.26 0.25 0.25 0.25
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-31: Evaluations of spring NH3 social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 99⋆⋆ 110⋆⋆ 110⋆⋆ 120⋆⋆ 93⋆ 110⋆⋆ 97⋆

ln (Popw) 0.90⋆⋆⋆ 0.98⋆⋆⋆ 0.91⋆⋆⋆ 1.0⋆⋆⋆ 0.90⋆⋆⋆ 0.98⋆⋆⋆ 0.90⋆⋆⋆

ln (Pres) 2.4 - 2.6 - 3.0 - 2.5
ln (Temp) −22⋆⋆ −21⋆⋆ −23⋆⋆⋆ −23⋆⋆ −21⋆⋆ −22⋆⋆ −21⋆⋆

ln (Wind) −0.13 −0.13 - - - −0.15 −0.12
ln (Prec) - - - - 0.051 −0.032 0.0089
ln (Humid) 0.93⋆ 1.2⋆⋆⋆ 0.95⋆ 1.3⋆⋆⋆ 0.81+ 1.3⋆⋆ 0.91+

AIC 77 77 77 77 79 79 79
Adj. R2 0.83 0.82 0.82 0.82 0.82 0.82 0.82
F. Bias −0.25 −0.27 −0.27 −0.29 −0.27 −0.27 −0.25
F. Error 0.35 0.35 0.36 0.37 0.36 0.35 0.35
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-32: Evaluations of spring NH3 social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 89⋆⋆⋆ 82⋆⋆⋆ 97⋆⋆⋆ 84⋆⋆ 90⋆⋆⋆ 84⋆⋆⋆ 100⋆⋆⋆

ln (Popw) 0.81⋆⋆⋆ 0.80⋆⋆⋆ 0.82⋆⋆⋆ 0.81⋆⋆⋆ 0.81⋆⋆⋆ 0.83⋆⋆⋆ 0.82⋆⋆⋆

ln (Pres) 2.7⋆ 2.7⋆ 2.6⋆ 2.7⋆ 2.9⋆ - 2.9⋆

ln (Temp) −18⋆⋆⋆ −17⋆⋆⋆ −20⋆⋆⋆ −17⋆⋆ −18⋆⋆⋆ −14⋆⋆⋆ −21⋆⋆⋆

ln (Wind) −0.13⋆ −0.12⋆ −0.14⋆ −0.12⋆ - −0.14⋆⋆ -
ln (Prec) - 0.042 - 0.039 0.064 - -
ln (Humid) - - 0.18 0.033 - - -
ln (TS) 1.3⋆⋆⋆ 1.3⋆⋆⋆ 1.3⋆⋆⋆ 1.3⋆⋆⋆ 1.3⋆⋆⋆ 1.4⋆⋆⋆ 1.4⋆⋆⋆

ln (TN) −0.24⋆⋆ −0.22⋆ −0.26⋆⋆ −0.22⋆ −0.23⋆⋆ −0.14+ −0.28⋆⋆

ln (TA) −0.33⋆⋆⋆ −0.35⋆⋆⋆ −0.33⋆⋆⋆ −0.35⋆⋆⋆ −0.32⋆⋆⋆ −0.36⋆⋆⋆ −0.28⋆⋆⋆

AIC 12 12 13 14 17 17 17
Adj. R2 0.95 0.95 0.95 0.95 0.95 0.95 0.95
F. Bias 0.075 0.067 0.070 0.066 0.047 0.059 0.057
F. Error 0.21 0.20 0.21 0.20 0.20 0.20 0.21
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-33: Evaluations of summer NH3 social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 54⋆ 82⋆ 120⋆⋆⋆ 110⋆⋆ 110⋆⋆ 45 −20⋆

ln (Popw) 0.78⋆⋆⋆ 0.77⋆⋆⋆ 0.83⋆⋆⋆ 0.76⋆⋆⋆ 0.86⋆⋆⋆ 0.85⋆⋆⋆ 0.82⋆⋆⋆

ln (Pres) 4.8⋆⋆⋆ 3.6+ - 2.0 - 5.2⋆⋆⋆ 3.3⋆

ln (Temp) −15⋆⋆ −19⋆⋆ −24⋆⋆⋆ −24⋆⋆⋆ −22⋆⋆ −14⋆ -
ln (Wind) −0.31⋆⋆ −0.32⋆⋆ −0.37⋆⋆ −0.37⋆⋆⋆ −0.34⋆⋆ - −0.28⋆

ln (Prec) 0.21⋆⋆ 0.15 - - 0.057 0.27⋆⋆⋆ 0.20⋆⋆

ln (Humid) - 0.54 1.4⋆⋆⋆ 1.2⋆⋆ 1.2⋆⋆ - -

AIC 73 74 75 75 76 80 80
Adj. R2 0.85 0.85 0.84 0.84 0.84 0.83 0.83
F. Bias −0.23 −0.23 −0.25 −0.25 −0.25 −0.28 −0.30
F. Error 0.40 0.40 0.40 0.40 0.40 0.46 0.48
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-34: Evaluations of summer NH3 social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 75⋆⋆ 46 41 −12 79⋆⋆ −13 −8.7
ln (Popw) 0.81⋆⋆⋆ 0.78⋆⋆⋆ 0.82⋆⋆⋆ 0.75⋆⋆⋆ 0.85⋆⋆⋆ 0.78⋆⋆⋆ 0.72⋆⋆⋆

ln (Pres) 4.5⋆⋆ 4.9⋆⋆ 5.3⋆⋆⋆ 4.6⋆⋆ 4.8⋆⋆ 5.0⋆⋆ 3.8⋆

ln (Temp) −18⋆⋆⋆ −12+ −11 - −19⋆⋆⋆ - -
ln (Wind) −0.17⋆ −0.15+ - −0.14 - - −0.20⋆

ln (Prec) 0.16⋆⋆ 0.21⋆⋆ 0.23⋆⋆ 0.27⋆⋆⋆ 0.17⋆⋆ 0.29⋆⋆⋆ 0.27⋆⋆⋆

ln (Humid) - −0.66 −0.86 −1.4⋆⋆⋆ - −1.5⋆⋆⋆ −1.2⋆⋆

ln (TS) 0.84⋆⋆⋆ 1.0⋆⋆⋆ 1.2⋆⋆⋆ 1.2⋆⋆⋆ 0.97⋆⋆⋆ 1.3⋆⋆⋆ 0.91⋆⋆⋆

ln (TN) −0.24⋆ −0.23⋆ −0.28⋆⋆ −0.15+ −0.32⋆⋆ −0.21⋆ -
ln (TA) −0.32⋆⋆⋆ −0.33⋆⋆⋆ −0.34⋆⋆⋆ −0.37⋆⋆⋆ −0.32⋆⋆⋆ −0.37⋆⋆⋆ −0.37⋆⋆⋆

AIC 45 45 47 47 48 48 48
Adj. R2 0.92 0.92 0.92 0.92 0.91 0.91 0.91
F. Bias −0.048 −0.030 −0.026 −0.045 −0.048 −0.040 −0.083
F. Error 0.21 0.22 0.25 0.25 0.25 0.27 0.26
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-35: Evaluations of fall NH3 social cost ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 210⋆⋆⋆ 170⋆⋆⋆ 180⋆⋆⋆ 150⋆⋆⋆ 230⋆⋆⋆ 200⋆⋆⋆ 210⋆⋆⋆

ln (Popw) 0.64⋆⋆⋆ 0.58⋆⋆⋆ 0.69⋆⋆⋆ 0.64⋆⋆⋆ 0.75⋆⋆⋆ 0.70⋆⋆⋆ 0.84⋆⋆⋆

ln (Pres) 3.5⋆⋆ 3.6⋆⋆ 3.8⋆⋆⋆ 4.0⋆⋆⋆ - - -
ln (Temp) −43⋆⋆⋆ −37⋆⋆⋆ −39⋆⋆⋆ −32⋆⋆⋆ −44⋆⋆⋆ −38⋆⋆⋆ −40⋆⋆⋆

ln (Wind) −0.21⋆ −0.23⋆ - - −0.26⋆⋆ −0.27⋆⋆ -
ln (Prec) −0.14⋆ - −0.15⋆ - −0.15⋆ - −0.16⋆

ln (Humid) 1.9⋆⋆⋆ 1.6⋆⋆⋆ 1.8⋆⋆⋆ 1.4⋆⋆ 2.5⋆⋆⋆ 2.2⋆⋆⋆ 2.3⋆⋆⋆

AIC 29 32 34 37 40 42 45
Adj. R2 0.88 0.87 0.87 0.85 0.85 0.84 0.83
F. Bias −0.0039 0.0082 −0.045 −0.034 −0.013 0.00047 −0.067
F. Error 0.39 0.41 0.35 0.36 0.41 0.42 0.37
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted

R2, F. Bias: fractional bias, F. Error: fractional error.

Table C-36: Evaluations of fall NH3 social cost ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 160⋆⋆⋆ 140⋆⋆⋆ 170⋆⋆⋆ 160⋆⋆⋆ 160⋆⋆⋆ 150⋆⋆⋆ 160⋆⋆⋆

ln (Popw) 0.50⋆⋆⋆ 0.52⋆⋆⋆ 0.53⋆⋆⋆ 0.54⋆⋆⋆ 0.50⋆⋆⋆ 0.51⋆⋆⋆ 0.50⋆⋆⋆

ln (Pres) 2.0+ 1.9+ 2.1⋆ 2.1+ 1.8 1.6 2.0
ln (Temp) −31⋆⋆⋆ −28⋆⋆⋆ −34⋆⋆⋆ −31⋆⋆⋆ −31⋆⋆⋆ −28⋆⋆⋆ −31⋆⋆⋆

ln (Wind) −0.12 - −0.13 - −0.12 - −0.12
ln (Prec) - - −0.060 −0.051 - - -
ln (Humid) 1.2⋆⋆ 1.00⋆⋆ 1.3⋆⋆ 1.1⋆⋆ 1.2⋆⋆ 1.1⋆⋆ 1.2⋆⋆

ln (TS) 0.44⋆⋆⋆ 0.50⋆⋆⋆ 0.39⋆⋆ 0.46⋆⋆⋆ 0.44⋆⋆⋆ 0.48⋆⋆⋆ 0.44⋆⋆⋆

ln (TN) - - - - - - −0.0040
ln (TA) - - - - 0.018 0.043 -

AIC 20 21 21 22 22 22 22
Adj. R2 0.90 0.90 0.90 0.90 0.90 0.90 0.90
F. Bias 0.081 0.070 0.067 0.058 0.074 0.056 0.082
F. Error 0.31 0.28 0.31 0.27 0.30 0.28 0.31
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population (≥ age 30) weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3]

(shifted for log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total

nitrate (≡ [HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj.

R2: adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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(b) Spring
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(c) Summer
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(d) Fall

Figure C-40: Evaluations of EC intake fraction models. Each circle indicates a regression model.
‘Excellent’ and ‘Good’ model performance criteria are shown as suggested by Morris et al. (2005).

218



Table C-37: Evaluations of winter EC intake fraction models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 74⋆⋆ 78⋆⋆ 69⋆ 74⋆⋆ 20⋆ 17 20⋆

ln (Popw) 0.65⋆⋆⋆ 0.69⋆⋆⋆ 0.65⋆⋆⋆ 0.69⋆⋆⋆ 0.67⋆⋆⋆ 0.67⋆⋆⋆ 0.69⋆⋆⋆

ln (Pres) 2.9⋆⋆⋆ 2.8⋆⋆⋆ 3.1⋆⋆⋆ 3.0⋆⋆⋆ 2.7⋆⋆⋆ 2.9⋆⋆⋆ 2.6⋆⋆⋆

ln (Temp) −19⋆⋆⋆ −20⋆⋆⋆ −18⋆⋆ −19⋆⋆⋆ −8.1⋆⋆⋆ −7.7⋆⋆⋆ −7.9⋆⋆⋆

ln (Wind) - - 0.041 0.042 - 0.045 -
ln (Prec) - −0.094 - −0.095 - - −0.051
ln (Humid) 0.70⋆ 0.78⋆ 0.69⋆ 0.77⋆ - - -

AIC 3.0 3.5 4.2 4.6 6.2 7.3 7.8
Adj. R2 0.91 0.91 0.91 0.91 0.90 0.90 0.90
F. Bias 0.10 0.096 0.10 0.093 0.089 0.086 0.083
F. Error 0.19 0.18 0.19 0.17 0.18 0.18 0.18
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-38: Evaluations of spring EC intake fraction models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 46⋆⋆⋆ 69⋆⋆⋆ 57⋆⋆⋆ 48⋆⋆⋆ 70⋆⋆⋆ 46⋆⋆⋆ 57⋆⋆⋆

ln (Popw) 0.76⋆⋆⋆ 0.77⋆⋆⋆ 0.77⋆⋆⋆ 0.76⋆⋆⋆ 0.77⋆⋆⋆ 0.76⋆⋆⋆ 0.77⋆⋆⋆

ln (Pres) 5.5⋆⋆⋆ 4.8⋆⋆⋆ 5.1⋆⋆⋆ 5.5⋆⋆⋆ 4.7⋆⋆⋆ 5.5⋆⋆⋆ 5.1⋆⋆⋆

ln (Temp) −16⋆⋆⋆ −20⋆⋆⋆ −18⋆⋆⋆ −16⋆⋆⋆ −20⋆⋆⋆ −16⋆⋆⋆ −18⋆⋆⋆

ln (Wind) - - - - −0.023 0.00062 0.0020
ln (Prec) - −0.044 - −0.018 −0.052 - -
ln (Humid) - 0.31+ 0.18 - 0.33+ - 0.18

AIC −18 −18 −17 −16 −16 −16 −15
Adj. R2 0.97 0.97 0.97 0.97 0.97 0.97 0.97
F. Bias 0.064 0.068 0.067 0.064 0.072 0.064 0.067
F. Error 0.19 0.18 0.18 0.19 0.18 0.19 0.18
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.
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Table C-39: Evaluations of summer EC intake fraction models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 54⋆⋆⋆ 52⋆⋆⋆ 54⋆⋆⋆ 72⋆⋆⋆ 70⋆⋆⋆ 52⋆⋆⋆ 71⋆⋆⋆

ln (Popw) 0.80⋆⋆⋆ 0.80⋆⋆⋆ 0.80⋆⋆⋆ 0.79⋆⋆⋆ 0.79⋆⋆⋆ 0.80⋆⋆⋆ 0.80⋆⋆⋆

ln (Pres) 5.8⋆⋆⋆ 5.9⋆⋆⋆ 5.8⋆⋆⋆ 5.1⋆⋆⋆ 5.1⋆⋆⋆ 5.9⋆⋆⋆ 5.1⋆⋆⋆

ln (Temp) −17⋆⋆⋆ −17⋆⋆⋆ −17⋆⋆⋆ −20⋆⋆⋆ −20⋆⋆⋆ −17⋆⋆⋆ −20⋆⋆⋆

ln (Wind) - - 0.00014 - - 0.0047 0.016
ln (Prec) - 0.011 - - −0.030 0.012 -
ln (Humid) −0.30⋆ −0.35+ −0.30⋆ - - −0.35+ -

AIC −25 −24 −23 −22 −22 −22 −20
Adj. R2 0.97 0.97 0.97 0.97 0.97 0.97 0.97
F. Bias −0.0036 −0.0013 −0.0036 0.011 −0.0019 −0.0021 0.0064
F. Error 0.16 0.16 0.16 0.15 0.15 0.16 0.15
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-40: Evaluations of fall EC intake fraction models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 25⋆ 49⋆ 20 23+ 45+ 47+ 19
ln (Popw) 0.66⋆⋆⋆ 0.65⋆⋆⋆ 0.64⋆⋆⋆ 0.66⋆⋆⋆ 0.65⋆⋆⋆ 0.66⋆⋆⋆ 0.65⋆⋆⋆

ln (Pres) 2.9⋆⋆⋆ 2.5⋆⋆ 2.9⋆⋆⋆ 3.0⋆⋆⋆ 2.5⋆⋆ 2.5⋆⋆ 2.9⋆⋆⋆

ln (Temp) −9.2⋆⋆⋆ −14⋆⋆ −8.3⋆⋆ −8.8⋆⋆ −13⋆ −13⋆⋆ −8.0⋆⋆

ln (Wind) - - - 0.038 - 0.019 0.031
ln (Prec) - - 0.039 - 0.016 - 0.036
ln (Humid) - 0.43 - - 0.39 0.41 -

AIC 14 14 15 15 16 16 17
Adj. R2 0.88 0.88 0.88 0.88 0.88 0.88 0.87
F. Bias 0.085 0.095 0.090 0.079 0.096 0.091 0.085
F. Error 0.21 0.21 0.21 0.20 0.21 0.21 0.21
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.
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(a) Winter: ‘simple’ models
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(b) Winter: ‘better-fit’ models
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(c) Spring: ‘simple’ models
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(d) Spring: ‘better-fit’ models
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(e) Summer: ‘simple’ models
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(f) Summer: ‘better-fit’ models
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(g) Fall: ‘simple’ models
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(h) Fall: ‘better-fit’ models

Figure C-41: Evaluations of SO2 intake fraction models. Each circle indicates a regression model.
‘Excellent’ and ‘Good’ model performance criteria are shown as suggested by Morris et al. (2005).
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Table C-41: Evaluations of winter SO2 intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept −20⋆⋆⋆ −15⋆ 63 50 −4.4 −15 −21⋆⋆

ln (Popw) - - - - - - -
ln (Pres) 2.7⋆⋆ 2.0⋆ 2.4⋆ 3.0⋆⋆ 2.3⋆ 2.9⋆⋆ 2.8⋆⋆

ln (Temp) - - −16 −14 −2.2 −1.1 -
ln (Wind) - −0.11 −0.13 - −0.13 - -
ln (Prec) - - - - - - −0.033
ln (Humid) - - 0.87 0.83 - - -

AIC 62 62 63 64 64 64 64
Adj. R2 0.19 0.20 0.21 0.19 0.19 0.17 0.17
F. Bias 0.049 0.047 0.085 0.077 0.064 0.057 0.045
F. Error 0.26 0.26 0.28 0.28 0.26 0.26 0.26
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-42: Evaluations of winter SO2 intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 59 81+ −5.8⋆⋆ −3.3⋆⋆⋆ 61 61 84+

ln (Popw) - 0.30 - - - 0.052 -
ln (Pres) - - - - - - -
ln (Temp) −13 −18+ - - −13 −13 −18⋆

ln (Wind) −0.20⋆ −0.24⋆ −0.19⋆ −0.23⋆ −0.21⋆ −0.21⋆ −0.18+

ln (Prec) - −0.26+ - - −0.090 - -
ln (Humid) 1.0+ 1.4⋆ 0.27 - 1.1+ 1.1+ 1.4⋆⋆

ln (TS) −0.42⋆⋆ −0.57⋆⋆ −0.38⋆ −0.31⋆ −0.43⋆⋆ −0.44⋆⋆ −0.47⋆⋆

ln (TN) 0.51⋆⋆⋆ 0.48⋆⋆⋆ 0.53⋆⋆⋆ 0.52⋆⋆⋆ 0.53⋆⋆⋆ 0.49⋆⋆⋆ 0.35⋆⋆⋆

ln (TA) −0.26+ −0.26+ −0.32⋆ −0.36⋆⋆ −0.27+ −0.25+ -

AIC 50 50 50 51 51 52 52
Adj. R2 0.41 0.43 0.40 0.38 0.41 0.40 0.38
F. Bias −0.030 −0.036 −0.037 0.0043 −0.044 −0.024 −0.065
F. Error 0.29 0.27 0.28 0.28 0.29 0.29 0.29
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-43: Evaluations of spring SO2 intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 110⋆⋆⋆ 100⋆⋆⋆ 81⋆⋆⋆ 77⋆⋆⋆ 87⋆⋆⋆ 80⋆⋆⋆ 76⋆⋆⋆

ln (Popw) 0.44⋆⋆⋆ 0.45⋆⋆⋆ 0.44⋆⋆⋆ 0.43⋆⋆⋆ 0.43⋆⋆⋆ 0.44⋆⋆⋆ 0.43⋆⋆⋆

ln (Pres) 6.4⋆⋆⋆ 6.6⋆⋆⋆ 7.4⋆⋆⋆ 7.4⋆⋆⋆ 7.0⋆⋆⋆ 7.3⋆⋆⋆ 7.4⋆⋆⋆

ln (Temp) −28⋆⋆⋆ −28⋆⋆⋆ −24⋆⋆⋆ −24⋆⋆⋆ −25⋆⋆⋆ −24⋆⋆⋆ −23⋆⋆⋆

ln (Wind) −0.047 - - - - −0.031 −0.0089
ln (Prec) −0.082⋆⋆ −0.065⋆ −0.037 - - −0.046+ -
ln (Humid) 0.39⋆ 0.35⋆ - - 0.16 - -

AIC −30 −30 −27 −26 −26 −26 −24
Adj. R2 0.94 0.94 0.93 0.93 0.93 0.93 0.93
F. Bias 0.14 0.13 0.13 0.13 0.13 0.13 0.13
F. Error 0.23 0.23 0.23 0.22 0.22 0.23 0.22
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-44: Evaluations of spring SO2 intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 88⋆⋆⋆ 63⋆⋆⋆ 110⋆⋆⋆ 67⋆⋆⋆ 59⋆⋆⋆ 110⋆⋆⋆ 69⋆⋆⋆

ln (Popw) 0.46⋆⋆⋆ 0.34⋆⋆⋆ 0.54⋆⋆⋆ 0.35⋆⋆⋆ 0.36⋆⋆⋆ 0.53⋆⋆⋆ 0.41⋆⋆⋆

ln (Pres) 6.3⋆⋆⋆ 6.3⋆⋆⋆ 6.6⋆⋆⋆ 6.4⋆⋆⋆ 6.4⋆⋆⋆ 6.7⋆⋆⋆ 6.3⋆⋆⋆

ln (Temp) −25⋆⋆⋆ −20⋆⋆⋆ −30⋆⋆⋆ −20⋆⋆⋆ −19⋆⋆⋆ −29⋆⋆⋆ −21⋆⋆⋆

ln (Wind) −0.068⋆ −0.045 −0.064+ - −0.050 −0.071⋆ −0.052
ln (Prec) −0.050 - −0.084⋆⋆ - - −0.076⋆⋆ -
ln (Humid) 0.41+ - 0.62⋆⋆ - - 0.59⋆⋆ 0.20
ln (TS) −0.17+ - −0.21⋆ - −0.093 −0.18+ −0.15
ln (TN) 0.096 0.16⋆⋆ - 0.15⋆⋆ 0.17⋆⋆ - 0.15⋆⋆

ln (TA) −0.079+ −0.13⋆⋆ - −0.11⋆⋆ −0.12⋆⋆ −0.038 −0.11⋆⋆

AIC −35 −34 −34 −34 −34 −34 −34
Adj. R2 0.95 0.94 0.95 0.94 0.95 0.95 0.95
F. Bias 0.11 0.13 0.11 0.12 0.11 0.13 0.11
F. Error 0.24 0.24 0.23 0.23 0.24 0.23 0.23
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-45: Evaluations of summer SO2 intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 100⋆⋆⋆ 91⋆⋆⋆ 100⋆⋆⋆ 88⋆⋆⋆ 76⋆⋆⋆ 75⋆⋆⋆ 110⋆⋆⋆

ln (Popw) 0.60⋆⋆⋆ 0.62⋆⋆⋆ 0.62⋆⋆⋆ 0.65⋆⋆⋆ 0.68⋆⋆⋆ 0.64⋆⋆⋆ 0.62⋆⋆⋆

ln (Pres) 5.9⋆⋆⋆ 6.4⋆⋆⋆ 5.9⋆⋆⋆ 6.5⋆⋆⋆ 7.1⋆⋆⋆ 7.1⋆⋆⋆ 6.1⋆⋆⋆

ln (Temp) −26⋆⋆⋆ −25⋆⋆⋆ −26⋆⋆⋆ −24⋆⋆⋆ −22⋆⋆⋆ −22⋆⋆⋆ −27⋆⋆⋆

ln (Wind) - - 0.040 0.051 0.080+ - 0.097+

ln (Prec) −0.11⋆⋆⋆ −0.079⋆ −0.099⋆⋆⋆ −0.065+ - - -
ln (Humid) - −0.24 - −0.28 −0.57⋆⋆⋆ −0.60⋆⋆⋆ -

AIC −18 −17 −17 −17 −15 −14 −3.6
Adj. R2 0.93 0.93 0.93 0.93 0.93 0.92 0.91
F. Bias 0.0085 0.010 0.0029 0.0036 0.013 0.028 0.030
F. Error 0.21 0.21 0.21 0.21 0.21 0.21 0.22
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-46: Evaluations of summer SO2 intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 66⋆⋆⋆ 58⋆⋆⋆ 71⋆⋆⋆ 72⋆⋆⋆ 60⋆⋆⋆ 72⋆⋆⋆ 96⋆⋆⋆

ln (Popw) 0.56⋆⋆⋆ 0.58⋆⋆⋆ 0.58⋆⋆⋆ 0.53⋆⋆⋆ 0.59⋆⋆⋆ 0.53⋆⋆⋆ 0.62⋆⋆⋆

ln (Pres) 6.5⋆⋆⋆ 7.0⋆⋆⋆ 6.7⋆⋆⋆ 6.4⋆⋆⋆ 7.1⋆⋆⋆ 6.4⋆⋆⋆ 6.3⋆⋆⋆

ln (Temp) −19⋆⋆⋆ −18⋆⋆⋆ −21⋆⋆⋆ −20⋆⋆⋆ −19⋆⋆⋆ −20⋆⋆⋆ −26⋆⋆⋆

ln (Wind) 0.070+ 0.089⋆ 0.081+ - 0.096⋆ - -
ln (Prec) −0.044 - −0.048 −0.064+ - −0.063+ −0.089⋆⋆⋆

ln (Humid) −0.71⋆ −0.89⋆⋆⋆ −0.68⋆ −0.60⋆ −0.89⋆⋆⋆ −0.60⋆ -
ln (TS) 0.30⋆ 0.30⋆ 0.32⋆ 0.27+ 0.31⋆ 0.27+ -
ln (TN) - - −0.033 - −0.020 0.00047 -
ln (TA) −0.11⋆⋆ −0.12⋆⋆⋆ −0.11⋆⋆ −0.11⋆⋆ −0.12⋆⋆⋆ −0.11⋆⋆ −0.084⋆

AIC −27 −27 −26 −26 −25 −24 −23
Adj. R2 0.95 0.94 0.94 0.94 0.94 0.94 0.94
F. Bias 0.052 0.059 0.059 0.057 0.064 0.057 0.030
F. Error 0.22 0.23 0.23 0.22 0.23 0.22 0.21
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-47: Evaluations of fall SO2 intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 64⋆ 68⋆⋆ 74⋆⋆ 61⋆ 65⋆ 24+ 30⋆

ln (Popw) 0.20+ - 0.13 - 0.20+ 0.19 -
ln (Pres) 3.9⋆⋆⋆ 4.6⋆⋆⋆ 3.8⋆⋆⋆ 4.8⋆⋆⋆ 3.9⋆⋆⋆ 4.7⋆⋆⋆ 5.3⋆⋆⋆

ln (Temp) −18⋆⋆⋆ −19⋆⋆⋆ −20⋆⋆⋆ −18⋆⋆⋆ −18⋆⋆ −11⋆⋆⋆ −12⋆⋆⋆

ln (Wind) 0.12 - - 0.052 0.12 0.14 -
ln (Prec) - - - - −0.0067 - -
ln (Humid) 0.67+ 0.68+ 0.73⋆ 0.64+ 0.69+ - -

AIC 19 20 20 21 21 21 22
Adj. R2 0.58 0.56 0.57 0.56 0.57 0.55 0.54
F. Bias 0.083 0.093 0.10 0.083 0.082 0.064 0.078
F. Error 0.25 0.26 0.26 0.26 0.25 0.23 0.25
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-48: Evaluations of fall SO2 intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 59⋆⋆ 83⋆ 130⋆⋆⋆ 57⋆ 110⋆⋆⋆ 81⋆ 120⋆⋆⋆

ln (Popw) 0.44⋆⋆⋆ 0.52⋆⋆⋆ 0.65⋆⋆⋆ 0.45⋆⋆⋆ 0.56⋆⋆⋆ 0.53⋆⋆⋆ 0.66⋆⋆⋆

ln (Pres) 2.9⋆⋆ 3.6⋆⋆ 5.4⋆⋆⋆ 2.9⋆⋆ 4.5⋆⋆⋆ 3.6⋆⋆ 5.4⋆⋆⋆

ln (Temp) −17⋆⋆⋆ −23⋆⋆ −35⋆⋆⋆ −17⋆⋆ −30⋆⋆⋆ −23⋆⋆ −33⋆⋆⋆

ln (Wind) - - - 0.029 - 0.025 0.049
ln (Prec) - −0.058 −0.11⋆ - −0.084 −0.056 −0.11⋆

ln (Humid) 1.1⋆⋆ 1.4⋆⋆ 1.9⋆⋆⋆ 1.1⋆⋆ 1.7⋆⋆⋆ 1.4⋆⋆ 1.9⋆⋆⋆

ln (TS) −0.55⋆⋆⋆ −0.63⋆⋆⋆ −0.73⋆⋆⋆ −0.55⋆⋆⋆ −0.69⋆⋆⋆ −0.62⋆⋆⋆ −0.72⋆⋆⋆

ln (TN) 0.28⋆⋆ 0.22⋆ - 0.27⋆⋆ 0.072 0.21+ -
ln (TA) −0.15⋆ −0.13+ - −0.14+ - −0.12 -

AIC −9.4 −8.7 −7.7 −7.6 −6.9 −6.9 −6.4
Adj. R2 0.77 0.77 0.76 0.77 0.76 0.77 0.76
F. Bias −0.039 −0.043 −0.036 −0.043 −0.048 −0.046 −0.041
F. Error 0.26 0.26 0.26 0.26 0.25 0.26 0.25
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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(a) Winter: ‘simple’ models
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(b) Winter: ‘better-fit’ models
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(c) Spring: ‘simple’ models
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(d) Spring: ‘better-fit’ models
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(e) Summer: ‘simple’ models
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(f) Summer: ‘better-fit’ models
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(g) Fall: ‘simple’ models
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(h) Fall: ‘better-fit’ models

Figure C-42: Evaluations of NOx intake fraction models. Each circle indicates a regression model.
‘Excellent’ and ‘Good’ model performance criteria are shown as suggested by Morris et al. (2005).
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Table C-49: Evaluations of winter NOx intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 38⋆ 42⋆ 57 38⋆ 63 43⋆ 55
ln (Popw) 0.39⋆⋆ 0.39⋆⋆ 0.39⋆⋆ 0.37⋆ 0.38⋆⋆ 0.35⋆ 0.38⋆

ln (Pres) 7.4⋆⋆⋆ 7.2⋆⋆⋆ 7.5⋆⋆⋆ 7.5⋆⋆⋆ 7.3⋆⋆⋆ 7.3⋆⋆⋆ 7.5⋆⋆⋆

ln (Temp) −17⋆⋆⋆ −17⋆⋆⋆ −21+ −17⋆⋆⋆ −21⋆ −17⋆⋆⋆ −20+

ln (Wind) - −0.056 - - −0.058 −0.060 -
ln (Prec) - - - 0.039 - 0.050 0.022
ln (Humid) - - 0.25 - 0.27 - 0.23

AIC 72 74 74 74 76 76 76
Adj. R2 0.68 0.67 0.67 0.67 0.66 0.66 0.66
F. Bias 0.24 0.24 0.25 0.24 0.25 0.25 0.25
F. Error 0.34 0.34 0.35 0.35 0.35 0.35 0.35
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-50: Evaluations of winter NOx intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 86⋆ 95⋆ 76+ 68 9.1 16 −8.8⋆⋆⋆

ln (Popw) 0.40⋆⋆⋆ 0.41⋆⋆⋆ 0.40⋆⋆ 0.39⋆⋆ 0.38⋆⋆ 0.39⋆⋆ 0.39⋆⋆⋆

ln (Pres) 3.8⋆ 4.0⋆ 3.3⋆ 3.1+ 2.9+ 3.0+ -
ln (Temp) −23⋆⋆ −25⋆⋆ −20⋆ −19⋆ −6.6+ −8.0⋆ -
ln (Wind) - −0.11 −0.12 - - −0.11 -
ln (Prec) - - - - - - -
ln (Humid) 1.0⋆ 1.1⋆ 0.81 0.78 - - -
ln (TS) −0.62⋆⋆⋆ −0.68⋆⋆⋆ −0.63⋆⋆⋆ −0.57⋆⋆⋆ −0.51⋆⋆⋆ −0.57⋆⋆⋆ −0.53⋆⋆⋆

ln (TN) 0.53⋆⋆⋆ 0.50⋆⋆⋆ 0.66⋆⋆⋆ 0.67⋆⋆⋆ 0.71⋆⋆⋆ 0.70⋆⋆⋆ 0.92⋆⋆⋆

ln (TA) - - −0.18 −0.17 −0.25+ −0.27+ −0.35⋆

AIC 49 50 50 50 50 50 51
Adj. R2 0.81 0.81 0.81 0.81 0.80 0.80 0.79
F. Bias 0.028 0.034 0.041 0.034 0.037 0.044 −0.039
F. Error 0.27 0.30 0.29 0.26 0.24 0.27 0.26
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-51: Evaluations of spring NOx intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 140⋆⋆⋆ 150⋆⋆⋆ 150⋆⋆⋆ 130⋆⋆⋆ 95⋆⋆⋆ 92⋆⋆⋆ 94⋆⋆⋆

ln (Popw) 1.1⋆⋆⋆ 1.1⋆⋆⋆ 1.1⋆⋆⋆ 1.0⋆⋆⋆ 1.0⋆⋆⋆ 1.0⋆⋆⋆ 1.0⋆⋆⋆

ln (Pres) 9.7⋆⋆⋆ 9.4⋆⋆⋆ 9.1⋆⋆⋆ 9.6⋆⋆⋆ 11⋆⋆⋆ 11⋆⋆⋆ 11⋆⋆⋆

ln (Temp) −39⋆⋆⋆ −42⋆⋆⋆ −42⋆⋆⋆ −39⋆⋆⋆ −33⋆⋆⋆ −32⋆⋆⋆ −32⋆⋆⋆

ln (Wind) - - −0.089 −0.049 - −0.054 -
ln (Prec) - −0.051 −0.082 - - - 0.016
ln (Humid) 0.67⋆ 0.82⋆ 0.89⋆⋆ 0.67⋆ - - -

AIC 44 45 45 45 48 49 50
Adj. R2 0.93 0.93 0.93 0.93 0.92 0.92 0.92
F. Bias 0.17 0.17 0.18 0.17 0.16 0.16 0.16
F. Error 0.34 0.35 0.36 0.35 0.35 0.35 0.34
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-52: Evaluations of spring NOx intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 77⋆⋆⋆ 69⋆⋆⋆ 60⋆⋆ 85⋆⋆⋆ 65⋆⋆ 73⋆⋆⋆ 77⋆⋆⋆

ln (Popw) 0.71⋆⋆⋆ 0.74⋆⋆⋆ 0.74⋆⋆⋆ 0.72⋆⋆⋆ 0.75⋆⋆⋆ 0.70⋆⋆⋆ 0.71⋆⋆⋆

ln (Pres) 6.6⋆⋆⋆ 6.8⋆⋆⋆ 6.8⋆⋆⋆ 6.8⋆⋆⋆ 7.0⋆⋆⋆ 6.6⋆⋆⋆ 6.8⋆⋆⋆

ln (Temp) −23⋆⋆⋆ −22⋆⋆⋆ −21⋆⋆⋆ −25⋆⋆⋆ −22⋆⋆⋆ −23⋆⋆⋆ −24⋆⋆⋆

ln (Wind) −0.086 −0.095+ −0.079 - - −0.074 -
ln (Prec) - - 0.054 - 0.069 0.034 0.049
ln (Humid) - - - - - - -
ln (TS) - −0.15 −0.20 - −0.19 - -
ln (TN) 0.53⋆⋆⋆ 0.56⋆⋆⋆ 0.59⋆⋆⋆ 0.51⋆⋆⋆ 0.57⋆⋆⋆ 0.54⋆⋆⋆ 0.53⋆⋆⋆

ln (TA) −0.19⋆⋆ −0.18⋆⋆ −0.21⋆⋆ −0.16⋆ −0.18⋆⋆ −0.21⋆⋆ −0.19⋆⋆

AIC 20 21 21 21 21 21 21
Adj. R2 0.96 0.96 0.96 0.96 0.96 0.96 0.96
F. Bias 0.14 0.11 0.098 0.12 0.086 0.14 0.13
F. Error 0.29 0.28 0.27 0.28 0.26 0.28 0.27
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-53: Evaluations of summer NOx intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 200⋆⋆⋆ 200⋆⋆⋆ 210⋆⋆⋆ 210⋆⋆⋆ 170⋆⋆⋆ 220⋆⋆⋆ 170⋆⋆⋆

ln (Popw) 1.1⋆⋆⋆ 1.0⋆⋆⋆ 1.1⋆⋆⋆ 1.0⋆⋆⋆ 1.1⋆⋆⋆ 1.0⋆⋆⋆ 1.1⋆⋆⋆

ln (Pres) 11⋆⋆⋆ 11⋆⋆⋆ 11⋆⋆⋆ 12⋆⋆⋆ 13⋆⋆⋆ 11⋆⋆⋆ 13⋆⋆⋆

ln (Temp) −52⋆⋆⋆ −52⋆⋆⋆ −53⋆⋆⋆ −53⋆⋆⋆ −47⋆⋆⋆ −54⋆⋆⋆ −47⋆⋆⋆

ln (Wind) - −0.11 - - - −0.12 −0.033
ln (Prec) −0.16⋆ −0.18⋆ −0.18 - - −0.21+ -
ln (Humid) - - 0.19 - −0.68 0.30 −0.69

AIC 94 95 96 97 97 97 99
Adj. R2 0.82 0.82 0.82 0.81 0.81 0.82 0.81
F. Bias 0.090 0.11 0.089 0.15 0.12 0.11 0.13
F. Error 0.52 0.52 0.53 0.54 0.52 0.53 0.52
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-54: Evaluations of summer NOx intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 180⋆⋆⋆ 150⋆⋆ 170⋆⋆⋆ 170⋆⋆⋆ 180⋆⋆⋆ 110⋆ 120⋆⋆

ln (Popw) 0.61⋆ 0.63⋆ 0.60⋆ 0.64⋆ 0.80⋆⋆⋆ 0.67⋆⋆ 0.82⋆⋆⋆

ln (Pres) 6.3⋆⋆ 6.9⋆⋆ 6.4⋆⋆ 6.6⋆⋆ 7.3⋆⋆ 8.3⋆⋆⋆ 8.8⋆⋆⋆

ln (Temp) −40⋆⋆⋆ −36⋆⋆⋆ −39⋆⋆⋆ −40⋆⋆⋆ −42⋆⋆⋆ −29⋆⋆ −32⋆⋆⋆

ln (Wind) −0.25+ −0.24+ −0.25+ −0.26+ - −0.19 -
ln (Prec) −0.22⋆⋆ −0.16 −0.21⋆⋆ −0.20⋆ −0.17⋆ - -
ln (Humid) - −0.48 - - - −1.3⋆ −1.1⋆

ln (TS) - - - −0.12 - - -
ln (TN) 0.43⋆⋆ 0.46⋆⋆ 0.46⋆⋆ 0.46⋆⋆ 0.36⋆⋆ 0.50⋆⋆⋆ 0.43⋆⋆

ln (TA) - - −0.058 - - - -

AIC 85 87 87 87 87 88 88
Adj. R2 0.85 0.85 0.85 0.85 0.85 0.85 0.84
F. Bias 0.040 0.036 0.047 0.026 0.018 0.050 0.027
F. Error 0.48 0.48 0.49 0.48 0.48 0.48 0.48
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Chapter 4. Parameterization of Social Costs of Elemental Carbon and Inorganic Particulate Matter Precursors

Table C-55: Evaluations of fall NOx intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 83⋆⋆ 98⋆⋆⋆ 75⋆ 110⋆ 89⋆⋆ 130⋆⋆ 91
ln (Popw) 0.61⋆⋆ 0.48⋆ 0.61⋆⋆ 0.62⋆⋆ 0.48⋆ 0.50⋆⋆ 0.61⋆⋆

ln (Pres) 8.4⋆⋆⋆ 8.4⋆⋆⋆ 8.0⋆⋆⋆ 7.9⋆⋆⋆ 8.0⋆⋆⋆ 7.6⋆⋆⋆ 7.8⋆⋆⋆

ln (Temp) −27⋆⋆⋆ −29⋆⋆⋆ −25⋆⋆⋆ −31⋆⋆ −27⋆⋆⋆ −35⋆⋆⋆ −28⋆

ln (Wind) 0.26 - 0.26 0.25 - - 0.25
ln (Prec) - - 0.085 - 0.090 - 0.072
ln (Humid) - - - 0.43 - 0.57 0.25

AIC 86 87 87 88 88 88 89
Adj. R2 0.61 0.59 0.60 0.60 0.59 0.59 0.59
F. Bias 0.21 0.25 0.22 0.22 0.27 0.27 0.23
F. Error 0.38 0.38 0.40 0.40 0.41 0.40 0.41
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-56: Evaluations of fall NOx intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 130⋆⋆ 110⋆⋆ 110⋆ 140⋆⋆ 130⋆⋆ 160⋆⋆⋆ 87
ln (Popw) 0.89⋆⋆⋆ 0.92⋆⋆⋆ 0.84⋆⋆⋆ 0.90⋆⋆⋆ 0.95⋆⋆⋆ 1.0⋆⋆⋆ 0.85⋆⋆⋆

ln (Pres) 6.4⋆⋆ 6.3⋆⋆ 5.8⋆ 6.7⋆⋆ 6.8⋆⋆ 8.5⋆⋆⋆ 5.5⋆

ln (Temp) −36⋆⋆⋆ −33⋆⋆⋆ −31⋆ −38⋆⋆⋆ −37⋆⋆⋆ −45⋆⋆⋆ −27⋆

ln (Wind) - 0.12 - - 0.16 0.20 0.13
ln (Prec) - - 0.049 - - - 0.068
ln (Humid) 1.6⋆⋆ 1.5⋆ 1.4⋆ 1.7⋆⋆ 1.7⋆⋆ 2.0⋆⋆⋆ 1.2
ln (TS) −1.1⋆⋆⋆ −1.0⋆⋆⋆ −1.0⋆⋆⋆ −1.1⋆⋆⋆ −1.1⋆⋆⋆ −1.1⋆⋆⋆ −0.97⋆⋆⋆

ln (TN) 0.35⋆⋆ 0.36⋆⋆ 0.39⋆⋆ 0.30 0.24 - 0.41⋆⋆

ln (TA) - - - 0.060 0.13 0.28⋆⋆ -

AIC 56 57 58 58 58 58 59
Adj. R2 0.79 0.79 0.79 0.79 0.79 0.78 0.79
F. Bias −0.038 −0.054 −0.036 −0.040 −0.063 −0.048 −0.052
F. Error 0.40 0.39 0.40 0.40 0.39 0.39 0.39
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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(a) Winter: ‘simple’ models

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fractional Error

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

Fr
ac

ti
on

al
Bi

as

0.2

0.4

0.6

0.8

A
dj

.R
2

(b) Winter: ‘better-fit’ models
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(c) Spring: ‘simple’ models
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(d) Spring: ‘better-fit’ models
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(e) Summer: ‘simple’ models
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(f) Summer: ‘better-fit’ models

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fractional Error

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

Fr
ac

ti
on

al
Bi

as

0.2

0.4

0.6

0.8

A
dj

.R
2

(g) Fall: ‘simple’ models
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(h) Fall: ‘better-fit’ models

Figure C-43: Evaluations of NH3 intake fraction models. Each circle indicates a regression model.
‘Excellent’ and ‘Good’ model performance criteria are shown as suggested by Morris et al. (2005).
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Chapter 4. Parameterization of Social Costs of Elemental Carbon and Inorganic Particulate Matter Precursors

Table C-57: Evaluations of winter NH3 intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 180⋆⋆⋆ 170⋆⋆⋆ 170⋆⋆⋆ 160⋆⋆⋆ 170⋆⋆⋆ 38⋆⋆ 45⋆⋆

ln (Popw) 0.83⋆⋆⋆ 0.83⋆⋆⋆ 0.72⋆⋆⋆ 0.72⋆⋆⋆ 1.0⋆⋆⋆ 0.83⋆⋆⋆ 0.83⋆⋆⋆

ln (Pres) 3.5⋆⋆⋆ 3.9⋆⋆⋆ 3.8⋆⋆⋆ 4.2⋆⋆⋆ - 3.5⋆⋆⋆ 3.1⋆⋆

ln (Temp) −41⋆⋆⋆ −39⋆⋆⋆ −38⋆⋆⋆ −37⋆⋆⋆ −35⋆⋆⋆ −13⋆⋆⋆ −13⋆⋆⋆

ln (Wind) −0.094+ - −0.097+ - −0.17⋆⋆ - −0.085
ln (Prec) −0.25⋆⋆ −0.25⋆⋆ - - −0.31⋆⋆ −0.16 −0.15
ln (Humid) 1.8⋆⋆⋆ 1.7⋆⋆⋆ 1.6⋆⋆⋆ 1.5⋆⋆⋆ 1.6⋆⋆⋆ - -

AIC 13 15 20 21 31 34 34
Adj. R2 0.92 0.91 0.91 0.90 0.88 0.87 0.87
F. Bias −0.030 −0.035 −0.0053 −0.011 −0.069 −0.064 −0.059
F. Error 0.31 0.30 0.31 0.30 0.31 0.28 0.29
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-58: Evaluations of winter NH3 intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 150⋆⋆⋆ 170⋆⋆⋆ 160⋆⋆⋆ 160⋆⋆⋆ 150⋆⋆⋆ 170⋆⋆⋆ 160⋆⋆⋆

ln (Popw) 0.81⋆⋆⋆ 0.78⋆⋆⋆ 0.83⋆⋆⋆ 0.80⋆⋆⋆ 0.81⋆⋆⋆ 0.79⋆⋆⋆ 0.70⋆⋆⋆

ln (Pres) 3.1⋆⋆⋆ 2.8⋆⋆ 3.1⋆⋆⋆ 3.4⋆⋆ 2.9⋆ 2.8⋆⋆ 2.8⋆⋆

ln (Temp) −35⋆⋆⋆ −37⋆⋆⋆ −36⋆⋆⋆ −37⋆⋆⋆ −34⋆⋆⋆ −38⋆⋆⋆ −35⋆⋆⋆

ln (Wind) - - −0.061 - - −0.031 -
ln (Prec) −0.21⋆ −0.17+ −0.23⋆ −0.20⋆ −0.20⋆ −0.18+ -
ln (Humid) 1.4⋆⋆⋆ 1.6⋆⋆⋆ 1.4⋆⋆⋆ 1.5⋆⋆⋆ 1.4⋆⋆⋆ 1.6⋆⋆⋆ 1.4⋆⋆⋆

ln (TS) 0.28⋆⋆ 0.20⋆ 0.24⋆ 0.24⋆⋆ 0.27⋆⋆ 0.18+ 0.25⋆⋆

ln (TN) - - - −0.068 0.029 - -
ln (TA) −0.098 - −0.12+ - −0.12 - -

AIC 8.5 9.2 9.3 10 10 11 11
Adj. R2 0.93 0.92 0.93 0.92 0.92 0.92 0.92
F. Bias 0.022 −0.0097 0.024 0.013 0.019 −0.011 0.011
F. Error 0.25 0.26 0.27 0.26 0.25 0.27 0.25
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-59: Evaluations of spring NH3 intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 110⋆⋆ 97⋆⋆ 100⋆⋆ 92⋆ 110⋆⋆ 110⋆⋆ 96⋆

ln (Popw) 1.0⋆⋆⋆ 0.95⋆⋆⋆ 1.0⋆⋆⋆ 0.94⋆⋆⋆ 1.0⋆⋆⋆ 1.0⋆⋆⋆ 0.95⋆⋆⋆

ln (Pres) - 2.2 - 2.1 - - 2.2
ln (Temp) −23⋆⋆⋆ −23⋆⋆⋆ −21⋆⋆ −22⋆⋆ −24⋆⋆ −24⋆⋆ −23⋆⋆

ln (Wind) - - −0.097 −0.087 - −0.12 -
ln (Prec) - - - - −0.026 −0.063 0.0029
ln (Humid) 1.1⋆⋆ 0.84⋆ 1.1⋆⋆ 0.83⋆ 1.2⋆⋆ 1.2⋆⋆ 0.84+

AIC 75 75 75 76 77 77 77
Adj. R2 0.82 0.82 0.82 0.82 0.82 0.82 0.82
F. Bias −0.28 −0.26 −0.26 −0.24 −0.27 −0.25 −0.26
F. Error 0.36 0.35 0.35 0.35 0.36 0.35 0.35
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-60: Evaluations of spring NH3 intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 80⋆⋆⋆ 76⋆⋆⋆ 83⋆⋆⋆ 79⋆⋆⋆ 70⋆⋆⋆ 91⋆⋆⋆ 82⋆⋆⋆

ln (Popw) 0.86⋆⋆⋆ 0.87⋆⋆⋆ 0.86⋆⋆⋆ 0.86⋆⋆⋆ 0.83⋆⋆⋆ 0.86⋆⋆⋆ 0.88⋆⋆⋆

ln (Pres) 1.9+ - 1.8 1.9+ - 2.0+ -
ln (Temp) −18⋆⋆⋆ −15⋆⋆⋆ −18⋆⋆⋆ −17⋆⋆⋆ −14⋆⋆⋆ −20⋆⋆⋆ −16⋆⋆⋆

ln (Wind) −0.11+ −0.11⋆ −0.11+ −0.10+ −0.13⋆ - −0.12⋆

ln (Prec) - - - 0.0073 - - -
ln (Humid) - - 0.065 - - - 0.11
ln (TS) 1.2⋆⋆⋆ 1.2⋆⋆⋆ 1.2⋆⋆⋆ 1.2⋆⋆⋆ 1.1⋆⋆⋆ 1.3⋆⋆⋆ 1.2⋆⋆⋆

ln (TN) −0.18⋆ −0.11 −0.19⋆ −0.18⋆ - −0.21⋆ −0.12
ln (TA) −0.35⋆⋆⋆ −0.38⋆⋆⋆ −0.35⋆⋆⋆ −0.36⋆⋆⋆ −0.41⋆⋆⋆ −0.31⋆⋆⋆ −0.37⋆⋆⋆

AIC 17 19 19 19 19 20 20
Adj. R2 0.95 0.95 0.95 0.95 0.94 0.94 0.94
F. Bias 0.066 0.055 0.065 0.065 0.036 0.052 0.052
F. Error 0.22 0.21 0.21 0.21 0.21 0.23 0.21
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-61: Evaluations of summer NH3 intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 50+ 70+ 110⋆⋆ 99⋆⋆ 100⋆⋆ 43 56
ln (Popw) 0.84⋆⋆⋆ 0.84⋆⋆⋆ 0.88⋆⋆⋆ 0.91⋆⋆⋆ 0.82⋆⋆⋆ 0.90⋆⋆⋆ 0.90⋆⋆⋆

ln (Pres) 4.1⋆⋆ 3.2+ - - 1.5 4.5⋆⋆ 3.9⋆

ln (Temp) −16⋆⋆ −19⋆⋆ −24⋆⋆⋆ −21⋆⋆ −24⋆⋆⋆ −15⋆⋆ −17⋆

ln (Wind) −0.27⋆ −0.27⋆ −0.33⋆⋆ −0.30⋆⋆ −0.33⋆⋆ - -
ln (Prec) 0.21⋆⋆ 0.16+ - 0.080 - 0.26⋆⋆⋆ 0.23⋆

ln (Humid) - 0.38 1.2⋆⋆⋆ 1.0⋆ 1.1⋆⋆ - 0.26

AIC 70 71 72 73 73 75 77
Adj. R2 0.85 0.85 0.84 0.84 0.84 0.83 0.83
F. Bias −0.23 −0.23 −0.26 −0.25 −0.25 −0.28 −0.28
F. Error 0.39 0.39 0.40 0.38 0.40 0.45 0.45
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-62: Evaluations of summer NH3 intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 23 −19⋆ 19 −20⋆ −17+ 65⋆⋆ 1.4
ln (Popw) 0.83⋆⋆⋆ 0.81⋆⋆⋆ 0.85⋆⋆⋆ 0.83⋆⋆⋆ 0.78⋆⋆⋆ 0.87⋆⋆⋆ 0.79⋆⋆⋆

ln (Pres) 4.2⋆⋆ 4.0⋆⋆ 4.6⋆⋆ 4.4⋆⋆ 3.4⋆ 3.7⋆⋆ 3.4⋆

ln (Temp) −8.8 - −8.2 - - −17⋆⋆⋆ −3.7
ln (Wind) −0.12 −0.11 - - −0.15⋆ −0.15+ −0.17⋆

ln (Prec) 0.24⋆⋆⋆ 0.28⋆⋆⋆ 0.26⋆⋆⋆ 0.30⋆⋆⋆ 0.28⋆⋆⋆ 0.17⋆⋆ 0.27⋆⋆⋆

ln (Humid) −0.95+ −1.5⋆⋆⋆ −1.1⋆ −1.6⋆⋆⋆ −1.3⋆⋆⋆ - −1.1⋆

ln (TS) 1.0⋆⋆⋆ 1.1⋆⋆⋆ 1.1⋆⋆⋆ 1.2⋆⋆⋆ 0.93⋆⋆⋆ 0.76⋆⋆⋆ 0.85⋆⋆⋆

ln (TN) −0.17+ −0.12 −0.22⋆ −0.16⋆ - −0.20⋆ -
ln (TA) −0.36⋆⋆⋆ −0.39⋆⋆⋆ −0.37⋆⋆⋆ −0.39⋆⋆⋆ −0.39⋆⋆⋆ −0.33⋆⋆⋆ −0.38⋆⋆⋆

AIC 37 38 38 38 38 39 40
Adj. R2 0.93 0.93 0.93 0.93 0.93 0.92 0.92
F. Bias −0.036 −0.046 −0.033 −0.043 −0.076 −0.061 −0.077
F. Error 0.22 0.25 0.25 0.27 0.25 0.21 0.24
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Table C-63: Evaluations of fall NH3 intake fraction ‘simple’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 190⋆⋆⋆ 150⋆⋆⋆ 170⋆⋆⋆ 210⋆⋆⋆ 130⋆⋆⋆ 180⋆⋆⋆ 190⋆⋆⋆

ln (Popw) 0.67⋆⋆⋆ 0.62⋆⋆⋆ 0.73⋆⋆⋆ 0.77⋆⋆⋆ 0.68⋆⋆⋆ 0.72⋆⋆⋆ 0.86⋆⋆⋆

ln (Pres) 3.0⋆⋆ 3.1⋆⋆ 3.3⋆⋆⋆ - 3.4⋆⋆⋆ - -
ln (Temp) −42⋆⋆⋆ −35⋆⋆⋆ −38⋆⋆⋆ −43⋆⋆⋆ −30⋆⋆⋆ −36⋆⋆⋆ −39⋆⋆⋆

ln (Wind) −0.21⋆⋆ −0.23⋆⋆ - −0.25⋆⋆ - −0.26⋆⋆ -
ln (Prec) −0.15⋆⋆ - −0.16⋆⋆ −0.16⋆ - - −0.17⋆

ln (Humid) 1.8⋆⋆⋆ 1.5⋆⋆⋆ 1.7⋆⋆⋆ 2.3⋆⋆⋆ 1.3⋆⋆ 2.0⋆⋆⋆ 2.2⋆⋆⋆

AIC 15 21 22 25 27 30 33
Adj. R2 0.90 0.89 0.89 0.88 0.87 0.87 0.86
F. Bias −0.0064 0.0069 −0.048 −0.015 −0.036 −0.00058 −0.068
F. Error 0.37 0.38 0.32 0.38 0.34 0.39 0.35
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], AIC: Akaike information criterion, Adj. R2: adjusted R2, F. Bias:

fractional bias, F. Error: fractional error.

Table C-64: Evaluations of fall NH3 intake fraction ‘better-fit’ models.

Model† (1)‡ (2) (3) (4) (5) (6) (7)

Intercept 170⋆⋆⋆ 140⋆⋆⋆ 180⋆⋆⋆ 170⋆⋆⋆ 140⋆⋆⋆ 150⋆⋆⋆ 140⋆⋆⋆

ln (Popw) 0.60⋆⋆⋆ 0.55⋆⋆⋆ 0.63⋆⋆⋆ 0.61⋆⋆⋆ 0.54⋆⋆⋆ 0.62⋆⋆⋆ 0.55⋆⋆⋆

ln (Pres) 2.0⋆ 1.8+ 2.6+ 2.2⋆ - 1.9⋆ 1.3
ln (Temp) −36⋆⋆⋆ −30⋆⋆⋆ −38⋆⋆⋆ −36⋆⋆⋆ −27⋆⋆⋆ −31⋆⋆⋆ −29⋆⋆⋆

ln (Wind) −0.15⋆ −0.14+ −0.16⋆ −0.16⋆ −0.13+ - −0.14+

ln (Prec) −0.099+ - −0.12+ −0.11+ - −0.089 -
ln (Humid) 1.4⋆⋆⋆ 1.1⋆⋆ 1.5⋆⋆⋆ 1.4⋆⋆⋆ 1.1⋆⋆ 1.2⋆⋆ 1.1⋆⋆

ln (TS) 0.27⋆ 0.35⋆⋆ 0.26⋆ 0.27⋆ 0.38⋆⋆⋆ 0.35⋆⋆ 0.35⋆⋆

ln (TN) - - −0.045 - 0.085 - 0.035
ln (TA) - - - −0.025 - - -

AIC 11 12 12 12 13 13 14
Adj. R2 0.91 0.91 0.91 0.91 0.91 0.91 0.91
F. Bias 0.044 0.066 0.053 0.051 0.044 0.032 0.055
F. Error 0.32 0.31 0.32 0.32 0.30 0.28 0.31
† Seven models with lowest AIC ordered by AIC, ‡ Chosen by AIC, ⋆⋆⋆ p < 0.001, ⋆⋆ p < 0.001, ⋆ p < 0.05, + p < 0.1, Popw [# of people]:

population weighted with average plume, Pres: pressure [hPa], Temp: temperature [K], Prec: precipitation + 0.0002 [g/m3] (shifted for

log transformation), Wind: wind speed [m/s], Humid: humidity [ppm], TS: total sulfate (≡ [SO4
2−

]) [µmol/m3], TN: total nitrate (≡

[HNO3] + [NO3
−
]) [µmol/m3], TA: total ammonia (≡ [NH3] + [NH4

+
]) [µmol/m3], AIC: Akaike information criterion, Adj. R2:

adjusted R2, F. Bias: fractional bias, F. Error: fractional error.
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Figure C-44: Social costs over a range of marginal emissions. For the 50 training samples, the per-tonne
social costs were calculated over a range of E ⋅ 4k(k = −4, ...,1), where E is the average emissions of area
and point sources in the CAMx grid. The ratios of S, the per-tonne social cost for given emissions, over
S, the average of S over all E ⋅ 4k, are on the y-axis.
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Figure C-45: Changes in PM2.5 concentrations over a range of simulation period. Each line indicates
each sample location. Ci is the sum of the CAMx grid of the changes in average PM2.5 concentrations
created by the marginal emissions (E ⋅4−2) for a given day. Ci is the average of Ci’s over the whole season
time period. The red dashed line indicates the 2.5% truncated means and the shaded area covers the 95%
confidence intervals of the means.
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Figure C-46: Average changes in PM2.5 concentrations over different lengths of simulation. Each
line indicates each sample location. Cd is the sum of the CAMx grid of the average changes in PM2.5
concentrations created by the marginal emissions (E ⋅ 4−2) for a given simulation period (e.g. from day
one to day d). Cd is the sum of the average changes in PM2.5 concentrations for the entire season period.
The red dashed line indicates the 2.5% truncated means and the shaded area covers the 95% confidence
intervals of the means.
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Figure C-47: Social costs over different lengths of simulation. Each line indicates each sample location.
S is the per-tonne social cost calculated for a given simulation period. S is the per-tonne social cost for
the whole season simulation. The red dashed line indicates the 2.5% truncated means and the shaded area
covers the 95% confidence intervals of the means.
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Figure C-48: Intake fractions over different lengths of simulation. Each line indicates each sample
location. iF is the intake fraction calculated for a given simulation period. iF is the intake fraction for
the whole season simulation. The red dashed line indicates the 2.5% truncated means and the shaded area
covers the 95% confidence intervals of the means.
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Figure C-49: Sensitivity of social cost to elevated point sources for the 50 training samples. S and Sp are
the per-tonne social cost of area emissions and point emissions, respectively.
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Figure C-50: Map of EC social cost at the point of emissions estimated using the relative risk of 1.06 and
the VSL of $8.8M. The right-hand side figures show the seasonal social costs calculated by multiplying
the left-hand side values with season emissions.
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Figure C-51: Map of SO2 social cost at the point of emissions estimated using the relative risk of 1.06 and
the VSL of $8.8M. The right-hand side figures show the seasonal social costs calculated by multiplying
the left-hand side values with season emissions.
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Figure C-52: Map of NOx social cost at the point of emissions estimated using the relative risk of 1.06 and
the VSL of $8.8M. The right-hand side figures show the seasonal social costs calculated by multiplying
the left-hand side values with season emissions.
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Figure C-53: Map of NH3 social cost at the point of emissions estimated using the relative risk of 1.06 and
the VSL of $8.8M. The right-hand side figures show the seasonal social costs calculated by multiplying
the left-hand side values with season emissions.

245



Chapter 4. Parameterization of Social Costs of Elemental Carbon and Inorganic Particulate Matter Precursors

10–3

10–2

10–1

100

101

[p
pm

]

(a) Winter: Intake fraction [$/t]

10–3

10–2

10–1

100

101

[g
/k

m
2 ]

(b) Winter: Seasonal intake [g/km2]

10–3

10–2

10–1

100

101

[p
pm

]

(c) Spring: Intake fraction [$/t]

10–3

10–2

10–1

100

101

[g
/k

m
2 ]

(d) Spring: Seasonal intake [g/km2]

10–3

10–2

10–1

100

101

[p
pm

]

(e) Summer: Intake fraction [$/t]

10–3

10–2

10–1

100

101

[g
/k

m
2 ]

(f) Summer: Seasonal intake [g/km2]

10–3

10–2

10–1

100

101

[p
pm

]

(g) Fall: Intake fraction [$/t]

10–3

10–2

10–1

100

101

[g
/k

m
2 ]

(h) Fall: Seasonal intake [g/km2]

Figure C-54: Map of EC intake fraction at the point of emissions. The right-hand side figures show the
seasonal intake values calculated by multiplying the left-hand side values with season emissions.
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Figure C-55: Map of SO2 intake fraction at the point of emissions. The right-hand side figures show the
seasonal intake values calculated by multiplying the left-hand side values with season emissions.
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Figure C-56: Map of NOx intake fraction at the point of emissions. The right-hand side figures show the
seasonal intake values calculated by multiplying the left-hand side values with season emissions.
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Figure C-57: Map of NH3 intake fraction at the point of emissions. The right-hand side figures show the
seasonal intake values calculated by multiplying the left-hand side values with season emissions.
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(a) EC (b) SO2

(c) NOx (d) NH3

Figure C-58: Spatial comparison between EASIUR and APEEP. The APEEP values are based on Muller
et al (2011). EASIUR estimates are calculated for the centroid location of each county and matched to
corresponding APEEP values. All the values are further adjusted to match dollar year, income growth,
VSL, and tonne unit with the EASIUR.

250



Table C-65: Annual emissions from the life cycle of electricity generation in 2005. (Unit: [metric
ton/year])

Sector EC SO2 NOx NH3

Coal mining 10,000 1,900 2,300 410
Energy pipelines 7,600 40,000 410,000 470
Oil and gas extraction 6,300 70,000 330,000 91
Petroleum refineries 30,000 250,000 150,000 4,700
Power generation 530,000 10,000,000 3,800,000 29,000

Total 590,000 11,000,000 4,600,000 35,000
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Figure C-59: Emissions from Coal Mining
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Figure C-60: Emissions from Energy Pipelines

252



100

101

102

103

104

EC
[t

/y
ea

r]

100

101

102

103

104

SO
2

[t
/y

ea
r]

100

101

102

103

104

N
O

x
[t

/y
ea

r]

100

101

102

103

104

N
H

3
[t

/y
ea

r]

Figure C-61: Emissions from Oil & Gas extraction
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Figure C-62: Emissions from Petroleum refineries
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Figure C-63: Emissions from Power generation
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Figure C-64: Comparison between EASIUR and APEEP for Coal Mining. Marginal damages for area
sources from APEEP are used for comparison.
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Figure C-65: Comparison between EASIUR and APEEP for Energy Pipelines. Marginal damages for area
sources from APEEP are used for comparison.
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Figure C-66: Comparison between EASIUR and APEEP for Oil & Gas extraction. Marginal damages for
area sources from APEEP are used for comparison.
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Figure C-67: Comparison between EASIUR and APEEP for Petroleum refineries. Marginal damages for
area sources from APEEP are used for comparison.
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Figure C-68: Comparison between EASIUR and APEEP for Power generation. Marginal damages for
area sources from APEEP are used for comparison.

10–1.0

10–0.5

100.0

100.5

101.0

A
PE

EP
/E

A
SI

U
R

10–1.0

10–0.5

100.0

100.5

101.0

A
PE

EP
/E

A
SI

U
R

10–1.0

10–0.5

100.0

100.5

101.0

A
PE

EP
/E

A
SI

U
R

10–1.0

10–0.5

100.0

100.5

101.0

A
PE

EP
/E

A
SI

U
R

Figure C-69: Comparison between EASIUR and APEEP for Petroleum refineries. Marginal damages for
mid-height (250-500 m) point sources from APEEP are used for comparison.
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Figure C-70: Comparison between EASIUR and APEEP for Power generation. Marginal damages for
mid-height (250-500 m) point sources from APEEP are used for comparison.
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EASIUR User’s Guide Version 0.1 

Jinhyok Heo 

Feb 2014 

 

1. Introduction 
The Estimating Air pollution Social Impacts Using Regression (EASIUR) model predicts 

marginal social costs for air pollutants [$/t] emitted anywhere in the United States and from 

nearby areas of neighboring countries (Canada and Mexico) and oceans. The EASIUR’s social 

costs include only the impact of PM2.5 on premature death, which usually accounts for more than 

90% of social costs. It estimates the monetized impacts of PM2.5 from a certain emissions 

affecting over a large (~thousands km) area downwind. 

Currently, EASIUR predicts marginal damages of four major species: elemental carbon (EC), 

sulfur dioxide (SO2), nitrogen oxides (NOx), and ammonia (NH3). EC represents directly emitted 

PM2.5 and, therefore, is called direct or “primary” PM2.5. The other three species (SO2, NOx, and 

NH3) are emitted as gas and produce PM2.5 chemically in the atmosphere, and are called 

“secondary” PM2.5. Volatile organic compounds (VOCs), which form secondary organic PM2.5, 

are not modeled yet. In addition, EASIUR is derived based on ground-level area emissions. 

Though EASIUR estimates were tested and found valid for low-height (~20 m) point sources, 

they may not represent marginal damages for highly (100-200m or higher) elevated point 

sources. 
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The marginal damages are derived based on the meteorology and emissions of 2005. They 

should be valid in the near future or past (e.g. 2005  ±  10 years), though rigorous analyses need to 

be done. The estimates, however, may change substantially in the longer term (e.g. 30-50 years) 

because large changes in SO2, NOx, and NH3 emissions may change the chemical environment in 

the atmosphere that affects secondary PM2.5 formation. To the contrary, the marginal damages of 

primary species (or EC) will not change. 

 

2. Where to get EASIUR 

EASIUR is distributed through its website: <http://barney.ce.cmu.edu/~jinhyok/easiur/>. 

 

3. How to use EASIUR 

The EASIUR model estimates marginal damages over the United States in a 148×112 grid, 

where one cell covers area of 36 km × 36 km, as shown in Figure D-1 (c). Accordingly, the 

marginal damage estimates from the EASIUR model are presented as two-dimensional arrays of 

size 148×112, where each cell points to a specific location in the U.S. domain. Sixteen arrays 

are provided because each species has one array per season (16 arrays = 1 array/species/season × 

4 species × 4 seasons). Winter is defined as a period from January to March, spring from April 

to June, summer from July to September, and fall from October and December. 
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Figure D-1. Converting geodetic location to EASIUR grid. Emission location usually given in an 

ellipsoid datum (NAD83) needs to be converted to one on a spheroid and to the EASIUR grid 

(148×112). 

 

Three pieces of information are needed to estimate the social cost of emissions: (1) the amount 

(E) of emissions, (2) the location (longitude and latitude) of emissions, and (3) the season of the 

emissions. 

An important step is to convert the location (longitude and latitude) to the EASIUR grid 

coordinate system (or to a location (x, y) in the EASIUR’s 148×112 grid). The EASIUR website 

provides an on-line conversion tool for a single or batch conversion. 

The conversion is a bit complicated because the geodetic system (or datum) of a location needs 

to be converted. Usually, the location of emissions in the U.S. is provided in an ellipsoid, the 

NAD83 datum (Figure D-1 (a)) while CAMx (EASIUR’s underlying chemical transport model) 

relies on a Lambert Conformal Conic projection (Figure D-1 (c)) on a spherical Earth (Figure D-

1 (b)). The coordinate conversion is done in two steps: 

1. The location in NAD83 datum needs to be converted to one in a spherical datum of Earth’s 

radius 6,370 km. (Figure D-1 (a) to Figure D-1 (b)) 
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2. The location in the spherical Earth needs to be converted with a Lambert Conformal Conic 

projection. (Figure D-1 (b) to Figure D-1 (c)) 

After conversion, you will have the position of emissions (x, y) in the EASIUR grid. Then, you 

can find marginal emissions [$/t] from a pollutant- and season-specific EASIUR array and 

multiply the marginal emissions by the amount of emissions [t] to calculate the social cost of the 

emissions [$]. If emissions do not have season information, averages of four seasonal estimates 

would be used. 

 

4. Adjusting EASIUR estimates 

The EASIUR marginal damages can be adjusted for a different choice of the value of a statistical 

life (VSL) and a concentration-response (CR) relation. EASIUR is published with $8.8M in 2010 

USD for VSL and a relative risk of 1.06 for CR. 

4.1 Adjusting VSL for Inflation and Income Growth 

An adjusted EASIUR marginal damage (𝑆!) for a different VSL can be calculated as follows: 

𝑆! = 𝑆 ⋅
VSL
$8.8𝑀 (1) 

where 𝑆 is the default EASIUR marginal damages. 

Usually, U.S. EPA’s official VSL will be used, which is $4.8M in 1990 USD and 1990 income 

level. This VSL is the central estimate from a Weibull distribution that U.S. EPA built based on 

26 value-of-life studies (U.S. EPA, 2010). U.S. EPA recommends that this $4.8M be used in 

benefit analyses (U.S. EPA, 2010). 
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This $4.8M often needs to be adjusted for a different dollar year to account for inflation. It also 

needs to be adjusted for income level since people are willing to pay more to avoid the mortality 

risk from PM2.5 as their income grows. The U.S. EPA’s official adjustment factors for these two 

factors are included in Table D-2. 

For example, $4.8M in 1990 USD can be converted to a VSL (𝑉!) in 2000 USD and 2000 

income level as follows: 

𝑉! =   $4.8𝑀 ⋅
𝐺!"""
𝐺!""#

⋅
𝐼!"""
𝐼!""#

  

  = $4.8𝑀 ⋅
1.00
0.76 ⋅

1.04
1.0   

= $6.6𝑀  

where 𝐺!""" and 𝐺!""# are GDP deflators and 𝐼!""" and 𝐼!""# are income level adjustment factor 

for year 2000 and 1990 from Table D-2. Then, EASIUR’s marginal damage with the default 

$8.8M VSL (𝑆!) can be converted to this $6.6M using Eq. (1): 

𝑆! = 𝑆 ⋅
$6.6M
$8.8M = 0.75 ⋅ 𝑆 

4.2 Adjusting Concentration-Response relation	
  

The EASIUR default estimates are based on a relative risk of 1.06 for the concentration response 

relation, which is reported by a recent American Cancer Society cohort study (Krewski et al., 

2009). The relative risk is usually defined as increased mortality per each increase of 10 

µμg  PM!.!/m!. 

Though concentration-response relations have a log-linear form, marginal damages are almost 

linear to the size of relative risk. The base EASIUR estimates can be adjusted for a different 

relative risk (𝑅) with the following factor, (𝐹!): 
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𝐹! = −15.1+ 15.2𝑅 (2) 

Derivation can be found in Section 4.3.7. For example, an adjusted EASIUR estimate can be 

obtained for a relative risk of 1.14 from Lepeule et al. (2012), the other important PM2.5 

epidemiological study, by multiplying the following factor to the base value: 

𝐹! = −15.1+ 15.2 ⋅ 1.14 = 2.2 

 

5. Uncertainties 

Here we summarize the major uncertainties surrounding EASIUR’s marginal damages. 

5.1 Air Quality Modeling 

Multipliers to estimate the 95th prediction intervals of EASIUR estimates are presented in Table 

D-1. If you multiply 2.5% and 97.5% factors to EASIUR marginal damages, you would get the 

95% prediction intervals of the damages, which represent the uncertainty originated from air 

quality simulations. 

5.2 Value of a Statistical Life 

There is one official distribution of the value of a statistical life that U.S. EPA built based on 26 

value-of-life studies (U.S. EPA, 2010). It is a Weibull distribution (scale  parameter =

5.32×10!, shape  parameter = 1.51). Therefore, uncertainty analysis can be done with the 

Weibull distribution. The mean value of this distribution is $4.8M in 1990 dollar. The 95% 

confidence intervals are [$0.46M, $12.6M] in 1990 USD. 
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5.3 Concentration-Response Relations 

Epidemiological studies of PM2.5 on mortality publish 95% confidence intervals for the relative 

risk of PM2.5. The two most important series of cohort-based PM2.5 epidemiological studies are 

the American Cancer Society (ACS) study and Harvard Six Cities (H6C) study. The most recent 

follow-up studies as of now are Krewski et al. (2009) for ACS and Lepeule et al. (2012) for 

H6C. Here are the reported relative risks with 95% confidence intervals in parentheses: 

• Krewski et al. (2009): 1.06 (1.04-1.08) 

• Lepeule et al. (2012): 1.14 (1.07-1.22) 

Uncertainties from CR relations can be explored for these confidence intervals with Eq. (2). 
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Table D-1: Multipliers for EASIUR 95% prediction intervals.

Winter Spring Summer Fall
2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

EC 0.61 1.64 0.67 1.49 0.67 1.49 0.60 1.68
SO2 0.53 1.90 0.73 1.38 0.69 1.44 0.67 1.50
NOx 0.45 2.23 0.57 1.77 0.35 2.86 0.41 2.42
NH3 0.56 1.79 0.57 1.75 0.46 2.19 0.54 1.84
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Table D-2: U.S. EPA standard GDP deflator and income growth adjustment factors (extracted from
BenMAP (U.S. EPA, 2014))

Year GDP Deflator Income Growth Adj.

1980 0.479 -
1981 0.528 -
1982 0.560 -
1983 0.578 -
1984 0.603 -
1985 0.625 -
1986 0.636 -
1987 0.660 -
1988 0.687 -
1989 0.720 -
1990 0.759 1.000
1991 0.791 0.992
1992 0.815 0.998
1993 0.839 1.003
1994 0.861 1.013
1995 0.885 1.017
1996 0.911 1.024
1997 0.932 1.034
1998 0.947 1.039
1999 0.967 1.043
2000 1.000 1.039
2001 1.028 1.044
2002 1.045 1.050
2003 1.069 1.056
2004 1.097 1.063
2005 1.134 1.069
2006 1.171 1.075
2007 1.204 1.081
2008 1.250 1.087
2009 1.246 1.093
2010 1.266 1.100
2011 - 1.112
2012 - 1.123
2013 - 1.134
2014 - 1.144
2015 - 1.155
2016 - 1.164
2017 - 1.174
2018 - 1.183
2019 - 1.192
2020 - 1.201
2021 - 1.209
2022 - 1.217
2023 - 1.225
2024 - 1.233
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Chapter 5. Conclusions 
 

5.1 Summary of Work 

The main theme of this thesis is air quality and its impact on public health. This work is focused 

on the use of rigorous state-of-the-science tools to characterize the potential risk of an emerging 

technology and to develop a general method of employing a complex up-to-date air quality 

modeling platform without high computational costs. The key results and conclusions from each 

chapter are summarized in the following. 

First, I explored the potential air quality risk of a post-combustion carbon capture and storage 

(CCS) technology from a public health point of view with a state-of-the-science chemical 

transport model (Chapter 2). It was found that amine scrubbing, the most mature post-

combustion technology (IPCC, 2005; Rochelle, 2009), could emit a substantial amount of 

ammonia under an aggressive deployment scenario. Using CAMx, a state-of-the-science 

chemical transport model, I found that ammonia emissions from CCS could increase a PM2.5 to a 

worrisome level, imposing significant public health costs ($31-68/t CO2) — comparable to the 

social cost of mitigating carbon dioxide considered in government regulatory agencies (U.S. 

IAWG, 2010, 2013). Sensitivity analyses addressed the uncertainty, most importantly, 

surrounding the amount of CCS ammonia emissions as well as the amount of co-pollutants (SO2, 

NOx, and NH3) that may interact with CCS ammonia in a complicated nonlinear manner. The 

findings could guide the potential air quality risk of CCS ammonia for a wide range of possible 

future scenarios. Though ammonia is highly soluble in water and, therefore, not difficult to 

control, this requires the increase of capital and operation costs in CCS plants. The impact 
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assessment performed in Chapter 2 therefore provides quantitative regulatory guidance for what 

level of control is appropriate. 

In Chapter 3, I developed a new method called the Estimating Air pollution Social Impacts 

Using Regression (EASIUR). Though a chemical transport model is the most realistic and 

rigorous way of simulating air quality, running a CTM comes at the cost of high computational 

burden. As computer systems get faster and more affordable, a CTM has been getting more 

popular in assisting air quality policy research as well as in understanding atmospheric science in 

recent years. But running a CTM requires expensive computational costs as well as expertise in 

sophisticated computer systems and advanced atmospheric science. Therefore, many policy 

researchers cannot afford to employ a CTM. Even U.S. EPA runs a CTM only for limited policy 

scenarios for their regulatory impact assessments. 

The EASIUR method that I developed can derive simple equations to predict the public health 

impacts of air quality with the prediction performance of a state-of-the-science CTM but without 

high computational burdens. The basic idea of the EASIUR method is to derive 

parameterizations from CTM simulation results. The method describes the size of the population 

exposed to PM2.5, which is directly emitted or chemically produced in the atmosphere, using 

‘population ring’ and ‘average plume’ methods. The ‘population ring’ method defines exposed 

population as the size of population within a certain distance from an emissions source while the 

‘average plume’ method uses a generic plume shape built from CTM results to weight people in 

large receptor areas around an emissions source. Because of the more detailed nature, the 

average plume method worked better, though both methods worked quite well. The EASIUR 

parameterizations derive from running linear regressions on per-tonne social cost or intake 

fraction, with population described by either ‘population ring’ or ‘average plume’ methods, and 
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common atmospheric variables such as temperature, atmospheric pressure, precipitation, wind 

speed, and humidity. For a limited simulation period and two air pollutants for method 

development, it was shown that the parameterizations could tremendously reduce the 

computational burden of running a CTM while estimating the public health impacts very 

similarly to a CTM. 

Finally, using the method developed in Chapter 3, I built a set of parameterizations that predict 

per-tonne social cost and intake fraction quickly but accurately. They can predict the public 

health impacts anywhere in the United States (including nearby areas in the oceans and 

neighboring countries, Canada and Mexico) at a high spatial resolution (36  km×36  km) for 

every season for four major air pollutants: elemental carbon, sulfur dioxide, nitrogen oxides, and 

ammonia. They have simple intuitive functional forms, from which model users can gain useful 

insight on underlying key mechanisms. They are also generalized for different choices of 

concentration-response relation that epidemiological studies provide, as well as for different 

choices of the value of statistical life that economists estimate for people’s willingness to pay to 

avoid the risk of premature death. The EASIUR models will be of great use to policy research 

that involves changes in emissions. 

In sum, this work provides a useful guideline for the appropriate level of control on CCS 

ammonia emissions from a public health point of view. The development of the EASIUR method 

will provide a novel way of deriving simple and easy-to-use parameterizations from the most 

realistic but computationally expensive simulation model for air quality. The EASIUR 

parameterizations built for the United States domain will be of great use to policy research. 
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5.2 Future work 

An important part of the development of the EASIUR parameterizations is done in this work. 

However, there are the important areas to investigate for further improvements. A few directions 

for future work are proposed here. 

One important missing part in the EASIUR parameterizations is organic PM2.5, the science of 

which is much more complicated than inorganic PM2.5. Despite the complexity, the 

understanding of organic PM2.5 has progressed substantially in recent years, making traditional 

views obsolete (Goldstein and Galbally, 2007; Robinson et al., 2007; Zhang et al., 2007). The 

main reason we did not develop the EASIUR parameterizations for organic PM2.5 was that even 

the best chemical transport models are not ready for parameterizations. In particular, though a 

new method of describing the complex organic PM2.5 systematically in a manageable manner is 

developed (Donahue et al., 2006, 2011, 2012) and implemented in CTMs (Koo et al., 2014; 

Murphy and Pandis, 2009), the emissions inventory still needs to be revised properly to address 

organic PM2.5 properly (Jathar et al., 2014). Once CTMs are ready to fully address organic PM2.5, 

at least consistent with current understanding, the EASIUR parameterization could be derived in 

the same manner done for inorganic species in this work. Developing the EASIUR 

parameterizations for organic PM2.5 will be especially important for the transportation sector, 

which is the most important emissions source of organic PM2.5 precursors. 

There are important sources of uncertainty that need to be addressed. One is the inter-annual 

variability of meteorology. It is still not clear how the per-ton social cost and intake fraction 

might change for different years. Though this may be small, the manner in which inter-annual 

variability affects public health impacts should be investigated by analyzing sensitivity to 

meteorological data for multiple years. Probably sensitivity analysis for inter-annual 
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meteorology would provide the insight for “representative meteorology” for public health 

impacts as well as the uncertainty and variability from meteorological data. 

Changing emissions is also a concern. In particular, the emissions of sulfur dioxide and 

nitrogen oxides have been decreasing substantially in recent years and are expected to decrease 

further in the future (Pinder et al., 2008; U.S. EPA, 2011). Considering the complex interaction 

between inorganic species (SO2, NOx, and NH3), the changing future emissions will have an 

impact on associated public health effects. For example, if SO2 emissions are substantially 

reduced in the future, the social costs of NOx and NH3 will increase because they will form more 

ammonium nitrate PM2.5. Therefore, the sensitivity over different emissions environments of 

inorganic species needs to be investigated. 

Last but not least, one potential merit of the EAISUR method is the possibility that it could be 

ported to outside of the United States. It would be possible to build the EASIUR 

parameterizations by running a CTM for a domain of interest anywhere in the world.  However, 

it relies on a CTM, which requires detailed emissions inventory to simulate air quality. 

Especially in many non-western parts of the world, such information will not always be 

available, rendering the derivation of the EASIUR parameterization impossible. However, the 

EASIUR models could be further abstracted not including factors currently tuned to the United 

States domain so that the parameterizations can be applied reasonably to other places. For 

example, EC parameterizations would work decently only with temperature and population. 

Considering the inert nature of elemental carbon, the EC average plume derived from the U.S. 

domain may work well to describe the exposed population in other parts of the world. Probably, 

building the EASIUR models for other domains where a CTM can be run, for example, the 

European Union domain, and comparing them with the U.S. ones will provide an useful insight 
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for the abstraction. A strategy for the mitigation of global climate change may require 

maximizing co-benefits from improving air quality (IPCC, 2014). The EASIUR model may help 

with quantifying the co-benefits of improving air quality and designing optimal policy not only 

in the U.S. but also in many parts of the world, especially where information is lacking. 
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