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Chapter 1

Introduction and Background

The contributions of this thesis lie at the intersection of novel pattern detection tech-
niques, large-scale noisy data, and public health concerns. The ability to detect pat-
terns in massive data sets has multiple applications in diverse domains such as public
health, law enforcement, human mobility, sustainability, smart power grids, sanita-
tion, agriculture & food supply chains, and security. For example, spatial scan
statistics are commonly used to alert public health officials to an unexpected in-
crease in the number of Emergency Department complaints from patients in some
spatial region (i.e., set of nearby zip codes) which may indicate the early stages of an
emerging disease outbreak or bio-terrorist attack. Another_ example is the spread of
contaminant plumes in a water distribution system equipped with noisy, binary sen-
sors. Tracking, source-tracing, and predicting these dynamic events is a non-trivial
pattern detection problem. The scope and complexity of these “societal scale” prob-
lems will soon be matched by vast amounts of data being generated by ubiquitous
sensors and devices. The complementary factors needed to address these situations
are data mining methods designed to detect relevant patterns that are emerging in

the data and invoke a timely, targeted response. Although the focus of this thesis is
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on public health surveillance, the methods developed in this work are easily general-

izable to any space-time data, including data both with and without an underlying

graph structure.

The methodology of this work expands on the “subset scannihg” approach to
pattern detection. These techniques treat the detection problem as a search over
subsets of data elements, with the goal of identifying the subset that best matches a
pattern of interest, such as increased number of Emergency Room visits in nearby ZIP
codes. Unlike “bottom-up” approaches such as density-based clustering {12] that find
and aggregate individual anomalies, and “top-down” approaches that detect globally 7
anomalous trends and then localize them to specific subsets of the data [14], subset
scanning approaches maintain high detection power for both highly localized and

global trends [28, 29].

However, subset scanning approaches pose two main challenges. First is appro-
priately evaluating the anomalousness of a given subset, and second is the compu-
tational issue of searching through the 2% possible subsets of a data set containing
N elements. Previous approaches such as spatial scan statistics [19, 33, 28, 29]
have addressed the first concern by “scoring” each subset using a log-likelihood ratio
statistic and identifying the highest-scoring subsets. For spatial data, the computa-
tional challenge of subset scanning has been addressed in several ways: limiting the
search space to only consider regions of a given shape, such as circles [19] or rectan-
gles [31, 44], or performing a heuristic search over subsets which is not guaranteed to
find the most anomalous subsets [9, 1]. Such approaches enable efficient computation

at the expense of reduced detection power and spatial accuracy [29).

The interplay between 1) appropriately evaluating a subset’s anomalousness through

probabilistically founded scoring functions and 2)developing algorithms to efficiently
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scan over subsets of the data, finding those subsels which maximize the scoring func-
tions subject to various constraints, are persistent themes throughout this thesis. The
rest of this chapter outlines previous work in spatial and spatial-temporal event de-
tection, provides the necessary terminology and background information, and sum-

marizes the contributions of the individual chapters.

1.1 Expectation-based Scan Statistics for Spatial

Event Detection

Spatial event detection methods monitor a data stream (such as Emergency Depart-
ment visits with respiratory complaints, or over-the-counter medication sales) across
a collection of spatial locations and over time. A stream is represented as a series
of counts #f, from location s;, and time step ¢. This stream of counts is also used
to determine the historical baseline (expected count) uf for each location s; at each
time step .

In the subset scanning framework, the goal is to identify a subset of the data
S € D that maximizes a score function F{S). The counts and baselines of a subset
S are aggregated such that zs = 37, o>, wat and ps = Y, o3, | out
for some temporal window W = 1...W,,... Likelihood ratio statistics have been
comimonly nsed as score functions [19, 33, 28, 29]. The log-likelihood ratio statistic

is defined as
P(D | H1(8))

F(S) =log PD| Hy) (1.1)

where the alternative hypothesis H;(S) assumes an event occurring in region § C
{51,82,...,sx5} and the null hypothesis H, assumes that all counts are generated

from the expected distribution (which can be spatially and temporally varying). In
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other words, it assumes that no events are occurring. For the expectation-based scan
statistics [28], the alternative hypothesis #1{S) assumes that counts z; are drawn
with mean gu; inside region S and mean p; outside region S, for some constant
multiplicative factor ¢ > 1 known as the relative risk or severity. Therefore the
ratio of the likelihoods of these two hypotheses provides the “score” of a region §,
and the goal is to identify the most anomalous (highest-scoring) subset. Statistical
significance of the highest-scoring subset, as well as other high scoring subsets, can

be obtained by randomization testing. See [28] for details.

The log-likelihood ratio for the expectation-based scan statistic can be written as

F(S5) = Iglfgiz (log Pz | qus) — log Plas | 1)) - (1.2)

55

The distributions from the exponential family are written as log P(z | p) =
T(x)8(p) — p{0(p)) = T(x)8(p) — pb () -+ d(u), where T(x) is the sufficient statistic,
6(u) is a function mapping the mean u to the natural parameter 6, 1 is the log-
partition function, and ¢ is the convex conjugate of 1. Plugging this form of the
~exponential family into (1.2) gives
F(S) =max » (T(r:) (0(qps) — 0(1)) + pad () — quadl(qu:) + dlaps) — d{pws))

g>1
5E8

(1.3)

This form of scoring functions plays an important role in past and current work

in expectation-based scan statistics and constrained subset scanning,
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1.2 Linear Time Subset Scanning

Linear Time Subset Scanning (LTSS) [29] is a recently developed approach to anoma-
lous pattern detection that addresses the computational complexity of subset scan-
ning by identifying the most anomalous subset of the data without requiring an

exhaustive search, reducing computation time from years to milliseconds.

The subset scanning approach to event detection is based on both efficiently and
exactly identifying the_ highest-scoring connected subset of the data, thus providing
high detection power while being able to scale to large data sets, For score func-
tions satisfying the LTSS property [29], the highest-scoring subset of records can
be found by ordering the records according to some priority function G(R;) and
searching over groups consisting of the top-j highest priority records for some {un-
known) value of j. Formally, for a given dataset D, the scoring function F(S) and
priority function G(R;) satisfy the LI'SS property if and only if maxgcp F(S) =
max;.i. n F({Ryy... Rey}), where Ryjy represents the j**-highest priority record.
For clarification, Ry is considered to be the highest priority record, G(Rq,) >
G(Ry) for all i > 1, and Ry to the be lowest priority record. Tn other words, the
highest-scoring subset is guaranteed to be one of the linearly many subsets composed
of the top-j highest priority records, for some j € {1... N}. Therefore, in the search
for the highest-scoring subset, only these N subsets need to be considered instead
of the exponentially many possible subsets. The sorting of the records by priority
requires O(N log V) time. However, if the priority sorting has already been com-
pleted, searching over subsets requires only O(N) computation time. Any function
F(8) which is quasi-convex, increases with zg, and is restricted to positive values of

s will satisfy the LTSS property [29].

Here is an alternative interpretation of the LTSS property that will be referenced
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the GraphScan algorithm described in Chapter 2. For any subset of locations 3,
if there exist locations s;, € S and spy & § such that G(sy) < G(sgw), then
F(8) < max(F(S\ {sm}), F(S U {sou})), and thus subset S is suboptimal. In
other words, the score of the subset S could be increased by either including s,y or

excluding $;,.

1.3 Enforcing Constraints on Subset Scanning

Although LTSS provides a valuable speed increase, there are applications where
LTSS by itself will provide less than ideal results as it is focused on detecting the
most anomalous subset without additional constraints. Enforcing hard constraints
in subset scanning changes the search space (i.e. some subsets are excluded from
consideration). For example, with hard connectivity constraints enforced, the search
space only includes subsets that are connected in an underlying graph structure.
In contrast, enforcing soft constraints changes the scoring function, penalizing some
subsets and rewarding others (i.e., changing the definition of what it means for
a subset to be anomalous). In particular, soft constraints in the subset scanning
framework can be interp.reted as the prior log-odds for a particular data record to be

included in the highest scoring penalized subset [38].

1.3.1 Hard Connectivity Constraints

Chapter 2 provides a theoretical basis and practical implementation {“GraphScan”)
for scalable pattern detection in graph or network data. Constraints in the form
of zip code adjacency allow scanning methods to scan over connected subsets of

locations, increasing power to detect irregularly shaped clusters of activity along
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rivers or interstate highways. Although similar to the previously proposed FlexScan
algorithm [40], GraphScan is able to scale to much larger graphs, with a 450,000-fold
increase in speed compared to FlexScan for neighborhoods with 30 locations.
GraphScan was tested against the circular space-time scan statistic [19] and the
upper level set scan statistic [35] on synthetic disease outbreaks injected into real-
world Emergency Department data from 97 zip codes in Allegheny County, PA.
Compared to the competing methods, GraphScan had higher detection power with

shorter time required to detect the events, as well as fewer missed events overall.

1.3.2 Soft Constraints and Penalized Scoring Functions

Chapter 3 introduces and formalizes the Additive Linear Time Subset Scanning
(ALTSS) property, which allows exact and efficient optimization of penalized likeli-
hood ratio scan statistics over all subsets of data elements. ALTSS is incorporated
into a Penalized Fast Subset Scan (PFSS) framework which enables the scan statis-
tics to be efficiently optimized with or without including additional, element-specific
penalty terms. The critical insight is that the scoring function F{S) may be written
as an additive function, summing over all data elements s; € 9, when conditioning on
the relative risk g. Moreover, only a small (linear rather than exponential) number
of values of the relative risk ¢ must be considered, making the computation of the
highest scoring penalized subset S* = argmaxgmax,s; Fpen(S | ¢} computationally
tractable.

- These additional element-specific penalty terms may be interpreted as the prior
log-odds of a given record to be included in the highest scoring penalized subset. If
the alternative hypothesis H,(.9) is true for some subset S, the highest scoring penal-

ized subset can be interpreted as a maximum a posteriori estimate of the true affected
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subset S. Critically, this extension opens up a wide range of well-founded founded

probabilistic models to be incorporated into the subset scanning framework [38].

1.3.3 Soft Proximity Constraints

Chapter 4 provides a straight-forward example of the Penalized Fast Subset Scanning
method in practice. Soft constraints on spatial proximity reflect the probabilistic
model that for a given local neighborhood under consideration, locations closer to
the center are assumed to be more likely to have been affected. This incorporation
of prior knowledge as soft constraints is not possible in the original LTSS framework.

PISS with soft proximity constraints is applied to the task of detecting anthrax
bio-attacks, comparing its detection power and spatial accuracy to the current state
of the art. PI'SS demonstrates strong results, beating the traditional, circular spatial
scan statistic [19] and the unpenalized Fast Subset Scan (FSS) [29] in both detection

power and spatial accuracy.

1.3.4 Soft Temporal Consistency Constraints

Chapter 5 introduces the Dynamic Subset Scan for detecting, tracking, and source-
tracing dynamic patterns that change the affected subset over time. Temporal con-
sistency constraints are enforced on temporally adjacent, spatial subsets. These con-
straints are a fruitful compromise between traditional spatial-temporal scan statistics
that do not allow the detected region to change over time (i.e., enforcing hard tem-
poral consistency constraints) and the other extreme where temporal information
is ignored. Critically, these temporal consistency constraints were derived to allow
temporal information to be shared both forward and backward in time. Dynamic

Subset Sean with temporal consistency and connectivity constraints provides a scal-

18



Fast Constrained Subset Scanning for Pattern Detection

able solution for future work in dynamic pattern detection.

1.3.5 Soft Constraints with Hard Connectivity Constraints

Chapter 6 develops the Additive GraphScan algorithm, which allows the Dynamic
Subset Scan to enforce both soft temporal consistency constraints and hard connec-
tivity constraints while scaling to large, real world networks. Additive GraphScan
is a fast, heuristic alternative to GraphScan introduced in Chapter 2. However, the
results demonstrate an approximation ratio of over 99%, suggesting a very small
sacrifice in detection accuracy for dramatic gains in speed and scalability.

The Dynamic Subset Scan with connectivity constraints is evaluated on data
provided through the “Bafttle of the Water Sensor Networks” [3]. Dynamic scan
succeeded in detecting contamination events sooner and tracking these events more
accurately compared to other competing methods. These gains are due to Dynamic
Scan’s constrained flexibility: competing methods either failed to capture the dynam-
ies of the spreading plume or were susceptible to over-fitting from lack of constraints.
In scenarios with a weaker signal to be detected, incorporating information from a
node’s neighbors in the Dynamic Scan proved worthwhile, leading to substantial

gains in performance on the detection, tracking, and source-tracing tasks.

1.4 Summary of Contributions

Thhis thesis makes significant contributions to pattern detection through subset scan-
ning in three broad categories: development of scalable methods, introduction of
novel, probabilistic-based theory, and domains of application related to public health.

Table 1.4 summarizes these contributions broken down by chapter.
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Method Theory Application
GraphScan enforces
pvea. GraphScan increases
connectivity con- . .
. | GraphScan is guaran- | detection power
straints on the subset . . .
. teed to identify most | of simulated res-
scan, It efficiently :
Chapter | : anomalous subset de- | piratory  outbreaks
identifies anomalous . .
2 spite the large speed | along highways and

Chapters
3 and 4

Chapters
b and 6

connected subset of
locations  450,000x
fagter than state-of-
the-art.

Penalized Fast Subset
Scanning with soft
proximity constraints

penalizes  spatially
dispersed clusters
while rewarding

dense clusters.

The Dynamic Scan
detects patterns that
change the affect sub-
set over time. Addi-
tive GraphScan is a
heuristic for maximiz-
ing additive functions
over connected sub-
sets.

increase. GraphScan
is not a heuristic.

The ALTSS property
allows penalty terms
to be included in the
subset scan while re-
maining exact and ef-
ficient.  Only O(n)
subsets need to be
evaluated.

Temporal consistency
constraints are de-
rived from a genera-
tive model to allow
temporal information
to be passed for-
ward and backward in
time.

rivers compared to
heuristics and uncon-
strained searches.

Soft proximity con-
straints increased
detection power and
spatial accuracy of
simulated aerosolized
anthrax  bio-attacks
released over  a
populated area.

The Dynamic Subset
Scan increases source-
tracing, tracking, and
prediction ability for
contaminant plumes
spreading in a wa-
ter distribution sys-
tem equipped with
noisy binary sensors.

Table 1.1: Summary of contributions.
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Chapter 2

Fast Subset Scanning with

Connectivity Constraints

This chapter proposes GraphScan, a new method for event and pattern detection in
large data sets that have an underlying graph structure. Given a graph structure
with vertices and edges G = (V, E}, and a time series of counts x¢ for each vertex V; in
G, GraphScan detects emerging patterns by finding connected subgraphs § € ¢ such
that the recent counts of the vertices V; in S are significantly higher than expected.
'This process will be described in more detail below.

As a concrete example of the application of GraphScan, we consider the problem
of disease outbreak detection. In this setting, LTSS with proximity constraints {29]
can be used to quickly detect spatially compact clusters of anomalous locations.
However, consider an outbreak from a waterborne illness that leads to an increased
number of hospital visits from patients that live in zip codes along a river or coast-
line. This non-compact spatial pattern would be hard to detect using proximity
constraints. Taking advantage of an underlying graph structure based on zip code

adjacency allows GraphScan to consider connected subsets of zip codes and therefore
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have increased power to detect these irregularly shaped clusters.

To clarify, this approach to event detection on graph data differs in both form and
function from other recent work in graph mining. For example, it is not attempting
“community” or cluster detection [13]. Also, unlike [43], the anomalousness of the
connected subsets to identify is not based on the density of edges within the subgraph,
but rather on properties of the nodes. We simply require that the detected subset of
nodes be connected rather than looking for an anomalous collection of edges. Recent
work, [23] is also concerned with detecting events in networked data. Their goal is to
determine the optimal placement of a limited number of sensors within the network,
while we address the complementary problem of fusing noisy data from multiple
sensors for a given placement. Once these sensors are placed, scalable methods
are still needed to detect events in the resulting large data sets with an underlying

network structure.

GraphScan is applied to the spatial event detection domain, using the additional
connectivity constraints defined by the graph structure to detect irregularly shaped
but connected subsets of locations. The goal is to find the most interesting spatial
(or spatio-temporal) subset of locations S, subject to the connectivity constraints,

by maximizing the score function F(S).

This work is not the first to address detecting events in graph or network data.
The Flexible scan statistic (FlexScan) has shown the utility of using adjacency con-
straints when detecting irregularly-shaped spatial clusters [40]. FlexScan considers
all subsets formed by a center node and a connected subset of its k — 1 nearest neigh-
bors. Unfortunately, the run time of FlexScan scales exponentially with the neighbor-
hood size k, and thus FlexScan becomes computationally infeasible for neighborhoods

larger than 30 nodes. A more efficient method is required in order to scale to even

22



Fast Constrained Subset Scanning for Pattern Detection

moderately-sized datasets. Thig increase in efficiency does not have to come at the
price of a using a heuristic; our GraphScan method makes larger problems tractable

while guaranteeing that the highest-scoring connected subset will be identified.

Other approaches rely on heuristics to accelerate the subset selection process.
These are not guaranteed to find the most anomalous subset, and in some cases may
perform arbitrarily badly as compared to the true optimum. For example, simulated
annealing has been used to detect clusters of homicides in a large urban data set to
search over the space of connected subgraphs [9]. The Upper Level Set scan statistic
(ULS) [35] has impressive speed and scalability, but can fail to detect the highest-

scoring connected subset even in a simple four-node graph, as shown by Neill [29].

Neill [29] proposed a method that exploits a property of scoring functions called
linear-time subset scanning {LTSS). This property allows us to find the highest-
scoring subset of N locations without exhaustively searching over the exponentially
“many subsets. However, it is highly non-trivial to extend LTSS to detect connected
gubsets of locations, and thus LTSS will often return disconnected clusters., This is
the limitation addressed by our current work. We demonstrate that the GraphScan
algorithm can efficiently and exactly detect the highest-scoring connected subset.
This is different than both FlexScan (which is computationally infractable for large

neighborhoods) and ULS {which does not guarantee an exact solution).

Our approach to event detection is based on both efficiently and ezactly identi-
fying the highest-scoring connected subset of the data, thus providing high detection
power while being able to scale to large data sets. For score functions satisfying the
LT'SS property [29], the highest-scoring subset of records can be found by ordering the
records according to some priority function (7(R;) and searching over groups consist-

ing of the top-j highest priority records for some (unknown) value of j. Formally, for
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a given dataset D, the scoring function F'(S) and priority function G(R;) satisfy the
LTSS property if and only if maxgscp F(S) = maxjer. v F({Rqy ... Riy}), where Ry
represents the j%-highest priority record. Therefore, in the search for the highest-
scoring subset, we only need to consider these N subsets instead of the exponentially
many possible subsets. The sorting of the records by priority requires O(N log N)
time. However, if the priority sorting has already been completed, searching over

subsets requires only O{N) computation time.

For any subset of locations 9, Neill [29] shows that, if there exist locations R;, € S
and Ry ¢ S such that G(Rin) € G(Rou), then F(S) < max(F{S\ {Rm}),F(S U
{Rout})), and thus subset S is suboptimal. This property extends intuitively from
single records to subsets of records. As above, let C(S) = 3, _¢¢f and B(S) =
> e bl and we define the priority of subset S to be G(S) = %, the ratio of
the total count within S to the total baseline within S. Then if there exist subsets

of locations Sy, © 8 and Sop, SN Sy = @, such that G(Sy,) < G(S,y), then
P(S) < max(F{S\ Sin), F{S U S,u)), and thus subset S is suboptimal.

_ When connectivity constraints are introduced, the above inequality between sub-
sets S, S\ Si,, and S U S,y still holds. However, for a connected subset S, the
subsets S\ Si, and SU S,,; may not be connected. Thus S is only guaranteed to be
suboptimal if two conditions hold: i) simultaneously removing all records R; € Sy,
would not disconnect S; and ii) at least one of the records in Sy is adjacent to S,
and therefore simultaneously adding all records R; € S,,; would allow the subset
to remain connected. Thus we can state the LT'SS GraphScan logic as follows: “If
subset S, is included in the highest-scoring connected subset S, and removing S;,
would not disconnect S, then no connected subset S,,; adjacent to S can have higher

priority than S;,.”
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We now consider the various types of scoring functions that satisfy LTSS and
hence can be optimized by the GraphScan algorithm, Neill [29] proves that any
function F(C, B) which is quasi-convex, increases with €, and is restricted to pos-
itive values of B will satisfy the L'I'SS property. Kulldorff’s original spatial scan
statistic [19], also used as the score function for the FlexScan algorithm [40], sat-
isfies LTSS. Therefore, GraphScan could be used in place of the circular scan, to
scan over connected clusters instead of circles, in any of the large number of appli-
cation domains to which Kulldorff’s approach and FlexScan have been applied. The

corresponding priority function for Kulldorft’s spatial scan statistic is G(R;) = £

Additionally, LTSS holds for expectation-based scan statistics [28] in the sepa-
rable exponential family, including but not limited to the Poisson, Gaussian, and
exponential distributions. In these cases, the additive sufficient statistics C' and B
may be different: for example, ¢; = “‘“jfzt and by = ﬁ—i for the expectation-based Gaus-
sian scan statistic with means p;, standard deviations o;, and observed values ;.
The priority function G(R;) = £ also applies to expectation-based scan statistics,
Typically, scan statistics are used to detect increused activity where counts are higher
than expected. However, the expectation-based scan statistics can also be used to
detect decreased counts while still satisfying LTSS, Intuitively, the corresponding pri-
ority function in this setting is G(R;) = lmc’f, reversing the original ordering. Finally,
LTSS can also be applied to a variety of non-parametric scan statistics, as described
in [24], and GraphScan can be used to detect connected clusters in these settings as

well.
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Figure 2.1: A graph broken into 3 subgraphs, one for each seed record (darkened).
Nodes with dashed bevels are not included in a given subgraph. In Gs, R has been
removed because it is a neighbor of ;. We remove R4 and Ry because they can
no longer be reached from Hy). Subgraphs G, G2, and G4 respectively represent 32,
2, and 2 of the 64 subsets under consideration. The remaining 28 subsets have been
ruled out by the subgraph creation process.

2.1 GraphScan Algorithm

Operating naively, identifying the highest-scoring connected subset for a graph of
N nodes requires an exhaustive search over all O{2") pessible connected subsets.
GraphScan performs this search over connected subsets using a depth-first search
with backtracking, but gains speed improvements by ruling out subsets that are prov-
ably suboptimal. First, we rule out subsets violating the LTSS GraphScan property.
If there exist two subsets S;, and S, és defined above, with the priority of S,
exceeding the priority of S,, then S is suboptimal. Second, we apply a “Branch and
Bounding” technique to rule out groups of subsets that are guaranteed to be lower

scoring than the best connected subset found thus far.

2.1.1 Subgraph Creation and Definitions of Common Terms

We define seed records as records that have higher priority than all of their neighbors.
Let seeds C D be the sef of all seed records in G. For each seed record Ry €
seeds, GraphScan forms a subgraph (; such that all records with higher priority

than R, and the neighbors of these higher-priority records, are excluded from
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G;. Additionally, records that are no longer reachable from R(; are excluded. An

example is provided in Figure 2.1.

To conduct a depth-first search within each subgraph, we define a route to be
a data structure with five components. First is the subset of records included and
excluded from the route. These are stored in a priority-ordered N;-bit string, where
Nj is the number of nodes remaining in that subgraph. The k% bit, X}, represents
the inclusion or exclusion of the ¥** highest priority record Ry, All records included
in the route are represented as X, = 1 and excluded records are represented as
X, = 0. Any records that have yet to be considered are marked with X, = 7.
Second is the route’s current path, which ends at its current location. This is a
sparse representation of records ordered by inclusion in the route, and allows for
backtracking. Third are the route’s current sidetracks. Sidetracks are connected
subsets of records which have been backtracked through by the depth-first search
procedure; they are included in the route’s subset but are not on the current path
and no longer have potential for further exploration. Note that removal of any
sidetrack will not disconnect the current subset, and thus a route’s S;, is defined
as the lowest priority sidetrack contained in that route. Finally, a route’s S, is
the highest priority exchided neighbor of the route; alternatively, we can consider a

broader definition of S,,; as detailed below.

GraphScan keeps track of all candidate routes for a given subgraph using a pri-
ority queue. New routes under consideration will either be ruled out by the LTSS
GraphScan property, ruled out by “Branch and Bounding”, or added back to the
queue for further processing. Any connected subset S which is not pruned will
have its score F(S) computed, and GraphScan keeps track of the highest-scoring

connected subset found during its search.
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Figure 2.2: A possible route for an 8 node subgraph. The number in each node
represents the node’s priority ranking. The current subset is [1,7,1,7,1,1,0,7 , and
the current path is [1,6,5]. S;, = {Rs} with priority 3.5, because R is included
in the subset and removing it would not disconnect the subset. S, = {R(T)} with
priority 0.25. Four child routes must be considered: extending the path to Ry;
excluding fisy and extending to R); excluding Ry and Ry and extending to
Rg); excluding Ry, Ry, and Ry and backtracking to R). All but the first route
are provably suboptimal and would not be re-inserted into the quene. Specifically,
excluding Ry from the route would increase the route’s Sy priority to 2 = 4.5,
higher than the priority of S;,.

2.1.2 Processing a Subgraph

After identifying seed records and forming a subgraph for each seed record, the task
is to efficiently process each subgraph to identify its highest-scoring connected subset.
The highest score over all subgraphs is returned as the final solution. At each step
of the GraphScan algorithm, a route is removed from the queue and multiple child
routes are propagated as either an extension or backtrack of the current path. Cycles
are avoided by not considering child nodes that are also neighbors of the current
path. Assuming that the current location is Ry with C child nodes Ry, ... R
in prierity order, we consider (' + 1 child routes for reinsertion into the queue: one
route extending the path to each child node R;,), and one backtracked route.
When extending the current path from record Ry to record Ry, 1 < ¢ < C,
we exclude the ¢ — 1 neighbors of R(i) that have a higher priority than R;,). The
route’s S, is updated if one of the newly excluded neighboring records has a higher

priority than the route’s eurrent S,y. If the priority of the route’s S,.; exceeds that
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Figure 2.3: A possible route for an 8 node subgraph. This example demonstrates
aggregating counts and baselines during the backtracking step of the GraphScan
algorithm. Currently, Sy = { Ry}, with a priority of 3, and Sy, = { Ry, R), Ry}
with a priority of % = 2.2. Note that K has a priority of % = 1 when considered
by itself. However, we cannot assign S;, = {Rs) } because removing only R, would
disconnect the subset. If we remove R;) we must also remove the rest of the sidetrack.
Thus S, is the minimum priority of Ryg) alone (priority = 7), Ry and R (priority
= 4}, and Ry, R5), and R (priority = 2.2). This particular route would not be
reinserted into the queue because the priority of Sy, is less than that of S, (2.2 < 3).

of S;, then this new route is not reinserted into the queue because it represents a

provably suboptimal subset of records. See Iigure 2.2 for an example.

When backtracking, we exclude all of the C neighbors of R(; and change the
current location to the previous node on the current path. In addition to potentially
updating a route’s S,,;, backtracking may also change the route’s S;, and requires
some additional attention. When backtracking, GraphScan must recalculate the pri-
ority of the entire current sidetrack. To that end, the new current location aggregates
the counts and baselines of the backtracked record with its own. This is done for
every backtrack, and therefore the new current location inherits the counts and base-
lines (and therefore, the priority as well) of the entire current sidetrack. It is this
priority that we must consider when updating a route’s S;,. See Figure 2.3 for an

example.
If this ratio of aggregated counts and baselines is lower than the priority of the
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route’s current S;,, then we update the route’s S;, before attempting to reinsert it
into the queue. If S;, has lower priority than the route’s S,,; then it is not reinserted
to the queue because it represents a provably suboptimal subset. This updating and
comparing of Sy, and Sy, as each route propagates allows GraphScan to prune a
large number of subsets from its search space.

Further speed improvements can be made by including an additional check before
a route is inserted into the queune. Recall that the route contains information about
which records have yet to be included or excluded, i.e. the records with X, = 7. If
the highest priority of all such records is lower than the priority of Sy, then we may
also prune this route after scoring the current subset.

Algorithm 2.1 presents GraphScan without “Branch and Bounding” or proximity
constraints. These additional extensions to the GraphScan algorithm are discussed
below. Note that steps 8 and 13 prune any subsets that are provably suboptimal by

not reinserting them into the queue.

2.1.3 Proof of GraphScan’s Exactness

We now prove that the GraphScan algorithm is guaranteed to identify the highest-
scoring connected subset despite the large reduction in the search space. Since
GraphScan performs a depth-first search over the space of all connected subsets,
it is clear that the highest-scoring connected subset would be found if no pruning
was performed. Thus we must show that, for all connected subsets S pruned at each
step of the algorithm, there exists some connected subset S’ which is not pruned
and has F(S") > F(S). Our first proof will focus on partitioning the problem into
subgraphs based on seed records, and our second proof will focus on the exclusion

of routes within each subgraph. Let /N {5} denote the set of all non-empty subsets
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Algorithm 2.1 GraphScan

1: Identify seed records as records with higher priority than their neighbors,
2: for each seed record do

3:  Form subgraph and initialize priority queue with route originating at seed

record.
while priority queue not empty do
5: Remove highest priority route from queue and note its current location, S,
and S,
6: for each neighbor of current location not on or adjacent to the path do
7: Extend the path by setting the current location to that neighbor, and
exclude higher priority neighbors. Update S, if necessary.
8: if priority of S, < priority of S, then
9: Score the subset and insert route into priority queue for further pro-
cessing,.
10:  end if
11; end for
12 Backtrack the path by setting the current location to the previous location
on the path, and exclude all neighbors. Update S, and Sj, if necessary.
13: if priority of S,,; < priority of S;, then
14: Score the subset and insert route into priority queue for further processing,
15: end if
16: end while
17: end for

18: Return highest scoring subset across all subgraphs.
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Sin © S such that 8\ Sy, is connected (or empty), and OUT(S) denote the set of
all non-empty subsets 5,,; such that SN S, = 0 and SUS,,; is connected. We can

then prove the following theorems:

Lemma 2.1, For any connected subset S, if there exist Sy, € IN(S) and Sy €
OUT(8) such that G(Sin) < G(Sewt), then subset S is suboptimal.

Proof. This follows directly from the facts that F{S) < max(F(S\ Sin), F(SU Seut))

and that the subsets S\ S;, and S U S, are connected. 0

Theorem 2.1. Ezxactness of Subgraph Creation. For any connected subset S
that is pruned by the subgraph creation process described in §2.1.1, there exists some

connected subset S which is not pruned and has F(S' )= F(S).

Proof. Let S be the set of all possible connected subsets and let S; represent all
connected subsets in which record Ry is the highest priority included record. Note
that S = Uj\;l S;, and thus we can reduce the problem to finding the highest-scoring
subset for each S;. However, GraphScan only forms subgraphs for each seed record,
pruning all subsets for which the highest-priority record is not a seed record. Also, for
a given subgraph G;, GraphScan prunes all subsets in S; which contain a neighbor
of any record with higher priority than R¢;. In either case, for all pruned subsets 3,
there exists a record R, ¢ S which is adjacent to S and has higher priority than all
records in .S. The suboptimality of region § follows from applying Lemma 2.1 with
Sin = S and Spys = {Rou}. More precisely, we know that F(S) < F(SU{Rou})
and that SU{ Ry} i8 connected. Finally, the exclusion of nodes which are no longer
reachable from K(; during subgraph formation does not prune ahy subsets in S;,

since all such subsets would be disconnected. O
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Theorem 2.2. Ezactness of Route Propagation. For any connected subset S
that is pruned by the route propagation process described in §2.1.2, there exists some

connected subset S' which is not pruned and has F(8') > F(S).

Proof. For a given route Z, let S;, denote the set of all “included” records Ry (ie.,
records with X = 1), and let 5., denote the set of all “excluded” records Ray (ie,
records with X = 0). Let S denote the set of all subsets still under consideration
for the current route, i.e., all subsets S such that Siy € 5 and SN Sepe = #. When
route Z is propagated, C child routes Z; ... Zg are formed by conditioning on the
highest-priority included child node R;.), and an additional child route Z; is formed
assuming that all child nodes are excluded. Let S, denote the set of all subsets still
under consideration for child route Z.. We first note that Uin S = 8, and thus if
no pruning was performed, GraphScan would search exhaustively over all connected
subsets.

However, GraphScan will prune any route Z which has G(Si,) < G(S,.;), where
Sin C Sina 18 a sidetrack and Sy C Sesq is a subsct that is excluded from, but
adjacent to, Si,g. For any subset S € S which is still under consideration for
the route, we know that Sy, € IN(S), since Si, C Sina C S and removal of the
sidetrack S;, will not disconnect S. Also, we know that S, € OUT(S), since
S;ut- € OUT(Sina) and S M Sy = §. These facts imply that S is suboptimal by
Lemma 2.1, as its score would be improved by either exciuding Sin or including S,,,;.

GraphScan also compares each route’s S, to the highest—pridrity record Ry yet
to be included in the subset (i.e., the smallest & such that Xy, =1). If the priority
G({Ru)}) < G(Sout), then the route’s currently included subset Sy, is scored but

the route is not reinserted into the queue. In this case, for any other subset S € 8

which is still under consideration for the route, we know that G(S\ Sina) < G(Seuw).
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Since Sj,y 18 connected, we know that S\ Sia € IN(S). Also, we know that
Sout € OUT(S), since S € OUT(Sin) and S M Spe = B, Thus S is suboptimal by
Lemma 2.1, as its score would be improved by either excluding S\ Si, or including

oug. D

2.1.4 Speeding up Subgraph Processing with Better Estima-

tion of S,

We have introduced the GraphScan algorithm with an effective but simplistic under-
standing of a route’s S, by restricting it to be a single record (the highest priority
neighboring record excluded from a route). We now allow for S,,; to be a connected
subset of records that have all been excluded from a given route. To do so, recall
that S, 18 a connected subset of records not contained in S such that at least one of
the records in S, is adjacent to S, and therefore simultaneously adding all records
R; € S, would allow the subset to remain connected.

Consider a subgraph G, for 7 > 1. This subgfa,ph excludes all records with
priority higher than R(; as well as the neighbors of these higher priority records.
GraphScan uses records that have been excluded from G; to expand a route’s S,.:.
Lef R be a record contained in G; which has a neighbor Ry, k < ¢, that has
been excluded from ;. If Ry is excluded from a route in G;, then it benefits us to
consider the priority of the subset S, = { Ry, Ry}, which will be higher than the
priority of Hy;. Even if k > 4, By) may have high-priority neighbors that have also
been excluded from G;. This insight leads to a goal of establishing a high-priority
subset 9,,; of connected records that have all been ex_cluded from G; but include
at least one record adjacent to potential routes contained in G;. It is this subset’s

priority that is used when determining the route’s highest-priority excluded subset,
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Figure 2.4: A possible route for a 5 node subgraph with additional information from
records excluded from the subgraph. Naively, we would use S,z = Rz with a priority
of % = 1. During the creation of the subgraph, it is noted that nodes R, and R,
(their priority ranking does not matter because they are excluded from the subgraph)
are connected to Ry) in the original graph. Therefore, when excluding R3) from the
route we may actually set the highest excluded priority of the route to £ = 2 and
Sout = {R3), By, R;}. This operation is not limited to excluding records from the
subgraph. Consider extending the current path to Rg. By including Ry, we are
able to further increase the highest excluded priority to % =4.5 and set S, = Rig).

rather than the priority of a single excluded record.

Although finding a high priority S, i8 preferred, the exactness of the Graph-
Scan algorithm does not require us to find the highest priority S,,;. Therefore, a
simple greedy heuristic is used to aggregate the counts and baselines of connected
records that have been excluded from G;. Searching over only records that have
been excluded from G, the heuristic iteratively adds the highest-priority neighbor
until either there are no more records to add or the priority of the subset begins to
decrease. This extension can substantially increase the priority of S, for a given
route, resulting in much more pruning of the search space. Finally, we note that
these priorities are pre-calculated during the creation of the subgraph. During route
propagation, when extending the current path by including a neighboring record and
excluding higher priority neighbors, the priority of S, is established by referencing
these pre-calculated priorities rather than relying solely on the single highest priority

excluded record. See Figure 2.4 for more details.
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2.1.5 Branch and Bounding with unconstrained LTSS

The unconstrained LI'SS property of scoring functions is applied in the GraphScan
algorithm through Branch and Bounding [21]. Branch and bounding is intelligently
enumerating candidate solutions by systematically ruling out large subsets of fruitless
ones. In practice, branch and bounding allows the algorithm to interrupt the route
propagation when all subsets represented in a route are guaranteed to be lower scoring
than a currently known connected subset. This is possible because we can quickly
determine the “upper bound” (unconstrained score) of a route through the property
of LTSS. Since the set of records is already sorted by priority, the unconstrained
score can be calculated in linear time. This process involves consecutively adding
the next highest priority record with X =7 (ignoring connectivity constraints) and
then scoring all records contained in the (now, possibly disconnected) subset. The
highest-scoring subset from this process is guaranteed by the LTSS property to be the
highest-scoring unconstrained subset in that route. If this bound is less than or equal
to the current high score, then the maximum score of all connectivity-constrained
subsets within the route cannot be greater than the current high-scoring connected

subset, and thus we do not need to continue processing the route.

We define two scoring functions which map a route to real numbers LBound(route)
and UBound(route). LBound(route) is the score of the connected subset formed by
only including the records in the current subset. UBound("route) is the score of the
highest-scoring unconstrained subset of the route, efficiently determined by the LTSS

property as described above,

Before being inserted into the queue, the upper and lower bounds of the route
are found and compared to the current best score of a connected subset with the

following outcomes:
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current best score < LBound(route) < UBound(route): This signifies that
route’s current subset is the new current best scoring connected subset. The
subset is noted and the new best score updated before inserting the route back

into the queue.

current best score < LBound(route) = UBound(route): This signifies that the
current subset is the new current best scoring connected subset as well as the
highest-scoring subset in the entire route. The subset is noted and the new

best score is updated but the route is not reinserted into the queue.

UBound(route) < current best score: This signifies that all of the route’s sub-
sets (even without enforcing connectivity constraints) are lower scoring than
the highest-scoring connected subset found so far. The route is not reinserted

into the queue.
LBound(route) < current best score < UBound{route): This signifies that

no new information is gained through branch and bounding. The route is

reinserted into the queue.

The order in which the routes are processed within a Branch and Bounding

framework can affect the runtime of the algorithm. We sort the qucuc based on

the LBound(route) value. This ordering had minor but noticeable improvement in

runtime (~23% faster than random ordering). Runtimes for GraphScan with and

without Branch and Bounding are provided below. While Branch and Bounding

substantially improves runtime, GraphScan is much more computationally efficient

than FlexScan even without Branch and Bounding.
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2.1.6 Incorporating Proximity Constraints

The major contribution of GraphScan is combining connectivity éonstmints with
the LTSS property to efficiently determine the highest-scoring connected subset of
records. However, if the data set has spatial information as well, then we may use
both prozimity and connectivity constraints simultaneously. Given a metric which
specifies the distance d(R;, R;) between any two records R; and R;, we may identify
a “local neighborhood” of records around a central record R.. For example, in the
disease surveillance domain, we use the latitude and longitude coordinates of the
centroid of each zip code. GraphScan forms “local neighborhoods” by considering a
central record R, and its k — I nearest neighbors for a fixed constant k. There are N
of these neighborhoods férmed with each one centered around a different record K.
GGraphScan finds the highest-scoring connected cluster within each neighborhood by
forming and processing a connectivity graph consisting of only the records in that
neighborhood, and then reports the single highest-scoring connected subset found

from these N searches.

The implementation of proximity constraints within GraphScan is similar to the
constraints used in FlexScan (40], with a slight difference. FlexScan uses an identical
approach to form the neighborhoods of each data record, but it only considers the
connected subsets that include the central record R,. In other words, it determines
the highest-scoring connected cluster consisting of R, and a subset of its k — 1 nearest
neighbors. GraphScan does not require the central record to be in the subset and
considers all possible connected subsets for each group of k records. In practice,
this minor difference has negligible impact on detection power, and thus the only
substantial difference between FlexScan and GraphScan is in runtime, If desired,

inclusion of the center record can be added as an additional constraint into the
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GraphScan algorithm, immediately pruning any route for which that bit X}, is set to

0. This results in slightly faster runtime and does not impact detection power.

2.2 Evaluation of run time on random graphs

We first evaluate the average amount of time taken for GraphScan to identify the
highest-scoring connected subgraph for Erdos-Renyi random graphs of varying size
n and edge probability p. Erdos-Renyi graphs are formed by placing each of the ('g)
possible edges in the graph with probability p. Figure 2.5 provides the average run
times for graphs of size 25, 50, 100, and 200 nodes with varying edge probability.
For each combination of n and p, at least 1000 different Erdos-Renyi graphs were
created, processed with GraphScan, and the average run time was reported. Some of
the 200-node graphs resulted in runtimes exceeding 1 hour. In these instances, the
excessive run times were not used in the calculation of the mean, but the proportion
of runs that exceeded this 1-hour threshold are provided as a reference on the point.
For example, for 200-node graphs with an edge probability of p = 0.05, 97.8% of the
runs finished with an average of 135.2 seconds each. However, 2.2% of the graphs
exceeded 1 hour of processing time and had their run times removed 'from the overall
calculation.

Not surprisingly, increased graph size resulted in longer run times; however, the
role of edge probability is interesting and worthy of further discussion. In Erdos-
Renyi graphs, the edge probability p has theoretical thresholds that change the
nature of the graph [11]. For example, when p < %, the entire graph is composed of
smaller subgraphs that are disconnected from each other. As p increases beyond %,
a single giant component begins to emerge which contains the majority of the nodes.

This giant component increases in size with increaging p, until p = 1_171_1@ At this point
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Figure 2.5: Performance of GraphScan on Erdos-Renyi random graphs of varying

size and edge probability. Labeled data points are the proportion of graphs where
run time exceeded 1 hour.

the giant component will (almost surely) contain all of the n nodes in the graph,
resulting in a single component graph. Increasing p beyond this threshold increases
the overall connectedness of the graph and decreases its diameter. These stages are
evident in the performance of GraphScan. The peak in run time occurs near p = th”
for each of the various graph sizes. As edge probability drops below this threshold
value, we see improved performance because the majority of calculation time is spent
on the giant cluster that is decreasing in size. As edge probability increases above the

threshold, the giant component is no longer increasing in size but is now decreasing

in diameter, also resulting in improved performance.

2.3 Evaluation on spatial disease surveillance

We present empirical results of GraphScan’s run time performance, time to detect
(average number of days needed to detect an outbredk) and detection power using

a set of simulated respiratory digease outbreaks injected into real-world Emergency
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Department data from Allegheny County, Pennsylvania. We compare results for mul-
tiple methods: “Circles” (traditional approach introduced by Kulldorfl; returns the
highest-scoring circular cluster of locations), “All subsets” (LTSS implemented with-
out proximity or connectivity constraints; returns the highest-scoring unconstrained
subset of locations), “ULS” (returns a high-scoring connected subset based on the
ULS scan statistic within a neighborhood size of k) and “GraphScan” (returns the
highest-scoring connected subset within a neighborhood size of k). The original im-
plementation of ULS did not incorporate proximity constraints, equivalent to using
a neighborhood size £ = N, but detection performance of both ULS and GraphScan

can be improved with proximity constraints.

The Emergency Department data comes from ten Allegheny County hospitals
from January 1, 2004 to December 31, 2005. The data was cleaned by removing
records where the home zip code or admission date was missing or the home zip code
was outside Allegheny County. By processing each case’s ICD-9 code and free text
“chief complaint” string, a count data set was created by recording the number of
patient records with respiratory symptoms (such as cough or shortness of breath) for
each day and each zip code. The resulting data set had a daily mean of 44.0 cases,
and standard deviation of 12.1 cases. There were slight day-of-week and seasonal

trends, with counts peaking on Mondays and in February.

Table 2.1 provides empirical results for ULS applied to the Emergency Depart-
ment data from Allegheny County. While GraphScan is guaranteed to identify the
highest-scoring connected subset S, ULS finds the highest-scoring connected subset

only 1.1% of the time. This result marks a true distinction between these two meth-
ods: ULS reduces the search space for speed, requiring only seconds to process each

day of data, while GraphScan only excludes subsets which are provably suboptimal,
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Threshold as %  Percentage of highest-scoring ULS
of maximum score  meeting or exceeding threshold

100% 11%
90% 9.0%
80% 29.8%
0% 19.6%
60% 69.1%
50% 85.8%

Table 2.1: Empirical results of ULS on Emergency Department data.

guaranteeing that the highest-scoring connected region will be found.

2.3.1 Run time performances

In Figure 2.6, we present the average run times per day of Emergency Department
data for three different algorithms. The FlexScan algorithm naively enumerates all
281 gubsets containing the center record for each group of k records. GraphScan’s
speed improvements come from two different sources: reduction of the search space
by applying the LTSS property with connectivity constraints, and by Branch and
Bounding (direct application of LTSS without connectivity constraints). We provide
run times for GraphScan with and without Branch and Bounding for values of k =
10,15, ...,70. For k = 30, GraphScan achieves over 450,000 faster computation
time than FlexScan, and FlexScan was computationally infeasible for k& > 30. The
addition of Branch and Bounding to GraphScan regults in a further 50x speed increase
for k = 50. ULS, like GraphScan, required only seconds to process each day of data.
However, while GraphScan is guaranteed to find the highest-scoring subset, ULS was
only able to find the highest-scoring subset 1.1% of the time, while 14.2% of the time
ULS returned a subset with score less than half of the maximum. GraphScan may

also be used without incorporating proximity constraints, finding the highest-scoring

42



Fast Constrained Subset Scanning for Pattern Detection

Run times per single day of Emergency

Depariment data
10000 s=GraphScan
T £
3 £
w IS rp——
o 100 f F=GraphScan {No
= ,,;:{ 4 Branch and Bound)
3 ;
c 1 \
8 =FlexScan
b
10 3G 50 70

k

Figure 2.6: Run time analysis for FlexScan and GraphScan with and without Branch
and Bounding., The x-axis denotes the “neighborhood size” as various values of k.

of all connected subsets. GraphScan averaged 2.50 seconds per day of ED data
when processing the entire graph, while FlexScan would have required an estimated
5% 10'7 years. For outbreak detection, ignoring proximity constraints and attempting
to detect patterns across the entire graph typically results in lower detection power.
In this setting, proximity constraints serve to speed up run times as well as increase

-detection power. '

We note that the worst case cdmplexity of GraphScan is exponential in the neigh-
borhood size. If no pruning was performed, GraphScan would evaluate all connected
subsets, requiring O(2%) run time; however, GraphScan is able to rule out many
connected subsets as provably suboptimal, reducing complexity to O(¢*) for some
constant 1 < g < 2, where ¢ is dependent on the proportion of subsets that are
pruned.. For the Emergency Department data, we empirically estimate ¢ =~ 1.2. For
graphs that are sufﬁcien;cly dense, runtime of GraphScan becomes linear in k as in
the unconstrained L'I'SS case, while for sufficiently sparse graphs, few subsets are

connected.
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2.3.2 Simulating and Detecting Outbreaks

Our semi-synthetic testing framework for evaluating the performance of disease out-
break detection algorithms artificially increases the numnber of disease cases in the
affected region by injecting simulated counts into real-world background data. This
allows us to simulate disease outbreaks of varying duration and severity while taking -
into account the noisy nature of real world data. The simulation of realistic disease
outbreak scenarios is a large and active research area. Simulators such as those used
in [7] and [42] combine current background data with that of past outbreaks to cre-
ate a realistic new outbreak injected into current data. Settings such as outbreak
duration and severity can be incorporated into the simulator and allow for a variety
of outbreak scenarios. In this chapter, we implement a much simpler outbreak model
that linearly increases the number of cases over the duration of the outbreak. We
acknowledge that this is not a realistic model of the temporal progression of an out-
‘break. However, it allows for a precise comparison of the different detection methods
under consideration, by gradually increasing the severity of the outbreak over its
duration. The outbreak simulator requires three parameters: duration, severity, and
the set of zip codes affected Sin 0. For this work, I assume that every injected out-
break has a duration of T' = 14 days and a severity of A = 1. The start date of the
outbreak is chosen uniformly at random. On each day ¢ of the outbreak ¢t =1...14,
the simulator injects Poisson(t) cases over the aflected zip codes Sinject.

We created six spatial injects that correspond to natural or man-made geograph-
ical features of Allegheny County, Pennsylvania, shown in Figure 2.7. Three of the
regions are formed with zip codes along the Allegheny and Monongahela rivers, sim-
ulating a waterborne disease outbreak. The three other regions follow the path of

two major U.S. interstates that traverse the county.
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Figure 2.7: Outbreak regions used in the semi-synthetic tests. Regions #1 and $#2
follow rivers and #4 and #5 follow interstates. #3 is the union of #1 and #2; #6
is the union of #4 and #5.

Once the simulated cases have been created and injected into the real-world
background data, our focus turns to detecting the outbreak. First, we obtain a score
F* = maxg F(S) (using the same search space and scoring function as the method
under consideration) for each day in the original data set without any injected cases.
This provides a background distribution of scores which is used to provide a realistic
false positive rate that is more accurate than those obtained through Monte Carlo
sinmilation [27]. Then for every day ¢ of the simulated outbreak, we compute the
day’s maximum region score and determine the proportion of background days for
which I™* exceeds it. With the assumption that the non-injected data set is free of
outbreaks that practitioners would have wanted to detect, this fraction represents
the false positive rate that practitioners would have to accept.in order to detect the
outhreak on that pérticular day t. Therefore, for a fired false positive rate r, the
number of days required to detect a gradually increasing outbreak is a good measure
of detection power. A false positive rate of 1 per month is allowed, a level considered
to be acceptable by many public health departments 26]. If no single day during a
simulated outbreak has a proportion of false positives less than the rate r, then the

outbreak would go undetected.
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Figure 2.8: Detection time (average number of days to detect) and power at a fixed
false positive rate of 1 per month for outbreaks along the rivers.

2.3.3 Detection Power Results

We provide results for detection power for the four different methods under consider-
ation: circles, all subsets, ULS, and GraphScan, with the last two considering various
neighborhood sizes, k. For each of the six different S e regions, 200 simulated in-
jects were created and randomly inserted in the two-year time frame of our data. At
the fixed false positive rate of 1 per month, the ‘total number of outbreaks detected
and the average number of days to detection (counting missed outbreaks as 14 days
to detect) were recorded.

Figure 2.8 provides the time to detect and overall detection rate for the cutbreaks
along rivers. GraphScan with a neighborhood size of ¥ = 15 detects 2.00 days
carlier than circular scan and detects 29.1% more of the outbreaks. ULS has similar
performance to GraphScan for k¥ = 5 and & = 10, but GraphScan delivers the
overall best performance at k¥ = 15, and outperforms ULS for almost all values of
k. Similarly, Figure 2.9 provides the time to detect and overall detection rate for
the outbreaks along the interstate corridors. GraphScan with a neighborhood size

of k = 15 detects 1.97 days earlier than circles with fewer than half as many missed

outbreaks.
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Figure 2.9: Detection time (average number of days to detect) and power at a fixed
false positive rate of 1 per month for cutbreaks along the highways.

2.4 Locating Contaminants in a Water Distribu-

tion System

Our second application of GraphScan focuses on locating contaminant plumes in a
water distribution system equipped with noisy, binary sensors. The “Battle of the
Water Sensor Networks” (BWSN) [3} provided real-world data to teams tasked with
placing perfect sensors to locate contaminants in the network of water pipes. The
placement problem is an interesting one explored further in [5, 18]. This work focuses
on the complementary problem of fusing data collected from noisy sensors assuming a
given placement and network structure in order to identify which locations have been
contaminated. Sensor fusion attempts to combine data from multiple distributed

sensors in order to increase the detection power of the entire network [41].

We proceed by modeling simple, binary sensors at each of the 129 pipe junctions
(graph nodes) in the system. We assume that a fixed false positive rate (e.g., FPR =
0.1) and true positive rate (e.g., TPR = 0.9) are known and that each sensor operates
independently of the others in the network. This makes the expectation-based bino-

mial (EBB) scan statistic [19] a logical scoring function to optimize. For fixed false
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and true positive rates, the EBB scan statistic becomes an additive function over the

subset 5. More specifically, Fppp(S) = ZRigs(qlog(%) + (1 — ci)log(i:%ﬁg))

where sensor R; produces a “trigget” ¢ ~ Bernoulli (FPR) under Hy or ¢ ~
Bernoulli (TPR) under H;. It can be trivially shown that additive functions satisfy
LTSS with priority function G(R;) = F(R;), and hence GraphScan can efficiently

and exactly identify the highest scoring or most positive connected subgraph.

We use a graph radius r to define “local neighborhoods™ of sensors (nodes). For
example, a neighborhood with » = 3 would include the center node and all nodes
within 3 edges of the center node. For a neighborhood radius of r = 12, GraphScan’s
average processing time on the water distribution network was 0.21 seconds. With
no neighborhood constraints, GraphScan was able to process the entire 129 node

network in 0.04 seconds.

We used 400 contaminant plumes provided in the BWSN data to generate sensor
readings over the course of 12 one-hour intervals. As above, we present results for
four competing methods: “Circles”, “All Subsets”, “ULS”, and “GraphScan”. In
this setting, we note that All Subsets returns the subset consisting of all “triggered
sensors” with ¢; = 1, while ULS returns the largest connected subset of triggered
sensors contained within a local neighborhood. For GraphScan and ULS, we report
results as a function of the neighborhood radius r. The fast-spreading contaminant
plumes in this setting provide an easy detection task: all four methods detected
the plumes very early with no significant differences in time to detect. Thus, we

instead compare the spatial accuracy of the methods as measured by the “overlap

Affected N Detected
: Aﬁggtg dBDgtggtg d}' Overlap = 1 corresponds to perfect

coefficient”, Ouerlap =
agreement between the affected and detected subsets, while Overlap = 0 means

that the affected and detected subsets are disjoint. Figure 2.10 presents the average
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Figure 2.10: Spatial accuracy for contaminant plumes in a water distribution system.
The left panel is accuracy as a function of neighborhood radius. The right panel is
accuracy as a function of time since the beginning of the plume in hours.

spatial accuracy for each of the methods. The left panel shows accuracy as a function
of neighborhood radius r at a fixed point in time (6 hours after the plume began).
The right panel shows accuracy as a function of time, assuming a fixed neighborhood
radius of r = 10.

We see that both GraphScan and ULS have higher spatial accuracy for larger
neighborhood sizes, since the smaller neighborhoods fail to capture the entire plume.
The connectivity constraints in GraphScan and ULS allow for relatively high pre-
cision (i.e., few non-contaminated sensors are inclided in the detected subset) even
for larger neighborhood sizes. As compared to ULS, GraphScan’s higher accuracy
stems from its ability to correctly include contaminated sensors that did not trigger
(false negatives) in order to connect clusters of true positives. ULS is unable to
“bridge” these false negatives without also including all other sensors in the given
neighborhood.

We note that the choice of neighborhood size k (or neighborhood radius ») sub-
stantially affects detection power and spatial accuracy. In practice, choice of k can be
either based on prior knowledge of the expected size of the event of interest or based

on labeled training data. In the former case, we recommend choosing the lowest k
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such that the event of interest is typically contained within a neighborhood of size
k. In the latter case, the value of k can be chosen to maximize the metric of interest

(detection power or accuracy) on the set of labeled training examples.

2.5 Conclusions

This chapter has provided a theoretical basis and practical implementation for scal-
able pattern detection in graph or network data. Linear-time subset scanning is a
versatile tool able to speed up algorithms in many applications. However, in the
spatial event detection domain, unconstrained LT'SS performs poorly because it may
return dispersed sets of locations which we do not believe to be significant events.
Therefore we have implemented connectivity constraints allowing LTSS to scan over
connected subsets of locations and increasing its power to detect irregularly shaped
clusters of activity. Although similar to the previously proposed FlexScan algorithm,
GraphScan is able to scale to much larger graphs, with a 450,000-fold increase in
speed compared to FlexScan for neighborhoods of size & = 30.
These speed improvements come from two sources. First, we reduce the search
‘space by excluding any subset that is provably suboptimal through the LTSS Graph-
Scan property: “If subset Sy, is included in the highest-scoring connected subset S,
and removing Sy, would not disconnect S, then no connected subset S,,; adjacent
to S can have higher priority than S;,.” Second, we apply the unconstrained LTSS
property to quickly compute an upper bound for the score of a route. If this bound
is less than the score of an already known connected subset, then the entire route
may be ignored. Branch and Bounding improved the run time of GraphScan by an
additional factor of 50x for moderately-sized neighborhoods (e.g. k = 50).

We tested the GraphScan algorithm against the circular scan statistic proposed
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by Kulldorff [19] and the Upper Level Set scan statistic proposed by Patil [35] in two
different scenarios. The first setting used synthetic disease outbreaks injected into
real-world Emergency Department data from 97 zip codes in Allegheny County, PA.
Compared to the competing methods, GraphScan had higher detection power with
shorter time required to detect the events, as well as fewer missed events overall.
The second setting compared spatial accuracy of the methods for locating contami-
nant plumes spreading through a water distribution system equipped with 129 noisy,
binary sensors. GraphScan demonstrated improved spatial accuracy and increased

robustness to the occurrence of false negatives, when sensors failed to trigger.
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Chapter 3

Additive Linear Time Subset
Scanning and the Penalized Fast

Subset Scan

This chapter introduces and formalizes a new property of scoring functions, Additive
Linear—'l?ime Subset Scanning (ALTSS), that allows incorporation of prior informa-
tion abc;ut each data element’s probability of inclusion in the highest scoring subset.
This prior information may be interpreted as “soft” constraints on subset scanning
methods. Certain types of hard constraints are possible to incorporate within the
subset scanning framework: for example, the “fast localized scan” [29] enforces a
hard constraint on spatial proximity by performing a separate, efficient search over
the “local neighborhood” consisting of each spatial location and its & — 1 nearest
neighbors. Similarly, GraphScan incorporates hard connectivity constraints by rul-
ing out subsets that are disconnected in an assumed underlying graph structure, as

outlined in Chapter 2. However, soft constraints (for example, a prior belief that
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some locations are more likely to be affected than others) cannot be easily incorpo-
rated. Given a score function satisfying the LTSS property, a penalized version of
that score function is not guaranteed to satisfy LTSS, and thus can not efficiently
identify the highest-scoring penalized subset. An example of this is provided at the
end of Section 3.2.

In this chapter and the next, T highlight three contributions in the next two
chapters that follow from the ALTSS property. The first is the Penalized Fast Subset
Scan (PFSS) framework laid out in Section 3.3. PFSS is very general, enabling
any element-specific priors to be incorporated into the search over subsets while

maintaining computational efficiency and exactness.

The second contribution is an investigation of the connections between ALTSS
and the Linear-Time Subset Scanning property (LTSS) [29]. More specifically, we
show that scoring functions in the form of expectation-based scan statistics from the
exponential family satisfy L'TSS. This contribution extends LTSS, which was previ-
ously limited to the “separable” subfamily of the exponential family. Expectation-
based scan statistics using the binomial and negative binomial distributions (which
are 1ot part of the scparable subfamily) may now be efficiently optimized in their

penalized and unpenalized forms.

The final contribution is a specific application of Penalized Fast Subset Scanning
to spatial cvent detection, based on tnotivating cxamples from the fields of hio-
terrorism and disease surveillance. While the “fast localized scan” (subset scan with
hard constraints on spatial proximity) has been shown to achieve high detection
power and spatial accuracy in this setting [29], it does not take into account the
spatial attributes of the locations beyond the “hard” .proximity constré,int of being

one of the k& — 1 nearest neighbors of a center location, and considers each of the 2*
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subsets of the neighborhood equally likely.

Soft proximity constraints incorporate the prior expectation that locations closer
to the center of an outbreak are more likely to be affected, thus rewarding spatial
compactness and penalizing spatially dispersed clusters. We demonstrate that this
approach increases both detection power and spatial accuracy as compared to the fast
localized scan. Additionally, while fast localized scan achieves high performance for
well-chosen values of the neighborhood size k, it performs worse than the standard,
circular spatial scan [19] for badly chosen k. We demonstrate in Section 4.3 that
incorporation of soft constraints enables our penalized version of the fast localized
scan to be much more robust to the choice of &, while still guaranteeing that the
most anomalous penalized subsct of locations will be exactly and efficiently identified.
This robustness to parameter selection is critical when a limited number of labeled
training examples exist or when a public health surveillance system must be able fo

detect a wide range of possible outbreak types and threats.

3.1 Expectation-based Scan Statistics

We now review the use of expectation-based scan statistics [33] for spatial event de-
tection. In the subset scanning framework, our goal is to identify a subset of the data
S C D that maximizes a score function F'(.9). In the spatial event detection setting
considered here, the dataset D consists of spatial time series data: observed counts
z; and expected counts u; at a set of spatial locations s; (i = 1... N) and possibly
other parameters, such as the standard deviations o;. For example, a count z; could
represent the number of Emergency Department visits with respiratory complaints
from a given zip code s; on a given day. likelihood ratio statistics have been com-

mouly used as score functions [19, 33]. The log-likelihood ratio statistic is defined
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as F'(S) = log (Pr(D | H1(S))/Pr(D | Hp)), where the alternative hypothesis H;(S)
assumes an event occurring in region S C {s1, s2,..., sy} and the null hypothesis
Hj assumes that no events are occurring. For the expectation-based scan statistics,
the alternative hypothesis H;(S) assumes that counts z; are drawn with mean qg;
inside region S and mean y; outside region S, for some constant multiplicative factor
¢ > 1 known as the relative risk or severity. We can then write the log-likelihood

ratio for the expectation-based scan statistic as

F(S)= 1213%(2 (log Pr(z; | gus) — log Pr(z; | 1)) - (3.1)

81ES

A pivotal insight of our work is that for a fized value of the relative risk ¢, the
expectation-based scan statistics from the exponential family can be written as an
additive set fuﬁction over the data elements s; contained in &. This insight leads
to three useful consequences. First, additional penalty terms may be added at the
element level (i.c., a bonus or penalty A; for each element s;) and the resulting
penalized function will still be additive. Second, the highest scoring penalized subset
can be efficiently identified by selecting only those data elements s; making a positive
contribution to the penalized scoring function. Finally, we show in Section 3.3.2 that
only a small number of values of ¢ must be considered, thus leading to efficient

optimization of (penalized or unpenalized) score functions F(S) over all ¢ > 1.
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3.2 The Additive Linear Time Subset Scanning
Property

We now define the Additive Linear Time Subset Scanning (AUTSS) property. In-
formally, a score function F'(S) satisfles ALTSS if conditioning on the relative risk g

allows the function to be written as an additive set function over the data elements

5; contained in 5.

Definition 3.1. For a given datasel D, the score function F(S) satisfies the Additive
Linear Time Subset Scanning (ALTSS) property if for all subsets § C D, we have
F(S) = maxgs1 F(S | g), where F(S|q) =3, csMil@), and Mi(g) depends only on
the given value of q, the observed count z;, and expected count u; (and in some cases

standard deviation o;) for element s;.

Theorem 3.1. Ezpectation-based scan statistics from the (single parameter) expo-

nential family satisfy the Additive Linear Time Subsel Scanning property.

Proof. Following the notation in [29], we write the distributions from the exponential
family as log Pr(z | 1) = T(x)0(p) — v(0(n)) = T'(2)0(ut) — pd{1e) + ¢(us), where T'(z)
is the sufficient statistic, #(p) is a function mapping the mean p to the natural
parameter 6, ¥ is the log-partition function, and ¢ is the convex conjugate of .

Plugging this form of the exponential family into (3.1) gives

F(S) = Iglffc Z (T() (Oqpa) — 0(pa)) + (i) — quuat(qp) + dlapa) — dlen)) -

865
(3.2)
Let Mi(q) = T(w:) (0{ap:) — 0(us)) + pab (1) — qpibaps) + ¢lqps) — ¢(ps) and then
F(S) satisfies the ALTSS property. O
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Table 3.1: Derivation of A;(¢) for expectation-based scan statistics in the exponential
family.

Distribution 0(qu:) Plgpi) Ailg)
Poisson log(qus)  apilog(gu:) ~ qu z;logg + {1l — )
. kY _ _2
Gaussian g %%L)T it (qa;) . (120% )
exponential “EIIIZ —log(qp) %( — é) ~logg
, . Jog (24 o
binomial log (n—_""_&%) Hi 108 | 7 g )+ z;log(q) + (n; ~ x;) log (%)
P ni log(n; — qus) v
negative . g log | - — S
o log (—q’“—) Tt zilog(g) + (ri + =) log (“L’L)
binomial Titqibi T Iog(ri + q#z) ritgi;

Table 3.1 summarizes the derivation of A\;(g) for the expectation-based scan statis-
tics in the exponential family.

An important consequence of scoring functions being written as additive functions
over the data elements contained in the subset is that additional bonus or penalty
terms A; may be included for each data element s; while maintaining the additive

property.

Corollary 3.1. Given a scoring function F(S) that satisfies the ALTSS property,
assume an additive bonus or penalty A; for each s; € S. The resulting penalized

score function, Fpen(S) = F(S) + 3, .o Ay, also satisfies ALTSS.

Proof.

Fren(8) = F(S) + 3

5;.€8
= I?E]'?{Fpen(s | q) + Z Az
5;ES
= max > (Mi(g) + Ay)
a1 8;E8
= Iglgfc; vila)
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where v;(¢) = Ai(g) + 4, is referred to as the total contribution of data element s; to
the penalized scoring function for a fixed risk, g. Thus Fp.,(S) = max, Fpen{S|q),

where Fpen (S [ q) = 3, . %(q) is an additive set function. ]

The A; terms are assumed to be a function of the given data element s;; they
cannot depend on the entire subset S or the current value of ¢. We plan to investigate
wmore sophisticated penalties in futﬁre work.

A second important consequence of scoring functions being written as additive

functions is that the highest scoring subset for a fixed risk g can be casily identified.

Corollary 3.2. For a fized risk q, functions satisfying ALTSS can be efficiently
optimized over all subsets S C D by including all and only those data elements
making a positive contribution to the scoring function, i.e., s; € argmaxgcp F(S | q)

if and only if vi(q) = Mi(q) + A; > 0.

The proof of Corollary 3.2 follows immediately from the fact that (S | ¢) =

D ees vila).

3.3 Penaliied Fast Subset Scanning

Penalized Fast Subset Scanning (PFSS) is a novel method for scalable and accurate
pattern detection which uses the Additive Linear-time Subset Scanning (ALTSS)
property of commonly used scoring functions to incorporate prior information for
each data element. This is in contrast to the Fast Subset Scanning method [29],
which does not allow for additional terms to influence the subset’s score and therefore
considers each element equally likely to be included in the highest scoring unpenalized
subset. The first half of this section focuses on how the additional, element-specific

terms are interpreted in the PI'SS framework and the second half explains how the
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penalized scoring function may be exactly and efficiently optimized over all possible

subsets.

3.3.1 Prior Log-odds Interpretation of Penalties A;

We first show that the penalty terms A; can be usefully interpreted as the prior log-
odds that each data record s; is affected. Let us assume a simple generative model
where some subset of records Siye € {s1,82,...,sn} is affected, and each s; is inde-
pendently chosen to be included in Si,. with prior probability p;. We now consider
the penalized score function Fpe,(S) = F(S) + 3, cg Ai, where the log-likelihood
ratio F(S) = Pr(D|H1(9))/Pr(D\Hy) and A; = log (p:/(1 — pi)) . Given the priors
p;, we show that this choice of A; satisfies two useful properties: the highest-scoring
penalized subset S* = arg maxg Fje,(S) minimizes the total probability of error, and
is also a maximum a-posteriori (MAP) estimate of the true affected subset Syre.
First, when comparing the detected subset S* and the true affected subset Siye,
we wish to minimize both the probability of incorrectly including extra records {Type
I error) and the probability of failing to detect truly affected records (Type IT error).
We show that the choice of A; = log (p;/(1 — p;)) minimizes the sum of these two

probabilities.

Theorem 8.2. Let A; = log(p;/(1 —pi)), where p; is the prior probability that
record s; € Sye. This choice of A; minimizes the sum of the Type I and Type II

error probabilities when comparing S* = argmaxg Fue,(S) and Syye.

The proof of Theorem 3.2 is in Section 3.6.

Next, we show that §* = argmaxg Fi.,(S) may be interpreted as the maximum

a-posteriori (MAP) estimate of Sqe.
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Theorem 3.3. Let A; =log (pi/(1 — p;)), where p; is the prior probability that record
i € Stpue. This choice of A; makes S* = arg maxg Fpe,(S) the mazimum a-posteriori

(MAP) estimate of the true affected subset Siye.

Proof.

log Pr(H{S) | D) o log Pr(D | Hi(8S)) + log Pr(H,(5))

o F($) +log | [T [T -p)

5:€5  8;¢8

= F(S)+ ) (logp; —log(L —p)) + > _log(l - py)

8;€8 i=1
: N
= F(S) + Z Ay — Zlog(l + exp(4A;))
5i€8 i=1
3ES

where terms independent of S have been ignored. Thus choosing the subset 5* that
maximizes Fpen(S) = F(S) + 3, cc A also maximizes the posterior probability of
H1(S) making S* the MAP estimate of Syye. 1

This Bayesian interpretation of the penalized maximum likelihood estimate should
not be confused with the Bayesian and multivariate Bayesian spatial scan statis-
tics [32, 30|, which calculate marginal likelihoods and compute the total posterior
probability that each subset S has been affected. While the Bayesian scan frame-
work proposed in previous work has several benefits, including the ability to model
and distingnish between multiple event types, it is limited to the assumption of

(Gamma-Poisson count data and cannot be easily generalized to other settings.
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Interval Formation Example

15 4 et e=Record 1
- g =Record 2
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'y(q) o % ‘\\
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V4 X
-1 74 Relative Risk g > 1 h

Figure 3.1: A three-record example of forming the O(V) intervals needed to evaluate
Fpen(S|g). Throughont interval Iy, records 1 and 2 are making positive contributions
and would be included in S7. S3 would include all three records. Sj would include
records 2 and 3, and S} would include record 2 only. Further details: z; = 130,
H1 = 110, Al = 0, Ty = 26, ta = 20, Az = 05, rz = 40, M3z = 30, Ag = —1.
I = [1,1.132], I, = [1.132,1.3844], I; = [1.3844, 1.557], and I, = [1.557, 1.760].

3.3.2 Efficient Optimization of the Penalized Score Function

We now consider how the optimal penalized subset S* = argmaxscp Fpen(S) can
be efficiently computed. As noted above in Corollary 3.2, for a given value of the
relative risk g, Fpen(S | ¢) can be efficiently optimized over subsets by including all
and only those data elements making a positive contribution to the penalized scoring
function, i.e. those data elements with v(g) = Ai(q) + A; > 0. We now show that

only linearly rather than exponentially many values of ¢ must be considered:

Theorem 3.4. The optimal subset S* = argmaxg Fpen(S) mazimizing a penalized
expectation based scan statistic from the exponential family may be found by evalu-

ating only O(N) subsels, where N is the total number of data elements.

Proof. Let (g} = Mi(g) + A; as defined above, and assume that all A; are inde-
pendent of g. The first derivative v{(g) = Aj{g) has only one zero, obtained when
q = T(x;)/p; (the maximum likelihood estimate}. Thus v;(g) has at most two zeros.

More precisely, we must have either a) there exists some ¢™" and ¢*** such that
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;yi(qgm'”) = %(g"®} = 0 and v%(¢q) > 0 for all ¢"" < g < ¢, or b) for all g,
¥:(g) < 0. In the latter case, data element s; will never be included in the highest-
scoring penalized subset. Critically, we must consider at most 2V distinct values of ¢
{this property also holds when resiricting ¢ > 1; see Figure 3.1 for an example using
the penalized expectation-based Poisson scan statistic). We now sort these values
of ¢ (eliminating any duplicate ¢ values) and let Iy, ..., I,y be the disjoint intervals
formed by consecutive values of the sorted ¢g. By construction, within each interval
I;, we have for each s; that either v;(¢) > 0 for all ¢ € I, in which case including s;
will increase the penalized score for all values of ¢ in this interval, or v;(q) < 0 for
all ¢ € I;, in which case including s; will decrease the penalized score for all values
of g in this interval. Also, we note that if ¢ ¢ {J72) I;, then Foe,(S | q) < 0 for all S,
and hence we only need to evaluate the best subset for g € Ufﬁl I;. We can write:
S* = arg maxg maxgs1 Fpen(S | ¢)

= AIg MaxXg MAx,q v 1 Fpen(S 1 9)

= arg ma.}{je{l’__"gN}Fpen(S;)v

where S¥ = arg maxg Foen (S| g € I;). We can construct these sets efficiently as

follows:

St = {si: nlg) > Ofor allg € I;}

Note that 57 is the sef of all elements that malke positive contributions to the score
Fren(S|g € I;) through ;(g). Hence S} is an optimal subset for any ¢ € f;. Therefore
we need to evaluate only O(N) subsets (one for each interval} in order to find the

optimal penalized subset S§*. O
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3.4 Relationship between ALTSS and LTSS

‘The Linear Time Subset Scanning property (LTSS) introduced in [29] enables exact
and efficient optimization of unpenalized score functions from the “separable” expo-
nential family. In this section, we use insights from the Additive Linear Time Subset
Scanning property (ALTSS) to expand on the L'I'SS property in two ways. First,
we consider an alternative priority function which enables us to broaden the class
of functions that satisfy LTSS to expectation-based scan statistics from the entire
exponential family. Second, our PFSS framework introduced in Section 3.3 enables
exact and efficient optimization of both penalized and unpenalized score functions,

while LTSS applies only in the unpenalized case.

A function satisfies LTSS if and only if maxgep F{S) = max;—y. v F({sq) ... s)})
where s(;; represents the j%* highest priority data element according to a provided
priority function [29]. The highest scoring subset must be composed of the j high-
est priority data elements for some priority function g(s;) and some j between 1
and N. Neill (2012) defines a “separable” subfamily of the exponential family and
proves that expectation-based scan statistics from the separable exponential family
satisfy LTSS with the priority function g(s;) = or- This ratio of observed counts to
expected counts is also the maximum likelihood estimate of the relative risk, ¢, for

the individual record s;. This is referred to as g,

The binomial distribution, while part of the exponential family, is not included in
the separable exponential family. We show that the expectation-based binomial scan
statistic cannot be efficiently optimized using the priority function ¢™¢. Consider
a dataset with three elements {s1, 52,53}, where (z1, u1,n:) = (1500, 300, 4000);
(o, p2,ma) = (25, 8, 40); and (3, i, n3) = (12, 4, 40). The priority function g(s;) =

&y _— mle

o= q;° suggests {s1}, {s1,52}, and {s1,52,53} as the three subsets to evaluate.
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However, the highest scoring subset is {sy, s3}.

We now provide an alternative priority function that satisfies LTSS for unpe-
nalized scoring functions from the single-parameter exponential family including the
binomial and negative binomial distributions. Recall that for each record s; there
exists g™ and ¢"*® such that X;(¢"") = X(¢***) = 0. For unpenalized scoring
functions (A; = 0), ¢ =1 for all 4, while ¢"*® is a function of the observed count

z; and expected count ;.

Theorem 3.5. Unpenalized expectalion-based scan statistics from the single-parameter
exponentiol family satisfy the Linear Time Subset Scanning property with priority

Junction g(s;) = ¢"**, where ¢*** is the unique q > 1 such that \{¢™®) = 0.

Proof. We denote the j** highest priority record as s(;) with sy as the highest priority
record and sy) as the lowest. We write the priority of record s;y as g(s(;)) = Q.
Assume that the j™ priority record s(; is included in the optimal subset S*. It
sullices to show that all higher priority records, sqy ... s;—1), must also be included
in §*. By Theorem 3.1 we know that expectation-based scan statistics from the
exponential family satisfy ALTSS and may be written as additive functions over the
data elements contained in the subset for a fixed risk g. By Corollary 3.2 we know that
it s¢;) € 5* then there exists a fixed relative risk ¢*, where ¢* = argmax,., F'(5 | ¢),
such that the j™ highest priority record is making a positive contribution at that
risk, A¢jy(¢*) > 0. Furthermore, we have qg"g”” =1 < ¢" < g3} Finally, consider any
higher priority record s¢, and note that the priority orderiﬁg implies d" = ap
It follows that s, must also have gfii* = 1 < ¢* < ¢f3” which implies Agy{¢*) > 0

and therefore sgy € S*. t

In summary, using priority function ¢(s;) = ¢***, we have shown that inclusion
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Expectation-based Poisson
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Figure 3.2: The top panel provides a 3-record example using the expectation-based
Poisson scoring function which is a member of the “separable” exponential family.
In this setting, both priority functions g(s;) = ¢/ (introduced in Neill, 2012) and
6(8;) = ¢ (introduced in this work) satisfy LTSS. Note the same ordering produced
by either function. Further details: z; = 8, g = 6, ¢f¥¢ = 1.33, ¢7"** = 1.74; z, = 35,
fiz = 28, g = 1,25, ¢7'*® = 1.54. x5 = 170, pz = 150, g = 1.133, g§*** = 1.28;
The bottom panel provides a 3-record example from the expectation-based binomial
scoring function which is not a member of the “separable” exponential family. In
this setting, the two priority functions result in different orderings. We prove in
Theorem 3.5 that g(s;) = ¢/*® is the correct priority ordering to satisfy LTSS for
expectation-based scan statistics formed by distributions from the entire exponential
family. Further details: z; = 40, ny = 140, p; = 0.075, ¢/ = 3.81, ¢™*® = 7.95;
T2 = 125, nyg = 190, py = 0.15, ¢ = 4.39, ¢"*® = B.51; 3 = 130, ng = 155,
ps = 0.18, ¢5¢ = 4.66, ¢J"*® = 5.555.
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of the 7" highest priority record in the highest scoring subset necessitates the inclu-
sion of all higher priority records. Therefore, the optimal subset may be efficiently
‘identified by sorting the records based on ¢"** and evaluating only the N subsets of
the form {sqy... s8¢} for 7 = 1... N. Figure 3.4 provides a visual comparison for
the expectation-based Poisson and binomial scoring functions and the two priority

functions ¢/ and ¢ discussed in this section.

Theorem 3.5 shows a connection between LTSS and ALTSS for unpenalized scor-
ing functions. In contrast, we now provide a penalized scoring function that satisfies
ALTSS but not LTSS. Consider maximizing the expectation-based Poisson scoring
function with a penalty on subset size, Fpen(S) = FEBptS) — [8]|. The unpenalized
EBP scoring function satisfies the LTSS property, but including the size penalty vi-
olates LTSS, preventing the efficient optimization of the penalized scoring function
over subsets of the data. Consider a dataset with three elements: (x1, ;1) = (5,2),
(@2, po) = (68,55), and (w3, p43) = (68,55). Note that s; is the optimal penalized
subset of {sy,s0} s0 if F,(\9) satisfies LTSS, s; must be higher priority than s,.
However, the highest scoring penalized subset of {s1, s2, s3} is {sz, s3}. This implies
that sy must be higher priority than s;, which is a contradiction. Thus no priority

function can exist for which F.,(S) satisfics the LTSS property.

This penalized scoring function does satisfy ALTSS: F'(S) = maxgs1 Y, -o(Ai{g)+
A;) where M\{q) = z;log g+ p;(1 — q) from Table 3.1, and A; = —1 for all data el-
ements s;. This enables us to efficiently maximize the penalized scoring function in
our new Penalized Fast Subset Scanning (PFSS) framework. Due to the A; penalty
terms, we no longer have g™ = 1 for all i. As shown in Theorem 3.3, this creates

a partitioning over q instead of a priority ordering over g. The partitioning creates

at most 2NN intervals over the range of ¢ > 1, and for each interval we need only to
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Table 3.2: Summary of the LTSS and ALTSS comparisons.

Scoring Priority
functions function

Number of subsets
to be evaluated

Notes

Separable exponential a) g(s;) = %

family with no- or
penalty terms b) g(s;) = g™
Entire exponential

family with no g(s;) = g™
penalty terins
Eutire exponential No priority
family with function satisfies
penalty terms LTSS,

a) is from Neill, 2012.

N b) is proposed here.

We expand the class

N of scoring functions
that satisfy LTSS.

We introduce ALTSS

2N to efficiently incorporate

penatty terms.

consider the subset of records making a positive contribution to the scoring function.
These 2N subsets are the only ones that must be evaluated to identify the highest
scoringl penalized subset in the PFSS framework. This partitioning of ¢ intervals
rather than use of a priority function differentiates the contributions from ALTSS
in this work and LTSS in previous work. We conclude this section with Table 3.4

summarizing the comparison of LTSS and ALTSS.

3.5 Conclusion

'This chapter introduced and formalized the Additive Linear Time Subset Scanning
(ALTSS) property, which allows exact and efficient optimization of penalized like-
lihood ratio scan statistics over all subsets of data elements. ALTSS is incorpo-
rated into a Penalized Fast Subset Scan (PFSS) framework which enables the scan
statistics to be efficiently optimized with or without including additional, element-
specific penalty terms. The critical insight is that the scoring function F{S) may
be written as an additive function, summing over all data elements s; € S, when

conditioning on the relative risk ¢. This form provides two notable advantages.
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First, additional terms may be added to the statistic to represent the prior log-
odds of each data element, while maintaining the additive structure of the scoring
function. Second, optimization of either the scan statistic F(S | ¢) or the penalized
scan statistic Fuen(S | ) over subsets can be performed very efficiently, by including
all and only those records making a positive contribution to the score. Moreover,
only a small {linear rather than exponential) number of values of the relative risk g
must be considered, making the computation of the highest scoring penalized subset
5* = arg maxg maxy-1 Fpe,(S | ¢} computationally tractable.

These additional element-specific penalty terms may be interpreted as the prior
log-odds of a given record to be included in the highest scoring penalized subset.
(If the alternative hypothesis Hy(S) is true for some subset S, the highest scoring
penalized subset can be interpreted as a maximum a posteriori estimate of the true
affected subset S.) Critically, this extension opens up a wide range of probabilistically

founded models to be incorporated into the subset scanning framework.

3.6 Proof of Theorem 3.2: Minimizing Error with
A,

We show that if we can correctly estimate the prior probability p; for location s;

to be in the affected subset Sie, then setting A; = log (1 L Z‘Ji) {the prior log-odds)
minimizes the total probability of error, including both Type I errors (including
location s; in the detected subset S* when s; € Sye) and Type I errors (failing to
include a location s; € Sy in the detected subset S*).

Assume 8; € Sy, with probability p;, and that we observe z; ~ Disty if s; € Sy

and x; ~ Disty if s; & Sype. Moreover, assume that A; and A; are the log-likelihood
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ratio and penalty for location s; respectively, where:

A = log (p(-Lz | DlStl))

p(mi 1 DiStg)

and A; can be any real number. The {unconstrained) penalized subset scan will

include s; in the detected subset S* if and only if A\; + A; > 0. We now show that

the total probability of error is minimized for 4; = log (lf;_):

Pr(error [ A;) = Pr(s; € 5™ [ 8: & Strue, De)Pr(si & Strue)
+Pr(s; € S* | 51 € Strues 24)Pr(8; € Siue)
= {1 = p)Pr((Ai + A; > 0) | 8; & Sirue) + 2 Pr((M + Ay <0) | 5: € Siyue)
= (1 —pi)(1 = CDFo(—4y)) + piCDF1(—Ay),

where the cumulative density functions CDF, and CDF, are defined as follows:

-G

and we also define the correspbnd'mg prohability density functions PDF; and PDFy:
PDFD(Z) = p()'z =z [ Ty~ DiStg),

PDF(z) = p(M = z | z; ~ Disty).
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Furthermore, we note the key property

TF‘(}(zj = exp(z),

since PDF1(z) and PDFy(z) are respectively sums of p(x;) for all z; with correspond-

ing A; = z, and for each such z;, we know that

ple: | Disty)
plz: | Disto) exp(2).

We proceed by setting the first derivative of Pr(error) equal to 0:

dPr{erro
= (1 — i — P CXp(—A;))PDF{)(*Aa) =0,

This expression has a single zero at A; = log (pi/(1 ~ p;)). The second derivative at

this point is:
—(1 = p; — piexp{—A;))dPDFo(—4;) + p; exp{—A;)PDFg{~A;)
= p; exp(—A;)PDFp(—A;)

_ (ﬁm) PDFo(~Ay) > 0,

so this is the value of A; that minimizes the probability of error.
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Chapter 4

Enforcing Soft Proximity
Constraints with the Penalized

Fast Subset Scan

This chapter’s contribution is a specific application of the penalized fast subset scan-
ning (PFSS) framework to spatial event detection, based on motivating examples
from the fields of bio-terrorism and disease surveillance. While the “fast localized
scan” (subset scan with hard constraints on spatial proximity) has been shown to
achieve high detection power and spatial accuracy in this setting [29], it does not
take into account the spatial attributes of the locations beyond the “hard” proximity
constraint of being one of the k — I nearest neighbors of a given center location, and

considers each of the 2% subsets of the local neighborhood equally likely.

Incorporating “soft” proximity constraints allows subset scanning methods to
account for the prior expectation that locations closer to the center of an outbreak

arc more likely to be affected, thus rewarding spatial compactness and penalizing
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spatially dispersed clusters. This approach increases both detection power and spatial
accuracy as compared to the fast localized scan. Additionally, while fast localized
scan achieves high performance for well-chosen values of the neighborhood size k, it
performs worse than the standard, circular spatial scan [19] for badly chosen k. The
incorporation of soft constraints enables the penalized version of the fast localized
scan to be much more robust to the choice of k, while still guaranteeing that the most

anomalous penalized subset of locations will be exactly and efficiently identified.

4.1 PFSS with Soft Proximity Constraints

As noted above, the Fast Localized Scan {29] performs separate, computationally
efficient searches over subsets for each local neighborhood (center location. s, and its
k — 1 nearest neighbors}, thus enforcing hard constraints on spatial proximity.
Penalized F'ast Subset Scanning with soft proximity constraints allows us to take
additional spatial information into account, rewarding spatial compactness and pe-
nalizing sparse regions within a local neighborhood. To that end, when considering
a local neighborhood Sy, with center location s, and neighborhood size k, we define
A; for each location §; € S as: A; = h(1 — (2d;/r)), where d; is the distance be-
tween location s; and the center location s., r is the neighborhood radius (distance
from s, to its {k — 1)* neighbor), and 0 < h < oc is a constant representing the
strength of the soft proximity constraint. Through the prior log-odds interpretation
of A;, discussed in Chapter 3, we may interpret h as assuming that the center loca-
tion (d; = 0,A; = h) is exp(h) times as likely to be included in the affected subset
as its (k — 1)® neighbor (d; = r,A; = —h). Figure 4.1 shows the probability of
inclusion for locations that are a distance d; from the center, across various values

of h. Note that for h = 0, PFSS reduces to the original FSS solution because the
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, Soft Proximity Constraints for multiple h values

0.75

0.25

Prior probability of inclusion

[
Center Location k-1 neighbor
Distance from Center

Figure 4.1: A location’s prior probability of being included in the detected subset
is based on both A and its distance from the center location. Note that the center
location is assumed to be exp(h) times more likely to be included than the farthest
(k — 1 neighbor) location.

distance from the center location no longer influences the probability of inclusion,
and thus all subsets of locations are considered equally likely. Incorporation of soft
proximity constraints (h > 0) gives preference to more spatially compact clusters by
rewarding locations that are closer to the center, while still considering all subsets
within a given neighborhood. For very large h values, all locations with d; < r/2
would have A; >> 0 and all locations with d; > /2 would have A; << 0, and thus
PFSS reduces to the circular scan with fixed radius r/2.

Figure 4.2 illustrates the role of soft proximity constraint strength A when scan-
ning through zip codes of Allegheny County, Pennsylvania, using the dataset de-
scribed in Section 4.3 below. The three sets of zip codes are the highest scoring
subsets for the unpenalized FSS (h = 0), PFSS (h = 1), and PFSS (h = 2) for
January 6th, 2005. Introducing the soft proximity constraint A = 1, as compared to
the unpenalized h = 0 case, removes the spatially dispersed zip codes 15139, 15035,
and 15148 while including zip codes 15211, 15219, and 15203, resulting in a more
compact detection region. Increasing the strength to h = 2 results in an even more

compact subset of zip codes by removing 15211 and 15203.
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Figure 4.2: Three subsets of zip codes identified on January 6th, 2005 for various
soft proximity constraint strengths.

We now present the PF'SS algorithm with soft proximity constraints (Algorithm
4.1), which builds a local neighborhood of size k for each center location, then com-
putes the penalties A; and maximizes the penalized scoring function F.,(S)} for

each neighborhood. Then for each record within the neighborhood a A;, ¢/™", and

T

Mas

qi**® are calculated. Recall from Chapterd that ¢ and ¢™® are the at most

two risk values such that v(¢™™) = (g™®) = 0 where wlg) = M(g) + A
In order to compare scores across different neighborhoods, we subtract the sum
> oses, log (1 exp(4A;)). This insures that F,,(S) is proportional to the log-
posterior probability Pr(H,(S) | D), and thus we maintain the interpretation of

S* = arg maxg Fpen(S) as a MAP estimate (Theorem 3.3).

We conclude this section with a complexity analysis for Penalized Fast Subset

Scanning. To find the optimal subset for a given neighborhood, we sort the at most
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Algorithm 4.1 Penalized Fast Subset Scanning with soft proximity constraints.
1: fore=1...N do

2:  Let S be center location s, and its k& — 1 nearest neighbors.

3: for each 5; € 5, do

4; Compute A;, g™, and ¢~

5.  end for

6: @ ¢ sort and remove duplicates({g{™®, ¢"**, . .., giin, gl*}).

7. If there exists any ¢ € Q) such that ¢ < 1, exclude all ¢ < 1 and add g =1 to
Q.

8 S+ {0}

9. forj=1...2kdo "

10: If Q; is a g™, then S < S U {s;}. If Q; is a ¢, then § « S\ {s;]}.
11: Record Fpen(S) = F(S) + 37, cq A

12:  end for

13:  Subtract Y- g log (1 + exp(4;)) from Foe.(S).
14: end for

15: Output the optimal subset S* = argmaxg Fjen(9).

2k values of ¢, which is an O(k log k) operation, and step through the sorted values of
¢, which is an O(k) operation. Over N neighborhoods, the total computational com-
plexity of this algorithm is O{Nklogk). This assumes that the k-nearest neighbors
have been pre-computed for each location, since this is a one-time operation; other-
wise, computation of the k-nearest neighbors of each location can be done naively
in O(N?*log N) or more guickly using space-partitioning data structures. PFSS was
able to identify the highest scoring penalized subset for a single day of our Emer-
gency Department data described in Section 4.3 (with N = 97 locations) in 40-50
milliseconds for all values of k£ = 5. .. 50, which is comparable to the runtimes of the

original fast subset scan and the circular spatial scan.
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4.2 Related Work

Penalized Fast Subset Scanning with soft proximity constraints combines penalized
likelihood ratio statistics, spatial data, and subset scanning to increase detection
power for irregularly shaped spatial clusters. The subset scanning approach is unique
in separating this present work from methods that also use spatial information and
attempt to optimize a penalized likelihood ratio statistic. For example, [45] penalizes
non-connected search regions, while [10] and {20] compute the geometric regularity
of the search region and penalize more elongated and irregularly-shaped clusters.
More sophisticated methods combine geometric and non-connectivity penalties in a
multi-objective framework [8]. However, most of these methods rely on a heuristic
search to optimize the penalized scan statistic, which is computationally expensive
and not guaranteed to identify the highest-scoring cluster, while Kulldorff et al. [20]
limit their search to elliptical clusters, reducing detection power and spatial accuracy
for any subsets that are not well-approximated by an ellipse. In contrast, our pe-
nalized fast subset scan approach is extremely computationally efficient and scalable
while guaranteeing that the highest-scoring penalized subset will be found. It is also
worth noting that the previously proposed methods focus on penalizing or rewarding
properties of the region as a whole rather than individual data elements, while our
penalties at the data-element level have a direct interpretation as the prior log-odds
for each element’s inclusion in the optimal subset (see Chapter ?77?). Either of these
types of penalty could be preferable for a given application domain.

We note that the Additive Linear Time Subset Scanning property is distinet from
prior work in submodular function optimization [34, 23], which has been used for sen-
sor placement among many other applications. As shown by [29], the expectation-

based Poisson statistic does not satisfy submodularity. Further, methods based on
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submodularity typically find approximate rather than exact solutions, while our ap-
proach is guaranteed to find the optimal subset that maximizes the penalized statis-

tic.

4.3 Evaluation

We now provide a concrete example for the use of the Penalized Fast Subset Scan-
ning method with soft proximity constraints in the public health surveillance do-
main. Emergency Department data from ten Allegheny County, Pennsylvania hos-
pitals from January 1, 2004 to December 31, 2005 serves as the background data for
both validation of the Penalized Fast Subset Scanning framework and a performance
evaluation for detecting aerosolized anthrax bio-attacks. The background data was
cleaned by removing records where the home zip code or admission date was missing
or where the home zip code was outside Allegheny County. Through processing of
each case’s International Classification of Diseases (ICD-9) code and the free text in
its “chief complaint” string, a count data set was created recording the number of
patient records with respiratory symptoms (such as cough or shortness of breath) for
each day and each zip code. The resulting data set had a daily mean of 44.0 cases,
and a standard deviation of 12.1 cases. There were slight day-of-week trends, with
counts peaking on Mondays, and seasonal trends, with counts peaking in February.
The latitude and longitude coordinates of the centroid of each of the N = 97 zip
codes formed the spatial component of the data set.

To validate the PFSS approach, we begin by examining a simple simulation that
allows us to vary the size and spatial density of the affected region (i.e., subset of zip
codes with additional counts injected into the background data) and thus understand

the effects of these parameters on the relative performance of the competing methods.
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We then evaluate the detection performance of PFSS using state-of-the-art dispersion

models of an aerosolized anthrax release [16]. Both experiments and their results are

discussed in their respective sections below. We use the expectation-based Poisson

likelihood ratio statistic throughout, and compare three methods in each setting:

o Kulldorff’s circular spatial scan statistic (Circles), which returns the highest
scoring circular region, searching over all N distinct circles with neighborhood

size k centered at the N locations [19].

Fast Subset Scanning (FSS), which returns the highest scoring unpenalized
subset within a region consisting of a center location and its & — 1 nearest
neighbors for a fixed parameter k [29]. This can be considered a special case of

the penalized fast subset scan with the strength of the soft proximity constraint

h=0.

Penalized Fast Subset Scanning {PFSS) with soft proximity constraints, which
returns the highest scoring penalized subset within a region consisting of a
center location and its k& — 1 nearest neighbors for a fixed parameter k. The
soft proximity constraints reward spatial compactness while penalizing sparse
regions. We provide results for both weaker (2 = 1) and stronger (h = 2)

constraints. Choice of h is discussed below.

We provide two evaluation metrics for each of the competing methods: detection

power (proportion of attacks or outbreaks detected) at a fixed false positive rate of

1 per year and spatial accuracy measured by the “overlap coefficient” between true

and detected clusters. Overlap is a combination of precision and recall and requires

two sets, Simye of affected locations and S* of detected locations. Then the overlap

coeflicient is defined as: Overlap = |Siue [} 5*|/|Stene | *|- An overlap coefficient of
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Affected
@ Location

Unaffected
O Location

Figure 4.3: Two examples of inject density. Figure (a) is a region with a density of
5/6 and (b) is a region with density 7/14.
1 (or 100%) represents perfect precision and recall, while an overlap of 0 corresponds

to disjoint sets Siue and S*.

4.3.1 Validation on Simulated Outbreaks

We create a large set of simple simulated outbreaks for validation to compare the
relative performance of Penalized Fast Subset Scanning (PFSS), Fast Subset Scan-
ning (F88), and the circular spatial scan (Circles) as a function of outbreak size,
spatial density, and neighborhood size k. For each simulated outbreak, the simulator
selects the affected subset of zip codes Siye uniformly at random (between 5 and 10
affected zip codes). Then Poisson(w; |Sie|) additional cases are injected into each
location in Sire, Where w; = ¢;/(3, g . ¢;) represents the relative “weight” of zip
code s;, proportional to the total number of cases in that zip code for the entire two
years of Emergency Department data. The simulated outbreaks are categorized by
spatial density, measured by the ratio of the number of affccted locations to the total
number of locations in the smallest circle that contains all affected locations and
size, measured by the total number of affected locations. Figure 4.3 provides two
examples. Results for 9 scenarios are provided; three categories of density (0.1-0.4
for “low”, 0.4-0.7 for “medium”, and 0.7-1.0 for “high”) and three categories of size

based on the number of affected zip codes (5-6 for “small”, 7-8 for “medinm”, and
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Detection Power of Simulated Outbreaks
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Figure 4.4: Comparison of detection power for multiple methods at a fixed false
positive rate of 1 per year. Each panel represents different outbreak spatial density
and size. Neighborhood sizes from & =5...50 are provided within each panel.

9-10 for “large”). This stratification by size and density is done for evaluation pur-
poses and is independent from the generative model assumed by the soft proximity

constraints in the Penalized Fast Subset Scanning method described above.

Figures 4.4 and 4.5 have the same layout with spatial density increasing between
panels from left to right and outbreak size increasing between panels from bottom
to top. Neighborhood size k increases within a panel. The lower left panel of few,
highly-dispersed affected zip codes represents the most difficult detection scenario

while the upper right panel of many, highly-compact affected zip codes reflects the

easiest scenario.

Figure 4.4 provides a comparison of detection power {proportion of outbreaks
detected at 1 false positive per year). First, as expected, the overall performance for
all methods increases with the number and spatial density of the affected zip codes.
Second, we note the poor performance of the spatial scan statistic (Circles) for the low

density outbreaks. This is due to only scanning over circular regions, which results in
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much lower detection power for irregularly shaped clusters. The spatial scan statistic
performs comparably in the high density outbreaks which are compact and close to
circular in shape. Third, we examine the effect that the neighborhood size k has on
the methods and note that the detection power of F'SS is heavily influenced by the
choice of k. The influence of k is more pronounced in outbreaks composed of few,
compact affected zip codes (lower right panel}. In contrast, we note that the detection
power of PFSS remains strong for a wide range of neighborhood sizes, densities,
and numbers of affected locations. Despite the lack of spatial structure in the low
density outbreaks, the penalized methods (which reward spatially compact subsets)
outperform the un-penalized method, FSS. We attribute this strong performance
to PFSS’s robustness to noise in the background data, increasing overall detection
power. For large values of k, I'SS is more likely to ‘give high scores to spatially
dispersed subsets in the background data, increasing the threshold needed to detect
the simulated events, while PFSS will only identify such spurious clusters if they

happen to be spatially localized.

Figure 4.5 provides a comparison of spatial accuracy. We note that larger, more
spatially compact outbreaks result in higher spatial accuracy for all methods. The
circular spatial scan statistic consistently underperforms FSS and PFSS, particularly
for the low density clusters. It tended to return overly large circular regions with
high recall but low precision, resulting in a low overlap coeficient. The robustness
of the PFSS methods is shown again for the low density outbreaks. Although low
density injects have a relative lack of the spatial structure that PFSS is designed to
reward, the ability of PI'SS to penalize sparse regions increases spatial precision while
maintaining reasonably high recall, resulting in spatial accuracy that is comparable

to F'SS. This robustness to parameter selection is critical when a limited number of
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Spatial Overlap of Simulated Outbreaks

Low Density Medium Dansity High Bensity

@ 75 : - 75

& :

‘;’é 60 &0

% a5 | | 45 ===FS5 {h=0)
g g o e L 10
g - 75 e=PFSS {h=1)
g 5t 60
o .
= T 55 ==PFsS {h=2)
] L 30
(7]

75 )

& = <Circles {up to k)

@ 50 4 60

B =3

Eas | -l 45

30 : 30

5 20 35 505 20 35 505 20 35 50
Meighborhood size k

Figure 4.5: Comparison of spatial accuracy (overlap coeflicient) for multiple methods.
Each panel represents different outbreak spatial density and size. Neighborhood sizes
from k =5...50 are provided within each panel.

labeled training examples exist or when a disease surveillance system must be able

to detect a wide range of possible outbreak types and threats.

4.3.2 Ewvaluation on BARD Anthrax Attacks

The anthrax attacks are based on a state-of-the-art, highly realistic simulation of
an aerosolized anthrax release, the Bayesian Aerosol Release Detector (BARD) sim-
ulator [16]. BARD uses a combination of a dispersion model (to determine which
areas will be affected and how many spores people in these areas will be exposed to),
an infection model (to determine who will become ill with anthrax and visit their
local Emergency Department), and a visit delay model to calculate the probability
of the observed Emergency Department visit counts over a spatial region. These
complex simulations take into account weather data when creating the affected zip
codes, Sy, and demographic information when calculating the number of additional

Emergency Department cases within each affected zip code. The weather patterns

82



Fast Constrained Subset Scanning for Pattern Detection

Detection Power of BARD Attacks
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Figure 4.6: Comparison of detection power for multiple methods on simulated an-
thrax bio-attacks at a fixed false positive rate of 1 per year, for 50% and 100%
coverage scenarios respectively. Neighborhood sizes from & = 5...75 are provided
within each panel.

are modeled with Gaussian plumes, resulting in elongated, non-circular regions of af-
fected zip codes. Wind direction, wind speed, and atmospheric stability all influence
the shape and size of the affected area. Although the simulator produces data for a
iO—day period after the spores are released, we simplify the temporal component by

using only the data from the midpoint {day 5) of the simulation.

For evaluation purposes, we consider two coverage scenarios.. In the 100% cov-
erage case, we agsume that all of the anthrax victims present at an Emergency
Department with a functioning bio-surveillance program and thus are appropriately
accounted for. This assumption is extremely optimistic, so we also provide a possi-
bly more realistic 50% coverage case where half of the population of anthrax victims
seek medical attention from institutions that do not collect or share this type of data,
thus reducing the strength of the outbreak signal accordingly and creating a more

difficult detection problem.

Figure 4.6 provides a comparison of detection power for anthrax attacks. In-
tuitively, the optimistic 100% coverage scenario has higher detection rates for all

methods. In the more difficult 50% coverage setting, the penalized scoring functions
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Spatial Overlap of BARD Attacks
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Figure 4.7: Comparison of spatial accuracy {overlap coeflicient) for multiple methods
on simulated anthrax bio-attacks, for 50% and 100% coverage scenarios respectively.
Neighborhood sizes from &k = 5...75 are provided within each panel.

show higher detection rates and greater robustness to the choice of neighborhood
size parameter, k. The unpenalized FSS method struggles for improperly chosen &
even in the easier 100% coverage scenario.

Figure 4.7 provides a comparison of spatial accuracy for anthrax attacks. The
strong performance of the subset scanning methods, PFSS and FSS, compared to the
circular spatial scan is due to the elongated, non-circular regions (based on assumed,
randomly generated wind direction and speed) of affected zip codes produced by
the BARD simulation. The performance of ‘Circles’ is similar in the 100% and 50%
coverage scenarios, suggesting that it is limited by the geometry of the circular spatial
scan. Subset scanning methods {both penalized and unpenalized) are able to identify
subsets of zip codes within a circular region and therefore have much higher spatial
accuracy when detecting irregularly shaped clusters.

Figure 4.8 demonstrates PFSS’s robustness to the choice of the proximity con-
straint strength, A, by comparing average detection power of the anthrax bio-attacks
{averaged over neighborhood sizes k = 5,10,...,75) for varying h =0...7. For this
analysis, the 82 BARD-simulated anthrax attacks were split into separate training

and test groups. The black cross represents the value of h that maximized average
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Detection Power of BARD Attacks
for Varying Strength of Proximity Constraint
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Figure 4.8: Comparison of detection power (averaged over all neighborhood sizes)
for multiple methods on simulated bio-attacks, for 50% and 100% coverage scenarios.
Soft proximity constraint strengths from A = 0...7 are provided within each panel.
The black marker represents the h that maximized average detection power for a
separate training data set. Note different y-axis scale.

detection power for the training data set, while performance results are shown only
for the separate test data set.

In both coverage scenarios, we note the strong performance of PFSS as compared
to FSS for all values of h = 0...7. This increased performance is a combination of
the robustness of PSS to choice of h and the sensitivity of FSS to poorly chosen
neighborhood size, k. The circular scan is also robust to neighborhood size k and
therefore performs comparably to PFSS in the 100% coverage scenario. We note
that near-optimal values of h can be learned from a small number of labeled training
examples. The learned A = 1.8 and h = 1.7, for 50% and 100% scenarios respectively,

out-performed circles and FSS when evaluated on held out test data.

4.4 Conclusion

This chapter provided a concrete example and implementation of the Penalized Fast

Subset Scan introduced in Chapter 3. “Soft” constraints on spatial proximity (i.e.,
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for a given local neighborhood under consideration, locations closer to the center are
assumed to be more likely to have been affected) were enforced in the subset scanning
framework. This method was applied to the task of detecting anthréx bio-attacks,
comparing its detection power and spatial accuracy to the current state of the art.
PFSS with soft proximity constraints demonstrated strong results, outperforming the
traditional, circular spatial scan statistic [19] and the unpenalized Fast Subset Scan
(FSS) [29] in both detection power and spatial accuracy. Compared to Fast Subset
Scan, PFSS showed remarkable robustness to selection of the neighborhood size k,
and this robustness extended even to low density outbreaks designed to challenge
the use of soft proximity constraints.

The PFSS framework with soft constraints introduced a parameter A for the
strength of the spatial proximity constraint. The extreme cases of h =0 and h — o
correspond to the unpenalized FSS and a fixed-radius circular scan respectively. This
work showed that near-optimal values of i can be learned from a small number of
labeled training examples (~40). Additionally, PFSS demonstrated robustness to
the choice of h, outperforming FSS for all values h=10...7.

Soft proximity constraints serve as one example of many different applications
that can take advantage of including additional prior information in the subset scan-
ning framework. Chapter 5 provides a more sophisticated example of incorporating

prior information through temporal consistency constraints.
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Chapter 5

Enforcing Soft Temporalj
Consistency Constraints with the

Dynamic Subset Scan

Chapter 3 introduced the Additive Linear Time Subset scanning property which
allows prior information to be incorporated into the subset scanning framework while
maintaining computational efficiency and exactness. The resulting Penalized Fast
Subset Scan was put in practice in Chapter 4 to enforce “soft proximity” constraints

in the subset scan.

'The next two chapters introduce the “Dynamic Subset Scan”. Dynamic Subset
Scanning is composed of two pieces. The first component, detailed in this chapter,
is temporal consistency constraints which reward spatial subsets that are temporally
consistent with each other, in order to detect dynamic clusters that change the
affected region over time. The second component, explained in Chapter 6, enforces

hard connectivity constraints on top of the soft temporal consistency constraints

87



Speakman e Dissertation

through the Additive Graphscan algorithm. Additionally, evaluation results of the

Dynamic Subset Scan are provided in Chapter 6.

The motivating example comes from the field of public health; with a focus on
source-tracing, tracking, and predicting contaminant plumes in a water distribution
system. Creating sensor networks for detecting deliberate or accidental contamina-
tion of these systems has been a popular research domain following the terror attacks
of September 11, 2001. The “Battle of the Water Sensor Networks” (BWSN) [3] pro-
vided real-world data to teams tasked with placing perfect sensors to quickly detect
contaminants and limit the amount of contaminated water consumed by the pop-
ulation. The placement problem is an interesting one explored further in {5, 18].
This current work focuses on the complementary problem of fusing data collected
from noisy sensors assuming a given placement. Sensor fusion attempts to combine
data from multiple distributed sensors in order to increase the detection power of

the entire network [41].

The simulation proceeds by modéling simple, binary sensors at each pipe junction
{graph node) in the system with a fixed false positive rate (e.g,, FPR = 0.1) and
true positive rate (e.g., TPR = 0.9). An additional aésﬁmption is that each sensor
operates independently of the others in the network. The simulations use the network
structure and plumes provided in the BWSN data to generate sensor readings over

the course of 12 one-hour intervals.

The task is then: Given (1) the graph structure (pipe network), (2) false positive
and true positive rates of the sensors, and (3)'independent observations from the
sensors over time, the method(s) must provide: (A) hour-to-hour tracking of which
pipe nodes have been affected by the plume on the current and recent past time

steps, (B) source-tracing to determine which node(s) in the system spawned the
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contaminant, and (C) predictions of which nodes are likely to be affected in future
time steps. Corresponding evaluation metrics include: {A) spatial-temporal overlap
coefficient between the true and detected subsets of nodes over time in the past, (B)
spatial overlap coeflicient between the true and identified subsets of source nodes,
and (C) spatial overlap between future time steps predicted by the tracking method

and the true subset of nodes in the future. These metrics are defined below.,

This is not the first work to apply spatial or subset scan statistics to contamina-
tion early warning systems, Koch and McKenna [17] used Kulldorft’s spatial scan [19]
to detect statistically significant circular clusters of anomalous activity. They used
properties of the pipe network to create a distance metric based on travel time be-
tween sensing nodes in order to define their “circles”. However, they were not able
to enforce connectivity constraints and take advantage of the topology of the net-
work. Through the Additive GraphScan algorithm detailed in Chapter 6, we are able
to search over connected subsets of the pipe network to find anomalous connected
subgraphs. Berry et al. [4] have also considered the detection power of a network of
imperfect sensors, showing that it is worth deploying a sensor network even when
individual sensors have low detection probability. However, their experiments did
not allow for sensors with false positives, making the detection and source tracing

problems much easier to solve as compared to the more difficult scenario considered

here.

Spatial scan statistics attempt to identify regions of interest or “hot spots”. This
i achieved by maximizing a scoring function F(S), typically defined as the likeli-
hood ratio F(S) = Pf)g]?agi‘;?gs}), over spatial regions S. In this expression H;(S)

assumes increased activity in region S, and H; assumes regular behavior. This work

monitors binary sensors s; each producing x; ~ Bernoulli (FPR) “triggers” under Hy
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or z; ~ Bernoulli (TPR) “triggers” for H(S) containing node s;. This makes the

expectation-based binomial scan statistic [19] a logical choice.

Spatial-temporal scan statistics incorporate the time dimension. It is standard to
aggregate this temporal information over a time window w so that z; = i W T
Once the temporal information has been aggregated for each window w = 1... W,
maximizing the spatial-temporal scan statistic for that window proceeds identically
to the regular spatial scan statistic; it then maximizes over all window sizes from 1
to W. However, an inherent assumption in this aggregation of temporal information
is that the affected spatial-temporal subset does not change over time. Therefore,
this approach will be referred to as the Static scan method throughout this chapter

and the next.

~ The fundamental goal of this work is to relax this strong assumption on the
spatial-temporal structure in order to increase the power to detect dynamic patterns
that change the affected region over time. One simple approach is to optimize each
of the w time steps independently. This allows for each time step ¢ to identify
an entirely different spatial region, but does not allow the sharing of information
between time steps, possibly reducing detection power. This approach is referred to

as the Independent scan method throughout this chapter and the next.

As a compromise between Static and Independent methods, we propose the Dy-
namic Subset Scon which enforces temporal consistency constraints to allow tempo-
rally adjacent time steps to share information forward and backward in time. As
demonstrated below, this flexibility increases power to track and predict dynamic

patterns while scaling to the size of real-world networks.

"These soft temporal consistency constraints enforced between temporally adjacent

time steps should not be confused with the binary metric of temporal connectedness
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(i.e. two spatial subsets are temporally connected as long as they contain one node
in common). The temporal connectedness approach to dynamic pattern detection is

explored further in [6].

Other contributions in the field have also focused on the source-tracing task. “k-
effectors” [22] use an information propagation model and dynamic programming to
identify the original & nodes that produced a cascade in tree graphs. Net-sleuth [36]
uses a susceptible-infected model along with minimum description length (MDL) to
identify the original culprits. Critically, both of these methods require labeled data
(affected and unaffected nodes) at later timesteps in order to source-trace the origins

of the pattern at earlier timesteps.

This chapter has three sequential objectives. The first is to demonstrate how
the expectation-based binomial (EBB) scoring function may incorporate additional
constraints while remaining straightforward to optimize over all possible subsets S
(i.e., we show that EBB can be written as an additive function over the data elements
si € 5). These derivations are specific examples of Theorem 3.1 and Corollaries 3.1

and 3.2 applied to the expectation-based binomial scoring function.

Second is to provide the formal definition of temporal consistency constraints
based on a probabilistic generative model that incorporates both forward and back-
ward temporal consistency. We consider both the homogenous case, in which the
propensity to propagate the pattern is the same across all edges in the network,
and the heterogeneous case, in which these probabilities can vary across edges. The
chapter concludes with a description of the iterative optimization process that “lines

up” the spatial-temporal region according to the provided temporal consistency con-

straints.
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5.1 Additive Scoring Function and Additional Terms

Conditioned on the false and true positive rates (FPR, TPR) of the sensors, the
expectation-based binomial (EBB) statistic can be written as an additive set function
over the data elements s; € S. This is an important feature for two reasons originally
explained in Corollaries 3.1 and 3.2. First, additive functions are easy to optimize
over all possible subsets. Without connectivity constraints, the score function F'(S)
can be optimized over subsets of records by simply including all records making
a positive contribution and excluding the rest. Determining the “most positive”
connected subset is more complicated, and is covered in Chapter 6. Second, additive
functions allow for additional penalty terms A; to be included at the element level
while the total penalized scoring function remains additive and thus amenable to

efficient optimization.

Theorem 1. The expectation-based binomial stalistic may be written as F(S) =
> scq Nir where Xy depends only on the binary sensor response ¢; for sensor s; (i.e.,
whether that sensor triggers or not) as well as the false and true positive rates of the

sensors in general,

Proof. The log-likelihood ratio form of the EBB scan statistic can be written as

Tollows:

Pr(Data|H:(S))
Pr(Data| Hy)
[],,es Prc; ~ Bernoulli(TPR))
[1,,cq Pr{c; ~ Bernoulli(FPR))
H (TPR)%(1 — TPR)L =
(FPR)*(1 — FPR)L =

g [ (FPR) (1 e)log (}i%g%)}
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Then \; = ¢;log (%%) + {1 —¢c;)log Gi%:gﬁ“)

O

Next, assume a bonus or penalty A, for each s; € S. These can easily be incor-

porated into the score function. Define:

Fron(S) = FS)+ A= 0+ A) = Y

8;€8 8;ES ;5

Fpen{S) is a penalized form of the EBB scan statistic that is still additive over the data
elements s;. Note that the A; terms are assumed to be a function of only the given
data element s;; they cannot depend on the entire subset 5. This is a limitation of the
current work and will be investigated in extensions to more sophisticated penalties

in future work.

5.2 Derivation of A! for Temporal Consistency

The following subsections derive the formulas for Al that correspond to two genera-
tive models for temporal consistency. In the first case, we assume “node homogene-
ity”. This assumes that a node’s propensity to propagate the plume to its neighbors
is the same across all nodes and all neighbors. In the latter case, we allow this influ-
ence to vary from node to node and neighbor to neighbor, We refer to this method
as “node heterogeneity”. The homogenous nodes model was originally developed
in [39]. |

In both cases, we emphasize the importance of forward and backward temporal
consistency. The intuitive role of A! is that it must simultaneously make the current
subset, S, appear likely to have been generated from the past, $*~*, and able to

generate the future, S*', thus conveying temporal consistency information both
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forwards and backwards in time. As discussed in Section 5.3, we will jointly optimize
the detected subsets S* for each time step ¢ by an iterative approach that optimizes
each time step, ¢, enforcing consistency with the previous and next time steps, until

convergence.

5.2.1 Node Homogeneity

In the‘ homogeneous case, we allow the prior-log odds for node i to be influenced by
two sources: whether node ¢ itself was included in the previous optimal subset and
the proportion of node #'s neighbors included in the previous optimal subset. We
define the following terms. Let p! be the prior probability that data element s; will
be contained in the detected subset S* on time step ¢. Let a! be 1 if data element
s; is included in 5%, and 0 otherwise. Let n! be the number of neighbors of s; that
are included in 5% and let k; be the degree of node s;. Then the generative model
of event propagation, which incorporates temporal consistency constraints under the

homogeneity assumption, is defined as:

P; t—1 n
1 t = i CE 5.1
Og(l—pﬁ) Po+ prx; " + fa k (5.1)
As a concrete example of the interpretation of this model, assume 8; = —1.5,

f1 =5, and B = 0. Then, if a node is included in the previous detected subset,
§t71, it has a 97% prior probability of being included in the current detected subset,
S*. If it was not included in the previous subset, then it only has an 18% probability
of being included in the current subset. When S > 0, the proportion of neighbors

j included in S*=* will farther influence the prior probability of s; being included in
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the current subset.

We now compute the total impact A? of including z! on the overall penalized log-
likelihood ratio score F(S), as compared to the score F(S\ ) when z! is excluded.

Given the log-linear model of p! above, we have:

Consider A! as the total impact of including ¢ on the overall penalized log-
likelihood ratio score F(S), where S = S1UJ...S:UJ.. . {J Sw, a8 compared to the
score F(S \ zt) when 2! is excluded. We note that the inclusion or exclusion of a
step ¢ affects both the log-likelihood ratio score of S%, conditioned on S*—1, and the
log-likelihood ratio score of S+, conditioned on S, The log-linear model of p¢ above

provides:

A7 = (log(pf) —log(1 = p)) + D (log(pf™ ! z}) — log(p"" | 2}))

jestrt

+ Y (log(1 — pi™ fad) —Tog(1 — pitt | 7)) .
igs+

(5.2)

In equation (5.2}, the initial difference results from the prior probability of zf,

conditioned on mf’

! and its number of included neighbors ni~ from the previous

time step. This difference can be calculated directly from the model:

1,

t—1
log(p) ~ log(1 — 1)) = flo + Buai™" + Ba—y

(5.3)

The two sums in (5.2) account for the fact that including z! changes the prior

1

probabilities of zit! and its neighbors n™ for the next time step. These sums can

be rewritten as:
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> (log(pi™ i 2f) —log(pi™ |2h)) + Y (log(l — gt | at) — log(1 ~

jestl JggtHt
£
= > (fo+ b+ 5, Jir Z.f(ﬁwmz;wz%lmz)
jest :
*Z (6o + prz +52j|~5 “*‘Zfﬂ0+ﬂ1$ +ﬁ2J|’r)
jest+l

pitt | 9))

(5.4)

where the function f(z) = log(1 + exp(z)). Next, note that the contributions to

equation (5.4) are equal to 0 for all nodes j except for node ¢ and its neighbors. For

J =1, the corresponding terms in (5.4) simplify to:

t £
Braitt + f (ﬁo + ﬁz%) - f (ﬁo + 581+ ﬁz%) .

For each neighbor j of 7, the corresponding terms in (5.4) simplify to:

$}+1 . o n_; +1
B\ = | T (Pt bzs+ 8o = f Bo+ P} + frr? :

.?

Adding the contributions of equations (5.3), (5.5), and (5.6) provides:

Al =P+ B (27 + 28 + 8y
jegtH ki
t
‘l‘f(ﬁo-i-ﬁz%) ~f (50"‘51 +52ﬁ)

: i
31 (o it + 27 ) - Zf(ﬂo+ﬁlm a2,
j 7

(5.5)

(5.6)

(5.7)

where the sums are taken over all neighbors j of 7. In the special case of £y = 0,
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equation (5.7) simplifies to:

Al=Fy+ 8 (27 + ™) + f(Bo) ~ F(Bo+ Bu). (5.8)

Note that, when 8, = 0, A! can be computed exactly. When 8, £ 0, A} must be
approximated. We do so by assuming that 8y + 52 < 0 and 8y + 8: > 0. Noting
that f(z) ~ 0 when z < 0, and f(z) =~ z when = >> 0, provides:

ni~! !
Aim ot fr(al o)+ B | S —+ Z - (50+ﬂ1+ﬁ2%)+
¢ jesttl :" :
nk ki + 1
Z (50 + 5+ 52?7‘) - Z (ﬁo + 81+ B ) (5.9)
jEg i jest
ntl
=fy (2™ + 2t — 1) + B, 2+ ( )
: jestt ks jest

However, equation (5.9) assumes knowledge of which other elements are contained
in S*, and this information would not be known in advance. Thus the final sum over

j € 5% is further approximated with half the corresponding sum over all neighbors j

of 4

,, . 11 11
R R D VLT DOl € ) BT
M

5.2.2 Node Heterogeneity

We now provide the derivation of A! without the homogeneity assumption. This
allows the contribution to A! in temporal consistency to vary by node and by neigh-
bor. Intuitively, this recognizes asymmetric relationships among nodes: node i may

regularly propagate to neighbor j, but neighbor 5 may not regularly spread to s.
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This type of heterogeneous relationship cannot be captured under the stricter ho-
mogeneity assumption. Nevertheless, it is necessary for more realistic scenarios such
as a water distribution system where water flow {and this the spread of potential

contamination events) may occur in a single direction.

Proceeding forward, we will follow the format in Section 5.2.1. This allows for
easier comparison of the two derivations. For clarification, 8;; is the influence that
neighbor j has on node ¢ and f;; is the influence that node i has on neighbor 7. We

will discusee how B;; and j;; can be learned from labeled training data in Chapter 6.

With heterogenous nodes our generative model is

t
P _ Z -
' J

where the summation is performed over all of node #’s neighbors, 4.

Similar to the derivation in Section 5.2.1, we must calculate the change in the
overall penalized log-likelihood ratio score F'(S) resulting from the impact of includ-

ing zt.

Al = (log{p}) — log(1 — p}))

1 1
+_§ (log(pi*" | 1) — log{pi™ | 2)) (5.12)
jest+

+ Y (log(1 —pi™ | af) — log(1 — pi*? [ 22)).
jEsvH
The fivst term in (5.12} is the “forward” temporal consistency constraint and is
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described by the heterogeneous generative model.

log(p!) — log(1 — pf) = Boi + Bazi ' + Z Byiwi ! (5.13)
J

The latter two terms in {5.12) are the “backward” temporal consistency con-

straints and require further attention.

> (log(ph't | zf) — log(p5™ | ab))

JestHL

+ Y (log(1 - p5™ 1 ah) —log(1 — p5 | zt))
JEgi+

= Z (Bos + Borxs + Z Byt | =)
JeStHT

(5.14)
= FBos+ Braxly + Y Biaat | at)
~ -

= Y (Bos+ Brszh + Z B | at)
Jegttl

+> " f(Bos + Brszh + Z A
J J

where the function f(z) remains log{1 4 exp(z)) as in Section 5.2.1.

In the specific case when J =7 i.c, the cffect of including the node 7 on the next

t+1

time step z; ", the terms in (5.14) simplify to

((50@ + B + Z ﬁji.’t — (B + Z ﬁﬂ:c ) i+l
i
~f(Bos + Bii + Zﬁjﬂ?) + F(Boi + > Bzt (5.15)
J i
=Bt + f(Boi + Zﬂjﬂ?) — [(Boi+ B+ > Bjiwh)
J J
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The remaining non-zero terms from (5.14) capture the influence of node ¢’s neigh-
bors in backward temporal consistency. For each neighbor | j of 4, we have the impact

of including node z! on :13”1 equal to the following:

((503' = B+ B + D Bygacla) = (Bog + Bzt + > Byt ) i

J'#i , e
‘f(ﬁ[]j -+ ,@jjﬂ?? + 5'ij + Z ﬁjfj:]:;-;) + f(ﬁoj + ﬁjj&?j- —+ Zﬂj:j:c;f (516)
J# i#
ﬁ“ﬁw I +f()603+533$3+2ﬁ3 JT i) = (ﬁﬂy +'6.?.?Tj + B +ZJBJ.§'
.'7&,‘,' I'#'!-

Note that j' represents the neighbors of neighbor j with careful exclusion to avoid

double counting node 4 in the summation.

Combining the results from (5.13), (5.15), and {5.16) we arrive at:
A} =0 + Balai +ait) + Z Buay + Z By
' )
1602 + Z )Bj’t BO% -+ /Bn + Z 5j%mt)

+Zf Boj + Biszh + D Biats) Zf Boj + Byt +ﬁm+25y;$
A gl

(5.17)

We conclude by making two furfher simplifying assumptions. The last two sums
in (5.17) require information on the other nodes included in S* in order to obtain
the Al for a given node i; but that information is unknown at this point. Therefore
we approximate with half of the corresponding sums as above., This approximation
results in a —3 {3’” term. Similarly, the mlddle two terms in (5.17) may be approxi-
mated with a lower bound of —f;;. The true sum of those terms is unknown but falls

between —f;; and 0.
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These approximations provide our final estimate of the heterogeneous influence

on the penalized log-likelihood ratio score F(S) when including node i in §*:
-~ _ 1
A =i+ Bl i = 1) + Z (53‘1593- Y+ By (mﬁ'ﬂ - 5)) : {5.18)
J

Chapter 6 will compare and contrast the performance of homogeneous and het-

erogeneous temporal consistency constraints in more detail.

5.3 Iterative Convergence

The previous section provided definitions and interpretations for Fpe,(S) = Paes(At \
Al for the EBB scan statistic with temporal consistency constraints. However, recall
that the values of Af for a given time step ¢ depend on the detected subsets at ¢ — 1
and t + 1. To resolve this issue, the Dynamic Subset Scan uses an iterative method
that converges to a (local) optimum. To better approach the global optimum, mul-
tiple restarts and simulated annealing (which gradually increases the strength of the

Al from 0 to their full values) are wrapped around steps (3)-(13) in Algorithm 5.1.

5.4 Conclusion

This work introduced the Dynamic Subset Scan for detecting dynamic patterns that
change the affected subset over time. It developed temporal consistency constraints
that may be enforced on temporally adjacent, spatial subsets. These constraints are
a fruitful compromise between traditional spatial-temporal scan statistics that do
not allow the detected region to change over time (Static) and the other extreme

where temporal information is ignored (Independent). The key insight to enforcing

101



Speakman e Dissertation

Algorithm 5.1 Iterative convergence to local optimum for Dynamic Subset Scan
(without multiple restarts or simulated annealing)

1: for window duration w from 1 to maz window W cio

2 Initialize each of the w spatial subsets independently (i.e., separately compute
the highest scoring subsets S* for each time step ¢, assuming A} = 0 for all s;).
3:  repeat
4: Randomly select a time step ¢ that is not flagged as “Checked”. Copy current
spatial subset S%.
5: Compute A? for each node s; given subsets S*~! and S*t', using equation
(5.8) or (5.10).
6: Compute new optimal subset S for time step ¢ using Af. Without con-
nectivity constraints, simply include all positive contributions A + Al; with
. connectivity constraints, call Additive GraphScan (see Chapter 6).
7: if new subset S" does not improve penalized log-likelthood ratio of spatial-
temporal subset S then
8: Revert to S* and mark time step ¢ as “Checked”.
9: end if
10: if new subset S does improve penalized log-likelihood ratio of spatial-
temporal subset .S then
11: Replace S* with 5" and remove “Checked” flags from time steps t—1,t+1,
and ¢.
12: end if
13:  until no further changes improve penalized log-likelihood ratio of spatial-
temporal subset S, i.e., all time steps have been flagged as “Checked”.
14: end for

15: Return the highest scoring spatial-temporal subset S,
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temporal consistency constraints is recognizing that the expectation-based binomial
scoring function may be written as an additive function over the data records (see
Chapter 3 for details on Additive Linear Time Subset Scanning). This allows for ad-
ditional terms (constraints) to be included in the penalized log likelihood ratio while
remaining efficient to optimize. Critically, these temporal consistency constraints
were derived to allow temporal information to be shared both forward and backward
in time. We provided two different forms of temporal consistency constraints. The
more restrictive homogeneity constraint assumes that the propensity to propagate is
the same across all nodes and neighbors. The heterogeneous derivation relaxes this
assumption and allows the influence from neighbors to vary.

In Chapter 6, we will add hard constraints on graph connectivity to the Dynamic
Subset Scan frameworl developed here, thus enabling Dynamic Subset Scan to be
applied to detect events spreading through a graph or network structure. We will also
present a concrete example of the use of this method, applied to the tracking, source-

tracking, and prediction of spreading contamination in water distribution networks.
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Chapter 6

Enforcing Soft Temporal
Consistency and Hard

Connectivity Constraints

Many complex data sets containing emerging events or patterns are commonly rep-
resented in a known and fixed graph structure. Examples of this include water
pipelines, transportation roﬁtes, power grids, and supply chains in general. While
other recent work |25, 15] has focused on learning graph structure, here we assume
a given graph structure and wish to detect which nodes are currently affected, by

observing data produced at the nodes of the graph on each time step.

Chapters 3 and 5 outlined how the expectation-based binomial (EBB) scoring
function {among others) may be penalized with additional constraints Fpe,(S) =
> ses(AitAy) while rerhaining an additive set function over the data elements s; € S.
Optimizing additive functions without connectivity constraints is very straightfor-

ward and consists of including all records with positive contributions (X + A; > 0)
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and excluding the rest (see Corollary 3.2). Enforcing hard connectivity constraints
on additive functions (i.e. determining the “most positive” connected subset) is an
interesting and difficult problem. For example, not all nodes making positive contri-
butions will be included in a high-scoring connected subset because they are likely
disconnected in the underlying graph structure. Also, a high-scoring connected sub-

set may include a node with a negative contribution in order to connect two positive

nodes.

The GraphScan algorithm [37] presented in Chapter 2 exactly identifies the high-
est scoring connected subset for any scoring function that satisfies the Linear-Time
Subset Scanning (L1'SS) property [29]. It is trivially shown that additive functions
satisfy LTSS, and therefore GraphScan could be used to determine the highest scor-
ing (“most positive”, in the case of an additive scoring function) connected subset.
However, GraphScan is designed to optimize over more complex scoring functions;
most importantly, its computation time is exponential in the graph size and there-
fore it does not scale well in this setting. We would like to apply our Dynamic Scan .
approach to datasets with thousands or tens of thousands of nodes, and GraphScan
cannot handle these cages. Therefore, Additive GraphScan is proposed as an efficient
heuristic alternative to GraphScan which can be used to identify high-scoring (most
positive) connected subsets in a given graph structure with real-valued weights at

each node. This work builds on a foundation provided in [39].

We show below that Additive GraphScan achieves very good approximations
to the true highest scoring subset with high probability; moreover, since Additive
GraphScan is used within the iterative convergence approach described in Chapter
5, it 1s less important that it converges to the true highest scoring subset for a given

time step as long as it continues to increase the score of the spatial-temporal subset

105



Speakman e Dissertation

S=J,8"

6.1 Additive GraphScan Algorithm

Additive GraphScan was developed to solve the following problem. Given a graph
= (V, I} and a real-valued weight w(n) for each node n € V, we must compute
IMNAXS:S connected in G 2 neg W(N). We note that this is a variant of the prize-collecting
Steiner tree problem. Minimum description length (MDL) has also been used as a
heuristic for a similar type of problem {2].

The optimization process is a key step in the iterative convergence framework
mtroduced in Section 5.3. In particular, given the subsets S*! and S**!, we can
compute the total contribution 4f = M + Al where X! is the log-likelihood ratio
for each node and A! reflects temporal consistency. The highest scoring connected
subgraph is mMaxs.s connected in @ D569 7+ |

Additive GraphScan makes use of the following notation. w(n) is the real-valued
weight of node n. A path p is any connected subgraph of nodes. w{p) is the sum of
weights for every node in the path. g(p) is the gain that would result from merging
path p into a single node. It is the difference between the weight of the resulting
merged node and the highest weighted node in the path. Identifying and merging
paths with pésitive gains is an integral part of Additive GraphScan. g{n,p*) is the
gain that would result from merging two paths together. The first path, p*, is a
previously identified path of interest with positive gain. The second path is the
shortest path between node n and any point along path p*. g(n,p*) is the difference
between the weight of the resulting merged paths and max(w{n), w(p*)).

pw(n) is the pathweight of a node used when calculating single source, shortest

paths traversing through the node. Note the difference between the weight of a node
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w(n) (which may be positive or negative and is used in the gain calculations above)
and the pathweight of a node pw(n) (which is non-negative and used in shortest path
calculations). Pathweights of positive nodes are set to 0, reflecting no penalty {or
reward) for traversing positive nodes while identifying shortest paths. Pathweights
for negative nodes with no positive neighbors are —w(n). Pathweights for negative

nodes with positive neighbors have

w(ng)

pw(n} = —min { 0, w(n) + Z degrea(ny)

pos neighbors,n;
These positive weights may be thought as uniformly “diffusing” over their negative
neighbors and then using this altered weight as the pathweight for negative nodes
with positive neighbors. In the case where a large positive node overwhelms its

negative neighbor, the negative neighbor’s pathweight is set to 0.

Finally, s(ngq,ns, n.) determines a fourth node, n, in the graph as a Steiner point
for ng,ny, and n.. A Steiner point in this setting is a node that forms the shortest
interconnect between the three provided nodes using the pathweights of the graph.
5(nq, My, Ne) returns the shortest interconnecting path formed between the three nodes

going through n,.

Some basic pre-processing may be applied to the graph before running Additive
GraphScan. For example, any positive node with a positive neighbor may be merged
together into a larger, single positive node (adding their weights) and repeated until
no further merges exist. Also, any negative nodes with degree of 1 or less may be
recursively removed because these are guaranteed to not be included in a high scoring
connected subset. Lastly, any negative node with at least two positive neighbors may

be merged into a single node if the resulting merged node has a higher weight than
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_any individual positive neighbor. Additive GraphScan can then be applied to the
pre-processed graph. Additive GraphScan scales as O(kN?) = O(N%%), dominated
by steps (3) and (5) as denoted in Algorithm 6.1.

Algorithm 6.1 Additive GraphScan

1: while positive gain path merges exist do

2:  Identify top-k positive nodes where k = v/N.

3. Compute path weights pw(n) for all nodes and create single-source shortest
paths from each top-k node.

4: Compute g(p) for each shortest path p between top-k pairs. Determine highest
gain path p* and record endpoints as n, and ny.

5. Compute g(n;, p*) for each remaining top-k node, n;. Determine highest gain
node for p* and record as n.. If no positive gain exists between p* and any n;,
then merge p* and restart.

6:  Form new path p** as the union of p* and the path connecting p* to n..

7. Compute s(nq,ny, n.). Compare w(s(ng, np,n.)) and w(p*). Merge the one
with higher weight.

8: end while

9: The highest weight merged node is returned as the most positive connected subset

found by Additive GraphScan. Note that this node may need to be “unpacked”
to determine the contents in the original graph form.

6.1.1 Additive GraphScan Example

This section concludes by applying Additive GraphScan to a sample pre-processed
graph found in Figure 6.1. The most positive connected subgraph consists of nodes
{0,1,6,3,4,8,9} where node 6 is the Steiner point used to connect nodes 0, 4, and
9. Additive GraphScan correctly identifies this subgraph even though node 6 is not
on the shortest paths connecting nodes 0 and 4 or nodes 4 and 9. A key insight
into the strong performance of Additive GraphScan is delaying path merges while
searching for a potential Steiner point. Begin at step (2:) Nodes 0, 4, and 9 are

identificd as the top-k nodes. (3:) Dijkstra’s algorithm is called on nodes 0, 4,
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Figure 6.1: An example graph to demonstrate the Additive GraphScan algorithm.
The large bolded numbers are node identifiers and the small numbers within each
node are the nodes’ corresponding weights. The most positive subgraph consists of
nodes {0,1,6, 3,4, 8,9} and is correctly identified by Additive GraphScan.

and 9 providing single-source shortest path information from each of them. (4:)
The shortest path from node 0 to node 4, p* = {0,1,2,3,4}, has highest gain of
g(p*) = (5—1-2—-1+45)—5 = +1. Because a positive gain path was found between
nodes n, = 0 and n, = 4, Additive GraphScan continues searching for a third node,
ne. (5,6:) Node n. = 9 is found with p™* = {0,1,2,3,4,7,8,9} and w(p**) = 8.
(7:) Calculate a Steiner point for nodes 0, 4, and 9 and note that node 6 forms the
shortest interconnect between these three points. This interconnect is formed by the
nodes {0,1,6,3,4,8,9} and w(s(0,4,9) =5—-1—-3—-1+5—-1+5=9. Because
w(s(0,4,9)) > w(p™) the Steiner interconnect s{0,4,9) is condensed into a single
node with weight 9. After this merge, no more positive gain path merges exist and
the loop exits. (9:) The highest scoring connected subset is then {0,1,6,3,4,8,9}.
Notice that greedily merging either p* or p** would have resulted in a sub-optimal
merge. Delaying these merges while searching for a potential Steiner point is a key

insight into the strong performance of Additive GraphScan.
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Runtime Comparison over Various Graph Sizes
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Figure 6.2: Runtime comparisons for the Dynamic Subset Scan with GraphScan and
Additive GraphScan as the optimization algorithm. Independent Scan with Additive
GraphScan is also shown.

6.2 Comparison of Additive GraphScan vs. Graph-

Scan

This section compares the fast heuristic, Additive GraphScan, to the slower, but
exact, GraphScan algorithm. First, a runtime analysis is presented comparing the
two optimization algorithms. The much larger “network 2”7 provided in the Battle of
the Water Sensor Networks |3] is used to create connected subgraphs of various sizes
from 50 to 500 nodes from the network. The graphs are processed with three different
scans: Dynamic Subset Scan with GraphScan, Dynamic Subset Scan with Additive
GraphScan, and Independent with Additive GraphScan. The average runtime for
each method is reported and are shown in Figure 6.2.

GraphScan begins to struggle with graph sizes of 250 nodes while Additive Graph-
Scan quickly scans graphs of 500 nodes in approximately 4.1 seconds. Independent
with Additive GraphScan processed the entire 12,000+ node “Network 27 in 221 sec-

onds while Dynamie with Additive GraphScan required 1830 seconds (approximately

110



Fast Constrained Subset Scanning for Pattern Detection

a half hour). This difference represents the additional calls to Additive GraphScan
required by Dynamic Subset Scan to “align” the individual spatial subsets according

to the temporal consistency constraints,

‘The comparison of Additive GraphScan and GraphSecan is concluded by analyzing
the scores of the spatial-temporal subsets identified by the scanning methods using
both Additive GraphScan and GraphScan. The approximation ratio results compare
the highest-scoring subsets found by Additive GraphScan and GraphScan as a per-
centage averaged over 2000 simulations. Table 6.1 provides detailed information for
the approximation ratios. The ratios over 100% in the Dynamic cases reflect the noise
in the iterative convergence process outlined above in Section 5.3. To be clear, Addi-
tive GraphScan is not identifying a highgr scoring subgraph than GraphScan for an
individual time slice. However, the local optimum after the iterative convergence of
Additive GraphScan-based optimizations at each step may have a higher score than
the local optimum reached with GraphScan-based optimizations at each time step.
The Static and Independent methods do not use this iterative convergence process
to identify the highest scoring spatial-temporal region and may reflect a more direct
comparison between the performance of Additive GraphScan and GraphScan. The
ratio does not fall below 98.4%, indicating that Additive Graphscan is providing a
huge speed increase with minimal loss of accuracy compared to scan statistics using

GraphScan.
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Table 6.1: Approximation ratios comparing scores for Additive GraphScan and
GraphScan for multiple methods and FPR and TPR.

method | Background(0.1)  Tnjects{0.9) | Background(0.2) Injects(0.8)
Static 100.00% 100.00% 99.15% 99.83%
Independent 100.00% 99.99% 98.48% 09.65%
Dynamic (hom) 100.59% 101.44% 99.70% 100.50%

6.3 'Tracking, Source-Tracing, and Predicting Con-
taminant Plumes

‘This section evaluates the tracking, source-tracing, and prediction abilities of the
Dynamic Subset Scan under both homogenous and heterogeneous assumptions in-
troduced in Sections 5.2.1 and 5.2.2. The 129-node “Network 1” from the Battle of

the Water Sensor Networks {3} served as the test bed for these evaluations. Simula-

- tions were performed with sensors at FPR, = 0.1 and TPR = 0.9, The resulis below

are averaged over 500 contaminant plumes simulated for 12, one-hour intervals.

Comparisons are made for four different spatial-temporal scan statistics:
e Static scan does not allow the detected spatial region to change over time.

e Independent scan allows the detected spatial region to change over time but
does not share temporal information between time steps. This implies that

Al =0 for all nodes s; and time steps t.

o Dynamic (Hom) scan allows the detected spatial region to change over time and
uses homogeneous temporal consistency constraints to “align” the individual

time steps. See Section 5.2.1 for details.

o Dynomic (Het) scan allows the detected spatial region to change over time and
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Contaminant Plume Tracking
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Figure 6.3: Contaminant tracking results for four competing methods. This graph
summarizes tracking ability by reporting the spatial-temporal overlap of the detected
and affected subsets over the course of 12 hours.

uses heterogeneous temporal consistency constraints to “align” the individual

time steps. See Section 5.2.2 for details.

Each of these methods have graph connectivity constraints enforced through Ad-
ditive GraphScan. Simpler versions of the scans without connectivity constraints
were evaluated and had much lower performance (not shown here) for tracking,

source-tracing, and prediction tasks.

The Sy ... B2 parameters for Dynamic (hom) were set using a grid search on a
separate 500 plume training set. The parameter values that maximized spatial-
temporal overlap in the training data are Sy = —0.9, f; — 5.2, and f, = 1.4. For
Dynamic (het), the 8y, i, and §j; terms were learned through fitting the logistic

regression model for each node ¢ on a separate 500 plume training set.
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6.3.1 Tracking Results

Figure 6.3 summarizes the methods’ tracking ability over the duration of a spreading
contaminant phume (12 hours). A scan statistic’s tracking ability may be summarized
through spatial-temporal overlap. Spatial-temporal overlap is a combination of preci-
sion and recall applied to spatial-temporal subsets. A measure of 1.0 corresponds to
perfect agreement between the affected and detected spatial-temporal regions, while

0.0 means the affected and detected regions are disjoint. For two spatial-temporal

subsets, Affected and Detected, the overlap is defined as: ﬁggg,ﬁgggggﬁgggg: See

Figure 6.4 for details.

Figure 6.3 demonstrates that Static struggles to accurately track the dynamic
plumes over time. However, we also provide another measure of tracking ability in
Figure 6.5. Figure 6.5 provides three “snapshots” in time at hours 6, 9, and 12 into
the plume. These snapshots report spatial overlap over time rather than spatial-
temporal overlap. The peculiar shape of Static’s tracking in Figure 6.5 is a result of
attempting to capture a dynamic pattern using a static region. Referencing the 9t
hour snapshot as an example (middle panel), we see that Static’s overlap with the
plume peaked 4 hours earlier at ¢ = 5. For hours 1 — 4, the region detected by Static
is too large. However, that same region is too small for the plume as it continues to

grow in hours 6 — 9.

The Independent and Dynamic methods do not suffer this problem because they
allow the detected subset to change at each step. Additionally, we see a small
bonus to the Dynamic methods’ tracking ability due how they incorporate temporal

consistency constraints.
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Figure 6.4: This figure demonstrates the calculation of spatial-temporal overlap for
plume tracking. A plume spreads through a simple 5-node line graph over the course
of four time steps. Affected nodes turn from white to shaded as the contaminant
spreads. 'The Static scan method is constrained to keep the exact same detected
spatial region throughout the event duration. Hence, it may fail to capture the plume
at later time steps. Dynamic Scan allows the detected spatial region to change at
each time step, tracking the plume as it spreads. Due to connectivity constraints,
both methods must return a connected subgraph as the detected spatial region at
each time step. Spatial-temporal overlap is penalized for both false positives and
false negatives. A measure of 1.0 corresponds to perfect agreement between the
affected and detected spatial-temporal regions, while 0.0 means that the affected
and detected regions are disjoint,

Contaminant Plume Tracking Over Time
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Figure 6.5: Contaminant tracking results for four competing methods. This graph
represents tracking ability by reporting the spatial overlap of past detected and
affected subsets at the 6%, 9, and 12** hours of the contaminant plume.
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Contaminant Plume Source-tracing
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Figure 6.6: Source-tracing results for four competing methods. Source-tracing is
measured by reporting the spatial overlap between the earliest spatial region of the
detected subset and the original affected node(s) at the start of the plume.

6.3.2 Source-tracing Results

Figure 6.6 reports the methods’ ability to identify where the contaminant originéted
over the duration of the plume (12 hours). This is measured through purely spatial
overlap between the carliest time step in the detected region and the source node(s)
of the plume. Note that it is possible for a quickly spreading plume to affect multiple
nodes within the first hour. In such cases, all of these nodes are treated as source

nodes.

The source-tracing results clearly demonstrate the advantage of sharing informa-
tion between time steps during the optimization process. The key to the Dynamic
Subset Scan’s success for source-tracing is the backwards flow of temporal consis-
tency information allowed in our model. The Dynamic methods are able to change
the detected subset for previous time steps based on new, more current data. This

gives it superior source-tracing abilities throughout the duration of the plume.

We do not see a substantial difference between Dynamic (hom) and Dynamic (het)
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Contaminant Plume Prediction

=

e ynamic (Het)

&
o

ez===lynamic {Hom}

o
[=a]
i

&
g
]

====5tatic

=
o
|

Spatial-temporal Overlap

@@ slndependent

]
A

1 3 5 7 9 11
Hours from start

Figure 6.7: Contaminant prediction results for four competing methods. This graph
summarizes prediction ability by reporting the spatial-temporal overlap of the pre-
dicted and affected subsets over the course of 12 hours.

in this scenario, suggesting that the simpler homogeneous assumption is sufficient
for high source-tracing performance.

Static’s ability to identify the source nodes actually decreases over the course
of the contamination event as more information is gathered. The typically large
regions returned by the Static method later in a contaminant plume harm its ability
to accurately identify the source of the contaminant.

Pinally, we note that the Independent method does not share any temporal in-
formation and therefore the subset identified at the first time step of a plume does
not change as new information is gathered on the plume. Again, homogeneous and
heterogeneous variants of the Dynamic method achieve similar performance on the

tracking task.

6.3.3 Prediction Results

Figure 6.7 summarizes the prediction ability of the competing methods by reporting

the spatial-temporal overlap of the predicted and affected subsets over the course of
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Contaminant Plume Prediction Over Time
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Figure 6.8: Contaminant prediction results for four competing methods. This graph
represents prediction ability by reporting the spatial overlap of future predicted and
affected subsets at the 1%, 3¢, and 6 hours of the contaminant plume.

11 hours (there is no prediction on the 12%" hour). Note that the predicted subsets
are carreid foreward to the 12%; as such, prediction from the 1% hour {with up
to 11 hours of look-ahead) is an extremely difficult task. Similar to the tracking
results, we also provide prediction results at three “snapshots” in time at hours 1,
3, and 6 in Figure 6.8. These snapshots report spatial overlap over time rather than

spatial-temporal overlap.

For the Static method, prediction is simply extending the spatial subset forward in
time. T'his results in poor prediction power because the static region that maximizes
the scoring function in the past is constrained to capture :che early stages of the plume
rather than predicting how the plume will grow over time. This results in a prediction
with relétively high precision but extremely poor recall due to the increasing size of

the plume over time.

For Independent, only the spatial subset of the most recent time step is extended
into the future. This results in increased prediction power compared to Static because

the prediction is not influenced by past plume behavior.

For the Dynamic methods, prediction results are created by implementing their
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respective forward temporal consﬁstency constraints from the most recent time step.
Critically, this allows the predicted subsets to change g;:)ing forward in time. In par-
ticular, the temporal consistency constraints with node heterogeneity allows the pre-
dicted subsets to change intelligently over time. This results in the overall strongest

prediction performance of the four methods under consideration.

6.4 Conclusion

The last two chapters introduced the Dynamic Subset Scan for source-tracing, track-
ing, and predicting dynamic patterns that change the affected subset over time. This
novel extension of the well-known spatial and subset scan statistics is composed of
two main contributions. First is the incorporation of temporal consistency constraints
that may be enforced on temporally adjacent, spatial subsets. These constraints were
introduced in Chapter 5.

‘The second novel contribution is the Additive GraphScan algorithm, which al-
lows the Dynamic Subset Scan to enforce both soft temporal consistency constraints
and hard connectivity constraints while scaling to large, real world networks. Addi-
tive GraphScan is a fast, heuristic alternative to GraphScan. However, the results
demonstrate an approximation ratio of over 99%, suggesting a very small sacrifice
for dramatic gains in speed and scalability.

The Dynamic Subset Scan was evaluated on data provided through the “Battle of
the Water Sensor Networks” [3]. Dynamic scan succeeded in source-tracing, tracking,
and predicting these events more accurately compared to other competing methods.
The gains were due to Dynamic Scan’s constrained flexibility: competing methods
either failed to capture the dynamics of the spreading plume (Static) or were suscep-

tible to over-fitting from lack of constraints (Independent). We considered two forms
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of temporal consistency constraints in the Dynamic Subset Scan. Under the homo-
geneous nodes assumption, all of a node’s neighbors contributed equally to the prior
probability of that node becoming contaminated. This assumption was sufficient in
the source-tracing and tracking tasks. In the prediction task, however, it is impor-
tant for the detection method to identify key nodes and edges in the network as this
extension allows the predicted subsets to intelligently expand over time. Therefore,
the heterogeneous nodes version of temporal consistency constraints was introduced,
and our experimental results demonstrate that this approach significantly increases
the prediction power of the Dynamic Subset Scan over the previous homogeneous
implementation.

In cohclusion, relaxing constraints on spatial-temporal region shape must be done
carefully. Strict temporal constraints work well when the affected subset of the data
does not change over time. However, removing them completely in order to track
dynamic patterns leads to ignoring valuable temporal information. Dynamic Subset
Scan with temporal consistency and connectivity constraints provides a scalable so-
lution for future work in dynamic pattern detection in graph-based or sensor network

data.
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Chapter 7

Conclusions and Possible

Extensions

The two overarching goals of this thesis are 1) appropriately evaluating s subset’s
anomalousness through probabilistically founded scoring functions and 2) developing
algorithms to efficiently scan over subsets of the data, finding those subsets which
maximize the scoring functions subject to various constraints. Achieving these goals
resulted in significant contributions to pattern detection through subset scanning
in three broad categories: development of scalable methods, introduction of novel,
probabilistic-based theory, and experimental results in multiple domains of applica-
tion related to public health. This concluding chapter summarizes these contribu-
tions and highlights some possible extensions for future work.

Chapter 2 introduced the GraphScan algorithm which enforces connectivity con-
straints on the subset scan. GraphScan efliciently identifies anomalous connected
subsets of locations and achieves speed improvements of 450,000x faster than the
state-of-the-art. Despite this large speed increase, we proved that GraphScan is

guaranteed to identify the highest scoring connected subset. GraphScan was ap-
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plied in the public health domain by scanuing through Emergency Room respiratory
complaints and showed high detection power for simulated outbreaks along rivers
and highways. These irregularly shaped outbreaks were connected in a simple, un-
derlying ZIP code adjacency graph (i.e. if two ZIP codes shared a boundary they
were connected). Further work in this field could create more sophisticated graph
structures for GraphScan to optimize over. These novel graphs could add additional
edges such as public transportation routes and remove some adjacency-based edges

that do not reflect a societal connection,

Chapter 3 introduced and formalized the Additive Linear Time Subset Scanning
(ALTSS) property. This property of commonly used scoring functions allows prior
information to be efficiently incorporated into the subset scan. We demonstrated
that expectation-based scan statistics from the exponential family may be written
as additive set functions when conditioning on the relative risk, g. Additive func-
tions satisfy two simple and important corollaries. First, these functions are easy to
optimize by including only the data eieménts making a positive contribution to the
scoring function. Second, additional element-specific terms may be introduced to
the scan statistic while remaining an additive set function. We proceeded to prove
that only linearly many subsets need to be scanned in order to identify the highest
scoring penalized subset. Finally, these penalty terms may be viewed as the prior
log-odds for the data element to be included in the highest scoring subset. This
assumption provides two easily interpretable results in the subset scanning frame-
work. The highest-scoring penalized subset S* = arg maxg Fpe,(S) minimizes the
total probability of error, and is also a maximum a-posteriori (MAP) estimate of the

true affected subset Sy,

Penalized Fast Subset Scanning (PFSS) is the practical implementation of the
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properties of ALTSS. Chapter 4 provided one possible interpretation of these penalty
terms as “soft” proximity constraints. Soft proximity constraints penalize spatially
dispersed clusters by basing the prior probability of inclusion for a ZIP code on its
distance from the center of the outbreak, We demonstrated that these constraints
increase the detection power and spatial accuracy of simulated aerosolized Anthrax

attacks over a populated area.

Chapters 3 and 4 provide the basis for many possible extensions. First, PFSS
is very general and readily adapted to a variety of more sophisticated prior log-
odds models. However, the more intriguing extension of this work is to develop
subset-level penalty terms. Currently, the ALTSS property and the resulting PFSS
algorithm assume that the penalty terms are element-specific and cannot depend on
other individual records or the subset in general. For example, the soft proximity
constraints of Chapter 4 are based on the distance from an individual location to a
fixed center. We are currently not able to penalize a location based on its distance to
the closest included location because that penalty term is no longer element-specific.
Efficiently optimizing over subsets constrained by subset-level penalty terms will
drastically increase the type of constraints that may be used in the subset scanning

framework.

Chapters 5 and 6 introduced Dynamic Subset Scanning. The Dynamic Subset
Scan was designed to increase the detection power for dynamic patterns that change
the affected subset over time. Chapter 5 builds on the ALTSS property by developing
a generative model for the pﬁor log-odds of a record to be included in the subset at
time step ¢ based on the optimal subset at time step t—1. These temporal consistency
constraints are derived to allow temporal information to be shared both forward and

backward in time. The Dynamic Subset Scan enforces both temporal consistency
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constraints and connectivity constraints and Chapter 6 detailed how connectivity
constraints may be enforced on additive functions through Additive GraphScan.
Additive GraphScan is a heuristic alternative to the original GraphScan algorithm
introduced.in Chapter 2. The Dynamic Scan was used to track, source-trace, and
predict contaminant plumes spreading through a water distribution system equipped
with noisy binary sensors.

One possible extension of the Dynamic Subset Scan is to recognize that subset
scanning may not be the best method for the prediction task of dynamic patterns.
Some domains may benefit from knowing the individual probabilities that a given
location will be affected at time ¢ + 1 (as compared to the most anomalous subset

“at that time) and it is unclear how to generate these probahilities for a look-ahead
window beyond ¢ + 1.

A more sophisticated extension of the Dynamic Subset Scan is to consider the
ramifications of a dynamic graph that changes edges over time. This scenario applies
to our complex food supply chain and may be used to quickly identify food-borne
contaminants that potentially spread from farms to whole-sale distributors to local
grocers and ultimately to consumers. Finally, this type of extension could also be
used in contact-tracing scenarios for identifying the spread of a contagious disease

“spread by proximity or physical contact.
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