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Abstract

This thesis consists of two parts. The first part explores a 2-d edge dislocation

model to demonstrate characteristics of Field Dislocation Mechanics (FDM) in mod-

eling single and collective behavior of individual dislocations. The second work ex-

plores the possibility of modelling adiabatic shear bands propagation within the time-

space averaged framework of Mesoscopic Field Dislocation Mechanics (MFDM). It is

demonstrated that FDM reduces the study of a significant class of problems of discrete

dislocation dynamics to questions of the modern theory of continuum plasticity. The

explored questions include the existence of a Peierls stress in translationally-invariant

media, dislocation annihilation, dislocation dissociation, finite-speed-of-propagation

effects of elastic waves vis-a-vis dynamic dislocation fields, supersonic dislocation

motion, and short-slip duration in rupture dynamics. A variety of dislocation pile-up

problems are studied, primarily complementary to what can be dealt by existing clas-

sical pile-up models. In addition, the model suggests the possibility that the tip of a

shear band can be modelled as a localized spatial gradient of elastic distortion with

the dislocation density tensor in continuum dislocation mechanics; It is demonstrated

that the localization can be moved by its theoretical driving force and forms a diffuse

traveling band tip, thereby extending the thin layer of the deformation band. A 3-d,

parallel finite element framework of MFDM is developed in a geometrically nonlinear

context for the purpose of modelling shear bands. The numerical formulations and

algorithm are presented in detail. Constitutive models appropriate for single crystal

plasticity response and J2 plasticity with thermal softening are implemented.
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Chapter 1

Overview

A shear band is a localized narrow zone of intense shearing strain representing a displacement

discontinuity across a layer that develops during severe deformation processes of ductile materials.

Shear banding usually precedes material failure since the local extreme deformation within shear

bands leads to intense ductile fracture, and therefore is a key to understanding failure mechanism

of most ductile materials (alloys, metals, granular materials, plastics, polymers and soils) or even

some quasi-brittle materials (concrete, ice, rock and certain ceramics).

An observation of shear band propagation is made by Guduru and Rosakis [60]. The Coherent

Gradient Sensing (CGS) images of Fig. 1.1 are adopted from their work. They use a single notch

geometry to act as an ideal stress concentrator for a localized plastic deformation to take place.

A shear band is then observed propagating through the specimen. Fig. 1.2 consists of a series of

micrographs taken in a pressure shear impact experiments by Zhang and Clifton [164], showing

the full extent of a shear band. The shear band initiated from a pre-crack (the fatigue pre-crack is

at bottom of the left photo), and propagated through the specimen. The shear band is recognized

as the dark band shaped region with microcracks formed subsequently after the shear band tip

propagation.

1



Figure 1.1: A sequence of CGS images showing shear band propagation from a single notch geometry in a
C300 maraging steel from 24µs to 44µs [60]

(a) (b) (c)

Figure 1.2: Micrograph of a shear band in steel initiated by a fatigue crack from notch. Figure resource:
[164]. Image on the left shows the initial portion of shear band; the one in the middle shows the middle
segment, and the one on the right shows the termination portion. Band thickness of 20 µm length of 1.28mm
The shear band is the dark band-like region within which subsequent tensile cracks open up after shear band
propagation due to wave reflections (not relevant to the main shear band related exploration)
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Shear banding has been a subject of intense research owing to its impact on material design

under extreme working conditions. In particular, considerable efforts have been made to explore

shear banding in polycrystalline metals. The explanation of the mechanism of formation of dy-

namic adiabatic shear bands in solids was first proposed by Zener and Hollomon [162], where the

process of initiation and propagation of shear bands of solids is described as follows. The localized

inhomogeneous plastic deformation in an otherwise homogeneous body causes local temperature

increase. It then results in softening of the material in the neighborhood, which locally reduces

the strength of the material to further plastic deformation. This process repeats and generates an

instability path for plastic flow that leads to the formation of a highly localized deformation zone,

the shear band. The pioneering experiment and analysis work of Kalthoff and Winkler [75] shows

that the geometrical discontinuity (or local nonhomogeneous plastic deformation) can be set up by

a pre-existing crack or notch when subjected to shear dominated loading. Such an inhomogeneity

acts ideally to initiate a shear band. Kalthoff and Winkler introduced a new way for initiation of

shear bands under the framework of dynamic fracture mechanics with this particular failure mode.

A transition of failure mode was also observed, which motivates subsequent numerical and ex-

perimental studies of the stress field at crack tips in order to quantify the failure mode transition

process. An example is the numerical simulation of the evolution of a mixed mode stress field in a

single edge notched specimen by Freund and Lee [51].

The coherent gradient sensing (CGS) technique is adopted to analyze the mixed mode stress

intensity factors in edge notched PMMA specimens in Mason [96]. Their results are closely com-

pared with those from Lee and Freund [51] and Kalthoff and Winkler [75]. Tracking of evolving

stress field around crack tips in a polycarbonate specimen was done in Ravi-Chandar [125]. It

reveals a number of observations about failure mode transition and also clarifies findings in [75].

Agreement was found in opening crack angle from Ravi-Chandar’s work and the numerical pre-

dictions in the paper of Lee and Freund, 1990. Ravi-Chandar tried to report failure mode transition

which was again numerically analyzed in Ravi-Chandar [126] but failed to give detailed evolu-

tion of stress intensity factors. Failure mode transition was also studied in the work of Needle-
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man and Tvergaard [145] by using the Gurson model (porous plastic solid model). All works of

[125, 126, 145] found that the crack tip is diffuse due to the softening region developing ahead of

the crack tip, which keeps the tip from forming opening cracks, and instead facilitates the growth

of a shear band. The above numerical models were only able to explain the failure mode transition

but not to provide a criteria for mode selection. The works of Zhou [165], Chen and Batra [20],

Roessig and Mason [133], Rittel and Levin [131] are efforts in this direction.

All the above works are concerned with the special case of a shear band that initiated by a

notch or a crack tip and developed under mode II loading during which failure mode transition

took place. However, other scenarios of shear banding also drew attention, eg. Rogers [134], Bai

[18], Clifton [35], Molinari and Clifton [100], Shawki and Clifton [142] and Bai and Dodd [161].

Mode III crack induced shear banding was observed in the pressure-shear impact experiments of

Zhang and Clifton [164] (mode II also works in their experiment set up). Their analysis treats the

propagating shear band as a shear crack in a linear elastic material, same as Freund and Lee [51].

Traction on the crack face was applied corresponding to the yield stress of the material in the wake

of the propagating crack tip. With assumptions of uniform propagation velocity they conclude that

the shear band velocity should be

cb =

(
τ ∗

τ p

)2

c

τ ∗ =
ρc

2
v0

(1.1)

where cb is the velocity of the shear band tip, c is the elastic shear wave speed, τ ∗ is the stress in

the purely elastic material behind the plane wave front that carries the impact velocity pulse, ρ is

the mass density and v0 is the transverse velocity of the flyer, and τ p is the yield stress in shear of

the material. The experimental cb was found to be 4 times larger. Thus they had to reduce τ p to

reconcile this fracture mechanics based analysis with experimental results.

Finite Element simulation methods can be found in Zhou and Needleman [166], Leroy and

Ortiz [83], Nacar, Needleman and Ortiz [105] and Petryk and Thermann [117]. Closed form

solution, limited to plane strain problem, called perturbative approach was developed in Bigoni

and Capuani [22], Bigoni and Dal Corso [37], Wright and Walter [158] and Gioia and Ortiz [56]
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through J2-deformation theory of plasticity, where shear bands are treated as finite-length slip

surface that perturbs a pre-stressed ductile material. Li, Liu, Rosakis, et al. [85, 86] present

mesh-free simulations of a propagating shear band under the assumption that the newly formed

localization zone suffers a stress collapse by manually setting the critical stress.

Besides Clifton model, there primarily exist another two constitutive models that have long

been used to explain the occurrence of adiabatic shear bands for metals: Zerilli and Armstrong

model [17], the Johnson Cook model [73]. The Johnson Cook model is established based on

fracture mechanics which has the characteristic that the slope of flow stress curve is indepen-

dently affected by strain hardening, strain rate sensitivity and thermal softening. The Zerilli and

Armstrong model is based on dislocation mechanics although with empirical dislocation velocity

function. The model develops flow stress method by considering a blocked dislocation pile up on

a slip plane which leads to extensive strain and causes shear bands forming.

Many works also focus on shear bands in materials other than polycrystalline metals. Investiga-

tion of shear bands in geo-materials (granular and soils) includes the work of Lanier and Stutz [41],

Drescher, Vardoulakis and Han [42], Poirier, Ammi, Bideau, and Troadec [120], Gajo, Bigoni,

Muir and Wood [53] and Gajo, Wood and Bigoni [54]. Shear bands in polymers and quasi-brittle

materials include works in Evans, Zok and Davis [44], Lin, Geubelle and Sottos [90], Vaughan,

McCarthy [149], Golding, Schulson and Renshaw [57] and Van der Meer, Oliver and Sluys [147].

Shear bands in amorphous materials can be found in the work of Greer, et al. [58, 84, 163].

Field Dislocation Mechanics theory was developed by Acharya [2, 3, 4, 6, 7] and Acharya and

Roy [8]. Its basis lies in a kinematically faithful representation of dislocation motion and calcu-

lation of internal stress. FDM builds on the pioneering works of Kröner [79], Mura [102], Fox

[47], and Willis [156] that almost exclusively develop the static elastic theory of continuously dis-

tributed dislocations, and extends this body of work to account for dissipative dislocation transport

and nonlinearity due to geometric and crystal elasticity effects. FDM describes dislocation behav-

iors as nonlocal field variables that accounts for lattice incompatibility. For crystalline materials,

FDM represents defects in the crystal lattice at the atomic scale but a space-time averaged FDM
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allows simulations at the meso and macro scales [7, 8]. Therefore, the dislocation density field,

which denotes the density of curves carrying a vectorial attribute Burgers’ vector, is defined at ev-

ery modeling scale. In addition, the dislocation density fields (or localized non-singular curve) can

glide perpendicular to the line direction locally, driven by the continuum thermodynamic force.

This has the effect that the deformation band expands only through transport of the band-tip pro-

ducing a propagating zone of plastic deformation.

The experimental observations and above arguments motivate the work of modelling shear

bands within the framework Mesoscopic Field Dislocation Mechanics (MFDM), which is primarily

based on the following reasons.

1. Due to the spatial (mm) and time (µs) scale limitation of shear bands, a PDE based approach

is more rational and practical than Molecular Dynamics. On the other hand, FDM is capable

of incorporating finer scale information generated by MD or DFT if necessary.

2. There exists no other continuum mechanics based model that allows the tracking of the

deformation band tip kinematically. FDM allows the existence and propagation of a localized

region of plastic strain gradient at the tip of the shear band, extending the thin layer of the

band, which is the essential kinematical features of shear band evolution. This is a key

feature of shear band propagation that no other continuum mechanics model provides.

3. Shear bands involve large deformation that geometrically linear theory cannot resolve. A

finite deformation theory of FDM is available from Acharya [4, 7].

This work develops prior works of Acharya [4, 7] which, for the first time, gives the full de-

scription of finite-deformation Field Dislocation Mechanics. The space-time averaging FDM, i.e.,

MFDM is brought forward in Acharya and Roy [8]. MFDM gives exact, non-closed equations.

One alternative for providing such closure is through well established phenomenological consti-

tutive equations. When this is done, the resulting model is referred as Phenomenological Field

Dislocation Mechanics as demonstrated in Roy and Acharya [137]. PMFDM has been applied to

simulating many practical plasticity problems. For example, Puri [124] models the effect of surface

passivation, grain orientation, grain boundary constraints and film thickness on the mechanical re-
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sponse of multi-crystalline thin films. Compared with PMFDM, gradient plasticity models (Fleck

and Hutchinson [46], Gurtin [63], Evers, Brekelmans and Geers [45], Acharya and Beaudoin [1],

Beaudoin, et al. [21]) are able to predict size effects in stress-strain curves but not to predict mi-

crostructure. Other alternatives include atomistic continuum approach (Ortiz and Phillips [144])

and Discrete dislocation plasticity models (Lepinoux,Kubin [82], Van der Giessen and Needle-

man [146], Weygand, et al. [154]) with varying degrees of advantages and disadvantages. The

advantage of FDM over standard/classical plasticity treatment has been demonstrated by doing

numerical tests in Fressengeas, et al. [49]. A mesoscale theory of dislocation motion formed in

the series of works of Limkumnerd and Sethna [87, 88, 141], Chen, et al. [31] and Choi, et al.

[33] shares the same kinematic law and constitutive structures of (PM)FDM. A 3D simulation of

the theory was presented for the first time in the work of Chen, et al. [32], which shows very

interesting microstructure development and scaling behavior related to subgrain boundaries.

1.1 Notation terminology

Vectors are represented by boldface letters. A superposed dot represents a material time derivative.

A subscript x or t represents partial differentiation with respect to x or t, respectively. The sum-

mation convention is implied. A second (or higher) order tensor A acting on a vector v is denoted

by A v and the inner product of two second-order tensors A and B is represented by A : B. The

indicial form with respect to rectangular Cartesian bases are A v = Aijvj and A B = AijBij

respectively. Let c be a spatially constant vector field; the cross product, divergence, and curl are

defined as
(A× v)T c = (AT c)× v ∀c

(divA) c = div(AT c) ∀c

(curlA)T c = curl(AT c) ∀c,

(1.2)
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with component representation with respect to rectangular Cartesian coordinate systems given by

(A× v)im = emjkAijvk

(divA)i = Aij,j

(curlA)im = emjkAik,j,

(1.3)

where emjk are components of the third-order alternating tensor. In writing numerical schemes,

the discrete version of the scalar field φ(x, t) is represented by φk(xh) representing the value of the

function φ evaluated at the spatial location xh and at the kth discrete time level.
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Chapter 2

2-D Straight edge dislocation model derived

from FDM

This chapter 1 explores some qualitative aspects of Field Dislocation Mechanics (FDM), a nonlin-

ear, partial differential equation (pde)-based model of the mechanics of dislocations. The physical

phenomena explored correspond to behaviour of individual or a collection of few dislocations.

In particular, we analyse phenomena complementary to what can be dealt with by the Discrete

Dislocation Dynamics methodology in a fundamental manner. Specifically, we explore

• Peierls’ stress effects in a translationally-invariant continuum theory like FDM.

• Dislocation annihilation and dissociation as consequences of fundamental kinematics and

energetics and not targeted constitutive rules for the phenomena.

• Dislocation dynamics in the presence of significant effects of material inertia, including

finite-speed-of-propagation effects of elastic waves and dislocation motion past sonic speeds.

• Dislocation dynamics with nonlinear elasticity.

• Short-slip duration in rupture dynamics.

1Chapter 2 and 5 are excerpted from a manuscript submitted for publication, co-authored with Amit Acharya, Noel
Walkington and Jacobo Bielak.
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In this work we utilize an ansatz to produce an exact, reduced, plane model of FDM. Our model

is built on the previous work of [6] where a 1-d FDM model was derived and further explored

numerically in [38]. The 1-D model, taking the form of a nonlinear Hamilton-Jacobi equation,

governs the evolution of plastic shear strain in a 1-d bar. Mathematical analysis of traveling waves

in the model for the scalar case was performed in [12]; global existence and uniqueness for the

1-d space × time system was analysed in [9]. Our work generalizes the 1-D model to plane strain

where edge dislocations exist and glide horizontally along a prescribed plastic layer. The plastic

evolution is governed by a similar 1-d model as derived in [6], but now nonlocal if viewed solely as

an equation in terms of the plastic strain, with the 3-d dissipation maintained non-negative without

approximation. This results in a useful model that is amenable to reasonably efficient and accurate

numerical simulation.

This chapter is organized as follows: In Section 2.1 we briefly recall the full 3-D FDM theory

in the geometrically linear framework. We describe the derivation of the 2-d model in Section 2.2.

The numerical schemes utilized in the chapter are described in Section 2.3. Equilibrium aspects

of the system are discussed in Section 2.4. Features of the model related to dislocation motion

under quasi-static deformations are presented in Section 2.5 and results on dynamics with inertia

are presented in Section 2.6.

2.1 Field Dislocation Mechanics

Field Dislocation Mechanics [2, 3, 4, 6, 7] is a pde-based model for understanding plasticity of

solids as it arises from the nucleation, motion and interaction of defects in the elastic deformation

of the material. It builds on the pioneering works of Kröner [79], Mura [102], Fox [47], and

Willis [156] that almost exclusively develop the static elastic theory of continuously distributed

dislocations, and extends this body of work to account for dissipative dislocation transport and

non-linearity due to geometric and crystal elasticity effects. Preliminary thoughts and early efforts

in modeling time-dependent dislocation dynamics within a pde framework are [28, 29, 157]. More
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mature models are those of [16, 40, 132, 143, 152, 159] and the variational framework of [78], none

with the generality to deal with all three physical features of evolution of cores, nonlinear elasticity,

and material inertia. Importantly, all of these models agree, implicitly at least, on the relationship

between elastic incompatibility and the dislocation density given by curlUe = α. This kinematic

relationship implies an evolution statement for the total dislocation density tensor in the form

of a conservation law for a vector-valued 2-form (and that is all) that geometrically constrains

conversions of, for example, dislocations from one slip plane to another aided further by energetics

and kinetics. At the scale of resolving individual dislocations, such an evolution statement coupled

with the other laws of continuum mechanics, constitutive equations for the free energy density and

a single dislocation velocity field is sufficient to generate a closed theory. In FDM, we work with

exactly such a model. In the other models mentioned above the basic descriptors of dislocation

fields take a variety of different forms including the number of such fields required, and a separate

evolution statement for each such descriptor is prescribed for this varying collection of fields. Of

course, all such statements have to be consistent with the fundamental conservation law for the

total dislocation density mentioned above (which also implies, more-or-less, an evolution for the

whole plastic distortion tensor), and it is not clear how this is attained in the various models.

In this chapter, we largely work with the small deformation theory. The complete set of equa-

tions of FDM is

Ue := grad (u− z) + χ; Up := gradz− χ

curlχ = α = curlUe = −curlUp elastic incompatibility

divχ = 0

div (gradż) = div (α×V)

div [T (Ue)] + f = ρü balance of linear momentum

α̇ = −curl (α×V) conservation of Burgers vector content



on B. (2.1)

The various fields are defined as follows. χ is the incompatible part of the elastic distortion

11



tensor Ue , u is the total displacement field, and u− z is a vector field whose gradient is the com-

patible part of the elastic distortion tensor. Up is the plastic distortion tensor. α is the dislocation

density tensor, and V is the dislocation velocity vector. α × V (plastic strain rate with physical

dimensions of time−1) represents the flow of Burgers vector carried by the dislocation density field

moving with velocity V relative to the material. For the sake of intuition, indeed, when α = b⊗ l

with b perpendicular to l (an edge dislocation) and V in the plane spanned by b and l, α×V rep-

resents a simple shearing (strain rate) in the direction of b on planes normal to l×V. The argument

of the div operator in Eqs. (2.1)5 is the (symmetric) stress tensor, f is the body force density, and

the functions V , T are constitutively specified. All the statements in Eqs. (2.1) are fundamental

statements of kinematics or conservation. In particular, Eqs. (2.1)6 is a purely geometric statement

of conservation of Burgers vector content carried by a density of lines (see [7] for a derivation) and

Eqs. (2.1)5 is the balance of linear momentum.

As for boundary conditions,

χn = 0

(grad ż−α×V) n = 0

 on ∂B (2.2)

are imposed along with standard conditions on displacement and/or traction.

The equations of FDM outlined above can be shown to imply a non-local continuum plasticity

model whose stress response and plastic strain response are given as [6]

T = T̂ (gradu−Up)

U̇p = −curlUp × V̂ (T,Up, curlUp)

(2.3)

where the constitutive functions T̂,V̂ are, in large part, guided by the structure of FDM.

2.2 2-D Straight edge dislocation model derived from FDM.

The content of this section is excerpted from [10] and included here for completeness.
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Figure 2.1: Geometry of the problem.

We consider the geometry shown in Fig. 2.1;

Ω = {(x, y) : (x, y) ∈ [−W,+W ]× [−H,+H]} ,

L = {(x, y) : (x, y) ∈ [−W,+W ]× [−b,+b]} ,

0 < b < H, W > 0.

In our notation we use x ≡ x1 and y ≡ x2, synonymously. The model may be viewed as a

composite comprising two outer regions, Ω \L, whose stress response is purely linear elastic, and

the layer L, of width 2b, whose response is elastic-plastic and where edge dislocations exist and

FDM is active. The displacement fields u is continuous on the entire domain. We interpret the slip

field in the layer as:

δ(x, t) =

∫ +b

−b
u1,2(x, y, t)dy = u1(x, b, t)− u1(x,−b, t). (2.4)

This field does not play an explicit role in the constitutive modeling, due to the latter’s inherently

bulk nature in our model, but we use it for discussing results related to tectonic rupture dynamics in

Section 2.6.4. The dissipation on the whole body, defined as the difference of the rate of working
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of external forces and the rate of stored energy in the body, arises only from the layer (since

everywhere else the body is elastic). Assume a stored energy density function of the form

ψ (εe,α) + η (Up) , (2.5)

with stress given by T = ∂ψ/∂εe , where εe is the symmetric part of the elastic distortion Ue. The

function ψ is assumed to be positive-definite quadratic in εe and the function η is multi-well non-

convex, endowing the energy function with barriers to slip and conferring preferred energetic status

to certain plastic strains than others. Together, these two functions enable the robust modeling

of overall total strain distributions in the layer displaying localized, smooth transitions between

slipped and unslipped regions (or between the preferred strain states encoded in η). This crucially

requires adding an energetic penalty to the development of high values of the dislocation density

α, referred to as a core energy. In effect, the linear elastic stress and the core term tend to prevent

a sharp discontinuity and the driving force from the non-convex η term promotes the discontinuity,

and it is the balance between these thermodynamic forces that sets the dislocation core width

at equilibrium. Interestingly, it can be shown that while in the presence of just one component

of plastic distortion only the linear elastic term suffices to give a finite core width (paralleling a

fundamental result due to Peierls [110]), with more than one component, the core regularization

from the α term is essential [9, 89]. It is to be noted that the core energy is a fundamental physical

ingredient of our model and not simply a mathematical regularization. In general, it is not expected

to have the simple ‘isotropic’ form assumed here and, in fact, its characterization furnishes our

model with a direct route of making contact with (sub)atomic physics [72, 99].

The dissipation in the model can be written as

D =

∫
L

(
T− ∂η

∂Up

)
: U̇pdv +

∫
L

∂ψ

∂α
: curl (α×V) dv

=

∫
L

(
T− ∂η

∂Up

)
: (α×V) dv +

∫
L

curl

(
∂ψ

∂α

)
: α×Vdv

+

∫
∂L

∂ψ

∂α
: (α×V)× nda
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where n is the outward unit normal field to the body.

In the layer assume the ansatz

Up (x, y, t) = Up
12 (x, y, t) e1 ⊗ e2 + Up

22 (x, y, t) e2 ⊗ e2

:= φ(x, t)e1 ⊗ e2 + ω(x, t)e2 ⊗ e2

(2.6)

where the functions φ(x, t), ω(x, t) need to be defined.

Then

α (x, y, t) = − curl Up (x, y, t) = −φx (x, t) e1 ⊗ e3 − ωx (x, t) e2 ⊗ e3 (2.7)

and

curlα (x, y, t) = φxx (x, t) e1 ⊗ e2 + ωxx (x, t) e2 ⊗ e2.

In keeping with the 2-d nature of this analysis and the constraint posed by the layer on the disloca-

tion velocity, we assume

V (x, y, t) = V1 (x, y, t) e1 := v(x, t)e1

where v(x, t) needs to be defined.

Note that with these assumptions, the boundary term in the dissipation vanishes for the hori-

zontal portions of the layer boundary. We also assume

∂ψ

∂α
= εα,

where ε is a parameter with physical dimensions of stress × length2 that introduces a length scale

and essentially sets the width of the dislocation core, at equilibrium. For specific simplicity in this

problem, we impose α = 0 on vertical portions of the layer boundary by imposing φx (±W, t) =

ωx (±W, t) = 0.
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With the above ansatz, the conservation law α̇ = − curl (α×V) reduces to

φt (x, t) = −φxv (x, t) or α̂1t = − (α̂1v)x

ωt (x, t) = −ωxv (x, t) or α̂2t = − (α̂2v)x ,

(2.8)

where α̂1 := −φx = α13 and α̂2 := −ωx = α23. Equation 2.8 defines the evolution equations for

the plastic distortion components φ, ω once v is defined as a function of (x, t).

We now consider the dissipation

D =

∫
L

V1

{
e1j3

(
T − A+ ε(curlα)T

)
jr
αr3

}
dv Ajr :=

(
∂η

∂Up

)
jr

=

∫
L

v (x, t)


[T12 (x, y, t)− A12 (x, t) + εφxx (x, t)] (−φx (x, t))

+ [T22 (x, y, t)− A22 (x, t) + εωxx (x, t)] (−ωx (x, t))

 dv.

We make the choice

v(x, t) :=
−1

Bm lm−1 |α̂|m (x, t)


φx(x, t)

[
τ(x, t)− τ b(x, t) + εφxx(x, t)

]
+ωx(x, t)

[
σ(x, t)− σb(x, t) + εωxx(x, t)

]


m = 0, 1 or 2

τ(x, t) :=
1

2b

∫ b

−b
T12(x, y, t)dy; τ b := A12

σ(x, t) :=
1

2b

∫ b

−b
T22(x, y, t)dy; σb := A22

(2.9)

(i.e. kinetics in the direction of driving force [128], in the context of crystal plasticity theory),

where B̂ = Bm l
m−1|α̂|m is a non-negative drag coefficient that characterizes the energy dissipa-

tion by specifying how the dislocation velocity responds to the applied driving force locally and l

is an internal length scale, e.g. Burgers vector magnitude of crystals. For simplicity, we assume the

drag to be a scalar but in general its inverse, the mobility, could be a positive-semidefinite tensor.

In general, it is in B̂ that one would like to model the effect of layer structural inhomogeneities

impeding dislocations as well as the effect of other microscopic mechanisms of energy dissipation
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during dislocation motion.

The parameter Bm is expected, in general, to be a function of m; however, for all values of

m, Bm has physical dimensions of stress × time × length−1, and introduces another length scale

related to kinetic effects.

Then the dissipation becomes

D =

∫
L

1

Bm lm−1|α|m(x, t)


φx(x, t)

[
τ(x, t)− τ b(x, t) + εφxx(x, t)

]
+ωx(x, t)

[
σ(x, t)− σb(x, t) + εωxx(x, t)

]


2

dxdy

+ R,

where

R =

∫ x=+W

x=−W
−v(x, t)


φx(x, t)

∫ b

−b
[T12(x, y, t)− τ(x, t)] dy

+ωx(x, t)

∫ b

−b
[T22(x, y, t)− σ(x, t)] dy

 dx.

Recalling the definitions of the layer-averaged stresses τ, σ in (2.9), we observe that

R = 0 and D ≥ 0.

To summarize, within the class of kinetic relations for dislocation velocity in terms of driving

force, positive dissipation along with the (global) conservation of Burgers vector content governs

the nonlinear and nonlocal slip dynamics of the model. Essentially, slip gradients induce stress and

elastic energy and the evolution of the dislocation is a means for the media to relieve this energy,

subject to conservation of mass, momentum, energy, and Burgers vector.

To further simplify matters, we make the assumption that ω ≡ 0, i.e. no normal plastic strain in

the composite layer. Suppressing the argument (x, t), the governing equation for the plastic shear

strain now becomes

φt =
|φx|2

Bm lm−1|α|m
(τ − τ b + εφxx).

The parameter m can be chosen to probe different types of behaviour. Especially, m = 0 corre-
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sponds to the simplest possible (linear) kinetic assumption. Recall that

τ(x, t) :=
1

2b

∫ b

−b
T12(x, y, t)dy and τ b(x, t) =

∂η

∂φ
.

For the stored energy, we assume the form

1

2
εe : Cεe + η(Up) +

1

2
ε|α|2, (2.10)

where εe is the elastic strain tensor. The non-convex energy density function is chosen to be a

multiple well potential, with the plastic shear strain values at its minima representing the preferred

plastic strain levels. A typical candidate that we utilize in this chapter is

η =
µφ̄2

π2

(
1− cos(2π

φ

φ̄
)

)
. (2.11)

The displacement field in the model satisfies

ρüi = Tij,j in Ω

where, for an isotropic material,

Tij = λεekkδij + 2µεeij,

λ, µ being the Lamé parameters and

Eij :=
1

2
(ui,j + uj,i)

εeij = Eij in the elastic blocks, i.e. Ω \ L

εe12 = εe21 = E12 −
φ

2
; all other εeij = Eij in the fault layer L,
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where i, j take the values 1, 2. The governing equations of the system are thus


ρ
∂2ui
∂t2

=
∂Tij
∂xj

in Ω

∂φ

∂t
=

1

Bm lm−1

∣∣∣∣ ∂φ∂x1

∣∣∣∣2−m(τ − τ b + ε
∂2φ

∂x1
2

)
in L.

(2.12)

We make the choice l = b (fault zone width in rupture dynamics; in crystals, a measure of the

interatomic spacing). Then dimensional analysis suggests introducing the following dimensionless

variables:

x̃ =
x

b
, t̃ =

Vst

b
, ũ =

u

b
, T̃ =

T

µ
, τ̃ b =

τ b

µ
, ε̃ =

ε

µb2
, B̃m =

Vs
µ/Bm

(2.13)

where µ is the shear modulus and Vs =
√
µ/ρ is the elastic shear wave speed of the material. The

non-dimensional drag number B̃m represents the ratio of the elastic wave speed of the material to

an intrinsic velocity scale of the layer material. The non-dimensionalized version of Eqs. (2.12)

reads as: 
∂2ũi

∂t̃2
=
∂T̃ij
∂x̃j

in Ω

∂φ

∂t̃
=

1

B̃m

∣∣∣∣ ∂φ∂x̃1

∣∣∣∣2−m(τ̃ − τ̃ b + ε̃
∂2φ

∂x̃1
2

)
in L.

(2.14)

The system (2.14) admits initial conditions on the displacement and velocity fields ũi, ˙̃ui and

the plastic strain φ. As mentioned before, we apply the Neumann condition φx = 0 on the left

and right boundaries of the layer L and for (2.141) we utilize standard prescribed traction and/or

displacement boundary conditions.

2.2.1 B̃m � 1: Quasi-static, rate-dependent response

We consider a generic, appropriately nondimensionalized, loading parameter (either applied trac-

tion or displacement b.c.s) that evolves as

dτa

dt̃
= Γ, (2.15)
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where Γ � 1 is a dimensionless loading rate, assumed to be tunable to be as small as required. The

restriction to monotonic loading is not essential, but will suffice for our purposes in this chapter.

We now introduce a slow time scale

s =
t̃

B̃m

(2.16)

and pose the governing system (2.14) in this slow time scale:

1

B̃2
m

∂2ũi
∂s2

=
∂T̃ij
∂x̃j

∂φ

∂s
=

∣∣∣∣ ∂φ∂x̃1

∣∣∣∣2−m(τ̃ − τ̃ b + ε̃
∂2φ

∂x̃1
2

)
dτa

ds
= ΓB̃m.

We note that B̃m � 1, and require Γ ≤ B̃−1
m . Moreover, we assume evolutions restricted to

∂2ũi
∂s2

= O(1) (in the limit B̃m →∞) to obtain the quasi-static system

0 =
∂T̃ij
∂x̃j

∂φ

∂s
=

∣∣∣∣ ∂φ∂x̃1

∣∣∣∣2−m(τ̃ − τ̃ b + ε̃
∂2φ

∂x̃1
2

)
dτa

ds
= O(1).

(2.17)

For m = 2, (2.172) has the form of a nonlocal Ginzburg-Landau (NGL) equation and for

m = 1, that of a nonlocal level set (NLS) equation. To our knowledge, the case m = 0 corre-

sponding to the simplest and most natural constitutive assumption for the dislocation velocity (i.e.

a linear kinetic ‘law’) seems not to have been previously considered. We name it the nonlocal

generalized Burgers (NGB) equation based on the following reasoning: when the coefficient of

the first derivative term is a constant, the equation is indeed, up to a rescaling in time, the inviscid

Burgers equation in Hamilton-Jacobi form. Of course, the coefficient is not a constant and contains

a ‘viscous regularization’ that comes not as a uniform, linear parabolic term as in Burgers’ original

equation, but in a degenerate quasilinear parabolic form (see [9] for some implications), along with
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nonlocal and nonmonotone contributions. Regardless, for the lack of a better choice, the necessity

of having a name to refer the equation by, and a desire to note the wonderful confluence of J. M.

Burgers’ contributions in fluid dynamics and crystal dislocations within our model, we christen the

equation by the name we have adopted. Indeed, a distinguishing feature of Burgers equation is the

modeling of shape-change of a wave profile with time-evolution and we find that it is this property

of our NGB equation that allows it to predict a Peierls stress-like threshold for dislocation motion.

The quasi-static system (2.17) evolves on a time scale set by the drag coefficient under very

slow or static loadings. Physically, we may expect this model to be of relevance to slipping in

geomaterials and special situations in rupture dynamics [36, 138], and polymeric composites under

very slow loading rates.

2.2.2 B̃m < 1: Quasi-static, rate-independent response

This case is relevant to dislocation motion in crystalline materials under slow loadings. For dis-

location motion well below the speed of sound, a typical value of the dislocation drag coefficient

used in discrete dislocation methodology is 10−4Pa ·s for Aluminum [81]. The ratio of the product

of the magnitudes of the shear stress acting on a discrete dislocation and its Burgers vector to this

parameter, say BDD, is assumed to be the constitutive equation for the magnitude of the discrete

dislocation’s velocity. In order to estimate the magnitude of Bm for our model corresponding to

crystalline materials, we consider (2.12)2 for m = 1 and observe that the coefficient of
∣∣∣ ∂φ∂x1 ∣∣∣ corre-

sponds to the velocity of a slip front (whose derivative represents a dislocation herein) since, for a

φ profile monotone increasing/decreasing in x, this is just the first-order wave equation (cf. [148]).

In particular, if τd is a constant applied stress value and b the Burgers vector magnitude,

τd
B1

=
τd b

BDD

,
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which is just the statement of equality of speeds of dislocations in discrete dislocation methodology

and our model, for m = 1. Using the abovementioned value of BDD from [81], we obtain

B̃1 = 0.0297 (2.18)

after non-dimensionalization according to (2.13). As mentioned earlier, Bm, for all values of m,

has the same physical dimension as B1 and in the following we assume them as having a common

value except in one instance which we explicitly mention in Section 2.6.1. The non-dimensional,

quasi-static systems analyzed herein (2.17, 2.20) do not require explicit consideration of the values

of Bm.

We consider slow loading of the type (2.15) with Γ � 1, and a slow time scale of the form

s = Γ t̃.

On this time scale, the governing equations (2.14) take the form

Γ 2∂
2ũi
∂s2

=
∂T̃ij
∂x̃j

ΓB̃m
∂φ

∂s
=

∣∣∣∣ ∂φ∂x̃1

∣∣∣∣2−m(τ̃ − τ̃ b + ε̃
∂2φ

∂x̃1
2

)
dτa

ds
= 1.

(2.19)

Noting that Γ � 1 and B̃m < 1, we obtain the following quasi-static system:

0 =
∂T̃ij
∂x̃j

0 =

∣∣∣∣ ∂φ∂x̃1

∣∣∣∣2−m(τ̃ − τ̃ b + ε̃
∂2φ

∂x̃1
2

)
dτa

ds
= 1.

(2.20)

On time intervals in which (2.20) is an accurate approximation of the actual dynamics, the equiv-
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alent dynamics viewed on the fast time scale is (2.14), appended with

dτa

dt̃
≈ 0.

We note an important fact related to the appropriateness of quasi-static systems like (2.20).

Consider Υ andΦ as the ũi(·) and ϕ(·) fields on the body (viewed as functions of spatial coordinates

alone) that satisfy the first two equations of (2.20) subject to boundary conditions for a particular

value of the load τa (the load here can be thought of as a function on the boundary of the body).

This can be stated abstractly as the fact that (Υ, Φ, τa) satisfy the functional equations

F (Υ, Φ, τa) = 0.

Suppose now that the solution set of (Υ, Φ, τa)-triples of the functional equation F = 0 (the equi-

librium set) admits connected one-dimensional paths. Let one such path be (Υ (s), Φ(s), τa(s)),

where the function τa satisfies (2.203). Then one can compute first and second partial derivatives

with respect to s of the fields ũi and ϕ corresponding to this ‘equilibrium’ path and, in general,

these are not expected to vanish, even though the path belongs to the equilibrium set. However,

due to the availability of the small parameters in (2.19), such a time-dependent ‘solution’ may be

considered an appropriate approximate solution of the system (2.19). It is a remarkable fact that

the full dynamics often does follow these equilibrium paths to a very good approximation. How-

ever, situations arise when states are reached along such paths where dτa

ds
can no longer be linked

uniquely to (dΥ
ds
, dΦ
ds

). In these circumstances, the quasi-static system (2.20) provides no guidance

on the actual evolution and only the full dynamics can decide whether jumps, on the slow time

scale, between two equilibrium paths take place (if the τa corresponds to multiple states on the

equilibrium set at the instant of the jump) or a single equilibrium path can be followed, or the

equilibrium set is abandoned forever by the actual dynamics. At such instants, the time-derivatives

in (2.19) become unbounded and (2.20) is no longer an appropriate representation of the dynamics

(2.19). The time derivatives in the fast system (2.14) remain well-behaved, and it is this system
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that needs to be considered for accurate information on the actual dynamics.

When (2.20) is valid, (dΥ
ds
, dΦ
ds

) associated with any state on an equilibrium path is related to dτa

ds

through a linear operator that solely depends on the said state. This represents rate-independent

response where the model has no internal time-scale and the evolution of fields depend on the rate

of loading through a homogeneous function of degree 1.

2.3 Numerical Schemes

We gather the dimensionless governing equations in one place for convenience and then provide

the numerical schemes for solving the equations:


∂2ui
∂t2

=
∂Tij
∂xj

in Ω

∂φ

∂t
=

1

B̃m

∣∣∣∣ ∂φ∂x1

∣∣∣∣2−m(τ − τ b + ε
∂2φ

∂x1
2

)
in L

(2.21)

where
Tij = Cijkl (uk,l − Up

kl)

Cijkl = λδijδkl + µ (δikδjl + δilδjk)

τ b =
2µφ̄

π
sin

(
2π
φ

φ̄

)
.

Material properties are controlled by the Lamé constants λ, µ and the dimensionless drag coeffi-

cient B̃m together with the core energy ε ≈ µb2. In general, the Finite Element Method (FE) is

used to solve the equation for balance of linear momentum in a staggered scheme that utilizes the

plastic distortion Up as a given quantity obtained by evolving Up (or φ) in the remaining part of

the scheme. The general computing flow is shown in Fig. 2.2.
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Given material properties, initial conditions
(φ0 and u0), boundary conditions, total time
TT , loading history, initial time t = 0

Given uk and φk , calculate φk+1 with upwind-
ing finite difference method. Solve divT = ρü

for uk+1 with standard Galerkin and cen-
teral difference method based on φk and uk

k = k + 1, t = t + 4t. repeat until t ≥ TT

(a) dynamic equations

Given material properties, initial conditions (φ0), boundary
conditions, total time SS, loading history, initial time s = 0

Given uk and φk , calculate φk+1 with upwinding finite
difference method. With φk+1 solve divT = 0 for
uk+1 using standard Galerkin method based on φk+1

k = k + 1, s = s + 4s. repeat until s ≥ SS

(b) quasi-static equations

Figure 2.2: Flow charts for dynamic (Eqs. (2.14)) and quasi-static (Eqs. (2.17)) models: φ and u are
unkonwn plastic strain and displacement fields. T is Cauchy stress.

An FE mesh with an embedded 1-d finite difference grid is used. We use linear quadrilateral

elements, with 5× 5 Gauss quadrature points. Two types of FE meshes are created and used:

1. Mesh A: elements are of uniform size over the whole domain.

2. Mesh B: elements are refined in and around the layer area.

Mesh A is used in Sec. 2.6 as it allows capturing stress wave propagation accurately over the

whole body. Mesh B is used primarily to study the Peierls’ stress problem, e.g., in Sec. 2.5.1 and

2.5.1. This is because we need a highly refined mesh in the layer to make statements independent

of mesh size. We utilize regular quadrilateral elements of uniform size within the layer. Outside

the layer, the size of the elements increases gradually as they get further from the layer. The layer

is discretized up to 40 elements per Burgers vector, as required, while keeping the overall number

of elements less than 150× 103 (Fig. 3.1).

The 1-d, finite difference grid is embedded in the layer, coincident with the line y = 0. Recall

that the layer L is always uniformly meshed (for both meshes A and B). Suppose that the layer is

meshed into M rows and N columns, where N is the total number of 1-d grid points and M is

always an odd number so that the middle row of elements always have centres on y = 0. Each

column of FE elements in the layer correspond to exactly one grid point. Let xk be the x coordinate

of the kth 1-d grid point, which is at the center of the kth element in the (M + 1)/2 row of layer

elements. The value of Up at each Gauss point within column k is then set to be φ(xk)e1 ⊗ e2,
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where φ(xk) is the value of φ evaluated at the kth grid point. Recall that the layer stress τ(xk)

is defined as 1
2b

∫ b
−b T12(x, y, t) dy. Let T12(I, k) denote the stress component T12 at the I th Gauss

point whose x coordinate is xk, and let Nk be the total number of such Gauss points. Then τ(xk)

is calculated as

τ(xk) =
1

Nk

(
Nk∑
I=1

T12(I, k)

)
.

Figure 2.3: An example of FE mesh used in section 2.5.1. Elements are refined in and around the layer.

2.3.1 Algorithm for evolution problems

The numerical scheme developed in [38] is adopted and improved to solve (2.21)2, the φ evolution2.

The basic idea is to infer the direction of wave propagation from the linearization of (2.21)2 and

use this direction in the actual nonlinear equation. Let4t be the time step and4h the spatial grid

size of the finite difference grid. Due to the necessity of very small element sizes to demonstrate

convergence, an explicit treatment of the diffusion term in (2.21)2 becomes prohibitive because of

a 4t = O(4h2) scaling. This is circumvented by treating the φxx term implicitly, resulting in a

2We thank Dr. Amit Das for his help regarding certain aspects of the implementation described in this Section.
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linearly implicit scheme as follows. We first linearize (2.21)2 and discretize:

δφkt (xh) = −(2−m)

(
−sgn

(
φkx (xh)

)
B̃m

)∣∣φkx(xh)∣∣1−m [τ k (xh) + εφk+1
xx (xh)−

(
τ b (xh)

)k]
δφkx (xh)

+

∣∣φkx (xh)
∣∣2−m

B̃m

[
εδφkxx (xh)

]
+

∣∣φkx (xh)
∣∣2−m

B̃m

[
τ b
′
(xh) δφ

k(xh)
]
,

(2.22)

where a quantity such as φkx(xh) implies the value of φx(x) evaluated at hth grid point at kth time

step. The first term in (2.22) provides an advection equation with wave speed

ck(xh) = (2−m)

(
−sgn

(
φkx (xh)

)
B̃m

)∣∣φkx(xh)∣∣1−m [τ k (xh) + εφk+1
xx (xh)−

(
τ b (xh)

)k]
.

φkx(xh) and φkxx(xh) are obtained from central finite differences:

φkx(xh) =
φk(xh+1)− φk(xh−1)

24h

φkxx(xh) =
φk(xh+1)− 2φk(xh) + φk(xh−1)

4h2
.

(2.23)

Based on the sign of ck, φkx is then computed by the following upwinding scheme:

φkx =



φk(xh+1)−φk(xh)

4h if ck(xh) < 0

φk(xh)−φk(xh−1)

4h if ck(xh) > 0

φk(xh+1)−φk(xh−1)

24h if ck(xh) = 0.

(2.24)

The time step is governed by a combination of a CFL condition and a criterion for stability for an

explicit scheme for a linear ordinary differential equation:

4tk = min

(
4h
ck(xh)

,
B̃m

|φkx(xh)|2−m(−(τ b′(xh))k

)
. (2.25)
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Note that if φxx was evaluated at k, then the step size would also be bounded by 4h2B̃m
ε|φkx(xh)| , leading

to a quadratic decrease in4tk with element size. Treating φxx implicitly eliminates this constraint

resulting in significant savings in computation time. φk+1
h is updated according to

φk+1(xh)− φk(xh)
4tk

=
|φkx(xh)|2−m

B̃m

[
τ k + εφk+1

xx − (τ b(xh))
k
]

⇒φk+1(xh)− ε4tk
|φkx(xh)|2−m

B̃m

φk+1
xx (xh) = φk(xh) +4tk |φ

k
x(xh)|2−m

B̃m

[
τ k − (τ b(xh))

k
]
.

(2.26)

The right hand side of the equation is known at current time k. But noting that φk+1
xx (xh) is again

computed from φk+1 at xh+1, xh and xh−1, a system of linear equations of sizeN has to be solved to

get φk+1. The computational expense of the linear solve is small compared to the savings obtained

by relaxing4tk corresponding to the explicit treatment of diffusion.

2.3.2 Algorithm for equilibria

In this section we record the derivation of a Quasi-Newton scheme for system (2.20), specifically

the φ equation. In Sec. 2.4, we use this method to determine equilibrium states under zero or finite

loads.

In the following, when we refer to φI we mean the discrete nodal list of values of the ap-

proximation to the function φ on a finite difference grid, corresponding to the I th iterate in the

Quasi-Newton scheme. Consider the case m = 0 (NGB) first. The residual for the φ-equation is

denoted by F and defined as

∣∣φiJx∣∣2 [τ iJ + εφiJxx −
∂η

∂φ

(
φiJ
)]

=: F i(φJ). (2.27)

Here, τ iJ is a function of φJ only through φiJ . The notation (·)iJ ··· denotes the value of the discrete

approximation to the function (·)··· corresponding to the J th iterate for φ at the ith node. The

second spatial derivative appearing in (2.27) is defined as in (2.23). For the first spatial derivative,
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the following scheme is used. Define

ciJ := −2sgn(φiJx)
∣∣φiJx∣∣ [τ iJ + εφiJxx −

∂η

∂φ

(
φiJ
)]
, (2.28)

where both φiJx and φiJxx are evaluated from φJ according to (2.23). With the value of the array cJ

in hand, φiJx is redefined as

φiJx =



φi+1
J − φiJ
4h

, if ciJ < 0

φiJ − φi−1
J

4h
, if ciJ > 0

φi+1
J − φi−1

J

24h
, if ciJ = 0.

(2.29)

This array of values of φJx is then used in defining the residual (2.27).

The Newton-Raphson scheme obtained from the residual (2.27) is

−F i(φJ) = −ciJδφix +
∣∣φiJx∣∣2 [µδφi + εδφixx −

∂2η

∂φ2

(
φiJ
)
δφi
]

φiJ+1 = φiJ + δφi,

(2.30)

where the element δφix of the array of corrections δφ is defined as

δφix =



δφi+1 − δφi

4h
, if ciJ < 0

δφi − δφi−1

4h
, if ciJ > 0

δφi+1 − δφi−1

24h
, if ciJ = 0.

(2.31)

This Newton-Raphson scheme leads to an asymmetric tridiagonal Jacobian matrix, which is also

singular because the leading term φJx vanishes in dislocation free regions. To deal with that, we

observe the residual also has a multiplier of |φix| and cancel it from both sides of the equation. This

results in a Quasi-Newton method where the Jacobian matrix is modified. Of course, the residual is

kept exactly in the form (2.27) without modification. Quasi-Newton iterations are continued until
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the l∞ norm of the residual, |F |∞, vanishes (up to a small tolerance).

For the NGL (m = 2) equation we use the exact Jacobian for the Newton-Raphson method

given by

−F i(φJ) = µδφi + εδφixx −
∂2η

∂φ2

(
φiJ
)
δφi. (2.32)

For the NLS equation, we use a Quasi-Newton method based on the Jacobian matrix (2.32).

We follow a conventional nonlinear plasticity approach to solve the system (2.20). Fig. 2.4

shows the associated flow chart.

Set an initial guess φ = φ0. Solve
divT = 0 for u0 and calculate τ0.

Apply quasi-Newton scheme 2.30 or
2.32 to get equilibrated φ1 with τ0.

Solve divT = 0 again with φ1 to obtain
u1. Calculate |4u|∞ = |u1 − u0|∞.

Check if |divT|∞, |4u|∞ and
|F |∞ are below selected tolerances.

Compute τ0
from u1

and φ1.
u0 := u1,
φ := φ0

Equilibrium of the system is achieved. Exit.

No

Yes

Figure 2.4: Flow chart for equilibrium problems: φ and u are unkonwn plastic strain and displacement
fields. T is Cauchy stress. The initial guess φ0 is obtained from a pre-equilibrium solution. Note the
repeated initialization of φ to φ0, which is found to be crucial for convergence.

For later reference, we record the definition of residuals used for determining system equilibria.

For each finite difference node i and a discrete function φJ , the residual F i(φJ) is defined through

Eq. (2.27). The vector of FE, nodal displacement degrees of freedom is denoted by u and 4u is

defined as the difference between two consecutive calculations as defined in Fig. 2.4. Both vectors

F and 4u are measured by their l∞ norm, i.e., suppose N is the total number of nodes on the

FE mesh (not including nodes on which Dirichlet boundary conditions are specified) and M is the

total number of finite difference grid points, then

|4u|∞ := max
1≤i≤2N

|ui|, |F |∞ := max
1≤i≤M

|F i| (2.33)
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2.4 Equilibrium Aspects

We solve some key problems of classical dislocation theory [70, 103] in this Section, approached

as equilibrium states of our dynamical model (2.14). While the classical theory involves singular

dislocations with infinite-energy elastic fields (even on finite bodies), our solutions have finite

energies and nonsingular cores. It is worth emphasizing that our equilibrium core distributions of

dislocation density for a single dislocation are not a model assumption as in [2, 27, 119]. These

fields in our case, along with their corresponding non-singular stress distributions, correspond

to equilibrium states of a dynamic theory where both the dislocation (core) distribution and the

stress evolve to decrease the free energy of a body; the solutions in the aforementioned works, in

particular the core distributions, have no such thermodynamic status. The larger implication of

this feature is that FDM can serve as an idealized model for studying complex questions related

to equilibrium and dynamic evolution (at realistic time-scales) of core structures of single and

interacting dislocations under loads, utilizing input from finer length-scale models like Density

Functional Theory [72] and Molecular statics [99, 143, 150] in defining its energetic constitutive

ingredients (2.5), (2.10). Our model for m = 2 (NGL), up to the definition of the layer stress τ and

the use of the core energy, is essentially identical to that of the phase field model of dislocations

[40, 153].

2.4.1 Equilibria of single edge dislocations

The stress field of a single edge dislocation in an infinite domain is calculated, which is then

validated by comparing with the closed-form classical solution for a single edge dislocation at the

center of a finite cylindrical solid [70]

σ11 = −Dx2

(
− 3

a2
− 2x2

2

(x2
1 + x2

2)2
+

3

x2
1 + x2

2

)
σ22 = −Dx2

(
− 1

a2
− 2x2

1

(x2
1 + x2

2)2
+

1

x2
1 + x2

2

)
σ12 = Dx1

(
− 1

a2
− 2x2

2

(x2
1 + x2

2)2
+

1

x2
1 + x2

2

) (2.34)
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where D = µb/2π(1 − ν) with ν the Poisson’s ratio, and a is the radius of the cylinder (assumed

to be∞ here). x1, x2 are the in-plane coordinates measured from the center of the dislocation.

We solve for the stress field of a single dislocation in an infinite domain under no applied

loads by utilizing a 2-D body of finite size and applying traction boundary conditions according

to the analytical stress field. Specifically, we compute the analytical stress œ∗ of boundary points

according to Eqs. (2.34) and then apply a boundary traction t = œ∗n, where n is the outward unit

normal to the boundary. The rigid deformation of the body is removed by fixing u1 and u2 at the

corner (−W,−H) as well as fixing u2 at (W,−H).

We are interested in obtaining special equilibria of the system (2.14) corresponding to the

field of a single dislocation. Because of the degenerate and nonlinear nature of the equilibrium

equations for m = 0, 1, approaching the question by directly trying to approximate equilibria is a

formidable task. Instead, evolution to equilibrium could be a desirable route. However, the time

scale of evolution of (2.14) is extremely restrictive and since equilibrium states are the only items

of concern here, the question could as well be approached by evolving the quasi-static dynamics

(2.17) from suitably close initial conditions. There is a complication in that the system (2.17)

belongs to a class in which simpler versions [30, 38] exhibit extremely sluggish dynamics out of

states which, nevertheless, are known not to be equilibria. Thus, we adopt the following approach:

1. We consider all m = 0 (NGB), m = 1 (NLS) and m = 2 (NGL) models. The initial

condition on φ is a hyperbolic tangent function whose first spatial derivative gives the initial

distribution of the dislocation density according to (2.7) representing a single dislocation:

φ(x, t = 0) =
1

2

(
φ̄ tanh(a x) + φ̄

)
, (2.35)

where we choose φ̄ = 0.5, and a =
√
µ/4ε. By the definition of α, the initial Burgers vector

magnitude b0 may be approximated as b0 =
∫
L

∫
d
−φx(x, 0) e3 dydx ≈ −2φ̄b = −b.

2. The dynamics (2.17) is evolved to get to a state that satisfies approximate equilibrium con-

ditions up to certain numerical tolerances. We conservatively specify a threshold value
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of |φs|∞ < 5 × 10−5, where |φs|∞ represents the l∞ norm of the discrete φ field, i.e.

|φs|∞ := max
1≤i≤N

|φis|, (N being the total number of finite difference nodes.). This thresh-

old is conservative because the profile-change of the dislocation field becomes indiscernible

to the eye long before |φs|∞ gets to this value.

We refer to these practically static states as dislocation pre-equilibria.

3. We use the NGL, NLS, NGB dislocation pre-equilibrium states as initial guesses to solve

the corresponding nonlinear equilibrium equations of (2.14). The numerical implementation

is described in Section 2.3. Dimensionless tolerances required by the scheme to determine

whether an equilibrium state is achieved are chosen as follows:

|4u|∞ < 2× 10−4, |F |∞ < 5× 10−10. (2.36)

Recall that |F |∞ measures the residual of the φ equilibrium equation (and therefore our

tolerance requires equilibria to be at least 5 orders of magnitude slower than dislocation pre-

equilibria); |4u|∞ measures the residual of the displacement fields between two consecutive

approximations; |divT |∞ tests mechanical force balance, which is always resolved on the

scale of 10−15.

We refer to the attained solutions as (unloaded) NGL/NLS/NGB dislocation equilibria.

Furthermore, in what follows, we need the following definitions:

• Equilibria of the NGB dynamics are sought, closest to an NGL dislocation pre-equilibria

in the sense of the latter serving as an initial guess for the procedure outlined above (i.e.

list item 3). We refer to such an equilibrium state as an NGL-s-NGB dislocation equi-

librium (the ‘s’ stands for ‘start’).

• NGB equilibrium states are sought, as defined above, but now under the action of a

nonzero applied traction on the body. We refer to such a state as a loaded NGB dislo-

cation equilibrium.
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In this section, mesh B is primarily used except for the calculations reported in Fig. 2.6 and

2.7 (recall that we have two types of FE meshes: mesh A has uniformly refined elements over the

whole body; mesh B is refined only in and around the layer). All required simulation details are

grouped in Table 2.1.

Table 2.1: Simulation details for equilibrium analysis.

simulation parameters values
domain (W ×H) (mesh A) 110b× 110b
domain (W ×H) (mesh B) 110b× 90b
layer element (h) (mesh A) 0.3b ∼ 2b
layer element (h) (mesh B) 0.1b
core-energy strength (ε) 1
Young’s modulus (E) 70GPa
shear modulus (µ) 26GPa
Burgers vector (b) 4.05× 10−10m
Layer thickness (d) 2b

Fig. 2.5 shows the dislocation profiles of NGL, NLS and NGB (unloaded) dislocation equilibria

starting from the initial condition (2.35).
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Figure 2.5: The equilibrated dislocation profiles. The dotted lines denote the dislocation core.

The quantity τ is of primary interest in this section as it is analogous to σ12 of Eq. (2.34) with

x2 = 0. Figures 2.6, 2.7(a) and 2.7(b) together demonstrate that the numerical stress field obtained

from our model is quantitatively comparable to that from classical solutions. In particular, Fig. 2.6
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shows that the stress field does not strictly rely on a highly refined mesh, i.e., a mesh as coarse as

h = 2b can still provide a stress result consistent with the classical solution outside the dislocation

core. As shown in Fig. 2.6, the difference between the equilibrated averaged layer stress τ (blue)

and the analytical solution along x axis (cyan) is indiscernible beyond the dislocation core (marked

by the two dotted lines).
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Figure 2.6: Comparison of τ with the analytical solution at x = 0. The dotted lines denote the dislocation
core. τ∗ is a closed-form T12 on x1 axis from the classic method. h is the finite element size in the layer,
measured with Burgers vector.

Fig. 2.7(a) shows the contour of shear stress σ12 on the body. The difference between the

numerical and the closed-form classical solution is quantified by calculating an error measure ER

defined by

ERij(x, y) =

∣∣σ∗ij(x, y)− σij(x, y)
∣∣∣∣σ∗ij(x, y)

∣∣ , (2.37)

where σ∗ij and σij are the solutions from (2.34) and numerical computation, respectively. At the

lines x = 0 and x = ±y where the denominator
∣∣σ∗ij∣∣ vanishes, ER12 values are not plotted. The

maximum value of σ12 along these ‘blank’ regions given by our model is 5.7 × 10−5µ which is

achieved on the boundaries of the dislocation core. Some other data points along the lines are:

4.6573 × 10−6µ at (30b, 30b) and 1.4360 × 10−5µ at (50b, 50b). To sum up, it can be concluded

that the error (ER12) is primarily restricted to the core area; the overall patterns and values are in

close agreement. ER12 reaches up to around 40% at the core boundaries due to the (unphysical)
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singularity of the analytical solution. Similar comparisons are obtained for other stress components

for both the NLS and NGB cases. We think of such dislocated states in an unloaded body as

stressed metastable states.

(a) Equilibrated FDM stress field σ12 of the edge dis-
location in an infinite media.

(b) ER12: a measure of difference between FDM re-
sults and the analytical results outside the core.

Figure 2.7: Comparison of numerical stress with analytical solution.

Two important observations on unloaded dislocation equilibria are:

• The (unloaded) NGL dislocation equilibrium is found to be identical to the NGL-s-NGB

dislocation equilibrium. The former is also an equilibrium state for the NLS dynamics.

These are verifications for our numerical procedures as it is easy to see that an equilibrium

state for the NGL dynamics must be so for both the NLS and NGB dynamics.

• We find that the shapes of the NGB dislocation equilibrium (obtained from the NGB dislo-

cation pre-equilibria) and the NGL-s-NGB dislocation equilibrium are different. One needs

to zoom into the bottom of Figure 2.5 to appreciate this difference, which is shown in Fig.

2.8. Apparently, the NGB dislocation equilibrium leads to a profile with curved steps on

both sides of the core while the NGL-s-NGB dislocation equilibrium has a smooth profile

with no steps.

This difference of shape will be further discussed in the following Section as it produces com-

pletely different solutions for loaded problems.
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Figure 2.8: Comparison of two equilibria from different initial guesses: NGB equilibrium takes NGB pre-
equilibrium as initial guess. NGL-s-NGB equilibrium takes NGL pre-equilibrium.

Dislocation equilibria under load

We apply a simple shear traction boundary condition, where the traction vector is defined by,

t = τa(n2e1 ⊗ n1e2) (2.38)

n = n1e1 ⊗ n2e2 is the outer normal of the surfaces.

We first choose τa = 5 × 10−5µ and seek equilibrium solutions of (2.12). The initial guess

for our quasi-Newton iteration method is taken to be the unloaded NGB dislocation equilibrium.

The system achieves equilibrium, up to the numerical tolerance specified by (2.36). More impor-

tantly, the equilibrated dislocation stays in the original position. This is shown in Fig. 2.9. The

equilibrated core profile under load is slightly different from the zero load dislocation equilibrium,

especially at the bottom. But the observation that the dislocation is not displaced is sufficient to

demonstrate that the system (2.20) allows a dislocation equilibrium under a small but finite shear

load.

We also make the following observations:

1. Up to τa = 6.5×10−5µ, the system can still get equilibrated. The dislocation profile is close

to that of τa = 5× 10−5µ, demonstrated in Fig. 2.10.
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2. When τa > 6.5 × 10−5µ, our numerical scheme cannot converge below the specified toler-

ance. Specifically, when τa > 10−4µ, the residuals |4u|∞ blow up quickly (the residuals

are defined in Eq. 2.33).

3. The attainment of loaded dislocation equilibria is sensitive to the initial guess. In particular,

we cannot obtain a dislocation equilibrium solution if the unloaded NGL-s-NGB dislocation

equilibrium of Fig. 2.8 is adopted as the initial guess.

4. The NGL and NLS systems cannot attain dislocation equilibria (using our computational

strategy) starting from their no-load dislocation equilibria. We have tested this hypothesis

down to applied loads of 5×10−8µ. This also serves as a partial verification of our numerical

procedures since it can be shown that a no-load single dislocation equilibrium profile in an

infinite body for the NLS dynamics has to move as a rigid traveling wave with uniform speed

under arbitrary, non-zero applied loads.
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Figure 2.9: Equilibrium for load 5 × 10−5µ, com-
pared to unloaded NGB dislocation equilibrium.
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Figure 2.10: Equilibria for loads 5 × 10−5µ and
6.5× 10−5µ are on top of each other.

In order to better understand the difference between the NGB and NGL models with respect to

attainment of equilibrium under load, we analyze and plot the two constituent parts of their residu-

als: the energetic driving force term (τ + εφxx − τ b) and the leading transport term (φ2
x of NGB, 1

of NGL). The energetic driving force terms are shown in Fig. 2.11(a) and 2.11(b). Specifically, the

NGB case corresponds to a loaded equilibrium state of τa = 5× 10−5µ. Since the NGL dynamics
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cannot sustain a loaded equilibrium, we consider one particular state during its quasi-static evo-

lution according to (2.17) under the same constant applied load. An immediate observation is as

follows. Even though the energetic driving force for the NGB model is much greater in magnitude

outside the core than its NGL counterpart, its ‘transport multiplier,’ φ2
x, essentially vanishes beyond

[−3.5b, 3.5b]; within [−3.5b, 3.5b], the NGB energetic driving force happens to be extremely close

to zero (as shown in the inset of Fig. 2.11(b)). To the contrary, NGL has an all-positive energetic

driving force after load is applied, with especially large values in the core area, and NGL does not

have any leading transport term to counterbalance this effect and stop dislocation motion.
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Figure 2.11: Comparison of equilibrium and motion of NGB and NGL single dislocations under load
5× 10−5µ.

Thus, the attainment of NGB equilibria under load is not simply a matter of getting the ener-

getics of a model right but delicately dependent on the form of the dynamics, which in this case

follows from the conservation of Burgers vector on dislocation density evolution. Said another

way, equilibria in dynamic models need not necessarily be a consequence of energetics alone.

2.4.2 The failure of Linear Elasticity in sustaining a compact core

Figures 2.12 shows the inadequacy of just the use of linear elasticity in producing an equilibrium

dislocation with a compact core (we use the word ‘compact’ here to simply mean ‘spatially local-
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ized’). Dislocation (pre-) equilibria of (2.17) are sought under no applied load, now with η ≡ 0

and ε = 0 in (2.10), so that the stored energy function simply contains the linear elastic term. All

three dynamics start from the same tanh function (2.35). Although mechanical equilibrium (i.e.

force balance) is satisfied at each time step of the dynamics (2.17), the dislocation density field is

unable to sustain a compact core and spreads out thinly over the domain (the Burgers vector vector

content has to be conserved with the Neumann boundary conditions (on φx) in force).
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Figure 2.12: Initial and final state of dislocation profiles with linear elasticity. Neumann condition φx = 0
is imposed on both ends of φ. All three dynamics cannot sustain compact dislocation cores. NGL becomes
flat. The dislocations of NLS and NGB keep flattening but with decreasing |φs|∞. |φs|∞ < 10−5 for both
NLS and NGB at s = 1935.

The above example makes it clear why the existence of an equilibrium dislocation cannot

be a prediction of the classical linear elastic theory of dislocations and the Discrete Dislocation

methodology based on it3, when coupled to any notion of energy minimization, whether global or

local; there is no reason for an unloaded linear elastic body to sustain an energy concentration in

it, unless the fact is enforced by an extraneous hard constraint.

Nabarro in his book [103] remarks that “The theory of continuously distributed dislocations in

a medium obeying Hooke’s law and the theory of isolated dislocations having Burgers vector of

the order of the interatomic spacing in a crystal are not always equivalent approaches to the same

limit..” He further observes that “The attempt to build up a dislocation theory while neglecting the

non-Hookean forces which hold a single dislocation together and prevents its thinly spreading over

3To be clear, it is of course not a goal of Discrete Dislocation methodology to answer questions related to the
existence of a dislocation in any sort of thermodynamic equilibrium.
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the glide plane is bound to encounter difficulties similar to those of the ‘purely’ electromagnetic

theory of the electron. In this theory it is impossible to reconcile the electrostatic and electromag-

netic estimates of the mass, because no allowance has been made for the mass associated with the

non-Coulombian forces which bind together a cloud of charge, all of negative sign.”

While we agree with Nabarro’s assessment of the failure of the use of linear elasticity theory

alone to address the problem at hand, we feel, and show, that the continuously distributed setting

is ideally suited to account for relevant nonlinearities of dislocation mechanics and is a funda-

mentally sound approach to the theory of isolated dislocations with Burgers vector of the order of

the interatomic spacing, including their dynamics, where the classical theory of isolated singular

dislocations is quite inadequate.

2.4.3 Equilibrium of dislocation Pile-ups

This section demonstrates the approach for solving dislocation pile-up problems within FDM.

Computationally, solving a problem involving an array of dislocations (including collections with

positive and negative dislocations) is essentially the same as solving a single dislocation problem,

except for a change of the initial condition on the field φ.

A key classical problem of the theory of dislocations is the following. A set of dislocations of

identical sign lie on a slip plane. The set of dislocations pile up against obstacles, usually grain

boundaries, under applied shear stress. What is the equilibrated state of the dislocations under the

combination of their mutually repulsive interactions and the applied load? A mathematical model

for this problem was developed and solved by Eshelby, Frank and Nabarro [43] using classical

dislocation theory. We refer to this model as the ‘classical model,’ and summarize the essential

elements of [43] relevant for our purposes. The classical model solves the following force equilib-

rium equations:
n∑

i=1,i 6=j

A

xj − xi
+ P (xj) = 0, j = 1, 2, ....n, (2.39)

where P (x) is the applied stress at the point x, and xj are the equilibrium positions of the dis-
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locations. A is a stress unit depending on the dislocation type. For an edge dislocation, A =

µb/2π(1− v). A = 1 is chosen in the following derivation for convenience. Let xi be the roots of

the polynomial

f =
n∏
i=1

(x− xi) (2.40)

and it is then realized that the logarithmic derivative of f(x) is the stress of x due to all dislocations,

i.e.
f
′

f
=

n∑
i=1

1

x− xi
, (2.41)

where f ′ := df
dx

. The stress at x with the jth dislocation missing is

f
′

f
− 1

x− xj
. (2.42)

The value of this expression at x = xj is obtained by taking the limit

lim
x→xj

(x− xj)f
′
(x)− f(x)

(x− xj)f(x)
=

1

2

f
′′
(xj)

f ′(xj)
. (2.43)

Equation (2.39) can then be reformulated as

f(xj) = 0

1

2

f
′′
(xj)

f ′(xj)
+ P (xj) = 0

 j = 1, 2, ...n (2.44)

To solve (2.44), Eshelby, Frank, and Nabarro ingeniously consider the equation

f
′′
(x) + 2P (x)f

′
(x) + q(n, x)f(x) = 0, (2.45)

noting that if q(n, x) can be chosen such that (2.45) has an nth degree polynomial solution f ∗

whose roots are real and distinct (with q non-singular at the roots), then f ∗ is a solution to (2.44)

with the roots of f ∗ being equilibrated dislocation positions along the 1-d slip-plane.
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We study two pile-up problems within our ‘layer model’ that have been analytically solved in

[43]. Namely, find the equilibrium positions of

1. a row of n dislocations under zero applied load, the outer two being locked;

2. the outer two dislocations in the row locked, with the array under an applied shear load.

For the purpose of generating closed-form results, a strategy for dealing with locked dislocations,

effectively transforming them into applied loads, is described in [43]. We solve these problems

using exactly the same approach as we solve for the equilibrium of a single dislocation.

Pile-up without load

Consider five dislocations in a traction free body, i.e. n = 5 in Eq. (2.39). The two dislocations at

the ends of the array are pinned (by setting the velocity within the pinned dislocation cores to be

zero).

Table 2.2: simulation details for pile-up simulations

parameter name value
domain width (W ) 110b
domain height (H) 90b
No. of elements 16320
core-energy strength (ε) 0.25
Young’s modulus (E) 70Gpa
shear modulus (µ) 26Gpa
Burgers vector (b) 4.05× 10−10m

We solve this problem with the NLS (m = 1) model without loss of generality (the same

results are obtained with the NGL and NGB models). The initial condition for φ is a superpo-

sition of spatially translated ‘piecewise tanh’ functions so that the dislocation spikes occur at

x = {−40,−10, 0, 10, 40}. The simulation details are grouped into Table 2.2. A multiple well η

function is essential for modelling a scenario with all dislocations of the same sign.

Even without any load, the dislocated body cannot be in a metastable equilibrium for an arbi-

trary initial configuration. This is due to the strong repulsive interactions between the dislocations

in the pile-up. The dislocations (only the middle three dislocations can move freely) tend to re-

43



distribute in the slip plane to achieve equilibrium. We plot the final dislocation distribution and

the stress field. Specifically, Fig. 3.3(a) shows the initial and equilibrated configuration of the

dislocations. The dotted lines indicate the positions predicted by the classical method. We see that

the second and fourth dislocations (from the left) move towards the boundary while the dislocation

in the middle is motionless. Fig. 2.14 shows the corresponding equilibrated stress field.
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Figure 2.13: Pile-up motions. top: initial con-
dition; bottom: equilibrated states; result from
closed-form solution marked by black dotted lines.

Figure 2.14: Unloaded T12 of equilibrated pile-up.

Loaded pile-up

An equilibrium, piled-up array of dislocations under shear load is simulated. We consider n = 5 in

Eq. (2.39) with the outer two dislocations pinned, which is again modeled by requiring the disloca-

tion velocity to vanish within the corresponding dislocation cores. A traction boundary condition

defined by Eq. (2.38) is applied with τa = 0.05µ. The positions of the dislocations in the array

are arbitrarily initialized. Fig. 3.4(a) shows the initial and equilibrated configurations. The applied

load makes the dislocations pile up against the left pinned dislocation. The equilibrium configu-

ration displays a stress concentration against the left boundary. Fig. 2.16 shows the equilibrated

shear stress field.
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Figure 2.15: Pile-up under shear. top: initial con-
dition; bottom: equilibrated states.

Figure 2.16: T12 of equilibrated pile-ups under
shear load.

2.5 Dislocation motion in quasi-static deformations

In this section, we utilize our computational methodology to study the models described in Sections

(2.2.2) and (2.2.1). The context is phenomena related to dislocation motion when the material

deformation may be nominally assumed as quasi-static.

2.5.1 Peierls Stress in Continuum Mechanics?

The question of the possibility of a Peierls-like threshold for onset of dislocation motion in a

translationally-invariant, time-dependent continuum theory was discussed in [6]. The classical,

static, argument going back to Peierls [110] relies crucially on the fact that such a threshold is

directly related to changes in the total potential energy of the body induced by changes in position

of the dislocation (naturally, then, viewed as a rigid object or profile). Since in a homogeneous

infinite continuum the total potential energy remains invariant due to changes in position of the

rigid dislocation profile, the conclusion is that there cannot be a Peierls stress in a translationally-

invariant continuum theory; breaking translational invariance, possibly by modelling the effects of

an atomic lattice (as was done by Peierls [110] and Nabarro [104]) or by introducing a heteroge-

neous medium, can introduce a Peierls stress. However, questions of stability of equilibria under
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perturbations of loading in a time-dependent model of dislocation mechanics with a significantly

different notion of a driving force (that includes self stress effects) can be quite different, in par-

ticular whether an unloaded equilibrium dislocation profile can serve as a traveling wave profile

under a continuous spectrum of finite loads tending to zero - and, if not, is there an interval of loads

about zero for which different equilibrium profiles can be attained parametrized by the load. Such

questions have to do intimately with changes in ‘shape’ of the dislocation profile. In this chapter

we computationally explore this question - as a point of principle, most of all - for three natural

models that the structure of FDM makes available. These correspond to a non-local Ginzburg Lan-

dau model, a non-local level set model and what may be termed a generalized, non-local Burgers

model. In Sections 2.2 and 2.5.1 we describe these models and results in detail. Despite the great

utility of analysis of traveling waves, our results point definitely in the direction of avoiding an

over-reliance on characteristics of traveling wave solutions in making general statements about the

non-existence of certain types of predictions related to the representation of physical phenomena

characterized by fronts. After all, there is no reason why a traveling front necessarily has to be

perfectly rigid during motion, making an infinite-dimensional object (a profile allowed to change

shape, while still remaining localized) into one of dimension 1. A physical example related to this

work is the onset of motion of screw dislocations in some BCC materials. There, it is understood

that the dislocation core is spread out on multiple planes and the core has to be compacted further

into a preferred slip plane before gross motion can ensue; once motion stops, the multiple-plane

equilibrium configuration is regained. In a qualitative sense, we demonstrate such features, includ-

ing differences between dynamic and equilibrium shapes in Section 2.5. Applying a shear stress

to a body sets an otherwise equilibrated dislocation under no load in motion. The relation between

the magnitude of the applied stress and the dislocation velocity, as predicted by our models, is

studied in this section, with particular emphasis on exploring the question of whether a Peierls

stress can exist within our models of dislocation dynamics. The Peierls stress is the applied stress

required to move a dislocation, and the question of its theoretical determination was first investi-

gated by Peierls [110] and improved by Nabarro [104]. The improved model has since been called
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the Peierls model or the Peierls-Nabarro model4. Since then, this has been a vast area of study

with increasingly sophisticated models: at the continuum level with some notion of discreteness

[91, 101, 118, 140], atomistic level with interatomic potentials [25, 26, 76] and atomistic level with

DFT input [92]. Such studies have focused on energetic aspects since the problem intrinsically cor-

responds to very slow to vanishing rates of loading at macroscopic time scales. To our knowledge,

the current state of the art of Molecular Dynamics simulations is not capable of effectively probing

the possible slow time scale dynamics that may be in play in this problem.

In the Peierls model, the existence of the Peierls stress arises from the change in total energy

induced by a change in position of a dislocation (one assumes bodies of large enough extent).

In this sense, the Peierls stress is expected to vanish in any continuum mechanical model where

the system energy is translationally-invariant, i.e., a dislocation is always in ‘neutral equilibrium’

before the application of load, and will move under any (small) perturbation.

However, the Peierls model does not include the possibility of a moving dislocation profile

changing its shape, as it treats a dislocation as a rigid object (mathematically, a traveling wave)

during motion. Clearly, if shape changes do occur on the application of load then, even by simply

the logic of the Peierls model, it seems natural that the system energy can change even at the onset

of motion and thus have an effect on the question of existence of a Peierls stress in continuum

models. This was our hypothesis, essentially based on energetic arguments, in studying the ques-

tion within our continuum model. However, as we report in Fig. 2.11, the matter is not simply

dependent on energetics but also critically on the form of the evolution equation for φ that is a

consequence of incorporating consideration of the conservation of Burgers vector on evolution.

We emphasize that the purpose of our study is not to deny the classical explanation of the

Peierls stress arising from lattice discreteness; instead, it is to explore features of a theoretical

model of plausible material behavior in a systematic way and, in so doing, hopefully uncovering

possible complementary mechanisms for the physical phenomenon.

Two important physical observations are in order here:

4Peierls also formulated and answered the question of the equilibrium profile of a non-singular, continuously
distributed dislocation density field representative of a single isolated dislocation under no load in an infinite body.
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• An order-of-magnitude to keep in mind in this Section is that the expected Peierls stress

in FCC single crystals (a reasonable class of materials for comparison of our results) is

∼ 1MPa; translated in terms of the shear modulus, µ, of 26GPa adopted in our work, this

amounts to ∼ 4× 10−5µ.

• The Peierls stress question is unequivocally a question of evolution, albeit extremely slow

(which in a sense makes the problem rather difficult to address by procedures that attempt

to resolve atomic vibrations). Thus, strictly, simply demonstrating a loaded and an unloaded

single dislocation equilibria does not suffice, as it does not address the question of whether

the loaded equilibrium is dynamically accessible from the unloaded equilibrium under the

specified loading history. A quasi-static approximation may be adopted, but the equilibrium

trajectory then needs to be justified as being acceptable, as discussed in Sec. 2.5.1.

The common simulation details used in this Section are listed in Table 2.3.

Table 2.3: Simulation details for Peierls stress problems.

parameter name value
domain width (W ) 110b
domain height (H) 90b
No. of elements 16320
core-energy strength (ε) 0.25
Young’s modulus (E) 70GPa
shear modulus (µ) 26GPa
Burgers vector (b) 4.05× 10−10m

Discrete mesh as surrogate for lattice discreteness effects

An apparent Peierls stress effect may be demonstrated within our model by making the finite

element mesh a part of the physical model as a crude model of some effects of a discrete lattice, and

thus not asking questions of convergence with respect to mesh refinement. The following example

demonstrates the idea, using the NLS (m = 1) dynamics. The domain is of size [110b × 70b]

uniformly meshed by 251 × 35 quadrilateral elements. The corresponding 1-d finite difference

grid element size of φ is then 0.44b. In addition, the core-energy strength ε is set to be 0.1.

The other simulation details are kept the same as in Table. 2.3. The initial condition on φ is
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an NLS dislocation pre-equilibria as defined in Section 2.4. The loading corresponds to a traction

staircase with respect to time, as shown in the bottom panel of Fig. 2.17. The dislocation motion

is monitored by plotting φx with time. The dislocation core is of finite size but we define the

location of the dislocation as the x-coordinate of the peak of the φx profile at any instant of time.

Since φ evolves in the form of a moving wave front, we can measure the speed of the dislocation

by defining an average velocity V̄ ,

V̄ =
X̄

T̄
, (2.46)

i.e., a prescribed distance X̄ that the dislocation travels divided by the required time T̄ . φs is also

of primary interest here as it indicates the evolution of the system on the slow time scale s; as

usual, we measure φs by its l∞ norm.

The result in Fig. 2.17 shows an apparent Peierls stress effect: when the applied load is held at

the magnitudes of 0.06µ and 0.11µ, the dislocation remains motionless. In particular, |φs|∞ grows

a little when the load is changed from 0 to 0.06µ and from 0.06µ to 0.11µ, but then quickly drops

to zero. The average dislocation speed remains zero. Once the load is increased from 0.11µ to

0.16µ, the dislocation moves significantly with velocity 0.2Vs. Note that |φs|∞ begins to oscillate

around the value of 0.06 and does not drop to zero as earlier. The result suggests that there exists

an apparent Peierls stress in between the value of 0.11µ and 0.16µ. A more precise value can be

found by subdividing the load increments.

The value of the stress threshold is completely unrealistic (too high). Moreover, the apparent

Peierls stress effect is only valid for this particular discrete mesh, and decreases in a more re-

fined mesh. As a practical device, an optimal mesh size could be associated with a target Peierls

stress level in mind, in exploring problems where features of dislocation mechanics apart from the

determination of Peierls stress is the subject of study.

Of course, our overriding goal in this chapter is to explore the behavior of solutions to our pde

model via numerical approximation. To this end, we strive to make statements independent of the

mesh as demonstrated in Section 2.5.3.
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Figure 2.17: Peierls stress effect of a coarse mesh. top: the average velocity of the dislocation. middle:
|φs|∞. bottom: history profile of applied shear stress.

Peierls stress effects for small Bm: the case of crystal dislocations

As already shown in Sections 2.4.1 and 2.4.1, the NGB model allows not only an unloaded dis-

location equilibrium, but also a dislocation equilibrium with finite shear load up to 6.5 × 10−5µ.

More importantly, the equilibrated dislocation is not moved by the shear load, but deformed from

its unloaded dislocation equilibrium shape.

Those solutions are obtained by solving for equilibria of (2.14). In particular, for the loaded

dislocation equilibrium profile, we start with an initial guess corresponding to the NGB dislocation

equilibrium (under no load) and use the Quasi-Newton method to obtain the loaded dislocation

equilibrium solution, up to the tolerance specified in Eq. (2.36). Computationally, this procedure

can be interpreted as the appropriate discrete analog of finding solutions to the quasi-static system

(2.20), i.e. following a trajectory on the equilibrium set, parametrized by the applied load. We note

here that this general philosophy is also adopted in lattice statics explorations of the Peierls stress.

In computing these results, we use mesh B where the layer elements are of size 0.1 b. Additionally,

the results are verified by convergence tests as discussed later in Sec. 2.5.3.

Thus, we conclude that our NGB dynamics displays a Peierls stress effect, subject to checking

that no untoward instability is observed on running the fast-scale dynamics (2.14) out of the initial

state corresponding to the unloaded equilibrium dislocation when subjected to load.
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We want to check whether a small but finite load like 5 × 10−5µ displaces the dislocation

when inertia is involved. As dislocation motion is an inherently dissipative process, it is important

that the loading mode for Peierls stress-related questions be such that external energy supply is

available as the dislocation moves/evolves; applied, constant-in-time traction loadings allow for

this possibility and this is what we utilize in this Section.

Specifically, all simulations are performed in the following way. Initially, we obtain a state

(φ0,u0) that satisfies equilibrium conditions for (2.14). φ0 and u0 are then used as initial conditions

of φ and u for Eqs. (2.14). A constant traction boundary condition defined by Eq. (2.38) with

τa = 5 × 10−5µ is applied. The dimensionless drag coefficient is chosen as B̃m = 0.0297. The

other simulation details are grouped in Table. 2.3.

Instead of measuring dislocation velocity, another way to look closely at the different dynamic

characteristics exhibited by the three m cases is to measure an ‘instantaneous dislocation wave

speed’ ṽ defined in the following; this is the nondimensional analog of v in Sec. 2.2. This measure

is useful especially when the applied load and the dislocation motions in x are small. For different

m, ṽ(x, t) takes the following form,

ṽ(x, t) :=



− φx

B̃m

[
τ(x, t)− τ b(x, t) + εφxx(x, t)

]
, m = 0

− sgn(φx)

B̃m

[
τ(x, t)− τ b(x, t) + εφxx(x, t)

]
, m = 1

− 1

B̃m

1

φx

[
τ(x, t)− τ b(x, t) + εφxx(x, t)

]
where φx 6= 0, m = 2.

(2.47)

ṽav(t) is calculated by summing v over the dislocation core at the specified time and dividing it

by the core width. For our purposes here, the core width is chosen as 25 b which is much wider

than the core defined in Fig. 2.5. We adopt this measure since the difference in dislocation profiles

corresponding to the various m dynamics is primarily at the very bottom, as already observed. We

suspect that the ṽ(x) distribution at the bottom of the dislocation profile plays an essential role

in determining dislocation motion (especially near the stepped ‘core boundaries’ when such steps

exist), and a width of 25 b allows us to capture those features in sufficient detail in the cases being
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considered here.

The motivation for the definition of ṽ(x, t) is as follows: Suppose there exists a sufficiently

smooth function w that satisfies wt(x, t) = −wx(x, t)s(x, t). s(x, t) may depend on its arguments

through the values of the function w and its derivatives but since the latter are known, it is ap-

propriate to think of s as a function directly of (x, t). Then, using an elementary argument of the

method of characteristics, along a curve x̂(t) in (x, t) space defined by dx̂
dt

= s(x̂, t) starting from a

point x̂(t∗) = x0, the value of w is transported unchanged, i.e. w(x̂(t), t) = w(x0, t
∗). Thus at any

instant of time, the transport velocity s(x, t) may be interpreted as the instantaneous, local wave

velocity at (x, t); a positive sign of s(x, t) implies transport in the +x direction and a negative

value implies transport in the −x direction. Admittedly, for m = 2 the definition of ṽ(x, t) in

(2.47) is somewhat artificial, but this is not central to the point we make subsequently.

We note that the fields φ and v in (2.8) satisfy the conditions outlined for w and s, most likely

including the smoothness assumption (for sufficiently large ε).

We set up a simulation with initial condition being the unloaded NGB dislocation equilibrium

of Fig. 2.5 with a constant-in-time applied load of 5 × 10−5µ. The dislocation stays motionless.

We plot φx(x) and ṽ(x) along the layer in Fig.2.18. The ṽ(x) profile obtained here is definitely

unfavorable to dislocation motion. The sign of ṽ(x) on each side of the centre of the core indicates

that the left side of the dislocation core tends to move to the right while the right side to the left, and

the core bottom tends to spread out. The simulation lasts for 0.4ns. This period is conservative

since the NGL and NLS dynamics show motion within the first 0.05ns under the same applied

load. It is shown in Fig. 2.18(a) that the dislocation stays motionless during this period. The ṽ(x)

profiles of Fig. 2.18 persist through out the simulation. Due to the small time-period of simulation

in this dynamic test, we further examine the loaded NGB equilibrium as initial condition for the

fast system. The applied load is still 5 × 10−5µ. The fast system is evolved for 0.42ns and the

dislocation under load shows no motion.

So far, based on the premise that

• if the quasi-static system displays a loaded dislocation equilibrium arrived at from an un-
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loaded dislocation equilibrium state and

• the dynamic equations also validate that the unloaded dislocation equilibrium does not begin

to move under the action of the load on the fast time-scale,

then the system displays a Peierls stress, we have arrived at the following conclusions.

1. The NGB dynamics displays a Peierls stress effect for at least one initial condition (the un-

loaded NGB dislocation equilibrium). Interestingly, a curious ‘stochastic’ outcome arises

out of our deterministic theory: two unloaded dislocation equilibria of very similar type at

a gross level of reckoning (i.e. NLS and NGB dislocation equilibria) respond differently to

loading and therefore predictions of Peierls stress for the NGB model may very well appear

stochastic over repeated trials.

2. We have not been able to find a Peierls stress effect under load of the order of ∼ 10−5µ

for any of the NGL, NLS, and NGB dynamics starting from the unloaded NGL dislocation

equilibrium. We recall here that the results of Section 2.4.1 imply that the NGL and NLS

quasi-static evolutions do not admit a loaded dislocation equilibrium (of the magnitude being

discussed here) from their corresponding no-load dislocation equilibrium profiles as initial

conditions.

In the following, we explore the dynamic behaviours of the NGL, NLS, and NGB systems

under load τa = 5 × 10−5µ, from a common initial condition of an unloaded NGL dislocation

equilibrium shown in Fig. 2.5. The system runs on the fast time scale t̃ = b/Vst and the simulation

runs for around 1 nanosecond.

It is observed that the NGB dislocation stays motionless during this period, while NGL and

NLS move immediately after the load is applied.

Fig. 2.19(a) shows the initial, intermediate and final profiles of φx of the evolving NGB dy-

namics. ṽ(x) is shown in Fig. 2.19(b).
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Figure 2.18: φx and ṽ(x) of NGB dynamics. t = 0− stands for unloaded NGB equilibrium which is used
as initial condition. The instant of applying shear load 5 × 10−5µ is indicated by t = 0+. The dislocation
shows no motion but slight shape change at bottom. ṽ profile persists during the simulation.
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ṽ(
V
s
)

1e 5

(b) ṽ(x)

Figure 2.19: Fast system under load 5× 10−5µ. Motionless dislocation (left) and field plot of ṽ(x) (right),
starting from the NGL dislocation equilibrium indicated by t = 0−. The instant of applying shear load
5× 10−5µ is indicated by t = 0+.

Fig. 2.20 shows the comparison of ṽav(t) between m = 0 and m = 2. NGL has a significantly

larger wave speed than NGB, explaining why NGB does not move while NGL moves immediately

after loading.
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Figure 2.20: ṽav under load τa = 5× 10−5µ, starting from NGL dislocation equilibrium.

At each time step, the field shape of ṽ(x) also shows interesting differences between each m

case, as shown in Fig. 2.21 (ṽ(x) of NGB is shown in Fig. 2.19(b)). For NGL, the profile over

only the dislocation core area is plotted). It is observed that ṽ at the dislocation boundaries of

m = 2 and m = 1 are significantly larger than that of m = 0. Within the core, the peak of NGB is

approximately 8 times less than the other two. This difference in ṽ(x) contributes to the observed

fact that NGB moves much slower than the NGL and NLS dislocations.
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Figure 2.21: Field plot of ṽ(x) of NGL and NLS under load 5 × 10−5µ, starting from NGL dislocation
equilibrium.

It is instructive to compare the ṽ profiles presented in Figures 2.18 and 2.21 for m = 0, under
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the load of 5× 10−5µ. Even though the dislocation stays motionless in the latter case for the small

time in which the observation has been done, the non-negative shape of the ṽ(x) curve coupled

with the inability to find a loaded dislocation equilibrium in quasi-static equilibrium forces the

conclusion that this situation reflects very slow motion of the type we discuss in Section 2.5.1.

Fig. 2.22 provides a gross sense of the dislocation velocity versus applied load curves for this

regime of small loads. The results are gross because the exact governing equations in this case

should be (2.14); we use those equations, but with the assumption that for the small magnitude

of loads and vanishing loading rates involved, material inertia is unimportant. From this real time

dynamics with B̃m = 1, the NGB dislocation does not show motion for τa < 6.5× 10−5µ. (Recall

that a loaded dislocation equilibrium was also shown to exist for the quasi-static system (2.20)).

The average velocity for the load of 2.5× 10−4µ is 5.99× 10−5Vs. For these results, the time scale

and the velocity are physically meaningful. The other simulation details are kept the same as in

Table 2.3.
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Figure 2.22: Dislocation velocity with respect to applied load at the threshold regime.

Preliminary parametric study of factors affecting the Peierls stress

• Effect of barrier height: We solve system (2.20) (with impulsively applied load), but now

with some lower barrier heights. That is, the function η in (2.11) is multiplied by a factor
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f ∈ (0, 1), and we consider the specific values

{
2

3
,
1

2
,
1

4

}
. (2.48)

The simulation details are kept the same as in Sec. 2.4. The tolerances specified by Eq.

(2.36) remain in place. We find that f = 2
3

is able to sustain both unloaded and loaded

equilibria. The Peierls stress is found to be around ∼ 5 × 10−5. (recall that f = 1 gives

a Peierls stress 6.5 × 10−5µ; this load magnitude leads to non-convergence of |4u|∞ for

f = 2
3
).

For f = 1
2

and f = 1
4
, neither loaded nor unloaded equilibria can be attained.

• Effect of shape of η profile: With reference to Fig. 2.23, a function of the type form B (cf.

[113, 127, 150]), different from that specified in (2.11) represented as form A, is utilized. A

Peierls stress of 7.5× 10−5µ is obtained for this case.

These results suggest, as expected, that the function η plays an essential role in the prediction

of the Peierls stress in models like ours. Interestingly, we find that for each of these variations,

dislocation pre-equilibria for the NGB dynamics can always be attained.
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Figure 2.23: Comparison of two types of η functions and their derivatives.
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Finally, although our formulation is based on a small deformation theory, the resultant plastic

strain can be substantial due to the value of φ̄ = 0.5 corresponding to a well of the function η. In

the following, we check whether an even larger plastic strain level, still specified by φ̄, can affect

the Peierls stress results. We choose the value of φ̄ = 1, corresponding to a lattice invariant shear

in a square lattice. The layer thickness is reduced to 1 b to maintain the initial Burgers vector to

be 1 b. The Peierls stress of this case is found to be ∼ 1 × 10−5µ. We again run a fast system

(as described around Fig. 2.19) starting from unloaded NGB equilibrium for t ≈ 0.4ns under the

same applied shear load 1× 10−5µ. The dislocation stays motionless during the simulation.

Quasi-equilibrium aspects

In Section 2.4.1, we have hinted that the quasi-static dynamics of our equations (2.17) can show

sluggish behavior practically indiscernible from equilibria, when judged solely on the merit of the

rate of evolution of some obtained states that we have termed pre-equilibria.

In this section, we discuss some features of such (unloaded) dislocation pre-equilibrium states

and compare them with the states we have defined as unloaded dislocation equilibria (definitions

in Section 2.4.1).

First, consider the dislocation pre-equilibria obtained from the common initial condition (2.35)

(and utilized for the result in Figure 2.5). Specifically, we make the following observations:

1. Initially, the three quasi-static systems (2.17) (corresponding to m = 0, 1, 2) evolve from

the initial condition (2.35) with significant shape changes of φx and rates of change |φs|∞.

The profiles of φx then settle on the dislocation pre-equilibria configurations with the corre-

sponding |φs|∞ decreasing to 5× 10−5.

2. The displacement fields u corresponding to these dislocation pre-equilibria appear to have

no discernible differences from their corresponding dislocation equilibrium displacement

profiles. However, the difference in stress fields are on the scale of 10−4µ.

For demonstration, we show some comparisons of dislocation equilibria and pre-equilibria.

Fig. 2.24 and 2.25 compare the dislocation pre-equilibrium profiles for NGL and NLS with

58



their dislocation equilibria. A first observation is that the NGL dislocation pre-equilibrium has

almost the same shape as the NGL dislocation equilibrium. However, the difference for the NLS

case can be observed at the bottom of Figure 2.25.

The profiles of the NGB dislocation at the iterations when |F |∞ = 4.5 × 10−5 and |F |∞ =

10−12 are both shown in Fig. 2.26. The comparison shows that the equilibrium dislocation shape is

markedly different from the NGB dislocation pre-equilibrium with |F |∞ = 5×10−5, but the shape

change is trivial from |F |∞ = 4.5× 10−5 to |F |∞ = 10−12. Specifically, the NGB dislocation pre-

equilibrium has significantly rounded steps on both sides, while for the unloaded NGB dislocation

equilibrium, one needs to zoom in to the bottom to see them (as shown in Fig. 2.8). Our results

seem to suggest that it is possible that the NGB dislocation equilibrium may not be dynamically

accessible from the NGB pre-equilibrium on any physically realistic time scale.

Based on the observations above, we define the NGB and NLS dislocation pre-equilibria as

quasi-equilibrium states characterized by the fact that rates of evolution are extremely slow out

of them and, in all likelihood, attainment of equilibrium from them, ceteris paribus, may not be

possible on any physically attainable time-span. We emphasize that while we have discussed both

quasi-equilibria and equilibrium states (under no load), it is not our intention to suggest that the

demonstrated equilibria are the intended targets of attainment under evolution as t→∞ from their

corresponding pre/quasi-equilibria. On the other hand, we have demonstrated that our dynamics

(under no load), especially NGB, contain trajectories that have a rapid evolution regime, a sluggish

regime indistinguishable from equilibria in a practical sense, and true equilibria.

As an example which involves more than one dislocation, we solve the pile-up problem of Fig.

2.14. A slight shift from the pre-equilibrium to the final solution is observed as shown in Fig. 2.27.

The final equilibria seem to be closer to the exact solution. However, the shift is of magnitude no

greater than 0.2 b.
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Figure 2.25: NLS equilibrium compared to NLS
pre-equilibrium.
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Peierls stress effects for B̃m � 1

We now consider dislocation motion in the presence of large drag. The question is whether one

can still observe the Peierls stress effect on a slow time scale characterized by the large drag, under

a slow loading rate.

The governing equations for B̃m � 1 are (2.17). The system runs on the slow time scale

determined by the non-dimensional drag number B̃m. Here, the time scale and velocities are all
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physically meaningful. We implement a series of simulations with applied stress starting from

τa = 5 × 10−5. The increments of applied load are kept very small especially when the loads are

within 5× 10−3µ.

The simulation set-up is kept the same as in Section 2.5.1, with parameters listed in Table 2.1.

We consider all three NGB (m = 0), NLS (m = 1) and NGL (m = 2) cases, with particular

interest in the NGB (m = 0) case, since it is derived from the simplest kinetic assumption, and

also because we have shown the Peierls stress effect for this dynamics in section 2.5.1 where B̃m

is small.

The unloaded, dislocation pre-equilibrium profiles of Fig. 2.24, 2.25 and 2.26 are used as initial

conditions for eachm dynamics. Uniform-in-time shear traction boundary conditions, as described

in Eq. (2.38) are imposed. The average velocity V̄ is measured by (2.46); X̄ is conservatively

chosen as 0.1 b. The dislocation motion is thus quantified by measuring V̄ and |φs|∞. In addition,

we define a ‘slowness,’ S := V̄ −1, to help visualize the Peierls stress effect.

The results are shown in Fig. 2.28(a) where V̄ is plotted for applied loads smaller than 0.001µ.

The corresponding slowness data S is shown in Fig. 2.28(b). A direct observation is that the

dislocation has much slower motion with increasing m. The slowing down caused by m is clearly

demonstrated by fitting S to a power law. We have fit S vs. applied stress for the whole range

of stresses below 5 × 10−3µ based on the data of τa > 5 × 10−5, since the dislocation for NGB

under load 5 × 10−5 does not show any motions during the simulation. The plots of Fig. 2.28(a)

and Fig. 2.28(b) display only the parts of that curve at the lower end of the spectrum - the fit is

uniformly good in the entire range of stresses. The NGB (m = 0) dynamics has an exponent of

1.24, much larger than that for NLS (m = 1) and NGL (m = 2). Since we are not able to perform

infinitely-long time simulations, the conclusion is that the NGB dynamics starting from different

NGL and NGB equilibrated profiles all show no or extremely slow motions.

The existence of a Peierls stress in this B̃m � 1 regime would be justified if S → ∞ for

a non-zero value of applied stress. We are unable to access smaller loads than shown because

of the prohibitive time taken by these very long-time simulations. However, based on the power
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Figure 2.28: Velocity and slowness recorded from simulations.

law fits of the available data, it can be quantitatively concluded that for the NGB dynamics both

V̄ (0) = 0 and dV̄
dτa

(0) = 0. For the NLS (m = 1) dynamics, the derivative may be considered a

constant (making allowances for fitting), whereas for the NGL (m = 2) dynamics, dV̄
dτa

(0) → ∞.

In addition, we show the plots of ṽ(x) and ṽav(t) for the NGB simulation of this section under

load 5× 10−5µ. We conclude that in all probability there exists a Peierls stress effect in the NGB

dynamics for B̃m � 1 based on the following observations:

1. Fig. 2.29(a) shows that the NGB dynamics has a ṽ profile not favourable to dislocation

motions, for the same reason as discussed around Fig. 2.18.

2. There is an obvious decreasing trend in ṽav (Fig. 2.29(b)). The value of ṽav at s = 3000

is around 1/20 of that at s = 0. This suggests that the evolution of φ (specifically in x

direction) is slowing down.

3. Recall that we chose 0.1 b for X̄ in determining the average velocity (2.46) - this is in part

dictated by the extended times for which these simulations have to be run. This is a con-

servative choice and it is reasonable to expect the possibility of S → ∞ for larger X̄ ≤ b,

especially because B̃m � 1 corresponds to larger drag and hence smaller velocities.
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 ṽ
a
v(
µ
/B

m
)

1e 4

(b) ṽav .

Figure 2.29: NGB dynamics of τa = 5× 10−5µ, ṽ field profile and ṽav with respect to time.

The Nabarro dipole

With respect to dislocation annihilation, since the fundamental statement of evolution in FDM

is a conservation law for Burgers vector content of the dislocation density field, the density field

evolves by tensorial addition rules resulting in natural accumulation or annihilation of non-singular

localizations of net positive and negative Burgers vector when physically expected. We demon-

strate such results in Section 2.5.4.

As an instructive demonstration of the Peierls stress effect in the NGB (m = 0) dynamics,

we model a configuration of two identical single dislocations with opposite signs (a dislocation

dipole). We use the dynamics (2.17). According to Nabarro [104], there exists a critical separation

for a dipole to be in a stable equilibrium in a lattice, i.e., dipoles of closer separations annihilate by

attractive forces, leaving the body dislocation-free. The essential mechanism of this phenomenon

is the Peierls stress opposing the annihilating motion of the dipole. The simulation details are

described in Table. 2.1, except that here we choose the diffusion strength ε = 0.25. The initial

condition for φ is assumed to be

φ(x, 0) =
φ̄

2
(tanh(x+ r/2) + tanh(r/2− x)) , (2.49)
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r being the dipole separation. Fig. 2.30 and Fig. 2.31 represent the equilibration with r = 50 b and

r = 20 b. Here we should mention the method we use to obtain the initial dipole of separation 20b:

We solve two single dislocation traction free problems, one with a positive dislocation at x = 10

and the other negative at x = −10. The two dislocations equilibrate separately. The superposition

of the two equilibrium φ are then used as input to the r = 20 b simulation. It is observed that

the dipole separated by 20 b cannot stay in equilibrium, with the dislocations of opposite sign

attracting and annihilating each other. The dipole separated by 50 b gets equilibrated, i.e., although

the dislocations are still subject to attractive forces from each other, the force is not large enough

to draw the dipole closer, beating the instrinsic sluggishness of the NGB dislocations. Fig. 2.32

shows how |φs|∞ varies with respect to time for the equilibrated dipole. It is clear that the system

evolves from the initial condition into an equilibrium state, for all practical purposes at least. The

equilibrated dipole results in a static stress field as shown in Fig. 2.33.
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Figure 2.30: Equilibrated separated dipole.
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Figure 2.31: Annihlated dislocation dipole.
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Figure 2.32: |φs|∞ of equilibriated dipole. Figure 2.33: σ12 of equilibrated dipole.

Applying a large enough shear load counterbalances the attractive Peach-Koehler forces and

expands the dipole. Fig. 2.34 shows a series of snapshots of that scenario.

(a) (b) (c)

Figure 2.34: Dipole expands under shear stress.

Idealized dislocation dissociation

The discussion of the possible dissociation of a dislocation of a certain Burgers vector strength into

two whose strengths vectorially sum up to that of the original one is a text-book example of the

phenomenology of dislocations related to the energy-decreasing feature of dislocation mechanics.

Due to the treatment of a dislocation core as either a formless or a rigid singularity in classical

versions of any sort of dislocation dynamics, dissociation cannot be a prediction. The field setting

is ideally suited for such explorations as we demonstrate in Sec. 2.5.1.

Energy considerations dictate that it is possible for a dislocation to dissociate (split) into a pair,
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with the Burgers vectors of the dislocations in the pair adding up to that of the original dislocation.

The argument from the classical theory essentially amounts to the following: Consider a large

enough body containing, in the first instance, a single straight dislocation of Burgers vector magni-

tude b and in the second instance two dislocations of the same sign as in the first case separated by

a distance R, but each of Burgers vector magnitude 1
2
b. We now wish to compare the total energies

of the two configurations; in the linear theory this is a question of comparing infinite magnitudes

(even for finite bodies). Nevertheless, with the usual hand-waving of the linear theory related to

accounting for the core energy, if in the first case the energy is written as ab2 then in the second

case the energy is 2a
(

1
2
b
)2

+ c b
2

R
, where a, c are positive constants. For R sufficiently large, the

energy of the second configuration is smaller than the first; therefore, dissociation is favored. Such

a phenomenon is actually observed in closed-packed crystals with low stacking fault energy. We

show in this section that, without any additional constitutive rules, our model is able to simulate an

idealized dislocation dissociation process.

We use the NGB dynamics and keep the simulation details as for calculations reported in Fig.

2.5 with the following modifications:

φ(x, t = 0) = φ̄ tanh(ax)

ε = 0.025, a =
√
µ/4ε,

(2.50)

which represents an initial dislocation with a Burgers vector magnitude of 2b. Fig. 2.35 shows

the process of it splitting into two separated dislocations, each of Burgers vector magnitude b.

The corresponding re-distribution of plastic strain caused by the dislocation dissociation is also

shown. In this way, it locally minimizes the total system energy. The initial dislocation profile

spans three successive wells of η (to achieve its Burgers vector magnitude), and we observe from

the simulation that each dislocation in the dissociated pair spans two wells of η as they move apart.

The separated single dislocations have repulsive forces in between, and push each other away after

dissociation.
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Figure 2.35: An example of modeling dislocation dissociation.

2.5.2 Loading and unloading of a single dislocation

Here we show the response of the model to a loading-unloading cycle. We continue to use the

slow dynamics (2.17). We apply a simple shear traction boundary condition (2.38) to move the

dislocation from its equilibrated position. The load is then instantaneously removed. The NGB

dynamics shows interesting/peculiar behavior as presented in Fig. 2.36(a) at three critical moments

during the simulation: the top, where s = 0, the dislocation is equilibrated. The middle panel

shows the dislocation driven to its furthest location, and at that moment the load suddenly drops

to zero. Without any exterior stress, the dislocation spike creeps backwards with diminishing

speed to finally equilibrate at the position shown in the bottom panel. The equilibrium shape is

similar to the shape at the start with some differences; we have not let the equilibration process

run long enough to conclude whether the height of the peak returns to the original value or not.

As can be seen, the equilibrium shape of the dislocation is significantly different from that during

motion. The history of |φs|∞ on the right also reflects this process: the sudden increase of |φs|∞

is caused by the sudden load drop. After unloading, |φs|∞ decreases sharply, which suggests the

re-(pre)equilibration process of the load-free dislocation. In contrast, the unloading behaviour of

the NLS (m = 1) and the NGL (m = 2) dislocations are different. There, the dislocations continue
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to move towards the left boundary after the load is taken away, presumably due to the attraction

of the free boundary. While the recoil of the NGB dislocation gives us some pause in the context

of expected behaviour based on classical ideas, its equilibration is another example of the Peierls

stress effect in the NGB case. We have checked that if an NGB dislocation under no load is placed

closer to the boundary, it does move towards the boundary. We have also checked that for all

three NGL, NLS, and NGB dislocations, the core-averaged layer stresses are positive, indicating

an attraction towards the left boundary.
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Figure 2.36: Loading then unloading (m = 0).
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Figure 2.37: Loading then unloading (m = 1, 2). The dislocations moves to the left under simple shear
traction same as m = 0. However, as the load is removed, m = 1 and m = 2 both keep moving to
the left boundary. Specifically, NGL moves faster than NLS as shown in the bottom snapshot at the same
nondimensional time s = 5500.

2.5.3 Convergence Test

The Peierls stress results are verified by convergence tests. First, we take an NLS (m = 1) system

with applied load τa = 0.005µ from Section 2.5.1 and show convergence with respect to the

mesh of |φs|∞, the dislocation displacement, and the average speed V̄ . These three measurements

together quantify the motion of a dislocation. All the simulation details can be found in Table. 2.1.

The use of transition elements around the layer keeps the overall computation time from growing

significantly as the layer gets refined. Let h denote the width of layer elements and we create

meshes with h = 0.2, 0.1, 0.05, 0.025(b). We should also point out that the finite difference grid

is refined accordingly in the meantime and the time steps are automatically refined according to

Eq. (2.25). Although convergence of |φs|∞ is a more stringent test than the other two, even in Fig.

2.38(a), one can observe the trend of convergence of |φs|∞ with decreasing h. Fig. 2.38(b) shows

the position of the dislocation peak X̄ vs. s. Processing Fig. 2.38(b) by dividing X̄ with time gives

the averaged speed V̄ . As shown in 2.38(c), V̄ converges with h, but with a notable disturbance

when X̄ < 0.5b for all h.
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Figure 2.38: Convergence test.

For the equilibrium results obtained with the Quasi-Newton scheme, we run the same problem

described around Fig. 2.9 on a well-refined mesh: h = 0.025b. We test applied load from τa =

5 × 10−5µ to τa = 10−4µ. The results are the same as obtained from h = 0.1 b. The equilibrated

φx with τa = 6.5 × 10−5µ for both h = 0.1 b and h = 0.025 b are plotted in Fig. 2.39. The two

profiles are on top of each other.

The following tests show the convergence of the Peierls stress results at lower applied load

region. We have tested three NGB (m = 0) cases from section 2.5.1 where τa takes the values

5 × 10−5µ, 2.5 × 10−5µ and 5 × 10−4µ. The simulation lasts for s = 3000. The dislocation does
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Figure 2.39: Dislocation profile resulted from well-refined mesh compared to h = 0.1 b.

not show motion until s = 3000 for all h cases when τa ≤ 2.5 × 10−4µ. With τa = 5 × 10−4,

the velocities for all h cases are close but vary with a difference up to 1.0 × 10−5µ/B (between

h = 0.2 b and h = 0.033 b).

To complete our convergence analysis for Peierls stress results, we have also verified that the

velocity is not affected by the domain size (W and H). This is done by running the system (2.17)

with applied load of 5 × 10−4µ on a domain twice as large (and we keep h = 0.1 b on this larger

domain) and comparing results with that from the smaller domain; the results remain unchanged.

Finally, we argue that the symmetric attraction forces from the left and right boundaries counter-

balance each other at the center of the domain, and therefore the stress threshold (the onset of

motion) is not affected by the vertical free boundaries.

2.5.4 Annihilation of a double pile-up

We solve a pile-up having opposite signs on each half of a slip plane, namely a double pile-up.

The following simulation is a demonstration of the evolution of a double pile-up of dislocations in

a traction free body, using the NLS (m = 1) slow dynamics associated with (2.17). The simulation

parameters of this section are grouped in Table. 2.4.

n = 14 dislocation spikes are initialized at s = 0, spaced by 5b, i.e., the ith dislocation has a peak
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Table 2.4: Simulation details for double annihilation pile-up.

parameter name value
domain width (W ) 220b
domain height (H) 180b
No. of elements 33960
No. of nodes 34038
core-energy strength (ε) 0.25
Young’s modulus (E) 70GPa
shear modulus (µ) 26GPa
Burgers vector (b) 4.05× 10−10m
Shear wave speed (Vs) Vs = 3.13 km/s

at {xi = (−35 + 5i)b}, 0 ≤ i ≤ n.

As the system evolves, the inner dislocations are drawn closer immediately and annihilate

under the combined effects of attractive forces (of dislocations of opposite signs) and repulsive

force (of dislocations of the same sign). The motions of others are driven by a complex time-

dependent stress field. Fig. 2.40 shows the trajectories of each dislocation in this process. Note

that the outside two trajectories spread outwards initially before bending and becoming parallel

in the end due to the annihilation of all the other dislocations. The two outer dislocations are

separated by 132b at the moment that all other dislocations annihilate as shown in the scenario of

Fig. 2.31. Their evolution towards each other becomes extremely slow due to the small magnitude

of the attraction force between them due to the large distance of separation. Also, the boundary

attractions are extremely small based on the analysis around Fig. 2.37(a).

By inserting more dislocations into the previous array, one could simulate almost continuously

distributed pile-ups. The outer two dislocations on both sides are pinned. We use a [110b × 90b]

domain for this case. The initial distribution of dislocations is shown in the top panel of Fig. 2.41.

All the other simulation details are kept the same as in Table. 2.4. Fig. 2.41 bottom shows the

final state of the double pile-ups. It shows that all dislocations annihilate except the pinned ones

on the outside. This example also demonstrates that although α is a conserved variable, the norm

of α is not. There exist several continuum dislocation plasticity models (motivated from discrete

dislocation methodology) that insist on conservation of both α and norm of α, e.g. [139, 160],
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while this is a straightforward counterexample.

2.6 Dislocation motion in dynamic deformations

In this section we examine the capability of our theory of modeling dislocation-related phenomena

in the presence of material inertia. In all instances, the system (2.14) constitutes the governing

equations. The theory has modeling relevance for phenomena at the atomic as well as geologic

length scales. With computational capabilities of the type demonstrated in this chapter, our theory

appears to be a relatively straightforward and robust tool to probe such questions in fair generality

that otherwise require delicate analytical skills (cf. [15, 50, 95, 102, 114, 115, 155]).

2.6.1 Subsonic, intersonic, and supersonic dislocation motion

As for dislocation dynamics with material inertia, it is physically natural that a moving dislocation

induces elastic stress-waves that cannot transmit the stress signal instantaneously to all parts of the

body. This fact is naturally encoded in FDM and our simulations, without extra effort or compu-

tational expense beyond solving standard elastodynamics equations. As discussed in [62], when

time intervals of observation are small (as in very high rate deformations) this time delay in stress
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signal transmission due to stress-wave propagation can be of importance, and merely correcting

for individual dislocation motion laws in DD simulations by added-mass effects, while utilizing

the static stress fields of dislocations, is not sufficient; instead, dislocation stress fields utilizing the

full dynamic Green’s function have to be utilized and this becomes a significantly onerous task,

especially with increase in number of segments. We demonstrate the efficacy of FDM in dealing

with such problems in Section 2.6.3. In addition, we show that there is no conceptual or practical

problem within FDM in dealing with dislocation motion past linear-elastic sonic speeds (in appro-

priate circumstances) as observed in the molecular dynamics (MD) experiments of Gumbsch and

Gao [61], or in dealing with nonlinear elasticity, with beneficial effect related to matching trends

of dislocation velocity vs. applied loading to MD results.

We investigate dislocation velocity versus applied load phenomena in a specific setting, with

special interest in probing the sub-inter-supersonic regime of dislocation motion within our model.

Because of the peculiar singularities at the speed of sound that occur in the relatively few complete

solutions available in the linear elastic theory of dislocations, e.g. [15], questions of supersonic

dislocation motion have generally been outside the realm of exploration for the classical theory of

dislocations. Of course, if it is assumed that a stress wave in a purely linear elastic medium is the

only carrier of signals that fail the material to form a dislocation core, then it is indeed physically

unreasonable to expect the core to be able to travel faster than the linear elastic wave speeds of the

material.

However, a system of numerical experiments performed by Gumbsch and Gao [61], moti-

vated by transonic shear cracks observed in high-speed impacts [135], reported the possibility of

a transonic dislocation speeding up into the supersonic regime in a highly pre-stressed body. The

MD experiment studied the motion of dislocations nucleated within a thin strip subjected to simple

shear pre-strain. The dislocation velocity varies from subsonic to supersonic magnitudes according

to the level of enforced strains.

A sketch of the MD velocity vs. applied shear strain obtained in Gumbsch and Gao’s MD

experiments is shown in Fig. 2.42. In the sketch, only the black dots are of concern since our prob-

74



Table 2.5: Simulation details for dynamic simulations.

controlling parameter value
domain width (W ) 110b
domain height (H) 90b
mesh refinement 351× 91
core-energy strength (ε) 1
Young’s modulus (E) 70GPa
shear modulus (µ) 26GPa
Burgers vector (b) 4.05× 10−10m
shear velocity (Vs) 3.13 km/s
pressure velocity (Vp) 6.32 km/s

lem is slightly different from theirs; e.g. the MD experiment involves the process of dislocation

nucleation from a notch tip. The velocity data has two sudden transitions close to the shear wave

and pressure wave velocity Vs and Vp. The very nonlinear velocity vs. applied strain relationship

is also noteworthy. The objective of this section is to qualitatively compare the results from our

model with these MD results. To this end, we set up the initial-boundary value problem in a man-

ner similar in principle to the MD simulations in Gumbsch and Gao [61]. The model has a domain

of size 110b× 80b, discretized uniformly. The simulation parameters are grouped into Table. 2.5.

The simulations are performed by the following steps:

1. First, we solve for the displacement field, us, of a static dislocation-free body subjected to

Dirichlet boundary conditions defined by (2.51):

ū = Γ (x2 +H)e1, on ∂Ω. (2.51)

This would result in a homogeneous simple shear strain of 0.5Γ (e1 ⊗ e2 + e2 ⊗ e1) in a

linear elastic body. We define ε12 = 0.5Γ and use it to denote different simple shear loading

cases of time-independent Dirichlet boundary conditions in this Section.

2. Second, we solve for an equilibrated φe and displacement field ue of a quasi-static, traction-

free problem with a single dislocation at the point (40b, 0).

3. Dynamic simulations are performed according to (2.14) with initial conditions u(x, 0) =
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us(x) + ue(x) and φ(x, 0) = φe(x). The initial condition provides a pre-ε12-stressed body

with an equilibrated dislocation ready to move. The Dirichlet boundary condition on the

displacement fields in 1) above is maintained during the dynamic run - in the terminology

of plasticity theory, we simulate a ‘relaxation test’ in the presence of significant inertia. The

average dislocation velocity is recorded for each case of ε12 (the average dislocation velocity

is defined as in Eq. (2.46)). Since the load is applied through a Dirichlet boundary condition,

no external power is supplied to the dislocation for it to maintain a constant velocity, i.e., the

dislocation speed has to drop as it moves due to dissipation. However, in our numerical ex-

periments, the decrease in speed turns out to be very slow. Specifically, we choose different

X̄s in Eq. (2.46) and the variation in the resulting average dislocation velocity is found to be

negligible.

Our hypothesis for the subsequent numerical experiments is the following: we work with a non-

singular, dissipative model that, by design, satisfies the second law of thermodynamics (globally).

Here, dislocation motion is the only dissipative mechanism. Thus, the larger the reservoir of elastic

energy available from the pre-straining, the greater may be the propensity of the dislocation to

move faster to dissipate the energy. This seems to suggest that significant velocities can be attained

based on the level of pre-straining.

Additionally, the following analysis5 shows the possibility of supersonic stress waves in an

initially stressed body in the context of linearized elasticity. Let P, ø and
◦
ø be the first Piola-

Kirchhoff stress, the Kirchhoff stress and the contravariant convected rate of Kirchhoff stress,

defined with respect to an initially stressed configuration (treated as the current configuration).

5We acknowledge discussions with Profs. C. S. Man and R. W. Ogden on the possibility of elastic waves in
linearized elasticity supersonic with respect to linear elasticity.

76



Then, Ṗ evaluated at the current configuration is given by

Ṗ = ø̇F−T − øLTF−T

= ø̇− øLT

=
◦
ø + Lø + øLT − øLT

=
◦
ø + Lø.

Balance of linear momentum on the current configuration can be written as

div
[◦
ø + Lø

]
= ρv̈,

and we assume the elastic constitutive relationship

◦
ø = C : D,

where C is the 4th order linear elasticity tensor and D = 1
2

(
L + LT

)
. Let Mijkl = Cijkl + τljδik.

Assuming plane-wave solutions of the form vi = pie
I(nrxr−ct), where p is the velocity mode of the

plane wave (polarization), n the direction of propagation of the velocity wave, and I =
√
−1, one

has the characteristic equation

[
Mijklnlnj − ρc2δik

]
pk = 0

for the speed(s) c and polarization p. Choosing now a homogeneous state of initial stress given

by ø = τa ⊗ b with a and b as arbitrary unit vectors, one finds that longitudinal waves (p = n)

propagate with speed

cL =

√
λ+ 2µ+ τ(a · n)(b · n)

ρ
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and transverse waves (p in plane normal to n) propagate with speed

cT =

√
µ+ τ(a · n)(b · n)

ρ
.

Note that the linear elasticity analogs of cL and cT are Vp =
√

λ+2µ
ρ

and Vs =
√

µ
ρ
. Thus cL >

Vp > Vs as well as cT > Vp > Vs are definite possibilities for suitable states of initial stress, even

without resorting to full-blown nonlinear theory.
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Figure 2.42: Sketch of the MD results from Gumbsch and Gao [61], reprinted with permission from AAAS.
Dashed lines indicate relevant acoustic wave speeds.

Linear Elasticity

The dynamic simulations discussed above are performed with the equations (2.14), utilizing the

constitutive equation (2.10), which implies a linear elastic relationship between the stress and

the elastic strain. Fig. 2.43 shows the relationship between the applied strain and the average

dislocation velocity. Numerical experiments are done on a body of size [110b × 90b] which is

uniformly meshed and refined so that stress waves propagating through the entire body can be

accurately captured. The simulation details are grouped in Table 2.5.

m = 0, m = 1, and m = 2 cases are considered. Unlike the quasi-static simulations, here we

need a physical value for the dimensionless drag coefficient. For m = 1 and 2, we adopt the value
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B̃m = 0.0297 (see the discussion surrounding (2.18)). For m = 0, we choose B̃m = 0.0037, based

on fitting to eliminate a disparity in magnitude of results in Fig. 2.45, to be discussed subsequently

(note that it is reasonable to expect B̃m to depend on m).

Figure 2.43 shows that while defeating the linear elastic wave speeds is possible for the dislo-

cation velocity in our model based on the level of pre-strain, the overall velocity-stress relationship

is not qualitatively close to the MD results of Gumbsch and Gao [61]. In particular, the plateaus

around Vs and Vp have not been captured. The shear stress wave profile propagating through the

body in the case of ε12 = 0.125 is shown in Fig. 2.44. A Mach cone is observed behind the moving

dislocation (from right to left) with an angle of approximately 38.7◦.
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Figure 2.43: Dislocation velocity with homogeneous shear strain ε12 applied to geometry linear body.

(a) (b) (c) (d)

Figure 2.44: From right to left, shear stress wave around a moving dislocation under applied shear strain
ε12 = 0.125. The arrows denote the positions of the dislocation core.
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Nonlinear Elasticity and Finite Deformation

In order to understand at least some effects of using nonlinear elasticity and finite deformation vis-

a-vis the ‘prediction’ of the Gumbsch and Gao [61] MD results on high-speed dislocation motion,

we adopt a grossly simplified version of the full finite deformation theory of Field Dislocation Me-

chanics [4, 5, 7]. Roughly speaking, we allow for geometric nonlinearities in the total deformation

and elastic constitutive equation, but ignore the kinematic nonlinearities in the evolution of the

dislocation density; while this suffices for our purpose here, such nonlinearities are important, e.g.

in the prediction of dislocation nucleation [55].

We adopt the simplest St. Venant Kirchhoff model of nonlinear elasticity. Let T be Cauchy

stress. The 1st Piola-Kirchhoff stress is defined through the elastic distortion Fe and the deforma-

tion gradient F as

P = JTF−T = JFe(C : Ee)FeTF−T (2.52)

where Ee = 0.5(FeTFe − I). We solve for balance of linear momentum in the reference config-

uration (this allows us to use the computational set-up for solving for the displacement fields in

the small deformation setting without significant change). Motivated by single slip kinematics of

crystal plasticity theory, we assume the plastic distortion to take the form

Fp = I + Up (2.53)

where I is the second order identity tensor and Up is defined by (2.6). Also, we write F =

I +Gradu, with all spatial derivative operators with respect to the reference configuration. Next,

we assume the multiplicative decomposition of F:

F = FeFp (2.54)

where Fe is the elastic distortion.
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We choose the stored energy density function ψ (per unit mass) to be

ψ =
1

ρ0

(
ψ̂(Fe,α) + η(Fp)

)
=

1

ρ0

(
λ

2
tr(Ee)2 + µtr(Ee2) +

1

2
εα : α + η(Fp)

)
, (2.55)

where ρ0 is density of the reference configuration. We have

L = Le + Lp

Le = ḞeFe−1, Lp = FeḞpFp−1Fe−1,

(2.56)

and L is the velocity gradient. Then the dissipation in this finite deformation case takes the form

(cf Eq. (2.6)).

D =

∫
B

T : L− ρ

ρ0

(
˙̂
ψ + η̇

)
dv

=

∫
B0

JT :
(
Le + FeḞpFp−1Fe−1

)
dv0 −

∫
B0

(
∂ψ

∂Fe
: Ḟe +

∂η

∂Fp
: Ḟp +

∂ψ

∂α
: α̇

)
dv0

=

∫
B0

(
JT− ∂ψ

∂Fe
F eT

)
: Le dv0 +

∫
B0

JT :
(
FeḞpFp−1Fe−1

)
dv0 −

∫
B0

∂η

∂Fp
: Ḟp +

∂ψ

∂α
: α̇ dv0

=

∫
L0

{(
JFeTTFe−T ) : ḞpFp−1 − ∂η

∂Fp
: Ḟp

}
dv0 +

∫
L0

∂ψ

∂α
: curl (α×V) dv0

=

∫
L0

(
JFeTTF−T − ∂η

∂Fp

)
: Ḟp dv0 +

∫
L0

∂ψ

∂α
: curl (α×V) dv0,

(2.57)

where the stress function T defined over the whole body is chosen as

T =
1

J

∂ψ

∂Fe
FeT . (2.58)

Linear momentum balance, expressed in the reference configuration, gives

DivP = Div

(
∂ψ

∂Fe
FeTF−T

)
= ρ0ü. (2.59)

Defining Tf = FeTTF−T (the superscript f stands for finite deformation), the rest of the deriva-

tion for the φ-evolution equation stays the same as in the small deformation context. However, a
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new form of the layer stress, τ f , is required (cf Eq. (2.9)):

τ f =
1

2b

∫ b

−b
JT f12(x, y, t) dy. (2.60)

For convenience, we collect the governing equations for the finite deformation system in one

place:

DivP = ρ0ü

φt =
|φx|m

B̃

(
τ + εφxx − τ b

)
Up = φ e1 ⊗ e2,

(2.61)

along with the constitutive and kinematic specifications (2.52 - 2.54).

The same simulation set-up as the small deformation case in Section 2.6.1 is used. J is found

to be close to 1 (maximum value over domain is 1.032) and we make the approximation of J = 1

in our calculations. The body is supplied with a Dirichlet boundary condition that prescribes a

simple shear strain of ε12 (defined by Eq. (2.51)). The applied shear strain ε12 ranges from 0.005

to 0.15, with increments of 0.005. The average dislocation velocity vs. applied strain is plotted, as

shown in Fig. 2.45. All three models (m = 0, 1, 2) give qualitatively similar profiles as the MD

experiment [61] (Fig. 2.42). The curves display plateaus close to the linear elastic shear/pressure

wave speeds, suggesting a definite resistance to breaking these ‘sound’ barriers. Increasing loads

beyond these barriers causes sharp transitions in the curve. We point out that the choice of a smaller

Bm for m = 0 is required to cluster the curves at approximately the same magnitude levels.

Figure 2.46 shows the magnitude of material velocity field for ε12 = 0.125, bearing a qualitative

similarity in the asymmetry of the pattern with the MD simulations of Gumbsch and Gao. Fig. 2.47

shows the shear component of Cauchy stress (post-processed from the Piola-Kirchoff stress and

the deformation gradient). The dislocation accelerates from rest to supersonic speeds. The contour

shows a Mach cone formed behind the dislocation tip. This suggests that the dislocation not only

beats the linear elastic shear wave speed but also the wave speed of the ambient nonlinear elastic

medium. But an even more interesting observation is the one demonstrated by Fig. 2.48 where
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Figure 2.45: Dislocation velocity vs. applied strain, with inertia. Horizontal dashed lines indicate relevant
acoustic wave speeds.

the top panels are dislocation positions and the bottom row is the corresponding layer stress τ f

defined by Eq. (2.60): the stress-related part of the driving force for dislocation motion indeed

keeps up with the supersonic dislocation indicating that stress wave speeds in the core region

involving elastic-plastic behavior can be vastly different from the speeds of the ambient elastic

medium. This emphasizes the fact that material response in the core matters even for larger scale

observations and accounting only for elastic configurational forces while treating a defect core as

a structureless singularity may not be adequate for many purposes, even in a partial differential

equation-based theory like ours. Fig. 2.49 shows a plot of the hydrostatic part of the Cauchy stress

(on the reference configuration). A pressure wave Mach cone forms behind the dislocation, with a

Mach cone angle of about 43◦.

The dislocation velocity plotted in Fig. 2.45 is to be interpreted as the velocity of the image of

the core under the inverse total deformation, i.e. the dislocation velocity in the reference configu-

ration. Let us denote it as vR. Since the dislocation corresponds to a negative one (i.e. the ‘extra

half-plane of atoms’ belongs to the bottom block), applied shearing in the positive x-direction re-

sults in dislocation motion from right to left. The dislocation velocity relative to a fixed frame, vd,

satisfies

vd = FvR + vm,
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Figure 2.46: Material velocity field around a supersonic dislocation of speed 2.8Vs. The maximum value of
material velocity is around 0.1Vs.

where vm is the material velocity. As an estimate, we interrogate the material velocity component

vm1 in the case of ε12 = 0.125 and find that it is relatively small compared to vR1 ; the maximum is

approximately 0.1Vs (as shown in Fig .2.46). F11 and F21 near the dislocation tip are approximately

1.01 and 0.01 on average. Thus, while the true dislocation velocity is expected to be lowered in

magnitude somewhat from the vR value, the dislocation may still be deemed as supersonic.

(a) (b) (c) (d)

Figure 2.47: From right to left, Cauchy stress wave (shear component) of a dislocation moving superson-
ically under applied shear strain ε12 = 0.125. The arrows denote the positions of the dislocation core.
From (d) to (c), as the dislocation is gaining speed to supersonic the region to the left of the core is also
accelerating, which generates disturbance around that area. The dislocation moving with supersonic speed
((b) and (a)) forms behind the core a shear stress mach cones.

It can be seen in the results of Fig. 2.47 and Fig. 2.49 that the Mach cone angles are obviously

different between the top and the bottom blocks. In Fig. 2.47(b) as an example, the comparison

is approximately 32.9◦ (top) vs. 58.6◦ (bottom). Such asymmetry is not observed in the small de-
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Figure 2.48: From right to left, the layer stress τ (bottom) moves with the dislocation(top). Waves excited
by dislocation motion ripples backwards only (to the right).

(a) (b) (c) (d)

Figure 2.49: From right to left, hydrostatic part of Cauchy stress wave around the supersonic dislocation
under applied shear strain ε12 = 0.125. The stable supersonic motion of the dislocation results in a pressure
wave mach cone forming behind the dislocation core.((b) and (a)).

formation context (Fig. 2.44). We want to ascribe this asymmetry to the hypothesis that the actual

nonlinear wave speeds and propagation in the top and bottom blocks are significantly different due

to the differences in the elastic strain fields there. Compared to small deformation theory where

the wave speeds are simply material properties, we argue that in the calculations of Fig. 2.47, the

stiffness largely depends on deformation states, which affects the wave speeds. The significant

asymmetry between the top and bottom half body is well established, i.e., a negative edge dislo-

cation results in a tensile stress in the horizontal direction in the vicinity of the layer in the top

block and a compressive stress field in the bottom block. In Table 2.6 we record Ee of two points

vertically close to the dislocation (but outside the layer) for three arbitrary time steps during the

supersonic motion of the dislocation. One can see that Ee
11 not only has opposite signs between

the top and bottom but also different absolute values; other components do not show such large

asymmetry.

The separated nature of the Mach cone wings in all cases is also worthy of note; to what extent
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material heterogeneity (in the vertical direction) plays a role in this phenomenon remains to be

explored.

Table 2.6: Strain states sampled at the top and bottom of a supersonic dislocation at three time instants.

Time instant (b/Vs) T1 = 12.3 T2 = 8.19 T3 = 6.66

strain state (top)
(

0.130 0.060
0.060 0.014

) (
0.032 0.121
0.121 0.030

) (
0.030 0.119
0.119 0.030

)
strain state (bottom)

(
−0.092 0.063
0.063 0.023

) (
−0.041 0.101
0.101 0.023

) (
−0.051 0.092
0.092 0.018

)

2.6.2 Longitudinal Shear band propagation modeled as dislocation motion

Much like a crack-tip, a shear band is found to elongate through the motion of its tip [59, 74,

94, 164]. Modeling this longitudinal extension of the band is a difficult matter since classical

plasticity theory does not provide a mechanism to achieve such a dynamic extension mode, and

delicate constitutive modifications have been resorted to [98, 165]. Here, we demonstrate this

mode of shear band propagation as a direct consequence of dislocation motion, with the shear

band tip interpreted as a dislocation line with a nonsingular core. In Fig. 2.50 we plot the current

configuration of the problem presented previously in Fig. 2.47. The current coordinate of each

node is simply a summation of the displacement and the reference coordinate. The motion of the

dislocation leads to the formation of a shear band between the point (10b, 0) and (50b, 0). We use

a black arrow to indicate the position of the dislocation. The corresponding (total) deformation

gradient component F12 during the extension of the shear band is plotted in Fig. 2.51. The highly

sheared region behind the dislocation is notable.

Interestingly, for shear bands formed in this way due to the motion of a localized curl of plastic

deformation (the core), the shear band width is controlled by the geometry of the core (here, its

vertical extent) dragging the shear band behind it.
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Figure 2.50: Shear band deformation formed behind the dislocation moving from (50b, 0) to (10b, 0).

(a) (b) (c) (d)

Figure 2.51: Deformation gradient F12 around shear band.

2.6.3 Effect of finite-speed-of-propagation of elastic waves

The time-dependent nature of the elastic fields of dislocations cannot be ignored especially when

modelling high strain rate processes. For situations involving ‘shock’ loadings and strain rates

higher than 106s−1, utilizing quasi-static dislocation stress fields is not appropriate, even with an

added mass correction to the equation of dislocation motion [71]. As a consequence, a new discrete

dislocation approach was developed in [62] to deal with very high strain-rate deformations. In

FDM, inertia is encoded in the system naturally through the balance law for linear momentum.

The following example, directly adapted from [62], demonstrates the effect of finite-speed-of-

propagation of elastic waves in dislocation mechanics. The system is still governed by Eqs. (2.14)

with m = 1 without any further considerations of geometric or elastic nonlinearity.
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A horizontal shock loading is applied on the left boundary by specifying the displacement at

x = −55b as

ū1(t̃) =


cos
( π
H
y
)
, t̃ < 10

0, t̃ >= 10.

(2.62)

We insert a dislocation dipole in the center on the arrival of the shear stress front due to the rapid

boundary loading: a crude approximation to nucleating a dislocation. Fig. 2.52 shows the series

of shear stress contours during this process. Apart from the waves generated by the shock loading,

one can clearly see that it requires a finite time for stress waves due to the dislocation dipole to

propagate through the body. On the other hand, in a quasi-static setting, the elastic stress fields of

the dipole would be transmitted all over the sample at the instant the dipole is nucleated even with

the added mass correction (since the issue is not related to the speed of the dislocation itself, but to

the propagation of elastic fields).

(a) t = 50 b
Vs

(b) t = 275 b
Vs

(c) t = 350 b
Vs

(d) t = 450 b
Vs

Figure 2.52: Shear stress wave resulted by an artificially nucleated dislocation dipole.

To clearly demonstrate the finite-speed-of-propagation effect, we solve a quasi-static dipole

problem as in Section 2.5.1 for the displacement field us, and then superpose on us the dynamic

displacement fields ud taken from Fig. 2.52(b) and evaluate the corresponding stress field (with

φ also taken from Fig. 2.52(b)). Compared to the ‘quiet’ stress field in front of the loading pulse

of Fig. 2.52(b), an instantaneous stress field of the nucleated dipole is distributed immediately

everywhere on the domain as nucleation occurs, shown in Fig. 2.53. The magnitude of stress at

the point (40b, 0) can reach up to 0.003µ while the value is 2.8 × 10−6µ at the same point in Fig.
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2.52(b).

Figure 2.53: Quasi-static shear stress at the instant of the nucleated dislocation dipole.

2.6.4 Rupture Dynamics

In this section we explore the possibility of utilizing FDM in modeling aspects of dynamic rupture.

As early as 1970, Brune [24] suggested that an earthquake might be analogous to the problem of

dislocation propagation in a slip plane. Nabarro [103] mentions this as well. At a very simplified

level, rupture may be considered as the study of two very large blocks of material slipping with

respect to each other over a thin region (relative to the size of the blocks). Based on this picture,

rupture dynamics has been primarily studied as a problem of friction between two bodies. A crack

is assumed to exist behind the rupture front; the crack faces are not traction free but transmit shear

and normal stresses, the former limited by a friction law. Very important for this conceptual pic-

ture is the fact that the relative displacement (slip) of the crack faces is not constitutively restricted,

whereas the friction law typically limits the maximum attainable shear stress that can be transmit-

ted across the rupture layer. For a general crack, any traction profile may be imposed on the crack

surfaces as Neumann boundary conditions for the equations of elasticity, this being interpreted as

two conditions, one for each crack face. The friction law replaces these two conditions by demand-

ing traction continuity and constitutively relating the magnitude of the traction to the displacement

discontinuity across the layer.
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On the other hand, for a classical dislocation in an elastic medium, there is again a displacement

discontinuity behind the dislocation line but of fixed magnitude, and the stresses transmitted across

the dislocated part of the slip plane are not limited in principle, but have to be continuous (except at

the core singularity). A crack could in principle be loaded by Dirichlet boundary conditions, one

for each face. The classical dislocation replaces this specified displacement boundary condition

with a requirement of traction continuity and a specification of a displacement jump of fixed mag-

nitude. An important fact about the classical dislocation picture is that the material in the wake

of the moving dislocation line is indistinguishable from the intact elastic material ahead of the

dislocation, thus conferring an aspect of reversibility related to material response upon dislocation

motion6. Moreover, the classical notion of a dislocation and the substantial theory surrounding it

related to solving for its fields allow no other possibility for material response behind the disloca-

tion line. It is physically clear, however, that this picture cannot then be applicable to the modeling

of geophysical rupture as the phenomenon definitely requires some degradation in stress response

behind the rupture front.

Against this backdrop, a primary aspect of rupture dynamics is the phenomenon of self-healing.

Self-healing is a conclusion deduced from observations of many earthquake records by Heaton [67]

which show that slip duration at any given point through which a rupture front has propagated is

relatively short compared to the duration of the whole earthquake. Heaton also observed that it is

a generic feature of crack models whose friction laws are of slip weakening type that short slip

duration cannot be predicted. He further suggested [67] slip velocity-weakening friction laws as

a constitutive device that allows the accommodation of the prediction of short-slip duration. This

idea has since been developed in great quantitative detail, as explained in Rice [129]. On the

other hand, were a rupture front to be modeled as a dislocation line, it is a topological fact of

the displacement fields of an isolated dislocation (i.e. a fixed Burgers vector) that only short slip

duration can be a consequence behind the rupture front.

It seems to us that the dislocation picture and the crack picture are two extremes for the model-

6We thank Prof. J. R. Rice for emphasizing this fact.
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ing of rupture. The assumption that there is no elastic stiffness of material behind a rupture front,

even though a fault zone is of non-negligible thickness and contains, presumably, pulverized ma-

terial at great depths (and therefore compressive stress), seems unrealistic to us. The shortcoming

of the classical dislocation picture in dealing with the damage behind the rupture front has already

been mentioned. Thus, it seems that what may be rather well-suited for the description of rupture

is fundamentally a dislocation model that however allows for damage in elastic stiffness behind

the rupture front. Field Dislocation Mechanics affords exactly this possibility and, as we show,

interpolates between the crack and dislocation models depending on the extent of elastic damage

allowed behind the rupture front.

We modify the model described in Sec. 2.2 leading to the system (2.14) as follows. We model

a fault zone as a layer with a modulus CL that is weaker than the outer region. We define the

damaged elasticity tensor in the layer as,

CL = (λ− φ

φ̄
κ)C, where 0 < κ < λ < 1. (2.63)

C is the undamaged elasticity tensor of the domain excluding the fault layer. When φ = 0, the non-

ruptured layer has modulus λC, while ruptured portions of the fault have an even weaker modulus

(λ − κ)C. We keep all other features of the model as before. An implicit physical assumption

here is that in the absence of constraints due to compatibility of total deformations, the total strains

exhibited by the material in the fault zone has preferred strained states that can coexist. This is

necessary. As shown before in Sec. 2.4.1, this is essential for a stress inducing feature as a rupture

front to exist in equilibrium (as presumably it does before its motion that triggers earthquakes).

For the nonconvex function η (2.11), the exercise related to rupture modeling does not require a

periodic potential and a triple well potential with wells at ±φ, 0 suffices.

For the purpose of illustration, we choose λ = 0.7 in this section, and κ is assumed to take

the three values of 0.2, 0.6, 0.695. Therefore the elastic modulus of the undamaged fault (where

φ = 0) is 0.7 of the outer blocks. The fault is assumed to be completely damaged where φ = φ̄ and
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the damaged modulus is (0.7 − κ)C, i.e., a bigger κ represents greater damage. Within the core

region the level of damage attains intermediate values as a function of φ.

We start by studying the layer stress τ and slip δ (2.4) at a fixed observation point P in the

path of a moving dislocation/rupture front. Specifically, the dislocation is initialized at x = 0 and

driven left by applying Dirichlet boundary condition, which prescribes a constant simple shear

deformation (defined by Eq. (2.51)). We utilize the NLS (m = 1) dynamics, for no particular

reason. Fig. 2.54(a) shows τ and δ vs. time records at P : (−25b, 0) under an applied shear strain

ε12 = 0.03 and κ = 0.2. Starting from an NLS dislocation pre-equilibrium, the dislocation is

driven to the left by the applied strain and passes P at the time t = 490 b/Vs. It is interesting to see

that both quantities jump when the dislocation passes through the observation point P . We note that

the slip stabilizes at a point once the dislocation passes through. This slip field is simply the sum

of the (layer-integrated) elastic and plastic distortions at each point in the layer. The kinematics

of dislocation motion encoded in FDM ensures that there is no evolution of plastic distortion at a

point once the entire core has traversed through it, due to the absence of plastic distortion gradients

behind the dislocation core.
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Figure 2.54: Left: layer stress and slip calculated at a fixed point (x = −25b) in the passage of a rupture
front. Right: transverse displacement at a fixed point in the rupture passage calculated by FDM model
compared with sketch of the observed data recorded in the Parkfield earthquake. Sketch adapted from [15]
(Copyright University Science Books, used with permission).
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Figure 2.55: Layer stress(left) and slip(right) plotted at a fixed point on rupture front passage with varying
elasticity damage. κ = 0.695 is fit by a square root function.

Fig. 2.54(b) shows the transverse displacement fields recorded at the same point in the case

of κ = 0.2. The profile qualitatively agrees with the observed form from the Parkfield earthquake

sketched on the top [15].

Fig. 2.55(a) demonstrates how κ affects the layer stress behind the rupture front. The conclu-

sion is that the greater the ‘elastic damage’ behind the rupture front, the less is the propensity of

the stress to recover after the passage of the rupture front. Fig. 2.55(b) shows the corresponding

slip records. Note that the most damaged case (κ = 0.695) leads to a model behavior similar to

a crack model, i.e., the slip at any point in the ruptured zone keeps increasing behind the rupture

front as a square root function of time (unless rupture front propagation is forcibly stopped) - this is

generically characteristic of all crack-like models of rupture dynamics employing slip-weakening

friction laws according to Heaton [67] and Day, et.al., [39]. At the very least, then, FDM-based

modeling of rupture dynamics appears to recover the response to two vastly different frictional

constitutive assumptions via a simple assumption of damage of elastic modulus.

The following observations related to our preliminary foray into the modeling of rupture are in

order:

• FDM naturally allows for the addition of a model of plastic deformation in the wake of the

dislocation reflecting plastic straining in the absence of its spatial variation, as in classical

93



plasticity theory. In fact, such a mode of plastic deformation is regularly used in applications

of FDM at larger length scales [48, 124, 137]. In circumstances when the elastic modulus is

substantially degraded behind the dislocation front, such an augmentation can accommodate

the great variety of frictional constitutive assumptions (i.e. slip weakening, velocity weaken-

ing, rate-and-state friction) utilized in the current modeling of rupture dynamics. In ongoing

work in simplified models, such a combination has been observed to give rise to stick-slip

behavior.

• Due to the dependence of the elastic modulus on the plastic strain, the driving force for the

dislocation (rupture front) velocity should contain a term arising from ∂φC that we have

ignored for simplicity. This term is expected to affect the observed velocity of the rupture

front and not the conclusions related to the existence of short slip duration or the lack of it.

• Modeling thick faults with substantial field variations through the thickness is apparently an

important issue in realistic modeling of rupture Rice and Cocco [130]. We note that FDM

is a full 3-dimensional theory and can be invoked within the fault layer with no conceptual

difficulty.

• Slow rupture fronts are observed in Rubinstein, et.al., [138] and Crescentini, et.al., [36]. As

mentioned earlier, there is a parameter regime (i.e. large drag) for our theory where such

phenomena can be modeled.

• For the sake of simplicity, we have not introduced a normal-stress dependence in rupture

propagation. We note that even the simplified model of FDM utilized in this work allows

naturally for the emergence of a normal-stress dependence in the rupture velocity, as shown

in the development of Section 2.2.
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Chapter 3

Dislocation pile-up problems solved by

FDM

The prediction of plastic deformation of metals has been an important research topic for decades,

which primarily reduces to the question of properly understanding the motions of dislocations as

the major cause of metal plasticity. As a modern plasticity theory, Field Dislocation Mechanics

(FDM) is developed to predict time-dependent mechanical response of bodies containing a dis-

tribution of dislocations mathematically represented by the dislocation density tensor. FDM has

been completed, generalized, and understood as a rigorous, continuum thermomechanical model

of dislocation dynamics and its collective behavior in [2, 3, 4, 6, 7, 8]. The theory has been applied

to understanding a number of physically interesting phenomenological plasticity problems, for ex-

ample size effects and development of back-stress, among others ( [122, 123, 124, 136]). However,

less efforts have been paid to demonstrate the capability of determining dislocation microstructures

under applied stress, which is the major objective of this work. A well-known, simplest, bench-

mark problem for this purpose is to study an array of identical dislocations forced against some

impenetrable walls or barriers, e.g., grain boundaries, referred to as dislocation “pile-ups”. We

emphasize that the full blown FDM theory has the potential to model real dislocation distribution

of pile-ups in 3-D. Although, this work only focuses on arrays of identical dislocations.
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The question lies in finding the positions/distributions of the dislocations in a pile-up and calcu-

lating the corresponding stress fields, especially near the barrier. With a 2-d FDM model developed

in [10], we explore a variety of pile-up problems of different types of constraints and loadings.

Specifically, we model a group of free dislocations that

1. lie between two locked dislocations subjected to zero/finite shear load.

2. are forced to pile-up against a locked dislocation.

3. are distributed along the neutral axis of a cantilever beam subjected to transverse loading.

4. are forced to pile up against the material interface of a bimetalic body.

5. have positive sign are attracted to a group of negative, coalescing.

6. have opposite sign pile-up against the outer two fixed dislocations under constant shear loads:

an equivalent modelling of a micro-crack.

7. have positive sign are attracted to a group of free negative dislocations on a parallel slip

plane, interlacing.

8. are randomly distributed along parallel slip planes.

Case 1-6 basically cover most of the benchmark problems worked out in the literature [14, 43, 64,

66]. 7-8 are analyzed as they are complementary to what currently can be dealt by the other ap-

proaches. Pile-ups are known as complicated even though the problems have been mathematically

simplified to a large extent. The difficulty lies in the fact that the equilibrium of each dislocation is

determined by the combination of mutually repulsive/attractive interactions and the outer applied

loads. There have been some sophisticated models developed in the literature:

i Laying down the foundation of most subsequent models, Eshelby et al., [43] first analytically

solve equilibrated dislocation positions and resultant stress fields from the equation of Peach

Kohler force balance, which are summarized in section 2.4.3.

Case 1, 2 and 3 are solved in [43]. The limitation of this model is that finding polynomial so-

lution f becomes mathematically difficult with increasing complexity of loading conditions.

Another limitation is that all dislocations are required to have the same sign and lie in the
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same slip plane.

ii Exploring the previous model, Head [66] makes solving double pile-up problems possible

(double pile-ups refer to a group of positive dislocations next to a group of negative). Com-

plementary to [43], A.K.Head solves cases 5 and 7. However, the stress applied to form a

double pile-up is required to be larger than some critical value so that no dislocations anni-

hilate. And Head points out that case 5 with more than two dislocations interlacing becomes

intractable by his model.

iii Leibfried (1951,1954) shows that one can obtain approximate solution by treating discrete

dislocations with continuously distributed dislocation density, which can be determined from

integral transform. This method is applied primarily to case 6, e.g., in Akarapu and Hirth

[14] and Ockendon, et.al., [108].

iv A semi-continuum method is developed by Hall [64] in an attempt to fix the inappropri-

ateness of Leibfried’s model in approximating discrete microstructure near the pile-up head

with continuous functions. This method is applied to solving pile-ups of regular dislocation

walls (that is, of planes each containing an infinite number of parallel, identical and equally

spaced dislocations).

One of the fundamental differences between our pile-up model and the pioneering models is

that the motions of dislocations are governed by a fundamental kinematic rule of dislocation den-

sity tensor, derived based on the conservation of Burgers vector contents (detailed proof of this

argument are referred to [7]). It is worthy of pointing out that, although the dislocations are repre-

sented by fields, discrete microstructures are able to be clearly modelled by considering inelastic

multi-well non-convexity and dislocation core energy, both can be fitted from finer scale calcula-

tions. This essentially differentiates our model from approaches 3 and 4. The real-time dynamic

formation of a pile-up can be shown, which was once attempted by Kanninen and Rosenfield

[77] but limited to case 2 and without inertia. While no dynamic simulations (with inertia) are

performed by the other models, we find that the inertia enters our system conveniently through

the statement of linear momentum balance. We demonstrate that any Neumann and/or Dirichlet
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boundary conditions commonly applied in Finite Element elasticity are allowed in our model. In

the rest of this chapter, we present and analyze the numerical examples of problem 1-8.

3.1 Numerical modelling of pile-up benchmark problems case

1 to 8

3.1.1 Dislocations subjected to zero/finite shear load lie between two locked

dislocations.

Most of the simulation techniques discussed in this section will be re-used in following examples.

Consider an array of n dislocations with the outer two being locked under applied shear loads

through the definition of Neumann boundary conditions,

t = τa (n2e1 ⊗ n1e2) on ∂Ω (3.1)

where t is the traction on the boundary of the body and τa denotes the magnitude of load and

τa = 0 means load free.

Recall that the spatial derivative of plastic strain −φx(:= ∂φ/∂x) = α(x) represents the dislo-

cation density. We define initial condition of φ making use of the hyperbolic tangent function

φq(x) =
φ̄

2
tanh(a(x− xq)) +

φ̄

2
, (3.2)

where φ̄ is chosen to be the spacing between two neighbouring preferred plastic strain states en-

coded in η. φqx gives a localized dislocation peak at x0. A proper superposition of φq(x, 0) gives

any required 1-d distribution of dislocations, each at location xq (the location of a dislocation is

defined to be the coordinate of the peak of φx). The parameter a controls the initial dislocation

core width.

Consider τa = 0 first. According to [43], equilibrated positions are found to be roots of the
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first derivative of the (n − 1)th Legendre polynomial. We compute the roots for n = 5 and n = 7

for comparison purpose. And we choose material parameters in Table 3.1 for the simulation.

Table 3.1: Simulation details for pile-up problems.

Name Physical definition value units
E Young’s modulus 70 GPa
µ shear modulus 26 GPa
Vs shear wave velocity 3130 m/s

B̃m drag coefficient 0.0297 µ/Vs
ε core-energy strength 0.25 µb2

W,H domain width & height 103 × 103 b× b
h layer element width 0.1 b
φ̄ well spacing 0.5 /
|e|φ tolerance for φ equation 10−6 µ/B̃mb

We use a FE mesh of Fig. 3.1, where only the region within and near the layer is highly refined

to reduce computation cost. An initial distribution of dislocations is arbitrarily chosen. The quasi-

static system is evolved until |φs|∞ < |e|φ where we claim equilibrium is achieved. The outer two

dislocations are locked by forcing φs = 0 within their core throughout the evolution. The value

of |φs|∞ keeps decreasing from the beginning and asymptotically goes to zero. Its behaviour is

shown in Fig. 3.2. During this process, the dislocations move towards their equilibrated positions

as illustrated by Fig. 3.3(a) and 3.3(b). We find our numerical results to be exactly consistent with

the analytical solutions (marked by black dotted lines) for both n = 5 and n = 7 cases.

Figure 3.1: Mesh.
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Figure 3.2: |φs|∞ vs. slow time scale s.
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Figure 3.3: Dislocation array re-distributed under zero load. Black dotted lines denote dislocation positions
computed from analytical model of [43].

Now consider applying τa = 0.025µ, a shear load constant in time. The driving force of all

free dislocations are now affected by both repulsion force between each other and the applied shear

load which tends to force all dislocations to the left end. Due to such change of resultant Peach

Kohler force, the dislocations of Fig. 3.4(a) find new equilibrium configurations compared to Fig.

3.3(a). Another example of n = 21 is shown in Fig. 3.4(b). Note that increasing n has no effect on

computation labor, which is the advantage of a field mode over the discrete ones.
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Figure 3.4: Dislocation array distribution under load τa = 0.025µ.
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3.1.2 A group of dislocations pile-up against a locked dislocation under con-

stant shear load

We model a set of n = 7 dislocations forced against a leading locked dislocation, by applied

shear stress τa = 0.015µ. We use the same simulation parameters as in Table 3.1. The following

quantities are of interest to us and we compare them with the approximate solutions obtained from

Eshelby et al., [43]’s calculation (no exact polynomial solution can be found in this case):

1. L, the length of the slip plane occupied by dislocations

= 2nA/τa = 106.1 b (3.3)

2. d, the distance between the locked and nearest free dislocation

= 1.84A/nτa = 2.0 b (3.4)

We find a closely matched L = 103.1 b and d = 2.25 b from our model, despite the fact that we

represent each dislocation with a tensor field α which incorporates core structures. It is also found

that the stress diverges with x−1 away from the pile-up head. This is originally pointed out by [43],

which motivates the imitation of crack with double pile-ups. As shown in Fig. 3.5(b), we fit the

stress field away from the pile-up head by the following function,

τ ∗(x) =
−0.4887

x− 4.1345
+ τa , x ≤ 0 . (3.5)

It suggests that the group of dislocation can be approximated by a super-dislocation of Burgers

vector 0.4887/A = 4.29 b with center at x = 4.1345 b. The microstructure behaviour at the bottom

of the nearest free dislocation is also noticed: the intersection part is alleviated.
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(b) fit stress diverging from the pile-up head with an in-
verse function.

3.1.3 A group of free dislocations in a beam under transverse load

Consider n free dislocations line up on the neutral axis of a beam supported at double ends and uni-

formly loaded. This problem is originally posed in [43] with load P of Eq. (2.39) approximated by

P = x(dP/dx). Since we are able to consider the exact boundary conditions, such approximation

is not necessary. Let the beam have a geometry (3.6)

Ω = {(x, y) : (x, y) ∈ [−500,+500]× [−25,+25]} (3.6)

with double ends fixed and subjected to a constant transverse pressure acting on the top surface.

The n free dislocations are initially distributed arbitrarily (but away from the fixed ends follow-

ing Saint-Venant’s Principle). From the classical model, only an estimation of the distribution of

dislocations is given (no exact solution):

|x| <

√
(2n+ 1)A

dP/dx
(3.7)

i.e., all equilibrated dislocations are expected to lie in this region. Numerical results from our

model is shown in Fig. 3.5(c). The group of dislocations move to the left with cores compressed
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until they reach to the same region (3.7) (marked by black dotted lines). Apparently, it is also easy

to determine positions of each dislocation if necessary. The corresponding shear stress field τ on

the slip plane is shown in Fig. 3.5(d). As a 2-d continuum mechanics model, stress distribution in

the beam is a natural result of the calculation.
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Figure 3.5: Dislocations in a beam get equilibrated in the middle under transverse loading.

Figure 3.6: Normal stress contour of the beam after dislocations are equilibrated.

3.1.4 A group of dislocations pile up against an interface of a bimaterial

body

Consider the problem of a group of dislocations piled up against an interface of a bimetallic body

that bonds two isotropic media with different material properties on each side, which is of im-

portance when considering the precipitates strength, mechanical stability and cohesion with the
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matrix. This problem is originally proposed and analytically solved in Head [65] using potential

theory. The same problem was later studied by Chou [34] by turning the problem into a singular

integral equation of Cauchy type. Barnett [19] extends the method to involve different Poisson’s

ratios of the two phases in addition to that of respective shear moduli, leading to a complicated

integral equation. Kuang and Mura [80] solve edge dislocations that pile-up against bimetallic

interface using the same method. Voskoboinikov, et.al., [151] presented an asymptotic approach

for this problem. The continuum limit is obtained to evaluate the stress amplification at the head

of the pile-up.

We set up the simulation as follows. The left part of domain Ω1 {(x, y)|x < 0} has different

material properties from the right. We name shear modulus and Poisson ratio of the left to be µ1

and v1; the right µ2 and v2. µ2 and v2 are taken from Table 3.1 and held fixed. The interface of

the bimetallic body is set to be impenetrable. Thus an applied shear load forces all dislocations

of the right domain to pile-up against the interface. We study the effect of parameters in the

following way: first hold µ1/µ2 = 1 on both sides and vary the ratio of v1/v2; then vary µ1/µ2

with v1/v2 = 1. The stress diverging trend in the slip plane on the left side away from the interface

with dependence of discrepancy of shear modulus and Poisson ratio are shown in Fig. 3.7(a) and

3.7(b).
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Numerically, we conclude that increasing Poisson ratio or shear modulus of the dislocation free

body makes the shear stress diverge slowly from the origin (x = 0). It is convenient to extend the

one-slip model to a multiple layers. The shear stress τ in each layer and in the overall domain are

shown in Fig .3.7(c) and 3.7(d). The five layers have spacing 180 b.
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3.1.5 Coalescing arrays of dislocations with opposite signs

Consider a group of positive dislocations attracted by a group of negative dislocations with the

outer two dislocations fixed. The body is load free. Simulation details are the same as Table 3.1

except that we put in dislocation arrays of opposite signs in the beginning. The annihilation is

completely taken care of by the FDM kinematics. Note that the height of each dislocation can be

controlled by parameter a in Eq. (3.2). It is observed that the dislocations move closer driven by

attractive force. Starting from the two closest dislocations, eventually all dislocations annihilate.
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Figure 3.7: Almost completely continuous double pile-up with ends fixed (top). The middle dislocations
annihilate (bottom).

3.1.6 Double pile-ups: an equivalently simulation of a micro-crack

Now we consider applying a shear load τa = 0.015µ to force the formation of a double pile-up,

which was first numerically modelled in Head [66]. However, the applied load in Head’s model

is required to be greater than some critical stress σcr to keep any of the dislocation annihilated.

Therefore, the situation that τa < σcr cannot be handled, which FDM makes possible. Akarapu

and Hirth [14] studied this same problem with Leibfried method. The limitation to their method

is that there can not be net burgers vector present. And also, it gives accurate results provided that

the position in question is greater than the local discrete dislocation spacing, of the order of atomic

distances near the tip of the pile-up. In comparison, our model handles discreteness properties

through the physical consideration of inelastic multi-well non-convexity.

Fig. 3.8(a) shows the formation of a double pile-up. Note that the applied force τa = 0.015µ is

not sufficient to depart the middle two dislocations so they annihilate. The rest of the dislocations

pile up at the two ends of the domain. As postulated in Eshelby, et.al., [43], the shear stress of the

double pile up diverge away from the pile-up heads at the rate of x−2, similar to that of cracks. So

we consolidate this proposition by fitting τ with τ ∗(x) below. The stress variance is shown in Fig
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.3.8(b)

τ ∗(x) =
51.5771

x2 − 4664.5
+ τa (3.8)
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3.1.7 A group of positive dislocations attracted by a group of negative dislo-

cations on a parallel slip plane

Fujita [52] and Head [66] have considered the problem where N mobile positive edge dislocations

on a slip-plane are attracted by anotherN mobile negative edge dislocations of a parallel slip-plane.

Fujita argues that there exists an equilibrium arrangement of such distributions called interlacing

under no load. Head computes this problem in more details and postulates that a stable array

could be formed when the dislocations are partially interlaced, i.e., a number of dislocations pairs

would be formed but prevented from drifting apart by the attraction between the outer unpaired

dislocations. We use parameters from Table 3.2 and study the same problem.
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Table 3.2: Simulation details for interlacing problems.

Name Physical definition value units
E Young’s modulus 70 GPa
µ shear modulus 26 GPa
Vs shear wave velocity 3130 m/s

B̃m drag coefficient 0.0297 µ/Vs
ε core-energy strength 0.25 µb2

W,H domain width & height 100× 100 b× b
h layer element width 0.2 b
d̄ inter-spacing between layers 2 b
φ̄ well spacing 0.5 /
|e|φ tolerance for φ equation 10−6 µ/B̃mb

Fig. 3.8 shows such interlacing process under zero load. During the simulation, it is observed

that the two groups of dislocations move closer until the leading three dislocations of each side

form interlacing. The system becomes equilibrated afterwards. A critical stress is required to force

all dislocations to continue moving.

(c) s=0 (d) s=200

Figure 3.8: Shear stress during the interlacing of double pile-up on parallel slip planes.

We apply a shear load τa = 0.065µ, which provides sufficient energy to overcome the inter-

lacing barrier. As demonstrated in Fig. 3.9, the dislocations on top slip-plane move completely

past those on the lower plane and pile up at the right end (where a barrier is put in by hand). The

dislocations of the lower plane behave symmetrically.
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(a) s=0 (b) s=200

Figure 3.9: Shear stress during the interlacing of double pile-up on parallel slip planes.

It is also interesting to see the difference in |φs|∞ profiles of these two experiments from that

of Fig. 3.2, where |φs|∞ asymptotically goes to zero smoothly. In the interlacing process, |φs|∞

oscillates rapidly which represents the complex driving force change. On the other hand, as one

should expect, tackling dislocation distributions of this scenario based on stress balance as in [66]

requires delicate skills.
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(b) τa = 0.065µ

Figure 3.10: |φs|∞ during the interlacing forming of double pile-up on parallel slip planes.
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3.1.8 Arrays of randomly distributed dislocations

As we have pointed out in the beginning, most pile-up models are largely mathematically simpli-

fied w.r.t physical observations in experiments. The regular distributions of dislocations are rarely

existing. Modeling dislocations with Nye tensor and approaching the problems within FDM al-

lows more flexibility in dislocation distributions. We show in the following an example where

dislocations of random signs are distributed randomly along five slip planes. The slip planes have

spacing 180 b. Fig. 3.11(a) and Fig. 3.11(b) show the equilibrated state.
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(a) load free (b) stress pattern

Figure 3.11: Evolution of randomly distributed dislocations.
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Chapter 4

FEM implementation of finite deformation

Mesoscale Field Dislocation Mechanics and

its application to adiabatic shear banding

The microscopic shear band simulation from the 2-d layer model directly suggests the possibil-

ity of modelling a propagating shear band tip with the dislocation density tensor, although one

needs to work in the mesoscale context now. In this chapter, we make efforts in this direction. It

bears emphasis that FDM is a model that roots in the representation of defects in the lattice at the

atomic scale. To model such mesoscale phenomena as shear bands, a commonly used space-time

averaging filter is applied, which is described in details in the pioneering work of [8]. The resulted

averaged theory is called Mesoscale Field Dislocation Mechanics (MFDM), where the dislocations

are better understood as a specific spatial gradient of elastic distortion. And dislocation curves are

consequently interpreted as the boundary of intense plastic deformation where the intensity of de-

formation diminishes smoothly over a small distance. The resulting smooth tip of the deformation

band is thus called a dislocation curve. The dislocation density field is still a density of curves

carrying a vectorial attribute. Moreover, suppose the density field is localized along a curve, a

suitable consideration of thermodynamics provides a driving force that moves the curves perpen-
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dicular to itself in space, which leads to the fact that the deformation band extends exactly along

the path of the band-tip. Conventional elastoplasticity theory simply does not have equations that

can produce such behaviour that is, however, widely observed in such experiments as shown in

the overview chapter. We utilize two constitutive assumptions from the literature. First, based on

Zener’s argument of the forming mechanism of shear bands, we consider temperature in the model

and build a simple thermal softening mechanism in the evolution of material strength. The second

set of equations follow the classical modeling work of Peirce, Asaro and Needleman [111] and

[112], where FCC and BCC with latent hardening is used to simulate a necking planar plate under

axial-tension.

In this chapter, we give a description of the numerical formulations of MFDM and the two sets

of constitutive models, as well as the algorithm and usage of the computing code. Some benchmark

verification tests and simulations results are presented in the end.

4.1 MFDM Theory with constitutive specifications

We gather here the full set of governing equations, boundary and initial conditions of finite defor-

mation Field Dislocation Mechanics (MFDM) theory appeared in [8].

α̊ ≡ (div v)α + α̇−αLT = −curl (α×V + Lp)

curlχ̃ = −α

divχ̃ = 0

div
(

grad ḟ
)

= div
(
α×V + Lp − ˙̃χ− χ̃L

)
T = 2ρFe ∂ψ

∂Ce
FeT = Fe [C : Ee] FeT

divT = 0

Fe−1 = χ̃ + gradf ; Ce = FeTFe ; Ee =
1

2

(
FeTFe − I

)

(4.1)

In [7], a concise set of governing equations of MFDM are derived as follows. We attempt to
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solve it in the same framework for those cases where inertia plays essential role:


α̊ ≡ (div v)α + α̇−αLT = −curl (α×V + Lp)

Ẇ + WL = α×V + Lp (W := Fe−1)

ρü = divT

(4.2)

α is polar dislocation density. V is the averaged polar excess dislocation velocity vector. The

sum α × V + Lp is the averaged slipping distortion rate, and Lp represents that part of the total

slip strain rate which not represented by the slipping produced by the averaged signed dislocation

density (a two point tensor).

In the governing equations, Fe is the elastic deformation gradient. χ is the incompatible part

of Fe−1, f is the plastic position vector and gradf represents the compatible part of Fe−1. α is

the dislocation density tensor (two point tensor between the current and unstretched lattice config-

uration), V is the dislocation velocity vector, v represents the material velocity field, L = gradv

is the velocity gradient, ψ is the free energy per unit mass dependent exclusively on Ce, ρ is the

density and T is the Cauchy stress tensor. T, Lp and V are to be constitutively specified response

functions specific to materials. A plastic distortion may be defined as The decomposition of defor-

mation gradient gives

Fp := Fe−1F = χ̃F +
∂f

∂x0

(4.3)

4.1.1 Boundary and initial conditions

Let n be the outward unit normal of the surface; B and ∂B the body and its boundary in current

configuration. The following boundary and initial conditions are admitted:

1. χn = 0 on ∂B.

2. (grad ḟ)n =
(
α×V + Lp − ˙̃χ− χ̃L

)
n on ∂B

3. All standard Dirichlet and/or Neumann boundary conditions for the displacement and stress

fields in elasticity are applicable to ∂B.

113



4. In general, a natural boundary condition of the form

(α×V + Lp)× n = Φ (4.4)

is admitted by the slipping rate. Φ is a 2nd order tensor valued specified function of time

and position along the boundary satisfying the constraint Φn = 0. Such condition models

the dislocation flow at the boundary. A rigid boundary with respect to slipping may be

represented with a zero flow boundary condition

(α×V + Lp)× n = 0 (4.5)

all over the surface. One can impose a dislocation flux α(V · n) on inflow points of the

boundary where V ·n < 0, along with a specification of Lp×n on the entire boundary. This

condition allows free exit of dislocations without any added specification.

5. The fields α and f admit pointwise initial conditions α(0) and f(0). Initial temperature and

material strength at each quadrature point are also specified. The definition of the material

strength are to be discussed in the following section.

4.1.2 Two choices of constitutive functions

We discuss two types of constitutive equations chosen for the space-time averaged dislocation

velocity V and slip-distortion rate produced by SD, Lp. They include the crystal plasticity of latent

hardening and J2 plasticity with thermal softening. The former is targeted for a so-called “double-

slip” problem; the latter for dynamic adiabatic shear banding in polycrystalline materials. It is

worthy of pointing out here that any physically reasonable choice of constitutive model should give

non-negative plastic working, which is a derived consequence of the 2nd law of thermodynamics.

Cyrstal plasticity with latent hardening: We choose constitutive specifications for crystal plas-
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ticity as described below:

Lp =
∑
k

sgn(τ k)γ̇kmk
0 ⊗ nk

V = v
d

|d|
; v ≥ 0

(4.6)

where, mk
0 and nk0 are the unstretched unit slip direction and normal. τ k is the resolved shear stress

on slip system k. d is the direction of dislocation velocity. γ̇k represents the magnitudes of SD

slipping rate on the slip system k and v is the averaged polar ED velocity. mk and nk are the

stretched unit slip direction and normal on the current configuration.

mk = Femk
0 nk = Fe−Tnk0 (4.7)

The resolved shear stress τ k on slip system k is calculated by,

τ k = mk ·Tnk (4.8)

The direction of the dislocation velocity d is chosen to be,

d := b−
(

b · a

|a|

)
a

|a|
where

b := X(T
′
α) ; bi = eijkT

′

jrαrk

a := X(tr(T)α) ; ai =
1

3
Tmmeijkαjk

(4.9)

Thermodynamics indicates b as the driving force for V; d ensures the pressure independence of

plastic straining. Power law relation for γ̇k is chosen as,

γ̇k = γ̇k0

(
τ k

g

) 1
m

(4.10)

where m is the rate-sensitivity of the material, g is the strength of the material and γ̇k0 is the
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reference strain rate. We choose the form of v to be

v(state) =
η2b

nslip

(
µ

g

)2∑
k

γ̇k (4.11)

where µ is the shear modulus, b is the Burgers vector magnitude, nslip is the total number of slip

systems, e.g., nslip = 12 for FCC crystals. η = 1/3 is a material parameter. The strength of the

material is evolved by

ġα =
∑
β

hαβ|γ̇β|, α = 1, 2, ..nslip (4.12)

where latent hardening matrix hαβ are functions of γ =
∑

k |γk| that can be integrated from (4.10).

Specifically, the rate-dependent form of hαβ used by Peierce etc 1983 has the following form,

hαβ = qh+ (1− q)hδαβ (4.13)

where h(γ) = h0sech
2
(

h0γ
gs−gα0

)
Here h0 represents an initial hardening rate, gs is the saturation

stress, gα0 is the yield stress of slip system α.

J2 Plasticity with thermal-softening: Simple choices motivated by J2 plasticity and the ther-

modynamic considerations of MFDM are

Lp = γ̇
T
′

|T′ |
; γ̇ ≥ 0,

V = v
d

d
; v ≥ 0;

(4.14)

where, T
′ is the stress deviator, γ̇ and v are non-negative functions of state representing the mag-

nitudes of the SD slipping rate and the averaged ED velocity respectively. d is defined in the same

way as in crystal plasticity. The power law for γ̇ is chosen as

γ̇ = γ̇0

(
|T′|√

2g

) 1
m

(4.15)
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The expression for v is assumed to be

v(state) = η2b

(
µ

g

)2

γ̇(T
′
, g) (4.16)

where b is a characteristic length scale of the problem.

The strength of the material is evolved by the same rule,

ġ =

[
µ2η2b

2(g − g0)
k0 |α|+Θ0

(
gs − g
gs − g0

)]
(|α×V|+ γ̇) (4.17)

But we consider temperature effects by determining g through

g = g

[
1−∆

(
exp(

θ − θ0

θK0

)− 1

)]
(4.18)

where θ represents the temperature, θ0 the initial temperature specified on each quadrature point,

θK0 the referential temperature magnitude. Temperature is evolved by

θ̇ = χT : (α×V + Lp) (4.19)

χ and ∆ are positive parameters that can be fitted with experiments. (4.18) and (4.19) are a simple

implementation of the idea that plastic working leads to localized temperature increase which in

turn softens the material strength of the neighborhood.

4.2 Variational formulations

In this section we discuss the numerical scheme to solve the governing equations in a general case,

i.e., without any constitutive specifications. Some of the schemes (from 2 to 5) are already worked

out by Puri [121] which are still included here for completeness.

1. divT = 0 with geometrical nonlinearity considered . The formulation derived for this

problem is motivated from the previous work of Puri, [121] where geometrical nonlinearity
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is resolved by updating equilibrium configurations by a predictor-corrector approach. We

approach the problem by using the rate form of the equilibrium equations, following the

pioneering works of Biot, Hill, Mcmeeking, Rice and Needleman (cf. [23, 68, 69, 97, 106]),

and occasionally correcting for ’exact’ discrete equilibrium.

Consider an arbitrarily volume element Ω of current configuration within the material. We

require that the integrated value of the surface traction over the surface of Ω must sum to

zero to maintain static equilibrium, i.e.,

∫
∂Ω

Tn da = 0⇒
∫
Ω

divT dv = 0 dv (4.20)

Here we assume the lack of gravitational or any other forms of body forces acting on the

material in this volume for simplicity. To derive the right hand side of (4.20) one needs only

to apply Gauss’ divergence theorem. Now take Ω back to its reference configuration Ω0

and consider the rate form of the static equilibrium condition in terms of first Piola-Kirchoff

stress, ∫
∂Ω0

˙
JTF−TNdA = 0⇒

∫
Ω0

Div
˙

JTF−T dV = 0 (4.21)

The right hand side of (4.21) is again derived by applying Gauss’ divergence theorem. Since

the volume Ω is arbitrary, this requires that the integrand be zero:

Div
˙

JTF−T = 0

⇒Div
[
JdivvTF−T + JṪF−T + JT

˙
F−T

]
= 0

(4.22)

Choosing reference configuration to be the current configuration, we have

div
[
div vT + Ṫ−TLT

]
= 0 (4.23)

The weak form comes out naturally by using the test function δv that satisfies all essential
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boundary conditions,

∫
Ω

gradδv :
[
div vT + Ṫ−TLT

]
dv =

∫
∂Ω

δv · ṫda (4.24)

where ṫ is the specified Neumann boundary condition of nominal traction rate based on

the current configuration as the reference. Re-grouping the terms leads to the following

formulation that is suitable for standard FEM,

LHS =

∫
Ω

gradδ v :

[
div vT−TLT +

∂T

∂Fe
: (L · Fe)

]
dv

RHS =

∫
Ω

gradδ v :

[
∂F

∂Fe
: ((Feα)×V + FeLp) Fe

]
dv +

∫
∂Ω

δ v · ṫ da
(4.25)

The stress and its rate form are defined/computed by:

Tij = F e
ikLklrsErsF

eT
lj

Ṫij =

(
∂T

∂F e

)
ijkl

[(L− (F eα)× V − F eLp)F e]kl , where

∂Tij
∂F e

mn

= δimLnlrsErsF
e
jl + F e

ikLknrsErsδjm + F e
ik

1

2
Lklrs [F e

msδrn + F e
mrδns]F

e
jl

(4.26)

L is the fourth order elasticity tensor, and E is the Green-Lagrangian strain defined as,

E =
1

2

(
FeTFe − I

)
or Ers =

1

2

(
F eT
rp F

e
ps − δrs

)
(4.27)

The velocity v is then solved to update current configuration.

2. Evolution equation of plastic flow The time evolution equation of the plastic position vector

f is solved on current configuration at each time step.

div
(
gradḟ

)
= div (α×V + Lp − χ̇− χL) (4.28)
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With the natural b.c imposed:

(
gradḟ

)
· n = (α× V + Lp − χ̇− χL) · n (4.29)

f is updated by a forward Euler scheme. For simplicity of writing, let G = α ×V + Lp −

χ̇− χL and the test function be δf . Then the weak form of the equation reads,

∫
Ω

div
(
grad ḟ −G

)
· δḟ dv = 0

⇒
∫
∂Ω

(
grad ḟ −G

)
· n δḟ da−

∫
Ω

(
gradḟ −G

)
: grad δḟ dv = 0

⇒
∫
Ω

grad ḟ : grad δḟ dv =

∫
Ω

G : grad δḟ

(4.30)

specify fi = 0 at an arbitrary point at all time to ensure a unique solution.

3. Solve f from divT = 0 . Roughly speaking, one needs to solve the force balance equation

in terms of f to correct its value from evolution of (2). The necessity of this solve is due

to the fact that the previous evolution of f is generally explicit in time integration and that

a simply use of results of (2) can break the static equilibrium. To do this solve, first the

configuration updated from solving (1) is held fixed. Then starting from results of (2) as a

good enough initial guess, divT = 0 is solved in the interior of the body, i.e., a Dirichlet

boundary condition is applied so that the boundary values of f is held fixed. Specifically, the

derivations of the formulation involves the following steps.

(a) Let Gij = fi,j for short, and ∂Fe

∂G
can be calculated using the following identity,

F e
irF

e−1
rj = δij

⇒ ∂δij
∂Gpq

= 0 =
∂F e

ir

∂Gpq

F e−1
rj + F e

ir

∂F e−1
rj

∂Gpq

⇒ ∂F e
is

∂Gpq

= −F e
ir

∂F e−1
rj

∂Gpq

F e
js

(4.31)

Note that the inverse of elastic deformation gradient can be decomposed into χ and G,
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we have,

F e−1 = χ +G⇒
∂F e−1

rj

∂Gpq

= δrpδjq (4.32)

Therefore,

∂F e
is

∂Gpq

= −F e
irδrpδjqF

e
js = −F e

ipF
e
qs,

∂F eT
sj

∂Gpq

= −F e
jpF

e
qs (4.33)

(b) Recall the Cauchy stress definition:

Tij = F e
irSrsF

eT
sj , Srs = LrsklEkl = λEmmδrs + 2µErs and Ekl =

1

2
(F eT

kn F
e
nl − δkl)

(4.34)

We need ∂Tij
∂Gpq

for Newton-Raphson iterations, for which we do the following:

∂Ekl
∂Gpq

=
1

2

∂(F eT
kn F

e
nl − δkl)

∂Gpq

=
1

2

(
∂F eT

kn

∂Gpq

F e
nl + F eT

kn

∂F e
nl

∂Gpq

)
=

1

2

(
−F e

npF
e
qkF

e
nl − F eT

kn F
e
npF

e
ql

) (4.35)

Substituting it into the expression of Cauchy stress gives,

∂Tij
∂Gpq

=
∂F e

ir

∂Gpq

SrsF
eT
sj + F e

irLrskl
∂Ekl
∂Gpq

F eT
sj + F e

irSrs
∂F eT

sj

∂Gpq

=− F e
ipF

e
qrSrsF

eT
sj + F e

irLrskl
1

2
(−F e

npF
e
qkF

e
nl − F eT

kn F
e
npF

e
ql)F

eT
sj + F e

irSrs(−F e
jpF

e
qs)

(4.36)

Now that all ingredients are ready, one can write the weak form of Newton method.

Let R represents the “residual”,

R(f i) =

∫
∂Ω

T · n da−
∫
Ω

T (Gi) : δG dv

⇒R(f i+1) =

∫
∂Ω

T · n da−
∫
Ω

T (Gi + dG) : δG dv

(4.37)
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Let ∫
∂Ω

t da−
∫
Ω

(
T (Gi) +

∂T

∂G

∣∣∣∣
Gi

[dG]

)
δG dv = 0

⇒R(f i) =

∫
Ω

∂T

∂G

∣∣∣∣
Gi

[dG] δG dv = 0

(4.38)

R is repeatedly calculated with f i+1 = f i + df until the tolerance of equilibrium 10−9

is satisfied.

4. Solve equations for χ . The equations considered are

divχ = 0 curlχ = α (4.39)

in body. and

χ · n = 0

on boundary to ensure the existence of a unique solution. To solve the equations in the body,

we use Least Square Galerkin, the formulation of which is derived below.

δ

[
1

2

∫
Ω

(curlχ− α) : (curlχ− α) dv +
1

2

∫
Ω

divχ · divχ dv +

∫
∂Ω

λ · (χ · n) da

]
= 0

⇒δ
[

1

2

∫
Ω

(eijkχrk,j − αri) (eimnχrn,m − αri) dv +
1

2

∫
Ω

χij,jχim,m dv +

∫
∂Ω

λiχijnj da

]
= 0

⇒
∫
Ω

(eijkδχrk,jeimnχrn,m − αrieijkδχrk,j) dv +

∫
Ω

δχij,jχim,m dv +

∫
∂Ω

λiδχijnj + δλiδχijnj da

⇒
∫
Ω

eijkδχrk,j (eimnχrn,m − αri) dv +

∫
Ω

δχij,jχim,m dv +

∫
∂Ω

λiδχijnj + δλiδχijnj da

(4.40)

5. Evolution of dislocation density tensor α, which reads as,

α̊ ≡ (div v)α + α̇−αLT = −curl (α×V + Lp) (4.41)

The discretized variational form of this equation in components with respect to an orthonor-
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mal basis is,

∫
B

δαij
(
αij − αtij

)
dv −4t

∫
B

(
δαij,kαijV

t
k − δαij,kαikV t

j

)
dv

+4t
∫
∂Bi

δαijFijda+4t
∫
∂Bo

δαijα
t
ij(V

t
kn

t
k)da−4t

∫
∂B

δαijα
t
ikn

t
kV

t
j da

−4t
∫
B

δαij,kejklL
p t
il +4t

∫
∂B

δαijejklL
p t
il n

t
k da

−4t
∫
B

δαijαikL
t
jk dv +4t

∫
B

δαijαijv
t
k,k dv

+

∫
Binteriors

Ari
(
δαri +4t

[
δαri,jV

t
j + δαriV

t
j,j − δαrj,jV t

i − δαrjV t
i,j − δαrjLtij + δαriL

t
j,j

])
dv

(4.42)

where

Ari = αri−αtri +4t
[
αtri,jV

t
j + αtriV

t
j,j − αtrj,jV t

i − αtrjV t
i,j + eijkL

p t
rk,j − α

t
rjL

t
ij + αtriL

t
j,j

]
(4.43)

4.3 Algorithm

The numerical algorithm is approached by time steps. Due to the fact that large deformation

problem tends to lead to instability, one needs to carefully build in a cut-back mechanism, i.e., we

need to control the deformation magnitude of each step. If the plastic strain at a quadrature point

becomes too large, the program should stop and go back completely to the states of previous step

and keep running with time step size reduced to half. The cut-back algorithm ensures the program

to choose sufficiently small time step to capture plastic responses. The program is coded under

deal.ii, a C++ software library supporting the creation of finite element codes. We describe the

numerical flow in this section.

All constants and options are defined in a data file called ”const params.in” which is to be read

into the memory as the program starts. Each line in this file has a command format “keyword =

value”, e.g., time step = 0.1 implies the minimum time step that the program allows is 0.1µs.

(Comments can be made in this file with a leading character ”#”). Since the program searches for
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all keywords, the order of the lines is irrelevant. The items being read in include,

1. body geometry specifications, e.g., hyper rectangle, cylinder, hyper cube with hole, or hyper

cube with a slit. Their meshing options are required for each geometry. e.g., one can let the

program to mesh a hyper cube with 12× 12× 12 elements (of 8 nodes) or with 24× 24× 1

elements. Another option is that one can ask the program to read in a mesh that is exported

from Trelis. It certainly allows more flexibility in geometry and mesh but a restriction for

now is that all FE elements need to be of quadrilateral or cubic shape. We use 8 nodes linear

cubic element in the following simulations.

2. material properties of Table 4.1, e.g., the command Y oungsmodulus = 102 assigns 102GPa

to Young’s modulus.

3. temporal specifications, e.g., total simulation time, minimum time step size, maximum al-

lowed plastic strain of each step, etc.

4. assignments of boundary tags, which are used by the program to apply Neumann/Dirichlet

boundary conditions. The loading profile is also specified here.

Table 4.1: Variable and constants used in MFDM simulations

Name symbol units
Young’s modulus E GPa
Poisson ration v GPa
Burgers vector b mm
Drag coefficient Bm GPa · µs
Hardening coefficient L GPa
recovery coefficient c GPa
rate sensitivity m /
reference strain rate γ0 /
saturation stress Gs GPa
yield stress G0 GPa
stage II hardening rate Θ0 /
material property η /
material property K0 /
heat softening param ∆ /

The code is built following the algorithm in Table 4.3. For the purpose of concise and clear

description, we use the following notation:
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1. (·)k means a quantity of the time step k.

2. the program keeps quadrature point history of the following: material strength g, temperature

θ, elastic deformation gradient Fe, Cauchy stress T, slip distortion rate Lp. We call them

PH short for point history of quadrature points.

3. bold symbol stands for the equation that is solved at certain step. For example, fk+1 =

f(fk, Lpk, T k) means solving f of time step k+ 1 from evolution equation of f (4th equation

of (4.1)) with known quantities at time step k. f s means solving f from Tij,j = 0.

4. 4tk is defined as tk+1 − tk.

Table 4.2: Quasi-static (M)FDM algorithm

Assume no cut back in time step k
Time step k + 1:
have in memory at the beginning of this step:
xk, αk, fk, χk, χ̇k, vk, ∆tk, PHk

First store variables in memory then compute and update:
αk+1 = α(xk, αk, PHk, ∆tk)
fk+1 = f(xk, fk, αk, χ̇k, PHk, ∆tk)
xk+1 = xk + vk∆tk

χk+1 = χ(xk+1, αk+1)⇒ ||Rχ||k+1
∞ , χ̇k+1 = (χk+1 − χk)/∆tk

fk+1 = f s(xk+1, χk+1)⇒ ||Rf ||k+1
∞

F e,k+1 = (Ofk+1 + χk+1)−1, PHk ⇒ PHk+1

CUT BACK to step k and then use half time step size if:
(||Rf ||k+1

∞ > εf or
||Rχ||k+1

∞ > εχ or
||αk+1 × V k+1 + Lp,k+1||∞ > 0.002/∆tk)
if no cut back, then vk+1 = v(xk+1, PHk+1)
4tk+1 ⇐ min{h/V k+1, h/vk+1}.
go to step k + 2
else go to the beginning and redo step k + 1:
The rest follows flow of k + 1 above.
As long as no cut back happens in the first step,
the algorithm will repeat until find a sufficiently small ∆t.
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Table 4.3: Dynamic(M)FDM algorithm

Assume no cut back in time step k
Time step k + 1:
have in memory at the beginning of this step:
xk, αk, vk−1, ∆tk, PHk

First store variables in memory then compute and update:
αk+1 = α(xk, αk, PHk, ∆tk)
ρ(vk − vk−1)/∆tk = divT k ⇒ vk

(W k+1 −W k)/∆tk +W k+1Lk = αk × V k + Lpk ⇒ W k+1

PHk ⇒ PHk+1

CUT BACK and then use half time step size if:
(αk+1 × V k+1 + Lp,k+1||∞ > 0.002/∆tk)
if no cut back, then xk+1 = xk +∆tkvk

4tk+1 ⇐ min{h/V k+1, h/vk+1} and go to step k + 1

4.4 Numerical examples

First we show a benchmark example that is a verification of the solution of the dislocation equation.

The set up is as follows: let Lp = 0 and V = v0e1⊗ e2, i.e., spatially constant dislocation velocity

field, at all time; initially we put in a single edge dislocation in the center of a cubic body, i.e., let

αij = 0 except α13 = |α0|(1 − tanh2(
√
x2 + y2)). It is noted that α13 reaches maximum value

|α0| at the point (x = 0, y = 0) and diminishes quickly and forms a localized dislocation core. The

dislocation then moves horizontally away from the center in the speed of v0. It is observed that

after the dislocation exits the body, a highly deformed slip-step is formed at the boundary and the

body is left in a stress free state. This same problem is motivated by the work of Roy and Acharya

[136], where small deformation FDM is solved. The shear stress (Cauchy stress) field of the initial

dislocation is shown in Fig. 4.1(c) which is qualitatively analogous to that of the layer model.

The following simulations of MFDM are quite preliminary. First we show a case generated

from the FCC latent hardening model, which is described by the formulations (4.10) to (4.13).

Consider the geometry of a planar plate with an initial imperfection of thickness, defined by

H imperfect = H ∗ (ξ ∗ tanh(|x| − W/2) + ξ + 1). Here H is the dimension in y direction at

the two ends; W and 0 < ξ < 1 are two parameters that control the imperfection. W denotes the

length in x direction of the imperfect area. Because of this inhomogeneity, one is able to show
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the formation of polar dislocation during the necking of this planar specimen, under tension. The

tension load is applied by specifying Dirichlet boundary conditions of v on the two ends. The final

distribution of α13 and T12 are shown in Fig. 4.2 and Fig. 4.3.

(a) α13 of the initial moment (b) α13 during motion

(c) Contour of Cauchy stress σ12 at the initial moment (d) Stress free body after dislocation exits

Figure 4.1: A single edge dislocation moves with spatially constant dislocation velocity field and exits the
body to form a slip-step.
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Figure 4.2: Polar dislocation density distribution
and geometrical deformation after necking.

Figure 4.3: T12 distribution after necking, local-
ized to double slip band.

Figure 4.4: A much refined case (46500 elements, 1069.5K DOFs).

Consider the simulations of the constitutive model of J2 plasticity with thermal softening. We

start from a cubic body with a localized α distributed around the point (25mm, 0). A simple shear

Dirichlet boundary condition

u = Γ (y +H)e1, on∂Ω (4.44)

is applied, which tends to drive α to move left. Fig. 4.5 shows the motion of α and the obvious

mesh deformation in the passage. Fig. 4.6 shows the local temperature increase.

The above quasi-static simulations suggest the possibility of modelling a shear band tip with

a localized strain gradient (α). The thermal softening mechanism ensures more plastic strain kept

accumulated, which goes into the Lp term and generates more α. Otherwise, without appropriate
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Figure 4.5: A pre-existing α near the right bound-
ary is moved under shear load to the left, which
forms a localized shear deformation band.

Figure 4.6: Temperature contours around the lo-
calized deformation caused by plastic flow, which
softens and facilitates the motion of α.

periodic lattice effect built in, α tends to diffuse easily, as shown in Fig. 2.12. We then make use of

the dynamic MFDM formulation and carry out the experiments with the presence of inertia, which

is motivated by the physical experiments carried out by Guduru, Rosakis, and Ravichandran 2001.

However, as a beginning test, we use a much smaller domain with coarse mesh.

Specifically, the body of interest is 25mm × 20mm × 5mm [Length × Width × thickness]

with a presence of a pre-notch which is 10mm × 2mm [Length × Width]. In terms of boundary

conditions, we fix the top surface and apply dirichlet velocity boundary condition at the region of

y < 0 of the right side. The applied load value ramps to 0.025mm/µs and stays. Such loading

gradually creates a high shear strain embryo near the notch tip. A localized polar dislocation is

then nucleated and then forced to move. Fig. 4.7(a) to 4.7(d) show the process of nucleation of

α and its motion. This process is accompanied by 1) continuously increasing temperature and 2)

decreasing strength of material in the passage of the dislocation. 1) and 2) are shown in Fig. 4.8(a),

4.8(b) and

The above simulations show that a framework has been developed to study mesoscopic plas-

ticity at finite deformations based on the MFDM model. Before the phenomena of adiabatic shear

banding at high rates and shear banding in crystal plasticity at quasi-static rates of loading can

be modelled within this computational setup, the following further enhancements are necessary:
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(a) 8µs (b) 12µs

(c) 16µs (d) 22µs

Figure 4.7: Dynamically propagating shear band tip modelled with thermal softening J2 plasticity mecha-
nism.

1) One needs to resolve volumetric locking (without severe numerical refinement) of the current

numerical scheme to better represent severe deformation caused by shear bands. 2) The current

constitutive models we have for adiabatic shear bands are primarily taken from the numerical

works of Li, et.al [85] (without the phenomenology of stress collapse) which adopt semi-implicit

time integration scheme. Our current scheme is purely explicit and generally results in quite small

time steps and slows down the overall simulations. We can apply a similar semi-implicit integra-

tion scheme to our model. Due to the PDE nature of the plastic evolution in our case as opposed

to local constitutive response, this will be a non-standard augmentation of the current scheme. 3)

The rate sensitivity of the formulation of [85] is very low (the strain-rate sensitivity parameter m

is chosen as m = 1/70). A very low rate sensitivity almost represents a rate independent plasticity
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(a) increasing temperature (b) weakening strength

Figure 4.8: Thermal softening due to adiabatic shear band.

(recall that the power law rate-dependent model goes to the rate-independent limit as m tends to

zero). It implies that the shear band evolves at a time scale even faster than that of elastic wave

propagation, which does not make strong physical sense given that the velocity of shear bands

is only 1/3 of the shear wave speed. An alternative approach is using a rate dependent plasticity

model, e.g., Perzyna viscosity model [116]. 4) A possible modification to the current scheme lies

in the polar dislocation velocity function. Ideally, the velocity magnitude should also depend on

the magnitude of α itself, as suggested by the driving force for the dislocation velocity from the

basic (M)FDM theory. 5) A better refined mesh (especially around the notch tip) is desired for a

better simulation performance. 6) Finally and most importantly, one needs to calibrate all physical

parameters of the constitutive equations with respect to available laboratory experiments.
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Chapter 5

Discussions

It is perhaps fair to say that at the current time the classical theory of dislocations [70] and the

theory of elastoplasticity [93] appear to be disparate subjects. We hope to have demonstrated

that FDM, which is nothing but a theory of elastoplasticity with a fancy, but physically rigorous,

evolution equation for the plastic distortion, encompasses a large class of key features of classical

dislocation theory in both its extensively developed static and its barely developed time-dependent

aspects. This observation is particularly important in situations involving dynamics with inertia

where the classical theory has severe conceptual limitations.

The computational methods of approximation that we use to study FDM are versatile and capa-

ble of natural extension to 3 space dimensions, representation of multiple slip, finite deformations

(in full generality), elastic anisotropy, arbitrary loadings, and complex domains. This is desirable,

both from the scientific and engineering points of view. In a sense, the theory and methods we

propose for the study of dislocation mechanics have the potential of bringing the same type of

efficiency and generality to the study of the physical subject as the finite element method did to

the study of elasticity theory. Indeed, a reading of papers like that of Eshelby, Frank, and Nabarro

[43] leaves one marveling at the creativity of the authors; however, the techniques utilized are very

special. Our approximation methods are accessible to anyone with training in the standard reper-

toire of computational mechanics with a desire to learn about dislocation mechanics, and this is as
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much a result of the theoretical framework that is employed.

Starting from the pioneering work of Aifantis [13] there has been a great emphasis in the solid

mechanics community in developing models of strain gradient plasticity in the last 30 years or so,

often to make connection with dislocation mechanics. It is again perhaps fair to say that while many

models have emerged, none can lay claim to being a theory for the mechanics of dislocations in

any distinguished limit, whether for individual or collective behavior. In contrast, we have shown

that the equations of FDM, which may also be considered as a gradient-plasticity model in the

form (2.3), but of very different structure compared to bona-fide standard strain gradient plasticity

theories, can make the claim at the level of representing a great variety of individual dislocation

behavior. There are important questions of time-dependent homogenization related to the modeling

of mesoscopic and macroscopic plasticity that remain to be addressed, but we take satisfaction in

the fact that a correct pde-based microscopic standpoint has been established. Moreover, work

based on heuristic models of collective behavior developed on FDM as the underlying microscopic

theory has shown promise [8, 11, 32, 48, 124, 137], including the demonstration of how standard

elastoplasticity theory can be incorporated within the theoretical structure if so desired.

The most important future work related to FDM that remains for us to execute is a robust

computational implementation of the 3-d theory without restriction to special ‘slip layers,’ with

slip-system like behavior being an outcome. This will require careful design of the energetics

related to slip (i.e. the η function) and, very importantly, an accurate and stable numerical scheme

for the Up evolution equation which will need to be capable of representing dynamic, string-

like, nonsingular, stress-inducing localizations in the field. Despite appearances arising from the

simplified ansatz we have utilized in this work, the fundamental 3-d equations of FDM are not a

variation on reaction diffusion systems or scalar, hyperbolic, conservation laws; see Acharya [9]

for illustration of this issue. These are interesting, but tractable, challenges. The question related

to energetics also has an important philosophical angle in that it should be defined purely in terms

of quantities identifiable from the current state without reference to any reference configuration in

the past, and the plastic distortion does not readily lend itself to such definition. It is very likely
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that resolution will lie in a careful adaptation of ideas from Rice [127], Vitek [150], Shen [143],

Zimmer [167], Parry [109] and Nicks [107].

In chapter 4, we developed a 3-d framework for Mescoscale Field Dislocation Mechanics in a

geometrically nonlinear context. Within the framework, two constitutive models suitable for single

crystal plasticity response and J2 plasticity with thermal softening are implemented. The latter was

built for the purpose of modelling adiabatic shear band propagations. It is observed from some

preliminary simulation results that MFDM allows the modeling of a propagating, localized plastic

softening embryo lead by the polar dislocation density. It is to be noted here that MFDM requires

no assumption of stress collapsing in modelling such propagating shear bands as required by other

models, e.g., Li et al [86]. The current simulations are limited to plane strain set up, but MFDM has

the potential to model propagating shear bands in 3-d. Since chapter 4 is essentially a tentative start

in this direction, a lot of future works are desired. Among others, all the presented simulations are

only qualitative. One needs to fit all parameters, e.g., specific heat cp and rate sensitivity parameter

m with experiments in order to generate or predict credible shear band results. One also needs

to resolve the volumetric locking issue (which is untouched in the current implementation) for

large deformation situations. This is desired so that one is able to model much more intensive

deformations that shear band problems usually involve.
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