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Abstract

One of the goals in making better devices is to achieve the desired functionality in
materials that enable a given application. The strong link between the functional be-
havior and the physical properties of materials is key to making better devices. This
thesis focuses on applications of density functional theory (DFT), a powerful compu-
tational tool, for understanding the electronic, magnetic, magneto-optic, topological
and thermodynamic properties of two-dimensional electronic systems (2DES). Why
are 2DES interesting? Firstly, the reduced dimensionality renders these materials
with properties which could be absent in the bulk form. Secondly, from a techno-
logical point of view, the desired functionality can be easily controlled externally in
these 2DES by the application of a gate voltage or strain. The 2DES considered here
could be crucial in beyond-CMOS electronic technologies. The materials considered
in this thesis can be broadly categorized into two different classes of systems. The
first one is the two-dimensional electron gas observed at the complex oxide interfaces.
The discussion will go into the details of the formation of 2DEG in oxides resulting
both from polar catastrophe and also due to the presence of vacancies. The second
class of materials is two-dimensional (2D) atomic crystals, more specifically, 2D mag-
nets. We not only predict a class of compounds, transition metal trichalcogenides
(TMTC), that can exhibit magnetism in the 2D limit, but also demonstrate control
of these magnetic degrees of freedom. Finally, we also demonstrate both using sym-
metry based tight-binding models and first-principles calculations a new way to detect
magnetism in the 2D limit, which is applicable to compounds other than TMTC as
well.
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Chapter 1

Introduction

1.1 Materials and devices

Manipulating material properties to suit a variety of needs has been one of the cor-
nerstones of human civilization. In fact, the history of the earth can be tracked by
tracking the evolution of materials. For example, the Stone-Age culture was charac-
terized by the use of rocks that were locally available. The innovation of smelting
and casting metals in the Bronze Age introduced the idea of reshaping native met-
als both for tools and weapons. 4th millennium BC marked the first production of
alloy bronze. Through each small step, the world has evolved into its shape we see
today. Of them, one step of immense significance came with the formulation of quan-
tum mechanics. Soon, quantum mechanics was applied to understand atoms at first,
and later to understand crystalline compounds. The understanding of the electronic
properties of rigid matter, or solids, directly led to the development of the transistors
in 1947 [3, 4]. Soon, the junction transistor replaced vacuum tubes, and eventually
spawned the microchip revolution. 1953 marked the first successful attempt in us-
ing Silicon as transistor material by Morris Tanenbaum at Bell Laboratories. Since
then, Silicon has dominated the market of semiconductor industry. It would not be
a hyperbole to call the period we live in as the Silicon Age.

In 1965, Gordon E. Moore, the co-founder of Intel, was asked to predict what was
going to happen in the semiconductor components industry over the next ten years.
His answer was that the number of transistors in a dense integrated circuit would
double approximately every two years. Although this prediction was meant for a
decade, it proved to be accurate for over 45 years, giving it the name “Moore’s law”.
But, Moore’s law has already started to fail. With the size of the device becoming
smaller and smaller, and approaching quantum regime, new problems, such as, tun-
neling effects need to be addressed. Therefore, both researchers and manufacturers
are on the constant lookout for new materials that can tackle these issues, thereby
providing improved device functionality.
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1.2 Two-dimensional electronic systems

In this thesis, I have focused on first-principles studies of two-dimensional electronic
systems (2DES) within density functional theory. Why are 2DES interesting? For
starters, the ultimate confinement of electron motion in the vertical direction often
leads to spectacular quantum phenomena. In fact, some phenomena, such as the
quantum Hall effect, are absent in higher dimensions. Furthermore, from a techno-
logical point of view, 2DES are interesting because their physical properties can be
easily tuned by external controls. As such, it is widely believed that novel 2DES will
play a central role in post-Silicon FinFET technologies.

This thesis will cover my research in two different 2DES. The first one is the
two-dimensional electron gas (2DEG) experimentally observed at the complex oxide
interfaces. Since the initial discovery of a 2DEG at the LaAlO3/SrTiO3 interface [5, 6],
oxide heterostructures have attracted a lot of attention in the rapidly growing field of
oxide electronics. The initial interest was primarily because both LaAlO3 and SrTiO3

are wide-band gap semiconductors with a band gap of 5.6 eV and 3.2 eV, respectively.
It was fascinating to see that on epitaxial growth of these bulk-insulating heterostruc-
tures, the interface could become conducting. In fact, the carrier densities reported
were high, reaching ∼ 3× 1014 /cm2 [7], with mobilities as high as 104 cm2/(V·s) [5].
Later, this 2DEG was also found to host a wide variety of electronic phenomena, in-
cluding superconductivity [8], magnetism [9], and Rashba spin-orbit coupling [10, 11].
These phenomena, together with the demonstrated tunability of interface conductiv-
ity through electric [12, 13], chemical and photosensitive means [14], offer promising
potential for device applications with novel functionality [15, 16]. But to understand
these fascinating phenomena and to fully explore the application potential of oxide
heterostructures, it is imperative to understand the nature and the origin of this
2DEG.

There has been a lot of debate on the various mechanisms responsible for the
formation of this 2DEG. A leading interpretation for this interfacial conductivity
is based on the polar catastrophe mechanism [5, 6]. A second mechanism involves
vacancy formation of donor-type defects. In this regard, oxygen vacancies are most
commonly studied [17–19]. In the case of heterostructures, atomic intermixing at the
interface between materials has also been suggested as a possible source of these high-
density electrons [20, 21]. Other mechanisms include surface adsorbates and atomic
reconstruction. This thesis will focus on the electronic reconstruction resulting from a
polar instability, and autoionization of the oxygen vacancy. Identifying the underlying
mechanisms will give us more control in tuning this high-density 2DEG.

The second class of 2DES discussed here is two-dimensional (2D) atomic crystals.
These are made from layered materials by exfoliation, and are only one or a few atomic
layers thick. Recent years have seen a surge of interest in 2D crystals due to their
highly tunable physical properties [22–26]. The ultra-thin nature of these materials
has been exploited in the field of flexible, thin and scalable electronics [27, 28]. But
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what makes these materials even more interesting is the ease in which on can control
various optical, electronic and topological properties through external means, for
example, by gating or by applying strain [29–35].

The family of 2D crystals has grown considerably since the initial discovery of
graphene, with new additions such as boron nitride and transition metal dichalco-
genides. The emergence of transition metal compounds in the landscape of 2D crys-
tals is particularly advantageous as it opens the door to many physical properties not
available in graphene [2, 36–39]. For example, in monolayer MoS2 the large spin-orbit
interaction leads to a unique spin-valley coupling which might be useful for spintronic
applications [40–44]. Geim et al. [2] proposed the idea of thinking of each of these
2D materials as a lego block, and by stacking different lego blocks on top of each
other, one can either enhance already existing properties or produce new properties
absent in the individual lego units. But one ‘lego block’ that is still missing in the
current line-up of 2D materials is the spin-lego block, i.e. 2D magnets. Once we
have 2D magnets, we can control the time-reversal symmetry-breaking in these other
lego blocks by integrating 2D magnets into the heterostructure. Hence, finding good
2D magnetic semiconducting materials are imperative for the advancement of 2D
spintronics.

1.3 Structure of the thesis

This thesis contains 7 chapters. After giving a brief introduction to density functional
theory in chapter 2, I will discuss 2DEG in transition metal oxides in chapter 3 and
4. By studying SrTiO3 without any overlayer, we can study the contributions of
electronic reconstruction and also oxygen vacancies, in the formation of 2DEG. In an
attempt to understand the polarization effects, we investigated the surface electronic
structure of STO (111) slabs using first-principles methods [45]. We predicted the
existence of the 2DEG on the (111) surface and elucidated the important role of
polar distortion in its formation. It turns out that the existence of the 2DEG results
from a delicate balance between local chemistry and lattice charge screening. This is
discussed in chapter 3.

Chapter 4 will discuss oxygen vacancies as another source of conducting elec-
trons [46]. Using experimental inputs from scanning tunneling microscopy (STM),
we have identified characteristic peaks associated with these vacancies, which are ex-
plained based on formation energy calculations. The developed theory based on the
symmetry of the wavefunction of the vacancy states not only explained the observed
STM spectrum but also fits well within the findings of other experiments.

Chapters 5 and 6 will discuss magnetism in the two-dimensional limit. Two ques-
tions immediately come to mind. Is it possible to make 2D magnetic semiconductors?
And how can we control the magnetism? To address the first question, we have stud-
ied transition metal trichalcogenides (TMTC), which will be discussed in chapter 5.
These compounds are magnetic in their bulk form. It was recently shown that they
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could be chemically exfoliated into single layers. Therefore, they make ideal candi-
dates to potentially host 2D magnetism. Interestingly, we found that in the single
layer limit not only does the magnetism survive, but it also becomes stronger [47].
By using first-principles calculations together with statistical mechanical models, we
were able to understand the origin of the underlying magnetic exchange interactions
and the magnetic phase diagram of these materials. From the insight we obtained,
We showed that the magnetic ground state could be tuned by the application of an
experimentally realizable strain. Some of our findings were corroborated through a
series of experiments that followed.

Are these 2D magnets useful? Recently, we demonstrated gate-controllable magneto-
optical (MO) effects in layered antiferromagnets (AFM) [48], which are discussed in
chapter 6. Even though MO effects are traditionally associated with ferromagnets
(FM), via a thorough symmetry analysis, we showed that the MO effects could also
exist in AFM. The key idea is that in AFM, the MO effects are controlled not only by
the magnetic order but also by crystal symmetry. By breaking the inversion symme-
try, one can turn on the MO effects. To verify this idea, I performed first-principles
calculations for realistic materials and found that in bilayer MnPSe3, an Néel AFM,
the gate controlled MO effects can be as large as that in conventional itinerant FM,
such as Fe and Co. The appearance of magneto-optic effects in AFM is of intrinsic
interest since it would allow direct detection of the magnetic order, and therefore,
could be useful for antiferromagnets-based memory devices. Finally, I will summarize
my finding and comment about what the future holds in chapter 7.
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Chapter 2

Modeling electronic structure:
Density Functional Theory

2.1 Background

Electrons form the “quantum glue” that holds together the nuclei in matter [49].
Understanding material behavior heavily relies on the understanding of its electronic
structure. Often, the first step in understanding the electronic properties of a material
is by calculating its band structure. This relies on computing efficiently the energy of
each band in the material in the reciprocal space, which hinges invariably on solving
a “Schrödinger-like equation”. Depending on the material properties of interest and
scalability, this can be done with different complexity. In this chapter, I will discuss
density functional theory (DFT), one of the most popular and versatile tools used
for this purpose. The basic idea of DFT is to regard the total particle density as the
primary quantity from which properties of the system can be calculated.

2.2 Schrödinger equation

The starting point for calculating the energies of multi-electron systems in differ-
ent external potentials is the time independent Schrödinger equation, which is the
eigenvalue equation for the energy operator. For electrons in a solid the Schrödinger
equation can be written in terms of the many-body wavefunction ψ as

Ĥψ = Eψ (2.1)

where E the energy of the system and Ĥ the Hamiltonian of the system. The Hamil-
tonian is made up of five parts: the kinetic energy of the nuclei (TN), the kinetic

The field of density functional theory is vast and well developed. The following discussion is
only a brief overview of the basic ideas behind the methodology. For a more detailed treatment I
refer the reader to excellent textbooks Ref. [49, 50].
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energy of the electrons (Te), the internal repulsive potential energy between the dif-
ferent electrons (Vee), the external potential energy of the electrons-nuclei interaction
(VeN) and the potential energy of the nuclei-nuclei interaction (VNN). These different
terms can be written explicitly as:

TN = −
N∑
i=1

~2∇2
Ri

2Mi

,

Te = −
Ne∑
j=1

~2∇2
rj

2mi

,

Vee =
Ne∑
i<j

Ne∑
j

e2

|ri − rj|
,

VeN = −
N∑
i

Ne∑
j

Zie
2

|Ri − rj|
,

VNN = −
N∑
i<j

N∑
j

ZiZje
2

|Ri −Rj|
,

(2.2)

where ∇2
Ri

is the Laplacian operator on the ith nucleus at Ri, which has mass Mi and
a nuclear charge Zi, N the total number of nuclei, Ne the total number of electrons
and ∇2

ri
is the Laplacian operator on the ith electron at ri. Since the mass of the

nucleus is much larger than that of the mass of the electron, we can approximate that
the nucleus is stationary when solving for the electronic motion. This is called the
Born-Oppenheimer approximation [51].

Factoring out the kinetic and potential energies of the nucleus and treating them
classically, the electronic Hamiltonian Ĥ = T̂e + V̂ee + ˆVeN . VeN is treated as the
external potential. It is important to remember that two Hamiltonians with the same
number of electrons can differ only in the external potential. Typically in quantum
mechanics, we take the approach of solving the Schrödinger equation for the given
external potential, and then calculating the values of the relevant observables from
the wavefunctions. The total energy can thus be calculated taking the expectation
value of the Hamiltonian. But solving for 3Ne variables becomes cumbersome when
dealing with systems with large number of electrons.

The electron density n(r) on the other hand, can be written as

n(r) =
Ne∑
i

〈ψ|δ(r − ri)|ψ〉 = Ne

∫ ∫
...

∫
|ψ(r1, r2, ....rNe)|2δ(r−r1)dr1dr2...drNe,

(2.3)
and therefore, is a function of just 3 variables. Hence, one would like to express the
energy in terms of the electron density n(r) instead of the wavefunctions.
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2.3 Hohenberg-Kohn theorem

In 1964, Hohenberg and Kohn proved two theorems that paved the foundation to
the modern density functional theory [52]. They first proved that the ground state
electron density n(r) uniquely determines the potential of a system, VeN up to an
additive constant. Later, in their classic paper, they were able to show that the
ground-state energy of a quantum system can be determined by minimizing the en-
ergy as a functional of the density, in much the same way as, in standard quantum
mechanics where one can determine the energy by minimizing the expectation value
of the Hamiltonian with respect to the wavefunction. The basic idea of DFT is to
describe the system in terms of the electronic density without explicit reference to the
many-body wavefunction, hence depending on 3 variables instead of 3Ne variables,
and thus tractable numerically.

2.3.1 Theorem 1

The first theorem states that, for any system of interacting particles the external
potential Vext(r), and therefore all the properties of the system, is a unique functional
of the electron density n(r), up to an overall constant.

Proof: Let us start by assuming that we have two different system potentials
V 1
ext(r) and V 2

ext(r) that differs by more than a constant that leads to the same ground
state density, n0(r). The two external potentials clearly lead to two different Hamil-
tonians, Ĥ1 and Ĥ2, give rise to two different ground state wavefunctions, ψ1 and
ψ2. Let us assume that these states are non-degenerate and that they give the same
electronic density. Then it follows that

E1 <
〈
ψ2|Ĥ1|ψ2

〉
=
〈
ψ2|Ĥ2|ψ2

〉
+

∫
drn0(r)

(
V 1
ext(r)− V 2

ext(r)
)
. (2.4)

The first inequality in Eq. 2.4 comes from the fact that ψ2 is not the ground state of
Ĥ1. The equality comes from the remembering that two Hamiltonians with the same
number of electrons can differ only in the external potential.

Similarly, by switching 1 and 2 labels, we can write,

E2 <
〈
ψ1|Ĥ2|ψ1

〉
=
〈
ψ1|Ĥ1|ψ1

〉
+

∫
drn0(r)

(
V 2
ext(r)− V 1

ext(r)
)
. (2.5)

Adding Eq. 2.4 and Eq. 2.5, we get

E1 + E2 < E2 + E1, (2.6)

which is a contradiction. Thus it can be concluded that for systems without degener-
ate ground states, two different potentials cannot give the same ground state electron
density. Because the Hamiltonian is fully determined from the ground state density,
it follows that the many-body wavefunction (ψ[no(r]), and thus, all properties of the
system is fully determined. The proof can be extended to degenerate cases as well.
[53]
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2.3.2 Theorem 2

A universal functional for the electron energy E[n] in terms of the electron density
n(r) can be defined. For any given Vext(r), the electron density n(r) that minimizes
function E[n] will correspond to the ground state electron density n0(r).

Proof: Let us redefine the potential term so that,

V [n] =

∫
drVext(r)n(r),

F [n] = 〈ψ|Te + Vee|ψ〉 ,
E[n] = F [n] + V [n]

(2.7)

and defining ψ → n as the set of all wavefunctions that corresponds to a certain
electron density n(r). From variational principles, the ground state energy of the
system is defined as

E0 = minψ{〈ψ|Te + Vee + Vext|ψ〉}
= minn{minψ→n{〈ψ|Te + Vee + Vext|ψ〉}}

= minn{F [n] + V [n]} = E[n0].

(2.8)

Therefore, one can find the exact ground state density and energies by minimizing
the total energy of the system with respect to the variations in density, as long as we
know F [n].

2.4 Kohn-Sham auxiliary system

Minimizing the energy functional can be nontrivial for real system. Kohn and Sham
devised a simple method for carrying out DFT calculations [54]. In this method,
an ansatz is employed whereby the full interacting system with the real potential is
mapped to a fictitious non-interacting system where the electrons feel an effective
single particle potential, VKS(r). Thus the Hamiltonian for the auxiliary system has
the form,

ĤKS = −~2∇2

2m
+ VKS(r) (2.9)

The corresponding independent particle electron density is given by

n(r) =
Ne∑
i

|φKSi |2, (2.10)

where φKSi is the ith single-electron wavefunction of the auxilary system. The inde-
pendent particle kinetic energy TKS is written as

TKS = − ~2

2m

Ne∑
i

〈
φKSi |∇2|φKSi

〉
= − ~2

2m

Ne∑
i

∫
dr|∇φKSi |2. (2.11)
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Defining the Hartree energy function that is the Coulomb interaction energy of the
electron density with itself as

UHartree[n] =
e2

2

∫
drdr′n(r)n(r′)

|r − r′| , (2.12)

we can write the ground state energy functional in Eq. 2.7 as

EKS[n] = TKS[n] + V [n] + UHartree + Exc[n], (2.13)

where all the many-body effects of exchange and correlation have been massed in
Exc[n], the exchange-correlation functional, that is calculated using the results from
a homogeneous electron gas. This Kohn-Sham auxiliary system can be solved by
minimizing the energy functional in Eq. 2.13 with respect to the density in Eq.
2.10, leading to the Schrödinger-like equations,

ĤKSφ
KS
i = εKSi φKSi , (2.14)

where εKSi is the energy of the ith electron in the Kohn-Sham potential, VKS given by,

VKS = Vext(r) +

∫
dr′ e

2n(r′)

|r − r′| + VXC , (2.15)

where

VXC =
δEXC [n]

δn(r)
(2.16)

The potential and density must be self-consistently found. This Kohn-Sham equation
does not depend on any approximation. If the universal functional for EXC were
known, then one can obtain the exact ground state energy of the many-body system.

2.5 Exchange and Correlation Energy

As the exact form of EXC [n] is not known, one has to employ approximations in
the actual calculations. Because the exchange and correlation energy, EXC [n] is a
non-local quantity, we can introduce εXC([n], r) as the exchange-correlation energy
per electron, which we assume to be somewhat local. The most commonly employed
approximation is the local-density approximation (LDA) [54]. Within the LDA, the
contribution to the exchange-correlation energy from each infinitesimal volume in
space, dr, is taken to be the value it would have if the whole of space were filled with
a homogeneous electron gas with the same density as is found in dr. Therefore,

ELDA
XC [n] =

∫
drεLDAXC (n(r))n(r). (2.17)
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We can further divide the exchange-correlation energy per electron into individual
exchange and correlation energies as,

εLDAXC (n) = εLDAX (n) + εLDAC (n). (2.18)

Within LDA, exchange part is known analytically as we are treating the Kohn-Sham
electrons as free electrons in a uniform positive background. It can be derived to
be [54, 55],

εLDAX (n) = −e2(
3n(r)

π
)1/3 (2.19)

The correlation part is not known exactly. But there are accurate Quantum Monte
Carlo calculations, by Ceperley and Alder [56], which has been parameterized by
various authors, and is implemented in most DFT packages [57–59].

There are other approximations for the exchange-correlation energy that might
be more suitable for other materials. Generalized gradient approximation (GGA)
is another popular approximation. It assumes that the exchange-correlation energy,
εXC([n], r), depends not only on n(r) but also on its gradient, ∇n(r). In other words,

EGGA
XC =

∫
drεGGAXC (n(r), |∇n(r)|)n(r). (2.20)

In practice, the Kohn-Sham equations are solved in a self-consistent loop. After
starting with an initial guess for the electron density, the effective potentials and
the Hamiltonian is calculated. After solving the secular equation, the orbitals are
used to update the initial guess for the electron density. This process is repeated
till sufficient convergence is reached. In this thesis, I have primarily used Vienna
ab initio Simulation Package (VASP) [60] and quantum espresso [61] for atomic
scale material modeling.
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Chapter 3

Thickness Dependent Carrier
Density at the Surface of SrTiO3
(111) Slabs

3.1 Introduction

The perovskite structure ABO3 can be considered as an alternate stacking of AO and
BO2 layers along the [001] direction. SrTiO3 (STO) is one of the most commonly
studied perovskite materials, and is usually considered as a substrate material to
grow other perovskites. STO is made up of charge neutral layers of SrO and TiO2

along the (001) direction. In the LaAlO3/STO system along the (001) direction, it
is now generally accepted that the intrinsic 2DEG behavior is driven by the polar-
ization discontinuity between the non-polar STO substrate and the polar LaAlO3

film [5, 21, 62–67]. Along the [001] direction, the LaAlO3 film consists of alternating
layers of (LaO)+ and (AlO2)−, which leads to a divergent electrostatic potential, i.e.,
the so-called polar catastrophe. Electronic reconstruction [62, 68–73], which is facili-
tated by the presence of transition metal ions, and polar distortions [63, 69, 70, 74, 75],
are the two main competing mechanisms that counter this divergent potential. While
polar distortions screen the electrons at the interface or surface, thereby partially
compensating for the polar catastrophe, electronic reconstruction cancels the diver-
gent potential through a transfer of charge between the interface and the surface,
with the excess charge partially occupying the Ti 3d states, giving rise to a 2DEG.
As such, a fundamental understanding of how these two effects compete with each
other is important for tuning the properties of 2DEGs at oxide heterointerfaces.

Motivated by the above question, we investigated the surface electronic structure
of STO (111) slabs. Along the [111] direction, a STO slab consists of alternating
stacks of nominally charged (Ti)4+ and (SrO3)4− layers, which already lead to a

This chapter is adapted from N. Sivadas, H. Dixit, V.R. Cooper and Di Xiao, Physical Review
B 89, 075303 (2014). Copyright © 2014 American Physical Society.
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Figure 3.1: Schematic of charge density (ρ), electric field (E), and electrostatic poten-
tial (V ) profiles for the Ti-terminated STO (111) slabs with (a) charge uncompensated
ideal atomic coordinates, (b) charge uncompensated relaxed atomic coordinates, (c)
charge compensated ideal atomic coordinates and (d) charge compensated relaxed
atomic coordinates. For the relaxed atomic coordinates (b) and (d), the SrO3 layer
(green block) splits into Sr (green line) and O3 (violet line) layers. Z is the mag-
nitude of the effective charge of each layer. Both polar distortions (b) and charge
compensation due to electronic reconstruction (c) can help reduce the divergent elec-
trostatic potential, and the net effect is less than Ze/2 electrons transferred between
the surfaces (d).
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divergent electrostatic potential, even in the absence of a LAO overlayer (Fig. 3.1).
This is in sharp contrast to a STO (001) slab, which consists of alternating charge
neutral layers of SrO and TiO2. Furthermore, the presence of multivalent transition
metal ions (Ti) suggests that electronic reconstruction can also take place in STO
(111). Hence, STO (111) slabs offer us a unique opportunity for studying both the
polar distortion and electronic reconstruction in a chemically homogeneous system.

Our work is also relevant to the recent experimental and theoretical progress on
oxide (111) interfaces and surfaces. Experimental studies have reported the growth
of Ti-rich STO (111) surface [76] and the creation of 2DEGs at (111) interfaces in the
LAO/STO system, with carrier densities comparable to the [001] direction [77–79].
Theoretically, exotic topological phases such as the quantum spin Hall state have also
been predicted for cubic perovskite (111) bilayers [80–83]. Understanding the surface
electronic properties of the STO (111) slabs will have important implications for these
phenomena as well.

Using density functional theory (DFT), we study STO (111) slabs of various thick-
nesses and different surface terminations. We show that for Ti-terminated STO slabs
(Figs. 3.2a and 3.2b) it is indeed possible to create a 2DEG. However, the carrier
density of the 2DEG displays strong thickness dependence due to the competition
between electronic reconstruction and polar distortion. Our calculations suggest that
relatively thick slabs (� 12 layers) are required to reach the ideal carrier density
(2 electrons/surface unit cell) expected from the nominal charge counting argument.
In contrast, we find that the TiO-terminated slab (Figs. 3.2c and 3.2d) exhibits no
charge transfer to the surface. This is because the surface oxygen functions to nullify
any potential that could develop across the STO slab. A thermodynamic stability
analysis shows that the Ti-terminated STO slab can be stable, albeit within a very
narrow region of phase space. Our results show that both electronic reconstruction
and polar distortions must be taken into account when analyzing the 2DEG behavior
for (111) and (110) interfaces [77].

3.2 Methodology

In this work we examine STO (111) slabs with various thickness and two surface
terminations: Ti (top)/SrO3 (bottom)-terminated (referred to as Ti-terminated) and
TiO(top)/SrO2(bottom) terminated (referred to as TiO-terminated). Both are de-
picted in Fig. 3.2.

The electronic ground-state calculations were performed using DFT with the lo-
cal density approximation (LDA) for exchange and correlation as implemented in the
quantum espresso simulation package [61]. We employ ultrasoft pseudopotentials[84]
including semicore electrons for O (2s2p), Sr (4s4p5s) and Ti (3s3p4s3d). To account
for strong electronic correlations we use a Hubbard U term (LDA+U) [85]. For all
calculations, a Hubbard U = 5 eV for Ti d states was found to be appropriate. For
each slab a 1×1 in-plane periodicity with a vacuum region of ∼15 Å was used. A
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cutoff energy of 80 Ry and a Monkhorst-Pack special k-point mesh of 8×8×1 for the
Brillouin zone integration was found to be sufficient to obtain less than 10 meV/atom
convergence. We applied a dipole correction[86, 87] to set the electric field in the vac-
uum region to zero. Structural optimizations were performed by fixing the in-plane
lattice constant to that of the theoretical bulk STO lattice constant (a0 = 3.85 Å). All
ions were then relaxed until the Hellmann-Feynman forces were less than 10 meV/Å.

To analyze the thermodynamic stability of different surface terminations, we adopt
a symmetric slab approach, i.e., the same termination on both sides. The thermody-
namic analysis was performed using the generalized gradient approximations (GGA),
as it usually gives more accurate formation energies, relative to experiments, than
LDA.

3.3 Electronic structure

3.3.1 Ti-termination

We first consider the ideal Ti-terminated STO (111) slab, which consists of alternat-
ing stacks of Ti and SrO3 layers with nominal charges of +4 and −4, respectively.
Figure 3.3a shows the typical layer-projected DOS for a slab with 6 layers of SrTiO3

unit. We observe the occurrence of a surface metallic state for the top surface layer
(Ti surface). This is similar to the results for the STO (110) surface [88] and with
previous semi-empirical Hartree-Fock calculations for the STO (111) surface [89, 90].
The atomic projected DOS indicates that these surface states are comprised mainly of
Ti s and d orbitals. The excess electrons are derived from the depletion of the valence
band of the bottom layer due to the depopulation of O p orbitals. This can be clearly
seen from the orbital dependent electronic band structure, shown in Fig. 3.3b. The
dispersive energy bands clearly indicate that those excess charges are mobile carriers.

The number of excess electrons (holes) at the surface is obtained by performing
an integration of the layer-averaged orbital projected DOS in a small neighborhood
below (above) the Fermi level (N.B. this typically underestimates the electron count
relative to the total DOS by ∼0.1 e−) [65]. For the 6-layer slab, we found a total
transfer of 0.7 electrons per surface unit cell. However, if electronic reconstruction
is the only working mechanism, nominal charge counting dictates that there should
be two electrons per unit cell transferred from the SrO3 surface to the Ti surface
(Fig. 3.1c). This is a strong indication of the vital role polar distortions [69, 70, 74]
play in avoiding the polar catastrophe in oxide heterostructures [21, 63].

To analyze the effect of the polar distortions, we have calculated the total trans-
ferred charge between the surface layers for different layer thicknesses for both the
relaxed and the unrelaxed systems (Fig. 3.4). There are two main features. First,
there is a critical thickness (3 layers) above which electronic reconstruction between
the surfaces takes place, as indicated by the appearance of a 2DEG. Second, we
observe a smooth increase in transferred charge with a thickness dependence for the
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Figure 3.2: Layer-by-layer structure of the n=6 STO (111) slab. (a) Top and (b) side
view of the Ti-terminated STO (111) slab. (c) Top and (d) side view of the TiO-
terminated STO (111) surface. Green, Blue and Black represent Sr, Ti and O ions,
respectively. The five possibilities for placing the extra O atom on the Ti termination
are also labeled in (c), and the energetically favorable position is marked by Red in
both (c) and (d).
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level; the top layer conduction band (green) consists mainly of Ti d states, and the
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Figure 3.4: The total charge transferred between the surfaces as a function of thickness
for relaxed (red) and unrelaxed (black) system.

relaxed system, which is in sharp contrast to the abrupt increase of transferred charge
with very little thickness dependence for the unrelaxed system. We also note that for
the unrelaxed structure, the transferred charge is very close to 2 electrons per unit
cell.

The origin of the critical thickness can be explained by comparing this situation
to the LAO/STO (001) heterostructure counterpart. It is well established that for
these systems above an overlayer thickness of 3 layers, there is an occurrence of
a 2DEG [12]. There the polar catastrophe is built up in the LAO overlayer and
electronic reconstruction occurs when the divergent potential exceeds the band gap
of STO. A similar effect occurs for the STO (111) slab. When the slab is thick
enough to make the divergence in potential comparable to the band gap an electronic
reconstruction occurs. This is clearly seen in our results for the unrelaxed surfaces
(Fig. 3.4). In these systems, we observe a transfer of two electrons between the
surfaces once the layer thickness is beyond a critical thickness of 2 layers. This is
very abrupt and as immediate as the closing of the band gap and is a consequence
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of the fact that the electronic reconstruction is the only mechanism available for
countering the polar catastrophe in the unrelaxed slabs.

More interestingly, the thickness dependence of the magnitude of the charge trans-
fer can be attributed to the effect of polar distortions. Figures 3.5a and 3.5b depict
the layer-by-layer off-center (polar) distortions, ∆z, of Sr and Ti atoms, respectively,
for Ti-terminated slabs of varying STO thicknesses. As can be seen from Fig. 3.5,
the net effect of the (111) surface geometry and the Ti-termination is to polarize the
individual layers of SrO3 and Ti layers relative to their respective oxygen cages. For
all slab thicknesses, we find that in the middle of the slab there is a nearly constant
shift of Ti and Sr relative to their corresponding oxygen layers, with the magnitude
of the displacements decreasing with slab thickness. More important are the large
off-center displacements for the surface Ti cations. Figure 3.5c shows a schematic of
the effect of relaxation for 6 layers of the Ti-terminated STO slab with the percentage
relaxation calculated which emphasizes the large surface distortions (N.B. these large
relaxations are similar to other oxides).

The net effect of such surface dipoles is to counter the divergent potential across
the slab. As the thickness of the slabs increase, however, we observe a decrease
in the magnitude of these distortions. Below three layers the polar distortions are
able to completely cancel out the polar catastrophe. As the thickness is increased, it
becomes more energetically favorable to have an increase in the transferred charge and
a decrease in polar distortion. We infer from the trend in Fig. 3.4 that for very thick
STO slabs, the total amount of transferred electrons will converge to two electrons
per unit cell after relaxation, just like in the case of the unrelaxed system. The
competition between the electronic reconstruction and polar distortion is illustrated
in Fig. 3.1.

3.3.2 TiO-termination

Next we consider the TiO-termination of the STO (111) slab, which is made by
transferring one O atom from the bottom SrO3 terminated surface to the top Ti
terminated surface, as shown in Figs. 3.2c and d. When we remove one O atom from
the SrO3 layer, the 6 identical O sites around the Sr atom are broken into a group of
4 identical sites and 2 identical O “vacant” sites. To identify the most stable location
for placing the O atom on the Ti termination, we compared the energies of 5 possible
high symmetry sites as shown in Fig. 3.2c, and found that the O vacant site (1) is
the preferred site.

We are interested in this situation because according to the polar catastrophe
argument, one should not expect any significant electron transfer between the surfaces
as the transfer of one O atom between the surfaces should stabilize the system. An
analysis of the total DOS (see total DOS for 6 layers of STO in Fig. 3.6) confirms
that the system is indeed insulating for all STO layer thicknesses studied (n = 6, 9,
12).
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SrO3 layers. (b) Off-centering of Ti relative to planes of O anions above and below
Ti. Surface Ti off-centering is computed relative to bulk positions. (c) A schematic
of the effect of relaxation for the case of Ti-termination with 6 layers of STO.
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Figure 3.6: The total DOS for 6 layers of the TiO-terminated STO (111) slab.
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Figure 3.7: Polar distortions for the TiO-terminated STO (111) slab for layer thick-
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O3 in SrO3 layers. (bottom) Off-centering of Ti relative to planes of O anions above
and below Ti.
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From this we note that there is no charge transfer between any bulk layers, similar
to the Ti-terminated case. Nevertheless, we find a striking difference between the
TiO- and Ti-terminated surfaces. In particular, in the case of the TiO-terminated
surfaces there are no electrons transferred between the surface layers. Here, the polar
catastrophe is avoided without any contribution from electronic reconstruction, unlike
the case of the Ti-termination.

The atomic relaxation for each STO layer for different layer thickness of STO for
the TiO-termination is shown in Fig. 3.7. Here we see that, unlike the Ti-terminated
slabs, the bulk Ti and Sr cations exhibit negligible off-center displacements. Such
displacements are indicative of having a reduced electric potential across the slab.
However a larger polar distortion develops on the topmost plane of Ti ions, which
is a local relaxation effect. To conclude, the effect of polar distortion in this case is
much less compared to the Ti-termination (Fig. 3.5) as the transfer of one oxygen
atom is effective in screening the polarization, with the help of some local relaxation.
This is in agreement with the observation of the lack of charge transfer for different
thicknesses for this system.

3.4 Thermodynamic stability

The imminent question is the relative thermodynamic stability of these different sur-
face terminations. In this section we analyze the thermodynamic stability of the
various terminations of the STO (111) surface, following the formalism proposed by
F. Bottin et.al. [88] The energy required to split a crystal in half with complemen-
tary surfaces is called the cleavage energy. The cleavage energy (Ecl) per surface
area for the unrelaxed Ti/SrO3 terminations and unrelaxed TiO/SrO2 terminations
respectively are defined in the following

E
T i/SrO3

cl =
1

2S
(ETi

slab + ESrO3
slab − nEbulk) ,

E
TiO/SrO2

cl =
1

2S
(ET iO

slab + ESrO2
slab − nEbulk) ,

(3.1)

where Ebulk stands for the total energy of the bulk STO system, n the total number of
STO layers and S denotes the surface area. Here Eλ

slab is the energy of λ termination,
with λ being either Ti, SrO3, TiO or SrO2.

Since the cleavage energy does not distinguish between the two complementary
surfaces, we define the surface energy, Φλ, which is a measure of the stability of the
surface with respect to bulk as:

Φλ =
1

2S
[Eλ

slab −NT iEbulk − Emol
O2
/2(NO − 3NTi)

− Ebulk
Sr (NSr −NT i)] .

(3.2)
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Table 3.1 shows the cleavage energy, relaxation energy and the surface energy for
different terminations. The values for cleavage energy are in good agreement with
previous first-principles calculations for STO (111) surfaces [91].

Table 3.1: The unrelaxed cleavage energy, relaxation energy and surface energy in
J/m2 for different terminations.

SrO3 Ti SrO2 TiO
Ecl 6.62 6.62 4.58 4.58
Erel -0.27 -1.45 -1.54 -1.69
Φλ 6.36 5.17 3.04 2.89

However this definition of surface energy excludes the possibility of contact with
matter reservoir. Hence we compute the surface grand potential,

Ωλ =
1

2S
[Eλ

slab −NT iµT i −NSrµSr −NOµO] , (3.3)

which is a measure of the excess energy of a symmetric system exposing a termination
of a given composition, to a reservoir. The quantities µT i, µSr, µO in Eq. (3.3) are
the chemical potentials of the Ti, Sr and O atomic species, respectively, and NT i,
NSr, NO are the number of Ti, Sr and O atoms in the slab. The chemical potential
of the bulk STO system (µSrT iO3) can be written as the sum of chemical potentials
of individual species in the crystal:

µSrT iO3 = µSr + µT i + 3µO . (3.4)

When the surface is in equilibrium with the bulk, we have µSrT iO3 = Ebulk. Using this
and Eq. (3.4) we can rewrite the surface grand potential in Eq. (3.3) as:

Ωλ =
1

2S
[Eλ

slab −NT iEbulk − µO(NO − 3NT i)

− µSr(NSr −NTi)] .
(3.5)

From this we observe that the range of accessible values for the surface grand potential
depends on the maximum and minimum values of µSr and µO chemical potentials.
The possible variations in µ reflect the experimental growth conditions. Under the O
rich condition µO = Emolecule

O2
/2 and for the Sr rich condition µSr = Ebulk

Sr . Defining

∆µO = µSrT iO3
O − Emolecule

O2
/2 and ∆µSr = µSrT iO3

Sr − Ebulk
Sr we obtain

Ωλ = Φλ −
1

2S
[∆µO(NO − 3NT i) + ∆µSr(NSr −NT i)] . (3.6)

The ranges of the two independent parameters, ∆µO and ∆µSr can be determined
using the following set of conditions. In order to avoid the elements precipitating into
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Figure 3.8: Stability diagram of the STO (111) surface. The most stable termination is
shown as a function of the chemical potential of O and Sr.

Sr bulk, Ti bulk and oxygen gas, the upper bounds are set by ∆µSr, ∆µT i & ∆µO ≤ 0.
The lower bounds are obtained using:

∆µSr + 3∆µO > −Ef
SrT iO3

, (3.7)

where the formation energy (Ef
SrT iO3

) is defined as

−Ef
SrT iO3

= Ebulk
SrT iO3

− Ebulk
T i − Ebulk

Sr −
3

2
Emolecule
O2

. (3.8)

Figure 3.8 shows the relative stability of different terminations in the (∆µO,∆µSr)
plane after computing Ω. The shaded area shows the region in the chemical potential
phase space where a particular termination is most stable. We observe that the SrO2-
SrO2 termination is most stable under O and Sr rich condition. When µSr is lowered,
the TiO-TiO termination becomes the most stable surface. However for low oxygen
pressure, there is also a region where the Ti termination is stable, which implies that it
is possible to observe the effect of electronic reconstruction by tuning the experimental
conditions for STO (111) surface. It should be noted that for the STO (111) surface
a stable Ti-rich surface has already been observed (albeit without any knowledge of
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O content) [76]. Nevertheless, these results highlight the possibility of creating the
Ti-terminated surface and may have specific consequences for the electronic states
that could be created at a heterostructure interface.

3.5 Summary

In summary, we have studied STO (111) slabs of various thicknesses and different
surface terminations using density functional theory. We observe that for the Ti-
SrO3 terminated STO (111) slab there is charge redistribution which is dominated
by the transfer of electrons from the SrO3 terminated surface to the Ti surface, giv-
ing rise to a metallic surface states for this configuration. The carrier density of the
2DEGs display a strong thickness dependence due to the competition between elec-
tronic reconstruction and polar distortions. In comparison, for the TiO-terminated
surface, no such surface states exist and the compensation mechanism is dominated
by the new surface boundary conditions created by the transfer of an O ion from
one surface to the other. By studying the relative stability of these different termi-
nations we observe that the Ti termination can indeed be stabilized depending upon
the experimental conditions. Naturally, the ability to tune the magnitude of charge
transfer/compensation at an oxide surface/interface has consequences on numerous
applications including surface catalysis and oxide electronics as well as important
implications for novel phenomena such superconductivity and magnetism in confined
dimensions.
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Chapter 4

Oxygen Vacancies on SrTiO3 (001)
surfaces

4.1 Introduction

Even after a decade since its discovery, the actual driving force behind 2DEG forma-
tion is still not well understood. Apart from polarization effects, a second mechanism
that has been believed to form 2DEG is due to surface oxygen vacancies. In fact,
even the non-polar (001) surface of SrTiO3 exhibits this behavior [14, 92, 93]. It was
found that by exposing a low temperature, vacuum-cleaved surface of SrTiO3 (001)
to strong ultraviolet light, a defect level at 1.3 eV below the Fermi level was created
together with the formation of 2DEG [14]. Intriguingly, this well-known oxygen va-
cancy state [14, 94–98] lies too deep below the conduction band to provide carriers
and form the 2DEG. The role of the oxygen vacancy state in the formation of 2DEG
is still not clear.

The theoretical calculations were primarily motivated by the room temperature
scanning tunneling spectroscopy (STS) on STO (001) surfaces. In the experiments,
both cleaved and homoepitaxially grown surfaces were studied. In both cases, oxy-
gen deficient environment was experimentally ensured. STS was performed at room
temperature with Pt/Ir tips. In order to obtain a higher sensitivity, the tip-sample
separation was varied as a function of applied bias [99, 100]. Experiments using STS
can selectively probe different terminations of the SrTiO3 (001) surface, i.e. SrO and
TiO2 terminations.

This study of their electronic structures revealed that the presence of an in-gap
level in the SrO-terminated side (see Fig. 4.1). This feature was attributed to oxygen
vacancies as the density of centers responsible for this level was found to increase with
surface segregation of oxygen vacancies through annealing (Fig. 4.1 (b)) and decrease
with exposure to molecular oxygen (Fig. 4.1 (c)).

This chapter is adapted from W Sitaputra, N Sivadas, M Skowronski, D Xiao and RM Feenstra,
Physical Review B 91, 205408 (2015). Copyright © 2015 American Physical Society.
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a) b) c)

Figure 4.1: The average conductance spectra on SrO-terminated cleaved SrTiO3 ac-
quired (a) before and (b) after segregation of surface oxygen vacancies by moderate-
temperature annealing. (c) Comparison between conductance spectra from the an-
nealed SrO-terminated surfaces before (red) and after 10 L of molecular oxygen ex-
posure (green). The sample voltage corresponds to the energy of a state relative to
the Fermi level (0 V in the spectra).

The position of this level with respect to the Fermi energy was found to vary with a
roughness of the surface, signifying the presence of coexisting disorder-induced surface
states. On the other hand, no such level is observed for a vacancy on a surface
TiO2 plane. To explain the experimental observations, we employ first-principles
predictions of the oxygen vacancy electronic structure, using the LSDA + U method.
The results show different positions of the transition levels for different terminating
planes. For the SrO termination, we predict a donor level, i.e. (0/+) transition
level, in approximate agreement with our experimental observations. For the TiO2

termination, we predict a donor level that is resonant with the conduction band, in
agreement with prior theory and experiment [14, 92, 101]. For both terminations, we
also predict in-gap levels for the double donor, i.e. (+/++) transition level. These
levels were also observed in some of the scanning tunneling spectra obtained on the
TiO2-terminated surfaces.

4.2 Methodology

Prior theoretical studies have shown the relevance of oxygen vacancies to observed
in-gap states [102]. Most of the previous works have focused on the Kohn-Sham
gap states of neutral vacancies [102–105]. However, the experimentally observed gap-
feature must be accompanied by a charge transition level from the oxygen vacancy
for it to be correctly associated with theoretical calculations. We examined SrTiO3

(001) slabs with one oxygen vacancy per simulation cell, as shown in Figure. 4.2. We
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Figure 4.2: (a) The top view and (b) the side view of SrO-terminated SrTiO3 surface
with an oxygen vacancy (open red circle). A vacuum region more than 15 Åwas used.
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analyze the relative energetics of an oxygen vacancy, in various charge states, as a
function of its position relative to the surface. The electronic ground-state calculations
for the neutral (V 0

O), +1 charged (V +1
O ) and +2 charged (V +2

O ) oxygen vacancies
were performed using DFT with the local spin density approximation (LSDA+U)
for exchange and correlation as implemented in the quantum espresso simulation
package [106]. To account for strong electronic correlations we use a Hubbard U
term [85] and a spin polarized calculation was employed because of the magnetic
nature of the oxygen vacancies [107]. Our results reported here utilize U = 5 eV for
Ti d states, although the qualitative trends in our results (e.g. resonant state for
TiO2 termination vs. in-gap state for SrO termination) are consistent with values
of U in the range 4 to 5 eV [108, 109]. We employ ultra-soft pseudopotentials [84]
including semicore electrons for O (2s2p), Sr (4s4p5s) and Ti (3s3p4s3d). For each
slab a 2×2 in-plane periodicity and 4 SrTiO3 layers along the z-direction was used,
along with a vacuum region of ∼ 15 Å. A cutoff energy of 80 Ry and a Monkhorst-
Pack special k-point mesh of 4×4×1 for the Brillouin zone integration was found to be
sufficient to obtain better than 10 meV/atom convergence. Structural optimizations
were performed by fixing the in-plane lattice constant of one SrTiO3 unit to that of
the theoretical bulk SrTiO3 lattice constant (a0 = 3.85 Å). All ions were then relaxed
until the Hellmann-Feynman forces were less than 10 meV/Å.

Under thermodynamic equilibrium, in the dilute limit (negligible defect-defect
interaction), the concentration of the defects dependent on the formation energy
as [110],

C = NV e
−

Eform
kBT , (4.1)

whereNV is the number of vacancies, Eform is the formation energy, kB the Boltzmann
constant and T the temperature. Thus, the defects with higher formation energy
have a lower concentration. In fact, the formation energy of point defects depends
on growth conditions. For charged vacancies, the formation energy further depends
on the Fermi level (EF ), which is the energy of the electron reservoir. Thus, the
formation energy of SrTiO3 with one oxygen vacancy can be expressed as

Eform[V q
O] = Etot[V

q
O]− Etot[SrT iO3] + µO + q(EF + ∆q) (4.2)

where Etot[V
q
O] is the total energy of supercell containing oxygen vacancy in a charge

state q, Etot[SrT iO3] is the total energy of a SrTiO3 perfect crystal in the same super-
cell, and µO is the oxygen chemical potential which captures the growth conditions.
The Fermi level EF is referenced with respect to the valence-band maximum. The
charge-state dependent constant ∆q is added to correct the formation energies of the
charged defects and is discussed below.

Calculating the formation energy of charged defects in bulk has been addressed
in detail in Walle et.al. [111]. But treating the formation energies of charged defects
on surfaces pose a considerable challenge. In the first-principles step, a compensating
background charge is added to maintain overall charge neutrality and also to avoid
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the divergence of the electrostatic energy. In bulk defects this approach is tractable.
But in the case of charged defects on surfaces this produces an unphysical situation
where the compensating charge is in the vacuum region as well. On top of that,
the absence of a dielectric medium hampers the convergence of the total energy with
respect to the size of the supercell.

Using the dipole-correction implemented in most first-principles packages, we can
partially correct for the spurious change in the vacuum region. But the artificial
defect-defect interaction and the compensating charge-defect interactions still remains
because of its long-range nature. So, to correctly calculate the formation energies
one needs to perform convergence study with respect to both vacuum thickness and
supercell size. This is computationally challenging for large systems. Therefore, some
post-processing schemes have been developed to circumvent this problem [112–115].
All of them try to correct the formation energy in Eq. 4.2 through the q-dependent
correction term (∆q). As the Fermi-level is referenced to the bulk valance band
maximum (VBM), the correction comes through the alignment of the electrostatic
potential of the defect system to the bulk system. Here, we have calculated ∆q

by aligning the core levels (Sr 3s) far away from the defect [114]. Although, this
procedure has the shortcoming of assuming that the VBM is unaffected by the charged
defect. A more rigorous approach by Komsa et al. [115] correctly accounted for the
long-range nature of the Coulomb potential.

Further, even with LDA+U, the band gap is underestimated and it needs to be
scaled to the experimental value. While correcting the band gap, the formation energy
obtained for a specific value of U also needs to be corrected. In this procedure, the
formation energy of V +2

O is not affected as we vary U (i.e. change the band gap), since
for V +2

O the Kohn-Sham gap state is empty and hence the total energy is unaffected
as we vary both the band gap and the associated position of the Kohn-Sham gap
state. For the V +1

O and V 0
O cases, the formation energies are corrected assuming that

the Kohn-Sham gap feature shifts with the conduction band (CB), since the gap
feature exhibits CB orbital character (85 % for V 0

O and 80% for V +1
O , respectively).

This approximation is known to work well for conventional semiconductors where
the gap feature has predominantly CB character [111, 116–118]. Hence, we add
(Eg,exp − Eg,LDA+U(5))n to the formation energy, where Eg,exp is the experimental
band gap, Eg,LDA+U(5) is the band gap obtained from DFT calculation and n the
occupation of the Kohn-Sham gap state. To verify the accuracy of this correction and
the choice of U, the transition levels thus obtained were evaluated for a bulk vacancy
(Fig. 4.3(a)), yielding (+/++) and (0/+) levels located right at the CB minimum
and 0.3 eV above the CB minimum, respectively. These results agree within a few
tenths of an eV with those obtained by Janotti et al. [101], using a more accurate
hybrid functional.
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Figure 4.3: The formation energy as a function of Fermi level for different charge
configurations for the oxygen vacancy in (a) the bulk, (b) the surface SrO layer,
and (c) the surface TiO2 layer. Insets show the resulting transition levels (Fermi
level position at which transitions between charge states occur). For panel (c), the
transition between +1 and 0 charge states occurs at a Fermi level position slightly
above the CB minimum.
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4.3 Results and discussion

4.3.1 Formation energy and defect wavefunction

Figures 4.3(a)-(c) show the vacancy formation energies as a function of the Fermi
level for the bulk, the SrO termination and the TiO2 termination, respectively. For
the SrO termination, we predict two transition levels, between +1 and +2 charge
states (+/++), and between 0 and +1 charge states (0/+), when the Fermi level
is 1.3 eV and 2.3 eV above the valance band maximum (VBM), respectively. The
position of the (0/+) level approximately matches the gap feature that we observed
experimentally on the SrO termination. However, the lower (+/++) level was not
observed in the STM experiments. The disorder-induced states on the surface would
likely have pinned the Fermi level in between the two levels, such that only (0/+) level
is empty but the (+/++) level is filled. In that case, the absence of (+/++) level
can be attributed to a limited transport capability for in-gap states below the Fermi
level of n-type material [119]. For in-gap surface states above the Fermi level (positive
voltages), electrons tunneling into the states can tunnel through the depletion region
into CB states, and observable current is thus achieved. However, for in-gap surface
states below the Fermi level (small or moderate negative voltages), there are no bulk
states available for the carriers to tunnel into, and thus their conductance is poor.
Only when the density of surface states is large enough to allow lateral transport
across the surface can these states be observed [120].

For TiO2 termination, our calculation predicts a (+/++) level at 2.1 eV above the
VBM, which in principle should be observable in the conductance spectra. However,
no such discrete state was observed in the spectra. In some of the cleaved samples,
a weak, discrete feature was occasionally observed in the upper half of the band gap
for TiO2-terminated surfaces after annealing. To further investigate the nature of
the states on the different terminations, we compute the spin density of the in-gap
state in its various charge states, as shown in Fig. 4.4(a)-(f). In the bulk, the oxygen
ion has two nearest neighbor Ti ions. The wavefunctions of the vacancy in either
V +1
O or V 0

O states are mostly made of Ti 3d orbitals pointing at the vacancy. On
the SrO-terminated surface, the oxygen vacancy has only one Ti neighbor directly
underneath. Therefore, the in-gap state is mostly made up of dz2 orbitals, which
point towards the vacancy as clearly seen in Fig. 4.4(a)-(b). For the case of VO and
V +
O at the TiO2 surface, the orbital character is dominated by the dx2−y2 and dzy

orbitals pointing towards the vacancy, as shown in Fig. 4.4 (d) - (e). This difference
in orbital characteristic for the oxygen vacancy state at different terminations has a
direct consequence for the sensitivity of the STS. The tunnel current is more sensitive
to an orbital that points out in the direction perpendicular to the surface, since it has
greater overlap with the wavefunctions of the tip. Therefore, it should be easier to
detect the oxygen vacancy states on the SrO-terminated surface due to their dominant
out-of-plane dz2 orbital characteristics. Detecting the oxygen vacancy states on TiO2-
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Figure 4.4: The majority spin density for the V 0
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32



terminated surface, on the other hand, is relatively difficult because the wavefunctions
extend mostly along the surface. This characteristic of the wavefunction provides an
explanation for the absence of any discrete in-gap state for the TiO2 termination in
our experiments.

Concerning the predicted (0/+) level on the TiO2-terminated surface, in sharp
contrast to the SrO-terminated case, it appears as a resonant level in the conduction
band. Such a resonant level will autoionize with the electron transferred to the
conduction band. The resulting positively charged vacancies will cause downward
band bending, leading to the formation of a 2DEG. This is the mechanism responsible
for 2DEG formation on SrTiO3 surface, as elucidated in some prior publications [121–
127]. In contrast, for our surfaces produced experimentally, there apparently is always
a sufficient number of disorder-induced states to accept electrons from the oxygen
vacancies and thereby inhibit for 2DEG formation.

4.3.2 Configurational Coordinate diagram and vibronic cou-
pling

Regarding the observed position of the (0/+) on the SrO termination from STS, the
breadth of the spectral feature is quite large indicating a possible electron-phonon
coupling. To evaluate such coupling, we calculated configuration coordinate (CC)
diagrams [128], together with the square of the vibronic (harmonic oscillator) wave-
function for the V 0

O vacancy and the V +1
O vacancy for the SrO termination (Fig. 4.5(a)

and (b)).When the Fermi energy is 2.3 eV, the V +1
O vacancy together with one elec-

tron has the same energy as the V 0
O vacancy, but there is minimal overlap between

their vibronic states and hence there is very little tunneling. On the other hand, when
the Fermi energy is changed to 2.5 eV (by adjusting the applied tunneling sample-tip
bias voltage), the V +1

O vacancy level moves up such that the minimum of its CC curve
intersects the CC curve of the V 0

O vacancy. At this value of Fermi energy (sample-tip
bias) there is maximal overlap between the V +1

O and V 0
O vibronic states, which cor-

responds to the peak observed in the dI/dV spectrum. With this vibronic coupling
taken into account, the actual position of the surface oxygen vacancy feature in STS
is theoretically predicted to be at 2.5 eV above the VBM. This value is reasonably
close to the transition energy found experimentally for the (0/+) transition level of
the SrO-terminated surface.

4.4 Summary

Thus, to summarize, we have used first-principles methods to calculate the forma-
tion energies of charged oxygen vacancies on STO (001) surfaces. We find that a
transition level above the CB edge is formed by vacancies in the outermost plane
of TiO2-terminated surfaces (this result is essentially the same as believed to occur

33



q+1q0
EF = 2.3 eV

a)

EF = 2.5 eV 0
+

b)

 0.2 eV
q+1q0

Ec

Ev

Ec

Ev

V   + 1e-
EFO

+1V   O
0

V   O
0

V   + 1e-
EFO

+1

0
+

q+1q0
EF = 2.3 eV

a)

EF = 2.5 eV 0
+

b)

 0.2 eV
q+1q0

Ec

Ev

Ec

Ev

V   + 1e-
EFO

+1V   O
0

V   O
0

V   + 1e-
EFO

+1

0
+

Figure 4.5: Configuration coordinate diagram for the SrO termination for V 0
O and
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O for a Fermi energy of (a) 2.3 eV and (b) 2.5 eV. A schematic of the absolute

square of harmonic oscillator wavefunctions are shown for both the neutral and +
charge states of the vacancy.
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for vacancies in bulk SrTiO3) [101]. This resonant level will produce a 2DEG, so
long as compensating acceptor levels are not present. The in-gap levels, on the other
hand, were produced by vacancies on either surface termination (and they also form
for vacancies in the bulk, i.e. as the second donor level, when polaronic effects are
included) [101]. The in-gap spectral feature commonly observed using photoemission
spectroscopy [96, 129], a technique which has a large probing area and a finite probing
depth (∼ 20 Å), likely is formed by a combination of these surface and bulk states.
Also, by analyzing the nature of the wavefunction, we were also able to explain the
absence of certain levels in the scanning tunneling spectrum.
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Chapter 5

Transition metal trichalcogenides
for 2D magnets

5.1 Introduction

Magnetism is one property still missing in the current line-up of 2D crystals. Most
of the research towards this goal has tried to engineer magnetism in already existing
2D materials by external means, for example, doping and vacancies [130, 131]. But,
as this magnetism is extrinsic in nature. Hence, the critical temperatures obtained
are very small. Secondly, introducing defects and vacancies compromise the quality
of the sample. To overcome these limitations, we started searching for 2D magnets.
We explored the possibility of materials that are already magnetic in the bulk form,
which can be made into 2D materials. In this regard, transition metal trichalcogenides
(TMTC) such as MnPS3 represents a rather attractive material family. They have the
chemical formula ABX3, similar to the perovskites. But, in this case, A is the mag-
netic transition metal atom. Similar to dichalcogenides, these are layered compounds
with weak interlayer Van der Waals interactions. Furthermore, these materials are
known to exhibit a large variety of magnetic phases [132–137], making them ideal can-
didates for exfoliated 2D magnets. The successful fabrication of a truly 2D magnet
would also significantly advance our understanding of low-dimensional magnetism.

Despite the obvious interest and more than three decades of experimental studies
of bulk TMTC, magnetism in these materials remains to be fully understood. In
particular, even though the spin wave measurement by inelastic neutron scattering
has pointed out the importance of exchange interactions beyond nearest-neighbor
(NN) spins [132, 138], relatively little is known about the nature of these interactions
and their effect on the magnetic ground state. Additionally, the 2D confinement
of electrons upon exfoliation often leads to properties quite different from the bulk
crystals. It is thus interesting to ask whether there is any change of the magnetic

This chapter is adapted from N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and Di
Xiao, Physical Review B 91, 235425 (2015). Copyright © 2015 American Physical Society.
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ground state when these materials are thinned down to monolayers.
With these questions in mind, we investigate the magnetic ground states of mono-

layers of Mn- and Cr-based semiconducting TMTC, using first-principles calcula-
tions within the framework of density functional theory (DFT). The Mn-compounds
(MnPS3 and MnPSe3) are known to exhibit antiferromagnetic (AF) Néel order in
their bulk form [132, 139], and are chosen here as benchmark for our calculations due
to the extensively available experimental data. Interesting properties such as coupled
spin and valley degrees of freedom have also been predicted for monolayers of these
materials [140].The Cr-compounds (CrSiTe3 and CrGeTe3), on the other hand, are
reported to be ferromagnetic (FM) in bulk [141–143], thus present a highly interesting
system to realize 2D ferromagnets. One of the motivations of the present work is to
provide some quantitative understanding of magnetism in these compounds.

Our main findings are summarized below. The majority of the chapter is focused
on monolayers. We show that the second and third NN exchange interactions (J2 and
J3) mediated through the p states of chalcogen anions are crucial in determining the
magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferro-
magnet with a zigzag spin texture due to significant contribution from J3, whereas
CrGeTe3 a ferromagnet with a Curie temperature of 106 K. This result is in sharp
contrast with previous theoretical studies in which only the NN exchange interaction
(J1) was considered [144, 145]. We discuss the physical origin of various exchange
interactions, and demonstrate that strain can be an effective knob for tuning the mag-
netic properties. A uniform in-plane tensile strain of ∼ 3% can tune the magnetic
ground state of CrSiTe3 from zigzag to ferromagnet, with a critical temperature of
111 K. We also find that in bulk CrSiTe3, the intralayer magnetic ordering is very sen-
sitive to the out-of-plane lattice constant. For the experimental out-of-plane lattice
constant (21.0 Å), the intralayer magnetic ordering is FM in nature. However, the
interlayer coupling favors AF over FM coupling. This is in contradiction with exper-
imental results. [141, 142] One possible reason for this discrepancy is discussed, but
the actual mechanism for ferromagnetism in bulk CrSiTe3 remains an open question.

5.2 Crystal and Magnetic Structure

Transition metal trichalcogenides with the chemical formula ABX3 are layered com-
pounds with the structural space group of R3, except MnPS3, which forms monoclinic
crystals with the C2/m space group. In all compounds, the different layers are held
together by weak van der Waals force. It has been predicted that the monolayer form
of these materials are indeed stable [144, 146], making them attractive candidates for
2D magnets. Figure 5.1(a) and (b) show the crystal structure of TMTC monolay-
ers. The magnetic ions (A) form a honeycomb lattice within each layer, and each of
them is octahedrally coordinated by six X atoms from its three neighboring (B2X6)
ligands, with the centers of the hexagons occupied by the B2 groups.

Similar to the crystal structure, the magnetic structure of bulk TMTC also shows
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Figure 5.1: Crystal and magnetic structure of transition metal trichalcogenides
ABX3. The crystal structure (a) and the top view (b) of monolayers of ABX3.
The transition metal A atoms form a honeycomb structure with B2X6 ligand occu-
pying the interior of the honeycomb. Top view of the different spin configurations:
the FM ordered (c), AF-Néel ordered (d), AF-zigzag ordered (e), AF-stripy ordered
(f), with only the transition metal ions shown. Up (down) spins are represented by
black filled-in (open) circles. The crystal structure is drawn using VESTA [1]
.
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Figure 5.2: The ground state magnetic phase diagram for our spin model as a function
of J1/J3 and J2/J3. Since our calculation finds J3 to be always AF, only J3 > 0 is
considered. Spins are treated as classical degrees of freedom. All compounds studied
are located at corresponding parameter values. Open symbols are positions under
tensile strains with arrows indicating the change from the unstrained cases.
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Figure 5.3: The partial density of states (PDOS) of the ground states of CrSiTe3

(AF-zigzag), CrGeTe3 (FM) and MnPS3 (AF-Néel) are shown in (a), (b) and (c)
respectively. These are the three unique ground states exhibited by the ABX3 com-
pounds. The PDOS of A, B and X are shown using red lines, broken green lines
and dotted blue lines respectively. We observe considerable hybridization between
the transition metal (A) atoms and the chalcogen (X) atoms.
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2D characteristics. It can be understood as FM or AF coupled 2D magnetic lay-
ers. To describe the 2D magnetic structure, we consider the Heisenberg model on a
honeycomb lattice,

H =
∑
〈ij〉

J1
~Si · ~Sj +

∑
〈〈ij〉〉

J2
~Si · ~Sj +

∑
〈〈〈ij〉〉〉

J3
~Si · ~Sj . (5.1)

where J1,2,3 are the exchange interactions between NN, second NN, and third NN
spins. Previous studies have shown that it is necessary to include both J2 and J3

to fit the spin wave dispersion from inelastic neutron scattering data [132, 138]. In
addition, considering only J1 would yield either FM or AF-Néel order, while other
magnetic ground states have been found experimentally. To compute the exchange
interactions, we consider the following four possible magnetic ground state: FM, AF-
Néel, AF-zigzag, and AF-stripy, as shown in Fig. 5.1 (c)-(f). The ground-state phase
diagram for our model in Eq. (1) is shown in Fig. 5.2 as a function of J1/J3 and J2/J3.
Here J3 is assumed to be positive, as it turns out to be the case for all the compounds
we studied. It is clear that not only J1, but also J2 and J3 play an important role in
deciding the magnetic ground state.

5.3 Results and discussion

5.3.1 Computation details

With the above observation, the magnetic ground states of ABX3 compounds are
examined using DFT employing the projector augmented wave[60, 147, 148] method
encoded in Vienna ab initio simulation package [60] with the generalized gradient
approximation in the parameterization of Perdew, Burke and Enzerhof [149, 150].
We use Hubbard U terms (4 eV for Cr and 5 eV for Mn) [151, 152] to account for
strong electronic correlations as suggested by Dudarev et al. [153]. Our results were
qualitatively insensitive to the different U ’s chosen (2 eV, 4 eV) for the Cr-compounds.
For each slab a vacuum region more than 15 Å was used. A cutoff energy of 400 eV and
a Monkhorst-Pack special k-point mesh of 24×14×1 for the Brillouin zone integration
was found to be sufficient to obtain the convergence. Structural optimizations were
performed by fixing the in-plane lattice constants to that of the theoretical bulk lattice
constants (see Table I). All ions were then relaxed with the relaxation of the electronic
degrees of freedom accurate to up to 10−6 eV.

5.3.2 Exchange interactions

For each compound, we optimize the crystal structure for all four spin configurations
[see Fig. 5.1 (c)-(f)] to find the lowest-energy state. Figure 5.3 shows the partial
density of states (DOS) of three representative ground states: AF-zigzag (CrSiTe3),
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Table 5.1: Lattice constant a, magnetic ground state (GS), exchange coupling con-
stants, and magnetic critical temperature for ABX3 studied. Critical temperatures
are obtained from classical Monte Carlo simulations.

a (Å) GS J1 (meV) J2 (meV) J3 (meV) Tc (K)
MnPS3 (exp) [132] 5.88 Néel 0.77 0.07 0.18 164

MnPS3 5.88 Néel 0.79 0.04 0.23 231
MnPSe3 6.27 Néel 0.46 0.03 0.19 147

MnPSe3 (2% strain) 6.40 Néel 0.33 0.03 0.16 115
CrSiSe3 6.29 Zigzag -0.74 0.0 0.43 92
CrSiTe3 6.84 Zigzag -1.63 0.08 0.71 160

CrSiTe3 (1% strain) 6.91 Zigzag -1.82 0.07 0.66 130
CrSiTe3 (2% strain) 6.98 Zigzag -1.99 0.07 0.60 72
CrSiTe3 (3% strain) 7.04 FM -2.16 0.05 0.54 111
CrSiTe3 (4% strain) 7.11 FM -2.29 0.05 0.50 158

CrGeTe3 6.91 FM -1.88 0.20 0.22 106

FM (CrGeTe3) and AF-Néel (MnPS3). It is evident that there is considerable hy-
bridization between the chalcogen p states and the transition metal d states, further
confirming the necessity to include the second and the third NN interaction into
consideration. By integrating the partial DOS in the transition metal atoms for the
lowest energy spin configuration we obtain Si = 2.45 for Mn-compounds and 2.10 for
Cr-compounds, with the spins having a variation less than 0.01 between the different
spin configurations.

To further extract the J ’s, we chose to fix the lattice to that of the most ener-
getically favorable spin configuration and computed the energies for different spin
configurations. The exchange coupling constants were derived by mapping the DFT
energies to the Heisenberg spin Hamiltonian (5.1),

EFM/Néel = E0 + (±3J1 + 6J2 ± 3J3) |~S|2,
EAF−zigzag/stripy = E0 + (±J1 − 2J2 ∓ 3J3) |~S|2,

(5.2)

where E0 is the ground state energy independent of the spin configuration. Using
these J ’s, we also calculated the critical temperature by performing a Monte Carlo
simulation of an Ising model on the 2D honeycomb lattice [154].

The magnetic ground state, the computed J ’s, along with the critical tempera-
ture for each compound are listed in Table I. The locations of the ground state of
all the compounds studied are labeled in the phase diagram in Fig. 5.2. We see that
both MnPS3 and MnPSe3 are deep inside the AF-Néel phase. The calculated values
of J1,2,3 for monolayer MnPS3 agree excellently with the experimental data for the
bulk system [132], which validates our calculation. We also find that both CrSiTe3
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Figure 5.4: Top view of monolayer of ABX3. Blue, violet and yellow represents A,
B and X ions respectively. The five possible paths for second NN interaction is show
in (a) and the third NN interaction is shown in (b). The two different NN hopping
paths between two transition metal atoms at different sites (A1 and A2) are shown
in (c) with the direct exchange as a hopping between the transition metal orbitals
and the superexchange interaction characterized by hopping between the transition
metals through the X atom.
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Figure 5.5: Main contributions of virtual electron excitations to magnetic interactions.
Virtual electron excitations from twoX anions to a pair of (a) second NN and (b) third
NN A ions. (c) Direct excitations between neighboring TM ions (red dots), resulting
in AF J1. (d) Excitations from two orthogonal orbitals on a X anion (black dots) to
a neighboring pair of A ions. Because of the Hund coupling acting in excited states
as indicated by a broken circle, this process gives rise to FM J1. The actual sign of
exchange interactions results from the competition between FM and AF contributions
for J1. Numbers indicate the typical order of the first half perturbation processes for
each contribution.

and CrSiSe3 are in the AF-zigzag phase with the former lying close to the boundary
of AF-zigzag and FM phase. This is different from the FM ground state reported
for bulk CrSiTe3 [141, 142], which will be addressed later. Finally, of all the com-
pounds studied, CrGeTe3 is the only one that has a FM ground state in its unstrained
monolayer form.

We note that J3 is significantly large. This corroborates the decision to include
more than just the NN interaction. Ignoring it (and J2) had previously yielded a
different ground state (FM) for CrSiTe3 monolayers in previous studies [144, 145]. In
our calculation for monolayer CrSiTe3, FM is indeed lower in energy than AF-Néel.
The energy difference between the two magnetic states was found to be similar to
what was reported in Li et al. [144], when the same U was chosen. But crucially,
we find that AF-zigzag is even lower in energy than FM, and hence is the magnetic
ground state.
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Now that we have shown that the interactions have to be included up to the third
NN not only to interpret the neutron diffraction data, but also to get the correct
magnetic ground state, the imminent task is to understand the microscopic origin
of the different J ’s. We first note that J2 and J3 are always AF. Furthermore, the
value of J2 is found to be smaller than J3. Both of these findings are consistent with
previous reports on MnPS3 and its Fe derivative, FePS3 [132, 138]. These observations
can be understood by analyzing the crystal structure. Figure 6.3 shows the possible
hybridization paths connecting A site ions. For the second NN and the third NN
A site pairs, electrons hop through two X anions [Fig. 6.3 (a) and (b)]. For this
reason, J2 and J3 might be regarded as super-superexchange interactions. Based on
the geometry and the X anion p states, we expect J2 to be weakly AF because it
involves small X-X hybridizations [Fig. 5.5 (a)]. On the other hand, J3 involves two
X anions on the same plane, either top layer or bottom layer. Hence, there is strong
hybridization of the p states [Fig. 5.5 (b)], resulting in a strongly AF J3.

The NN exchange J1, on the other hand, shows a large variation from compound
to compound. The variation is so large that it even changes the sign going from
the Mn compounds to the Cr compounds (see Table I). This behavior comes from
a unique crystal structure, which naturally gives rise to two competing interactions,
i.e., the direct exchange and superexchange. The direct exchange originates from
direct electron hopping between the NN A sites [see Figs. 6.3 (c) and 5.5 (c)]. For
the Mn compounds, this exchange is robustly AF as the Mn ions are in the half-filled
high-spin d5 state. For the Cr compounds, the AF direct exchange is weakened by
a FM component as Cr ions have partially-filled d shell [155]. The superexchange
interaction is mediated through the X ions [see Fig. 6.3 (c)]. As the A1-X-A2 angle
is close to 90◦, this interaction is FM [156, 157]. It is important to note that for
the superexchange interaction two electrons must excite from X anion p states to
neighboring A d states [see Fig. 5.5 (d)]. Since the electron excitation energy is
large for the Mn compounds [Fig.5.3(c)], reflecting closed d shell on Mn ions, the
superexchange is expected to play a minor role compared with the direct exchange.
On the other hand for the Cr compounds, the superexchange could play a dominant
role.

To confirm the distinct role of the superexchange mechanism’s contribution to
J1, we examine the magnetization of a chalcogen ion between two ferromagnetically
coupled transition metal ions as its magnitude is a good indication of the strength of
the superexchange interaction [158]. Our DFT calculation for the Cr compounds in
the FM metastable state showed the total magnetization of the chalcogen ions is ∼ 0.6
µB per unit cell and hence significant. On the other hand, for the Mn compounds,
the magnetization of the chalcogen ions are an order of magnitude smaller, which is
consistent with our finding of an AF J1, and the presence of a large electron excitation
energy from X p to Mn d. The net result is that J1 becomes AF for Mn compounds
because of the dominance of AF direct exchange over the FM superexchange, while
the FM superexchange wins over the AF direct exchange making J1 strongly FM for
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Cr compounds (see Table I). Hence, depending on the transition metal ions involved,
a significant competition is expected between FM and AF components, which could
lead to a plethora of magnetic states.

5.3.3 Effect of strain

This competition is further verified by applying a uniform tensile strain on MnPSe3

and CrSiTe3. It is important to note that both direct exchange and superexchange
do not change sign as we strain the system, but the former decreases more rapidly
than the latter as the atomic distances increase by a tensile strain. As a consequence,
|J1| for MnPSe3 decreases with strain, where as |J1| for CrSiTe3 increases with strain
(see Table I). This confirmed the presence of competing exchange interactions.

This result immediately suggests the possibility of tuning the magnetic ground
state using strain. Here, we consider monolayer CrSiTe3 as our prototype system and
use strain as a knob to change the different J ’s. CrSiTe3 is an ideal candidate for
this study as it lies close to the FM and AF-zigzag phase boundary. With a tensile
strain, J2 and J3 are both expected to decrease in magnitude as the atomic distances
are increased. While the effect of strain on J1 is subtler, it is expected to increase in
magnitude for small strains. Not surprisingly, an application of ∼ 3% strain leads to
a magnetic phase transition with ferromagnetism becomes the magnetic ground state
(see Fig. 5.2). Strain also has a direct impact on the critical temperatures. Once the
FM ground state is realized, the critical temperature Tc can be further enhanced with
strain. As shown in Table I, Tc goes up to 158 K for ∼ 4% strain. With this strong
dependence of critical temperature on the applied strain, it might be even possible to
engineer room temperature ferromagnetic behavior, for large values of strain [145].

5.3.4 Bulk magnetic order

So far we have only considered the magnetic properties of monolayer TMTCs. One
of the important finding is that monolayer of CrSiTe3 has an AF-zigzag ground state,
whereas in bulk it is reported to be FM from neutron scattering experiments [141, 142].
To understand this change in magnetic structure when we go from monolayer to
bulk, we calculated the magnetic ground state of bulk CrSiTe3. We find that for the
experimental out-of-plane lattice constant (21.0 Å), the intralayer magnetic ordering
is FM in nature and not AF-zigzag. This switching of the intralayer magnetic ordering
from AF-zigzag to FM as we go from monolayer to bulk is very sensitive to the out-
of-plane lattice constant of the bulk system. If we increase the out-of-plane lattice
constant to 22.8 Å, the intralayer coupling prefers AF-zigzag. This is because bulk
CrSiTe3 has ABC stacking, thus an in-plane AF-zigzag spin configuration costs more
energy compared to a FM spin configuration when the interlayer exchange interaction
becomes strong.

However, we also find that in bulk, AF interlayer coupling is preferred over FM
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interlayer coupling by 10.6 meV per Cr atom. Analyzing the interlayer interactions
between the Cr atoms, it is dominated by super-superexchange. Based on the geom-
etry and because of the presence of large chalcogen atoms, we expect this interac-
tion to be comparable to J3 and hence significant. As the mechanism for interlayer
super-superexchange coupling is similar to that of the intralayer super-superexchange
coupling previously discussed for J2 and J3, it is not surprising that these interactions
are AF in nature. But this contradicts experimental findings of bulk ferromagnetism
in CrSiTe3 [141, 142].

One possible source for this discrepancy is the absence of the dipole-dipole in-
teraction in DFT calculations, as discussed previously [159, 160]. By introducing
the spin-orbit coupling, we have confirmed that there is an out-of-plane easy axis
anisotropy, in accordance with experiments [141, 142]. With this easy axis, the inter-
layer FM arrangement can become energetically more favorable than the AF arrange-
ment, because of the dipole-dipole interaction [160]. We also note that for MnPS3

the dipole-dipole interaction is negligible due to the AF ordering within each plane.
This could explain why our DFT results show excellent agreement with the bulk ex-
perimental results for the Mn compounds. Nonetheless, the actual mechanism for
ferromagnetism in bulk CrSiTe3 remains an open question.

5.4 Summary

In this chapter, we studied the magnetic properties of monolayers of van der Waals
transition-metal trichalcogenides ABX3 using density functional theory. In order to
understand the rich magnetic behavior observed in these systems, we derived local
spin models using the DFT energy of the magnetic ground state and metastable
excited states. Because of the extended nature of the p state of the chalcogen atoms,
second nearest-neighbor and third nearest-neighbor interactions are found to play
significant roles. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet
with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is
a ferromagnet with a Curie temperature of 106 K. Detailed analyses on the magnetic
interactions led us to predict that monolayers CrSiTe3 can be made ferromagnetic
with the application of a moderate uniform in-plane tensile strain of 3%, which is
experimentally feasible. Our studies demonstrate transition-metal trichalcogenides
ABX3 are possible candidates for spintronic applications; especially CrGeTe3 and
strained CrSiTe3 are promising for two-dimensional ferromagnetic semiconductors.
The magnetic ordering of bulk CrSiTe3, however, remains an open question.
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Chapter 6

Magneto-optic effects in 2D
magnets

6.1 Introduction

Magneto-optic effects are one of the defining features of time-reversal (T ) symmetry
breaking in matter. Usually, the T symmetry is broken either by an external mag-
netic field, or by the spontaneous appearance of a macroscopic magnetization such as
in ferromagnets. Similar to their ferromagnetic counterparts, the T symmetry is also
broken in antiferromagnets. However, because of their vanishing net magnetization
one would naively expect an absence of magneto-optic effects in antiferromagnets.
This assumption has been recently challenged by the theoretical demonstration of a
rather large magneto-optic Kerr effect (MOKE) in certain non-collinear antiferromag-
nets with zero net magnetization [161]. This effect is closely related to the anomalous
Hall effect predicted in the same class of materials [162, 163], both of which are dic-
tated by the absence of certain crystal symmetries. The appearance of magneto-optic
effects in antiferromagnets is of intrinsic interest, since it would allow direct detec-
tion of the magnetic order and therefore could be useful for antiferromagnets-based
memory devices [164].

While non-collinear antiferromagnets have been the focus of recent interest [161–
163], we show that magneto-optic effects can also exist in the more commonly available
collinear antiferromagnets. We start by analyzing the general symmetry requirements
for magneto-optic effects, and demonstrate the symmetry principles by constructing
a tight-binding model with a collinear Néel type order. We show that, contrary to
the general belief, lifting the spin degeneracy of the energy bands is not a sufficient
condition to generate magneto-optic effects; it is the crystal symmetry that actually
controls these effects.

Based on this understanding, we predict that a perpendicular electric field can

This chapter is adapted from N. Sivadas, S. Okamoto, and Di Xiao, arXiv:1607.02156
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be used to generate and control the MOKE in layered antiferromagnets using first-
principles calculations. Recent theoretical and experimental progress has identified
several layered compounds as promising candidates to host magnetism in their thin-
film limit [47, 140, 165–168]. One of them is MnPSe3, a semiconductor with collinear
antiferromagnetic order within each layer. We show that the field-induced inversion
(I) symmetry breaking in bilayer MnPSe3 gives rise to a MOKE whose direction of
rotation can be switched by the reversal of the gate voltage. For field strength of
0.4 V/nm, the MOKE rotation angle is found to be as large as 4 mrad. Our result
indicates that layered antiferromagnets would provide a very promising platform to
explore gate-controllable magneto-optic effects.

6.2 Results and discussion

6.2.1 Symmetries

As symmetries play an important role in magneto-optic effects [169], we begin our
discussion with a general symmetry analysis. Magneto-optic effects are closely related
to the AC Hall effect [see Eq. (6.5) below], which refers to the appearance of a
transverse AC current in response to an optical field in the longitudinal direction.
Therefore, we can use the following pseudo-vector

n = j ×E (6.1)

to characterize magneto-optic effects. If the material possesses T symmetry, n is
clearly constrained to be zero. Both ferromagnets and antiferromagnets break T
symmetry. However, it is possible that the material might have a combined symmetry
of T and some crystal symmetry O, which can force n to be zero even if T symmetry
is broken. To elucidate this, consider an antiferromagnets with T I symmetry. One
such example is shown in Fig. 6.1(a). Under T I symmetry, j is unaffected, whereas
E changes sign. It then follows from Eq. (6.1) that n changes sign under the T I
symmetry operation. This forces n to be zero and suppresses any magneto-optic
effects. Using a similar analysis, it is straightforward to show that for two-dimensional
systems both TMz symmetry and T C2 symmetry also suppress magneto-optic effects,
where Mz is the mirror reflection perpendicular to the j-E plane, and C2 is the in-
plane inversion symmetry. Thus, by breaking these crystal symmetries, magneto-optic
effects can be generated in antiferromagnets. This is the key to our gate controllable
MOKE.

6.2.2 Tightbinding model

Armed with the above insight, we now consider a specific example, a honeycomb
lattice with a collinear Néel type order, as shown in Fig. 6.1(a). The Hamiltonian is
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Figure 6.1: (a) Schematic of a honeycomb lattice with collinear Néel order. Up
(down) spins are represented by filled (open) circles. The system possesses combined
T I symmetry although both T and I symmetries are individually broken. (b) and (c)
Energy bands of the tight-binding model with broken mirror symmetry (λR = 0.05t,
λV = 0) and broken in-plane inversion symmetry (λR = 0, λV = 0.05t), respectively.
In both cases, λSO = 0.06t and λM = 0.7t. The spin degeneracy of the bands is
lifted in both cases. (d) The imaginary part of the optical Hall conductivity (σ′′xy)
computed for λR = 0.05t (black), λV = 0.05t (red) and λV = −0.05t (blue). σ′′xy is
zero when only λR is turned on and becomes non-zero when λV 6= 0. As the sign of
λV is reversed so is σ′′xy. The smearing parameter was set to 0.1t.
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given by

H = t
∑
〈ij〉

c†icj + iλSO
∑
〈〈ij〉〉

νijc
†
is
zcj +

∑
i

(−1)iλMc
†
is
zci . (6.2)

The first term is the nearest neighbor hopping. The second term is the intrinsic
spin-orbit coupling (SOC), which is needed for any magneto-optic effects. Here,
νij = (2/

√
3)(d̂1 × d̂2)z = ±1, where d̂1 and d̂2 are the unit vectors of the two bonds

connecting site i to j, and sz is the spin Pauli matrix. Along with preserving the
Mz symmetry, this term also preserves both T and I symmetries. The third term
breaks T symmetry via a staggered Zeeman field, mimicking the Néel order with an
out-of-plane easy axis. We note that this term can be dynamically generated by local
interactions,

∑
i Uni,↑ni,↓ [170, 171]. Within the mean-field approximation, U and

λM are related by λM = m
2
U where m = 〈ni,↑ − ni,↓〉 is the spontaneous magnetic

moment. Thus, our results are also valid for interacting systems with robust magnetic
ordering. One can verify that the system is invariant under the T I symmetry. This
Hamiltonian is identical to the one proposed by Kane and Mele for the quantum spin
Hall effect [172], except the λM term. As we are interested in the properties of a
topologically trivial antiferromagnetic insulator, we will work in the strong exchange
limit where the band gap is dominated by λM (λM � 3

√
3λSO).

To analyze the role of crystal symmetries, we add two symmetry breaking terms
to the Hamiltonian

H ′ = iλR
∑
〈ij〉

c†i (s× d̂ij)zcj + λV
∑
i

(−1)ic†ici . (6.3)

The Rashba SOC term (λR) breaks the Mz symmetry, and the staggered sublattice
potential (λV ) breaks the in-plane inversion symmetry. Figure 6.1(b) and (c) show
the energy bands obtained for two representative cases where the T I symmetry is
broken. In cases I we switch on only the Rashba term (λR 6= 0), whereas in case II
only the staggered sublattice potential is turned on (λV 6= 0). It is clear that the effect
of these T I symmetry breaking terms is to lift the spin degeneracy of the bands. We
also note that K and K ′ valleys are no longer degenerate. This is not a consequence
of T I symmetry breaking, and in fact, they remain non-degenerate even when the
symmetry breaking terms are removed. The breaking of the valley degeneracy arises
from the interaction of the antiferromagnetic order and the intrinsic SOC [140].

Next, we calculated the optical Hall conductivity σxy(ω) using the Kubo-Greenwood
formula [173, 174],

σxy(ω) = ~e2

∫
d2k

(2π)2

∑
n6=m

(fmk − fnk)

× Im〈ψnk|vx|ψmk〉〈ψmk|vy|ψnk〉
(εmk − εnk)2 − (~ω + iη)2

,

(6.4)

where fmk is the Fermi-Dirac distribution function, εmk is the energy of the mth
band, ~ω is the photon energy, and η is an adjustable smearing parameter with units
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of energy. For detailed derivation, refer to Ref. [55]. Figure 6.1(d) shows the imaginary
part of σxy, denoted by σ′′xy. Even though the bands are spin-split in both cases, we
can see that σ′′xy is identically zero for case I and is non-zero only for case II. To
understand this we further analyze the symmetry properties of the system. We note
that even though the system is invariant under T I, the TMz symmetry is already
broken by the out-of-plane magnetic order. In case I, although the Rashba term
breaks Mz symmetry, the system still possesses T C2 symmetry. As we discussed
before, it suppresses any magneto-optic effects. This shows that even though the
bands are spin-split, the underlying crystal symmetries can force the magneto-optic
effects to vanish. In case II, the staggered sublattice potential breaks both T I and
T C2 symmetries, it therefore lifts all symmetry constraints on magneto-optic effects,
making it non-zero.

In addition, we also find that upon the reversal of the staggered sublattice poten-
tial, σ′′xy changes its sign. It can be verified that the process of reversing the sign of the
staggered sublattice potential is equivalent to switching the sublattices and reversing
the spins. This operation is nothing but the T I symmetry operation. However, we
have already discussed that T I symmetry operation reverses the sign of σxy, which
is indeed what we find. On the other hand, if natural birefringence also exist in
the system, their contribution would not flip sign upon the reversal of the sublattice
potential. This property can be used to distinguish between magneto-optical effects
and natural birefringence.

While crystal symmetries are difficult to control in bulk materials, it has been
demonstrated that gating can be an effective tool to break the inversion symmetry in
2D materials [29–33]. In the following we demonstrate the idea of gate-controllable
MOKE using bilayer MnPSe3 as an example.

6.2.3 Gate-controllable MOKE

Methodology

The calculations for the first-principles part was performed using the projector aug-
mented wave [60, 147, 148] method encoded in Vienna ab initio simulation pack-
age (VASP) [60] with the generalized gradient approximation in the parameteriza-
tion of Perdew, Burke and Enzerhof [149, 150]. We use Hubbard U terms 5 eV for
Mn [151, 152] to account for strong electronic correlations as suggested by Dudarev
et al [153]. The shell configuration of [Ar] 3d6 4s1, [Ne] 3s2 3p3, and [Ar] 4s2 4p4

were used for Mn, P and Se, respectively. Structural optimization was performed by
fixing the in-plane lattice constants to that of the theoretical bulk lattice constants.
A vacuum region more than 15 Å was used in all cases. All the ions were then relaxed
with the Mn-Mn interlayer distance kept fixed. We do not expect this to alter out
conclusions.

The effect of an external electric field in the slab geometry was calculated self-
consistently at the first-principles step, using the EFIELD-tag in VASP. This adds
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Figure 6.2: (a) The crystal structure of monolayers of MnPSe3. The transition metal
Mn atoms form a honeycomb structure with P2Se6 ligand occupying the center of the
honeycomb. (b) The side view of the crystal structure of bilayer MnPSe3. The crystal
structure is drawn using VESTA [1]. (c) The band structure of the bilayer MnPSe3 in
the absence of an electric field. The insert shows the Mn atoms in the bilayer. (d) The
band structure of the bilayer MnPSe3 in the presence of an electric field (0.4 V/nm)
along the z-direction. The insert shows the lifting of the spin degeneracy of the bands
due to the T I symmetry breaking by the field.
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Figure 6.3: (a) The real part of σxy, (b) the imaginary part of σxy, and (c) the real
part of σxx of bilayer MnPSe3 at zero field (black) and a field with strength 0.4 V/nm
(red). The smearing parameter was set to 0.2 eV. The corresponding (d) Kerr rotation
angle and (e) ellipticity angle computed as a function of photon energy ~ω for bilayer
MnPSe3 on a wedged SiO2 substrate. The zero point of the energy corresponds to the
top of valence band. (f) A schematic of a magneto-optic device made from layered
antiferromagnets. S, D, and G stand for source, drain and gate respectively. In
the incident and the reflected light, an arrow shows the direction of the polarization
direction. On reflection from the antiferromagnets, the plane of polarization of light
can be rotated (from green to red arrow), and an ellipticity is induced, depending on
the gate voltages.
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an electrostatic field to local potential [175–177]. A dipole correction was included to
avoid spurious interactions between the periodically repeated images [175, 176]. The
atomic structure was fixed to the relaxed case without any electric field. We find that
the additional force on each atom due to the electric field compared to the relaxed
structure is negligible.

After obtaining the ab initio wavefunctions with and without electric field from
a self-consistent calculation with a regular 16 × 16 × 1 Monkhorst-Pack grid, the
optical conductivity tensors were calculated utilizing the Wannier interpolation ap-
proach [178–180]. We included 256 bands at each k-point. The additional empty
bands were helpful not only to localize the Wannier functions but also to calculate for
a large photon energy. The maximally-localized Wannier functions were constructed
from the ab initio wavefunctions using the Wannier90 package. We chose 176 Wan-
nier functions per unit cell, which included all the valance s and d, s and p, and s
and p orbitals for Mn, P, and Se respectively. The inner window used in the dis-
entanglement process is from the bottom of the valence band to 5.5 eV above the
Fermi level. The spread in the wannierization process was converged to 10−7Å2. The
optical conductivity was calculated using the Kubo formula as implemented in the
Wannier90 package [181, 182]. The adjustable gaussian smearing parameter was set
to 0.2 eV. We used a k-point mesh of 240×240×1 to carry out the Brillouin zone
integration of the optical conductivity tensor.

Bilayer MnPSe3

In its bulk form, MnPSe3 is a layered compound with weak interlayer Van der Waals
interaction. The crystal structure of MnPSe3 monolayer is shown in Fig. 6.2(a). The
magnetic ions (Mn) form a honeycomb lattice within each layer, and each of them is
octahedrally coordinated by six Se atoms from its three neighboring (P2Se6) ligands,
with the centers of the hexagons occupied by the P2 groups. The Mn ions are in
a half-filled d5 state, making MnPSe3 a strong antiferromagnet. We also find that
the system has an easy axis along the z-direction, with the spins taking a Néel-type
texture. The bilayer considered here is made of these monolayer units with a stacking
order similar to the bulk form [see Fig. 6.2(b)]. There are two Mn atoms in each layer
of the bilayer unit cell. In the top layer, while one Mn atom lies on top of an Mn
atom in the bottom layer, the second Mn atom lies on top of the P atoms in bottom
layer. The spins of the Mn ions from the two layers are antiferromagnetically coupled.
It can be verified that bilayer MnPSe3 has T I symmetry, hence, no magneto-optic
effect is allowed.

This T I symmetry can be broken by a perpendicular electric field. We first look
at the effect of such a field on the band structure of bilayer MnPSe3. Figure 6.2(c)
shows the band structure in the absence of an electric field. Because of the presence of
the T I symmetry, the spin-up and spin-down bands are degenerate at each k point,
making the material magneto-optically inactive. However, upon the application of
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a field (0.4 V/nm), the spin degeneracy of the bands is lifted, symptomatic of T I
symmetry breaking [see Fig. 6.2(d) and its insert].

Thus, on the application of a perpendicular electric field, we expect bilayer MnPSe3

to become magneto-optically active. Figure 6.3(a)-(c) show the optical conductivity
tensor obtained from the calculation of maximally localized Wannier functions [178–
180]. We can see that σxy is zero when the field is zero (black curves). It becomes
non-zero for a finite field (red curves), as expected. We have also verified that the
reversal of the field reverses the sign of σxy. The longitudinal conductivity σ′xx, on the
other hand, is almost invariant under the application of a field [see Fig. 6.3(c)]. This
is not surprising as σ′xx measures the average absorption of right- and left-circularly
polarized light [161].

To quantify the MOKE, we have calculated the complex polar Kerr angle. For
simplicity, we assume that the incoming light is perpendicular to the surface, and
the sample is placed on a wedged substrate such that there is no reflection from the
substrate in the perpendicular direction. In the thin film limit the Kerr angles are
given by [183, 184]

θK + iηK =
2(Z0dσxy)

1− (ns + Z0dσxx)2
, (6.5)

where θK specifies the rotation angle of the major axis of the linearly polarized light,
ηK specifies the ratio of the minor to the major axis of the light, ns is the refractive
index of the substrate, Z0 is the impedance of free space and d the thickness of
bilayer MnPSe3 (10.3 Å). The derivation is given in Appendix A.1. Figure 6.3(d)
and (e) show the computed MOKE angles for a wedged SiO2 substrate (ns = 1.5).
For field strength of 0.4 V/nm, θK can reach the order of a few mrad, which is well
within the current detection limit [185, 186] and, in fact, comparable to conventional
ferromagnets [187]. The generation of the MOKE in a magneto-optically inactive
material using gate voltage is an important distinction from previous work [161].

Monolayer MnPSe3

We have also studied the field-dependence of the MOKE in monolayer MnPSe3(see
Fig. 6.4). Similar to bilayers, monolayer MnPSe3 also has T I symmetry. However,
we find that the MOKE angle remains negligibly small in monolayers upon the ap-
plication of an electric field of the same strength. This is due to the fact that in
monolayer MnPSe3, the inversion symmetry breaking is realized by creating a poten-
tial difference between the top and bottom PSe3 layers, which is “felt” by the Mn
atom through the interaction between the Mn d orbitals and the Se p orbitals. This is
a much weaker effect compared to the case of bilayers where the Mn atoms in different
layers directly feel the effect of the electric field.

Our predicted gate-controllable MOKE has important implications in both funda-
mental research and practical applications. As the observed MOKE is very sensitive
to the underlying magnetic order, it can be used to identify the magnetic ground
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field of 0.4 V/nm. The electric field is ineffective in breaking the T I symmetry for
monolayer MnPSe3.
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state. Not only can this method distinguish between ferromagnets and antiferromag-
nets, but it can be also used to distinguish among different antiferromagnetic orders,
such as Néel, zigzag and stripy order on a honeycomb lattice [47], supplemented by
symmetry analysis and band structure calculations. This is especially valuable for 2D
materials since neutron scattering is ineffective for these materials due to the small
scattering cross section. Furthermore, the sensitivity of the MOKE to the magnetic
order can be exploited for magnetic information storage. For instance, the reversal
of the Néel vector will result in a change of sign of the observed MOKE. Thus, the
information encoded in the Néel vector can be extracted using this gate-controlled
MOKE in antiferromagnets.

6.3 Summary

Using symmetry arguments and a tight-binding model, we show that for layered
collinear antiferromagnets, magneto-optic effects can be generated and manipulated
by controlling crystal symmetries through a gate voltage. This provides a promising
route for electric field manipulation of the magneto-optic effects without modifying the
underlying magnetic structure. We further demonstrate the gate control of magneto-
optic Kerr effect (MOKE) in bilayer MnPSe3 using first-principles calculations. The
field-induced inversion symmetry breaking effect leads to gate-controllable MOKE
whose direction of rotation can be switched by the reversal of the gate voltage. The
MOKE rotation can be as large as 4 mrad, comparable to conventional ferromagnets.
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Chapter 7

Summary and Outlook

7.1 Summary

In this thesis, I have employed first-principles based calculations to study two-dimensional
electronic systems. While, chapter 3 and 4 discusses 2DEG in transition metal oxides,
chapter 5 and 6 discusses transition metal trichalcogenides (TMTC) as 2D magnetic
material.

Our calculations on STO (111) surfaces discussed in chapter 3, investigated the
origin of thickness-dependent carrier density along the polar surfaces. We also ana-
lyzed the thermodynamic stability of different stoichiometric and non-stoichiometric
terminations. Our main finding is that for the Ti-terminated slabs, it is indeed pos-
sible to create a two-dimensional electron gas (2DEG). However, the carrier density
of the 2DEG displays strong thickness dependence due to the competition between
electronic reconstruction and polar distortions. As expected, having a surface oxy-
gen atom at the Ti termination can stabilize the system, eliminating any electronic
reconstruction, thereby making the system insulating. An analysis of the surface
thermodynamic stability suggests that the Ti-terminated (111) surface should be
experimentally realizable. Some of these findings were verified experimentally re-
cently [188].

Chapter 4 discusses the origin of the mid-gap level in scanning tunneling spec-
troscopy experiments on STO (001) surfaces. We calculated the formation energy of
charged vacancies on different terminations. By looking at the formation energies,
not only did we get information regarding the stability of different vacancies, but also
the transition between different vacancies represents measurable experimental fea-
tures. For the SrO termination, we predict a donor level, i.e. (0/+) transition level,
in approximate agreement with our experimental observations. Using configuration
coordinate diagrams, we were able to further calculate the actual position of this
feature. Further, for the TiO2 termination we predict a donor level that is resonant
with the conduction band, in agreement with prior theory and experiment, which we
believe is responsible for the formation of 2DEG on TiO2 terminated surfaces. By
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analyzing the nature of the wavefunction, we were also able to explain the absence of
certain levels in the spectrum.

Layered transition-metal trichalcogenides with the chemical formula ABX3 have
attracted recent interest as potential candidates for two-dimensional magnets. In
chapter 5, using first-principles calculations within density functional theory, we in-
vestigate the magnetic ground states of monolayers of Mn- and Cr-based semiconduct-
ing trichalcogenides. We show that the second and third nearest-neighbor exchange
interactions (J2 and J3) between magnetic ions, which have been largely overlooked
in previous theoretical studies, are crucial in determining the magnetic ground state.
Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin
texture due to the significant contribution from J3, whereas CrGeTe3 is a ferromag-
net with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and
MnPSe3) always show antiferromagnetic Néel order. We identify the physical origin
of various exchange interactions and demonstrate that strain can be an effective knob
for tuning the magnetic properties. Possible magnetic ordering in the bulk is also
discussed. Our study suggests that ABX3 can be a promising platform to explore
two-dimensional magnetic phenomena.

In chapter 6, using symmetry arguments and a tight-binding model, we show
that for layered collinear antiferromagnets, magneto-optic effects can be generated
and manipulated by controlling crystal symmetries through a gate voltage. This
provides a promising route for electric field manipulation of the magneto-optic effects
without modifying the underlying magnetic structure. We further demonstrate the
gate control of magneto-optic Kerr effect (MOKE) in bilayer MnPSe3 using first-
principles calculations. The field-induced inversion symmetry breaking effect leads to
gate-controllable MOKE whose direction of rotation can be switched by the reversal
of the gate voltage. The MOKE rotation can be as large as 4 mrad, comparable
to conventional ferromagnets. Our predicted gate-controllable MOKE has important
implications in both fundamental research and practical applications. As the observed
MOKE is very sensitive to the underlying magnetic order, it can be used to identify
the magnetic ground state.

7.2 Outlook

One of the biggest challenges we face in today’s world is how to efficiently store and
access information in an ever-shrinking bit area. This is a very complicated problem to
tackle head-on. One approach would be to break it up into coupled, but individually
tractable smaller issues. The smaller issues might have other subproblems, which
upon addressing will give the necessary weapons for tackling the bigger problems.
Thus, by improving each individual aspect we get closer to the collective goal.

Ideally, one would like to start from a microscopic model Hamiltonian demonstrat-
ing specific properties. The end goal is to find real materials that can be successfully
described by the model Hamiltonian along with the desired functionalities. Materials
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by design aims at achieving this. Chapter 6 gives one illustration of how to construct
model Hamiltonians with desired functionalities, and then, finding realistic materials
demonstrating the effects. The challenge is to have the intuition to write down a
model Hamiltonian with the desired properties, and also to be able to translate that
into an algorithm for searching materials. Ab initio methods such as those employed
in this thesis provide a good starting point for studying of material properties. Cou-
pling it with Wannier interpolation approach [178–180] not only gives us a certain
degree of intuition into the microscopic picture but also is computationally less ex-
pensive in the post-processing steps. The search step has to start with identifying
the symmetries of the Hamiltonian. Here are two other examples, within the context
of the thesis where this approach could prove to be effective.

The transition metal oxides bilayers and heterostructure along the (111) orienta-
tion have been a topic of immense interest, especially in the context of topological
insulators [80–83]. In chapter 3, we discussed the electronic structure of the 2DEG in
STO (111) surfaces. KTaO3 (KTO) is another transition metal oxide with the per-
ovskite structure that is polar along the (111) direction. But the polarization is much
stronger in KTO compared to STO. Besides, the presence of the heavier Ta atom
provides these materials with very large spin-orbit coupling. The 2DEG obtained
in KTO using Angle-resolved photoemission spectroscopy (ARPES), and the Fermi
surface topology [189] is qualitatively different from the 2DEG obtained in STO. To
fully explain the results, a Wannier function based ab initio approach is needed.

Another example is from 2D magnets. Since our prediction of 2D magnetism in
TMTC, both experimental and theoretical interests in finding new 2D magnets have
spiked. Similar to the gate-controllable magneto-optic effects introduced in chapter
6, there are a lot of other interesting possibilities brought about by 2D magnets.
Similar to the idea proposed by Geim et al. [2] we could now use the new 2D spin
lego block along with all the existing 2D crystals (Fig. 7.2). Thus, incorporating these
time-reversal symmetry breaking units into other conventional 2D heterostructures
could pave the way for other novel quantum mechanical phenomena. To quantify the
proximity induced magnetic coupling effects accurately and to understand the nature
of these interactions, the Wannier function based ab initio approach will prove to be
vital.
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Van der Waals heterostructures
A. K. Geim1,2 & I. V. Grigorieva1

Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading
topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic
planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The
first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been
fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging
research area and identify possible future directions. With steady improvement in fabrication techniques and using
graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

G raphene research has evolved into a vast field with approxi-
mately ten thousand papers now being published every year
on a wide range of graphene-related topics. Each topic is covered

by many reviews. It is probably fair to say that research on ‘simple
graphene’ has already passed its zenith. Indeed, the focus has shifted
from studying graphene itself to the use of the material in applications1

and as a versatile platform for investigation of various phenomena.
Nonetheless, the fundamental science of graphene remains far from
being exhausted (especially in terms of many-body physics) and, as
the quality of graphene devices continues to improve2–5, more break-
throughs are expected, although at a slower pace.

Because most of the ‘low-hanging graphene fruits’ have already been
harvested, researchers have now started paying more attention to other
two-dimensional (2D) atomic crystals6 such as isolated monolayers and
few-layer crystals of hexagonal boron nitride (hBN), molybdenum
disulphide (MoS2), other dichalcogenides and layered oxides. During
the first five years of the graphene boom, there appeared only a few

experimental papers on 2D crystals other than graphene, whereas the
last two years have already seen many reviews (for example, refs 7–11).
This research promises to reach the same intensity as that on graphene,
especially if the electronic quality of 2D crystals such as MoS2 (refs 12, 13)
can be improved by a factor of ten to a hundred.

In parallel with the efforts on graphene-like materials, another
research field has recently emerged and has been gaining strength over
the past two years. It deals with heterostructures and devices made by
stacking different 2D crystals on top of each other. The basic principle is
simple: take, for example, a monolayer, put it on top of another mono-
layer or few-layer crystal, add another 2D crystal and so on. The resulting
stack represents an artificial material assembled in a chosen sequence—as
in building with Lego—with blocks defined with one-atomic-plane pre-
cision (Fig. 1). Strong covalent bonds provide in-plane stability of 2D
crystals, whereas relatively weak, van-der-Waals-like forces are sufficient
to keep the stack together. The possibility of making multilayer van
der Waals heterostructures has been demonstrated experimentally only

1School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK. 2Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, UK.

Graphene

hBN

MoS2

WSe2

Fluorographene

Figure 1 | Building van der Waals
heterostructures. If one considers
2D crystals to be analogous to Lego
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Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading
topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic
planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The
first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been
fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging
research area and identify possible future directions. With steady improvement in fabrication techniques and using
graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

G raphene research has evolved into a vast field with approxi-
mately ten thousand papers now being published every year
on a wide range of graphene-related topics. Each topic is covered

by many reviews. It is probably fair to say that research on ‘simple
graphene’ has already passed its zenith. Indeed, the focus has shifted
from studying graphene itself to the use of the material in applications1

and as a versatile platform for investigation of various phenomena.
Nonetheless, the fundamental science of graphene remains far from
being exhausted (especially in terms of many-body physics) and, as
the quality of graphene devices continues to improve2–5, more break-
throughs are expected, although at a slower pace.

Because most of the ‘low-hanging graphene fruits’ have already been
harvested, researchers have now started paying more attention to other
two-dimensional (2D) atomic crystals6 such as isolated monolayers and
few-layer crystals of hexagonal boron nitride (hBN), molybdenum
disulphide (MoS2), other dichalcogenides and layered oxides. During
the first five years of the graphene boom, there appeared only a few

experimental papers on 2D crystals other than graphene, whereas the
last two years have already seen many reviews (for example, refs 7–11).
This research promises to reach the same intensity as that on graphene,
especially if the electronic quality of 2D crystals such as MoS2 (refs 12, 13)
can be improved by a factor of ten to a hundred.

In parallel with the efforts on graphene-like materials, another
research field has recently emerged and has been gaining strength over
the past two years. It deals with heterostructures and devices made by
stacking different 2D crystals on top of each other. The basic principle is
simple: take, for example, a monolayer, put it on top of another mono-
layer or few-layer crystal, add another 2D crystal and so on. The resulting
stack represents an artificial material assembled in a chosen sequence—as
in building with Lego—with blocks defined with one-atomic-plane pre-
cision (Fig. 1). Strong covalent bonds provide in-plane stability of 2D
crystals, whereas relatively weak, van-der-Waals-like forces are sufficient
to keep the stack together. The possibility of making multilayer van
der Waals heterostructures has been demonstrated experimentally only
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 :      2D “Spin lego”

Figure 7.1: 2D lego blocks as proposed by Geim et al. [2], now modified to include
2D magnet lego blocks.
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Appendix A

Magneto-optic effects

A.1 Derivation of MOKE angle for 2D materials

For 2D materials, the MOKE angles can be calculated using the appropriated bound-
ary conditions for the Maxwell’s equations. Consider the setup as shown in Fig-
ure. A.1, where we have perpendicular incidence of light between air (labeled as I),
a substrate (grey, labeled as II) with a thin sample (orange) in between. The thin
film of the sample in the present case, is bilayer MnPSe3. The substrate considered
here is very thick. One could also consider a wedged substrate. In either case, the
reflection from the bottom of the substrate can be neglected. So, in the set up, we
have an incident beam, a reflected beam and a transmitted beam with the boundary
being z=0.

Let us assume that the light is monochromatic and the propagation direction is z.
Thus, the incident electric field and magnetic field components of light can be written
as

Ei = E0x̂e
i(kIz−ωt). (A.1)

Using the Maxwell’s relation

∇×E = −∂B
∂t

, (A.2)

and the identity H = B/µ, we can write

H i =
E0

Z0

ŷei(kIz−ωt), (A.3)

where Z0 is the impedence of free space, µ0c (376.6 Ωs), E0 is the amplitude of the
electric field whose direction has been taken to be along the x-axis for simplicity, ω
the frequency of the light and kI the wavenumber in medium I.

The appropriate boundary conditions describing the arrangement is:

EI = EII ,

k̂ × (HI −HII) = Jfree,
(A.4)
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d ∞

Incident

Reflected

Transmitted

z = 0

I II

Figure A.1: A schematic of the MOKE setup. Assuming perpendicular incidence of a
monochromatic light, we have an incident beam, a reflected beam and a transmitted
beam. The thin sample (orange) of thickness d is kept on an infinite substrate (grey)
labeled as II, which has a refractive index n. The air-sample is taken as z = 0.
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where Jfree is the surface current density. The electric field component of the reflected
and transmitted light can be written as,

ER = E0Rx̂e
i(kIz−ωt),

ET = E0T x̂e
i(−kIIz−ωt),

(A.5)

where R and T are reflection and transmission matrices, respectively, which has the
form

R =

(
rxx rxy
−rxy rxx

)
, T =

(
txx txy
−txy txx

)
. (A.6)

Similarly, the magnetic field component of the light can be written as,

HR =
E0

Z0

Rx̂ei(kIz−ωt),

HT = −E0

Z0

T x̂ei(−kIIz−ωt).

(A.7)

Substituting Eq. A.5 and A.7 in Eq. A.4 and using Jfree = σEId and kII = nkI ,
where n is the refractive index of medium II, we get,

1 +R = T,

(1−R− nT ) = σdZ0(1 +R).
(A.8)

For a 2D material, with higher than three-fold rotational symmetry,

σ =

(
σxx σxy
−σxy σxx

)
. (A.9)

Thus, Eq. A.8 can be further simplified to obtain the relations,

rxy = − 2σxyZ0d

(1 + n+ σxxZ0d)2 + σ2
xy

,

rxx =
1− (n+ σxxZ0d)2 − σ2

xy

(1 + n+ σxxZ0d)2 + σ2
xy

.

(A.10)

From Eq. A.10, and using the definition of MOKE angle θK + iηK = rxy/rxx [183],
we get

θK + iηK = − 2σxyZ0d

1− (n+ σxxZ0d)2 − σ2
xy

. (A.11)

This expression matches Ref. [184], and is the similar to the expression obtained with
a different approach in Ref. [183], within the approximation σxy << σxx.
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