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Abstract


With the help of density functional theory (DFT) and powerful computers, first-


principles computation of solid state systems can be performed to accurately explain


and predict nanoscale phenomena. This thesis focuses on our first-principles investi-


gation of bismuth on the Ni(111) surface, at transition metal interfaces, and describes


our study of boron carbide bulk thermodynamics combining DFT calculations, ma-


chine learning methods and Monte Carlo simulations. Our Bi on Ni(111) surface


study confirms the stability of odd-layer Bi films, proposes specific stable atomic


structures, and explains their stability with covalent chemical bonding. Our research


of Bi at transition metal grain boundaries verifies the stability of bilayer films, ex-


plains the difference between transition metals, and proposes a model for bilayer


stability on general grain boundaries. Although DFT calculations are accurate, they


can be time consuming and scale badly with system size. Our DFT-based machine


learning interaction models are used to capture certain non-linear effects associated


with many-body interactions blue which reduce the error of prediction by 20 − 33%


comparing to a linear model. We utilize these models to evaluate the thermodynamics


of boron carbide in Monte Carlo simulations and identify three boron carbide phases.
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Chapter 1


Introduction


This thesis presents our application of physics-based methods including first-principles


density functional theory (DFT) calculations, machine learning, and Monte Carlo


simulations to study bulk and surface structures of materials. DFT is an accurate


and computationally efficient method that calculates energies of matter from quantum


mechanical first principles. In this thesis, we attempt to overcome the computational


cost limitation of DFT by combining physical models and machine learning methods


with DFT. Since the electron density has to be determined in DFT by solving a set of


coupled Schrodinger equations, it is too expensive to calculate structures containing


thousands or more atoms in the smallest repeating unit. Thus we introduce models


that allow us to approximate quantities of interest in large systems using accurate


DFT input obtained for small systems.


Directly using DFT calculations, we propose the structures of Bi multilayer films


on Ni(111) and that their stability are due to Bi covalent bonding. We also confirm


Bi bilayer stability at Ni and Cu high energy grain boundaries and explain liquid


metal embrittlement. We significantly reduce the computational cost to determine Bi


bilayer stability by ignoring weak Bi interlayer interaction at transition metal GBs and


using empirical potential calculated bare transition metal GB energies. Moreover, we


develop a DFT/machine learning interatomic interaction model and perform Monte


1







Carlo simulations to study the boron carbide thermodynamics and phase diagram


and identify three phases.


1.1 The Need For Density Functional Theory


Quantum mechanics provides explanations for a wide variety of physical phenomena.


Some can be explained using simplified effective Hamiltonians (e.g. superconductiv-


ity [15], the quantum Hall effect [16], Dirac fermions in graphene [17], topological


insulator [18]), but to accurately determine many properties of materials it is neces-


sary to directly deal with the full Hamiltonian. However, it is difficult. Dirac has a


famous quote in 1929 [19],


“The underlying physical laws necessary for the mathematical theory of


a large part of physics and the whole of chemistry are thus completely


known, and the difficulty is only that the exact application of these laws


leads to equations much too complicated to be soluble. It therefore be-


comes desirable that approximate practical methods of applying quantum


mechanics should be developed, which can lead to an explanation of the


main features of complex atomic systems without too much computation.”


Wavefunction-based methods like Hartree-Fock can be used to approximately solve


the Schrodinger equation of the full Hamiltonian, but becomes very computationally


expensive for large systems. On the other hand, density functional theory (DFT),


which takes the electron density rather than the wavefunctions as the basic variable


is a widely used method that can accurately determine the properties of structures


with much less computation. In principle, DFT is exact, however, in practice, it bears


approximations from the exchange-correlation functional and finite basis cutoff. The


details of DFT calculations will be discussed in Chapter 2. Most of the computations


in this thesis employ DFT calculations.


2







1.2 Bi grain boundary complexions in transition


metal1


Segregation at grain boundaries affects various properties of polycrystals such as grain


growth [21, 22], liquid metal embrittlement (LME) [23, 24] and corrosion [25, 26].


However, the exact segregated structures, and hence the underlying mechanisms at


atomic level, are far from being fully revealed. As a generalization of Gibbs’ definition


of phase, the new concept “complexion” was proposed to describe thermodynamically


stable surface and interfacial structures [27, 28].


One example showing the importance of complexion is Bi film at transition metal


grain boundaries. Bismuth replaces lead in solder alloys due to its low melting tem-


perature and non-toxicity [29]. Bismuth naphthenate is used as environmentally


friendly lubricant additives in extreme pressure applications [30]. Moreover, liquid Bi


is used as a spallation target to generate neutrons due to its high neutron production


rate [31]. However, liquid Bi is known to embrittle its solid container through grain


boundary (GB) penetration. To understand and ultimately solve the liquid metal em-


brittlement problem, extensive theoretical and experimental studies were performed


on Bi at metal GBs. The Micron-scale Bi penetration tips, nanometer-scale inte-


granular films and bilayer complexions were discovered in experiments with Ni and


Cu [32, 4, 6].


Analytical thermodynamic models based on ideal solution [9] and critical wetting


theory [33, 34, 35] explain the complexion wetting and prewetting transitions [36].


First principles studies with density functional theory (DFT) calculations confirmed


the stability of bilayer films and explained the difference between transition met-


1This section has been adapted from our paper “First Principles Study of Bismuth Films at


Transition Metal Grain Boundaries” [20], and our review paper “Surface and grain boundary com-


plexions in transition metal - bismuth alloys”, to be published in the journal “Current Opinion in


Solid State and Materials Science”.
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als [37, 20]2. Molecular dynamics (MD) simulation demonstrates complexion transi-


tions in pure Cu [10] and Ag segregated Cu [11], and agreed well with the diffusion


experiments [38]. People debate over whether liquid metal embrittlement (LME) is


due to an electronic effect [39] or atomic size effect [40] based on monolayer segregation


models.


This section will review Bi complexions at transition metal GBs from the aspects


of experiments, analytical models and MD simulations. Our DFT study of Bi com-


plexions at Ni(111) surface and transition metal GBs will be discussed in Chapter 3


and Chapter 4 respectively.


1.2.1 Experiments


Liquid metal embrittlement (LME) is a long standing puzzle for physics and mate-


rial science community. Severe embrittlement occurs when ductile metals like Ni and


Cu contact liquid metals like Bi. Experimental studies using Auger Electron Spec-


troscopy (AES) and scanning electron microscopy (SEM) focused on the properties of


the liquid metal penetration tip, which is tens or hundreds of microns long and several


microns thick liquid Bi formed by wetting [32] the transition metal GB as shown in


Fig. 1.1(A). The penetration tip dissociates the GB by forming two solid-liquid inter-


faces which are regarded as complexions [41], with bulk liquid Bi-Ni alloy in-between.


The region in front of the penetration tip is believed to be a plastic deformation zone


[42, 43]. Recent experiments found Mn, Sn, and Fe impurities in solid Ni enhance


the integranular penetration 10 - 20 fold [44]. Based on thermodynamic models, it


is inferred that Mn and Sn segregate to the Ni GB and change the penetration mor-


phologies. While Fe in solid Ni is expected to have no effect due to its large solubility,


Fe in a liquid Bi-Ni alloy precipitates, consumes Ni, causes dissolution of Ni from the


Ni GB, and thus enhance the integranular penetration.


Besides the penetration tip, SEM and AES measurements indicate a nanometer-


2Will be discussed in detail in Chapter 4.
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Figure 1.1: (A) Cross-section of a Ni polycrystal in contact with liquid Ni-Bi alloy.


Top left region shows a micrometer thick intergranular penetration tip. Middle re-


gion shows long crack due to the penetration tip and the nanometrer-thick film. (B)


Schematic representation of Bi concentration profile across the fracture surface be-


tween the external surface and the ductile core in Ni-Bi system at 700oC. (C) Cu-rich


side of the Cu-Bi phase diagram. The thick curve is the (retrograde) bulk solidus


line [3]. The thin retrograde curve is the GB solidus line obtained for the Cu-Bi poly-


crystals [3]. The horizontal lines at Tw,max and Tw,min are GB wetting phase transition


tie-lines. (A) and (B) are reprinted from [4] with permission, (C) is reprinted from [5]


with permission.


thick quasi-liquid Bi intergranular film (IGF) extends hundreds micrometers ahead


the penetration tip when Ni is in contact with liquid Bi-Ni alloy [45], extending the


crack depth to several times the length of the penetration tip in bending or tensile
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Figure 1.2: (Color online)(A, D) STEM HAADF micrographs showing Bi bilayer


complexion. (B, C) Brittle decohesion occurs due to the bilayer complexion. (E) Co-


existence of bilayer and trilayer interfacial phases at a single GB, indicating a possible


GB phase transition between them. (F) Measured (projected) distances between two


neighboring adsorbed Bi atom columns across two adsorbed layers. The large layer


spacing (3.9 Å) between Bi layers indicates weak interaction and embrittlement. All


panels are reprinted from [6] with permission from AAAS.


tests [42, 4] as shown in Fig. 1.1(A, B). By observing an abrupt change in GB grooving


angle [46] and in the temperature dependence of the Bi adsorption [47], people inferred


the existence of complexion prewetting transition as shown in Fig. 1.1(C). Moreover,


a Bi monolayer complexion on a special Cu GB was observed [39].


Recently, using aberration-corrected high-angle annular dark-field (HAADF) scan-


ning transmission electron microscopy (STEM), Bi (sub)nanometer thick complexions


were directly observed at Ni general grain boundaries [6], as shown in Fig. 1.2(A - D).


The Bi complexions are mostly bilayers and are ubiquitous at Ni high energy GBs


around the penetration tip. Besides the bilayer complexion, a trilayer complexion


coexists with a bilayer complexion as shown in Fig. 1.2(E), on a single GB near the


penetration tip indicates complexion prewetting transition. The two layers in the


Bi bilayer complexions are coherent with the Ni GB planes, but not coherent with
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Figure 1.3: (Color online) (A) GB composition of Pt-1 at % Au (100) 43.6o GB


at 850 K Model predicted by model of Wynblatt et al [7] and MC simulation [8].


Error bars on simulation results represent one standard deviation. (B) Portion of


the three-dimensional phase diagram for the model alloy with certain parameters,


showing superposition of the prewetting line and its extension for a FCC (311)-(311)


GB generated by model of Wynblatt et al [9]. (A) is reprinted from [7] with permission


and (B) is reprinted from [9] with permission.


each other and have large layer spacing(3.9 Å, Fig. 1.2(F)), which indicates strong


Bi-Ni interaction and weak Bi-Bi interlayer interaction. The weak Bi-Bi interlayer


interaction could significantly reduce GB cohesion thus lead to embrittlement. The


penetration tip and IGF together with the Bi bilayer complexion, could thus explain


the LME. Moreover, similar Bi bilayer complexions were observed on Cu general


GBs [48]. Besides forming bilayer complexions at GBs, Bi also alters the structure of


triple junctions due to the strong reduction of GB energies by segregation [49, 50].


1.2.2 Analytic thermodynamic models


Analytical thermodynamics models of segregation can explain and predict the com-


plexion transitions. Based on the assumption of monolayer adsorption on an interface
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with homogeneous adsorption sites, the Langmuir-McLean isotherm [51] shows


Xs


1−Xs
=


X


1−X
e−


∆Hseg


RT , (1.1)


where Xs and X are the atomic fraction of segregants at the GB and in the bulk


respectively. ∆Hseg is the molar enthalpy of segregation, R is the universal gas con-


stant, and T is temperature. The model generalizes to a multi-layer GB segregation


model [52, 53, 54], where X i, the atomic fraction of segregates in the ith atomic layer


from GB replaces Xs, and the enthalpy of segregation to the ith layer ∆H i
seg replaces


∆Hseg. Wynblatt and Ku recognized that ∆H i
seg consists of a chemical contribu-


tion [55] which could be derived with bond energy [7] and an elastic contribution


that derives from a continuum linear elastic formalism [56]. The model-predicted GB


composition profiles [7] agree well with Monte Carlo (MC) simulation [8] as shown


in Fig. 1.3(A). The model is capable of producing a phase diagram containing wet-


ting and prewetting complexion transitions as shown in Fig. 1.3(B) [9]. GB layering


transitions in bicrystals were studied in [57].


Another approach originates from Cahn’s critical point wetting theory [33] which is


a phase field model of a binary liquid with a miscibility gap. The model is extended


to the binary solid interface [34, 35, 58] where the excess free energy includes: a


linear term in misorientation angle, the squared gradient of composition, the square


gradient of crystallinity (characterizing the local structural order), and the excess free


energy of a material with no misorientation. This extended model can produce GB


phase diagrams containing complexion wetting and prewetting transitions in a binary


system with a eutectic transition [41]. Multilayer adsorption was also incorporated


in later models [59].
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Figure 1.4: (Color online) Complexion transformation of pure Cu Σ5(310) GB and


Ag segregated Cu Σ5(120) GB. (A) Coexistance of kites complexion and split kites


complexion with the geometry of a wall of fixed atoms at left and an open surface


at right. Cu (B) kites and (C) split kites complexion at Cu Σ5(310) and (D) their


1D-phase boundary separation accompanied by a step. (E) Coexistance of spit kites


complexion and filled kites complexion with the geometry of open surfaces at both left


and right of Ag segregated Cu Σ5(120) GB. Ag segregated Cu (F) split kites and (G)


filled kites complexion at Cu Σ5(120). (A-D) is reprinted from [10] with permission.


(E-G) is reprinted from [11] with permission.


1.2.3 Molecular dynamics and Monte Carlo simulations of


complexion transitions


Complexion transitions can dramatically change material properties [60]. However,


since high-temperature GB observation is difficult, no direct complexion transition


has been observed so far. Computer simulation of complexion transitions involves the
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evolution of ∼ 104 atoms in time scale of tens of nanoseconds which is infeasible with


DFT calculations but feasible with less accurate empirical potential methods.


Recently, complexion transitions in pure Cu Σ5(120) and Σ5(310) were demon-


strated with empirical potential methods based molecular dynamics simulation [10],


as shown in Fig. 1.4. The authors utilized a new methodology that allows variations


in atomic density inside the GB by terminating GB with an open surface at one end


and a wall of fixed atoms at the other end. The coexistence of two complexions, kites


and split kites, is demonstrated (Fig. 1.4(A)) at 800 K on a Σ5(310) GB. A line defect


with an atomic scale cross-section separates the two complexions. When terminating


the GB with two free surfaces, the whole GB transforms into the split kites at 800 K.


On the Σ5(120) GB, the reversible complexion transition between split kites at 1000


K and filled kites at 1100 K was shown. Similar simulations with MC and MD [38]


directly show that the distinct breaks in the slopes observed in an Arrhenius plot


of Ag and Au diffusion in Cu Σ5(310) GB [61, 62] are due to a Cu GB complexion


transition. The Ag segregation-induced phase transition in Cu Σ5(120) GB is also


demonstrated [11], as shown in Fig. 1.4.


1.3 Boron Carbide bulk thermodynamics


Boron carbide is an extremely hard and very light material with wide range of ap-


plications [63]. Despite its importance, the phase diagram of boron carbide is not


precisely known, due to its structural complexity which features 12-atom icosahedra


and 3-atom chains, difficulty of equilibration and the small difference between the


atomic numbers of boron and carbon. However, DFT is time consuming and scales


as the cube of the number of atoms. It is thus generally infeasible to directly use


DFT for energy prediction in the Monte Carlo (MC) simulation of phase transitions,


which in principle only occurs at infinite cell size and thus require energies very large


structures. Interatomic potentials [64], which typically fit the DFT energies as a
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function of the positions of the atomic nuclei, can be quickly evaluated to predict


approximate energies. We notice that certain interactions in the higher order terms


can be included with machine learning (ML) methods such as regression models that


can capture complex nonlinear interactions. Our study of boron carbide bulk ther-


modynamics using DFT, machine learning models and Monte Carlo simulations is


shown in Chapter 5.


1.4 Structure of this thesis


This thesis contains 5 following chapters. In Chapter 2, a brief introduction to DFT


will be given, including its theoretical foundation, plane-wave implementation, and


energy corrections. In Chapter 3, I will present our DFT results of Bi on the Ni(111)


surface. Chapter 4 is about Bi at transition metal grain boundaries. Chapter 5 covers


our study of boron carbide bulk thermodynamics. I will summarize this thesis and


provide perspectives on future directions in Chapter 6.
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Chapter 2


First Principle Methods


2.1 Density Functional Theory1


2.1.1 Schrodinger equation


At absolute zero temperature, in a periodically repeating quantum system consisting


of nuclei and electrons, neglecting spin, relativistic effects and interactions with other


systems, the state of the system Φ is determined by the time-independent Schrodinger


equation [67],


HfullΦ(R1,R2, ...RNc
, r1, r2, ...rN) = EΦ(R1,R2, ...RNc


, r1, r2, ...rN), (2.1)


where Hfull is the Hamiltonian of the system and can be decomposed as,


Hfull = TN + Te + Vee + VeN + VNN , (2.2)


where TN and Te are the kinetic energies of nuclei and electrons respectively, Vee,


VeN , and VNN are the potentials of electron-electron interaction, electron-nucleus


1[65] is a good introduction of density functional theory and [66] well introduces its practical


usage.
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interaction and nucleus-nucleus interaction respectively. More explicitly,


TN = −
Nc
∑


I=1


∇2
RI


2MI
, (2.3)


Te = −
N
∑


i


∇2
ri


2
, (2.4)


Vee =


N
∑


i>j


N
∑


j


1


|ri − rj|
, (2.5)


VeN = −
N
∑


i


Nc
∑


J


ZJ


|ri −RJ |
, (2.6)


VNN =


Nc
∑


I>J


Nc
∑


J


ZIZJ


|RI −RJ |
, (2.7)


where we use the atomic units. MI is the mass of Ith nucleus, ∇2
RI


is the Laplacian


operator acting on the position of the Ith nucleus RI , ∇2
ri
is the Laplacian operator


acting on the position of the ith electron ri, Nc is the total number of nuclei, N is


the total number of electrons, En is the energy of the nth state of the system, and


Φ(R1,R2, ...RNc
, r1, r2, ...rN) is the wavefunction of the nth state of the system. Due


to the periodicity, the energies of the states are quantized.


Since the mass of nucleus is thousands times larger than the mass of electron


(MI ∼ 103), nuclei move much slower than electrons and can be approximated to be


stationary when solving the motion of electrons. Thus, we can separate the wave-


function Φ as,


Φ(R1,R2, ...RNc
, r1, r2, ...rN) = Ψ(r1, r2, ...rN ;R1,R2, ...RNc


)χ(R1,R2, ...RNc
),


(2.8)


and treat R’s as constant parameters in Ψ (drop for simplicity below). This is called


the Born-Oppenheimer approximation [68].


Based on this approximation, from Eq. (2.1), we can derive that Ψ and χ obey


equations,


(Te + Vee + VeN)Ψ(r1, r2, ...rN) = ǫ(R1,R2, ...RNc
)Ψ(r1, r2, ...rN), (2.9)
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and


(TN + VNN + ǫ(R1,R2, ...RNc
))χ(R1,R2, ...RNc


) = Eχ(R1,R2, ...RNc
). (2.10)


In practice, we treat nuclei classically and calculate the total energy of the system


E with,


E = ǫ(R1,R2, ...RNc
) +


Nc
∑


I>J


N
∑


J


ZIZJ


|RI −RJ |
, (2.11)


instead of solving Eq. (2.10).


2.1.2 Slater Determinant and Hartree-Fock Energy


To solve the many-electron wavefunction Ψ, one way is to represent it by indi-


vidual electrons. Since electrons obeys Fermi statistics, namely the wavefunction


Ψ(r1, r2, ...rN) changes sign when exchange the positions of any two electrons, Ψ(r1, r2, ...rN)


can be approximately written as a Slater determinant [69],


Ψ(r1, r2, ...rN) =
1√
N !


∣


∣


∣


∣


∣


∣


∣


∣


∣


∣


∣


∣


ψ1(r1) ψ1(r2) . . . ψ1(rN)


ψ2(r1) ψ2(r2) . . . ψ2(rN)


. . . . . . . . . . . .


ψN(r1) ψN (r2) . . . ψN (rN)


∣


∣


∣


∣


∣


∣


∣


∣


∣


∣


∣


∣


, (2.12)


where ψi(rj) is the single electron wave function of ith electron at position rj.


Define the electron Hamiltonian as


H = Te + Vee + VeN . (2.13)


By simple manipulation, we can find the electronic energy of the Slater determinant


EHF , which is called the Hartree-Fock energy, is


EHF = 〈Ψ|H|Ψ〉 =
N
∑


i=1


∫


d3r[−ψ
∗
i (r)∇2


ri
ψi(r)


2
−


Nc
∑


J


ZJ |ψi(r)|2
|r − RJ |


]


+
1


2


N
∑


i,j=1


∫


d3rd3r′[
|ψi(r)|2|ψj(r


′)|2
|r− r′| − ψ∗


i (r)ψ
∗
j (r


′)ψj(r)ψi(r
′)


|r− r′| ]


≡ T + Eext + EHartree + Eexchange, (2.14)
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where we have defined the kinetic energy T , external energy Eext, Hartree energy


EHartree and the exchange energy Eexchange as,


T = −
N
∑


i=1


∫


d3r
ψ∗
i (r)∇2


ri
ψi(r)


2
(2.15)


Eext = −
N
∑


i=1


∫


d3r


Nc
∑


J


ZJ |ψi(r)|2
|r −RJ |


(2.16)


EHartree =
1


2


N
∑


i,j=1


∫


d3rd3r′
|ψi(r)|2|ψj(r


′)|2
|r− r′| (2.17)


Eexchange = −1


2


N
∑


i,j=1


∫


d3rd3r′
ψ∗
i (r)ψ


∗
j (r


′)ψj(r)ψi(r
′)


|r− r′| , (2.18)


and the i = j terms in EHartree and Eexchange cancel out. Eexchange arises from Fermi


statistics and are usually called the Hartree-Fock exact exchange. We will introduce


an approximate exchange energy in later subsections.


2.1.3 Hohenberg-Kohn Theorems


Eq. (2.9) has 3N variables, which is hard to solve numerically for systems with large


N. Hohenberg and Kohn [70] proved that the ground state energy of an interacting


electron gas is uniquely determined by its electron density n(r), which is the sum over


individual electron densities,


n(r) = 〈Ψ|
N
∑


i=1


δ(r− ri)|Ψ〉 = N


∫


d3r2d
3r3...d


3rN |Ψ(r, r2, ..., rN)|2. (2.19)


n(r) has only 3 variables, much less than 3N , the number of variables in the many-


body wavefunction Ψ(r1, r2, ...rN).


Hohenberg-Kohn Theorem 1: For any system of electrons in an external potential


Vext(r), the potential Vext(r) is determined up to a constant by the ground state


electron density n0(r).


Proof2. Suppose a given electron density n0(r) corresponds to two different ex-


ternal potentials V
(1)
ext and V


(2)
ext that differ by more than a constant, leading to two


2This proof follows [65].
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Hamiltonians H(1) and H(2) respectively. Suppose |Ψ(1)〉 and |Ψ(2)〉 are the non-


degenerate ground states of H(1) and H(2) respectively, we thus have


H(1)|Ψ(1)〉 = E(1)|Ψ(1)〉, H(2)|Ψ(2)〉 = E(2)|Ψ(2)〉 and,


n0(r) = 〈Ψ(1)|
N
∑


i=1


δ(r− ri)|Ψ(1)〉 = 〈Ψ(2)|
N
∑


i=1


δ(r− ri)|Ψ(2)〉, (2.20)


where N is the number of electrons in the system.


Thus,


E(1) = 〈Ψ(1)|H(1)|Ψ(1)〉 < 〈Ψ(2)|H(1)|Ψ(2)〉. (2.21)


Using Eq. (2.19), we have,


〈Ψ(2)|H(1)|Ψ(2)〉 = E(2) +


∫


d3r[V
(1)
ext (r)− V


(2)
ext (r)]n0(r), (2.22)


thus,


E(1) < E(2) +


∫


d3r[V
(1)
ext (r)− V


(2)
ext (r)]n0(r). (2.23)


With the same argument,


E(2) < E(1) +


∫


d3r[V
(2)
ext (r)− V


(1)
ext (r)]n0(r). (2.24)


Summing up Eq. (2.23) and Eq. (2.24) we get the contradictory result,


E(1) + E(2) < E(1) + E(2). Q.E.D. (2.25)


Thus we prove the theorem is true for system with non-degenerate ground state. The


proof can be extended to degenerate cases [71].


Hohenberg-Kohn Theorem 2: A universal functional for the electron energy E[n]


can be defined in terms of the electron density n(r). The ground state electron density


n0(r) minimizes E[n] globally.


Proof. A general proof can be done with Levy’s constrained search formalism [72].


From the variational principle, the ground state energy is


E0 = min
Ψ


〈Ψ|T + Vee + Vext|Ψ〉, (2.26)
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where Vee is the electron-electron interaction potential. Define Ψ → n as an all


wavefunctions that correspond to a certain electron density n(r). In particular, the


ground state corresponds to the electron density n0(r). The minimization in Eq. (2.26)


can be carried out in two steps: first, given electron density n(r), find the wavefunction


in all Ψ → n that minimize energy, and then find n(r) that minimizes energy, which


can be written as


E0 = min
Ψ


〈Ψ|T + Vee + Vext|Ψ〉


= min
n


{min
Ψ→n


〈Ψ|T + Vee + Vext|Ψ〉}. (2.27)


Define the functionals


F [n] = min
Ψ→n


〈Ψ|T + Vee|Ψ〉, (2.28)


E[n] = F [n] +


∫


d3rVext(r)n(r) (2.29)


Eq. (2.27) can be written as,


E0 = min
n


(F [n] +


∫


d3rVext(r)n(r))


= min
n
E[n]


= E[n0] Q.E.D. (2.30)


2.1.4 Kohn-Sham Ansatz


The fact that F [n] in Eq. (2.29) is unknown prevents density functional theory


(Hohenberg-Kohn theorems) from practical calculations. The Kohn-Sham ansatz [73],


which assumes the ground state electron density n0(r) can be represented by the


ground state density of an auxiliary system of non-interaction electrons, paves a way


to practically use density functional theory. Define the wavefunction of the ith elec-


tron in this auxiliary non-interaction system as ψKS
i , then the electron density and


kinetic energy of this auxiliary system are


n(r) =


N
∑


i=1


|ψKS
i (r)|2, (2.31)
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and


T [n] = −1


2


N
∑


i=1


〈ψKS
i |∇2|ψKS


i 〉 = 1


2


N
∑


i=1


∫


d3r|∇ψKS
i (r)|2, (2.32)


respectively. T [n] is a functional of n(r) due to Hohenberg-Kohn Theorem 2 although


it is not written explicitly as a functional of n(r). Define the Hartree energy functional,


EHartree[n] =
1


2


∫


d3rd3r′
n(r)n(r′)


|r− r′| , (2.33)


then the ground state energy functional of the original system (Eq. (2.29)) is


EKS[n] = T [n] +


∫


d3rVext(r)n(r) + EHartree[n] + Exc[n], (2.34)


where Exc[n] is the exchange-correlation functional than contains all the many-body


interactions. Using the variational principle, together with Eq. (2.31), and the fact


the wavefunctions of individual electrons are orthonormalized, we can find the Kohn-


Sham Schrodinger-like equation for ith non-interacting electron,


[−1


2
∇2 + VKS(r)]ψ


KS
i (r) = ǫKS


i ψKS
i (r), (2.35)


where ǫKS
i is the energy of the ith electron and VKS is the effective potential,


VKS(r) = Vext(r) +


∫


d3r′
n(r′)


|r− r′| + Vxc(r), (2.36)


and


Vxc(r) ≡
δExc[n]


δn(r)
. (2.37)


2.1.5 Exchange and Correlation Energy


The only unknown term in the Kohn-Sham energy functional Eq. (2.34) and the


Kohn-Sham effective single-electron potential Eq. (2.36) is the exchange-correlation


energy functional Exc[n]. Exc[n] can be further decomposed in to the exchange and


the correlation functionals,


Exc[n] = Ex[n] + Ec[n]. (2.38)
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The exchange part Ex[n] arises from the Fermi statistics which imposes the constraint


that the total wavefunction of the N electrons must be antisymmetric. As an analogy


to the exchange energy in the Hartree-Fock energy Eq. (2.18), the exact exchange


energy is


Ex[n] = −1


2


N
∑


i,j=1


∫


d3rd3r′
ψKS∗
i (r)ψKS∗


j (r′)ψKS
j (r)ψKS


i (r′)


|r− r′| , (2.39)


which differs from the Hartree-Fock exchange energy only by using different wave-


functions. This exact exchange energy fully characterizes the effect of exchange in-


teraction of Kohn-Sham wavefunctions. However, it cannot be written directly as a


simple functional of n(r) and it involves double summation, and is thus computation-


ally expensive. In practice, we usually use an approximate exchange functional rather


than this exact exchange. The correlation functional Ec[n] contains other many-body


effects due to the approximation of the kinetic energy functional and potential energy


functional because of using the Kohn-Sham wavefunctions.


Similar as T [n] and EHartree[n], Exc[n] is universal for all systems, and in prin-


ciple can be precisely known. However, in practice, it involves all the many-body


interactions and is too complex to find its exact form. To write Exc[n] as analytic


functional of n(r), two types of approximations, local density approximation (LDA)


and generalized gradient approximation (GGA) are widely used.


LDA assumes Exc[n] only depends on electron density n(r) at the point r, and


ignores its explicit dependence on the variation of n,


Exc[n] =


∫


d3rn(r)ǫxc(n(r)), (2.40)


where ǫxc(n(r)) is the exchange-correlation energy density, which can be further divide


into the exchange density ǫx(n(r)) and ǫc(n(r)) as,


ǫxc(n(r)) = ǫx(n(r)) + ǫc(n(r)). (2.41)


With the approximation that the external potential Vext arises from a uniform


positive background, the Kohn-Sham wavefunctions are simply free electrons. In this
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case, the exact exchange can be derived as [74]


ǫLDA
x (n) = −3


4
(
3


2π
)2/3n1/3. (2.42)


The correlation functional is much harder to find. One widely used functional was


proposed by Perdew and Wang [75] (PW92) as


ǫPW92
c (x) = −2A(1 + α1x) ln[1 +


1


2A(β1x1/2 + β2x+ β3x3/2 + β4x2)
], (2.43)


where x = (3/(4πn))1/3, and A, p, α1, β1, β2, β3 and β4 are parameters to fit with


the Quantum Monte Carlo simulations [76].


LDA is quite accurate for solids in where electrons are nearly free, but unsatisfac-


tory for atoms and molecules since electrons are more localized in these cases. Thus


density functional theory with LDA functionals is widely used in solid state physics


but not in chemistry.


GGA assumes that Exc[n] depends on electron density n and its gradient |∇n|,


Exc[n] =


∫


d3rf(n, |∇n|). (2.44)


In the widely used Perdew, Burke, and Ernzerhof [77](PBE) GGA functional, the


exchange functional is


EGGA
x =


∫


d3rnǫLDA
x (n)[1 +


κµs2


κ+ µs2
], (2.45)


where κ = 0.804, µ = 0.21951, and s is a dimensionless density gradient,


s =
|∇n|


2(3π2)1/3n4/3
. (2.46)


The PBE-GGA correlation functional is


Ec[n] =


∫


d3rn[ǫLDA
c (n) +HPBE(n, |∇n|)], (2.47)


where HPBE is,


HPBE(n, |∇n|) = ln[1 +
2α


β


t2 + At4


1 + At2 + A2t4
], (2.48)
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where α = 0.0716, β = 0.066725, t = |∇n|
2ksn


, ks = (4kF
π
)1/2, kF = (3π2n)1/3 and


A = 2α/(β(exp[−2αǫLDA
x (n)/β2]− 1)).


With the Hohenberg-Kohn theorems, Kohn-Sham ansatz, and the LDA or GGA


exchange correlation functionals we can calculate the electron densities, total energies,


and various material properties on computers. As an example3, the difference between


the bulk Bi and atomic Bi electron densities is shown in Fig. (2.1), which clearly shows


the Bi nearest-neighbor chemical bonding.


2.1.6 Collinear Spin-polarization


For simplicity, all the above derivations are for the non-magnetic case, where the


electron densities of both spins are the same. When the ground state is magnetic


(for example FCC bulk Ni), we can define the spin-up density n↑ and spin-down


density n↓, which is called collinear spin-polarization since all the spins are parallel


with each other. Density functional theory and the LDA and GGA functional can be


used to calculate the charge densities n↑ and n↓ with just minor modifications. As an


example, the density of states of bulk FCC Ni is shown in 2.2.


2.2 Plane-wave Methods


To solve the Kohn-Sham equation Eq. (2.35), we need to represent the wavefunctions


and operators in some convenient basis. One commonly used basis is the plane-


wave basis which is used in packages like VASP, ABINIT, Quantum ESPRESSO,


CASTEP. Alternatively, atom-centered basis is used in packages such as FHI-aims,


Gaussian, PLATO, FPLO. Although the Plane-wave basis only works for periodic sys-


tem, cannot achieve linear scaling and usually takes many more basis functions than


atom-centered basis, it can be programmed efficiently, it is easy to take derivatives


3All the DFT calculations in this thesis are using the PBE-GGA functional and the plane-wave


basis (discussed in next section).
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Figure 2.1: Electron density difference between bulk Bi and atomic Bi. Cyan circles


are Bi atoms. Electron density isosurface for 0.028|e|/Å3 are plotted. Red is for


charge excess and green for charge deficient.


with respect to position, the basis set is independent of the positions of nuclei, and it


is easy to control convergence (via cut-off energy). Since we focus on periodic crystal


structures, we use VASP to perform DFT calculations. This section introduces the


details of plane-wave expansion in solving Khon-Sham equations.
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Figure 2.2: Bulk FCC Ni density of states. Solid lines for spin up and dashed lines


(y-axis inverted) for spin down. Black for all orbitals, red for s orbitals, blue for p


orbitals, and orange for d orbitals. The black dotted line is the Fermi energy.


2.2.1 Plane-wave expansion


For a crystal with three lattice vectors a1, a2 and a3, any potential V (r) acting on


electrons in this crystal is periodic,


V (r+ ai) = V (r) (2.49)


for i = 1, 2 and 3. The reciprocal space has lattice vectors,


b1 = 2π
a2 × a3


a1 · (a2 × a3)


b2 = 2π
a3 × a1


a1 · (a2 × a3)


b3 = 2π
a1 × a2


a1 · (a2 × a3)
. (2.50)
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The first Brillouin zone is the Wigner-Seitz cell of the primitive cell in the reciprocal


space. As an example, the first Brillouin zone of a face-centered cubic (FCC) crystal


is shown in Fig. (2.3).


Figure 2.3: The first Brillouin zone of face-centered cubic (FCC) crystal. The labels


on the figure are the special symmetric points. Reprinted from Wikipedia website.


The Bloch’s theorem [78] states that the wavefunction of an electron in a periodical


potential can be written as the product of a free-electron wave and a periodic function


ψk(r) = eik·ru(r), (2.51)


where u(r) has same periodicity as the potential.


For a crystal with three reciprocal lattice vectors b1, b2 and b3, it is easy to


see that ψk+bi
(r) = ψk(r) for i = 1, 2 and 3. Thus we just need to solve for the


wavefunctions in the first Brillouin zone.


One way to solve the Kohn-Sham equation Eq. (2.35) is to expand it in a plane


wave basis to transform it into a matrix equation and then solve it iteratively.
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Define the basis wavefunction, |Gm〉 which satisfies


〈r|Gm〉 = 1√
Ω
eiGm·r, (2.52)


where Ω = a1 ·(a2×a3) is the volume of the primitive cell, Gm = m1b1+m2b2+m3b3


for any integer m1, m2 and m3, and |r〉 is the real space basis satisfying


〈r|r′〉 = δ(r− r′) , and


∫


d3r|r〉〈r| = I, (2.53)


where I is the identity operator. We can easily see,


〈Gm|Gn〉 = δm,n , and
∑


m


|Gm〉〈Gm| = I. (2.54)


Any potential can be expanded as


V (r) =
∑


m


V (Gm)eiGm·r. (2.55)


Due to Bloch’s theorem, the jth Kohn-Sham wavefunction with wave vector k, ψj,k


can be written as


ψj,k(r) =
1√
Ω


∑


m


cj,m(k)ei(k+Gm)·r. (2.56)


The corresponding charge density is


n(r) =
∑


j


∫


d3k〈ψj,k|ψj,k〉


=
1


Ω


∫


d3k
∑


j


∑


m′,m′′


c∗j,m′(k)cj,m′′(k)ei(Gm
′′−G


m
′ )·r


≡
∫


d3k
∑


j,m


nj,m(k)eiGm·r, (2.57)


where


nj,m(k) =
1


Ω


∑


m′


c∗j,m′(k)cj,m′+m(k). (2.58)


Left product the Schrodinger equation


H|ψj,k〉 = ǫj(k)|ψj,k〉 (2.59)
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with any basis 〈k+Gn|, we have


∑


m


Hn,m(k)cj,m(k) = ǫj(k)cj,n(k), (2.60)


where


Hn,m(k) =
1


2
|k+Gm|2δn,m + V (Gm −Gn). (2.61)


Thus we have shown how to represent the Kohn-Sham equation and the electron


density n(r) with the plane wave basis. The procedure of finding the ground state


charge density and Kohn-Sham wavefunctions is:


1. Initially guess nj,m(k).


2. Calculate potential (need nj,m(k)) and Hamiltonian from Eq. (2.61).


3. Solve Eq. (2.60) to find cj,m(k).


4. Calculate electron density nj,m(k).


repeat 2-4 until convergence.


In all our previous derivations we use the infinite basis set {|Gm〉} and infinitely


many wave vectors {k} in the first Brillouin zone. However, to perform numerical


calculations on computers, we need to make them finite. For the {k}, we just need


to sample some discrete points in the first irreducible Brillouin zone, which is the


region inside the red lines in Fig. (2.3) for FCC crystal. For the basis set {|Gm〉}, in
practice people truncate it up to a certain cutoff energy Ecut on the order of hundreds


eV, namely just expand with basis satisfying


~
2|k+G|2


2m
< Ecut. (2.62)


2.2.2 Pseudopotentials


The truncation of plane-wave basis is reliable if all physical quantities are spatially


slow varying. However, the external Coulomb potential due to nuclei has the form 1/r


which divergences and changes rapidly near the cores. This causes the wavefunctions


of inner shell electrons and the near-core part of the wavefunctions of valance elec-


trons to wiggle rapidly. Thus a direct computation with all electrons and Coulomb
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external potential needs a large number of plane-wave basis and is very computa-


tionally expensive. Luckily, only the away-from-core part of the wavefunctions of


valance electrons participate bonding and thus determines the material properties.


In practice, people first used a frozen core approximation that only calculates the


valance electrons under the fixed effective external potential of the nuclei and the in-


ner shell electrons. Directly using this effective potential still leaves the wavefunctions


of valance electrons wiggling near the cores, which is hard to calculate and anyways


not interesting. People then learned to alter the effective potential to maintain good


behavior of valence electrons away from the core while making it slowly varying near


the core. This modified effective potential is called a pseudopotential. A sketch of


the pseudopotential is shown in 2.4. In practice, every element has a pseudopotential


which can be used in any chemical environment.


2.2.3 Force on Nuclei and Relaxation


Given an initial structure containing certain atoms, one important goal is to find the


stable structure after relaxation. This is achieved by moving nuclei under the influence


of electrons and other nuclei. Since nuclei are very massive, they are typically treated


classically,


Fi =
∂E


∂Ri
= −〈Ψ| ∂H


∂Ri
|Ψ〉+ ∂VII


∂Ri
, (2.63)


where Ri is the coordinate of ith nucleus, Fi is the force on ith nucleus, |Ψ〉 is the


wave-function of all valance electrons, H is the Kohn-Sham Halmitonian of electrons,


and VII is the Coulomb interaction potential between ions.


One simple procedure of performing the structural relaxation is as follows,


1. Initialize the positions of the nuclei.


2. Calculate the ground state electron density n0(r) using the procedure in Sub-


section 2.2.3.
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Figure 2.4: Sketch of the effective potential of the nucleus and inner-shell electrons


Veff and corresponding wavefunction Ψ (blue), and the pseudopotential Vpseudo and


corresponding wavefunction Ψpseudo (red). The Ψpseudo and Vpseudo are the same as Ψ


and Veff respectively outside the distance rc. Adapted and modified from Wikipedia.


3. Calculate the forces on every nucleus. Move nuclei slightly in the direction of


the force on them4.


Repeat 2 and 3 until the convergence of total energy.


2.3 Corrections to Total Energy


2.3.1 Spin-orbit Coupling5


4In practice, the conjugate gradient algorithm is usually used to move the atoms [79].
5In this subsection we use the SI units to emphasize coupling, electron mass, etc. The derivations
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Spin-orbit coupling is not included in basic DFT calculations. However, it is espe-


cially important for heavy atoms since it scales roughly as the square of the atomic


number [80]. It can also strongly alter the band structures of heavy metals. An ex-


ample is shown for Bi in Fig. (2.5) where DFT correctly predicts the electron pocket


around Γ with SOC correction but is incorrect without SOC correction.


Γ T
k


-2


-1


E
F


1


2


E
  [


eV
]


Γ T
k


-2


-1


E
F


1


2


E
  [


eV
]


Figure 2.5: Band structure of Bi along the Γ-T direction in its Brillouin zone [12].


Left is calculated with spin-orbital coupling, right without.


The spin-orbit coupling term can be derived from Dirac Equation [81] for a free


follow the lecture note of Charlotte Elster.
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electron with inertial mass m,


(i~γµ∂µ −mc)ψ(x) = 0, (2.64)


where ∂µ = ∂/∂xµ for µ = 0, 1, 2, 3, x0 = ct, c is the speed of light. The Einstein


summation convention and the Minkowski metric are used, γµ∂µ = −γ0∂0 + γ1∂1 +


γ2∂2 + γ3∂3. γ
µ’s are the Dirac matrices,


γ0 =








I2×2 0


0 −I2×2





 , γk =








0 σk


−σk 0





 , for k = 1, 2, 3. (2.65)


σk’s are the Pauli matrices,


σ1 =








0 1


1 0





 , σ2 =








0 −i
i 0





 , σ3 =








1 0


0 −1





 . (2.66)


The electron interacts with electromagnetic field Aµ = (ϕ, cA), where ϕ is the electric


potential and A is the magnetic potential, through minimal coupling,


[γµ(i~∂µ −
e


c
Aµ)−mc]ψ(x) = 0, (2.67)


which is gauge invariant. Rewrite the wavefunction ψ(x) as


ψ(x) = e−imc2t/~








Ψ(x)


χ(x)





 (2.68)


and plug in Eq. (2.67) to get


i~
∂Ψ(x)


∂t
= cσ · (p− eA)χ(x) + eϕΨ(x) (2.69)


i~
∂χ(x)


∂t
= cσ · (p− eA)Ψ(x)− (2mc2 − eϕ)χ(x). (2.70)


When an electron moves with speed v << c in a weak electromagnetic field eϕ <<


mc2,
∣


∣


∣


∣


i~
∂χ(x)


∂t


∣


∣


∣


∣


≈ 1


2
mv2 << (2mc2 − eϕ)|χ|. (2.71)
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Thus Eq. (2.70) becomes


χ =
cσ · (p− eA)


2mc2 − eϕ
Ψ ≈ 1


2mc2
(1 +


e


2mc2
ϕ)cσ · (p− eA)Ψ, (2.72)


where the approximation is due to a Taylor expansion to first order in eϕ/(mc2).


Plugging Eq. (2.72) into Eq. (2.70), we get,


i~
∂Ψ(x)


∂t
=


1


2m
σ · (p− eA)(1 +


e


2mc2
ϕ)σ · (p− eA)Ψ + eϕΨ (2.73)


Using the property of Pauli matrices,


(σ ·W)(σ ·W) = W2 + iσ · (W ×W), (2.74)


for any vector W, and noting


(p− eA)× (p− eA)Ψ = −e
i
[∇×A+A×∇]Ψ


= −e~
i
[(∇×A)Ψ +∇Ψ×A+A×∇Ψ]


= −e~
i
BΨ, (2.75)


where B = ∇×A is the magnetic field, we get,


1


2m
σ · (p− eA)σ · (p− eA) =


1


2m
(p− eA)2 − eg


2m
S ·B, (2.76)


where g = 2 is the g-factor of the electron and S = ~σ/2 is the spin operator.


Neglecting the second and higher orders of potential, we have


e


4m2c2
σ · (p− eA)ϕσ · (p− eA) ≈ e


4m2c2
σ · pϕσ · p =


e


4m2
σkσlpkϕpl


=
e


4m2c2
(pkϕpk + iǫklmσmpkϕpl) (2.77)


where in the last equality we use the property of Pauli matrices,


σkσl = δkl + iǫklmσm. (2.78)


Moreover,


iǫklmσmpkϕpl = iǫklmσm(pkϕ)pl + iǫklmσmϕpkpl = iǫklmσm(pkϕ)pl = σ · (∇ϕ× p).


(2.79)
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Assuming the electric potential is rotationally invariant (i.e. the Coulomb potential),


we have


∇ϕ =
dϕ


dr


r


r
. (2.80)


Since L = r × p, pluging Eq. (2.79) in Eq. (2.77) and combining with Eq. (2.76),


Eq. (2.73) can be written as


i~
∂Ψ


∂t
= (


(p− eA)2


2m
+ V (r)− eg


2m
S ·B+


1


2m2c2r


dV (r)


dr
L · S)Ψ, (2.81)


where V (r) = eϕ. Thus we obtain the spin-orbit coupling term,


HSOC =
1


2m2c2r


dV (r)


dr
L · S, (2.82)


which is treated perturbatively in practical calculations.


We have omitted the term proportional to pkϕpk which is a relativistic correction


of the order (v/c)2 that does not have a non-relativistic correspondence and arises


due to corrections in this order are not fully considered in our approximations. A


full treatment of the non-relativistic approximation of Dirac equation for spin-half


particles can be done with the Foldy-Wouthuysen transformation [82] which is outside


the scope of this thesis.


2.3.2 Temperature corrections


Density functional theory can accurately calculate the total energy of a structure at


the absolute zero temperature T = 0 K. To obtain the total energy of a structure at


finite temperature, corrections like vibrational free energy and electronic free energy


are needed.


Vibrational free energy Fvib comes from the vibration of nuclei at finite tempera-


ture. For a vibrational mode with natural frequency ω, its energy levels are


En = (n+
1


2
)~ω, (2.83)
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where n = 0, 1, 2, ....


The partition function of this mode is


Zω =
∞
∑


n=0


e−En/kBT =
1


2 sinh(~ω/2kBT )
, (2.84)


where kB is the Boltzman constant. The vibrational free energy of this particular


mode is,


Fω = −kBT lnZω = kBT ln[2 sinh(~ω/2kBT )]. (2.85)


For a structure with mode (phonon) density of states g(ω), the vibrational free


energy is the sum of the contribution of all modes,


Fvib = kBT


∫


g(ω) ln[2 sinh(~ω/2kBT )]dω. (2.86)


Density functional theory can be used to accurately determine the phonon density


of states g(ω) through the force constant method [83]. Due to the periodicity of the


crystal, the position of Ith atom RI can be decomposed as,


RI = Tl + vs, (2.87)


where Tl = l1a1 + l2a2 + l3a3, and vs is the relative position of Ith atom in the unit


cell containing it. RI can be labeled as Rl,s and its α’s coordinate is Rl,s,α.


Under the harmonic approximation,


E ≈ E0 +
1


2


∑


l,m,s,tα,β


∆Rl,s,αD(s,α),(t,β)(Tl,Tm)∆Rm,t,β


= E0 +
1


2


∑


l,m,s,tα,β


∆vl,s,αD(s,α),(t,β)(Tl,Tm)∆vm,t,β (2.88)


where E0 is the energy of the fully relaxed structure, ∆Rl,s,α and ∆Rβ,j,n are the


small derivation of Rl,s,α and Rβ,j,n from their relaxed position respectively, and


D(s,α),(t,β)(Tl,Tm) =
∂2E


∂Rl,s,α∂Rm,t,β
|relaxed position. (2.89)


Due to translational symmetry,


D(s,α),(t,β)(Tl,Tm) = D(s,α),(t,β)(Tl −Tm, 0) ≡ D(s,α),(t,β)(Tl −Tm). (2.90)
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Perform the Fourier transformation,


D(s,α),(t,β)(q) =
1


√


MiMj


∑


T


D(s,α),(t,β)(T)e−iq·T (2.91)


for phonon wavevector q’s in its first Brillouin zone.


The phonon frequencies can be found by solving the eigenvalue problems


∑


t,β


D(s,α),(t,β)(q)Ut,β(q) = ω(q)2Us,α(q). (2.92)


We thus obtain phonon density in Eq. (2.86) as


g(ω) =


∫


d3qδ(ω − ωq), (2.93)


where the integration is taken inside the first Brillouin zone.


In theory due to the interactions between atoms and the conservation of momen-


tum, we need to calculate an infinite cell to obtain exact phonon results. In practice,


this is not practical and usually a large supercell (∼ 10 Å) is enough to get convergent


results. An example of the calculated phonon density and vibrational free energy of


FCC bulk Ni is shown in Fig. (2.6) and Fig. (2.7).


Since we can obtain electron density D(E) from DFT, as shown in Fig. (2.2), it is


easy to calculate the electronic free energy. Electrons occupy states with probability


given by the Fermi-Dirac occupation function,


f(E, T ) =
1


1 + exp[(E − µ)/kBT ]
, (2.94)


where E is the energy of the state and µ is the chemical potential of electrons which


is usually approximated by the Fermi energy EF . The free energy correction is,


∆Fe(T ) = ∆Ue(T )− TSe(T ), (2.95)


where the correction of inner energy ∆Ue(T ) is,


∆Ue(T ) =


∫


dED(E)(E −EF )(f(E, T )− f(E, 0)), (2.96)
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Figure 2.6: Phonon density of states of bulk FCC Ni with different cell sizes. 4×4×4


cell has 64 repetition of the primitive cell and thus contains 64 Ni atoms.


and the electronic entropy Se(T ) is,


Se(T ) =


∫


dED(E)[f(E, T ) ln(f(E, T )) + (1− f(E, T )) ln(1− f(E, T ))]. (2.97)


Fe is typically 100 times smaller than Fvib as shown in Fig. (2.7) and is neglected


in this thesis.
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Figure 2.7: Vibrational free energy Fvib of bulk FCC Ni with different cell sizes and


electronic free energy Fe of bulk FCC Ni. 4 × 4 × 4 cell has 64 repetition of the


primitive cell and thus contains 64 Ni atoms. Fe is calculated with the primitive cell.
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Chapter 3


Bi on Ni(111) Surface1


3.1 Introduction


During the growth of thin metallic films, confinement of electrons can favor film


heights that are commensurate with half the Fermi wavelength [84]. This well-known


quantum size effect due to confinement (QSE) has long been studied in various ma-


terials, including bismuth. Bismuth differs from conventional QSE elements because


it is a semimetal with an especially long Fermi wavelength (∼ 40 nm) [85, 86] that


causes various physical properties of Bi films to oscillate with long periods [87]. In


ultrathin films (∼ 1 nm), Bi exhibits allotropic transformations from puckered pseu-


docubic films to bulk-like rhombohedral films on Si (111) and on some quasicrystal


surfaces [88, 89]. Experiments and first principles calculations concur that both film


types exhibit bilayer growth, due to the exotic bonding character of Bi, rather than


QSE [90]. In contrast, the initial growth of Bi films on metallic substrates has not


been well studied until a recent experiment [2] reported stable 3, 5 and 7 layer Bi


hexagonal films of Bi on the Ni (111) surface. They attempted to explain the stability


by quantum confinement based on a free electron model. A more in-depth theoretical


1This chapter has been adapted from my paper “First-principles study of bismuth films on the


Ni(111) surface” [13].
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study is needed to understand this possible short period QSE in Bi.


Bulk Bi takes the rhombohedral structure of Pearson type hR2 (prototype α-As)


common to group-V semimetals, which is distorted from the simple cubic structure by


a Jones-Peierls mechanism [91]. The bulk Bi structure is best described as a stacking


of bilayers in the [001] direction [92] (here we use 3-element hexagonal indexing, it


would be [111] using rhombohedral indexing). Each bilayer has height 1.59 Å and is


separated from the adjacent bilayer by 2.35 Å. Within the (001) plane the Bi spacing


is 4.53 Å. However, three strong covalent bonds of length 3.06 Å link each Bi atom to


others within each bilayer, while three weak metallic bonds of length 3.51 Å connect


each Bi atom to others in the adjacent bilayer. The (001) plane is thus a natural


cleavage plane, with divisions expected between bilayers. In addition to hR2, bulk


Bi possesses many allotropes, especially at high pressure, including Pearson structure


types mP4, mC4, cP1 and cI2, but it does not take the hexagonal structure.


In their experiment [2], the authors grew Bi on a Ni (111) surface at a temper-


ature of 473 K via vapor deposition. Based on the low energy electron diffraction


(LEED) patterns, deposition and film growth rates, and low energy electron reflectiv-


ity spectra, the authors proposed that initially a (7×7) wetting layer forms (hereafter


referred to as adsorbed surface monolayer), which transitions to a 3 layer hexagonal


film with a (3×3) surface cell sitting directly on the Ni substrate, as well as a 5 layer


hexagonal film with a [3-112] surface cell, as coverage grows. However, at 422 K,


Bi formed a 7 layer film with an (8×8) cell [93] surrounded by the 3 layer (3×3)


film. The proposed 3 layer and 5 layer Bi films on Ni have in-plane lattice constant


3.7-3.8 Å (See Appendix A1 for discussion of lateral strain). The detailed structures


are shown in Fig. 2 of Reference [2]. Taking their measured lattice constants, their


proposed model, and an assumed free electron valence of 5, they calculated that their


3, 5 and 7-layer films were, respectively, 2.5, 4.0 and 5.0 Fermi wavelengths in height.


As these structures and bond lengths have not been previously observed, and Bi is


notoriously not free electron-like, a first principles electronic structure investigation
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is warranted.


3.2 Methods


We apply electronic density functional theory, using the Vienna ab-initio simulation


package (VASP [94, 95]) to solve the Kohn-Sham equations with the Perdew-Burke-


Ernzerhof (PBE [77]) parameterization of the generalized gradient approximation


(GGA) for the electron exchange correlation potential. We use projector augmented


wave potentials [96, 97] with a fixed energy cutoff of 269.5 eV (the default for Ni).


The d semi-core levels of bismuth are treated as valence electrons. Collinear spin


polarization is used since Ni is ferromagnetic, though we test noncollinear magnetism


to check the importance of spin-orbit coupling (SOC) for some structures. In the


noncollinear calculations, we take the relaxed structure from collinear calculations


and perform a static calculation. All structures are relaxed holding the cell sizes and


bottom layer Ni atoms fixed, with in-plane lattice constants set by the relaxed bulk


Ni structure. Energy convergence is carefully checked with respect to the vacuum


size, k-point mesh and the number of Ni layers.


We construct models based on four Ni layers normal to the (111) surface with


Bi films on one side. Our cells include 22 Å of vacuum, with periodic boundary


conditions. Electrostatic energy created by the asymmetric charge distribution in


the presence of Bi is small relative to the differences of surface energies. As an


example, the relaxed 4 layer hexagonal film on the (3×3) cell is shown in Fig. 3.1.


The hexagonal film structures are as described in [2] with 4 Bi atoms per layer in the


(3×3) cell and hexagonal AB stacking. The relaxed 3 layer hR2 film (our model) on


the (3×3) cell is also shown in Fig. 3.1. The hR2 films contain an adsorbed surface


monolayer with 4 Bi atoms on the (3×3) cell similar to the hexagonal film. However,


bulk-like Bi (001) films which contain 3 Bi atoms per layer on the (3×3) cell sit on


top of the surface monolayer. Henceforth, when we say “hR2 film” we include the
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surface monolayer and the bulk-like Bi (001) film on top.
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Figure 3.1: (Color online) Top view (top left) and side view (top middle) of relaxed


4-layer hexagonal Bi film on Ni (111) (3×3) cell (dashed). Same for 3 layer hR2 Bi


film (bottom). Insert at top of the left-hand figure is a histogram of atoms at different


heights. Shading in insert convers the region illustrated containing the top layer of Ni,


the Bi surface monolayer and additional Bi layers. Atom size indicates depth (large


below small). Length units are in Å . Chemical bonding is shown at right (slightly


tilted).
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Figure 3.2: (Color online) Relative surface energies of hexagonal Bi films with (3×3)


(top) and [3-112] (bottom) Ni (111) surface cells. Note the energy conversion factor is


1 eV/Å2=16.0 J/m2. Red and blue points are from collinear calculations, green points


are noncollinear. Data points connected by line segments correspond to coverage of


integer numbers of monolayers (1-9 for (3×3), 1-11 for [3-112]). Extra data points


in the (3×3) cell are three layer films with one extra capping atom at a valley site.


Extra points in the [3-112] cell are 4 layer plus one atom, and 8 layer plus one atom


at valley sites.


3.3 Results and Discussion


We first compare the relative surface energies of the proposed Bi hexagonal films of


different thickness on Ni (111). Several quantities are needed to define relative surface


energy: the total energy Etot of the NBi atoms of Bi on the surface of the 4-layer Ni
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slab; the slope EBi, which is the linear part of Etot as it depends on NBi; the energy


Eslab
Ni of the Ni slab including its two free surfaces, each of area A. The slope EBi can


be considered as the energy of bulk Bi in the hexagonal structure with the in-plane


lattice constant determined by the surface cell [98]. With these definitions, relative


surface energy is


γrel = [Etot − Eslab
Ni −EBiNBi]/A. (3.1)


Fig. 3.2 shows the relative surface energies of the (3×3) and [3-112] hexagonal films. A


structure is relatively stable if the second derivative of its relative surface energy with


respect to film thickness is positive [99]. Relative stability occurs for (3×3) cells of 1,


3, 4, 6 and 8 layers and for the [3-112] cells of 1, 4, 6, 8 and 10 layers. The asymptotic


period 2 oscillations of relative surface energies are reminiscent of the QSE. However,


these predicted stabilities disagree with the experimentally discovered film heights.


Specifically, the predicted relatively stable 4 layer (3x3) film is not seen experimentally


and we do not confirm stability of 5 layer hexagonal [3-112] film.


Also shown in Fig. 3.2 are data points for films with single Bi adatoms. These


data points lie below the relative surface energies of integer layer coverage, revealing


that terminating on complete hexagonal layers is unfavorable. Strong puckering of


the hexagonal layers occurs during relaxation of structures with adatoms. Relative


surface energies calculated with SOC are shown for the (3×3) films. SOC influences


the relative surface energies quantitatively but does not alter the sequence of stable


structures.


The relatively stable 4-layer (3×3) structure is illustrated in Fig. 3.1. The first


layer Bi atoms strongly bond with the Ni surface atoms. On top of the first layer, Bi


atoms form slightly puckered layers in order to achieve short Bi bonds with adjacent


layers. These short covalent bonds lower the relative surface energy.


To test the proposed free-electron model of QSE, we have done a genuine first


principles study of QSE in free standing hexagonal Bi films (see Appendix A2) and


find that the actual predicted oscillation period is close to 3 layers. Understanding
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this QSE requires incorporating band structure effects and cannot be understood on


the basis of a free-electron model. Thus our first principles calculations cast doubt on


both the hexagonal structure model and the proposed explanation in terms of QSE


of hexagonal films.


We now seek alternate film structures. Inspecting Fig. 3.1 we note the interaction


of the upper layer Bi with the surface monolayer is weak, so strong deviations of


structure and bonding from bulk Bi due to the Ni substrate are not anticipated.


Thus bulk-like hR2 Bi (001) films are good candidates to grow on top of the surface


monolayer. For example, a 3 layer hR2 film (see Fig. 3.1) consists of the surface


monolayer plus an hR2 (001) bilayer. The in-plane lattice constant of bulk hR2 Bi


is 4.53 Å(see Appendix A1). Meanwhile,
√
3 times the Ni interatomic spacing is


4.31 Å which differs by only 5%. Furthermore, in our calculated energy of strained


free standing Bi (001) films, the energy minimum occurs at in plane lattice constants


4.3 Å, 4.4 Å and 4.5 Å for one, two and three bilayer films respectively. Thus the


stable thin bilayer films match with Ni very well.


To illustrate the relative stability of various structures, we compare the surface


enthalpy of formation, which is defined as,


∆H/A = [Etot −Eslab
Ni −Ebulk


Bi NBi]/A (3.2)


which differs from the relative surface energy γrel in Eq. 3.1 only in our choice of


reference energy for pure Bi, Ebulk
Bi is the relaxed Bi bulk energy in the hR2 structure.


Fig. 3.3 shows the enthalpy of formation for various surface structures with dif-


ferent thickness. Notice that both the (8×8) and (7×7) surface monolayer structure


touch the convex hall which implies they are both energetically stable. The stable


(3×3) surface monolayer is e2quivalent to both 1 layer hexagonal film and hR2 film


with (3×3) cell. Moreover, for higher coverage, hR2 films have much lower energy


than the hexagonal films. For instance, at the same total coverage of 16/9=1.8 Bi/Ni,


the total energy the five layer hR2 film is 1.5 eV lower than the four layer hexagonal


film on the bare (3×3) surface. This energy difference is much larger than the thermal
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Figure 3.3: (Color online) Enthalpy of formation. Dot-dashed orange points are the


(sub)monolayer structures with (3×3) cell. Cyan and green stars are the (7×7) and


(8×8) surface monolayer respectively. Red points are hexagonal films and black are


hR2 Bi films on the (3×3) cell. Blue points are hexagonal Bi films on the [3-112] cell.


Color and plotting symbol are shared with Fig. 3.2 for (3×3) and [3-112] cells.


energy, kBT=40 meV at 473 K. The hR2 films are thus much more likely to form than


the hexagonal films. The hR2 films favor odd number of layers (surface monolayer +


integer bilayers) which is consistent with the experimental observations of 3, 5 and 7


layer films. However, the stability is due to the exotic chemical bonding of Bi rather


than QSE.


To further illustrate the stable sequence from equilibrium thermodynamics, we


calculate the surface free energy. This quantity is the Legendre transform of the


enthalpy of formation (Eq. 3.2), replacing the surface coverage with relative chemical
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Figure 3.4: (Color online) Surface free energy. Dashed-dotted lines stand for mono-


layer or less. Solid and dotted lines stand for hexagonal and hR2 films on (3×3)


cells respectively. Different slopes indicate different coverage according to Eq. 3.3.


Stable sequence is indicated by arrows for monolayer or more. Vertical line at ∆µ =0


indicates chemical potential of unstrained bulk Bi.


potential ∆µBi. From equilibrium thermodynamics, the most stable structure at a


certain Bi chemical potential ∆µBi minimizes the surface free energy [100],


γ = [∆H −∆µBiNBi]/A (3.3)


where ∆H is the enthalpy of formation (Eq. 3.2), ∆µBi = µBi − Ebulk
Bi is the Bi


chemical potential relative to unstrained bulk Bi. The results in Fig. 3.4 shows the


stable sequence of surface structures is from bare surface to one atom on the (3×3)


cell at ∆µBi=-1.16 eV, to three atoms on the (3×3) cell at -1.11 eV, to (8×8) surface
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monolayer at -0.83 eV to four atoms ((3×3) surface monolayer) at -0.82 eV, to the


(7×7) surface monolayer at -0.01 eV, and then finally to the 11 layer hR2 films at


around 0.06 eV. Extrapolating to an infinite height strained film yields a limiting


vertical line at ∆µBi =0.05 eV (not shown). Other structures are thermodynamically


unstable. However due to the energy cost to forming edges of small and high Bi


islands, and the kinetic barrier at the boundary of Bi films, tall islands should not


appear. Instead, metastable structures with low energies (e.g. finite thickness hR2


films) will appear in actual growth. The hexagonal-based structures lie systematically


above the hR2 ones. By studying the bulk Bi energy with different lateral strains, we


confirm that the underlying reason that hR2 films are more favorable than hexagonal


films is that Bi favors a bilayer structure with strong covalent bonding (see Appendix


A1).


Besides the hexagonal and hR2 (001) films, we also studied the energy of free


standing hR2 (012) films. The 1 and 2 bilayer hR2 (012) films are more stable on


Si (111) than hR2 (001) films [88]. However, with the Ni lattice constant rather


than Si, the commensurate bilayer (001) film has lower energy by 30 meV/atom, and


thus the (012) films are not favorable. This is also consistent with the experimental


observation that no pseudocubic structure appears.


3.4 Conclusion


We study the growth of Bi on Ni (111) surface using first principles calculations. The


proposed hexagonal films pucker under relaxation and are energetically and mechan-


ically unstable to adding capping atoms. In the experiment, the authors identified


the surface cell to be (3×3) and [3-112], and proposed hexagonal structure based on


LEED patterns. However, film heights and Bi-Bi in-plane separation were inferred in-


directly based on deposition rates and electron reflectivity curves. Their free electron


model introduced to interpret their results is of doubtful validity. We find instead,
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using a full ab-initio treatment, that bulk-like (001)-oriented hR2 films above the


surface monolayer are more energetically favorable than hexagonal films. One large


difference between these two models is the in-plane distance of Bi, 3.7 Å for hexag-


onal and 4.3 Å for hR2 which can be further examined by experiment. We have not


investigated why different film thickness favor different surface cells.


If our model is correct, growth on Ni (111) might provide a useful synthesis of


uniform hR2 bilayers, which have been shown to act as two-dimensional topologi-


cal insulators [101, 102]. Besides the surface growth, phenomena of Bi at Ni inter-


faces also attract attention recently. Liquid Bi penetrates and segregates at Ni grain


boundaries forming bilayer structures [6] in a stable grain boundary phase called a


complexion [28, 103]. These bilayer interfacial structures can possibly explain the long


standing puzzle of the liquid metal embrittlement. However, the underlying mech-


anisms of bilayer segregation and their relation with embrittlement have not been


revealed at the quantum level. Our study of Bi on Ni surfaces serves as a precursor


to this interfacial study. In particular, we note that a pair of surface monolayer films,


one on each surface at a grain boundary, provides an attractive model for the observed


Bi bilayers. We hope our theoretical work can trigger more interesting work, both


theoretical and experimental in these subjects.


3.5 Appendix


3.5.1 A1. Lateral strain


The proposed Bi hexagonal films have in-plane lattice constant a = 3.7 Å (3×3) and


3.8 Å ([3-112]), while the hR2 films commensurate to Ni (111) has a = 4.3 Å. To


explain why the hR2 films are more favorable than the proposed hexagonal films we


investigate the bonding character of Bi by calculating bulk Bi energies with different


a. We adopt bulk cells with a (1×1) unit cell in the xy plane and 6 atomic layers in


the z direction. The a’s are fixed while lattice constants c’s are fully relaxed. For a
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Figure 3.5: (Color online) Bi bulk energy of hexagonal and hR2 structures. Black is


the relaxed hR2 structure. Red is the relaxed hexagonal structure. Blue is the evenly


spaced hexagonal structure. Points (a),(b),(c),(d) correspond to the structures whose


energies are plotted in Fig. 3.6.


less than 3.9 Å , both the relaxed hexagonal and hR2 structures are evenly spaced.


For larger a values, Bi in both structures pairs up to bilayer structures. Fig. 3.5


shows Bi hexagonal and hR2 bulk energies with fixed a. Clearly, the paired hR2


bilayer structures with a ≈ 4.6 Å are more favorable than the proposed hexagonal


structures with a ≈ 3.5 Å. By paring up, the Bi chemical bonds change from metallic


to covalent in nature. This strongly affects the periods and amplitudes of surface


energy oscillation of free standing Bi films.
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3.5.2 A2. Quantum size effect


In thin metallic films, electrons are confined in the vertical direction. At low temper-


ature, the energies of the confined electrons varying with film thickness governs the


relative stability of the films. This leads to “electronic growth” [84], a type of QSE.


Based on the usual quantization rule, the energy oscillation period in a free electron


model is half of the Fermi wavelength [104]. In a solid, taking account of the band


structure, the actual energy oscillation is the superposition of different oscillations at


high symmetry points in the surface Brillouin zone [105]. For hexagonal metal, the


(001) electron confinement energy can be written as,


E(N) = AΓ̄ sin (2kΓ̄Nd + φΓ̄)+AM̄ sin (2kM̄Nd+ φM̄)+AK̄ sin (2kK̄Nd + φK̄) (3.4)


where Γ̄, M̄ and K̄ are three high symmetry points in the surface Brillouin zone, k’s


are the Fermi wave vectors, A’s characterize the importance of those three points,


φ’s are the phase shift of three oscillations, N is the number of layers and d is layer


spacing. The resulting energy is the superposition of those three oscillations. We


compare the band structure prediction and the total energy oscillation of Bi films.


Fig. 3.6 shows the surface energy oscillation with different a values. Here the


surface energy is defined as,


γsurf =
1


2A
[Etot − EBiNBi] (3.5)


where Etot is the energy of the film, NBi is the number of Bi atoms in the film,


A is the surface area and EBi is the linear part of the total energies of the film


structures as in Eq. 3.1. Shown in Fig. 3.6(a), for hexagonal films with a = 3.5 Å,


the oscillation is complex in both period and amplitude reflecting the superposition


of multiple periodicities. Fourier analysis of γsurf yields a period of around 3 layers.


From our band structure calculation, the bulk Fermi wave vectors at Γ̄, M̄ and K̄ are,


respectively, 0.59π/d, 0.33π/d and 0.13π/d. Averaging over these three frequencies,


the resulting oscillation period is 2.9 layers, which agrees well with the total energy


49







calculation γsurf . This QSE due to electron confinement does govern the energy


oscillation of the free-standing hexagonal film with a = 3.5 Å. However, the energy


oscillation amplitude is much smaller than the energy oscillation of Bi hexagonal


films on Ni (111), implying that quantum size effect is not the dominant factor in


determining the stability of Bi hexagonal film on Ni (111). Also unlike Bi on Ni (111),


SOC does alter the relative stability of free standing hexagonal films with a = 3.5 Å.


Fig. 3.6(b) shows the surface energies of hexagonal films with a equal to 3.9 Å where


the bulk Bi atoms start to pair up. The energy oscillation period is close to 2 layers


which is different from the band structure prediction of 3.2 layers. Fig. 3.6(c) and


3.6(d) show the energies of hexagonal films with a equal to 4.4 Å and hR2 films with


a equal to 4.6 Å respectively. In both cases, the energies show bilayer oscillation with


much larger amplitude than the oscillation due to this QSE. We conclude that the


oscillations of γsurf are not due to this QSE for a > 3.9 Å instead it is due to covalent


bonding into bilayers which is a different type of QSE.
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Figure 3.6: (Color online) Surface energies of free standing Bi films with different


in-plane lattice constants a (units of Å). Black and red curves are using collinear


calculation. Green using noncollinear.
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Chapter 4


Bi on Transition Metal Grain


Boundaries1


4.1 Introduction


Recently, grain boundary segregation with discrete numbers of layers (Dillon-Harmer


complexions [36, 103]) were discovered in metallic systems Bi-Ni [6] and Bi-Cu [48],


which could possibly explain the long standing puzzle of LME. In these experiments,


Bi formed bilayer films ubiquitously in Ni at general orientation GBs around the


penetration tip. In contrast, low-energy Ni grain boundaries were found to be clean


(ie. with no Bi). Bi also formed bilayer films at Cu GBs around the penetration tip.


However, the bilayer films were only observed close to the tip than at Ni GBs indi-


cating bilayer films were stable over a much narrower Bi chemical potential window.


Similarly to Ni, Bi did not segregate at low energy Cu GBs. A study of Fe revealed


no Bi films [106].


A recent theoretical study [37] of Bi at Ni and Cu(111) twist and Σ5(310) GBs


found the Bi bilayer enthalpy of formation on Σ5(310) is negative, which indicates


1This chapter has been adapted from our paper “First Principles Study of Bismuth Films at


Transition Metal Grain Boundaries” [20].
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thermodynamic stablity, while on (111) twist GBs it is positive. The authors proposed


that bilayers are more stable than monolayers based on interaction strength between


Bi and Ni layers and an electric dipole generated in the Bi bilayer on (111) twist


GB. However, neither the origin of different segregation behavior of Bi on Ni com-


pared with Cu, nor the relative stability of bilayer and trilayer films, was discussed.


Moreover, a detailed study of the film structure, registry and bonding character is


needed.


In this paper, we present a first-principles study of Bi films on low energy Σ3(111)


and high energy Σ5(210) transition metal GBs. Our study explains bilayer film


formation on Ni and Cu high energy GBs and its absence on Fe GBs (see Appendix


A1 for Fe). Moreover, we discover a non-monotonic trend of Bi bilayer stability at 3d


transition metals Co, Ni and Cu. We explain this trend based on competing effects of


orbital localization and magnetization, and confirm this analysis with crystal orbital


Hamilton populations (COHP) [107, 108] calculations. By exploiting the weak Bi


interlayer interaction, we propose a model that can be used to predict Bi bilayer


stability on various Ni GBs with relatively simple surface calculations. We discuss


the temperature effect and the effect of Bi bilayer on embrittlement.


4.2 Methods


Our calculation methods are similar to our study of Bi on Ni(111) [13], namely PAW


potentials [96, 97] in the PBE [77] generalized gradient approximation with default


energy cutoffs using VASP [94, 95]. To find stable structure at GBs, we first study


Bi structures on free surfaces. For Bi on TM(111) and (120), we construct models


based on four and six metal layers normal to the surface respectively with Bi films


on one side. We choose the Σ3(111) twist and the Σ5(012) tilt GBs as representative


low energy and high energy GBs respectively. Σ3(111) is formed by cleaving the bulk


along the (111) plane, rotating one grain around [111] by 600 and rejoining the two
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parts [109]. Σ5(012) is formed by cleaving the bulk along the (012) plane, rotating one


grain around [100] by 53.10 and rejoining the two parts after removing overlapping


atoms (see Fig. 4.1).
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Figure 4.1: (Color online) Left: Side view of our Σ5(012) GB. The black cell is our


unit cell. The dashed green lines are GB planes. Right: Top view of Σ5(012) GB


plane. Three layers of atoms are shown. The black solid cell is the orthorhombic unit


cell we use to calculate Σ5(012) GB energies. Atom size indicates depth (large below


small). Units are Å.


For Bi on Σ3(111) GBs we stack six layers of metal with periodic boundary condi-


tions and rotate three layers relative to the other three, thus creating the GBs. Then


we insert our Bi film at one GB, leaving the other bare. To reduce computational


complexity, the segregated structures at Σ5(012) GBs are calculated with six layers


TM at each side of the Bi films and terminated by bare TM surfaces with vacuum


at both sides. Convergence with respect to the number of Ni layers is documented in


Appendix A2. The Σ5(120) GB plane is shown in Fig. 4.1. Later on, we refer the blue
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solid cell as (1×1), green dashed cell as (3×1) and cyan dash-dotted cell as (1×4). To


analyze interaction strength and bonding character, we perform COHP calculations


which evaluate matrix elements of the total energy between pairs of atomic orbitals


on neighboring atoms. The differential (dCOHP) reveals the bonding and antibond-


ing orbitals while the integral up to the Fermi energy (iCOHP) measures the bond


strength.


4.3 Results and Discussion


4.3.1 A. Film stability


Our calculated GB energies EGB are shown in Table 4.1, and agree well with prior


literature.


GB Co Ni Cu


Σ 3(111) -0.0016 0.0028 (0.0027 [110]) 0.0001 (0.0014 [110])


Σ 5(120) 0.080 0.077 (0.089 [111]) 0.055 (0.059 [112])


Table 4.1: GB energies, units are eV/Å2. The energy conversion factor is 1


eV/Å2 =16 J/m2. Values from other studies are in parentheses. Note the Co Σ3(111)


GB energy is negative because the T = 0 K state is HCP rather than the high-T FCC


that we choose to compare with.


For Bi on the Ni(111) surface, we found a 4-atom Bi monolayer on a (3×3) surface


cell is stable over a wide Bi chemical potential [13], and the same holds true for Co.


For Bi on the Cu(111) surface, 2-atom Bi monolayer on a [2012] cell is stable, which


agrees with experimental observation [113]. On TM(120) surfaces, Bi sitting on the


valley sites of (1× 1) cells [114] are stable over a wide range of chemical potential.


We then study various Bi films at GBs. To compare the stability of these films,
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we calculate the enthalpy of formation, which is defined as,


∆H/A = [Etot − ETM
slab − EBi


bulkNBi]/A, (4.1)


where Etot is the energy of a TM slab containing GB segregated by Bi, ETM
slab is the


energy of a TM slab containing a bare GB, EBi
bulk is the Bi bulk energy, A is the GB


area. Fig. 4.2 shows our enthalpies of formation. On the low energy Σ3(111) GBs,


the enthalpies of Bi film formation are all large and positive, which suggests that


Bi does not form stable films at these GBs. This is expected since the Σ3(111) GB


differ from bulk only by a low energy stacking fault. It is energetically unfavorable


to cut the strong bulk-like metal bonds and replace them by bonds with Bi. These


results agree with the experimental observation [6, 48] of bare Ni and Cu low energy


GBs near the Bi penetration tip. At the high energy Σ5(120) GB, ∆H is reduced for


all TM. At Co Σ5(120) GB, ∆H remains positive suggesting all films are unstable.


For Ni, all Bi films have negative ∆H which means Bi penetration is favorable for all


these films. Moreover, bilayer Bi is most favorable, with lower enthalpy of formation


than monolayer and trilayer. For Cu, Bi monolayer and bilayer film have negative


enthalpies of formation. The bilayer preference is less pronounced than on Ni. Overall,


the enthalpy of formation is less negative on Cu than on Ni, which indicates interfacial


films are less favorable in the case of Cu.


To further illustrate the stability of Bi films at Σ5(120) GBs, we calculate the


GB free energy. From equilibrium thermodynamics, the most stable structure at a


certain Bi chemical potential minimizes the GB free energy γ [100],


γ = [∆H −∆µBiNBi]/A, (4.2)


where ∆µBi ≡ µBi − EBi
bulk is the Bi relative chemical potential. Note that ∆µBi = 0


corresponds to the chemical potential of bulk Bi.


As shown in Fig. 4.3, the stable sequence at Co Σ5(120) GB goes from a bare


GB plane directly to an infinite height bulk-like film at ∆µBi = 0 eV. In contrast,


a Bi bilayer film is stable for −0.37 < ∆µBi < 0 eV on Ni Σ5(120) GB and for
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Figure 4.2: (Color online) Enthalpies of Bi films at Σ3(111) and Σ5(012) GBs. Solid


lines connect Bi films on Σ3(111) GBs. Films of 1-3 layer thickness (labeled 1-3) have


4 Bi atoms per layer while the 4-layer films contain 4 Bi atoms per layer in layers


adjacent to Ni but 3 Bi per layer in the middle two layers [13] for Ni and Co. Films


for Cu have 2 Bi per layer. Dashed lines connect Bi films in (1 × 1) cells of Σ5(120)


GBs. Red, green and blue colors indicate Co, Ni and Cu respectively. Square points


(labeled as 3′) stand for trilayer films in (3 × 1) cells of Σ5(120) GBs with denser


middle layer (4 Bi in (3×1) cell). Diamond points (labeled as 4′) stand for four layer


films in (1 × 4) cells of Σ5(012) GBs with the in-plane density of the middle bilayer


similar to bulk Bi (3 Bi in a (1× 4) cell).


−0.067 < ∆µBi < 0 eV on Cu Σ5(120) GB. Bi films are thus not stable on Co Σ5(120)


GB. Moreover, the bilayer film is stable over a much wider chemical potential window


on Ni than Cu Σ5(120) GB which is consistent with the experimental observations
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Figure 4.3: (Color online) GB free energy of Bi films at Co, Ni, Cu Σ5(120) GBs,


respectively, top to bottom. The black solid lines stand for bare GBs while the black


dashed lines stand for infinite bulk-like Bi films. Other lines are for different Bi films,


with stable bilayer labeled.


[6, 48].


Studying other bilayer films with different registry and coverage, it turns out the


valley site of a missing Ni atom is a strong Bi adsorption site. For structures with Bi


density smaller than the (1× 1) film, all Bi atoms relax into valley sites. The (1× 1)


film is more stable than these films due to the energy gain by putting more Bi at


the remaining empty valley sites. With Bi density larger than the (1 × 1) film, Bi


atoms in each layer bond with each other in the unfavorable metallic form and also


leave some empty valley sites which weakens the bonds with Ni. Both these effects


destabilize such films.
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Figure 4.4: (Color online) Relaxed bilayer Bi films at (1× 1) cell of Ni Σ5(120) GB.


Only Ni atoms close to Bi are shown. Atom size indicates depth (large below small).


Units are Å.


Trilayer films are unfavorable at all GBs, again because of the bonding character of


Bi. Bulk Bi has the common α-As group-V semimetal (strukturbericht A7, Pearson


hR2) with rhombohedral space group R3̄m forming a bilayer structure. Each Bi


atom has strong covalent bonds with three intrabilayer neighbors at the distance of


3.1 Å and bonds weakly with three interbilayer neighbors at 3.5 Å. The trilayer films


contain a chemically adsorbed monolayer on each side of the GB plus a monolayer of


atoms in between that forms metallic bonds. The four layer structure has a bilayer


film similar to the bulk structure between the strong adsorbed monolayer films. Thus,


bilayer films and four layer films are more favorable than trilayer films. The observed


trilayer Bi film at Ni GB near the penetration tip is thus indeed predicted to be a


metastable structure as inferred in Reference [6].
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4.3.2 B. Thermodynamic Model


The Bi interlayer interaction is weak in the bilayer films at both Ni Σ3(111) and


Σ5(120) GBs, with bond lengths around 3.9 Å and 4.2 Å respectively, which are


larger than the weak Bi-Bi metallic bond. In experiment, the observed Bi layer


spacing is 3.9±0.6 Å. Based on these observations, we propose a model to calculate


the enthalpy of formation of Bi bilayer at Ni GBs with bare GB energies and surface


adsorptions, by neglecting the Bi interlayer interaction,


∆H/A ≈ Ea
surf +∆Ha


ML/A+ Eb
surf +∆Hb


ML/A− EGB, (4.3)


where Ea
surf and E


b
surf are the surface energies of Ni surfaces a and b adjacent to the


GB plane, ∆Ha
ML and ∆Hb


ML are the enthalpies of formation of Bi monolayers on Ni


surfaces a and b. The first four terms represent the excess energy per area with bilayer


intercalation. EGB is the excess energy per area without intercalation. The values


are shown in Table 4.2. We define Emin
GB as the minimum energy of GB consisting of


surfaces a and b such that formation of Bi bilayer is energetically favorable, i.e. for


which ∆H/A ≤ 0. Hence


Emin
GB ≈ Ea


surf +∆Ha
ML/A+ Eb


surf +∆Hb
ML/A. (4.4)


Results of this model are given in Tab. 4.3.


The enthalpies of formation from model predictions (∆Hmodel) and direct calcu-


lations (∆Hcalc) are within 0.01 eV/Å2, and slightly exceed the direct calculations


because we neglect the interaction between Bi bilayers which lower the total energy.


This model thus accurately predicts Bi bilayer enthalpies of formation, while being


easier to calculate than direct Bi at Ni GBs.


Approximate energies for many bare GBs can be obtained from embedded atom


method (EAM) calculations [115]. Direct comparison between DFT and EAM bare


GB energies is shown in Fig. 4.5. The differences are small and within 0.005 eV/ Å2,


thus do not strongly affect the model prediction. Based on the EAM bare GBs, our
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Surface Esurf ∆HML/A Emin
GB


(111) 0.118 -0.090 0.056


(001) 0.137 -0.122 0.030


(120) 0.150 -0.133 0.034


Table 4.2: Calculated input quantities for the enthalpy model (Eq. 3). Predicted


Emin
GB values for GB with the same surface plane (i.e. a = b) at two sides. The energy


units are eV/Å2. The Bi monolayer structure on Ni(100) surface is the c(2 × 2)


structure as observed in experiment [1].
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Figure 4.5: (Color online) Grain boundary energies calculated by DFT compared with


embedded atom method (EAM) for Ni and Cu. The EAM data is taken from [14].


Numbers shown in the figure are the Σ values of those CSL GBs. For both metals,


the results show similar trends and differ by less than 0.005 eV/ Å2.


model predicts that Bi bilayer enthalpies of formation are positive on all Ni(111) CSL


twist GBs, but are negative on (100) CSL twist GBs for rotation angles between 10


and 45 degrees. Moreover, for GBs with different adjacent surfaces (i.e. a 6= b) that


are not commensurate with each other, model predictions that avoid artificial strain


might be more accurate than affordable direct calculations. An example is shown in


Table 4.3. This model could easily be generalized to other polycrystalline materials
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GB EGB ∆Hmodel/A ∆Hcalc/A W bare
sep Wsep Reduction


Σ3(111) 0.003 0.053 0.045 0.235 0.009 96.2%


Σ7(111) 0.029 0.027 0.023 0.209 0.009 95.7%


Σ5(100) 0.064 -0.034 -0.037 0.208 0.007 96.6%


Σ5(120) 0.077 -0.043 -0.054 0.220 0.010 95.5%


(111)/(100) 0.055 -0.012 -0.004 0.207 0.004 98.0%


Table 4.3: Model and calculated Ni GB energies and Bi bilayer enthalpies of formation


at different Ni GBs. Work of separation for bare and Bi bilayer segregated GBs is


shown on right. The energy units are eV/Å2. The Σ7(111) GB is made by twisting


the one side of bulk Ni by 21.8o around the [111] axis with (111) as GB plane. The


resulting GB cell is [3-112] as defined in [2] on which Bi favors 3 atoms per layer. The


Σ5(100) GB is made by twisting one side of bulk Ni by 36.9o around the [001] axis


with (001) as GB plane. The general GB (111)/(100) is constructed with a =(111)


and b =(100) planes with a (3 × 3) surface cell at the a side and a [2-213] surface


cell (following the notation of [2]) at the b side. Unlike the CSL GBs, this general


GB ∆Hcalc is greater than ∆Hmodel due to strain of the Ni cells (around 5%). This


artificial strain introduced by forcing the two weakly interacting grains to share a


common small cell makes the direct calculation inaccurate.


providing the interlayer interaction of segregated films is small.


4.3.3 C. Embrittlement and differences among TMs


Ni GBs are severely embrittled by Bi bilayer segregation. In Table 4.3, we show the


work of separation (defined as Wsep = 2Esurf −EGB, the work needed to separate the


GB [40]) at several bare and Bi segregated GBs. In all these GBs, Wsep is reduced by


more than 95% due to the weak interaction between Bi layers [37].


The differences of Bi interactions among these three transition metal GBs can be
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understood with a combination of localization of TM electron orbitals and magnetism.


With increasing of atomic number from Co to Ni and to Cu, the 3d orbital becomes


more localized, and thus the interactions between TMs and with Bi decreases. For


example, shown in Table 4.4 the (012) surface energies Esurf and Bi monolayer ∆H/A


on (012) surface diminish for Co, Ni and Cu respectively in nonmagnetic calculation.


With magnetism, Co and Ni(012) Esurf decrease further due to increasing surface mag-


netic moment. The remaining greater Co surface energy due to stronger interaction


between less localized orbitals makes the Co GBs harder to separate.


Co(nonmag) Co(mag) Ni(nonmag) Ni(mag) Cu


Esurf (eV/Å
2) 0.193 0.164 0.152 0.150 0.100


∆H (eV/Å2) -0.160 -0.118 -0.152 -0.133 -0.070


iCOHP(Bi-TM) -1.75 -1.63 -1.77 -1.75 -1.33


iCOHP(TM-TM)a -1.38 -1.32 -1.13 -1.13 -0.43


iCOHP(TM-TM)b -1.17 -1.16 -0.85 -0.83 -0.66


Table 4.4: The (012) surface energy, Bi monolayer enthalpies of formation, integrated


COHP (iCOHP) energies of Bi-TM bond, TM-TM bond near to Bi(a) and TM-TM


bond away from impurities(b). The energy units are eV/bond for the iCOHP energies.


Values of iCOHP measure bond strength. The Bi-Co bond at surface is weaker


than Bi-Ni when magnetism is included (see Table 4.4) due to the fact that Bi is


nonmagnetic and quenches the TM surface magnetic moments. All of these effects are


greater at the Co surface than Ni due to Co’s larger surface magnetic moments, 1.93


µB/atom compared with 0.78 µB/atom for Ni. This leads to a greater increase in Bi


∆H/A on Co(012) than Ni(012) surface, compared with the nonmagnetic case. This


effect is also manifested from our COHP calculation that the Bi-Co bond is weakened


by 0.12 eV while Bi-Ni bond is weakened only by 0.02 eV due to magnetism. Thus Bi


monolayers on Co(012) surface and Bi bilayers on Co Σ5(012) GB are less favorable


to form than on Ni due to the stronger interaction between Co atoms than between Ni
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atoms resulting from greater localization of 3d electrons on Ni, and weaker interaction


between Bi and Co than between Bi and Ni, due to magnetism.


Apart from weaker interaction of Bi with Cu than with Ni, the Bi bilayer is less


favorable on Cu than on Ni, since Bi gives electrons to Cu, increase the filling of


Cu d states. This leads to stronger d orbital antibonding among Cu atoms close to


Bi rather than s orbital antibonding as is inferred in [39]. Our COHP calculation


results are shown in Fig. 4.6 (Note that for Cu, unlike Co and Ni, antibonding states


lie below bonding states at the equilibrium lattice constant). The Ni-Ni and Co-Co


bonds close to Bi however are stronger than in the bulk, where no antibonds appear.


4.3.4 D. Vibrational Free Energies


To incorporate the vibrational free energy we add ∆Fvib to ∆H , where the vibrational


free energy ∆Fvib is calculated from the phonon density of states within the harmonic


approximation [116] by integrating over the contribution of all independent phonon


modes. For a single phonon mode with vibrational frequency ω, the vibrational free


energy is kBT ln[2sinh(~ω/2kBT )]. The full vibrational free energy is,


Fvib(T ) = kBT


∫


g(ω)ln[2sinh(~ω/2kBT )]dω. (4.5)


The phonon density of states g(ω) is calculated by employing the force constant


method for phonon calculations with similar method to [117]. In our study, we cal-


culate the vibrational free energy of the Bi atoms while keeping the TM atoms fixed.


The change of vibrational free energy by mixing can be calculated by,


∆Fvib(T )/A = [FBifilm
vib (T )− FBibulk


vib (T )]/A, (4.6)


where the FBifilm
vib is the total vibrational free energy of Bi bilayer at TM grain, and


FBibulk
vib is the vibrational free energy of Bi in bulk form. The total change of free


energy by mixing is thus,


∆F (T )/A = [∆H +∆Fvib(T )]/A. (4.7)
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Figure 4.6: (Color online) Differential COHP of Metal-Metal interaction in the bulk


and near to Bi. Negative is bonding while positive is antibonding. The Ni and Co


results are the summation of two spin components. The dashed green line is the x


axis. The zero in x axis is the Fermi energy.


The results of Bi bilayer at TM GBs are shown in Table 4.5. Vibrations leave the


sign of ∆H unchanged for these GBs.


4.4 Conclusion


In conclusion, we have studied Bi segregation at Co, Ni and Cu low energy Σ3(111)


and high energy Σ5(120) GBs using density functional theory. Our results reproduce
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GB Co Ni Cu


Σ 3(111) 0.089(0.099) 0.037(0.045) 0.030(0.040)


Σ 5(120) 0.012(0.004) -0.043(-0.054) -0.005(-0.009)


Table 4.5: ∆F (T )/A of Bi bilayer at TM GBs, units are eV/Å2. Values in parenthesis


are ∆H/A.


the experimental result that Bi does not form film a at all in Fe GBs but forms a


bilayer film ubiquitously at Ni high energy GBs, and in a much narrower chemical


potential window at Cu high energy GB. The difference between these metals can be


explained by the localization of 3d orbitals and also the loss of magnetism near the


GB of Co (and presumably Fe). Moreover, Bi on Cu GB also increases the strength


of antibonding, as confirmed by COHP calculation. We propose a model to predict


the stability of Bi bilayer at various Ni GBs. Combining with the EAM GB energies


from Reference [115], the model suggests Bi bilayer is not thermodynamically stable


on (111) twist CSL GBs but should be stable in most (100) twist CSL GBs.


4.5 Appendix


4.5.1 A1. Bi bilayer on Fe Σ5(012) GB


We calculated Bi bilayer enthalpy on Fe Σ5(012), a high energy GB which is created


by cleaving the BCC bulk along the (012) plane and rotating one grain around [001]


by 53.1o and rejoining the two parts. Our calculated GB energy is 0.098 eV/Å2, close


to the GB energy 0.104 eV/Å2 of the lowest energy structure in the literature [118].


We first studied Bi monolayers on Fe (012) surfaces and then calculated bilayer films


on the GB with the stable surface structure at two sides of the GB plane. We used


10 layers of Fe at each side of the Bi film. The relaxed structure is shown in Fig. 4.7.


The lowest ∆H/A is +0.017 eV/Å2 and including vabriations as in Eqn. 4.5 and 4.7


66







the ∆F/A is +0.016 eV/ Å2 at 1000 K for bilayer films, which are large and positive


indicating that the Bi bilayer is not stable even on this high energy GB.
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Figure 4.7: (Color online) Side view (left) of relaxed Bi bilayer at Fe Σ5(012) GB and


top view (right) of Bi monolayer on one side of the GB plane. The cyan cell is the


Fe GB unit cell, the green cell is the Bi segregated GB unit cell. Atom size indicates


depth (large below small). Length units are in Å.


4.5.2 A2. Convergence with respect to number of Ni layers


To check whether the slabs in our calculations are thick enough to avoid artificial


interaction between the terminating surfaces of the slabs and the grain boundaries in


the center of the slabs, we calculate enthalpy of formation of Bi films at Ni Σ5(210)


GB with different slab thicknesses. As seen in Fig. 4.8, ∆H oscillates for different


slab thickness due to the quantum size effect [119] which is less than 0.005 eV/ Å2


for 1, 2 and 4 layer Bi films. For the trilayer Bi film, the oscillation is exaggerated


by the fact that the trilayer structure is not stable. The 12 layer Ni slab is thus thick


enough for our study that concentrates on monolayer and bilayer films.
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Figure 4.8: (Color online) Convergence with respect to the number of Ni layers in


calculation of Bi bilayer at Ni Σ5(210) GB.
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Chapter 5


Boron Carbide thermodynamics


with Machine Learning methods


5.1 Introduction


Density functional theory (DFT) can accurately determine the total energies of crys-


tals. However, DFT is time consuming and scales as the cube of the number of atoms.


It is thus generally infeasible to directly use DFT for energy predictions in the Monte


Carlo (MC) simulation of phase transitions, which require many evaluations of the


energy of very large structures. Interatomic potentials [64], which typically fit the


DFT energies as a function of the positions of the atomic nuclei, can be quickly


evaluated to predict approximate energies. Cluster expansions [120, 121], which rep-


resent the energy as a sum of pair, triplet and higher-body interactions, provided


a physically motivated and systematically improvable form for such a fit. However,


the number of necessary terms can grow quite rapidly for complex crystal structures


with many inequivalent positions, so this approach has been most successful when


applied to regular lattice structures. We notice that certain information in the higher


order terms like triplets can be expressed as nonlinear functions of pairs. This moti-


vates our study with machine learning (ML) methods such as regression models that
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can capture complex nonlinear interactions. ML methods have been used in various


solid state physics problems [122, 123, 124, 125]. Interatomic potentials fitted with


ML methods are generally more accurate and thus can be more useful for physical


simulations [126, 127, 128, 129].


Boron carbide is an extremely hard and very light material with wide range of


applications [63]. Despite its importance, the phase diagram of boron carbide is


not precisely known. Its complex structure features 12-atom icosahedra and 3-atom


chains and includes intrinsic disorder. It is difficult to equilibrate because of its


strong covalent bonds. The small difference between the atomic numbers of boron


and carbon make precise composition hard to measure. Because of their chemical


similarity, substitutional disorder is prevalent, in particular among the so-called polar


sites of the icosahedra. Two major problems exist in the widely accepted experimental


boron carbide phase diagrams [130, 131]: 1) the solubility range of carbon is given as


0.090 ≤ xC ≤ 0.192, while the DFT-predicted ground state has composition B4C with


xC = 0.200; 2) the boundaries of the composition range are temperature-independent,


which is thermodynamically improbable. Since experimental measurement is not


reliable at low temperature (say, T < 1000 K), computer simulation can help resolve


these problems.


In this study, we exploit several ML methods to fit the interatomic potential


of boron carbide and use the potential to perform MC simulations. A previous


study [132], fit a linear model of pair interactions for structures with xC = 0.200


and studied phase transitions at this high carbon limit. In this paper, instead of


fixing xC = 0.200, we allow arbitrary substitutions and swaps between boron and


carbon among the polar sites, thus extending the carbon concentration from a lower


limit of B13C2 (xC = 0.133) with no upper limit. We fit the DFT energies with


machine learning methods including L1-penalized polynomial regression, neural net-


work (NN), Gaussian process (GP) and support vector regression (SVR). We find the


GP has smallest prediction error (0.31meV/atom), which is 33% less than the linear
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model. We then perform Monte Carlo simulations with a linear regression model, a


restricted polynomial regression model and a mixed-kernel Gaussian process model.


The three energy models qualitatively agree with each other and indicate a phase


transition at low temperature and high carbon chemical potential.


5.2 Methods


5.2.1 DFT calculations


Our calculation methods are similar to our previous study [132], namely electronic


density functional theory utilizing PAW potentials [96, 97] in the PBE [77] generalized


gradient approximation with default energy cutoffs using VASP [94, 95]. We calculate


the fully relaxed total energies of 597 structures with supercell sizes 2 × 2 × 2 (120


atoms) through 4 × 4 × 4 (405 atoms). The majority of the sampled structures


were created through Monte Carlo simulations between T =400 and 2000K based on


preliminary interaction models. The data set to be fit consists of the enthalpies of


formation of individual structures relative to the tie-line joining the ground states


B13C2 and B4C.


5.2.2 Supervised Regression Models


Linear model


One way of modeling the energies of structures is using cluster expansion [120, 121,


133, 134]. This approach is appealing because the relaxed energy is a function of


the initial assignment of carbon atoms to polar sites, resulting in a lattice gas-type


model. That is, only carbon positions must be specified, as boron necessarily occupy


the remaining sites. However, due to the complexity of the boron carbide structure


(a 15-atom basis) and the low density of polar carbons (typically 0-2 carbons among


the 6 polar sites per cell), there are too many triplets and higher order clusters to be
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included. A length cutoff of Rc = 6.58 Å would result in 427 triplets. One feasible


approximation is to truncate the expansion at the pairwise level, resulting in 23 pairs


with separation up to Rc. Our linear model (LM) based on this approximation is


E(N) = E(N0, ..., N23) = E0 +
23
∑


i=0


βiNi, (5.1)


where N0 is the number of polar carbon in the structure and the remaining Ni’s are


the different pairs. The set {Ni} can be considered as a 24-dimensional vector N.


Appendix A1 presents some characteristics of the data set and its dependence on N.


L1-penalized polynomial model


A polynomial model directly generalizes the linear model in Eq. 5.1. Due to the


limited size of the data set, we choose a second order polynomial model (PR2),


E(N) = E(N0, ..., N23) = E0 +


23
∑


i=0


βiNi +


23
∑


j=0


23
∑


k=j


γjkNjNk, (5.2)


which fully characterizes the second order interactions between numbers of pairs. This


model contains 325 parameters. To avoid overfitting and perform feature selection,


we add an L1 norm penalty term. The resulting optimization problem is,


min
θ


M
∑


m=1


1


2
(EDFT


m − E(Nm; θ))
2 + λ‖θ‖1, (5.3)


where θ is the collection of all parameters, E0, {βi} and {γjk}. EDFT
m is the DFT


calculated energy of the mth structure, Nm is its 24 dimensional feature vector, M


is the size of the training set and λ is a tuning parameter. In this paper, we shall use


i, j and k as indices for features, and l, m and n as indices for samples.


Neural network


In our neural network, the input layer contains 24 nodes corresponding to the com-


ponents of N. We choose 1-2 hidden layers of 1-10 nodes with nonlinear activation
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functions like “tanh” and “sinh” in the hidden layers. The single node output layer


utilizes a linear function. A Bayesian regularization for the model parameters reduces


overfitting. We use the Matlab Neural Network Toolbox [135] with default starting


coefficients and regularization parameters. A detailed description of neural networks


can be found in [136].


Gaussian process


In GP, we assume the energies of structures are Gaussian distributed,






Etrain


Epred





 ∼ N (µ,Σ) , with Σ =








Σtt Σtp


ΣT
tp Σpp





 , (5.4)


where the Etrain and Epred vectors denote the energies of training structures and


structures whose energies to be predicted (predicting structures) respectively, N is a


normal distribution with mean µ (set to zero in later derivation for simplicity), and


Σ is the covariance matrix. The mth row and nth column of Σ is,


Σmn = k(Nm,Nn), (5.5)


where Nm and Nn are the feature vectors of the mth and nth structure respectively.


The kernel function k(Nm,Nn) characterizes the similarity between feature vectors,


and therefore structures. In our study, we use and compare the polynomial kernel


(1 + βNm · Nn)
d, the Gaussian kernel exp(−‖Nm − Nn‖22/γ2), and the Laplacian


Kernel exp(−‖Nm −Nn‖1/γ).
A constant variance term δ2 is added to the kernel when m = n to model the


noise. The DFT energy is precise and thus lacks noise. A perfect model containing


all relevant inputs would in principle precisely fit the DFT energy. However, since


our features only represent a subset of the structural information, the DFT energies


are noisy in the subspace spanned by the features. We thus need variance δ2 to model


the noise. The parameters β, d, γ and δ in the kernels are called hyperparameters.


We can optimize these hyperparameters by maximizing the likelihood of the training
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data, which is a convex optimization problem that can be efficiently solved [136]. We


use the GPML Toolbox [137] to perform our GP model fitting and testing.


Under the assumptions of GP, the conditional distribution of predicted energy


given the training data is Gaussian. We take the mean value of this distribution as


the predicted energy. More explicitly, for a new structure with feature vector Nl, the


predicted energy is,


E(Nl) =
M
∑


m=1


M
∑


n=1


k(Nl,Nm)(Σ
−1
tt )mnEtrain,n. (5.6)


Moreover, GP also provides the variance of the predicted energy which implies the


accuracy or confidence of the prediction, which is


σ2(Nl) = k(Nl,Nl)−
M
∑


m=1


M
∑


n=1


k(Nl,Nm)(Σ
−1
tt )mnk(Nn,Nl). (5.7)


To illustrate the properties of GP, the left panel of Fig. 5.1 shows a toy example


of fitting a one dimensional function. The fitted nonlinear function captures the local


properties of the data. Moreover, the fit provides the standard error of the prediction,


where large standard error indicates small data density in the nearby region or large


extrapolation. The standard errors of prediction can be used to check whether the


data well sample the feature space, and to guide us in generating training structures


for poorly represented regions.


Support vector regression


In SVR [138] the fitted function E(N) =
∑


i ωi · Φi(N) + b minimizes the target


function,


C


M
∑


m=1


max(0, |E(Nm)− EDFT
m | − ǫ) +


1


2
‖ω‖22, (5.8)


where C and ǫ are positive real numbers, {Φi(N)} is a collection of chosen functions


of N, and ω and b are fitting parameters. As shown in the right panel of Fig. 5.1,


the errors of points within the ǫ-tube are not counted in the target function, which
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Figure 5.1: (a) GP and (b) SVR fits of a toy one-dimensional function. The dashed-


red curve is the ground truth function. A “o” denotes a data point which is drawn


randomly from the ground truth function and added with Gaussian noise. The black


solid lines in both panels are the fitted functions. (a) The shaded region lies within


two standard error of the GP prediction (95% confidence interval). (b) The dashed


curves are the boundaries of the ǫ-tube. The “o” points with “*” at the centers are


support vectors.


is thus insensitive to the intrinsic small noise in the energies. The points outside of


the ǫ-tube only introduce linear penalty to the target function, which is more robust


to outlier than least square error fit.


We can relax the constraints associated with the tube to obtain a dual form of


SVR in which the energy prediction is


E(Nl) =


M
∑


m=1


αmk(Nl,Nm) + b, (5.9)


where only data points on or outside the ǫ tube have nonzero α values, and are called


support vectors. b is a constant that can be calculated by support vectors.
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One advantange of SVR is it transforms the features N to new features Φi(N),


more suitable for fitting. However, {Φi(N)} might be a high (or even infinite) dimen-


sional vector. That is hard to use in practice. In this dual form, instead of {Φi(N)},
only the kernel function k(Nl,Nm) =


∑


i Φi(Nl)Φi(Nm) is needed to train the model


and make predictions. The possible kernel functions are similar as in GP, which are


flexible and easy to use. We use the LIBSVM Toolbox [139] to perform our SVR


model fitting and testing.


5.2.3 Cross validation


We perform 5-fold cross validation (CV) to evaluate our models. In 5-fold CV, the


data is randomly divided into 5 sets. In every validation, we choose one set as


the validation set and the rest as the training set. We train our model using the


training set and predict the energies of the structures in the validation set. After


such validations, we aquire the predicted energy of every structure in the dataset.


We then calculate the CV root mean square errors (RMSE) of the structures, which


is defined as,


RMSE =


√


√


√


√


1


M


M
∑


m=1


(EDFT
m −Epredict


m )2, (5.10)


where M is the total number of structures in the dataset. CV RMSE mimics the


generalization error, which is the standard error for predicting the energy of an unseen


structure which is useful in comparing different models. Since ML models can be


very complex, the fitting error can be very small while the CV error remains large,


which is a sign of overfitting. Throughout this paper, we report the CV RMSEs and


generalization errors, which are superior measures of model performance to fitting


error.
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5.2.4 Monte Carlo


Our Metropolis Monte Carlo simulations utilize a semi-grand canonical ensemble [140,


141, 142] in which we associate a chemical potential µ = µC − µB for the conversion


of a polar boron to carbon. The physically meaningful range of µ extends from -0.55


to +0.14 eV at T = 0K. To circumvent difficulties arising from hysteresis near first


order transitions, we apply replica exchange [143] along both the temperature and


chemical potential (µ/T ) axes. Data was collected on grids in the (T, µ/T )-plane in


the form of multidimensional histograms H(xC , E;T, µ/T ) then was analyzed using


multiple histogram methods [144].


5.3 Results and analysis


We calculate the RMSEs of 5-fold CV to evaluate the models as shown in Table 5.1.


Improvement is defined as the percentage decrease of RMSE compared to the linear


model (LM, Eq. (5.1)). The second order polynomial regression with L1 penalty


(PR2, Eq. (5.2)) outperforms the linear model by a decrease of 20% in RMSE error.


The RMSE minimizes at 197 nonzero parameters out of a possible 325. The neural


network (NN) performs similarly to PR2 in CV. The best performing NN has 24 input


nodes (features), one hidden layer of 3 or 4 nodes with “tanh” activation function and


a single-node output layer with linear activation function. The nonparametric GP


and SVR models (Eqs. (5.6) and (5.9)) decrease the CV error by around 33%. Since


GP has a probabilistic interpretation, we choose the hyperparameters by maximizing


the likelihood of the training data. However, SVR does not have such interpretation,


thus we perform an extensive search over a grid of hyperparameters to find the set of


hyperparameters that minimizes the 5-fold CV error.


The goodness of fit is shown in Fig. 5.2 by comparing the predicted energies of


the validation sets in the 5-fold CV with the corresponding DFT energies. The points


generally lie near the y = x line. GP fits better than the linear model. To illustrate
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MODEL RMSE (meV/atom) improvement


LM 0.48 ± 0.01 0%


PR2 0.39 ± 0.01 20±1%


NN 0.37 ± 0.01 24±1%


GP 0.31 ± 0.01 33±1%


SVR 0.32 ± 0.01 32±1%


Table 5.1: RMSE of 5-fold cross validation and improvement of different models. The


standard error of these quantities are obtained from the statistics of ten repetitions


of cross validation.


the fine details, we only show structures with energies up to 13.3 meV/atom rather


than the maximum energy of around 40 meV/atom present in the full data set. For


comparison, the mean energy at a high temperature of T = 2500K is around 10


meV/atom in the high carbon limit. To further compare the performance of linear


model and GP, the residuals of the validation sets in the 5-fold CV are shown in


Appendix A2. The residuals of the linear model are generally larger than residuals


of GP. Patterns exist in the residuals which indicate underfitting, and these are more


obvious in the linear model.


Since we need to predict energies of large cell structures in our Monte Carlo


simulation, we also study the performance of our models when generalizing to large


cells. We use our 2 × 2 × 2 and 3 × 3 × 3 cell structures as the training set and the


remaining 12 larger cell structures (3 × 3 × 4 and 4 × 4 × 4) as the generalization


set. The generalization error are 0.43, 0.46 and 0.86 meV/atom for SVR, GP and the


linear model respectively. All these models have larger generalization errors than the


CV errors of the whole dataset, but this difference is less pronounced for SVR and


GP.


78







0 2 4 6 8 10 12
E


DFT
  [meV/atom]


0


2


4


6


8


10


12


E
C


V
  [


m
eV


/a
to


m
]


Linear
Gaussian process


Figure 5.2: (Color online) The predicted energies in 5-fold CV vs the ground truth


DFT energies. The black line is y = x. Red points are from linear model and blue


from GP predictions.


5.3.1 Model Selection and Acceleration


We perform a greedy stepwise feature selection, as shown in Fig. 5.3 where the 24


features yield the smallest CV errors. Note that the CV error is still decreasing


near 24 features, which suggests that our description of the structures with these


24 features is insufficient and further improvement could be made by adding more


effective features. Moreover, Fig. 5.3 shows that both GP and SVR CV errors are


insensitive to the choice of kernel.


Since the CV error is insensitive to the choice of kernel, we use GP with polynomial


kernel of degree d = 2 to predict the energies quickly enough for the Monte Carlo


themodynamics simulation. In Metropolis Monte Carlo simulation, structures are


generated and energies are claculated sequentially and energies. Directly using Eq. 5.6


or Eq. 5.9 to predict is slow since to predict one energy we have to sum over the whole
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Figure 5.3: (Color online) RMSE of linear model, GP, NN and SVR vs number of


features. The black curve is linear model, solid curves are GP with different kernels.


Dashed curves are SVR with different kernels. The purple dot-dashed curve is NN.


training set (∼ 600) or all support vectors (∼ 400). It thus takes several hundreds


of inner products of 24-dimensional vectors to predict one energy. However, with


polynomial kernel of degree two, we can use a change of summation order trick to


accelerate the prediction, which is essentially rewriting the prediction in a parametric


form.


Define α = Σ−1
tt Etrain which can be easily calculated offline before the Monte Carlo


simulations, the GP energy prediction Eq. (5.6) can be rewritten as,


E(Nl) =


M
∑


m=1


αmk(Nl,Nm) =


M
∑


m=1


αm(1 + βNl ·Nm)
2 = c+ v ·Nl +NT


l ANl, (5.11)


where c =
∑M


m=1 αm, v =
∑M


m=1 2βαmNm and the matrix A =
∑M


m=1 β
2αmNmN


T
m.


Since c, v and A can be calculated in advance using the training set, the calculation


to predict one structure only needs 25 vector multiplications, which is 30 times fewer


than directly using Eq. 5.6. In practice, the prediction is fast enough for Monte Carlo
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simulation. The same trick works for SVR also.


5.4 Monte Carlo simulation


During MC simulation, we find that the GP model in Eq. 5.11 predicts unphysically


low energies for some structures. This is because the dataset size is limited and the


distributions of the numbers of long bonds (e.g. the values of Ni for large i) is large,


leading to unreliable extrapolation. We found two solutions to this problem.


First, we modify our GP model by defining a mixed kernel that captures interac-


tions between carbon concentration (N0) and the three types of shortest bonds while


ignores other interactions. Define N‖ = (N0, N1, N2, N3) and N⊥ = (N4, N5, ..., N23),


our mixed Gaussian/linear kernel is,


k(N,N′) = σ2
fexp(


||N‖ −N′
‖||22


2l2
) + σ2


p(N⊥ ·N′
⊥ + c), (5.12)


where σf , l, σp and c are hyperparameters. This kernel has RMSE 0.36± 0.01


meV/atom in 5-fold CV which is slightly higher than the GP with full Gaussian


kernel.


Second, since we observed that the GP model with polynomial kernel of degree


d = 2 is similar to a parametric polynomial regression of degree two (PR2), we fit


less flexible PR2 models with only short-bond interactions. We start with the 24


features Ni and add the products NiNj successively as new features for i = 0, 1, 2


and j = i, i + 1, ..., 10. The 41-feature PR2 model has smallest CV error, which is


0.35±0.01 meV/atom, similar to the mixed-kernel GP.


Simulations of a variety of supercell sizes were performed using energies predicted


by the linear model, the mixed-kernel GP, and the 41-feature PR2 model. Resulting


histograms of energies of 6×6×6 cells at T = 600K and different µ/kBT ’s are shown


in Fig. 5.4. Rapidly changing histograms, or multiply-peaked histograms indicate a


possible phase transition. The histograms of these models are similar in trend, with


rapid change between µ/kBT=0.5 and 1.0.
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Figure 5.4: (Color online) Energy histograms of the linear model (left), the 41-feature


PR2 model (middle), and the mixed-kernel GP (right).


Figure 5.5: (Color online) The MC simulated heat capacity of boron carbide using


the linear model (left), the 41-feature PR2 model (middle), and the mixed-kernel GP


(right).


Based on the histograms in the MC simulations, the heat capacities of boron


carbide are calculated using the multi-histogram method [145, 144, 132], as shown


in Fig. 5.5. At infinite cell size, diverging heat capacity indicates a phase transition.


We analyzed the scaling of heat capacity with 4×4×4, 5×5×5 and 6×6×6 cells. The


peaks of the heat capacities in all three models increase quickly and do not greatly


alter their positions. All these models thus suggest a first order phase transition,


which corresponds well with the fast evolving histograms in high µ/kBT , seen in


Fig. 5.4. This phase transition is consistent with a previous study [132] at 20% carbon


limit. The mixed-kernel GP, and the 41-feature PR2 model more accurately predict
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the energies, thus should be quantitatively more reliable. The previously found [132]


second order transition is hard to see using heat capacity.


Figure 5.6: (Color online) Boron carbide phase diagram in the (XC , T) plane. Black


region is the Monoclinic phase, red is the Bipolar phase, and green is the Rhombo-


hedral phase.


Fig. 5.6 shows the phase diagram of boron carbide from our MC simulation with


the mixed-kernel GP interaction model. Three phases appear [132]: 1) Rhombohe-


dral phase, where carbon occupies the six polar sites on the icosahedra with equal


probability; 2) Bipolar phase, where the 3-fold rotational symmetry is broken but the


two poles remains equivalent; 3) Monoclinic phase, the 2-fold symmetry between the


two poles is broken in addition to the 3-fold rotational symmetry. At lower tempera-


ture, the Rhombohedral phase (green) shrinks gradually to the point XC = 0.133 as


T → 0 K, and the Monoclinic phase (black) shrinks gradually to the point XC = 0.20


as T → 0 K. The rhombohedral phase extends down to XC = 0.133 at all tem-


peratures. The existence of three phases agrees with a previous restricted study at
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20% carbon composition [132]. A comprehensive study of the phase transitions and


analysis of the order parameters will be reported in a forthcoming paper.


5.5 Conclusion


In this study we construct ML-based interatomic potentials of boron carbide and


perform MC simulations with these potentials. We started with a cluster-expansion


motivated linear model, then exploit the nonlinear interaction between features using


parametric models like L1-regularized polynomial model and neural network, and


nonparametric models like Gaussian process and support vector regression. Our result


shows that L1-regularized polynomial model and neural network decrease the cross


validation error by 20%, while the nonparametric models achieve 33% improvement.


The accuracy of nonparametric models is insensitive to the choice of kernel in our


problem.


We performMC simulation with gaussian process (GP). Directly using polynomial-


kernel GP leads to wrong ground states. Augmenting our data set to include struc-


tures with large predicted uncertainty resulted in decreased CV RMSE but did not


alleviate the problem of false ground states. Instead we developed a mixed-kernel


GP model and a restricted polynomial regression model to fix it. The specific heat


obtained from MC simulations with these models and the linear model all clearly


indicate a phase transition at high carbon concentration and low temperature. Three


phases are identified from our simulations and agrees well with a previous restricted


study at 20% carbon composition. To improve the models, local properties of atoms


could be included in the models, rather than just using the total numbers of pairs in


the structure. Another possible improvement is to include numbers of triplets. In-


cluding the local features or triplets might require more data to avoid extrapolation


problems.
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5.6 Appendix


5.6.1 A1. Data Exploration


Histograms and pairwise scatter plots of three selected features (polar C concentration


x, number of nearest C-C bonds N1, number of second nearest C-C bonds N2) and


energy E are shown in Fig. 5.7. All the variables are skew distributed due to the


physical distribution of the boron carbide structures. For example, our structrues are


weighted towards few short bonds N1 and low energy E. Moreover, the scatter plots


show the features are correlated but not collinear and that the energy correlates with


these three features. For example, low energy correlates with low N1. The variances


of energies at different feature values are not the same. The scewed distributions and


non-constant variances might bring difficulty to linear model and other models with


similar assumptions.


5.6.2 A2. Residuals of Linear model and GP


The residuals of the linear model and the GP are compared in Fig. 5.8. The residuals


of GP are smaller in magnitude, and less pronounced patterns exist in GP than in


the linear model.
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Figure 5.7: (Color online) Histograms (diagonal plots) and pairwise scatter plots (off-


diagonal plots) of features and energies. The variables from left to right and from


top to bottom are the polar C concentration xC , number of nearest C-C bonds N1,


number of second nearest C-C bond N2, and the DFT calculated energy E. All the


three features are normalized. Every red star represents the value of one structure.
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Figure 5.8: (Color online) Residuals of predicted energies in 5-fold CV of linear model


(top) and GP (bottom). From left to right the x-axis represents the DFT energy,


carbon concentration, number of nearest bonds and number of second nearest bonds,


respectively.
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Chapter 6


Summary and Future Work


6.1 Summary


This thesis focuses on our first-principles study of Bi on Ni(111) surface, at transition


metal interfaces and bulk thermodynamics of boron carbide. We directly use DFT


to study Bi film stability at Ni(111) surface and special grain boundaries. To study


problems beyond the computational feasibility of DFT, we develop a thermodynamic


model to study Bi film stability at general GBs and DFT/machine learning interaction


models to study boron carbide phase diagram.


A recent experiment suggested that Bi forms hexagonal films on the Ni(111) sur-


face, of heights one, three, five, and seven layers. The experimental group proposed


a quantum size effect based on free electrons. To test this idea, we calculate the total


energies of Bi on the Ni(111) surface using density functional theory. We find that the


stabilities of the proposed hexagonal film structures disagree with the observed odd


layer preferences, and the structures are mechanically destabilized by adding capping


atoms which pucker the hexagonal layers. Furthermore, we find that a surface mono-


layer followed by rhombohedral films based on the bulk Bi structure are energetically


more favorable than the proposed hexagonal films. These structures also favor odd


numbers of layers, but owing to covalent chemical bonding rather than confinement
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of free electrons.


Recent experiments suggest that Bi impurities segregate to form bilayer films on


Ni and Cu grain boundaries (GBs) but do not segregate in Fe. To explain these


phenomena, we study the total energies of Bi films on transition-metal (TM) Σ3(111)


and Σ5(012) GBs using density functional theory. Our results agree with the observed


stabilities. We propose a model to predict Bi bilayer stability at Ni GBs which


suggests that a Bi bilayer (i.e. a pair of strongly bound surface monolayers) is not


stable on (111) twist CSL GBs but is stable in most (100) twist CSL GBs. We


investigate the interaction and bonding character between Bi and TMs to explain the


differences among TMs based on localization of orbitals and magnetism, as well as


evaluating the contribution of interfacial phonons at high temperature.


Total energies of crystal structures can be calculated to high precision using


quantum-based density functional theory (DFT) methods, but the calculations can


be time consuming and scale badly with system size. Cluster expansions of total


energy as a linear superposition of pair, triplet and higher interactions can efficiently


approximate the total energies but are best suited to simple lattice structures. To


model the total energy of boron carbide, with a complex crystal structure, we explore


the utility of machine learning methods (L1-penalized regression, neural network,


Gaussian process and support vector regression) that capture certain non-linear ef-


fects associated with manybody interactions despite requiring only pair frequencies


as input. The machine learning models reduce the predictive error by 20 - 33%.


Our interaction models are combined with Monte Carlo simulations to evaluate the


thermodynamics of chemical ordering. The specific heat obtained from different in-


teraction models is qualitatively similar and indicates phase transitions. Three boron


carbide phases are identified in agreement with a previous restricted study at 20%


carbon composition [132].
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6.2 Future Work


The long-term goal is to understand and predict complexions and to tailor material


properties by complexion engineering. The first crucial step is to understand the


structures of complexions and the conditions that stabilize them. For the surface


complexion, an atomic-resolved experiment of Bi on Ni(111) is warranted to end the


debate over the Bi surface structures and stability mechanism [2, 13]. For the GB


complexion, although the bilayer complexion is observed, the exact complexion struc-


tures and their relation with complexion properties are still unknown. Structural


modeling based on direct HAADF-STEM observation and combined with DFT veri-


fication is needed. Since a strong effect of additives on the formation of IGF has been


demonstrated [44], the effect of additives on Bi (sub)nanometer complexions is also


an attractive question. Complexion transitions like prewetting/premelting, faceting,


roughening also remain to be observed and analyzed [41].


Analytical models have the advantage of representing the whole space of GB con-


figurations, but lack accurate total energies and entropies, while DFT calculations


can accurately deal only with small cell sizes. It is thus desirable to feed DFT calcu-


lated interaction parameters into analytical models. MC and MD simulations using


empirical potentials successfully applied to Cu and Ag/Cu can in principle be used


to study Bi/Ni and Bi/Cu complexion transitions, but only if accurate interaction


potentials can be obtained. One approach is to develop DFT-based machine learn-


ing models, which are capable of learning atomic interactions from small-cell DFT


calculations and generalizing to large cell simulations [127].


After the identification of three boron carbide phases, a detailed analysis of the


phase diagram remains to be performed. In the analysis of phase diagram, we need


to compare the order parameters from MC simulations and from low temperature


expansions using exact DFT energies. Machine learning interaction models might


also be improved by introducing physical weights in the fitting procedures or by


other better descriptors.
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