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Abstract

This thesis addresses the challenge of accurately and robustly estimating the network state

on an electric power network despite its large size, infrequent measurement updates, and high

likelihood of corrupted data. This is especially important as electrical transmission operators are

increasingly being asked to operate the networks at their maximum allowable capacity. Accurate

knowledge of the state is necessary to ensure adequate margin to these operating limits should a

fault occur.

This thesis provides the following contributions. 1. Models describing the dynamics of slow

machinery attached to and coupled via the electric power network were used to allow dynamic

state estimation. 2. The detail of the coupled dynamic network model was evaluated to determine

the level of modeling complexity required to achieve significant state estimation performance

gains. 3. Improvements to bad data detection and identification by using information from the

dynamic state estimator were demonstrated and evaluated. 4. The improvements to network

static observability were discussed and evaluated.



iv



Acknowledgments

I would like to thank my advisors, Professor Bruce Krogh and Professor Marija Ilić. Without
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Chapter 1

Introduction

Accurate real-time estimates of bus voltages are essential for successful operation of electric power systems.

These estimates make it possible to calculate power flows along transmission lines, proximity to operating

limits, the operating points of electric loads and generators, and other critical information used by trans-

mission network operators [4]. Commonly referred to as the state of the power system, we will call the bus

voltages the network state in this dissertation, to distinguish this set of variables from the other variables

that characterize the dynamic states of the many devices and components that comprise the complete power

system.

In today’s power systems, the network state is estimated at regular intervals using only the most recent

set of measurements that give a “snapshot” of the network operating point [42]. Estimation of the network

state is a nontrivial problem due to the large number of measurements and network state variables, the

nonlinear network equations, the presence of measurement noise and the common occurrence of bad data

due to intermittent sensor and communication failures. Bad data is so significant that a preprocessor is

typically employed to identify and remove grossly inaccurate measurements from the measurement snapshot

before the estimation process even begins. Removing these measurements often causes some components

of the network state to be unobservable from the set of good data points. Thus, estimates for possibly

large portions of the network cannot be updated at times. Moreover, since existing methods which compute

estimates of the network state variables for the observable portion of the network use only the current set

of measurements, these estimates do not benefit from the information available from past measurements,

which are clearly correlated with the current set of measurements [11].

This dissertation develops a new method for on-line network state estimation that leverages the infor-

1



mation in the time history of power system measurements to improve estimation robustness and accuracy,

including estimates of the network state variables that are unobservable using traditional methods. Methods

that use previous measurements in addition to the current measurements are referred to as dynamic network

state estimation since they estimate the network state variables using models that include dynamic state

variables for the network and its components. In contrast to previously proposed methods for dynamic

network state estimation, which are based on linear regression [29, 45] or a zero order hold [11], the approach

proposed in this dissertation uses governor-turbine-generator and inertial load models to effectively track

the behaviors of the components attached to the network rather than look at only the network itself. The

proposed method is developed using the lossless, decoupled formulation for real power flows in the network

[1, 41].

1.1 Contributions

The dissertation makes the following contributions:

1) The inclusion of dynamic models of the power system components at each bus, including conventional

models of generation and new dynamic load models, as the basis for dynamic network state estimation. This

is in contrast to previously proposed approaches to dynamic network state estimation that are based on

ad hoc dynamic models rather than explicit models of the components at each bus. In this new dynamic

model, the network state variables are output variables defined by the physical dynamic state variables for

the complete system.

2) A systematic method for reducing the dynamic component models based on time-scale analysis of

the local bus models and the strengths of couplings in the network admittance matrix. This model order

reduction reduces the on-line computations for dynamic state estimation.

3) The ability to update estimates of network state variables that are statically unobservable due to

intermittent bad data, with bounds on the estimation error based on the information matrix formulation of

the Kalman filter [22].

4) A new method for using the dynamic model to identify bad data using predicted states that is

significantly more accurate than current methods for bad data identification based on single snap shots.

5) A demonstration and evaluation of the effectiveness and robustness of these innovations using standard

IEEE test systems. Comparisons are made to static estimation techniques presently used in industry and

dynamic estimation techniques proposed in literature.

The new techniques under development in this research are implemented in MATLAB and evaluated using
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Monte Carlo simulations. Model and algorithm verification was aided through the use of the MIPSYS analysis

environment developed at CMU for static electric network analysis [18]. We show that the methods proposed

herein perform comparably to existing methods in normal operating conditions, and perform considerably

better in conditions where bad data causes a reduction in the number of measurements available to the state

estimator.
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Chapter 2

Background

Estimation of the network state has been heavily used in industry since the 1960’s. This chapter provides

background information on the existing methods of network state estimation, the measurement models used

in that estimation, the dynamics of components attached to the electrical network, and considerations taken

into account to improve the numerical process of estimating the network state.

2.1 Dynamics of Transmission Lines

The electric power transmission grid is primarily composed of a network of three-phase alternating current

carrying transmission lines. An individual transmission line is typically modeled using a single phase π circuit

[15], shown in Fig. 2.1. Due to the capacitance, inductance, and resistances of the lines, the network is a

dynamic system with time constants on the order of 0.01 seconds or faster [38]. Transmitting and processing

measurements sufficiently fast to capture these transients has been impractical for most of the history of the

United States power grid. Therefore, the standard practice in today’s industry is for operators to work on

an assumption of steady state operations and to use a weighted least squares approach based on a static, or

memoryless network model [1, 30] to estimate the state of the network.

This model has served the electric power industry reasonably well as it makes use of the strengths of the

reporting frequency of the existing telemetry infrastructure. The supervisory control and data acquisition

(SCADA) system used by the electric power industry transmits measurement data to the control centers

roughly every two seconds [23]. Compared with the electrical transient time constants, this is more than an

order of magnitude slower than that necessary to accurately capture transient information. If a transient
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Figure 2.1: Standard transmission line π model

were to occur immediately following a measurement, the effect of that transient would have decayed to

e−20 ≈ 2 × 10−9 of its original value by the time the next measurement was taken, two seconds later.

Without additional information, accurate dynamic state estimation is impractical.

2.2 Measurement Model

The measurements typically used in power system network state estimation are: real and reactive power

injections at a bus, real and reactive power flows injected into a transmission line, current flows injected

into a transmission line, and voltage magnitudes. For simplicity, this dissertation primarily focuses on real

power injections and real power flows on a transmission grid composed of lossless lines (i.e., purely reactive

lines so that gij = 0). In addition, the complex phasor voltage Ṽ = V cos(δ) + iV sin(δ) is assumed to

have a voltage magnitude which is constant at 1 p.u. and the voltage angle differences between adjacent

busses are assumed to be small. These assumptions are necessary to facilitate accurate decoupling between

voltage magnitude and angle and between real and reactive power, using the small angle approximation,

cos(δ) ≈ 1. A linear decoupled model can also be derived by further using the small angle approximation

to assume sin(δ) ≈ δ. This decoupling allows the real power flows and injections to be treated as functions

of the voltage angle, δ only [1]. The equations associated with these simplifications are listed in table 2.1

and describe the relationship between the network state and the measurements, where Pi is the real power

injection into the network at bus i, Pij is the real power flow along the line(s) connecting busses i and j,

Vi is the voltage magnitude at bus i, gij is the line conductance between busses i and j, and bij is the line

susceptance between busses i and j.

These assumptions are reasonable under the following conditions [1, 15].

1. Lossless Lines: The purely reactive lines are a reasonable assumption when the susceptance (imaginary
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Measurement Full Model Decoupled Model Linear Decoupled Model
Power Injection: Pi Vi

∑
j∈NLi

Vj(gij cos(δij) + bij sin(δij))
∑

j∈NLi
bij sin(δij)

∑
j∈NLi

bijδij

Power Flow: Pij ViVj(gij cos(δij) + bij sin(δij)) bij sin(δij) bijδij

Table 2.1: Measurement model for power injections and flows

part of the admittance) is more than ten times the magnitude of the conductance (real part of the

admittance).

2. sin(θ) = θ: The small angle sin approximation is reasonable when the differential bus angles across

transmission lines are less than 10 degrees. For example, an angle of 14 degrees will introduce a 1%

error in the sin calculation.

3. cos(θ) = 1 : The small angle cos approximation is reasonable when the differential bus angles across

transmission lines are less than 10 degrees. For example, an angle of 8 degrees will introduce a 1%

error in the cos calculation.

4. |V | = 1p.u. : This assumption is reasonable as long as the voltage magnitudes remain within approxi-

mately 1% of design values.

2.3 Weighted Least Squares Minimization

Calculation of the network state from the available measurements can be accomplished multiple ways. It-

erative methods are typically employed and various simplifications of the measurement model may prove

advantageous for certain algorithms under certain network conditions[24]. Table 2.2 lists a few measurement

models typically used for network state estimation [1, 13, 47].

Model Measurements Coupling Network State
1 P,Q Coupled δ,|V |
2 P,Q Decoupled δ,|V |
3 P,Q Coupled Vreal,Vimag

4 P Decoupled δ

Table 2.2: Simplified measurement models used for network state estimation

Each method has its own advantages. Item one converges in the fewest number of iterations, but requires

the most computation for each iteration. Item two requires one or two more iterations to converge to the

same tolerances, but requires approximately an order of magnitude less computation. Item three has faster

convergence but tends to exhibit a bias to its final solution. Item four converges approximately two orders

of magnitude faster than item one, but has the least accuracy due to its simplified model. As discussed in
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Sec. 2.2, we will focus on model four, the decoupled δ method where only the voltage angle, δ, as a function

of the real power, P , is estimated.

To calculate the state of a memoryless system where the measurements are corrupted with zero-mean

additive-white-Gaussian-noise (AWGN), the standard technique is to use a weighted least squares [1]. The

weighted least squares is derived from the maximum likelihood estimation problem [39].

Using a memoryless system model, the static estimation problem is stated δ̂(k) = E{δ(k)|z̃(k)}, where

z̃(k) = h(δ(k))+ v(k) and v(k) is AWGN and h(δ) is the vector of measurement functions described in Sec. 2.2

. The probability distribution function of z̃k is

1
(2π)n/2|V|1/2

exp
(
−1

2
(z(k) − h(δ(k)))T V−1(z(k) − h(δ(k))

)
,

where V is the covariance of the measurement noise and n is the number of measurements [33]. This function

has its maximum value where

J(δ(k)) = (z̃(k) − h(δ(k)))T V−1(z̃(k) − h(δ(k))

is minimized [33]. The maximum likelihood estimate is therefore δ̂(k) = minδ J(δ(k))

If h(δ) is approximated as h(δ) = h(δ0) + H(δ − δ0) where H = ∂h(δ)
∂δ

∣∣∣
δ=δ0

, the minimum value can be

found through the following iteration:

set: δ̂(0) = 0

repeat: δ̂(i+1) = (HT V −1H)−1HT V −1(z − h(δ̂(i))) (2.1)

until: δ̂(i) − δ̂(i−1) ≤ ε

Here we have temporarily dropped the time index •(k) for clarity. The index •(i) indicates the iteration.

Using this method, the expected value of the state error is

E{δ − δ̂} = 0

and the state error variance

E{(δ − δ̂)(δ − δ̂)T } = (HT V −1H)−1
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= Ψ. (2.2)

One metric of how well a state estimator is performing is the trace of the state error covariance matrix [5].

This metric is discussed in Sec. 3.8.2.

Now that we have defined Ψ to be the network state error covariance matrix, we can rewrite (2.1) as

δ̂(i+1) = ΨHT V −1(z − h(δ̂(i)))

2.4 Bad Data

One of the challenges in power system network state estimation is the existence of spurious events causing

a subset of the measurements to be grossly inaccurate [4]. These bad data have values that are inconsistent

with the measurement model used to relate the measurements and the state in the network state estimation

process. Typically a measurement which is corrupted with noise of a magnitude greater than three standard

deviations of the expected noise is considered bad data. These bad data must be removed if an accurate

estimate is to be achieved. The removal comes in two parts: detecting the existence of bad data in the

measurement vector, and identifying the bad elements of that measurement vector.

2.4.1 Bad Data Detection and Identification

Detecting the presence of bad data is typically accomplished through the use of a Chi-square test [1]. The

measurements are assumed to be a function of the true network state and corrupted by additive white

Gaussian noise (AWGN). The distribution of the sum of squared errors between the measurements and the

measurement estimates, as calculated from the state estimate, should therefore conform to a Chi-square

distribution [49].

A significance level is chosen and applied to the Chi-square distribution to determine a threshold, η, for

the Chi-square hypothesis test. If the weighted sum of squared errors is less than η, the hypothesis that the

sum is consistent with the expected distribution given by the assumed AWGN in the model is chosen. If the

sum is greater than η, the null hypothesis is rejected and bad data is assumed to exist in the measurement

vector.

The identification of the number and location of the bad data is more challenging. For a linear mea-

surement model, flagging the measurement with the largest weighted residual as bad will typically prove

accurate [1]. Once identified, the suspect measurement is removed from the measurement vector and the
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Figure 2.2: Sample network for smearing example

estimation-detection-identification process is repeated. This iteration continues until the Chi-square hypoth-

esis performed during the detection step returns the null hypothesis, i.e., that the sum conforms to that

given by AWGN within a given significance level and additional instances of bad data are unlikely.

Bad data detection and identification are further discussed in Sec. 5.2.

2.4.2 Smearing

Each measurement is a direct function of multiple elements of the network state vector and each element of

the network state vector estimate is calculated from information from multiple measurements. The coupling

between the states and measurements lead to an effect known as smearing [41]. A large error in a single

measurement will lead to errors in all the network state variables associated with that measurement. All the

measurements that are associated with those state variables (i.e., measurements that are strongly correlated

with, or “near” the original bad measurement) will then be affected.

For example, in the following sample network (see Fig. 2.2), there are seven measurements consisting of

real power injections (P1, P2, P3, and P4) and real power flows (P12, P23, P34) providing information about

the four states (δ1, δ2, δ2, and δ4).

The individual measurements affected by smearing due to one bad datum can be seen by analyzing

the relationship between measurements and elements of the network state vector as a bipartite graph (see

Fig. 2.3). The states are on the left side of the graph; the measurements are on the right. Connecting links

indicate the elements of the state contributing to an individual measurements and vice versa.

The estimate of the network state is calculated through the a minimum-mean-squared-error optimization

and therefore requires the weights to be equal to the variance of the AWGN affecting the measurements. If

the noise affecting the measurements does not conform to the assumed distribution, the estimate will not be

optimal. An individual measurement whose value is grossly inaccurate (typically more than 10σk from the

true value [41]) will skew the estimate away from the true value.

The determination of which network state estimates, δ̂k, are affected by a bad measurement is simply a

10



δ1

δ2

δ3

States

P1

Measurements

P2
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P23
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δ4
P4

P34

Figure 2.3: Bipartite graph for smearing example

traversal from that measurement node to the state nodes on the other side. In Fig. 2.4, bad data is present

on the real power injection to bus one, P1. Traversing the graph from right to left, we see that the elements

of the state δ1 and δ2 will be affected by this bad measurements.

δ1

δ2

δ3

States

P1

Measurements

P2

P3

P23

P12

δ4
P4

P34

Bad 
Datum

Affected 
States

Affected 
States

Figure 2.4: Smearing bipartite graph with bad data

Since one of the primary purposes of the state estimator is to provide estimates of the measured variables

hk(δ̂), determining which measurement estimates are corrupted is important. The list of measurement

estimates subject to smearing can likewise be determined by traversing the graph from the affected elements

of the state back to the measurements. In Fig. 2.5 we follow the lines from affected states δ1 and δ2 to the

measurements P1, P12, P2, P23, and P3.

Numerically, this traversal can be interpreted as a multiplication by the adjacency matrix of the bipartite
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Figure 2.5: Smearing bipartite graph with affected measurements

graph. Define the nodes of the graph to be the vector [zT , δT ]T . The adjacency matrix is then

 0 B

BT 0

 ,

where B is constructed by replacing the nonzero elements of the measurement Jacobian H with ones. The

traversal from z to δ̂ and back to h(δ̂) is accomplished by multiplying the adjacency matrix by a vector

with a one in the location of the bad data and zeros otherwise to get the elements of δ̂ that are smeared.

This result is then multiplied by the adjacency matrix again to determine which elements of h(δ̂) which are

smeared.

To understand the implication of this smearing effect, it is useful to recognize what the network state

estimation process is doing in terms of subspace projections. One can view minimum mean squared error

estimation as the projection of z onto the subspace G = V−1/2H with an additional weighting term of

V−1/2. The projection operator for G,

PG = G(GT G)−1GT

= V−1/2H(HT V−1H)−1HT V−1/2

= V−1/2

(
H(HT V−1H)−1HT V−1

)
V1/2

= V−1/2pinv(H,V)V1/2,
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simplifies to just the weighted pseudoinverse and the square root of the measurement noise variance ma-

trix. When the measurement noise variance matrix is diagonal, the weighting matrices cancel out and the

projection operator further simplifies to the weighted pseudoinverse, pinv(H,V).

Returning to the bipartite graph and the adjacency matrix described above, the nonzero elements of PG

are the same as those of BT B. Therefore, the kth column of the projection matrix reveals the elements

of the h(δ) vector smeared by bad data in zk. The projection provides additional information in that the

magnitude of the smearing effect on each of the calculated measurements, h(δ̂), is revealed.

The smearing effect from any individual bad measurement does not extend beyond the calculated mea-

surements, as indicated by the nonzero elements of the product computed above. This can be seen by

recognizing that the product is already projected upon the subspace H so that projecting the new vector

onto the subspace will only return that same vector again.

A few observations can be drawn from the above discussion:

1. As the connectivity of each node (number of other nodes it is connected to and the strength of the

connecting transmission lines) increases, the number of other measurements affected by the smearing

increases..

2. As the connectivity of each node, the magnitude of the smearing effect decreases. An increased number

of measurements will tend to dilute the effect of the bad measurement.

3. As the expected variance of the measurement in question increases, the effect of the bad data will be

minimized due to the weighting in the pseudoinverse. Conversely, bad data affecting a measurement

which normally is highly accurate will tend to have a severe smearing impact on adjacent measurements.

In order to mitigate the effect of smearing, this thesis proposes using the predicted dynamic state to

perform an initial sweep for bad data before the static network state estimator processes the measurements.

As the predicted dynamic state is uncorrelated with the incoming measurements, they are not affected by

smearing.

2.4.3 Bad Data and Static Observability

If sufficient redundancy in the measurement vector exists, the network state estimator will be able to suc-

cessfully estimate the network state despite the removal of the bad data from the measurement vector [50].

This redundancy, however, cannot be guaranteed. Some elements of the network state may not be statically

observable from the reduced measurement vector. Using the techniques described above to estimate the

network state would return values for the unobservable network state elements that are not meaningful and
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should not be used.

If sufficient redundancy is not present or is reduced due to removal of bad data, elements of the mea-

surement vector may become critical, which means that a critical measurement’s associated state is uniquely

determined from that measurement. The estimate residual for this measurement will therefore be zero re-

gardless of the measurement error. The practical implication is that a critical measurement cannot be tested

for bad data [2].

In a linear measurement model, the network state is statically observable if the rank of the measurement

Jacobian is equal to the number of elements in the network state vector, i.e., rank(J(δ)) = rank(∂h(δ)
∂δ ) = nδ

[5]. This is a reasonable approximation for the nonlinear measurement model used in electrical power network

state estimation [1] relating bus angle and real power flow. The accuracy of this approximation tends to

degrade as the system loading increases, causing an increase in the relative bus angles.

The condition of a statically unobservable network state is handled by analyzing the measurements to

determine which subset of the network state vector is statically observable [26]. The network state estimator

then isolates and only attempts to estimate the network state of this statically observable subnetwork. Due

to the static nature of the process, this results in a condition where no meaningful value of the network state

is available in the unobservable subnetwork. The unobservable subnetwork may be composed of one or more

unobservable islands [1, 30]. The network state estimator must therefore identify and flag those unobserved

elements so that they will not be erroneously relied upon for operation.

2.5 Estimation Based on Multiple Scans of Measurements

Although the electrical time constants of the transmission network components are much faster than the

typical sampling rate for power system network state estimators, a distinct correlation between scans is

evident. This correlation can be useful for various purposes including network parameter estimation [30, 46],

online measurement calibration [3, 44], and measurement error estimation [43].

In its most basic form, even the fully static network state estimator uses information from multiple scans.

The static estimator must have an initial start value for its iterative minimization procedure. When the

estimator receives its very first snapshot, it typically uses a flat start (voltage magnitude equal to 1 p.u. and

all bus angles equal to zero). On each successive snapshot received, the estimator initializes the iterative

minimization to the previous state estimate. This starts the iteration off on a known good value and therefore

typically requires fewer iterations to reach convergence.

The literature also shows many proposals by which incorporating information from multiple scans may
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offer improvements in network state estimation despite the disparity between sampling rate and network

dynamic time constants. These methods take the standard dynamic model of x(k+1) = f(x(k),u(k))+w(k)

and apply various assumptions to arrive at an approximate dynamic model suitable for the purposes of

predicting the network state. The predicted network state allows for a Bayesian formulation of the network

state estimate as opposed to a maximum likelihood formulation.

2.5.1 Tracking Network State Estimation

The tracking state estimator typically employs a linearized dynamic model expressed as

x(k + 1) = (F )x(k) + Gx(k) + w(k), (2.3)

where (F ) is identity and G is zero, so that the network state dynamics are driven by the random noise

w(k) only [11, 29]. This formulation works well as long as the incremental change in state remains below an

assumed maximum ramp rate characterized by the magnitude of the noise.

Although the dynamic model is simple, the major contribution of this formulation is to provide an a priori

estimate of the state, so that the state estimator needs only to update the estimate with new information

rather than start the process from scratch. In addition, unlike a static network state estimator, the tracking

network state estimator need not wait for a snapshot of the full measurement vector to be available to

begin its update process. Due to the a priori state information, the new measurements can be processed

sequentially; each new measurement providing an incremental update to the existing state estimate. These

incremental updates allow the network state vector to be continuously updated with each new piece of

information allowing faster feedback to operators and a reduced level of computation for each update [21].

2.5.2 Dynamic Network State Estimation

Dynamic network state estimation is similar to static network state estimation except that the network

state can be predicted from previous network state values so that an a priori value for the network state

is available when the measurements are incorporated. In other words, static network state estimation is

an example of maximum likelihood estimation whereas dynamic network state estimation is an example

of Bayesian estimation. It can be shown that the static estimation step is numerically equivalent to the

update step for a dynamic estimator where the a priori network state estimate is included as additional

measurements for the static estimator [5].
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Despite the quasi static nature of network state estimation, numerous techniques have been proposed

to define pseudo dynamic models to provide the prediction of the network state for Kalman filtering of

the network state. Several of these techniques leverage the strong correlation between adjacent snapshots

or used time series analysis of the sequence of static network state to define a pseudo-dynamic models

[28, 11, 29, 30, 37, 45]. Simulations of estimators using both of these modeling philosophies demonstrate the

potential for improved performance over static estimation [28, 11, 29, 45]

In recent years, increases in computation capability of data processing centers and installation of advanced

metering equipment such as phaser measurement units (PMUs) has started to enable very accurate load

forecasting of power systems [51, 21]. These forecasts aid in the modeling of system dynamics as the

dynamic model’s G matrix from (2.3) can represent the relationship between the load and the network state,

providing improved modeling of the incremental changes in the network state between snapshots [7, 8, 51].

2.5.3 Limitations of Dynamic Network State Estimation

Dynamic network state estimation is only useful when a priori information contributes to the present state.

For example, when a reconfiguration of the network occurs, the relationships between the voltage angles

may undergo a drastic change. In this situation, the previous network state would have little relation to

the present one. The typical procedure in these situations is to throw out the a priori information from the

dynamic prediction and reinitialize the dynamic estimator from the static estimator solution.

In order for dynamic network state estimation methods to be beneficial in the event of topology changes,

the dynamic model must be able to predict conditions of the network which are primarily unaffected by such

transients. One such method is described in Ch. 3, where the components attached to the buses are modeled

to provide continuity between static network state estimates. But even this technique has limitations. Some

buses experience occasional discontinuities in load such as large step changes as would be seen with the

operation of arc furnaces. Dynamic models are typically unable to predict such load behavior so that once

again the a priori state information must be discarded.

2.6 Computation

In order to perform the state estimation process in near real time on any network of reasonable size (greater

than 100 busses) requires significant computer processing power [50]. Power system state estimators have

typically not been operated in real time. As computer processing power has increased, the size of the network
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being estimated and the complexity of the estimation algorithms have also increased keeping pace with the

processing power so that the rate of network state update increases only marginally [50].

The control center for a typical electrical transmission network in the United States processes 20,000 to

40,000 measurements and provides state estimation data on over 10,000 busses. For example PJM Inter-

connection, a regional transmission organization (RTO) covering 168,500 square miles of 12 different states,

monitors approximately 13,500 buses [34]. Similarly, the Electric Reliability Council of Texas (ERCOT)

monitors approximately 18,000 busses [12]. To perform these calculations, the state estimator must compute

the solution to a set of equations containing 20,000 variables and matrices with sizes on the order of 20,000

by 40,000. To aid in this process, several standard computational techniques are typically employed and are

described in the following subsections.

2.6.1 Matrix Manipulation

Much of the calculation work done by the state estimators can be categorized under the heading of simul-

taneous equation solvers. The general form is y = f(x) or y = Mx in the linear case. A naive solution to

this problem would be to take the inverse (or pseudo inverse in the case where the length of the y and x

vectors are unequal) of the M matrix. In reality, some form of matrix factorization and back-substitution is

employed.

For systems of n equations and n unknowns, Gaussian elimination with back-substitution is typically

employed. Gaussian elimination, however, is numerically unstable for large sets of equations. Therefore,

alternative methods involving partial pivoting and matrix factoring are employed. Matrix factoring in this

case is typically accomplished through LU decomposition, however Cholesky factorization may be employed

for symmetric positive definite matrices for improved speed of computation.

For systems of n of r unknowns where r < n and a least squares solution is desired, QR decomposition

can be employed to assist in the calculations. In QR the original matrix is factored into an orthogonal

matrix Q and an right (upper) triangular matrix R. The Q matrix may be inverted by Q−1 = QT , and the

R matrix can easily be back substituted through.

Both these methods improve computation robustness and speed as long as M remains mostly unchanged

so that re factorization is infrequent. The factored matrices can be cached for future use.
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2.6.2 Sparse Matrix Methods

There are two distinct, and not always compatible, goals for any sparse matrix method: saving time and/or

saving space [35]. The emphasis in this discussion will be on using sparse methods optimized for speed in

order to enable real time processing of measurements for state estimation.

Applying a Gaussian elimination algorithm to a sparse matrix without accounting for the sparsity pattern

can result in an intermediate matrix that is much less sparse than the original. Some decrease in sparsity is

typically unavoidable, however a Gaussian elimination algorithm may exploit a specific pattern of sparsity

to minimize the decrease in sparsity. If a given matrix does not exactly conform to an expected pattern of

sparsity, pivoting can be employed to adjust a matrix’s sparsity pattern for use with a specific optimized

algorithm [35].

One hazard of applying pivoting with the goal of adjusting the sparsity pattern is that the algorithm

is limited in its ability to apply pivoting for numerical stability. Luckily, the positive definiteness of the

admittance (Y ) matrix (heavily used in power system analysis) means that numerical stability is typically

not negatively impacted by optimizing the pivoting for sparse methods [36].

Optimization of Gaussian elimination operations is typically achieved through one of various pre-factoring

methods such as LU, Cholesky, or QR as discussed in Sec. 2.6.1. In order to preserve the maximum spar-

sity, the factoring operations typically employ successive applications of givens rotations rather than the

more traditional householder reflections (Grahm-Schmidt is typically unsuitable for sparse matrices)[36].

Factorization using Givens rotations typically requires an approximate 50% increase in computation over

Householder reflections for a full matrix; however, for sparse matrices isolating individual elements is more

direct [10].

By employing these sparse methods, matrix operations can be sped up by several orders of magnitude.

For a general sparse matrix, the processing time can potentially be reduced to a function of the number of

nonzero elements, rather than the size. For example, the multiplication of an n × n matrix by a n vector

would require n2 multiplications and (n− 1)n additions. Conversely, if the sparse matrix has on average m

nonzero elements per row, there would be nm multiplications and n(m− 1) additions. If the sparsity factor

is 100 (i.e., m = n/100), these algorithms would realize nearly a 100 times speedup (the actual speedup

will be less than 100 due to the increased overhead of the sparse routines). Operations on sparse matrices

exhibiting specific patterns (e.g., diagonal, tri-diagonal, block-diagonal) can be computed on the order of n,

and therefore can realize even higher levels of speedup [35].

Many of the calculations described in this thesis can be parallelized for distributed and parallel com-
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putation. Computer graphics hardware can be particularly effective at tackling these types of problems.

While designed for graphical transformations and projections, the single instruction multiple data (SIMD)

architecture has been shown to offer further speed and efficiency improvements [25, 9, 16].

2.6.3 Kalman Filtering of Power Systems

The standard formulation for the Kalman filter is typically employed in dynamic systems where the number

of states (nx) is larger than the number of measurements (nz). This formulation is computationally useful

as it only requires the inverse of the innovation covariance matrix which is of size nz × nz. In electric power

systems, nz is typically at least two times nx, making the standard formulation less efficient.

The information filter is an implementation of the Kalman filter equations where the information matrix

Y = P−1 is used instead of the state error covariance matrix P, where

P = E[(x̂− x)(x̂− x)T ].

The formulation for the information filter does not require the inversion of the innovation covariance [14].

Instead, the state error covariance matrix is inverted to get the information matrix. This is useful as the

dimensions of P being nδ × nδ are typically half that of the dimension of the innovation covariance matrix

Y being of size nx × nx.

The actual speedup can be seen by noting that matrix inversion typically requires computations on the

order of O(n3). As nz ≈ 2nx, O(n3
z) ≈ 8O(n3

x) so nearly an order of magnitude improvement in processing

time can be achieved by using the information filter formulation.
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Chapter 3

Modeling for Dynamic Network State

Estimation

The pseudo-dynamic models in the tracking network state estimation algorithms rely on the correlation of

the network state between snapshots but do not explain why this correlation exists. Looking at the power

system as a whole, it is evident that the system contains many components attached to the busses of the

network. Many of these components are large rotating machines that have time constants on the order of

five to ten seconds. Other components are small switched loads which, when taken as a aggregate, appear

as a large load affected by small stochastic perturbations. Both these types of components contribute to

the inertia necessary for the tracking network state estimation algorithms to operate effectively. Standard

models for these bus components exist and can be incorporated into a model-based dynamic network state

estimator for the electric power system.

To illustrate these concepts, a simple three-bus example system (Fig. 3.1) will be used in this chapter.

Busses one and two are generator busses; bus three is a load bus. The black dots indicate location of

measurements (in this case, the real power injected at each bus). The admittances are given in per-unit.

3.1 Modeling the Component Dynamics

At each bus in the network, the dynamics of the system at that particular bus are modeled. We represent the

dynamic state vector at bus i as xi. If the components at a bus are primarily composed of load components,

the dynamic system takes as inputs (u) the external load variations and the power injection from the network.
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Figure 3.1: Three Bus Example

If the components are primarily composed of generation, they take as input the external generator setpoints

and the power injection from the network.

For brevity, we will use the word component to refer to the dynamic system located at a bus. The

following is the dynamic model for a component system primarily consisting of generation [27]:

d

dt



∆a

∆ωr

∆Pm

∆δ


=



−kR k 0 0

0 −D/M 1/M 0

1/TCH 0 −1/TCH 0

0 1 0 0





∆a

∆ωr

∆Pm

∆δ


+



−k −k

0 0

0 0

0 0


 ∆ω0

Lref

+



0

−1/M

0

0


[∆PE ] ,

(3.1)

where ∆a is the differential prime mover valve position, ∆ωr is the differential generator shaft frequency,

∆Pm is the differential mechanical power, and ∆δ is the divergence of the generator absolute shaft position

from nominal. The parameters are: k, governor feedback gain; R, the droop characteristic; D, generator

rotor damping characteristic; M , generator rotational inertia; and TCH , prime mover flow inertial time

constant. The inputs are: ∆PL, exogenous differential load value; ∆ω0, frequency differential setpoint; and

Lref , exogenous load adjustment setpoint (e.g., AGC setpoint).
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Similarly, an aggregate load containing rotating machinery can be represented as:

d

dt


∆ωr

∆PL

∆δ

 =


−D/M −1/M 0

0 0 0

1 0 0




∆ωr

∆PL

∆δ

 +


0

1

0

 [
P rate

L

]
+


1/M

0

0

 [∆PE ] , (3.2)

where P rate
L is the rate of change of the load (modeled as a stochastic input) [11, 19].

The linear model for a dynamic system at bus i is then ẋi = Aixi+B(u)
i ui+B(P )

i ∆PEi, where ui indicates

external inputs and ∆PEi indicates differential power injection around a given equilibrium operating point

at that bus.

For the three-bus example shown in figure 3.1, the parameters for the component at bus one, modeled as

a generator (3.1), are: D = 1.5, TCH = 0.2, R = 0.05, M = 10, K = 1/(0.2R) = 100, yielding a component

dynamic model of :

d

dt



∆a

∆Pm

∆ωr

∆δ


=



−5 0 100 0

0.2 −0.2 0 0

0 −0.1 −0.15 0

0 0 1 0





∆a

∆Pm

∆ωr

∆δ


+



0 0

1 0

0 −0.1

0 0


 ∆ω0

Lref

+



0

0

−0.1

0


[∆PE ] , (3.3)

with eigenvalues at 0, −0.1335± 0.6365i, and −5.0830.

The parameters for the component at bus two, modeled as a generator (3.1) are: D = 1.5, TCH = 0.3,

R = 0.04, M = 5, K = 1/(0.2R) = 100, yielding a component dynamic model of :

d

dt



∆a

∆Pm

∆ωr

∆δ


=



−5 0 125 0

0.3 −0.3 0 0

0 −0.2 −0.3 0

0 0 1 0





∆a

∆Pm

∆ωr

∆δ


+



0 0

1 0

0 −0.2

0 0


 ∆ω0

Lref

 +



0

0

−0.2

0


[∆PE ] , (3.4)

with eigenvalues at 0, −0.15± 1.2155i, and −5.3.

The parameters for the component at bus three, modeled as a load (3.2), are: D = 1.5, M = 1, yielding
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a component dynamic model of :

d

dt


∆PL

∆ωr

∆δ

 =


0 0 0

−1 −1.5 0

0 1 0




∆PL

∆ωr

∆δ

 +


1

0

0

 [
P rate

L

]
+


0

−1

0

 [∆PE ] , (3.5)

with eigenvalues at 0× 2, and −1.5.

Each of the component dynamic models described above can be written more concisely as

ẋi = Aixi + Biui, (3.6)

where the subscript (i) indicates the applicable bus. The output equation is similarly expressed as

yi = Cixi. (3.7)

This notation will be used further in the next section.

3.2 Modeling the System Dynamics

The complete dynamic system model is constructed by combining the component models as follows [20]:

xs = [xT
1 ,xT

2 , ...xT
n ]T

us = [uT
1 ,uT

2 , ...uT
n ]T

P = [∆PE1,∆PE2, ...∆PEn]T

As = blockdiag(A1,A2, ...,An)

B(u)
s = blockdiag(B(u)

1 ,B(u)
2 , ...,B(u)

n )

B(P )
s = blockdiag(B(P )

1 ,B(P )
2 , ...,B(P )

n )

Some additional bookkeeping is required here. The ∆δs above are angle deviations due to small deviations

in ωr from a nominal 60 Hz operating frequency (i.e., ωr = 2π60 + ∆ωr). These deviations increase through

time at the rate of ∆ωr. The important angle for network state estimation purposes is the instantaneous

angle differences between the various buses. Therefore a reference bus is assigned and the network state is
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defined as the angle difference between the remaining angles and the reference bus, δi = ∆δi −∆δref

Continuing the three-bus example, (3.3), (3.4), (3.5), are combined to make the composite state vector

in terms of absolute angles as,

xs = [∆a1,∆Pm1,∆ωr1,∆δ1,∆a2,∆Pm2,∆ωr2,∆δ2,∆PL3,∆ωr3,∆δ3]T

with a system state transition matrix of:



−5 0 100 0 0 0 0 0 0 0 0

0.2 −0.2 0 0 0 0 0 0 0 0 0

0 −0.1 −0.15 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 −5 0 125 0 0 0 0

0 0 0 0 0.3 −0.3 0 0 0 0 0

0 0 0 0 0 −0.2 −0.3 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 −1.5 0

0 0 0 0 0 0 0 0 0 1 0


which has eigenvalues of: 0× 4, −5.083, −0.1335± 0.6365i, −0.1500± 1.2155i −5.3, and −1.5.

Subtracting the reference bus angle, ∆δref , from the other bus angles and reordering the state variables,

the state vector is,

xs = [∆a1,∆Pm1,∆ωr1,∆a2,∆Pm2,∆ωr2,∆PL3,∆ωr3, δ2, δ3]T
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with a system state transition matrix of:



−5 0 100 0 0 0 0 0 0 0

0.2 −0.2 0 0 0 0 0 0 0 0

0 −0.1 −0.15 0 0 0 0 0 0 0

0 0 0 −5 0 125 0 0 0 0

0 0 0 0.3 −0.3 0 0 0 0 0

0 0 0 0 −0.2 −0.3 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 −1.5 0 0

0 0 −1 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 1 0 0


with eigenvalues of 0× 3, −5.0830, −0.1335± 0.6365i−5.3000, −0.15± 1.2155i, and −1.5.

3.3 Coupling the System Dynamics through the Network

The power injections, ∆PE in the above model, are a nonlinear function of the bus voltage angles, P =

f(δs) = f(Sxs), where δs is the network state and is extracted from the dynamic state using a selection

matrix δs = Sxs. Applying the assumptions of Sec. 2.2, plus the small angle linearization of sin(δ) ≈ δ, the

power injections can be approximated as,

P = Bδ, (3.8)

where B is the susceptance matrix (i.e., the imaginary part of the admittance matrix, Y) [30]. The system

dynamic model is therefore coupled as follows:

ẋs = Asxs + B(P )
s P + B(u)

s u

= Asxs + B(P )
s BSxs + B(u)

s u

=
(
As+B(P )

s BS
)
xs + B(u)

s u. (3.9)
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Converting (3.9) to discrete-time yields a dynamic system equation in the form [5]

x(k+1) = Adx(k) + Bdu(k) (3.10)

where

Ad = e(As+B(P )
s BS)

and

Bd =
(
As+B(P )

s BS
)−1

(Ad − I)B(u)
s . (3.11)

The parenthetical subscript in 3.10 indicates the sample number. We will use this discrete-time version of

the above equation for dynamic state estimation.

Continuing the three-bus example, the susceptance matrix for the network is


−2.25 1.2500 1.0000

1.25 −2.6786 1.4286

1.00 1.4286 −2.4286

 . (3.12)

Using (3.9) and (3.12) to couple the component dynamic systems together, the state transition matrix is



−5 0 100 0 0 0 0 0 0 0

0.2 −0.2 0 0 0 0 0 0 0 0

0 −0.1 −0.15 0 0 0 0 0 0.1250 0.1

0 0 0 −5 0 125 0 0 0 0

0 0 0 0.3 −0.3 0 0 0 0 0

0 0 0 0 −0.2 −0.3 0 0 −0.5357 0.2857

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 −1.5 1.4286 −2.4286

0 0 −1 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 1 0 0



,

with eigenvalues of −5.0823, −5.2949, −0.0948, −0.1493 ± 0.7405i, −0.6521 ± 1.3505i, −0.1876 ± 1.4110i,

and 0.

Here it is important to note that even in the coupled state transition matrix, we have an eigenvalue equal
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to zero. This is problematic for multiple reasons, but most importantly if we want to discretize the model as

shown above,
(
As+B(P )

s BS
)

must be invertable to satisfy (3.11). This is where the reference bus comes in.

By defining the network state as the angle difference between each bus and a bus designated as the reference,(
As+B(P )

s BS
)

becomes nonsingular and invertible.

3.4 Dynamic Estimation With Additional Measurements

An additional benefit of modeling the dynamics in this manner is that it opens the door for incorporating

additional measurements that cannot be incorporated with the existing models. For example, because this

model incorporates information about the generation, a measurement of the mechanical power supplied to a

generator can also be incorporated and may improve the accuracy of the state estimation result. Similarly,

incorporating load data or forecasts can lead to further improvements.

Continuing the three-bus example, assume that a direct measurement of PL3 is available. This element

of the state vector can now be removed from the state and incorporated as an input at bus three as:

d

dt

 ∆ωr

δ

 =

 −D/M 0

1 0


 ∆ωr

δ

 +

 −1/M

0

 [PL3] +

 1/M

0

 [∆PE ] . (3.13)

Replacing (3.2) with (3.13) and forming the coupled system equation as described in sections 3.1 and 3.3,

the coupled state transition matrix after this modification is



−5 0 100 0 0 0 0 0 0

0.2 −0.2 0 0 0 0 0 0 0

0 −0.1 −0.15 0 0 0 0 0.1250 0.1

0 0 0 −5 0 125 0 0 0

0 0 0 0.3 −0.3 0 0 0 0

0 0 0 0 −0.2 −0.3 0 −0.5357 0.2857

0 0 0 0 0 0 −1.5 1.4286 −2.4286

0 0 −1 0 0 1 0 0 0

0 0 −1 0 0 0 1 0 0



,

with eigenvalues of −5.0823, −5.2949, −0.0948, −0.1493±0.7405i, −0.6521±1.3505i, and −0.1876±1.4110i.
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3.5 Dynamic Estimation Without Additional Measurements

If additional measurements are not available, the dynamic modeling methodology described above may still

be employed to benefit the state estimation process. The expected behavior of the exogenous inputs can

be modeled and incorporated into the overall system dynamic model. This typically requires the additional

states to the dynamic state vector and the corresponding associated computational load. To distinguish

these dynamic state vectors, the standard state estimate vector which only contains the bus component

states is identified as x̂(k/•) with the corresponding network state identified as δ̂(k/•). The state state vector

augmented by additional states to model the exogenous inputs is identified as x̂′(k/•) with the corresponding

network state estimate identified as δ̂′(k/•).

Many models are available for the exogenous input [8, 11, 20, 29]. This thesis will focus on a simple

accumulator model [11, 29]. The accumulator model treats the exogenous load as the accumulation of

random perturbations. When applied to the power network, the magnitude of the perturbations (Gaussian

noise) is related to the expected ramp rate of the power demand on the network.

3.6 Simplifying the Dynamic Model

For large power systems, the computational workload of the state estimator may become prohibitively

expensive. It is important to identify areas in the dynamic model where improvements in modeling accuracy

do not directly contribute to improvements in accuracy in the network state estimate. As discussed in Sec.

2.1, there may be some components of the dynamic state that are too fast to provide a significant contribution

to the predicted state. As the state estimator receives only minimal improvement from this information, it is

possible that these elements of the dynamic state are not worth the additional computational load to model.

Therefore it is desirable to modify the model so that these non-contributing modes are no longer simulated.

One effective method of reducing the model is to perform a singular value decomposition on the state

transition matrix, A, and reduce the model by any singular values that are more than an order of magnitude

faster than the SCADA sampling time. This is a well studied method [5] but requires the full system model

to be developed and then simplified. This reduction leads to two potential difficulties. Either the A matrix

will be rank deficient which will be important later on (see Sec. 3.8.2), or a change of variables needs to

be applied to the dynamic state to maintain a full rank state transition matrix. If a change of variables

is performed, then the dynamic state being estimated may no longer correspond to physical variables. An

additional transform must be included to extract the original network state variables. These transformations
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are typically not computationally intense so that the computational gains achieved through state reduction

are maintained.

Another method uses the small dynamic systems formulated at each bus. When these component models

are coupled through the network, the δ and ∆ω elements of the dynamic state are strongly affected but the

remaining elements are not. In effect, the rotating mass acts as a low pass filter between the fast elements of

the various component dynamic states. This can be seen by looking at the poles of the uncoupled systems.

There is one free integrator (i.e., a pole at the origin) corresponding to each δ. When the systems are

coupled together, all these poles except the one corresponding to the reference angle, move towards the left

half-plane. The derivative of δ, ∆ω is therefore also strongly affected.

It is therefore necessary to keep δ and ∆ω in the model to maintain the proper modeling of the network-

component interaction. The other elements of the component dynamic state vectors are available to be

simplified via singular perturbation or other methods of model reduction. This second method is especially

useful when the network is configured with weak network coupling and large rotational inertias at the busses.

The effect of dynamic state reduction on network state estimation accuracy is explored in Sec. 4.5.

3.7 Dynamic Modeling and Estimation for Quasi-Static Systems

The modeling methodology described in earlier requires that large inertial components be present at every

single bus of the network. In an actual power network, this may not always be the case. For example, loads

such as an electric arc furnace typically used in steelmaking industries can exhibit large, nearly instantaneous

multi-megawatt changes in real power load. In these situations it may be beneficial to take a different

approach regarding the dynamic power system model.

If we return to the static network model described in Ch. 2, we see that the network state is treated

as though it were algebraically dependent on the bus injections. This model is equivalent to assuming that

the dynamics of the bus components (specifically ω̇) have reached steady state so that the network is in a

quasi-static state. Furthermore, we recognize that the δ portion of As does not contribute to ẋs

We now apply this constraint to (3.9), and focus on the ω and δ terms. We are left with the network

swing equation ∆̇ω = 1
M (∆Pm − ∆PE) [27]. From (3.8), ∆PE is a function of the network state, δ and

from (3.1), ∆Pm and ∆PL (collectively represented as Γ) is a function of the component dynamic state (not
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including δ) and exogenous input. Equation (3.9) may now be expressed in the following form.

 ˙∆ωr

δ̇

 =

 0

0

 =

 0 B/M

I 0


 ∆ωr

δ

 +

 Γ/M

0

 ,

which can be simplified to

0 = Bδ + Γ, (3.14)

the algebraic relationship between δ and Γ.

At each measurement snapshot, incremental changes may have occurred to Γ and therefore to the network

state δ. These incremental changes may be interpreted as a perturbation to the previous state δ(k−1) driving

the network towards the present state δ(k).

Analyzing the effect of an incremental change in Γ from time (k−1) to time (k), a pseudo-dynamic model

may be derived from (3.14) as

δ(k) = δ(k−1) −B−1(Γ(k) − Γ(k−1)),

where Γ(k) would likely be the output from load forecast or some other external source [7, 8, 28, 37]. Using this

formulation, the Kalman filter equations may be applied directly if Γ(k) is available, or if Γ(k) is unavailable

an accumulator model,

Γ(k) = Γ(k−1) + v(k−1),

may be applied where the incremental change in Γ is modeled as additive Gaussian white noise v(k−1) [11, 29].

3.8 Dynamic State Estimation

This section describes the modeling methodology used to effectively apply dynamic state estimation concepts

to electric power system network state estimation.

3.8.1 Formulation

The purpose of dynamic state estimation is to find the expected value for the dynamic state given the

measurements and the a priori value of the dynamic state given by the previous dynamic state estimate and

the input. The dynamic state estimator is optimized over the following goals: the expected value of the

dynamic state estimation error should be zero E{e} = E{x̂− x} = 0, and the dynamic state estimate error

variance E{eT e} = trace(E{eeT }) should be minimized. The Kalman filter provides an optimal solution to
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this dynamic state estimator formulation given a linear system with additive white Gaussian noise [22]. It

is formulated as follows:

Process/Measurement Model

Dynamic Model: x(k) = Ax(k−1) + Bu(k−1) + w(k−1)

Measurement Model: z̃(k) = h(x(k)) + v(k)

Initial Values:

State Estimation Error: e(k) = x̂(k/k) − x(k)

Initial State Error Covariance Matrix: P(0/0) = E{e(0)eT
(0)}

Initial State Estimate: x̂(0) = E{x(0)}

Measurement Error Covariance: V = E{vvT }

Process Noise Covariance: W = E{wwT }

Prediction:

Predicted State: x̂(k/k−1) = Ax̂(k−1/k−1) + Bũ(k−1)

Predicted State Error Covariance: P(k/k−1) = AP(k/k−1)AT + BWBT

Correction:

Kalman Gain: K(k) = P(k/k−1)HT (HP(k/k−1)HT + V)−1

H = ∂h(x)
∂x

Corrected State: x̂(k/k) = x̂(k/k−1) + K(k)(z̃(k) − h(x̂(k/k−1)))

Corrected State Error Covariance: P(k/k) = (I−K(k)H)P(k/k−1)

When applied to a power system, the state estimate is initialized from the static network state estimator.

This works well when the state in question is the network state. However, when the goal is to estimate

the dynamic state, the subset of the dynamic state x0 that does not correspond to the network state δ is

undefined. Additionally, any portion of the network state which is not statically observable will also be

undefined [33]. This distribution would correspond to an infinite or undefined diagonal element in the state

covariance matrix.

To avoid the difficulties of dealing with infinite matrix elements, the following alternate formulation of

the Kalman filter, called the information filter, is considered. This is the optimal linear filter formulated

to track the Fisher information matrix rather than the state error covariance matrix [14]. The information

filter is formulated as follows:

Initial Values:

Initial Information Matrix: Y(0/0) = P−1
(0/0)
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Initial Information: ŷ(0) = Y(0/0)x̂(0)

Correction:

Measurement Information Matrix: I(k) = HT V−1H

Measurement Information: i(k) = HT V−1z̃(k)

Information Matrix Update: Y(k/k) = Y(k/k−1) + I(k)

Information Update: y(k/k) = y(k/k−1) + i(k)

Prediction:

M(k) = A−T
(k) Y(k−1/k−1)A

−1
(k)

C(k) = M(k)

(
M(k) + W−1

)−1

L(k) = I−C(k)

Information Matrix Prediction: Y(k/k−1) = L(k)M(k)LT
(k) + C(k)W−1CT

(k)

Information Prediction: ŷ(k/k−1) = L(k)A−T ŷ(k−1/k−1)

Transitioning from tracking the state error covariance matrix to the information matrix moves the com-

plexity from the update step to the prediction step. This formulation also requires that the state transition

matrix A be invertible, which is important when choosing the method of model reduction as described in

Sec. 3.6.

The use of the information matrix has multiple benefits when applied to an electric power system. 1)

When a subset of the state is unobservable due to removal of bad data, the corresponding elements of I(k)

may be set to zero to indicate that there is no information present for that element of the state. 2) The

formulation of the update step lends itself well to parallel processing. This is important as a power system

may have thousands of state variables and therefore the state estimation will have a large computational

load.

3.8.2 Performance Metric

The standard performance metric for the Kalman filter is the trace of the state error covariance matrix. This

trace is equal to the sum of the eigenvalues of the matrix, but more importantly it is equal to the sum of

the individual state error variances,

∑
k

Pkk = trace(P)

=
∑

k

λP
k
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=
∑

k

σ2
k (3.15)

where σ2
k is the variance of the kth state variable and λP

k is the kth eigenvalue of the matrix P. In the event

of an unobservable network state, this sum is undefined due to the error covariances of the unobservable

states being undefined. It is desirable to have a defined value for the performance metric even when the

network state is statically unobservable. Therefore an alternate metric is considered.

Consider the information matrix, Y. The information matrix has the property that when a state is

unobservable, the information for that state is zero. Thus, the trace of an information matrix
∑

k Ykk with

unobservable states will still be defined.

This metric provides an effective comparison against the performance of another state estimator that

estimate the full dynamic state. However, this is not directly useful for the purpose of comparing against a

state estimator that only estimates the network state as is the industry standard. It is therefore necessary to

extract a metric from the information matrix that is suitable for comparison to estimators that only estimate

the network state.

The dynamic state vector contains the network state δ within the first n − 1 elements and θ is defined

as the remaining state variables in x. The dynamic state x is therefore [δT , θT ]T . Given this method of

partitioning the state, the state error covariance matrix P can be written as follows

P =

 P[δδ] P[δθ]

P[θδ] P[θθ]

 = Y−1.

Considering the discussion above, the desired performance metric as it pertains to δ only is trace(P−1
[δδ]).

Applying the matrix inversion lemma [5],

P−1
[δδ] = Y[δδ] −Y[δθ]Y

−1
[θθ]Y[θδ] (3.16)

= Idynamic
[δδ] (3.17)

gives us the information matrix corresponding to δ, Idynamic
[δδ] that we desire. It should be noted that the

relationship between the full measurement matrix I and the portion corresponding to δ only is

I =

 I[δδ] I[δθ]

I[θδ] I[θθ]

 =

 I[δδ] 0

0 0

 (3.18)
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as the measurements do not directly affect any of the θ states.

The trace of Y has several properties such as:

∑
k

Ykk = trace(Y)

= trace(P−1)

=
∑

k

λY
k (3.19)

=
∑

k

1
λP

k

and =
∑

k

1
σ2

k

for diagonal Y,P (3.20)

The relationships in (3.15) and (3.20) are convenient as
∑

σ2
P and

∑
1/σ2

P can easily be calculated from

simulation.

Unfortunately, in the types of dynamic systems under study in this thesis, P is rarely diagonal, so this

relationship in (3.20) does not always hold. Therefore, instead of
∑

k Ykk we will use one of the byproducts

from (3.15) and (3.20), ∑
k

1
Pkk

=
∑

k

1
σ2

k

(3.21)

as our primary metric. This metric remains easily accessible from empirical data but retains the property

of remaining defined in the instance of unobservable states.

A comparison between the two metrics tr(Y) and
∑

1/σ2, is accomplished by analyzing their values

when applied to a simulated run of the IEEE 14-bus test system given in App. B. Plots of the metrics are

shown in Figs. 3.2 and 3.3. For readability, the natural logarithm of the metric is plotted.

Figure 3.2 shows plots of the expected values for each performance metric based on the Kalman filter

and information filter equations. We expect the numerical values to differ between the two metrics as the

state error covariance matrix is not diagonal. As expected, the values in the graph tr(Y) (upper plot) and∑
(1/σ2

i ) (lower plot) do differ. The trends between the two plots, however, are similar, i.e. a value that is

higher in one metric is higher in the other. The plot of the metric for the static state estimator (red line)

is constant and consistently below the dynamic estimators in both graphs. Similarly, the dynamic estimator

which makes use of additional load information (blue line) is consistently above the dynamic state estimator

which only uses the network measurements (green line).

The same trends and consistency between metrics are in Fig. 3.3 when applied to experimental data.

In this situation, a simulation of the IEEE 14-bus test system was run 50,000 times with random noise
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Figure 3.2: Comparison of expected performance metrics on the IEEE 14-bus test system.

corrupting the measurements and input. At each iteration the state error covariance matrix was calculated

and recorded. The respective performance metrics were then calculated by either inverting the matrix and

taking the trace (tr(Y)) or inverting the diagonal elements and taking the sum (
∑

(1/σi)).

3.8.3 Implementation

The dynamic state estimator is implemented as follows.

1. Process initial measurements through static network state estimator. The measurements are

passed to a static state estimator which evaluates the measurement vector to determine which states

are observable. It then uses a weighted minimum squared error minimization algorithm to estimate

the static state δ̂(0). This function also returns a vector indicating which states are observable and the

expected uncertainty Ī(0) (measurement information matrix) of the state vector estimate returned.

2. Initialize dynamic state and dynamic state error covariance matrix. The dynamic state
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Figure 3.3: Comparison of actual performance metrics on the IEEE 14-bus test system.
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estimate x̂(k/0) and dynamic state error covariance matrix P̂(k/0) are initialized as follows. The subset

of the dynamic state corresponding to the network state is initialized to be equal to the value returned

by the static state estimator. If additional initializing information regarding the initial value of the

dynamic state is available, it is also incorporated at this time. The remainder of the dynamic state

error covariance matrix is initialized to an arbitrarily large uncorrelated state error covariance matrix

to correspond to the uncertainty in the initial guess of the dynamic state.

3. Predict the dynamic state. Using the dynamic system model and knowledge of the driving inputs,

perform the dynamic estimation prediction step as described in Sec. 3.8.1. A value is calculated for

both the dynamic state predicted estimate x̄(k/k−1) and the error covariance P̄(k/k−1).

4. Process new measurements through static network state estimator. As new measurements

become available, process them through the static network state estimator to calculate a new static

estimate for the network state δ̂(k).

5. Update the dynamic state. Using the new output from the static state estimator δ̂(k) and Ī(k), a

correction to the dynamic state prediction is made. The result is an updated value for the dynamic

state estimate x̂(k/k) and dynamic state covariance matrix P̂(k/k) as described in Sec. 3.8.1.

6. Go to step 3.

As can be seen in step 4, using the output from the static network state estimator to be an input to the

information filter relieves us of the requirement to employ the more complicated nonlinear implementation

of the Kalman or information filter [6]. This also allows us to leverage off of the decades of research and

operation experience that has been invested into static network state estimation algorithms.

3.9 Conclusions

In this chapter we have shown that a dynamic model can be employed that couples together the dynamics of

components attached to an electric power network. Furthermore, the connectivity provided by that electric

network provides coupling between the dynamic systems to provide a model that accurately models the

dynamic and interactions of the full system. This model may be employed to allow dynamic state estimation

algorithms to be used in estimating the network state.
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Chapter 4

Evaluation of Dynamic Network State

Estimation

This chapter demonstrates the effectiveness of the dynamic network state estimation algorithms described

in Ch. 3. These algorithms were evaluated using Monte Carlo simulation implemented in MATLAB. The

algorithms were tested on the IEEE 14–bus (Fig. B.1) and IEEE 118–bus (Fig. B.2) test systems [17]

described in appendix B over a 250 second simulated transient.

4.1 Simplifying Assumptions

The following simplifications were established to ease in computation and modeling.

1. Real - Reactive power decoupling. Real Power P , and Reactive Power Q are primarily functions

of bus voltage angle δ and bus voltage magnitude V , respectively. Operational experience [50] and

academic literature [24, 30, 1] have shown that state estimation results using decoupled P − δ and

Q− V equations provide accurate results.

2. No Parallel Transmission Lines. Parallel transmission lines in the IEEE test systems have been

combined into single lines with the equivalent admittance of the two (or more) parallel lines. Reducing

the network model in this way removes ambiguity in calculating branch flows or interpreting the effect

of branch flow measurements on the network state. Individual branch flows can be calculated from the

consolidated line flows through a simple division in post processing.
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3. Bus One is the Reference Bus. The reference bus has been arbitrarily assigned to bus One for

each of the test systems. This has no effect on the accuracy of the result, only the reference value that

other angles are compared to. The effect of using any other bus as the reference can be achieved by

subtracting the angle of the new reference bus from all other bus angles. Alternatively, the buses could

be renumerated in order to set the desired reference bus to 1.

4. No Zero Injection Busses. All busses have been established with either a generator, synchronous

condenser, or a load. For the dynamic algorithms to work correctly, each bus must have some nonzero

value for its inertia. This could alternatively been accomplished by reducing the subnetwork containing

the zero-injection by replacing it with an equivalent network. The original line flows could then be

back-calculated from the results of the equivalent network in post-processing.

4.2 Simulation Test Data

Measurement data was generated using Matlab Simulink. The Simulink model (see App. B) implemented

the dynamic bus models described in Sec. 3.1. Line flows were calculated based on the decoupled P − δ

model where the real power flow is a function of bus angle difference only, Pij = imag(yij) sin(δi − δj) =

bij sin(δi − δj). For comparison purposes, linearized measurement data was also computed where the small

angle approximation is used so that Pij = bij(δi − δj).

For the IEEE 118-bus system, generators with time constants of 10 seconds for bus 69 and 5 seconds

for bus 89 were used. Synchronous condensers with time constants of 5 seconds were used on the remaining

PV Busses. Inertial loads with time constants of 1 second were applied to the remaining busses. For the

IEEE 14-bus system, generators with time constants of 10 seconds for bus 1 and 5 seconds for bus 2 were

used. Synchronous condensers with time constants of 5 seconds were used on the remaining PV Busses (3,

6, and 8). Inertial loads with time constants of 1 second were applied to the remaining busses. These time

constants represent typical time constants associated with real power systems [27].

The following load perturbation was simulated. On both the 118-bus and 14-bus systems, bus 3 was

subjected to a load increase from 0 to 0.2 p.u. at a ramp rate of 0.02 p.u. per sec. This load was held

constant for 30 seconds. The load then decreased from 0.2 p.u. to 0.1 p.u. at a ramp rate of -0.1 p.u. per

sec. This transient can be seen in Fig. 4.1.

The test systems were simulated for 251 seconds (0 to 250) with data collected each second. All the bus

real power injections and line real power flows were recorded as well as the loads and bus angles.
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Figure 4.1: Load transient for simulation.

These measurements were then corrupted with additive white Gaussian noise (AWGN) and fed into the

state estimation algorithms to evaluate their performance. At various times in the processing, situations are

introduced where different subsets of the full measurement vector are available. The four possibilities for the

measurement vector are as follows:

1. All measurements available. The full measurement vector including one measurement of each bus

real power injection and one measurement of each branch real power flow.

2. All injections available. The measurement vector consists of one measurement of each bus real

power injection.

3. All flows available. The measurement vector consists of one measurement of each branch real power

flow.

4. Most flows available. The measurement vector consists of one measurement of each branch real

power flow except for the branches connecting to bus 3, making that bus unobservable.

The state estimation algorithms were tested using two levels of simplifying assumptions regarding the

linearization of the network (as realized in Simulink) and were analyzed using linear algorithms perform the

static network state estimation. The specific methodologies employed were:

1. Linear Data - Linear Estimation. Data was generated using the linear approximation. The Static

State Estimation step of the Dynamic State Estimator was accomplished using a linear measurement

model. This was used as a test to verify the algorithms performed as expected and the results are

presented in Sec. 4.4.
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2. Nonlinear Data - Linear Estimation. Data was generated using the nonlinear measurements based

on the sine of the angle difference. The Static State Estimation step of the Dynamic State Estimator

was accomplished using a linear measurement model and the results are presented in Sec. 4.4.

4.3 Evaluation of Algorithms Using Linearized Test Data

Three methods of estimating the network state were evaluated:

1. Static Network State Estimation. The classic method of network state estimation in electric power

industry assumes that no correlation exists between measurements to each measurement snapshot is

estimated individually using a maximum likelihood method. The network state when estimated using

this method is denoted as δ̂(k).

2. Standard Dynamic Network State Estimation. The dynamic network state model discussed in

Ch. 3 is applied to a Kalman filter formulation. This method requires knowledge of the physical loads

at the buses. The network state when estimated using this method is denoted as δ̂(k/k).

3. Augmented Dynamic Network State Estimation. The dynamic model used in estimating δ̂(k/k)

is employed here except that knowledge of the physical loads is not available, thus this method uses

only the information available to the static network state estimator. This is known as augmented

because the dynamic state is augmented with the bus component mechanical loads to be estimated

in addition to the standard dynamic state. The network state when estimated using this method is

denoted as δ̂′(k/k).

The two performance metrics discussed in Sec. 3.8.2, the trace of the information matrix tr(Y) and the

sum of the inverse state variances,
∑

1/σi, are applied to evaluate the comparative performance of the

network state estimation methods above. The
∑

1/σi performance metric is an indication of the ability of

the estimator to track the network state directly. The tr(Y) performance metric gives an indication of the

overall cross correlation between network state estimates.

4.3.1 Network State Estimation Performance : 14-Bus Test System

Three curves are shown in the following graphs. The lowest (red) curve represents the performance of δ̂(k).

As expected, the performance of the static network state estimator is constant as long as the number of

measurements is constant. This is because the network state estimate is based only on the measurements

presently available to it at the present time.
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The middle (green) curve represents the performance of δ̂′(k/k). The performance of the augmented

dynamic network state estimator upon initialization is equal to that of the static network state estimator

as they are processing exactly the same set of measurements. As more measurements are processed, the

performance of the augmented dynamic network state estimator improves over the static network state

estimator as the dynamic component model allows information from the past measurements to contribute

to the new network state estimate.

The top (blue) curve represents the performance of δ̂(k/k). Similar to the augmented dynamic network

state estimator, the performance standard dynamic network state estimator is equal to that of the static

network state estimator. The performance immediately begins to improve as information about the bus loads

allows for prediction of the network state. As expected, the inclusion of the additional bus load information

as described in Sec. 3.4 allows for a further increase in performance above the augmented dynamic network

state estimator.

Figure 4.2 shows the expected value of tr(Y) and Fig. 4.3 shows the expected value of
∑

1/σi based on

the values of the respective state error covariance matrices from the Kalman filter equations. To improve

graph readability, the natural logarithm of the metric is plotted.

Figure 4.4 shows the empirical value of tr(Y) and Fig. 4.5 shows the empirical value of
∑

1/σi based on

a Monte Carlo simulation of the IEEE 14-bus test system simulated over 50,000 passes with random noise

corrupting the measurements and measurements of the physical bus loads (inputs).

The empirical and theoretical graphs track each other well. There are a few points of interest to identify:

1. For numerical stability, additional noise is introduced into the information matrix so that it will not

become singular. This is necessary to be able to invert it to retrieve the sum of inverse variances

performance metric during simulation. As such, the expected values for the performance metrics are

sometimes slightly lower than the experimental value.

2. The dip in performance at 150 seconds is due to a reduction in measurements. Only the 20 branch

flows are available from 150 to 170 seconds.

3. The dip in the experimental performance at 200 seconds is due to a reduction in measurements. Only

the 14 bus injections are available from 200 to 210 seconds.

4. A dip in performance of the dynamic estimator 10-20 seconds in Fig. 4.4 is due to the nonzero ramp

rate of the load at 0.02 p.u. per second. Another dip at 50-60 seconds is due to the ramping down

of the load at a rate of 0.01 p.u. per second. This is expected as the dynamic estimator assumes a

distribution of the ramp rate to have a mean of 0 p.u..
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Figure 4.2: Expected value of tr(Y) applied to IEEE 14-bus test system: Linear test data, normal load.

0 50 100 150 200 250
17.8

18

18.2

18.4

18.6

18.8

19

19.2

19.4

19.6

19.8

time (s)

lo
g(

Σ 
1/

σ2 i)

theoretical performance index

δ̂(k/k)

δ̂′(k/k)

δ̂(k)

Figure 4.3: Expected value of
∑

1/σi applied to IEEE 14-bus test system: Linear test data, normal load.
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Figure 4.4: Experimental value of tr(Y) applied to IEEE 14-bus test system: Linear test data, normal load.
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Figure 4.5: Experimental value of
∑

1/σi applied to IEEE 14-bus test system: Linear test data, normal
load.
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5. The trace of the information matrix has a larger overall value than the sum of the inverse variances.

This makes sense as the trace of the information matrix also incorporates information gathered from

the cross correlation of the state variables instead of only the state variable with itself.

6. The sum of inverse variances is more sensitive to reductions in the measurement vector and more

accurately indicates if increased errors of individual elements of the state estimate.

4.3.2 Network State Estimation Performance Under Heavy Load : 14-Bus Test

System

The network state estimation algorithms were also evaluated under heavier loading conditions. The load

transient was increased in magnitude by a factor of ten to give the load transient shown in Fig. 4.6.
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Figure 4.6: Heavy load transient (magnitude increased 10×) for simulation.

Figure 4.7 shows the expected value of tr(Y) and Fig. 4.8 shows the expected value of
∑

1/σi under the

heavy loading conditions.

The estimate δ̂′(k/k) relies on an estimate of the maximum load ramp rate to determine the optimal

weighting between the dynamic network state prediction and the static network state estimate. The heavy

load scenario has a ramp rate that is ten times that in the normal load scenario. This ramp rate is factored

into the Kalman filter as a larger covariance of the load noise. This heavier covariance leads to a lighter

weighting of the dynamic network state prediction and a heavier weighting of the static network state

estimate. Thus Figs. 4.7 and 4.8 show that the improvements of δ̂′(k/k) over δ̂(k) are reduced. Conversely, in

situations where the ramp rate is very small, the improvement of δ̂′(k/k) over δ̂(k) is expected to be larger.
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Figure 4.7: Expected value of tr(Y) applied to IEEE 14-bus test system: Linear test data, heavy load.
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Figure 4.8: Expected value of
∑

1/σi applied to IEEE 14-bus test system: Linear test data, heavy load.

47



0 50 100 150 200 250
19

19.5

20

20.5

21

21.5

22

22.5

time (s)

lo
g(

tr(
Y)

)

emperical information

δ̂(k/k)

δ̂′(k/k)

δ̂(k)

Figure 4.9: Experimental value of tr(Y) applied to IEEE 14-bus test system: Linear test data, heavy load.
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Figure 4.10: Experimental value of
∑

1/σi applied to IEEE 14-bus test system: Linear test data, heavy
load.
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Figure 4.9 shows the empirical value of tr(Y) and Fig. 4.10 shows the empirical value of
∑

1/σi under

heavy load conditions. Additional error is apparent due to the steeper ramp rate of the load, however we

would typically expect δ̂(k/k) to still track just as well since it is getting measurements of the input. To

understand why it is performing poorly we need to look back to Sec. 3.3 to see how the continuous time

model is discretized. The discretization of the continuous time dynamic model assumes that the input is

constant over the period between samples. As can be seen from the transient in Fig. 4.6 this is not the case.

To see what the performance would be if this assumption were true, the 14-bus network is simulated with

the input shown in Fig. 4.11 where a zero-order-hold is applied to the input so that the assumption is valid.
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Figure 4.11: Stepwise heavy load transient for simulation.

Figure 4.12 shows the empirical value of tr(Y) and Fig. 4.13 shows the empirical value of
∑

1/σi under

heavy stepwise (with zero-order-hold applied) load conditions. Here we can see in Figs. 4.12 and 4.13 that the

drop in experimental performance shown in Figs. 4.9 and 4.10 is gone now that the discretization assumptions

are true.

Comparatively, if we look at the performance with a transient with one tenth the magnitude we see the

following results. Figure 4.14 shows the expected value of tr(Y) and Fig. 4.15 shows the expected value of∑
1/σi under heavy light load conditions.

Figure 4.16 shows the empirical value of tr(Y) and Fig. 4.17 shows the empirical value of
∑

1/σi under

light load conditions. Here we see that the expected and experimental performance of δ̂′(k/k) shows a more

significant improvement over δ̂(k). This improvement is possible with both the expected and actual ramp

rate of the bus loads are small. The performance δ̂(k/k) shows a small improvement due to the effects of

converting the model to discrete time and the performance of δ̂(k) remain relatively compared to the normal
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Figure 4.12: Experimental value of tr(Y) applied to IEEE 14-bus test system: Linear test data, heavy
stepwise load.
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Figure 4.13: Experimental value of
∑

1/σi applied to IEEE 14-bus test system: Linear test data, heavy
stepwise load.
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Figure 4.14: Expected value of tr(Y) applied to IEEE 14-bus test system: Linear test data, light load.
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Figure 4.15: Expected value of
∑

1/σi applied to IEEE 14-bus test system: Linear test data, light load.
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Figure 4.16: Experimental value of tr(Y) applied to IEEE 14-bus test system: Linear test data, light load.
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Figure 4.17: Experimental value of
∑

1/σi applied to IEEE 14-bus test system: Linear test data, light load.
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Figure 4.18: Expected value of tr(Y) applied to IEEE 118-bus test system: Nonlinear test data, normal
load.

loading conditions.

4.3.3 Network State Estimation Performance : 118-Bus Test System

Figure 4.18 shows the expected value of tr(Y) and Fig. 4.19 shows the expected value of
∑

1/σi under normal

load conditions for nonlinear test data. Figure 4.20 shows the empirical value of tr(Y) and Fig. 4.21 shows

the empirical value of
∑

1/σi based on a Monte Carlo simulation of the IEEE 118-bus test system simulated

over 1,000 passes with random noise corrupting the measurements and measurements of the physical bus

loads (inputs).

A similar dip in performance of
∑

1/σi during the load transient is observed in these simulations, although

the degradation in δ̂(k/k) is observed at normal loads which were only significant with heavy loads on the

IEEE 14-bus system. As the error in the 14-bus system was due to discretization error, the performance

with a stepwise load was also evaluated for normal loads on the 118-bus test system.

Figure 4.22 shows the empirical value of tr(Y) and Fig. 4.23 shows the empirical value of
∑

1/σi with

the stepwise instead of the continuous load transient. As with the 14-bus system, the degradation disappears

indicating that the degradation was due to the discretization and not the increased size of the test system.
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Figure 4.19: Expected value of
∑

1/σi applied to IEEE 118-bus test system: Nonlinear test data, normal
load.
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Figure 4.20: Experimental value of tr(Y) applied to IEEE 118-bus test system: Linear test data, normal
load.
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Figure 4.21: Experimental value of
∑

1/σi applied to IEEE 118-bus test system: Linear test data, normal
load.
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Figure 4.22: Experimental value of tr(Y) applied to IEEE 118-bus test system: Linear test data, normal
stepwise load.
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Figure 4.23: Experimental value of
∑

1/σi applied to IEEE 118-bus test system: Linear test data, normal
stepwise load.

4.3.4 Network State Estimation Performance Under Heavy Load : 118-Bus

Test System

Figure 4.24 shows the empirical value of tr(Y) and Fig. 4.25 shows the empirical value of
∑

1/σi based

on a Monte Carlo simulation of the IEEE 118-bus test under heavy loading conditions. As expected, the

degradation in performance of
∑

1/σi during the transient is observed.

Figure 4.26 shows the empirical value of tr(Y) and Fig. 4.27 shows the empirical value of
∑

1/σi based on

a Monte Carlo simulation of the IEEE 118-bus test under heavy stepwise loading conditions. The degradation

in performance of
∑

1/σi during the transient once again disappears when the zero-order-hold assumption

of the model discretization process is met.

4.4 Evaluation of Algorithms using Nonlinear Test Data

In this section the same transients analyzed in Sec. are repeated but without using the linearized model

to create test data. The assumption of lossless lines is still applied, but the trigonometric small angle

approximation as described in Sec. 2.2 was not used. The formulation of the network state estimators is

the same so only the empirical data is presented as the expected values of the performance metrics are
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Figure 4.24: Experimental value of tr(Y) applied to IEEE 118-bus test system: Linear test data, heavy load.
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Figure 4.25: Experimental value of
∑

1/σi applied to IEEE 118-bus test system: Linear test data, heavy
load.
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Figure 4.26: Experimental value of tr(Y) applied to IEEE 118-bus test system: Linear test data, heavy
stepwise load.
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Figure 4.27: Experimental value of
∑

1/σi applied to IEEE 118-bus test system: Linear test data, heavy
stepwise load.
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unchanged.

4.4.1 Network State Estimation Performance : 14-Bus Test System

Figure 4.28 shows the empirical value of tr(Y) and Fig. 4.29 shows the empirical value of
∑

1/σi under

normal load conditions for nonlinear test data. The same performance trends were observed between the

three network state estimators as was observed with linear test data. Some small degradations in tr(Y)

were noted for δ̂(k/k), however the performance remained significantly above that of δ̂(k) or δ̂′(k/k). No other

significant changes in performance as compared to linear test data were observable.

4.4.2 Network State Estimation Performance : 118-Bus Test System

Figure 4.30 shows the empirical value of tr(Y) and Fig. 4.31 shows the empirical value of
∑

1/σi under

normal load conditions for nonlinear test data. The same performance trends were observed between the

three network state estimators as was observed with linear test data. No significant changes in performance

as compared to the linear test data were observable.

4.5 Evaluation of Dynamic Network State Estimation Algorithms

Using a Reduced Order Dynamic Model

To better understand the detail to which dynamic modeling must be accomplished in order to achieve

accurate dynamic network state prediction, the existing dynamic model for the IEEE 14-bus and 118-bus

test systems were simulated under varying degrees of model reduction. To reduce the model, singular value

decomposition (MATLAB command SVD) was used to reduce the dynamic state vector by a given number

of state variables. The IEEE 14-bus test system has 13 elements of the network state and 31 elements of

the dynamic state for δ̂(k/k) and 31+14=45 elements of the dynamic state for δ̂′(k/k). The IEEE 118-bus

test system has 117 elements of the network state and 239 elements of the dynamic state for δ̂(k/k) and

239+118=357 elements of the dynamic state for δ̂′(k/k).

Simulations employing the full model without any reductions in the dynamic state vector are shown in

Sec. 4.3.1 for the 14-bus system and Sec. 4.4.2 for the 118-bus system. The expected values of the performance

metrics tr(Y) and
∑

1/σi respectively are shown in Figs. 4.2 and 4.3 for the 14-bus system and Figs. 4.18

and 4.19 for the 118-bus system. The experimental values of the performance metrics are shown in Figs. 4.4

and 4.5 for the 14-bus system and Figs. 4.20 and 4.21 for the 118-bus system.
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Figure 4.28: Experimental value of tr(Y) applied to IEEE 14-bus test system: Nonlinear test data, normal
load.
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Figure 4.29: Experimental value of
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1/σi applied to IEEE 14-bus test system: Nonlinear test data, normal
load.
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Figure 4.30: Experimental value of tr(Y) applied to IEEE 118-bus test system: Nonlinear test data, normal
load.
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Figure 4.31: Experimental value of
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1/σi applied to IEEE 118-bus test system: Nonlinear test data, normal
load.

61



0 0.5 1 1.5 2 2.5 3 3.5 4
20.8

21

21.2

21.4

21.6

21.8

22

22.2

22.4

22.6
14-bus Performance vs. reduction in dynamic state vector

number of states removed

tr(
Y)

 

 
δ

(k/k)

δ'
(k/k)

δ
(k)

Figure 4.32: Average tr(Y) performance with reduced dynamic state modeling : 14-bus

As the expected values do not express the mismatch between reduced and full order modeling, only the

experimental results for the model reduction study will be presented. For comparison, we will consider the

average performance over the simulated time period from 80 to 150 seconds. During this time period the

initial load transient is complete and the full measurement vector is available.

Only minimal changes in the performance of δ̂′(k/k) are observed and no change in the performance of

δ̂(k) are observed as δ̂(k) is not affected by the dynamic model. Therefore, the following discussion will focus

on the performance of δ̂(k/k).

Figure 4.32 shows the tr(Y) performance metric and Fig. 4.33 shows the
∑

1/σi performance metric as

the state vector is reduced on the 14-bus system. Only minimal degradation in performance is apparent for

tr(Y) whereas
∑

1/σi drops significantly with the third dropped state. With a fourth dropped state, the∑
1/σi performance drops below that of δ̂(k).

A potential explanation for this drop is due to the fact that only two generators are modeled, each with

four state variables. If we assume that the generator is sufficiently modeled with three state variables, we may

shed one state variable from each generator model without incurring significant degradation in performance.

Figure 4.34 shows the tr(Y) performance metric and Fig. 4.35 shows the
∑

1/σi performance metric

as the state vector is reduced on the 118-bus system. As expected, the
∑

1/σi performance metric shows
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Figure 4.34: Average tr(Y) performance with reduced dynamic state modeling : 118-bus
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Figure 4.35: Average
∑

1/σi performance with reduced dynamic state modeling : 118-bus

degradation with increased reduction of the dynamic state vector. The degradation occurs in steps at 16

states and again at 20 and 21.

Similar to the 14-bus system, two generators are modeled. As such, we would normally expect to

see significant degradation in performance at the third reduction in state. Also surprisingly, the tr(Y)

performance metric actually increases with the reductions in the state vector. This is potentially an indication

that the network state variables are becoming more highly cross correlated.

4.6 Conclusions

In this chapter we have shown that that significant improvements in network state estimation accuracy

can be achieved through an improved measurement model incorporating bus component dynamics. Further

improvements can also be acheived by incorporating the additional information of the loads or load forecasts

at the buses. Furthermore, use of the complete physics-based model may not be necessary as this chapter

has shown that significant improvements in accuracy are still achievable if the the dynamic state of the full

model is reduced by several elements.
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Chapter 5

Bad Data

Bad data is an unavoidable fact of life when dealing with measurements in power systems applications

[4, 50]. The bad data preprocessor is employed to identify and exclude bad data from the set of telemetered

measurements prior to processing by the network state estimator. The high likelihood that some data will

be missing or erroneous necessitates the use of a bad data preprocessor for a network state estimator to be

useful in real applications.

5.1 Introduction

Bad data detection and identification is a tricky process that has caused difficulties in static network state

estimator operation since algorithms were first employed in the late 1960’s [50, 40, 41]. The results of the

bad data preprocessor are used not just to improve the state estimation result, but also to identify locations

of malfunctioning equipment, improper maintenance, and other problems [50]. Thus, it is important that

the bad data identification be both accurate and robust.

As described in Sec. 2.4, the detection and identification of bad data is both challenging, and very

important to the state estimation process. The difficulty is compounded in the use of the static state

estimation formulation in that no a priori distribution is available to compare against. When trying to

identify a bad measurement from a static state estimate, the state estimate is skewed by the presence of the

bad data. An a priori estimate of the state provides a dataset for comparison that is not skewed by the bad

data, and therefore, the bad data should be more easily distinguishable from the remaining measurements.

When employing dynamic state estimation techniques, three estimates of the network state are available
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based on the various sources of state information. The static network state estimate, δ̂(k) is calculated from

the measurements, z̃(k), and the measurement model alone. The dynamic network state prediction,δ̂(k/k−1)

(a sub-vector of the full dynamic state prediction, x̂(k/k−1)), is an a priori estimate calculated from the

previous dynamic state estimate, x̂(k−1/k−1), the dynamic model, and the input. The dynamic network state

estimate, δ̂(k/k) (a sub-vector of the full dynamic state estimate, x̂(k/k)), is an a posteriori estimate that

incorporates the information contained in both δ̂(k) and x̂(k/k−1).

This chapter presents new methods using the dynamic estimates of the network state (the dynamic a

priori state estimate δ̂(k/k−1) and the dynamic a posteriori state estimate δ̂(k/k)) and calculates how each

may be used to improve the processes of detecting the existence and locations of bad data over existing

methods that use the statically estimated network state, δ̂(k). The performance of the new detection and

identification methods are compared to the static methods currently employed in the electric power industry.

An analysis of the computational load of each of the algorithms is also included.

In addition to finding and removing bad data from the measurement vector, we note that the removal of

measurements can directly affect the static observabilty of the network. An analysis of the static and dynamic

observability is also included and the benefits of dynamic state estimation as they pertain to network state

observability are discussed.

5.2 Static Bad Data Detection and Identification

Existing methods for bad data detection require that an initial run of the least squares minimization be

completed before any tests for bad data can be accomplished. This initial estimate of the static network

state is compared to the measurements, via a Chi square (χ2) test, to determine if the existence of bad data

is likely. Ideally, the χ2 is implemented as,

Step 1: estimate δ̂ δ̂(k) = argminδ(h(δ)− z̃(k))T V−1(h(δ)− z̃(k))

Step 2: χ2 test (h(δ̂(k))− z̃(k))T V−1(h(δ̂(k))− z̃(k)) ≥ ηs

where ηs is the test threshold for the static bad data detector [1]. As discussed in Section 2.4.1, the Chi

square test measures how likely it is that a statistic corresponds to a multivariate normal distribution with

nZ −nδ (or nZ − (nB −1)) degrees of freedom and noise that is randomly distributed with less than or equal

to the assumed variance. The null hypothesis states that the measurement error distribution conforms to
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the assumed noise levels; the bad data hypothesis states that this assumption is violated. Therefore, if the

test statistic above exceeds ηs, the bad data hypothesis is accepted.

The initial value for the threshold ηs is chosen based on either a desired confidence level or false alarm

rate. For example, if the null hypotheses states that the distribution of the measurements corresponds to

our measurement model, employing a 95% confidence interval we would only reject the null hypothesis 5%

of the time in the absence of bad data (i.e., a false alarm condition). When bad data exists, the distribution

is unknown and the miss rate cannot be calculated directly. Therefore, we will base our threshold on the

false alarm rate only.

For the 95% confidence interval, the threshold ηs would then be chosen such that the integral of the

expected probability distribution function would equal 0.95, or

0.95 = 1− Pfalse alarm =
∫ ηs

−∞
p.d.f.H0

(x)dx.

Since the number of degrees of freedom depends on of the number of measurements [49], the threshold must

be recalculated as the size of the measurement vector changes due to bad data, configuration changes, etc.,

to maintain a constant false alarm rate (CFAR). The corresponding value for ηs can easily be calculated by

using the MATLAB command CHI2INV.

5.2.1 Static Bad Data Uncertainty

Successful implementation of the bad data detection preprocessor requires an accurate understanding of

the estimated measurement error z̃ − h(δ̂). To accurately perform a χ2 test, the individual measurement

errors must be independent identically distributed (i.i.d.) random variables. This is the case with the actual

measurement error z̃ − h(δ), however since the static network state estimate δ̂(k) is calculated from the

measurements z̃(k) = h(δ(k)) + v(k) at the same snapshot, the assumption of independence is violated.

In order to force the estimated measurement errors to be uncorrelated, the measurement error can be

normalized through use of the estimated measurement error covariance matrix,

V̂(k/•) = E

[(
z̃(k) − h(δ̂(k/•))

) (
z̃(k) − h(δ̂(k/•))

)T
]

(5.1)

The χ2 test statistic can be represented as

η(k/•) =
(
z̃(k) − h(δ̂(k/•))

)T

V̂−1
(k/•)

(
z̃(k) − h(δ̂(k/•))

)
. (5.2)
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Using the linearized approximation of h(δ) = Hδ, and recalling that δ̂(k) = Ψ(k)HT V−1z̃(k) from (2.1)

and Ψ(k) = (HT V−1H)−1 from (2.2) , the measurement estimate is

h(δ̂) = Hδ̂

= HΨ(k)HT V−1z̃(k)

= H(HT V−1H)−1HT V−1z̃(k)

= K<H,V>z̃(k) (5.3)

where K<H,V> = H(HT V−1H)−1HT V−1 is the projection operator projecting z̃ onto the weighted subspace

H,V [1, 49]. The estimated measurement error is therefore

z̃ − h(δ̂) = z̃ −Hδ̂

= z̃ −K<H,V>z̃(k)

= (I−K<H,V>) z̃(k) (5.4)

(I−K<H,V>) is known as the residual sensitivity matrix and represents the sensitivity of the measurement

residuals to the measurement errors [1]. The K<H,V> and (I − K<H,V>) matrix exhibits the following

properties

K<H,V>K<H,V> = (H(HT V−1H)−1HT V−1)(H(HT V−1H)−1HT V−1)

= H(HT V−1H)−1HT V−1

= K<H,V>

(I−K<H,V>)(I−K<H,V>) = I− 2K<H,V> + K<H,V>K<H,V>

= I− 2K<H,V> + K<H,V>

= I−K<H,V>
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K<H,V>VKT
<H,V> = (H(HT V−1H)−1HT V−1)V(H(HT V−1H)−1HT V−1)

= H(HT V−1H)−1HT V−1VV−1H(HT V−1H)−1HT

= H(HT V−1H)−1HT V−1H(HT V−1H)−1HT

= H(HT V−1H)−1HT

=
(
H(HT V−1H)−1HT V−1

)
V

= K<H,V>V

(I−K<H,V>)V(I−K<H,V>)T = V −VKT
<H,V> −K<H,V>V + K<H,V>VKT

<H,V>

= V −K<H,V>V −K<H,V>V + K<H,V>V

= (I−K<H,V>)V

If V is diagonal, K<H,V> and (I−K<H,V>) are symmetric.

Using these properties, the V̂ matrix can be expressed as

V̂(k) = E[(z̃ − h(δ̂(k)))(z̃ − h(δ̂(k)))T ]

= E[((I−K<H,V>)z̃)((I−K<H,V>)z̃)T ]

= E[((I−K<H,V>)v)((I−K<H,V>)v)T ]

= (I−K<H,V>)E[vvT ](I−K<H,V>)T

= (I−K<H,V>)V(I−K<H,V>)T

= (I−K<H,V>)V. (5.5)

5.2.2 Static Bad Data Detection Implementation

In order to make the estimated measurement errors, z̃(k)−h(δ̂(k/•)), uncorrelated for the χ2 test, we need to be

able to invert V̂(k/•). Inversion of V̂(k/•) is not always possible as (I−K<H,V>) is rank deficient unless there

are at least twice as many measurements as network states. The standard method of overcoming this difficulty

is to settle for an approximation of the χ2 distribution. A typical bad data preprocessor implementation
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approximates a true χ2 test by assuming that the estimated measurement error is uncorrelated [1]. Further,

we assume that the estimated measurement error is distributed identically to the original measurement error.

The χ2 test statistic, η at time (k) would therefore be calculated as

η =
∑
i=nz

(
z̃i(k) − hi(δ̂(k))

)2

σ2
ii

(5.6)

and therefore be available regardless of the number of measurements available [1]. This approximation has

the potential to over or under estimate η however, so an additional threshold is employed to prevent the

inadvertent identification of good measurements as bad data.

5.2.3 Static Bad Data Identification Implementation

Once bad data is detected, the bad elements of the measurement vector must be removed to eliminate their

detrimental effect on the state estimate. To be removed, the bad elements of the measurement vector must

first be identified. This identification is typically accomplished through normalized residual analysis. The

weighted residuals are the estimated measurement error ẑ(k)−h(δ̂(k/•)) normalized by the standard deviation

of the expected noise, σi. The most likely candidate for the bad datum is the weighted residual with the

largest magnitude. That is

i = max
i∈Nbus

z̃i(k) − hi(δ̂(k/•))
σii

(5.7)

will identify an index i corresponding to the measurement that is most likely corrupted. When the measure-

ment model is nonlinear, this cannot always be guaranteed to be effective [49].

The index identified in (5.7) is then checked to see if its residual is larger than the minimum residual for

detection. Requiring that the residual be larger than this threshold (typically 3σi) reduces the likelihood of

a false positive.

Instead of relying solely on the measurement residuals calculated from the static network state estimate

δ̂(k), the following sections propose that the residuals may be computed from information produced in

the process of dynamic network state estimation; specifically the dynamic a priori network state estimate

δ̂(k/k−1), and the dynamic a posteriori network state estimate δ̂(k/k) to achieve improved network state

estimation performance.
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5.3 Dynamic A Priori Estimate Based Bad Data Detection and

Identification

When employing the dynamic state estimation techniques described in Section 3.8, a value for the network

state δ̂(k/k−1) based on the dynamic a priori state estimate x̂(k/k−1) is readily available prior to the gathering

of the next set of network measurements. This a priori estimate can be used to perform an initial check for

bad data. Using the a priori estimate for bad data detection is advantageous in at least two ways:

1. The a priori estimate δ̂(k/k−1) is not corrupted by noise v(k) applied to the new measurement so that

the smearing effect described in Ch. 2 is non-existent for this initial bad data check.

2. The initial bad data check can be performed without first processing the measurements through the

static network state estimator. Thus computational effort need not be wasted on the grossly inaccurate

data that can be caught by this initial bad data check.

The predicted network state δ̂(k/k−1) is a subset of the predicted dynamic state x̂(k/k−1) and can be

extracted from the estimate vector by use of a selection matrix S. An initial χ2 test,

(
h(δ̂(k/k−1))− z̃(k)

)T

V̂−1
(k/k−1)

(
h(δ̂(k/k−1))− z̃(k)

)
≥ ηd (5.8)

can now be performed on the predicted network state to filter out the worst of the bad data with minimal

computation. The test threshold, ηd is a separate threshold for this pre-check and may have a different false

alarm rate based on the level of model and dynamic input uncertainty. A smaller dynamic false alarm rate

may be desirable in order to avoid inadvertently throwing out good data. Missing some instances of bad

data with the predictive bad data preprocessor is acceptable because we know that the traditional bad data

detector will likely detect the missed bad data if this initial check doesn’t.

The same methodology applies to both the dynamic and the static χ2 thresholds, ηd and ηs respectively.

In normal operation, the threshold value may periodically be adjusted to change its sensitivity to bad data

(i.e.,increase or decrease the false alarm rate) as the system conditions evolve over time [48, 2].

5.3.1 Dynamic A Priori Bad Data Detection Uncertainty

The variance of the dynamic prediction for the state is can be larger than the variance of the static estimate

due to the process noise and lack of a measurement update. The variances of the dynamic predicted mea-

surement error (z̃(k) − h(δ̂(k/k−1))) for the dynamic network state prediction (V̂(k/k−1)) and static network
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state estimate (V̂(k)) are given by:

V̂(k/k−1) = E[(z̃ − h(δ̂(k/k−1)))(z̃ − h(δ̂(k/k−1)))T ]

= E[(H(δ) + v(k) −H(δ̂(k/k−1)))(H(δ) + v(k) −H(δ̂(k/k−1)))T ]

= E[(H(δ − δ̂(k/k−1)))(H(δ − δ̂(k/k−1)))T ] + 2E[(H(δ − δ̂(k/k−1)))vT
(k)] + E[v(k)v

T
(k)]

= HΨ(k/k−1)HT + V (5.9)

= HP[δ](k/k−1)HT + V

= H(AP[(k−1/k−1)AT + Q(k−1))[δ]HT + V (5.10)

Looking at the dynamic measurement error variance, V̂(k/k−1), we can see in (5.9) that the error covari-

ance is a function of the dynamic network state error covariance Ψ(k/k−1) and the measurement noise V(k).

Since δ̂(k/k−1) is calculated from previous measurements z̃(k−1) and the previous state estimate x̂k−1/k−1

but not the new measurements z̃(k), the dynamically estimated measurement noise h(δ̂(k/k−1))−h(δ(k)) and

the actual measurement error z̃(k)−h(δ(k)) are not correlated. The removal of this correlation indicates that

smearing will not be a significant problem and identification of bad data in z̃(k) should be less difficult.

5.3.2 Dynamic A Priori Bad Data Identification

Due to its structure, V̂(k/k−1), it is typically invertible so that a true χ2 test (5.8) can be performed to detect

bad data. To save on computation, however, the χ2 approximated test from Sec. 5.2.2 can alternatively be

performed. The same analysis of weighted residuals that was used for the static bad data identification, (5.7),

can be applied here using the predicted state to estimate what the measurements will likely be z̃−h(δ̂(k/k−1)).

Analysis of these residuals offers the benefit of a network state estimate that is unaffected by smearing.

The residual calculated from the static network state estimate can then be used to confirm the bad data

identification performed using the dynamic network state estimate.

Identification of the specific measurements in error is accomplished by analyzing the weighted measure-

ment residuals (z̃i − hi(δ̂))/σii. Specifically, the maximum weighted residual will be flagged as bad data.

This weighted residual will then be compared against a identification threshold to verify that the error is

sufficiently large to merit a bad data identification. If the error is sufficiently large, that measurement is

removed from the measurement vector and the χ2 test is repeated until no further measurements are flagged

as bad data.
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5.4 Dynamic A Posteriori Estimate Based Bad Data Detection

and Identification

Another way that bad data may potentially be detected is to make use of the dynamic a posteriori estimate

of the static state, δ̂(k/k). The dynamic a posteriori estimate is an optimal combination of the static network

state estimate δ̂(k) and the dynamic a priori estimate network state δ̂(k/k−1). The Kalman gain at time

(k) provides the optimal weighting factor (K(k)) so that the dynamic a posteriori network state estimate is

calculated as

δ̂(k/k) = δ̂(k/k−1) + K(k)

(
δ̂(k) − δ̂(k/k−1)

)
=

(
I−K(k)

)
δ̂(k/k−1) + K(k)δ̂(k). (5.11)

This dynamic a posteriori estimate for the network state may be used to further improve the bad data

detection process. Due to the weighting of the Kalman gain, the smearing effect is reduced so that a check

for bad data may be able to detect bad data where the static bad data preprocessor could not. A weighted

residual test can once again be used to identify and remove the bad data from the measurement vector.

Once done, δ̂(k) can be recalculated with the reduced measurement vector and re-incorporated into δ̂(k/k−1)

with minimal effort as the K(k) and (I−K(k))δ̂(k/k−1) terms in (5.11) remain unchanged.

5.4.1 Dynamic A Posteriori Bad Data Detection Uncertainty

Again, we need to determine the variance of the dynamic a posteriori estimated measurement error, z̃(k) −

h(δ̂(k/k). First we inspect the error in more detail and note that

z̃ − h(δ̂(k/k−1)) = Hδ + v(k) −H(δ̂(k/k))

= Hδ + v(k) −H((I−K(k))δ̂(k/k−1)) + K(k)δ̂(k/k))

= Hδ + v(k) −H(I−K(k))δ̂(k/k−1) −HK(k)(HT V−1H)−1HT V−1z̃

= Hδ + v(k) −H(I−K(k))δ̂(k/k−1) −HK(k)Ψ(k)HT V−1(Hδ + v(k))

=
(
I−HK(k)Ψ(k)HT V−1

)
(Hδ + v(k))−H(I−K(k))δ̂(k/k−1)

=
(
I−HK(k)Ψ(k)HT V−1

)
v(k) +

(
H−HK(k)Ψ(k)HT V−1H

)
δ −H(I−K(k))δ̂(k/k−1)

=
(
I−HK(k)Ψ(k)HT V−1

)
v(k) + H

(
I−K(k)

)
δ −H(I−K(k))δ̂(k/k−1)
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=
(
I−HK(k)Ψ(k)HT V−1

)
v(k) + H

(
I−K(k)

)
(δ − δ̂(k/k−1)). (5.12)

Using the result of (5.12), the dynamic a posteriori estimated measurement error covariance matrix V̂(k/k)

is found to be

V̂(k/k) = E[(z̃ − h(δ̂(k/k−1)))(z̃ − h(δ̂(k/k)))T ]

= E[(
(
I−HK(k)Ψ(k)HT V−1

)
v(k) + H

(
I−K(k)

)
(δ − δ̂(k/k−1)))

(
(
I−HK(k)Ψ(k)HT V−1

)
v(k) + H

(
I−K(k)

)
(δ − δ̂(k/k−1)))T ]

= (I−HK(k)Ψ(k)HT V−1)V(I−HK(k)Ψ(k)HT V−1)T

+H(I−K(k))Ψ(k/k−1)(I−K(k))T HT

= V + H(I−K(k))Ψ(k/k−1)(I−K(k))T HT

−H(K(k)Ψ(k) + Ψ(k)KT
(k))H

T + HK(k)Ψ(k)KT
(k)H

T

= V + H(I−K(k))Ψ(k/k−1)(I−K(k))T HT

+H
(
(I−K(k))Ψ(k)(I−K(k))−Ψ(k)

)
HT .

= V + H
(
(I−K(k))(Ψ(k/k−1) + Ψ(k))(I−K(k))−Ψ(k)

)
HT . (5.13)

We see that this expression looks a lot like (5.9) with some additional terms to account for the added

correlation that is incurred when incorporating the static network state estimate.

5.4.2 Dynamic A Posteriori Bad Data Identification

Measurement residuals can be calculated by analyzing the difference between the measurements and the

measurement estimates as calculated from the dynamic network state estimate, z̃ − h(δ̂(k/k)). Now that we

have V̂(k/k) we can attempt to detect and identify bad data in the measurements using the χ2 and weighted

residual methods described above. As the dynamic network state estimate uses information from the static

network state estimate, we are subject to smearing effects but this effect is reduced by also incorporating

the dynamic prediction of the network state.

This final dynamic network state estimate δ̂(k/k) is effectively the optimal linear combination of the static

network state estimate δ̂(k) and the predicted dynamic network state estimate δ̂(k/k−1). As such, it has the

minimum expected variance from the true state δ(k). Use of this estimate to calculate measurement residuals

potentially results in a more sensitive detector of bad data, but like the static network state estimator, may

74



also be potentially susceptible to smearing. This method is also the most computationally intensive of the

bad data identification methods described here.

5.5 Evaluation

Three methods for detecting and identifying bad data have been presented in sections 5.2 through 5.4:

1. Static estimation: z̃ − h(x̂(k)) : Use only the measurements in the present snapshot to detect and

identify bad data. This is the existing method used in industry and performs reasonably well but is

subject to smearing, which may hide bad data.

2. Dynamic a priori estimation: z̃− h(x̂(k/k−1)) : Use only the predicted network state to screen for

bad data. This method relies on having an accurate model of the temporal behavior of the network

and attached components to calculate a good prediction and will tend to miss bad data or flag good

data as bad if the prediction is inaccurate. Predicting the network state adds additional computational

load but is automatically calculated if a dynamic estimator is in use. This method is not subject to

smearing.

3. Dynamic a posteriori estimation: z̃−h(x̂(k/k)) : Use information from both the predicted network

state and the static network state estimate. This method should be very effective as the dynamic

network state estimate error should be the minimum. This is the most computationally intensive

method, but suffers minimum effects from smearing.

The bad data detectors are compared as follows. The magnitude of the error contributing to the bad

datum is increased. As the error increases, the point at which each algorithm (static and dynamic detection)

detect the bad data is recorded. This provides an estimate of both the false alarm rate and miss rate. A

state estimator set to monitor an operating network would record this data so that operators could use it to

tune ηs and ηd to achieve the desired performance.

When first initialized, only the static bad data detector is employed to look for bad data. The dynamic a

priori estimate based bad data detector is unavailable as no a priori information is available. The The dy-

namic a posteriori estimate based bad data detector only has information from the first set of measurements

and therefore offers no advantages over the static bad data detector.
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5.5.1 Evaluation Under Specific Bad Data Scenarios

For a single run of the 250-second simulated scenario, the following instances of bad data are explored. In

each case an error is added on top of a noisy injection measurement. The leftmost column of tables 5.1

and 5.2. indicates the magnitude of the additional measurement error in standard deviations. For example,

for a value of 4 in the leftmost column indicates that an error four times the standard deviation of the

expected error is added to the measurement. The remaining columns indicate how many instances of bad

data were detected and identified. For example, 4/6 indicates that four instances of bad data were detected

and identified of the six instances injected into the measurement vector.

1. One injection is a bad datum: For the 14-bus test system, the error is added at bus 4; for the

118-bus test system, the error is added at bus 49.

2. One flow is a bad datum: An additional measurement error is added on top of a noisy flow

measurement. For the 14-bus test system, the error is added to the line connecting buses 2 and 4. For

the 118-bus test system, the error is added to the line connecting buses 50 and 49.

3. Two flows are bad data: The flow errors indicated above are introduced. In addition, a second

error is added to a second flow affecting the same bus, but with one half the error magnitude. For

the 14-bus test system, the second flow error is added to the line connecting buses 3 and 4. For the

118-bus test system, the second flow error is added to the line connecting buses 51 and 49.

Table 5.1 summarizes the comparative performance of the dynamic prediction based bad data filter, the

static estimate based bad data filter, and the dynamic estimate based bad data filter. These algorithms are

applied to the IEEE 14-bus test system which has 20 flows and 14 injections for measurements.

Dynamic Prediction Static Estimate Dynamic Estimate
σ 1 injection 1 flow 2 flows 1 injection 1 flow 2 flows 1 injection 1 flow 2 flows
3 0/3 0/3 1/6 0/3 0/3 1/6 1/3 3/3 2/6
4 0/3 1/3 2/6 0/3 1/3 5/6 2/3 3/3 4/6
5 0/3 3/3 4/6 0/3 3/3 6/6 3/3 3/3 6/6
6 0/3 4/6 1/3
7 1/3 4/6 1/3
8 2/3 5/6 1/3
9 3/3 6/6 2/3
10 3/3

Table 5.1: Bad data detected by method (95% confidence interval) on 14-bus system

The static estimate based bad data filter performs as well as the others at detecting a single corrupted

flow measurement. The dynamic prediction based filter shows improved performance over the static filter at
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detecting a single corrupted injection measurement but is less effective at detecting multiple corrupted flow

measurements. The dynamic estimate based bad data filter showed improvements over both the dynamic

prediction based filter (for one corrupted injection) and the static estimate based filter (for two corrupted

flows). The ability of the three bad data filters to detect a single flow error was identical.

Table 5.2 summarizes the comparative performance of the three preprocessor as applied to the IEEE

118-bus test system which has 180 flows and 118 injections for measurements. When applied to a larger test

system, the static estimate based bad data filter performs better than the dynamic prediction based filter in

all three categories. The dynamic estimation based bad data filter shows improved likelihood of detecting

bad data over the static estimate based filter in all three categories.

Dynamic Prediction Static Estimate Dynamic Estimate
σ 1 injection 1 flow 2 flows 1 injection 1 flow 2 flows 1 injection 1 flow 2 flows
3 0/3 0/3 0/6 0/3 0/3 1/6 0/3 1/3 0/6
4 0/3 0/3 0/6 0/3 0/3 2/6 0/3 2/3 2/6
5 0/3 0/3 0/6 0/3 0/3 2/6 2/3 2/3 3/6
6 0/3 0/3 0/6 0/3 1/3 2/6 2/3 2/3 4/6
7 0/3 0/3 0/6 0/3 1/3 2/6 3/3 3/3 4/6
8 0/3 0/3 1/6 0/3 1/3 3/6 4/6
9 0/3 0/3 1/6 0/3 1/3 4/6 4/6
10 0/3 0/3 1/6 0/3 3/3 4/6 4/6
11 0/3 0/3 2/6 2/3 4/6 4/6
12 0/3 1/3 3/6 2/3 4/6 4/6
13 0/3 1/3 3/6 2/3 4/6 4/6
14 2/3 2/3 3/6 3/3 6/6 6/6
15 2/3 3/3 3/6
16 3/3 3/6
17 4/6
18 4/6
19 4/6
20 4/6
21 5/6
22 6/6

Table 5.2: Bad data detected by method (95% confidence interval) on 118-bus system

The performance of a bad data filter using both the dynamic predicted network state and the static

estimated network state independently for detecting bad data demonstrated results comparable with the

bad data filters working individually when tested on the IEEE 14-bus test network (Table 5.3) and on the

IEEE 118-bus test network (Table 5.4). This implies that the dynamic predicted filter and static filter tend

to detect the same errors rather than separate instances. More importantly, this indicates that the dynamic

estimate based filter detects and identifies instances of bad data that both the dynamic predicting filter and

the static estimating filter miss.
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Combined Predicted and Static
σ 1 injection 1 flow 2 flows
3 0/3 0/3 3/6
4 0/3 1/3 5/6
5 0/3 3/3 6/6
6 1/3
7 1/3
8 2/3
9 3/3

Table 5.3: Bad data detected by combination of predicted and static (95% confidence interval) on 14-bus
system

Combined Predicted and Static
σ 1 injection 1 flow 2 flows
4 0/3 0/3 2/6
5 0/3 0/3 2/6
6 0/3 1/3 2/6
7 0/3 1/3 3/6
8 0/3 1/3 3/6
9 0/3 1/3 4/6
10 0/3 3/3 4/6
11 2/3 4/6
12 2/3 4/6
13 2/3 4/6
14 3/3 6/6

Table 5.4: Bad data detected by combination of predicted and static (95% confidence interval) on 118-bus
system
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Figure 5.1: Bad data detector performance for individual flow errors on IEEE 14-bus system

The data in tables 5.1 through 5.4 are shown in Figs. 5.1 through 5.6.

5.5.2 Evaluation Under Random Bad Data Scenarios

For a multiple runs of the bad data detection system (50,000 for the 14-bus system, 5,000 for the 118-bus

system), a single instances of bad data was injected onto a random measurement. These simulations were

run with the normal stepwise loading as described in Sec. 4.3.3 to provide a high accuracy in the a priori

network state estimates. The magnitude of the additional error begins at 0 and is increased in increments of

0.1σ up to 10σ, where σ is the expected standard deviation of the measurement noise. The fraction of times

that the bad data is detected and identified was recorded. The measurement vector for the 14-bus system

has 14 injections and 20 flows, the 118-bus system has 118 injections and 180 flows.

Table 5.5 lists the network state estimates available for use in bad data detection. Figure 5.7 shows the

relative detection fraction for the various state estimates when evaluated on the 14-bus system. Figure 5.8

shows the relative detection fraction for the various state estimates when evaluated on the 118-bus system.

The red curve on both plots represents the static network state estimation based bad data detector. This

is the method used in industry and will be the baseline for comparison. It shows a general trend of higher

likelihood of detection as the magnitude of the corrupting bad data increases.
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Figure 5.2: Bad data detector performance for individual injection errors on IEEE 14-bus system
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Figure 5.3: Bad data detector performance for pairwise flow errors on IEEE 14-bus system
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Figure 5.4: Bad data detector performance for individual flow errors on IEEE 118-bus system
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Figure 5.5: Bad data detector performance for individual injection errors on IEEE 118-bus system
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Figure 5.6: Bad data detector performance for pairwise flow errors on IEEE 118-bus system

The augmented network state estimate (both a priori δ̂′(k/k−1) and a posteriori δ̂′(k/k)) use the same

measurement information as the static but makes use of additional component modeling information to

perform the estimation dynamically. The a priori estimate rarely detects the bad data on the 14-bus system

and doesn’t appear to detect it at all on the 118-bus system. As the a priori detection has a relatively

low computational cost (effectively just calculation of the χ2 statistic and a comparison) it may still be

worthwhile to use this as a prefilter to catch bad data in order to save computational cost when employing

the static bad data detection algorithms later. The a posteriori bad data detector shows a small improvement

over the static bad detector but does so at increased computational load.

The standard network state estimate (both a priori δ̂(k/k−1) and a posteriori δ̂(k/k)) use the same mea-

surement information as the static but in addition factors in information regarding the exogenous inputs at

the bus components. These additional measurements plus the component modeling information is used to

perform the estimation dynamically. Both the a priori and a posteriori bad data detectors show a significant

improvement over the static bad data detector. The a priori bad data detector shows improved detection up

to about 6 standard deviation of corrupting noise; the a posteriori bad data detector shows a small improve-

ment in detection over the a priori at values larger than 6 standard deviations. These results indicate that

the standard a priori network state estimate δ̂(k/k−1) based bad data detector provides the best performance

82



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

magnitude of Bad Data (σ)

ra
te

 o
f d

et
ec

tio
n

Bad Data detection by method : 14-bus

 

 
δ

(k)

δ
(k/k)

δ
(k/k-1)

δ'
(k/k)

δ'
(k/k-1)

Figure 5.7: Bad data detection fraction vs error magnitude : 14-bus.

when accurate dynamic modeling is possible.

Estimation method
Dynamic model Static Dynamic a priori Dynamic a posteriori
Standard δ̂(k) δ̂′(k/k−1) δ̂′(k/k)

Augmented δ̂(k) δ̂(k/k−1) δ̂(k/k)

Table 5.5: Network state estimates used for bad data detection.

5.6 Bad Data and Observability

5.6.1 Static Observability of the Network State

When network state estimation is performed statically, the state estimation result is entirely dependent on

a single snapshot of information. This effect is compounded when bad data are detected and removed from

the measurement vector [2]. The removal of these bad data may cause portions of the network to become

unobservable. In the event that the full network state is not fully observable from this information, some

elements of the network state will be unknown and unusable.

An estimator attempting to estimate unobservable states will typically either run into numerical in-
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Figure 5.8: Bad data detection fraction vs error magnitude : 118-bus.

stabilities or waste time calculating nonsensical values. Therefore it is important to identify the list of

unobservable states and remove them from the estimation problem. Two primary methods are typically

employed to identify the list of unobservable states: matrix factorization and nodal analysis [1, 26].

For a linear system, static observability can be determined by calculating the rank of the measurement

Jacobian matrix. In a fully observable system, the rank will be equal to the number of states. The matrix

factorization method works by stepping through the columns of the measurement Jacobian and only adding

states that, when included, increase the rank of the Jacobian. For example, consider the first n columns of

the measurement Jacobian. The rank of these columns together have a rank equal to n. When the n + 1st

column is added, if the rank is now equal to n+1 then we know this state is observable. If the rank is still n,

then the n + 1st state variable is not observable and should not be included in the state estimation problem

[32].

Nonlinear systems for which the factorization method is insufficient may be analyzed using nodal analysis.

The nodal analysis method relies on the P − V and Q − δ decoupling to navigate through a network. An

initial observable state is chosen based on the available measurements. Starting from this state, additional

states are added to the list of observable states if sufficient measurements exist to determine the relationship

between the already identified observable states and the new state. For example, a measurement of real
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power flow can define the voltage angle difference between two busses. This process continues until no more

states can be added.

In severe situations of unobservability, rather than removing a small subset of unobservable states, it

may be necessary to identify two or more observable islands in a sea of unobservable states [31, 26].

5.6.2 Dynamic Observability of the Network State

When dynamic state estimation is employed, additional information is available to the state estimator in

the form of the state prediction. The state estimator incorporates the information from the predicted state

and the measurements (by way of the static state estimate) to calculate an estimate for the state that is

more accurate than either independently. In effect, the state prediction is corrected or updated through

the incorporation of new information from the measurements. When a state is statically unobservable, the

covariances associated with that state are undefined. Normally, incorporating undefined state information

would cause difficulties, however the information filter is formulated in such a way that it is able to effectively

incorporate this new information even in unobservable conditions.

When the situation arises where portions of the network are statically unobservable, no correction data

are available to correct the predicted dynamic state. The weighting factor used to incorporate the new data

is zero for the unobservable states so that the dynamic state estimate is just the dynamic predicted state

without an update [2]. The information filter automatically keeps track of the information associated with

the entire dynamic state and can be used to identify when the variance of the statically unobservable portion

become too large to be useful. Thus, instead of losing information as soon as an unobservable condition is

present, the information filter exhibits a more graceful degradation in the state estimate. Thus, the dynamic

state estimator provides more information under more situations than the static network state estimator

alone.

Certain requirements need to be met regarding the dynamic model for the bus components for this

graceful degradation to be achieved.

1. The bus component dynamic model must be observable from the network injection information asso-

ciated with that bus.

2. Estimates or direct measurements of the bus injection must be available for sufficient time to fully

observe the dynamic bus component state.

The dynamic observability of a dynamic model can be determined by inspection the observability Gramian
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matrix. The Gramian matrix,

G(Ai,Ci) =



C

CA

CA2

...

CA(nxi
−1)


(5.14)

is composed of the output matrix C and the state transition matrix A (3.6) and (3.7). In order to be

dynamically observable, the rank of the Gramian must not be less than the number of dynamic states at

that bus, nxi . If the Gramian is rank deficient, only part of the bus component’s dynamic state will be

observable. Specifically, the number of observable states will be the rank of the G(Ai,Ci).

5.7 Conclusions

This chapter presents two new methods of detecting and identifying bad data in the measurement vector

and provided a comparison of those techniques to the existing methods of detecting bad data.

The dynamic network state estimate (both a priori and a posteriori provided an alternate method to

detect bad data which are either free of smearing or have a much reduced effect of smearing respectively.

Also addressed in this chapter are the effects on network state observability achieved by incorporating a

dynamic network state estimator. It has been shown that the network state may still be usable when the

dynamic network state prediction is calculated even though the network state may not be statically observ-

able. Further study is warranted to determine how many estimate cycles can elapse without measurement

updates for a specific element of the network state before the information associated with that state become

unusable due to increased error.
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Chapter 6

Conclusions

Steady increases in electric power usage have demanded higher and higher performance from the power

transmission networks. The capacity of these power transmission network has not increased at a pace

to match these demands so that more transmission capacity must be achieved through smarter operation.

Smarter operation can only be achieved through providing more accurate and robust information to operators

and equipment. This thesis has demonstrated several contributions which may lead the way to the necessary

improvements in accuracy and robustness needed to meet our ever increasing energy needs.

6.1 Contributions

This thesis has described and evaluated new algorithms by which the modeling of component dynamics

attached to buses in an electric power network can improve the estimation of the network state. These

algorithms have been demonstrated on the IEEE 14-bus and IEEE 118-bus test systems through extensive

Monte Carlo simulations.

Dynamic Estimation Accuracy. Chapter 4 described and evaluated methods by which the employ-

ment of the dynamic network state estimation algorithms developed herein may improve the accuracy of

the network state estimate an electric power network. Estimation using the same measurements available

to the static estimator but also modeling the bus dynamics (δ̂′(k/k)) offers modest potential gains over static

estimation, but maintains those gains even when the model is reduced by several orders. Estimation using

the additional information of bus loads or load forecasts along with modeling of the bus dynamics (δ̂(k/k))

offers significant potential increases in the performance of the network state estimator but suffers degradation
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when a reduced order dynamic model is employed.

Model Reduction. Chapter 3 described and Ch. 4 evaluated methods by which the model used in the

dynamic network state estimation algorithms may be reduced in order to mitigate the additional computa-

tional load required to employ the dynamic network state estimation algorithms.

Bad Data Detection and Identification. Chapter 5 described and evaluated methods by which the

employment of the dynamic network state estimation algorithms developed herein may improve the detection

and identification of bad data on an electric power network.

Observability. Chapter 5 also described the effects on network observability resulting from the employ-

ment of the dynamic network state estimation algorithms developed herein may improve the accuracy of the

network state estimate an electric power network.

6.2 Further Research

Observable degradation in the performance of the dynamic network state estimator δ̂(k/k) was observed due

to continuous time changes in bus loads but discrete time assumptions regarding the modeling of compo-

nents at the buses. In essence, the model discretization process assumed a zero-order-hold is applied to

the loads. Significant improvements to the performance of the dynamic network state estimator may be

achieved through improved methods of discretization of the continuous time models which do not rely on

this zero-order-hold assumption. Some possibilities include: alternate methods of continuous time model

discretization, incorporating both the load and its rate of change to approximate a first-order-hold, or using

load forecasting information to predict the future state of the bus load to enable higher order modeling.

The dynamic a priori network state estimation based bad data filter did not demonstrate improvements

over in bad data detectability over the static network state estimation base bad data filter when using

the default parameters. Careful adjustment of the detection threshold (χ2 confidence interval) and the

identification threshold (minimum weighted residual for identification) for both the IEEE 14-bus and the

IEEE 118-bus test systems allowed the dynamic network state prediction based bad data filter to achieve

comparable performance to the static network state estimate based bad data filter. An algorithm could

potentially be developed to analyze a network and determine the optimal values for these two thresholds.

The dynamic a posteriori network state estimation based bad data filter demonstrated consistent im-

provements in bad data detectability over the static network state estimation based bad data filter. While

computationally more intense than the existing method, proper caching of data can minimize the additional

computation load to a small number of matrix multiplications.
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The degree to which a network dynamic model may be reduced before significant degradation in perfor-

mance was determined experimentally at significant computational cost. The network periodically changes

due to various lines and other equipment being brough into and out of service. This analysis would need to

be performed for each likely network configuration to make the dynamic model reduction techniques useful

when applied to a real system. The development of a method to determine the state reduction threshold via

model analysis would be necessary.
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Appendix A

Terminology and Notation

In the respective fields of electric power and control, the meaning of the word state has a very important

difference. For electric power, the system in question is assumed to be static and state refers to the vector

of complex phasor voltages at each bus. In this thesis, I consider only the phasor angle and refer to it as the

network state, δ. For control, the system in question is dynamic by definition and state refers to the set of

variables that describe the present condition of the dynamics. In this thesis, I refer to the dynamic state as

x which includes the network state δ among its state variables. The following additional notation is defined

and are used throughout this dissertation.

A.1 Network Notation

Bus Numbers

nB : Number of busses

NB : List of busses, NB = {{1}, ..., {nB}}

nL: Number of lines

NL: List of bus connectivity, NL = {{i1, j1}, ..., {inL
, jnL

}}

NLi
: Subset of List NL including only lines connecting to bus i

nZ : Number of measurements

nU : Number of inputs
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Power

PE : Vector of injections at all busses

PEi
: Injection at bus i

PEBi
: Injection at bus i, i ∈ NB

PEij : Flow on a line from bus i to bus j

PELk
: Flow on line k ∈ NL

Phasor Voltage

~Vi : Complex phasor voltage at bus i, ~Vi = Vi 6 δi = Vi(cos(δi) + j sin(δi))

Vi : Voltage magnitude at bus i

δi : Voltage angle difference between bus i and the reference bus (typically bus 1), δi = δabs
i − δabs

ref

δ : Vector of all voltage angles δi, excluding the reference bus

δij : Voltage angle difference between bus i and bus j, δij = δi − δj

Admittance

yij : Complex admittance on the line from bus i to bus j, i 6= j. Reciprocal of impedance zij

yij = yji = gij + jbij ,

bij : Susceptance, component of admittance, inverse of reactance, xij

gij : Conductance, component of admittance, inverse of resistance rij

Y : Complex admittance matrix for a network, Y = G + jB

Yi : ith row of Y

Yij : Element at position {i, j} of Y

Yii =
∑

{i,j}∈NL
−yij

Yij = yij∀{i, j} ∈ NL, 0 otherwise.

Yij = Gij + jBij .

A.2 Estimation Notation

Modifiers

•(k) : Sub k : Value at time k
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•(k/l) : Sub k, l : Value at time k given information available up to and including time l

•(k/•) : Sub k, bullet : Value at time k, independent of method (static, dynamic a priori, dynamic a posteriori

) of calculation.

•(i) : Super i : Value after the ith iteration

• : No modifier : True value

•̂ : Hat : Estimated value, also •̂(k/k) for dynamic and •̂(k) for static

•̄ : Bar : Predicted value, also •̂(k/k−1)

•̃ : Tilde : Value corrupted with additive white Gaussian noise (AWGN).

E.g., z̃ = z + v where v is AWGN.

•[v] : Sub bracket v : Subset of vector or matrix corresponding to vector v

State

xi : Bus dynamic state: Vector of the state of the dynamic system at bus i

x : Dynamic state: Concatenation of all bus state vectors, [xT
1 ,xT

2 , ...,xT
n ]T

δ : The network state represented as a vector of all voltage angles δi, excluding the reference bus. Subset of

the dynamic state.

θ : The non-network state. The subset of the dynamic state that does not comprise the network state.

nx: Number of dynamic state variables

nxi
: Number of dynamic state variables at a bus

nδ: Number of angles (i.e., network states). Typically nB − 1.

Network State Estimate

δ̂(k): Static network state estimate. The classic method of processing a single snapshot of data to estimate

the network state in a maximum likelihood manner.

δ̂′(k/k): Augmented dynamic network state estimate. This method estimates the state using dynamic modeling

of the components attached to the buses to provide additional information while using the same measurements

available to the static network state estimate.

δ̂(k/k): Standard dynamic network state estimate. This method estimates the state using dynamic model-

ing of the components attached to the buses and measurements of the mechanical loads applied to these

components.

δ̂(k/•): Network state estimate independent of calculation method.
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State error covariance

P: Covariance of x− x̂

Y: Information matrix, Y = P−1

σk: Variance of xk. Also Pkk

Q: Covariance of process noise

Ψ: Covariance of δ − δ̂

Ψ(k) is the same static state error covariance matrix (HV−1HT )−1

Ψ(k/k) is the δ portion of the P(k/k) matrix or P[δ](k/k)

Measurements / Inputs

zk : Measurement number k

z : Vector of all measurements

h(δ) : Measurement as a function of δ

z̃′ : Raw measurement vector containing bad data

ui : Vector of input at bus i

u : Vector of all inputs

Γ : Vector of quasi-static outside power injections

Measurement / Input Noise

v: Vector of White Gaussian Noise affecting the measurements

V: Covariance matrix of v

w: Vector of White Gaussian Noise affecting the inputs

W: Covariance matrix of w
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Appendix B

Test Networks

The following standard IEEE test systems were used to evaluate the algorithms described in this dissertation.

The IEEE 14-bus test system (Fig. B.1) has 14 buses and 20 branches. The IEEE 118-bus test system (Fig.

B.2) has 118 buses and 186 branches. The IEEE 118-bus test system was modified to consolidate parallel

lines so that the system used in simulations has 180 instead of 186 branches.

Figure B.1: IEEE 14-bus test system
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102



Appendix C

Matlab Code Listing - Test Data

Generation

C.1 fourteen bus vars.m

1 %function [ output args ] = threebus vars( input args )

2 %THREEBUS VARS Summary of this function goes here

3 % Detailed explanation goes here

4

5 % Pe isi positive real power injected into

6 % the network at a bus

7

8 % 24 April: correct problem with bus2δ

9

10 net=pl pti23Net('g14bus.raw')

11 for i=1:length([net.branch.R])

12 net.branch(i).R=0; % make it lossless

13 end

14 swing=net.swing;

15 n branch=length([net.branch]);

16 n bus=length([net.bus]);

17 susceptance=1./[net.branch.X]';

18 connectivity=full(sparse([1:n branch,1:n branch]',[net.branch.i, net.branch.j]',...
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19 [−ones(n branch,1);ones(n branch,1)],n branch,n bus));

20 bus2δ=full(sparse([2:2:2*n bus]',[1:n bus]',ones(n bus,1),2*n bus,n bus));

21 bus2Dδ=(bus2δ*connectivity')';

22 δminusref=...

23 [ [eye(swing−1) , −ones(swing−1,1),zeros(swing−1, n bus−swing)];...

24 % [zeros(1,swing−1), −1, zeros(1,n bus−swing−1)];...

25 [zeros(n bus−swing,swing−1), −ones(n bus−swing,1),eye(n bus−swing)]]

26 bus2omega=full(sparse([2:2:2*n bus]'−1,[1:n bus]',ones(n bus,1),2*n bus,n bus));

27

28

29 %Sbase (MVA)

30 Sb=100;

31

32 %−−−−−−− Generator 1 −−−

33 %Load response to frequency 1% to 1.5% change in load for 1% change in

34 %frequency

35 D=1.5;edit

36 %Turbine time constant 0.2 to 0.3 sec

37 T ch1=0.2;

38 %Droop characteristic 4% to 5%

39 R1=0.05;

40 %Rate Limits 0.1 pu/s opening, −1.0 pu/s closing

41 Lco=0.1;

42 Lcc=−1.0;

43 %Generator inertia constant 10sec

44 M1=10

45 %Governor: Tg=0.2 K=1/(R*Tg)

46 K1=1/(0.2*R1);

47 % x=[DeltaA, DeltaPm, DeltaOmega, δ]T

48 %BUS 1

49 A1=[ −K1*R1, 0, K1, 0 ;

50 T ch1, −T ch1, 0, 0 ;

51 0 , −1/M1, −D/M1, 0;

52 0 , 0, 1, 0];

53 B1=[ 0 0 ;

54 1 0 ;

55 0 −1/M1 ;

56 0 0 ];

57 C1=[zeros(2),eye(2)];
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58 D1=zeros(2);

59

60

61 %−−−−−−− Generator 2 −−−

62 %BUS 2

63 T ch2=0.3;

64 R2=0.04;

65 M2=5

66 K2=1/(0.2*R2);

67 A2=[ −K2*R2, 0 , K2, 0 ;

68 T ch2, −T ch2, 0, 0 ;

69 0 , −1/M2 ,−D/M2, 0;

70 0 , 0 , 1, 0];

71 B2=[ 0 0 ;

72 1 0 ;

73 0 −1/M2 ;

74 0 0 ];

75 C2=[zeros(2),eye(2)];

76 D2=zeros(2);

77

78 %−−−−−−− Synchronous Condenser −−−

79

80 %BUSES 3,6,8

81 Msc=5

82 Asc=[ −D/Msc 0 ;

83 1 0];

84 Bsc= [ −1/Msc, −1/Msc;

85 0 , 0 ];

86 Csc=eye(2);

87 Dsc=zeros(2);

88

89 %−−−−−−− Load −−−

90 %BUSES 4,5,7,9,10,11,12,13,14

91 %x3=[omega3, δ3]T

92

93 M3=1

94 A3=[ −D/M3 0 ;

95 1 0];

96 B3= [ −1/M3, −1/M3;
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97 0 , 0 ];

98 C3=eye(2);

99 D3=zeros(2);

100

101 %−−−−−− Combined system −−−−−−

102

103 n δ=14; %number of busses and therefore number of δs

104

105 n x=0; %number of dynamic states so far

106 A combined=[]; % SE A matrix

107 B combined=[]; % set B matrix

108 A sim=[]; % simulink A matrix

109 B sim=[]; % simulink B matrix

110 C sim=[]; % simulink C matrix

111 M δ=[]; % mask of δs

112 M omega small=[]; %mask of omegas prior to adding δs

113

114 for(i=1:14)

115 switch(i)

116 case{1}

117 %Generator 1

118 Aaa=A1(1:3,1:3); % A matrix minus δ

119 Bbb=B1(1:3,:); % B matrix minus δ

120 Aaaa=A1;

121 Bbbb=B1;

122 Cccc=[0 0 1 0; 0 0 0 1];

123 M omega small=[M omega small, 0 0 1 ];

124 n x=n x+3;

125 case{2}

126 %Generator 2

127 Aaa=A2(1:3,1:3);

128 Bbb=B2(1:3,:);

129 Aaaa=A2;

130 Bbbb=B2;

131 Cccc=[0 0 1 0; 0 0 0 1];

132 M omega small=[M omega small, 0 0 1 ];

133 n x=n x+3;

134 case{3,6,8}

135 %SC 1 (bus 3, 6, 8)
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136 Aaa=Asc(1,1); % synchronous condenser, only has intertia

137 Bbb=Bsc(1,:);

138 Aaaa=Asc;

139 Bbbb=Bsc;

140 Cccc=[ 1 0; 0 1];

141 M omega small=[M omega small, 1 ];

142 n x=n x+1;

143 otherwise % load (4, 5, 7, 9 − 14)

144 Aaa=A3(1,1);

145 Bbb=B3(1,:);

146 Aaaa=A3;

147 Bbbb=B3;

148 Cccc=[ 1 0; 0 1];

149 M omega small=[M omega small, 1 ];

150 n x=n x+1;

151 end

152 % combined is the matrix that is used for KF

153 A combined=[A combined, zeros(size(A combined,1),size(Aaa,2)); ...

154 zeros(size(Aaa,1),size(A combined,2)), Aaa];

155 B combined=[B combined, zeros(size(B combined,1),size(Bbb,2)); ...

156 zeros(size(Bbb,1),size(B combined,2)), Bbb];

157 % combined is the matrix that is used for simulink simulation

158 A sim=[A sim, zeros(size(A sim,1),size(Aaaa,2));zeros(size(Aaaa,1),size(A sim,2)), Aaaa];

159 B sim=[B sim, zeros(size(B sim,1),size(Bbbb,2));zeros(size(Bbbb,1),size(B sim,2)), Bbbb];

160 C sim=[C sim, zeros(size(C sim,1),size(Cccc,2));zeros(size(Cccc,1),size(C sim,2)), Cccc];

161 end

162

163 M omega=[M omega small zeros(1,n bus−1)]; %mask of omega locations

164 [i,j,s]=find(sparse(M omega));

165 [m,n]=size(M omega);

166 M omega2 small=full(sparse(1:length(i),j,s));

167 M omega2=full(sparse(1:length(i),j,s,n bus,n)); %omega selection matrix from dynamic state

168

169 M δ=[zeros(size(M omega small)),ones(1,n bus−1)];

170 [i,j,s]=find(sparse(M δ));

171 M δ2=full(sparse(1:length(i),j,s)); %δ selection matrix from dynamic state

172

173 M δ not=ones(size(M δ))−M δ; %mask of all but δ

174 [i,j,s]=find(sparse(M δ not));
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175 M δ not2=full(sparse(1:length(i),j,s,n−n bus+1,n));%selection matrix of everything but δ

176

177 A combined δ=δminusref*M omega2 small;

178 A combined=[A combined;A combined δ];

179 A combined=[A combined,zeros(size(A combined,1),n bus−1)]; % A matrix, uses δ(n−1) vice δ(n)

180

181 B combined=[B combined; zeros(n bus−1,size(B combined,2))];

182 n x=n x+(n bus−1);

183

184 Pe multiplex= full(sparse([1:n bus]*2,[1:n bus],ones(1,n bus),2*n bus,n bus));

185 input multiplex=full(sparse([1:n bus]*2−1,[1:n bus],ones(1,n bus),2*n bus,n bus));
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C.2 oneoneeight bus vars.m

1 %function [ output args ] = oneoneeight vars( input args )

2 %

3 % This function puts together the data structures necessary to run the

4 % Simulink simulation of the 118 bus test system.

5

6 % Pe isi positive real power injected into

7 % the network at a bus

8

9 % 20 Feb 2011: convert from 14 bus to 118 bus

10

11 net=pl pti23Net('118BUSnoTXnoParallelQlimhigh.23')

12 for i=1:length([net.branch.R])

13 net.branch(i).R=0; % make it lossless

14 end

15 % force the swing bus to be bus 1

16 net.swing=1;

17 swing=net.swing;

18 n branch=length([net.branch]);

19 n bus=length([net.bus]);

20 susceptance=1./[net.branch.X]';

21 connectivity=full(sparse([1:n branch,1:n branch]',[net.branch.i, net.branch.j]', ...

22 [−ones(n branch,1);ones(n branch,1)],n branch,n bus));

23 bus2δ=full(sparse([2:2:2*n bus]',[1:n bus]',ones(n bus,1),2*n bus,n bus));

24 bus2Dδ=(bus2δ*connectivity')';

25 δminusref=...

26 [ [eye(swing−1) , −ones(swing−1,1),zeros(swing−1, n bus−swing)];...

27 % [zeros(1,swing−1), −1, zeros(1,n bus−swing−1)];...

28 [zeros(n bus−swing,swing−1), −ones(n bus−swing,1),eye(n bus−swing)]]

29 bus2omega=full(sparse([2:2:2*n bus]'−1,[1:n bus]',ones(n bus,1),2*n bus,n bus));

30

31

32 %Sbase (MVA)

33 Sb=100;

34

35 %−−−−−−− Generator 1 −−− (swing bus, #69)

36 gen1idx=[69];
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37 %Load response to frequency 1% to 1.5% change in load for 1% change in

38 %frequency

39 D=1.5;

40 %Turbine time constant 0.2 to 0.3 sec

41 T ch1=0.2;

42 %Droop characteristic 4% to 5%

43 R1=0.05;

44 %Rate Limits 0.1 pu/s opening, −1.0 pu/s closing

45 Lco=0.1;

46 Lcc=−1.0;

47 %Generator inertia constant 10sec

48 M1=10

49 %Governor: Tg=0.2 K=1/(R*Tg)

50 K1=1/(0.2*R1);

51 % x=[DeltaA, DeltaPm, DeltaOmega, δ]T

52 %BUS 1

53 A1=[ −K1*R1, 0, K1, 0 ;

54 T ch1, −T ch1, 0, 0 ;

55 0 , −1/M1, −D/M1, 0;

56 0 , 0, 1, 0];

57 B1=[ 0 0 ;

58 1 0 ;

59 0 −1/M1 ;

60 0 0 ];

61 C1=[zeros(2),eye(2)];

62 D1=zeros(2);

63

64

65 %−−−−−−− Generator 2 −−− (bus 89)

66 gen2idx=[89];

67 %BUS 2

68 T ch2=0.3;

69 R2=0.04;

70 M2=5

71 K2=1/(0.2*R2);

72 A2=[ −K2*R2, 0 , K2, 0 ;

73 T ch2, −T ch2, 0, 0 ;

74 0 , −1/M2 ,−D/M2, 0;

75 0 , 0 , 1, 0];
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76 B2=[ 0 0 ;

77 1 0 ;

78 0 −1/M2 ;

79 0 0 ];

80 C2=[zeros(2),eye(2)];

81 D2=zeros(2);

82

83 %−−−−−−− Synchronous Condenser (remaining generator busses) −−−

84 scidx=setxor([gen1idx,gen2idx],[net.gen.I]);

85

86 %BUSES 3,6,8

87 Msc=5

88 Asc=[ −D/Msc 0 ;

89 1 0];

90 Bsc= [ −1/Msc, −1/Msc;

91 0 , 0 ];

92 Csc=eye(2);

93 Dsc=zeros(2);

94

95 %−−−−−−− Load −−−

96 loadidx=setxor([1:118],[net.gen.I]);

97 %x3=[omega3, δ3]T

98

99 M3=1

100 A3=[ −D/M3 0 ;

101 1 0];

102 B3= [ −1/M3, −1/M3;

103 0 , 0 ];

104 C3=eye(2);

105 D3=zeros(2);

106

107 %−−−−−− Combined system −−−−−−

108

109 n δ=118; %number of busses and therefore number of δs

110

111 n x=0; %number of dynamic states so far

112 A combined=[]; % SE A matrix

113 B combined=[]; % set B matrix

114 A sim=[]; % simulink A matrix
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115 B sim=[]; % simulink B matrix

116 C sim=[]; % simulink C matrix

117 M δ=[]; % mask of δs

118 M omega small=[]; %mask of omegas prior to adding δs

119

120 for(i=1:n δ)

121 switch(i)

122 case{gen1idx}

123 %Generator 1

124 Aaa=A1(1:3,1:3); % A matrix minus δ

125 Bbb=B1(1:3,:); % B matrix minus δ

126 Aaaa=A1;

127 Bbbb=B1;

128 Cccc=[0 0 1 0; 0 0 0 1];

129 M omega small=[M omega small, 0 0 1 ];

130 n x=n x+3;

131 case{gen2idx}

132 %Generator 2

133 Aaa=A2(1:3,1:3);

134 Bbb=B2(1:3,:);

135 Aaaa=A2;

136 Bbbb=B2;

137 Cccc=[0 0 1 0; 0 0 0 1];

138 M omega small=[M omega small, 0 0 1 ];

139 n x=n x+3;

140 case{scidx}

141 %SC

142 Aaa=Asc(1,1); % synchronous condenser, only has intertia

143 Bbb=Bsc(1,:);

144 Aaaa=Asc;

145 Bbbb=Bsc;

146 Cccc=[ 1 0; 0 1];

147 M omega small=[M omega small, 1 ];

148 n x=n x+1;

149 otherwise % load

150 Aaa=A3(1,1);

151 Bbb=B3(1,:);

152 Aaaa=A3;

153 Bbbb=B3;
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154 Cccc=[ 1 0; 0 1];

155 M omega small=[M omega small, 1 ];

156 n x=n x+1;

157 end

158 % combined is the matrix that is used for KF

159 A combined=[A combined, zeros(size(A combined,1),size(Aaa,2)); ...

160 zeros(size(Aaa,1),size(A combined,2)), Aaa];

161 B combined=[B combined, zeros(size(B combined,1),size(Bbb,2)); ...

162 zeros(size(Bbb,1),size(B combined,2)), Bbb];

163 % combined is the matrix that is used for simulink simulation

164 A sim=[A sim, zeros(size(A sim,1),size(Aaaa,2));zeros(size(Aaaa,1),size(A sim,2)), Aaaa];

165 B sim=[B sim, zeros(size(B sim,1),size(Bbbb,2));zeros(size(Bbbb,1),size(B sim,2)), Bbbb];

166 C sim=[C sim, zeros(size(C sim,1),size(Cccc,2));zeros(size(Cccc,1),size(C sim,2)), Cccc];

167 end

168

169 M omega=[M omega small zeros(1,n bus−1)]; %mask of omega locations

170 [i,j,s]=find(sparse(M omega));

171 [m,n]=size(M omega);

172 M omega2 small=full(sparse(1:length(i),j,s));

173 M omega2=full(sparse(1:length(i),j,s,n bus,n)); %omega selection matrix from dynamic state

174

175 M δ=[zeros(size(M omega small)),ones(1,n bus−1)];

176 [i,j,s]=find(sparse(M δ));

177 M δ2=full(sparse(1:length(i),j,s)); %δ selection matrix from dynamic state

178

179 M δ not=ones(size(M δ))−M δ; %mask of all but δ

180 [i,j,s]=find(sparse(M δ not));

181 M δ not2=full(sparse(1:length(i),j,s,n−n bus+1,n));%selection matrix of everything but δ

182

183 A combined δ=δminusref*M omega2 small;

184 A combined=[A combined;A combined δ];

185 A combined=[A combined,zeros(size(A combined,1),n bus−1)]; % A matrix, uses δ(n−1) vice δ(n)

186

187 B combined=[B combined; zeros(n bus−1,size(B combined,2))];

188 n x=n x+(n bus−1);

189

190 Pe multiplex= full(sparse([1:n bus]*2,[1:n bus],ones(1,n bus),2*n bus,n bus));

191 input multiplex=full(sparse([1:n bus]*2−1,[1:n bus],ones(1,n bus),2*n bus,n bus));
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C.3 Simulink diagram for 14-bus system
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C.4 fourteen bus grab data.m

1 %% threebus reduced−order SE

2 %

3 % This MATLAB script uses information generated by the

4 % simulnk threebus2.mdl system and threebus vars.m script

5 % file to perform state estimation on a simulated electric

6 % power system.

7 %

8 % The simulink model uses a decoupled real−power only solution

9 % (assumes voltage magnitudes==1) and that real power flow is

10 % P 12=G sin(d1−d2) (note, this assumption makes current and power

11 % effectively interchangeable).

12 %

13 % The state estimator uses the same assumptions except that

14 % the small angle assumption is used to linearize the trig

15 % functions in the power flow equation.

16 %

17 % Data from the simulink model is in the following form:

18 %

19 % time: nx1 array

20 % simout t.signals.values

21 %

22 % state (th1, th2, th3, d12, d13): nx5 array

23 % simout x.signals.values

24 %

25 % input (PL): nx1 array

26 % simout PL.signals.values

27 %

28 % measurements (Pi): n x n bus array

29 % Pe is positive real power injected into the network at the bus

30 % simout Pe.signals.values

31 %

32 % transmission lines in service: nx1 array

33 % enable x ≥ 0, disable x<0 (generally +/− 1)

34 % simout line enable.signals.values

35

36 time=simout t.signals.values;
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37 enable=simout line enable.signals.values;

38 Pe=simout Pe.signals.values;

39 Pl=simout PL.signals.values;

40 Pf=simout Pf.signals.values;

41 x true=simout x.signals.values;

42 %simout x.signals.values

43

44 %sample the data

45

46 clear data

47

48 Ts=1;

49 k max=max(time);

50

51 data.time(1)=0;

52 k=1;

53 data.time(1)=time(1);

54 data.enable(1,:)=enable(1,:);

55 data.Pe(1,:)=Pe(1,:);

56 data.Pl(1,:)=Pl(1,:);

57 data.x true(1,:)=x true(1,:);

58

59 for index=1:length(time);

60 if(time(index) ≥ floor(data.time(k))+Ts)

61 k=k+1;

62 data.time(k)=time(index);

63 data.enable(k,:)=enable(index,:);

64 data.Pe(k,:)=Pe(index,:);

65 data.Pl(k,:)=Pl(index,:);

66 data.Pf(k,:)=Pf(index,:);

67 data.x true(k,:)=x true(index,:);

68 end

69 end

70

71

72 save SE14data 10 5 5 1 (10 linear nos yesi).mat data

73 save SE14params 10 5 5 1.mat A combined B combined M omega M δ ...

74 M omega2 M δ2 M δ not2 bus2Dδ bus2δ ...

75 δminusref bus2omega
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76 save SE14network.mat net
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Appendix D

Matlab Code Listing - Data Analysis

D.1 oneoneeight SE7 info matrix.m

1 %% oneoneeight reduced−order SE

2 %

3 % This MATLAB script uses information generated by the

4 % simulnk oneoneeightbus.mdl system and threebus vars.m script

5 % file to perform state estimation on a simulated electric

6 % power system.

7 %

8 % The simulink model uses a decoupled real−power only solution

9 % (assumes voltage magnitudes==1) and that real power flow is

10 % P 12=G sin(d1−d2) (note, this assumption makes current and power

11 % effectively interchangeable).

12 %

13 % The state estimator uses the same assumptions except that

14 % the small angle assumption is used to linearize the trig

15 % functions in the power flow equation.

16 %

17 % Data from the simulink model is in the following form:

18 %

19 % time: nx1 array

20 % state (th1, th2, th3, d12, d13): nx5 array

21 % input (PL3): nx1 array
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22 % measurements (Pe1, Pe2, Pe3): nx3 array

23 % Pe is positive real power injected into the network at the bus

24 % enable x ≥ 0, disable x<0 (generally +/− 1)

25 % transmission lines in service: nx1 array

26

27 % Use the scripts threebus grab.dat to create the data in the files

28 % SEdata.mat SEparams.mat, and SEnetwork.mat, then use

29 % make params.m function to convert the SEnetwork data for use.

30 % load "data" (time, enable, Pe, Pl, x true)

31 % SEnetwork.mat

32 %

33 % This file differs from threebus SE in that the dynamic estimation uses

34 % the result from the static estimation as a linear measurement of the sate

35 % and therefore does not require iteration to incorporate these

36 % measurements (the iteration was already taken care of in the static

37 % estimation of the power flows).

38 %

39

40

41 format compact

42 clear

43

44 %% choose which data to analyze

45 switch(15)

46 case 1

47 %data.(time, enable,Pe,Pl,x true)

48 load simulation data/SE118data 10 5 5 1(10 linear nos yesi)

49 %10(gen1) 5(gen2) 5(sc) 1(load) inertial constants (seconds)

50 load simulation data/SE118params 10 5 5 1

51 load simulation data/SE118network %net

52 SEtext='118 lin ns yi 10 5 5 1 (10%)';

53 ramp rate=10;

54 nonlinear SE=false;

55 case 2

56 load simulation data/SE118data 10 5 5 1(10 nonlinear nos yesi)

57 load simulation data/SE118params 10 5 5 1

58 load simulation data/SE118network; %net

59 SEtext='118 nonlin(data) lin(est) ns yi 10 5 5 1 (10%)';

60 ramp rate=10;
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61 nonlinear SE=false;

62 case 3

63 load simulation data/SE118data 10 5 5 1(10 nonlinear nos yesi)

64 load simulation data/SE118params 10 5 5 1

65 load simulation data/SE118network; %net

66 SEtext='118 nonlin ns yi 10 5 5 1 (10%)';

67 ramp rate=10;

68 nonlinear SE=true;

69 case 4

70 load simulation data/SE118data 10 5 5 1(100 linear nos yesi)

71 load simulation data/SE118params 10 5 5 1

72 load simulation data/SE118network; %net

73 SEtext='118 lin ns yi 10 5 5 1 (100%)';

74 ramp rate=100;

75 nonlinear SE=false;

76 case 5

77 load simulation data/SE118data 10 5 5 1(100 nonlinear nos yesi)

78 load simulation data/SE118params 10 5 5 1

79 load simulation data/SE118network; %net

80 SEtext='118 nonlin(data) lin(est) ns yi 10 5 5 1 (100%)';

81 ramp rate=100;

82 nonlinear SE=false;

83 case 6

84 load simulation data/SE118data 10 5 5 1(100 nonlinear nos yesi)

85 load simulation data/SE118params 10 5 5 1

86 load simulation data/SE118network; %net

87 SEtext='118 nonlin ys yi 10 5 5 1 (100%)';

88 ramp rate=100;

89 nonlinear SE=true;

90 case 7

91 load simulation data/SE14data 10 5 5 1 (10 linear nos yesi)

92 load simulation data/SE14params 10 5 5 1

93 load simulation data/SE14network; %net

94 SEtext='14 lin(data) lin(est) ns yi 10 5 5 1 (10%)';

95 ramp rate=10;

96 nonlinear SE=false;

97 case 8

98 load simulation data/SE14data 10 5 5 1 (10 nonlinear nos yesi)

99 load simulation data/SE14params 10 5 5 1
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100 load simulation data/SE14network; %net

101 SEtext='14 nonlin(data) lin(est) ns yi 10 5 5 1 (10%)';

102 ramp rate=10;

103 nonlinear SE=false;

104 case 9

105 load simulation data/SE14data 10 5 5 1 (10 linear nos yesi)

106 load simulation data/SE14params 10 5 5 1

107 load simulation data/SE14network; %net

108 SEtext='14 nonlin(data) nonlin(est) ns yi 10 5 5 1 (10%)';

109 ramp rate=10;

110 nonlinear SE=true;

111 case 10

112 load simulation data/SE14data 10 5 5 1 (100 linear nos yesi)

113 load simulation data/SE14params 10 5 5 1

114 load simulation data/SE14network; %net

115 SEtext='14 lin(data) lin(est) ns yi 10 5 5 1 (10%)';

116 ramp rate=100;

117 nonlinear SE=false;

118 case 11

119 load simulation data/SE14data 10 5 5 1 (100 nonlinear nos yesi)

120 load simulation data/SE14params 10 5 5 1

121 load simulation data/SE14network; %net

122 SEtext='14 nonlin(data) lin(est) ns yi 10 5 5 1 (10%)';

123 ramp rate=100;

124 nonlinear SE=false;

125 case 12

126 load simulation data/SE14data 10 5 5 1 (100 linear nos yesi)

127 load simulation data/SE14params 10 5 5 1

128 load simulation data/SE14network; %net

129 SEtext='14 nonlin(data) nonlin(est) ns yi 10 5 5 1 (10%)';

130 ramp rate=100;

131 nonlinear SE=true;

132 case 13

133 load simulation data/SE14data 10 5 5 1 (100 linear nos yesi zoh)

134 load simulation data/SE14params 10 5 5 1

135 load simulation data/SE14network; %net

136 SEtext='14 nonlin(data) nonlin(est) ns yi 10 5 5 1 (10%)';

137 ramp rate=100;

138 nonlinear SE=false;
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139 case 14

140 load simulation data/SE14data 10 5 5 1 (100 nonlinear nos yesi zoh)

141 load simulation data/SE14params 10 5 5 1

142 load simulation data/SE14network; %net

143 SEtext='14 nonlin(data) nonlin(est) ns yi 10 5 5 1 (10%)';

144 ramp rate=100;

145 nonlinear SE=false;

146 case 15

147 load simulation data/SE14data 10 5 5 1 (1 linear nos yesi)

148 load simulation data/SE14params 10 5 5 1

149 load simulation data/SE14network; %net

150 SEtext='14 lin(data) lin(est) ns yi 10 5 5 1 (1%)';

151 ramp rate=1;

152 nonlinear SE=true;

153 case 16

154 load simulation data/SE14data 10 5 5 1 (1 nonlinear nos yesi)

155 load simulation data/SE14params 10 5 5 1

156 load simulation data/SE14network; %net

157 SEtext='14 nonlin(data) lin(est) ns yi 10 5 5 1 (1%)';

158 ramp rate=1;

159 nonlinear SE=false;

160 end

161

162

163 %%% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

164

165

166

167

168 %% Set various options

169

170

171 %how many samples sets to do of the simulation (more is more accurate)

172 num iter=50000;

173

174 % include noise in the measurements and input for estimation

175 noise on=true;

176 % used for the outer iteration loop. What range of variances will we

177 % simulate this over (if only one point, then just loop on that one value)
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178 measurement variance setpoint=[1e−5];

179

180 % do we want to spend the processor cycles to calculate the trace of the

181 % information matrix emperically?

182 get trace info=true;

183

184 % insert bad data into the simulations

185 insert bad data=false;

186 inserted bad data=9;

187

188 % detect and remove bad data if it exceeds a 0.95% chi square threshold

189 detect bad data=false;

190 bad data threshold=0.95;

191 identify threshold=1.62;

192

193 % filter for bad data from predicted δs

194 detect bad data dynamic=false;

195 bad data threshold dynamic=0.95;

196 identify threshold d=1.8;%1.6; % use 1.8 for 118−bus, 1.6 for 14−bus

197 detect bad data dynamicu=false ;

198

199 % filter for bad data from dynamic estiamted δs

200 dynamic est BDfilter=false;

201 bad data threshold dynamic est=0.95;

202 identify threshold dh=3;%2.75;

203

204 %plot individual bus error plots

205 bus error plots=false;

206

207 %reduce the measurement vector for a few time steps

208 option few meas=true;

209 %have bus 3 be unobservable at t=200sec

210 option unobservable=false;

211

212 %reduce the order of the dynamic model

213 %how many variables to reduce by

214 reduced=0;

215

216
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217 %% Convert state space representation to reduced order rep

218 % consolidating the δs to the end

219 % x= [ [a1 p1 o1] [a2 p2 o2] [ o3] d12 d13]

220 % xu=[ [a1 p1 o1] [a2 p2 o2] [ o3] d12 d13 [p3] ]

221

222 params=make params( net , data.enable(1,:) ); %make a compressed parameter list

223 n bus=params.n bus; n branch=params.n branch;

224 nswngindx=params.nswngindx;

225

226 n x=length(M δ);

227 n x2=n x+n bus;

228 Mu δ=[M δ,zeros(1,n bus)];

229 Mu δ2=[M δ2,zeros(size(M δ2,1),n bus)];

230 Mu δ not=ones(size(Mu δ))−Mu δ;

231 [i,j,s]=find(sparse(Mu δ not));

232 Mu δ not2=full(sparse(1:length(i),j,s,n x2−n bus+1,n x2));

233 Mu omega2=[M omega2,zeros(size(M omega2,1),n bus)];

234 M input=[zeros(n bus,n x),eye(n bus)];

235

236 Pe in=sparse((1:n bus)'*2,(1:n bus)', ones(1,n bus), 2*n bus, n bus);

237 Pe L=sparse((1:n bus)'*2−1,(1:n bus)', ones(1,n bus), 2*n bus, n bus);

238

239 dt= bus2δ'*data.x true';

240 δ true=dt−ones(n bus,1)*dt(net.swing,:);

241

242 %initialize variables

243 δ hat(:,1)=zeros(n bus,1);

244 x hat(:,1)=zeros(n x,1);

245 x bar(:,1)=zeros(n x,1);

246 xu hat(:,1)=zeros(n x2,1);

247 xu bar(:,1)=zeros(n x2,1);

248

249 A 2=A combined;

250

251 %specify measurements

252 meas.mPF=[[net.branch.i]',[net.branch.j]'];

253 meas.iPF=(1:n branch)';

254 meas.mPI=([net.bus.i])';

255 meas.iPF=(1:n bus)';
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256 n samples=length(data.time);

257 ps=zeros(1,n samples); pd=zeros(1,n samples); pdu=zeros(1,n samples);

258 pys=zeros(1,n samples); pyd=zeros(1,n samples); pydu=zeros(1,n samples);

259 ob=zeros(1,n bus);

260 dofs=zeros(1,n samples); dofd=zeros(1,n samples);

261 dof dh=zeros(1,n samples); dof dhu=zeros(1,n samples);

262 c s=zeros(1,n samples);c d=zeros(1,n samples);

263 c dh=zeros(1,n samples);c dhu=zeros(1,n samples);

264

265 %% Simulate processing measurements corrupted with random noise

266

267 % run with random noise

268 for measurement variance=measurement variance setpoint;

269

270

271 input variance=measurement variance/4;

272

273 W=input variance*eye(1);

274 W2=0.01/5*ramp rate/100; %governed by input ramp rate

275

276 xs error=zeros(n bus−1,n samples); %sum of static error

277 xs2 error=zeros(n bus−1,n samples); %sum of static eˆ2

278 xd error=zeros(n bus−1,n samples); %sum of dynamic e

279 xd2 error=zeros(n bus−1,n samples); %eˆ2

280 xdu error=zeros(n bus−1,n samples); %e (with input estimation)

281 xdu2 error=zeros(n bus−1,n samples);%eˆ2

282 Ps emperical=zeros(n bus−1,n bus−1,n samples);

283 Pd emperical=zeros(n bus−1,n bus−1,n samples);

284 Pdu emperical=zeros(n bus−1,n bus−1,n samples);

285

286 sprintf('Start var=%d, %s',input variance,datestr(now))

287

288 %% iterate over the measurements

289

290 for iter=1:num iter

291 if(mod(iter,100)==0)

292 disp([datestr(now), sprintf(' %i/%i', iter,num iter)]);

293 end

294 i=1;
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295 randn('state',iter);

296 measurement noise inject=random('norm',0,sqrt(measurement variance),n samples,n bus);

297 measurement noise flow=random('norm',0,sqrt(measurement variance),n samples,n branch);

298 input noise=random('norm',0,sqrt(input variance),n samples,n bus);

299

300 if noise on

301 Pi=data.Pe+measurement noise inject;

302 Pf=−data.Pf+measurement noise flow;

303 Pl=data.Pl+input noise;

304 else

305 Pi=data.Pe;

306 Pf=−data.Pf;

307 Pl=data.Pl;

308 end

309

310

311 %% perform initial static estimation

312 meas.mPI= [net.bus.i]';

313 meas.iPI=[net.bus.i]';

314 meas.mPF= [net.branch.i; net.branch.j]';

315 meas.iPF=(1:n branch)';

316 z=[Pi(1,:)';Pf(1,:)'];

317 params=make params(net,data.enable(1,:));

318 %% −−−−−− perform static estimation and filter as necessary −−−−−

319

320 [δ hat(:,i),infoIs,obs,iis,dofs(i),c s(i)]=est det ident static( ...

321 z, meas,params, net, measurement variance, ...

322 bad data threshold, identify threshold, ...

323 nonlinear SE,detect bad data);

324 ps(i)=iis;

325 if(get trace info)

326 pys(i)=trace(infoIs(obs,obs));

327 end

328

329 %make state transition matrix for dynamic model

330 Y2=imag(make Y(net, data.enable(i,:)) );

331 Atc=A 2−B combined*Pe in*Y2(:,nswngindx)*M δ2;

332 % compute reduced order state transition matrix

333 At=expm(Atc);
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334 if(reduced 6=0 )

335 [u,s,v]=svds(At,size(At,1)−reduced,'L');

336 At=u*s*v';

337 end

338 B cd2=Atc\(At−eye(size(At)))*B combined*Pe L;

339

340 %%initalize dynamic initialy to static state

341 x hat(:,1)=M δ2'*δ hat(nswngindx,i);

342 Y hat=M δ2'*infoIs(nswngindx,nswngindx)*M δ2...

343 +(eye(n x)−M δ2'*M δ2);

344 P hat=inv(Y hat);

345

346 % pd old(1)=trace(M δ2*Y hat*M δ2');

347 if(get trace info)

348 pyd(i)=trace(M δ2*Y hat*(eye(n x)−...

349 M δ not2'/(M δ not2*Y hat*M δ not2')*...

350 M δ not2*Y hat)*M δ2');

351 end

352 pd(i)=sum(1 ./diag(P hat(n x−(n bus−1)+1:n x, n x−(n bus−1)+1:n x)));

353

354 %make state transition matrix for dynamic−integrating input model

355 Atu=[[At, B cd2];[zeros(n bus,size(At,2)),eye(n bus)]];

356 Bu cd2=[B cd2;zeros(n bus,size(B cd2,2))];

357

358 %%initalize dynamic state to static state

359 xu hat(:,i)=Mu δ2'*δ hat(nswngindx,i);

360 Yu hat=Mu δ2'*infoIs(nswngindx,nswngindx)*Mu δ2 ...

361 +(eye(n x2)−Mu δ2'*Mu δ2);

362 Pu hat=inv(Yu hat);

363 if(get trace info)

364 pydu(i)=trace(Mu δ2*Yu hat*(eye(n x2)−...

365 Mu δ not2'/(Mu δ not2*Yu hat*Mu δ not2')*...

366 Mu δ not2*Yu hat)*Mu δ2');

367 end

368 pdu(i)=sum(1 ./diag(Pu hat(n x−(n bus−1)+1:n x, n x−(n bus−1)+1:n x)));

369

370

371 %% iterate on the measurements

372 for i= 2:n samples
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373

374 %% −−−−−update params if necessary (i.e., topology change)

375 if(i>1)

376 if( sum(data.enable(i,:) 6= data.enable(i−1,:)) )

377 params=make params(net,data.enable(i,:));

378 end

379 end

380

381 if(i>2) %update dynamic model if necessary (measured u)

382 if( sum( data.enable(i−1,:) 6= data.enable(i−2,:)) )

383 Y2=imag(make Y(net, data.enable(1,:)) );

384 Atc=A 2−B combined*Pe in*Y2(:,nswngindx)*M δ2;

385 % compute reduced order state transition matrix

386 At=expm(Atc);

387 if(reduced 6=0)

388 [u,s,v]=svds(At,size(At,1)−reduced,'L');

389 At=u*s*v;

390 end

391 B cd2=Atc\(At−eye(size(At)))*B combined*Pe L;

392 %update dynamic model if necessary (estimated u)

393 Atu=[[At, B cd2];[zeros(n bus,size(At,2)),eye(n bus)]];

394 Bu cd2=[B cd2;zeros(n bus,size(B cd2,2))];

395 end

396 end

397

398 %% predict dynamic estimates −−−−−−−−−−−−−−−−−−−−−−−−

399 %−−−−−−−−−−−− measured u −−−−−−−−−−−−−−

400

401 %predict

402 x bar(:,i)=At*x hat(:,i−1)+B cd2*Pl(i−1,:)' ;

403

404 %don't need to reset swing bus to zero because δ portion of

405 % x already subtracts it

406

407 P bar=At*P hat*At'+B cd2*W*B cd2'+(2.5e−7)*M omega2'*M omega2;

408 Y bar=inv(P bar);

409 y bar=Y bar*x bar(:,i);

410

411 %−−−−−−−−−−−− estimated u −−−−−−−−−−−−−−

129



412

413 %predict

414 xu bar(:,i)=Atu*xu hat(:,i−1);

415 Pu bar=Atu*Pu hat*Atu'+W2*(M input'*M input);

416 Yu bar=inv(Pu bar);

417 yu bar=Yu bar*xu bar(:,i);

418

419 %% gather new measurements and correct the predictions

420

421 if(i>150 && i<180 && option few meas)

422 % flows only

423 meas.mPI=[];

424 meas.iPI=[]';

425 meas.mPF= [net.branch.i; net.branch.j]';

426 meas.iPF=(1:n branch)';

427 z=Pf(i,:)'.*data.enable(i,:)'; %disregard flows if a line is off

428 elseif(i≥160 && i<165 && n bus==118 && option unobservable)

429 %bus 30/118 unobservable (flows only)

430 meas.mPI=[];

431 meas.iPI=[];

432 meas.mPF= [net.branch.i; net.branch.j]';

433 meas.iPF=(1:n branch)';

434 %flows identically zero if a line is off

435 z=Pf(i,:)'.*data.enable(i,:)';

436

437 blah=1:n branch; % set the measurement vector to make bus 3

438 blah(50)=[]; % statically unobservable

439 blah(44)=[];

440 blah(28)=[];

441 blah(14)=[];

442

443 meas.mPF=meas.mPF(blah,:);

444 meas.iPF=meas.iPF(blah,:);

445 z=z(blah,:);

446 elseif(i≥160 && i<165 && n bus==14 && option unobservable)

447 %bus 3/14 unobservable (flows only)

448 meas.mPI=[];

449 meas.iPI=[];

450 meas.mPF= [net.branch.i; net.branch.j]';
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451 meas.iPF=(1:n branch)';

452 %flows identically zero if a line is off

453 z=Pf(i,:)'.*data.enable(i,:)';

454

455 blah=1:n branch; % set the measurement vector to make bus 3

456 blah(6)=[]; % statically unobservable

457 blah(3)=[];

458

459 meas.mPF=meas.mPF(blah,:);

460 meas.iPF=meas.iPF(blah,:);

461 z=z(blah,:);

462 elseif(i>200 && i<210 && option few meas)

463 %missing more measurements (barely observable)

464 % injections only

465 meas.mPI= [net.bus.i]'; %injections only

466 meas.iPI= [net.bus.i]';

467 meas.mPF= [];

468 meas.iPF= [];

469 z=Pi(i,:)';

470 else %full measurment vector

471 meas.mPI= [net.bus.i]';

472 meas.iPI= [net.bus.i]';

473 meas.mPF= [net.branch.i; net.branch.j]';

474 meas.iPF= (1:n branch)';

475 z=[Pi(i,:)';Pf(i,:)'.*data.enable(i,:)'];

476 end

477

478 %% −−−−−−−−−−−−−−−− insert bad data −−−−−−−−−−−−−−−−−−

479 if(insert bad data)

480 if(i==50 | | i==55 | | i==60 ) %injection

481 if(n bus==118)

482 %bad injection at bus 49

483 z(49)=z(49)+inserted bad data*sqrt(measurement variance);

484 elseif(n bus==14)

485 %bad injection at bus 4

486 z(4)=z(4)+inserted bad data*sqrt(measurement variance);

487 end

488 end

489 if( i==70 | | i==75 | | i==80) %injection
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490 if(n bus==118)

491 %bad flow between 49 and 50

492 z(118+79)=z(118+79)+inserted bad data*sqrt(measurement variance);

493 elseif(n bus==14)

494 %bad flow between 2 and 4

495 z(14+4)=z(14+4)+inserted bad data*sqrt(measurement variance);

496 end

497 end

498 if( i==90 | | i==95 | | i==100) %injection

499 if(n bus==118)

500 %bad flow between 49 and 50

501 z(118+79)=z(118+79)+inserted bad data*sqrt(measurement variance);

502 z(118+80)=z(118+80)+inserted bad data/2*sqrt(measurement variance);

503 elseif(n bus==14)

504 %bad flow between 2 and 4

505 z(14+4)=z(14+4)+inserted bad data*sqrt(measurement variance);

506 z(14+6)=z(14+6)+inserted bad data/2*sqrt(measurement variance);

507 end

508 end

509 end

510

511 %% −−−−−−−−−−−− filter for bad data (dynamic) −−−−−−−−−−−−−−−−−−−−

512 δ bar=zeros(n bus,1);

513 if(detect bad data dynamicu==false)

514 δ bar(nswngindx,:)= M δ2*x bar(:,i);

515 Psi=M δ2*P bar*M δ2';

516 else

517 δ bar(nswngindx,:)= Mu δ2*xu bar(:,i);

518 Psi=Mu δ2*Pu bar*Mu δ2';

519 end

520

521 [z,meas,dofd(i),c d(i)]=det ident dynamic(z,meas,δ bar,Psi, ...

522 params, net, measurement variance, ...

523 bad data threshold dynamic, identify threshold d, ...

524 nonlinear SE,detect bad data dynamic);

525

526

527 %% −−−−−− perform static estimation and filter as necessary −−−−−

528
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529 [δ hat(:,i),infoIs,obs,iis,dofs(i),c s(i)]=est det ident static( ...

530 z, meas,params, net, measurement variance, ...

531 bad data threshold, identify threshold, ...

532 nonlinear SE,detect bad data);

533

534 ob(i)=length(obs); %how many observable states?

535

536

537 %% −−−−−−− perform dynamic estimation −−−−−−−−−−−−−−−−−−−−−−−−−−−−

538

539 %−−−−−−−−−−−−− measured u−−−−−−−−−−−−−−−−−−−

540 [x hat(:,i),P hat, Y hat,infoIs,obs,iis,dof dh(i), c dh(i)]=...

541 est det ident dynamic( infoIs, δ hat(:,i), P bar, Y bar, y bar,...

542 z, meas,params, net, measurement variance, ...

543 bad data threshold dynamic est, identify threshold dh, ...

544 nonlinear SE,dynamic est BDfilter, obs, iis, M δ2);

545

546 %−−−−−−−−−−−−− estimated u−−−−−−−−−−−−−−−−−−−

547 [xu hat(:,i),Pu hat, Yu hat,infoIs,obs,iis,dof dhu(i), c dhu(i)]=...

548 est det ident dynamic( infoIs, δ hat(:,i),Pu bar,Yu bar,yu bar,...

549 z, meas,params, net, measurement variance, ...

550 bad data threshold dynamic est, identify threshold dh, ...

551 nonlinear SE,dynamic est BDfilter, obs, iis, Mu δ2);

552

553

554 % gather data for performance metric

555 ps(i)=iis;

556 pd(i)=sum(1 ./diag(P hat(n x−(n bus−1)+1:n x, n x−(n bus−1)+1:n x)));

557 pdu(i)=sum(1 ./diag(Pu hat(n x−(n bus−1)+1:n x, n x−(n bus−1)+1:n x)));

558 if(get trace info)

559 pys(i)=trace(infoIs(obs,obs));

560 pyd(i)=trace(M δ2*Y hat*(eye(n x)−M δ not2'/...

561 (M δ not2*Y hat*M δ not2')*M δ not2*Y hat)...

562 *M δ2');

563 pydu(i)=trace(Mu δ2*Yu hat*(eye(n x2)−Mu δ not2'/...

564 (Mu δ not2*Yu hat*Mu δ not2')*Mu δ not2*Yu hat)...

565 *Mu δ2');

566 end

567
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568

569 end % for 1=2:n samples

570

571 %% collect state variance information

572 xs error=xs error+(1/num iter).*(δ hat(nswngindx,:)−δ true(nswngindx,:));

573 xs2 error=xs2 error+(1/num iter).*(δ hat(nswngindx,:)−δ true(nswngindx,:)).ˆ2;

574

575 xd error=xd error+(1/num iter).*(M δ2*x hat−δ true(nswngindx,:));

576 xd2 error=xd2 error+(1/num iter).*(M δ2*x hat−δ true(nswngindx,:)).ˆ2;

577

578 xdu error=xdu error+(1/num iter).* (Mu δ2*xu hat−δ true(nswngindx,:));

579 xdu2 error=xdu2 error+(1/num iter).* (Mu δ2*xu hat−δ true(nswngindx,:)).ˆ2;

580

581

582 %% collect information matrix trace information

583 if(get trace info)

584 for newloop=1:n samples

585 Ps emperical(:,:,newloop)=Ps emperical(:,:,newloop)+(1/num iter)* ...

586 (δ hat(nswngindx,newloop)−δ true(nswngindx,newloop))* ...

587 (δ hat(nswngindx,newloop)−δ true(nswngindx,newloop))';

588 end

589

590 newδ=M δ2*x hat;

591 for newloop=1:n samples

592 Pd emperical(:,:,newloop)=Pd emperical(:,:,newloop)+(1/num iter)* ...

593 (newδ(:,newloop)−δ true(nswngindx,newloop))* ...

594 (newδ(:,newloop)−δ true(nswngindx,newloop))';

595 end

596 newδ=Mu δ2*xu hat;

597 for newloop=1:n samples

598 Pdu emperical(:,:,newloop)=Pdu emperical(:,:,newloop)+(1/num iter)* ...

599 (newδ(:,newloop)−δ true(nswngindx,newloop))* ...

600 (newδ(:,newloop)−δ true(nswngindx,newloop))';

601 end

602

603 end

604

605

606 end
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607

608 % generate various plots

609 [ys,yd,ydu]=make plots(measurement variance, n bus,n x, ...

610 n samples, SEtext, num iter, ...

611 xs2 error, xd2 error, xdu2 error, ...

612 bus error plots, δ hat, δ true, x hat, xu hat, ...

613 pd, pdu, ps, ...

614 get trace info, Ps emperical, Pd emperical, Pdu emperical, ...

615 pyd, pydu, pys,...

616 detect bad data dynamic,detect bad data,dynamic est BDfilter,...

617 dof dh,dof dhu,dofd,dofs...

618 );

619

620 datestr(now)

621

622

623 end

624

625

626

627 % store data from simulation

628

629 description=['SE14data 10 5 5 1(1 Data linEst nos yesi), 50000 iterations,'...

630 ' var=0.00001 BDinsNremN redMeas(N)'];

631 disp(description);

632 save SE14 simulation(2011−03−22).mat description SEtext ...

633 xs error xs2 error xd error xd2 error ...

634 xdu error xdu2 error pd pdu ps ...

635 δ hat δ true x hat x bar xu hat xu bar ;

636

637 if(get trace info)

638 save SE14 simulation(2011−03−22)YYY.mat description SEtext ...

639 Ps emperical Pd emperical Pdu emperical pys pyd pydu ys yd ydu;

640 end
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D.2 det ident dynamic.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Perform predicted prefilter for bad data

3 % Arguments:

4 % zd : vector of measurements

5 % meas d : data structure specifying the measurements

6 % δ bar : predicted network state

7 % Psi : predicted network state error covariance matrix

8 % params: data structure holding various network parameters

9 % net : data structure holding the network

10 % measurement variance : variance of the measurement noise (assumes all

11 % noise is i.i.d.

12 % bad data threshold dynamic : what percentile to detect bad data at

13 % identify threshold d : how big a measurement residual needs to be (in

14 % standard deviations) to be identified as bad.

15 % nonlinear SE : binary flag indicating to use linear approximation or

16 % not to find the network state estimate

17 % detect bad data dynamic : binary flag indicating if we need to look

18 % for bad data or not.

19 % Returns:

20 % zd : filtered measurement vector with bad data removed

21 % meas d : list of what measurements are in zd

22 % dofd : degrees of freedom following bad data removal

23 % c d : final χ2 statistic

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25

26 function [zd,meas d,dofd,c d]=det ident dynamic(zd,meas d,δ bar,Psi, ...

27 params,net, measurement variance, ...

28 bad data threshold dynamic, identify threshold d, ...

29 nonlinear SE,detect bad data dynamic)

30

31 n bus=params.n bus;

32 nswngindx=[1:net.swing−1, net.swing+1:n bus];

33 n meas=length(meas d.iPI)+length(meas d.iPF);

34 dofd=n meas−(n bus−1);

35 c d=0;

36 if(detect bad data dynamic == true)
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37 bad done=false;

38 % check to see if bad data are present and remove if necessary

39 while(bad done==false)

40

41 % determine the degrees of freedom for the χ2 test

42 n meas=length(meas d.iPI)+length(meas d.iPF);

43 dofd=n meas−(n bus−1);

44

45 % get the measurement estimate

46 [zbar,Hd]=measurements(δ bar,meas d,params,net,¬nonlinear SE);

47

48 % calculate the uncertainty of the predicted residuals

49 Psi bar=Hd(:,nswngindx)*Psi*Hd(:,nswngindx)'+measurement variance*eye(n meas);

50

51 %calculate the χ2 statistic

52 chi2d=sum((zd−zbar).ˆ2./diag(Psi bar));

53

54 %calculate the percentile for that statistic

55 c d=chi2cdf(chi2d,dofd);

56

57 % is the statistic outside of our confidence interval?

58 % if so (and if there are sufficient DOFs, then we have bad data)

59 if(c d > bad data threshold dynamic && dofd > 1)

60

61 % check measurement residuals to find a bad datum

62 [bad mag,bad idx]=max((zd−zbar)./diag(Psi bar));

63 if((zd(bad idx)−zbar(bad idx))/sqrt(Psi bar(bad idx,bad idx))<identify threshold dˆ2)

64 break % only identify if more than threshold stdevs away from expected

65 end

66 if(bad idx > length(meas d.mPI))

67 % remove from injection list

68 meas d.mPF(bad idx−length(meas d.mPI),:)=[];

69 meas d.iPF(bad idx−length(meas d.mPI))=[];

70 else

71 % remove from flow list

72 meas d.mPI(bad idx)=[];

73 meas d.iPI(bad idx)=[];

74 end

75
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76 %remove the bad datum

77 zd(bad idx)=[];

78 n meas=n meas−1;

79 else

80 bad done=true; % we now pass the χ2 test

81 end

82 end

83 end
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D.3 est det ident static.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Perform static network state estimation

3 % If detect bad data == true, also detect, identify, and remove the bad

4 % data from the measurement vector

5 % Arguments:

6 % zs : vector of measurements

7 % meas s : data structure specifying the measurements

8 % params: data structure holding various network parameters

9 % net : data structure holding the network

10 % measurement variance : variance of the measurement noise (assumes all

11 % noise is i.i.d.

12 % bad data threshold : what percentile to detect bad data at

13 % identify threshold : how big a measurement residual needs to be (in

14 % standard deviations) to be identified as bad.

15 % nonlinear SE : binary flag indicating to use linear approximation or

16 % not to find the network state estimate

17 % detect bad data : binary flag indicating if we need to look for bad

18 % data or not.

19 % Returns:

20 % δ hat : the network state estimate

21 % infoIs : the information matrix of the network state estimate

22 % obs : a vector indicating which busses are observable

23 % iis : theoretic trace of reciprocal covariance matrix

24 % dofs : degrees of freedom following bad data removal

25 % c s : final χ2 statistic

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27

28 function [δ hat,infoIs,obs,iis,dofs, c s]=est det ident static( ...

29 zs, meas s,params, net, measurement variance, ...

30 bad data threshold, identify threshold, ...

31 nonlinear SE,detect bad data)

32

33 n bus=params.n bus;

34 n meas=length(meas s.iPI)+length(meas s.iPF);

35 dofs=n meas−(n bus−1);

36 c s=0;
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37

38 if(detect bad data == false)

39 % don't try to detect bad data, just estimate the network state

40 [δ hat,infoIs,obs,iis]=SE δ static(zs,meas s, ...

41 params,net,measurement variance*eye(size(zs,1)),¬nonlinear SE);

42 else

43 % check to see if bad data are present and remove if necessary

44 bad done=false;

45 while(bad done==false)

46 % estimate the state statically using the currently available

47 % measurements

48 [δ hat,infoIs,obs,iis]=SE δ static(zs,meas s, ...

49 params,net,measurement variance*eye(size(zs,1)),¬nonlinear SE);

50

51 % determine the degrees of freedom for the χ2 test

52 n meas=length(meas s.iPI)+length(meas s.iPF);

53 dofs=n meas−(n bus−1);

54

55 % get the measurement estimate

56 zhats=measurements(δ hat,meas s,params,net,¬nonlinear SE);

57

58 %calculate the χ2 statistic

59 chi2s=sum((zs−zhats).ˆ2)/measurement variance;

60

61 %calculate the percentile for that statistic

62 c s=chi2cdf(chi2s,dofs);

63

64 % is the statistic outside of our confidence interval?

65 % if so (and if there are sufficient DOFs, then we have bad data)

66 if(c s > bad data threshold && dofs > 1)

67

68 % check measurement residuals to find a bad datum

69 [bad mag,bad idx]=max(zs−zhats);

70 if((zs(bad idx)−zhats(bad idx))/sqrt(measurement variance)< identify thresholdˆ2)

71 break % only identify if more than threshold stdevs away from expected

72 end

73 if(bad idx > length(meas s.mPI))

74 % remove from injection list

75 meas s.mPF(bad idx−length(meas s.mPI),:)=[];
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76 meas s.iPF(bad idx−length(meas s.mPI))=[];

77 else

78 % remove from flow list

79 meas s.mPI(bad idx)=[];

80 meas s.iPI(bad idx)=[];

81 end

82

83 %remove the bad datum

84 zs(bad idx)=[];

85 else

86 bad done=true; % we now pass the χ2 test

87 end

88 end

89 end
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D.4 est det ident dynamic.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Perform dynamic network state estimation

3 % If detect bad data == true, also detect, identify, and remove the bad

4 % data from the measurement vector

5 % Arguments:

6 % infoIs : the information matrix of the static network state estimate

7 % δs : the estimate of the network state

8 % P Bar : predicted state error covariance matrix

9 % Y bar : information matrix (P bar)−1

10 % y bar : predicted information Y bar*x bar

11 % z : vector of measurements

12 % meas : data structure specifying the measurements

13 % params: data structure holding various network parameters

14 % net : data structure holding the network

15 % measurement variance : variance of the measurement noise (assumes all

16 % noise is i.i.d.

17 % bad data threshold : what percentile to detect bad data at

18 % identify threshold : how big a measurement residual needs to be (in

19 % standard deviations) to be identified as bad.

20 % nonlinear SE : binary flag indicating to use linear approximation or

21 % not to find the network state estimate

22 % detect bad data : binary flag indicating if we need to look for bad

23 % data or not.

24 % obs : indexes of observable states from static estimator

25 % iis : performance metric of static estimator

26 % M δ2 : selection matrix to get network state from dynamic

27 % Returns:

28 % x hat : the dynamic state estimate

29 % P hat : estimated state error covariance matrix

30 % Y hat : information matrix (P hat)−1

31 % infoIs : the information matrix of the network state estimate

32 % obs : a vector indicating which busses are observable

33 % iis : theoretic trace of reciprocal covariance matrix

34 % dof dh : degrees of freedom following bad data removal

35 % c dh : final χ2 statistic

36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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37

38 function [x hat,P hat, Y hat,infoIs,obs,iis,dof dh, c dh]=...

39 est det ident dynamic( infoIs, δs, P bar, Y bar, y bar,...

40 z, meas,params, net, measurement variance, ...

41 bad data threshold, identify threshold, ...

42 nonlinear SE,detect bad data, obs, iis, M δ2)

43

44 nswngindx=params.nswngindx;

45

46 n bus=params.n bus;

47 n meas=length(meas.iPI)+length(meas.iPF);

48 dof dh=n meas−(n bus−1);

49 c dh=0;

50 Y hat=Y bar+M δ2'*infoIs(nswngindx,nswngindx)*M δ2;

51 y hat=y bar+M δ2'*infoIs(nswngindx,obs)*δs(obs);

52 P hat=inv(Y hat);

53 x hat=Y hat\y hat;

54

55 if(detect bad data == true)

56 % check to see if bad data are present and remove if necessary

57 bad done=false;

58 δ hat=zeros(n bus,1);

59 δ hat(nswngindx)=M δ2*x hat;

60 Psi=M δ2*P bar*M δ2';

61

62 while(bad done==false)

63

64 % get the measurement estimate

65 [zhat,Hd]=measurements(δ hat,meas,params,net,¬nonlinear SE);

66 G=inv(Hd(:,obs)'*Hd(:,obs))*measurement variance;

67 K=Psi(obs−1,obs−1)*pinv(Psi(obs−1,obs−1)+G);

68 IMK=eye(size(K))−K;

69 V=measurement variance*eye(length(z));

70 %calculate the χ2 statistic

71 Psi hat=V + Hd(:,obs)*(IMK*(Psi(obs−1,obs−1)+G)*IMK'−G)*Hd(:,obs)';

72 dof dh=n meas−length(obs);

73

74 % chi2d=sum((z−zhat).ˆ2./diag(Psi hat));

75 chi2d=(z−zhat)'*inv(Psi hat)*(z−zhat);
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76

77 %calculate the percentile for that statistic

78 c dh=chi2cdf(chi2d,dof dh);

79 % is the statistic outside of our confidence interval?

80 % if so (and if there are sufficient DOFs, then we have bad data)

81 if(c dh > bad data threshold && dof dh > 1)

82 % check measurement residuals to find a bad datum

83 [bad mag,bad idx]=max(z−zhat);

84 if( (z(bad idx)−zhat(bad idx))/sqrt(measurement variance)...

85 < identify threshold)

86 break % only identify if more than threshold stdevs away from expected

87 end

88 if(bad idx > length(meas.mPI))

89 % remove from injection list

90 meas.mPF(bad idx−length(meas.mPI),:)=[];

91 meas.iPF(bad idx−length(meas.mPI))=[];

92 else

93 % remove from flow list

94 meas.mPI(bad idx)=[];

95 meas.iPI(bad idx)=[];

96 end

97

98 %remove the bad datum

99 z(bad idx)=[];

100 n meas=n meas−1;

101 else

102 bad done=true; % we now pass the χ2 test

103 break;

104 end

105 % estimate the state statically using the currently available

106 % measurements

107 [δ hat,infoIs,obs,iis]=SE δ static(z,meas, ...

108 params,net,measurement variance*eye(size(z,1)),¬nonlinear SE);

109 % determine the degrees of freedom for the χ2 test

110 n meas=length(meas.iPI)+length(meas.iPF);

111 dof dh=n meas−(n bus−1);

112

113 end

114 end
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D.5 SE delta static.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %SE δ static performs static state estimation of the voltage

3 %angle given the measurements specified (meas), the network (net), and the

4 %line enable signals (ENBL)

5 % z is raw measurements, in order PI then PF

6 % meas consists of meas.PI (vector of busses having measurements) and

7 % meas.PF (vector of lines having measurements)

8 % V is the covariance of the measurement noise

9 %

10 % returns δ hat s, the voltage angles and infoIs, the information

11 % matrix for the state estimate (infoIs = HT V−1 H)

12 %

13 % Arguments:

14 % z : vector of measurements

15 % meas : data structure specifying the measurements

16 % params: data structure holding various network parameters

17 % V : variance of the measurement noise

18 % linear : boolean flag, do estimation linear or nonlinear

19 % Returns:

20 % δ : the network state estimate

21 % infoIs : the information matrix of the network state estimate

22 % observable : a vector indicating which busses are observable

23 % iis : theoretic trace of reciprocal covariance matrix

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25

26 function [δ,infoIs,observable,iis]=SE δ static( ...

27 z,meas,params,net,V,linear)

28

29 n bus=params.n bus;

30

31 % build the measurement Jacobian

32 δ=zeros(n bus,1); %angle in radians

33 hPI=−imag(full(params.Y));

34 hPI=hPI(meas.iPI,:);

35 hPF=full(params.Y2);

36 hPF=hPF(meas.iPF,:);
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37 H=[hPI;hPF];

38 invV=inv(V);

39

40 % check to see which states are observable

41 observable=[1:n bus];

42 observable(params.swing)=[];

43 if(rank(H(observable))<n bus−1)

44 obs=observable(1);

45 miss=0;

46 for i=2:length(observable)

47 if( rank( H(:,[obs,observable(i)]) )==i−miss )

48 obs=[obs,observable(i)];

49 else

50 miss=miss+1;

51 end

52 end

53 observable=obs;

54 end

55

56 temp infoIs=H(:,observable)'*invV*H(:,observable);

57 L=temp infoIs\H(:,observable)'*invV;

58 temp δ=L*z;

59 % iis=sum(1./diag(inv(temp infoIs)));

60 iis=sum(1./diag(eye(length(observable))/temp infoIs));

61

62 if(linear==false) %iterate on measurements if nonlinear

63

64 err2=sum(abs(temp δ));

65

66 δ=zeros(n bus,1);

67 for correct i=1:10

68 δ(observable)=temp δ;

69 z hat=measurements(δ,meas,params,net,true);

70 old δ=temp δ;

71 temp δ=temp δ + L*(z−z hat);%/1.1ˆ(correct i−1);

72

73 err2=sum(abs(temp δ−old δ));

74 if(err2/length(err2) < 1e−13) %completion criteria

75 break
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76 end

77 end

78 end

79

80 % estimate only the observable states

81 δ(observable)=temp δ;

82 infoIs=H'*invV*H;

83 end

147



D.6 measurements.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % measurements.m

3 %

4 %Calculates the measurement estimate based on the estimated

5 %angles given and the measurements specified (meas), the network (net),

6 % and the line enable signals (ENBL)

7 %

8 % Arguments:

9 % δ : value for the network state to calculate measurement from

10 % meas : data structure specifying the measurements

11 % params: data structure holding various network parameters

12 % linear : boolean flag, calculate measurements linearly or nonlinearly

13 % Returns:

14 % z : vector of measurement estimates h(\hat\δ)

15 % H : measurement jacobian matrix

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17 function [z,H]=measurements(δ,meas,params,net,linear)

18

19 n bus=params.n bus;

20 n branch=params.n branch;

21 nPI=length(meas.mPI);

22 nPF=size(meas.mPF,1);

23 hPI=−imag(full(params.Y));

24 hPI=hPI(meas.iPI,:);

25 hPF=full(params.Y2);

26 hPF=hPF(meas.iPF,:);

27 H=[hPI;hPF];

28 if(linear)

29 z=H*δ;

30 else

31 connectivity=full(sparse([1:n branch,1:n branch]',...

32 [net.branch.i, net.branch.j]', ...

33 [−ones(n branch,1);ones(n branch,1)],...

34 n branch,n bus));

35 branch δ=connectivity*δ;

36 zPF=1./[net.branch.X]'.*sin(branch δ);
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37 zPI=connectivity'*zPF;

38

39 zPI=zPI(meas.iPI);

40 zPF=zPF(meas.iPF);

41 z=[zPI;−zPF];

42 end

43

44 end
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D.7 make params.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % make params

3 %

4 % Calculates and collects various parameters for use later

5 %

6 % Arguments:

7 % net : data structure containing the network information

8 % enable : which lines are enabled

9 % Returns:

10 % params : collection of parameters stored sparsely to save memory

11 %

12 %revisions

13 % 2 Apr 08: fixed indexing of Admittance matrix from IPSYS when the swing

14 % bus is not bus 1 by using Y ipsys2index().

15 %14 Mar: fixed problem with b and g (off by a factor of j)

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17 function [params]=make params(net,enable)

18 Y=make Y(net,enable);

19 Y2=make Y2(net,enable);

20 n branch=size(net.branch,2);

21 n bus=size(net.bus,2);

22 %initialize parameter vectors

23 r=zeros(n bus*(n bus+1)/2,1);

24 x=zeros(n bus*(n bus+1)/2,1);

25 b=zeros(n bus*(n bus+1)/2,1);

26 g=zeros(n bus*(n bus+1)/2,1);

27 bs=zeros(n bus*(n bus+1)/2,1);

28 G=zeros(n bus*(n bus+1)/2,1);

29 B=zeros(n bus*(n bus+1)/2,1);

30 %vectorize the branch parameters

31 for k=1:n branch

32 if(enable(k)==1)

33 ni=min(net.branch(k).i,net.branch(k).j);

34 nj=max(net.branch(k).i,net.branch(k).j);

35 ij=ni+(nj−1)*(nj/2); %vectorized index

36 ii=ni+(ni−1)*(ni/2); %vectorized index
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37 jj=nj+(nj−1)*(nj/2); %vectorized index

38 r(ij)=net.branch(k).R; %branch series resistance

39 x(ij)=net.branch(k).X; %branch series reactance

40 bs(ij)=net.branch(k).B; %branch shunt admittance

41 g(ij)=real(1/( r(ij)+j*x(ij))); %branch series conductance

42 b(ij)=imag(1/( r(ij)+j*x(ij))); %branch series susceptance

43 G(ij)=real(Y(ni,nj));

44 G(ii)=real(Y(ni,ni)); %real part of Admittance matrix entry

45 G(jj)=real(Y(nj,nj));

46 B(ij)=imag(Y(ni,nj));

47 B(ii)=imag(Y(ni,ni)); %imaginary part of Admittance matrix entry

48 B(jj)=imag(Y(nj,nj));

49 end

50 end

51

52 params.nswngindx=[1:net.swing−1, net.swing+1:n bus];

53 params.r=sparse(r);

54 params.x=sparse(x);

55 params.bs=sparse(bs);

56 params.g=sparse(g);

57 params.b=sparse(b);

58 params.G=sparse(G);

59 params.B=sparse(B);

60 params.n bus=n bus;

61 params.n branch=n branch;

62 params.Y=sparse(Y);

63 params.swing=net.swing;

64 params.Y2=sparse(Y2);

65 end
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D.8 make Y.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % make Y

3 %

4 % Calculates the linearized decoupled relationship betwen network state

5 % and the bus injections (i.e., measurement jacobian for real power

6 % injection).

7 %

8 % Arguments:

9 % net : data structure containing the network information

10 % Returns:

11 % Y : real power injection measurement jacobian

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 function Y=make Y(net,enable)

14 % Y=make Y(net)

15 %generate the admittance matix

16 %based on branch pi−model Zseries=(R+jX) and Yshunt=(jB)

17 %NOTE: does not account for off−nominal transformer values

18

19 %revisions

20 % 3 Apr 08 to account for shunt admittance loads at busses

21 % 8 Apr 08 to account for parallel lines

22

23 connectivity=[[net.branch.I]',[net.branch.J]'];

24 num branches=size(connectivity,1);

25 num busses=size(net.bus,2);

26 %echo on

27 j=sqrt(−1);

28 Y=zeros(num busses,num busses);

29 for i=1:num branches

30 % connectivity(i,:)

31 if(enable(i)==1)

32 y=1/(net.branch(i).R+j*net.branch(i).X);

33 % b=j*(net.branch(i).B);

34 b=0;

35 Y(connectivity(i,1),connectivity(i,2))=Y(connectivity(i,1),connectivity(i,2))−y;

36 Y(connectivity(i,2),connectivity(i,1))=Y(connectivity(i,2),connectivity(i,1))−y;
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37 Y(connectivity(i,1),connectivity(i,1) )=Y( connectivity(i,1),connectivity(i,1))+y+b/2;

38 Y(connectivity(i,2),connectivity(i,2) )=Y( connectivity(i,2),connectivity(i,2))+y+b/2;

39 end

40 end
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D.9 make Y2.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % make Y2

3 %

4 % Calculates the linearized decoupled relationship betwen network state

5 % and the line flows (i.e., measurement jacobian for real power flows).

6 %

7 % Arguments:

8 % net : data structure containing the network information

9 % enable : which lines are enabled

10 % Returns:

11 % Y2 : real power flow measurement jacobian

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 function Y2=make Y2(net,enable)

14

15 for i=1:length([net.branch.R])

16 net.branch(i).R=0; % make it lossless

17 end

18 swing=net.swing;

19 n branch=length([net.branch]);

20 n bus=length([net.bus]);

21 susceptance=1./[net.branch.X]';

22 connectivity=full(sparse([1:n branch,1:n branch]',...

23 [net.branch.i, net.branch.j]', ...

24 [−ones(n branch,1);ones(n branch,1)],n branch,n bus));

25

26 Y2=−sparse(diag(susceptance)*connectivity);
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D.10 make plots.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % make plots.m

3 %

4 % Generate various plots based on simulated data

5 %

6 % Arguments:

7 % n bus : number of busses (static states)

8 % n x : number of dynamic states

9 % n samples : how many seconds does the simulation run

10 % SEtext : descriptive text

11 % xs2 error, xd2 error, xdu2 error : squared estimate error

12 % bus error plots : boolean, plot state errors

13 % δ hat : static estimate of network state

14 % δ true : true value of network state

15 % x hat : estimate of dynamic state (measured load)

16 % xu hat : estimate of dynamic state (unmeasured load)

17 % ps, pd, pdu : theoretic sum inverse variances

18 % get trace info : boolean calculate and plot emperical trace info matrix

19 % Ps emperical, Pd emperical, Pdu emperical: emperical state error

20 % covariance matrices

21 % pys, pyd, pydu: theoretic log trace of information matrix

22 % detect bad data dynamic : boolean BD test from predicted X

23 % detect bad data : boolean BD test from static \δ

24 % dynamic est BDfilter: boolean BD test from estimated X

25 % dofs : degrees of freedom from BD test static

26 % dofd : dof from BD test dynamic predicted

27 % dof dh : dof from BD test dynamic estimate (measured P)

28 % dof dhu : dof from BD test dynamic (unmeasured P)

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

30 function []=make plots(n bus,n x, n samples, SEtext, ...

31 xs2 error, xd2 error, xdu2 error, ...

32 bus error plots, δ hat, δ true, x hat, xu hat, ...

33 pd, pdu, ps, ...

34 get trace info, Ps emperical, Pd emperical, Pdu emperical, ...

35 pyd, pydu, pys,...

36 detect bad data dynamic,detect bad data,dynamic est BDfilter,...

155



37 dof dh,dof dhu,dofd,dofs...

38 )

39

40 if(bus error plots)

41

42 %% static plots

43 figure

44 if(n bus==118)

45 which plots=[3,69,89];

46 elseif(n bus==14)

47 which plots=[3,6,8];

48 else

49 which plots=[1,2,3];

50 end

51 subplot(3,1,1)

52 plot(δ hat(which plots,:)',':')

53 hold on

54 plot(δ true(which plots,:)')

55 title([SEtext,' static', sprintf(', var=%f',measurement variance)])

56

57 %% dynamic plots

58 %figure

59 subplot(3,1,2)

60 plot(x hat( which plots +(n x−n bus),:)',':');

61 hold on

62 %plot(x bar([which plots]+(n x−n bus),:)','−.');

63 plot(δ true(which plots,:)')

64 title([SEtext,' dynamic', sprintf(', var=%f',measurement variance)])

65 %axis([0 250 −1 1])

66

67 %figure

68 subplot(3,1,3)

69 plot(xu hat( which plots +(n x−n bus),:)',':');

70 hold on

71 % plot(xu bar([which plots]+(n x−n bus),:)','−.');

72 plot(δ true(which plots,:)')

73 title([SEtext,' dynamic−integrated', sprintf(', var=%f',measurement variance)])

74 end

75
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76 %% error plots

77 if(bus error plots)

78 figure

79 xd2=sum(−log(xd2 error'))/size(xd2 error',1);

80 xdu2=sum(−log(xdu2 error'))/size(xdu2 error',1);

81 xs2=sum(−log(xs2 error'))/size(xs2 error',1);

82

83 subplot(3,1,1)

84 % plot( −log([(xd2 error(3−1,:))',(xs2 error(3−1,:))' ]))

85 plot( −log([(xd2 error(which plots(1)−1,:))',(xdu2 error(which plots(1)−1,:))', ...

86 (xs2 error(which plots(1)−1,:))' ]))

87 title([SEtext,[' −log average square error d1−',num2str(which plots(1))], ...

88 sprintf(', var=%f, iter=%d',measurement variance,num iter)])

89 legend(sprintf('d1−3 DSE: %f',xd2(which plots(1)−1)), ...

90 sprintf('du1−3 DSE: %f',xdu2(which plots(1)−1)), ...

91 sprintf('s1−3 SSE: %f',xs2(which plots(1)−1)));

92

93 subplot(3,1,2)

94 % plot(−log([(xd2 error(2−1,:))',(xs2 error(2−1,:))' ]))

95 plot(−log([xd2 error(which plots(2)−1,:)',(xdu2 error(which plots(2)−1,:))', ...

96 xs2 error(which plots(2)−1,:)' ]))

97 title([SEtext,[' −log average square error d1−',num2str(which plots(2))], ...

98 sprintf(', var=%f, iter=%d',measurement variance,num iter)])

99 legend( sprintf('d1−69 DSE: %f',xd2(which plots(2)−1)), ...

100 sprintf('du1−69 DSE: %f',xdu2(which plots(2)−1)), ...

101 sprintf('s1−69 SSE: %f',xs2(which plots(2)−1)));

102

103 subplot(3,1,3)

104 % plot(−log([(xd2 error(2−1,:))',(xs2 error(2−1,:))' ]))

105 plot(−log([xd2 error(which plots(3)−1,:)',(xdu2 error(which plots(3)−1,:))', ...

106 xs2 error(which plots(3)−1,:)' ]))

107 title([SEtext,[' −log average square error d1−',num2str(which plots(3))], ...

108 sprintf(', var=%f, iter=%d',measurement variance,num iter)])

109 legend( sprintf('d1−89 DSE: %f',xd2(which plots(3)−1)), ...

110 sprintf('du1−89 DSE: %f',xdu2(which plots(3)−1)), ...

111 sprintf('s1−89 SSE: %f',xs2(which plots(3)−1)));

112 end

113

114 %% performance metric
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115 figure

116 subplot(2,1,1)

117 plot(log(pd))

118 hold on

119 plot(log(pdu),'g')

120 plot(log(ps),'r')

121 xlabel('time (s)')

122 ylabel('log(\Sigma 1/\sigmaˆ2 i)')

123 %title([SEtext, 'theoretic sum inverse variances', ...

124 % sprintf(', var=%f',measurement variance)])

125 title('theoretical performance index')

126 %legend('dynamic (known u)','old dynamic (known u)',...%'dynamic (unknown u)',

127 % 'static')

128

129 subplot(2,1,2)

130 plot(log(sum(1./xd2 error)'),'b')

131 hold on

132 plot(log(sum(1./xdu2 error)'),'g')

133 plot(log(sum(1./xs2 error)'),'r')

134 xlabel('time (s)')

135 ylabel('log(\Sigma 1/\sigmaˆ2 i)')

136 title('emperical performance index')

137 %title([SEtext, 'emperical sum inverse variances', ...

138 % sprintf(', var=%f',measurement variance)])

139

140 %% log trace of information matrix

141 if(get trace info)

142

143 ys=zeros(1,n samples);

144 yd=zeros(1,n samples);

145 ydu=zeros(1,n samples);

146 for newloop=1:n samples

147 ys(newloop)=trace(pinv(Ps emperical(:,:,newloop)));

148 yd(newloop)=trace(pinv(Pd emperical(:,:,newloop)));

149 ydu(newloop)=trace(pinv(Pdu emperical(:,:,newloop)));

150 end

151

152 figure

153 subplot(2,1,1)
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154 plot(log(pyd),'b')

155 hold on

156 plot(log(pydu),'g')

157 plot(log(pys),'r')

158 xlabel('time (s)')

159 ylabel('log(tr(Y)')

160 title('theoretical information')

161 % title([SEtext, 'theoretic log trace of information matrix', ...

162 % sprintf(', var=%f',measurement variance)])

163 subplot(2,1,2)

164 % figure

165 plot(log(ys),'r')

166 hold on

167 plot(log(yd),'b')

168 plot(log(ydu),'g')

169 xlabel('time (s)')

170 ylabel('log(tr(Y)')

171 title('emperical information')

172 % title([SEtext, ' emperical log trace of information matrix', ...

173 % sprintf(', var=%f',measurement variance)])

174 end

175 %%plot degrees of freedom for chi square test (bad data detection)

176 if(detect bad data dynamic | | detect bad data | | dynamic est BDfilter)

177 figure;

178 hold on

179 if( dynamic est BDfilter)

180 plot(dof dh' ,'g')

181 plot(dof dhu' ,'c')

182 end

183 if(detect bad data dynamic )

184 plot(dofd' ,'b')

185 end

186 if( detect bad data)

187 plot(dofs' ,'r')

188 end

189 hold off

190 end

191

192 end
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