
 

 

 

Fuel, Feedstock, or Neither? – Evaluating Tradeoffs in 

the use of Biomass for Greenhouse Gas Mitigation 
 

Submitted in Partial fulfillment of the requirements for the degree of  

Doctor of Philosophy 

in 

Engineering & Public Policy 

Civil & Environmental Engineering 

   

 

I. Daniel Posen 

BA in Chemistry, Princeton University 

MRes in Green Chemistry: Energy and the Environment, Imperial College London 

MSc in Economics, London School of Economics and Political Science 

 

Carnegie Mellon University  

Pittsburgh, Pennsylvania 15213 

 

December, 2016 

 

 



Front Matter 

ii 

Committee Members 
 

 

W. Michael Griffin (chair) 

Associate Research Professor, Engineering & Public Policy 

Carnegie Mellon University 

 

H. Scott Matthews 

Professor and Associate Department Head, Engineering & Public Policy 

Professor, Civil & Environmental Engineering 

Carnegie Mellon University 

 

Paulina Jaramillo 

Associate Professor, Engineering & Public Policy 

Carnegie Mellon University 

 

Constantine Samaras 

Assistant Professor, Civil & Environmental Engineering 

Carnegie Mellon University 

 

 

  



Front Matter 

iii 

Acknowledgements  
 

This work was supported by a Steinbrenner Institute United States Environmental Sustainability 

(USES) Ph.D. Fellowship, the Center for Climate and Energy Decision Making (CEDM) and a 

Bertucci Graduate Fellowship. The USES fellowship program is supported by a grant from the 

Colcom Foundation and by the Steinbrenner Institute for Environmental Education and Research 

at Carnegie Mellon University. CEDM is supported through a cooperative agreement between 

the National Science Foundation and Carnegie Mellon University (SES-0949710). The Bertucci 

Graduate Fellowship was created through the generosity of John and Claire Bertucci. My sincere 

thanks to all those who played a role in funding my degree. 

 

This dissertation would not have been possible without the advice and support of my committee 

members: Mike Griffin (chair), Paulina Jaramillo, Scott Matthews and Costa Samaras. I am 

especially grateful to my committee chair, Mike Griffin for patiently supporting me through this 

degree, thoughtfully guiding my research, and vigorously debating with me with any chance we 

had! Thank you as well to Paulina Jaramillo for sharing both her research and personal insights 

with me these last few years. I am also grateful to Scott Matthews, Inês Azevedo, Amy Landis, 

and Rich Plevin for working with me on one or more of the projects presented here. In addition, I 

am indebted to Costa Samaras, Edson Severnini, Alex Davis, Chris Hendrickson and Dave 

Dzombak who have all made helpful suggestions at some point during my work, and to Jeanne 

VanBriesen, Paul Fischbeck and Deanne Matthews who have all contributed to my professional 

development. I would also like to thank Fan Tong, Stefan Schwietzke, Aranya Venkatesh, Kim 

Mullins, and Deepak Rajagopal for providing me with data or models along the way. 

  

On a personal note, I would like to thank Stephanie Seki and Leslie Abrahams, for always being 

there to support, discuss, and conspire – the second best part about working with Mike after 

Mike himself! I would also never have made it through this degree without support from the 

other Steinbrenner fellows, my friends in Porter 115, and so many others in EPP and CEE alike. 

Finally, I express my deepest gratitude to my parents and step parents, who have struggled 

through this degree with me (maybe more so), and without whom I would surely have abandoned 

my academic career 2 or 3 degrees ago!  



Front Matter 

iv 

Abstract 
 

Biomass is the world’s largest renewable energy source, accounting for approximately 10% of 

global primary energy supply, and 5% of energy consumed in the United States. Prominent 

national programs like the U.S. Renewable Fuel Standard incentivize increased use of biomass, 

primarily as a transportation fuel. There has been comparatively little government support for 

using biomass as a renewable feedstock for the chemical sector. Such asymmetry in incentives 

can lead to sub-optimal outcomes in the allocation of biomass toward different uses. 

 

Greenhouse gas reduction is among the most cited benefits of bioenergy and bio-based products, 

however, there is increasing controversy about whether increased use of biomass can actually 

contribute to greenhouse gas emission targets. If biomass is to play a role in current and future 

greenhouse gas mitigation efforts its use should be guided by efficient use of natural and 

economic resources. This thesis addresses these questions through a series of case studies, 

designed to highlight important tradeoffs in the use of biomass for greenhouse gas mitigation. 

Should biomass be used as a fuel, a chemical feedstock, or neither? 

 

The first case study in this thesis focuses on the ‘fuel vs feedstock’ question, examining the 

greenhouse gas implications of expanding the scope of the U.S. Renewable Fuel Standard to 

include credits for bioethylene, an important organic chemical readily produced from bioethanol. 

Results suggest that an expanded policy that includes bioethylene as an approved use for ethanol 

would provide added flexibility without compromising greenhouse gas targets – a clear win 

scenario.  

 

Having established that bioethylene based plastics can achieve similar greenhouse gas reductions 

to bioethanol used as fuel, this thesis expands the analysis by considering how the greenhouse 

gas emissions from a wider range of bio-based plastics compare to each of the main commodity 

thermoplastics produced in the U.S. The analysis demonstrates that there are large uncertainties 

involved in the life cycle greenhouse gas emissions from bio-based plastics, and that only a 

subset of pathways are likely to be preferable to conventional plastics. The following chapter 

then builds on the existing model to compare the greenhouse gas mitigation potential of bio-
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based plastics to the potential for reducing emissions by adopting low carbon energy for plastics 

production. That chapter concludes that switching to renewable energy across the supply chain 

for conventional plastics energy cuts greenhouse gas emissions by 50-75%, achieving a greater 

reduction, with less uncertainty and lower cost, than switching to corn-based biopolymers – the 

most likely near-term biopolymer option. In the long run, producing bio-based plastics from 

advanced feedstocks (e.g. switchgrass) and/or with renewable energy likely offers greater 

emission reductions. 

 

Finally, this thesis returns to the dominant form of policy surrounding biomass use: biofuel 

mandates. That study takes a consequential approach to the ‘fuel or neither’ question. 

Specifically, this work examines how petroleum refineries are likely to adjust their production in 

response to biofuel policies, and what this implies for the success of these policies. The research 

demonstrates that biofuel policies induce a shift toward greater diesel production at the expense 

of both gasoline and non-combustion petroleum products. This has the potential to result in an 

increase in greenhouse gas emissions, even before accounting for the emissions from producing 

the biofuels themselves. 
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Chapter 1. Introduction and Background 
 

1.1. Motivation 

Biomass (plant matter and organic waste) is the world’s largest renewable energy source, 

accounting for approximately 10% of global primary energy supply, and 5% of energy consumed 

in both the United States alone, and across all developed countries.
1,2

 To date, national policies 

for increased use of biomass have focused primarily on road transportation, with 64 countries 

having implemented some form of biofuel mandate.
3
 The largest such program is the United 

States (U.S.) Renewable Fuel Standard (RFS2),
4
 which continues to incentivize large-scale 

production of biofuels, primarily ethanol. In contrast, government action to encourage the 

substitution of fossil-based materials with renewable, bio-based alternatives has been limited to 

smaller programs like the U.S. “BioPreferred” federal government procurement program.
5
 Such 

asymmetry in incentives may lead to sub-optimal outcomes in the allocation of biomass toward 

different uses. 

  

Bulk chemical production is responsible for about 5-6% of U.S. greenhouse gas (GHG) 

emissions
6
 and U.S. energy consumption (including feedstock energy).

7
 As the fastest growing 

industrial user of energy,
8
 the chemical industry is a potentially rich target for fossil-fuel to 

renewable energy and/or feedstock substitution. In particular, plastics account for the largest 

share of organic chemical production.
9
 The technical substitution potential of bioplastics for 

fossil plastics has been estimated at a promising 90%.
10

 Despite limited policy incentives, private 

investment into bio-based plastics is already taking place.
11-13

 This observation gives rise to the 

dual question: should there be greater incentives for producing bio-based plastics; alternatively, 

are existing private efforts misguided? 

 

Although greenhouse gas reduction is among the most cited benefits of bioenergy and bio-based 

products there is increasing controversy about whether increased use of biomass can actually 

contribute to greenhouse gas emission targets.
14

 If biomass is to play a role in current and future 

greenhouse gas mitigation efforts, studies have shown that biomass resources are likely to be 

constrained by supply potential in the long run.
15

 Even in the short run, however, the use of 
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biomass for GHG mitigation should be guided by efficient use of natural and economic 

resources. This thesis addresses these questions through a series of case studies, designed to 

highlight important tradeoffs in the use of biomass for GHG mitigation. Should biomass be used 

as a fuel, a chemical feedstock, or neither? 

 

1.2. Dissertation Overview and Research Questions 

The remainder of this chapter provides additional background on greenhouse gas mitigation, life 

cycle assessment, uses of biomass, fossil and bio-based plastics and the global petroleum sector. 

Following the introduction (Chapter 1), the dissertation is divided into four research chapters and 

a concluding chapter, followed by appendices and references. The main chapters and the 

research questions they explore are outlined below: 

 

Chapter 2: Changing the Renewable Fuel Standard to a Renewable Material Standard: 

Bioethylene Case Study. This chapter focuses on the ‘fuel vs feedstock’ question, examining the 

greenhouse gas implications of expanding the scope of the U.S. Renewable Fuel Standard 

(RFS2) to include credits for bioethylene, an important organic chemical readily produced from 

bioethanol. Key research questions include: 

 What are the life cycle GHG emissions from corn, switchgrass and sugarcane ethanol, 

and how uncertain are these numbers?  

 What are the life cycle GHG emissions from conventional low density polyethylene 

(LDPE), produced in the U.S.? 

 What are the life cycle GHG emissions from corn, switchgrass and sugarcane LDPE, and 

how uncertain are these numbers? 

 Can ethanol used for bio-LDPE production meet the GHG reduction targets for ethanol 

set by RFS2? With what degree of confidence? 

 Does bio-LDPE achieve similar (or better) GHG benefits to bioethanol used for fuel? 

With what degree of confidence? 

 What are appropriate policy recommendations for RFS2 in light of the above results?  
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Chapter 3: Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of 

Three Bio-based Polymer Families. Having established in Chapter 2 that bioethylene based 

plastic can achieve similar GHG reductions to bioethanol used as fuel, Chapter 3 expands the 

analysis by considering how the GHG emissions from a wider range of bio-based plastics 

compare to each of the main commodity thermoplastics produced in the U.S. This chapter is 

primarily a ‘feedstock or neither’ investigation, and sets the stage for further analysis outlined in 

Chapter 4. Specific research questions for Chapter 3 include: 

 What are the cradle-to-gate GHG emissions from producing each of the major 

commodity thermoplastics (polyethylene terephthalate (PET), polystyrene (PS), 

polyvinyl chloride (PVC), polypropylene (PP), high density polyethylene (HDPE) and 

low density polyethylene (LDPE)) in the U.S.? How uncertain are these numbers? 

 What are the cradle-to-gate GHG emissions from producing polylactic acid (PLA), 

polyhydroxybutyrate (PHB), and bioethyelene-based plastics in the U.S., using either 

corn grain or switchgrass as a feedstock? How uncertain are these numbers, and how do 

modeled emissions differ depending on the data source for fermentation and recovery (for 

PHB and PLA), and treatment of co-products. 

 What are the expected end of life emissions from each of the fossil-based and bio-based 

polymers listed above? 

 Accounting for uncertainty, how do GHG emissions from each of the modeled bio-based 

plastics compare to emissions from each of the modeled fossil-based plastics? 

 

Chapter 4: Greenhouse Gas Mitigation for U.S. Plastics Production: Energy First, Feedstocks 

Later. This chapter uses the baseline models developed in Chapter 3 to explore alternate ways of 

reducing GHG emissions in the plastics industry. Specifically, the chapter compares the GHG 

mitigation potential of feedstock substitution (biopolymer production) to energy substitution 

(switching from fossil fuels to renewable energy). This chapter contains elements of each of the 

main tradeoffs explored in this thesis: fuel, feedstock or neither? Specific research questions 

include: 
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 What GHG emission reductions are possible if fossil-plastics are produced using 

renewable energy (e.g. wind power and renewable natural gas) in place of conventional 

fuels?  

 In the U.S. plastics industry, how do the GHG savings from energy substitution (i.e. 

using renewable energy in place of conventional energy) compare to the GHG savings 

achieved by feedstock substitution (i.e. replacing fossil-plastics with PLA, PHB or 

bioethylene based bio-plastics, produced from either corn or switchgrass, and using either 

conventional or renewable energy)? 

 How might other factors such as cost and market size influence the choice between 

feedstock substitution and energy substitution? 

 

Chapter 5: Biofuels and Indirect Output Use Change: the Role of Refineries. Finally, Chapter 5 

returns focus to the dominant form of policy surrounding biomass use: biofuel mandates. This 

chapter takes a consequential approach to the ‘fuel or neither’ question. Specifically, this work 

examines how petroleum refineries are likely to adjust their production in response to biofuel 

policies (or other policies aimed at reducing the use of liquid fossil fuels), and what this implies 

for the success of these policies. Research questions include: 

 Over the long run, what flexibility does the petroleum industry have to choose its product 

slate (i.e. the mix of finished petroleum products it produces)? 

 How responsive is the crude oil refining sector to relative shifts in price among its major 

products? 

 How is the petroleum industry likely to respond to shifts in demand for individual 

products, such as reduced demand for gasoline brought about by policies like RFS2? 

 How does the existence of refiner flexibility affect the balance of GHG emissions and 

petroleum consumption that result from different policies aimed at reducing consumption 

of petroleum fuels? 

 What recommendations does this analysis suggest for policies aimed at reducing 

petroleum use, and GHG emissions through the use of biofuels?  
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1.3. Climate Change and Greenhouse Gas Mitigation 

It has been nearly two centuries since scientists first identified the importance of heat-trapping 

atmospheric gases in determining a planet’s surface temperature.
16

 Although it did not gain 

significant traction until the latter part of the 20
th

 century, the claim that human activity could 

alter the global climate had surfaced as early as 1896.
17-19

 There is now widespread acceptance 

within the scientific community that rising levels of anthropogenic greenhouse gas emissions are 

changing the climate in ways that could be catastrophic: from rising sea levels, to extreme 

weather events, to irreversible changes across both global and local ecosystems.
20

 As a result, 

combating climate change is increasingly recognized as a top global priority: the World 

Economic Forum lists failure of climate change mitigation and adaptation as its single top global 

risk, in terms of impact, for 2016;
21

 the United Nations Environment Program lists Climate 

Change as one of its top priorities,
22

 as do the U.S. Environmental Protection Agency
23

 and many 

other organizations.  

 

In the recent Paris Agreement,
24

 countries around the world agreed to “holding the increase in 

the global average temperature to well below 2°C above pre-industrial levels and pursuing 

efforts to limit the temperature increase to 1.5°C above pre-industrial levels.” As part of this 

effort, the United States has adopted a goal to reduce GHG emissions by 26-28% below 2005 

levels by 2025, and to aim for an 80% GHG emission reduction by 2050.
25

 In 2012, the U.S. was 

responsible for nearly 15% of global GHG emissions,
26

 making its policies particularly important 

in the fight against climate change. There is thus a pressing need for research to quantify the 

change in GHG emissions that result from public and private interventions within the U.S., and 

to use these analyses to set GHG mitigation priorities. 

 

U.S. GHG emissions come from a wide range of sources, with electricity production being 

responsible for 30% of national emissions, transportation accounting for 26%, industrial sources 

for 21%, commercial and residential sources for 12%, and agriculture for 9%.
27

 Given the 

diversity of emissions sources, both domestic and international, no single mitigation activity will 

be sufficient to meet GHG reduction targets.
28,29

 Mitigation strategies tend to fall into one of 

three categories: efficiency and conservation, decarbonization of electricity and fuels, and 

increasing carbon sinks.
29

 They range from large sector or economy wide measures, such as the 
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decarbonization of electricity generation (e.g. fuel switching toward solar, wind, nuclear and 

other low carbon electricity sources), to relatively small actions targeting individual industries, 

such as the decarbonization of plastics production discussed in Chapters 3 and 4. In the absence 

of a single coordinated national/international climate strategy, smaller targeted actions will have 

to collectively play an important role in meeting GHG mitigation targets.  

 

Having repeatedly failed to pass legislation implementing national carbon pricing,
30

 the U.S. is 

left with a patchwork of federal and state policies, together with voluntary private initiatives. At 

the federal level, flagship programs include the Clean Power Plan (CPP), Corporate Average 

Fuel Economy (CAFE) standards and the Renewable Fuel Standard (RFS2). The CPP – should it 

survive the ongoing court challenge – promises to reduce CO2 emissions from the power sector 

by 32% below 2005 levels by 2030 through a combination of efficiency and fuel switching 

measures.
31

 CAFE standards target GHG emissions in the transportation sector indirectly, by 

requiring new vehicle sales in the U.S. to meet increasingly stringent minimum fuel economy 

requirements.
32

 RFS2 currently mandates the use of over 18 billion gallons of biofuel in the 

transportation sector, equivalent to approximately 10% of domestic gasoline consumption.
33

 The 

standard, discussed in greater detail below, requires that these biofuels have lower life cycle 

GHG emissions than their fossil counterparts. RFS2 is also subject to ongoing court battles and 

legislative challenges.
34-39

 In addition to these sector-wide policies, the federal government also 

engages in a number of more targeted measures, ranging from the control of methane emissions 

from landfills
40

 or oil and gas operations
41

 to appliance efficiency standards
42

 and building 

codes
43

, to tax credits for investment into energy efficiency,
44

 renewable energy generation,
45

 

and electric vehicle purchase,
46

 among others. 

 

Beyond federal measures, numerous state and local initiatives contribute to U.S. climate action. 

The U.S. National Climate Assessment
47

 discusses a representative selection of these policies. 

Some notable initiatives include the Northeast’s Regional Greenhouse Gas Initiative,
48

 

California’s cap and trade system
49

 and low carbon fuel standard (LCFS),
50

 a variety of state-

level renewable portfolio standards,
51

 and city-level climate action plans.
52

 Of these, only the 

LCFS includes a specific role for biofuels.  
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Despite the wide range of actions discussed above, many observers argue that the United States 

will need additional action to meet its stated greenhouse gas emission targets (e.g. refs
53,54

). 

Increasingly, corporations are taking private measures to reduce their greenhouse gas 

emissions,
55

 and could play an important role in meeting climate goals.
56

 Over 80% of the 

world’s 500 largest companies had targets for reducing GHG emissions or energy use in the 

2014-2015 financial year.
57

 Notably (for this dissertation), the list of companies with GHG 

reduction targets includes some of the world’s largest consumers of plastics, such as Coca Cola, 

Procter & Gamble, and Heinz.
58,59

 These companies, among others, have been actively involved 

in promoting the use of biomass for energy,
60-62

 and as a feedstock for bio-based plastics.
63

 Thus, 

the case studies presented in this dissertation should be of interest to governments and private 

organizations alike. 

 

1.4. Life Cycle Assessment 

1.4.1. Overview 

Tracing its origins to Coca Cola’s 1969 “Resource and Environmental Profile Analysis,” life 

cycle assessment (LCA) is the predominant tool for measuring the environmental impact of a 

product, process or policy.
64,65

 After two decades of ad-hoc methods and diverging approaches, 

the 1990s marked a “decade of standardization”,
65

 with the Society of Environmental Toxicology 

and Chemisry (SETAC) playing a leading role in the development of what would thereafter be 

known as LCA. The decade of standardization culminated in the adoption of LCA guidelines 

through the International Organization for Standardization (ISO). Most recently updated in 2006, 

ISO 14040 and 14044 together lay out the principles and framework underlying LCA, as well as 

minimum methodological requirements for conducting an LCA study.
66,67

 

 

In brief, LCA quantifies the environmental flows associated with a given product or process over 

its life cycle (‘cradle to grave’ or ‘cradle to cradle’) – from resource extraction, through 

manufacture, use and disposal. Models can be divided into bottom-up (process-based) LCA, top-

down (input/output-based) LCA, or hybrid models that include elements of both. Increasingly, 

LCA has been used as a key tool to support legislative and regulatory actions, especially within 

the realm of biofuels and bio-based products. The U.S. government’s Biopreferred procurement 
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program
5
 initially required companies to report on the life cycle environmental impact of their 

bio-based products, and continues to encourage companies to make such data available on a 

voluntary basis.
68

 More recently, both California’s LCFS and the federal government’s RFS2 

explicitly require regulators to use LCA to quantify the life cycle GHG emissions of biofuels 

covered under the respective mandates.  

 

While the ISO guidelines discussed above set minimum LCA standards, there remains 

substantial researcher discretion when it comes to defining the product system and boundary, 

choosing which flows to quantify, what impact metrics to use, how to allocate emissions between 

products in joint-production systems, how to interpret LCA results, and so on. Although LCA 

studies can include a wide range of environmental impact categories (e.g. see EPA’s TRACI tool 

for a typical subset
69

), the recent policy push to combat climate change has encouraged many 

researchers to focus primarily on life cycle GHG emissions.  

 

GHG emissions are characteristically globally mixed and long-lived. In contrast, environmental 

flows affecting air and water quality or local ecosystems require greater spatial resolution and 

local context. As a result, LCA has traditionally been limited in its treatment of non-GHG 

impacts. Development of spatially, and temporally resolved impact metrics that cover a broader 

range of environmental and social concerns are at the forefront of LCA research
65

 and are 

potentially important directions for future research. Meanwhile, this dissertation focuses on 

providing answers to policy questions surrounding GHG emissions, forwarding the development 

and use of other advanced LCA techniques involving the treatment of uncertainty and 

consequential, market-based dynamics, discussed below. 

 

1.4.2. Uncertainty in LCA 

To enable appropriate use of LCA results, it is critical for LCA practitioners to convey the 

confidence with which those results are known. Thus, while most LCA studies continue to 

produce deterministic estimates, the research community has shown growing awareness of the 

need to account for the uncertainty and variability inherent to LCA models. Multiple authors 

have reviewed typologies of uncertainty and variability, along with methods for addressing these 

complications in LCA.
70-72

 Source of uncertainty are many, and can generally be classified as 
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one of parameter uncertainty, scenario uncertainty or model uncertainty.
73

 Parameter uncertainty 

is the most frequent type of uncertainty addressed in LCA, and relates primarily to errors in input 

data. Scenario uncertainty relates to normative modeling choices, such as the definition of the 

system under study, allocation procedures employed, choice of characterization factors, and so 

on. Finally, model uncertainty relates to the general structure of the LCA model and its 

relationship (or lack thereof) to real world outcomes. Uncertainty and variability differ in that the 

former generally refers to lack of information (i.e. epistemic uncertainty), while the latter refers 

to inherent randomness or heterogeneity of the system (i.e. aleatory uncertainty). Though 

conceptually different, uncertainty and variability are frequently addressed jointly under various 

approaches that include scenario analysis, ranges and bounding analysis, sensitivity analysis, 

analytical uncertainty propagation, and Monte Carlo simulation, among others.  

 

 Although methods for quantifying uncertainty in LCA have been well studied, methods to 

account for this uncertainty in the decision making process remain in their infancy. A notable 

exception is the ‘risk of policy failure’ framework developed by Mullins et al. (2011),
74

 which 

regulators can use to set emission reduction targets in function of an acceptable probability that 

the adopted product or policy will fall short of these targets. This dissertation further develops 

that framework, and discusses several additional approaches to using uncertain LCA results for 

decision making.  

 

1.4.3. Attributional and Consequential LCA 

One of the most fundamental challenges faced by the LCA community is whether traditional 

LCA sufficiently captures real-world dynamics to be of use for policy making. In a poignant 

rebuke, Plevin et al. (2014)
75

 argue that “static, context independent and average,” attributional 

life cycle assessment (ALCA) should not be used to inform climate policy; instead, the authors 

call for practitioners to make greater use of “dynamic, context specific and marginal” 

consequential life cycle assessment (CLCA). The formal distinction between ALCA and CLCA 

was introduced at a 2001 workshop.
76

 In brief, while ALCA accounts for environmental flows in 

a static environment, CLCA attempts to answer how such flows will change in response to new 

decisions or activities. Though there is ongoing disagreement on the exact definition and 
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appropriate uses for CLCA vs ALCA,
75,77

 various authors have identified features that tend to 

distinguish CLCA from ALCA.
77-80

 These include: 

- Use of marginal, rather than average data 

- Use of economic models to account for market mediated effects of increased production 

or consumption 

- Inclusion of other indirect effects, such as on research and development or efficiency of 

production.  

- Use of system expansion to avoid emission allocation (though this is largely a 

misconception, as system expansion is still within the providence of ALCA) 

  

Plevin et al. (2014)
75

 argue that, by overlooking potentially important system-wide interactions, 

ALCA “fails to answer the policy questions that have motivated its application.” The authors 

imply that, with the exception of normative decisions about equitable allocation of impacts, costs 

or benefits, all LCA should be consequential in nature. This argument is echoed to varying 

degrees in previous work, such as Weidema (2003),
80

 Ekvall et al. (2005),
81

 and Tillman 

(2000).
82

 In response, Suh and Yang (2014)
83

 argue that the ideal CLCA model, sought by Plevin 

et al. (2014),
75

 does not exist. Their response is reminiscent of the aphorism attributed to George 

Box: “all models are wrong, but some are useful.” The question then becomes one of whether a 

given LCA model captures sufficient information about the system under study to be useful. To 

that end, Suh and Yang argue – correctly, in the view of this author – that there is no strict 

dichotomy between ALCA and CLCA; rather that the approaches exist on a spectrum of models 

capturing varying degrees of complication and system dynamics. Yang (2016)
84

 subsequently 

showed how CLCA can be viewed simply as an extension of ALCA. In other words, ALCA is an 

“important and indispensable part of the overall consequential modeling.”
84

 This is the view 

adopted in the present thesis: ALCA is the starting point on top of which consequential modeling 

is layered. Thus, while the models presented in chapters 2-4 nominally employ attributional life 

cycle frameworks, they nonetheless include elements associated with CLCA, such as emissions 

from indirect land use change
85

 and avoidance of allocation through system expansion. 

Additional market interactions not captured by these models are a limitation, but do not 

invalidate the insights these models provide. Chapter 5 then delves directly into consequential 

modeling for biofuel policies. 
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The remainder of Chapter 1 is devoted to providing background information on the specific 

systems studied in this dissertation. 

  

1.5. Biomass 

1.5.1. Overview 

In 2013, bioenergy accounted for approximately 10% (60 EJ) of global primary energy supply.
1
 

Though this figure is currently dominated by traditional biomass use for cooking and heating in 

developing countries, more advanced uses have been growing steadily.
86

 In 2012, over a quarter 

of bioenergy supply was used for modern heating in buildings, and process heat within the pulp 

and paper industry. Biomass was also the primary energy source for 1.5% of world electricity 

production in 2012 and 4% of road transport fuel in 2014.
86

 In the United States, biomass 

accounts for 5% of primary energy consumption, most of which is either biofuel for road 

transport (46%) or wood products (43%) largely used in paper mills and for residential energy 

needs.
87

 

 

Motivated by energy security, rural development and GHG mitigation, the United States 

government has expressed a clear interest in laying the foundations for a national bioeconomy 

that includes biofuels, biopower, bioproducts and renewable chemicals.
88-90

 The U.S. is not alone 

in that vision, with many other groups touting the benefits from increased use of biomass. 

Countries around the world have adopted biofuel mandates,
3
 the European Commission has 

adopted an official Bioeconomy Strategy
91

 and the International Energy Agency (IEA) has 

produced reports that echo the energy security, rural development and GHG mitigation rationale 

of the U.S. government.
92,93

 Recently, a group of 137 researchers from 24 different countries 

declared (somewhat hyperbolically) that “there is broad consensus that modern bioenergy will be 

necessary to achieve a low-carbon future.”
94

 

 

Use of biomass falls somewhere between the fuel switching and carbon sink approaches to GHG 

mitigation. Like fossil fuels, the energy in biomass is stored primarily as carbon-carbon and 

carbon-hydrogen chemical bonds. As a result, combustion of biomass releases similar quantities 
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of CO2 per unit energy to combustion of fossil fuels.
95

 Thus, while a transition away from fossil 

fuels toward bioenergy literally involves fuel switching, claims of reduced GHG emissions rely 

on arguments about changes to the carbon cycle elsewhere in the system. For energy crops that 

are part of short-term carbon cycles, LCA studies typically assign a credit for the CO2 that is 

removed from the atmosphere during plant growth.
96,97

 Thus, CO2 emissions from biomass 

combustion are treated as carbon neutral, and long-lived bio-based products are treated as 

carbon-negative. In this approach, a separate term for emissions from land use change captures 

the release of carbon from longer-lived biomass (e.g. due to deforestation).
98

 Although this 

method has been challenged in recent years,
99,100

 it remains standard and – in the view of both 

this author and others
101

 – reasonable. Wiloso et al. (2016)
98

 and Downie et al. (2014)
102

 provide 

further discussion on methods for biogenic carbon accounting. Additional complications to 

biogenic emissions accounting arise due to differences in timing between carbon release and re-

uptake – either due to one-time land use change, or regular crop rotations. With the exception of 

slow growing biomass (e.g. trees)
103

 or temporary carbon storage in long-lived products,
104

 

however, timing of GHG emissions is generally not an important factor in the assessment of 

bioenergy systems.
105,106

 

 

A key challenge in the assessment of using biomass for GHG mitigation is the sheer number of 

possible product pathways. A broad range of different feedstocks can be transformed using a 

wide variety of conversion technologies to produce a large number of different end products. 

Feedstocks can generally be divided into dedicated energy crops like corn, soybeans, sugarcane, 

perennial grasses, and wood (among others), or waste sources like landfill gas, agricultural 

residue and the biogenic components of municipal waste. These feedstocks can be transformed 

into a variety of solid, liquid or gaseous products that can be used for anything from generation 

of heat and electricity, to transportation fuels, to chemical feedstocks. Feasible conversion 

pathways will depend on the available feedstock components, which can include sugar, starch, 

cellulose, lignin and oil, among others. Conversion from feedstocks to final products can involve 

either physical transformations (e.g. pelletizing biomass for direct combustion) or more complex 

transformations that rely on direct chemical processing (e.g., transesterification to produce 

biodiesel), biochemical conversion (i.e., fermentation, anaerobic digestion, etc.), thermochemical 

routes (i.e., pyrolysis, gasification), or direct photobiological conversion in the case of algae.
107
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Biomass conversion technologies are frequently combined into multi-product systems, known as 

biorefineries.
108

 Garcia and You illustrate the scale of the problem in their 2015 paper, which 

optimizes an enormous biofuel and bioproduct conversion network that contains 200 

technologies and 142 different materials and compounds.
109

 Their results suggest that the best 

biomass conversion networks in terms of cost and GHG emissions will use a mix of feedstocks 

and technologies to produce a variety of products. The remaining two subsections provide 

additional background on the primary uses for biomass considered in this thesis: biofuels and 

bio-based chemicals. 

 

1.5.2. Biofuels and the U.S. Renewable Fuel Standard 

Historically, transportation has relied on liquid transportation fuels, owing to their high energy 

density, quick refill times and ease of use within internal combustion engines. While electric 

light duty vehicles have made great progress over the last few years,
110

 they continue to suffer 

from limited range,
111

 lack of charging infrastructure
110

 and high environmental impact in 

regions with low penetration of renewable electricity.
112

 Further, the prospects of electrification 

for heavy duty vehicles and aviation are less promising.
93,113-115

 As a result, some authors have 

concluded that biofuels will likely be required to meet medium-term targets for the reduction of 

GHG emissions from transportation.
93,111,115,116

 The IEA projects that by 2050, biofuels could 

provide 27% of all transport fuels.
93

 For many countries, biofuels are also a way to support rural 

communities, and increase energy security by decreasing their dependence on petroleum 

imports.
93

 

 

It is, thus, not surprising that 64 countries have adopted biofuel mandates.
3
 These mandates 

generally require minimum volumes or percentages of renewable fuels to be included in gasoline 

and diesel blends, respectively. Emission standards are an alternate model, pioneered by 

California’s LCFS,
50

 that set a target average carbon intensity reduction across all transportation 

fuels; parties meet the standard by trading credits generated from a wide range of alternative 

fuels, often including biofuels, electricity, natural gas and hydrogen. By far, the most ambitious 

biofuel mandate is the U.S. Renewable Fuel Standard (RFS2), described in greater detail below. 

Owing to RFS2 the U.S. is easily the world’s largest biofuel producer, responsible for nearly 

50% of global biofuel supply in 2012.
117

 The U.S. is particularly dominant in the world ethanol 
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market, producing nearly 15 billion gallons/year, representing 60% of global production in 

2015.
118

 Brazil is a distant second, with 30% of global production (7 billion gallons/year). The 

U.S. is also the world’s largest producer of biodiesel, at 15% (1 billion gallons/year) of the 

global total in 2012.
117

 The remainder of this sub-section is devoted to describing RFS2, a major 

focus of Chapters 2 and 5.  

 

The U.S. created its first Renewable Fuel Standard (RFS) under the Energy Policy Act of 

2005.
119

 The standard was subsequently expanded in 2007, under the Energy Independence and 

Security Act (EISA).
4
 The new standard (RFS2), administered by the U.S. Environmental 

Protection Agency (EPA), requires refiners, blenders and importers of transportation fuels to 

meet increased minimum annual biofuel production targets in each of three categories: cellulosic, 

advanced (anything other than corn ethanol), and renewable (no restrictions). Targets increase 

annually as shown in Figure 1.1. By 2022 RFS2 requires an annual total of 36 billion gallons of 

renewable fuel, including at least 15 billion gallons of cellulosic, and an additional 5 billion 

gallons of advanced biofuel. To qualify under RFS2, renewable fuels from facilities constructed 

after 2007 must achieve at least a 20% reduction in life cycle greenhouse gas (GHG) emissions 

relative to baseline (either gasoline or diesel). Steeper reduction targets of 50% and 60% 

(compared to baseline) are required to qualify as an advanced biofuel or cellulosic biofuel, 

respectively. Obligated parties can either market biofuels directly, or can purchase tradeable 

renewable identification number (RIN) certificates from other participants that have exceeded 

their obligations. Mandated production volumes and GHG reduction targets may be reduced by 

EPA waiver under certain circumstances.
4
 

 

Nearly a decade after it was established, RFS2 is facing two seemingly opposite stumbling 

blocks: weak supply (of cellulosic biofuel), and weak demand. Although the standard initially 

called for no less than 4.25 billion gallons per year of cellulosic biofuel in 2016, existing and 

proposed cellulosic capacity barely exceeds 100 million gallons per year in 2016.
120

 Meanwhile, 

on the demand-side, the ethanol “blend wall” limits the amount of biofuel that can be consumed 

by the existing vehicle fleet. Thus far, biofuel targets have been met predominantly by blending 

increasing quantities of bio-ethanol into conventional gasoline. This practice has reached its limit 

at 10% ethanol (E10) blends, the upper bound for which the warranty is valid on most cars.
121
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Although EPA has issued a partial waiver for use of a 15% ethanol blend (E15) in vehicles from 

model year 2001 and newer, the Congressional Research Services concludes the “limitation to 

newer models, coupled with infrastructure issues, are likely to limit rapid expansion of blending 

rates.”
121

 Lack of infrastructure further impedes use of ethanol at higher blends, such as E85.
122

 

Taken together, these factors have induced the EPA to issue waivers, reducing target biofuel 

volumes every year since 2014 (inclusive).
33

  

 

The ‘implemented mandate’ line in Figure 1.1 shows the divergence between congressionally 

mandated production volumes and the standard actually implemented/proposed by the EPA. The 

present rollback is particularly unfortunate, as it occurs just as the more advanced and cellulosic 

biofuels were meant to start ramping up. EISA and RFS2 are thought to forward a number of key 

goals, most prominently including energy security, rural development and greenhouse gas 

(GHG) mitigation.
123

 On the latter goal there has been much controversy surrounding the net 

GHG balance of corn ethanol – the dominant feedstock to date. A number of studies have even 

suggested that corn ethanol could result in increased emissions relative to gasoline (e.g. 

refs
74,124,125

). The use of food crops for fuel production has also given rise to concerns about 

exacerbating global hunger.
126,127

 In contrast, cellulosic biofuels are generally reported to have a 

more favorable GHG balance,
128-131

 and less impact on global food prices.
127

 Even so, the entire 

biofuel endeavor remains controversial.
14,126
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Figure 1.1. Renewable biofuel targets established under the Energy Independence and Security Act of 2007. 

‘Renewable biofuel’ refers to any renewable source, ‘advanced biofuel’ refers to any renewable source other 

than corn starch and ‘cellulosic biofuel’ refers to fuel derived from cellulose, hemicelluloses or lignin. 

Reference gasoline and diesel production volumes are shown for 2008. The black line shows actual 

implemented mandates through 2016 and the proposed mandate for 2017. Figure is adapted from Mullins 

(2012).
129

 

1.5.3. Conventional and Bio-based Chemicals 

In 2005, the global chemical industry was responsible for approximately 3.3Gt CO2e, equivalent 

to 7% of world GHG emissions at the time.
132

 In the U.S., chemical production is responsible for 

about 5-6% of domestic GHG emissions
6
 and energy consumption (including feedstock energy).

7
 

This amounts to 18% of U.S. industrial GHG emissions, second only to oil and gas production.
6
 

Globally, the chemical sector is the fastest growing industrial user of energy,
8
 with projected 

GHG emissions reaching 6.5 GtCO2e by 2030 under business as usual.
132

 Though its current 

contribution to global GHG emissions is small relative to transportation, the high value of 

products in the chemical sector make it a potentially attractive area for increased use of 

biomass.
133-136

 Moreover, while there exist numerous sources of renewable energy, biomass 

remains the only large-scale source for renewable organic chemicals. Indeed, both the 

International Council of Chemical Associations (ICCA) and the IEA identified greater use of 

renewable (bio-based) feedstocks as a potentially critical area for breakthrough innovations to 
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reduce the industry’s GHG emissions.
132,137

 Chemicals produced from biomass have the potential 

to be carbon negative over their life cycles, a feature which may be critical in meeting long-term 

climate targets.
138

  

  

This thesis focuses specifically on plastics production, a major component of the chemical 

industry. Over the last six decades, global plastics production has grown from a nascent 

enterprise to a 300 million tonne (Mt) /year global industry in 2013.
139

 North American plastic 

production accounts for approximately 20% of global production, and is expected to exhibit 

strong growth for the immediate future.
140,141

 In the U.S., a subset of plastics known as 

‘commodity thermoplastic’ polymers (discussed in chapters 3 and 4) account for approximately 

70% of plastics production.
142,143

 Applying previously reported emissions factors suggests these 

plastics are responsible for approximately 70 million tonnes of CO2e emission per year
144

 and 

nearly 3 quadrillion Btu of primary energy use.
145

 This corresponds to slightly greater than 1% of 

total U.S. GHG emissions
146

 and nearly 3% of total U.S. energy consumption.
147

 In response, 

there has been a growing interest in switching to bio-based plastics as a form of greenhouse gas 

(GHG) mitigation. After fuels, bio-based polymers offer one of the largest potential markets (by 

volume) for bioproducts,
135

 and have been suggested as a potential “linchpin category” in the 

operation of biorefineries.
134

  

 

In 2013, bio-based plastics accounted for less than 1% (1.6 million tonnes (Mt)) of global 

thermoplastics production.
148

 Nonetheless, bio-based production is expected to grow rapidly, 

reaching nearly 7 Mt by 2018.
148

 Four families of polymer are expected to figure prominently in 

future bio-plastics markets,
10,149-151

 and have been the focus of a number of studies in the existing 

life cycle assessment (LCA) literature:
152-154

 polylactic acid (PLA), polyhydroxyalkanoates 

(PHA), thermoplastic starch (TPS), and bioethylene based plastics. Three of these (PLA, PHA 

and bioethylene) are the focus of Chapters 2- 4. 

 

1.6. The Petroleum Sector 

Worldwide, crude oil represents the single largest source of primary energy, amounting to 31% 

of all primary energy production in 2013.
1
 It is used primarily for transportation (64%), for a 
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range of non-energy products (16%), in industry (8.4%), and for a mix of other applications.
1
 

Petroleum products are responsible for just over 33% of global combustion CO2 emissions.
1
 In 

the U.S., petroleum represents 36% of primary energy consumption
87

 and over a third of all 

GHG emissions.
155

  

 

Figure 1.2. shows a snapshot of the U.S. petroleum and liquid fuel sector for the year 2015. 

While crude oil is the dominant feedstock, natural gas liquids (NGLs) and ethanol make sizeable 

contributions. Domestic production slightly surpasses imports; though a majority of products are 

consumed domestically, exports represent a non-trivial share of final product disposition. Final 

petroleum products result from crude oil refining; the process also involves limited inputs of 

other products including oxygenates, unfinished oils, NGLs and hydrogen. The figure also 

highlights the critical role of blenders in producing gasoline, a role which has increased 

substantially over the last decade due to rising ethanol blending requirements imposed by RFS2. 

Gasoline and distillates are by far the dominant finished products, though the industry also 

produces a large range of other products that include jet fuel, liquefied petroleum gases (used 

primarily as chemical feedstocks and for space heating), petroleum coke, still gas, residual fuel 

oil, asphalt, lubricants and more. The following section provides a more in depth description of 

petroleum refining, a major focus of Chapter 5. 
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Figure 1.2. Sankey diagram of the U.S. petroleum industry for the year 2015. Generated from EIA data,
156

 using sankeyMATIC software.
157

 All units 

are in thousand barrels per year (Mbbl/year); significant figures are as reported by EIA. NGL = natural gas liquids; LRG = liquefied refinery gases; 

the abbreviation ‘Neg’ precedes negative stock changes or adjustments. Volume gained during crude oil refining is included in the category ‘other.’
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1.6.1. Petroleum Refining 

Crude oil refineries are among the world’s largest and most complex chemical operations. As of 

January 1
st
, 2016, there were 634 refineries around the world, with a combined processing 

capacity of nearly 90 million barrels of crude oil per calendar day.
158

 With over double the 

installed capacity of any other country, the United States represented approximately 20% of the 

global base capacity (atmospheric distillation). U.S. refineries also tend to be more complex than 

the global average, representing 30-40% of the global installed capacity for downstream 

processing like vacuum distillation, catalytic cracking, thermal processing (e.g. coking), catalytic 

reforming, and so on. 

 

Figure 1.3. shows a simplified block diagram of a representative refinery. Actual unit processes 

and overall plant structure will differ by refinery. A description of major refining processes 

follows, based on refs.
159-161

  

 

Desalting and Dewatering is not shown explicitly in Figure 1.3., but is a necessary step before 

refining can begin. Its purpose is to remove dirt, water and salt. The main technique is gravity 

separation of gas, crude oil and brine/dirt. The process may be aided by heating to 90-150 
o
C 

under pressure (50-250 psi), water washing, passing through sand/gravel, addition of de-

emulsifiers, or application of an electrostatic field.  

 

Atmospheric Distillation is the most fundamental step in oil refining. It involves fractional 

distillation of components which boil at less than 350
o
C under atmospheric pressure. A number 

of characteristic cuts are taken, including gas (C1-C4 components boiling at ambient 

temperature), light naphtha (C5-C6, boiling at 30-90
o
C), heavy naphtha (C6-C12 boiling at 90-

200
o
C), kerosene (C10-C16, boiling at 140-320

o
C), middle distillate (C16-C20, boiling at 150-

345 
o
C), atmospheric gas oil and finally atmospheric residuum. The purpose of this step is to 

separate out the components of crude oil without inducing any chemical transformations. 

 

The atmospheric residuum is then fed to a vacuum distillation unit which can further separate 

out products under low pressure (1-2 psi) at no more than 350
o
C. The main cuts resulting from 

this phase are light vacuum gas oil (boiling at 340-470
o
C under ambient pressure) and heavy 
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vacuum gas oil (boiling at 470-560
o
C under ambient pressure), as well as lubricating oil (boiling 

>400
o
C) and vacuum residuum (boiling > 600

o
C). Once again, the purpose of this step is to 

separate out the components of crude oil without inducing any chemical transformations. 

 

The heaviest components left over from vacuum distillation can be sent through deasphalting 

and solvent extraction processes. Under mild conditions, light paraffin solvents (C3-C5) are 

used to extract the relatively lighter components for further processing, leaving behind the 

heaviest component, asphalt (generally used for road paving). The purpose of this step is 

separation of components. 

 

The gas plant is the final separation unit, producing liquefied petroleum gases, refinery fuel gas 

and petrochemical feedstocks. It may involve a number of steps including an amine absorber to 

strip acid gases and cryogenic separation of components.  

 

Visbreaking (not shown in Figure 1.3.) is a form of mild thermal cracking. Inputs typically 

include heavy residua, either from the atmospheric of vacuum distillation unit or other processes. 

The primary purpose is to reduce the viscosity of the non-volatile inputs to produce products that 

can be used as part of a fuel oil blend, or as waxes with lower pouring temperatures. Typical 

conditions include high pressure (50-300 psi) and moderate temperatures (455-510
o
C). 

 

Coking: Similar to visbreaking, the coking process involves thermal decomposition of the heavy 

residua (typically from vacuum distillation) into lighter products (including gas, naphtha, fuel 

oil, gas oil) as well as solid coke. Several different coking procedures are possible. In delayed 

coking, the raw materials are heated in a fractionator, with outlet temperature ranging from 480-

515
o
C, and continue reacting in a coking drum held at around 415-450

o
C and moderate pressures 

of 15-90 psi. Other mechanical setups (with similar reaction conditions) include fluid coking and 

flexicoking. 

 

Catalytic Cracking: Having progressively replaced thermal cracking since the 1940’s, catalytic 

cracking takes heavy products like atmospheric gas oil and converts them to lighter feedstocks 

like kerosene and naphtha, which will typically be used for jet fuel and gasoline. The process 



Chapter 1 

22 

uses a solid acid catalyst like a mix of silica and alumina or an aluminosilicate zerolite and 

produces fuel with higher octane rating than the obsolete thermal cracking methods. Although 

the process is different from one termed thermal cracking, temperatures on the order of 480-

540
o
C are still required, along with mild pressure (25-40 psi). 

 

Hydrocracking: Visbreaking, coking and catalytic cracking all have the primary purpose to 

break down heavy components into more valuable lighter ones. Hydrocracking is the last process 

focused on decomposition. It is a catalytic process that differs from those above in that it is 

conducted in the presence of hydrogen. While the products from catalytic cracking are used 

predominantly for gasoline, a substantial proportion of hydrocracking products will also end up 

as diesel fuel. The inputs include heavy components like vacuum gas oil, which are heated 

(300
o
C-370

o
C) under high pressures (1000-2500 psi) in the presence of a metal catalyst (e.g. 

nickel, molybdenum, tungsten or palladium on silica-alumina support) and hydrogen. The 

presence of hydrogen reduces the likelihood of coking reactions and also reduces the yield of 

light ends like methane, ethane and propane relative to catalytic cracking. 

 

Hydrotreatment is another hydroprocessing step, so named as it involves a reaction which 

occurs in the presence of hydrogen. It differs from the processes above in that it does not attempt 

to make any fundamental changes to the hydrocarbons, but rather is used for removal of 

impurities. The main goal is to remove nitrogen and sulfur atoms from the feedstocks. Just about 

any material flow in the refinery can (and will) be passed through a hydrotreater. Metal catalysts 

such as nickel, palladium, platinum, cobalt or iron can be used, along with temperatures of 

around 300-345
o
C and hydrogen pressures of 500-1000 psi. As mentioned above, there are no 

major changes to the underlying feedstock, so outputs are essentially just a cleaner version of the 

inputs. Certain olefins may also be hydrogenated, which avoids the formation of gum which 

would reduce gasoline stability. 

 

Catalytic Reforming is part of a set of reactions that improve product quality without reducing 

the weight of its components. The main goal of catalytic reforming is to increase the octane 

rating of inputs (naphthas – either straight run or from a hydrocracker) for use as gasoline. The 

feedstock is heated to 510-595
o
C under pressures ranging from 400-1000 psi. One of the main 
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transformations at work is dehydrogenation, and so H2 (for hydroprocessing) is also a valuable 

product from this phase. 

 

Isomerization is used to increase the branching of compounds for later use in gasoline. Inputs 

include butane, pentane and hexane. The reaction may involve a metal catalyst with temperatures 

of 370-480
o
C and pressures of 300-750 psi, or aluminum chloride and hydrogen chloride catalyst 

at lower temperatures. The products can be used in a further alkylation step, or possibly directly 

for gasoline blending. 

 

Alkylation takes lighter feedstocks and converts them to heavier products to be used as gasoline. 

Specifically, isoparaffins, like isobutane, are reacted with olefins, like propylene, butylenes or 

pentenes, to higher branched mid-molecular weight (~C7-C9) compounds with high octane 

ratings (and thus high value as a gasoline additive). The raw material generally comes from 

separations occurring at the gas plant. Alkylation is often acid catalyzed; in that case, the 

reaction takes place at low temperatures (1-40
o
C) and pressures (14-140 psi) in the presence of 

an acid catalyst like H2SO4 or HF. 

 

Polymerization, properly termed oligomerization (not shown in Figure 1.3.), is a process that 

creates dimers, trimers or tetramers from olefin gases (e.g. propylene or butylenes), resulting in 

C4-C12 compounds for use in gasoline. The reaction can be conducted thermally, heating simple 

alkanes like propane and butane to high temperatures (510-595
o
C) for prolonged periods. 

Similarly, olefins can be polymerized directly using acid catalysts at 150-220
o
C and 150-1200 

psi. 

 

Methane Steam Reforming (not shown in Figure 1.3.), is used to produce hydrogen required 

for hydroprocessing, and is often integrated into (though conceptually separate from) the oil 

refinery. It usually involves the reaction of methane with water at high temperatures (700-

1100
o
C) with a metal catalyst. The net reaction is CH4 + H2O  CO + 3H2. 
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Figure 1.3. Simplified block diagram of a representative modern crude oil refinery, based on refs
159-161
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A typical refinery product slate will include a wide range of products, such as still gas (refinery 

fuel), liquefied petroleum gases/liquefied refinery gasses (LPG/LRG), gasoline, distillate fuel oil 

(the parent category for diesel fuel), jet fuel, kerosene, residual fuel oil, waxes, lubricants, 

aromatic oils, petroleum coke, petrochemical feedstocks, and asphalt. Three main factors that 

determine the relative yields of petroleum products include: properties of the input crude oil, the 

configuration of the refinery, and the operation of the refinery.  

 

As shown in Figure 1.4., crude oil characteristics are most commonly measured along two 

dimensions: density, and sulfur content.
162

 To predict processing requirements and product 

yields, however, far more information is needed about the composition of a given crude such as 

its distillation curve (quantity of oil within each characteristic cut), carbon residue content and 

hydrogen content.
163

 Thus, for example, oils with a greater naphtha content will be able to 

produce more gasoline; oils with a greater kerosene content will produce more jet fuel; oils with 

a greater distillate content will produce more diesel; oils with a greater gas oil and residuum 

content will produce more residual fuel oils, lubricants, asphalts, and so on. As a result, overall 

density (i.e. API gravity) may only be weakly predictive of overall product slate.  

 

Refineries will typically be configured to process a specific type of crude oil; plant managers can 

maintain target input feedstock properties by blending together mixes of crude oils from various 

sources. Nevertheless, refineries do have some flexibility regarding the specific blends processed 

and can thus influence the resulting product slate.
164

 Generally, refineries with more downstream 

processing capacity (everything after atmospheric distillation) can process a wider range of input 

crudes, and produce a greater proportion of high value products like gasoline, jet fuel and diesel. 

Refineries can also adjust their configurations (and product slates) by adding new process units. 

Even for a fixed input blend and refinery configuration, refineries are able to make small changes 

to their product slates through internal operational adjustments. This can be accomplished by 

shifting the exact temperature of cut points in the atmospheric distillation process, or by 

controlling how much of a given cut is fed into each downstream operation.
164

 Thus, refineries 

have some flexibility to respond to changes in relative prices for petroleum products by changing 

the type of crude oil processed, by installing (or removing) downstream processing capacity, or 
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by changing their internal operations. Finally, industry-wide, shifts in product slate can occur as 

more profitable refineries ramp up production (increase their utilization rate), while less 

profitable refineries ramp down. 

 

 

Figure 1.4. Key characteristics (sulfur content and API gravity, a measure of density) of common crude oils. 

Reproduced from ref.
162

 

 

1.7. Tradeoffs in the Use of Biomass for Greenhouse Gas Mitigation 

Long term recommendations regarding different uses of biomass must consider a wide range of 

social, economic and environmental metrics. Meanwhile, as one of the key drivers behind the 

development of bio-based products, this thesis focuses on using biomass for GHG mitigation. 

There is already a growing literature surrounding the best use of biomass for meeting climate 

targets. The previously mentioned study by Garcia and You (2015)
109

 is among the most 

extensive biofuel and bioproduct networks considered in a single study. Their model suggests 

that woody biomass and thermochemical conversion routes are often preferred over other 

feedstocks and pathways with respect to cost and GHG emissions; however, the model did not 
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explicitly consider emissions from displaced fossil products, and so results may not generalize 

well. Other authors (e.g. ref
165

) have likewise considered the GHG emissions from a range of 

biomass pathways, but without direct reference to displaced fossil products. In another study, 

Monti (2012)
166

 conducted a limited literature review, which showed that using switchgrass as a 

solid fuel (e.g., to produce bio-electricity) generally results in greater GHG mitigation than using 

switchgrass for liquid biofuels. Adler et al. (2007)
167

 report a similar conclusion, that biomass 

gasification for electricity generation yields greater GHG benefits than converting biomass to 

ethanol or biodiesel. Bos et al. (2010)
168

 compare various uses for different sugar/starch 

feedstocks, and conclude that producing PLA in place of PET results in the greatest GHG 

savings, followed by bioethanol replacing fossil ethanol, bio-LDPE replacing fossil LDPE and 

finally bioethanol replacing gasoline. Gustavsson and Le Truong (2016)
169

 argue that using 

electric cars powered with bioenergy achieves greater and more immediate climate benefits than 

producing biofuels. Evans et al. (2015)
170

 and Favero et al. (2015)
171

 both compare forest 

recovery/preservation to bioenergy options. Evans at al. conclude that the preferred option 

depends on both the local climate and yield of bioenergy crops; Favero et al. similarly argue that 

the two strategies can actually be complementary. This result is similar to an argument made by 

Slade et al. (2010)
172

 that, while it is important to set priorities for using biomass, there is no 

‘one-size-fits-all’ best use.  

 

Of particular interest to this thesis are a subset of studies that consider the energy vs. feedstock 

question with respect to biomass. Using a dynamic energy system simulation model, Daioglou et 

al. (2015)
173

 conclude that biomass is more effective at GHG mitigation when used for electricity 

than for building services, industry or as a chemical feedstock. Morris (2016)
174

 compares 

several recycle, bury or burn scenarios for wood waste and concludes that recycling wood into 

bio-based products has the lowest environmental impact across a range of metrics (including 

climate change). Kalt et al. (2016)
175

 likewise conclude that higher GHG savings are achieved by 

using wood residue as material (for insulating boards) instead of for energy. Rass-Hansen et al. 

(2007),
133

 Alvarenga and Dewulf (2013),
176

 McKechnie et al. (2015)
177

 and Kalt et al. (2016)
175

 

have all considered whether ethanol is best used for fuel or as a chemical feedstock. Rass-Hansen 

et al. provides only a general discussion, and Kalt et al. conclude that, subject to certain 

sensitivities, bioethylene is the preferred use for ethanol. Alvarenga and Dewulf, and McKechnie 
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et al. both conclude, in agreement with the present work (Chapter 2), that feedstock and fuel use 

of ethanol both achieve similar GHG savings. 

 

Out of necessity, this thesis examines only a subset of the most important questions surrounding 

how, or whether to use biomass for GHG mitigation. Chapter 2 focuses on the most prominent 

biomass policy in the United States: RFS2. It asks whether the GHG mitigation goals of RFS2 

could be well-served by expanding the RFS2 to include credits for other uses of ethanol. It is the 

first work to pose this question, and is among the first to quantify the GHG emissions from U.S. 

production of fossil-ethylene or bioethylene, compare bioethylene to bioethanol, or provide an in 

depth treatment of uncertainty. Likewise, Chapter 3 is among the first studies comprehensively 

to analyze uncertainty in the emissions from several of the most important bio-based plastics; 

Chapter 4 subsequently is the first work to compare the GHG mitigation potential of bio-based 

plastics to adopting low-carbon energy for plastics production. Finally, Chapter 5 returns to 

RFS2 and other similar biofuel policies. It is one of only a small number of papers to consider 

consequential market interactions in the evaluation of biofuel policies, and is the only such work 

to assess the GHG consequences that result from flexibility in petroleum refining.  
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Chapter 2. Changing the Renewable Fuel Standard to a 

Renewable Material Standard: Bioethylene Case Study 
 

2.1. Abstract 

The narrow scope of the U.S. renewable fuel standard (RFS2) is a missed opportunity to spur a 

wider range of biomass use. This is especially relevant as RFS2 targets are being missed due to 

demand-side limitations for ethanol consumption. This chapter examines the greenhouse gas 

(GHG) implications of a more flexible policy based on RFS2, which includes credits for 

chemical use of bio-ethanol (to produce bioethylene). A Monte Carlo simulation is employed to 

estimate the life cycle GHG emissions of conventional low-density polyethylene (LDPE), made 

from natural gas derived ethane (mean: 1.8 kg CO2e/kg LDPE). The life cycle GHG emissions 

from bio-ethanol and bio-LDPE are examined for three biomass feedstocks: U.S. corn (mean: 

97g CO2e/MJ and 2.6kg CO2e/kg LDPE), U.S. switchgrass (mean: -18g CO2e/MJ and -2.9kg 

CO2e/kg LDPE) and Brazilian sugarcane (mean: 33g CO2e/MJ and -1.3kg CO2e/kg LDPE); bio-

product and fossil-product emissions are compared. Results suggest that neither corn product 

(bioethanol or bio-LDPE) can meet regulatory GHG targets, while switchgrass and sugarcane 

ethanol and bio-LDPE likely do. For U.S. production, bio-ethanol achieves slightly greater GHG 

reductions than bio-LDPE. For imported Brazilian products, bio-LDPE achieves greater GHG 

reductions than bio-ethanol. An expanded policy that includes bio-LDPE provides added 

flexibility without compromising GHG targets. 

 

This chapter is based on the following published work,
154

 reproduced with permission. Copyright 

2015, American Chemical Society. 

Posen, I. D.; Griffin, W. M.; Matthews, H. S.; Azevedo, I. L., Changing the Renewable Fuel Standard to a 

Renewable Material Standard: Bioethylene Case Study. Environ Sci Technol 2015, 49, (1), 93-102. 

http://pubs.acs.org/articlesonrequest/AOR-PPRjXpeDcQ32ug9fgy8N  

 

2.2. Introduction 

In 2007, the United States (U.S.) Energy Independence and Security Act (EISA) expanded the 

national Renewable Fuel Standard (RFS). 
4
 The new standard (RFS2), administered by the U.S. 

http://pubs.acs.org/articlesonrequest/AOR-PPRjXpeDcQ32ug9fgy8N
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Environmental Protection Agency (EPA), requires refiners, blenders and importers of 

transportation fuels to meet increased minimum annual biofuel production targets in each of 

three categories: cellulosic, advanced (anything other than corn ethanol), and renewable (no 

restrictions). Targets increase annually as shown in Figure 1.1 on page 16. By 2022 RFS2 

requires an annual total of 36 billion gallons of renewable fuel, including at least 15 billion 

gallons of cellulosic, and an additional 5 billion gallons of advanced biofuel. To qualify under 

RFS2, renewable fuels from facilities constructed after 2007 must achieve at least a 20% 

reduction in life cycle greenhouse gas (GHG) emissions relative to baseline (generally gasoline). 

Steeper reduction targets of 50% and 60% (compared to baseline) are required to qualify as an 

advanced biofuel or cellulosic biofuel, respectively. Mandated production volumes and GHG 

reduction targets may be reduced by EPA waiver under certain circumstances.
4
 

  

Thus far, biofuel targets have been met predominantly by blending increasing quantities of bio-

ethanol into conventional gasoline. This practice is approaching its limit at the 10% ethanol 

(E10) ‘blend wall’, the upper bound for which the warranty is valid on most cars.
121

 Although 

EPA has issued a partial waiver for use of a 15% ethanol blend (E15) in vehicles from model 

year 2001 and newer, the Congressional Research Services suggests the “limitation to newer 

models, coupled with infrastructure issues, are likely to limit rapid expansion of blending 

rates.”
121

 Lack of infrastructure further impedes use of ethanol at higher blends, such as E85,
122

 

and so the EPA has begun reducing target biofuel production volumes starting in 2014.
178

 The 

difficulties faced by RFS2 can be partially attributed to its limited scope of application (the 

transportation sector). This simultaneously limits the market for biofuels and places competing 

uses for bio-ethanol at a disadvantage in the marketplace. This chapter investigates the GHG 

emissions associated with an alternate use for bio-ethanol: to produce bio-based chemicals. The 

goal of this analysis is to inform on the potential impact from creating a new, more inclusive 

federal policy for use of bio-ethanol, modeled on RFS2. The main question addressed is whether 

bio-based chemicals (specifically bioethylene) from certain feedstocks could achieve similar 

GHG reductions to the targets laid out in RFS2. Regulatory hurdles and other potential impacts 

such as those highlighted by the food versus fuel debate (e.g. ref
126

) are beyond the scope of this 

chapter but would need to be considered in the future in a broader assessment of the implications 

of such a policy. 
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Bulk chemical production is responsible for about 5-6% of both U.S. GHG emissions
6
 and U.S. 

energy consumption (including feedstock energy).
7
 Ethylene is one of the industry’s most 

important chemicals and can be produced through the dehydration of ethanol.
179,180

 Current U.S 

ethylene production is 24 million tonnes/year. 
9
 Global production is about 5 times that,

181
 

making ethylene the world’s largest volume organic chemical. While transportation fuels 

represent a much larger proportion of U.S. energy use (28%) than bulk chemicals,
182

 the latter 

remains a sizeable market. For a point of comparison, the full RFS2 mandate (36 billion gallons 

of ethanol or ethanol equivalent) represents only about 3% of U.S. energy needs. This chapter is 

focused on bioethylene as a first step toward assessing whether a more comprehensive 

Renewable Materials Standard (RMS) should be considered as a way to reduce GHG emissions 

from various sectors. Replacing yearly demand of U.S. fossil ethylene with bioethylene could 

elevate the demand for bio-ethanol by roughly the equivalent of current national U.S. ethanol 

production.
183

 In 2014, EPA waiver reduced RFS2 requirements by approximately 3 billion 

gallons of ethanol;
178

 this gap could have been bridged by converting 20% of U.S. ethylene 

production (5 million tonnes) to bioethylene.  

 

Bioethylene is chemically and functionally indistinguishable from its conventional fossil-fuel 

counterpart. This distinguishes it from bio-ethanol fuel in that bioethylene need only compete on 

costs, while bio-ethanol faces a host of other demand-side constraints, such as energy differences 

per gallon and new infrastructure requirements. Small amounts of bioethylene are already in 

production, with Brazil having the highest capacity.
184

 Nevertheless, bioethylene production 

remains minimal compared to fossil ethylene (<1% of global ethylene production).
181,184

 

   

At present, U.S. ethylene production is dominated by steam cracking of light hydrocarbons (65% 

from ethane, and 15 to 20% from propane) derived from natural gas. Cracking of heavy 

feedstocks (primarily naphtha) accounts for most of the remaining 15 to 20%.
185-187

 Availability 

of light feedstocks is expected to remain strong for decades,
188

 suggesting that ethane cracking 

will continue to dominate U.S. production for the foreseeable future. 
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The policy change assessed in this chapter would result in a partial shift away from fuel-use of 

ethanol toward chemical use (for bioethylene). Evaluating the GHG impact of this move requires 

comparing the difference in GHG emissions between gasoline and bio-ethanol to the difference 

in emissions between fossil ethylene and bioethylene. Numerous studies have investigated life 

cycle emissions from production of biofuels (reviewed in refs
97,189,190

). Fewer studies investigate 

the impacts from bioethylene products
168,176,191-197

 and just two of these explicitly considered 

competition between fuel and chemical use for biomass.
168,176

 Two studies were tailored to a 

U.S. context,
195,197

 and just one explicitly modeled the emissions from a natural gas derived 

ethane to ethylene pathway.
197

 Only two studies
191,193

 considered emissions from indirect land 

use change (ILUC). The studies in refs
168,176,191-197

 generally report that bioethylene based 

products can achieve reductions in GHG emissions and non-renewable energy use, though 

potentially at the expense of other environmental impacts (e.g. acidification and eutrophication). 

Notable exceptions include one of the scenarios from Liptow and Tillman
191

 (the “attributional” 

model with “higher estimate” ILUC shows a 10% increase in GHG emissions from sugarcane 

polyethylene relative to production from crude oil), and Ghanta et al.
197

 who find highest GHG 

emissions for corn ethanol to ethylene (0.67 kg CO2e/kg ethylene), followed by naphtha (0.50 kg 

CO2e/kg ethylene) and finally ethane (0.42 kg CO2e/kg ethylene). Alvarenga et al.,
176

 focus 

exclusively on Brazilian sugarcane and report similar GHG savings for bio-ethanol (1.77-1.85 kg 

CO2e/kg ethanol, depending on the ethanol content (E20-E25) of displaced fuel) and bioethylene 

(1.60-1.87 kg CO2e/kg ethanol, depending on ethylene yield from ethanol). Bos et al.
168

 focus on 

production in either the Netherlands or Brazil and report slightly greater GHG savings from 

bioethylene than from bio-ethanol (by ~2-3 tonnes of CO2e/ha, depending on the biomass 

feedstock). None of the above studies provided a complete treatment of uncertainty and 

variability for both fossil and bio-based pathways. 

 

Using a life cycle assessment approach with Monte Carlo simulation, this chapter develops an 

estimate for the cradle-to-gate GHG emissions for polyethylene production (specifically low-

density polyethylene (LDPE)). Although ethylene is used as a raw material for many products, 

the majority (~70%) is used to manufacture polyethylene.
9
 Baseline GHG emissions from fossil-

based production (ethane to ethylene) are compared to the expected GHG emissions from bio-

based ethylene production for three biomass pathways: U.S. switchgrass (a cellulosic feedstock), 
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Brazilian sugarcane (an ‘advanced’ feedstock), and U.S. corn starch. Finally, competing uses for 

ethanol (as fuel, or to produce bioethylene) are examined: the difference in GHG emissions 

between bioethylene and fossil ethylene is compared to the difference in GHG emissions 

between ethanol and gasoline. The comparisons drawn in this chapter refer to changes in GHG 

emissions accounting and may not correspond to actual emission changes for several reasons, as 

elaborated in the results and discussions section. 

 

2.3. Methods  

2.3.1. Pathways Overview  

Eight pathways are modeled as shown in Figure 2.1. Four of these are fuels: gasoline, 

switchgrass ethanol, corn ethanol and sugarcane ethanol. The other four are LDPE: natural gas 

LDPE, switchgrass LDPE, corn LDPE and sugarcane LDPE. The various pathways produce 

different products so a consistent functional unit such as kg of product, would be misleading. To 

facilitate comparisons, the functional unit for each pathway is normalized to the same quantity of 

ethanol (1.74 kg), corresponding to 1kg of LDPE production or 46.9 MJ energy (lower heating 

value). 

 

For each bio-based pathway, an accounting of the following steps is included: cultivation 

(including emissions from land-use change), feedstock transportation, and ethanol production via 

fermentation. The ethanol produced from each pathway is chemically identical and is 

differentiated only by location (U.S. or Brazil). Corn ethanol is co-produced with dried distiller 

grains with solubles (DDGS). Switchgrass and sugarcane ethanol are co-produced with unused 

feedstock components, which may be used to generate electricity. Three additional steps are 

modeled for fuel-use ethanol: transport to the U.S. (for Brazilian ethanol only), fuel distribution, 

and combustion. For chemical use (polyethylene production), additional modeled processes 

include transport of ethanol to the ethylene production facility, dehydration of ethanol to 

ethylene, polymerization of ethylene to LDPE, and transport to the U.S. (Brazilian LDPE only). 

These steps are modeled using regionally applicable parameters for Brazilian and U.S. pathways, 

respectively.  
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For ethanol fuel, the conventional alternative is gasoline, for which the distribution of GHG 

emissions are as modeled by Venkatesh et al.
198

 The conventional pathway for LDPE production 

in the U.S. is via natural gas derived ethane. The life cycle analysis includes pre-production, wet 

natural gas extraction, processing, steam cracking and polymerization. A number of co-products 

are produced throughout the process as shown in Figure 2.1. 

 

Figure 2.1. Pathways considered in the life cycle assessment. Five unique feedstocks (sugarcane, corn, 

switchgrass, natural gas, and crude oil) are considered. Target products (Energy and LDPE) are indicated at 

the bottom. The functional unit is 46.9 MJ of energy for fuel or 1kg of LDPE for chemical use. Key 

intermediate product flows are shown in black. Co-products are shown in grey text. 
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2.4. Model Overview and Selection of Distributions and Parameters 

The models for switchgrass and corn ethanol production are adapted from Mullins et al.
74

 The 

model for sugarcane ethanol is adapted from Liptow and Tillman
191

 and Seabra et al.
199

 The 

former paper was selected as it is among the only papers directly to consider a bio-LDPE 

pathway for Brazilian sugarcane and is thoroughly documented in an earlier report.
200

 The study 

by Seabra et al.
199

 is among the more recent studies for Brazilian sugarcane ethanol, was based 

heavily on primary survey data and directly provides parameters for inputs to Monte Carlo 

simulation. Parameters have been updated where new information is available, as detailed in the 

text below and in Appendix A. Upstream emissions from natural gas associated with the 

production of ethylene follow the modeling approach from Venkatesh et al.,
201

 updated with 

more recent data, the inclusion of pre-production emissions, a more complete allocation of 

emissions to co-products, plant-level data for natural gas processing emissions, and the 

weighting of data prior to fitting each distribution.  

 

When literature sources contain multiple estimates for a single parameter, simple distributions 

capturing this range are used. Where there is a clear best estimate or a clustering of central 

estimates, triangular distributions are employed. If only a range is available, then a uniform 

distribution is used. Where there are a large number of data points, Palisade’s @Risk
TM

 software 

is used to fit a continuous distribution. 

 

For the natural gas ethylene pathway, estimates for the emissions from a given process are made 

separately for each U.S. state (34 in all as the remaining 16 do not produce natural gas), 

whenever data disaggregated by state are available. In the Monte Carlo analysis, these estimates 

are the inputs to a discrete distribution with weights being proportional to each state’s share of 

current national ethane production. 

 

2.4.1. Allocation 

Each of the pathways discussed above involves co-products. Where possible, these are treated by 

system expansion, as follows. Switchgrass and sugarcane ethanol are credited for surplus 

electricity production with displaced GHG emissions from U.S. and Brazilian average electricity 
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production emissions factors, respectively. Corn ethanol is credited for DDGS with displaced 

emissions from other animal feeds as modeled by Argonne National Laboratory’s GREET 

model.
202

 Natural gas LDPE is credited for hydrogen production (from ethane steam cracking) 

with displaced emissions from producing hydrogen via methane steam reforming, the dominant 

method for hydrogen production in the U.S.
203

 

 

Emissions from natural gas LDPE production are allocated to remaining products on a mass 

basis. Though arbitrary, this is a common convention for assigning emissions, and allows for a 

consistent basis of comparison between pathways. Pre-production and extraction emissions are 

allocated to all products produced prior to steam cracking (dry natural gas lease condensate, 

propane, butane, isobutane, pentanes plus and ethane). Processing emissions and steam cracking 

emissions were allocated to products at the point of exit from the processing plant (processed dry 

natural gas, propane, butane, isobutane, pentanes plus and ethane) and cracker (propylene, 

butadiene, aromatics and ethylene), respectively. Appendix A, section A.1.1 provides additional 

details. 

 

In the estimate for emissions from gasoline, Venkatesh et al.
201

 performed allocation of 

emissions to oil refinery products on the basis of both mass and energy. 

 

2.4.2. Global Warming Potential 

Results for this study are reported for the 100-year global warming potential (GWP), using 

equivalence factors (in kg CO2e) as reported by the Intergovernmental Panel on Climate Change 

(IPCC) 5
th

 assessment report (AR5).
204

 Equivalence factors are assumed to be normally 

distributed with uncertainty ranges as presented in the AR5 supplementary material.
205

 Mean 

global warming potentials for CH4 and N2O are 36 and 298, respectively. Certain sources used as 

inputs to this chapter report only total GWP (not disaggregated by gas) and could not be adjusted 

to reflect the latest equivalence factors; further details can be found in appendix section A.1.2.  
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2.4.3. Fuels and Electricity 

For life cycle emissions from coal and from petroleum derived fuels (diesel, residual fuel oil and 

gasoline), distributions from Venkatesh et al.
198,206

 are used. For emissions from natural gas used 

as a fuel, an approximate distribution of emissions is fitted to the parameters provided in 

Venkatesh et al.
201

 Emissions from processes taking place in Brazil are modeled using a 

distribution for average Brazilian grid emissions.
200,202,207

 Processes taking place in the U.S. 

employ a distribution for average emissions by North American Electric Reliability Corporation 

(NERC) region:
208

 MRO for corn ethanol production, the combined SPP, TRE and SERC region 

for switchgrass ethanol production, and the combined SERC and TRE region for both 

dehydration of ethanol to ethylene and ethylene polymerization. See appendix A, section A.1.3 

for further explanation. 

 

2.4.4. Natural Gas Pre-production 

Before a natural gas well becomes operational, various development stages must be concluded, 

such as the construction of a staging area (the well pad) and well drilling, both of which require 

energy inputs. In addition, for unconventional wells (e.g., in shale formations), the hydraulic 

fracturing procedure requires the production of specialty chemicals and the management of large 

quantities of produced water. These pre-production emissions are modeled using distributions 

developed in a recent review paper by Weber and Clavin.
209

 Emissions from well completions 

and workovers are described in Appendix A. See section A.1.4 for more details. 

 

2.4.5. Natural Gas Extraction (Production) 

Emissions from natural gas production arise through the combustion of ‘lease fuel’ used to 

power the extraction process, through intentional venting and flaring of natural gas, and through 

unintentional leaks or fugitive emissions. The U.S. Energy Information Administration (EIA) 

reports total lease fuel consumed (by volume) in each state.
210

 Lease fuel is assumed to be 

composed entirely of CH4 and CO2 and to be combusted with 100% efficiency. Emissions are 

then allocated to the relevant products (and normalized by the total mass of each product) by 

state.  
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EIA reports natural gas vented and flared in each state.
211

 As for lease fuel, vented/flared gas is 

assumed to be all CH4 and CO2 and, following Venkatesh et al.,
201

 it is assumed that all such gas 

is flared. Emissions are then allocated and normalized across products by state. Finally, the 

annual EPA Greenhouse Gas Inventory provides data on other CH4 emissions from the natural 

gas production phase
212

 by National Energy Modeling System (NEMS) region.
213

 The emissions 

in each NEMS region are fit to a triangular distribution, assuming the relative uncertainty on 

production emissions within each region is on the same order as for the entire natural gas system 

(-19% to +30%) as reported by EPA.
214

 Emissions from each NEMS region are allocated to each 

of its constituent U.S. states in proportion to their total natural gas production. See appendix 

section A.1.5 for details. 

 

2.4.6. Natural Gas Processing 

Natural gas processing involves the separation of whole gas from the wellhead into different 

hydrocarbon products including dry natural gas, ethane, propane, n-butane, isobutane and 

pentanes plus as well as the removal of non-hydrocarbon gases such as N2, CO2, and sulfur 

containing compounds. Emissions in the stage result from fuel used to power the process, 

intentional release of scrubbed CO2 and fugitive emissions of natural gas. Processing emissions 

were modeled using 2011 data from actual processing facilities as reported to the EPA 

Greenhouse Gas Reporting Program.
215

 To the extent possible, each facility was matched with 

the corresponding processing plant in the EIA processing capacity database, which gives average 

daily plant flow from mid-2011 to mid-2012.
216

 In all, 222 plants were matched, accounting for 

80% of EIA reported daily plant flows. The total GHG emissions from each processing plant 

(recalculated to reflect the AR5 GWP values) are then normalized by its annual plant flow. These 

emissions are weighted by the plant flow and fit to a continuous distribution. Emissions are then 

allocated to the relevant products (and normalized by the total mass of each product) on a 

national basis. See appendix section A.1.6 for more details. 

 

2.4.7. Steam Cracking 

The conversion of ethane to ethylene is an energy intensive process known as steam cracking. In 

this process, saturated hydrocarbons like ethane are heated to high temperatures (>750 
o
C) in the 
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presence of steam, resulting in a mix of products that is usually optimized for olefins like 

ethylene. Valuable co-products result from this process and include ethylene, propylene, 

butadiene, aromatics (e.g., benzene) and hydrogen. Specific energy requirements for the 

production of a tonne of ethylene via steam cracking of ethane are estimated by a number of 

sources, 
217-219

 as are volumes for co-products
217-221

 and direct CH4 emissions.
222

 It is assumed 

that produced methane, C4 components (i.e., butanes) and C5/C6 (i.e., pentanes, hexanes) 

components are used as fuel to power the steam cracking process, and that any residual energy 

needs are provided by natural gas. Ethylene, propylene, butadiene and aromatics (treated as 

benzene) are all treated as products, and subject to mass allocation. Hydrogen is treated by 

system expansion, as discussed above. See appendix section A.1.7 for more details. 

 

2.4.8.  Land Use Change (LUC) 

All bio-based pathways considered in this study have the potential to cause emissions through 

the repurposing of land, either directly or as a consequence of indirect market forces. Such 

emissions may occur over the course of many years, and while there is no agreed method to 

account for their impact, LUC emissions are potentially critical to the GHG impact of bio-based 

products. The U.S. EPA provides estimates for LUC emissions specifically designed to account 

for the impact of RFS2;
128

 these estimates assume a 30-year time horizon and are used for the 

base-case model in this study. Though arbitrary, a 30-year amortization period is common in the 

treatment of LUC emissions. Point estimates for domestic LUC emissions from U.S. corn and 

switchgrass ethanol production (both are negative, representing carbon sequestration) are 

combined with triangular distributions fit to EPA’s 95% confidence intervals for international 

land use change emissions from each feedstock. The confidence intervals provided by EPA 

ignore uncertainty in their economic model of land-use change. In addition, EPA’s results rely on 

2022 as the year of analysis, which creates inconsistencies with other assumptions (based on 

current technologies) made in this analysis. Furthermore, there is a large range of estimates for 

LUC emissions in the literature,
85,223,224

 which is not fully captured by the distribution employed 

here. Nevertheless, the EPA analysis provides a common set of assumptions for the three 

feedstocks under study. Sensitivity to LUC emissions is further examined in section 2.5.3. 
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2.4.9.  Cultivation of Biomass Feedstock 

Remaining emissions from agriculture include use of fossil fuels for farming equipment, 

emissions from agrochemical production, N2O emissions from volatized nitrogen fertilizer and 

CO2 from calcium carbonate fertilizer. For sugarcane, there are also emissions of CH4 and N2O 

from field burning during harvest. Emissions of CO2 from field burning are excluded because the 

carbon source is biogenic,
96

 and so the carbon was only recently removed from the atmosphere. 

For corn and switchgrass pathways, application of synthetic nitrogen fertilizer and crop residue is 

modeled as in Mullins et al.;
74

 quantities of other agrochemicals and emissions from fossil fuel 

use are calculated from the data provided by GREET,
202

 using default input parameters. For 

sugarcane cultivation, distributions for diesel consumption (in L/ha), cane productivity (in t/ha), 

the quantity of trash burned and quantities of applied fertilizers and pesticides are taken from 

Seabra et al.
199

; the emissions factor for straw burning is taken from GREET.
202

 The emission 

factor for N2O from applied fertilizer is modeled stochastically using the uncertainty range 

provided by the IPCC,
225

 although there is some evidence this may underestimate potential N2O 

emissions.
226

 For all pathways, emissions for the production of agrochemicals are taken from 

GREET,
202

 using separate estimates for U.S. (corn and switchgrass) and Brazilian (sugarcane) 

production.  

 

2.4.10. Ethanol Production 

Production of ethanol from sugarcane can be entirely powered by the combustion of bagasse, the 

dried residue left over after extracting juice from the sugarcane. CO2 emissions from bagasse 

burning are annual biogenic emissions, and are thus disregarded. Yield of ethanol from 

sugarcane and quantity of surplus electricity generated by bagasse combustion are modeled as in 

Seabra et al.
199

 See appendix section A.1.8 for more details. 

 

Total heat and electricity required for corn and switchgrass ethanol production, their respective 

feedstock chemical composition, and yields from the hydrolysis and fermentation processes are 

as modeled in Mullins et al.
74

 In the case of switchgrass, it is assumed that all non-fermentable 

and unreacted components are combusted in a 68% efficient boiler (higher heating value basis) 

to produce heat. Any surplus heat is used to drive an 80% efficient turbine, which generates 

electricity for the process and potentially surplus electricity for sale to the grid. Any heat 
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shortfall in either process is provided by natural gas, while any electricity shortfall is made up by 

grid electricity. 

 

2.4.11.  Ethanol Dehydration 

For all bio-based pathways, ethanol to ethylene conversion follows the fuel and electricity inputs 

outlined in a 1981 article
180

 using the commercial Syndol catalyst, which still represents the 

dominant technology in use today.
179

 Generic uncertainty factors were applied following the 

method proposed by Geisler et al.
227

 Although the data used here is over 30 years old, it is in 

close agreement with modeling based on a recent patent
191

 and results from actual plant data.
194

 

See appendix section A.1.9 for more details. 

 

2.4.12.  Polymerization 

The last step in the production of LDPE plastic from ethylene is polymerization of individual 

ethylene molecules to make the final polymer. This process requires both heat (fuel) and 

electricity. For U.S. pathways, polymerization is modeled using average U.S. industry data.
145

 

Brazilian polymerization is assumed to follow European parameters, uniformly distributed 

between the values reported by Liptow and Tillman
200

 and PlasticsEurope.
228

 Electricity 

emissions are calculated using Brazil-specific emissions factors. See appendix section A.1.10 for 

more details.  

 

2.4.13.  Transportation 

At several stages throughout the pathways considered, intermediates must be moved from one 

location to another. For switchgrass and corn, emissions for feedstock transportation to the 

ethanol production facility are taken from GREET.
202

 For U.S. LDPE production, it is assumed 

that ethanol is transported by single unit truck using fuel requirements from NREL.
229

 For corn 

ethanol, the transportation distance is assumed to range from 1,000 to 1,800 km, the approximate 

distance from the U.S. Midwest, where most ethanol biorefineries are located,
230

 to the gulf coast 

states, where most ethylene production and infrastructure is located.
231

 Switchgrass production is 

expected to occur primarily in the southeast,
128

 resulting in shorter distances (modeled as 0 to 

1,500 km with a mode of 1,000 km). For sugarcane, the diesel required for feedstock 
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transportation to the ethanol production facility and subsequent transport of ethanol to the 

ethylene plant is modeled as in Liptow and Tillman.
191

 Transport of the final product (ethanol or 

LDPE) from Brazil to the U.S. is modeled as a residual fuel oil tanker (fuel requirements from 

NREL
232

) shipping from Paranágua, Brazil to Houston, Texas.
233

 Fuel distribution for ethanol 

within the U.S is modeled as in GREET.
202

 

 

2.4.14.  Use Phase and End of Life 

The final stage for both ethanol fuel and gasoline is combustion. For ethanol, all emissions in this 

phase are biogenic and so are not included in the accounting of GHG emissions. For gasoline, 

these emissions are already accounted for in the distribution from Venkatesh et al.
198

 

 

For LDPE, use phase and end of life (EOL) are not explicitly modeled as all pathways have 

converged at the point of production of U.S. LDPE or arrival of Brazilian LDPE to the U.S. 

While alternative EOL strategies may impact on the life cycle emissions for LDPE, they will not 

affect the comparison between fossil-based and bio-based production. For the bio-based LDPE 

pathways, carbon taken up during plant growth is now locked away in a non-biodegradable 

product. The carbon content of polyethylene accounts for 12/14 of the total mass and is treated as 

a credit for the amount of CO2 this carbon would otherwise represent: 3.1 kg CO2 / kg LDPE. 

More explicit treatment of end of life would not appreciably change the life cycle emissions for 

LDPE consumed domestically. In the United States, approximately 85% of plastics are 

landfilled;
234

 the EPA estimates emissions of approximately 0.04 kg CO2e/kg LDPE landfilled
235

 

– roughly 2% of fossil LDPE life cycle GHG emissions. Key parameters for all pathways are 

given in appendix section A.1.11. 

 

2.5. Results and Discussion 

2.5.1. Main Results and Discussion 

The results presented below must be interpreted with caution. Parameters used in this study are 

taken as the closest approximation of present operating conditions. However, data is drawn from 

multiple sources, which could produce inconsistencies. Further, with the exception of land-use 

change accounting, this study follows an attributional life cycle assessment (ALCA) approach, 



Chapter 2 

43 

which is a form of environmental accounting. It does not predict the actual changes in emissions 

that would result from increased production of bio-based products, for which the use of average 

electric grid emissions and the implicit assumption of 1:1 displacement of fossil products would 

be inappropriate. The ALCA approach, however, is indicative of the emissions that may be 

attributed to each pathway (taken in isolation from market forces), and as such provides a 

consistent basis to establish how pathways perform relative to EISA targets.  

 

Simulated life cycle GHG emissions for each of the 8 pathways considered are shown in Figure 

2.2 (see appendix section A.2.1 for numerical results). To allow comparison between pathways, 

results are normalized to the amount of ethanol needed to produce 1 kg LDPE, which is 46.9 MJ 

of ethanol for fuel pathways; fossil-based pathways are likewise scaled to 1kg LDPE and 46.9 

MJ gasoline, respectively. Fuel use of ethanol has higher modeled emissions when compared to 

LDPE from the same feedstock. This is due primarily to combustion of the produced ethanol as a 

fuel. 

 

When comparing across bio-based pathways, the lowest modeled emissions are for the cellulosic 

feedstock (switchgrass), followed by the ‘advanced’ feedstock (sugarcane), and finally corn 

starch. For both sugarcane and switchgrass, both LDPE and ethanol fuel will result in decreased 

modeled emissions relative to their fossil fuel counterparts, with probability approaching 1. On 

the other hand, corn products result in higher modeled emissions with a high degree of 

confidence (~90% chance for LDPE and ~70% chance for ethanol). There is substantial 

probability that switchgrass and sugarcane LDPE pathways result in negative emissions (net 

carbon sequestration). This suggests that no amount of improvement to the fossil LDPE pathway 

(e.g. via recycling) would lead to the fossil route being preferred. Switchgrass ethanol for fuel 

may also result in negative modeled emissions if displacement of grid emissions by surplus 

electricity generation occurs. This is not the case for sugarcane ethanol, as less surplus electricity 

is produced, plus displaced Brazilian electricity has a relatively low carbon intensity.  
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Figure 2.2. Modeled life cycle GHG emissions from all pathways. a) Simulated GHG emissions from 

production of LDPE from corn, natural gas (NG), sugarcane (SC) or switchgrass (SW). b) Simulated GHG 

emissions for the production and combustion of 46.9 MJ of fuel, using corn ethanol, gasoline, sugarcane (SC) 

ethanol or switchgrass (SW) ethanol. The functional units (1 kg LDPE or 46.9 MJ) represent equivalent 

quantities of ethanol. 

 

Following the ‘risk of policy failure’ framework developed by Mullins et al.,
74

 Figure 2.3 shows 

the modeled probability (proportion of model runs) of achieving a given GHG reduction target 

from pursuing any of the considered pathways. Each curve on the figure is produced by taking 

the difference in life cycle emissions between the labeled bio-based product (ethanol or LDPE) 

and the corresponding conventional fossil counterpart (gasoline or LDPE). This gives net GHG 

savings for each pathway. Consistent with EISA ethanol targets, net GHG savings are expressed 

as a percent of life cycle emissions from gasoline. Higher values on the x-axis represent more 

aggressive GHG reduction targets; higher values on the y-axis represent higher confidence that a 
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given GHG reduction target can be achieved. A more conventional cumulative distribution 

function is presented in appendix section A.2.2, with numerical results presented in Table A.15 

(section A.2.1). Further, appendix section A.2.3 discusses which inputs contribute most to 

uncertainty in the net GHG emissions for each pathway. 

  

Figure 2.3 shows that corn pathways achieve the ‘renewable biofuel’ 20% reduction target in 

very few model runs, which is in agreement with results previously presented by Mullins et al.
74

 

Both sugarcane pathways can meet the ‘advanced biofuel’ 50% reduction target. Both 

switchgrass pathways achieve the ‘cellulosic biofuel’ 60% reduction target with probability 

approaching 1 – a slightly more optimistic result than presented by Mullins et al.,
74

 due to higher 

estimates of feedstock energy and GHG intensity of displaced electricity employed here.  

  

Feedstock choice (corn, sugarcane or switchgrass) has a larger impact on modeled GHG savings 

than how the ethanol is used (for fuel or LDPE). For U.S. production (corn and switchgrass), fuel 

use of the ethanol stochastically dominates (greater GHG savings) chemical use, while the 

reverse is true for Brazilian production (sugarcane). The difference stems first from the lower 

emissions of Brazilian electricity used in ethanol dehydration and ethylene polymerization and 

second from the reduced weight of shipping LDPE relative to ethanol when transporting the end-

products to the U.S.  
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Figure 2.3. Probability (proportion of model runs) that modeled GHG emissions from each bio-based 

pathway are below those of the fossil fuel counterpart (at 0%), or below some policy target. Policy targets are 

given as a percent reduction relative to simulated gasoline life cycle (LC) emissions. EISA targets (20% for 

corn biofuel, 50% for advanced biofuels and 60% for cellulosic biofuels) are shown with vertical blue lines. 

SC = sugarcane; SW = switchgrass.  

 

Finally, Figure 2.4. presents the GHG savings (if any) that bio-LDPE can achieve above and 

beyond the modeled GHG savings from bio-ethanol fuel. Results are expressed as a percent of 

gasoline life cycle emissions. U.S. production of bio-LDPE would require a relaxation of 

expected emission reductions compared with bio-ethanol fuel (e.g., by 17% of gasoline 

emissions for an 80% confidence level). Brazilian production would allow for additional GHG 

savings (e.g., by 5% of gasoline emissions for an 80% confidence level). Numerical results (in 

kg CO2e/functional unit) are available in Table A.16. A major advantage of this presentation is 

that it is independent of the emissions from ethanol production (ethanol emissions are subtracted 

out when taking the difference between net emissions from bio-ethanol and bio-LDPE) and can 

be readily applied to new feedstocks or other studies on cradle-to-gate ethanol emissions. An 

alternative way to frame this discussion would be to establish a GHG equivalence factor between 

bio-LDPE and bio-ethanol fuel for policy achievement purposes – that is, for every unit of 

ethanol diverted from fuel use, how much ethanol must go toward bio-LDPE to achieve the same 

GHG reduction. This idea is explored in the following section (section 2.5.2). Figures 2.3 and 2.4 

implicitly assume that bio-based products replace their conventional fossil counterparts on a 1:1 
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basis. Though 1:1 replacement is accurate in physical terms, the resulting changes in market 

prices make 1:1 replacement unlikely across the entire market. This is discussed further in the 

sensitivity analysis. Alternate versions of Figures 2.3 and 2.4, which also incorporate indirect 

market effects, are available in appendix section A.2.5. 

  

 

 

Figure 2.4. Probability (proportion of model runs) that GHG reductions from fossil LDPE replacement are 

superior to those from gasoline replacement (at 0% on the x-axis) or in excess of some policy target. Positive 

values indicate that more stringent reductions can be met through LDPE replacement. Negative values 

represent needed relaxation in the target emissions reductions (as a % of gasoline emissions).  

2.5.2. Bio-LDPE GHG Equivalence Factor 

The discussion above introduces the possibility of establishing a bio-LDPE to bio-ethanol GHG 

equivalence factor. To do so, policy makers could first choose an acceptable level of confidence 

(y-axis in Figure 2.3), as suggested by Mullins et al.,
74

 and legislate the corresponding 

percentage target for ethanol fuel (x-axis in Figure 2.3). A separate target for bioethylene 

products would then be set by scaling bioethylene requirements to achieve the same GHG 

reduction and confidence level (proportion of model runs). The required scaling for switchgrass 

and sugarcane is shown in Figure 2.5 a) for different confidence thresholds. For example, 

sugarcane ethanol and switchgrass ethanol can meet EISA GHG reduction targets with 

confidence levels of 99% and 96% respectively. Figure 2.5 a) shows that bio-LDPE can achieve 

the same GHG reduction and confidence level if 10% less ethanol is used for sugarcane bio-

LDPE (corresponding to a 90% equivalence factor), and 20% more ethanol is used for 
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switchgrass bio-LDPE (corresponding to a 120% equivalence factor). Alternatively, results may 

be reported using a direct simulation of the ratio of GHG emissions savings from bio-LDPE to 

bio-ethanol fuel, as shown in Figure 2.5 b). As an example, consider a desired probability of 0.8 

that bio-LDPE achieves at least the same emission reduction as bio-ethanol fuel (y-axis of Figure 

2.5 b)). To achieve this level of confidence, approximately 0.9 kg sugarcane ethanol must be 

used for bio-LDPE for each kg of sugarcane ethanol used for fuel (90% equivalence factor). For 

switchgrass, approximately 1.2 kg ethanol must be used for LDPE to achieve the same GHG 

reduction as using 1 kg ethanol for fuel (120% equivalence factor). 

 

Figure 2.5. Bio-LDPE ethanol use equivalence factor for achieving the same GHG emission reduction targets 

as bio-ethanol fuel. a) relative quantity of ethanol used in bio-LDPE (y-axis) to achieve the same reduction 

target as bio-ethanol fuel for a reduction target set by fixed level of confidence (x-axis) as applied to main text 

Figure 2.3. The vertical dotted lines at 99% and 96% show respectively the degree of confidence with which 

sugarcane ethanol and switchgrass ethanol can achieve EISA targets (50% reduction for sugarcane and 60% 

reduction for switchgrass). b) probability that bio-LDPE will achieve the same reduction in emissions as bio-

ethanol fuel (y-axis) in function of the quantity of ethanol used for bio-LDPE (x-axis) relative to a unit 

amount of ethanol used for fuel.  

 

2.5.3. Sensitivity to Emissions from Land Use Change 

Emissions from land use change are highly uncertain and subject to much controversy. These 

emissions may also respond to increased demand for agricultural products, in a non-linear way 
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that is not captured in the present model. In Figure 2.6 to Figure 2.8, land use change is treated 

parametrically for each of the bio-based pathways considered. Excluding land use change (i.e. 0 

g CO2e / MJ) leads to a high probability (>0.8) that corn ethanol and LDPE achieve some 

emission reduction (i.e. “break-even”) relative to gasoline and fossil LDPE, respectively (Figure 

2.6). It is still only with limited probability (0.6 for ethanol and 0.3 for LDPE) that either corn-

based bio-product achieves the 20% emission reduction required by EISA. For switchgrass and 

sugarcane, high values of LUC may prevent those pathways from achieving EISA targets but are 

unlikely to result in a net increase in emissions relative to fossil products (Figure 2.7 and Figure 

2.8). 

 

 

Figure 2.6. Probability (proportion of model runs) that GHG emissions from corn ethanol and corn LDPE 

are below gasoline and fossil LDPE respectively (“break-even”), or below the RFS2 renewable biofuel 

reduction target (20% reduction compared to gasoline) as a function of LUC emissions. The figure also shows 

base case LUC emissions based on ref.
128
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Figure 2.7. Probability (proportion of model runs) that GHG emissions from switchgrass ethanol and 

switchgrass LDPE are below gasoline and fossil LDPE respectively (“break-even”), or below the RFS2 

cellulosic biofuel reduction target (60% reduction compared to gasoline) as a function of LUC emissions. The 

figure also shows base case LUC emissions based on ref.
128

  

 

 

Figure 2.8. Probability (proportion of model runs) that GHG emissions from switchgrass ethanol and 

sugarcane LDPE are below gasoline and fossil LDPE respectively (“break-even”), or below the RFS2 

advanced biofuel reduction target (50% reduction compared to gasoline) as a function of LUC emissions. The 

figure also shows base case LUC emissions based on ref.
128
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2.5.4. Additional Sensitivity Analyses 

Appendix sections A.2.4 to A.2.6 present sensitivity to the treatment of displaced electricity, to 

the use of marginal electricity, to the choice of feedstock for displaced fossil LDPE, to the 

assumption of 1:1 displacement of fossil products, and to select other assumptions. Noteworthy 

findings are described here. Without credit for displaced electricity, switchgrass LDPE is less 

likely to meet EISA’s cellulosic biofuel targets (50% probability), although substantial GHG 

savings are still achieved. The choice of feedstock for displaced fossil LDPE, credit for displaced 

electricity for switchgrass ethanol or for sugarcane pathways, and the use of average rather than 

marginal electricity emissions factors affect net emissions for each pathway, but without 

overturning conclusions regarding the ability to meet EISA GHG targets. Finally, while market 

effects, such as the indirect fuel use effect,
236

 may significantly affect the GHG savings from 

biofuel pathways, bio-LDPE pathways are far less vulnerable to similar market-induced indirect 

demand increases for fossil LDPE (due to the relatively low emissions from fossil LDPE). 

Alternate end of life scenarios (e.g. incineration) for LDPE could overturn this result. Further 

discussion of this effect, which I term indirect demand change (IDC) is available in appendix 

section A.2.5.  

  

2.5.5. Cost Considerations 

Production costs for bio-ethanol and bioethylene have been estimated by the International 

Renewable Energy Agency.
184

 Ranges for the cost of production of fossil ethylene and gasoline 

were estimated from recent historical data and official sources.
237-241

 Details are available in 

appendix section A.2.7. Bioethylene (from any source) is substantially more expensive to 

produce than ethane-derived ethylene. In contrast, ethanol, particularly from sugarcane, may 

already be competitive with gasoline. Implicit carbon prices were calculated by simulating cost 

data along with GHG emissions. 

  

While bio-ethanol appears to be a reasonable GHG mitigation strategy (leading to implicit 

carbon prices of -200 to 0 $/tonne CO2e for sugarcane and 0 to 100 $/tonne CO2e for 

switchgrass), bioethylene can only be justified at current production costs (corresponding to 

implicit carbon prices of 150 to 350 $/tonne CO2e for sugarcane and 200 to 500 $/tonne CO2e for 

switchgrass) if substantial co-benefits are expected. Fuel use of ethanol is more cost effective 
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than production of bioethylene in part because ethane-based ethylene is currently very 

inexpensive to produce (mean: 0.44 $/kg ethylene). As a result, gasoline is over twice as costly 

to produce as fossil ethylene per functional unit (1.01 kg ethylene or 46.9 MJ gasoline). 

Additionally, bioethylene is more expensive to produce than bio-ethanol, since it requires strictly 

greater processing. This additional cost amounts to approximately 0.6 $/functional unit. The low 

cost of fossil ethylene compared to gasoline, and high cost of bioethylene compared to fossil 

ethylene contribute nearly equally to the higher cost-effectiveness of bioethanol fuel over 

bioethylene. Nevertheless, private investment into bioethylene is already taking place.
11,12

 

Adopting a more flexible standard in place of RFS2 will likely decrease the overall cost of 

compliance, particularly as market prices change and new production technologies evolve. 

Further details and results are available in section A.2.7. 

   

2.5.6. Concluding Thoughts: The Way Forward 

The relative desirability of the pathways studied here depends both on market conditions and the 

goals of the policy effort. The preamble to EISA makes clear that its goals include both energy 

security and independence as well as the promotion of ‘clean’ renewable fuels.
4
 Currently, U.S. 

ethane production is almost entirely used for the production of ethylene. Ethane displaced from 

ethylene production may be included (to a limited extent) in existing natural gas streams, or used 

as fuel for upstream fossil fuel production, displacing methane and thereby increasing the 

availability of natural gas. It should be noted, however, that the U.S. is already expected to 

become a net exporter of natural gas by 2020.
188

 In contrast, the EIA reference scenario assumes 

continued reliance on imports for liquid fossil fuels through 2040.
188

 Thus, from the standpoint 

of energy independence, there is less to be gained by incentivizing bioethylene production and 

focus should remain on fuel use of ethanol with an emphasis on domestic production.  

  

If the policy goal is simply to encourage production of biofuels (e.g., for rural development, to 

achieve learning by doing cost savings, etc.), then any expansion of bio-based production should 

be viewed favorably, and so incentives for bioethylene production would be beneficial. In light 

of existing constraints on biofuel consumption discussed at the outset of this chapter, continued 

expansion of bio-ethanol production may need to rely on new pathways like bioethylene. 
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The focus of this analysis, however, is the impact of strategies for biomass use on GHG 

emissions. From a global warming perspective, the choice of feedstock is significantly more 

important than whether it is used for fuel or ethylene production. This suggests that in an 

environment of constrained demand for ethanol fuel, promoting bioethylene would be a 

promising alternative. Indeed, between the imported Brazilian products, bio-based LDPE is 

actually the preferred route (as modeled) for GHG mitigation. Under the specific scenario of 

U.S. production with supply-side constraints (as is currently the case for cellulosic biofuel), and 

no demand-side limitations, then fuel-use for ethanol should be given priority. If GHG 

equivalence factors are employed as discussed above, then there is no need for policy makers to 

choose between bio-LDPE and bio-ethanol fuel. More work is still needed, however, to quantify 

other (non-GHG) environmental and social impacts (e.g., changes in air and water quality, food 

security, etc.) of such a move. 

 

The expanded policy analyzed in this chapter constitutes a partial departure from the energy 

security emphasis of EISA, and the transportation fuels focus of RFS2. Nevertheless, increasing 

incentives for bio-based chemicals would open new opportunities to conserve fossil fuels, to 

reduce GHG emissions and to bolster the ethanol industry by shifting toward higher value 

products. Further work is needed to establish the details of a new standard and its economic, 

social and sustainability implications. One possibility would be to allow manufacturers of 

bioethylene to sell credits into the existing renewable identification number market for biofuels. 

A carefully revised policy has the potential to provide added flexibility to obligated parties while 

having no adverse impact on GHG emission targets. 
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Chapter 3. Uncertainty in the Life Cycle Greenhouse Gas 

Emissions from U.S. Production of Three Bio-based Polymer 

Families 
 

3.1. Abstract 

Interest in bio-based products has been motivated, in part, by the claim that these products have 

lower life cycle greenhouse gas (GHG) emissions than their fossil counterparts. This study 

investigates GHG emissions from U.S. production of three important bio-based polymer 

families: polylactic acid (PLA), polyhydroxybutyrate (PHB) and bioethylene-based plastics. The 

model incorporates uncertainty into the life cycle emission estimates using Monte Carlo 

simulation. Results present a range of scenarios for feedstock choice (corn or switchgrass), 

treatment of co-products, data sources, end of life assumptions, and displaced fossil polymer. 

Switchgrass pathways generally have lower emissions than corn pathways, and can even 

generate negative cradle-to-gate emissions if unfermented residues are used to co-produce 

energy. PHB (from either feedstock) is unlikely to have lower emissions than fossil polymers 

once end of life emissions are included. PLA generally has the lowest emissions when compared 

to high emission fossil polymers, such as polystyrene (mean GHG savings up to 1.4 kg CO2e/kg 

corn PLA and 2.9 kg CO2e/kg switchgrass PLA). In contrast, bioethylene is likely to achieve the 

greater emission reduction for ethylene intensive polymers, like polyethylene (mean GHG 

savings up to 0.60 kg CO2e/kg corn polyethylene and 3.4 kg CO2e/kg switchgrass polyethylene). 

 

This chapter is based on the following published work,
144

 reproduced with permission. Copyright 

2016, American Chemical Society. 

Posen, I. D.; Jaramillo, P.; Griffin, W. M., Uncertainty in the Life Cycle Greenhouse Gas Emissions from 

U.S. Production of Three Bio-based Polymer Families. Environ Sci Technol 2016, 50, (6), 2846-2858. 

http://pubsdc3.acs.org/articlesonrequest/AOR-ZNgeGqkhUhFY476qhYii  

 

3.2. Introduction 

Over the last decade, the United States government has expressed a clear interest in laying the 

foundations for a national bioeconomy.
88,89

 Increased reliance on renewable, rather than 

http://pubsdc3.acs.org/articlesonrequest/AOR-ZNgeGqkhUhFY476qhYii
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depleting, resources appears to be an inherently desirable step in the transition to a more 

sustainable society. Although policies like the U.S. Renewable Fuel Standard
121

 emphasize the 

use of biomass for energy, recent publications have called for consideration of strategies that 

include a broader range of bio-based products.
134,136,154,242

 After fuels, bio-based polymers offer 

one of the largest potential markets (by volume) for bioproducts,
135

 and have been suggested as a 

potential “linchpin category” in the operation of biorefineries.
134

  

 

In 2013, bio-based plastics accounted for less than 1% (1.6 million tonnes (Mt)) of global 

thermoplastics production.
148

 Nonetheless, bio-based production is expected to grow rapidly, 

reaching nearly 7 Mt by 2018.
148

 Four families of polymer are expected to figure prominently in 

future bio-plastics markets,
10,149-151

 and have been the focus of a number of studies in the existing 

life cycle assessment (LCA) literature:
152-154

 polylactic acid (PLA), polyhydroxyalkanoates 

(PHA), thermoplastic starch (TPS), and bioethylene based plastics. Most conventional plastics 

contain some ethylene. Though ethylene is predominantly fossil-derived, it can be made from 

renewable feedstocks via dehydration of bioethanol.
179,180

 Plastics made using bioethylene are 

chemically identical to their fossil derived counterparts. In contrast, bio-based polymers such as 

PHAs and PLA are chemically distinct from existing fossil-derived thermoplastics, but provide 

similar functionality. Both can replace a range of conventional fossil-based polymers, depending 

on the application. PHAs can frequently replace PE, PP, and PS,
151,243-248

 and may also substitute 

for PET and PVC in some applications.
10

 PLA most often substitutes for PS and PET,
151,153,249-253

 

but can also replace PE, PP, and PVC in some applications.
10,250,254

 TPS, on the other hand, has 

relatively poor mechanical properties,
255

 and is used in specialized agricultural applications, as 

filler in plastic composites, or in single-use packaging.
148,152,256

 Thus, TPS does not usually 

compete directly with conventional polymers; this study focuses on PLA, PHA and bioethylene 

plastics.  

 

A wide variety of benefits have been cited as drivers for the development of bio-based 

products.
88

 Common motivations include rural economic development, energy security, and 

reduced impact on the environment. In terms of environmental performance, bio-based products 

tend to compare poorly to conventional products on impact categories such as eutrophication and 

stratospheric ozone depletion.
257

 Mixed results have been reported for other categories, including 
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acidification and tropospheric ozone formation.
257

 Thus, claims of environmental benefits for 

bio-products often rely on reduced greenhouse gas (GHG) emissions and non-renewable energy 

use.
88,257,258

 As a result, it is important to understand the degree of confidence with which bio-

products can achieve GHG emissions reductions, and to define the drivers of uncertainty and 

variability in their life cycle emissions. This study builds on previous work that has quantified 

uncertainty in the life cycle GHG emissions for fossil fuels,
198,201,206

 ethanol biofuel,
74,259

 and 

bioethylene,
154

 by considering additional cases for bioethylene and extending the analysis to 

include PLA and PHA.  

 

Previous work on the environmental performance of PLA, PHA, and bioethylene plastics has 

focused on a cradle-to-gate (cradle to the production of the polymer pellet) comparison with 

petroleum-based polymers. Several recent papers reviewed these studies, and found that results 

are variable across studies, with life cycle emissions being strongly tied to modeling assumptions 

and feedstock choice.
152-154

 Many studies report lower GHG emissions and non-renewable 

energy use for bio-based polymers than for their fossil counterparts; however, few consider 

emissions from land use change (LUC) or from end of life.  

 

Corn is currently the dominant feedstock for producing PLA,
260

 PHA,
153

 and ethanol in the 

U.S.
230

 This study investigates the use of corn grain as the sugar source for bio-based polymer 

production. Studies often report lower environmental footprints from other crops.
74,154,166

 To 

account for possible improvements from crop-choice, this analysis includes the use of 

switchgrass as an illustrative 2
nd

 generation (cellulosic) feedstock. This chapter compares 

emissions from each bio-based plastic to emissions from each of the highest volume 

conventional (fossil-based) thermoplastics: polyethylene (PE), which includes high density 

polyethylene (HDPE), low density polyethylene (LDPE), and linear low density polyethylene 

(LLDPE); polypropylene (PP); polyethylene terephthalate (PET); polyvinyl chloride (PVC); and 

polystyrene (PS), which includes high impact polystyrene (HIPS) and general purpose 

polystyrene (GPPS). Bioethylene pathways are possible for each of these commodity 

thermoplastics, with the exception of PP, which contains no ethylene. Results from this study are 

indicative of average U.S. conditions, and should help guide future, more context-specific work. 
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3.3. Methods 

3.3.1. Study Overview  

This study uses LCA to evaluate the GHG emissions associated with both corn-based and 

switchgrass-based PLA, PHA, and bioethylene based plastics. For PHA production, this study 

uses data that is either for generic PHA production or is specific to poly-3-hydroxybutyrate 

(PHB), a common representative of the PHA family. The baselines for this study are the eight 

fossil-based thermoplastics discussed above. This study is conducted primarily under an 

attributional LCA framework. 

 

3.3.2. Fossil Polymer Model Overview 

The model for the production of fossil polymers relies on data from a 2011 report for the 

American Chemistry Council (ACC), prepared by Franklin Associates.
145

 The study provides 

cradle-to-gate inventories for each of the conventional plastics described in the introduction. 

Figure 3.1. presents a flow diagram of unit processes included in the model. 
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Figure 3.1. Manufacturing processes for selected thermoplastic polymers: polyethylene terephthalate (PET), 

polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), high impact polystyrene (HIPS) and 

general purpose polystyrene (GPPS). Circles represent feedstocks, rectangles production/manufacturing, and 

hexagons the final manufacturing stage. Pink processes are common to multiple polymers, while other colors 

are unique to each polymer family. This figure is based, in part, on the flow diagrams by Franklin Associates 

(2011).
145

  

 

The ACC report relies on data from 17 manufacturers, with over 80 plants in North America.
145

 

It is the most up to date, publically available inventory for North American plastics production. 

Reported energy requirements and direct process emissions are industry averages for each unit 

process. This study accounts for uncertainty by linking the point estimates from the ACC report 

to the full distributions developed by Venkatesh et al. (2011)
198

 for crude oil extraction and 

refining, as well as those reported in Posen el al. (2015) (Chapter 2)
154

 for natural gas extraction 
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and processing, and for ethane and naphtha steam cracking (for the production of olefins and 

pygas). Further details are available in appendix section B.1.1.  

 

3.3.3. Bio-based Polymer Model Overview. 

Figure 3.2. shows a flow diagram for the production of bio-based polymers (PLA, PHB and 

bioethylene-based plastics) from either corn or switchgrass. All bio-based pathways include 

emissions from land-use change and agriculture (fuel use, agrochemical production, and N2O 

field emissions) as well as feedstock transportation. Corn-based pathways for the production of 

PLA and PHB include emissions from wet milling, fermentation, polymerization (for PLA), and 

product recovery (PHB). Corn-based bioethylene polymer production includes emissions from 

ethanol production (dry milling and fermentation), dehydration to ethylene, and incorporation 

into conventional polymers (as per the fossil polymer model overview above). Switchgrass-based 

pathways include additional emissions from dilute acid pre-treatment and saccharification, along 

with fermentation and other steps further downstream that are in common with the corn-based 

pathways. The main emission sources quantified for biomass processing include electricity, on-

site fuel (heat), and chemical/enzyme production. Based on Spatari et al. (2010),
261

 the 

bioethylene scenarios include near-term and mid-term (higher) yield of sugars from pretreatment 

and yield of ethanol. For PLA and PHB, there are limited data available on yield from different 

sugar types, so this study models only a mid-term yield scenario, which assumes the same 

product yield (on a mass basis) as from corn glucose
244,246,262,263

 or sugarcane sucrose.
247,251

 This 

study does not include product manufacture and consumer use of the resins, as these steps will 

not differ much between conventional and bio-based plastics. In the cradle-to-gate analysis, all 

bio-based pathways receive a GHG credit for the amount of biogenic carbon stored in the 

polymer. This chapter also includes emissions from a range of end of life (EOL) scenarios. To 

simplify the presentation of a large number of scenarios, EOL results are reported separately 

from the cradle-to-gate model. 
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Figure 3.2. Bio-based polymer production processes. Black arrows indicate main reference flows, while white 

arrows indicate co-product production: dried distiller’s grains and solubles (DDGS), corn oil, corn gluten 

feed (CGF), corn gluten meal (CGM), and energy. Circles represent feedstocks, and hexagons are the final 

resin production stages, which represent the end of the cradle-to-gate model. All other stages are shown as 

rectangles. Pink processes are common to multiple polymers and white processes are excluded from the 

system boundary. Green processes are for producing bioethylene-based polymers, orange for polylactic acid 

(PLA), and blue for polyhydroxybutyrate (PHB). Boxes with multiple colors indicate equivalent, but separate 

processes for multiple polymer families. 
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3.3.4. Uncertainty, Variability, and Scenarios 

This study uses Monte Carlo simulation to model uncertainty and variability for key parameters, 

as detailed in appendix section B.1. For PLA and PHB, fermentation and recovery processes are 

still under development, and so different data sources may represent fundamentally different 

technologies. Thus, this study treats energy requirements, material inputs, and product yields 

from different data sources as different scenarios or cases, as outlined in Table 3.1, which 

contains a summary of all data sources. For PLA production, 4 cases are based respectively on 

Groot and Boren (2010),
251

 Vink et al. (2015),
262

 and 2 hybrid cases based on both Vink et al. 

(2015)
262

 and Sakai et al. (2003).
264

 For PHB production, 5 cases are based respectively on 

Harding et al. (2007),
247

 Akiyama et al. (2003) case 9,
263

 Akiyama et al. (2003) case 10,
263

 Kim 

and Dale (2008)
244

 and Gerngross (1999).
246

 These data sources were selected from reviewed 

literature as they are the only ones to provide sufficient information to estimate emissions from 

the plastic production (fermentation and polymerization/recovery) unit processes. Each data 

source provides information on the yield of either PLA or PHB, and, with the exception of Vink 

et al. (2015),
262

 enough information to extrapolate electricity and on-site heat requirements, 

along with emissions from the production of process chemicals, as described in appendix 

sections B.1.7 and B.1.8. Rather than process inputs, Vink et al. (2015)
262

 provide only total 

emissions for PLA fermentation and polymerization respectively. As a result, only Groot and 

Boren (2010)
251

 (PLA case 1) provide sufficient detail to adapt for switchgrass PLA production. 

For switchgrass-based PHB pathways, there is no evident representative or bounding scenario; 

thus, the results section presents an additional case which combines the 5 cases into a single 

distribution as described in appendix section B.1.8. 

 

3.3.5. Impact Metrics 

The key impact metric employed in this chapter is the 100-year global warming potential 

(GWP), modeled using equivalence factors (in kg CO2e) as reported by the Intergovernmental 

Panel on Climate Change (IPCC) fifth assessment report (AR5).
204

 As in several recent 

studies,
154,265,266

 this study assumes normally distributed equivalence factors, with uncertainty 

ranges based on the AR5 Supplementary material.
205

 Mean global warming potentials for CH4 

and N2O are 36 and 298, respectively, as summarized in appendix B, Table B.13.  
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3.3.6. Treatment of Co-Products 

Model decisions regarding the treatment of co-products are potentially important contributors to 

differences between LCA studies. As such, it is important to understand the degree to which co-

product allocation methods drive results. For corn-based production pathways, this analysis 

includes four different scenarios for co-product allocation: mass allocation, energy allocation, no 

allocation (i.e. 100% of emissions to bio-based plastic), or avoiding allocation via system 

expansion. For system expansion scenarios, corn co-products displace soybean meal (dry milling 

pathway only), whole corn, urea, and soybean oil. Displacement factors and corresponding 

displaced emissions are based on GREET 2014,
267

 as described in appendix section B.1.5. For 

switchgrass-based pathways there are several scenarios to account for surplus biomass (lignin 

and unfermented sugars) as an internal energy source. These include disposal (no energy 

generated), steam generation, or steam and electricity generation in a combined heat and power 

(CHP) plant. The model assumes this energy is used first to power the pre-treatment and 

fermentation processes. Process heat requirements are always satisfied before generating 

electricity. If surplus energy generation is possible, scenarios include cases with and without 

emission credits for surplus steam and/or electricity (displacing natural gas and/or grid 

electricity, by system expansion). Otherwise, any additional energy required for the switchgrass-

based pathways comes from conventional sources (grid electricity and natural gas fuel), with the 

exception of a switchgrass fuel scenario in which combustion of whole switchgrass provides 

additional energy. A final switchgrass scenario assumes all residues are sold as a co-product, and 

allocates emissions between the main product and the residues based on energy content. Further 

details are available in appendix section B.1.10. 

 

For fossil fuel pathways, upstream emissions data comes from existing studies (see Table 3.1) 

that used either mass or energy allocation to account for co-products. As noted in Posen et al. 

(2015) (Chapter 2),
154

 treatment of hydrogen produced during steam cracking (olefin production) 

has a greater influence on results than other allocation decisions. This analysis thus includes 

three scenarios for hydrogen co-product accounting: system expansion (displacing H2 produced 

by methane steam reforming), energy recovery (combustion to power the steam cracking 

process), or mass allocation. 
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3.3.7. End of Life (EOL) 

In the United States, over 85% of plastic waste is landfilled, with the remainder split between 

recycling (primarily HDPE and PET) and incineration with energy recovery.
234

 Certain bio-based 

plastics like PLA and PHB can also be composted at industrial facilities.
249

 This study includes 

scenarios to represent these four disposal options, for each plastic type, as applicable. The U.S. 

Environmental Protection Agency (EPA) Waste Reduction Model (WARM) provides the data 

for modeling most EOL pathways,
268

 but is supplemented with additional data for the 

composting scenarios
244

 and for emissions from landfilling PHB.
269,270

 Like fossil-based 

polymers, PLA has been shown to be inert under landfill conditions,
271

 so emissions result only 

from transportation and use of landfill equipment.
268

 In contrast, PHAs are known to degrade to 

methane and CO2, even under anaerobic conditions.
249

 The probability distribution used for 

emissions from landfilled PHB spans a range of average U.S. landfill conditions, based on key 

parameters reported in the literature.
268-270

 Additional details are available in appendix section 

B.1.11.  

 

3.3.8. Fuels and Electricity 

This study employs stochastic modeling for the life cycle GHG emissions of energy, based on 

the previously reported distributions for different fuel types.
198,206,266

 Distributions for the life 

cycle emissions from grid electricity span the range of available literature estimates at the level 

of individual North American Reliability Corporation (NERC) regions,
267,272-275

 where 

production of the feedstocks is most likely to take place: the region covered by the Midwest 

Reliability Organization (MRO) for corn-based processes,
37,40

 the south/southeast region spanned 

by the Southwest Power Pool (SPP), the Southeast Electric Reliability Council (SERC), and the 

Texas Regional Entity (TRE) reliability corporations for the switchgrass-based processes,
128

 and 

TRE/SERC for conventional chemical and plastics production.
276

 Additional details are available 

in appendix B, section B.1.12. 

 

 

Table 3.1 presents a summary of modeled production stages, data sources, treatment of 

uncertainty and treatment of co-products. 
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Table 3.1. Summary of key data sources. Details on the stochastic (probability) distributions employed are presented in appendix B, section B.1. 

Production stage Data source Uncertainty Co-product treatment 

Petroleum feedstock 

(extraction and refining) 

or petroleum fuels (life cycle) 

Venkatesh, et al. (2011)
198

 Stochastic distribution 
Mixture of mass and energy 

allocation. 

Natural gas feedstock 

(extraction, processing) 
Posen, et al. (2015) (Chapter 2)

154
 Stochastic distribution Mass allocation 

Natural gas fuel (life cycle) Tong, et al. (2015)
266

 Stochastic distribution Energy allocation 

Coal fuel (life cycle) Venkatesh, et al. (2012)
206

 Stochastic distribution  

Electricity Various
267,272-275,277

 Stochastic distribution  

Olefin production Posen, et al. (2015) (Chapter 2)
154

 Stochastic distribution 
Hydrogen: scenarios; other co-

products: mass allocation 

Conventional chemical and 

polymer production 
Energy requirements from Franklin Associates (2011)

145
 

Deterministic (together with 

stochastic emissions factors)  
 

Land-use change Range from GREET 2014 CCLUB model
267

 
Stochastic distribution; 

uncertainty likely underestimated. 
 

Agriculture 
Own analysis of data for corn

225,267,278,279
 and 

switchgrass
225,267,280

 
Stochastic distribution  

Wet milling (corn) Various
244,262,263,267

 Stochastic distribution Scenarios 

Dry milling and ethanol 

production (corn) 

Mean from Mueller and Kwik (2013);
281

 uncertainty based 

on Mueller (2010)
282

 
Stochastic distribution Scenarios 

Pre-treatment & 

saccharification (switchgrass) 

MacLean and Spatari (2009),
283

 Spatari et al. (2010),
261

 

Laser et al. (2009)
284

 and GREET 2014.
267

 
Stochastic distribution 

Scenarios (treatment of 

fermentation residues) 

PLA downstream 

(fermentation and 

polymerization) 

Case 1: Groot and Boren 2010
251

 

Case 2: Vink, et al. (2015)
262

  

Cases 3: Vink, et al. (2015)
262

 for fermentation + Sakai, et 

al. (2003)
264

 for polymerization (energy from electricity) 

Cases 4: Vink, et al. (2015)
262

 for fermentation + Sakai, et 

al. (2003)
264

 for polymerization (energy from heat) 

Point estimates for energy 

requirements (case 1, cases 3-4 

polymerization), with stochastic 

emissions factors as above. Point 

estimate for emissions (case 2, 

cases 3-4 fermentation) 

 

PHB downstream 

(fermentation and recovery) 

Case 1: Harding, et al. (2007)
247

 

Cases 2 & 3 : Akiyama, et al. (2003)
263

 cases 9 & 10 

Case 4: Kim and Dale (2008)
244

 

Case 5: Gerngross (1999)
246

 

Point estimates for energy 

requirements (by case), plus a 

‘full distribution’ case. Stochastic 

emissions factors as above. 

 

Switchgrass Ethanol  
Energy inputs from Mullins et al. (2011)

74
, yield from 

MacLean and Spatari (2010)
261

  

Near term: stochastic distribution 

Mid-term: stochastic for energy 

inputs only; deterministic yields 

 

Ethanol dehydration to 

bioethylene 

Kochar, et al. (1981),
180

 with uncertainty based on Geisler 

et al. (2005),
227

 as modeled in Posen, et al. (2015) 
(Chapter 2)

154
  

Arbitrary stochastic distribution.  

End of Life (EOL) 
Based on EPA WARM,

268
 with additional sources

244,269,270
 

for certain scenarios. 
Partially stochastic  
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3.4. Results and Discussion 

3.4.1. Cradle-to-Gate GHG Emissions 

Figures 3.3-3.6 show the modeled GHG emissions for each of the main pathways considered, 

including the different biopolymer cases defined in Table 3.1. Appendix B, sections B.2.1 and 

B.2.2 provide numerical results for these pathways; section B.2.3 includes a comparison between 

results in this chapter and the data sources on which the different PLA and PHB cases are based. 

The results include a range of alternate assumptions regarding allocation of co-products, 

alternate data sources (PHB and PLA), and product yields (switchgrass-based bioethylene). For 

increased clarity, Figure 3.3 excludes the results for HIPS and LLDPE, as emissions from these 

pathways are nearly identical to emissions from GPPS (hereafter, PS) and HDPE, respectively. 

Fossil polymer emissions differ based on polymer-type, with PS being responsible for roughly 

double the emissions of HDPE (Figure 3.3). The treatment of hydrogen co-product is important 

only for polyolefins (PE and PP), since a larger proportion of the raw material for these plastics 

is produced via the steam cracking process from which the hydrogen co-product results. 

 

Figure 3.4 shows results for all PLA cases, and for the switchgrass PHB ‘full distribution’ case. 

These results are supplemented with Figure 3.5, which shows results for switchgrass PHB 

broken down by case number (data source). Figure 3.6 shows results for bioethylene. For a given 

feedstock, GHG emissions from PHB (Figure 3.4b,d and Figure 3.5) are generally higher than 

emissions from the production of PLA (Figure 3.4a,c) or bioethylene (Figure 3.6) (note 

differences in scale of the Y-axis across these figures). Switchgrass PHB scenarios with GHG 

emission credits for surplus energy generation are a potential (though highly uncertain) exception 

to this observation. Modeled emissions for PLA are largely consistent across the two industrial 

data sources
251,262

 (Figure 3.4a cases 1 and 2); mean emissions and confidence intervals are 

within 0.2 kg CO2e/kg PLA for these cases. The final PLA data source (for polymerization 

only)
264

 is based on laboratory-scale experiments, and provides more extreme estimates (Figure 

3.4a cases 3 and 4), with mean emissions ranging by about 1 kg CO2e/kg PLA across these cases. 

Results for PHB differ greatly depending on the data source (Figure 3.4b for corn and Figure 3.5 

for switchgrass), with mean emissions ranging between (2.7)-(6.9) kg CO2e/kg corn PHB in the 

system expansion scenario and spanning a range of about 3 kg CO2e/kg switchgrass PHB, within 
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a given scenario for treatment of fermentation residues. For corn PLA and PHB pathways, the 

choice of allocation method is a minor determinant of life cycle emissions (Figure 3.4a,b). GHG 

emissions from corn-based bioethylene are sensitive to allocation decisions, though mean 

emissions are generally lower than for fossil ethylene (Figure 3.6a). For all biopolymers, 

switchgrass-based pathways generally result in lower GHG emissions than corn-based pathways, 

due to lower agriculture emissions, and the possibility for energy co-production (Figure 3.4 c,d, 

Figure 3.5, and Figure 3.6b).  

 

Scenarios for the treatment of fermentation residues are critical for biopolymer pathways with 

significant quantities of biomass residue: PHB, bioethylene near-term, and, to a lesser extent, 

bioethylene mid-term. Fermentation residue scenarios for switchgrass-based PLA are more 

similar to one another, as there is typically insufficient energy in the residue to generate much 

surplus steam or any surplus electricity. Treating switchgrass residues by energy allocation 

results in lower emissions and narrower confidence intervals, though it may be argued that this 

method masks uncertainty by transferring it to the residue product. The specific scenarios for the 

use of process residues provide more insight into actual net process emissions. 

 

The effect of different yield scenarios for switchgrass ethanol (the precursor to bioethylene) 

depends on how residues are treated. The lower yielding “near-term” scenario has lower mean 

emissions than the “mid-term” scenario, provided that credits are applied for export of the 

surplus energy co-product(s). Spatari et al.
261

 had already noted this counter-intuitive correlation 

between yield and emissions: biopolymers have lower emissions when more of the biomass is 

used for energy than for product. This raises important questions surrounding the best use of 

biomass.  
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Figure 3.3.Cradle-to-gate greenhouse gas emissions for fossil polymers with hydrogen co-product treated by 

system expansion (displacing H2 produced by methane steam reforming), combusted for energy, or subject to 

mass allocation. Error bars span 95% of simulations. Fossil polymers include polyethylene terephthalate 

(PET), polystyrene (PS), polyvinyl chloride (PVC), high density polyethylene (HDPE), low density 

polyethylene (LDPE) and polypropylene (PP). 
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Figure 3.4.Cradle-to-gate greenhouse gas emissions for a) corn-based PLA (cases 1-4), b) corn-based PHB 

(cases 1-5), c) switchgrass-based PLA (case 1), d) switchgrass-based PHB (distribution spanning all cases). 

Error bars span 95% of simulations. Case numbers for panels a)-c) are defined in Table 3.1. The Legend for 

panels c) and d) refers to the assumptions about the use (or allocation) of unfermented residues: S = steam, E 

= electricity, C = emission credit applied for surplus steam (SC) and/or electricity (EC) when available, SWf = 

balance of energy (when needed) from switchgrass combustion, Energy allocation = no direct use of 

fermentation residues, but emissions allocated to residue and PHB or PLA on the basis of energy content. 
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Figure 3.5. Cradle-to-gate greenhouse gas emissions for switchgrass-based PHB (cases 1-5). Error bars span 

95% of simulations. Case numbers are defined in Table 3.1 The legend refers to assumptions about the use 

(or allocation) of unfermented residues: S = steam, E = electricity, C = emission credit applied for surplus 

steam (SC) and/or electricity (EC) when available, SWf = balance of energy (when needed) from switchgrass 

combustion, Energy allocation = no direct use of fermentation residues, but emissions allocated to residue and 

PHB on the basis of energy content. 
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Figure 3.6.Cradle-to-gate greenhouse gas emissions for a) corn-based bioethylene and b) switchgrass-based 

bioethylene. Error bars span 95% of simulations. The results for corn-based production include different 

allocation scenarios. The results for Switchgrass-based production include different scenarios for the 

treatment of fermentation residues, for both near-term and mid-term yields. The horizontal lines represent 

the mean results for fossil ethylene, shown for reference. Legend for panel b) refers to the assumptions about 

the use (or allocation) of unfermented residues: S = steam, E = electricity, C = emission credit applied for 

surplus steam (SC) and/or electricity (EC) when available. 

Appendix section B.2.4 presents an uncertainty importance analysis for select pathways. The 

uncertainty in factors relating to field N2O emissions (especially the N2O emission factor and 

GWP of N2O), emissions from land use change, and emissions from grid electricity heavily 

influence the uncertainty of corn-based biopolymers. For corn PHB and PLA, gross emissions 

from the corn wet milling are an important source of uncertainty. For corn ethylene, energy used 

in ethanol production and in ethanol dehydration to ethylene also contribute substantially to 

modeled uncertainty. For switchgrass pathways, key uncertainties relate to field N2O emissions 

(especially synthetic nitrogen application per unit area, and crop yield) and emissions from land 

use change. Upstream emissions are less important in higher yield pathways. Thus, for the mid-

term bioethylene yield scenario, energy use for ethanol production also emerges as one of the 

more important contributors to uncertainty. Results from combining all data sources into a full 

distribution for emissions from PHB fermentation and recovery (e.g. Figure 3.4d) suggest that 

variability in process energy requirements may be the most important source of uncertainty in the 
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life cycle GHG estimates for this biopolymer. The adoption of a standardized production process 

could potentially reduce this uncertainty. 

 

Uncertainty for PLA scenarios is generally lower than for other bio-based scenarios. This is 

largely due to the fact that PLA has a much higher yield per unit sugar (~0.7 kg PLA/kg sugar) 

than PHB (~0.3-0.4 kg PHB/kg sugar) or bioethylene (modeled yield ranging from 0.1-0.3 kg 

ethylene/kg sugar depending on the scenario). Thus, PLA requires less corn or switchgrass, 

which results in lower uncertainty from agriculture. Uncertainty in fossil polymer production and 

for switchgrass bioethylene pathways with mid-term ethanol yield is likely underestimated due to 

the use of certain deterministic parameters (see Table 3.1). Similarly, uncertainty for PLA cases 

2-4 is likely underestimated because the report by Vink et al. (2015)
262

, a key data source for 

these cases, does not include sufficient data to extrapolate energy requirements. It was thus not 

possible to apply stochastic emissions factors like those used for the other cases modeled in this 

chapter. Uncertainty for all bio-based pathways may likewise be underestimated due to the 

potential for an even wider range of emissions from land use change than is reported in the 

GREET CCLUB model,
267

 as discussed for example by Plevin et al.
285,286

 

 

Figure 3.7 presents the difference in emissions that result from switching from fossil-based 

polymers to select corn-based or switchgrass-based production pathways, on a cradle-to-gate 

basis. This figure shows results obtained by taking the difference between emissions from each 

fossil polymer and each bio-based polymer within each simulation run, while maintaining 

correlation between common inputs. Appendix B, sections B.2.5 and B.2.6 present numerical 

results corresponding to Figure 3.7, along with additional scenarios. All comparisons are for 1 kg 

of bio-based plastic replacing 1kg of fossil-based plastic and do not account for possible changes 

in market equilibrium. Appendix section B.2.7 explores sensitivity of the results to this 

assumption of 1:1 mass equivalence between plastics. Each fossil polymer likely has applications 

for which PLA and PHB will be unable to substitute; thus, these comparative results should be 

treated with caution.  

 

Consistent with ISO 14044 LCA guidelines,
66

 system expansion is the baseline method for 

handling co-products (where possible) and is the basis of the results in Figure 3.7. For corn PLA, 
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the study by Vink, et al. (2015)262 is both the most recent and the best tailored to a U.S. context; 

thus, Figure 3.7 presents results based on PLA case 2. For corn PHB, results are unfavorable 

even in the lowest emission scenario (case 2) so Figure 3.7 focuses on this optimistic bounding 

case. The results for the bioethylene pathways (corn and switchgrass), assume that this bio-

product replaces fossil-based ethylene used in the production of the final plastic resins (with the 

exception of PP, which contains no ethylene). Thus, differences among bioethylene pathways 

represent different quantities of ethylene incorporated into each polymer. 

 

Switchgrass pathways illustrate the potential for future improvement, and so Figure 3.7 presents 

optimistic scenarios by assuming internal production of steam and electricity from non-

fermented switchgrass, as well as a credit for surplus electricity, when available (cases labeled as 

S, E, EC in Figures 3.4-3.6). For PLA, only one data source (case 1)
251

 provided enough data to 

adapt to a model for switchgrass-based production. For switchgrass PHB, Figure 3.7 presents 

results based on an aggregate (“full distribution”) scenario, with fermentation and recovery 

parameters modeled stochastically based on all 5 input cases. For switchgrass bioethylene 

plastics, the figure presents results for mid-term yields.  
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Figure 3.7. Difference in cradle-to-gate GHG emissions between bioplastics and fossil plastics. Positive 

numbers (white background) indicate the bioplastic has lower GHG emissions than the fossil plastic. Negative 

numbers (gray background) indicate the bioplastic has higher GHG emissions than the fossil plastic. The 
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panels represent a) Corn PLA (baseline: case 2, system expansion), b) Corn PHB (optimistic: case 2, system 

expansion), c) Corn ethylene plastics (baseline: system expansion) d) Switchgrass PLA (case 1), e) Switchgrass 

PHB (full distribution), f) Switchgrass bioethylene (mid-term). All switchgrass cases include generation of 

steam and electricity from unfermented switchgrass, together with a system expansion credit for surplus 

electricity, when available. Within a panel, each line represents a different fossil plastic for comparison. The 

overlapping lines at the left side of panels a), d) and e) are for PP and HDPE. The overlapping lines at the 

right side of panels c) and f) are for LDPE and HDPE.  

  

It is likely that corn PLA (Figure 3.7a) has lower emissions than the more energy intensive 

conventional polymers (mean GHG reductions of 23-46% compared to fossil PS, PET and PVC), 

but it compares poorly against polyolefins (mean GHG increases of 0-19% compared to fossil 

HDPE, LDPE, PP). As a reminder, PLA most often competes with PS and PET in the 

marketplace. In most model runs, corn PHB has higher emissions than conventional polymers, 

with a partial exception for PS (Figure 3.7b). Use of less optimistic data sources (especially cases 

3-5) or inclusion of emissions from landfilling PHB (discussed below) would further increase the 

modeled emissions for PHB. As a reminder, PHB usually competes with PS and polyolefins. 

Finally, in most of the model runs, corn bioethylene has lower emissions than fossil ethylene 

(Figure 3.7c), however the total change on the final polymer life cycle is much smaller for PET, 

PS, and PVC, where ethylene is just one of several inputs (mean GHG reductions of 5-13%), 

than it is for HDPE and LDPE (mean GHG reductions of 35-41%). The corn bioethylene results 

presented here are more favorable (lower GHG emissions) than those reported by Posen et al. 

(2015) (Chapter 2)
154

 due primarily to a lower estimate for LUC emissions employed here. As 

can be observed in Figures 3.4 and 3.6, system expansion is the least favorable way to account 

for corn co-products, and the most favorable method to account for hydrogen co-produced in the 

fossil polymer supply chain. Using other allocation methods would create more favorable results 

for corn-based polymers relative to conventional plastics, but violates the hierarchy of methods 

established by ISO standards.
66

 

 

For switchgrass-based scenarios, emissions from PLA (case 1, S, E, EC) and bioethylene 

polymers (shown for mid-term yield, S, E, EC) are lower than for all modeled fossil polymers, 

with a large degree of confidence (Figure 3.7 d,f). Switchgrass PHB, (full distribution, S, E, EC) 

likely has lower GHG emissions than any fossil polymer, but the magnitude of the potential 
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emission reduction is highly uncertain. Mean GHG emissions approach 0 for these PLA and 

PHB pathways, and so mean emission reductions approach 100% against any fossil polymer (90-

95% for PLA and 110-120% for PHB). Use of a more pessimistic data source (e.g. PHB case 5), 

or inclusion of emissions from end of life (discussed below) substantially reduces the probability 

that PHB achieves any emission reductions relative to fossil polymers. Use of internal 

switchgrass energy is essential to achieving lower emissions than conventional fossil polymers 

for PHB and bioethylene pathways. Thus, energy recovery from unfermented residues should be 

a key goal in the design of switchgrass bioplastic production facilities.  

  

3.4.2. End of Life (EOL) 

The results in the previous section present cradle-to-gate emissions, without EOL. Table 3.2 

presents additional emissions incurred for each plastic type due to a range of EOL scenarios. 

Bioethylene based polymers are identical to their fossil counterparts, so EOL scenarios do not 

affect the comparison between the two. Landfilling, the most common disposal mechanism, does 

not alter the comparison between PLA and fossil polymers, but substantially worsens the GHG 

emissions balance for PHB under average U.S. conditions, due to methane and carbon dioxide 

emissions released from anaerobic degradation of PHB. This conclusion holds qualitatively even 

when limited to landfills with LFG capture and energy recovery. Composting likewise worsens 

the emissions balance for PHB and PLA relative to landfilled fossil plastics, by re-releasing 

much of the stored carbon (primarily as CO2) from the bioplastics. Only when compared to 

incinerated fossil polymers, can inclusion of EOL improve the results for biopolymers. This 

result depends on the assumption of low efficiency for energy recovery (17.8%),
268

 and would 

not hold under higher efficiency energy recovery scenarios (due to the higher energy density of 

conventional polymers). Compared to recycled plastics, biopolymers are even less likely to result 

in decreased GHG emissions.  
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Table 3.2. Mean GHG emissions due to end of life scenarios for each type of plastic (kg CO2e/kg plastic). 

Plastics include high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), 

polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polylactic acid (PLA) and 

polyhydroxybutyrate (PHB). Numbers in parentheses represent the 5
th

 and 95
th

 percentile of simulated 

values, where available. All values are in addition to cradle-to-gate emissions, which already include credits 

for stored carbon in PHB (2.05 kg CO2/kg PHB), PLA (1.83 kg CO2/kg PLA), or bioethylene (3.14 kg CO2/kg 

ethylene), as applicable. 

Plastic
 

Incineration 

(with energy 

recovery)
a
 

Compost Landfill Recycling
b
 

HDPE
 

1.7   (1.6,1.9) - 0.04 -0.6  (-1.0,-0.3) 

LDPE
 

1.7   (1.6,1.9) - 0.04 -0.6  (-1.2,-0.5)
c
 

PP 1.7   (1.6,1.9) - 0.04 -0.5  (-0.9,-0.1)
c
  

PET 1.6   (1.5,1.6) - 0.04 -1.0  (-1.2,-0.9) 

PS 2.1   (2.0,2.3) - 0.04 -1.9  (-2.2,-1.5)
c 
  

PVC 0.9   (0.8,0.9) - 0.04 -1.0  (-1.3,-0.7)
c
  

Corn PLA
d
 

Switchgrass PLA
d 

1.3   (1.2,1.3) 

1.3   (1.2,1.3) 

1.7 

1.7 

0.04 

0.04 

-0.6  (-1.0,-0.2)
c
  

0.7 (0.2, 1.1)
c
  

Corn PHB
d
 

Switchgrass PHB
d
 

1.3   (1.2,1.4) 

1.3   (1.2,1.4) 

1.9 

1.9 

3.4   (2.2,4.8) 

3.4   (2.2,4.8) 

-1.6  (-2.2,-0.9)
c 

0.8 (-0.6, 2.1) 

a) Incineration uncertainty range stems from grid emissions. Energy recovery efficiency is modeled 

deterministically at 17.8%.  

b) Recycling includes a credit for displaced virgin polymer. The uncertainty range is highly correlated 

to the emissions from virgin polymer production 

c) Approximate result, estimated from data on HDPE and PET. 

d) Differentiation between corn-based and switchgrass-based production only matters for recycling, 

which includes a credit for displaced virgin polymer. Virgin PLA and PHB scenarios are the same as 

those presented in Figure 3.7.  

 

The following figures (Figure 3.9 and Figure 3.8) present the difference in cradle-to-grave GHG 

emissions between fossil-based and bio-based polymers; they are analogous to Figure 3.7 above, 

but with the addition of various EOL scenarios. Figure 3.8 shows the difference in cradle-to-

grave GHG emissions between fossil-based and bio-based PLA. Panels a), b) and c) present the 

results for corn PLA (case 1, system expansion). The landfill scenario (panel a) is equivalent to 
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the cradle to gate model, since landfill emissions are the same for both PLA and fossil plastics. 

Composted corn PLA (panel b) has higher emissions than all fossil plastics. Under an 

incineration scenario (panel c), corn PLA offers slightly greater GHG reductions than in the 

cradle to gate model. This is because incineration increases the emissions from fossil polymers 

by more than the emissions from PLA. Panels d), e) and f) present the results for switchgrass 

PLA (case 1), assuming fermentation residues are used to generate steam and electricity, and 

applying a system expansion credit for surplus electricity. Under a landfill or incineration 

scenario (panels d and f), PLA has lower emissions than all fossil plastics with probability 

approaching 1. Finally, composted switchgrass-based PLA likely has lower emissions than PS, 

PVC and PET, but is unlikely (probability < 0.4) to have lower emissions than polyolefin plastics 

(LDPE, HDPE or PP). 

 

Figure 3.9 shows the difference in cradle-to-grave GHG emissions between fossil-based and bio-

based PHB. Panels a), b) and c) present the optimistic case for corn PHB (case 2, system 

expansion). Only when fossil plastics and PHB are both incinerated (panel c) is there any 

probability that corn PHB will have lower emissions than any fossil polymer. Panels d), e) and f) 

present the ‘full distribution’ case for switchgrass, assuming fermentation residues are used to 

generate steam and electricity, and applying a system expansion credit for surplus electricity. 

Even under this relatively optimistic scenario for the treatment of fermentation residues, 

landfilled PHB likely has higher emissions than all fossil polymers (panel d), and composted 

PHB has approximately comparable emissions to most fossil polymers (panel e). Even broken 

down by data source (results not shown), landfilled switchgrass PHB remains unlikely to have 

lower emissions than fossil plastics, for all but the most optimistic scenarios (e.g. cases 1 and 2, 

with surplus electricity credits, vs PS). When both PHB and fossil polymers are incinerated, 

however, switchgrass PHB results in lower GHG emissions than all fossil polymers, with 

probability approaching 1 (Figure 3.9, panel f)).  
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Figure 3.8. Difference in GHG emissions between PLA and fossil plastics. Positive numbers indicate PLA has 

lower GHG emissions than the fossil plastic. Negative numbers (gray background) indicate PLA has higher 

GHG emissions than the fossil plastic. Panels a), b) and c) represent corn PLA (baseline: case 2, system 

expansion), under landfill, compost or incineration scenarios, respectively. Panels d), e) and f) represent 

switchgrass PLA (case 2), under landfill, compost or incineration scenarios, respectively. Switchgrass cases 

include generation of steam and electricity from unfermented residues, plus a system expansion credit for 

surplus electricity, when available. Within a panel, each line represents a different fossil plastic for 

comparison. For the PLA landfill and compost scenarios (panels a), b), d) and e)), the model assumes fossil 

plastics are landfilled. For the PLA incineration scenario (panels c) and f)), the model assumes fossil plastics 

are also incinerated. 
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Figure 3.9. Difference in GHG emissions between PHB and fossil plastics. Positive numbers (white 

background) indicate the bioplastic has lower GHG emissions than the fossil plastic. Negative numbers (gray 

background) indicate the bioplastic has higher GHG emissions than the fossil plastic. Panels a), b) and c) 

represent corn PHB (optimistic: case 2, system expansion), under landfill, compost or incineration scenarios, 

respectively. Panels d), e) and f) represent switchgrass PHB (full distribution), under landfill, compost or 

incineration scenarios, respectively. All switchgrass cases include generation of steam and electricity from 

unfermented switchgrass, together with a system expansion credit for surplus electricity, when available. 

Within a panel, each line represents a different fossil plastic for comparison. For the PHB landfill and 

compost scenarios (panels a), b), d) and e)), the model assumes fossil plastics are landfilled. For the PHB 

incineration scenario (panels c) and f)), the model assumes fossil plastics are also incinerated. 
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3.4.3. Sensitivity 

Appendix sections B.2.5 and B.2.6 present a range of additional sensitivity scenarios for cradle-

to-gate emissions from corn and switchgrass bio-based pathways, respectively. Excluding LUC 

emissions or assuming a lower N2O emission factor for applied nitrogen improves the emissions 

balance for bio-base pathways, but in minor ways. In contrast, using higher values for LUC (e.g. 

the distribution from Plevin et al. (2015)
285

 for corn, or the Winrock scenario from the GREET 

CCLUB model
267

 for switchgrass) substantially increases emissions for PHB or bioethylene, and, 

to a lesser extent, PLA. Similarly, increasing the estimate of nitrogen in switchgrass crop 

residue,
225

 or excluding unfermented sugars from switchgrass residues used from internal energy 

recovery,
267

 substantially increase emissions from switchgrass pathways (especially PHB and 

bioethylene). Assuming a higher switchgrass yield,
259

 or a higher correlation between nitrogen 

application and yield, reduces the uncertainty in switchgrass pathways without substantially 

affecting mean results.  

 

3.4.4. Some Limitations, Caveats and Additional Sensitivity Scenarios 

Although the inclusion of uncertainty/variability is a major focus of this chapter, there a number 

of important ways in which it does not capture the full possible range of emissions. As 

summarized in Table 3.1, some parameters include only point estimates (e.g. fossil polymer 

energy requirements), and others include distributions that likely underestimate uncertainty (e.g. 

LUC). Further, this study is conducted under a primarily attributional LCA framework, which 

does not account for marginal changes in emissions or changes in market equilibria. Thus, the 

ranges presented in this chapter should be interpreted as indicative rather than rigorous 

probabilities.  

 

Additionally, this study uses values representative of average U.S. production, but does not 

account for all possible variations in local conditions such as electricity emissions or 

transportation distances. Further, this study examines only two crops (corn and switchgrass), 

representative of potential U.S. production; emissions would likely differ for other crops, like 

sugarcane, which is an important feedstock from existing bio-based plastic operations in other 

countries like Brazil and Thailand.
184,251

 The use of a waste feedstock instead of a dedicated crop 

system could likewise affect the GHG balance for bio-based plastics. This paper also excludes 
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emissions from product manufacture and use, which may affect the comparison between fossil 

plastics and PHB or PLA (but not bioethylene, which is chemically identical to fossil ethylene). 

In particular, the assumption that 1 kg of bioplastic can displace 1 kg of fossil plastic may not be 

valid for certain product systems; appendix section B.2.7 explores the sensitivity of model results 

to this assumption of 1:1 displacement. Additionally, appendix section B.2.8 considers the 

potential impact of omitted life cycle stages like product transportation and downstream 

processing energy.  

 

Finally, this chapter considers only the GHG emissions arising from the life cycle of bio-based 

plastics. This is an important metric that has garnered much attention in recent years, and is often 

the basis for claims of environmental superiority among advocates of bio-based products. As 

mentioned in the introduction, however, bio-based products often compare poorly to 

conventional products on impact categories such as eutrophication and stratospheric ozone 

depletion.
257

 Studies specific to PLA and PHA likewise tend to indicate poor performance 

relative to fossil polymers on metrics like acidification and eutrophication
153

 and ecotoxicity.
152

 

Final recommendations will require a deeper investigation of other environmental metrics, 

together with an evaluation of broader economic and social implications of producing/using bio-

based plastics. 

 

3.4.5. Key Lessons 

Substituting bioplastics for conventional fossil polymers can potentially result in a substantial 

decrease in GHG emissions. For switchgrass scenarios with energy recovery from unfermented 

residues, bioplastics can even result in net negative emissions (due to carbon sequestered in the 

plastic, and emissions credit from surplus electricity generation). The choice of baseline fossil 

polymers is an important modeling decision that is often overlooked. For ethylene-intensive 

polymers (i.e. PE) substituting bioethylene for fossil ethylene generally results in the greatest 

GHG reduction. Bioethylene offers an additional benefit in that it is chemically identical to fossil 

ethylene, so there is no change in the properties of the resulting bio-based resin. For other 

polymers (e.g. PS, PET, PVC, PP), PLA offers the greater potential GHG savings, assuming it 

can substitute functionally for these polymers on a 1:1 mass basis. This is an important 

assumption that is not appropriate for all plastic applications, and which merits additional 
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context-specific analysis by decision makers using the results of this study. Unsurprisingly, the 

greatest GHG reductions are possible when targeting the higher emission fossil polymers (PS, 

then PET and PVC). Fortunately, the fossil polymer with the highest GHG emissions (PS), is 

usually the most costly fossil resin,
287,288

 and would thus be the most economic to replace. PHB 

is generally the highest emission choice of the bio-based polymers considered, due to low yields, 

the potential for high process energy requirements (cases 3-5), and the likelihood of high end of 

life (EOL) emissions. EOL scenarios have a substantial effect on life cycle GHG emissions, 

particularly for plastics such as PHB, which are likely to degrade in landfills. To minimize GHG 

emissions, decision makers should consider the degradation characteristics of plastics and select 

EOL pathways that reduce this impact.  

 

Switchgrass pathways generally result in lower emissions than corn-based pathways, although 

this result is partly attributed to the availability of switchgrass residues for energy generation. 

This chapter also demonstrates the importance of considering uncertainty in LCA. As Figure 3.7 

demonstrates, potential GHG reductions from bioplastics can span a range of several kg CO2e/kg 

plastic. These ranges are on the same order of magnitude as the mean emissions from 

conventional polymers.  

 

Agricultural operations result in large and potentially irreducible emissions uncertainties – 

particularly with respect to N2O emissions and land use change. As a result, emissions from bio-

based products carry large uncertainties. Choosing higher yielding products (e.g. PLA instead of 

bioethylene or PHB) can help constrain this uncertainty by reducing the amount of agriculture 

required. Beyond this, companies considering switching to bio-based plastics should consider the 

range of expected emission reductions and develop strategies that account for this uncertainty. 

For example, companies could look for stochastic dominance among pathways, or set a given 

GHG reduction target and then select the pathway that maximizes the probability of achieving 

this target (e.g. as discussed in Mullins et al. (2011)
74

). Alternatively companies could perform a 

constrained optimization – simultaneously maximizing mean GHG reductions, while ensuring a 

minimum probability that the new pathway is at least as good as the original production method. 

Regardless of the specific approach taken, ignoring uncertainty should no longer be an option.  
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Chapter 4. Greenhouse Gas Mitigation for U.S. Plastics 

Production: Energy First, Feedstocks Later  
 

4.1. Abstract 

Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and 

primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made 

from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. 

Comparatively little research has considered the potential for green energy to reduce emissions 

in this industry. This chapter compares two strategies for reducing greenhouse gas emissions 

from U.S. plastics production: using renewable energy or switching to renewable feedstocks. 

Renewable energy pathways assume all process energy comes from wind power and renewable 

natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity 

thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made 

using either corn or switchgrass, and powered using either conventional or renewable energy. 

Switching to renewable energy cuts mean GHG emissions by 50-75%, achieving greater 

reductions, with less uncertainty and lower cost, than switching to corn-based biopolymers – the 

most likely near-term biopolymer option. In the long run, producing bio-based plastics from 

advanced feedstocks (e.g. switchgrass) and/or with renewable energy likely offers greater 

emission reductions. 

  

4.2. Introduction 

Over the last six decades, global plastics production has grown from a nascent enterprise to a 300 

million tonne (Mt) /year global industry in 2013.
139

 North American plastic production accounts 

for approximately 20% of that global total and is expected to exhibit strong growth for the 

immediate future.
140,141

 In the U.S., seven families of ‘commodity thermoplastic’ polymers 

account for approximately 70% of plastics production.
142,143

 These include polypropylene (PP), 

polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and polyethylenes 

(PE). The latter family includes high-density polyethylene (HDPE), low-density polyethylene 

(LDPE), and linear low-density polyethylene (LLDPE). Applying previously reported emissions 

factors suggests these plastics are responsible for approximately 70 million tonnes of CO2e 
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emission per year
144

 and nearly 3 quadrillion Btu of primary energy use.
145

 This corresponds to 

slightly greater than 1% of total U.S. GHG emissions
146

 and nearly 3% of total U.S. energy 

consumption.
147

 In response, there has been a growing interest, globally, in switching to bio-

based plastics as a form of greenhouse gas (GHG) mitigation.
10,11,134,136,242,289-296

 

 

Three of the most important families of bio-based polymers include polylactic acid (PLA), 

polyhydroxybutyrate (PHB, a representative of the polyhydroxyalkanoate (PHA) family) and 

bioethylene based plastics (e.g. bio-PET, bio-PE, bio-PVC, etc.). Replacing fossil-ethylene with 

bioethylene is an example of direct feedstock substitution as this requires no change in the final 

product. In contrast, PHAs and PLA are chemically distinct from existing fossil-derived 

thermoplastics, but may perform the same functions. As discussed in Chapter 3, PHAs can 

frequently replace PE, PP, and PS,
151,243-248

 and may also substitute for PET and PVC in some 

applications.
10

 PLA most often substitutes for PS and PET,
151,153,249-253

 but can also replace PE, 

PP, and PVC in some applications.
10,250,254

 These are examples of functional feedstock 

substitution. Chapter 3 further demonstrated that some of these bio-based plastics have lower 

emissions than their fossil counterparts. It remains unclear, however, if adoption of such products 

is the best way to reduce GHG emissions in the plastics sector. 

 

As an alternative or possibly complementary strategy, this chapter analyzes the potential role of 

renewable energy in reducing GHG emissions in the U.S. plastics sector. In particular, this 

chapter compares the GHG emissions resulting from two broad emission reduction strategies: 1) 

feedstock substitution – switching from fossil-based to bio-based plastics, or 2) energy 

substitution – switching from conventional (fossil) fuels to renewable energy sources in the 

production of conventional fossil-based plastics. Figure 4.1 shows a simplified schematic of 

these strategies. 
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Figure 4.1. Schematic overview of the commodity thermoplastics industry. PE = polyethylene, PS = 

polystyrene, PET = polyethylene terephthalate, PVC = polyvinyl chloride, PP = polypropylene, PHA = 

polyhydroxyalkanoate, and PLA = polylactic acid. Shaded boxes indicate the most likely opportunities for 

feedstock substitution. Red arrows indicate potential opportunities for energy substitution. 

 

All plastics require process related electricity and heat (on-site fuels) at various stages 

throughout their life-cycles. Substituting renewable energy sources (e.g. wind power, bio-gas, 

etc.) for grid electricity and direct fossil fuel combustion can reduce emissions without changing 

the fundamental processes employed to produce conventional plastics. A major advantage of 

either process energy substitution or direct feedstock substitution is that the product remains 

unchanged. Resin manufacturers may green their electricity use implicitly by purchasing 

renewable electricity certificates
297

 or explicitly through power purchase agreements and/or with 

on-site renewable electricity generation. Process heat requirements can be met with fuels such as 

renewable natural gas (RNG)
298

 or via electrification coupled with renewable electricity. 

Likewise, resin manufacturers can achieve direct feedstock substitution either by changing 

suppliers of specific input materials, or by on-site production of renewable bulk chemicals. In 

contrast, functional feedstock substitution requires downstream customers (e.g. consumer 
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product manufacturers) to develop products that rely on bio-based plastics, to be sourced directly 

from bio-based resin manufacturers. 

 

To date, only a handful of studies have addressed the use of renewable energy in the production 

of bio-based plastics (e.g., refs
244,299,300

) and none have compared this to renewable energy use in 

fossil polymer production. This work adapts the stochastic life cycle assessment model described 

in Posen et al. (2016) (Chapter 3)
144

 to examine the GHG emissions from a range of scenarios for 

the production of both conventional and bio-based plastics. Consistent with Chapter 3 this work 

considers production of bio-based plastics using either corn grain or switchgrass as a feedstock. 

 

4.3. Material and Methods 

4.3.1. Model Overview 

This chapter develops a set of feedstock and energy substitution scenarios for the plastics 

industry. The feedstock substitution scenario assumes that all commodity thermoplastics (with a 

partial exception for polypropylene) will either be produced using bioethylene, or replaced with 

polylatic acid (PLA), as summarized in Table 4.1. In particular, the model assumes that 

bioethylene will replace all ethylene in polyethylene (HDPE, LDPE, LLDPE) and PVC; PLA 

will replace all PET and PS. Further, PLA will replace PP, but only in the subset of pathways 

where PLA has lower mean GHG emissions than PP. This is an optimistic, bounding case, since 

a) it is unlikely that PLA can substitute for all applications of PS, PET and PP, and b) it assumes 

PLA can substitute for fossil plastics on a 1:1 mass basis despite some evidence that PLA 

products may require a higher mass of plastic.
252,301

 Since PHB is both more expensive, and has 

higher GHG emissions than other bioplastics, I did not include it in the main feedstock 

substitution scenarios; for completeness, PHB is included whenever results are presented for 

individual plastics (sections 4.4.3, 4.4.4 and appendix section C.2.2). The base-case scenario 

assumes that all bio-based plastics are produced from corn grain, which is currently the dominant 

feedstock for bio-based products in the U.S. In addition, the model considers two advanced bio-

based scenarios: corn-based plastics produced using low carbon energy, i.e. combining feedstock 

and energy substitution, and plastics made from switchgrass – an illustrative second-generation 

cellulosic feedstock. In all cases, the model accounts for cradle-to-gate emissions from resin 
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production, and emissions from end of life, but not product manufacture or use. The model 

assumes that landfilled PLA and bioethylene plastics act as carbon sinks; alternatively PLA may 

be composted, releasing much of its stored carbon as carbon dioxide. The model assumes all 

fossil plastics are landfilled. 

 

In the energy substitution scenario, low-carbon energy provides all process heat and electricity 

throughout the supply chain for the production of conventional plastics. The baseline low carbon 

(LC) energy scenarios in this chapter assume RNG
298

 made from landfill gas (LFG) will provide 

all fuel requirements, while wind power will provide all grid electricity requirements. In all 

cases, renewable energy scenarios apply only to unit processes within the chemical industry, and 

do not extend to natural gas production and processing, crude oil production and refining, or 

agricultural operations. The grey box in Figures 4.2 and 4.3 show the scope of the energy 

substitution scenarios within the fossil plastic and corn bio-plastic supply chains respectively. 

Renewable energy does not displace combustion of waste products (i.e., internal off-gas) 

produced during steam cracking or benzene production.   
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Figure 4.2. Manufacturing processes for commodity thermoplastic polymers: polyethylene terephthalate 

(PET), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and polystyrene (PS). Circles 

represent feedstocks, rectangles production/manufacturing, and hexagons the final manufacture stage. Pink 

processes are common to multiple polymers, while other colors are unique to each polymer family. Renewable 

energy scenarios are applied only to processes within the grey background region. End of life emissions 

(landfilling) are not shown in the figure, but are included in the model. Adapted from Posen et al. (2016) 

(Chapter 3).
144

 

 

 



Chapter 4 

89 

 
  

Figure 4.3. Bio-based polymer production processes. Thick black arrows represent market-mediated effects, 

thin black arrows indicate main reference flows, and white arrows indicate co-product production: dried 

distillers grains with solubles (DDGS), corn oil, corn gluten feed (CGF), corn gluten meal (CGM), and energy. 

Circles represent feedstocks, and hexagons are the final manufacture stages, which represent the end of the 

cradle-to-gate model. All other stages are shown as rectangles. Pink processes are common to multiple 

polymers and white processes are excluded from the system boundary. Green processes are for producing 

bioethylene-based polymers, orange for polylactic acid (PLA), and blue for polyhydroxybutyrate (PHB). 

Boxes with multiple colors indicate equivalent, but separate processes for multiple polymer families. For the 

LC corn pathway, renewable energy scenarios are applied only to processes within the grey background 

region. Adapted from Posen et al. (2016) (Chapter 3).
144
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The primary impact metric in this chapter is the 100-year global warming potential (GWP), 

modeled using normally distributed equivalence factors (in kg CO2e) based on the 

Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5).
204,205

 Posen 

et al. (2016) (Chapter 3)
144

 provides a detailed description of the underlying life cycle 

assessment model. The present chapter uses PLA case 1, based on Groot and Boren (2010)
251

 

since the data used for the other cases in Posen et al. (2016) (Chapter 3)
144

 have insufficient 

detail to adapt for incorporation of renewable energy. Results for the baseline model (no 

renewable energy) would be similar (within ~10%) if using Vink et al. (2010 or 2015)
260,262

 for 

the PLA data source. The model for fossil polymers relies on the system expansion scenario (for 

hydrogen co-product) from Posen et al. (2016) (Chapter 3).
144

 Similarly, this chapter uses the 

system expansion scenario for corn-coproducts. For switchgrass pathways, this chapter uses the 

scenarios from Posen et al. (2016) (Chapter 3)
144

 that include co-generation of steam and 

electricity from unfermented residues. To isolate the comparison between feedstock and energy 

substitution, this chapter does not apply any credit for surplus energy from switchgrass 

pathways. For switchgrass ethylene, this analysis assumes the more favorable ‘mid-term’ yield 

scenario.  

 

Key additions to the model, developed for the present study, involve the use of renewable energy 

(wind, RNG, and/or direct combustion of biomass), discussed in the following section.  

 

4.3.2. Emissions from Renewable Fuels and Electricity 

Wind power is one of the most promising and fastest growing sources of renewable generation in 

the U.S. and worldwide,
302

 and so is the primary low-carbon electricity source for this case-

study. Dolan and Heath (2012)
303

 report harmonized estimates of the life cycle GHG emissions 

from wind power (in g CO2e/kWh) for 126 estimates representing 49 different studies. I fit a 

continuous distribution to these 126 point estimates, giving each of the 49 studies the same 

weight, and equally weighting the different estimates within a given study (e.g. if a study 

produces 6 different estimates, each of these receives 1/6 the weight of data points from studies 

that produce only a single estimate). This procedure avoids giving undue weight to studies that 

produce multiple estimates, since any biases in the method applied are likely to affect each of the 
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estimates within a single paper. The result is a log-logistic distribution with a mean of 12.4 g 

CO2e/kWh and a 90% confidence interval ranging from 4.7-26 g CO2e/kWh.  

 

For process heat, I assume RNG will be produced from LFG and that it will be transported using 

existing natural gas transmission infrastructure. RNG is chemically and functionally equivalent 

to conventional natural gas, and can be produced by isolating methane from the mixture of 

methane, carbon dioxide, and other contaminants that result from the decay of organic material 

in landfills. Because its use is easily integrated into existing production processes, RNG is the 

baseline renewable fuel for on-site heat production in corn and fossil-based pathways in this 

study. 

 

I model emissions from the production of RNG based on Argonne National Laboratory’s 

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) 2014 

model
267

 and its supporting documentation.
304

 Mintz et al. 2010
304

 report the RNG processing 

efficiency, defined as the ratio of the energy in the final product to the input gas and electricity, 

to range from 91-97% with a default value of 94.4%. I use these values as the parameters of a 

triangular distribution. Furthermore, I assume that generation of electricity used to process raw 

landfill gas (LFG) into RNG relies on the combustion of raw LFG in a reciprocating engine, with 

an electricity generating efficiency of 30%.
267

 I calculate emissions from the reciprocating 

engine using default emissions factors in GREET.
267

 Additionally, GREET assumes a 2% 

fugitive emission rate for the input CH4, at the landfill site. As modeled in GREET, all LFG used 

as feedstock for RNG, or for energy in the reciprocating engine, receives a credit for avoiding the 

emissions that would result from just flaring the gas, as is common practice in U.S. landfills.
304

 I 

then add in emissions from natural gas transmission, fit approximately to the parameters 

provided in Tong et al. (2015).
266

 Finally, I model the combustion of RNG the same way as the 

combustion of conventional natural gas.
95

 Combustion emissions are mostly offset by the credit 

for avoided flaring. As a result, net emissions correspond predominantly to the emissions from 

natural gas transmission and from the 2% natural gas leakage during RNG upgrading. The final 

distribution closely resembles a normal distribution (mean: 17.9, stdev: 4.6 g CO2e/MJ RNG 

LHV), with most of the spread stemming from the uncertainty in CH4 GWP. 
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Finally, Appendix C (section C.2.1) considers an alternate renewable energy scenario in which 

switchgrass combustion provides the on-site fuel requirements, instead of RNG. This scenario 

requires an adjustment for the difference in efficiencies between fossil fuel and biomass boilers. 

When data sources quote energy requirements in terms of steam energy, I assume that steam was 

generated from natural gas combustion. Following Abrahams et al. (2015),
265

 I model natural gas 

(HHV) boiler efficiency as a triangular distribution (min: 70%, mode: 80%, max: 94%)
305-307

. 

Biomass boilers have an efficiency between 68% and 75% (HHV), for as-received (wet) 

biomass.
305,306,308

 Natural gas accounts for a large majority of fuel used in conventional polymer 

production, and the boiler efficiency range modeled already encompasses the typical range for 

other fuels like coal.
265

 Thus, the same efficiency adjustment applies for all fossil energy 

displaced by biomass. Appendix C, Table C.1 presents key parameters for the modeling of 

renewable energy pathways in this chapter. 

 

4.3.3. Cost Estimates 

Prices of commodity thermoplastics change rapidly with time, and are not generally available in 

the public domain; this section describes scoping estimates for the cost of the emission reduction 

strategies considered in this chapter. Sin et al. (2013)
309

 published 2009 average prices (in 

Euro/kg) for a range of polymers, including PLA, PHB, and most conventional commodity 

thermoplastics. I convert these estimates to U.S. dollars using the 2009 average exchange rate 

(0.75 Euro/USD),
310

 and then inflate them to 2015 values (a net increase of 11%).
311

 The 

resulting prices (in 2015 USD/kg) are: 2.82 (PLA), 5.94 (PHB), 1.78 (HDPE), 1.63 (PP), 2.08 

(PS), 1.48 (PVC), 2.23 (PET). I assume the average price of LDPE is similar to HDPE. Taking 

the difference between the price of each biopolymer and each commodity thermoplastic gives the 

additional cost incurred by end users for converting from fossil polymers to PLA or PHB.  

  

The International Renewable Energy Agency (IRENA) estimated the cost range for producing 

bioethylene from US corn in 2009 USD/tonne ethylene (min: 1,700, mean: 2,060, max: 

2,730).
184

 From these values, I subtract $55/tonne ethanol (~$95/tonne ethylene) for corn co-

products,
184

 and inflate the results to 2015 values. I fit the resulting estimates to a triangular 

distribution (min: 1,780, mode: 2,180, max: 2,930) 2015 USD/tonne bioethylene. The spot price 
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of fossil ethylene is modeled as a uniform distribution from 35-65 cents/lb (770-1430 $/tonne), 

loosely fit to recent market data (from September 2014 to July 2015).
312

 

 

The cost of converting to low carbon energy relies on estimates of the levelized costs from 

producing RNG and wind power, which I compare to the case of existing fuel and (wholesale) 

electricity. The American Gas Foundation (AGF) estimated the cost of producing RNG from 

LFG on a state by state basis.
313

 Using their more conservative “non-aggressive” scenario, I fit a 

distribution to the state-by-state estimates AGF provided. The result is a shifted exponential 

distribution with mean 2.05 (before shifting), and a minimum value of 5.19 $/mmbtu. I adjusted 

this value for inflation (6%) from 2011 (the year of publication) to 2015.
311

 The most recently 

available prices for fossil fuels come from the U.S. Energy Information Administration (EIA) via 

their excel data add-in tool.
314

 I fit distributions for industrial sector prices for natural gas and 

residual fuel oil using monthly data and projections from the Short Term Energy Outlook 

(January 2013-December 2015). I fit quarterly historical coal prices for industrial users to a 

uniform distribution (January 2013-April 2014). Finally, I treat diesel and distillate as the same, 

with prices modeled as a triangular distribution fit to historical monthly retail prices, as sold by 

refiners from January 2013-May 2015.  

 

For the levelized cost of wind energy, I modeled a triangular distribution (min:35, mode: 66, 

max: 111 $/MWh), based on data from the Department of Energy’s Open Energy platform.
315

 

For grid electricity, I use the 2014 US wholesale price of electricity, fitted to the weighted 

average price across all dates and regions, as provided by EIA.
316

 The resulting best-fit for US 

wholesale electricity (in $/MWh) is a log-logistic distribution (location: 13.7, scale: 31.0, shape: 

4.2). The difference between the levelized cost of wind energy, and the US wholesale price of 

electricity indicates the additional cost incurred by switching to wind power. Appendix C, Table 

C.2 includes a summary of key parameters used for cost estimation.  
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4.4. Results  

4.4.1. Energy Substitution and Feedstock Substitution: Scale and GHG Emissions 

Table 4.1 summarizes production volumes and emissions factors for fossil polymer scenarios, 

along with the identities of alternative bio-based plastics used for feedstock substitution 

scenarios. Full energy substitution across the plastics industry would require approximately 12 

billion kWh of wind power (~6% of U.S. wind power generation in 2014
317

), and 650 billion MJ 

of RNG or other suitable renewable fuel. It is worth noting that this value exceeds the 

approximately 200-400 billion MJ of domestic RNG potential from LFG, but is well within the 

1,000-2,500 MJ of RNG potential from all sources.
313

 Additional analysis also shows that similar 

or greater GHG reductions can be achieved by supplementing RNG with wind power through 

increased electrification, or via the combustion of energy crops like switchgrass (Appendix C, 

section C.2.1). Simply to note the scale of this alternative, full feedstock substitution (i.e., fully 

transitioning to bio-based polymers) would require approximately 110-120 Mt of dry corn or 

130-140 Mt of dry switchgrass. This quantity of corn requires approximately 30-45 million acres 

and is equivalent to 40% of the 2015 U.S. corn harvest.
279

 The estimated quantity of switchgrass 

would require approximately 15-70 million acres of land, with a mean of 30 million acres; this is 

equivalent to 5-15% of current agricultural land in the U.S.
318

 Switchgrass yields are prospective 

and thus highly uncertain, which explains the large range for switchgrass land requirements. 

 

Table 4.2 summarizes emissions factors for bio-based plastics. These results combined with 

those in Table 4.1 produce Figure 4.4, which shows industry-wide GHG emissions for different 

pathways. Using a 95% confidence interval, adoption of low carbon energy can reduce GHG 

emissions from plastics production by approximately 50-75% (mean reduction of 38 Mt 

CO2e/year). In contrast, corn-based bioplastics (in the lower emission, ‘landfill’ scenario) may 

result in anywhere from a 50% decrease to a 10% increase in GHG emissions (mean reduction of 

16 Mt CO2e). Emission reductions achieved in the advanced feedstock substitution pathways 

have wide confidence intervals, but show substantial probability of achieving net negative 

emissions in the landfill scenario, owing to the GHG emissions credit for carbon stored in the 

bio-based plastics. Appendix C, section C.2.2 shows more detailed results for individual plastics; 
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section C.2.3 shows results for select additional scenarios related to allocation and scope of 

energy substitution. 

 

Figure 4.5 shows a direct comparison of GHG emissions between fossil plastics produced with 

low carbon energy, and each bioplastic pathway. In over 98% of simulations, producing fossil 

plastics with low carbon energy results in lower emissions than corn-based bioplastics. 

Emissions from the corn pathway exceed emissions from the fossil plastic energy substitution 

pathway by ~20-30 Mt CO2e (median results) depending on the end of life scenario for PLA. 

Advanced feedstock substitution likely results in higher GHG savings than energy substitution, 

but there is more certainty in the landfill scenario (90% of simulations and 99% of simulations, 

respectively) than in the compost scenario (55% and 75% of simulations, respectively). 

 

These results (Figure 4.4) demonstrate the importance of the stored carbon credit for bio-based 

products (i.e., it is a large negative contributor to the GHG emissions shown in the figure). In the 

absence of this credit, all feedstock substitution pathways have higher emissions than the fossil 

plastic production pathways. Although the stored carbon credit is likely accurate for bioethylene 

plastics, recent evidence suggests that even when landfilled, PLA does not always act as a carbon 

sink,
301,319

 as previously assumed.
144,268,271

 Furthermore there is ongoing debate about whether 

biogenic carbon should receive an emissions credit in the first place;
99

 land use change emissions 

associated with agricultural production could also greatly surpass those modeled here.
85,285,286

 As 

a result, the feedstock substitution pathways have a higher degree of inherent uncertainty than 

presently modeled. In contrast, the low-carbon energy fossil polymer pathways have more steps 

in common with conventional production, which contributes to fundamentally lower uncertainty 

for emission differences. 
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Table 4.1. Summary information for fossil plastics considered in this study. 

 

Annual North 

American 

production 

volume (Mt) 

Conventional 

emissions factor 

(kg CO2e/kg 

plastic) 

Emissions factor 

with low carbon 

energy
d 

(kg CO2e/kg 

plastic) 

Alternative 

plastic for 

feedstock 

substitution 

scenarios 

High Density 

Polyethylene 

(HDPE) 

7.9
a 

1.48 (1.02, 1.96)
c 

0.59 (0.19, 1.01)
e 

bio-HDPE 

Low Density 

Polyethylene 

(LDPE) 

3.2
a 

1.75 (1.27, 2.25)
c 

0.66 (0.23, 1.1)
e 

bio-LDPE 

Linear Low 

Density 

Polyethylene 

(LLDPE) 

6.3
a 

1.48 (1.01, 1.97)
c 

0.65 (0.24, 1.06)
e 

bio-LLDPE 

Polypropylene 

(PP) 
7.5

a 
1.54 (1.14, 1.96)

c 
0.85 (0.5, 1.21)

e 
PP/PLA

f
 

Polyethylene 

(PET) 
2.8

b 
2.39 (2.18, 2.65)

c 
1.03 (0.83, 1.29)

e 
PLA 

Polystyrene 

(PS)
g
 

2.0
a 

3.12 (2.78, 3.54)
c 

1.64 (1.28, 2.05)
e 

PLA 

Polyvinyl 

Chloride (PVC) 
6.8

a
 2.19 (1.92, 2.49)

c
 0.63 (0.36, 0.92)

e
 bio-PVC

 

a) Year 2014 data; source:
142

 

b) Year 2012 data; source:
143

 

c) Mean and 95% confidence interval (CI) for each plastic; source: ref
144

 (Chapter 3) 

d) Wind and RNG 

e) Mean and 95% CI for each plastic; new estimate, based on model from ref
144

 (Chapter 3) 

f) PLA only replaces PP in the advanced feedstock substitution scenarios (corn with low carbon 

energy or switchgrass), since switching to PLA would not reduce emissions in the 

conventional (corn) pathway 

g) PS is modeled as general purpose polystyrene (GPPS). Results for high-impact polystyrene 

(HIPS) are very similar. 
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Table 4.2. Mean and 95% CI emissions factors for bio-based plastics considered in this study (kg CO2e/kg 

plastic).  

  Corn bioplastics
b
 

(kg CO2e/kg plastic)
 

Corn bioplastics 

with low carbon energy
c 

(kg CO2e/kg plastic) 

Switchgrass bioplastics
d 

(kg CO2e/kg plastic) 

PLA
a
 1.85 (1.43, 2.34) 0.09 (-0.21, 0.46) 0.25 (-0.27, 0.92) 

bio-PVC
 1.92 (1.52, 2.39) 1.26 (0.91, 1.69) 1.34 (0.81, 2.1) 

bio-HDPE
 0.89 (0.11, 1.82) -0.55 (-1.22, 0.29) -0.38 (-1.46, 1.25) 

bio-LDPE
 1.14 (0.35, 2.1) -0.32 (-1, 0.54) -0.14 (-1.24, 1.52) 

bio-LLDPE
 0.89 (0.1, 1.83) -0.57 (-1.24, 0.28) -0.39 (-1.48, 1.25) 

a) Based on case 1 from;
144

 table shows emissions assuming that PLA is landfilled and acts as a 

carbon sink. Composting PLA releases an additional 1.6 kg CO2e/kg plastic. 

b) Treating co-products by system expansion; from ref
144

 (Chapter 3). 

c) Treating co-products by system expansion; plastic production powered by wind and RNG; 

new estimates, based on model from ref
144

 (Chapter 3). 

d) Assumes non-fermented residues are used to generate steam and electricity; no credit for 

surplus energy generation; bioethylene-based plastics assume mid-term yield scenario from 

ref
144

 (Chapter 3). 
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Figure 4.4. Life cycle GHG emissions from aggregate North American production of a) conventional fossil-

based commodity thermoplastics (“Fossil”), b) fossil plastics using low carbon energy sources (wind and 

RNG) across the chemical industry supply chain (“Fossil + LC”), c) corn-based plastics (“corn”), d) corn-

based plastics using wind and RNG (“Corn + LC”), or e) switchgrass-based plastics (“SW”). Feedstock 

substitution scenarios assume all conventional plastics are replaced with alternative plastics as per table 1; 

these scenarios show results for both landfilled (“LF”) and composted (“C”) PLA. Upstream emissions refer 

to oil and gas extraction and refining/processing for fossil routes, or land use change and biomass production 

for bio-based routes. Error bars represent an approximate 95% confidence interval for total emissions, based 

on Monte Carlo simulation. All results assume current production volumes (production volumes from 2012-

2014). 
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Figure 4.5. Life cycle GHG emissions comparison between energy substitution and different feedstock 

substitution scenarios, including corn-based plastics (“corn”), corn-based plastics produced using wind and 

RNG (“Corn + LC”), and switchgrass-based plastics (“SW”), with PLA disposal by either landfill or compost. 

Positive numbers (white background) indicate the feedstock substitution scenario has lower GHG emissions 

than the energy substitution scenario. Negative numbers (grey background) indicate the energy substitution 

scenario has lower GHG emissions than the feedstock substitution scenario. 

 

4.4.2. Cost estimates 

Table 4.3 presents results from the first-order cost estimates discussed in section 4.3.3. The cost 

of converting to low-carbon energy ranges from $10-$200/tonne plastic, whereas the cost of 

switching to bio-based polymers likely ranges from several hundred to several thousand dollars 

per tonne, depending on the plastic. The cost estimates for bio-based polymers are based on 

presently available (first generation) feedstocks. It is likely that use of a cellulosic feedstock (like 

switchgrass) would be even more cost-disadvantaged than these numbers indicate. Thus, 

adopting low-carbon energy is currently more economic than switching to bio-based polymers, 

reinforcing the GHG emission results that favor energy substitution for near-term GHG 
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mitigation. As industry gains experience with these bio-plastics, their costs may decrease through 

learning-by-doing and economies of scale. 

 

Table 4.3. Cost of emission reduction strategies ($ additional / tonne of plastic). Values represent additional 

costs incurred, above those estimated for conventional production. Ranges, where available, span 90% of 

model runs. 

 PET PS PVC HDPE LDPE PP 

Low carbon energy 

(full supply chain) 
10-120 20-200 30-180 15-120 20-160 10-90 

Corn Bioethylene 200-600 300-1000 400-1,500 900-3,000 900-3,000 N/A 

PLA ~600 ~700 ~1,300 ~1,000 ~1,000 ~1,200 

PHB ~3,700 ~3,900 ~4,400 ~4,200 ~4,200 ~4,300 

 

 

4.4.3. Comparing uses for switchgrass 

The potential to use biomass as either a feedstock or energy source also raises questions about 

the best use of biomass for near-term GHG mitigation. Figure 4.6 presents the results of a first-

order test case for uses of switchgrass, structured to provide a relatively optimistic scenario for 

bioplastics. The model compares switchgrass combustion to the lowest GHG emission fossil 

fuel, natural gas; it assumes full recovery of all residue from fermentation to make bioplastics, 

and that this residue also displaces natural gas; it uses the higher yielding and lower energy use 

scenarios for bioethylene and PHB production from Posen et al. (Chapter 3)
144

; finally the model 

is on a cradle-to-gate basis, which implicitly assumes that bioplastics act as a carbon sink. This 

last assumption is likely accurate for bioethylene, is uncertain for PLA, and likely underestimates 

emissions from PHB. With the exception of PLA displacing certain high emission polymers (e.g. 

PS and PET), equal or greater mean emission reductions can be achieved by using a given 

quantity of switchgrass for energy instead of for bio-based polymers. This is particularly notable 

since assumptions were deliberately favorable to bioplastics. This result reinforces the main 

conclusion of the chapter: focusing on energy substitution will likely achieve greater GHG 

emission reductions in the near-term than feedstock substitution. 
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Figure 4.6. Comparison of uses for switchgrass. The graph shows the net change in GHG emissions when 1 kg 

of switchgrass is i) combusted to displace natural gas, ii) used to produce PLA to displace different 

thermoplastic fossil polymers, iii) is used to produce PHB to displace different thermoplastic fossil polymers, 

or iv) is used to produce bioethylene to displace fossil ethylene. Bio-product scenarios show results on a 

cradle-to-gate basis, and assume that all unfermented switchgrass is also used to displace natural gas. The 

dotted line is shown as a reference point. 

 

4.4.4. Projected emissions: energy substitution won’t be enough 

The results presented above make a compelling case to prioritize energy substitution over 

feedstock substitution. Over the long-run, however, it may be necessary to find other ways to 

reduce emissions in the plastics industry. Figure 4.7 shows projected GHG emissions due to 

North American production of commodity thermoplastics, from 2015-2050. The figure shows 

two scenarios: one in which all plastics are produced using conventional energy, and one in 

which all plastics are produced using low carbon energy (wind and RNG). The figure shows 

results based on the mean GHG emissions from the model developed in this chapter. 

Additionally, I assume a range of 1-3% in per capita plastics consumption, the upper end of 

which is consistent with recent historical growth, from 2005-2015.
320

 I also project population 

growth based on the U.S. census.
321

 As per the results presented above, switching to low carbon 

energy can produce a substantial and immediate reduction in GHG emissions. If, however, 

plastics consumption continues to grow at, or even somewhat below historical rates, GHG 

emissions from the low carbon pathways would once again surpass current levels by 2050. Given 
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that advanced feedstock substitution scenarios have the potential reduce plastic emissions to zero 

or less (i.e. becoming a net CO2 sink), it could be advantageous to develop these pathways in the 

long run. 

 

 

Figure 4.7. Projected emissions from the North American plastics industry under a conventional production 

and a low carbon energy scenario, respectively. The figure uses mean emissions for each scenario, and shows 

a future emission range based on a 1-3% annual growth in per capital plastic consumption. 

 

4.5. Discussion 

Although a comprehensive sustainability analysis is beyond the scope of this study, there are 

numerous other factors to consider in comparing feedstock and energy substitution in the plastics 

industry. The following is a limited discussion of several key considerations: 

 Non-GHG environmental impacts: Due to heavy reliance on agriculture, bio-based 

products tend to score poorly on other environmental metrics, such as ozone 

depletion,
152,257

 acidification,
153

 eutrophication,
152,153,257,322

 water use,
323

 and food 

security.
126,127,324
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 Substitutability: Energy substitution results in no change in the final resin produced. The 

new, ‘greener’ polymer can substitute across the market without any changes in 

downstream production methods or product functionality. While this is also the case for 

bioethylene-based plastics, other renewable products like PLA have more limited 

potential to substitute for existing plastics.  

 Resin Properties: While biodegradability may be an advantage of PLA (and some other 

bio-plastics), as this may reduce landfilling requirements, few cities have the required 

infrastructure for composting,
152

 and many organizations using compostable biopolymers 

continue to send their waste to landfills.
325

 Further, biodegradation increases the life cycle 

GHG emissions of these bio-based plastics, potentially overturning any benefits from 

their production.
144,270

 As a further caveat, this study does not include emissions from 

resin foaming or plasticizer and other additives, which may affect the comparison 

between PLA and fossil plastics. To my knowledge, no prior studies have included these 

emissions.  

 Market size: the potential market for renewable energy, and resulting potential emission 

reductions, is far larger than the potential market for bio-based polymers. Thus, energy is 

likely a more important target for decarbonization than feedstocks, especially if learning 

or spillover effects
326

 are expected.  

 

The choice for near-term GHG mitigation is clear: switching to low-carbon energy across the 

chemical industry for conventional polymers achieves greater GHG reductions (in >98% of 

simulations), at lower cost, and with less uncertainty than corn-based biopolymers (if produced 

with conventional energy). This energy substitution can be achieved without any fundamental 

modification to current production methods, existing capital infrastructure in the chemical sector, 

or additional testing to ensure preservation of product quality, as would be the case for switching 

to bio-based plastics. In the long-run, if advanced bio-based plastic pathways prove technically 

and economically feasible, feedstock substitution may substantially reduce or even capture GHG 

emissions. For these benefits to be realized, however, bio-based production must be coupled with 

renewable energy – either explicitly (as above), or through recovery of fermentation residues 

from cellulosic production.
144

 Until such advanced bio-plastic pathways are available, energy 

substitution has the greater potential.  



Chapter 5 

104 

Chapter 5. Biofuels and Indirect Output Use Change: the 

Role of Refineries 
 

5.1. Abstract 

In recent years, there has been a growing awareness that traditional attributional life cycle 

assessment may not be an appropriate tool for capturing the greenhouse gas emissions that result 

from biofuel policies. A nascent literature takes a consequential approach toward capturing the 

indirect change in consumption of petroleum products that results from different policy choices. 

Common to these prior studies, however, is poor resolution in the modeling of the petroleum 

refining sector. To address this shortcoming, this chapter develops a model of how petroleum 

refineries change their product slate in response to market conditions. Using a set of dynamic 

regression models (e.g., partial adjustment and adaptive expectations models) with monthly data 

for the United States, I estimate that the relative yield of distillate exhibits price elasticities of 

approximately 0.40 to 0.50 relative to its own price, and -0.42 to -0.34 relative to the price of 

gasoline. In contrast, gasoline has smaller yield elasticities of approximately 0.17 to 0.20 relative 

to its own price, and -0.25 to -0.22 relative to the price of distillate. Using these estimates in a 

partial equilibrium environment, I show that biofuel share mandates and emission standards can 

induce refiners to shift toward greater distillate production. This results in a large increase in 

greenhouse gas emissions, even before accounting for the emissions from biofuel production 

itself. This work suggests that refiner flexibility is a potentially important source of carbon 

leakage. As a result, share mandates and emission standards that apply disproportionately to 

gasoline consumption may be ineffective policies for reducing GHG emissions. Policies like a 

carbon tax that apply more evenly across petroleum products, and create a price wedge between 

producers and consumers are far more likely to result in emission reductions.  

 

5.2. Introduction 

Much of the analysis presented in chapters 2-4 above follows an attributional life cycle 

assessment framework (ALCA). Although ALCA is frequently used in policy decisions, it is 

properly viewed only as a form of environmental accounting; it does not necessarily predict 

actual changes in emissions that would result from increased production of bio-based products. 
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The ALCA approach is, however, indicative of the emissions that may be attributed to the 

products under study (taken in isolation from market forces) and as such provides a simple and 

consistent basis to establish how pathways perform relative to one another.  

 

Recently, however, the usefulness of ALCA has been called into question, with some authors 

arguing that policy decisions require a more consequential approach.
75

 The formal distinction 

between ALCA and consequential LCA (CLCA) was introduced at a 2001 workshop,
76

 and 

continues to grow in popularity. In brief, while ALCA accounts for environmental flows in a 

static environment, CLCA attempts to answer how such flows will change in response to new 

decisions or activities. Elements of CLCA have been incorporated into Chapters 2-4 (e.g. 

inclusion of emissions from indirect land use change, examining how results vary with marginal 

electricity emissions as part of a sensitivity analysis, and so on), however only a preliminary 

analysis of wider market interactions was conducted.  

 

One particularly important and understudied market-mediated interaction is the change in net 

output for different final products, in response to policy actions. For example although bio-

products can often substitute for fossil products on a 1:1 basis in physical terms, the resulting 

changes in market prices make 1:1 replacement unlikely across the entire market. This effect is 

rarely addressed in existing LCA studies. A nascent literature examines this effect in fuel 

markets, in what is alternately termed the indirect fuel use effect (IFUE), 
236

 market leakage,
327

 

indirect output use change (IOUC),
327

 indirect demand change (IDC),
154

 or the rebound effect in 

fuel markets.
328

 Existing modeling efforts to quantify IOUC resulting from US and European 

biofuel policies are summarized in a review by Smeets et al. (2014).
328

 Studies have used both 

partial equilibrium and general equilibrium frameworks, and have considered a wide range of 

related policy interventions. All but one
329

 assume competitive markets. Depending on the 

specific policy considered, and modeling framework, reported IOUC values range from -20% to 

119% (i.e. 1 unit of biofuel may displace up to 1.2 units of fossil fuel, or may cause a net 

increase in fossil fuel consumption of 0.19 units).
328

 An additional study by Rajagopal and Plevin 

(2013)
330

 used a partial equilibrium framework together with Monte Carlo simulation to include 

parametric uncertainty for key market elasticities and GHG intensities of different fuels (the only 
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study to do so). The authors report 95% confidence intervals for IOUC ranging from 

approximately -50% to 70% depending on the policy considered. 

  

Common to all of these prior studies is poor resolution in the modeling of the fossil fuel sector. 

Most treat the fuel sector either as a single product, or as multiple products (i.e. gasoline, diesel 

and other) that can only be produced in fixed proportions. Similarly, most treat crude oil as a 

single commodity, or consider at most two types of crude oil (i.e. conventional crude and oil 

sands). This chapter provides a better understanding of how market forces affect the change in 

GHG emissions resulting from biofuel policies by investigating how the oil industry is likely to 

respond to shifting demand for individual refined products. The remainder of this chapter is 

organized as follows: section 5.3 discusses the degree to which the petroleum refining industry 

can and does change its product slate in response to market conditions. Section 5.4 lays out the 

model that this chapter uses to investigate the importance of refiner flexibility in assessing 

biofuel policies. Section 5.5 presents the main results for this chapter. Finally section 5.6 

provides additional discussion and concluding thoughts. 

 

5.3. Analysis of Refiner Response 

The goal of this section is to determine the degree to which the petroleum industry can adjust its 

product slate in response to market conditions. Section 5.3.1 first presents an overview of 

historic and potential relative product yields, followed by section 5.3.2, which presents a 

quantitative assessment of U.S. petroleum product yield elasticities with respect to product 

prices. Throughout this chapter, all reported yields are on a volume basis; non-liquid products are 

converted to volumes using default conversion factors from EIA.
331

 Further, all analysis 

presented below measures refinery yield as a percent of total refinery production (i.e. relative 

yield), rather than as a percent of input crude oil (i.e. absolute yield); these two measures can 

differ due to the ~6-7% volume gain that typically results from petroleum refining. Unless 

otherwise specified, the term ‘yield’ hereafter refers to relative yield.  
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5.3.1. Preliminary Analysis 

The U.S. Energy Information Administration (EIA) provides data on international production of 

major petroleum products going back to the 1980s.
117

 Figure 5.1 provides a graphical 

representation of this data, as a percent of total refinery production. While there is a notable 

increase in the yield of diesel over time, the yield of gasoline has been remarkably stable. The 

aggregated nature of global yields, however, masks large international variations. Figure 5.2 

shows the annual breakdown of refinery yields for individual countries going back to 1980, as 

based on EIA data.
117

 For reference, the figure also shows the U.S. and global average yields for 

the year 2007, the year in which the current U.S. Renewable Fuel Standard was established,
4
 and 

the base year of analysis for the economic modeling described in sections 5.4 and 5.5. 

 

 

Figure 5.1. Historic volumetric global yields of major refinery product categories. Refinery yield is expressed 

as a percent of total refinery products. Figure is based on EIA data.
117
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Figure 5.2. International volumetric yields of major refinery product categories for 113 different countries 

and regions, from 1980-2013. Refinery yield is expressed as a percent of total refinery products. Data is 

colored by country; each point represents a different country/year combination. The yield of each product is 

represented by the proximity of each data point to the corresponding vertex. The 2007 US average and global 

average yields are shown for reference. Figure is based on EIA data EIA data.
117

 

Figure 5.2 clearly demonstrates that refineries can and do achieve a wide range of product slates. 

To understand how this might be achieved, as well as whether more extreme yields are possible, 

I investigate product slates predicted by the Petroleum Refinery Life Cycle Inventory Model 

(PRELIM) refinery model.
163

 The present analysis uses an April 2016 version of the model 

obtained directly from the model developer. PRELIM simulates refinery yields, energy use and 

emissions for 10 different refinery configurations with differing levels of complexity: a simple 

hydroskimming refinery (PRELIM configuration 0), refineries containing medium conversion 

process units (PRELIM configurations 1-3), deep conversion coking refineries (configurations 4-

6) and deep conversion hydrocracking refineries (PRELIM configurations 7-9). The model also 

contains 103 different built-in crude oil assays, representing different types of petroleum. I run 

each type of crude oil through each available configuration and record volumetric product yields. 

The resulting data are plotted in Figure 5.3 Additional refiner flexibility may be possible due to 

changes in refinery operating conditions, however this is left as a question for future work. 
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PRELIM was designed primarily with the U.S. refining sector in mind. While it appears to have 

relatively poor coverage of the low-gasoline yield region, it nevertheless shows a similarly wide 

feasible region as the actual international data from Figure 5.2 Taken together, these figures 

suggest that it is possible to produce gasoline yields from below 10% up to nearly 60%, and 

distillate yields from below 10% up to approximately 50%. While it is unlikely the entire 

industry could produce at the extremes of these ranges, there nonetheless appears to be 

substantial room to adjust product yields from the status quo, assuming unlimited access both to 

different types of crude oil and different refinery process units. In the short run, market sources 

suggest that individual refineries can only adjust their product slates by less than 5 percentage 

points.
332

 Industry wide flexibility will be higher due to the potential for some refineries to ramp 

up production while others ramp down; additionally, long-term the industry clearly has access to 

a wider range of product slates as evidenced by Figure 5.2 and Figure 5.3. 

 

Figure 5.3 also suggests that increasing refinery complexity tends to increase the yields of both 

gasoline and distillate together (i.e. higher numbered configurations tend to move up and to the 

left in the ternary plot). In contrast, the choice of crude oil processed allows for a more direct 

trade-off between gasoline and distillate production – especially within more complex refineries. 

This conclusion is confirmed quantitatively using product covariance matrices from the PRELIM 

data (Appendix D, Table D.9 and Table D.10): for most refinery configurations, there is a 

negative covariance between gasoline and diesel yields across different crude oil types; for most 

crude oil types, there is a positive covariance between gasoline and diesel yields across different 

refinery configurations. 
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Figure 5.3. Volumetric yields of major refinery product categories predicted by the PRELIM
163

 model. The 

yield of each product is represented by the proximity of each data point to the corresponding vertex. Each 

point represents a different crude oil and refinery configuration combination. Different colors represent 

different refinery configurations, as defined in PRELIM. The light blue polygon indicates the feasible region, 

for all convex combinations of product slates. The 2007 US average and global average yields are shown for 

reference. 

 

5.3.2. Quantitative Regression Analysis 

Having established that substantial refiner flexibility exists in theory, this section examines 

specifically how relative yields of petroleum products vary in response to changes in product 

prices. Existing literature on the subject is extremely limited, especially within the last several 

decades. Across a series of publications in the early 1980s, Dahl and Laumas used 

nationally/regionally aggregated annual data to investigate the price responsiveness of gasoline’s 

share of a barrel of crude oil in the U.S., Canada and Europe.
333-335

 These results are summarized 

in Table 5.1. In a related series, Considine derives a multiproduct cost function for petroleum 

refining,
336-338

 from which yield elasticities can theoretically be derived following the method 

outlined in Dahl and Duggan (1996).
339

 Based on Considine (1992)
336

 and ignoring cross-price 
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elasticities Dahl and Duggan (1996),
339

 report gasoline’s share elasticity as +0.57 (with respect to 

its own price); following the same method for distillate gives a share elasticity of +1.20 (with 

respect to the price of distillate). Correcting the method in Dahl and Duggan (1996),
339

 to 

account for cross-price elasticities and fully applying the chain rule leads to implausibly large 

yield elasticities, often with unexpected signs. This is likely due to high standard errors among 

certain input regression coefficients; thus, this method is not pursued further. Various other 

papers have estimated supply elasticities of petroleum products (e.g., as reviewed in ref
339

) or 

refinery cost functions (e.g., ref 
340

), but from which yield elasticities are not readily derived. 

Some authors explicitly note their data suggest that refiners alter their product mix in response to 

price changes (e.g., ref
341

); however, to my knowledge, there have been no recent attempts to 

quantify this effect using market data.  

 

Table 5.1. Previous estimates of the responsiveness of refinery product yields with respect to petroleum 

product prices. 

Source Region 

Elasticity of gasoline yield with respect to price of 

Gasoline Distillate 
Residual 

Fuel Oil 
Kerosene 

Dahl 

(1981)
335

 

U.S. +0.20 -0.16 -0.04 NA
a 

Canada +0.41 -0.61 +0.20 NA
a 

Europe NS
b 

NS
b 

NS
b
 NA

a 

Dahl and 

Laumas 

(1981)
334

 

U.S. +0.08 -0.11
c
 -0.07 NS

b
 

Dahl and 

Laumas 

(1984)
333

 

Canada +0.28 NS
b
 +0.27 -0.49 

a) NA = not included in regression model 

b) NS = Not significant (regression coefficient is not significantly different from zero) 

c) Summing the coefficients for distillate and kerosene, and attributing the result primarily 

to distillate. 

 

This chapter develops new estimates of refiner product yield elasticities based on U.S. data. The 

U.S. Energy Information Administration (EIA) provides data on product yields from crude oil 

refining,
342

 dating back to 1993, along with prices received by refiners for finished petroleum 

products (for resale).
343

 The data is available on a monthly or annual basis, and as both as a 

national U.S. average, or subdivided by petroleum administration defense districts (PADDs). The 
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general strategy taken in this chapter is to develop a pair of seemingly unrelated regression 

equations
344

 to determine the elasticity of gasoline and diesel yields, as a function of gasoline and 

diesel prices. The joint yield of all other products is then calculated in function of changes to the 

gasoline and diesel yields. This decision is justified below. As a simplification, the terms 

‘distillate’ and ‘diesel’ will be used interchangeably throughout this section. 

 

As discussed above, the main models estimate the elasticity of gasoline and diesel yields, as 

functions of gasoline and diesel prices; the joint yield of all other products is then calculated 

from gasoline and diesel yields. This approach guarantees that yields always balance to 100%, 

while respecting the product categories (gasoline, diesel and ‘other’) present in the partial 

equilibrium model described in section 5.4.1. In addition to gasoline and diesel prices, EIA also 

provides pricing information for a subset of other petroleum products, including residual fuel oil, 

jet fuel, and propane. Due to high correlations among petroleum product prices, inclusion of 

these other prices tends to decrease the stability of regression coefficient estimates. Moreover, 

preliminary analysis suggests that the relationship between product yields and these ‘other’ 

product prices are generally weak and are often in the reverse direction from what would 

normally be expected. For example, Figure 5.4 shows that the gasoline/diesel yield ratio 

responds strongly and essentially monotonically to the gasoline/diesel price ratio. In contrast, 

Figure 5.5 shows that ratios involving other products are far less regular. The yield ratio of 

gasoline to ‘other’ products (panel a) actually appears to have a negative relationship with the 

ratio of the gasoline price to a basket I create of other product prices (weighted by the relative 

production volumes of these other products). The yield ratio of diesel to ‘other’ appears to be 

weakly increasing in the corresponding price ratio (panel c), but the relationship is noisy and 

essentially flat over a large portion of observations. It is possible that these weak relationships 

simply reflect the noise created by aggregating all other products into a single category. To test 

this hypothesis, I also compare gasoline and diesel yields to the ‘other’ product with which each 

has the strongest relationship: liquefied petroleum gases (LPG) and residual fuel oil, respectively 

(see correlation matrix in Appendix D, Table D.8). These results, presented in Figure 5.5 panels 

b) and d), once again show only a weak, and potentially unexpected inverse relationship between 

price ratios and yield ratios. As a result, I conclude that refiners are responding primarily to 

gasoline and diesel prices, treating other products only as bi-products. Appendix D, section D.1.2 
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examines sensitivity to the inclusion of other product prices in the main regression model 

presented below. 

   

 

Figure 5.4. Gasoline/diesel yield ratio as a function of the gasoline/diesel price ratio using nationally 

aggregated U.S. monthly data. A non-parametric smoother is added as a visual aid. Lighter points represent 

more recent data.  
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Figure 5.5. Different product yield ratios as a function of their price ratios, using nationally aggregated U.S. 

monthly data: a) gasoline vs ‘other’ products, b) gasoline vs liquefied petroleum gases (LPG), c) diesel vs 

‘other’ products, d) diesel vs residual fuel oil. A non-parametric smoother is added to each plot as a visual 

aid. Lighter points represent more recent data.  
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The main models presented in this chapter use monthly data, at the national scale. Additional 

models are presented in Appendix D, section D.1.2. In its simplest form the regression model 

appears as follows:  

log(𝛽𝑔) = 𝑎0 + 𝑎1 ∗ log(𝑝𝑔) + 𝑎2 ∗ log(𝑝𝑑) +𝑎3 ∗ 𝑡 + 𝑎4 ∗ 𝑀 (5.1) 

log(𝛽𝑑) = 𝑏0 + 𝑏1 ∗ log(𝑝𝑔) + 𝑏2 ∗ log(𝑝𝑑) +𝑏3 ∗ 𝑡 + 𝑏4 ∗ 𝑀 (5.2) 

 

where βg and βd are respectively the gasoline share and distillate share of total refinery output, pg 

is the price of gasoline received by refiners, pd is the price of distillate received by refiners, t 

represents a deterministic time trend and M corresponds to a set of dummy variables 

corresponding to each month of the year (when using monthly data). The resulting coefficients a1 

and a2 represent the elasticity of gasoline yield with respect to gasoline price and diesel price 

respectively; coefficients b1 and b2 represent the elasticity of diesel yield with respect to gasoline 

price and diesel price respectively.  

 

The main results presented below introduce two key modifications to the simple models (1) and 

(2) defined above. First, gasoline and diesel prices are normalized by the refiner acquisition cost 

of crude oil. This allows the model to better capture the fact that refiners are more likely to 

respond to changes in production margins than to the absolute price of finished products. Further, 

the normalized price ratio is unitless, which removes the need to adjust for inflation and allows 

the model to be run with nominal dollars, as reported by EIA. Second, the regression is modified 

to include a lag structure that better accounts for the time-dynamics of the model. Three different 

functional forms are tested, referred to respectively as ‘lagged prices,’ ‘partial adjustment’ and 

‘adaptive expectations’ models. These models are described in appendix section D.1.1; their key 

advantage is that they capture refiner response to price changes that are sustained across multiple 

time periods. Each model is run both in its basic form, and assuming AR(1) autocorrelation 

among the residuals. The results, presented in Table 5.2, are stable across all specifications. 

Appendix section D.1.2 presents results for a number of additional model forms; the results are 

more or less robust to the functional form of the time controls, the use of direct prices instead of 

price ratios, the inclusion of other product prices, or the use of annual instead of monthly data. 

Other functional forms (e.g., including non-linear models, or allowing for asymmetric response 

to price increases vs price decreases) are beyond the scope of the present analysis.  
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Table 5.2. Elasticity of diesel and gasoline relative yields from crude oil with respect to the ratio of diesel and 

gasoline prices to the acquisition cost of crude oil (based on nationally aggregated, monthly, U.S. data). 

Standard errors are shown in parentheses.  

***p<0.001 

 

The elasticities presented in Table 5.2 have intuitive signs, and are consistent across the different 

specifications. Results for gasoline are similar to results reported by Dahl (1981)
335

 for the U.S. 

(see Table 5.1). Own price elasticities (i.e., elasticity of gasoline and diesel with respect to their 

own prices) are both lower than those derived from Considine (1992).
336

 The present model 

assumes that product prices are exogenous variables to the regression model. To the extent that 

prices changes are due to exogenous changes in yield (e.g., a yield increase in one product floods 

the market, driving down the price), the magnitude of the coefficients in Table 5.2 will be biased 

toward zero. Thus, if anything, Table 5.2 may slightly underestimate relative yield elasticities. 

Appendix section D.1 provides a more detailed explanation of the regression models presented 

above, and includes results for additional regressions. It should be emphasized that all results 

presented here are for the entire industry (rather than individual refineries), and for price changes 

that are sustained across multiple periods. 

  

 Distillate yield Gasoline yield 

Model 

Elasticity with 

respect to 

distillate price 

ratio 

Elasticity with 

respect to 

gasoline price 

ratio 

Elasticity with 

respect to 

distillate price 

ratio 

Elasticity with 

respect to 

gasoline price 

ratio 

Lagged prices  

(3 lags) 

0.401*** 

(0.0315) 

-0.341*** 

(0.0230) 

-0.218*** 

(0.0178) 

0.170*** 

(0.0130) 

Partial 

adjustment 

0.485*** 

(0.0614) 

-0.404*** 

(0.0471) 

-0.243*** 

(0.0305) 

0.201*** 

(0.0233) 

Adaptive 

Expectations 

0.459*** 

(0.0403) 

-0.410*** 

(0.0344) 

-0.222*** 

(0.0185) 

0.179*** 

(0.0143) 

Lagged prices 

AR(1) 

0.420*** 

(0.0561) 

-0.345*** 

(0.0438) 

-0.229*** 

(0.0307) 

0.176*** 

(0.0236) 

Partial 

adjustment 

AR(1) 

0.500*** 

(0.0649) 

-0.418*** 

(0.0504) 

-0.245*** 

(0.0316) 

0.203*** 

(0.0246) 

Adaptive 

Expectations 

AR(1) 

0.467*** 

(0.0647) 

-0.387*** 

(0.0514) 

-0.226*** 

(0.0319) 

0.192*** 

(0.0255) 
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For each product, its own price elasticity and cross price elasticity (i.e., elasticity with respect to 

the other product’s price) have approximately the same magnitude, but with opposite signs. 

Additionally, from Table 5.2, distillate appears to be about twice as responsive as gasoline to 

price changes; this observation is consistent with results from Considine (1992).
336

 These facts 

imply that if the price of gasoline is driven down (e.g. by biofuel policies) there should be a net 

shift toward increased diesel production, not only at the expense of gasoline, but also at the 

expense of other (lower value) petroleum products. This observation is consistent with market 

sources, which suggest that refiners react to low gasoline prices with an attempt to shore up 

margins by increasing diesel yields (or vice-versa).
332,345-347

 This shift toward diesel production 

has important implications for greenhouse gas emissions as discussed in the next section. 

 

The results presented above are nominally only for the U.S. petroleum refining sector. Previous 

work by Dahl (1981)
335

 suggests that the refining industry in other regions, with less cracking 

capacity (the process by which heavier hydrocarbon chains are transformed into higher value, 

light molecules), may be less responsive to market prices. Although Dahl found no discernible 

effect of product prices on product mix in Europe, more recent market sources suggest that even 

European refiners do respond to product prices.
164,345

 Appendix Table D.5 shows U.S. elasticity 

estimates broken down by different regions (Petroleum Administration Defense Districts) in the 

U.S. While the results are not definitive, they appear to support Dahl’s claim that regions with 

more cracking capacity will exhibit larger elasticities. Table D.5 also suggests that elasticities 

may be correlated with larger average refinery size – perhaps due to greater ease of investing in 

new processing units. 

 

 As of January, 2016, the U.S. was responsible for about 20% of global refining capacity.
158

 The 

U.S. had a combined cracking capacity (thermal cracking, catalytic cracking and catalytic 

hydrocracking) amounting to 58% of its total crude oil (atmospheric distillation) processing 

capacity. In contrast, the rest of the world had a combined cracking capacity amounting to only 

26% of crude oil processing capacity. Similarly, the U.S. had an average refinery size of 150 

thousand barrels per day, compared to 140 thousand barrels per day in the rest of the world.
158

 

Taken together, these results suggest that the rest of the world could plausibly have a lower 

responsiveness than the U.S. Thus, in the models that follow I treat U.S. refinery flexibility 
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(Table 5.2) as an upper bound for global flexibility. As a lower bound, I also run additional 

scenarios in which only U.S. refiners respond to market prices, while the rest of the world keeps 

its product slate fixed. 

 

5.4. Implications of Refiner Flexibility: Methods 

5.4.1. The Partial Equilibrium Model 

Using the elasticities determined above, I modify the stochastic partial equilibrium model from 

Rajagopal and Plevin (2013)
330

 to account for flexibility in refinery product mix when relative 

prices change. The model is a two region representation of global petroleum and biofuel markets: 

a ‘home’ region, calibrated to approximate U.S. market conditions and a rest of the world 

(ROW) region, calibrated to global data (excluding the U.S.). The base year for both regions is 

2007. The model includes 3 petroleum products (gasoline, diesel and ‘other’) and 2 biofuels 

(corn ethanol and sugarcane ethanol). Through a set of simultaneous equations, the model 

provides comparative statics for a world without any biofuel policy, and worlds with eight 

different biofuel policies: a 10% or 15% biofuel share mandate (SM), a transportation fuel 

emission standard that requires either a 5% or 10% reduction in emission intensity without 

accounting for indirect land use change (ILUC) emissions (ES_NoILUC), an equivalent emission 

standard that accounts for ILUC emissions (ES_ILUC), and a carbon tax (CT) set to 10 or 20 

$/tonne CO2. Importantly, these policies assume that ethanol is a substitute for gasoline; no other 

fuel switching is modeled explicitly (though this may occur implicitly through shifts in demand). 

In all cases, GHG emissions are reported including life cycle emissions from all fossil fuels and 

biofuels (including ILUC). Detailed model equations and their numerical calibrations are 

described in Rajagopal and Plevin (2013).
330

 The model uses Monte Carlo simulation to model 

uncertainty among emissions factors, as well as supply and demand elasticities. The present 

work makes several key modifications to the model and/or documentation, described below: 

1. Although the model documentation
330

 states that the share mandate is implemented on an 

energy basis, it is actually implemented on a volume basis. For consistency with the 

original model I leave the share mandate as originally written (on a volume basis). I note 

that share mandates are equivalent to appropriately calibrated volume mandates. 
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2. In the original model, the price of ‘other’ products was determined as the difference 

between the price of input crude oil and output gasoline and diesel. This neglects refining 

costs. Thus, in the present iteration, the initial price of ‘other’ products is represented by 

the 2007 price of residual fuel oil ($1.38/gal), and a fixed refining cost is added to restore 

equilibrium to the 2007 status quo. 

3. The original model assumed fixed refinery yields from crude oil. The present model 

allows refinery yields to adjust dynamically, as dictated by the elasticities defined in 

Table 5.2. The results presented in this section use elasticities from the partial adjustment 

model (basic version). Each of the 4 required elasticities (gasoline and diesel yield with 

respect to gasoline and diesel prices) is assumed to be normally distributed, based on 

mean and standard error of the regression results. The 90% confidence intervals from the 

partial adaptation model capture the mean coefficient estimates from all models presented 

in Table 5.2. I assume, subjectively (i.e., based on my own judgment), that the absolute 

values of the 4 elasticities are pairwise correlated with a coefficient 0.7; this is the same 

magnitude as the within-region correlation between gasoline and diesel elasticities that 

the authors subjectively assume in the original model. This assumption does not 

substantially influence the final results. 

4. In the original model, the carbon tax policy was applied only to gasoline. In line with an 

alternate form of the model developed by the original authors,
348

 the present work 

assumes instead that the carbon tax will be applied to all petroleum products.  

5. The original model uses life cycle emission factors for gasoline, diesel, and ‘other’ 

petroleum products. The present model does not use these emission factors, and instead 

calculates GHG emissions as described below. 

5.4.2. Emissions from the Petroleum Industry 

Allocation is a common and necessary practice employed when calculating life cycle emission 

factors for individual products within a multi-product system, such as crude oil refining. These 

emission factors, however, do not necessarily represent the emissions from increased production 

of a given product. To avoid the need for emission allocation, this chapter models the total 

(unallocated) emissions from three different segments of the petroleum industry: extraction, 

refining, and product combustion.  
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Crude oil upstream emissions. Distributions for baseline extraction and refining emissions rely 

on Venkatesh et al. (2011),
198

 as described in appendix section D.2.2. In addition, these upstream 

emissions are allowed to vary with product mix. Using the Oil Production Greenhouse Gas 

Emissions Estimator (OPGEE),
349

 accessed via Carnegie Endowment’s Oil Climate Index 

(OCI),
350

 extraction emissions were retrieved for 30 different types of crude oil from around the 

world. Each oil from OPGEE was then matched with the corresponding oil in PRELIM.
163

 

PRELIM contains 10 different refinery configurations with differing levels of complexity, as 

discussed in section 5.3.1. I run each type of crude oil through each available configuration and 

record both the volumetric product yields, and total upstream (extraction + refining) GHG 

emissions for each run. The resulting data are plotted in Figure 5.6. 

 

Figure 5.6. Upstream (extraction + refining) GHG emissions from processing different crude oils under 

different refinery configurations, as a function of product yields. Data are color-coded based on PRELIM 

refinery configuration. Multiple data points within a configuration represent different types of crude oil. 

Linear trend-lines are included as a visual aid. 

 

Although product yields are only weakly predictive of upstream emissions, there is a clear 

positive correlation between diesel yield and upstream emissions. This is confirmed through 

linear regression, as displayed in Table 5.3. Although these results do not necessarily represent 
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the actual change in emissions that would occur from shifting the product mix, they are 

nonetheless highly suggestive. For the present model, the baseline distribution of upstream 

emissions from Venkatesh et al. (2011),
198

 is shifted linearly in function of gasoline and diesel 

yields, as dictated by equation (3); regression coefficients are simulated as normal distributions, 

in function of the mean and standard errors reported in Table 5.3. 

∆(𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠) = 𝑏𝑔𝑎𝑠𝑌𝑖𝑒𝑙𝑑 ∗ ∆𝛽𝑔 + 𝑏𝑑𝑖𝑒𝑠𝑒𝑙𝑌𝑖𝑒𝑙𝑑 ∗ ∆𝛽𝑑  (3) 

where βg and βd are respectively the gasoline share and distillate share of total refinery output; 

bgasYield and bdieselYield are the regression coefficients from Table 5.3. PRELIM and OPGEE do not 

contain information about how to weight the different oils or refinery configurations (to estimate 

industry-wide emissions), and do not explicitly account for uncertainty. Thus, I use them only to 

shift the mean upstream emissions from the distribution based on Venkatesh et al. (2011).
198

 

   

Table 5.3. Linear regression of crude oil upstream emissions as a function of product yields. Standard errors 

are shown in parentheses. 

 
Dependent Variable: 

Upstream Emissions (kg CO2e/bbl) 

Gasoline yield (%) 
-0.401 

(0.389) 

  

Diesel Yield (%) 
3.50*** 

(0.39) 

  

Constant 
72.4*** 

(17.0) 

  

  

Observations 270 

R
2
 0.235 

Adjusted R
2
 0.229 

Residual Standard Error 65.9  (df= 267) 

F Statistic 41.1***  (df =2; 267) 

  ***p<0.001 

 

Combustion Emissions. Although the partial equilibrium model includes only 3 categories of 

petroleum product (gasoline, diesel and other), finer resolution is required to calculate 

combustion emissions. The United Nations Energy Statistics Database provides data for year 

2007 production of petroleum products on a mass basis, for 97 different countries.
351

 I convert 
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the mass of each product to a volume using default conversion factors from EIA
352,353

 and use the 

resulting values to determine the initial 2007 volume share of 12 different individual petroleum 

products within the ‘other’ (non-gasoline, non-diesel) category. I then simulate combustion 

emissions for each product using independent triangular distributions, based on emission factors 

from the Intergovernmental Panel on Climate Change (IPCC).
95

 I assume that bitumen/asphalt, 

petrochemical feedstocks, lubricants and waxes are not combusted, and therefore have no 

combustion emissions. From the UN data, I assume that the petrochemical feedstocks are 

represented by the category ‘naphtha’ (accounting for 6.6% of finished products).  

In addition to the baseline composition, it is necessary to establish how the relative yields of 

these other petroleum products change in function of gasoline and diesel yields. Using monthly 

average U.S. data from EIA,
342

 I regress the yield of each finished petroleum product jointly on 

the yields of gasoline and distillate (diesel). Table 5.4 presents the resulting coefficients. As 

expected, each column of the table sums to negative one.  

Table 5.4. Change in yields (percentage points) of ‘other’ products, for a one percentage point increase in 

gasoline yield or in distillate (diesel) yield. Each row represents a separate regression, and each column a 

different regression coefficient. 

Dependent variable Gasoline (%) Distillate (%) 

Jet fuel (%) -0.028 -0.086 

Petroleum coke (%) +0.045 +0.12 

Still gas (%) -0.041 -0.034 

Residual fuel oil (%) -0.063 -0.29 

Liquefied refinery gases (%) -0.75 -0.31 

Asphalt (%) -0.15 -0.20 

Petrochemical Naphtha (%) +0.015 -0.0049 

Petrochemical oils (%) -0.047 -0.13 

Lubricants (%) -0.020 -0.024 

Special Naphthas (%) -0.0027 -0.020 

Kerosene (%) +0.052 -0.030 

Aviation gasoline (%) -0.0066 -0.01 

Waxes (%) -0.010 -0.014 

Miscellaneous (%) +0.0049 +0.027 

SUM -1 -1 

 

5.4.3. Summary of Model Parameters 

Table 5.5 below shows the range of key input parameters used in the Monte Carlo simulation 

model. Additional details are available in appendix section D.2.  
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Table 5.5. Key input parameters used for Monte Carlo simulation. “Home” refers to the region implementing 

the policy, and is approximately calibrated to U.S. conditions. ROW = rest of world; GWI = global warming 

intensity; ILUC = indirect land use change. 

Model Parameter Distribution Range
a
 

Parameters from the original model
b 

  

Elasticity of supply of crude oil, home Normal (0.12, 0.27) 

Elasticity of supply of crude oil, ROW Normal (0.08, 0.23) 

Elasticity of supply of corn ethanol, global Normal (1, 3) 

Elasticity of supply of cane ethanol, global Normal (1, 5) 

Elasticity of demand for gasoline, home Normal (-0.6, -0.4) 

Elasticity of demand for gasoline, ROW Normal (-0.85, -0.5) 

Elasticity of demand for diesel, home Normal (-0.6, -0.4) 

Elasticity of demand for diesel, ROW Normal (-0.85, -0.5) 

Elasticity of demand for other petrol. prods. home Normal (-0.6, -0.4) 

Elasticity of demand for other petrol. prods., home Normal (-0.85, -0.5) 

Corn ethanol GWI (g CO2e / MJ) Uniform (55, 70) 

Cane ethanol GWI (g CO2e / MJ) Uniform (10, 30) 

Corn ethanol ILUC (g CO2e / MJ) Uniform (5, 100) 

Corn ethanol ILUC (g CO2e / MJ) Uniform (5, 50) 

Parameters adapted for the present chapter   

Elasticity of diesel yield vs normalized diesel price 
c
 Normal (0.36, 0.61)

d 

Elasticity of diesel yield vs normalized gasoline price 
c 

Normal (-0.50, -0.31)
d 

Elasticity of gasoline yield vs normalized gasoline price 
c 

Normal (0.16, 0.25)
d 

Elasticity of gasoline yield vs normalized diesel price 
c 

Normal (-0.30, -0.18)
d 

Crude oil extraction, baseline GWI (kg CO2e/bbl) Lognormal (25, 77) 

Crude oil refining, baseline GWI (kg CO2e/bbl) Normal (37, 64) 

Change crude oil upstream GWI vs gasol. yield (kg CO2e/bbl/%) Normal (-1.2, 0.36) 

Change crude oil upstream GWI vs diesel yield (kg CO2e/bbl/%) Normal (2.7, 4.3) 

Petroleum product combustion emissions (kg CO2e /bbl)  See appendix Table D.7 

Change in yields of other products vs gasol. and diesel yields See Table 5.4 

a) Range shows upper and lower bounds for uniform distributions, and 95% confidence 

intervals for all other distribution families. 

b) From Rajagopal and Plevin (2013).
330

 

c) Elasticities are with respect to the ratio of each product price to the price of crude oil.  
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5.5. Implications of Refiner Flexibility: Results 

There are three main mechanisms through which refiner flexibility may influence GHG 

emissions in the present model. First, shifting the product slate may allow the petroleum industry 

to compensate for the drop in gasoline prices, thereby increasing the value of crude oil and 

averting the scale-back in production and subsequent processing that would have otherwise been 

expected. Second, as outlined in section 5.4.2, increasing diesel yields may increase upstream 

petroleum emissions through the choice of crude oil processed, refinery configuration, or both. 

Finally, Table 5.4 shows, increased diesel yields would likely come, in part, at the expense of 

non-combusted petroleum products like asphalt and petrochemicals; this would increase the 

downstream combustion emissions for a fixed quantity of oil. Together, these effects could play 

an important role in determining the net change in GHG emissions brought about by biofuel 

policies. All three effects are implicitly or explicitly included in the partial equilibrium model 

described in section 5.4. In this section, I report changes in global market conditions (e.g. 

product yields and prices) and GHG emissions induced by different biofuel policies. 

 

I run the partial equilibrium model twice: once assuming that the entire world exhibits the same 

elasticities as U.S. refineries, and once assuming that only U.S. refineries adjust and that the rest 

of the world has fixed yields for petroleum products. These serve as upper and lower bounds for 

the global response. Figure 5.7 shows the resulting change in global refinery yields for diesel and 

gasoline (note: initial yields differ slightly from the 2007 yields shown in section 5.3.1 because 

the model uses a different data source). The model predicts that biofuel policies induce an 

increase in diesel yields (panels a and c), and a decrease in gasoline yields (panels b and d), 

relative to the initial, ‘no policy,’ case. When comparing the different policies, larger yield 

changes reflect larger underlying price changes, as discussed below (Figure 5.11). The shift in 

yields is relatively small – limited to just a few percentage points even in the most extreme cases. 

Nevertheless, these changes can have dramatic implications for the total change in GHG 

emissions, as discussed below. 
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Figure 5.7. Frequency distribution for the resulting average global refinery yields gasoline and diesel (as a 

volumetric percent of total refined products) under different policy scenarios assuming either that all 

refineries respond to market prices (panels a and b) or that only refineries in the home region adjust while 

ROW refineries have a fixed product slate (panels c and d). SM = share mandate, ES = emission standard 

either with or without ILUC. CT = carbon tax. The box represents the interquartile range, the vertical line 

represents the median, and the whiskers show the extreme values of the simulation. Figure design based on 

Rajagopal and Plevin (2013).
330
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Figure 5.8 shows the change in global GHG emissions that result from each policy, both 

assuming fixed refinery shares and assuming that the global refining industry exhibits the same 

flexibility as US refineries. Figure 5.9 shows the change in global GHG emissions that result 

from each policy, both assuming fixed refinery shares and assuming that only refineries in the 

home region adjust their product slate in response to market prices. The figures include changes 

in emissions due both to the petroleum industry and to the production of biofuels. For each 

figure, the green boxes (fixed refinery yields) correspond approximately to the original model 

from Rajagopal and Plevin (2013),
330

 subject to modifications discussed in section 5.4.1. The 

additional emissions from allowing flexible refinery yields (red boxes) are the main contribution 

of the present study. By comparing the green boxes to the corresponding red boxes in Figure 5.8, 

it is apparent that the existence of refiner flexibility can substantially influence the net GHG 

balance from different biofuel policies. As Figure 5.9 shows, the GHG impact of refiner 

flexibility is still present, though substantially muted if only refineries in the home region 

respond to market prices. The remainder of the results section focuses on the globally flexible 

case (represented by Figure 5.8), with the understanding that the effects discussed would be 

scaled down if ROW refineries are less flexible than the home region. 
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Figure 5.8. Frequency distribution for change in global emissions under different policy scenarios. All values 

are relative to the ‘no policy’ scenario, represented by 0 on the x-axis. SM = share mandate, ES = emission 

standard either with or without ILUC. CT = carbon tax. The box represents the interquartile range, the 

vertical line represents the median, and the whiskers show the extreme values of the simulation. Green boxes 

(the top member of each pair) represent the results when refinery yields are fixed. Red boxes represent 

results when all refineries exhibit the same price response as US refineries. Figure design based on Rajagopal 

and Plevin (2013).
330
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Figure 5.9. Frequency distribution for change in global emissions under different policy scenarios. All values 

are relative to the ‘no policy’ scenario, represented by 0 on the x-axis. SM = share mandate, ES = emission 

standard either with or without ILUC. CT = carbon tax. The box represents the interquartile range, the 

vertical line represents the median, and the whiskers show the extreme values of the simulation. Green boxes 

(the top member of each pair) represent the results when refinery yields are fixed. Red boxes represent 

results when U.S. refineries respond to market prices but ROW refineries have fixed product yields. Figure 

design based on Rajagopal and Plevin (2013).
330
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As shown in Figure 5.8, the additional emissions resulting from refiner flexibility differ 

substantially by policy instrument. The effect is largest for the emission standards, which 

generally result in the model predicting the use of higher quantities of ethanol and thus larger 

changes in gasoline prices. Larger share mandates would likely produce similar results. These 

results rely on the modeling assumption that biofuels compete primarily with gasoline, rather 

than equally across all fuels. This assumption largely reflects reality; for example, the proposed 

U.S. Renewable Fuel Standard mandate for 2017 requires that biofuels comprise 10.44% of 

transportation fuel sales overall, but only 1.67% of diesel sales.
33

 Future versions of the present 

model could account for a biodiesel component to biofuel policies. This would slightly reduce 

the effect currently predicted by the model; however, unless biodiesel becomes a much larger 

component of future policies the main conclusions from this chapter will still hold. 

 

In contrast to the other policies, refiner flexibility only adds a small quantity of additional 

emissions in the case of a carbon tax. This is in part because the carbon tax, at the levels 

specified, results in a smaller change in the producer price of gasoline than do the other policies. 

Additionally, the model assumes that the carbon tax applies to all petroleum products (not just 

gasoline), substantially reducing the incentive for refiners to shift production toward diesel. 

Nevertheless, the home region initially represents a greater share of global gasoline consumption 

(41%) than diesel consumption (16%). As a result, the carbon tax implicitly covers a greater 

proportion of the global gasoline market, and refineries still exhibit a small shift toward diesel 

production. A separate run of the model in which the carbon tax applies only to gasoline (results 

not shown) confirms that the additional GHG emissions attributed to refiner flexibility would 

increase by approximately 50% relative to the present case.  

 

The net result of adding refiner flexibility is that the vast majority of model iterations now 

predict that the carbon tax is the only policy which achieves a net decrease in global greenhouse 

gas emissions. Figure 5.10 presents a breakdown of the factors responsible for this observed 

increase in emissions for each share mandate and emission standard policy (note the change in 

scale for panels e and f). The figure is built additively. The first row of each panel shows the 

“naïve” emission reduction that would be expected if biofuels are carbon neutral and perfectly 

replace gasoline on a 1:1 energy basis. The next 3 rows modify emissions in the petroleum 
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sector, first by adding emissions from the indirect fuel use effect (“IFUE”), then accounting for 

the change in upstream (extraction and refining) petroleum carbon intensity (“∆upstream”), and 

finally including the change in downstream petroleum product combustion emissions 

(“∆combustion”). The final 2 rows represent emissions from biofuels, first excluding ILUC 

(“bio-LCA”), and then including all emission sources (“ILUC”). The net result in all cases 

presented is a change from expected GHG emission reductions (“naïve”) to a net GHG emission 

increase in the last row of each panel. In all cases, the model predicts that additional emissions 

due to the change in carbon intensity within the petroleum industry are actually larger than the 

emissions caused by IFUE in at least 50% of model runs. In the most extreme case (the 10% 

emission standard with ILUC, panel f), refiner flexibility is responsible for over double the 

emissions of IFUE in the median case. For most model runs of the non-tax policies, the results 

with globally flexible refineries even suggest a net increase in emissions within the petroleum 

sector alone (i.e. excluding emissions from the production of biofuels). For the case where only 

home refineries adjust their production slate (appendix Figure D.1), emissions from refiner 

flexibility still amount to between 25% and 72% of IFUE emissions in the median iteration. 

Thus, internal adjustments within the refining sector are potentially critical to the net GHG 

balance of biofuel policies. 
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Figure 5.10. Breakdown of emission changes from different policies, assuming globally flexible refineries: a) 

10% share mandate, b) 15% share mandate, c) 5% emission standard without ILUC, d) 5% emission 

standard with ILUC, e) 10% emission standard without ILUC, f) 10% emission standard with ILUC. Note 

the change in scale for the final 2 panels (e and f). The boxplots in each panel are built additively: “Naïve” 

represents the change in fossil fuel emissions, assuming biofuels are carbon neutral and displace gasoline 
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perfectly without any market rebound. The next row adds the market rebound / indirect fuel use effect 

(IFUE), assuming no change in carbon intensity within the petroleum industry. The next line adds the 

additional upstream emissions (crude oil extraction and refining) predicted due to the change in product 

yields. The next line adds the change in combustion emissions resulting from the shift in refinery yields. The 

final 2 rows represent emissions from biofuels, first excluding ILUC, and then including all emission sources. 

Each box represents the interquartile range, the vertical line represents the median, and the whiskers show 

the extreme values of the simulation. 

 

Intriguingly, the ability of refiners to shift production toward the higher value (diesel) product 

makes little difference in the total quantity of oil processed (appendix Figure D.3 and Figure 

D.4). In brief the increased diesel yields predicted by the model are offset by a decrease in the 

price of diesel. Figure 5.11 shows the change in wholesale diesel and gasoline prices induced by 

the different policies. Due to reduced processing of crude oil, the model with fixed refinery 

yields predicts a small increase in diesel price for non-tax policies (panel a). In contrast the 

model with globally flexible refineries predicts a net decrease in the price of diesel for all 

policies (panel c), implicitly sharing the burden of biofuel policies across both gasoline and 

diesel markets. Additionally, by shifting away from gasoline production, refineries can blunt the 

decrease in gasoline prices (compare panels b and d). Appendix Figure D.2 shows equivalent 

results for the case where only U.S. refineries respond to market conditions. As a result of these 

changes, the shift toward diesel, though sensible for an individual (price-taking) refinery, does 

nothing to boost the value of petroleum when applied across the industry. This observation is 

consistent with casual industry market analysis.
332

 Thus, while refiner flexibility increases the 

GHG emission intensity of the petroleum industry, the model predicts that such flexibility may 

not affect the magnitude of IFUE itself. 
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Figure 5.11. Frequency distribution for change in wholesale diesel and gasoline prices induced by the 

different policies, with fixed refinery yields (panels a and b), or globally flexible refinery yields (panels c and 

d). Policies include: SM = share mandate, ES = emission standard either with or without ILUC. CT = carbon 

tax. The box represents the interquartile range, the vertical line represents the median, and the whiskers 

show the extreme values of the simulation.  
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5.6. Discussion  

Contrary to assumptions in previous consequential assessments of biofuel policies, this work 

shows the relative yields of final products in the petroleum industry are not fixed. International 

historical analysis suggests that refining industries can evolve to produce product slates that 

differ by tens of percentage points. The U.S. petroleum refining sector exhibits relative yield 

elasticities for gasoline and diesel of approximately 0.2 and 0.5, respectively, relative to their 

own prices (normalized by the price of crude oil). The U.S. refining sector also exhibits cross 

price elasticities for gasoline and diesel (relative to each other’s price) of around -0.2 and -0.4, 

respectively.  

 

This work demonstrates refiner flexibility can substantially impact the net change in GHG 

emissions that result from biofuel policies. Although the model predicts only small changes in 

relative product yields, these can have dramatic consequences for the total GHG emission 

changes induced by the different biofuel policies, on the order of tens or hundreds of megatonnes 

of CO2e/year. In the upper bound cases where all refineries exhibit the same yield elasticities as 

U.S. refineries, share mandates and emission standards likely result in a net increase in GHG 

emissions even before accounting for emissions from biofuel production. The present chapter 

considers only how refiner flexibility changes the net GHG emissions from biofuel policies; 

however, the model framework could be applied to any policy that disproportionately targets 

gasoline consumption (e.g., electrification of the light duty vehicle fleet, fuel economy standards, 

and so on). Future work can, and should, also examine interactions between different policies 

such as the simultaneous application of a biofuel mandate, carbon tax, fuel economy standard, 

and so on.   

 

The results presented above, while compelling, should only be taken as an indication of the 

potential impact of refiner flexibility on the success of different fuel policies. The partial 

equilibrium model employed is a very highly simplified representation of global fuel and 

petroleum markets. The world is divided into only two regions; supply and demand elasticities 

cover only 2 different biofuels (both ethanol), 3 types of petroleum products, and production of a 

generic crude oil. Additionally, the different policies considered are introduced to the home 

region in isolation, without accounting for interactions with existing policies (e.g. corporate 
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average fuel economy standards
32

), or parallel fuel policies around the world. The data used to 

determine elasticities of refinery yields is a highly aggregated time series data set specific to the 

United States. Greater resolution (e.g. at the level of individual refineries) and a deeper market 

analysis of both the U.S. and international refining sectors would provide more confidence in the 

refiner response elasticities presented in section 5.3.2. At present, the model imposes a top-down 

(essentially exogenous) refiner response to price changes without explicitly modeling costs 

within the refining industry. As a result, the model implicitly assumes that refiners are behaving 

non-competitively (i.e. since they can costlessly shift toward higher value products). This 

assumption introduces a theoretical inconsistency, since the model also calculates the price of 

crude oil based on a no-arbitrage condition between crude oil and final petroleum products. The 

reality is likely between those 2 extremes, and so the direction of any bias is difficult to predict. 

Finally, while results from PRELIM and OPGEE suggest that increasing diesel yields correlate 

with higher upstream petroleum emissions, the data are insufficient to make a causal prediction 

of how emissions would actually change as refiners boost diesel yields.  

 

Despite the above caveats, this work nevertheless provides several important lessons for 

evaluating biofuel policies. The share mandates considered in this chapter closely resemble the 

U.S. Renewable Fuel Standard, which currently requires that ethanol make up approximately 

10% of gasoline sales,
33

 an amount that is mandated to double by 2022,
4
 unless biodiesel begins 

to account for a much larger share of biofuel consumption in the U.S. than it currently does. As 

such, it is instructive to consider what lessons this work holds for U.S. policy. 

 

First, the ability of refineries to adjust their product slate can substantially increase the GHG 

emissions resulting from increased biofuel use – potentially surpassing the emissions caused by 

the more classic IFUE. Second, contrary to the original model, which suggests a small decrease 

in world diesel consumption across the different policies (i.e. a negative IFUE for diesel), the 

present model predicts a rebound in both diesel and gasoline consumption in response to all the 

policies considered. In essence, refiner flexibility allows the IFUE to be shared across petroleum 

products. Although the model predicts that product switching has little influence on the 

economic value of crude oil (and thus on the total quantity produced/consumed), that finding 

depends heavily on the relative elasticities of different petroleum products and should be 
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explored further in future work. Taken together, these results provide yet another reason for 

governments to be leery of policies with incomplete market coverage. The effect of product 

shifting could be mitigated if regulators adopt policies which apply equally across linked markets 

(e.g. a broad carbon tax) as opposed to narrower biofuel policies, which disproportionately target 

gasoline. Alternatively, policies may be designed to take advantage of these indirect effects; for 

example, the present chapter suggests that policies targeting diesel use may be more effective at 

reducing emissions than those targeting gasoline. Such an approach would, however, be 

vulnerable to other, as-yet unidentified market effects. As a result, and in line with conventional 

economic wisdom, the author recommends policies with broad coverage as the lowest risk 

approach to carbon mitigation. 

 

 

  



Chapter 6 

137 

Chapter 6. Conclusions and Future Work 
 

This chapter begins by providing brief answers to each of the main research questions outlined in 

the introduction, followed by a more general discussion, a list of deliverables and research 

contributions, and finally a discussion of possible directions for future work. 

 

6.1. Research Questions Revisited 

 

Chapter 2: Changing the Renewable Fuel Standard to a Renewable Material Standard: 

Bioethylene Case Study.  

 What are the life cycle GHG emissions from corn, switchgrass and sugarcane ethanol, 

and how uncertain are these numbers?  

The chapter developed a life cycle assessment model, using Monte Carlo simulation to 

characterize uncertainty for key parameters. Mean GHG emissions from U.S. corn 

ethanol are 97 g CO2e/MJ, with a 90% confidence interval from 79 to 120 g CO2e/MJ – a 

range that spans roughly 40% of the mean value. Mean GHG emissions from U.S. 

switchgrass ethanol are -18 g CO2e/MJ (including a credit for surplus electricity 

production), with a 90% confidence interval from -59 to +18 g CO2e/MJ – a range nearly 

double that from corn ethanol. Mean GHG emissions from Brazilian sugarcane ethanol 

are 33 g CO2e/MJ, with a 90% confidence interval from 24 to 43 g CO2e/MJ – the 

tightest range of the three feedstocks, but one that nevertheless spans nearly 60% of the 

mean value. 

 

 What are the life cycle GHG emissions from conventional low density polyethylene 

(LDPE), produced in the U.S.? 

Ethylene produced from natural-gas derived ethane is the dominant feedstock for 

conventional LDPE in the U.S. Mean emissions for this pathway are 1.8 kg CO2e/kg 

LDPE, with a 90% confidence interval from 1.3 to 2.4 kgCO2e/kg LDPE – a range that 

spans roughly 60% of the mean value. 
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 What are the life cycle GHG emissions from corn, switchgrass and sugarcane LDPE, and 

how uncertain are these numbers? 

Mean GHG emissions from U.S. corn LDPE are 2.6 kg CO2e/kg LDPE, with a 90% 

confidence interval from 1.7 to 3.6 kg CO2e – a range that spans over 70% of the mean 

value. Mean GHG emissions from U.S. switchgrass LDPE are -2.9 kg CO2e/kg LDPE (a 

value that remains negative even if credits for surplus electricity are removed), with a 

90% confidence interval from -4.9 to -1.2 kg CO2e/kg LDPE – a range nearly double that 

from corn LDPE. Mean GHG emissions from Brazilian sugarcane ethanol are -1.3 kg 

CO2e/kg LDPE, with a 90% confidence interval from -1.8 to -0.8 kg CO2e/kg LDPE – 

roughly half the range from corn LDPE. 

 

 Can ethanol used for bio-LDPE production meet the GHG reduction targets for ethanol 

set by RFS2? With what degree of confidence? 

Corn pathways (ethanol or LDPE) have effectively no chance of meeting the 20% RFS2 

GHG emission reduction target (relative to gasoline), unless emissions from land use 

change are far lower than expected, and/or each unit of corn-based product somehow 

displaces substantially more than one unit of fossil-based product. Sugarcane and 

Switchgrass pathways (ethanol or LDPE) meet the 50% and 60% RFS2 GHG emission 

reduction targets (relative to gasoline), respectively, in nearly all iterations of the Monte 

Carlo simulation. LDPE pathways are particularly robust to assumptions about 

displacement rate and indirect output use change.  

 

 Does bio-LDPE achieve similar (or better) GHG benefits to bioethanol used for fuel? 

With what degree of confidence? 

In approximately 90% of model runs, ethanol produced in the U.S. achieves greater GHG 

reductions than LDPE, if both displace their fossil counterparts on a 1:1 physical basis. 

Similarly, in approximately 90% of model runs, LDPE produced in Brazil, and imported 

to the U.S. achieves greater GHG reductions than imported ethanol. The difference is a 

result of the weight reducing process of ethanol dehydration to ethylene, and the lower 

GHG intensity of the Brazilian grid relative to the U.S. In either event, the difference in 

emissions between feedstocks far surpasses differences in how the ethanol is used. 
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 What are appropriate policy recommendations for RFS2 in light of the above results? 

From a GHG perspective, incentives for corn ethanol should be discontinued. In a 

demand constrained environment, switchgrass ethylene-based products are a promising 

alternative to switchgrass ethanol used for fuel. For imported Brazilian products, 

bioethylene-based products will generally be preferred over the fuel ethanol currently 

incentivized by RFS2. This analysis suggests a strong case for expanding the scope of 

RFS2 to include credits for chemical use of ethanol. In its narrowest form, a renewable 

material standard could simply add bioethylene as an approved use for bio-ethanol in 

RFS2. It would be a simple matter (conceptually, not politically), to allow bioethylene 

producers to sell credits into the existing RIN market. A more complex scheme could 

also establish GHG equivalence factors between different uses of ethanol. Long term, 

replacing RFS2 with a more comprehensive renewable material standard has the potential 

to provide increased flexibility without compromising GHG reduction targets. 

 

 

Chapter 3: Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of 

Three Bio-based Polymer Families.  

 What are the cradle-to-gate GHG emissions from producing each of the major 

commodity thermoplastics (polyethylene terephthalate (PET), polystyrene (PS), polyvinyl 

chloride (PVC), polypropylene (PP), high density polyethylene (HDPE) and low density 

polyethylene (LDPE)) in the U.S.? How uncertain are these numbers? 

In the base case (treating the hydrogen co-product by system expansion), mean emissions 

range from a low of 1.4 kg CO2e/kg HDPE to a high of 3.1 kg CO2e/kg PS. HDPE and 

LDPE exhibit the widest 95% confidence intervals: ~1 kg CO2e/kg plastic from the low 

end to the high end, representing 60-70% of mean emissions. PET exhibits the narrowest 

95% confidence interval with a span of ~0.5 kg CO2e/kg PET, representing 20% of mean 

emissions. Some of the differences in uncertainty can be attributed to data availability: 

uncertainty is more fully characterized for polyolefin pathways than for the other plastics, 

for which some intermediate stages used a single point estimate for energy requirements. 
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 What are the cradle-to-gate GHG emissions from producing polylactic acid (PLA), 

polyhydroxybutyrate (PHB), and bioethyelene-based plastics in the U.S., using either 

corn grain or switchgrass as a feedstock? How uncertain are these numbers, and how do 

modeled emissions differ depending on the data source for fermentation and recovery 

(for PHB and PLA) and treatment of co-products? 

The model develops a wide range of scenarios for the cradle-to-gate emissions from the 

production of PLA, PHB and bioethylene or bioethylene based plastics. Results are 

summarized below: 

i. Mean emissions from corn PLA range from 1.0 kg CO2e/kg PLA to 2.9 kg 

CO2e/kg PLA, depending on both the fermentation and polymerization data 

source (responsible for ~60% of this range) or treatment of co-products 

(responsible for ~40% of this range). In each case, 95% confidence intervals span 

a range from 50-70% of the mean value.  

ii. Mean emissions from corn PHB range from 2.1 kg CO2e/kg PLA to 7.8 kg 

CO2e/kg PLA, depending on both the fermentation and recovery data source 

(responsible for ~25-30% of this range) or treatment of co-products (responsible 

for ~70-75% of this range). In each case, 95% confidence intervals span a range 

from 45-65% of the mean value. 

iii. Mean emissions from corn bioethylene-based plastics depend on treatment of co-

products and range from -0.15 to 1.5 for Bio-HDPE on the low end, to 2.6 to 3.1 

for Bio-PS on the high end. Similar to the fossil-plastic cases, bio-PET exhibits 

the narrowest 95% confidence interval, with an interval length of ~0.45 to 0.6 kg 

CO2e/kg PET depending on treatment of co-products; bio-HDPE and bio-LDPE 

exhibit the widest 95% confidence intervals, with interval lengths of 1.3 to 2.2 kg 

CO2e/kg plastic, depending on the treatment of co-products. 

iv. Mean emissions from switchgrass PLA (single data source for fermentation and 

polymerization) range from -0.19 kg CO2e/kg PLA to 1.3 kg CO2e/kg PLA, 

depending on the treatment of co-products. The length of the 95% confidence 

intervals range from 0.6 kg CO2e/kg PLA to 1.4 kgCO2e/kg PLA, depending on 

the treatment of co-products.  
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v. Mean emissions from switchgrass PHB range from -0.97 kg CO2e/kg PHB to 5.1 

kg CO2e/kg PLA, depending on both the fermentation and recovery data source 

(responsible for ~10-55% of this range) or treatment of co-products (responsible 

for ~45-85% of this range). The width of the 95% confidence intervals vary from 

a low of 0.78 kg CO2e/kg PHB to a high of 4.36 kg CO2e/kg PHB, with most 

falling in the range from 2 to 3.5 kg CO2e/kg PHB. 

vi. Mean emissions from switchgrass bioethylene-based plastics depend on both 

treatment of co-products and assumptions about reaction yields. These means 

range from lows of -0.4 for the most optimistic polyethylene (HDPE and LDPE) 

scenarios to highs of 3.6 for the most pessimistic scenarios of PS and LDPE. Bio-

PET scenarios exhibit the narrowest 95% confidence intervals, ranging in length 

from 0.6 to 1.1 kg CO2e/kg PET; bio-HDPE and bio-LDPE exhibit the widest 

95% confidence intervals, with lengths varying in magnitude from a total of 2.7 to 

5.7 kg CO2e/kg plastic, depending on the scenario. 

 

 What are the expected end of life emissions from each of the fossil-based and bio-based 

polymers listed above? 

Mean emissions from incineration with energy recovery range from a low of 0.9 kg 

CO2e/kg plastic for PLA, to a high of 2.1 kg CO2e/kg plastic for PS. Only PLA and PHB 

are compostable; the former produces approximately 1.7 kg CO2e/kg PLA, while the 

latter produces 1.9 kg CO2e/kg PHB, when composted. Landfilling likely causes low 

emissions (0.04 kg CO2e/kg plastic) for all polymers with the exception of PHB, for 

which landfilling releases between 2.2 and 4.8 kg CO2e (90% confidence interval). Due 

to applied emissions credits, GHG emissions from recycling are highly correlated to the 

virgin cradle-to-gate emissions for each polymer; with the exception of switchgrass-based 

polymers, which can have negative life cycle emissions, recycling results in a net 

emission savings up to a mean of 1.9 kg CO2e/kg plastic (for PS). 

 

 Accounting for uncertainty, how do GHG emissions from each of the modeled bio-based 

plastics compare to emissions from each of the modeled fossil-based plastics? 



Chapter 6 

142 

In general, PHB (from either feedstock) is unlikely to have lower emissions than fossil 

polymers once end of life emissions are included. PLA generally has the lowest 

emissions when compared to high emission fossil polymers, such as polystyrene (mean 

GHG savings up to 1.4 kg CO2e/kg corn PLA and 2.9 kg CO2e/kg switchgrass PLA). In 

contrast, bioethylene is likely to achieve the greater emission reduction for ethylene 

intensive polymers, like polyethylene (mean GHG savings up to 0.60 kg CO2e/kg corn 

polyethylene and 3.4 kg CO2e/kg switchgrass polyethylene). In many scenarios (though 

not all) there is a non-trivial probability that a given bioplastic will have higher GHG 

emissions than a given fossil plastic. 

 

Chapter 4: Greenhouse Gas Mitigation for U.S. Plastics Production: Energy First, Feedstocks 

Later.  

 What GHG emission reductions are possible if fossil-plastics are produced using 

renewable energy (e.g. wind power and renewable natural gas) in place of conventional 

fuels?  

Adopting low-carbon energy (wind and renewable natural gas) across the chemical 

industry supply chain for all conventional thermoplastics can reduce GHG emissions in 

that industry by 50-75%, with mean annual savings of 38 Mt CO2e/year across the North 

American industry.  

 

 In the U.S. plastics industry, how do the GHG savings from energy substitution (i.e. using 

renewable energy in place of conventional energy) compare to the GHG savings 

achieved by feedstock substitution (i.e. replacing fossil-plastics with PLA, PHB or 

bioethylene based bio-plastics, produced from either corn or switchgrass, and using 

either conventional or renewable energy)? 

In over 98% of simulations, producing fossil plastics with low carbon energy results in 

lower emissions than switching to baseline corn-based bioplastics. Emissions from the 

corn pathway (with conventional energy) exceed emissions from the fossil plastic energy 

substitution pathway by ~20-30 Mt CO2e (median results) depending on the end of life 

scenario for PLA. Advanced feedstock substitution (using switchgrass, or corn processed 

with renewable energy) likely results in even lower GHG emissions than energy 
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substitution, but with more certainty in the landfill scenario (90% of simulations and 99% 

of simulations, respectively) than in the compost scenario (55% and 75% of simulations, 

respectively). 

 

 How might other factors such as cost and market size influence the choice between 

feedstock substitution and energy substitution? 

These factors tend to favor energy substitution: bio-based products are likely more 

expensive than low-carbon energy, may have high non-GHG environmental impacts, can 

be difficult to substitute for conventional products, and serve a smaller overall market 

than does renewable energy. In some cases, however, bio-based plastics may have 

properties (e.g. biodegradability) that will make them attractive to certain consumers. 

 

Chapter 5: Biofuels and Indirect Output Use Change: the Role of Refineries.  

 Over the long run, what flexibility does the petroleum industry have to choose its product 

slate (i.e. the mix of finished petroleum products it produces)? 

The findings suggest that refineries can achieve yields of gasoline that range from below 

10% up to nearly 60%. Distillate yields can likewise range from below 10% up to 50% or 

more in extreme cases. While it is unlikely that the industry average could ever reach the 

extreme ends of these ranges, even a simple comparison between the U.S. and the rest of 

the world suggests the petroleum industry can swing its yields of gasoline by more than 

20 percentage points. Comparing either the U.S. and rest of world, or U.S. production 

over time suggests distillate yields can vary by at least 10 percentage points. Individual 

refineries are likely far less flexible in the short-run. 

 

 How responsive is the crude oil refining sector to relative shifts in price among its major 

products? 

Analysis suggests that refineries in the U.S. respond primarily to gasoline and distillate 

prices, which I normalize by the price of crude oil. Regression results indicate that 

distillate has mean yield elasticities of approximately 0.40 to 0.50 relative to its own 

price, and -0.42 to -0.34 relative to the price of gasoline. In contrast, gasoline has smaller 

mean yield elasticities of approximately 0.17 to 0.20 relative to its own price, and -0.25 
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to -0.22 relative to the price of distillate. The numbers represent an upper bound for the 

global petroleum industry, since it is likely that the American refineries used in the 

analysis are more responsive than less complex refineries in the rest of the world. 

 

 How is the petroleum industry likely to respond to shifts in demand for individual 

products, such as reduced demand for gasoline brought about by policies like the RFS2? 

The biofuel policies considered in this thesis likely induce prices changes on the order of 

cents to tens of cents per gallon of gasoline and diesel respectively (Figure 5.11). This 

induces the global petroleum sector to shift its relative yields of gasoline and diesel by 

several tenths of a percentage point in most policies considered. A couple of extreme 

scenarios predict yield changes of up to 3 percentage points. 

 

 How does the existence of refiner flexibility affect the balance of GHG emissions and 

petroleum consumption that result from different policies aimed at reducing consumption 

of petroleum fuels? 

Although the model predicts only small changes in relative product yields, these can have 

dramatic consequences for the total GHG emission changes induced by the different 

biofuel policies, on the order of tens or hundreds of megatonnes of CO2e/year. In the 

upper bound cases where all refineries exhibit the same yield elasticities as U.S. 

refineries, share mandates and emission standards likely result in a net increase in GHG 

emissions even before accounting for emissions from biofuel production! 

 

 What recommendations does this analysis suggest for policies aimed at reducing 

petroleum use, and GHG emissions through the use of biofuels?  

This analysis suggests that share mandates and emission standards that apply 

disproportionately to gasoline consumption may be ineffective policies for reducing GHG 

emissions. Policies like a carbon tax that apply more evenly across petroleum products, 

and create a price wedge between producers and consumers are far more likely to result 

in emission reductions. If nothing else, this work suggests that additional research is 

needed to understand how biofuel policies affect the dynamics of the global petroleum 

market. 
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6.2. Discussion 

This thesis examines a series of questions on whether and how to use biomass for GHG 

mitigation: fuel, feedstock, or neither? Internationally, policies tend to focus on using biomass as 

a transportation fuel. This narrow scope skews the market and risks producing a suboptimal 

allocation for uses of biomass, while leaving policies vulnerable to idiosyncratic hurdles like the 

ethanol blend wall. If biofuels and bio-based products are to continue playing a role in 

decarbonizing the transportation sector, it will be critical to move away from first generation 

feedstocks, like corn, toward more advanced feedstocks, like switchgrass. These markets are 

unlikely to develop without a strong and stable demand, which the world’s largest biofuel policy 

– the U.S. renewable fuel standard – is presently failing to provide. In Chapter 2, I examine the 

GHG impact of expanding the scope of RFS2 to include credits for bioethylene-based products. I 

conclude that replacing RFS2 with a broader mandate can provide increased flexibility to 

obligated parties and shore up the flagging standard without compromising GHG reduction 

targets. Having concluded that bio-based plastics are a reasonable extension to RFS2, Chapters 3 

and 4 then take a step back and ask whether these plant-based plastics make sense in the first 

place. Chapter 3 demonstrates that there are large uncertainties involved in the life cycle GHG 

emissions from bio-based plastics, and that only a subset of pathways is likely to be preferable to 

conventional plastics. Chapter 4 further demonstrates that greater GHG reductions are possible in 

the near term by focusing on energy substitution rather than feedstock substitution. Thus, while a 

fixed quantity of ethanol may just as well be used as fuel or to produce plastics, the plastics 

industry itself can have a larger, more immediate impact on GHG emissions by focusing on 

renewable energy rather than bio-based plastics. That is not, however, where the story ends. 

Adopting low carbon energy can reduce the GHG emissions from plastics production only by 50-

75%. The remaining emissions stem primarily from upstream oil and gas operations that will be 

far more difficult to decarbonize. The plastics industry is one of the few industries that has a 

built-in potential for negative life cycle GHG emissions. Thus, in the long run, it could be 

advantageous to transition toward bio-based plastics with a combination of advanced feedstocks 

and low carbon process energy. Doing so would, however, require careful management of land, 

water and fertilizer to avoid creating new problems for global hunger, water scarcity, water 

quality and ecosystem health. 
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Finally, Chapter 5 returns to the dominant form of biomass-related government incentives: 

biofuel policies. Chapters 2-4 have already highlighted some fundamental uncertainties in the 

GHG emission from bio-based products. For the most part, however, these models exclude a 

potentially large class of model uncertainty related to how market factors can change the GHG 

balance that results from adopting bio-based products. This is traditionally the domain of 

consequential LCA. While a nascent literature quantifies indirect output use change resulting 

from biofuels production, flexibility in the refining sector has traditionally been ignored 

altogether. Chapter 5 demonstrates that biofuel policies may induce a shift toward greater diesel 

production at the expense of both gasoline and non-combustion petroleum products. This has the 

potential to result in a large increase in GHG emissions, even relative to other CLCA models of 

the global petroleum sector. This effect dramatically increases the chance that biofuel policies 

will actually increase GHG emissions, even before accounting for emissions from biofuel 

production. A simple fix would be to craft policies in a way that does not disproportionately 

target the gasoline market, as RFS2 currently does. This conclusion echoes the results from 

Chapter 2: policies with a broad base run a lower risk of creating unexpected or unfavorable 

distortions.  

  

In the long-run, different GHG mitigation measures and different uses for biomass need not be 

mutually exclusive. In the meantime, however, financial, political and physical resources are 

limited. Thus, it is imperative to set mitigation priorities, and to craft policies that produce 

favorable results in the short-run, while creating an appropriate long-term trajectory. This 

dissertation demonstrates that existing policies and private ventures are potentially failing in 

those objectives. Biomass systems continue to be fraught with uncertainty, including some 

important market dynamics that have previously been ignored altogether. Biofuels and bio-based 

plastics may indeed have an important role to play in future GHG mitigation, but this dissertation 

suggests they are not currently the low-hanging fruit. It is prudent and advisable to continue 

developing technologies for advanced biofuels and bio-based plastics, however, market 

deployment should not yet be a priority. 
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6.3. Deliverables 

The key deliverables from this work are peer-reviewed journal publications. Chapters 2 and 3 

have been published in Environmental Science and Technology.
144,154

 Chapters 4 and 5 will be 

submitted for publication in the near future. Additionally, the results of chapters 2-4 have all 

been presented at domestic and international conferences, and have won several conference 

awards. The results of chapters 2 and 3 have also been disseminated through CMU press 

releases, an Energy Collective blog post, and an interview and subsequent article in Chemical & 

Engineering News. I will seek out similar outlets to disseminate the results of chapters 4 and 5 

once that work is published. 

 

6.4. Research Contributions 

This thesis answers an important subset of questions regarding how, or even if, to use biomass 

for GHG mitigation. To my knowledge, it is the first to propose expanding the scope of the 

renewable fuel standard and to quantify the GHG implications of doing so. It is the first work 

that systematically harmonizes and quantifies uncertainty in the GHG emissions from a range of 

fossil-based and bio-based plastics, and the first to consider the potential role for low-carbon 

energy in the production of conventional plastics. It is also the first work in decades to quantify 

how refiners are likely to respond to relative changes in market prices, and it is the first either to 

use monthly data, or to apply dynamic regression models like the partial adjustment and adaptive 

expectations models. To my knowledge, this is also the first work to highlight the potentially 

large GHG consequences of refiner flexibility in evaluating policies for reducing the use of 

petroleum fuels. In conducting this work, I have continued to extend and develop methods for 

quantifying uncertainty in LCA, and have proposed new ways of crafting policy or private sector 

decisions that better account for the existence of uncertainty.  

 

6.5. Future Work 

6.5.1. Continued Analysis of Best use of Biomass for GHG Mitigation 

This dissertation has examined an important subset of the ways in which biomass may be used 

for GHG mitigation: ethanol biofuel and bio-based plastics. Biomass can also be used to generate 
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heat or electricity, as feedstocks for other organic chemicals, for other biofuels such as biodiesel 

and bio-jet fuel, or as a carbon storage/sequestration medium (e.g. via afforestation). Several 

studies have shown that biomass resources, while substantial, will likely be insufficient to meet 

global energy demand. Thus, there is an ongoing need to establish which uses of biomass are 

either a) most likely to achieve GHG reductions, or b) which end uses have the greatest need for 

bio-based products in order to meet long-term GHG emission goals. The techniques used in this 

dissertation can be extended to a wide range of additional product systems and coupled with a 

deeper analysis of mitigation alternatives in those sectors. It would also be instructive to consider 

specifically how these different low-carbon futures might evolve and to investigate the impact of 

different bio-based products in a dynamic fashion, for example, with a reduced form climate 

model. 

   

6.5.2. Quantification of Non-GHG Impacts from Bio-based Products 

The present work evaluated primarily the GHG implications of biofuels and bio-based plastics. 

Increased use of bio-based products is well known for the risk of environmental burden shifting: 

GHG reductions, but at a cost to air and water quality, water scarcity, global hunger and 

ecosystem health among others. Much of the existing literature has focused exclusively on GHG 

emissions. Significant gaps exist in quantifying other environmental impacts, particularly with 

respect to the characterization of uncertainty and providing spatial resolution for these impacts; 

unlike GHGs, the importance of other pollutants depends on local conditions surrounding the 

emissions source. Final recommendations must also depend on how much weight to assign to 

each of these competing impacts. These are all critical areas for future work. 

 

6.5.3. Extensions to Chapter 5: a Deeper Look at the Global Petroleum Refining Industry. 

The results from Chapter 5 suggest several avenues for future research, either as part of the 

current paper, or as part of a longer-term research agenda. Adding a more explicit refinery cost 

model is among the most important enhancements that could be made to the overall model. In 

the short-term, it is possible to use relatively simple refinery economics models to compare the 

capital and operating costs of different refinery configurations (e.g. based on refs
354,355

). Further 

the partial equilibrium model could be updated to include multiple different types of crude oil, 
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including separate supply curves, product slates and upstream emissions; together these two 

steps would allow for increased bottom-up modeling of refinery response that could be compared 

to the top-down model presented here. A more complete picture of refiner response would also 

require an explicit model of how refineries can make operational adjustments to change their 

product slate without changing the type of crude oil processed or the installed process units. 

While PRELIM has some limited functionality for adjusting refinery operating conditions, these 

modules are fairly minimal, and are still under development. A limited investigation using either 

PRELIM or existing literature (e.g. ref
340

) could be added to the present paper; greater detail 

would require either access to data from individual refineries, or a professional simulated 

distillation program.  

 

Other relatively minor adjustments to the present work could include a more in depth treatment 

of the relationship between different petroleum product yields using international data (e.g. 

ref
351

), or a more detailed analysis of how demand elasticities differ between petroleum products 

and the implications for biofuel policies; currently the model simply assumes the same range of 

demand elasticities for all three categories of petroleum product. EIA data
356

 could also be used 

to probe further the potential relationship between refining emissions and product yields 

discussed in section 5.4.2. Additionally, it may be worthwhile to create a new range of policy 

scenarios to explore the benefits of adopting policies with broader coverage (e.g. a biofuel 

mandate with equally stringent biodiesel and bioethanol requirements). 

 

As part of a separate project, there is also a need to work toward validating/ground truthing the 

different models of indirect output use change (IOUC) in response to biofuel policies. It has 

already been over 10 years since the first U.S. Renewable Fuel Standard was established.
119

 

Without a clear counterfactual for the last decade, it is impossible directly to compare the results 

of theoretical models, like the one developed here, to observed outcomes. Nevertheless, these 

theoretical models do make general predictions, which, with the right set of additional control 

variables, can and should be tested. 

 

Longer term, an even more detailed bottom-up refinery model will be required to examine the 

potential impact of much larger shifts in product demand than can be predicted by historical 
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observation. At present the existing models for exploring IOUC in the petroleum sector all rely 

(to varying degrees) on the assumption that there will be no irreversible upheavals in the 

structure of the industry. To meet the stringent GHG reduction targets that will be required to 

avert catastrophic warming will require far more than the marginal changes the existing models 

assume. There will thus be a need to envision what a much reduced petroleum industry will look 

like in such a future, to explore changes that must occur to keep crude oil in the ground (as 

compared simply to slowing its extraction), and to reassess which finished products will be the 

most important bottlenecks.  

  

An additional extension could involve developing new IOUC models with non-competitive 

markets. Although some existing models include logistical constraints (e.g. the ethanol 

blendwall), only Hochman et al. (2010)
329

 considered the possibility of market power in the form 

of a cartel of nations model. There exist, however, a host of other models for characterizing the 

international oil industry, including multiple different oligopolistic models (e.g. Cournot with or 

without market sharing, Bertrand, Stackelberg), as well as target revenue models and target price 

models, among others.
357

 Adapting one or more of these models to calculate the resulting IOUC 

from biofuel policies would add new insight into the range of possible market responses to 

increased use of biofuels. If estimates vary considerably across model choices, the different 

possibilities could be used as part of a robust decision making framework for policies aimed at 

reduced use of petroleum products or GHG emissions 

 

The results of Chapter 5 suggest it may be worth investing time to develop a more complex 

model of the global fuels market that accounts for refiner behavior in substantially more detail.  

 

6.5.4. Indirect Output Use Change Model for the Chemical Sector 

Chapter 5 and the extensions discussed in section 6.5.3 focus on the petroleum sector, with 

particular emphasis on liquid fuels. There is potentially even wider scope for modeling IOUC in 

the chemical sector, which would directly complement analyses presented in chapters 2-4. 

Although several papers have now examined IOUC from biofuels, no equivalent analysis yet 

exists for bio-based chemicals. Following a partial equilibrium framework such as the one used 

in Chapter 5, one could characterize IOUC resulting either from the production of a single bio-
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based chemical intermediate like bioethylene, or more broadly from the production of various 

bio-based plastics. The North American petrochemical industry is heavily dependent on natural 

gas liquids (NGLs), which are the primary feedstock for the production of olefin intermediates in 

the U.S.
154

 Thus, in addition to elasticities from the petroleum sector, one would also need to 

develop supply and demand elasticity estimates for the natural gas sector. While there exist 

elasticity estimates for natural gas used as fuel (e.g. refs
358,359

), I am not aware of any prior work 

that quantifies elasticities related to natural gas liquids.  

  

Beyond the simple partial equilibrium analysis described above, there is some scope for 

investigating the detailed workings of natural gas and NGL markets. One could investigate the 

extent to which natural gas producers can change their product slate, for example by developing 

different wells, or by simply leaving more NGLs in the final natural gas product. Unlike 

petroleum products, NGLs are not globally traded commodities. Nevertheless, the U.S. shale gas 

boom has brought about increasing exports of even the most unwieldy (volatile) NGL, ethane.
360

 

Investigation of export costs, and potential NGL markets abroad (e.g. steam cracking facilities, 

heating fuel, etc.) would also help bound the market response to a reduction in domestic demand 

for NGLs. Finally, an economic analysis of U.S. natural gas operations could help predict the 

response of domestic producers to a drop in price of NGLs resulting from increased use of bio-

based chemicals. My own preliminary analysis of EIA data suggests that NGLs make up 

approximately 30% of value from natural gas wells, explaining why they may actually be the 

driving force behind continued production in the current climate of low natural gas prices.
361

 A 

particularly salient question would be: how far do NGL prices have to fall before natural gas 

wells begin to shut down?  

 

6.5.5. Robust Decision Making for Biofuel Policies 

Existing attempts to quantify the uncertainty related to life cycle GHG emissions from biofuels 

and bio-based products have focused on assigning probability distributions to key parameters and 

using Monte Carlo simulation to characterize outcomes (e.g. refs
74,144,154

). Given the large, 

difficult to characterize, and potentially irreducible uncertainties associated with biofuels, 

particularly with respect to indirect land use change,
85,286

 and IOUC, a robust decision making 

framework
362

 may be more appropriate for evaluating policies like RFS2.  
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Appendix A. Supporting Information for Chapter 2 

A.1. Model and Data 

A.1.1 Allocation 

Production volumes for each natural gas co-product are established as follows. EIA reports 

annual production by state for dry natural gas,
211

 lease condensate,
363

 and combined natural gas 

plant liquids
a
 (NGPLs)

364
 as well as annual production of disaggregated NGPLs

b
 by refining 

district.
c
 The combined NGPLs from each state are assumed to be distributed among individual 

products in the same (volumetric) proportion as the refining district(s) to which that state 

belong(s). Unless otherwise specified, all data used in this chapter pertains to reporting year 2011 

(the most recent available data). Allocation is performed on a state by state basis and integrated 

into a discrete distribution for each process modeled, as discussed in the main text. Mass and 

energy densities of relevant substances can be found in Table A.7. 

 

A.1.2 Global Warming Potential 

Whenever possible, GHG emissions were modeled explicitly by gas before conversion to CO2 

equivalent. For natural gas pre-production emissions (well pad construction, well drilling, 

hydraulic fracturing chemicals and water management),
209

 and life cycle emissions for 

fuels,
198,201,206

 only the total GWP was available. Emissions from natural gas used as fuel, 

fugitive CH4 from production, liquids unloading, processing, transmission, distribution and 

combustion were modeled explicitly as per Venkatesh et al.
201

 and used to update the life cycle 

GHG estimate accordingly. No adjustment was made to the other inputs listed above.  

 

                                                 

 

a
 Data is by state of origin of the gas (as opposed to state of processing). 

b
 Categories reported are: ethane, propane, isobutane, normal butane and pentanes plus. 

c
 Refining districts are subdivisions of petroleum administration for defense districts (PADDs). 
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A.1.3 Fuels and Electricity 

As indicated in the main text, emissions from U.S. electricity production are modeled by North 

American Electric Reliability Corporation (NERC) region.
208

 For corn ethanol, the majority of 

existing ethanol biorefineries are located in the region spanned by the Midwest Reliability 

Organization (MRO).
230

 For switchgrass, the EPA predicts production primarily in the regions 

spanned by the Southwest Power (SPP), the Texas Regional Entity (TRE) and the Southeast 

Electric Reliability Council (SERC),
128

 and so it is assumed these are the regions where most 

switchgrass biorefineries will be located. Finally, the majority of existing ethylene production 

capacity is located in the region spanned by TRE and SERC.
231

 Due to difficulties in transporting 

ethylene gas and the large scale of existing chemical manufacturing complexes, it is assumed 

that bioethylene production and ethylene polymerization will take place near existing ethylene 

infrastructure (i.e. in TRE and SERC). For each region, multiple sources were consulted and a 

uniform distribution was employed that spans the ranges of the different estimates. For 

aggregated regions, distribution bounds represent the extreme estimates for any of the constituent 

regions. For electricity consumption, emissions factors account for transmission line-losses; 

when grid electricity is displaced, it is assumed that line-losses still occur, resulting in lower 

emissions savings. Line losses are taken to be 5.8% for U.S activities (representative of the 

Eastern Interconnect)
365

 and 16% for Brazil.
366

 

 

Electricity emissions factors employed in this chapter are nominally for average electricity 

generation.
202,207,272-274

 Nevertheless, the range employed for each U.S. region encompasses the 

marginal electricity emissions factor for that region as reported by Siler-Evans et al. (2012),
367

 

after adjusting for line-losses and upstream emissions from coal and natural gas.
201,206,365,366

 

Following Liptow and Tillman,
191

 natural gas is assumed to be the marginal electricity source in 

Brazil; this is examined further in the sensitivity analysis below. 

 

A.1.4 Natural Gas Pre-Production 

Emissions (in CO2e/unit gas produced) from well pad construction, well drilling, production of 

chemicals for hydraulic fracturing, and water management from fracturing employ the same 

inputs as Weber and Clavin
209

 and are modeled as triangular distributions. The two distributions 



Appendix A 

162 

 

pertaining to hydraulic fracturing are multiplied (on a state by state basis) by the percentage of 

gross gas withdrawals that are from unconventional wells.
211

  

 

Weber and Clavin report their distributions as g CO2e/MJ, which results from allocating all 

emissions to dry natural gas. These figures are converted to CO2 emissions per unit volume 

assuming the same energy density as Weber and Clavin (35.95 MJ/m
3
) and then allocated across 

products (and normalized per unit mass of each product). 

 

Further, for both conventional and unconventional wells, there is the potential for a release of 

fugitive natural gas emissions during the final pre-production phase (well completions) or from 

remedial operations to increase production (workovers). Well completions and workovers are 

divided into 3 categories according to EPA nomenclature: conventional wells, unconventional
d
 

wells (uncontrolled emissions) and unconventional wells (controlled emissions
e
) as outlined 

below.  

 

Fugitive emissions from conventional completions and workovers are taken from 2010 revised 

estimates by EPA
368

. These are coupled with conservative (low) estimates for well lifetime and 

daily production, from Venkatesh et al.,
201

 to obtain emissions per MMscf of gross withdrawals. 

Further, a conservative (high) number of workovers (1 per year) is assumed. Even with 

conservative assumptions in place, conventional well workovers and emissions amount to less 

than 1% of the total emissions from ethylene production and so the uncertainty was not 

characterized further. 

  

For unconventional wells, potential emissions from uncontrolled completions or workovers are 

much higher and could have a large effect on the final results. Following a 2012 EPA 

background technical support document, an uncontrolled completion or workover is assumed to 

                                                 

 

d
 Following the U.S. EPA, unconventional wells are assumed to involve hydraulic fracturing, and include tight sand, 

shale, and coal bed methane formations. 
368 p.84

 
e
 Controlled completions are also known as ‘green completions’ and ‘reduced emission completions’ (RECs) 
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release a normally distributed volume of methane.
369

 This is converted to release of whole gas 

using the EPA assumed methane content of 83.24%. The result is coupled with a distribution for 

estimated ultimate recovery from Weber and Clavin
209

 to normalize the emissions of whole gas 

per volume of gas produced. Finally, whole gas released is converted to emissions of methane 

and carbon dioxide per MMscf of production, assuming respective methane and carbon dioxide 

contents in each state equal to that of the hydraulically fractured wells in the National Energy 

Modeling System (NEMS) region
213

 to which that state belongs
f
 (tables A-130 and A-139 of 

ref
212

). For reduced emission completions (RECs), it is assumed that 90% of flowback emissions 

are captured
370

; all other calculations are the same as for uncontrolled emissions. Finally, 

following Jiang et al.,
371

 a uniform distribution is assumed for the percent of released gas which 

is flared; flare efficiency is taken to be 98%. For the base case, EPA projects that, in the absence 

of regulations, 51% of completions would be performed with reduced emissions in 2015.
369

 

However, current regulation requires flaring for all new completions, and green completions with 

flaring for all completions subsequent to January 2015. Simulating a ‘regulated scenario’ 

assuming 100% RECs, and 100% flaring had no noticeable effect on the final results. 

 

For unconventional workovers, the well pad will already be fitted with appropriate gathering 

equipment, and so I assume that any refractures will be performed with reduced emissions as 

described above. Using various data sources, the U.S. EPA finds that the annual refracture rate 

among unconventional wells is approximately 1%.
369

 Although the number of workovers is 

likely positively correlated with the estimated ultimate recovery, employing a correlation 

parameter had little effect on the final results. 

 

Workover and completion emissions are multiplied by the corresponding (conventional or 

unconventional) percent of gross withdrawals on a state by state basis for 2011.
211

 Completion 

                                                 

 

f
 For states that belong to multiple NEMS regions (Texas and New Mexico), CO2 and CH4 contents are modeled as 

uniform distributions across the values for the relevant regions. 



Appendix A 

164 

 

emissions from oil well completions are much smaller overall
370

 and it is assumed that the 

portion allocated to the associated gas will be negligible.  

 

A.1.5 Natural Gas Production 

The annual EPA GHG Inventory provides data on CH4 emissions from the natural gas 

production phase.
212

 From the 2013 EPA GHG Inventory, table A-124 is used to determine 

potential production emissions by NEMS region. Workovers and completions are removed, as 

these have been accounted for in the above pre-production analysis. Reductions by the Natural 

Gas STAR program (table A-132) and from other regulations (table 1-133) are allocated to each 

NEMS region in proportion to that region’s share of total emissions from the relevant category.
g
 

Because production volumes are only known by state and some states (New Mexico and Texas) 

are covered by more than one region, it was necessary (for normalization by production 

volumes) to merge certain NEMS regions, leaving 3 regions in all: West Coast, North East and 

the combined Midcontinent, Rocky Mountains, Gulf Coast and South West region. EPA further 

reports uncertainty from -19% to +30% for CH4 emissions from the entire natural gas system,
214

 

for which field production is the single largest category (accounting for just over a third of 

system wide emissions). It is assumed that the relative uncertainty on production emissions 

within each region is on the same order as for system wide emissions, and so a triangular 

distribution is used for the emissions within each region. Production CH4 emissions from each 

region are then normalized by gross withdrawals for all states within that region;
211

 these 

emissions are then allocated across products (and normalized per unit mass of each product) on a 

state by state basis.
h
 The overwhelming majority of CO2 emissions from the natural gas 

production phase reported in the EPA GHG Inventory are from gas flaring, which has already 

been taken into account above using direct EIA data. 

                                                 

 

g
 For example, the North East region accounts for 33.5% of all potential emissions from Kimray pumps (table A-

124), and so 33.5% of CH4 reductions for Kimray pumps (Table A-132) are likewise attributed to the North East.  
h
 Each state is assumed to have the same emission intensity as the region to which it belongs. Alaska, which is not 

part of any region, is assumed to have the same emission intensity as all regions combined (i.e. national emission 

intensity). 
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A.1.6 Natural Gas Processing 

The following is an account of statistical methods that were used in analyzing the data from the 

EPA GHG inventory after matching with EIA processing flows. 

 

Using ordinary least squares (OLS) regression of normalized emissions on plant flow confirms 

there is no overall trend for normalized emissions in function of plant flow (p=0.12) – suggesting 

that the data may be drawn from a static distribution. Visual inspection of the data (in tonnes 

CO2e/MMcf processed) suggested a small number of outliers with abnormally high emissions. 

This is confirmed with a number of statistical tests, as described below. 

 

In the end, the five points with the highest normalized emissions were removed from the dataset 

as they are believed to represent data errors rather than true heterogeneity in emissions. All such 

points were more than 3 times the interquartile range above the 75
th

 percentile of the distribution. 

One of the outliers was driven by exceedingly high normalized CH4 emissions – 4 times higher 

than the next highest entry and nearly 14 standard deviations above the mean.  

 

Initial attempts to fit the data suggested that a lognormal distribution would be appropriate, and 

indeed a Shapiro-Wilk test on the log-data (post-removal of outliers) does not reject the null 

hypothesis of normality at the 5% level. Thus, further tests were run on the natural logarithm of 

the normalized emissions. The remaining four suspected outliers are all greater than 1.5 times the 

interquartile range above the 75
th

 percentile in the log data. Further all were beyond 3 standard 

deviations away from the mean, giving less than 0.3% chance they belong to the (assumed 

normal) distribution. 

 

Of five eliminated outliers, three were for the lowest plant flows in the dataset (1.22, 1.7 and 2 

MMcf/day), and the 4
th

 was among the 11 smallest (9 MMcf/day). While it is possible that these 

results suggest a steep upward trend in normalized emissions for small plants, plants below the 

size of 9 MMcf/day account for less than 1% of all natural gas processing (according to the 

complete EIA dataset). A more likely explanation is that the facilities with low plant flow have 
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processing as a secondary operation in a larger facility, thereby falsely inflating emission 

estimates for natural gas processing. The 5
th

 outlier was close to average plant flow (145 

MMcf/day), but had well below average utilization (21%), suggesting that the EIA reported plant 

flow may not be representative of the true processing flows for the (slightly mismatched) time 

period of the EPA reported emissions. Inclusion of all outliers would increase mean processing 

emissions by approximately 20%, which represents only a small (<2%) increase in life cycle 

GHG emissions for LDPE.  

 

Upon removal of the outliers OLS regression of normalized emissions on plant flow now 

predicts a significant downward trend in normalized emissions in function of plant flow, but with 

an absolute coefficient so small as to be irrelevant.  

 

Through a series of OLS regressions and Goldfeld-Quandt tests for heteroskedasticity, it is 

determined that the variance of total emissions increases approximately linearly with plant flow; 

this result is as expected if one imagines total emissions in each plant to be the result of a sum of 

emissions from multiple discrete unit plant flows for that plant.  

 

Normalized emissions of greenhouse gases for each plant are then used to fit continuous 

distributions (weighted by the plant flow for each facility) as shown in Figure A.1. This has the 

advantage of accounting for the fact that larger plants yield more efficient estimates for 

normalized emissions. To the extent that normalized emissions may not actually be constant with 

increasing plant size, this method will also weight each observation in proportion to the 

likelihood that gas was processed at the corresponding plant. 
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Figure A.1. Input data (histogram) and fitted distributions for emissions from natural gas processing 

A.1.7 Steam Cracking 

Specific energy requirements (lower heating value) for the production of a tonne of ethylene via 

steam cracking of ethane are estimated by a number of sources.
217-219

 The ranges given are very 

similar, and are used as the parameters of a uniform distribution. The resulting distribution is 

renormalized per tonne of ethane input using the stochastic output of ethylene determined below.  

 

Volumes for each product resulting from steam cracking ethane are also given by a variety of 

sources.
217-221

 Production volumes from each source are normalized to 1 tonne of ethane input 

(using the stochastic distribution for product losses across sources if the original value is given 

only as a ratio of products). From these estimates are formed distributions for each product 

(triangular if there is a modal clustering across sources, or uniform otherwise). Since 
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product/loss draws are performed independently, there is no guarantee of mass balance; all 

products (and losses) are scaled equivalently to restore mass balance for each Monte Carlo draw. 

 

It is assumed that methane, C4 components (i.e., butanes) and C5/C6 (i.e., pentanes, hexanes) 

components are all used to power the steam cracking process. Combustion is assumed to be 

complete, and so CO2 emissions are determined stoichiometrically for each product. Lower 

heating values for each component (Table A.7) are used to determine the quantity of energy 

provided. Any residual energy needs are assumed to be provided by natural gas, with a stochastic 

life cycle emission factor set to approximate the results reported by Venkatesh et al.
201

 Finally, 

direct CH4 emissions are modeled as reported by the IPCC GHG guidelines.
222

 

 

A.1.8 Ethanol Production 

Sugarcane ethanol is co-produced with electricity from the combustion of bagasse. Seabra et 

al.
199

 report both co-production of electricity and an additional quantity of bagasse which they 

assume displaces fuel oil. This chapter takes a more conservative approach assuming that this 

additional bagasse is instead used for electricity generation, which is in line with existing trends 

toward greater electricity export from ethanol mills.
199

 This produced bagasse is assumed to have 

a moisture content of 50%;
202

 electricity generation is assumed to take place with a LHV 

efficiency of 30%
307

 and to displace Brazilian grid electricity. 

 

A.1.9 Ethanol Dehydration 

Following Liptow and Tillman,
200

 modeled emissions from ethanol dehydration to ethylene are 

limited to fuel and electricity use reported by Kochar et al
180

 for polymer grade bioethylene. As 

no other published estimates are readily available, generic uncertainty factors were applied. 

Following Geisler et al.,
227

 both fuel and electricity requirements were assumed to follow a 

lognormal distribution with dispersion factor (ratio of 97.5
th

 percentile to the median) of 2, which 

is typical of the uncertainty in energy requirements for chemical production.  
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A.1.10 Polymerization 

For U.S. pathways, polymerization is modeled using average U.S. industry data as reported by 

Franklin Associates.
145

 Grid electricity, natural gas, LPG and residual oil are treated on a life 

cycle basis. Following the recommendation of Franklin Associates, recovered energy from waste 

gas is treated as LPG (excluding upstream emissions) with combustion emissions as in 

Venkatesh et al.;
198

 for bio-based pathways, waste gases are assumed to be biogenic (no net 

emissions). Primary energy for electricity cogeneration is divided between natural gas (59%), 

coal (28%) and waste gases (13%) as reported by Franklin Associates; these percentages were 

used in a probability mixture model as the probabilities for each fuel type (drawn from a discrete 

distribution). 

 

Following Liptow and Tillman, polymerization in Brazil is assumed to follow European 

parameters,
191,200

 involving higher electricity use and lower on-site fuel use than in the United 

States.
200,228

 Due to the low emissions factor for Brazilian electricity, this results in relatively low 

emissions for Brazilian polymerization, consistent with the values reported by Kikuchi et al.
194

 

 

A.1.11 Model Parameters 

The following tables present a list of the key parameters for each of the models developed in this 

chapter. Table A.1 shows parameters specific to the production of ethylene from natural gas 

derived ethane. Table A.2 shows parameters specific to the production of ethanol from U.S. corn 

starch. Table A.3 shows parameters specific to the production of ethanol from U.S. switchgrass. 

Table A.4 shows parameters specific to the production of ethanol from Brazilian sugarcane.  

Table A.5 shows parameters for life cycle stages that are common across models. Table A.6 

shows employed global warming potentials along with emission factors for fuels, electricity and 

agrochemicals. Table A.7 shows the energy and mass densities used throughout this chapter.
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Table A.1. Summary of key parameters for ethylene production pathway via natural gas derived ethane 

Parameter Value or distribution Units Source 

Pre-Production    

Well pad construction Triangular (0.05, 0.13, 0.3) g CO2e/MJ ref 
209

 

Well Drilling Triangular (0.1, 0.2, 0.4) g CO2e/MJ ref 
209

 

Hydraulic Fracturing Chemicals Triangular (0.04, 0.23, 0.5) g CO2e/MJ ref 
209

 

Hydraulic Fracturing Water Management Triangular (0.04, 0.07, 0.1) g CO2e/MJ ref 
209

 

Gas venting for conventional well 

completions 
0.71 tonnes CH4/completion ref 

368
 

Gas venting for conventional well annual 

workovers 
0.05 tonnes CH4/workover ref 

368
 

Conventional well workovers 1 workover/year ref 
201

 

Operating Lifetime of Conventional well 5 Years ref 
201

 

Daily production for conventional well 0.15 MMscf/day ref 
201

 

Uncontrolled gasvented/flared for 

unconventional completions and workovers 
Normal (8900,2006067) Mcf “CH4”/completion ref 

369
 

Unconventional Well Estimated Ultimate 

Recovery 
Triangular (0.5, 2, 5.3) Bcf ref 

209
 

Flowback Captured in Reduced Emission 

Completions 
90% % ref 

370
 

Percent of released gas which is flared 
Uniform (51,100) 

(100% for regulated scenario) 
% 

ref 
371

 

ref 
372

 

Flare Efficiency 98% % ref 
371

 

Number of refractures per unconventional 

well 
Bionomial (p = 0.01, n= 30) # 

ref 
369

 for p 

ref 
373

 for n 

Green Completion Percentage 
51% 

100% (for regulated scenario) 
% 

ref 
369

 

ref 
372

 

Conventional and unconventional percent of 

growth withdrawals 
State by state % ref 

211
 

2011 CO2 and CH4 content in raw natural gas By NEMS region for each state % 
ref 

212
 

(data from 2011 reporting year) 

Production    
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Lease Fuel Consumed 
State by state (discrete 

distribution) 
MMcf/year 

ref 
210

  

(data from 2011 reporting 

year) 

Gas Vented and Flared 
State by state (discrete 

distribution) 
MMcf/year 

ref 
211

 

(data from 2011 reporting 

year) 

Production CH4 Emissions 

Triangular (.81*best, best, 

1.30*best) by (aggregated) 

NEMS region(s) 

Mg CH4/year 

ref 
212

 

(data from 2011 reporting 

year) 

    

Processing    

CO2 Emissions 
Log-logistic(-0.089,1.59,2.28) 

(truncated at 0) 

tonnes CO2/MMcf 

processed 

Own Analysis of 

refs
215,216

 

CH4 Emissions 

Inverse Gaussian 

(0.00880,0.00284,-0.000287) 

(truncated at 0) 

tonnes CH4/MMcf 

processed 

Own Analysis of 

refs
215,216

 

N2O Emissions 

Log-logistic  

(9.08*10
-10

, 2.12*10
-6

, 1.66) 

(truncated at 0) 

tonnes N2O/MMcf 

processed 

Own Analysis of 

refs
215,216

 

Correlation Matrix for processing emissions 

 CO2 CH4 N2O 

CO2 1   

CH4 0.36 1  

N2O -0.03 -0.05 1 
 

N/A 
Own Analysis of 

refs
215,216

 

    

Steam Cracking    

Specific Energy Required Uniform (15,25) GJ/t ethylene refs 
217-219

 

Ethylene Produced Triangular (764, 803, 840) kg/tonne ethane 

refs 
217-221

 Propylene Produced Triangular (14.1, 16, 29.9) kg/tonne ethane 

Butadiene Produced Triangular (17.4, 19.9, 23) kg/tonne ethane 
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Aromatics Produced Uniform (0, 19.9) kg/tonne ethane 

Hydrogen Produced Triangular (57.9, 60, 89.7) kg/tonne ethane 

Methane Produced Triangular (58.8, 61, 70.1) kg/tonne ethane 

C4 Components Produced Triangular (0, 6, 8.1) kg/tonne ethane 

C5 and C6 Components Produced Uniform (0, 26) kg/tonne ethane 

Product Losses Uniform (5, 20) kg/tonne ethane 

Emissions from Hydrogen Production via 

steam reforming (for system expansion) 
Uniform (9.3, 14.2)

a
 kg CO2e/kg H2 

Multiple sources 

consulted. Lower bound 

from ref
374

 as cited in 

SimaPro software. Upper 

bound from ref
202

 

Direct CH4 emissions from ethane cracker Triangular (5.45, 6, 6.6) kg CH4/t ethylene ref 
222

 

Distributions are written as: Triangular (lower, mode, upper), Normal (mean, standard deviation), Uniform (lower, upper), Binomial (p = probability of 

event, n = number of draws), Log-Logistic (location, scale, shape), Inverse Gaussian (mean, shape, shift) 

(a)
 
Mean bounds are shown. Actual bounds are stochastic due to uncertainty in GWP. 
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Table A.2. Summary of key parameters for ethanol/ethylene production pathway via U.S. Corn Starch 

Parameter Value or Distribution Units Source 

Land-use Change    

Domestic Land Use 

Change 
-4 kg CO2e/mmBtu ref 

128
  

International Land Use 

Change 
Triangular (20.9, 31.8, 44.7) kg CO2e/mmBtu Fit to confidence interval given by ref 

128
 

    

Agricultural Operations    

Corn Yield Beta (α=21.62, β=5.86, [0,14.3]) Mg dm/ha ref 
74

 

Nitrogen Application Triangular (141, 150, 160) kg N / ha ref 
375

 as cited in ref 
74

 

Crop residue applied Triangular (73, 80, 86) kg N / ha From ref 
225

 as modeled by ref 
74

 

CaCO3 applied 1150 g / bushel ref 
202

 

K2O applied 172 g / bushel ref 
202

 

P2O5 applied 148 g / bushel ref 
202

 

Herbicides applied 4.75 g / bushel ref 
202

 

Insecticides applied 0.4 g / bushel ref 
202

 

Fossil Fuel Use 

894 

1.97 

0.023 

g CO2 / bushel 

g CH4 / bushel 

g N2O / bushel 

 

ref 
202

 

 

Dry matter fraction of 

bushel 
87% % ref 

225
 

    

Ethanol Production    

Corn starch content Triangular(62.6, 67.3 ,72) %w of dry matter ref 
376

 and ref 
377

 as used in ref 
74

 

Heat input Triangular (0.32, 0.42, 0.51) MJ heat / MJ EtOH 
ref 

376,378,379
 as cited in ref 

74
 

Electricity input Triangular (0.023,0.038,0.049) MJ elec/MJ EtOH 

Co-product credit 

7.4 

0.017 

0.018 

g CO2/MJ EtOH 

g CH4/MJ EtOH 

g N2O / MJ EtOH 

ref 
202
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Transportation    

Feedstock transportation 

434 

0.549 

0.007 

g CO2 / bushel 

g CH4 / bushel 

g N2O / bushel 

 

ref 
202

 

 

Trucking distance for 

ethanol to ethylene plant 
Uniform(1000,1800) km 

Approximate distance from existing corn 

ethanol refineries ref 
230

 to gulf states ethylene 

infrastructure ref
231

 

Truck fuel consumption 0.0203 L diesel / t-km ref 
229

 

Distributions are written as: Triangular (lower, mode, upper), Normal (mean, standard deviation), Uniform (lower, upper), Beta (α, β, [lower bound, 

upper bound]). 
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Table A.3. Summary of key parameters for ethanol/ethylene production pathway via U.S. Switchgrass 

Parameter Value or Distribution Units Source 

Land-use Change    

Domestic Land Use Change -2.5 kg CO2e/mmBtu ref 
128

 

International Land Use Change Triangular (7.9, 15.1, 23.7) kg CO2e/mmBtu Fit to confidence interval given by
128

 

    

Agricultural Operations    

Switchgrass Yield Beta (α=21.62, β=5.86, [0,21.6]) Mg dm / ha ref 
74

 

Nitrogen Application Triangular (55, 74, 100) kg N/ ha ref 
380,381

 as cited in ref
74

 

Crop Residue Applied Triangular (133.5, 171.7, 210) kg N / ha From ref 
225

 as modeled by ref
74

 

K2O Applied 227 g / tonne dm ref 
202

 

P2O5 Applied 114 g / tonne dm ref 
202

 

Herbicide 31.8 g / tonne dm ref 
202

 

Fossil Fuel Use 

20.7 

0.314 

26.7 

g CO2 / kg SW 

g N2O / kg SW 

g CH4 / kg SW 

 

ref 
202

 

    

Ethanol Production    

Glucan Content Triangular (31, 34.4, 37.2) % w 

ref 
382

 as cited in ref 
74

 

Xylan Content Triangular (20.6, 23.0, 26.0) % w 

Mannan Content Triangular (0.29, 0.32, 0.36) % w 

Galactan Content Triangular (0.67, 1.0, 1.2) % w 

Arabinan Content Uniform (2.6, 3.4) % w 

Lignin Content Triangular (17.3, 19.2, 21.1) % w 

Energy Input Uniform (0.44, 0.72) 
MJ / MJ EtOH  

(treated as HHV) 

refs 
305,383

 as cited in
74

 
Percent of energy to electricity, 

heat 
10% / 90%  

Boiler efficiency 68%  

Turbine Efficiency 85%  

    

Transportation    
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Feedstock Transportation 15 g CO2e/ kg SW Calculated from
202

 

Trucking distance for ethanol to 

ethylene plant 
Triangular (0,1000,1500) km 

Approximate distance from projected 

switchgrass ethanol facilities
128

 to gulf 

states ethylene infrastructure
231

 

Truck fuel consumption 0.0203 L diesel / t-km ref 
229

 

Distributions are written as: Triangular (lower, mode, upper), Normal (mean, standard deviation), Uniform (lower, upper), Beta (α, β, [lower bound, 

upper bound]). 
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Table A.4. Summary of key parameters for ethanol/ethylene production pathway via Brazilian Sugarcane 

Parameter Value or Distribution Units Source 

Land-use Change    

Land-use change (total) Triangular (-5.8, 4.3,13) g CO2e/MJ EtOH Fit to confidence interval 

given by
128

 

Agricultural Operations    

Harvest Yield Normal(86.7,13.4) t cane / ha ref 
199

 

Diesel Consumption Normal (274,75) L diesel /ha ref 
199

 

Nitrogen Application Triangular (39, 777, 1515) g N/t cane ref 
199

 

CaCO3 applied 
Triangular 

(162,5183,13755) 

g / t cane ref 
199

 

K2O applied 980 g / t cane ref 
202

 

P2O5 applied 249 g / t cane ref 
202

 

Herbicides applied 44 g / t cane ref 
202

 

Insecticides applied 3 g / t cane ref 
202

 

Trash burning Triangular (3,82,126) kg CO2e/t cane ref 
199

 

Emissions from Trash Burning 113 g CO2e / kg straw ref 
202

 

Ethanol Production    

Ethanol yield Normal (81.1, 4.3) L EtOH/ t cane ref 
199

 

Surplus Electricity Exponential (10.7) kWh/t cane ref 
199

 

Surplus Bagasse Exponential (8.7) kg/t cane ref 
199

 

Bagasse moisture content 50% % ref 
202

 

Bagasse boiler LHV Efficiency 30% % ref 
307

 

Transportation    

Field to ethanol mill, fuel use 10300 kcal diesel/t cane ref 
384

 as cited in 
200

 

Ethanol to ethylene plant, fuel use 0.217 MJ diesel / kg ethanol ref 
200

 

Shipping distance, Brazil (Parangua) to U.S. 

(Houston) 

10700 Km ref 
233

 

Ship fuel consumption (Ocean Freighter) 4.93 *10
-3

 L residual fuel oil/t-km ref 
232

 

Distributions are written as: Triangular (lower, mode, upper), Normal (mean, standard deviation), Uniform (lower, upper), Exponential (mean). 

 

Table A.5. Summary of key parameters for processes which are common across models 
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 Parameter Value Units Source 

Ethanol Production  

(used for switchgrass and corn) 

   

Hydrolysis yield  Uniform (0.85, 0.95) % 

ref 
385

 as cited in 
74

 Fermentation yield from glucose Uniform (0.85, 1) % 

Fermentation yield from other sugars Uniform (0.75, 0.9) % 

    

Ethanol Fuel Distribution    

Emissions from fuel distribution 1.2 g CO2e/MJ Calculated from 
202

 

    

Ethanol dehydration to ethylene    

Ethylene yield 0.58 kg ethylene / kg ethanol Calculated from 
180

 

Fuel used Lognormal (1.67, 0.611) MJ /kg ethylene 

(Assumed to be LHV) 

Mean from 
180

; standard deviation 

calculated based on 
227

 

Electricity Used Lognormal (1.12, 0.41) MJ electricity/ kg ethylene Mean from 
180

; standard deviation 

calculated based on 
227

 

    

U.S. Polymerization  

(used for switchgrass and corn) 

   

Fuel for electricity cogeneration 5.66 MJ HHV / kg LDPE ref 
145

 

Natural gas (additional) 2.02 MJ HHV / kg LDPE ref 
145

 

LPG 9.64*10
-4

 MJ HHV/ kg LDPE ref 
145

 

Residual oil 0.064 MJ HHV / kg LDPE ref 
145

 

Recovered energy 0.4 MJ HHV / kg LDPE ref 
145

 

    

Brazilian Polymerization 

(used for sugarcane only) 

   

Electricity required 

Uniform (3.4,4.0) MJ electricity / kg LDPE Lower bound calculated based on 
386

 as per 
200

. Upper bound from 
228

. 

Emissions from fuel use: estimate 1 

57 

1.9 

6.5*10
-4

 

g CO2 / kg LDPE 

g CH4 / kg LDPE 

g N2O / kg LDPE 

Calculated from 
386

 as per 
200

. 
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Emissions from fuel use: estimate 2 

(net heat required; treated as natural gas) 

-0.25 MJ HHV / kg LDPE ref 
228

 for energy required; 

emissions calculated as per Table 

A.6  

Emissions from fuel use: total 
Uniform 

(estimate 2, estimate 1) 
g CO2e/kg LDPE Calculated from

386
 as cited in 

200
 

Distributions are written as: Uniform (lower, upper), lognormal (mean, standard deviation) 
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Table A.6. Global warming potentials and emission factors for fuels, electricity and agrochemicals 

 Parameter Value Units Source 

Global warming potentials    

CH4 GWP Normal (36, 8.5) g CO2e / g CH4 
ref 

204,205
 

N2O GWP Normal (298, 52.5) g CO2e / g N2O 

Fuel Emissions    

Gasoline life cycle emissions Log-logistic (2.2, 0.2, 80) g CO2e/MJ (LHV) 

ref 
198

 

Diesel life cycle emissions Log-logistic (2.3, 0.2, 82) g CO2e/ MJ (LHV) 

Residual fuel life cycle 

emissions  
Log-logistic (2.3, 0.3, 83) g CO2e/ MJ (LHV) 

LPG life cycle emissions Log-logistic (2.1, 0.2, 77) g CO2e/ MJ (LHV) 

LPG combustion emissions Triangular (66.7, 68.4, 71.2) g CO2e/ MJ (LHV) 

Natural gas life cycle emissions 

(prior to updating GWP) 
Normal (66, 3.5) g CO2e/MJ (HHV) 

Approximate fit to parameters 

from;
201

;  

Natural gas CH4 and N2O 

emissions (for updated GWP) 
Various Various See ref 

201
 

Natural gas life cycle emissions 

(after updating GWP) 

Normal (70, 5.0) 

Normal (78, 5.5) 

g CO2e/MJ (HHV) 

g CO2e/MJ (LHV) 

Fit to modeled distribution 

based on ref 
201

 

Coal life cycle emissions Log-logistic (3.05, 0.14, 74) g CO2e/ MJ (HHV) ref 
206

 

    

Electricity Emissions    

Brazilian electricity (average) Uniform (20, 81)
a
 g CO2e/MJ 

Lower bound from.
202

 Upper 

bound from.
207

 

Brazilian electricity (marginal): 

Natural gas turbine  
Uniform (179, 207)

a
 g CO2e/MJ 

Lower bound from.
202

 Upper 

bound from
387

 and
388

 as cited 

in
191

 supporting information. 

MRO electricity Uniform (200, 313)
a
 g CO2e/MJ 

Lower bound from 
202

. Upper 

bound from 
273

 

TRE and SERC electricity Uniform (164, 220)
a
 g CO2e/MJ 

Lower bound from 
202

 for TRE. 

Upper bound from 
272

. 

TRE, SERC and SPP electricity Uniform (164, 308)
a
 g CO2e/MJ 

Lower bound from 
202

 for TRE. 

Upper bound from 
274
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Agrochemicals    

U.S. production of CaCO3 0.0137
a 

kg CO2e / kg CaCO3 

Calculated from 
202

 

 

U.S. production of K2O 0.688
a
 kg CO2e / kg K2O 

U.S. production of P2O5  1.83
a
 kg CO2e / kg P2O5 

Brazilian production of CaCO3 0.0205
a
 kg CO2e / kg CaCO3 

Brazilian production of K2O 0.371
a
 kg CO2e / kg K2O 

Brazilian production of P2O5  0.630
a
 kg CO2e / kg P2O5 

Corn Herbicides 21.4 kg CO2e / kg herbicide 

Corn Insecticides 25.0 kg CO2e / kg insecticide 

Switchgrass Herbicides 21.3 kg CO2e / kg herbicide 

Switchgrass Insecticides 25.0 kg CO2e / kg insecticide 

Sugarcane Herbicides 15.6 kg CO2e / kg herbicide 

Sugarcane Insecticides 18.0 kg CO2e / kg insecticide 

Direct CO2 emissions from 

CaCO3 
0.44 kg CO2 / kg CaCO3 Calculated 

Direct N2O from synthetic 

fertilizer and crop residue 
Triangular (0.003, 0.01, 0.03) kg N2O-N/kg N applied 

ref 
225

 

Volatilization from synthetic 

fertilizer 
Triangular (0.03, 0.1, 0.3) 

(kg NH3-N + kg NOx-N) 

/kg N 

Indirect N2O from volatized N Triangular (0.002, 0.01, 0.05) 
kg N2O-N 

/ (kg NH3-N + kg NOx-N) 

Runoff/Leaching of N from 

synthetic fertilizer and crop 

residue 

Triangular (0.1, 0.3, 0.8) kg N runoff / kg N applied 

Indirect N2O from runoff Triangular (0.0005, 0.0075, 0.025) kg N2O-N/kg N runoff 

Distributions are written as: Triangular (lower, mode, upper), Normal (mean, standard deviation), log-logistic (location of the underlying logistic, scale 

of the underlying logistic, shift) 

(a)
 
Mean values (point estimate or distribution bounds) are shown. Actual values are stochastic due to uncertainty in GWP. 
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Table A.7. Energy and mass densities used throughout this chapter.  

Liquids    

Item 
LHV Energy Density 

(btu/gal) 

HHV Energy 

Density (btu/gal) 
Mass Density 

Gasoline 112,194
a 

120,439
a
 2,836

a
 g/gal 

Diesel/distillate, etc. 128,450
a
 137,380

a
 3,167

a
 g/gal 

Residual Fuel Oil 140,353
a
 150,110

a
 3,752

a
 g/gal 

Ethanol 76,330
a
 84,530

a
 2,988

a
 g/gal 

Ethane (liquefied) - - 546.5
d
 kg/m

3 
 

Propane (liquefied) 84,250
a
 91,330

b
 582

d
 kg/m

3
 

n-Butane (liquefied) 94,970
a
 103,000

b
 601.4

d
 kg/m

3
  

Isobutane (liquefied) 90,060
a
 94,620

b
 593.4

d
 kg/m

3
  

Pentanes plus - 110,000
b
 651

c
 kg/m

3
 

n-Hexane 105,125
a
 - 655

a 
kg/m

3
 

    

Gasses    

Item 
LHV Energy Density 

(btu/ft
3
) 

HHV Energy 

Density (btu/ft
3
) 

Mass Density  

Natural gas 983
a
 1,089

a
 22

a
 g/ft

3 

Methane 962
a
 1,068

a
 20.3

a
 g/ft

3 

Hydrogen 290
a
 343

a
 2.55

a
 g/ft

3 

    

Solids  Solids  

Item 
HHV Energy Density 

(MJ/kg) 
Item 

HHV Energy Density 

(MJ/kg) 

Glucan/Cellulose 16.9
e 

Glucose 15.6
f 

Xylan 17.4
e 

Xylose 15.6
f
 

Mannan 16.6
e 

Mannose 15.6
f 

Galactan 17.2
e 

Galactose 15.5
f 

Arabinan 16.9
e 

Arabinose 15.6
f 

Lignin 25.1
e 

Non-sugar, non-

lignin switchgrass 

components 

11.8
e 

Sugarcane Bagasse 14.4
e
 (LHV)   

(a) Data from Wang 2013 
202

 

(b) Calculated from
182

  

(c) Calculated using composition data from
389

 and standard density information 

(d) Liquid density at boiling point (kg/m
3
) from

390
  

(e) Calculated from
305

  

(f) ref
391
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A.2. Additional Results and Discussion  

A.2.1 Summary Statistics 

The following tables present summary statistics for 10,000 simulations of each of the pathways 

modeled in this chapter. For the tables in this section, “lower 90% CI” and “upper 90% CI” is 

constructed as a percent of model runs, and should not be interpreted as a traditional statistically 

based confidence interval. 

Table A.8. Summary Statistics for the GHG emissions from the life cycle stages for production of LDPE from 

natural gas derived ethane in the U.S.  

Life cycle Stage 
Mean 

(kg CO2e/kg LDPE) 
Standard 

Deviation 
Coefficient of 

Variation 
Lower 

90% CI 
Upper 

90% CI 

Pre-Production 0.04 0.01 0.26 0.03 0.06 

Production 0.27 0.09 0.34 0.17 0.37 
Processing 0.13 0.16 1.26 0.02 0.33 

Steam Cracking 0.65 0.27 0.42 0.20 1.10 

Polymerization 0.74 0.08 0.11 0.64 0.87 
 

  
   

Ethylene Subtotal 1.1 0.34 0.31 0.58 1.6 

LDPE Total 1.8 0.35 0.20 1.3 2.4 

Fitted Distribution Log-logistic (location = 1.04, scale = 2.84, shape = 14.8) 

 

Table A.9. Summary Statistics for the GHG emissions from the life cycle stages for production of U.S. corn 

ethanol fuel  

Life cycle Stage 
Mean 

(g CO2e/MJ) 
Standard 

Deviation 
Coefficient of 

Variation 
Lower 

90% CI 
Upper 

90% CI 

LUC 27 4.6 0.17 19 35 

Corn Farming 43 9.8 0.23 30 61 

Co-Product Credits -13 0.9 -0.07 -14 -12 

Ethanol Production 35 4.7 0.13 27.7 43 

Transportation 4.0 0.2 0.05 3.7 4.3 
 

  

   

Ethanol Fuel Total 97 12 0.12 79 120 

Fitted Distribution Gamma (shape = 17.3, scale = 2.77, shift = 48.8) 

 

 

 

 

 

Table A.10. Summary Statistics for GHG emissions from the life cycle stages for production of U.S. corn LDPE  
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Life cycle Stage 
Mean 

(kg CO2e/kg LDPE) 
Standard 

Deviation 
Coefficient of 

Variation 
Lower 

90% CI 
Upper 

90% CI 

LUC 1.3 0.22 0.17 0.91 1.6 

Corn Farming 2.0 0.46 0.23 1.40 2.9 

Co-Product Credits -0.61 0.04 -0.07 -0.68 -0.54 

Ethanol Production 1.7 0.22 0.13 1.3 2.0 

Ethanol Dehydration 0.34 0.09 0.28 0.21 0.51 

Polymerization 0.71 0.08 0.11 0.62 0.85 

Transportation 0.31 0.03 0.10 0.26 0.36 

EOL (growth credit) -3.1 - - - - 
 

  

   

LDPE Total 2.6 0.57 0.22 1.7 3.6 

Fitted Distribution Gamma (shape = 21.0, scale = 0.123, shift = -0.0209) 

 

Table A.11. Summary Statistics for the GHG emissions from the life cycle stages for production of U.S. 

switchgrass ethanol fuel  

Life cycle Stage 
Mean 

(g CO2e/MJ) 
Standard 

Deviation 
Coefficient of 

Variation 
Lower 

90% CI 
Upper 

90% CI 

LUC 12 3.1 0.25 7.4 18 

Switchgrass farming 12 2.8 0.24 8.2 17 

Ethanol production 

& electricity credit -45 24 -0.52 -87 -9.4 

Transportation 3.2 0.1 0.04 3.1 3.4 
 

  

   

Ethanol fuel Total -18 23 -1 -59 18 

Fitted Distribution Weibull (shape = 6.18, scale = 135, shift = -143) 

 

Table A.12. Summary Statistics for the GHG emissions from the life cycle stages for production of U.S. 

switchgrass LDPE  

Life cycle Stage 
Mean 

(kg CO2e/kg LDPE) 
Standard 

Deviation 
Coefficient of 

Variation 
Lower 

90% CI 
Upper 

90% CI 

LUC 0.58 0.14 0.25 0.35 0.83 

Switchgrass Farming 0.57 0.13 0.24 0.38 0.81 
Ethanol Production & 

electricity credit -2.1 1.1 -0.52 -4.1 -0.44 

Ethanol Dehydration 0.34 0.09 0.28 0.21 0.51 

Polymerization 0.71 0.08 0.11 0.62 0.85 

Transportation 0.20 0.04 0.20 0.13 0.26 

EOL (growth credit) -3.1 - - - - 
 

  

   

LDPE Total -2.9 1.1 -0.39 -4.9 -1.2 

Fitted Distribution Weibull (shape = 5.64, scale = 5.90, shift = -8.34) 
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Table A.13. Summary Statistics for the GHG emissions from the life cycle stages for production of Brazilian 

sugarcane ethanol fuel  

Life cycle Stage 
Mean 

(g CO2e/MJ) 
Standard 

Deviation 
Coefficient of 

Variation 
Lower 

90% CI 
Upper 

90% CI 

LUC 4 3.7 1.0 -2.6 10 

Sugarcane farming 20 4.5 0.23 13 28 

Ethanol production 

& electricity credit -1.4 1.3 -0.9 -3.8 -0.20 

Transportation 11 0.65 0.06 11 12 
 

  

   

Ethanol fuel Total 33 6.0 0.18 24 43 

Fitted Distribution Normal (mean = 33.3, standard deviation = 5.95) 

 

Table A.14. Summary Statistics for the GHG emissions from the life cycle stages for production of Brazilian 

sugarcane LDPE 

Life cycle Stage 
Mean 

(kg CO2e/kg LDPE) 
Standard 

Deviation 
Coefficient of 

Variation 
Lower 

90% CI 
Upper 

90% CI 

LUC 0.2 0.17 1.0 -0.1 0.5 

Sugarcane Farming 0.93 0.21 0.23 0.62 1.3 
Ethanol production & 

electricity credit -0.067 0.059 -0.9 -0.18 -0.01 

Ethanol Dehydration 0.2 0.05 0.31 0.1 0.3 

Polymerization 0.2 0.08 0.33 0.1 0.4 

Transportation 0.5 0.03 0.06 0.4 0.5 

EOL (growth credit) -3.1 - - - - 
 

  

   

LDPE Total -1.3 0.30 -0.22 -1.8 -0.8 

Fitted Distribution Normal (mean = 1.34, standard deviation = 0.299) 

 

Table A.15. Summary Statistics for the net GHG emissions from each bio-based pathway. Reported emissions 

include 1:1 displacement of the relevant fossil fuel product (gasoline or fossil LDPE). The functional unit is scaled 

so that equivalent volumes of ethanol are considered, resulting in 1kg LDPE or 46.9 MJ energy. 

Pathway 
Mean net emissions 

(kg CO2e/functional unit) 
Standard 

Deviation 
Coefficient 

of Variation 
Lower 

90% CI 
Upper 

90% CI 

Corn ethanol 0.33 0.57 1.73 -0.54 1.3 

Corn LDPE 0.74 0.63 0.85 -0.22 1.8 

Switchgrass ethanol -5.0 1.13 -0.22 -7.0 -3.3 

Switchgrass LDPE -4.7 1.16 -0.25 -6.7 -2.9 

Sugarcane ethanol -2.6 0.33 -0.12 -3.2 -2.1 

Sugarcane LDPE -3.2 0.45 -0.14 -3.9 -2.5 
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Table A.16. Summary Statistics for comparing GHG reductions achieved by bio-LDPE to those achieved by bio-

ethanol (as per Figure 2.4 of the main text). Positive values imply that bio-LDPE achieves greater GHG 

reductions than bio-ethanol. Negative values imply that bio-ethanol achieves greater GHG reductions than bio-

LDPE. Results assume bio-products achieve 1:1 displacement of the relevant fossil fuel product (gasoline or fossil 

LDPE). The functional unit is scaled so that equivalent volumes of ethanol are considered, resulting in 1kg LDPE 

or 46.9 MJ energy. 

Pathway 
Mean difference in net 

emissions 
(kg CO2e/functional unit) 

Standard 

Deviation 
Coefficient 

of Variation 
Lower 

90% CI 
Upper 

90% CI 

U.S. Production  -0.41 0.39 -0.96 -1.0 0.2 

Brazilian Production 0.51 0.41 0.79 -0.13 1.1 

 

A.2.2 CDF of Net GHG Emissions 

Figure A.2 presents, the cumulative probability distribution functions for net GHG emissions from 

each bio-based pathway. Net GHG emissions are calculated by subtracting the emissions of the 

relevant fossil counterpart from the emissions for each bio-based product. Each curve thus 

represents the net increase (positive values) or decrease (negative values) in GHG emissions from 

replacing a fossil product with its bio-based counterpart. Key conclusions from this figure are 

already discussed in the main text. 

 

 

Figure A.2. Net emissions from examined bio-based pathways. The figure shows the cumulative distribution 

function for net emissions from both chemical (LDPE) and fuel use of bio-based ethanol, including any savings 

from 1:1 displacement of the relevant fossil fuel product (gasoline or fossil LDPE). The functional unit is scaled so 

that equivalent volumes of ethanol are considered. For clarity, the y-axis refers to ‘probability’, but should only 

be interpreted as a proportion of modeled runs. 
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A.2.3 Uncertainty Importance Analysis  

The following figures show sensitivity of mean net GHG emissions to model inputs for each of the 6 

biomass pathways modeled in this chapter. The results include 1:1 displacement of the relevant 

fossil fuel product (gasoline or fossil LDPE). The tornado plots are generated using Palisade’s 

@Risk
TM

 software. The edges of the tornado bars show the output mean for the simulations 

representing lowest (respectively highest) 10% of values for the selected input. The model is first 

run for 10,000 iterations. Each input is then divided into deciles (10 ascending bins). The output 

mean is calculated for each of these bins. The lowest of the 10 output means becomes the left edge 

of the tornado plot for that input; the highest of the 10 output means becomes the right edge of the 

tornado plot for that input. This method implicitly accounts for correlations and non-linearities in the 

output response. 

 

For corn and switchgrass pathways, modeled uncertainty in emissions from the bio-based pathways 

is larger than modeled uncertainty in emissions from the displaced fossil fuel counterparts. The 

reverse is true for sugarcane pathways. Top uncertainties in corn and sugarcane pathways are related 

to fertilizer N2O emissions, and emissions from land-use change. For switchgrass, key uncertainties 

are all related to emissions reductions from displaced electricity. In several pathways, important 

contributors to uncertainty are the global warming potentials for CH4 and N2O – parameters whose 

uncertainty is often overlooked. 
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Figure A.3. Sensitivity of mean net GHG emissions of corn pathways to model inputs. The results include 1:1 

displacement of the relevant fossil fuel product (gasoline or fossil LDPE). The edges of the tornado bars show the 

output mean for the simulations representing lowest (respectively highest) 10% of values for the selected input. 
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Figure A.4. Sensitivity of mean net GHG emissions of switchgrass pathways to model inputs. The results include 

1:1 displacement of the relevant fossil fuel product (gasoline or fossil LDPE). The edges of the tornado bars show 

the output mean for the simulations representing lowest (respectively highest) 10% of values for the selected 

input. 
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Figure A.5. Sensitivity of mean net GHG emissions of sugarcane pathways to model inputs. The results include 

1:1 displacement of the relevant fossil fuel product (gasoline or fossil LDPE). The edges of the tornado bars show 

the output mean for the simulations representing lowest (respectively highest) 10% of values for the selected 

input. 
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Within the fossil LDPE pathway (disaggregated results not shown), uncertainty/variability on 

natural gas processing emissions, primary energy source for U.S. polymerization electricity 

cogeneration, the global warming potential of CH4 and inputs for the steam cracking phase (total 

energy requirements, H2 produced, and offset emissions from H2 production) are all prominent 

contributors to overall uncertainty.  

 

For corn and switchgrass pathways, modeled uncertainty in emissions from the bio-based pathways 

is larger than uncertainty in emissions from the displaced fossil fuel counterparts. For sugarcane, 

modeled uncertainty from ethanol production is lower, allowing uncertainty from the fossil fuel 

pathways to play a more prominent role. For all biomass pathways (especially corn and sugarcane), 

land-use change (LUC) emissions play a prominent role; this is in spite of employing a relatively 

narrow distribution that does not fully capture the range of literature estimates for LUC emissions. 

For corn pathways, most of the other important contributors to uncertainty relate to N2O from 

fertilizer use (e.g. direct and indirect N2O emission factors, N2O GWP, nitrogen runoff and corn 

yield per hectare) and energy used for ethanol production. For switchgrass pathways, the most 

important inputs are those affecting the availability of surplus electricity: energy required for ethanol 

production, hydrolysis yield, ethanol yield, composition of switchgrass. Carbon intensity of 

displaced electricity is also an important contributor to uncertainty.   

 

A.2.4 Sensitivity to Treatment of Electricity: 

The treatment of electric grid emissions is an important parameter subject to a large degree of spatial 

and temporal variability. The large ranges employed capture much of this uncertainty, notably 

encompassing both estimates of ‘average’ and ‘marginal’ carbon intensity for the U.S. NERC 

regions as discussed above. For Brazilian electricity, however, there is a significant difference 

between average electricity (dominated by hydro power) and marginal generation, which is 

generally attributed to natural gas 
392,393

. Thus, for the sugarcane route only, an additional model run 

was performed using marginal (Brazilian) electricity emissions factors. Results are presented in 

Figure A.6 
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As is evident from the figure, switching to marginal electricity reduces the net emissions from the 

fuel pathway while increasing the emissions from the LDPE pathway; this is because the ethanol 

pathway is a net producer of electricity (due to surplus bagasse), while the LDPE pathway is a net 

consumer of electricity due to large electricity requirements further downstream (ethylene 

production and polymerization). Sugarcane ethanol fuel now achieves slightly greater GHG savings. 

Both pathways continue to meet EISA targets (50% GHG reduction relative to gasoline) with 

confidence levels in excess of 85% of model runs.  

 

 

Figure A.6. Net emissions from sugarcane pathways using either average or marginal Brazilian electricity 

emissions factors. The figure show the cumulative distribution function for net emissions from both chemical 

(LDPE) and fuel pathways, including savings from 1:1 displacement of the relevant fossil fuel product (gasoline 

or fossil LDPE). The functional unit is scaled so that equivalent volumes of ethanol are considered.  

 

As discussed above, emission credits from the sale of surplus electricity are critical to both 

switchgrass pathways. An additional case is modeled with no credits for surplus electricity for the 

event that ethanol production facilities are unable to sell this product to the grid. Results for 

switchgrass pathways are shown in Figure A.7. Removing credits for surplus electricity makes little 

difference to the baseline model for sugarcane pathways.  



Appendix A 

193 

 

 

Figure A.7. Net emissions from switchgrass pathways both with and without credits for the sale of surplus 

electricity. The figure show the cumulative distribution function for net emissions from both chemical (LDPE) 

and fuel pathways, including savings from 1:1 displacement of the relevant fossil fuel product (gasoline or fossil 

LDPE). The functional unit is scaled so that equivalent volumes of ethanol are considered.  

 

Inability to sell surplus electricity considerably increases the net emissions from switchgrass 

pathways while decreasing the modeled uncertainty. Although switchgrass ethanol fuel retains a 

high likelihood (>95% of model runs) of meeting the EISA target for cellulosic ethanol (60% 

reduction relative to gasoline), the LDPE pathway can only meet the same EISA target in 50% of 

model runs, a substantial drop from the base case. Without credits for surplus electricity, there is 

now substantial overlap in emissions between switchgrass and sugarcane pathways. Summary 

results for this section are presented in Table A.17. 
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Table A.17. Summary of net emissions (including 1:1 displacement of the baseline fossil fuel product) for 

alternate assumptions regarding emissions from electricity. 

 

 
Mean simulated net emissions (kg CO2e/functional unit) 

Base Case Marginal Electricity No sale of surplus electricity 

Corn Ethanol +0.33 – – 

Corn LDPE +0.74 – – 

Sugarcane Ethanol -2.6 -2.8 -2.6 

Sugarcane LDPE -3.2 -2.7 -3.1 

Switchgrass Ethanol -5.0 – -2.9 

Switchgrass LDPE  -4.7 – -2.5 

 

A.2.5 Sensitivity Treatment of Displaced Fossil Products 

This analysis makes several important assumptions regarding displaced fossil products. First, fossil 

ethylene is assumed to be derived from natural gas ethane. Although ethane is the dominant 

feedstock in the U.S., heavier feedstocks like naphtha still account for close to 15 to 20% of 

domestic ethylene production.
185-187

 As naphtha crackers tend to display lower profit margins,
237,394

 

heavier feedstocks would likely be displaced first by an increase in bioethylene production. To 

investigate this possibility, a model was developed to account for the emissions from naphtha-

derived ethylene. Life cycle emissions from naphtha production are assumed to be equivalent to the 

reported emissions for gasoline production reported by Venkatesh et al.
198

 Emissions from naphtha 

cracking were modeled in the same way as emissions from ethane cracking, using naphtha-specific 

estimates for energy requirements
217

 and co-product volumes.
221

 

 

Naphtha-derived LDPE is found to be approximately 25% more GHG intensive than ethane-derived 

LDPE. Mean modeled emissions for Naphtha LDPE are 2.4 kg CO2e / kg LDPE with a 90% 

confidence interval from 2.0-2.9 kg CO2e / kg LDPE. Net emissions for each bio-based pathway 

assuming displacement for naphtha-derived LDPE for bio-LDPE pathways are presented in Figure 

A.8 (compare with Figure A.2). Under the assumption that naphtha-derived LDPE is displaced 

(rather than ethane-derived LDPE), bio-LDPE is marginally preferred over bio-ethanol fuel even for 
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U.S. pathways. The ability for each pathway to meet the relevant EISA GHG reduction target is not 

significantly affected. 

 

Figure A.8. Net emissions from examined bio-based pathways treating naphtha as the feedstock for fossil 

ethylene. The figure shows the cumulative distribution function for net emissions from both chemical (LDPE) 

and fuel use of bio-based ethanol, including any savings from 1:1 displacement of the relevant fossil fuel product 

(gasoline of naphtha-derived LDPE).  

Another important assumption in this chapter is that GHG savings for bio-based pathways are 

calculated assuming 1:1 displacement of the corresponding fossil fuel product (gasoline or fossil 

LDPE). While 1:1 replacement is accurate on a physical basis, the resulting changes in market prices 

make 1:1 replacement unlikely across the entire market. Policies which encourage the use of biofuel 

or bio-based chemicals may cause a variety of market-mediated effects, some of which have already 

been accounted for by including emissions from indirect land-use change. Another important 

market-mediated effect involves the global market for fossil fuel products and has been termed the 

indirect fuel use effect (IFUE), see for example ref.
236

 Mandates like RFS2 decrease demand for 

fossil products and may result in a global change in demand as fossil prices drop, resulting in 

replacement of fossil products that is less than 1:1. On the other hand mandates like RFS2 increase 

the price of the final product mix in regulated sectors which could also result in a negative IFUE (for 

example, if people drive less in response to higher fuel prices). The increase in global demand for 

fossil products relative to the counterfactual of 1:1 replacement with bio-products is sometimes 
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called “rebound,” however to avoid confusion with the energy efficiency literature I prefer the terms 

“IFUE” (for fuel markets) or more generally “indirect demand change” (IDC) for fossil products. As 

an example, a +20% “indirect demand change” for LDPE indicates that introducing 1 unit of bio-

LDPE into the market will lead to a net decrease of 0.8 units of fossil LDPE.  

 

A limited number of studies have investigated the magnitude of IFUE, and were the subject of a 

recent critical review by Smeets et al. 
328

. To capture the range presented, indirect demand change 

for gasoline (due to the introduction of bio-ethanol) is simulated with a uniform distribution ranging 

from -1% to 85% (i.e. introduction of 1 MJ of ethanol results in a market wide decrease in gasoline 

use ranging from 1.01 MJ to 0.25 MJ). The upper bound (85%) deliberately excludes cases 

presented in 
328

, which relate to tax credits rather than an RFS2-style mandate. No studies were 

available to estimate indirect demand change in the fossil ethylene market, and so a fossil LDPE 

indirect demand change is simulated with a uniform distribution from 0% to 100%. Results are 

presented in Figure A.9 to Figure A.11. Inclusion of indirect demand change effects increases the 

modeled net emissions in all pathways. Nevertheless, sugarcane LDPE and both switchgrass 

pathways continue to meet EISA targets with a high degree of confidence. For reasons discussed 

below, indirect demand change has a larger effect in the fuels market (despite lower modeled 

indirect demand change percentages). As a result, bio-LDPE is now the preferred pathway for both 

U.S. and Brazilian pathways (Figure A.11). 
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Figure A.9. Net emissions from examined bio-based pathways. The figure shows the cumulative distribution 

function for net emissions from both chemical (LDPE) and fuel use of bio-based ethanol, including savings 

displacement of the relevant fossil fuel product (gasoline or fossil LDPE), with market induced indirect demand 

change. The functional unit is scaled so that equivalent volumes of ethanol are considered.  

 

 

Figure A.10. Probability (proportion of model runs) that GHG emission from each bio-based pathway are below 

those of the fossil fuel counterpart (at 0%) or below some policy target. Fossil product displacement is modeled 

with uncertain market-induced indirect demand change. Policy targets are given as a percent reduction relative 

to simulated gasoline life cycle (LC) emissions. EISA targets (20% for corn biofuel, 50% for advanced biofuels 

and 60% for cellulosic biofuels) are shown with vertical blue lines.  
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Figure A.11. Probability (proportion of model runs) that GHG savings from bio-LDPE are superior to those from 

bio-ethanol (at 0% on the x-axis) or in excess of some policy target. Positive values indicate that more stringent 

reductions can be met with bio-LDPE. Negative values represent needed relaxation in the target emissions 

reductions (as a % of gasoline emissions). Figure includes market-induced indirect demand change effects.  

 

In Figure A.12 to Figure A.14, indirect demand change in the fossil product market (gasoline or 

fossil LDPE) is treated parametrically for each of the bio-based pathways considered. 

 

Indirect demand change in the gasoline market has a higher impact than indirect demand change in 

the LDPE market; this is because gasoline has higher emissions per functional unit than fossil 

LDPE. For corn ethanol, substantial negative indirect demand change is required before RFS2 

targets can be met; even with such indirect demand decreases, corn LDPE remains unable to meet 

the RFS2 20% reduction target, as modeled. For sugarcane ethanol pathways, modest gasoline 

indirect demand increases threaten RFS2 targets, while only relatively large indirect demand 

increases would cause net increase in emissions. For sugarcane LDPE and both switchgrass 

pathways, high levels of indirect demand change could interfere with RFS2 targets, but a net 

increase in emissions is almost never observed in the model (reflecting the high probability of 

negative emissions for these pathways, even excluding fossil product displacement).  
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Figure A.12. Probability that corn ethanol and corn LDPE achieve net GHG emission reductions (“break-even”), 

or the RFS2 renewable biofuel reduction target (20% reduction compared to gasoline) as a function of market-

induced indirect demand change in the fossil product market.  

 

 

Figure A.13. Probability that switchgrass ethanol and switchgrass LDPE achieve net GHG emission reductions 

(“break-even”), or the RFS2 cellulosic biofuel reduction target (60% reduction compared to gasoline) as a 

function of market-induced indirect demand change in the fossil product market.  
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Figure A.14. Probability that sugarcane ethanol and sugarcane LDPE achieve net GHG emission reductions 

(“break-even”), or the RFS2 advanced biofuel reduction target (50% reduction compared to gasoline) as a 

function of market-induced indirect demand change in the fossil product market.  
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A.2.6 Sensitivity to Other Select Assumptions 

Table A.18. Selected assumptions and their impact on main conclusions of the study: 

Category Assumption Impact on Study Conclusions 

General Assumptions   

Choice of product 
LDPE chosen as the reference 

ethylene-based product 

Low impact: stages taking place after the production of 

ethylene are only important for Brazilian production. Products 

with higher electricity requirements would reinforce the 

conclusion that Brazilian bioethylene is preferred to bio-

ethanol. Products with lower electricity requirements would 

result in GHG savings for bioethylene that are similar to the 

savings from bio-ethanol fuel. 

Point estimates 

All pathways contain a small 

number of parameters for 

which uncertainty is not 

modeled 

Underestimation of uncertainty. No model will ever capture 

all uncertainty. Nevertheless, calculated ranges presented here 

are likely to be representative of the modeled pathways. 

Gasoline   

Baseline life cycle emissions 

Life cycle emissions modeled 

as in Venkatesh et al.
198

; 

mean not scaled to match 

EPA reported value 

Low Impact: the mean value employed here is 89 g CO2e/MJ, 

compared to 93 g CO2e/MJ reported by EPA. Calibrating 

gasoline emissions so that the mean matches the EPA reported 

value favors bio-ethanol fuel routes but does not overturn any 

qualitative conclusions. 

Natural Gas LDPE    

Allocation 

Production and processing 

products treated by mass 

allocation 

Low impact: allocation by energy content would slightly 

decrease the emissions from fossil LDPE (increasing the net 

emissions from bio-LDPE) 

Allocation  

Hydrogen from steam 

cracking treated by system 

expansion.  

Moderate impact: treating H2 as fuel slightly increases the 

emissions from fossil LDPE (decreasing net emissions from 

bio-LDPE). Treating H2 by mass allocation (the least 

favorable possible assumption) substantially increases the 

emissions from fossil LDPE such that bio-LDPE is preferred 

over fuel ethanol even for U.S (corn and switchgrass) routes. 
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Allocation 

Non-Hydrogen products from 

steam cracking treated by 

mass allocation 

Low impact: non-hydrogen co-products are very minor 

compared to ethylene. Treatment by (HHV) energy allocation 

would slightly increase the emissions from fossil LDPE 

(decreasing net emissions from bio-LDPE).  

Correlation between well workovers 

and estimated ultimate recovery 
No correlation 

Low impact: correlation would reduce variance, but 

contribution from workovers to final results is minimal 

Lease fuel and plant fuel 

composition 

Composed entirely of CO2 

and CH4 

Low Impact: In 2011, CO2 and CH4 together accounted for 

87.6% of national natural gas content 
212

. The remaining 

composition will be a mixture of inert gasses (like nitrogen, 

argon and helium) and higher hydrocarbons (like ethane, 

propane, butane and pentane). The latter will increase the (per 

unit volume) CO2 emissions while the former will reduce 

them. 

Production site vented and flared gas  All flared 

Under estimation of fossil LDPE emissions. Even if all gas 

were vented (an extreme scenario), emissions for fossil LDPE 

would rise only by about 10% and net emissions for bio-

LDPE would fall by 5 percentage points (expressed as a 

percent of gasoline emissions). 

Displacement of fossil LDPE 
Bio-LDPE replaces ethane-

based LDPE 

Under estimation of fossil LDPE emissions: although ethane 

is the dominant feedstock for U.S. ethylene production, there 

is no guarantee that it will be on the margin (i.e., that this is 

the feedstock bio-LDPE will replace). Heavier feedstocks are 

generally reported to have higher emissions for ethylene 

production, which would therefore decrease net emissions 

from bio-LDPE products. This was discussed in section 1.4.4. 

Displacement of fossil LDPE 
Bio-LDPE replaces fossil 

LDPE on a 1:1 ratio 

 

High impact: market forces make it unlikely that bio-LDPE 

would actually replace fossil LDPE on a 1:1 basis. The sign 

and magnitude of emission changes due to secondary market 

interactions is unclear. This was discussed in section 1.4.4. 

 

Switchgrass Pathways   

Allocation Surplus electricity treated by Moderate impact: system expansion represents the most 
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system expansion optimistic possible assumption for surplus electricity. The 

most pessimistic assumption (no credit for surplus electricity 

has already been discussed). Treating surplus electricity by 

energy content allocation lies in between these extremes.  

Sugarcane Pathways   

Allocation 
Surplus electricity treated by 

system expansion 
Low impact: surplus electricity production is small 
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A.2.7 Cost Analysis 

Production costs for bio-ethanol and bioethylene have been estimated by the International 

Renewable Energy Agency;
184

 where mean and confidence intervals were provided, these data 

were used as the parameters (min, mode and max) for triangular distributions. The cost for fossil 

ethylene was estimated from historical data by subtracting ethane cracker margins from the retail 

price of ethylene as reported by multiple sources.
237-239

 The minimum and maximum values 

obtained from these sources for the period from January 2012 to July 2013 (the latest data 

available) were used to parameterize a uniform distribution.  

 

Gasoline production costs are estimated as the sum of crude oil and refining costs. EIA provides 

monthly data on the components of the average U.S. gasoline price over time.
240

 The data does 

not separate refining costs from refiner margins. Instead, refiner margins were estimated using 

data from the International Energy Agency (IEA).
241

 IEA data is available annually from 2004 to 

2010 and quarterly for 2011. For each U.S. refinery type, the refiner margin is calculated as a 

percent of net product worth (also provided by IEA). For each available time period, the refinery 

margin percentage is simulated as a uniform distribution ranging over all U.S. refinery types. 

This percent markup is then converted back into a dollar value (restricted to positive values) 

using net product worth calculated from the EIA data (averaged across the IEA time periods).
240

 

For each IEA time period, refiner costs are calculated by subtracting these refiner margins from 

the average gross refining contribution to retail gasoline prices reported by EIA for that 

period.
240

 Total refining cost is then simulated as a uniform distribution across the available time 

periods and fitted to a single continuous distribution to reduce computational intensity. Crude oil 

costs are simulated as a uniform distribution spanning the minimum and maximum monthly 

crude oil costs reported by EIA from January 2012 to January 2014.
240

 Finally crude oil and 

refining costs are assigned a correlation of 0.5 based on historical data. 

 

Results of the cost analysis are presented in Figure A.15. Bioethylene (from any source) is 

substantially more expensive to produce than ethane-derived ethylene. In contrast, ethanol, 

particularly from sugarcane, may already be competitive with gasoline.  

 



Appendix A 

205 

 

 

 

Figure A.15. Simulated costs per functional unit. Rectangles show the range of simulated costs and diamonds 

show the mean or best estimate for each feedstock. a) Retail price and feedstock specific cost of production 

for 1.01 kg ethylene. b) Retail price and feedstock specific cost per 46.9 MJ of fuel. 

For each bio-based pathway net GHG savings are combined with cost estimates to simulate an 

implicit carbon price. Results are presented in Table A.19. No value is shown for corn pathways 

as no net GHG savings are achieved. While bio-ethanol appears to be a reasonable GHG 
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mitigation strategy, bioethylene can only be justified (at current production costs) if substantial 

co-benefits are expected. Nevertheless, private investment into bioethylene is already taking 

place.
11,12

 Adopting a more flexible standard in place of RFS2 can only decrease the overall cost 

of compliance, particularly as market prices change and new production technologies evolve. 

 

Table A.19. Implicit Carbon Price for bio-ethanol and bioethylene (90% confidence interval, $/tonne CO2e). 

Confidence interval is formed as a percent of model runs, and may not represent true probability. 

 Corn Sugarcane 

($/tonneCO2e) 

Switchgrass 

($/tonneCO2e) 

Bio-ethanol N/A -200 to 0 0 to100 

Bioethylene N/A 150 to 400 200 to 550 
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Appendix B. Supporting Information for Chapter 3 

B.1. Model and Data 

B.1.1 Fossil Polymer Model  

As described in the main text, production of fossil polymers is modeled using data from a 2011 

report for the American Chemistry Council (ACC), prepared by Franklin Associates.
145

 Energy 

requirements and direct process emissions are reported as industry averages for each unit 

process. These point estimates are supplemented with full distributions previously developed by 

our research group for crude oil extraction and processing,
198

 as well as natural gas extraction 

and processing, along with ethane and naphtha steam cracking (for the production of olefins and 

pygas).
154

 Due to confidentiality requirements, the Franklin Associates report
145

 suppresses 

details for the production of ethylene glycol, and so I model the energy demands for this step 

using the Ecoinvent database.
395

 For several unit processes, the Franklin Associates
145

 include a 

category for ‘recovered energy.’ This represents exported steam, which I assumed displaces 

natural gas (accounting for natural gas boiler efficiency, as per section B.1.12). In the production 

of benzene for PS, a portion of the feedstock is burned for energy, which Franklin Associates
145

 

list as a mass quantity of “internal offgas.” For simplicity, I treat the direct emissions from 

internal offgas as methane (2.75 kg CO2/kg offgas). Upstream emissions (from natural gas 

extraction and processing, or crude oil extraction and refining) are also accounted for on a mass 

basis. These internal offgas emissions are small relative to the total emissions for PS. Steam 

cracking is the only other process to include internal offgas use, which is accounted for as 

described in Posen et al. (2015) (Chapter 2).
154

 Table B.1 presents key parameters and 

distributions used in the fossil polymer model.  

B.1.2 Land Use Change (LUC) 

As explained in Posen et al. (2015) (Chapter 2): All bio-based pathways “have the potential to 

cause emissions through the repurposing of land, either directly or as a consequence of indirect 

market forces. Such emissions may occur over the course of many years, and while there is no 

agreed methodology to account for their impact, LUC emissions are potentially critical to the 

GHG impact of bio-based products.”
154

 Argonne National Laboratory’s GREET model
267

 

includes a carbon calculator for land use change (CCLUB) tool. CCLUB models global land 
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changes induced by the U.S. biofuel mandate,
4
 as predicted by the Global Trade Analysis Project 

(GTAP) general equilibrium model.
396

 The present work assumes that the contribution of bio-

based plastics to land use change will be similar to that of biofuel production (per unit of corn or 

switchgrass diverted). CCLUB contains various options for modeling carbon emissions resulting 

from the GTAP predicted land changes.  

 

For the base case, this chapter models LUC emissions as a distribution that spans the results of 

the main CCLUB scenarios. Details on these scenarios can be found in the CCLUB manual.
397

 

For corn, the updated 2013 modeling scenario is employed. The lower bound (1.8 g CO2e/MJ 

ethanol) comes from using the following options: CENTURY model with default parameters 

(annual yield increases, conventional till, 100cm soil depth considered) for domestic emissions, 

and the Woods Hole model for international emissions. The upper bound (15 g CO2e/MJ 

ethanol) results from using the Winrock model for both domestic and international emissions. 

For switchgrass, the lower bound (-3.8 g CO2e/MJ ethanol) also results from using the 

CENTURY model (with default parameters) for domestic emissions and the Woods Hole model 

for international emissions. The upper bound (31 g CO2e/MJ ethanol) comes from using Woods 

Hole for domestic emissions and either model (Winrock or Woods Hole) for international 

emissions. Using Winrock for domestic emissions would produce an even higher emissions 

result (94 g CO2e/MJ ethanol). This estimate is excluded as it is inconsistent with other existing 

estimates for cellulosic crops,
85

 and appears to be a result of low resolution in the domestic 

(U.S.) model, which treats all agriculture the same, failing to account for the soil carbon 

sequestering properties of deep rooted systems like switchgrass.
380

 Emissions per MJ ethanol are 

converted to emissions per kg feedstock using the ethanol yield assumed in GREET (2.79 gal/bu 

for corn and 80 gal / dry short ton for switchgrass). Further discussion of LUC modeling choices 

is available in sections 0 and B.2.6.  
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B.1.3 Agricultural Operations 

Corn 

The U.S. Department of Agriculture (USDA) releases periodic statistics on the amounts of 

fertilizer used for corn production, by state and by type (nitrogen, phosphate (as P2O5), and 

potash (as K2O)).
279

 Using 2014 data, total fertilizer application of each type is divided by total 

corn production in each state for the same year.
279

 The resulting estimates for each state are then 

weighted by that state’s share of national corn production, and fitted to a continuous distribution 

representing the uncertainty/variability for national fertilizer use intensity. Applications of other 

agrochemicals (CaCO3, herbicides and insecticides), and emissions from feedstock transportation 

are taken from GREET.
267

  

 

The amount of nitrogen in crop residue (above and below ground biomass) is calculated 

following the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National 

Greenhouse Gas Inventories.
225

 Using equation 11.6 of the IPCC guidelines, Area(T) is set to 1, 

Areaburnt(T) to 0, FracRenew(T) to 1, AGDM(T) is fitted to a triangular distribution using table 11.2 

(min: Crop(T)/1000*0.999 + 0.494, mode: Crop(T)/1000*1.03+0.61, max: Crop(T)/1000+0.726), 

and RBG-bio is also fitted to a triangular distribution using table 11.2 (min: 0.163, mode: 0.22, 

max:0.277). For an explanation of these equations and parameters, the reader is directed to the 

source document.
225

. Crop(T) represents annual crop yield in kg dry matter / ha, and is calculated 

as follows. Corn yield for each U.S. state is averaged across 5 years (weighted by corn 

production in each year), from 2010-2014 inclusive.
279

 A continuous distribution is fit across 

these 5-year averages, weighting each state by its total corn production over the 5-year period. 

The resulting distribution for nitrogen in crop residue is approximately normal (mean: 9.88, 

stdev: 0.383) g N / kg dry corn produced.  

 

The USDA recently reported energy use per acre of corn farming, by fuel type, for 2010 corn 

production.
278

 I convert these values to energy use per unit of corn using the distribution for corn 

yield described above. Energy use is a minor contributor to the life cycle GHG emissions from 

corn production, and so uncertainty is not characterized further. Table B.2 presents key 

parameters and distributions used to model corn agriculture. 
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Switchgrass 

Switchgrass is not currently grown in large quantities in the U.S., and so this study is based on 

prospective data. Wullschleger et al. (2010)
280

 compiled estimates for switchgrass yield from 39 

field trials (1190 observations) across the U.S. Using data read off the histogram they provide for 

the higher yielding lowland switchgrass variety, I find that that the yield data is best fit by a 

Weibull distribution. The parameters of the distribution are then adjusted to correspond to the 

mean (12.9 Mg/ha) and standard deviation (5.9 Mg/ha) reported by Wullschleger et al. (2010). 

The distribution is then truncated at the 95% confidence range to eliminate extreme estimates 

that likely do not correspond to repeatable average yields. There are no concrete guidelines for 

the application of nitrogen fertilizer. Wullschleger et al. (2010)
280

 quote a 2005 article calling the 

issue “unsettled” and suggesting that the range is “not narrowing, nor is a central tendency 

developing” 
398

. As a result, a wide range is appropriate; this study assumes a triangular 

distribution, loosely fit to the data presented in Wullschleger et al. (2010),
280

 with mode (100 kg 

N/ha) set to where the authors indicate “a hint of an optimum.”
280

 Using the IPCC Guidelines
95

 

to calculate nitrogen in crop residue, as above, results in an estimate for N2O emissions that is far 

higher than reported by other sources.
167,259,267

 Thus, I instead use an estimate for above and 

below ground nitrogen from GREET 2014 (0.54 g nitrogen / kg switchgrass)
267

 for the base case, 

and retain the IPCC-based distribution (mean: 17 g nitrogen / kg switchgrass) only for the 

sensitivity analysis. Applications of other agrochemicals (K2O, P2O5, and herbicides), on farm 

energy use (diesel and electricity), and emissions from feedstock transportation are taken from 

GREET.
267

 Table B.3 presents key parameters and distributions used to model switchgrass 

agriculture. 

 

Modeling common to corn and switchgrass pathways 

Emissions for the production of each agrochemical type, and CO2 emissions from limestone 

(CaCO3 application) are taken from the GREET model.
267

 Nitrous oxide (N2O) emissions 

resulting from synthetic nitrogen fertilizer application, and from crop residue are estimated using 

distributions fit to the uncertainty ranges provided by the Intergovernmental Panel on Climate 

Change (IPCC) Guidelines for National Greenhouse Gas Inventories.
225

 The combined effect of 

the different modes of N2O production is a mean conversion factor (from N to N2O-N) of 2.2% 
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(with a 90% confidence interval from 1.2%-3.3%) for nitrogen in synthetic fertilizer, and 1.9% 

(with a 90% confidence interval from 0.94%-3.0%) for nitrogen in crop residue. The means of 

these distributions are higher than the ‘default’ factors presented in the IPCC report
225

 (1.2% and 

1.3% respectively) or in GREET (1.5%).
267

 Sections 0 and B.2.6 present results assuming a 

lower value of N2O, consistent with IPCC default values. The higher mean employed here, in the 

baseline model, is a direct result of accounting for uncertainty in the default parameters. Even the 

upper ends of my resulting distributions are still low compared with top-down estimates of N2O 

emissions from agriculture.
399

 Table B.4 presents key parameters and distributions related to 

agrochemicals and field emissions common to both feedstocks.  

B.1.4 Corn Wet Milling 

The corn wet milling (CWM) process is used to separate corn grain into various valuable 

components, including corn starch (for use in PLA and PHB production), corn gluten meal, corn 

gluten feed, and corn oil. I consult multiple sources to estimate distributions for total process 

yield and for the mass of each co-product per unit of corn processed.
262,263,267,400,401

 Akiyama et 

al. (2003)
263

 report yield on the basis of corn oil, corn meal & feed, and glucose. I divide this 

yield of meal & feed into separate categories of corn gluten meal and corn gluten feed, assuming 

the ratio between the two is as reported by other sources.
400,401

 I further assume that the glucose 

weight reported by Akiyama et al. is actually on the basis of starch produced (excluding water 

added during hydrolysis), since otherwise their process implies a loss rate of over 8% - far higher 

than other sources indicate. Corn germ meal (which appears only in the Agri-Footprint 

database
400

) is treated as corn gluten feed. The resulting distributions are presented in Table B.5. 

 

Four data sources are considered for the emissions from the wet milling process.
244,262,263,400

 

Akiyama et al. (2003)
263

 provide CWM primary energy use by fuel type (residual oil, natural 

gas, coal, electricity, others) per kg product, allocated on a mass basis. I convert this to direct 

energy use per kg corn processed using their assumed total product yield (98.7%) and electricity 

conversion efficiency (9.42 MJ / kWh), and then apply our own (stochastic) emissions factors for 

each fuel type. Energy listed as “others” is treated as diesel fuel. The resulting distribution is 

centered around 0.42 kg CO2e/kg dry corn processed.  
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Kim and Dale (2008)
244

 report CWM steam and electricity requirements (3.5kg steam and 0.7 

kWh electricity), along with emissions from chemical inputs (summing to 0.042 kg CO2e), per 

kg PHB. The authors also present the emissions from corn entering the wet mill (965 g CO2e/kg 

PHB) and their emissions factor for corn production (219 g CO2e/kg PHB) from which I estimate 

the total quantity of corn milled to be 4.4 kg corn / kg PHB. This value is used to convert the 

quantities of inputs to a per kg corn (assumed to be dry corn). Applying our own emissions 

factors from steam and electricity (Table B.12), and the authors’ original estimates for chemical 

inputs, I arrive at a distribution centered on 0.32 kg CO2e / kg dry corn processed.  

  

Vink et al. (2015)
262

 report total emissions from their CWM unit process (“dextrose production”) 

to be 0.29 kg CO2e/kg PLA (using mass allocation). They also provide the yield of PLA (10.2 kg 

PLA/bu corn), which I use to convert CWM emissions to a per kg corn processed basis. The 

authors do not present their raw data, and so I am unable to harmonize this emissions estimate 

using our own emissions factor. I do, however, update the global warming potential using the 

following method. Vink et al. (2015)
262

 use characterization factors from CML2001 (April 2013 

update), which lists methane at 25 g CO2e / g CH4.
402

 In a 2010 paper studying the same PLA 

production process,
260

 Vink et al. (2010)
260

 list raw emissions of methane and CO2 separated by 

activity type (fuel production, fuel use, transport, process and biomass). I calculate the ratio of 

CH4 to CO2 from across the fuel production, fuel use, and production process stages (CH4:CO2 = 

0.00478:1 on a mass basis). Assuming the same ratio of gases applies to the results from Vink et 

al. (2015),
262

 I calculate a multiplicative factor (centered around 1.047) by which to update the 

authors’ GWP estimates for each production stage. This factor is stochastic due to the stochastic 

GWP characterization factor employed in the present study. The final distribution for CWM is 

centered on 0.23 kg CO2e / kg dry corn processed. 

 

Finally, the Agri-Footprint database, available in commercial SimaPro software provides 

emissions estimates for CO2, CH4 and N2O from wet mill starch production (“Maize starch, from 

wet milling (starch drying) at plant/US Mass”).
400

 Corn farming emissions from the same 

database (“Maize, at farm/US Mass”) are subtracted from the life cycle starch emissions, to 

obtain emissions unique to the wet mill unit process. The resulting emissions are adjusted for the 
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total CWM product yield (99.6%, based on the Agri-Footprint database) to obtain a distribution 

centered on 0.35 kg CO2e / kg dry corn processed. 

 

Since corn wet milling is a relatively mature technology, I assume that the different estimates 

above represent equivalent processes. Thus, the above estimates are combined into a single 

uniform distribution. The bounds of the uniform distribution are adjusted dynamically to 

correspond to the minimum and maximum realizations from the above distributions. Corn starch 

recovered from the process is assumed to be converted to glucose stoichiometrically (1.11 kg 

glucose / kg starch). Emissions from enzymes for starch hydrolysis are calculated based on 

MacLean and Spatari 2009,
283

 and add approximately 13 g CO2e / kg glucose. Table B.5 presents 

key parameters and distributions related to corn wet milling. 

 

B.1.5 Corn Co-product Treatment 

The mass distribution of co-products from corn wet milling and corn dry milling are described in 

sections B.1.4 and B.1.9, respectively. These are treated alternatively by mass allocation, energy 

allocation, system expansion, or no allocation (i.e. co-products are ignored). The no-allocation 

scenario serves as an upper bound for the degree to which increased use of corn products might 

be responsible for an increase in emissions (i.e. if co-products go unused, or are added to the 

market without displacing any existing products). For the mass and energy allocation scenarios, 

upstream emissions (including corn production) are allocated either to starch (wet milling for 

PLA and PHB production) or directly to ethanol (dry milling, for bioethylene production). The 

energy contents of corn products are listed in Table B.14.  

 

For the system expansion scenarios, an emissions credit is applied for displacement of existing 

commodities. Displacement rates are taken from the GREET 2014 model.
267

 Corn gluten meal 

(CGM) is assumed to displace 1.53 kg corn (15.5% moisture) / kg CGM, and 0.023 kg urea / kg 

CGM. Corn gluten feed (CGF) and corn germ meal are assumed to displace 1 kg corn (15.5% 

moisture) / kg CGF and 0.015 kg urea/kg CGF. Corn oil is assumed to displace soybean oil at a 

rate of 1 kg soybean oil / kg corn oil. Distillers dried grains and solubles (DDGS), from dry 

milling, are assumed to displace 0.78 kg corn (15.5% moister) / kg DDGS, 0.31 kg soybean meal 
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/ kg DDGS and 0.023 kg urea/kg DDGS. Emissions from displaced corn are modeled as 

described in sections B.1.2 and B.1.3 above. Emissions from displaced urea are taken directly 

from GREET.
267

 Emissions for displaced soy oil and soybean meal are based on GREET, but 

with our own distribution for N2O emissions from fertilizer and crop residue, as described in 

section B.1.3. GREET offers a choice of methods for treatment of soy co-products (system 

expansion, energy allocation, mass allocation, and economic allocation). The choice does not 

substantially affect the final results, and so I take an average across these models. Additional 

details are available in Table B.5. 

 

B.1.6 Switchgrass Pretreatment and Saccharification 

The sugars in switchgrass are predominantly in a more recalcitrant form (cellulose) than the 

sugars in corn grain (starch). As a result, switchgrass must undergo a pretreatment process to 

activate the cellulose, followed by enzymatic hydrolysis (saccharification) to liberate the sugars. 

A range of pretreatment technologies have been proposed.
403,404

 Dilute acid pretreatment was 

selected for this study based on its near-term potential, and high data 

availability.
259,261,267,283,284,405

 Emissions from chemical and enzyme inputs are calculated 

alternately from MacLean and Spatari (2009)
283

, and from the GREET 2014 pretreatment 

module.
267,405

 Data in GREET is presented per tonne of sugar; I convert the data to emissions per 

tonne of feedstock input using a value of 0.53 kg sugar / kg dry switchgrass, which I calculate 

using the values for switchgrass composition and yield of sugars assumed in GREET (tables 1 

and 4 of Adom et al. 2014
405

). The resulting estimates are centered on 53 g CO2e/kg dry 

feedstock (based on MacLean and Spatari (2009)
283

) and 93 g CO2e/kg dry feedstock (based on 

GREET
267,405

); the latter is stochastic due to uncertainty in GWP for CH4 and N2O. The present 

study uses these two estimates as the bounds of a uniform distribution representing emissions 

from switchgrass pre-treatment and saccharification.  

 

Energy requirements for pretreatment prior to ethanol production are taken into account 

implicitly, as described in B.1.9. For PLA and PHB production, pretreatment energy is modeled 

as follows. GREET provides natural gas and electricity requirements for the production of sugar 

from switchgrass as a stand-alone process (5.4 MJ natural gas/kg sugar and 0.28 MJ electricity / 
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kg sugar, respectively). These are converted to energy requirements per kg switchgrass input as 

above. Natural gas requirements are converted to direct steam energy, using the 80% efficiency 

assumed in GREET. The resulting estimates are 0.15 MJ electricity and 2.3 MJ steam. As noted 

in Adom et al. 2014,
405

 the process simulations underlying the energy estimates in GREET do 

not account for heat integration, and should be viewed as an upper bound. To account for the 

potential benefits of heat integration, a second estimate of energy requirements is derived from 

Laser et al. (2009).
284

 The authors provide base-case steam and power requirements for 

feedstock handling and pre-treatment as a percent of the energy in the incoming switchgrass 

feedstock (6.96% for steam and 0.98% for power). I convert these to energy requirements per 

unit mass of treated feedstock (1.3 MJ steam / kg switchgrass and 0.18 MJ electricity / kg 

switchgrass). These estimates are combined with those derived from GREET to arrive at uniform 

distributions for heat and electricity as presented in Table B.6.  

 

I model emissions from switchgrass pretreatment and saccharification per kg feedstock and then 

convert to emissions per kg sugar as follow. Switchgrass composition (glucan, xylan, mannan, 

galactan, arbinan and lignin) is modeled as in Mullins et al. (2011).
74

 Mass balance is maintained 

by allowing the non-sugar, non-lignin portion (%w) of switchgrass to vary in function of the 

modeled sugar and lignin composition. Yields of sugar from cellulose and hemicellulose are split 

into 2 scenarios: near-term (lower) and mid-term (higher) yields, as per Spatari and MacLean 

(2010).
283

 For PLA and PHB, only the mid-term yield model is considered. Table B.6 presents 

key parameters and distributions related to switchgrass scenarios. 

 

B.1.7 PLA Fermentation and Polymerization 

As discussed in the main text, PLA downstream production steps are split into distinct cases. 

These cases are described in detail below. 

 

Case 1 

Case 1 is based on the data provided by Groot and Boren (2010).
251

 The original paper relates to 

sugarcane-based PLA production in Thailand, but provides insight into chemical and energy 

requirements for PLA production regardless of the original sugar source. The authors provide 
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data on farm land allocated to PLA production (2,081 m
2
/ metric tonne PLA) and sugarcane 

yield (57 tonnes/ha year), from which I calculate 11.9 tonnes of sugarcane/tonne PLA. Because 

land use was also partially allocated to molasses, it is necessary to de-allocate before calculating 

the quantity of sugar this represents. Groot and Boren (2010) assume that each metric tonne of 

sugar is co-produced with 463 kg of molasses.
251

 They perform economic allocation based on the 

2006 Thai selling prices of sugar and molasses (no citation given), which I retrieve from a 

USDA report.
406

 I calculate the allocation factor for sugar to be 89.6%, from which I calculate 

13.2 kg sugarcane / kg PLA (before allocation). Finally, using data on sugar production, as 

reported by Groot and Boren (2010)
251

 (9,653 kg sugarcane / tonne sugar), I estimate sugar input 

to be 1.37 kg / kg PLA. 

  

For the actual PLA production step, Groot and Boren (2010)
251

 provide data on GHG emissions 

from chemical production and supporting processes (lime, H2SO4, auxiliary chemicals and waste 

water treatment), which I use without modification (sum: 0.87 kg CO2e/kg PLA). Using the 

authors’ reported steam emissions (689 kg CO2e/tonne PLA), together with their data source for 

boiler emissions,
407

 I estimate primary natural gas use to be between 9 and 10 MJ LHV / kg PLA 

(represented as a uniform distribution in the present study). To estimate electricity use, I start 

with emissions, reported by Groot and Boren (2010)
251

 as 610 kg CO2e/tonne PLA. Using figure 

5 of that study, I estimate a change of 8.6 kg CO2e/tonne PLA, for each 1 kWh change in 

electricity export per tonne sugarcane. Based on the allocated sugarcane input (11.9 tonne 

sugarcane/tonne PLA), I extrapolate that the authors’ employed an electricity emissions factor of 

0.72 kg CO2e/ kWh. From this, I calculate process electricity requirements to be 846 kWh 

electricity/tonne PLA. Applying our own emissions factors for electricity and natural gas, I 

estimate a distribution for PLA production (unit process) centered on 2.3 kg CO2e/kg PLA (for 

scenarios without internal energy generation from fermentation residues) 

 

Cases 2-4 

Case 2 is based on data provided by Vink et al. (2015).
262

 The authors present data related to the 

corn wet mill which suggest that 10.2 kg of PLA can be produced from 14.3 kg of starch. 

Assuming a stoichiometric conversion from starch to sugar, I calculate a required sugar input of 

1.6 kg glucose / kg PLA. The study further provides GHG estimates for each of the main 
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production steps: lactic acid production (1.16 kg CO2e / kg PLA), lactide production (0.54 kg 

CO2e/kg PLA) and polymer production (0.20 kg CO2e/kg PLA). These values are updated to 

reflect the GWP of methane used in this chapter, as described in section B.1.4. The resulting 

distribution for PLA production (unit process) is centered around 2.0 kg CO2e/kg PLA (for 

scenarios without internal energy generation from fermentation residues).  

   

Corn Cases 3 and 4 are based on Vink et al. (2015)
262

 for lactic acid production (as in case 2), 

together with data from Sakai et al. (2004)
264

 on energy use for lactic acid polymerization (via a 

lactide intermediate). Sakai et al. (2004) estimate polymerization electricity requirements (1.71 

kWh electricity / kg PLA) based on lab-scale data, which is used to parametrize case 3. They 

argue that their process (which also includes steps upstream of polymerization) could be 

improved substantially by using steam heat instead of electricity. As a bounding scenario, I 

model case 4, using the polymerization energy requirements of Sakai et al. (2004),
264

 assuming 

that 100% of the energy is provided by steam heat. Table B.8 presents key parameters and 

distributions related to PLA production cases. 

B.1.8 PHB Fermentation and Recovery 

As discussed in the main text, PHB downstream production steps are split into distinct cases. 

These cases are described in detail below. 

 

Case 1 

Case 1 is based on Harding et al. (2007).
247

 The study is based on a prior laboratory study, with 

an observed polymer yield of 0.36 kg PHB/kg substrate. Harding et al. (2007)
247

 later report 

sucrose requirements of 1.81 kg/kg PHB, which implies a polymer yield of 0.55 kg PHB / kg 

sugar. This is substantially higher than the yield from their main data source or from other 

studies in their literature review, and surpasses the theoretical maximum yield (0.48 kg PHB/kg 

sugar) discussed in Akiyama et al. (2003).
263

 Therefore, in the present study, I assume 0.36 kg 

PHB / kg sugar, which is in line with the other cases reviewed here. 

 

Harding et al. (2007)
247

 provide data on steam use (4.89 kg steam / kg PHB), electricity use (3.94 

MJ/kg PHB), and natural gas use (2.12 MJ/kg PHB). In addition the authors provide data on 
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hydrogen peroxide and a list of other inputs which together are responsible for 4.6% (0.12 kg 

CO2e/kg PHB) of their reported process GHG emissions. I apply our own emissions factors for 

steam, electricity and natural gas, and add the emissions from other inputs to obtain a distribution 

centered on 2.3 kg CO2e/kg PHB (for scenarios without internal energy generation from 

fermentation residues). 

 

Case 2 

Case 2 is based on case 10 presented in Akiyama et al. (2003).
263

 The authors report primary 

energy for steam and electricity, as well as energy intensity of steam and electricity production, 

which I use to calculate direct energy use (6.88 MJ electricity and 4.11 kg steam), to which I 

apply our own emissions factors. The authors also provide emissions from NH3 production, 

cooling water, sodium dodecylsulfate (SDS) production, and NaOCl production (amounting to 

0.23 kg CO2e / kg PHB). I exclude their estimates of fermentation emissions (which are biogenic 

in origin), and emissions from glucose production (which I account for separately). My resulting 

distribution is centered on 2.9 kg CO2e/kg PHB (for scenarios without internal energy generation 

from fermentation residues). 

 

Case 3 

Case 3 is based on case 9 presented in Akiyama et al. (2003).
263

 The authors report primary 

energy for steam and electricity, as well as energy intensity of steam and electricity production, 

which I use to calculate direct energy use (4.48 MJ electricity and 3.96 kg steam), to which I 

apply our own emissions factors. The authors also provide emissions from NH3 production, 

cooling water, SDS production, and NaOCl production (amounting to 0.20 kg CO2e / kg PHB). 

As for case 2, I exclude their estimates of fermentation emissions and emissions from glucose 

production. My resulting distribution is centered on 2.2 kg CO2e/kg PHB (for scenarios without 

internal energy generation from fermentation residues). 

 

Case 4 

Case 4 is based on Kim and Dale (2008).
244

 The authors model a system based on no-tilled corn, 

and which relies heavily on renewable energy. These elements are removed for the present study. 

As discussed in section B.1.4, I estimate that the net process yield is 4.4 kg corn / kg PHB for the 
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Kim and Dale (2008) study.
244

 Additionally, the authors summarize corn wet mill yields ranging 

from 0.64 to 0.68 g glucose / g corn grain, across studies – the lower bound of which is likely 

from the Kim and Dale (2008) study. This implies a yield of PHB of 0.35-0.36 kg PHB/kg 

glucose, consistent with other details given in their supporting information.  

 

The study provides details regarding the steam and electricity use for PHB production (11.5 kg 

steam / kg PHB and 1.2 kWh / kg PHB, respectively), to which I apply our own emissions 

factors. Additional emissions from water, potassium hydroxide and ammonia production 

(amounting to 0.25 kg CO2e/kg PHB) are used without modification. Finally, the authors indicate 

a credit of 9.2 MJ/ kg PHB which result from the combustion of fermentation residues from corn. 

In the present study (corn pathway only) this is assumed to displace primary energy for steam 

production. My resulting distribution (for the corn-based pathway) is centered on 3.2 kg CO2e/kg 

PHB. 

 

Case 5 

Case 5 is based on Gerngross (1999).
246

 The study assumes a yield of 0.3 kg PHB / kg glucose. 

The author further presents data on electricity (5.3 kWh/kg PHB), steam (2.8 kg / kg PHB), and 

inorganic salts (0.15 kg / kg PHB). I apply our own emissions factors to the steam and electricity 

generation. I treat inorganic salts as their primary constituent, ammonia, with an emissions factor 

(1.68 kg CO2e/kg NH3) taken from Akiyama et al. (2003).
263

 The resulting distribution is 

centered on 5.8 kg CO2e/kg PHB (for scenarios without internal energy generation from 

fermentation residues).  

 

Full distribution 

The ‘full distribution’ scenario encompasses input parameters from each of the other five cases, 

as summarized in Table B.7. To account for potential correlation between steam and electricity 

use, the model first calculates total process energy use, without differentiating between steam 

and electricity. This value ranges from a low of 15 MJ/kg PHB in case 2 to a high of 35 MJ/kg 

PHB in case 4. A separate distribution then models the split between electricity and steam, 

ranging from a low of 28% steam (72% electricity) from case 5, to a high of 88% steam (12% 
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electricity) from case 4. Table B.7 presents key parameters and distributions related to PHB 

production cases. 

 

B.1.9 Bioethylene Production 

Bioethylene is produced via the dehydration of bioethanol. Bioethylene production from ethanol 

is modeled as in Posen et al. (2015) (Chapter 2),
154

 based on Kochar et al. (1981),
180

 Haro et al. 

(2013),
408

 and Geisler et al. (2005)
227

. Ethylene is difficult to transport, and so it is assumed that 

bioethylene will be produced adjacent to conventional chemical manufacturing capabilities, 

rather than at the biorefinery. Emissions from ethanol production are modeled as follows.  

 

Corn 

Mueller and Kwik (2013) report average fuel use, electricity use, ethanol yield, and co-product 

yield (of dried distillers grains (DDG) and corn oil) from an assessment of over half the 

operating dry mill corn ethanol facilities in the United States.
281

 I fit fuel use, electricity use and 

ethanol yield to normal distributions, assuming the same coefficients of variation as can be 

calculated from Mueller’s 2010 report on the 2008 dry mill corn ethanol survey.
282

 Reported co-

product yields violate mass balance, and so I adjust these downward (dynamically) as follows. I 

assume that corn starch yields a 1:1 stoichiometric quantity of glucose under hydrolysis (1.11 kg 

glucose / kg starch), and that glucose yields a stoichiometric quantity of ethanol (0.511 kg 

ethanol / kg glucose
74

). Thus, the theoretical maximum yield of ethanol is 0.568 kg ethanol / kg 

starch (1.76 kg starch / kg ethanol). I assume that corn oil and DDG are always produced in the 

same ratio (0.53:15.73) as reported by Mueller and Kwik (2013),
281

 in quantities set to restore 

mass balance on the corn feedstock, assuming 100% product yield from the dry mill. I assume 

that corn ethanol will be transported by truck from the Midwest to the Gulf Coast. 

 

Switchgrass 

Heat and electricity requirements are modeled as in Posen et al. (2015) (Chapter 2),
154

 based on 

Mullins et al. (2011).
74

 These include energy requirements for pretreatment. Starting with sugars 

available after pretreatment and saccharification (section B.1.6), ethanol yield is modeled as in 

Spatari and MacLean (2010)
261

, again following the 2 scenarios (near-term/lower yields and mid-
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term/higher yields) laid out by those authors. Table B.9 presents key parameters and distributions 

related to bioethylene production cases. I assume that switchgrass ethanol will be transported by 

truck from the Southeast to the Gulf Coast. 

 

B.1.10 Additional Details for Switchgrass Scenarios  

The sugars liberated during switchgrass pretreatment and saccharification are processed into 

PLA, PHB or ethanol using the assumptions documented in sections B.1.7, B.1.8 and B.1.9. The 

use of fermentation residues as an internal energy source is a modeling decision for the 

switchgrass pathways. As a result, only case 1 is considered for PLA, since energy requirements 

are not specifically known for PLA fermentation in cases 2-4. For all PLA and PHB pathways 

considered, I assume that the mass yield from the mix of available switchgrass sugars is the same 

as the mass yield from glucose (e.g. for PLA case 1, I assume 1.37 kg sugar / kg PLA). This is a 

somewhat optimistic assumption, but is consistent with the prospective nature of the switchgrass 

pathways. For consistency with these optimistic downstream yield assumptions, PHB and PLA 

pathways consider only the higher yielding ‘mid-term’ yield of sugars from pre-treatment, 

discussed in section B.1.6.  

 

In the base case, I further assume an optimistic/bounding scenario, in which all feedstock is 

either transformed into product (PLA, PHB or ethanol) or is available for energy generation. 

Based on the stoichiometry of the reactions, theoretical maximum yields are 0.800 kg PLA / kg 

sugar, 0.477 kg PHB / kg sugar, 0.511 kg ethanol / kg sugar. Stoichiometries for these reactions 

can be found in references,
74,262,263

 respectively. I use these yields to calculate quantities of 

unfermented monomeric sugars, which I combine with quantities of unhydrolized sugars from 

pretreatment, and the non-sugar components of switchgrass. Distributions for available feedstock 

energy are centered on values ranging from 10.3 MJ/kg PLA (case 1), to between 41 and 58 MJ / 

kg PHB (bounded by cases 2 and 5), to between 25 and 75 MJ/kg ethanol (mid-term and near-

term yield scenarios respectively). A less optimistic scenario for available feedstock energy is 

considered in B.2.6. Table B.6 presents key parameters and distributions related to switchgrass 

scenarios; energy densities for switchgrass components are listed in Table B.14. 
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I develop a number of scenarios to account for surplus biomass. These include disposal (no 

energy generated), steam generation, or steam and electricity generation. Scenarios are also 

considered both with and without credits for surplus energy (steam for the steam-only case, or 

electricity for the steam and electricity case). To determine plant-level energy requirements, I 

assume that pretreatment, fermentation and recovery (to PLA, PHB or ethanol) occur at the same 

facility. Ethanol dehydration to ethylene is treated as a stand-alone step. Ethylene is difficult to 

transport, and so it is assumed that bioethylene will be produced adjacent to conventional 

chemical manufacturing capabilities, rather than at the biorefinery. Nevertheless, scenarios with 

credit for surplus steam and electricity can be thought of as partially displacing the requirements 

for bioethylene production.  

 

For steam-only cases, boiler efficiency ranges from 68% to 75% (higher heating value basis), 

consistent with typical biomass boilers.
305,306,308

 For steam and electricity generation, I assume 

the use of a combined heat and power (CHP) plant (steam turbine) with the same boiler 

efficiency as above, and with generator efficiency ranging from 85% 
409

 to 96% 
410

 (modeled as a 

uniform distribution). When internal energy is used, I assume first that internal steam demand 

(for pre-treatment and either PLA, PHB or ethanol production) is met, and then allow additional 

steam energy to be used for electricity generation or for export, depending on the scenario. For 

scenarios with electricity generation, I assume the power:heat ratio cannot exceed 1:3 (i.e. no 

more than 25% of the available energy may be extracted as electricity).
411

 Steam export is given 

an emissions credit for displaced natural gas, assuming a stochastic natural gas boiler efficiency 

as above. For scenarios that include electricity production, I assume first the internal electricity 

demands (for pretreatment and either PLA, PHB or ethanol production) are met before allowing 

electricity export. Exported power is given a credit for displaced electricity using the grid 

average electricity emissions (before line losses). Scenarios with both steam and electricity 

export exist when there is still leftover steam, even after accounting for process steam 

requirements and maximal generation of electricity. In contrast, certain scenarios have energy 

demands that outstrip the maximum energy provided by biomass residues. These additional 

energy requirements are assumed to come from conventional sources (grid electricity and natural 

gas fuel), with the exception of a switchgrass fuel scenario in which additional energy is 

provided by combustion of whole switchgrass. Combustion of whole switchgrass is assumed to 
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take place in the same CHP plant described above. Importing switchgrass for additional energy 

needs is equivalent to representing lower yield scenarios, which are not modeled explicitly for 

PLA and PHB as they are for the ‘near-term’ ethanol pathway. 

 

B.1.11 End of Life (EOL) 

Base-case results are presented on a cradle to gate basis. They include a credit for the carbon 

sequestered in PLA (1.8 kg CO2 / kg PLA), PHB (2.0 kg CO2 / kg PHB) and bioethylene (3.1 kg 

CO2 / kg ethylene), determined based on the chemical formula (carbon content) of each product. 

EOL emissions are treated separately as additional emissions, relative to the cradle to gate 

baseline. I model disposal of conventional polymers (including bioethylene-based polymers) 

following the U.S. Environmental Protection Agency (EPA) Waste Reduction Model 

(WARM).
268

 Conventional polymers and PLA are assumed to be inert under landfill conditions. 

Thus, landfilling is assumed to generate emissions of 0.04 metric tonnes (Mt) CO2e / short ton 

plastic (0.044 kg CO2e/kg plastic), related only to landfill machinery and transportation of waste 

to the landfill.
268

 

 

For the incineration option, I assume combustion proceeds with 100% efficiency; CO2 emissions 

are calculated based on the chemical composition of each polymer. Yu and Chen (2008)
412

 

provide the energy content of PHB. The energy contents of all other polymers are taken from the 

EPA WARM documentation.
268

 The incineration facility is assumed to be equipped with energy 

recovery capabilities, generating electricity at a net efficiency of 17.8%.
268

 I assume that 

electricity produced displaces grid electricity at the national average emissions factor (before line 

losses). Transportation of waste to the incinerator is assumed to add 0.03 Mt CO2e / short ton 

plastic (0.033 kg CO2e/kg plastic).
268

 

 

Recycling is modeled following the EPA WARM model.
268

 Estimates are available only for PET 

and HDPE, as these are the only polymers recycled in large quantities in the U.S. Transportation 

is assumed to add 0.2 Mt CO2e / short ton plastic (0.22 kg CO2e/kg plastic). Recycling process 

emissions amount to 0.35 Mt CO2e/ short ton HDPE (0.39 kg CO2e/kg HDPE), and 0.77 Mt 

CO2e/ short ton PET (0.85 kg CO2e/kg PET). HDPE is assumed to be recycled with 86% 
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efficiency (i.e. 0.86 kg product / kg waste), and to displace virgin HDPE. PET is assumed to be 

recycled with 89% efficiency, and to displace virgin PET. All plastics considered in this study 

are known to be recyclable, although potentially with some deterioration in mechanical 

properties.
413,414

 Thus, for all other polymers, I create scoping estimates using uniform 

distributions for process emissions and recycling efficiency that span the range for HDPE and 

PET. Each recycled plastic is given a credit for displacing virgin production of the same polymer 

type.  

 

An additional option, composting, is available for PHB and PLA. Following EPA WARM, I 

assume that process emissions (for transportation and fuel to turn the compost pile) amount to 

0.04 Mt CO2e/ short ton plastic (0.44 kg CO2e/kg plastic).
268

 I further assume that 90% of the 

carbon content of the plastic is lost as CO2, resulting from 44% loss during composting, and only 

18% of the remaining carbon being sequestered in soil.
244

 Emissions from composting could be 

even higher than modeled if anaerobic conditions are present, resulting in methane emissions. 

Compost is frequently used as a soil amendment, and so I also considered whether compost 

should receive an emissions credit for displacing other product systems. After engaging in a 

personal correspondence with the managers of a large compost facility, I concluded that compost 

generally does not provide a replacement service for any existing market products. Thus, the 

only basis for allocation would be based on economic value; however, compost facilities 

typically receive tipping fees, suggesting that the waste input to these facilities have negative 

economic value and thus there is no appropriate allocation. 

 

Finally, I use data relating to the anaerobic biodegradation of a PHB co-polymer (Poly(3-

hydroxybutyrate-co-3-hydroxyoctanoate))
269,270

 to estimate generation of CO2 and CH4 from 

landfilled PHB. Mineralization of PHB is modeled as a triangular distribution (min: 41.1%, 

mode: 42%, max: 52.5%), based on data presented in Federle (2002).
269

 Following Levis and 

Barlaz (2011),
270

 I calculate the methane fraction of released carbon to be 56.3%, using the 

Buswell equation, cited in Parkin and Owen (1986).
415

 The remainder of the mineralized carbon 

is assumed to be generated as CO2. I model oxidation of uncollected methane as a triangular 

distribution (min: 10%, mode: 10%, max: 40%) based on Levis and Barlaz (2011).
270

 For 

landfills with a gas collection system installed, I model collection efficiency as a triangular 
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distribution (min: 59.2%, mode: 64.8%, max: 78.8%) following a range of scenarios presented in 

the EPA WARM documentation.
268

 All collected methane is assumed to be combusted with 

100% efficiency. For landfills with energy recovery in place, I assume an electricity generation 

efficiency of 29.2%.
268

 Finally, the proportion of landfills with gas collection, and the proportion 

of landfills with energy recovery are modeled following Levis and Barlaz (2011).
270

 I report 

results for a 90% confidence interval, based on the simulation parameters described above. Key 

parameters and distributions related to EOL can be found in Table B.11 and Table B.10.  

 

B.1.12 Fuels and Electricity 

As in Posen et al. (2015) (Chapter 2),
154

 emissions from grid electricity are modeled at the level 

of individual North American Reliability Corporation (NERC) regions,
208

 employing 

distributions that span the range of available literature estimates.
267,272-275

 Consistent with 

existing production,
230,260

 corn-based processes are assumed to take place in the Midwest (MRO) 

region. Switchgrass-based processes are assumed to take place in the south/southeast region 

spanned by SPP, SERC and TRE reliability corporations, consistent with EPA projections.
128

 I 

assume that conventional chemical and plastics production (as well as bioethanol dehydration to 

bioethylene) take place in TRE/SERC, a region that includes the U.S. gulf coast and covers a 

majority of U.S. payroll and jobs in plastics manufacturing and petrochemical manufacturing.
276

 

Electricity displaced from end of life incineration is modeled at the U.S. national average. In 

general, electricity emissions are modeled as delivered electricity (after line losses). When 

electricity is exported, displaced emissions are adjusted downward to reflect emission factors 

before transmission line losses. Line losses for the U.S. Eastern Interconnect are modeled as 

5.82% (for switchgrass surplus electricity), and 6.18% for the U.S. national average (for end of 

life incineration electricity credits).
365

  

 

Emissions from other conventional fuels are discussed in the main text. For this chapter, the 

distribution for emissions from natural gas is modified from the original source
266

 as follows. 

The @Risk
TM 

software used in the present study does not have the ability to model a generalized 

extreme value distribution as recommended by Tong et al. (2015)
266

 for upstream emissions. 

Instead, a Pearson V distribution provides a close fit to the original authors’ recommended 
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distribution. Further, the present work considers large industrial facilities that would likely 

receive natural gas directly from transmission lines, and so I remove emissions from natural gas 

distribution, as fit to the parameters for distribution emissions provided in Tong et al.
266

 Finally, 

I model combustion as per the original source for Tong et al.
95,201,266

 

 

When energy requirements are cited in terms of steam energy, I assume that steam is generated 

from natural gas combustion. When a data source presents only the mass of steam required, I 

assume it is at atmospheric pressure, with an energy content of 2.68 MJ/kg steam. Following 

Abrahams et al. (2015),
265

 natural gas (HHV) boiler efficiency is modeled as a triangular 

distribution (min: 70%, mode: 80%, max: 94%). Biomass boilers are assumed to be between 

68% and 75% efficient (HHV), for as-received (wet) biomass.
305,306,308

 Table B.12 presents key 

parameters and distributions related to fuels and electricity. 

 

B.1.13  Model Parameters 

The following tables present a list of the key parameters for each of the models developed in this 

chapter.  
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Table B.1. Summary of key parameters for fossil polymer production  

Parameter Value or Distribution Units Source and notes 

Upstream processes    

Crude oil extraction 
Pearson5 (7.1, 1.7, 0.049) 

(mean: 0.33, CI
a
: 0.18-0.65) 

kg CO2e / kg crude oil Fitted to underlying model 

from 
198

  
Crude oil refining Normal (0.42, 0.042) kg CO2e / kg refined product 

Natural gas extraction 
mean: 0.25, CI

a
: 0.194, 0.345 

(Approx: Pearson5 (14.5, 2.11, 0.098)) 
kg CO2e / kg wet gas 

Approximate fit; actual 

model as described in 
154

 
Natural gas processing 

mean: 0.074, CI
a
: 0.013, 0.367 

(Approx: Pearson5 (3.25, 0.28, -0.0237)) 
kg CO2e / kg processed gas 

    

Ethylene glycol inputs    

Ethylene oxide 0.710 
kg ethylene oxide / kg 

ethylene glycol 

Calculated from 

stoichiometry 

Electricity 0.391 kWh / kg ethylene glycol ref 
395

 
    

Other unit processes    

Energy requirements  

(by fuel type) 
Various Various ref 

145
 

Distributions are written as: Normal (mean, stdev), Pearson5 (shape, scale, shift) – this is a Pearson type V distribution 

(a) 95% confidence interval (CI) 
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Table B.2. Summary of key parameters for corn agriculture  

Parameter Value or Distribution Units Source and notes 

Corn    

LUC emissions Uniform (18,159) g CO2e/ kg dry corn Based on the GREET CCLUB model 
267

 

Crop yield 
Extreme value min (161, 13.9) 

(mean: 153, CI
a
: 110,180) 

bu / acre 
Own analysis of USDA data 

279
; used to 

calculate N in crop residue, and fuel use/bu 

Nitrogen applied 
Exponential (0.0391, 0.353) 

(mean: 0.392, CI
a
: 0.35, 0.50) 

kg N / bu 

Own analysis of USDA data 
279

 
Phosphate applied Triangular (0.093, 0.093, 0.23) kg P2O5 / bu 

Potash applied Uniform (0.029, 0.25) kg K2O / bu 

CaCO3 applied 1150 g CaCO3 / bu 

ref 
267

 Herbicides applied 7 g / bu  

Insecticides applied 0.06 g / bu 

Nitrogen in crop residues approx: Normal (9.88, 3.83) g N / kg dry corn 
Based on 

225
; actual distribution is 

described in section B.1.3. 

Gasoline used 
1.9 

(250) 

gallons / acre 

(MJ HHV / acre) 

ref 
278

 

Diesel used 
5.2 

(750) 

gallons / acre 

(MJ HHV / acre) 

LPG used 
1.7 

(160) 

gallons / acre 

(MJ HHV / acre) 

Natural gas used 
0.2 

(230) 

MCF / acre 

(MJ HHV / acre) 

Electricity used 30.4 kWh / acre 

Feedstock transportation 

410 

0.706 

0.007 

g CO2 / bu 

g CH4 / bu 

g N2O / bu 

ref 
267

 

Distributions are written as: Uniform (lower, upper), Extreme value min (location, scale), Exponential (mean, shift), Triangular (lower, mode, upper), 

Normal (mean, standard deviation) 

(a) 95% confidence interval (CI)  
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Table B.3. Summary of key parameters for switchgrass agriculture  

Parameter Value or Distribution Units Source and notes 

LUC emissions Uniform (-27,220) g CO2e/ kg dry SW 
Based on the GREET CCLUB 

model 
267

 

Crop yield 
Weibull (2.8, 17.4, -2.69, [3.0,25.6]) 

(mean: 12.8, CI
a
: 4, 23.4) 

Mg dry matter / ha 
Based on 

280
 

Nitrogen applied Triangular (0, 100, 180) kg N / ha 

Nitrogen in crop residue 0.54 g N / kg dry SW ref
267

 

P2O5 applied 
114 

(0.251) 

g / short ton dry SW 

(g / kg dry SW) 

ref
267

 

K2O applied 
227 

(0.125) 

g / short ton dry SW 

(g / kg dry SW) 

Herbicides applied 
31.8 

(0.0351) 

g / short ton dry SW 

(g / kg dry SW) 

Diesel used 
18700 

(0.218) 

Btu/short ton dry SW 

(MJ HHV / kg dry SW) 

Electricity used 
14500 

(0.0169) 

Btu/short ton dry SW 

(MJ electricity / kg dry SW) 

Feedstock transportation 

13700 

23.8 

0.205 

 

(15.1) 

(0.0262) 

(2.3 E-4) 

g CO2 / short ton dry SW 

g CH4 / short ton dry SW 

g N2O / short ton dry SW 

 

(g CO2 / kg dry SW) 

(g CH4 / kg dry SW) 

(g N2O / kg dry SW) 

Distributions are written as: Uniform (lower, upper), Weibull (shape, scale, shift, [truncation bounds]), Triangular (lower, mode, upper), Beta (α, β, 

[lower bound, upper bound]) 

(a) 95% confidence interval (CI) 
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Table B.4. Summary of key emission factors for agrochemicals 

Parameter Value or Distribution Units Source and notes 

Agrochemicals    

Nitrogen fertilizer production 0.465
a
 kg CO2e / kg N 

Calculated from 
267

 

CaCO3 Production 0.0137
a 

kg CO2e / kg CaCO3 

K2O Production 0.661
a
 kg CO2e / kg K2O 

P2O5 Production 1.53
a
 kg CO2e / kg P2O5 

Herbicides 19.3
a
 kg CO2e / kg herbicide 

Insecticides 22.3
a
 kg CO2e / kg insecticide 

Direct CO2 emissions from 

CaCO3 
0.216 kg CO2 / kg CaCO3 

Direct N2O from synthetic 

fertilizer and crop residue 
Triangular (0.003, 0.01, 0.03) kg N2O-N/kg N applied 

ref
225

 

Volatilization from synthetic 

fertilizer 
Triangular (0.03, 0.1, 0.3) 

(kg NH3-N + kg NOx-N) 

/kg N 

Indirect N2O from volatized N Triangular (0.002, 0.01, 0.05) 
kg N2O-N 

/ (kg NH3-N + kg NOx-N) 

Runoff/Leaching of N from 

synthetic fertilizer and crop 

residue 

Triangular (0.1, 0.3, 0.8) kg N runoff / kg N applied 

Indirect N2O from runoff Triangular (0.0005, 0.0075, 0.025) kg N2O-N/kg N runoff 

Distributions are written as: Triangular (lower, mode, upper) 

(a)
 
Mean values (point estimate or distribution bounds) are shown. Actual values are stochastic due to uncertainty in GWP. 
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Table B.5. Summary of key parameters for corn wet milling and co-product treatment 

Parameter Value or Distribution Units Source and notes 

Corn gluten meal yield Triangular (0.052, 0.056, 0.068) kg / kg dry corn processed 
Lower bound: 

263
, upper bound: 

267
, modal 

cluster: 
262,400,401

 

Corn gluten feed yield Uniform (0.21, 0.29) kg / kg dry corn processed Lower bound: 
263

, upper bound: 
267

 

Corn oil yield Uniform (0.033, 0.054) kg / kg dry corn processed Lower bound: 
262

, upper bound: 
267

 

Total process yield Uniform (98.7, 99.6) % % of dry corn processed Lower bound: 
263

, upper bound: 
401

 

Starch yield approx. Triangular (0.58, 0.64, 0.70) kg / kg dry corn processed 
Not modeled directly. Calculated as 

remainder after co-products and losses. 

Gross emissions  Approx. Uniform (0.23, 0.42) 
kg CO2e / kg dry corn 

processed 

Bounds are adjusted dynamically based 

on 
244,262,263,400

, as described in section 

B.1.4. 

    

Emissions credit for 

displaced products 
  

For the system expansion scenario only. 

Displacement rates are discussed in 

section B.1.5 

Soy oil 0.74
a
 kg CO2e / kg soy oil 

Calculated based on 
267

 
Urea 1.32

a
 kg CO2e / kg urea 

Distributions are written as: Uniform (lower, upper), Triangular (lower, mode, upper). 

(a)
 
Mean values (point estimate or distribution bounds) are shown. Actual values are stochastic due to uncertainty in GWP, and/or N2O emission 

factors. 
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Table B.6. Summary of key parameters common to all switchgrass scenarios 

Parameter Value or Distribution Units Source and notes 

Switchgrass Composition    

Glucan (cellulose) content Triangular (31, 34.4, 37.2) % 

ref
74

 

Xylan Content Triangular (20.6, 23, 26) % 

Mannan Content Triangular (0.29, 0.32, 0.36) % 

Galactan Content Triangular (0.67, 1.0, 1.2) % 

Arabinan Content Uniform (2.6, 3.4) % 

Lignin Content Triangular (17.3, 21.1) % 

Non-sugar, non-lignin Mean: ~22.7 % Calculated based on mass balance 

    

Pre-treatment and Saccharification    

Emissions chemicals and enzymes for 

pre-treatment and saccharification  
Uniform (53, 93)

 a
 

g CO2e / kg feedstock 

processed 

Lower bound calculated based on 
283

; 

upper bound calculated based on 
267,405

 

Pre-treatment electricity required Uniform (0.15, 0.18) 
MJ electricity / kg 

feedstock processed Bounds calculated based on 
284

 and 
267

, 

respectively 
Pre-treatment steam required Uniform (1.26, 2.28) 

MJ steam / kg 

feedstock processed 

Midterm yield of sugars from 

cellulose and hemicellulose 
0.95 % (molar conversion) 

ref
261

. Used for PHB, PLA and mid-

term bioethylene 

Near-term yield of glucose from 

glucan 
Normal (0.675, 0.038) % (molar conversion) 

ref
261

. Only used for near-term 

bioethylene scenario Near-term yield of sugars from 

hemicellulose 
Normal (0.635, 0.0097) % (molar conversion) 

    

Internal energy use    

Biomass boiler Triangular (68, 70, 74.5) % (HHV) Lower: 
305

, mode:
306

, upper:
307

 

CHP electric generator efficiency Uniform (85,96) % Lower:
409

, upper:
410

 

Maximum CHP heat:power ratio 1:3 Ratio ref
411

 (value for steam turbine CHP). 

Distributions are written as: Uniform (lower, upper), Triangular (min, mode, max), Normal (mean, stdev). 

(a)
 
Mean values (point estimate or distribution bounds) are shown. Actual values are stochastic due to uncertainty in GWP. 
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Table B.7. Summary of key parameters for PHB cases 

Parameter Value or Distribution Units Source and notes 
    

Cradle-to-gate carbon credit (all cases) 2.04 kg CO2 / kg PHB 
Calculated from molecular 

formula of PHB 
    

PHB Case 1    

PHB Yield 0.36 kg PHB/kg sugar 

Calculated based on
247

 

Chemical production emissions 0.12 kg CO2e/kg PHB 

Electricity required 3.94 MJ electricity/kg PHB 

Steam required 4.89 kg / kg PHB 

Additional natural gas required 2.12 MJ / kg PHB 
    

PHB Case 2    

PHB Yield 0.37 kg PHB/kg sugar 

Calculated based on 
263

 
Chemical production emissions 0.20 kg CO2e/kg PHB 

Electricity required 4.48 MJ electricity / kg PHB 

Steam required 3.96 kg/kg PHB 
    

PHB Case 3    

PHB Yield 0.3 kg PHB/kg sugar 

Calculated based on 
263

 
Chemical production emissions 0.23 kg CO2e/kg PHB 

Electricity required 6.88 MJ electricity / kg PHB 

Steam required 4.11 kg/kg PHB 
    

PHB Case 4    

PHB Yield 0.35 kg PHB/kg sugar 

Calculated based on 
244

  

Chemical production emissions 0.25 kg CO2e/kg PHB 

Electricity required 1.2 kWh/kg PHB 

Steam required 11.5 kg / kg PHB 

Energy from fermentation residue 

(corn grain pathway only) 
9.2 MJ / kg PHB 

    

 

PHB Case 5 
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PHB Yield 0.3 kg PHB/kg sugar ref
246

 

Chemical production emissions 0.25 kg CO2e/kg PHB 
Calculated based on 

246
, with an 

emission factor from 
263

 

Electricity required 5.32 kWh/kg PHB 
ref

246
 

Steam required 2.78 kg / kg PHB 
    

Full distribution    

PHB Yield Triangular (0.3, 0.36, 0.37) kg PHB/kg sugar 

Fit to cases 1-5 

Chemical production emissions Uniform (0.12, 0.25) kg CO2e/kg PHB 

Total process energy Triangular (15, 17, 35) MJ/kg PHB 

Percent of process energy to steam 

(rest to electricity) 
Triangular (28%, 88%, 88%) % as steam 

Distributions are written as: Uniform (lower, upper), triangular (min, mode, max) 
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Table B.8. Summary of key parameters for PLA cases 

Parameter Value or Distribution Units Source and notes 
    

Cradle-to-gate carbon credit (all cases) -1.83 kg CO2 / kg PLA 
Calculated from molecular 

formula of PLA 
    

PLA Case 1    

PLA Yield 0.72 kg PLA/kg sugar 

Calculated based on 
251

  

Chemical production emissions 0.87 kg CO2e/kg PLA 

Electricity required 3.0 MJ electricity/kg PLA 

Natural gas required (when no 

fermentation residues are used) 
Uniform (9.0, 1.0) MJ / kg PLA 

    

PLA Cases 2-4    

PLA Yield 0.64 kg PLA/kg sugar 

Calculated based on 
260,262

 
Lactic acid production emissions 

1.04 

0.0050 

kg CO2 / kg PLA 

kg CH4 / kg PLA 
    

PLA Case 2    

Lactide production and polymerization 

emissions 

0.66 

0.0032 

kg CO2 / kg PLA 

kg CH4 / kg PLA 
Calculated based on 

260,262
 

    

PLA Case 3    

Lactide production and polymerization 

electricity required 
1.71 kWh/kg PLA ref

264
 

    

PLA Case 4    

Lactide production and polymerization 

steam required 
6.16 MJ / kg PLA Based on 

264
 

Distributions are written as: Uniform (min, max)  
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Table B.9. Summary of key parameters for bioethylene pathways 

Parameter Value or Distribution Units Source and notes 

    

Corn bioethanol     

Electricity use 
Normal (0.75, 0.23) 

(Normal (0.90, 0.28)) 

kWh / gal EtOH 

(MJ / kg EtOH) 

Mean: 
281

, Stdev based on 
282

 Fuel use 
Normal (23862, 2798) 

(Normal (8.4, 0.99)) 

Btu LHV / gal EtOH 

(MJ / kg EtOH) 

Ethanol yield 
Normal (2.8, 0.018) 

(Normal (0.39, 0.017) 

gal EtOH / bu corn 

(kg EtOH / kg dry corn) 

Transportation distance Uniform (1000, 1800) km 

Approximate distance from existing 

corn ethanol refineries 
230

 to gulf states 

ethylene infrastructure 
231

, as per 
154

 

Truck fuel consumption 0.0203 L diesel / t-km ref
229

 

    

Corn co-products    

Co-product ratio from corn ethanol 

production 
29.7 kg DDGS / kg corn oil 

Calculated from.
281

 Actual quantities 

determined based on mass balance per 

section B.1.9. 

Emissions credit for displaced 

soybean meal 
0.31

a
 kg CO2e / kg soybean meal Calculated based on 

267
; displacement 

rates are discussed in section B.1.5. 
Emissions credit for displaced urea 1.32

a
 kg CO2e / kg urea 

    

Switchgrass bioethanol    

Total production energy 
Uniform (0.44, 0.72) 

(Uniform (12,19)) 

MJ / MJ EtOH LHV 

(MJ / kg EtOH) 
ref

74
 

Percent of energy as electricity 

(remainder as heat) 
10% % 

Midterm ethanol yield (all sugars) 0.95 Fraction of theoretical 

ref
261

 
Near-term ethanol yield (glucose) Normal (0.90, 0.026) Fraction of theoretical 

Near-term ethanol yield (xylose) Normal (0.70, 0.103) Fraction of theoretical 

Near-term ethanol yield (other Triangular (0, 0, 0.855) Fraction of theoretical 



Appendix B 

237 

 

sugars) 

Transportation distance Uniform (1000, 1800) km 

Approximate distance from projected 

switchgrass ethanol facilities 
128

 to gulf 

states ethylene infrastructure 
231

, as 

per
154

 

Truck fuel consumption 0.0203 L diesel / t-km ref
229

 

    

Ethanol dehydration to ethylene    

Ethylene yield Uniform (1.70, 1.74) kg ethanol / kg ethylene Lower:
408

, upper: 
180

 

Fuel used Lognormal (1.67, 0.611) MJ LHV /kg ethylene 
ref

154
 based on 

180,227
 

Electricity Used Lognormal (1.12, 0.41) MJ electricity/ kg ethylene 

Cradle-to-gate stored carbon credit 3.14 kg CO2 / kg bioethylene Calculated based on molecular formula 

Distributions are written as: Normal (Mean, Stdev), Uniform (min, max), Triangular (min, mode, max)  

(a)
 
Mean values (point estimate or distribution bounds) are shown. Actual values are stochastic due to uncertainty in GWP, and/or N2O emission 

factors.  
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Table B.10. Summary of key parameters for end of life emissions estimates 

Parameter Value or Distribution Units Source and notes 

Landfilling (all plastics)    

Transportation and equipment operation 0.044 kg CO2e/kg waste ref
268

 
    

Landfilling (PHB only)    

Mineralization Triangular (41.1, 42.0, 52.5) % ref
269

 

Fraction of mineralized carbon to 

methane (rest to CO2) 
56.25% 

Fraction of mineralized carbon in 

PHB 

Based on 
270,415

, 

treated as PHB 

Landfills with LFG collection Triangular (60, 69, 84) % of all landfills ref
270

 

Landfills with energy recovery Triangular (40, 50, 66) % of landfills with LFG collection ref
270

 

LFG collection efficiency Triangular (59.2, 64.8, 78.8) % of generated methane Based on 
268

 

Oxidation of uncollected methane (to 

CO2) 
Triangular (10, 10, 40) % of generated methane ref

270
 

Efficiency of LFG to electricity 29.2% % (assumed HHV) ref
268

 
    

Composting    

Reduced carbon sequestration 89.9% % of carbon in PHB or PLA 
Based on 

244
; all 

carbon is lost as CO2 

Transportation and equipment operation 0.044 kg CO2e/kg waste ref
268

 
    

Recycling    

Net recycling efficiency 

0.86 (HDPE) 

0.89 (PET) 

Uniform (0.86, 0.89) (Others) 

kg virgin product displaced / kg 

waste recycled 
ref

268
 

Process emissions 

0.35 (HDPE) 

0.77 (PET) 

Uniform (0.35, 0.77) (Others) 

kg CO2e / kg waste ref
268

 

Transportation emissions 0.22 kg CO2e / kg waste ref
268

 
    

Incineration with energy recovery    

Efficiency of electricity generation 17.8% % ref
268

 

Transportation emissions 0.033 kg CO2e/kg waste ref
268

 

Distributions are written as: Triangular (lower, mode, upper), Uniform (min, max)  
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Table B.11. Summary of key plastics carbon content and energy density (for incineration modeling)  

Plastic 
Carbon content based on stoichiometry 

 (kg CO2 / kg plastic) 

Energy content 

(MJ / kg plastic) 
Source for energy content  

HDPE 3.1 46.5 

ref
268

 

LDPE 3.1 46.3 

LLDPE 3.1 46.4 

PP 3.1 46.4 

PET 2.3 24.7 

GPPS 3.4 41.9 

HIPS 3.4 41.9 

PVC 1.4 18.4 

PLA 1.8 19.4 

PHB (treated as PHB) 2.0 24.1 ref
412
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Table B.12. Boiler efficiencies, and emission factors for fuels and electricity. 

 Parameter Value Units Source and notes 

Fuel Emissions    

Gasoline life cycle emissions Log-logistic
†
 (2.2, 0.2, 80) g CO2e/MJ (LHV) 

ref
198

 
Diesel life cycle emissions Log-logistic

†
 (2.3, 0.2, 82) g CO2e/ MJ (LHV) 

Residual fuel life cycle emissions  Log-logistic
†
 (2.3, 0.3, 83) g CO2e/ MJ (LHV) 

LPG life cycle emissions Log-logistic
†
 (2.1, 0.2, 77) g CO2e/ MJ (LHV) 

Coal life cycle emissions Log-logistic (3.05, 0.14, 74) g CO2e/ MJ (HHV) ref
206

 

Natural gas: all upstream 

emissions (including distribution) 
Pearson5 (7.66, 54.9, -0.306, [0, ∞]) 

Pearson5 (4.14, 0.232, 0.179, [0, ∞]) 

g CO2 / MJ (LHV) 

g CH4 / MJ (LHV) 
Approximate fit to results from 

266
 

Natural gas distribution Triangular (0.047, 0.06, 0.073) g CH4 / MJ (LHV) Approximate fit to results from 
266

 

Natural gas combustion emissions 

Triangular (54.3, 56.1, 58.3) 

Triangular (3E-4, 1E-4, 3E-3) 

Triangular (3E-5, 1E-4, 3E-4) 

g CO2 / MJ (LHV) 

g CH4 / MJ (LHV) 

g N2O / MJ (LHV) 

ref
95

 (original source for 
266

). 

    

Boiler efficiencies    

Natural gas boiler Triangular (70%, 80%, 94%) % (HHV) ref
265

 

Biomass boiler Triangular (68%, 70%, 74.5%) % (HHV) Lower: 
305

, mode:
306

, upper:
307

 

    

Electricity Emissions    

U.S. average electricity Uniform (163, 208)
a
 g CO2e/MJ Lower bound: 

202
, upper bound: 

277
 

MRO electricity Uniform (197, 313)
a
 g CO2e/MJ Lower bound: 

202
; upper bound: 

273
 

TRE electricity (encompasses 

SERC as well) 
Uniform (164, 220)

a
 g CO2e/MJ 

Lower bound from 
202

 for TRE. Upper 

bound from 
272

. 

Distributions are written as: Uniform (min, max), Triangular (lower, mode, upper), Normal (mean, standard deviation), Log-logistic
†
 (location of the 

underlying logistic, scale of the underlying logistic, shift), Lognormal (mean of the lognormal distribution, standard deviation of the lognormal 

distribution, shift), Pearson5 (shape, scale, shift, [truncation bounds]) – this is a Pearson type V distribution. 

(a)
 
Mean values (point estimate or distribution bounds) are shown. Actual values are stochastic due to uncertainty in GWP.  
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Table B.13. Global warming potentials. 

 Parameter Value Units Source 

Global warming potentials    

CH4 GWP Normal (36, 8.5) g CO2e / g CH4 
refs

204,205
 

N2O GWP Normal (298, 52.5) g CO2e / g N2O 
 

Table B.14. Energy and mass densities used throughout this chapter 

Liquids    

Item 
LHV Energy Density 

(btu/gal) 

HHV Energy Density 

(btu/gal) 
Mass Density 

Gasoline 112,194
a 

120,439
a
 2,836

a
 g/gal 

Diesel/distillate 128,450
a
 137,380

a
 3,167

a
 g/gal 

Residual Fuel 

Oil 
140,353

a
 150,110

a
 3,752

a
 g/gal 

Ethanol 76,330
a
 84,530

a
 2,988

a
 g/gal 

    

Gasses    

Item 
LHV Energy Density 

(btu/ft
3
) 

HHV Energy Density 

(btu/ft
3
) 

Mass Density  

Natural gas 983
a
 1,089

a
 22

a
 g/ft

3 

Methane 962
a
 1,068

a
 20.3

a
 g/ft

3 

Hydrogen 290
a
 343

a
 2.55

a
 g/ft

3 

    

Solids  Solids  

Item 
HHV Energy Density 

(MJ/kg) 
Item 

HHV Energy 

Density (MJ/kg) 

Glucan/Cellulose 16.9
b 

Glucose 15.6
c 

Xylan 17.4
b 

Xylose 15.6
c
 

Mannan 16.6
b 

Mannose 15.6
c 

Galactan 17.2
b 

Galactose 15.5
c 

Arabinan 16.9
b 

Arabinose 15.6
c 

Lignin 25.1
b Non-sugar, non-lignin 

switchgrass components 
11.8

b 

    

Corn grain 19.2
a
 Coal  24.0

a 

Corn gluten meal Triangular (21.2, 23.1, 24.1)
d 

Switchgrass 18.1
a
 

Corn gluten feed Triangular (18.3, 18.8, 19.5)
d
   

Corn oil 39.1   

Corn starch Triangular (17.1, 17.4, 17.9)
d
   

Corn DDGS Triangular (19.9, 21.4, 23)
d
   

(a) Based on GREET 2013 or GREET 2014 
202,267

 

(b) Calculated from 
305

  

(c) ref
391

  

(d) ref
416

  

(e) ref
400
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B.2. Additional Results and Sensitivity Analysis 

B.2.1 Numerical GHG emission Results For Upstream Operations (Agriculture and 

Corn Wet Milling) 

Table B.15. Modeled greenhouse gas emissions (mean and 95% confidence interval) from corn production, 

excluding carbon uptake credit (kg CO2e / kg dry corn),  

Emissions category Mean 2.5% 97.5% 

Land use change 0.089 0.022 0.16 

Fertilizer production 0.10 0.085 0.12 

Farm energy use 0.044 0.036 0.060 

Field emissions (from fertilizer and crop residue) 0.28 0.13 0.51 

Other (pesticides and feedstock transportation) 0.027 0.026 0.027 

Total 0.54 0.36 0.79 

    

Approximate distribution: Gamma (shape = 9.97, scale = 0.036, shift = 0.185) 

 

Table B.16. Modeled greenhouse gas emissions (mean and 95% confidence interval) for corn glucose 

production via wet milling (with system expansion), excluding carbon uptake credit (kg CO2e / kg glucose) 

  Emissions category Mean 2.5% 97.5% 

Upstream (corn production) 0.76 0.50 1.12 

Wet milling (gross emissions) 0.46 0.32 0.62 

Co-product credit (system expansion)  -0.27 -0.40 -0.18 

Enzyme production 0.013 0.012 0.014 

Total 0.96 0.71 1.25 

    

Approximate distribution: Weibull (shape = 3.15, scale = 0.455, shift = 0.553) 

 

Table B.17. Modeled greenhouse gas emissions (mean and 95% confidence interval) from switchgrass 

production, excluding carbon uptake credit (kg CO2e / kg dry switchgrass),  

Emissions category Mean 2.5% 97.5% 

Land use change 0.097 -0.021 0.21 

Fertilizer production 0.043 0.008 0.13 

Farm energy use 0.022 0.021 0.024 

Field emissions (from fertilizer and crop residue) 0.097 0.015 0.31 

Other (pesticides and feedstock transportation) 0.016 0.016 0.017 

Total 0.28 0.085 0.59 

    

Approximate distribution: Lognormal (mean = 0.28, stdev = 0.12, shift = -0.1) 
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B.2.2 Numerical GHG Emission Results for Cradle-to-Gate Polymer Production 

Pathways 

Table B.18. Modeled greenhouse gas emissions (mean and 95% confidence interval) from fossil polymer 

production with conventional energy, under different input assumptions (kg CO2e / kg plastic) 

Scenario Plastic Mean 2.5% 97.5% 

Base-Case 

(Hydrogen from stream cracking treated by 

system expansion) 

HDPE 1.43 0.97 1.93 

LDPE 1.70 1.22 2.22 

LLDPE 1.44 0.97 1.93 

PP 1.49 1.10 1.92 

PET 2.34 2.14 2.60 

PS (GPPS) 3.08 2.75 3.49 

HIPS 3.05 2.71 3.47 

PVC 2.14 1.88 2.46 

Hydrogen from steam cracking combusted 

for energy 

HDPE 1.67 1.28 2.12 

LDPE 1.94 1.54 2.41 

LLDPE 1.67 1.29 2.12 

PP 1.70 1.37 2.10 

PET 2.39 2.19 2.64 

PS (GPPS) 3.20 2.89 3.59 

HIPS 3.18 2.87 3.58 

PVC 2.25 2.01 2.54 

Hydrogen from steam cracking treated by 

mass allocation 

HDPE 2.12 1.74 2.56 

LDPE 2.41 2.00 2.87 

LLDPE 2.13 1.75 2.58 

PP 2.07 1.73 2.46 

PET 2.47 2.27 2.73 

PS (GPPS) 3.42 3.11 3.83 

HIPS 3.41 3.09 3.82 

PVC 2.46 2.20 2.77 
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Table B.19. Modeled greenhouse gas emissions (mean and 95% confidence interval) from corn-based PHB 

polymer production (kg CO2e / kg plastic) 

Treatment of corn co-products Case # Mean 2.5% 97.5% 

System expansion 

1 2.92 2.14 3.84 

2 2.74 1.96 3.64 

3 4.02 3.02 5.15 

4 3.86 2.98 4.86 

5 6.88 5.39 8.48 

Mass allocation 

1 2.48 1.81 3.27 

2 2.30 1.64 3.08 

3 3.48 2.63 4.47 

4 3.41 2.65 4.27 

5 6.35 4.96 7.82 

Energy allocation 

1 2.29 1.67 3.03 

2 2.12 1.50 2.85 

3 3.26 2.46 4.19 

4 3.22 2.49 4.04 

5 6.13 4.77 7.55 

No allocation  

1 3.68 2.70 4.89 

2 3.48 2.51 4.65 

3 4.93 3.71 6.40 

4 4.63 3.57 5.90 

5 7.80 6.12 9.64 
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Table B.20. Modeled greenhouse gas emissions (mean and 95% confidence interval) from switchgrass-based 

PHB polymer production (kg CO2e / kg plastic) 

Treatment of fermentation residues Case # Mean 2.5% 97.5% 

None 

1 2.05 1.14 3.37 

2 1.98 1.11 3.26 

3 3.00 1.92 4.58 

4 3.69 2.67 5.11 

5 5.08 3.93 6.71 

Full distribution 3.02 1.55 4.96 

Steam for internal use only  

(S) 

1 0.42 -0.41 1.70 

2 0.57 -0.24 1.82 

3 1.42 0.42 2.97 

4 1.22 0.33 2.54 

5 3.78 2.68 5.38 

Full distribution 1.20 -0.22 3.18 

Steam for internal use and with system 

expansion credit for surplus  

(S, SC) 

1 -0.36 -1.23 0.94 

2 -0.31 -1.16 0.96 

3 -0.25 -1.33 1.32 

4 1.22 0.33 2.54 

5 1.83 0.65 3.42 

Full distribution 0.40 -1.04 2.31 

Steam and electricity for internal use 

only  

(S, E) 

1 -0.47 -1.28 0.81 

2 -0.42 -1.22 0.82 

3 -0.06 -1.04 1.48 

4 1.22 0.33 2.54 

5 2.01 0.98 3.55 

Full distribution 0.14 -1.07 1.93 

Steam and electricity, with system 

expansion credits for surplus electricity 

(S, E, EC) 

1 -0.87 -1.69 0.42 

2 -0.67 -1.47 0.57 

3 -0.34 -1.33 1.20 

4 1.22 0.33 2.54 

5 2.01 0.98 3.55 

Full distribution -0.01 -1.54 1.89 

Steam and electricity, with system 

expansion credits for both surplus 

electricity and surplus steam  

(S, E, SC, EC) 

1 -0.92 -1.78 0.37 

2 -0.82 -1.68 0.45 

3 -0.97 -2.06 0.61 

4 1.22 0.33 2.54 

5 1.10 -0.02 2.66 

Full distribution -0.15 -1.67 1.79 

     

     

     

Energy allocation 

1 -0.57 -0.90 -0.10 

2 -0.55 -0.88 -0.08 

3 -0.56 -0.88 -0.10 
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4 -0.02 -0.38 0.48 

5 0.05 -0.30 0.53 

Full distribution -0.32 -0.82 0.35 

Steam and electricity, with system 

expansion credits for surplus electricity 

(when available, and balance of energy 

(when needed) from switchgrass 

combustion  

(S, E, EC, SWf) 

1 -0.87 -1.69 0.42 

2 -0.67 -1.47 0.57 

3 -0.34 -1.33 1.20 

4 0.16 -0.99 1.98 

5 0.97 -0.71 3.65 

Full distribution -0.48 -1.54 0.91 
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Table B.21. Modeled greenhouse gas emissions (mean and 95% confidence interval) from corn-based PLA 

polymer production (kg CO2e / kg plastic) 

Scenario Case # Mean 2.5% 97.5% 

System expansion 

1 1.81 1.38 2.30 

2 1.65 1.22 2.13 

3 2.45 1.85 3.09 

4 1.37 0.94 1.85 

Mass allocation 

1 1.59 1.21 2.01 

2 1.40 1.04 1.82 

3 2.20 1.65 2.78 

4 1.12 0.76 1.53 

Energy allocation 

1 1.50 1.14 1.90 

2 1.30 0.96 1.68 

3 2.10 1.57 2.65 

4 1.01 0.68 1.40 

No allocation 

1 2.19 1.67 2.80 

2 2.08 1.54 2.71 

3 2.87 2.18 3.65 

4 1.79 1.26 2.43 

 

 

 

Table B.22. Modeled greenhouse gas emissions (mean and 95% confidence interval) from switchgrass-based 

PLA polymer production, case 1 (kg CO2e / kg plastic). 

Treatment of fermentation residues Mean 2.5% 97.5% 

None 1.31 0.87 1.97 

S 0.41 0.00 1.04 

S, SC 0.31 -0.12 0.94 

S, E 0.20 -0.31 0.86 

S, E, EC 0.20 -0.31 0.86 

S, E, SC, EC 0.20 -0.31 0.86 

Energy Allocation -0.19 -0.43 0.14 

S, E, EC, SWf -0.02 -0.57 0.85 
 

Treatment of fermentation residues refer to scenarios for the use (or allocation) of unfermented residues: S = 

steam, E = electricity, C = emission credit applied for surplus steam (SC) and/or electricity (EC) when 

available, SWf = balance of energy (when needed) from switchgrass combustion, Energy allocation = no 

direct use of fermentation residues, but emissions allocated to residue and PHB on the basis of energy content 
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Table B.23. Modeled greenhouse gas emissions (mean and 95% confidence interval) from polymers produced 

using corn bioethylene (kg CO2e / kg plastic) 

Treatment of corn co-products Plastic Mean 2.5% 97.5% 

System Expansion 

HDPE 0.84 0.07 1.79 

LDPE 1.10 0.30 2.08 

LLDPE 0.84 0.06 1.79 

PET 2.24 2.00 2.53 

PS (GPPS) 2.90 2.54 3.34 

HIPS 2.89 2.53 3.32 

PVC 1.87 1.47 2.36 

Mass Allocation 

HDPE -0.15 -0.72 0.55 

LDPE 0.09 -0.50 0.81 

LLDPE -0.16 -0.73 0.54 

PET 2.06 1.85 2.31 

PS (GPPS) 2.61 2.30 3.00 

HIPS 2.61 2.30 3.01 

PVC 1.42 1.11 1.81 

Energy Allocation 

HDPE 0.13 -0.51 0.88 

LDPE 0.37 -0.28 1.16 

LLDPE 0.12 -0.52 0.88 

PET 2.11 1.89 2.37 

PS (GPPS) 2.69 2.37 3.09 

HIPS 2.69 2.37 3.09 

PVC 1.55 1.21 1.96 

No Allocation 

HDPE 1.50 0.55 2.68 

LDPE 1.77 0.80 2.97 

LLDPE 1.51 0.55 2.70 

PET 2.36 2.09 2.67 

PS (GPPS) 3.10 2.70 3.59 

HIPS 3.07 2.68 3.55 

PVC 2.18 1.70 2.77 
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Table B.24. Modeled greenhouse gas emissions (mean and 95% confidence interval) from polymers produced 

using switchgrass bioethylene with near-term yield (kg CO2e / kg plastic) 

Treatment of fermentation residues Plastic Mean 2.5% 97.5% 

None 

HDPE 3.33 1.33 6.26 

LDPE 3.64 1.58 6.62 

LLDPE 3.35 1.33 6.31 

PET 2.69 2.27 3.26 

PS (GPPS) 3.64 2.97 4.56 

HIPS 3.58 2.94 4.45 

PVC 3.01 2.07 4.37 

Steam for internal use only  

(S) 

HDPE 1.43 -0.39 4.32 

LDPE 1.70 -0.16 4.64 

LLDPE 1.43 -0.40 4.35 

PET 2.34 1.96 2.90 

PS (GPPS) 3.08 2.46 3.96 

HIPS 3.05 2.46 3.89 

PVC 2.14 1.28 3.48 

Steam for internal use and with system expansion 

credit for surplus  

(S, SC) 

HDPE -3.1 -5.5 -0.1 

LDPE -3.0 -5.4 0.1 

LLDPE -3.2 -5.6 -0.1 

PET 1.5 1.1 2.1 

PS (GPPS) 1.7 1.0 2.6 

HIPS 1.8 1.1 2.6 

PVC 0.1 -1.0 1.4 

Steam and electricity for internal use only  

(S, E) 

HDPE 0.92 -0.89 3.79 

LDPE 1.18 -0.67 4.12 

LLDPE 0.92 -0.91 3.82 

PET 2.25 1.87 2.81 

PS (GPPS) 2.92 2.32 3.81 

HIPS 2.91 2.33 3.75 

PVC 1.91 1.05 3.25 

Steam and electricity, with system expansion 

credits for surplus electricity  

(S, E, EC) 

HDPE -1.92 -3.83 0.91 

LDPE -1.71 -3.67 1.16 

LLDPE -1.95 -3.88 0.92 

PET 1.73 1.33 2.28 

PS (GPPS) 2.08 1.46 2.97 

HIPS 2.12 1.52 2.96 

PVC 0.61 -0.29 1.91 

Steam and electricity, with system expansion 

credits for both surplus electricity and surplus 

steam  

(S, E, SC, EC) 

HDPE -4.4 -7.0 -1.4 

LDPE -4.2 -6.9 -1.2 

LLDPE -4.5 -7.1 -1.4 

PET 1.3 0.8 1.9 

PS (GPPS) 1.3 0.6 2.3 

HIPS 1.4 0.7 2.3 

PVC -0.5 -1.7 0.8 
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Table B.25. Modeled greenhouse gas emissions (mean and 95% confidence interval) from polymers produced 

using switchgrass bioethylene with mid-term yield (kg CO2e / kg plastic) 

Treatment of fermentation residues Plastic Mean 2.5% 97.5% 

None 

HDPE 1.93 0.61 3.69 

LDPE 2.21 0.86 4.00 

LLDPE 1.94 0.61 3.72 

PET 2.43 2.12 2.83 

PS (GPPS) 3.22 2.74 3.85 

HIPS 3.19 2.72 3.79 

PVC 2.37 1.73 3.21 

Steam for internal use only  

(S) 

HDPE 0.03 -1.03 1.65 

LDPE 0.27 -0.81 1.92 

LLDPE 0.02 -1.05 1.66 

PET 2.09 1.82 2.45 

PS (GPPS) 2.66 2.25 3.23 

HIPS 2.66 2.26 3.20 

PVC 1.50 0.98 2.26 

Steam for internal use and with system expansion 

credit for surplus  

(S, SC) 

HDPE -0.5 -1.8 1.2 

LDPE -0.3 -1.6 1.5 

LLDPE -0.5 -1.8 1.2 

PET 2.0 1.7 2.4 

PS (GPPS) 2.5 2.0 3.1 

HIPS 2.5 2.1 3.1 

PVC 1.3 0.6 2.0 

Steam and electricity for internal use only  

(S, E) 

HDPE -0.42 -1.49 1.20 

LDPE -0.18 -1.28 1.46 

LLDPE -0.43 -1.52 1.21 

PET 2.01 1.74 2.37 

PS (GPPS) 2.53 2.11 3.09 

HIPS 2.54 2.13 3.08 

PVC 1.30 0.76 2.06 

Steam and electricity, with system expansion 

credits for surplus electricity  

(S, E, EC) 

HDPE -0.93 -2.26 0.89 

LDPE -0.70 -2.05 1.15 

LLDPE -0.95 -2.28 0.88 

PET 1.92 1.61 2.30 

PS (GPPS) 2.38 1.91 2.99 

HIPS 2.40 1.94 2.98 

PVC 1.06 0.43 1.90 

Steam and electricity, with system expansion 

credits for both surplus electricity and surplus 

steam  

(S, E, SC, EC) 

HDPE -1.0 -2.3 0.9 

LDPE -0.7 -2.1 1.1 

LLDPE -1.0 -2.4 0.9 

PET 1.9 1.6 2.3 

PS (GPPS) 2.4 1.9 3.0 

HIPS 2.4 1.9 3.0 

PVC 1.0 0.4 1.9 
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B.2.3 Cradle-to-Gate Comparison to Original Data Sources 

GHG emission results from the present study often differ from the results reported by the authors 

of the original data sources used to parametrize each PLA and PHB case. Table B.26 shows a 

breakdown of these differences for corn PLA, and Table B.27 shows a breakdown of these 

differences for corn PHB. Both tables include commentary on the reasons for these differences.  

 

The model for bioethylene is an updated version of the one published by Posen et al. (2015) 

(Chapter 2),
154

 and follows a similar model structure. Emissions from corn bioethylene are lower 

in the present chapter due primarily to a lower estimate for LUC emissions. Differences in 

emissions for switchgrass bioethylene are generally due to updates to the pre-treatment module, 

different ethanol yield scenarios, and more detailed modeling of scenarios for energy generation 

from fermentation residues. Posen et al. (2015) (Chapter 2)
154

 also estimated emissions from 

production of bio-LDPE in Brazil, using sugarcane as a feedstock (mean: -1.3 kg CO2e / kg 

LDPE), which is similar to results from the more optimistic switchgrass bio-LDPE scenarios in 

the present chapter. Likewise, results from the more optimistic switchgrass bio-HDPE scenarios 

in the present chapter are in the same range as emissions previously reported for Braskem’s bio-

HDPE production using Brazilian sugarcane (-2.15 kg CO2e / kg HDPE).
417

 Braskem is currently 

among the largest producers of bioethylene based plastics.
184
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Table B.26. Comparison of life cycle corn PLA emissions between this study (mean results) and original data sources. All values in kg CO2e/kg PLA. 

The column heading F&P stands for fermentation and polymerization. The column heading CO2 credit refers to the CO2 absorbed during agriculture, 

and then sequestered in the plastic. Abbreviations used in the row headings refer to system expansion (SE) and mass allocation (MA). All studies 

include the same credit of 1.8 kg CO2/kg PLA to arrive at the total cradle-to-gate emissions value. Differences in upstream emissions between cases from 

this study are due to different product yields. 

 Upstream F&P 
CO2 

Credit 
Total Comments 

 
Corn 

production 

Wet 

milling 

Co-

product 

credit 

    

Groot et al. 

(2010)
251

 

0.1 

(sugarcane, not corn) 
2.2 -1.8 0.502 Groot et al. (2010)

251
 is based on production from sugarcane in 

Thailand, and so upstream results are not comparable. Minor 

differences in F&P are due to the use of an updated GWP 

characterization factor for CH4 emissions, and small differences in 

natural gas and electricity emission factors. 
This study, 

case 1 (SE) 
1.0 0.64 -0.37 2.3 -1.8 1.8 

        

Vink et al. 

(2015)
262

 (MA) 
0.25 0.29 - 1.9 -1.8 0.62 

Vink et al. (2015)
262

 do not include emissions from land use change 

(which adds 0.12 kg CO2e/kg PLA). Beyond this, that study 

provides insufficient data to compare corn production emissions. 

Vink et al. (2015) provides the lower bound for the distribution of 

wet milling emissions employed in this study. Other estimates are 

44%, 54% and 90% higher, respectively. Small differences in wet 

milling and F&P are also due to the updated GWP characterization 

factor for CH4 emissions used in this study. 

This study, 

case 2 (MA) 
0.77 0.48 - 2.0 -1.8 1.4 

This study, 

case 2 (SE) 
1.2 0.7 -0.42 2.0 -1.8 1.6 

The original data source (Vink et al. 2015) uses mass allocation, 

which is more favorable to PLA than system expansion.  

        

Sakai et al. - - - - - - Cases 3 and 4 are also based on Vink et al. (2015)
262

, but use Sakai 

et al. (2004) 
264

 for polymerization energy requirements. Sakai et al. 
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(2004)
264

 (2004)
264

 do not report GHG emissions. 

This study, 

case 3 (SE) 
Same as case 2 2.8 -1.8 2.4 

This study, 

case 4 (SE) 
Same as case 2 1.7 -1.8 1.4 

 

Table B.27. Comparison of life cycle corn PHB emissions between this study (mean results) and original data sources. All values in kg CO2e/kg PHB (or 

PHA). The column heading F&R stands for fermentation and recovery. The column heading CO2 credit refers to the CO2 absorbed during agriculture, 

and then sequestered in the plastic. Abbreviations used in the row headings refer to system expansion (SE) and mass allocation (MA). Differences in 

upstream emissions between cases from this study are due to different product yields. 

 Upstream F&R 
CO2 

credit 
Total Comments 

 
Corn 

production 

Wet 

milling 

Co-product 

credit 
    

Harding et al. (2007)
247

 - - - - ? 
1.96 

or 2.6 

Harding et al. (2007)
247

 is based on production from sugarcane in South 

Africa, and so results are not comparable to this study. The authors 

report conflicting values (1.96 and 2.6) for total emissions in different 

parts of the paper without explanation.  This study, case 1 (SE) 2.1 1.3 -0.76 2.3 -2.05 2.9 

        

Akiyama et al. (2003)
263

 

case 9 (MA) 
0.4 1.0 - 1.87 -2.8 0.48 Akiyama et al. (2003)

263
 use a lower emissions factor for electricity, and 

some fuels. Further, they do not appear to account for emissions from 

LUC. Other differences in agricultural emissions likely stem from 

different assumptions regarding fertilizer use and/or N2O emissions rate. 

Akiyama et al. (2003) provide the upper bound for the distribution of 

emissions from wet milling employed in this study. Differences in F&R 

are primarily due to different electricity emissions factors. Akiyama et 

al. (2003) apply an emissions credit directly to CO2 sequestered in 

glucose, which surpasses the sum of CO2 released during fermentation 

and stored in PHB. No explanation is given. 

This study, case 2 (MA) 1.3 0.8 - 2.2 -2.05 2.3 

This study, case 2 (SE) 2.1 1.3 -0.74 2.2 -2.05 2.7 

       

Akiyama et al. (2003)
263

 

case 10 (MA) 
0.5 1.2 - 2.31 -2.7 1.39 
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This study, case 3 (MA) 1.6 1.0 - 2.9 -2.05 3.5 

This study, case 3 (SE) 2.5 1.6 -0.9 2.9 -2.05 4.0 

        

Kim and Dale (2008)
244

 

(SE) 
0.97 0.06 -0.45 0.33 -2.05 -2.3 

Kim and Dale (2008)
244

 also include emissions from collection of stover 

(0.25) and a credit for using fermentation residues (-1.4) (not shown in 

table). Kim and Dale (2008) assume slightly lower fertilizer application 

rates with slightly higher yields, and more favorable tillage practices 

than I do, while excluding other emissions from LUC. Most of the 

energy used in their wet milling and F&R processes is generated in a 

CHP power plant by combustion of corn stover, with the remainder 

from wind power. My model assumes the process will use conventional 

energy sources. Finally, they assume corn fermentation residues are 

used to displace coal in a CHP plant, whereas I assume these residues 

displace only natural gas for steam generation. 

This study, case 4 (SE) 2.1 1.3 -0.77 3.2 -2.05 3.8 

        

Gerngross (1999)
246

 - - - - - - 
Gerngross (1999)

246
 does not report GHG emissions 

This study, case 5 (SE) 2.5 1.6 -0.9 5.7 -2.05 6.9 
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B.2.4 Uncertainty Importance Analysis 

Figure B.1 to Figure B.7 present top contributors to uncertainty for select bio-polymer 

production pathways. The main text includes a discussion of key observations. 

 

Figure B.1. Spearman rank correlation coefficient for top contributors to uncertainty in the life cycle GHG 

emissions for corn PHB (case 2, system expansion) 

 

Figure B.2. Spearman rank correlation coefficient for top contributors to uncertainty in the life cycle GHG 

emissions for corn PLA (case 2, system expansion) 
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Figure B.3. Spearman rank correlation coefficient for top contributors to uncertainty in the life cycle GHG 

emissions for corn ethylene (system expansion) 

 

 

Figure B.4. Spearman rank correlation coefficient for top contributors to uncertainty in the life cycle GHG 

emissions for switchgrass PHB (full distribution, using fermentation residues for steam and electricity, and 

including a system expansion credit for surplus electricity) 
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Figure B.5. Spearman rank correlation coefficient for top contributors to uncertainty in the life cycle GHG 

emissions for switchgrass PLA (case 1, using fermentation residues for steam and electricity, and including a 

system expansion credit for surplus electricity) 

 

 

Figure B.6. Spearman rank correlation coefficient for top contributors to uncertainty in the life cycle GHG 

emissions for switchgrass ethylene (near-term yield, using fermentation residues for steam and electricity, 

and including a system expansion credit for surplus electricity) 
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Figure B.7. Spearman rank correlation coefficient for top contributors to uncertainty in the life cycle GHG 

emissions for switchgrass ethylene (mid-term yield, using fermentation residues for steam and electricity, and 

including a system expansion credit for surplus electricity) 

 

B.2.5 Numerical Results for GHG Savings from Corn Bioplastics, with Additional 

Scenarios 

 

The following tables (Table B.28 to Table B.32) present results for the difference in GHG 

emissions between select corn bioplastic pathways and fossil plastics, on a cradle to gate basis, 

under a range of different modeling assumptions. Pathways correspond to those singled out in 

the main text: the optimistic scenario for corn PHB (case 2), the baseline scenario for corn PLA 

(case 2), and the model for corn bioethylene based polymers. Both corn co-products and fossil 

polymer hydrogen co-product are treated by system expansion.  

 

Table B.28 shows baseline results, corresponding to Figure 3.7 of the main text. As discussed in 

section B.1.3, this chapter uses a N2O emissions factors for applied nitrogen in agriculture that is 

higher than the default value from the IPCC guidelines.
225

 Thus, Table B.29 presents results 

assuming a lower (deterministic) N2O emissions factor of 1.325% for all applied nitrogen, 
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calculated using the IPCC methodology.
225

 Finally, to account for deep uncertainty in emissions 

from land use change (LUC), this section includes results from 3 alternate LUC scenarios. Table 

B.30 presents results assuming there are no LUC emissions – this serves as a lower bound. Table 

B.31 presents results using a distribution for corn LUC emissions approximately fit to the results 

from the ‘food consumption not fixed’ scenario reported by Plevin et al. (2015).
285

 The 

distribution I employ is lognormal with mean = 24.4 and stdev = 7.5; this fits the 95% 

confidence interval reported by Plevin et al. (2015).
285

 Finally, Table B.32 presents results for a 

‘high LUC’ scenario, of 1 kg CO2e / kg dry corn, which corresponds approximately to 100 g 

CO2e / MJ ethanol. 

 

Table B.28. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. This table presents baseline results, corresponding to Figure 3.7 of the main text.  

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Corn PHB  

(optimistic, case 2, system expansion) 

(Base model) 

HDPE -1.30 -2.25 -0.40 0.3% 

LDPE -1.03 -1.99 -0.13 1.2% 

PP -1.24 -2.17 -0.37 0.3% 

PET -0.39 -1.26 0.40 18% 

PS 0.34 -0.57 1.18 78% 

PVC -0.59 -1.47 0.20 8% 

Corn PLA  

(baseline, case 2, system expansion) 

(Base model) 

HDPE -0.22 -0.85 0.40 24% 

LDPE 0.05 -0.59 0.69 56% 

PP -0.16 -0.75 0.42 30% 

PET 0.69 0.20 1.15 100% 

PS 1.42 0.88 1.98 100% 

PVC 0.49 -0.01 0.97 97% 

Corn Ethylene (system expansion) 

(Base model) 

HDPE 0.59 -0.45 1.50 88% 

LDPE 0.60 -0.45 1.52 88% 

PP #N/A #N/A #N/A #N/A 

PET 0.11 -0.08 0.27 88% 

PS 0.17 -0.13 0.44 88% 

PVC 0.27 -0.20 0.69 88% 
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Table B.29. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. This table presents results assuming a lower N2O emissions factor (1.325%) for applied fertilizer and 

crop residue. 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Corn PHB  

(optimistic, case 2, system expansion) 

(low N2O emissions) 

HDPE -1.04 -1.88 -0.25 0.5% 

LDPE -0.78 -1.61 0.02 2.9% 

PP -0.98 -1.77 -0.23 0.5% 

PET -0.13 -0.83 0.53 37% 

PS 0.60 -0.14 1.31 94% 

PVC -0.33 -1.05 0.33 18.0% 

Corn PLA  

(baseline, case 2, system expansion) 

(low N2O emissions) 

HDPE -0.07 -0.62 0.50 39% 

LDPE 0.20 -0.36 0.78 74% 

PP -0.01 -0.51 0.52 48% 

PET 0.84 0.47 1.23 100% 

PS 1.57 1.13 2.08 100% 

PVC 0.64 0.24 1.06 100% 

Corn Ethylene (system expansion) 

(low N2O emissions) 

HDPE 0.92 0.19 1.64 99% 

LDPE 0.93 0.19 1.67 99% 

PP #N/A #N/A #N/A #N/A 

PET 0.17 0.03 0.30 99% 

PS 0.27 0.06 0.49 99% 

PVC 0.42 0.09 0.75 99% 

 

  



Appendix B 

261 

 

Table B.30. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. This table presents results assuming there are no emissions from land use change (LUC). 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Corn PHB  

(optimistic, case 2, system expansion) 

(No LUC) 

HDPE -1.06 -2.03 -0.19 0.8% 

LDPE -0.79 -1.77 0.08 3.9% 

PP -1.00 -1.94 -0.16 0.9% 

PET -0.15 -1.01 0.61 38% 

PS 0.58 -0.32 1.38 90% 

PVC -0.35 -1.23 0.42 21% 

Corn PLA  

(baseline, case 2, system expansion) 

(No LUC) 

HDPE -0.08 -0.72 0.54 40% 

LDPE 0.19 -0.45 0.81 72% 

PP -0.02 -0.61 0.55 47% 

PET 0.83 0.35 1.27 100% 

PS 1.56 1.02 2.10 100% 

PVC 0.63 0.12 1.10 99% 

Corn Ethylene (system expansion) 

(No LUC) 

HDPE 0.90 -0.09 1.75 96% 

LDPE 0.91 -0.09 1.78 96% 

PP #N/A #N/A #N/A #N/A 

PET 0.16 -0.02 0.32 96% 

PS 0.27 -0.03 0.52 96% 

PVC 0.41 -0.04 0.80 96% 
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Table B.31. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. This table presents results assuming higher land use change (LUC) as modeled by Plevin et al. 

(2015)
285

 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Corn PHB  

(optimistic, case 2, system expansion) 

(LUC from Plevin et al. 2015)  

HDPE -1.76 -2.81 -0.79 0.1% 

LDPE -1.49 -2.54 -0.52 0.2% 

PP -1.69 -2.72 -0.77 0.1% 

PET -0.84 -1.82 0.02 3% 

PS -0.11 -1.11 0.78 42% 

PVC -1.05 -2.03 -0.18 0.8% 

Corn PLA  

(baseline, case 2, system expansion) 

(LUC from Plevin et al. 2015) 

HDPE -0.48 -1.15 0.18 8% 

LDPE -0.21 -0.90 0.46 26% 

PP -0.42 -1.06 0.19 9% 

PET 0.43 -0.12 0.93 94% 

PS 1.16 0.56 1.75 100% 

PVC 0.23 -0.33 0.74 80% 

Corn Ethylene (system expansion) 

(LUC from Plevin et al. 2015) 

HDPE 0.01 -1.15 0.99 52% 

LDPE 0.01 -1.17 1.01 52% 

PP #N/A #N/A #N/A #N/A 

PET 0.00 -0.21 0.18 52% 

PS 0.00 -0.34 0.29 52% 

PVC 0.00 -0.53 0.45 52% 
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Table B.32. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. This table presents results assuming a high value for land use change (1 kg CO2e / kg corn) 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Corn PHB  

(optimistic, case 2, system expansion) 

(High LUC) 

HDPE -3.77 -4.76 -2.89 0.0% 

LDPE -3.51 -4.49 -2.62 0.0% 

PP -3.71 -4.66 -2.86 0.0% 

PET -2.86 -3.74 -2.09 0% 

PS -2.13 -3.04 -1.32 0% 

PVC -3.06 -3.95 -2.28 0.0% 

Corn PLA  

(baseline, case 2, system expansion) 

(High LUC) 

HDPE -1.64 -2.29 -1.02 0% 

LDPE -1.38 -2.02 -0.74 0% 

PP -1.58 -2.18 -1.01 0% 

PET -0.73 -1.22 -0.29 0% 

PS 0.00 -0.55 0.54 50% 

PVC -0.93 -1.45 -0.46 0% 

Corn Ethylene (system expansion) 

(High LUC) 

HDPE -2.58 -3.58 -1.72 0% 

LDPE -2.63 -3.65 -1.75 0% 

PP #N/A #N/A #N/A #N/A 

PET -0.47 -0.65 -0.31 0% 

PS -0.76 -1.06 -0.51 0% 

PVC -1.18 -1.64 -0.79 0% 

 

B.2.6 Numerical Results for GHG Savings from Switchgrass Bioplastics, with 

Additional Scenarios 

 

The following tables (Table B.33 to Table B.42) present results for the difference in GHG 

emissions between select switchgrass bioplastic pathways and fossil plastics, on a cradle to gate 

basis, under a range of different modeling assumptions. Fossil polymer hydrogen co-product is 

treated by system expansion.  

 

Table B.33 shows baseline results, corresponding to Figure 3.7 of the main text. Table B.34 

shows results assuming that fermentation residues are only used to generate steam for the 

fermentation and recovery process. Table B.35 shows results assuming there is no use of 

fermentation residues. As discussed in section B.1.3, this chapter uses a N2O emissions factors 

for applied nitrogen in agriculture that is higher than the default value from the IPCC 

guidelines.
225

 Thus, Table B.36 presents results assuming a lower (deterministic) N2O emissions 
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factor of 1.325% for all applied nitrogen, calculated from the IPCC methodology.
225

 To account 

for deep uncertainty in emissions from land use change (LUC), this section includes results from 

2 alternate LUC scenarios. Table B.37 presents results assuming there are no LUC emissions – 

this serves as a lower bound. Table B.38 presents results using a high estimate for LUC 

emissions (670 g CO2e / kg dry switchgrass), based on the Winrock scenario from the GREET 

CCLUB model,
267

 as discussed in section B.1.2. As explained in section B.1.10, the baseline 

model assumes that all switchgrass is either transformed into product, or available for energy 

recovery (as fermentation residues). Table B.39 presents results, assuming that only the non-

soluble portion of the switchgrass lignin (95% of the lignin) is available for energy recovery, as 

per GREET 2014.
267,405

 

 

As explained in section B.1.3, using the IPCC guidelines
95

 to calculate nitrogen in switchgrass 

crop residue, results in an estimate for N2O emissions that is far higher than reported by other 

sources.
167,259,267

 Thus, the baseline model used an estimate for above and below ground nitrogen 

from GREET 2014 (0.54 g nitrogen / kg switchgrass).
267

 Table B.40 presents results using the 

IPCC-based distribution (mean: 17g N / kg switchgrass). This value of crop residue is calculated 

as follows: From equation 11.6 of the IPCC guidelines:
95

 

FCR = Crop * (area – area burnt * Cf) * FracRenew * [RAG * NAG * (1 – Fracremove) + RBG * NBG], 

Where:  

AGDM = Crop/1000*slope + intercept (from table 11.2) 

RAG = AGDM * 1000 / Crop = slope + intercept  

RBG = RBG-BIO * [(AGDM * 1000 + Crop) / Crop] = RBG-BIO * [slope + intercept + 1] 

 

The resulting equation for nitrogen in crop residue per kg dry switchgrass is: 

FCR / Crop = (area – area burnt * Cf) * FracRenew * [(slope + intercept) * NAG * (1 – Fracremove) + 

(RBG-BIO * (slope + intercept + 1)) * NBG], 

These variables are all defined in the IPCC source document.
95

 I use the following values: 

- Area = 1 

- Area burnt = 0 

- Fracrenew = 1 
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- Slope = triangular (min = 0.15, mode = 0.3, max = 0.45) (based on table 11.2) 

- Intercept = 0 

- NAG = 0.015 kg N / kg d.m. (table 11.2) 

- Fracremove = 0 

- RBG-BIO = triangular (min = 0.4, mode = 0.8, max = 1.2) (based on table 11.2) 

- NBG = 0.012 kg N / kg d.m. (table 11.2) 

Table B.41 presents results for a scenario with higher switchgrass crop yield: triangular 

distribution with min = 10, mode = 15, max = 30 (Mg dry matter / ha), based on the mid-term 

scenario of Spatari and MacLean (2010).
259

 Finally, Table B.42 presents results for a scenario in 

which switchgrass crop yield and applied nitrogen fertilizer are perfectly correlated (correlation 

coefficient of 1) 

Table B.33. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. Switchgrass fermentation residues are used to generate steam, and electricity, with surplus 

electricity receiving a system expansion credit. This table presents baseline results, consistent with Figure 3.7 

of the main text. 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Switchgrass PHB 

(full distribution, S, E, EC) 

(Base model) 

HDPE 1.44 -0.57 3.03 93% 

LDPE 1.71 -0.30 3.31 96% 

PP 1.51 -0.50 3.06 94% 

PET 2.36 0.38 3.86 99% 

PS 3.09 1.07 4.64 100% 

PVC 2.15 0.17 3.68 98% 

Switchgrass PLA 

(case 1, S, E, EC) 

(Base model) 

HDPE 1.23 0.42 1.97 100% 

LDPE 1.50 0.68 2.25 100% 

PP 1.29 0.52 1.97 100% 

PET 2.14 1.46 2.71 100% 

PS 2.87 2.13 3.52 100% 

PVC 1.94 1.23 2.54 100% 

Switchgrass ethylene plastics 

(near-term ethanol yield, S, E, EC) 

(Base model) 

HDPE 3.35 0.46 5.33 98% 

LDPE 3.41 0.47 5.43 98% 

PP #N/A #N/A #N/A #N/A 

PET 0.61 0.08 0.97 98% 

PS 0.99 0.14 1.58 98% 

PVC 1.54 0.21 2.44 98% 

Switchgrass ethylene plastics 

(mid-term ethanol yield, S, E, EC) 

(Base model) 

HDPE 2.36 0.48 3.79 99% 

LDPE 2.40 0.48 3.85 99% 

PP #N/A #N/A #N/A #N/A 

PET 0.43 0.09 0.69 99% 

PS 0.70 0.14 1.12 99% 

PVC 1.08 0.22 1.73 99% 
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Table B.34. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. Switchgrass fermentation residues are used to generate steam only. 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Switchgrass PHB 

(full distribution, S) 

HDPE 0.23 -1.85 1.74 64% 

LDPE 0.50 -1.58 2.01 73% 

PP 0.29 -1.75 1.77 66% 

PET 1.14 -0.88 2.58 89% 

PS 1.87 -0.17 3.35 96% 

PVC 0.94 -1.08 2.39 85% 

Switchgrass PLA 

(case 1, S) 

HDPE 1.02 0.25 1.67 99% 

LDPE 1.29 0.51 1.96 100% 

PP 1.09 0.36 1.69 99% 

PET 1.94 1.28 2.41 100% 

PS 2.67 1.97 3.25 100% 

PVC 1.74 1.05 2.26 100% 

Switchgrass ethylene plastics 

(near-term ethanol yield, S) 

HDPE 0.00 -2.93 1.90 55% 

LDPE 0.00 -2.98 1.93 55% 

PP #N/A #N/A #N/A #N/A 

PET 0.00 -0.53 0.34 55% 

PS 0.00 -0.87 0.56 55% 

PVC 0.00 -1.34 0.87 55% 

Switchgrass ethylene plastics 

(mid-term ethanol yield, S) 

HDPE 1.40 -0.25 2.58 96% 

LDPE 1.43 -0.26 2.62 96% 

PP #N/A #N/A #N/A #N/A 

PET 0.26 -0.05 0.47 96% 

PS 0.42 -0.08 0.76 96% 

PVC 0.64 -0.12 1.18 96% 
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Table B.35. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. Switchgrass fermentation residues are not used. 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Switchgrass PHB 

(full distribution, none) 

HDPE -1.59 -3.59 -0.06 2.0% 

LDPE -1.32 -3.32 0.22 5.3% 

PP -1.53 -3.52 0.00 2% 

PET -0.68 -2.62 0.79 23% 

PS 0.05 -1.90 1.55 56% 

PVC -0.88 -2.82 0.59 16% 

Switchgrass PLA 

(case 1, none) 

HDPE 0.12 -0.64 0.76 65% 

LDPE 0.39 -0.38 1.04 87% 

PP 0.18 -0.55 0.78 73% 

PET 1.03 0.37 1.51 99% 

PS 1.76 1.07 2.31 100% 

PVC 0.83 0.16 1.32 99% 

Switchgrass ethylene plastics 

(near-term ethanol yield, none) 

HDPE -1.90 -4.88 0.15 3.8% 

LDPE -1.93 -4.96 0.15 3.8% 

PP #N/A #N/A #N/A #N/A 

PET -0.35 -0.89 0.03 3.8% 

PS -0.56 -1.44 0.04 3.8% 

PVC -0.87 -2.23 0.07 3.8% 

Switchgrass ethylene plastics 

(mid-term ethanol yield, none) 

HDPE -0.49 -2.25 0.88 28% 

LDPE -0.50 -2.29 0.90 28% 

PP #N/A #N/A #N/A #N/A 

PET -0.09 -0.41 0.16 28% 

PS -0.15 -0.67 0.26 28% 

PVC -0.23 -1.03 0.40 28% 
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Table B.36. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. Switchgrass fermentation residues are used for steam and electricity, with a system expansion credit 

for surplus electricity generation. This table presents results assuming a lower N2O emissions factor (1.325%) 

for applied fertilizer and crop residue. 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Switchgrass PHB 

(full distribution, S, E, EC) 

(Low N2O) 

HDPE 1.61 -0.26 3.13 96% 

LDPE 1.87 0.00 3.41 98% 

PP 1.67 -0.19 3.17 96% 

PET 2.52 0.69 3.96 100% 

PS 3.25 1.40 4.73 100% 

PVC 2.32 0.49 3.77 99% 

Switchgrass PLA 

(case 1, S, E, EC) 

(Low N2O) 

HDPE 1.31 0.58 2.01 100% 

LDPE 1.57 0.84 2.29 100% 

PP 1.37 0.70 2.01 100% 

PET 2.22 1.65 2.75 100% 

PS 2.95 2.32 3.56 100% 

PVC 2.02 1.42 2.58 100% 

Switchgrass ethylene plastics 

(near-term ethanol yield, S, E, EC) 

(Low N2O) 

HDPE 3.70 1.56 5.49 100% 

LDPE 3.77 1.59 5.59 100% 

PP #N/A #N/A #N/A #N/A 

PET 0.67 0.28 1.00 100% 

PS 1.09 0.46 1.62 100% 

PVC 1.69 0.71 2.51 100% 

Switchgrass ethylene plastics 

(mid-term ethanol yield, S, E, EC) 

(Low N2O) 

HDPE 2.56 0.94 3.88 100% 

LDPE 2.60 0.96 3.95 100% 

PP #N/A #N/A #N/A #N/A 

PET 0.47 0.17 0.70 100% 

PS 0.76 0.28 1.15 100% 

PVC 1.17 0.43 1.78 100% 
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Table B.37. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. Switchgrass fermentation residues are used for steam and electricity, with a system expansion credit 

for surplus electricity generation. This table presents results assuming there are no emissions from land use 

change (LUC) 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Switchgrass PHB 

(full distribution, S, E, EC) 

(No LUC) 

HDPE 1.87 -0.06 3.33 97% 

LDPE 2.14 0.20 3.60 98% 

PP 1.93 0.02 3.35 98% 

PET 2.78 0.89 4.15 100% 

PS 3.52 1.62 4.92 100% 

PVC 2.58 0.71 3.96 99% 

Switchgrass PLA 

(case 1, S, E, EC) 

(No LUC) 

HDPE 1.43 0.68 2.09 100% 

LDPE 1.70 0.94 2.38 100% 

PP 1.49 0.78 2.10 100% 

PET 2.34 1.70 2.83 100% 

PS 3.07 2.39 3.66 100% 

PVC 2.14 1.48 2.67 100% 

Switchgrass ethylene plastics 

(near-term ethanol yield, S, E, EC) 

(No LUC) 

HDPE 4.26 1.62 5.75 99% 

LDPE 4.34 1.64 5.85 99% 

PP #N/A #N/A #N/A #N/A 

PET 0.77 0.29 1.05 99% 

PS 1.26 0.48 1.70 99% 

PVC 1.95 0.74 2.63 99% 

Switchgrass ethylene plastics 

(mid-term ethanol yield, S, E, EC) 

(No LUC) 

HDPE 2.88 1.13 4.03 100% 

LDPE 2.93 1.15 4.10 100% 

PP #N/A #N/A #N/A #N/A 

PET 0.52 0.21 0.73 100% 

PS 0.85 0.33 1.19 100% 

PVC 1.32 0.52 1.85 100% 
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Table B.38. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. Switchgrass fermentation residues are used for steam and electricity, with a system expansion credit 

for surplus electricity generation. This table presents results assuming a higher value of land use change 

(LUC) as per the Winrock scenario in the GREET CCLUB model.
267

 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Switchgrass PHB 

(full distribution, S, E, EC) 

(High LUC) 

HDPE -1.09 -2.99 0.33 9% 

LDPE -0.83 -2.72 0.61 18% 

PP -1.03 -2.93 0.37 10% 

PET -0.18 -2.05 1.16 45% 

PS 0.55 -1.34 1.94 76% 

PVC -0.38 -2.24 0.97 36% 

Switchgrass PLA 

(case 1, S, E, EC) 

(High LUC) 

HDPE 0.04 -0.71 0.69 56% 

LDPE 0.30 -0.45 0.97 82% 

PP 0.10 -0.60 0.69 64% 

PET 0.95 0.30 1.42 99% 

PS 1.68 0.99 2.25 100% 

PVC 0.75 0.08 1.27 98% 

Switchgrass ethylene plastics 

(near-term ethanol yield, S, E, EC) 

(High LUC) 

HDPE -2.01 -4.77 -0.56 0% 

LDPE -2.05 -4.86 -0.57 0% 

PP #N/A #N/A #N/A #N/A 

PET -0.37 -0.87 -0.10 0% 

PS -0.59 -1.41 -0.16 0% 

PVC -0.92 -2.18 -0.26 0% 

Switchgrass ethylene plastics 

(mid-term ethanol yield, S, E, EC) 

(High LUC) 

HDPE -0.69 -2.42 0.46 17% 

LDPE -0.70 -2.47 0.47 17% 

PP #N/A #N/A #N/A #N/A 

PET -0.13 -0.44 0.08 17% 

PS -0.20 -0.72 0.14 17% 

PVC -0.32 -1.11 0.21 17% 
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Table B.39. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. Switchgrass fermentation residues are used for steam and electricity, with a system expansion credit 

for surplus electricity generation. This table presents results assuming only the lignin portion of switchgrass 

is available for energy recovery. 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Switchgrass PHB 

(full distribution, S, E, EC) 

(Lignin only for energy recovery) 

HDPE 0.22 -1.78 1.77 63% 

LDPE 0.49 -1.51 2.05 73% 

PP 0.28 -1.69 1.81 66% 

PET 1.13 -0.82 2.60 90% 

PS 1.87 -0.11 3.38 97% 

PVC 0.93 -1.03 2.42 86% 

Switchgrass PLA 

(case 1, S, E, EC) 

(Lignin only for energy recovery) 

HDPE 0.93 0.15 1.60 99% 

LDPE 1.19 0.41 1.88 100% 

PP 0.99 0.26 1.61 99% 

PET 1.84 1.19 2.33 100% 

PS 2.57 1.87 3.16 100% 

PVC 1.64 0.97 2.17 100% 

Switchgrass ethylene plastics 

(near-term ethanol yield, S, E, EC) 

(Lignin only for energy recovery) 

HDPE 1.89 -0.97 3.78 94% 

LDPE 1.92 -0.99 3.85 94% 

PP #N/A #N/A #N/A #N/A 

PET 0.34 -0.18 0.69 94% 

PS 0.56 -0.29 1.12 94% 

PVC 0.86 -0.44 1.73 94% 

Switchgrass ethylene plastics 

(mid-term ethanol yield, S, E, EC) 

(Lignin only for energy recovery) 

HDPE 1.78 -0.12 3.40 97% 

LDPE 1.81 -0.12 3.46 97% 

PP #N/A #N/A #N/A #N/A 

PET 0.32 -0.02 0.62 97% 

PS 0.53 -0.04 1.00 97% 

PVC 0.82 -0.06 1.56 97% 
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Table B.40. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. Switchgrass fermentation residues are used for steam and electricity, with a system expansion credit 

for surplus electricity generation. This table presents results assuming a higher value for switchgrass crop 

residue, as per IPCC guidelines.
225

 

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Switchgrass PHB 

(full distribution, S, E, EC) 

(High crop residue) 

HDPE 0.80 -1.37 2.51 80% 

LDPE 1.07 -1.11 2.79 86% 

PP 0.86 -1.31 2.54 82% 

PET 1.71 -0.43 3.36 95% 

PS 2.45 0.27 4.11 98% 

PVC 1.51 -0.63 3.17 93% 

Switchgrass PLA 

(case 1, S, E, EC) 

(High crop residue) 

HDPE 0.93 0.03 1.72 98% 

LDPE 1.20 0.29 2.01 99% 

PP 0.99 0.13 1.73 99% 

PET 1.84 1.03 2.48 100% 

PS 2.57 1.73 3.28 100% 

PVC 1.64 0.82 2.31 100% 

Switchgrass ethylene plastics 

(near-term ethanol yield, S, E, EC) 

(High crop residue) 

HDPE 2.00 -1.38 4.38 91% 

LDPE 2.03 -1.40 4.46 91% 

PP #N/A #N/A #N/A #N/A 

PET 0.36 -0.25 0.80 91% 

PS 0.59 -0.41 1.29 91% 

PVC 0.91 -0.63 2.00 91% 

Switchgrass ethylene plastics 

(mid-term ethanol yield, S, E, EC) 

(High crop residue) 

HDPE 1.59 -0.53 3.21 94% 

LDPE 1.62 -0.54 3.27 94% 

PP #N/A #N/A #N/A #N/A 

PET 0.29 -0.10 0.58 94% 

PS 0.47 -0.16 0.95 94% 

PVC 0.73 -0.24 1.47 94% 
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Table B.41. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. Switchgrass fermentation residues are used for steam and electricity, with a system expansion credit 

for surplus electricity generation. This table presents results assuming a higher value for switchgrass crop 

yield, as per Spatari and MacLean (2010. 
259

  

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Switchgrass PHB 

(full distribution, S, E, EC) 

(High crop yield) 

HDPE 1.68 -0.11 3.15 97% 

LDPE 1.95 0.16 3.42 98% 

PP 1.74 -0.02 3.17 97% 

PET 2.59 0.86 3.98 100% 

PS 3.32 1.56 4.74 100% 

PVC 2.39 0.65 3.80 100% 

Switchgrass PLA 

(case 1, S, E, EC) 

(High crop yield) 

HDPE 1.34 0.67 2.03 100% 

LDPE 1.61 0.93 2.31 100% 

PP 1.40 0.79 2.03 100% 

PET 2.25 1.75 2.77 100% 

PS 2.98 2.40 3.59 100% 

PVC 2.05 1.51 2.60 100% 

Switchgrass ethylene plastics 

(near-term ethanol yield, S, E, EC) 

(High crop yield) 

HDPE 3.86 2.14 5.53 100% 

LDPE 3.93 2.18 5.63 100% 

PP #N/A #N/A #N/A #N/A 

PET 0.70 0.39 1.01 100% 

PS 1.14 0.63 1.64 100% 

PVC 1.77 0.98 2.53 100% 

Switchgrass ethylene plastics 

(mid-term ethanol yield, S, E, EC) 

(High crop yield) 

HDPE 2.65 1.21 3.91 100% 

LDPE 2.70 1.23 3.98 100% 

PP #N/A #N/A #N/A #N/A 

PET 0.48 0.22 0.71 100% 

PS 0.78 0.36 1.16 100% 

PVC 1.21 0.55 1.79 100% 
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Table B.42. Difference in GHG emissions (mean and 95% confidence interval) between bioplastics and fossil 

plastics, on a cradle to gate basis (kg CO2e/kg plastic). Positive numbers indicate the bioplastic has lower 

GHG emissions than the fossil plastic. The table also shows the probability that the bioplastic has lower GHG 

emissions than the fossil plastic (P>0). Fossil plastics are all modeled using system expansion for hydrogen co-

product. Switchgrass fermentation residues are used for steam and electricity, with a system expansion credit 

for surplus electricity generation. This table presents results assuming crop yield and nitrogen application are 

perfectly correlated.  

Bio-plastic Fossil Plastic Mean 2.5% 97.5% P(>0) 

Switchgrass PHB 

(full distribution, S, E, EC) 

(Correlated N and yield) 

HDPE 1.56 -0.24 3.00 96% 

LDPE 1.83 0.03 3.28 98% 

PP 1.62 -0.15 3.03 96% 

PET 2.47 0.74 3.83 100% 

PS 3.20 1.45 4.60 100% 

PVC 2.27 0.53 3.64 99% 

Switchgrass PLA 

(case 1, S, E, EC) 

(Correlated N and yield) 

HDPE 1.28 0.63 1.95 100% 

LDPE 1.55 0.89 2.24 100% 

PP 1.34 0.74 1.96 100% 

PET 2.19 1.71 2.70 100% 

PS 2.92 2.37 3.51 100% 

PVC 1.99 1.48 2.53 100% 

Switchgrass ethylene plastics 

(near-term ethanol yield, S, E, EC) 

(Correlated N and yield) 

HDPE 3.59 2.05 5.17 100% 

LDPE 3.66 2.08 5.27 100% 

PP #N/A #N/A #N/A #N/A 

PET 0.65 0.37 0.94 100% 

PS 1.06 0.61 1.53 100% 

PVC 1.65 0.94 2.37 100% 

Switchgrass ethylene plastics 

(mid-term ethanol yield, S, E, EC) 

(Correlated N and yield) 

HDPE 2.50 1.09 3.72 100% 

LDPE 2.54 1.11 3.78 100% 

PP #N/A #N/A #N/A #N/A 

PET 0.45 0.20 0.68 100% 

PS 0.74 0.32 1.10 100% 

PVC 1.14 0.50 1.70 100% 

 

 

 

 

 

 

 

 

 



Appendix B 

275 

 

B.2.7 Sensitivity to Displacement Rates 

The comparative analysis presented in Figure 3.7 of the main text assumed that 1 kg of each bio-

based plastic can displace 1 kg of each fossil-based plastic (i.e. 1:1 displacement). While this 

assumption is valid for bioethylene plastics, it may not be appropriate for PLA and PHB. Figure 

B.8 to Figure B.11 consider a range of displacement rates for each of the main PLA and PHB 

scenarios presented in Figure 3.7 of the main text. I define the ‘displacement rate’ as the quantity 

of fossil plastic displaced by a unit of mass bioplastic. For example, a displacement rate of 0.8 

implies that 1 kg of bioplastic can displace 0.8 kg of fossil plastic (on a physical basis – not 

accounting for indirect market interactions). For each pair of figures, the left figure shows the 

proportion of model runs in which the bioplastic achieves a net GHG reduction over the 

displaced quantity of fossil plastic. The right figure shows the corresponding mean GHG 

reduction, per kg of bioplastic, displacing different quantities of each fossil plastic (negative 

values imply that switching to the bioplastic results in a net increase in GHG emissions). As for 

Figure 3.7 in the main text, the figures below present a baseline scenario for corn PLA (case 2, 

system expansion), an optimistic scenario for corn PHB (case 2, system expansion), and 

somewhat optimistic scenarios for switchgrass-based plastics that include the generation of 

steam and electricity from fermentation residues, along with a credit for the sale of surplus 

electricity. 

 

Unsurprisingly, the effect of displacement rate on mean emission reductions is more important 

for high emission fossil plastics, like PS, than it is for low emission fossil plastics like HDPE and 

LDPE. In addition, Figure B.8 (left) shows that corn PLA continues to have a high chance 

(>80%) of reducing emissions compared to high emission polymers (PS, PET, PVC) for 

moderate displacement rates (> ~0.8), but that large displacement rates (>1.3) would be 

necessary to have the same confidence (>80%) that corn PLA can achieve reductions relative to 

HDPE or LDPE. Figure B.9 (left) shows that even in the optimistic scenario, corn PHB requires 

displacement rates in excess of 1.3 to have a high level of confidence (>80%) that there will be a 

reduction in emissions compared to any plastic other than PS. Finally Figure B.10 and Figure 

B.11 show that switchgrass PLA and PHB can reduce emissions relative to fossil polymers for a 

wide range of displacement rates. This is due to the fact that the selected switchgrass pathways 
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exhibit cradle-to-gate GHG emissions that are already close to 0, even before displacing any 

fossil plastic. 

 

Figure B.8. Sensitivity of cradle-to-gate net emissions from corn PLA (baseline case 2, system expansion) to 

fossil plastic displacement rate. The x-axis in each figure corresponds to the quantity of fossil plastic 

displaced by 1 mass unit of PLA. The left figure shows the probability that 1 kg corn PLA has lower GHG 

emissions than the displaced quantity of each fossil plastic. The right figure shows the mean GHG emissions 

reduction achieved by 1 kg corn PLA (negative values imply that switching to the bioplastic increases 

emissions). Both figures show a line at the default 1:1 displacement rate. 
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Figure B.9. Sensitivity of cradle-to-gate net emissions from corn PHB (optimistic, case 2, system expansion) to 

fossil plastic displacement rate. The x-axis in each figure corresponds to the quantity of fossil plastic 

displaced by 1 mass unit of PHB. The left figure shows the probability that 1 kg corn PHB has lower GHG 

emissions than the displaced quantity of each fossil plastic. The right figure shows the mean GHG emissions 

reduction achieved by 1 kg corn PHB (negative values imply that switching to the bioplastic increases 

emissions). Both figures show a line at the default 1:1 displacement rate. 
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Figure B.10. Sensitivity of cradle-to-gate net emissions from switchgrass PLA (case 1, S, E, EC) to fossil 

plastic displacement rate. The x-axis in each figure corresponds to the quantity of fossil plastic displaced by 1 

mass unit of PLA. The left figure shows the probability that 1 kg corn PLA has lower GHG emissions than 

the displaced quantity of each fossil plastic. The right figure shows the mean GHG emissions reduction 

achieved by 1 kg corn PLA. Both figures show a line at the default 1:1 displacement rate. 

 

 

 



Appendix B 

279 

 

 

Figure B.11. Sensitivity of cradle-to-gate net emissions from switchgrass PHB (full distribution, S, E, EC) to 

fossil plastic displacement rate. The x-axis in each figure corresponds to the quantity of fossil plastic 

displaced by 1 mass unit of PHB. The left figure shows the probability that 1 kg corn PHB has lower GHG 

emissions than the displaced quantity of each fossil plastic. The right figure shows the mean GHG emissions 

reduction achieved by 1 kg corn PHB. Both figures show a line at the default 1:1 displacement rate. 

 

B.2.8 Sensitivity to Omitted Stages  

As noted in the main text, my model excludes emissions from downstream processing and 

transportation. Table B.43 explores the sensitivity of the main bio-based plastic pathways (those 

presented in Figure 3.7 of the main chapter) to these additional stages. For each bio-based 

plastic, the table shows how much additional road transport, ship transport, downstream process 

heat or downstream process electricity would have to be applied to that plastic (relative to its 

fossil counterparts) for its mean GHG emissions to be the same as the mean emissions for each 

fossil plastic. Negative values imply that the bio-based plastic would have to undergo less 

transportation or downstream processing energy than its fossil counterpart to achieve equal GHG 

emissions. For this analysis, I assume that road transportation is carried out with a diesel 

powered single unit truck (0.0203 L diesel/t-km,
229

 resulting in mean emissions of 

0.072 g CO2e/kg-km), ship transportation is carried out via ocean freighter (0.00493 L residual 

fuel oil/t-km,
232

 resulting in mean emissions of 0.019 g CO2e/kg-km), process heat is provided 
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by natural gas (mean: 64 g CO2e/MJ HHV as parametrized in Table B.12), and process 

electricity is generated with the U.S. average emissions factor (mean: 0.19 g CO2e/MJ, per Table 

B.12). The results in each column of the table are separate from one another. For example, corn 

PLA would have the same mean GHG emissions as PET if PLA were transported 9,600 km 

further than PET by truck, or if PLA were shipped 36,000 km further than PET, or if product 

forming from PLA required 11 MJ/kg more process heat than from PET, or if product forming 

from PLA required 3.7 more MJ of process electricity than from PET. For reference, the U.S. is 

approximately 4,000 km across (East/West) and 2,500 km long (North/South). The shipping 

distance from Brazil (a major producer of bio-based plastics from sugarcane) to the U.S. is 

approximately 10,000 km.
233

 Very few entries in the table are within these ranges. 

Table B.43. Sensitivity of main pathways to omitted stages. The table shows the additional road transport 

distance, additional ship transport distance, additional process heat requirements or additional process 

electricity requirements (per kg plastic) that (individually) would make each bio-based plastic have the same 

mean GHG emissions as each fossil-based plastic. Negative values imply that the bio-based plastic would have 

to undergo less transportation or downstream processing energy than its fossil counterpart to achieve equal 

mean GHG emissions. 

BioPlastic Plastic 

 

Road 

transport 

(km) 

Ship 

transport 

(km) 

Process 

heat 

(MJ) 

Process 

electricity 

(MJ elec) 

Corn PLA  

(baseline: case 2, system 

expansion) 

HDPE -3,000 -11,000 -3.4 -1.2 

LDPE 680 2,500 0.8 0.3 

LLDPE -3,000 -11,000 -3.4 -1.2 

PP -2,200 -8,200 -2.5 -0.9 

PET 9,600 36,000 11 3.7 

PS (GPPS) 20,000 74,000 22 7.7 

HIPS 19,000 72,000 22 7.5 

PVC 6,800 25,000 8 2.7 

Switchgrass PLA 

(case 1, S, E, EC) 

HDPE 17,000 64,000 19 6.6 

LDPE 21,000 78,000 23 8.1 

LLDPE 17,000 64,000 19 6.6 

PP 18,000 67,000 20 7.0 

PET 30,000 110,000 33 12 

PS (GPPS) 40,000 150,000 45 15 

HIPS 39,000 150,000 44 15 

PVC 27,000 100,000 30 10 

Corn PHB 

(optimistic: case 2, system 

expansion) 

HDPE -18,000 -67,000 -20 -7.0 

LDPE -14,000 -54,000 -16 -5.6 

LLDPE -18,000 -67,000 -20 -7.0 

PP -17,000 -64,000 -19 -6.7 

PET -5,400 -20,000 -6.1 -2.1 

PS (GPPS) 4,700 18,000 5.3 1.8 
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HIPS 4,400 16,000 4.9 1.7 

PVC -8,200 -31,000 -9.2 -3.2 

Switchgrass PHB 

(full distribution, S, E, EC) 

HDPE 20,000 75,000 22 7.8 

LDPE 24,000 89,000 27 9 

LLDPE 20,000 75,000 23 7.8 

PP 21,000 78,000 23 8.1 

PET 33,000 120,000 37 13 

PS (GPPS) 43,000 160,000 48 17 

HIPS 42,000 160,000 48 16 

PVC 30,000 110,000 34 12 

Corn Ethylene 

(System expansion) 

HDPE 8,200 30,000 - - 

LDPE 8,300 31,000 - - 

LLDPE 8,300 31,000 - - 

PET 1,500 5,500 - - 

PS (GPPS) 2,400 9,000 - - 

HIPS 2,300 8,400 - - 

PVC 3,700 14,000 - - 

Switchgrass ethylene  

(near-term, S, E, EC) 

HDPE 46,000 170,000 - - 

LDPE 47,000 180,000 - - 

LLDPE 47,000 170,000 - - 

PET 8,400 31,000 - - 

PS (GPPS) 14,000 51,000 - - 

HIPS 13,000 48,000 - - 

PVC 21,000 79,000 - - 

Switchgrass ethylene  

(mid-term, S, E, EC) 

HDPE 33,000 120,000 - - 

LDPE 33,000 120,000 - - 

LLDPE 33,000 120,000 - - 

PET 5,900 22,000 - - 

PS (GPPS) 9,700 36,000 - - 

HIPS 9,100 34,000 - - 

PVC 15,000 56,000 - - 
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Appendix C. Supporting Information for Chapter 4 

 

C.1. Methods  

The main text (section 4.3) provides an overview of the model employed in Chapter 4. Table C.1 

presents key parameters for the modeling of renewable energy pathways in this chapter, 

corresponding to section 4.3.2. Table C.2 summarizes the key parameters used for cost 

estimation, corresponding to section 4.3.3 
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Table C.1. Key parameters for the modeling of renewable energy pathways 

Parameter Value or Distribution
a
 Units Source and notes 

Renewable natural gas    

RNG processing efficiency Triangular (91, 94.4, 97) % ref
304

 

Emissions from combustion of 

LFG in a reciprocating engine 

54.6 

0.423 

0.000822 

g CO2 / MJ LHV 

g CH4 / MJ LHV 

g N2O / MJ LHV 

Calculated from 
267

 

Fugitive emissions 0.02 
MJ fugitive CH4 / MJ 

RNG product 
ref

267
 

Offset flaring emissions 

56.1 

0.0299 

0.00104 

g CO2 / MJ LHV flared 

g CH4 / MJ LHV flared 

g N2O / MJ LHV flared 

Calculated from 
267

 

(Applies to LFG burned in 

reciprocating engine, fugitive 

emissions, and RNG product) 

Natural gas transmission 
Lognormal (1.62, 1.65, 0.18) 

Lognormal (0.015, 0.0079, 0.075)  

g CO2 / MJ (LHV) 

g CH4 / MJ (LHV) 
Approximate fit to results from

266
 

Natural gas combustion emissions 

Triangular (54.3, 56.1, 58.3) 

Triangular (3E-4, 1E-4, 3E-3) 

Triangular (3E-5, 1E-4, 3E-4) 

g CO2 / MJ (LHV) 

g CH4 / MJ (LHV) 

g N2O / MJ (LHV) 

ref
95

 (original source for
266

). 

Natural gas heating value ratio 1.108 MJ HHV / MJ LHV Calculated from
267

 

Renewable electricity emissions    

Wind power (before line losses) 
Log-logistic (1.47, 8.94, 2.91) 

(mean: 12.4, stdev: 9.3) 
g CO2e / kWh 

Fit to “harmonized by all” from
303

; 

Must be adjusted for ~6% line losses. 

Biomass energy content    

Switchgrass 18.1 MJ HHV / kg Calculated from
267

 

Boiler efficiencies    

Natural gas boiler Triangular (70%, 80%, 94%) % (HHV) ref
265

 (also used for other fossil fuels) 

Biomass boiler Triangular (68%, 70%, 74.5%) % (HHV) Lower: 
305

, mode:
306

, upper:
307

 

a) Distributions are written as: Triangular (lower, mode, upper), Log-logistic (location, scale, shape), Lognormal (mean of the lognormal 

distribution, standard deviation of the lognormal distribution, shift). 



Appendix C 

284 

 

Table C.2. Summary of key parameters for cost estimation 

Product Value or Distribution
a
 Units Source and notes 

Plastics    

PLA 2.82 2015 USD / kg 

Calculated based 

on 
309-311

 

PHA (treated as PHB) 5.94 2015 USD / kg 

HDPE 1.78 2015 USD / kg 

LDPE See HDPE 2015 USD / kg 

PP 1.63 2015 USD / kg 

PS 2.08 2015 USD / kg 

PVC 1.48 2015 USD / kg 

PET 2.23 2015 USD / kg 
    

Feedstocks    

Fossil ethylene Uniform (0.35, 0.65) 2015 USD / lb Based on 
312

 

Corn bioethylene Triangular (1780, 2180, 2925) 2015 USD / lb Based on 
184

 
    

Electricity    

Wind power Triangular (35, 66, 111) $ / MWh ref
315

 

US wholesale 

electricity 

Log-logistic (13.7, 31.0, 4.2) 

(mean: 48, CI
b
: 27, 87) 

$ / MWh ref
316

 

    

Fuels    

RNG  
Exponential (2.05, 5.19) 

(mean: 7.2, CI
b
: 5.2, 12.8 ) 

$ / MMBtu Based on 
313

 

Natural Gas 
Extreme value (4.32, 0.53) 

(mean: 4.6, CI
b
: 3.6, 6.3) 

$ / MCf 

ref
314

 Residual Fuel Oil Uniform (1.09, 2.61) $ / gallon 

Coal Uniform (67.8, 70.7) $ / short ton 

Distillate / Diesel Triangular (1.6, 3.2, 3.4) $ / gallon 

a) Distributions are written as: Uniform (lower, upper), Triangular (lower, mode, upper), Log-logistic 

(location, scale, shape), Exponential (mean, shift), Extreme value (location, shape)  

b) 95% confidence interval (CI) 
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C.2. Additional Results 

C.2.1 Other Low-Carbon Energy Sources 

For the low-carbon energy pathways, direct combustion of biomass or wind power (through 

increased electrification), could also replace on-site fuels (instead of using RNG). Table C.3 

presents these scenarios for each fossil-based polymer. Switchgrass combustion produces similar 

results to RNG use, but with slightly higher uncertainty. Increased use of wind power further 

reduces emissions relative to RNG use.  

  

Table C.3. Emissions factors (mean and 95% confidence intervals) for fossil-based plastics produced using 

different energy sources. 

 

Emissions 

factor with 

conventional 

energy 

(kg CO2e/kg 

plastic) 

Emissions 

factor with 

wind and RNG 

(kg CO2e/kg 

plastic) 

Emissions 

factor with 

wind and 

switchgrass 

combustion 

(kg CO2e/kg 

plastic) 

Emissions 

factor with 

wind and 

electrification of 

heat 

(kg CO2e/kg 

plastic) 

High Density 

Polyethylene 

(HDPE) 

1.48 (1.02, 1.96)
 

0.59 (0.19, 1.01) 0.58 (0.18, 1.06) 0.35 (0.01, 0.72) 

Low Density 

Polyethylene 

(LDPE) 

1.75 (1.27, 2.25)
 

0.65 (0.23, 1.10) 0.64 (0.2, 1.2) 0.35 (0, 0.74) 

Linear Low 

Density 

Polyethylene 

(LLDPE) 

1.48 (1.01, 1.97)
 

0.64 (0.24, 1.06) 0.64 (0.23, 1.12) 0.41 (0.06, 0.78) 

Polypropylene 

(PP) 
1.54 (1.14, 1.96)

 
0.84 (0.5, 1.21) 0.83 (0.49, 1.23) 0.65 (0.36, 0.99) 

Polyethylene 

(PET) 
2.39 (2.18, 2.65)

 
1.04 (0.83, 1.29) 1.03 (0.79, 1.37) 0.81 (0.67, 1.04) 

Polystyrene 

(PS) 
3.12 (2.78, 3.54)

 
1.64 (1.28, 2.05) 1.63 (1.21, 2.22) 1.24 (1, 1.58) 

Polyvinyl 

Chloride (PVC) 
2.19 (1.92, 2.49) 0.63 (0.36, 0.92) 0.62 (0.3, 1.07) 0.31 (0.14, 0.52) 
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C.2.2 Results for Individual Plastics 

 

Figure C.1. presents the difference in life cycle GHG emissions that result from switching from 

fossil-based polymers with conventional energy to fossil-based polymers with low-carbon 

energy, or to different bio-based polymers (assuming 1:1 mass substitution). In addition to the 

PLA and bioethylene scenarios discussed in the main text, the figure also includes results for 

poly-3-hydroxybutyrate (PHB). The results for PHB presented here use only the lowest emission 

PHB scenarios, which rely on PHB case 2 from Posen et al. (2016) (Chapter 3)
144

 for corn 

scenarios, or PHB case 1 from Posen et al. (2016) (Chapter 3)
144

 for switchgrass scenarios; those 

scenarios are based respectively on Akiyama et al. (2003)
263

 and Harding et al. (2007).
247

 Since 

PHB is both more expensive, and has higher GHG emissions than other bioplastics, I did not 

include it in the feedstock substitution scenarios presented in the main text.  

 

The results in Figure C.1 assume optimistic end of life scenarios for bio-based polymers: PHB is 

composted, while bioethylene plastics and PLA are landfilled and act as a carbon sink. Each bar 

shows mean GHG savings for the different emission reduction strategies, applied to a different 

baseline plastic. For example, the red bar in panel a) shows that switching to wind and RNG 

across the chemical industry for PET would reduce GHG emissions by a mean of 1.4 kg CO2e/kg 

PET. The next 3 bars show the change in emissions when 1 kg of each corn-based bioplastic 

(PLA, PHB, or PET made with bioethylene) replaces 1 kg PET, and so on. These results 

reinforce the message of the main text, showing that low carbon energy results in greater GHG 

reductions than near-term (corn-based) feedstock substitution, for every individual fossil plastic 

considered. The figure also shows that advanced feedstock substitution scenarios can result in 

greater GHG reductions than energy substitution, though only for a subset of pathways (i.e. PLA 

substituting for any plastic, or bioethylene used for polyethylene plastics). Table C.4 to Table 

C.6 show numerical results corresponding to Figure C.1. Table C.4 also shows an additional case 

where low carbon energy is applied only to the final plastic polymerization stage, and not across 

the entire chemical industry. 
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Figure C.1. Life cycle comparison of emission reduction strategies for a) PET, b) PS, c) PVC, d) HDPE, e) 

LDPE, f) PP. Results for LLDPE are not shown, but are similar to those for HDPE. Negative values represent 

emission reductions. Fossil + LC refers to the use of low carbon energy in the production of the conventional 

polymer. Corn refers to corn-based biopolymers produced with conventional energy. Corn + LC refers to 

corn-based biopolymers produced with low carbon energy. SW refers to switchgrass-based biopolymers. The 

values in this figure result from subtracting modeled emissions for each conventional polymer from the life 

cycle emissions for each alternate polymer. The dotted line matches the LC fossil scenario and is included for 
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reference only. Wind and RNG are the low-carbon energy sources. For PHB, only the most optimistic 

scenarios are shown (case 1 and 2 from Posen et al.
144

 (Chapter 3), for corn and switchgrass pathways, 

respectively). The graph shows mean results; error bars span 95% of simulations. 

 

Table C.4. Comparison of emission reduction strategies, using corn-grain for bio-based polymers (with 

conventional energy). Negative numbers indicate the alternate plastic has lower cradle-to-gate GHG 

emissions than the conventional plastic (kg CO2e / kg plastic). For each bioplastic, the table also shows the 

probability that this plastic has lower GHG emissions than the conventional plastic produced with low carbon 

energy (P<LC). Case numbers are as described in Chapter 3 and described above. This table presents results 

corresponding to Figure C.1, assuming PHB is composted and other plastics are landfilled. 

Conventional 

Plastic 

Alternate polymer Mean 2.5% 97.5% P<LC 

PET 

Low carbon energy (full supply chain) -1.35 -1.51 -1.20 - 

Low carbon energy (polymerization only) -0.73 -0.81 -0.66 - 

PLA -0.53 -1.00 -0.02 0% 

PHB (optimistic, case 2) 2.27 1.47 3.18 0% 

bio-PET (made with bioethylene) -0.11 -0.28 0.08 0% 

PS 

Low carbon energy (full supply chain) -1.48 -1.76 -1.23 - 

Low carbon energy (polymerization only) -0.12 -0.13 -0.10 - 

PLA -1.27 -1.81 -0.71 22% 

PHB (optimistic, case 2) 1.54 0.69 2.49 0% 

bio-PS (made with bioethylene) -0.17 -0.45 0.13 0% 

PVC 

Low carbon energy (full supply chain) -1.55 -1.80 -1.34 - 

Low carbon energy (polymerization only) -0.25 -0.29 -0.22 - 

PLA -0.33 -0.82 0.20 0% 

PHB (optimistic, case 2) 2.48 1.67 3.40 0% 

bio-PVC (made with bioethylene) -0.27 -0.69 0.20 0% 

HDPE 

Low carbon energy (full supply chain) -0.88 -1.16 -0.65 - 

Low carbon energy (polymerization only) -0.28 -0.32 -0.25 - 

PLA 0.38 -0.26 1.03 0% 

PHB (optimistic, case 2) 3.19 2.27 4.19 0% 

bio-HDPE (made with bioethylene) -0.59 -1.52 0.44 27% 

LDPE 

Low carbon energy (full supply chain) -1.09 -1.40 -0.83 - 

Low carbon energy (polymerization only) -0.48 -0.55 -0.41 - 

PLA 0.11 -0.54 0.77 0% 

PHB (optimistic, case 2) 2.92 1.99 3.93 0% 

bio-LDPE (made with bioethylene) -0.60 -1.54 0.45 15% 

PP 

Low carbon energy (full supply chain) -0.70 -0.92 -0.51 - 

Low carbon energy (polymerization only) -0.21 -0.24 -0.19 - 

PLA 0.32 -0.27 0.93 0% 

PHB (optimistic, case 2) 3.12 2.24 4.10 0% 
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Table C.5. Comparison of emission reduction strategies, using corn-grain for bio-based polymers (with wind 

and RNG satisfying energy needs for biomass processing). Negative numbers indicate the alternate plastic has 

lower cradle-to-gate GHG emissions than the conventional plastic (kg CO2e / kg plastic). For each bioplastic, 

the table also shows the probability that this plastic has lower GHG emissions than the conventional plastic 

produced with low carbon energy (P<LC). Case numbers are as described in chapter and summarized above. 

This table presents results corresponding to Figure C.1, assuming PHB is composted and other plastics are 

landfilled. 

Conventional 

Plastic 

Alternate polymer Mean 2.5% 97.5% P<LC 

PET 

Low carbon energy (full supply chain) -1.35 -1.51 -1.20 - 

PLA -2.30 -2.65 -1.90 100% 

PHB (optimistic, case 2) -0.49 -1.07 0.28 0% 

bio-PET (made with bioethylene) -0.37 -0.52 -0.20 0% 

PS 

Low carbon energy (full supply chain) -1.48 -1.76 -1.23 - 

PLA -3.03 -3.50 -2.56 100% 

PHB (optimistic, case 2) -1.22 -1.87 -0.41 22% 

bio-PS (made with bioethylene) -0.60 -0.84 -0.32 0% 

PVC 

Low carbon energy (full supply chain) -1.55 -1.80 -1.34 - 

PLA -2.09 -2.49 -1.67 100% 

PHB (optimistic, case 2) -0.29 -0.89 0.50 0% 

bio-PVC (made with bioethylene) -0.93 -1.30 -0.50 0% 

HDPE 

Low carbon energy (full supply chain) -0.88 -1.16 -0.65 - 

PLA -1.38 -1.94 -0.82 98% 

PHB (optimistic, case 2) 0.42 -0.32 1.30 0% 

bio-HDPE (made with bioethylene) -2.03 -2.84 -1.08 99% 

LDPE 

Low carbon energy (full supply chain) -1.09 -1.40 -0.83 - 

PLA -1.65 -2.23 -1.08 99% 

PHB (optimistic, case 2) 0.15 -0.59 1.03 0% 

bio-LDPE (made with bioethylene) -2.07 -2.89 -1.10 98% 

PP 

Low carbon energy (full supply chain) -0.70 -0.92 -0.51 - 

PLA -1.44 -1.96 -0.93 100% 

PHB (optimistic, case 2) 0.36 -0.33 1.21 0% 
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Table C.6. Comparison of emission reduction strategies, using switchgrass for bio-based polymers. Negative 

numbers indicate the alternate plastic has lower cradle-to-gate GHG emissions than the conventional plastic 

(kg CO2e / kg plastic). For each bioplastic, the table also shows the probability that this plastic has lower 

GHG emissions than the conventional plastic produced with low carbon energy (P<LC). Case numbers are as 

described in Chapter 3 and described above. This table presents results corresponding to Figure C.1, 

assuming PHB is composted and other plastics are landfilled. All switchgrass pathways include cogeneration 

of steam and electricity, but with no emissions credits for surplus energy. 

Conventional 

Plastic 

Alternate polymer Mean 2.5% 97.5% P<LC 

PET 

Low carbon energy (full supply chain) -1.35 -1.51 -1.20 - 

PLA -2.14 -2.72 -1.43 98% 

PHB (optimistic, case 1) -0.97 -1.82 0.35 24% 

 bio-PET (bioethylene, mid term yield) -0.34 -0.55 -0.02 0% 

PS 

Low carbon energy (full supply chain) -1.48 -1.76 -1.23 - 

PLA -2.87 -3.53 -2.12 100% 

PHB (optimistic, case 1) -1.70 -2.62 -0.36 70% 

 bio-PS (bioethylene, mid term yield) -0.55 -0.90 -0.03 0% 

PVC 

Low carbon energy (full supply chain) -1.55 -1.80 -1.34 - 

PLA -1.94 -2.55 -1.21 98% 

PHB (optimistic, case 1) -0.77 -1.64 0.56 4% 

 bio-PVC (bioethylene, mid term yield) -0.85 -1.39 -0.04 1% 

HDPE 

Low carbon energy (full supply chain) -0.88 -1.16 -0.65 - 

PLA -1.23 -1.97 -0.42 98% 

PHB (optimistic, case 1) -0.06 -1.03 1.31 4% 

 bio-HDPE (bioethylene, mid term yield) -1.85 -3.04 -0.09 91% 

LDPE 

Low carbon energy (full supply chain) -1.09 -1.40 -0.83 - 

PLA -1.50 -2.25 -0.68 98% 

PHB (optimistic, case 1) -0.32 -1.31 1.04 7% 

 bio-LDPE (bioethylene, mid term yield) -1.88 -3.09 -0.09 88% 

PP 

Low carbon energy (full supply chain) -0.70 -0.92 -0.51 - 

PLA -1.29 -1.98 -0.51 99% 

PHB (optimistic, case 1) -0.12 -1.06 1.22 13% 

 

 

 

C.2.3 Additional Energy Substitution Scenarios: Allocation and Scope of Substitution 

 

Table C.7 shows additional scenarios for the production of conventional plastics with low carbon 

energy. The hydrogen co-produced during the olefin production process (steam cracking) can 

also be combusted for energy or subject to mass allocation, instead of being treated by system 

expansion. Additionally, it is possible that resin manufacturers have control only over the final 

polymerization process, but may not be able to introduce low-carbon energy across the supply 
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chain. In all three additional cases, the emissions from conventional polymers would be 

substantially higher than in the energy substitution presented in the main chapter.  

 

Table C.7. Cradle-to-grave greenhouse gas emissions (mean and 95% confidence interval) from fossil 

polymer, produced with renewable energy (RNG for heat requirements and wind power for electricity), 

under different input assumptions (kg CO2e / kg plastic) 

Scenario  Plastic Mean 2.5% 97.5% 

Base-Case 

 

 (Renewable energy across the entire 

chemical supply chain; hydrogen from steam 

cracking treated by system expansion) 

HDPE 0.59 0.19 1.01 

LDPE 0.65 0.23 1.10 

LLDPE 0.64 0.24 1.06 

PP 0.84 0.50 1.21 

PET 1.04 0.83 1.29 

PS (GPPS) 1.64 1.28 2.05 

HIPS 1.63 1.27 2.04 

PVC 0.63 0.36 0.92 

Hydrogen combusted 

 

(Renewable energy across the entire chemical 

supply chain; hydrogen from steam cracking 

combusted for energy) 

HDPE 1.23 0.95 1.61 

LDPE 1.31 0.99 1.70 

LLDPE 1.29 1.01 1.67 

PP 1.38 1.12 1.71 

PET 1.15 0.95 1.40 

PS (GPPS) 1.96 1.63 2.35 

HIPS 1.96 1.63 2.35 

PVC 0.93 0.69 1.20 

Hydrogen mass allocation 

 

(Renewable energy across the entire chemical 

supply chain; hydrogen from steam cracking 

combusted treated by mass allocation) 

HDPE 1.33 1.00 1.72 

LDPE 1.40 1.04 1.83 

LLDPE 1.39 1.06 1.78 

PP 1.45 1.16 1.80 

PET 1.17 0.96 1.43 

PS (GPPS) 2.01 1.65 2.41 

HIPS 2.01 1.65 2.42 

PVC 0.97 0.70 1.26 

Renewable energy for polymerization only 

 

(All other unit processes powered by 

conventional energy; hydrogen from steam 

cracking treated by system expansion) 

HDPE 1.19 0.73 1.68 

LDPE 1.26 0.79 1.77 

LLDPE 1.25 0.79 1.74 

PP 1.32 0.93 1.75 

PET 1.65 1.46 1.89 

PS (GPPS) 3.00 2.67 3.42 

HIPS 2.97 2.63 3.39 

PVC 1.93 1.67 2.23 
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Appendix D. Supporting Information for Chapter 5 

D.1. Regression Analysis 

D.1.1 Main Models 

Partial adjustment and adaptive expectations models are standard in the economics literature. In 

brief the partial adjustment model assumes that refiner behavior is dictated by an unobserved 

‘target’ production function, but that production decisions are sticky across time periods (i.e. 

current production is a weighted combination of last period’s production and current target 

production). The adaptive expectations model assumes that refiners make production decisions in 

function of (unobserved) expected prices; these expected prices adjust when shocks occur, but 

are likewise sticky (i.e. the future expected price is a weighted combination of last period’s 

expected price and last period’s observed price). Derivations for the basic functional forms of 

these models can be found in most standard econometrics textbooks (e.g. Dougherty 2007, 

chapter twelve
418

).  

 

Quantitatively, the main adaptive expectations model presented in section 5.3.2 is described by 

equation (D.1):  

log(𝛽𝑖𝑡) = 𝑎0 + 𝑎1∑𝜆 ∗ (1 − 𝜆)𝑗 log (
𝑝𝑔(𝑡−𝑗)

𝑝𝑜(𝑡−𝑗)
)

𝑘

𝑗=0

+ 𝑎2∑𝜆 ∗ (1 − 𝜆)𝑗 log (
𝑝𝑑(𝑡−𝑗)

𝑝𝑜(𝑡−𝑗)
)

𝑘

𝑗=0

+ 𝑎3𝑡 + 𝑎4 ∗ 𝑀,𝑖 ∈ (𝑔, 𝑑) 

(D.1) 

 

where βgt and βdt are respectively the gasoline share and distillate share of total refinery output in 

time period t; pgt and pdt are the price of gasoline and diesel by refiners in time period t; pot is the 

refiner crude oil acquisition cost in time period t; t represents a deterministic time trend and M 

represents a set of dummy variables corresponding to each month of the year. The resulting 

coefficients a1 and a2 represent the product yield with respect to the normalized gasoline diesel 

prices respectively; λ represents the speed at which expectations adapt (λ = 0 means future 

expectations do not respond to current prices; λ = 1 means future expectations are exactly equal 

to current prices); k is a parameter representing the number of lags included in the model. In 

theory, the model requires an infinite number of lagged variables. In practice, k must only be 
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sufficiently large such that the remaining error is relatively small. In this case, I set k=10, 

representing lagged variables going back 10 months. The model is solved by non-linear least 

squares.  

 

Similarly, the main partial adjustment model presented in section 5.3.2 is described by the 

following equation : 

log(𝛽𝑖𝑡) = 𝑎0 ∗ 𝜆 + 𝑎1 ∗ 𝜆 ∗ log (
𝑝𝑔𝑡

𝑝𝑜𝑡
) + 𝑎2 ∗ 𝜆 ∗ log (

𝑝𝑑𝑡
𝑝𝑜𝑡

) + (1 − 𝜆) ∗ log(𝛽𝑖(𝑡−1))

+𝑎3 ∗ 𝑡 + 𝑎4 ∗ 𝑀, 𝑖 ∈ (𝑔, 𝑑) 

(D.2) 

 

where all variables are the same as in the adaptive expectations model, except that now λ 

represents the speed of production adjustment (λ = 0 means there is no adjustment, and current 

yields are based only on previous yields; λ = 1 means adjustment is instantaneous, and yields 

always match the hidden ‘target’ levels). In principle, the partial adjustment model can also be 

estimated using the same equation as the adaptive expectations model by first repeatedly 

substituting the lagged regression equation in place of the lagged dependent variable. The models 

require different assumptions about their error terms; for additional detail, the reader is referred 

to (e.g. Dougherty 2001, chapter thirteen
418

).  

 

The ‘lagged prices’ model is related to the above models (in the form of equation (D.3)), but 

without imposing the same restrictions on how the regression coefficients for different time 

periods are related. Essentially, this model allows current yields to be a function of both current 

and past prices. The effective elasticity reported in section 5.3.2 corresponds to the sum of the 

coefficients for current and lagged prices. Since prices are strongly correlated across 

observations, individual coefficients are relatively unstable (large standard errors); the sum of the 

coefficients on current and lagged prices is, however far more stable. Thus, the model is 

estimated using the following functional form: 
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log(𝛽𝑖𝑡) = 𝑎0 + 𝑎1 log (
𝑝𝑔𝑡

𝑝𝑜𝑡
) +∑𝑎1𝑗 (log (

𝑝𝑔(𝑡−𝑗)

𝑝𝑜(𝑡−𝑗)
) − log (

𝑝𝑔𝑡

𝑝𝑜𝑡
))

𝑘

𝑗=1

+𝑎2 log (
𝑝𝑔𝑡

𝑝𝑜𝑡
)

+∑𝑎2𝑗 (log (
𝑝𝑑(𝑡−𝑗)

𝑝𝑜(𝑡−𝑗)
) − log (

𝑝𝑑𝑡
𝑝𝑜𝑡

))

𝑘

𝑗=1

+ 𝑎3 ∗ 𝑡 + 𝑎4 ∗ 𝑀,

𝑖 ∈ (𝑔, 𝑑) 

(D.3) 

where a1 represents the sum of product yield elasticities relative to current and past gasoline 

prices; a1j represents the yield elasticity relative to the gasoline price lagged j periods; a2 

represents the sum of product yield elasticities relative to current and past diesel prices; a2j 

represents the yield elasticity relative to the price of diesel lagged j periods; k represents the 

number of lagged prices included in the model. For the model presented in section 5.3.2, I set 

k=3, meaning that the model uses prices going back for a total of 3 months. Coefficients a1 and a2 

can be interpreted as the product yield elasticity relative to a permanent price change (i.e. an 

equal increase in both current and lagged prices), such as may be induced by biofuel policies.  

 

Despite already including a lag structure, the lagged prices and adaptive expectations models 

each exhibit at autocorrelation in the error terms, as determined via a Durbin-Watson d-test 

(Table D.1). In contrast, the Durbin h-test (for models with lagged dependent variables) does not 

reject the null hypothesis of no autocorrelation within the partial adjustment model. To ensure 

model robustness, the main chapter also presents results for each of the three models assuming 

AR(1) type autocorrelation, by performing the standard model manipulation described in 

Dougherty (2007)
418

 section 13.3. Since the results are stable across all 6 specifications, the 

autocorrelation structure was not probed further. 

  

Table D.1. Tests for autocorrelation in the error terms among the main regression models presented above. 

Model 
Dependent variable: 

distillate yield 

Dependent variable: 

gasoline yield 
Lagged prices

 a
 0.68** 0.76** 

Partial adjustment 
b
 -0.52 -0.28 

Adaptive expectations 
a 

0.71** 0.78** 

**reject null hypothesis of no autocorrelation at the 1% level 

a) Table reports Durbin-Watson d-statistic 

b) Table reports Durbin h-statistic (for use in models with lagged dependent variable) 
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D.1.2 Additional Models and Results 

In the lagged prices model described above, there is a large degree of flexibility concerning how 

many lags to include. Table D.2 shows results from the lagged prices model for differing 

numbers of lags. The elasticity estimates are fairly stable across differing numbers of lags, 

especially after the first month or two of lags are included. The model with 0 lags is equivalent to 

the simple model laid out in equations (5.1) and (5.2).  

 

Table D.2. Elasticity of diesel and gasoline yields from crude oil with respect to the ratio of diesel and gasoline 

prices to the acquisition cost of crude oil for the lagged prices model, with differing numbers of lags. 

Standard errors are shown in parentheses. Results are based on nationally aggregated, monthly, U.S. data. 

***p<0.001 

 

I also test the stability of estimated elasticities to the inclusion of different model controls. In the 

interest of brevity, Table D.3 reports only the results of these alternate models for the partial 

adjustment functional form. In general, the model results are robust to these minor changes in 

functional form. One partial exception is that the gasoline yield elasticities become substantially 

smaller when month controls are omitted.  

 

 Distillate yield  Gasoline yield 

Lagged Prices 

Model – 

number of lags 

Elasticity with 

respect to 

distillate price 

ratio 

Elasticity with 

respect to 

gasoline price 

ratio 

 

Elasticity with 

respect to 

distillate price 

ratio 

Elasticity with 

respect to 

gasoline price 

ratio 

0 
0.321*** 

(0.0292) 

-0.266*** 

(0.0218) 
 

-0.178*** 

(0.0159) 

0.144*** 

(0.0119) 

1 
0.367*** 

(0.0289) 

-0.306*** 

(0.0215) 
 

-0.203*** 

(0.0160) 

0.164*** 

(0.0120) 

2 
0.384*** 

(0.0305) 

-0.324*** 

(0.0264) 
 

-0.211*** 

(0.0170) 

0.165*** 

(0.0126) 

3 
0.401*** 

(0.0315) 

-0.341*** 

(0.0230) 
 

-0.218*** 

(0.0178) 

0.170*** 

(0.0130) 

4 
0.409*** 

(0.0329) 

-0.355*** 

(0.0238) 
 

-0.219*** 

(0.0188) 

0.172*** 

(0.0136) 

5 
0.407*** 

(0.0340) 

-0.365*** 

(0.0246) 
 

-0.221*** 

(0.0195) 

0.178*** 

(0.0141) 

6 
0.399*** 

(0.0348) 

-0.376*** 

(0.0249) 
 

-0.217*** 

(0.0202) 

0.178*** 

(0.0145) 

12 
0.369*** 

(0.0418) 

-0.417*** 

(0.0296) 
 

-0.211*** 

(0.0251) 

0.179*** 

(0.0177) 
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Table D.3. Elasticity of diesel and gasoline yields from crude oil with respect to diesel and gasoline prices for 

different variants of the partial adjustment model. Standard errors are shown in parentheses. Results are 

based on nationally aggregated, monthly, U.S. data. 

***p<0.001, **p<0.01, *p<0.05 

a) All other models use the ratio of gasoline and diesel prices to the price of input crude oil. This model 

simply uses direct (nominal) gasoline and diesel prices instead. 

b) Model would not converge when running under non-linear least squares. An equivalent model was 

run using ordinary least squares, from which the relevant elasticities can be calculated. This model 

form does not allow standard errors to be calculated directly, but all underlying model coefficients 

had very small standard errors (p-values below 10
-9

). 

c) Independent variables include the logarithm of the prices of jet fuel, propane and residual fuel oil, 

expressed as a ratio to the price input of crude oil. Coefficients each of these other prices were not 

significant at the 5% level. 

 

 

Additionally, I run each of the main models presented above using annual data. Each lag now 

represents a much longer period (1 year instead of 1 month), and so the lagged prices model 

includes only a single lag. Month dummies no longer have any meaning and so are excluded 

from the annual regression models. Table D.4 presents results from each of the main models 

using annual data. Elasticity estimates are generally slightly higher than those in the monthly 

model, though with higher standard errors as a result of the smaller number of data points. 

 

 Distillate yield  Gasoline yield 

Model variant 

Elasticity with 

respect to 

distillate price 

or price ratio 

Elasticity with 

respect to 

gasoline price 

or price ratio 

 

Elasticity with 

respect to 

distillate price 

or price ratio 

Elasticity with 

respect to 

gasoline price 

or price ratio 

Original 
0.485*** 

(0.0614) 

-0.404*** 

(0.0471) 
 

-0.243*** 

(0.0305) 

0.201*** 

(0.0233) 

Prices instead of 

price ratios
a 

0.507*** 

(0.0626) 

-0.547*** 

(0.0739) 
 

-0.244*** 

(0.0317) 

0.260*** 

(0.0377) 

No month 

dummies 

0.470*** 

(0.0482) 

-0.382*** 

(0.00364) 
 

-0.088 

(0.058) 

0.070 

(0.043) 

Year dummies 

instead of time 

trend 

0.449
b
 -0.349

b
  -0.208

b
 0.189

b
 

Controlling for 

prices of other 

products
c
 

0.597*** 

(0.150) 

-0.391*** 

(0.0443) 
 

-0.194* 

(0.0799) 

0.197*** 

(0.0234) 
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Table D.4. Elasticity of diesel and gasoline yields from crude oil with respect to the ratio of diesel and gasoline 

prices to the acquisition cost of crude oil (based on nationally aggregated, annual, U.S. data). Standard errors 

are shown in parentheses.  

***p<0.001, **p<0.01, *p<0.05 

 

Finally, I run a series of models using data at the level of U.S. Petroleum Administration Defense 

District (PADD),
419

 rather than the nationally aggregated results presented above. Table D.5 

shows yield elasticity estimates separately for each PADD, using the basic partial adjustment 

model. The table also includes the original (national) model, shown for reference. The regression 

coefficients for each PADD have the intuitive sign, and are nearly all significant at the 1% level 

or less. The table also shows a total atmospheric distillation capacity, cracking capacity (sum of 

thermal cracking, catalytic cracking and hydrocracking, expressed as a percent of atmospheric 

distillation capacity), and average refinery size for each region for 2004, which is the median 

year of the sample period from 1993-2016. Though far from definitive, cracking capacity and 

refinery size both appear to be correlated with higher absolute elasticities. In future work, this 

PADD-level data can be combined as part of a more integrated panel-data regression analysis to 

explore this question further. 

 Distillate yield  Gasoline yield 

Model 

Elasticity with 

respect to 

distillate price 

ratio 

Elasticity with 

respect to 

gasoline price 

ratio 

 

Elasticity with 

respect to 

distillate price 

ratio 

Elasticity with 

respect to 

gasoline price 

ratio 

Basic model  

(no lags) 

0.0350** 

(0.110) 

-0.309*** 

(0.0752) 
 

-0.222*** 

(0.0492) 

0.168*** 

(0.0338) 

Lagged prices 

(1 lag) 

0.378** 

(0.122) 

-0.483*** 

(0.0855) 
 

-0.268*** 

(0.0656) 

0.212*** 

(0.0497) 

Partial 

adjustment 

0.817* 

(0.291) 

-0.642** 

(0.202) 
 

-0.361** 

(0.100) 

0.256** 

(0.0665) 

Adaptive 

Expectations 

0.866 

(0.476) 

-0.904* 

(0.398) 
 

-0.357** 

(0.0984) 

0.257*** 

(0.0584) 
      

Lagged prices 

AR(1) 

0.470** 

(0.129) 

-0.392*** 

(0.0949) 
 

-0.301** 

(0.0779) 

0.228*** 

(0.0537) 

Partial 

adjustment 

AR(1) 

0.694* 

(0.285) 

-0.604** 

(0.201) 
 

-0.350** 

(0.115) 

0.251** 

(0.075) 

Adaptive 

Expectations 

AR(1) 

0.555* 

(0.204) 

-0.413* 

(0.154) 
 

-0.405** 

(0.112) 

0.290*** 

(0.071) 
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Table D.5. Elasticity of diesel and gasoline yields from crude oil with respect to the ratio of diesel and gasoline 

prices to the acquisition cost of crude oil (based on U.S. PADD-level, monthly, U.S. data). Regression results 

are based on the standard partial adjustment model. Standard errors are shown in parentheses. The table 

also shows atmospheric distillation capacity (measured in million barrels per stream day) and cracking 

capacity (as a percent of atmospheric distillation capacity), and average refinery size (thousand barrels per 

stream day per refinery) for the year 2004 (median year in the sample from 1993-2016). 

***p<0.001, **p<0.01, *p<0.05 ^p<0.10 

D.2. Additional Details for Main Model 

D.2.1 PRELIM Parameter Selection 

In sections 5.3.1 and 5.4.2, the chapter presents results from running the PRELIM model 

multiple times with different crude oils and different refinery configurations. PRELIM requires 

the user to specify multiple parameters in addition to the crude oil assay and the refinery 

configuration. The results presented in the main chapter use the following options: 

- Naphtha catalytic reformer option: SR Naphtha (i.e. only short-run naphtha is sent to the 

catalytic reformer) 

- FCC hydrotreater option: enabled (i.e. the fluid catalytic cracker hydrotreater is turned 

on). 

- Electricity source: natural gas fired power plant 

- Global warming potential (GWP): 2013 IPCC AR5 (100 years). Note: instead of using 

the default values in PRELIM, I modify the GWP input to reflect climate-carbon 

 
Elasticity of Distillate 

yield with respect to: 

Elasticity of Gasoline 

yield with respect to: 

2004  

Total 

Capacity 

(mbpsd) 

2004 

Cracking 

capacity 

(%) 

2004 Average 

refinery size 

(10
3
 bpsd per 

refinery) 
Region 

Distillate 

price ratio 

Gasoline 

price ratio 

Distillate 

price ratio 

Gasoline 

price ratio 

U.S. 
0.485*** 

(0.0614) 

-0.404*** 

(0.0471) 

-0.243*** 

(0.0305) 

0.201*** 

(0.0233) 
17.8 57% 119 

PADD 1  

(East 

Coast) 

0.29** 

(0.088) 

-0.35*** 

(0.073) 

-0.17*** 

(0.044) 

0.18*** 

(0.037) 
1.9 46% 115 

PADD 2 

(Midwest) 

0.37*** 

(0.053) 

-0.38*** 

(0.045) 

-0.30*** 

(0.046) 

0.26*** 

(0.038) 
3.7 48% 143 

PADD 3 

(Gulf 

Coast) 

0.74*** 

(0.13) 

-0.66*** 

(0.11) 

-0.26*** 

(0.039) 

0.27*** 

(0.034) 
8.3 62% 150 

PADD 4 

(Rocky 

Mountain) 

0.090^ 

(0.048) 

-0.11** 

(0.037) 

-0.11** 

(0.037) 

0.072* 

(0.029) 
0.6 41% 38 

PADD 5 

(West 

Coast) 

0.25*** 

(0.051) 

-0.13*** 

(0.032) 

-0.15** 

(0.052) 

0.08* 

(0.034) 
3.3 62% 92 
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feedbacks; thus CH4 has a GWP of 36 kg CO2e/kg CH4 and N2O has a GWP of 298 kg 

CO2e/kg N2O. 

- Asphalt production: 10% (where 0% represents minimizing asphalt production and 100% 

represents maximizing asphalt production) 

- LPG production: On (i.e. allow liquefied petroleum gases to be produced as final 

products) 

- Petrochemical feedstock production: On (i.e. allow petrochemical feedstocks to be 

produced as final products)  

 

D.2.2 Additional Model Parameters 

As stated in the main chapter, baseline upstream GHG emissions (crude oil extraction and 

refining) are from Venkatesh et al. (2011).
198

 Using the mean and confidence interval reported 

for upstream gasoline emissions I fit a lognormal distribution to emissions from crude oil 

extraction and normal distribution to refining emissions. I then convert from the original units 

(emissions per unit energy) to the required units (emissions per unit volume) using the same 

conversion factor for gasoline (1.16 mmbtu/gal) as in the model spreadsheet provided by 

Venkatesh et al. (2011).
198

 

 

For the partial equilibrium model, both the emission standards and carbon taxes require that the 

regular assume specific global warming intensities (GWIs) for different fuels. I assume the same 

values as in Rajagopal and Plevin (2013),
330

 summarized in Table D.6. Table D.7 summarizes 

initial product yields, combustion emissions, and assumed energy densities. Initial yields of 

diesel and gasoline are the same as in Rajagopal and Plevin (2013).
330

 Relative yields of other 

products are based on United Nations data.
351

 Combustion emissions are from the IPCC.
95

 

Energy densities are from EIA.
352,353
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Table D.6. Global warming intensity values assumed by the regulator; based on Rajagopal and Plevin 

(2013)
330

 

Fuel Pathway or Product Rating (g CO2e/MJ) 

Gasoline 89.2 

Diesel 93.4 

Other oil products 79.2 

Corn ethanol (process only) 62.5 

Cane ethanol (process only) 25 

Corn ethanol ILUC 25 

Cane ethanol ILUC 25 

 

 

Table D.7. Initial (2007) global volumetric yields, combustion emissions and energy densities of petroleum 

products  

Product 

Initial 

global yield 

(%) 

Combustion emissions (kg CO2/GJ); 

parameters for triangular distribution 

Energy 

Density 

(GJ/ barrel) Min Mode Max 

Gasoline 25.0% 67.5 69.3 73 5.4 

Diesel 28.0% 72.6 74.1 74.8 6.0 

Jet fuels 6.9% 69.7 71.5 74.4 6.0 

Kerosene 0.25% 70.8 71.9 73.7 6.0 

Residual fuel 14.4% 75.5 77.4 78.8 6.6 

Liquefied 

Petroleum 

Gases (LPG) 

5.7% 61.6 63.1 65.6 3.8 

Fuel coke 2.1% 82.9 97.5 111.5 6.3 

Refinery fuel 

gas 
4.4% 48.2 57.6 69 6.3 

Asphalt 2.6% 73 80.7 89.9 7.0 

Petrochem 

feedstocks 
7.4% 69.3 73.3 76.3 5.3 

Aviation 

gasoline 
0.06% 67.5 70 73 5.4 

Miscellaneous 2.1% 72.2 73.3 74.4 6.1 

lubricants 1.1% 71.9 73.3 75.2 6.4 

Waxes 0.15% 72.2 73.3 74.4 5.8 
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D.3. Additional Results 

D.3.1 Main Model 

 

Figure D.1 and Figure D.2 show respectively the breakdown in GHG emissions from different 

policies, and the change in prices of major petroleum product prices predicted by the model 

when only refineries in the home region adjust their product slate in response to market prices. 

As expected, these figures show qualitatively similar results to the globally flexible refiner case 

(Figure 5.10 and Figure 5.11), though with reduced magnitude. 

 

Figure D.3 and Figure D.4 show the frequency distribution for the change in oil consumption in 

the home region and in the world respectively, for both fixed refinery yields, and for the case 

when all refineries exhibit the same price response as those in the U.S. The fixed refinery yield 

case from Figure D.3 differs substantially from the results in Rajagopal and Plevin (2013)
330

 as 

the present results correct a mistake in the original code. Comparing the green and red boxes in 

the two figures shows that refiner flexibility has only a very small impact on the total quantity of 

oil consumed at either region scale. 
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Figure D.1. Breakdown of emission changes from different policies, assuming only refineries in the home 

region adjust their product slate: a) 10% share mandate, b) 15% share mandate, c) 5% emission standard 

without ILUC, d) 5% emission standard with ILUC, e) 10% emission standard without ILUC, f) 10% 

emission standard with ILUC. Note the change in scale for the final 2 panels (e and f). The boxplots in each 

panel are built additively: “Naïve” represents the change in fossil fuel emissions, assuming biofuels are 

carbon neutral and displace gasoline perfectly without any market rebound. The next row adds the market 
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rebound / indirect fuel use effect (IFUE), assuming no change in carbon intensity within the petroleum 

industry. The next line adds the additional upstream emissions (crude oil extraction and refining) predicted 

due to the change in product yields. The next line adds the change in combustion emissions resulting from the 

shift in refinery yields. The final 2 rows represent emissions from biofuels, first excluding ILUC, and then 

including all emission sources. 

 

Figure D.2. Frequency distribution for change in diesel and gasoline prices induced by the different policies, 

with fixed refinery yields (panels a and b), or where refineries in only the home region adjust their product 

slate in response to market prices. (panels c and d). Policies include: SM = share mandate, ES = emission 

standard either with or without ILUC. CT = carbon tax. The box represents the interquartile range, the 

vertical line represents the median, and the whiskers show the extreme values of the simulation.  
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Figure D.3. Frequency distribution for the change in oil consumption in the home region brought about by 

different policies, with globally flexible refineries. SM = share mandate, ES = emission standard either with 

or without ILUC. CT = carbon tax. The box represents the interquartile range, the vertical line represents the 

median, and the whiskers show the extreme values of the simulation. Green boxes (the top member of each 

pair) represent the results when refinery yields are fixed. Red boxes represent results when all refineries 

exhibit the same price response as US refineries. Figure design based on Rajagopal and Plevin (2013).
330
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Figure D.4. Frequency distribution for the change in global oil consumption, brought about by different 

policies in the home region, with globally flexible refineries. SM = share mandate, ES = emission standard 

either with or without ILUC. CT = carbon tax. The box represents the interquartile range, the vertical line 

represents the median, and the whiskers show the extreme values of the simulation. Green boxes (the top 

member of each pair) represent the results when refinery yields are fixed. Red boxes represent results when 

all refineries exhibit the same price response as US refineries. Figure design based on Rajagopal and Plevin 

(2013).
330
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D.3.2 Supplement to Preliminary Analysis: Product Covariance Matrices 

 

Table D.8. Covariance between yields of different petroleum products using national monthly data from EIA
342

  

 
Gasoline Distillate 

Jet  

Fuel 

Petro-

leum 

Coke 

Still  

Gas 

Resid-

ual 

Fuel 

Oil 

Liquefied 

Refinery 

Gases 

As-

phalt 

Petro-

chemical 

Naphtha 

Lub-

ricants 

Misc-

ellaneous 

Special 

Naph-

thas 

Kero-

sene 

Aviation 

Gasoline 
Waxes 

Gasoline 1.46 -1.31 0.09 -0.07 -0.02 0.25 -0.69 0.05 0.05 0 -0.03 0.02 0.12 0 0 

Distillate -1.31 8.66 -0.51 1 -0.14 -2.23 -1 -1.35 -0.05 -0.14 0.22 -0.15 -0.35 -0.08 -0.1 

Jet Fuel 0.09 -0.51 0.24 -0.06 -0.02 0.11 -0.04 0.02 0.02 0.02 -0.02 0.02 0.05 0 0.01 

Petroleum 

Coke 
-0.07 1 -0.06 0.17 -0.02 -0.31 -0.13 -0.16 0.01 -0.02 0.03 -0.02 -0.04 -0.01 -0.01 

Still Gas -0.02 -0.14 -0.02 -0.02 0.02 0.04 0.06 0.03 0 0 0 0 0 0 0 

Residual Fuel 

Oil 
0.25 -2.23 0.11 -0.31 0.04 0.88 0.08 0.25 -0.03 0.04 -0.06 0.04 0.11 0.02 0.03 

Liquefied 

Refinery 

Gases 

-0.69 -1 -0.04 -0.13 0.06 0.08 1.15 0.3 -0.01 0.02 -0.02 0.01 -0.06 0.01 0.01 

Asphalt 0.05 -1.35 0.02 -0.16 0.03 0.25 0.3 0.43 0 0.02 -0.04 0.02 0.03 0.02 0.01 

Petro-

chemical 

Naphtha 

0.05 -0.05 0.02 0.01 0 -0.03 -0.01 0 0.05 0 0 0 0.01 0 0 

Lubricants 0 -0.14 0.02 -0.02 0 0.04 0.02 0.02 0 0.01 0 0 0.01 0 0 

Miscellaneous -0.03 0.22 -0.02 0.03 0 -0.06 -0.02 -0.04 0 0 0.01 0 -0.01 0 0 

Special 

Naphthas 
0.02 -0.15 0.02 -0.02 0 0.04 0.01 0.02 0 0 0 0.01 0.01 0 0 

Kerosene 0.12 -0.35 0.05 -0.04 0 0.11 -0.06 0.03 0.01 0.01 -0.01 0.01 0.04 0 0 

Aviation 

Gasoline 
0 -0.08 0 -0.01 0 0.02 0.01 0.02 0 0 0 0 0 0 0 

Waxes 0 -0.1 0.01 -0.01 0 0.03 0.01 0.01 0 0 0 0 0 0 0 
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Table D.9. Covariance between gasoline yield and yield of different petroleum products across crude oils, each for a fixed refinery configuration from 

PRELIM; results based on PRELIM 

 
Gasoline Diesel 

Jet 

Fuel 

Fuel 

Oil 

Coke or High 

Carbon Resid 

Heavy 

Ends 

Refinery 

Fuel 

Gas 

Liquefied 

Petroleum 

Gases 

Petrochemical 

Feedstocks 
Asphalt 

Prelim0 76.5 3.1 29.1 -7.7 0.0 -107.0 0.0 4.0 2.0 0.0 

Prelim1 54.7 6.5 22.1 0.0 0.0 -86.5 0.0 3.0 1.5 -1.3 

Prelim2 116.0 -52.3 35.7 0.0 0.0 -104.6 0.0 4.5 2.4 -1.8 

Prelim3 74.9 -12.2 29.3 0.0 0.0 -95.9 0.0 3.6 1.9 -1.6 

Prelim4 11.6 -4.9 -3.0 0.0 -3.6 -0.5 -0.1 0.3 0.2 -0.1 

Prelim5 52.2 -52.6 17.5 0.0 -13.9 0.0 -1.2 -1.3 0.0 -0.7 

Prelim6 22.7 -18.8 7.7 0.0 -8.8 -1.2 -0.5 -0.7 0.0 -0.4 

Prelim7 17.9 -14.8 7.5 0.0 -7.7 -1.4 -0.8 0.2 -0.4 -0.5 

Prelim8 57.5 -66.0 15.0 0.0 -7.3 0.0 -0.3 1.3 0.3 -0.6 

Prelim9 27.9 -30.1 12.5 0.0 -8.1 -1.3 -0.7 0.6 -0.2 -0.6 
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Table D.10. Covariance between gasoline yield and yield of different petroleum products across different refinery configurations, each for a fixed crude 

oil; results based on PRELIM 

 
Gasoline Diesel 

Jet 

Fuel 

Fuel 

Oil 

Coke 

or 

High 

Carbon 

Resid 

Heavy 

Ends 

Refinery 

Fuel 

Gas 

Liquefied 

Petroleum 

Gases 

Petro-

chemical 

Feed-

stocks 

Asphalt 

Bakken_Various_Sources 40.8 17.8 -1.4 -18.7 1.7 -44.0 0.0 1.9 1.2 0.7 

North_Sea Dansk Blend_Statoil 89.4 43.5 -2.6 -21.7 11.3 -135.5 0.7 8.8 4.7 1.6 

Nigeria_Agbami_Statoil 11.1 4.4 -0.7 -9.7 0.6 -6.7 0.0 0.5 0.4 0.1 

Forties_Statoil_ 24.5 6.3 -0.9 -8.2 3.5 -29.1 0.0 2.2 1.2 0.3 

Canada_Hibernia_Statoil 60.2 29.7 -2.8 -22.5 7.9 -81.0 0.0 4.8 2.7 1.1 

Ekofisk_Statoil 45.8 23.2 -2.1 -18.8 5.6 -60.1 0.0 3.5 2.0 0.8 

Azeri_Light_Statoil 70.0 36.1 -3.5 -30.4 6.2 -86.7 0.0 4.5 2.7 1.2 

Angola_Girassol_Statoil 52.8 20.2 -2.3 -15.2 9.9 -74.5 0.0 5.4 2.9 0.8 

West_texas sour_Statiev 33.8 10.9 -0.9 -9.7 6.9 -46.4 0.0 3.2 1.8 0.5 

West_texas intermediate_Statiev 42.2 22.4 -2.0 -16.9 4.5 -55.4 0.0 2.9 1.8 0.7 

Venezuela_Tia Juana_Statiev 126.5 16.0 -2.6 -17.6 46.0 -196.6 2.6 16.4 8.0 1.5 

Russian_Export Blend_Statiev 46.2 18.9 -1.6 -10.7 11.4 -72.9 0.0 5.3 2.7 0.7 

MAYA_Statiev 64.3 32.7 -3.2 -6.2 39.3 -146.8 3.3 10.4 5.5 0.8 

Louisiana_light sweet_Statiev 45.3 23.7 -2.2 -18.2 3.8 -57.6 0.0 2.7 1.7 0.8 

Kuwait_Export_Statiev 49.1 22.2 -1.3 -11.5 15.9 -84.1 0.2 5.8 3.1 0.7 

Isthmus_Statiev 37.5 14.9 -1.1 -8.7 10.3 -60.0 0.1 4.2 2.2 0.6 

Ecuador_Oriente_Statiev 41.5 19.5 -1.9 -7.5 16.4 -77.8 0.5 5.7 3.0 0.6 

Congo_Emeraude_Statiev 92.3 37.4 -3.5 -7.7 34.0 -177.9 3.6 14.0 6.9 0.9 

Colombia_Cano Limon_Statiev 57.5 30.6 -2.7 -13.0 12.3 -95.5 0.5 6.2 3.3 0.8 

Arab_Heavy_Statiev 57.0 25.3 -1.9 -10.3 21.2 -104.3 0.7 7.5 3.9 0.8 

Arab_Medium_Statiev 48.9 21.1 -1.5 -10.0 16.5 -84.9 0.1 6.0 3.1 0.7 

Arab_Light_Statiev 40.2 17.8 -1.4 -10.5 9.6 -62.9 0.0 4.3 2.3 0.6 

Angola_Cabinda_Statiev 62.0 32.9 -2.1 -15.8 12.4 -100.7 1.1 6.0 3.3 0.9 

Merey_O&amp;G 185.4 14.4 -6.3 -20.0 43.5 -248.3 9.9 12.3 7.4 1.7 
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Marine_Qatar_O&amp;G 71.9 17.8 -1.7 -10.0 18.8 -111.2 0.0 9.1 4.5 0.7 

Kirkuk_O&amp;G 28.9 7.6 -0.9 -8.9 8.7 -40.6 0.0 3.0 1.7 0.5 

Burgan_(Wafra)_O&amp;G 83.5 8.2 -2.4 -15.4 26.1 -115.1 -0.2 9.4 4.9 1.0 

Basrah_Heavy_O&amp;G 79.8 24.8 -1.8 -11.2 36.7 -143.4 0.0 9.3 4.8 1.0 

Wilmington_CA_Knovel 110.9 48.7 -4.7 -10.8 24.8 -200.5 5.5 17.5 7.8 0.8 

Midway-Sunset_Knovel 111.1 53.5 -6.5 -8.5 26.4 -202.9 2.3 16.3 7.8 0.7 

Hamaca_Venezuela_Knovel 33.3 14.3 -1.9 -12.9 11.9 -50.9 0.0 3.5 2.0 0.6 

Belridge_Knovel 160.8 61.3 -6.4 -19.8 36.2 -276.9 8.8 24.1 10.9 1.1 

Thunderhorse_Exxon 55.7 29.4 -2.3 -10.3 5.0 -87.2 0.3 5.7 3.0 0.7 

Russia_Sokol_Exxon 41.6 22.7 -2.0 -12.1 4.9 -61.4 0.0 3.6 2.0 0.7 

Nigera_Quaib_Exxon 16.4 9.0 -1.0 -3.5 3.2 -27.6 0.0 2.2 1.1 0.2 

Nigera_Erha_Exxon 35.8 16.9 -1.8 -10.4 4.1 -50.4 0.0 3.3 1.8 0.6 

Nigera_Bonga_Exxon 12.8 6.1 -0.9 -1.6 2.6 -21.8 0.0 1.8 0.9 0.1 

Canada_Hibernia_Exxon 60.6 33.2 -2.0 -10.6 9.1 -101.6 0.7 6.5 3.4 0.8 

Brent_Exxon 47.3 25.5 -1.8 -11.4 7.9 -75.7 0.4 4.6 2.5 0.7 

Azeri_light_Exxon 104.6 47.6 -3.7 -20.6 11.5 -154.2 1.4 7.5 4.4 1.7 

Alaskan_North Slope_Exxon 46.4 17.3 -1.4 -8.5 14.1 -77.6 0.2 6.0 3.1 0.6 

Angola_Girassol_Exxon 62.2 24.9 -1.9 -11.2 11.5 -96.9 0.3 6.8 3.5 0.9 

Western_Canadian Select_Crude 

Monitor 
72.9 7.5 -2.2 -12.0 28.0 -108.7 0.0 9.1 4.5 0.9 

Western_Canadian Blend_Crude 

Monitor 
71.5 12.0 -2.1 -12.3 26.6 -109.6 -0.2 8.8 4.4 1.0 

Wabasca_Heavy_Crude Monitor 69.0 5.5 -1.8 -11.3 25.0 -99.6 -0.1 8.3 4.1 0.9 

Syncrude_Synthetic_Crude Monitor 41.5 -11.4 -0.9 -18.1 0.3 -14.8 0.0 2.0 1.2 0.3 

Suncor_Synthetic H_Crude Monitor 177.4 -120.0 -1.1 -42.4 1.3 -28.0 0.0 7.8 4.3 0.8 

Suncor_Synthetic A_Crude Monitor 50.9 5.9 -1.9 -36.9 0.2 -21.8 0.0 2.1 1.3 0.2 

Smiley-Coleville_Crude_Monitor 71.0 6.2 -2.2 -11.5 27.4 -105.2 0.0 9.0 4.4 0.9 

Seal_Heavy_Crude Monitor 71.6 13.0 -2.4 -9.8 30.8 -117.9 0.0 9.4 4.6 0.8 

Midale_Crude_Monitor 40.7 5.5 -1.5 -9.5 12.3 -54.8 -0.1 4.5 2.4 0.6 

Lloyd_Kerrobert_Crude Monitor 76.3 -2.6 -2.2 -11.2 27.0 -101.8 -0.1 9.2 4.5 0.9 
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Lloyd_Blend_Crude Monitor 71.3 7.5 -2.0 -10.2 28.9 -110.0 0.0 9.2 4.5 0.9 

Husky_Synthetic Blend_Crude Monitor 67.7 21.5 -3.0 -45.4 0.4 -45.9 0.0 2.7 1.7 0.4 

High_Sour Edmonton_Crude Monitor 31.3 10.0 -1.2 -9.1 7.8 -44.2 0.0 3.3 1.8 0.5 

Cold_Lake_Crude Monitor 67.4 5.9 -1.7 -10.9 28.8 -103.0 -0.1 8.5 4.3 0.9 

Bow_River North_Crude Monitor 66.1 2.1 -2.0 -12.7 22.3 -88.0 -0.2 7.7 3.8 0.9 

Albian_Residual Blend_Crude Monitor 62.7 12.0 -2.4 -12.0 25.0 -98.0 -0.1 8.1 3.9 0.7 

Albian_Heavy Synthetic_Crude Monitor 85.9 -28.1 -2.2 -12.4 23.6 -80.8 0.7 8.2 4.2 0.9 

Wyoming_Sweet_COA 46.6 25.1 -2.3 -15.8 7.6 -67.9 0.0 3.8 2.2 0.9 

Venezuela_Leona_COA 66.0 29.7 -2.1 -8.4 22.6 -122.6 0.2 9.2 4.6 0.8 

Siberian_Light_COA 45.3 22.8 -2.0 -15.1 7.7 -65.6 0.0 3.8 2.2 0.8 

Olmeca_COA 29.9 14.6 -1.1 -10.3 3.3 -40.0 0.0 2.0 1.2 0.5 

Iranian_Heavy_COA 42.6 21.1 -1.5 -9.4 13.4 -74.8 0.2 5.1 2.7 0.6 

Iran_Ardeshir_COA 53.3 23.1 -2.4 -10.1 18.0 -92.7 0.1 6.5 3.5 0.8 

Fateh_COA 41.2 17.5 -1.0 -11.9 10.8 -63.7 0.0 4.2 2.3 0.7 

East_Texas Sweet_COA 48.5 25.5 -2.4 -17.5 6.2 -66.4 0.0 3.3 2.0 0.9 

Dukhan_Qatar_COA 26.9 13.5 -1.1 -7.9 4.3 -39.9 0.0 2.4 1.4 0.4 

Cusiana_COA 25.9 11.7 -0.9 -13.8 2.3 -28.2 0.0 1.6 1.0 0.4 

Basrah_Medium_COA 40.0 15.4 -1.5 -8.8 15.2 -68.4 0.0 4.9 2.6 0.6 

Tengiz_Chevron 22.5 11.1 -1.2 -8.9 1.5 -27.7 0.0 1.5 0.9 0.3 

Sumatran_Light (Minas)_Chevron 183.7 30.9 -7.3 -50.0 18.4 -195.8 4.5 8.0 5.4 2.2 

Qin_Huang Dao_Chevron 133.3 11.3 -2.4 -22.3 30.9 -179.9 4.4 15.8 7.6 1.5 

Nigeria_Pennington_Chevron 61.5 22.7 -2.5 -24.3 4.6 -69.0 0.0 3.8 2.3 1.0 

Nigeria_Escravos_Chevron 113.6 49.7 -2.7 -41.0 7.5 -143.2 0.2 9.2 5.0 1.8 

Nigeria_Agbami_Chevron 70.3 28.2 -4.4 -31.1 4.1 -72.8 0.0 2.9 2.0 1.0 

Nanhai_Light_Checron 163.8 -5.5 -7.9 -46.7 9.3 -123.6 1.7 4.3 3.3 1.4 

Kuwait_Ratawi_Chevron 98.9 42.4 -3.9 -8.4 47.7 -202.1 2.5 14.6 7.4 1.0 

Kuwait_Eocene_Chevron 136.6 48.4 -2.8 -10.5 54.9 -260.5 3.4 19.8 9.2 1.4 

Indonesia_Duri_Chevron 171.1 68.9 -3.3 -9.2 48.5 -327.8 11.6 26.6 12.1 1.4 

Forties_Chevron_ 43.0 22.7 -2.7 -10.4 5.8 -65.3 0.2 3.9 2.2 0.6 

Ekofisk_Chevron_ 94.4 50.6 -3.2 -28.3 11.4 -140.1 1.1 8.0 4.5 1.7 
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Cossack_Chevron 108.1 1.7 -4.4 -29.7 5.5 -86.2 0.2 2.1 1.8 1.0 

China_Bozhong_Chevron 124.2 17.4 -2.5 -22.1 33.0 -179.3 4.9 15.4 7.5 1.5 

Canada_Hibernia_Chevron 70.1 31.7 -3.0 -10.0 12.4 -115.7 1.0 8.3 4.2 0.9 

Brent_Chevron 48.0 25.8 -1.9 -18.0 6.5 -67.1 0.0 3.7 2.2 0.9 

Brazil_Frade_Chevron 135.1 34.0 -4.0 -11.5 31.0 -218.3 5.0 18.8 8.6 1.2 

Bonny_Light_Chevron 40.7 12.9 -0.3 -19.3 3.0 -41.7 0.0 2.6 1.5 0.6 

Azeri_Light_Chevron 77.2 35.1 -4.0 -32.4 6.2 -89.7 0.0 4.0 2.6 1.2 

Angola_Kuito_Chevron 115.7 37.3 -4.3 -10.8 32.0 -200.5 5.1 16.4 8.0 1.0 

UAE_Murban_BP 20.4 9.3 -0.7 -9.5 5.1 -27.8 0.0 1.7 1.0 0.4 

UAE_DAS Blend_BP 21.7 8.2 -0.7 -9.4 2.6 -25.3 0.0 1.6 0.9 0.3 

Thunderhorse_BP_ 36.5 10.1 -1.1 -10.4 8.9 -50.6 0.0 4.0 2.1 0.5 

Norway_North Sea Skarv_BP 48.1 23.3 -2.0 -22.5 4.1 -56.5 0.0 2.9 1.7 0.8 

Mars_USA-Gulf of Mexico_BP 50.3 12.8 -1.4 -6.3 16.6 -82.5 0.0 6.5 3.3 0.6 

Iraq_Basra_BP 47.1 11.6 -1.0 -9.8 16.1 -73.3 -0.1 5.7 3.0 0.6 

Indonesia_Tangguh_BP 4.1 2.1 -0.2 -2.2 0.1 -4.3 0.0 0.2 0.2 0.1 

Forties_Blend_BP 24.1 7.3 -0.6 -7.8 3.8 -30.7 0.0 2.3 1.2 0.3 

Ekofisk_BP 46.3 23.7 -2.0 -17.3 5.6 -62.6 0.0 3.5 2.0 0.8 

Brent_BP 43.7 19.8 -1.5 -16.5 5.7 -57.2 0.0 3.3 1.9 0.8 

Brazil_Polvo_BP 84.7 -4.4 -2.8 -10.8 26.2 -111.0 1.5 10.6 5.1 0.8 

Brazil_Lula_BG Group 55.3 19.5 -1.3 -26.4 3.9 -56.3 0.0 2.8 1.7 0.9 
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