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Abstract

Gecko feet stick to almost anything, in almost any condition (including underwater and in space),

but do not stick unintentionally, do not stick to dirt, and enable the gecko to literally run up the walls.

When climbing a smooth surface, geckos can attach and detach each foot very quickly (detaching

a foot takes 15 milliseconds) and with almost no noticeable force, but if attached perfectly they

could theoretically hold tens of times their body weight. In contrast to gecko adhesion, conventional

adhesives, made of soft tacky materials, tend to leave residues, pick up dirt easily, stick to themselves

strongly and are useless underwater. Gecko feet rely on completely different principles, utilizing

arrays of tiny mechanical structures made of very stiff protein which react to pressing and dragging

with some very smart behavior. This thesis work is primarily concerned with taking inspiration from

the principles of gecko-adhesion in order to control the attachment of synthetic structured adhesives.

We present gecko-inspired angled elastomer micropillars with flat or round tip endings as com-

pliant pick-and-place micromanipulators. The pillars are 35 µm in diameter, 90 µm tall, and angled

at an inclination of 20◦. By gently pressing the tip of a pillar to a part, the pillar adheres to it

through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor

substrate. During transferring, the adhesion between the pillar and the part is high enough to with-

stand disturbances due to external forces or the weight of the part. During release of the part onto

a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled

vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable

ratio of pick-to-release adhesive forces was measured as 39 to 1. We find that a flat tip shape and

shear displacement control provide a higher pick-to-release adhesion ratio than a round tip and ver-

tical displacement control, respectively. We present a model of forces to serve as a framework for

the operation of this micromanipulator. Finally, demonstrations of pick-and-place manipulation of

µm-scale silicon microplatelets and a cm-scale glass cover slip serve as proofs of concept. The com-

pliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular
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forces, could be effective on most materials and in air, vacuum, and liquid environments.

We present a study of the self-cleaning and contamination resistance phenomena of synthetic

gecko-inspired adhesives made from elastomeric polyurethane. The phenomenon of self-cleaning

makes the adhesive foot of the gecko robust against dirt, and makes it effectively sticky throughout

the lifetime of the material (within the molting cycles). So far synthetic gecko adhesives fail to

capture this behavior and self-cleaning remains the least studied characteristic in the field gecko-

inspired adhesives. In this work we use two distinct arrays of micropillars with mushroom-shaped

tips made from polyurethane. The two geometries we use all have the same aspect ratios of pillar

height to base diameter of about 2 to 1, and all have mushroom tips that are twice the diameter of

base. The pillar tip diameters are 20 µm and 95 µm, and we will refer to them as the small and

large pillars, respectively. We contaminate the adhesives with simulated dirt particles in the form of

well-characterized soda lime glass spheres ranging in diameter from 1 to 250 µm. Both micropillar

arrays recovered adhesive strength after contamination and cleaning through dry, shearing contact

with glass. In a best case scenario, we found that large pillars contaminated with 150-250 µm

diameter particles can rid the tips of contaminating particles completely and recover 90% of the

initial adhesive strength. This finding is significant because it is the first demonstration of adhesion

recovery through dry self-cleaning by contact to a non-sticky cleaning substrate. The degree to

which adhesion is recovered is superior to any conventional adhesive and is nearly identical to the

gecko itself.

This thesis presents a study of controlling adhesion in gecko-inspired adhesives. This control

is achieved by maximizing or minimizing attachment strength on demand by simple mechanical

loading, and enables robotic manipulation tasks and the recovery of adhesion after contamination.

Looking forward, we can predict what is possible for gecko-inspired adhesives if the discoveries

in this thesis are implemented, and if other shortcomings in the field are resolved. Looking at the

applications already under development, it seems clear that medical adhesives have great potential,

and climbing robots might achieve significant utility. In consumer products, gecko-adhesives might

replace Velcro®and zippers in clothing, and might become a critical component in sports gear, e.g.

soccer goal keeper and rock climber gloves. The reversible, controllable nature of the adhesion,

as well as its incredible bonding strength, suggests more impressive possibilities for gecko-inspired

adhesives: perhaps it might act as a fastener for temporary or emergency construction. We might yet

see rolls of single-sided and double-sided gecko-tape sold in hardware stores, not as a replacement

for duct tape, but as a replacement for nails, staples and screws.
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Chapter 1
Introduction to Gecko-Inspired Adhesives

1.1 Motivation

The discovery of the gecko’s remarkable foot adhesion has provided a riddle for engineers

and scientists to solve: how can an adhesive surface be selectively sticky, directional, re-

main clean and work on almost any material? Geckos feet stick to almost anything, in

almost any condition (including underwater and in space), but do not stick unintentionally,

do not stick to dirt, and enable the gecko to literally run up the walls. When climbing a

smooth surface geckos are attaching and detaching each foot very quickly (detaching a foot

takes 15 milliseconds) and with almost no noticeable force, but if attached perfectly they

could theoretically hold tens of times their body weight. In contrast to gecko adhesion,

conventional adhesives, made of soft tacky materials, tend to leave residues, pick up dirt

easily, stick to themselves strongly and are useless underwater. Gecko feet rely on a com-

pletely different principles, utilizing arrays of tiny mechanical structures made of very stiff

protein which react to pressing and dragging with some very smart behavior. A gecko’s ad-

hesive pads exploit principles of friction and adhesion in a way that was completely against

intuition, which as a community we have only begun to understand and mimic through syn-

thetic analogs. Geckos have evolved finger tips which are covered in tiny structures which

make a comparatively vast area of contact with opposing surfaces, and attach very strongly

as a result. However, this is just the beginning of the principles seen in gecko adhesion

and we must ask ourselves: What are the principles of adhesion and friction that geckos

1
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exploit? And perhaps more importantly: how can we make synthetic gecko adhesives?

Figure 1.1: (a) A series of images showing the ever smaller attachment structures of the gecko, from
its foot down to the hair-like setae that cover the bottom of each toe, and the spatulae that terminate
the tips of the setae. (Reprinted with permission [1]. Copyright 2006, Springer.) (b) One of the
first SEM images of gecko setae taken in 1965 by Ruibal and Ernst (Reprinted with permission [2].
Copyright 1965, Wiley.) (c) An SEM image of the entire setal stalk clearly showing asymmetric
morphology. (Reprinted with permission [3]. Copyright 2006, Company of Biologists.) (d) Hi-
erarchical polymer microstructure with mushroom tip and backing layer noted. (Reprinted with
permission [4]. Copyright 2009, American Chemical Society.) (e) Hierarchial polymer structure
composed of angled nanopillars molded on top of vertical micropillars.(Reprinted with permis-
sion [5]. Copyright 2009, National Academy of Sciences.)

This chapter will review the principles of gecko adhesion, the structures and mechanics

derived from these principles, the manners in which engineers and scientists have created

gecko-inspired adhesives, and finally, the applications which are possible thanks to these

adhesives. Our goal is more to motivate and inspire than to exhaustively list every one of

the hundreds of papers on gecko adhesion in the canon. To that end, our primary empha-

sis is to explain the general principles of gecko adhesion without delving too deeply into

the theoretical mechanical proofs of their operation. We will also explain how to make

synthetic adhesives and the benefits and challenges of the different approaches that have
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emerged. Fabrication is an open problem in the field, and moving forward it is clear that

as of yet unconsidered approaches may provide additional benefits. Finally, we want to

motivate the field as a whole, not just from the source of a scientist’s curiosity, but also

from an engineer’s sense of urgency in applying what we have learned to problems that

seem intractable. Although there is only a small body of literature describing applications

in robotics and medical devices, the number of possibilities is growing and applications

will become more convincing as our understanding of gecko adhesion improves and our

ability to synthesize gecko adhesives is refined.

There are several other recent reviews of the field of gecko adhesives which cover cer-

tain topics in greater depth. Each has its own focus and varies in the breadth of the re-

view. The most recent overview of the field can be found in Jagota and Hui’s article [28],

with special emphasis on the theory of gecko adhesion and friction. A review of struc-

tures and adhesion testing protocols is highlighted by Boesel et al. [29] and by Sameoto

and Menon [30]. A concise introduction to the mechanisms of gecko adhesion is to be

found in Kamperman et al. [31]. Majumder et al. have a recent book chapter that looks at

mechanisms of adhesion and fabrication methods [32]. Kwak et al. reviewed a variety of

approaches to fabricating controllable, nanoscale fiber arrays [21]. From a different per-

spective, an overview of the discoveries of gecko adhesion from a biologist’s perspective

can be found in Autumn’s review article [33].

A note on terminology

Let us take a moment to clarify several terms that are used in the field but may seem

confusing or arbitrary. Gecko adhesion, or structured adhesion, refers to the principles of

attachment based on intermolecular forces of a surface characterized by arrays of structures.

Covering the bottoms of gecko feet are billions of long, thin fibers, called setae which

branch into even smaller structures at their tips, called spatulae (see Figure 1.1a). Since

gecko setae have aspect ratios greater than 10, i.e. the length is ten times greater that the

diameter, it is appropriate to call them fibers or fibrils. However, it seems more appropriate

to call short, squat, man-made structures pillars or posts, if they have aspect ratios less

than 10. We use the prefaces nano, micro, and macro when the critical dimension of an
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object (e.g. the diameter of a fiber) is between 1 and 1000 nm, 1 and 1000 µm and over

1 mm, respectively. The backing layer of a synthetic gecko-inspired adhesive refers to

the flat, unstructured layer of polymer on which the array of fibers or posts is formed

(see Figure 1.1d). Hierarchical structures are those that integrate multiple size scales of

structure along multiple levels, e.g. the gecko setae split into clusters of smaller fibrils each

of which in turn end in a flattened plate called a spatula. Adhesion strength and adhesion

pressure refers to the ultimate strength of attachment, that is, the average stress across

the interface exhibited just before the separation of two surfaces in contact. Adhesion or

attachment force, used interchangeably, refers to the ultimate force required to separate

two surfaces, irrespective of the contact area. We use the term adhesion when the motion

of the surfaces being separated is perpendicular to the surfaces, but we use the term shear

or friction to describe motion parallel to the surfaces. As such, shear strength and shear

force are defined similarly their adhesion counterparts. The definition of work of adhesion

gets a good treatment in Jagota and Hui’s review, but we will use the term only in the sense

of the energy required to separate surfaces in contact [28].

1.2 Biological Inspirations

The ability of some lizards to climb smooth flat surfaces has been of noted interest since

Aristotle’s time [34] and the fine structures on gecko feet have been closely documented by

naturalists starting over a century ago [35]. The first scanning electron microscopy (SEM)

image of climbing lizard adhesive structures taken by Ruibal and Ernst in 1965 revealed

tiny branching hierarchical fibers called setae [2] (see Figure 1.1b). Until recently the exact

mechanisms of attachment were unclear, but early studies by Hiller [36] lead to inferences

that the principles were based on intermolecular surface forces. Irschick et al. [26] found

that among climbing lizards there was a strong correlation between adhesive pad size and

attachment strength when normalized to body mass, but a weak correlation between pad

size and body mass. This suggested that there was an additional factor that related body

size to attachment strength, which turned out to be the size of the setae [12]. Arguably, the

most influential description of the fundamental mechanisms of attachment is found in the

seminal work by Autumn et al. from 2000 [37], where the adhesive force of a single seta
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was measured and evidence was provided to support the theory that van der Waals forces

were the primary source of attachment strength [36].

In addition to the nature of the adhesive forces, the mechanical principles of attachment

were unclear until studies revealed the importance of the loading conditions on adhesion of

the gecko’s feet [8, 38, 39]. The gecko activates the adhesion of its foot pads by dragging

them along a surface in a particular direction, which bends the tiny hairs covering its toes,

causing the tips of the hairs to press into contact against the surface. As long as a dragging

force is applied (even if no dragging motion occurs), the hairs remain in contact, but when

the gecko begins to move its foot in the opposite direction, the hairs disengage and the

adhesive pads are easily removed from the surface. Such a simple and rapid adhesion

control enables the gecko to run up a wall at almost 1 m s−1.

1.2.1 Key discoveries in gecko adhesion

After the initial proof of attachment principles from Autumn et al. [37], an explosion of

subsequent work attempted to discover the exact mechanisms and potentials of synthetic

gecko adhesives. Autumn and Peattie [38] showed that by pulling a seta at a certain angle,

the attachment force was reduced to zero. Autumn et al. also showed that the attachment

strength of gecko setae is strongly coupled with shearing loads, a phenomenon called fric-

tional adhesion [8]. Arzt et al. found a strong inverse relationship between the mass of

a climbing animal and the characteristic size of the attachment structures on its feet [12]

(see Figure 1.3), suggesting that finer structures provide stronger adhesion which answers

the questions raised in the earlier work by Irschick et al. [26]. Stork further correlated the

attachment strength of geckos with the number of adhesive structures on their feet [40].

Hansen et al. characterized the incredible fact that gecko adhesives are self-cleaning, i.e.

through attachment-detachment cycles, they can regain adhesive strength after contami-

nation by dirt [11]. What is so incredible about the property of self-cleaning is that it is

unexpected that an adhesive that can attach so strongly to a surface would simultaneously

and selectively expunge contaminating particles from itself.

The exact source of attachment strength continues to be debated, a controversy high-

lighted by the number of papers attempting to characterize the contribution of van der Waals
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and capillary forces to gecko adhesion. In 2002, Autumn et al. [7] showed that van der

Waals, not capillary, forces were the dominant attachment forces. However, in a series of

papers, researchers conducted adhesion experiments using atomic force microscopy (AFM)

that showed capillary forces might be a significant contributor to adhesion [41, 42, 43, 44].

Subsequently, characterization of the effect of humidity on the elasticity of β-keratin, the

protein that setae are made of, helped to explain changes in adhesion while maintaining that

van der Waals are the dominant attachment forces [45, 46]. In a possibly critical discovery,

it was recently shown that geckos actually leave footprint residues of phospholipids, de-

spite the fact that geckos are not known to have secretion glands in their feet [47]. It is still

unclear what impact the discovery of gecko footprints will have on our understanding of the

fundamental principles of gecko adhesion, since most theories that have been developed to

explain gecko adhesion are predicated on a dry contact interface.

1.2.2 Structured adhesion in other animals

Micro-scale features can be found on the feet of many different species of climbing an-

imals, which indicates that structured adhesion was evolved repeatedly and separately

through the phenomenon of evolutionary convergence as a solution to the problem of at-

tachment [48, 49, 50]. Beatles use sustained attachment strengths 60 times their body

weight in an impressive display of passive defensive capabilities, preventing ants from

carrying them off [51]. However, it is interesting to note that while the gecko uses “dry ad-

hesion,” insects and frogs secrete liquids to utilize wet adhesion to augment the attachment

strength of the arrays of microstructures. Insects’ adhesive secretions have been observed

in a wide range of cases [51, 52, 53, 54, 55, 56]. Tree frogs’ adhesive structures more

resemble flat pancake like structures, with a significant contribution to attachment arising

from capillary forces [57].

1.2.3 Summary of observed principles of micro-structured adhesives

Autumn proposes that there are seven principles of gecko-inspired micro-structured adhe-

sives that makes them so inspiring and impressive as an engineering device: anisotropic
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attachment, high pull-off force to preload force ratio, low detachment force, material inde-

pendence due to van der Waals adhesion, self-cleaning, anti-self-matting, and non-sticky

default state [6] (see Figure 1.2). Generally speaking, these principles have been found to

exist in natural adhesive pads that possess fibrillar structures with flat spatular tips [58]. As

is the case for all human technology that mimics or is inspired by biological examples, the

adhesive structures we see on the gecko’s foot serves as an “existence theorem” [28] which

shows us a path to take to achieve similar performance in our own synthetic adhesives.

The gecko’s adhesive pads have shown us that it is possible to have several seemingly

contradictory properties exhibited on a single structured surface [33]. We have seen that

heavier animals have finer structures in their adhesive pads, which leads to the conclusion

that increasing the number of discrete contacting structures, even if each individual struc-

ture is smaller, holds a significant benefit for increased attachment strength [12, 38] (see

Figure 1.3). The principles of frictional adhesion described by Autumn et al. indicate that

the gecko only adheres if it slides its feet or maintains a shear force along a surface [8, 38].

Subsequent models by Gao et al. showed that the asymmetric, angled structure of the

gecko setae explains the need for shear to maintain attachment strength [59], and in fact,

this requirement turns out to be a feature, because it allows for rapid attachment and de-

tachment [39].

The adhesive structures have an added benefit in that they increase the compliance of

the interface as a whole. The β-keratin which composes the setal arrays has been char-

acterized to have a high elastic modulus, with stiffness on the order of 1-3 GPa [60, 61].

However, when formed into arrays of compliant, high aspect ratio fibrils, the interface ex-

hibits an effective elastic modulus of 100 kPa, a four orders of magnitude reduction in

stiffness [8]. Persson used a simple model that addresses the structural difference between

the bulk β-keratin and the array of setae to confirm the mechanism behind this increased

compliance [62]. Interestingly, this increased compliance approaches the critical value of

stiffness called the Dahlquist criterion which was originally set forth as the stiffness that

unstructured pressure sensitive adhesives need to attain in order to exhibit the necessary

tack to adhere well [63]. This criterion derives from the balance of forces that an adhesive

material experiences: the attraction between the contact substrate and the adhesive material

due to van der Waals forces and the repulsion from elastic forces restoring the deformed
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Figure 1.2: The seven principles of gecko adhesion as outlined by Autumn [6] are presented here
with representative observations from literature. (a) Evidence for van der Waals forces, as opposed
to capillary forces, is shown by the equivalent attachment forces of a gecko foot to hydrophobic
GaAs and hydrophilic SiO2 surfaces. (Reprinted with permission [7]. Copyright 2002, National
Academy of Sciences.) (b) High adhesion and friction forces are achieved for low preloads when the
gecko foot is dragged in the direction of the curvature of the setae. (Reprinted with permission [8].
Copyright 2006, Company of Biologists.) (c) Easy detachment of the gecko foot is observed if
it is dragged against the curvature of the setae. (Reprinted with permission [8]. Copyright 2006,
Company of Biologists.) (d) The anisotropic attachment of the gecko foot is replicated in a patch of
synthetic adhesive composed of angled pillars with angled mushroom tips. The inset images show
microscopic deformations of the individual micropillars under directional loading. (Reprinted with
permission [9]. Copyright 2009, Wiley.) (e) In their default, undeformed state, the gecko setal array
is highly non-sticky, which is visually represented here by its superhydrophobic contact with a water
droplet. (Reprinted with permission [1]. Copyright 2006, Springer.) (f) Gecko setae have evolved
to be non-matting, but man-made synthetics need to be optimized, as can be seen here where the
top image shows free standing micropillars, but in the bottom image the pillars are matted together.
(Reprinted with permission [10]. Copyright 2011, Wiley.) (g) Even when a gecko’s foot becomes
completely saturated with dirt, after just a few simulated steps it can regain a large portion of the
original attachment strength; these SEM images show the dirty and after cleaning states of a setal
array. (Reprinted with permission [11]. Copyright 2005, National Academy of Sciences.)
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materials to their original shapes.

In the following section we will delve into the mechanisms of gecko adhesion, and look

at the models that explain the principles that we observe in nature.

1.3 Mechanical Principles of Structured Adhesives

1.3.1 Adhesion

Contact splitting

The observation that animals with greater body mass have adhesive structures with smaller

dimensions seems counter-intuitive, but the reason behind it can be described nicely with

an adhesive contact model. Hertz described how the contact between an elastic sphere

and a rigid plane is related to the applied compressive force [64], and Johnson, Kendall and

Roberts (JKR) showed that by including the adhesive forces present between the contacting

objects, a tensile load could also be modeled [65]. In predicting the adhesive force of the

sphere and the plane, the parameters of the JKR model are the radius of the sphere, R, and

the surface energy of the interface, γ.

FJKR = 1.5πRγ (1.1)

Autumn et al. and Arzt et al. used this contact model to demonstrate how reducing the

size of the individual structures while increasing the quantity actually increases the total

tensile load the interface can bear [12, 38]. Arzt et al. found that if the structures are split

into N parts, and their characteristic size is split as R/
√
N , then the total pull-off force of

N structures, each with a force of 1.5πRγ/
√
N), becomes

Ftotal =
√

1.5NπRγ (1.2)

However, there is a limit to this model, as Tang et al. and Gao et al. point out [59, 66].

You cannot obtain infinite force by splitting a contact ad infinitum because there is an upper

bound set by the theoretical strength of the van der Waals force, a limit that the gecko

appears to have hit [37]. That being said, it is important to note that the original insight is
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quite instructive and the limiting bound occurs at length scales below 100 nm, and based

on this principle, a significant mass of work has emerged extolling the benefits of contact

splitting for adhesion [14, 67, 68, 69, 70, 71, 72, 73, 74].

Figure 1.3: Arzt et al. found a relationship between the mass of climbing animals and setal density,
i.e. the number of individual structures present on a given surface area of the foot. This discovery
reveals that heavier animals have smaller setae, and more of them. (Reprinted with permission [12].
Copyright 2003, National Academy of Sciences.)

1.3.2 The importance of the terminal tip geometry

At length scales on the order of van der Waals interaction distances (1 to 100 nm), the effect

of the tip geometry becomes negligible [66, 75], but at the length scales of most synthetic

gecko adhesive structures (1 to 100 µm), the tip geometry is much more important. Del

Campo et al. [76] conducted a systematic empirical analysis of the importance of length

scale and tip shape on adhesion and found that for the range of pillar diameters from 2.5

to 25 µm, the change in pillar length had a one order effect on pull-off forces, but changes

in tip geometries had a two order of magnitude effect. Pillars with mushroom shaped tips

had the greatest pull-off force, a finding that was contemporaneously and subsequently

observed in several other instances [9, 14, 70, 76, 77, 78, 79] (see Figure 1.4 for different

tip geometries).

Mushroom shaped tips have been observed to detach in an interesting manner: whereas

plain, cylindrical fibers exhibit crack propagation from their edges inward, in mushroom

tipped fibers, cavitation initiates crack propagation from the center outward [70]. This

effect is related to the stress distribution on the tip surface. Carbone et al. [80] suggest
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through numerical modeling that the thickness of the mushroom tip can be optimized to re-

duce stress singularities at the interface of the fiber and contact substrate. The mushroom tip

is also observed to be important for contamination-resistance and wet self-cleaning of the

synthetic adhesive array, but in two very different ways. For dry contamination-resistance,

the compliance of the mushroom tip allows it to conform around small particles at the

tip-surface to contact-surface interface [14]. For wet self-cleaning, when water droplets

are poured onto an array of pillars with mushroom shaped tips, the water stays on the tip

surface and does not wet in between the fibers [78]. This allows the droplet to pick up

contaminants and roll away when the array is tilted, identical to the wet self-cleaning of

lotus leaves where arrays of microstructures create a hydrophobic surface.

If the mushroom tips were to be expanded in diameter, one can imagine them eventually

forming together into a thin film of material held up by the array of posts underneath.

Exactly such structured surfaces composed of continuous terminal films along the tops

of a pillar array have been demonstrated to exhibit the benefits of crack trapping while

maintaining a larger contact area than standard fibrillar arrays [81, 82, 83, 84]. Although

the film terminated arrays show better adhesion to rough surfaces than unstructured flat

adhesives [85], there are no comparative studies examining the relative performance of

film terminated and mushroom tipped fiber arrays.

Matting condition as a limiting principle

The matting condition, also called lateral collapse, is the principle where compliant, high

aspect ratio fibers have the tendency to cohere to their neighbors. One can consider the

matting condition to be governed by the ratio of the attraction energy between neighbors

in contact and their respective stored elastic energies. In a pair of companion papers on

the design of fibrillar contacts, Glassmaker et al. proposed a governing equation of lateral

collapse [86], and Hui et al. showed that this collapse can significantly and negatively affect

adhesion [68]. For these reasons, matting sets a boundary to the design space of structured

adhesives, and has been addressed in other models [87, 88, 89] and experiments [90] in

order to confirm and refine our understanding of this limiting condition.
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Flaw insensitivity

The concept of flaw insensitivity describes how the stress distribution of fibers approaches

the theoretical limit of interfacial attachment strength as the size of the fiber approaches the

length scale of the interaction distance of the van der Waals force [66]. Flaw insensitivity

is described by a dimensionless parameter, χ, which is related to the theoretical interfacial

attachment strength, σ0, the elastic modulus of the fiber, E, the radius of the fiber, r, and

the distance over which interfacial cohesive forces are effective, δ0:

χ =
σ0r

2πEδ0
(1.3)

This parameter can be considered as a ratio of the fiber radius to interfacial force distance.

It shows us that for softer fiber materials the radius must be reduced to maintain an equiv-

alent adhesive strength, but soft, thin fibers lead to matting and lateral collapse, which we

consider in more detail below. When χ is much smaller than 1, then the fiber is considered

to be flaw insensitive and the average stress at the interface will equal the theoretical limit

of the interfacial attachment strength. For cases where χ is much larger than 1, the fiber is

flaw sensitive and will behave according to classic contact mechanics [68]. Furthermore, it

is important to remember that for small length scales the tip shape is less important, but at

larger scales the tip shape is critical [75].

The effect of surface roughness

So far we have addressed the major principles in the interaction of a structured adhesive

with a contact surface, but the presented theories generally assume smooth contact surfaces

whereas, with only a few exceptions, surfaces are rough. The first attempt at consider-

ing roughness in gecko adhesion was done by Persson where he proposed a model of the

energetics of a system of a fibrillar interface in contact with a rough surface [62]. Addi-

tionally, Persson and Gorb modeled the ability of the flat plate-like spatulae that terminate

the tips of gecko setae to adhere to rough surfaces [91]. Subsequent models attempt to

address the benefits of added compliance of a fibrillar interface when contacting a rough

surface [88, 92, 93]. Bhushan et al. modeled the effect of hierarchy to suggest that differ-

ent levels allow for compliance to different wavelengths of a randomly rough surface [88].
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Schargott et al. created a model that highlights the independent action of fibers when con-

tacting a non-flat surface as an assumption of analogy to fractally rough surfaces [92].

Hui et al. found that with increasing roughness, the pull-off forces of a fibrillar interface

decreases, but increasing fiber compliance can mitigate this effect [93].

Experimental analysis of the effects of roughness is less common. Lin et al. demon-

strated that mechanically tunable ripples on a soft flat surface can affect adhesion [94], and

Vajpayee et al. showed that a film terminated fibrillar array retained some adhesive perfor-

mance to a rough surface even when a flat control lost all adhesion [85]. The analysis most

relevant to gecko-like adhesive structures was recently conducted by Caas et al., where

they showed that micro-patterned surfaces failed to adhere to roughnesses at scales much

smaller than and much larger than the fiber size [95]. These theoretical and experimental

results suggest that hierarchy is critical for adaptation to a wide spectrum of roughness

scales.

Additional principles

We have covered the principles that demonstrate the most dominant and universal effects

on adhesion, but secondary considerations have come into focus after these primary ef-

fects have been identified. The additional principles affecting adhesion that we will review

include fiber stochasticity, liquid interfaces, backing-layer thickness, fiber viscoelasticity,

and soft surface adhesion.

A gap has existed between experimental results of the nanoscale contact of a single

setae [41] and macro-scale tests of a complete gecko-inspired adhesive surface [26]; sta-

tistical modeling attempts to bridge these scales [96, 97, 98]. Hui et al. demonstrate that

statistical modeling of a fibrillar interface can capture an important principle: the averaged

adhesion strength of an array of setae is less than the adhesion strength of a single seta, but

the variance of the array is also smaller [96]. A subsequent statistical study by Porwal and

Hui introduced more realism to the model [97], and experimental results by McMeeking et

al. showed that greater variance in fiber sizes results in reduced adhesion [98].

Though we have been focusing on dry adhesion, Vajpayee et al. [85] presented evidence

that structured adhesives can perform equally well underwater, and Lee et al. [99] and Glass

et al. [100, 101] showed that the addition of a mussel-inspired surface coating to the tips
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of the fibers can greatly improve under water adhesion. Cheung et al. showed that an oil

layer on the tips of the fibers can also improve adhesion, but that the improvement was

dependent on the thickness of the oil layer [102].

The thickness of the backing layer for a structured interface has generally been ne-

glected, but a model by Long et al. [103] and experimental results by Kim et al. [104]

clearly show that it is a significant contributor to the pull-off force. The highest pull-off

force of a flat silicon disk from an array of mushroom-tipped micropillars was achieved

when the backing layer thickness was less than half of the disk radius. The observed pull-

off forces decreased sharply for cases where the backing layer thickness was greater than

half of the disk radius. The enhanced adhesion force was due to equal load sharing, when

each micropillar experienced the same load, and decreased adhesion force occurred due to

stress concentration, when the backing layer deformed and micropillars along the edge of

the disk contact experienced higher stresses.

The aspect ratio of the adhesive pillars plays an important role in the stress distribution

on the tip surface and subsequent adhesion characteristics. Aksak et al. [105] used finite

element modeling to predict that lower aspect ratio pillars will have higher pull-off forces,

but will also become stiffer and more sensitive to defects at the interface. In a seemingly

contradictory result, Greiner et al. [106] found through an experimental study that tall, thin

structures were significantly more beneficial to increasing adhesion. This contradiction is

understandable when one considers that Aksak et al. modeled a smooth pillar tip contacting

a perfectly smooth surface, and that any experimental system, as in the Greiner et al. study,

will have surface roughness which introduces defects and crack nucleation points.

It is becoming clear that the static models that have been used to describe the principles

of structured adhesives fail to capture the important rate-dependent properties present. In

Shull’s review of the subject, he presents the past four decades of viscoelasticity models that

have attempted to revise the original contact mechanics proposed by the JKR model [107].

Rate dependency of pull-off forces has been exploited in a transfer printing scheme us-

ing flat unstructured elastomeric surfaces by Meitl et al. [108]. Subsequent introduction

of structuring by Kim et al. greatly amplified the effects of rate dependency [24]. Crack

propagation has been linked to the rate of pull-off and the pull-off force by Vajpayee et

al. for thin film terminated fibers [109], and Castellanos et al. showed an increase in the
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adhesion of a fibrillar array for increasing pull-off speeds [110]. The consideration of rate

of loading in adhesive strength is significant because it may define how synthetic gecko ad-

hesives should be used in such applications as climbing robots, robotic micromanipulation,

and medical adhesives.

Finally, a note should be made on soft-substrate adhesion. Nearly all experimental

results and theoretical models apply to gecko-adhesives contacting a stiff material such as

glass, but recent works have revealed there is significant potential for gecko-adhesives to

be applied to skin. Mahdavi et al. demonstrated that a microstructured adhesive made of

biodegradable polymer could be adhered to tissue in vivo, a step towards replacing staples

and sutures with gecko-adhesives [111]. Cheung and Sitti showed that arrays mushroom-

tipped micropillars had better adhesion than flat unstructured polyurethane when in contact

with a soft hemisphere with a Young modulus similar to skin (200 kPa) [112]. Kwak et

al. replaced traditional acrylic adhesives on medical diagnostic electrodes with mushroom-

tipped micropillars in a demonstration of a potential near-term application [10]. Karp and

Langer have recently highlighted the potential for novel medical applications of gecko-

adhesives [113]. However, it is clear that there is significant work to be done to improve

the attachment strength to soft, oily substrates like skin, and to resist contamination by dead

cells and tissue.

1.3.3 Friction

Classic friction theory for smooth flat surfaces

Our current model of friction between non-adhering, smooth, flat surfaces is based on the

Amontons-Coulumb law [114], which is easily recognizable:

Tmax = µSN (1.4)

where Tmax is the maximum applied shear force before sliding, µS is the coefficient of static

friction and N is the applied normal load. Once sliding begins, the coefficient of friction

generally drops to the a new value, µD, called the coefficient of dynamic friction [115].

Homola et al. [116] and Berman et al. [117] showed that the sliding friction for adhering,
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smooth, flat surfaces is more accurately represented by the following governing equation:

T = τ0A+ µDN (1.5)

where A is the contact area and τ0 is the critical shear strength, a material property similar

to the coefficient of friction or the interfacial adhesive strength.

Theory and experimental results of structured interfaces in shear

Although the models presented above have been confirmed for stiff unstructured surfaces,

equation (4) has been used to help understand the behavior of soft fibrillar interfaces by

Majidi et al. [16], Kim et al. [19], Aksak et al. [118], Tian et al. [119] and Varenberg and

Gorb [120] among others. This model seems appropriate when considering the fibrillar in-

terface at the macroscale, but it fails to explain the behavior of individual fibers. Buckling

of individual fibers appears to play an important role in the friction of arrays of soft micro-

structures as observed in the difference between experiments carried out by Kim et al. [19]

and Varenberg et al. [120]. For Kim, structured surfaces exhibited greater friction perfor-

mance than the unstructured control, but Varenberg observed the opposite effect. Kumar

and Hui show through numerical modeling that these contradictory results are explained by

the manner in which the tests were carried out: Kim conducted shear tests with a constant

displacement boundary condition, whereas Varenberg had constant normal load leading to

buckling of the fibers [121].

Gravish et al. experimentally characterized the gecko’s frictional performance and

found that there is no drop in performance when sliding begins, and, in fact, the friction of

the gecko adhesive pad increases with increasing rate of shearing [122]. To help explain

this, they propose a model of stick-slip that treats the fibers as vibrating beams that inter-

mittently bond with a surface before detaching and re-bonding again. This model seems

relevant for stiff fibers with appreciable tip contact, but as we will see, this is not what is

found in the literature of synthetic structured adhesives.

The theory of the frictional behavior of structured adhesives currently lags behind ex-

perimental results. Significant interest in structured friction has shown us that stiff and

soft structured surfaces have conflicting results regarding enhancement through surface
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structuring. Stiff microstructures made of materials with elastic moduli on the order of

gigapascals tend to have larger aspect ratios, and hence make contact along the sides

when sheared across a surface. These arrays of long stiff fibrils exhibit greater coef-

ficients of friction than the unstructured control surfaces made of the same stiff mate-

rial [16, 123, 124, 125, 126, 127, 128, 129, 130, 131]

Soft microstructure arrays with elastic moduli in the order of megapascals are less fre-

quently tested as a friction enhancing surface because of limited durability [9, 19, 77, 120],

but the benefit of soft microstructures is in the considerable enhancements to both adhesion

and friction. The mechanical principle for enhanced adhesion in soft structures is based

on the adhesion of the tips of pillars to the contact substrate. Enhanced friction is closely

coupled with enhanced adhesion, and even the anisotropic friction of the structures demon-

strated by Murphy et al. clearly show that the “gripping” and “releasing” cases are defined

by whether the tips or the edges are in contact with the substrate [9].

1.4 Gecko-Inspired Adhesives and their Fabrication

As we have seen from the previous work done in the field of gecko adhesives, there are

many important parameters for making strong structured adhesives, and even more param-

eters to enable the secondary behaviors of controllability, directionality, and self-cleaning.

To date, there is no single demonstrated synthetic gecko adhesive that matches the seven

specifications of the real gecko as formalized by Autumn that we presented in section 2.3.

Even so, there is a significant body of work that demonstrates several of the gecko prop-

erties in synthetic analogs, and here we present a wide variety of these synthetics (see

Figure 1.4) and the means of their fabrication (see Figure 1.5 for fabrication strategies of

hierarchical structures).

1.4.1 Macro- and Microscale Fibers

After initial studies revealed the billons of nanoscale fibers on geckos’ feet and that adhe-

sion of these structures was essentially universal thanks to van der Waals forces [7, 37, 38],
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Figure 1.4: (a) Vertical nanopillars created by oxygen plasma etching of polyimide. (Reprinted
with permission [13]. Copyright 2003, Nature Publishing Group.) (b) Polymer micropillars formed
by casting into a micromachined negative template. (Reprinted with permission [14]. Copyright
2007, the Royal Society.) (c) Wedge shaped polymer microstructures cast from a negative pho-
tolithography template. (Reprinted with permission [15]. Copyright 2009, the Royal Society.) (d)
Polypropylene nanofibers molded and etched free from a commercially available polycarbonate
filter. (Reprinted with permission [16]. Copyright 2006, American Physical Society.) (e) Mi-
cropillars with triangular cross-sections were cast from dry etched silicon wafers. (Reprinted with
permission [17]. Copyright 2011, Wiley.) (f) Hierarchical nanopillars formed through capillary
force assisted lithography. (Reprinted with permission [5]. Copyright 2009, National Academy
of Sciences.) (g) Hierarchical micropillars produced through a single step casting of polymer to
a multiple-level photolightography template. (Reprinted with permission [18]. Copyright 2009,
Wiley.) (h) Micropillars with mushroom tips cast from a dry etched silicon-on-insulator wafer tem-
plate. (Reprinted with permission [19]. Copyright 2007, American Institute of Physics.) (i) Angled
micropillars were formed from angled-light photolithography, and the angled mushroom tips were
formed from a subsequent dipping into liquid polyurethane. (Reprinted with permission [9]. Copy-
right 2009, Wiley.) (j) Dipping micropillars into liquid polymer created the round tips in the left
image, and subsequently pressing and shearing them against a clean substrate created the offset
spatula tips in the right image. (Reprinted with permission [20]. Copyright 2007, Wiley)
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researchers sought to create adhesive structures that closely mimicked the size and struc-

ture of the gecko’s setae. Sitti and Fearing demonstrated that an AFM tip could be used

to create nano-imprints into wax from which positive polydimethylsiloxane (PDMS) nano-

bumps could be molded [132]. However, researchers have focused more on microscale

fiber arrays, since the principle theories of enhanced adhesion of the gecko are applicable

at larger length scales and the fabrication is significantly easier. A common approach for

fabricating microfibers has been to cast polymer to negative templates created through pho-

tolithography of SU-8 [4, 9, 15, 20, 77, 86, 100, 101, 102, 106, 118, 133, 134, 135] or deep

reactive ion etching of silicon [5, 70, 136]. Rapid prototyping tools, such as such deposition

manufacturing, have proven useful for creating macroscale fibers [137], and were paired

with microscale fibers to exploit the benefits of hierarchy [9]. Through these works, it has

become evident that it is not sufficient to fabricate arrays of simple cylindrical micropillars

microstructures, and that to capture the principles of gecko adhesion, further techniques

need to be utilized to match the full capabilities of a gecko’s foot.

Modifications leading to Adhesion Control

Control of adhesion is becoming an important research focus for synthetic gecko adhesives,

and in some respects is as defining a quality as the absolute gains in adhesion through struc-

turing. In fact, one might claim that of the seven principles of gecko adhesives, five are di-

rectly or indirectly related to the control of the attachment strength of arrays of fibers. More

specifically, by controlling the adhesion of a gecko-inspired material, you might achieve the

following properties: get a high attachment force for a minimal preload (Figure 1.2b), re-

duce the attachment force nearly to zero for easy detachment (Figure 1.2c), attach strongly

only if dragged along a surface in a specific direction (Figure 1.2d), prevent unintended

stickiness (Figure 1.2e) and clean the adhesive of contaminating particles through normal

use (Figure 1.2g).

Angled fibers and tip modification are important factors in controlling attachment

strength and have been considered in sufficient detail by the community to get independent

treatments below. However, it is important to note other approaches that lead to control

of gecko-inspired adhesives. One significant approach is to cast shape memory polymer
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(SMP) to create arrays of thermally-responsive synthetic gecko adhesives. Kim et al. cre-

ated a negative template in silicon through DRIE to cast a SMP micropillar array which

demonstrated that pull-off forces could be repeatedly changed by a factor of 4 based on

thermal inputs [138]. Reddy et al. purchased silicon wafers with positive fiber templates

formed through DRIE to which they cast SMP which demonstrated a 200-fold change in

pull-off forces, but only through one heating cycle [139].

In addition to using active polymer materials, adhesion control can be achieved with

anisotropy in material properties or fiber geometry. By fabricating triangle tipped pil-

lars, Kwak et al. [17] demonstrated reduction of pull-off force of the adhesive array when

sheared in the direction of the vertex of the triangle tips. The triangle tip and cross-section

was formed through a combined photolithography and DRIE process. To create anisotropy

of material properties of PDMS, Jeong et al. [140] prestrained arrays of micropillars and

exposed them to oxygen plasma, which resulted in waves in the backing layer preventing

contact of the pillars to the opposing substrate. Subsequent tensing of the backing layer

straightened out the waves and allowed the tips of the microfibers to make contact.

Angled Fibers

Biological studies revealed the importance of asymmetry in the gecko setae for the easy

attachment and detachment exhibited during climbing up walls. Engineers attempted to

derive analogous behavior in by creating arrays of angled fibers which exhibit anisotropic

adhesion and friction. To that end, several methods to achieve this have been implemented,

but the most common is to modify the traditional photolithography approach by exposing

the photoresist with angled light [9, 15, 25, 77, 118, 134, 141, 142].

Aksak et al. [118] and Murphy et al. [77] demonstrated a series of angled fibers fab-

ricated through angled photolithography of SU-8 photoresist applied to glass wafers. The

photolithography process already allowed for control of height and diameter of the micro-

structures, but angled exposure of the photoresist allowed for the additional control of the

angle of the final structures, with angles limited by the refractive index of the SU-8 to

around 50◦ from vertical [9, 77, 118]. Carlson et al. [142] and Mengüçet al. [25] used shear

displacement of angled pillars when in contact with a micro-part to reduce the attachment

strength and enable reliable release of the part to a receiver substrate. This approach opens
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the door to gecko-inspired adhesives to be used as micromanipulators of microchips and

other fragile micron-scale devices. Santos et al., Parness et al. and Soto et al. used an an-

gled back-side exposure combined with a more traditional vertical front-side exposure of

SU-8 to create a negative template of angled wedges [15, 134, 141]. These wedge shaped

microstructures closely mimicked the gecko’s frictional adhesion properties, leading to a

high adhesion to preload force ratio, low detachment force and anisotropic attachment.

To accomplish the same goal of controlled frictional adhesion, Jeong et al. used angled

deep reactive ion etching (DRIE) to create negative templates of angled structures directly

into silicon [5]. Normally, during ion etching the plasma ions follow the electric field lines

into the silicon substrate at a perpendicular angle, so angling the silicon substrate will not

create angled etching because the field lines are still perpendicular. However, by intro-

ducing a Faraday cage around the substrate, the perpendicular field lines are eliminated,

allowing the ions to strike the substrate at an angle. Combined with capillary force lithog-

raphy, Jeong et al. created arrays of angled nanofibers with spatula tips and demonstrated

the manipulation of a pane of glass for LCD displays [5].

In addition to fabricating mold templates with angled structures, traditional vertical

arrays of pillars can be angled through post-casting and post-curing processes. These post-

processing steps can generally be divided into approaches that deform structures through

stresses internal to the fibers themselves and those that introduce stresses to the surface of

the fibers. Internal stresses are introduced through thermal-mechanical processes which use

heat and pressure, whereas external stresses are introduced through deposition of a layer of

foreign material or irradiation of the surface layer of the fiber material.

Demonstrated external-stress post-processing of adhesive structures include the use of

oblique metal deposition [143] and electron beam irradiation [144]. Yoon et al. showed that

depositing a sufficiently thick layer (>15 nm) of metal on one side of fibers can bend them

either towards or away from the metal face depending on the residual stresses in the metal

layer. For thin layers of metal, an additional thermal annealing step induced bending due to

the difference in coefficients of thermal expansion in the fiber and thin film materials [143].

Lee et al. showed that electron beam (e-beam) irradiation had a similar effect because it

chemically modified a thin layer of polymer on one side of the fibers, causing the fiber

to bend in the direction of the source [144]. Kim et al. [145] expanded the technique
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to nano-scale fibers, and used oblique e-beam irradiation of polyurethane acrylate (PUA)

nanofibers to cause a shrinking in the polymer matrix on the side exposed to the electron

beam, resulting in an array of angled nanofibers.

Internal-stress post-processing has been used to angle nano-scale stiff fibers [144] as

well as softer micro-scale pillars [139]. To create angled nanofibers, Lee et al. first fabri-

cated vertical fibers by casting thermoplastic polypropylene in a polycarbonate filter at high

temperature and under vacuum, then took the vertical fibers and heated them past the glass

transition temperature of the thermoplastic and applied pressure with a roller [144]. Reddy

et al. [139] demonstrated a method of creating arrays of angled micropillars by first casting

shape memory polymer (SMP) to a vertical pillar mold, then loading the cured SMP pillar

array in shear while simultaneously being heated past its glass transition temperature.

Tip Modifications

As mentioned earlier, theoretical investigations on the effect of tip geometries suggest that

mushroom shaped tips should offer the highest attachment strengths [75], which is also

supported by the presence of the flat spatulae at the tips of gecko setae [2]. Researchers

have followed this advice in fabricating mushroom shaped tips on synthetic gecko adhe-

sives [9, 14, 70, 76, 77, 78, 79]. The most common procedure for fabricating micropillars

with tip modifications is through dipping cured, solid polymer structures into uncured,

liquid polymer so the tips are wetted, then letting the newly added polymer cure against

a clean substrate. In addition to mushroom shaped tips, by using this dipping method,

researchers have created concave tip surfaces [76, 77], offset mushroom tips [76], hemi-

spherical tips [76, 77], and angled mushroom tips [9].

Deep reactive ion etching (DRIE) can be used to create negative molds in silicon for

subsequent polymer casting. Additionally, by modifying the etching parameters to exploit

the “champagne glass” effect that occurs when the isotropic etching of silicon is inhibited

by a layer of unetched silicon oxide, a mushroom shaped tip can be created in the mold

template. Kim et al. first demonstrated this approach to create negative templates in silicon-

on-insulator (SOI) wafers [70]. Jeong et al. used a similar approach to create the silicon

negative mold, but avoided destroying the mold by casting a UV curable polymer through

capillary force lithography [5].
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In addition to physical modifications to the tips of pillars, the surface chemistry of pil-

lar tips has also been manipulated to enhance adhesion. Sitti et al. [146] showed that the

addition of dangling chain elastomers to the tips of PDMS microfibers lead to an almost

factor of two increase in pull-off force over non-modified PDMS microfibers. In a combin-

ing biologically-inspired engineering approaches, Lee et al. [99] and Glass et al. [100, 101]

applied mussel-inspired polymer coatings to gecko-inspired micropillars to increase adhe-

sion under water. Glass et al. showed an almost three-fold increase in the pull-off force of

polyurethane mushroom-tipped pillars with mussel-inspired polymer applied to the surface

over unmodified mushroom-tipped pillars [101].

1.4.2 Nanoscale Fibers

Microscale templates can be created relatively easily with established photolithography

protocols, but to create nanoscale templates, engineers have looked to creatively repurpose

several other approaches. Jin et al. created an array of polystyrene nanofibers by casting to

a commercially available alumina membrane and demonstrated superhydrophobicity and

high adhesion to droplets of water, but no dry adhesion to a solid surface [147]. Kustandi

et al. and Ho et al. expanded on this approach to create hierarchical structures [148,

149]. In a similar approach, Majidi et al. [150] and Lee et al. [144] took commercially

available polycarbonate filters normally used for air or cell monitoring and repurposed them

as negative templates to cast polypropolyne. After casting their polymer, the filter was

etched away, leaving fibers with nanoscale diameters and microscale lengths [144, 150].

Using filters as negative templates results in stochastically distributed fibers, but Jeong et

al. showed that a deterministically arranged array of polyurethane acrylate fibers could be

cast by capillary force lithography from a silicon substrate etched using DRIE [5].

Although we are primarily concerned with polymer fibers in this review, it is worth not-

ing the use of carbon nanotubes (CNT) as nanoscale fibrillar adhesives. Arrays of vertically

aligned, multi-walled CNTs have been demonstrated as possessing adhesive and shear pres-

sures many times that of the gecko, as well as directionality of friction, and lotus-leaf-like

self-cleaning [13, 123, 125, 127, 151, 152]. However, in all cases of testing CNT arrays,

the contact substrate was rigid and very smooth due to the limited compliance of the CNTS.
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In an attempt to address this limitation, Aksak et al. partially embedded arrays of CNTS in

a polymer backing to add compliance and improve the robustness of the adhesive, but did

not observe any significant adhesion [153].

1.4.3 Hierarchical Fibers

It can be argued that the hierarchy of ever smaller structures stacked one on top another is

what makes the gecko’s foot sticky [3]. The combination of different length scale structures

allows for compliance, and hence contact, to a wide range of surface roughnesses from

atomically smooth glass to visibly rough rock faces. For this reason, hierarchy is a critical

component for gecko-inspired adhesives to be useful in a variety of applications. To that

end, fabrication of hierarchical fiber arrays has been achieved through several approaches,

which we loosely group into the four categories suggested by Kwak et al. [21]: (1) Multiple

mold-casting, (2) Single mold-casting, (3) Thermal imprinting/embossing, (4) Capillary

force lithography (see Figure 1.5).

Multiple mold-casting (called dip transfer method by Kwak et al. in their review [21]) is

based on the process of casting soft arrays to increasingly finer molds by dipping the tips of

the cured polymer fibers to uncured polymer then pressing to the next smaller array mold.

Using the multiple mold-casting approach, Murphy et al. [4] were the first to demonstrate

a three-level hierarchical pillar array, with the structures ranging down in size from 400 µm

in diameter at the first level, to 50 µm diameter of the second level pillars, to 3 µm in

diameter of the third level pillars. Limited yield during fabrication of the third level led to

only the two-level hierarchical array being tested in adhesion, but the two-level pillars (see

Figure 1.1d) demonstrated increased adhesive forces and significantly enhanced interfacial

work of adhesion (i.e. energy required to separate two surfaces) over single level pillars.

The adhesive force and effective work of adhesion enhancements were about 10% and

50%, respectively, and was largely thanks to the increased compliance of the hierarchical

structures.

Single mold-casting, as the name suggests, is similar to multiple mold casting but re-

quires only one step where polymer is cured in a mold. However, the mold for single

mold-casting requires all the levels of hierarchy to be incorporating before polymer curing,



1. Introduction 25

Figure 1.5: This figure is an outline of the four schemes for creating hierarchical gecko-inspired
adhesives. Reproduced with permission. (Reprinted with permission [21]. Copyright 2011, Wiley.)
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which leads to more complex mold fabrication. This is in contract to multiple mold-casting

where the molds are simple but the polymer casting/curing process is complicated. Greiner

et al. presented a mold used for one-step casting, where the mold was fabricated by a two-

step photoresist exposure [18]. The demonstrated hierarchical structures had base pillars

that were 50 µm in diameter and 200 µm tall and second level pillars that were 10 µm in

diameter and 10 µm tall. Unfortunately, the limited area fraction reduced contact area sig-

nificantly and the hierarchical array had an order of magnitude reduction in adhesive force

when compared to the single base level array.

Thermal imprinting/embossing uses a hot melt process instead of a liquid curable poly-

mer to fill the cavities of a negative mold. Generally, melt materials are stiffer than poly-

mers which allows for smaller, higher aspect ratio fibers that more closely resemble the

morphology of gecko setae. Kustandi et al. and Ho et al. presented one unique approach to

form the hierarchical negative mold by creating an anodic alumina template with branching

pores [148, 149]. Subsequently, melted polycarbonate (Lexan) was pressed to the template

and peeled off after cooling to create 280 nm diameter base layer pillars that branched into

90 nm diameter top layer pillars. These structures are the closest in appearance and mate-

rial stiffness to gecko setae thus far produced and presented in the literature. The branching

of the tips of the nanopillars increased shear adhesion force by 150% over non-branched

single level nanopillars. However, the second-level branched structures deform plastically

with just nine loading cycles, which leads to a question of long term durability [131].

Capillary force lithography was first presented as a method for fabricating hierarchical

structures by Jeong et al. [5]. Combining capillary force lithography with specially etched

angled nano-cavities, Jeong et al. created an array of hierarchical fibers. The base pillars

were 5 µm in diameter and 25 µm in height, and the second level pillars were 500 nm

in diameter and 2 µm in height. Whereas the base pillars were vertically aligned, the

nano-pillars on top were angled, which enabled control of peel-off forces with a ratio of

about 10 to 1. More interestingly, the hierarchical fiber array enhanced the attachment

to a deterministically “rough” surface (a lattice structure) over the single level array, for

sufficiently high roughnesses.
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1.5 Applications of Bio-Inspired Adhesives

1.5.1 Robotics

What is most exciting about the development of structured adhesives is the range of new

of engineering applications. Here we briefly introduce three major applications that have

gotten significant exposure in the literature. Robotics can benefit from the structured sur-

faces because they have a certain amount of passive intelligence, as an illustrative example

consider a planar grasper that utilizes a gecko-inspired adhesive surface to pick up panes

of glass (see Figure 1.7) [5]. In this example, a traditional grasper utilizing suction would

have required an additional vacuum pump and would only have worked on a smooth sur-

face, but the gecko adhesive grasper uses only the actuation already present and can work

on rough surfaces. More interesting than this example are applications that would not have

even been possible without gecko adhesives, such as tiny, energy efficient, wall-climbing

robots. The application that might emerge with the greatest impact is in medical devices,

where gecko-adhesives can improve how devices interface with the human body.

Mobile Robots

Mobile robots, and specifically, climbing robots, seem like a perfect application of struc-

tured adhesives since the original inspiration comes from examples of natural climbers.

The literature bears out this intuition because of the proliferation of climbing robots

using gecko adhesives [22, 141, 154, 155, 156, 157, 158, 159]. Sitti uses mushroom

tipped structured adhesives that behave more like conventional pressure sensitive ad-

hesives in robots with minimal actuation and a more abstracted morphology (see Fig-

ure 1.6a) [22, 154, 155, 156, 157]. Cutkosky et al. has taken the approach of using

wedge-shaped structured adhesives that mimic the frictional adhesion of gecko pads and

apply them to a highly actuated robotic climber that closely resembles the morphology of

an actual gecko (see Figure 1.6b) [141, 158, 159].
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Figure 1.6: (a) Waalbot [22] and (b) Stickybot [23] are two robots utilizing gecko-inspired adhesives
to climb walls quietly and efficiently. (Waalbot - Reprinted with permission [22]. Copyright 2010,
SAGE Publications.) (Stickybot - Reprinted with permission [23]. Copyright 2007, IEEE.)

Manipulators

Robotic manipulation through the use of gecko adhesives is another obvious application of

the technology. Using gecko adhesives as a grasper is so intuitive that mischievous children

skip the whole process of designing and fabrication of synthetic gecko adhesives and use

the geckos themselves tied to strings as the means for stealing hats off the heads of passing

pedestrians [160]. However, the method of grasping using structured adhesives is not as

intuitive as this example makes it seem. Jeong et al. [5] use the frictional adhesion behavior

of angled nanofibers to manipulate large glass panels used for thin film transistor liquid

crystal displays (TFT-LCD). Their manipulation mechanism was enabled by and limited

to the shearing loads required for attachment strength, and demonstrated a pick-to-release

peel force ratio of 6 to 1. The manipulator was simple in its control architecture because

it only needed two degrees of freedom (DOF) to enable and disable attachment, and both

DOF where redundant with the three DOF already required for moving the manipulator in

three-dimensional space. The Jeong et al. nanofiber array based manipulator was effective

in manipulating large planar objects, but could only carry them in the orientation that kept

the fibers in shear (Figure 1.7c).
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Figure 1.7: (a) The top two images show the deformed state of the square cross-section micropillar
in contact with a silicon microplatelet part, and the lower image shows an assembly created with the
Kim et al. micromanipulator. (Reprinted with permission [24]. Copyright 2010, National Academy
of Sciences.) (b) The image to the left shows an array of angled micropillars, of which a single
one is isolated to create the Mengüçet al. micromanipulator seen in the right image attached to a
silicon miroplatelet part. (Reprinted with permission [25]. Copyright 2011, Wiley.) (c) Jeong et al.
demonstrated an adhesive patch composed of an array of angled nanopillars that could be engaged
in shear (left schematic images) to transport LCD glass panels (right two photographs). (Reprinted
with permission [5]. Copyright 2009, National Academy of Sciences.)
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Kim et al. [24] demonstrated a microscale manipulator with a pick-to-release attach-

ment force ratio of 1000 to 1. The micromanipulator was used to pick up platelet-like

silicon microparts from a wafer where they had been fabricated through a monolithic pho-

tolithography process and transfer them to a variety of receiver substrates. The reduction

of attachment strength was significant enough to deposit the silicon platelets on top of one

another, creating three dimensional assemblies and a novel transistor design (Figure 1.7a).

In a recent work by Mengüçet al. [25], the use of an angled elastomer micropillar with

either a round or flat tip for pick-and-place manipulation was demonstrated (Figure 1.7b).

Utilizing vertical or shear displacement, area of contact between the micropillar and part

was selectively modified and hence the attachment strength could be controlled. The pick-

to-release attachment force ratio was maximized by utilizing a flat tip micropillar with

shear displacement control; the maximum ratio of forces was 39 to 1. Unlike the Kim et al.

manipulator, the Mengüçet al. manipulator has a larger contact area when holding the part

than when it releases it. This makes it more suitable for larger or heavier parts, and this

fact was demonstrated by scaling up the manipulator to an array of micropillars in order to

pick-and-place a centimeter-scale glass cover slip.

In a similar investigation, Carlson et al. [142] showed that the application of shear

displacement to a modified version of the Kim et al. [24] manipulator could also be used as

a method for reducing attachment strength. This approach has the benefit of increasing the

holding strength of the manipulator, but at the cost of reduced pick-to-release ratio.

1.5.2 Medical Devices

Kwak et al. [10] studied how structured adhesives could be applied to medical skin patches.

The adhesives they fabricated were mushroom tipped vertical pillars made of PDMS (Fig-

ure 1.7). They found that when compared to conventional acrylic adhesive patches, their

structured PDMS patches had lower adhesion initially, but could be cleaned with water and

Scotch tape where the conventional patches could not. This ability to be cleaned allowed

the structured adhesive to regain its attachment strength, a significant improvement from

traditional adhesives. However, as Karp and Langer [113] pointed out in their review of

gecko-inspiration in medical adhesives, the Kwak et al. adhesive only provided 40% of the
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attachment strength of traditional adhesives. There is significant room for improvement in

this area, and the investigation of structured adhesives on soft substrates like skin is just

now beginning.

Figure 1.8: Gecko inspired adhesives can be used as an enhanced medical bandage. As opposed to
(a) conventional adhesives, (b) gecko-inspired polymer adhesives allow for air flow to the skin and
peel away more easily, resulting in less irritation. (Reprinted with permission [10]. Copyright 2011,
Wiley)

Mahdavi et al. [111] took a different approach for gecko-inspired adhesives, and in-

stead of applying them externally, they implemented them internally as possible sutures.

Using arrays of tapered pillar structures with a bio-adhesive coating (dextran aldehyde,

DXTA), they showed that they could improve shear adhesion two-fold over a flat unstruc-

tured control without bio-adhesive coating. Additionally, they fabricated the adhesives

from a biodegradable, biocompatible elastomer that ensured the suture would not inflame

the contacted tissue and that it would be dissolved by the body over time. The gecko-

inspired adhesive was only tested in shear and showed the surprising property of increased

shear adhesion for reduced structural density, which goes counter to the contact splitting

principles reviewed earlier. Mahdavi et al. claim that this unexpected result is due to the

structured adhesive contacting a relatively soft tissue substrate, a condition that has not yet

been carefully considered.

Another proposed medical device that utilizes gecko-inspired adhesives is an active

endoscopic capsule presented by Cheung et al. [161] and improved by Glass et al. [162].

By utilizing legs that can be actively extended and retracted from the capsule body and by
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applying gecko-inspired adhesive on the legs, the capsule could apply sufficient attachment

force to the walls of an esophagus in vitro to withstand the peristaltic forces that would be

expected in vivo.

1.6 Research Objectives

The core of this thesis work is to expand the understanding of the principles of control-

lable adhesion and apply this understanding to the task of micromanipulation and to the

development of self cleaning microstructured adhesives. These objectives will be accom-

plished through an iterative process of characterizing structural adhesion, modeling of the

mechanical principles, confirming the modeling results through further characterization,

and developing new structures which are optimized based upon the model’s suggestions.

The following are the main research objectives of this thesis:

• To characterize the underlying principles of controlled adhesion through the use of

microstructured surfaces. This is done by characterizing the mechanical behavior

and adhesion of fibers with different geometries under different loading conditions.

• To develop models in order to suggest optimal geometries of structures and optimal

loading conditions. The models will apply an understanding of both static loading of

beams and soft bodies and the dynamic energy release and restoring behaviors. Char-

icterization of mechanics and adhesion will inform the model design. Results from

models will in turn suggest optimal structural geometries and loading conditions.

• To apply the understanding of the principles of structural behavior to the microma-

nipulation of parts. Parts of dimensions ranging from the micrometer scale to the

centimeter scale were manipulated through pick and place techniques.

• To implement the design suggestions from modeling and apply the understanding

of practical concerns in deterministic micromanipulation to the development of self

cleaning structural adhesives. This is a critical limitation in current applications of

structural adhesives as a novel commercial product, and this research focus has the

potential for immediate and wide ranging contributions.
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1.7 Contributions

The major contributions of this thesis work revolve around the understanding of the prin-

ciples of controllable adhesion of microstructured surfaces and its applications. The appli-

cations in micromanipulation and self cleaning adhesive surfaces will have the possibility

for immediate impact in industry and other research fields. Understanding the principles

of microstructured adhesion will also have the scientific benefit of describing in greater

detail how the biological examples seen on the feet of geckos and other climbing animals

function. The field of microstructure adhesion is rapidly maturing, but still requires signif-

icant contributions before it becomes a source of good for society. This work provides the

following two core contributions:

1. Gecko-inspired adhesives as controllable, safe and universal micromanipulators. We

showed that through control strategies involving vertical and shear displacement, the

attachment force of a single elastomeric pillar could be reduce almost 40 fold. This

adhesion control was then used to demonstrate a micromanipulation system and pro-

pose a framework of manipulation.

2. Contamination-resistant and self-cleaning microstructured adhesives. We showed

that self-cleaning actually can occur along three different regimes: rolling, deposit-

ing, and embedding. All three regimes can restore a large portion of the initial at-

tachment strength of a gecko-inspired adhesive. This finding is significant because

it is the first of its kind for synthetic gecko-inspired adhesives, and also because it

suggests a direction of inquiry into the cleaning ability of natural gecko adhesives.



Chapter 2
Gecko-Inspired, Controllable Adhesives

Applied to Micromanipulation

2.1 Introduction

Geckos are one of Nature’s most agile and power efficient climbers due to their strong,

highly repeatable, high speed, and controllable attachment and detachment capabilities on

a wide range of smooth and slightly rough surfaces. Such capabilities are a result of angled

and hierarchical micro and nanoscale fibrillar structures on their feet, which have saucer

shaped tip endings [37, 38]. These micro/nanostructures can exhibit repeatable adhesive

strengths up to 200 kPa [8, 11] on smooth and rigid surfaces such as glass. The attachment

strength of gecko foot-hairs was shown to be rooted in intermolecular forces such as van

der Waals forces, which exist between all surfaces and is fairly insensitive to surface chem-

istry [38]. Such generic attachment principle enables the animal climbing on a wide range

of surface materials. The importance of geometry, size, material type, and surface physics

of these biological foot-hairs rather than their surface chemistry in adhesion strength leads

to these biological adhesives to be called structured adhesives. Many researchers have been

proposing methods to design and fabricate such synthetic micro/nanostructured adhesives

inspired by gecko foot-hairs [4, 5, 13, 14, 16, 19, 69, 70, 106, 118, 123, 163, 164].

In addition to high attachment strength, biological micro/nanofibrillar structures exhibit

highly controllable adhesion [7, 17, 37, 51, 165, 166, 167]. The controlled adhesion and

34
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shear strength of gecko’s angled fibrillar structures is dependent on mechanical deforma-

tions induced by vertical and lateral loading of its feet [8, 39], which can actively control

the contact area between the structures and the substrate. Autumn et al. [8] demonstrated

that gecko foot-hairs have a friction ratio of around 5 to 1 comparing the with to against

hair tilt directions.

Synthetic structured adhesives have attempted to mimic the strength and controllability

of these biological foot-hairs. Lee and Fearing showed that when stiff polymer microfiber

arrays are angled they exhibit anisotropic behavior of shear strength with a ratio of 45 to

1 between dragging resistance in with and against fiber tilt directions [130]. However, in

both of these vertical and angled cases, the microfibers had low adhesive strength. Zhao

et al. [168]. used multi-wall carbon nanotubes (MWCNT) to create a structured surface

with even smaller features that exhibit adhesion pressure of 100 kPa and shear strength of

80 kPa, but these MWCNT surfaces lacked controllable adhesion. Similarly, embedding

MWCNT arrays in polymer backing showed enhanced friction [153].

In the study with results closest to the strength and controllability of biological foot-

hairs, Murphy et al. [9] developed elastomer, angled polymer fibers with angled mushroom

shaped tip endings which demonstrated interfacial shear pressures of 100 kPa and adhesion

pressure of 50 kPa. These structures exhibited controlled shear and adhesion strength: with

and against friction ratios of around 5 to 1 and adhesion ratios of 35 to 1. Subsequently,

surface treatments have been used to enhance adhesion of polymer microfibers in air [146]

and under water [100, 101]. In a different approach to adhesion control, thermal control

has been used on shape memory polymer fiber arrays [138].

The aforementioned preload- and shear-controlled adhesion and friction properties

could be one of the major reasons why biological gecko foot-hairs can shed dirt particles

in dry conditions [11, 24]. Hansen and Autumn [11] demonstrated that dirt microparti-

cles much larger than the fiber tip diameter could be shed from the gecko’s foot after it

is attached to and detached from a clean glass substrate in many cycles, a process termed

contact self-cleaning. Such contact self-cleaning property has also been shown in synthetic

polymer fiber adhesives [130] by shear loading. These studies suggest that micro/nanos-

tructures could also be used for pick-and-place manipulation of micro or macroscale parts
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since they enable controlled attachment (pick) and detachment (release). Therefore, mi-

crostructured adhesives inspired by these biological structures have recently been used for

manipulation at the micro [24, 142] and macroscale [5, 140]. Kim et al. [24] proposed elas-

tomer micropyramidal structures as adhesion controlled micromanipulators. These micro-

structures used vertical compression induced contact area control such that there was a

relatively large contact area when sufficiently large compressive loads buckled the micro-

structures. If pulled away quickly, the planar part was picked up with a high pull-off force

because rate-dependent effects enhanced the adhesion strength further [108]. After the

part was picked, the buckled elastic structures reverted to their original shapes. This shape

recovery significantly reduced the contact area, and thus, adhesion, between the pyramid

structures and the part and enabled easy part release. The maximum ratio of pick to release

adhesive forces was 1000 to 1. But, this manipulator had small holding forces after lifting

the part from the donor substrate, which could be a problem for heavy parts or for mechan-

ical disturbances during transfer of the parts. Carlson et al. [142] addressed this limitation

by removing the micropyramidal structures of the Kim et al. manipulator and used shear

displacement control to reduce attachment strength, at the cost of a reduced pick to release

force ratio. Jeong et al. [5] utilized angled nanofibers with high shear strength to trans-

fer thin film transistor (TFT) displays under vacuum or air as a macroscale manipulation

demonstration. However, micron scale part manipulation was not demonstrated and the

nanofiber array required a constant application of shear force for strong adhesion.

In this study, to improve the versatility and simplicity of the elastomer micro/nanos-

tructure based pick-and-place manipulation of macro and microscale parts, we developed

a gecko foot-hair inspired angled pillar microstructure with flat or round tip ending shape

(Figure 2.1). We present two simple control methods for reducing attachment strength

of the pillar during the part release: vertical displacement control and shear displacement

control. Picking of the part is accomplished in the same way for both control methods,

by vertical compression of the tip to the part and rapid retraction to maximize adhesion

strength. During transfer of the part, the attachment between the pillar and the part is se-

cure enough to withstand sudden impacts and disturbances as well as the weight of the

part, issues that could be a limiting factor with the previously demonstrated manipulator

from Kim et al. [24]. During release of the part onto a receiver substrate, the contact area
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of the pillar to the part is drastically reduced by the deformation of the pillar due to either

the vertical or shear displacement control method. As a difference from the nanofiber ar-

rays demonstrated by Jeong et al [5], the parts can be picked and released in both adhesion

and shear modes for the approach presented here. Such compliant micromanipulators are

simple and inexpensive to manufacture, easy to integrate into optical microscopy infrastruc-

ture, and can operate in air, in vacuum and under liquid. Finally, such compliant polymer

micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces,

are effective on most materials. This micromanipulation system’s ease and effectiveness

will be a benefit to the assembly and packaging of microelectromechanical systems and

optoelectronic and flexible electronic devices.

Figure 2.1: Scanning electron micrographs taken from an isometric viewpoint of (a) the round tip
micropillar, (b) the flat tip micropillar, and (c) side view of the flat tip pillar attached to a silicon
platelet part. The micropillars are made of elastomeric polyurethane. The white scale bars represent
50 µm of length.

2.2 Experimental Methodology

2.2.1 Fabrication

Previous work has shown the importance of the tip geometry on the adhesion and friction

of microfiber adhesives [70, 76, 77, 79, 134]. To investigate the importance of tip geome-

try in our proposed micropillars, we used two distinct pillar types that were similar in all

geometric and material parameters except for the shape of the tip. The first type has a flat

tip, the surface of which is parallel to the plane of the backing layer. The second type’s
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tip is in the shape of a rounded bump with a given curvature. The principle of our fabrica-

tion methodology is based on an optical lithography based microstructure fabrication [169]

followed by a molding based replication [163]. Angled elastomer micropillars can be fab-

ricated by replicating positive pillars fabricated by directional reactive ion etching [5] or

SU-8 lithography [118]. The latter method is selected in this study due to its simplicity (see

Appendix C for details on SU-8 photolithography).

Flat tips were formed from negative SU-8 molds because the polymer tips cure against

the atomically smooth silicon wafer (Figure 2.3a). The angled flat tip micropillar fab-

rication process started with the patterning of an SU-8 mold. A silicon wafer was spin

coated with a 160 nm thick anti-reflection layer (XHRiC-16, Brewer Science). On top of

the anti-reflection layer, SU-8 negative photoresist (SU-8 50, Microchem) was spin coated

and soft-baked into a 90 µm thick layer. To fabricate the angled pattern, the wafer with

soft-baked SU-8 was mounted on an angled stage and exposed to ultraviolet (UV) light,

followed by a post-exposure baking and development. The resulting SU-8 mold was a

negative pattern, i.e. composed of angled holes (Figure 2.3a), which were hard baked at

180 ◦C for 3 min to induce further crosslinking. To facilitate the delamination of poly-

dimethylsiloxane (PDMS) from the SU-8 (Figure 2.2b), the mold was exposed to the vapor

of tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane for 60 min in a dessicator.

Rounded tips are formed from positive SU-8 molds because the tips of the standing

SU-8 posts are etched more along the perimeter creating a curving of the top surface (Fig-

ure 2.3f). By tuning the exposure and development times, the curvature can be controlled.

The angled round tip micropillar used in this work was fabricated using the SU-8 lithog-

raphy and molding techniques described in previous works [118]. In a similar approach to

the flat tip pillar fabrication, SU-8 photoresist (SU-8 2050, Microchem Corp.) was spun

on a fused silica wafer and exposed through a mask by angled UV light (MA-56, Karl

Suss). The difference in round-tip fabrication from flat-tip fabrication was in the mold, the

round-tip mold is a positive pattern, i.e. composed of angled pillars (Figure 2.3f). The SU-8

pillars were then molded with a silicone rubber (HS II RTV, Dow Corning) which served as

the negative pattern mold for creating arrays of elastomer micropillars (Figure 2.3h). The

curvature of the round tip structure was characterized with interferometric profilometry and

the radius of curvature was found to be 380 µm (Figure 2.5).
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2.2.2 Detailed Fabrication Methodology

The fabrication process allowed for the selection of a desired geometry of a single an-

gled micropillar from the stochastic distribution within an array of structures. Following

previous photolithography and molding techniques, a negative rubber mold was created

(Figure 2.2a-d). The polyurethane positive array was cured with a glass substrate back-

ing which acted as a handling layer (Figure 2.2e). A silicon platelet part was adhered to

the desired micropillar to act as a cap to protect the tip surface (Figure 2.2f). The UV

microlaser milling isolated the micropillar (Figure 2.2g). After releasing the platelet cap

(Figure 2.2h), the surrounding structures and backing layer were manually removed with

the tip of a sharp blade (Figure 2.2i). The soft lithography steps were repeated with the iso-

lated structure (Figure 2.2j-m). Only a few of the final single structures were molded, but

no variations were observed through optical microscopy. However, if this approach is to be

used for industrial purposes, a more rigorous analysis of reproducibility will be required.

The SU-8 was from MicroChem, the silicone mold making rubber was HS-II from

Dow Corning, the PDMS was Sylgard 184 from Dow Corning, and the polyurethane was

ST-1087 from BJB Enterprises.

Photolithography of SU-8 using a UV light source is a relatively accessible and estab-

lished process, but it is not the only approach to producing angled polymer micro/nanos-

tructures. Jeong et al. [5] adapted the process of deep reactive ion etching (DRIE) to the

angled etching of polysilicon. This allows for a higher degree of control and repeatability in

the structures’ geometry, but requires a less common fabrication technology. Conversely,

we addressed the issues of consistency in SU-8 fabrication by identifying and isolating

single structures with desired geometries (Figures 2.2e-i).

The material used as the final micropillar structures was ST-1087 (BJB Enterprises,

Inc.), a polyurethane elastomer with a Young modulus of 9.8 MPa and a work of adhe-

sion to glass of 32 mJ m−2 [77]. This particular polyurethane was selected for this study

for the same reasons it has been used in previous similar studies: because of its high ten-

sile strength and high surface energy while remaining optically transparent [70, 77, 118].

The geometry of the structures was characterized with optical microscopy (TE200 Eclipse,

Nikon), interforemetric profilometry (NewViewTM 7300, Zygo), and scanning electron
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Figure 2.2: The fabrication process can be roughly grouped into three sub-processes: (a-d) soft
lithography and repeatable array molding, (e-i) isolation of a single structure, and (j-m) repeatable
molding of the isolated structure. (a) Photolithography produces the initial negative SU-8 mold.
(b) PDMS is cured in the negative mold to produce a positive array. (c) Silicone rubber is cured to
the PDMS positive to create a soft negative mold. (d) Polyurethane elastomer with a glass backing
is cured in the silicone rubber negative. (e) The positive polyurethane array is removed from the
mold after curing. (f) A single pillar picks a silicon platelet part to protect the tip surface. (g) A
UV ablation laser cuts a perimeter around the selected pillar into the backing layer. (h) The silicon
platelet part is released. (i) The surrounding pillar array is scraped away with the tip of a scalpel.
(j) What remains is a single pillar on a glass backing. (k) Silicone rubber is used again to create a
negative mold of the isolated pillar. (l) Liquid polyurethane with a new glass backing is placed in
the negative silicone mold. (m) The single pillar is removed after curing.
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Figure 2.3: Schematic representations of the fabrication process. a) Starting with an SU-8 negative
mold, b) we could cure the liquid polymer directly, c) to produce the positive micropillar array, and,
d) finally select and isolate a single structure. e) Starting with an array of positive SU-8 micropillars,
f) we first cured a negative silicone rubber mold, g) then liquid polymer was cured, h) to produce
the positive array and i) select and isolate a final structure. Fabricating structures from a nega-
tive photoresist mold (a through d) results in angled pillars with flat tip endings (see Figure 2.1b).
Replicating positive photoresist structures (f through j) results in angled pillars with round tips (see
Figure 2.1a).

microscopy (SEM, Hitachi 2460N). All structures were molded onto square glass plates,

∼2 mm on a side, to provide a rigid, transparent backing and to ease manual handling

(Figure 2.3d). The molding process resulted in the plate being covered in several hundred

pillars, with a polyurethane backing layer less than 20 µm thick between them and the rigid

plate. This thin backing layer is advantageous because it reduces any complicating effects

of the soft backing [103].

2.2.3 Experimental Setup

In order to characterize the performance of the microstructures, a custom experimental

system was employed. This system is based upon automated flat-punch indentation setups

previously used in adhesion characterization experiments [8, 9, 130, 170]. Using an in-

verted optical microscope (TE200 Eclipse, Nikon) as the base for the fixturing as well as

the source of visual feedback, a vertical axis of motion and sensing was mounted such that

the point of intersection between the pillar micromanipulator and substrate would occur at

the focal range of the optics (Figure 2.4). The vertical axis motion was provided by a lin-

ear motorized stage (MFA-CC, Newport) with submicron positional accuracy and a speed
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range from 1 µm s−1 to 2500 µm s−1. The vertical stage was mounted to a two axis man-

ual linear stage (462 Series, Newport) and a two axis goniometer (GON40-U, Newport) to

align the adhesive sample with the optics and the substrate.

Figure 2.4: Photograph, (a), and schematic, (b), of the micromanipulation system: A - load cell, B
- micropillar sample, C - substrate, D - microscope objective, E - two axis manual linear stage, F -
two axis manual goniometer, G - motorized linear stage, H - light source.

Sensing was achieved through a high resolution load cell (GSO-10 and GSO-30, Trans-

ducer Techniques), which was used with a signal conditioner (TMO-2, Transducer Tech-

niques). The video was captured through a color digital camera (DFW-X710, Sony) con-

nected to a desktop computer (Aspire ASE380-ED500U, Acer) operating Linux (Ubuntu

7.10 Gutsy Gibbon). The force data was captured as an analog voltage signal through a

data acquisition board (NI PCI-6259, National Instruments) mounted in the computer, and

all motion control was achieved through commands sent from the computer to a motor con-

troller (ESP300, Newport) to which the motorized stage was connected. All data capture

and motion control was managed by custom software running on the computer.

The experimental control parameters included the speed of approach of the adhesive

sample to the substrate, the initial amount of compressive load applied (preload), the

amount of displacement in the compressive direction after preloading, the amount of dis-

placement in the lateral shear direction after preloading and finally the pull-off speed. The

variable which was measured was the applied normal force on the micropillar during load-

ing and retraction. Visual feedback from the video recording gave qualitative information
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regarding the mechanics of the structures. Contact area visualization was enhanced by in-

terference patterns in 546 nm wavelength green light (see Appendix B for details on the

principles of interferometric microscopy).

It is important to note that the control variable in all experiments was displacement, ei-

ther vertical or shear. Force based control failed to capture intermediate load states because

of the unstable nonlinear response of the pillars under compression.

Vertical Displacement Experiments

A typical adhesion characterization experiment would have the structural adhesive sample

mounted on the vertical axis such that the adhesive was pointing downward towards the

substrate mounted to the microscope fixture. After approaching at 1 µm s−1 (the approach

speed was constant during tests) and achieving a desired preload of 0.05 mN (constant for

all tests) the vertical stage would continue to compress the pillar for a prescribed displace-

ment. Once the prescribed compressive displacement was achieved, the vertical linear stage

retracted the micropillar at a constant velocity. The maximum tensile force during pull-off

was recorded as the adhesive force.

Shear Displacement Experiments

In the case of applying shear displacement during the part release, the manual linear stage

was employed after the compression step was completed, but before retraction. After

achieving the prescribed compressive displacement the motorized linear stage paused for

10 seconds to allow the experimenter to displace the pillar laterally through the use of the

manual linear stage. As before, the maximum tensile force was recorded as the adhesive

force.

Demonstration of Pick-and-Place Manipulation

A micromanipulator composed of a single angled pillar was used for all empirical charac-

terization as well as demonstrations of pick-and-place of 100x100x3 µm3 silicon platelets.

The silicon parts were fabricated according to the technique presented by Kim et al. [24].
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The manipulation of the centimeter-scale glass slide was conducted with an array of 100

round tip pillars arranged in a square packed pattern with 120 µm center to center distance.

2.3 Results

2.3.1 Characterization of the curvature of the round tip structure

The surface topography of the round tip structure was imaged using a interforemetric pro-

filometry (NewViewTM 7300, Zygo). By taking a cross section of the surface, we could

use a circle-fitting algorithm [171] to identify the radius of curvature along that cross sec-

tion. The shape of the round tip was found to be ellipsoidal, not spherical, but we identified

the major axis curvature as ∼380 µm and the minor axis curvature as ∼90 µm. The results

of the analysis can be seen in Figure 2.5.

Figure 2.5: (a) Side view SEM micrograph of the round tip pillar structure. (b) Top view micro-
graph. (c) Surface topography as imaged by an interforemetric profilometer, with a white dashed
line indicating where the cross section is taken. (d) The cross section is indicated with a black
dashed line, and the fitted circle is indicated by a blue line.

2.3.2 Effect of tip shape

Two micropillar geometries were investigated, one with a flat tip and one with a rounded tip.

The flat tip pillar’s contact process is captured in micrographs and sketches in Figure 2.6,
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where the contact area micrographs show that the “toe” (defined as the edge further away

from the base) of the pillar peels up after a critical amount of compressive displacement

(Figure 2.6c). A rounded tip pillar’s contact process resembles the flat tip process, except

for the lack of a critical peeling event, rather, the tip slides along the surface until the entire

pillar is bent over and prone. The behavior of these contact processes was captured quan-

titatively in force versus displacement graphs, Figure 2.7 and Figure 2.8 for round and flat

tips, respectively. The graphs show that there is hysteresis in the loading and unloading

of the micropillar which influences the pull-off force: by compressively loading the pillar,

either rounded tip or flat tip, it first makes good contact resulting in high pull-off forces.

Further compression causes the tip surface to either peel away in the case of the flat tip, as

indicated by the sharp drop in the measured compressive force seen in Figure 2.8c. The

cause for this mechanical instability seems to be related to the nonlinear stress distribution

at the tip-substrate contact face (Figure 2.21). In the case of the round tip pillar, the tip

slowly slides until the pillar is bent and making contact on its side (Figure 2.7c). By con-

trolling the vertical or shear displacement, we controlled the contact area of the pillar, and

thereby control whether it is in the pick state, defined as when the pillar exerts the maximum

pull-off force, or in the release state, defined as when the pull-off force is minimized.

Comparing the behavior of the flat tip pillar and round tip pillar under compression

shows that the flat tip has a larger pull-off force and a sharper switch between the “pick”

and “release” states, which we define as the states where we exert maximum and minimum

pull-off forces, respectively (Figure 2.9). The round tip has a less sharp distinction between

pick and release states, and a lower peak pull-off force. The pick-to-release adhesive force

ratio of the flat tip was found to be 35 to 1 and the round tip had an pick-to-release adhesive

force ratio of 26 to 1. It should be noted that the peak pull-off force of the flat tip was

twice that of the round tip, but the pick-to-release adhesive force ratio of the flat tip was

less than twice that of the round tip pick-to-release adhesive force ratio because the release-

state of the round tip proved to exert a smaller force. It was observed that the release-state

depended on the roughness produced through fabrication stochasticity along the edge of

the tip, and we hypothesize that deterministically adding bumps or other structures along

the edge will reduce the release-state adhesion and enhance the pick-to-release ratio. We

observed that alignment was a factor for improving performance of the flat tip, but could
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Figure 2.6: Each column shows three corresponding images: (top row) video stills of the flat tip
pillar’s contact to a smooth, flat glass as seen through an inverted microscope with monochromatic
green lighting; (middle row) side view video stills of the profile of the flat tip pillar as it is vertically
compressed; (bottom row) side view schematics of the pillar profile during vertical compression and
retraction included in order to aid in visualizing the process. The process begins when the tip barely
makes contact, (a), before fully contacting the surface, (b). Additional compression causes peeling
due to mechanical instability, (c), after which the tip continues to slide along and peel away from
the surface, (d,e). Upon retracting, the contact patch is seen to be minimized, (f). The scale bars for
each row is included in column (a), and all represent the same length: the diameter of the flat tip,
35 µm.
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Figure 2.7: Force-distance (FD) curves of the round tip pillar obtained from indenting it onto a
glass slide. FD data of the loading, at a constant compression rate of 1 µm s−1, can be seen as
the overlapped red lines flowing from left to right. The pillar was retracted at 100 µm s−1 after
different distances of vertical compression were obtained, which created the separate blue lines
flowing from top right to bottom left at different intervals. The schematics of the side view of the
micropillar profile are based on optical microscopy observations captured via video and correlated
to the empirical FD data; the schematics show the physical behavior at points of interest along the
curve, highlighted by call-out boxes. Following the red FD curve from the origin (at the intersection
of the dashed lines) to the point of vertical compression at (a) then retracting along the blue curve
shows how to obtain a high adhesive force, i.e maximum tensile force, at point (e). The adhesive
force is significantly reduced if, beginning from the origin again, you compress the pillar until it is
prone, as in point (c), before retracting to point (d), where we see that only edge contact is made at
the moment of separation.
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Figure 2.8: The flat tip pillar was compressed onto a glass slide at 1 µm s−1 then retracted at
30 µm s−1 to create force-distance (FD) curves. Loading is graphed as overlapping red lines flow-
ing from left to right, and retracting data is graphed as intermittently spaced blue lines flowing from
the top-right to the bottom-left. The schematics of the micropillar profile are labeled to correspond
directly with the information in Figure 2.6, and the schematics are mapped by call-out boxes to
the points along the FD curve where the mircopillar takes the represented shape. Compressing the
pillar from the origin (the intersection of dashed lines) to gentle contact at point (a), then to point (b)
before retracting to point (b)∗ gives a high adhesive force (i.e. maximum tensile force). Note that
the shape of the pillar at (b)∗ is visually identical to its shape at (b), but it is in tension, so the ∗ is
used to denote the difference. Compressing the pillar past (b) reveals a mechanical instability from
point (c) to point (d) where the tip peels away suddenly, and by compressing even further, only the
edge remains in contact at point (e) before retracting to point (f) where the pillar is making minimal
contact at the moment of separation.
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be neglected for the round tip. This difference may lead to a design choice in the future

for applications requiring easy or robust alignment. The higher pull-off force and sharper

distinction between pick and release states leads us to use the flat tip pillar as the primary

manipulator for the remainder of the work.
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Figure 2.9: The adhesive forces of flat and round tip pillars measured during pull-off from a glass
substrate, after a given vertical displacement in the compressive direction, are plotted for different
retraction speeds. The slowest available retraction speed of our actuator, 1 µm s−1, minimized the
adhesive forces for both the flat tip pillar (solid red lines connecting filled circles) and the round
tip pillar (dashed red lines connecting open circles). The optimal pull-off speed for the flat tip was
30 µm s−1 (solid blue lines connecting filled diamonds) and for the round tip the optimal pull-off
speed was 100 µm s−1 (dashed blue lines connecting open diamonds). Each data point represents the
median and the error bars indicate the minimum and maximum force values of three experiments.
These results demonstrated how the flat tip pillar has higher maximum ratio of 35 to 1 and sharper
switch between pick and release states than the round tip pillar with a maximum ratio of 26 to 1 and
a smooth switch between states.
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2.3.3 Effect of shear displacement

Aksak et al. [118] in a previous investigation into flat tipped angled micropillars, proposed

an analytical model of the stress on the tip of the pillar. That model suggests that the angle

of inclination of the pillar facilitates an uneven stress distribution during loading, causing

the pillar to lose tip contact. We have already shown how we can maximize or minimize ad-

hesive forces simply by loading the pillars compressively (Figure 2.9). However, a similar

control strategy can be implemented by the addition of shear displacement. In Figure 2.10,

we see that with no shearing and good tip contact, achieved through 4 µm compression,

there is a maximum pull-off force. Any amount of lateral shear displacement reduces the

pull-off force until the release state is achieved for shear displacements of >8 µm. In this

case, the repeatably observed pick-to-release adhesive force ratio of 39 to 1 is compara-

ble to, but greater than, compression only switching. From micromanipulation trials, we

found that using shear displacement control of adhesion to be repeatable and reliable. We

found shear displacement control to be more reliable than compression-only control during

pick-and-place experiments.

2.3.4 Effect of pull-off speed on adhesive force

Investigating the effect of pull-off speed on pull-off force reveals that there is, in fact, a

limit to the benefit of increasing speeds. Figure 2.11 shows that retracting at faster and

faster speeds from tip contact (4 µm compression) can only increase the pull-off force by a

factor of 6 before there is a drop off. Interestingly, pulling the pillar away from edge contact

(20 µm of compressive displacement), at faster and faster speeds actually appears to have

a neutral or even a negative effect on the eventual pull-off force. We hypothesize that this

is due to different regimes of viscoelasticity: surface viscoelasticity dominates in the case

of the pull-off force from tip contact and proves to be beneficial, but bulk viscoelasticity

dominates in the case of the highly bent edge contact case and prevents the material from

relaxing to make better contact as the pillar is retracted. This difference between surface

and bulk viscoelasticity is reviewed by Shull [107]. This graph shows that when in the pick

state, the micropillars pull-off force can be increased 6 fold. The release state does not

show a strong relation to pull-off speed (Figure 2.11).
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Figure 2.10: The adhesive forces of flat tip pillars measured at pull-off for different shear displace-
ments and retraction speeds. Flat tip pillars where first contacted to glass with 4 µm of compression
to ensure maximum tip contact, then sheared laterally before being retracted vertically at 1 µm s−1

(plotted with red circles), 10 µm s−1 (green squares), or 30 µm s−1 (blue diamonds). Each data point
and error bars represent the median and minimum and maximum force values, respectively, of three
tests. The maximum pick-to-release adhesive force ratio was found to be 39 to 1.
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Figure 2.11: A flat tip micropillar was vertically displaced 4 µm to achieve maximum contact area
of the tip or 20 µm to induce deformation and create edge contact which minimized contact area.
Retraction speeds ranged from 1 µm s−1 to 100 µm s−1. Each data point and error bars represent
the median, minimum and maximum force values, respectively, of three tests. There was a strong
positive relation between adhesive force and pull-off speed when retraction started from the tip
contact condition (curve plotted with a solid green line connecting circles). Retracting from the
edge contact condition revealed a weak, slightly negative relation between adhesive force and pull-
off speed (curve plotted with a dashed orange line connecting diamonds).
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2.3.5 Adhesion dependence on preload

The results of adhesion experiments on a single fiber array sample can be seen in Fig-

ure 2.12. Both figures must be considered in understanding the attachment behavior of the

fiber array. In figure 2.12a, adhesion versus preload is plotted for several retraction veloci-

ties and there are three distinct regions represented: (1) the region of high adhesion on the

left side, (2) the region of low adhesion on the right side, and (3) the region of instability

between high and low adhesion. The error bars at each point of data, which represent the

standard deviations for three adhesion measurements with the same preload and retraction

velocity, show how there is more variability in the narrow region between high and low ad-

hesion than the regions on either side. This sensitivity is due to the fiber deforming which

is discussed below.

In figure 2.12b, the adhesion control ratio is plotted versus retraction velocity. We

define the adhesion control ratio as the ratio of the maximum measured adhesion to the

minimum measured adhesion for any constant retraction velocity. This ratio is meant to

convey the amount of change possible in the attachment strength of a fiber array. The data

shows how the controllability ratio changes for different retraction velocities, with a peak

occurring at 30 µm s−1, where the ratio is almost 30:1. That is to say, a thirty-fold change in

attachment strength was observed for an array of fibers when it was loaded to a low preload

before being retracted at thirty microns per second versus when loaded to a high preload

and retracted at the same velocity. Whereas the preload deforms the fibers and changes the

contact area, the retraction velocity reveals viscoelastic effects’ relation to adhesion. At fast

retraction speeds the side contact provides more attachment which decreases the adhesion

control ratio, and at slow retraction velocities the fibers have time to regain their original

shape, reducing the effective contact area at the time of pull-off.

If this information is to be useful in designing a one degree of freedom gripper, it

should be noted that the adhesion controllability ratio does not take into account the actual

preload values before which the maximum or minimum adhesion is observed. This may

be in an important consideration because when the preload which results in the maximum

measured adhesion is near the region of preload which results in instability, the values will

be sensitive to small variations in preload. A different metric that reduces the control ratio
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Figure 2.12: (a) Adhesion versus preload data shows an initial peak where tip contact is maximized
and a drop off where the fibers bend sufficiently to remove the tips from contact with the substrate.
The plateau after the drop off is where the sides of the fibers are in contact. (b) Taking the fraction
of the maximum measured adhesion force over the minimum measured adhesion force for the same
retraction velocity gives the adhesion control ratio. The highest control ratio observed, 30:1, was at
retraction speeds of 30 µm s−1.
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but ensures insensitivity to variations in preload may be more appropriate if applying this

data to production level tasks where yield and repeatability are more important. Even so,

the current adhesion characterization is sufficent to robustly pick and place certain parts to

and from a substrate, as seen in Figures 2.13 and 2.14.

2.3.6 Demonstration of manipulation

Using the proposed vertical or shear displacement based contact area control of the mi-

cropillars, we could demonstrate pick-and-place manipulation of microparts. Such adhe-

sion control can be seen in an assembly task in Figure 2.13, where the indentation of the

pillar into the silicon microplatelet is critical for pick-and-place manipulation. With a load-

ing condition of 4 µm of compressive displacement, the flat tip pillar tip made good contact

with the part and could lift it off of the glass slide as demonstrated in Figure 2.13c. After

moving to the desired location above the first part, the second part was released by increas-

ing the downward displacement until the flat tip pillar lost tip contact (Figure 2.13e). When

the pillar was retracted after tip contact was lost, the adhesion was low enough to release the

second part on top of first (Figure 2.13f) thus beginning the assembly of a microstructure.

The same principle used to control a single angled micropillar’s adhesive state can be

applied to arrays of angled micropillars. A 4x1 cm2 glass cover slip was picked up and

placed down with a 10x10 array of round tip micropillars (see Figure 2.14) demonstrating

the extensibility of this approach to larger length scales and heavier parts. Figure 2.14

demonstrates the macroscale manipulation capability of a 10x10 round tip pillar array. In

frame (a), the adhesive is brought into contact such that it can pick up the glass coverslip

(weight of ∼3.9 mN) as seen in frame (b). By compressing the pillars until bent, (c), the

adhesive forces is reduced sufficiently to release the coverslip back to the glass substrate,

(d). The insets are representative structure geometries.
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Figure 2.13: Video snapshots from an inverted microscope show the steps of pick-and-place ma-
nipulation of the silicon microplatelets: (a) The micromanipulator contacts the first part, (b) picks
it up from the substrate, and (c) brings the first part in contact with the second. (d) Compressive
vertical displacement bends the pillar. (e) The pillar is slowly retracted. (f) The microassembly is
completed.
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Figure 2.14: Figure of video stills from a demonstration of the macroscale manipulation capability
of a 10x10 array of round tip micropillars. The cover slip has been outlined and schematics repre-
senting the deformed state of any given pillar have been included to guide the reader. (a) The array
is vertically displaced to sufficiently compress it to form a large contact before (b) retracting rapidly
and picking up the glass cover slip. (c) When brought into contact again, vertical displacement
control is utilized to compress the array of round tip pillars and induce edge contact, (d) such that
retracting the array slowly will enable the cover slip to be released.
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2.4 Discussion

2.4.1 Picking, holding and releasing models of manipulation

The universal van der Waals forces which act between surfaces are the roots of adhesion of

the micropillar to the part and to the substrate, while the pull-off force depends on contact

geometry, which we control through vertical or shear displacement. There are three con-

ditions which are of interest to the design and implementation of a gecko-inspired pillar

micromanipulator: picking, holding and releasing conditions. From experimental results,

the behavior of the microstructure under loading was observed (Figure 2.6), which directs

us to develop an analytical expression for the critical stages of a pick-and-place manip-

ulation process (Figure 2.15). The geometry and deformation of the pillar in response to

different loading conditions controls the contact area between it and a part and consequently

its pull-off force.

Picking

The pillar is able to pick the part up from a substrate as long as the picking force is greater

than the sum of the part to substrate adhesion, FS1, and weight of the part, FW :

Picking Condition: FP > FS1 + FW (2.1)

For the rounded tip, the contact is approximated to occur between a sphere and a plane [65],

Psphere =
3

2
πwfR , (2.2)

and for the flat tip, the contact is approximated as a flat punch [172]

Pflat =
√

6πa3Kwf . (2.3)
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Figure 2.15: The micromanipulation process flow: (a) approaching, (b) contacting the part gently,
(c) picking up the part, (d) holding while the part is transferred, (e) approaching a new location or
substrate and (f) bring the part into contact. To release the part we can utilize vertical displacement
control (VDC) or shear displacement control (SDC). For VDC, the process begins with (g) com-
pressing until the pillar is bent and the contact area is significantly decreased, then (h) retracting,
and finally (i) releasing the part. Utilizing SDC is identical except for the use of shear displace-
ment, (g)∗, instead of additional vertical displacement to peel the tip of the pillar. The three critical
cases for manipulation are, (c) the picking case, (d) the holding case and (h) the releasing case. The
zoomed in call-outs of these three critical cases depict the forces experienced by the part and the
size of the spherical contact representing the pillar-to-part interaction.
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In both equations, the work of adhesion of the interface is wf , and the effective Young

modulus, K, of the system is

K =
4

3

(
1− ν21
E1

+
1− ν22
E2

)−1

, (2.4)

where ν1 and ν2 are the Poisson’s ratios of the interface materials, and E1 and E2 are the

Young moduli of the interface materials. In the flat punch equation, a is the radius of the

flat tip, and in the sphere contact equation, R is the radius of curvature of the round tip.

The picking condition also depends on viscoelastic effects, which could increase the

pull-off force exerted by the pillar when retracted from a surface with a high speed (i.e.

high strain rate). Viscoelastic effects can be considered to be composed of macroscale,

internal, material effects, called bulk viscoelasticity, and microscale, interfacial, chemical-

bond effects, called surface viscoelasticity. Bulk viscoelasticity acts to effectively stiffen

the structure under rapid loading or unloading. Surface viscoelasticity modulates the ef-

fective work of adhesion. Both bulk and surface viscoelasticity can contribute to increased

pull-off forces in our experimental conditions. However, due to the micron scale deforma-

tions of our pillar, we can ignore bulk viscoelastic effects in approximating a model of the

picking condition as suggested by theory [107] and as implemented empirically in previous

work [118].

The surface viscoelasticity has been empirically shown to be related to the thermo-

dynamic work of adhesion by a scaling factor, wvisco
f (v) = κ(v)wf [173]. The scaling

factor, κ, represents the relative importance between the glassy behavior of a viscoelastic

material when rate of loading approaches infinity and the rubber like behavior when rate

approaches zero. Empirical evidence points to a power-law dependence by the scaling fac-

tor, κ, on retraction velocities [174], which suggests that the scaling factor can be rewritten

as κ(v) = avb + c, where a, b, and c are empirically determined constants and v is the rate

of loading. The effect of pull-off speed on pull-off force was observed to be positive for

picking (Figure 2.11), which matches theory [173].
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Holding

The holding condition can be considered to be effectively static where its governing equa-

tion is of the maximum adhesive force between a purely elastic sphere and an atomically

smooth, rigid plane for the case of the rounded tip and a purely elastic cylindrical punch

contacting a rigid plane for the case of the flat tip. Assuming there are no external dis-

turbance forces, the limiting case for the holding condition is when the weight of the part

(FW = mpartg) is greater than the adhesive force, and so holding is feasible only when the

following inequality of forces is satisfied:

Holding Condition: FH > FW (2.5)

In the holding condition, we can use the non-viscoelasticity modified equations for

sphere contact, Equation 2.2, and flat punch contact, Equation 2.3. High instantaneous

forces allow the pillar manipulator to pick up a heavy part, but the part may fall while

being transferred; so, lower pull-off speeds are a better empirical estimate of the actual

holding force of the manipulator.

Releasing

The releasing condition resembles the picking condition in that the attraction of the part

to the substrate plays a role as well as the rate at which the pillar is pulled away from the

part. The objective of the releasing condition is to minimize the adhesive force between the

pillar and the part, FR, for a given combination of substrate to part adhesion, FS2, and part

weight FW :

Releasing Condition: FR < FS2 + FW (2.6)

The releasing condition for both flat tip and round tip pillars is characterized by contact

along the edge, which is relatively smaller than the picking or holding conditions. The

edge contact is achieved either by vertical or shear displacement control of the pillar to

induce deformation at the tip. Additionally, the pull-off speed during releasing is kept

as low as possible to minimize any viscoelastic contributions to the adhesive force (see

Figure 2.11). The silicon microplatelet has a weight that is four orders of magnitude less
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than the smallest measured adhesive force, so the part must have an attractive force, FS2,

to the substrate it is being released to in order for the release to be successful.

In addition to the force inequalities, another consideration in characterizing the perfor-

mance of the micromanipulator is the displacement of released parts in the direction of the

pillar tilt. As the pillar with attached object is compressed into the substrate it slides and

bends, which laterally displaces the part that it is carrying. An analysis of this lateral dis-

placement showed that it was an order of tens of microns when the part was being released

on top of a second part (Figure 2.13e) but on the order of microns or less when deposited on

to a clean glass slide. The lateral displacement must be taken into account when conducting

micromanipulation and assembly tasks precisely.

2.4.2 Modeling the contact-area of a round tip pillar

The importance of the simulation is in helping to explain the mechanisms at work in at-

tachment and detachment, and also as a design tool for implementing the microstructure

array as a gripper. As a design tool, it predicts the preload for which maximum contact

area is achieved as well as the region where the contact area decreases precipitously. The

attachment strength is proportional to the contact area, so the simulation is effective as a

predictor of adhesion behavior.

The initial adhesive behavior of the fiber array for low preloads is analogous to the

contact area behavior of a sphere-plane interface under load as predicted by the Johnson-

Kendall-Roberts (JKR) model [65]. However, as the fiber array preload approaches the

region of instability the behavior deviates more and more dramatically. It may seem ob-

vious that the behavior of the array should deviate from such a simple model, because

the interface is between a plane and a surface composed of microstructures, not between a

hemisphere and plane. The question which arises is why should it match in any regime, and

is addressed by the fact that each individual fiber in the array has a tip similar to a hemi-

sphere contacting the glass slide (Figure 2.1). The eventual deviation at higher preloads

occurs because these individual hemispheres are at the tip of a fiber which bends like a

fixed-free beam under angled load. This bending proves to be important because it even-

tually rotates enough of the tip away from the contact substrate to decohere completely
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(Figure 2.16).

Figure 2.16: These side view video stills of the fiber shows the shape as the fiber displaces due to
the preload. White outlines and highlights have been added to help visually define the shape of the
fiber and contact substrate.

To explain the behavior of the fibers, we hypothesize that the attachment strength is

proportional to the contact area before pulling off the fiber array and that with increasing

preloading the contact area of a single fiber is influenced by two competing factors: the

increasing contact area as predicted by JKR, and the decreasing contact area from rotating

the fiber tip as predicted by beam bending. To test this hypothesis, a model was created that

solves for the effects of these competing factors on the contact area. An analytical solution

exists for the contact area relation to load [65], but the large-deflection analysis of the beam

is solved computationally [175]. Parameters related to the fiber geometry were taken from

SEM, optical micrographs, and surface profiler data. Physical parameters, such as Young

moduli, work of adhesion, etc., were taken from Aksak et al.[118] (see Table 2.1).

The fiber tip was seen from SEM micrographs and profilometry to have a concave

curvature, which was approximated to be spherical and characterized to be of radius, ρ =

43.3 nm (Figure 2.1). One can imagine that the surface of the tip is inscribed within a

concentric and coradial sphere, as seen in figure 2.17. The contact area between a sphere
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Table 2.1: Fiber Parameters

Fiber Type Round Flat
Length 75 µm 95 µm
Height 72 µm 89 µm
Angle of inclination 16◦ 20◦

Diameter Elliptical (35 µm,45 µm) 35 µm
Radius of curvature of tip 380 µm N/A
Young modulus 9.8 MPa 9.8 MPa
Work of adhesion 32 mJ m−2 32 mJ m−2

and a plane has been investigated in detail by many researchers, and several models exist,

but the best for our case is the one described by Johnson, Kendall and Roberts, called

the JKR model of adhesive contact [65]. According to the JKR model, the radius of the

circular contact area of a sphere and a plane, RJKR, depends on the material properties,

surface energies and external loading:

RJKR =

[( ρ
K

)(
Pn + 3πρWf +

√
6πρWfPn + (3πρWf )2

)]1/3
(2.7)

where Pn is the compressive external loading force, Wf is the work of adhesion of the

surfaces, and K is the effective modulus of elasticity as defined above (Equation 2.4).

However, as the fiber is compressed by the external load, it bends and the tip rotates,

as seen in video stills from experiment (fig 2.16). As the fiber deforms, the tip can be

imagined to slip along the inside of the sphere which is defined by the curvature of the tip.

The angle of rotation of the tip, θ, can be found by using an analysis of large deflections of

beams. No explicit analytical form of the solution relating tip end angle and load exists, so

the relationship is found computationally.

Viewed directly head on along the central axis, the cross section of the tip appears as a

circle, but as it rotates, it takes on an elliptical cross section. The actual contact area formed

by the fiber is not of the JKR predicted spherical indentation, but of the intersection between

the spherical indentation circular cross section, which remains at the top of the sphere, and

the cross section of the tip, which slides down the side of the sphere (Figure 2.17). Viewed

from the side, the center of the tip’s cross section can be said to have migrated a distance,
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Figure 2.17: As the load increases from (a) to (d), the actual contact area, highlighted in white, first
increases, (b), then decreases, (c), and finally disappears, (d).
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δx, away from the center of the JKR predicted cross section (Figure 2.18). The tip’s cross

section changes its shape from circular to elliptical as the tip end angle, θ increases, but

approximating this change in shape as a change in radius of a circle simplifies the math.

The radius of the approximated tip cross section is then defined to be, Rtip = R cos θ,

where R is the undeformed tip radius.

θ

θρ

Side View

RJKR Rtipδx

imaginary 
sphere 
outline

�ber 
outline

Figure 2.18: A side view schematic of the geometrical considerations in the model of the contact
process of the round tip pillar. The curvature of the round tip, ρ, defines the size of an imaginary
sphere with which the tip is circumscribed. The contact patch of this imaginary sphere as predicted
by the JKR theory is RJKR. The actual area of the tilted pillar tip (tilt angle is θ) as projected to the
contact plane is Rtip. The lateral displacement of the tip due to loading is δx.
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Viewed from above, one can see that the actual contact area is an asymmetric lens-

like shape at the intersection of two circles, one for the JKR contact area, one for the tip

geometric area. The common chord at the intersection of the circles divides the areas into

two sectors, the JKR sector, SJKR, and the tip sector, Stip. The area sectors are defined as

SJKR =
1

2
R2

JKR(2ε− sin 2ε) (2.8)

Stip =
1

2
R2

tip(2γ − sin 2γ) (2.9)

The angle, γ, is geometrically defined as shown in figure 2.19, and can be found by

using the law of cosines:

γ = arccos

[
R2

JKR − (R2
tip + δ2x)

−2Rtipδx

]
(2.10)

The angle, ε, is also shown in figure 2.19 and is defined through direct trigonometric rela-

tions:

ε = arctan

[
Rtip sin γ

Rtip cos γ − δx

]
(2.11)

Finally, the actual contact area can be written as the combined area of the JKR cross section

and tip sector minus the JKR sector:

Acontact =

(
πR2

JKR +
1

2
R2

tip(2γ − sin 2γ)

)
− 1

2
R2

JKR(2ε− sin 2ε) (2.12)

In figure 2.20 the simulated contact area is compared with the empirical adhesion results

at a single retraction velocity, 30 µm s−1. The simulation results are normalized to the

maximum contact area and the graph axes are adjusted to fit the simulation curve height

to the empirical adhesion height. The model captures the behavior of the fibers closely,

predicting the preload that gives maximum adhesion within 1%, and the center of the region

of instability within 40%.

The simulation confirms our original hypothesis that competing mechanisms influenc-

ing contact area during preloading is an accurate predictor of attachment strength during

pull-off. The understanding of the mechanism of fiber decohesion is critical for controlling
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Figure 2.19: A top view schematic of the geometrical considerations in the model of the contact
process of the round tip pillar. The contact patch of this imaginary sphere as predicted by the JKR
theory isRJKR. The actual area of the pillar tip as projected to the contact plane isRtip. The lateral
displacement of the tip due to loading is δx.
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Figure 2.20: A representative adhesion versus preload curve (30 µm s−1 retraction velocity) is com-
pared to the simulated contact area which is normalized to the maximum contact area



2. Adhesion Control & Micromanipulation 70

fiber array attachment/detachment and improving yield and repeatability in future gripping

and pick-and-place applications.

When comparing the simulated contact area with the empirical adhesion measurements,

the retraction velocity is important to consider because at low velocities the fibers have the

opportunity to bend back into place and re-establish tip contact with the substrate. The

higher the retraction velocity, the more closely the empirical adhesion curves will match

the simulated contact area curves, because instantaneous tensile loading will be directly

proportional to the contact area whereas finite retraction velocities allow for bulk visco-

elasticity to effect the contact area during retraction.

Another important factor to take into account is the side wall attachment of the fibers

to the contact substrate when they are completely bent. For higher retraction velocities,

this side wall attachment gives increasing attachment strength for increasing preloads. As

a possible future work, fabricating fibers with non-adhesive sides would reduce this effect

and possibly improve the ratio of high to low attachment strength observed. This may be

achieved by protecting the tip surfaces and chemically altering the sides with a reactive gas,

or by creating molds with roughened side walls.

2.4.3 Simulation of stress distribution across the surface of the flat tip
pillar

The sharp switching from the pick to release states of the flat tip pillar originates from

the stress distribution on its tip surface. From contact area micrographs, it was observed

that the tip spontaneously peels away starting from the “toe”, the edge furthest from the

base of the pillar, once a critical compressive displacement is applied (Figure 2.6c). A

finite element model, in COMSOL Multiphysics 4.0a, of the pillar system was created

with a prescribed displacement boundary condition at the pillar base and a roller boundary

condition at the pillar tip. The model boundary conditions were consistent with empirically

observed boundary conditions: video reveals that the pillar tip slides along the contact

substrate before peeling. Visualizing the interface pressure along the center line of the

tip contact reveals that the uneven stress distribution actually achieves significant tensile

stress for a region of the tip near the toe edge (Figure 2.21). This result is consistent with
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observation, but runs counter to first order analytical approximation by Aksak et al. [118].
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Figure 2.21: Finite element modeling of the angled flat tip micropillar reveals that the “toe” section
of the tip surface is under tensile stress when the vertical displacement applied at the backing is
compressive. The plotted lines are labeled with vertical displacement values and shaded from light
to dark to represent low to high degrees of compression. The insert shows a schematic of the pillar
under loading conditions with dashed grey lines indicating how cross sectional position is mapped
on the tip.

Modeling and Simulation Results

The experimental and simulation results mirror the findings of other researchers that con-

trolling contact area using mechanical effects is effective in controlling adhesion. Appli-

cations have been demonstrated in an industrial-scale manipulation task [5], wall-climbing

robots [22, 158], and micro-manipulation and fabrication of silicon parts [24, 108].



2. Adhesion Control & Micromanipulation 72

The method of controlling adhesion presented in this work can be easily adapted to a

one degree of freedom manipulator. One added complexity is the requirement of feedback

control, but the sensor information can be fairly coarse, due to the narrow band of insta-

bility seen in figure 2.12 which should be avoided to ensure repeatability. Although force

feedback may be the obvious choice to implement control, it has been shown that visual

tracking of fiber bending is also an effective source of sensor feedback [176].

2.5 Conclusions

In this chapter, we have presented an application of synthetic gecko-inspired angled elas-

tomer micropillars to the task of manipulating and assembling parts ranging in size from

micrometer to centimeter scale. These manipulators can work with only one degree of

freedom actuation for part pick and release due to the pillar mechanical instability during

vertical compression, but two degrees of freedom motion control has also been demon-

strated and improves the pick-and-place performance. In addition to manipulating various

parts and structures of different sizes, the manipulators can be used to assemble silicon

microplatelets of planar geometry in a 2.5D assembly scheme.

Future work will seek to improve the consistency, repeatability and fine control of the

manipulation scheme. Specifically, we intend to utilize rotational stages to help orient parts

and visual tracking to automate the pick and place process. Fabricating smaller pillars has

been a challenge in the community, but doing so would allow for the manipulation of even

smaller parts, or large parts with greater control. We anticipate that all these improve-

ments will not only expand our ability to safely manipulate fragile microparts, but also will

lend insight into the critical contact self-cleaning ability of geckos’ micro/nanohair covered

feet.



Chapter 3
Contact Self-Cleaning of Gecko-Inspired

Adhesives

3.1 Introduction

Geckos have an uncanny ability to attach to and run along smooth walls and ceilings with

nothing more than the pads of their toes. After millennia of interest [34] and over a century

of scientific investigation [2, 177], in the last decade engineers and scientists have suc-

cessfully uncovered the principles of the gecko’s impressive adhesive capabilities [12, 37].

Furthermore, gecko-inspired adhesives synthesized in the lab have been demonstrated to

compare favorably to the gecko’s in attachment strength. However, no synthetic gecko-

adhesive has matched its natural counterpart in one key regard: the ability to resist contam-

ination, or regain adhesion after contamination, through normal use. Furthermore, we lack

an understanding of what the mechanics of self-cleaning are, and which important design

parameters enable self-cleaning in structured adhesives.

After extensive physiological characterization of the micro and nano structures cover-

ing the bottoms of gecko feet, and macro and micro scale experimentation of the gecko’s

attachment capability, certain principles have become codified by the community [6, 28].

The seven functional properties that are characteristic of the gecko adhesive system are:

(1) van der Waals adhesion, (2) high pull-off to preload forces ratio, (3) low detachment

force, (4) anisotropic attachment, (5) anti-self-matting, (6) non-sticky default state, and (7)

73
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self-cleaning. Of these properties, the first six have been achieved in synthetics [5, 9, 125].

The seventh property is the final and most challenging principle to be implemented in syn-

thetics. The difficulty in creating self-cleaning adhesives is in some part due to a lack of

understanding of the gecko adhesive. It seems that though all gecko setae are similarly stiff,

we still do not know how variations in structural morphology might affect the ability of dif-

ferent types of gecko to self-clean [178]. In fact, in might be that the gecko setae represents

an optimal design, not only for adhesiveness, but also for its ability to remain clean [33]. If

we, as a research community, can surmount the challenge of creating self-cleaning, gecko-

inspired adhesives, then we can present it as a mature technology for use in the real world.

Of the hundreds of papers on gecko adhesion and its synthetic facsimiles only a handful

exist that propose mechanisms and present evidence for self-cleaning or contamination-

resistance [10, 11, 14, 130, 179, 180]. Hansen and Autumn first demonstrated that geckos

can recover toe attachment strength even after complete clogging of the gecko’s arrays of

long thin fibers (setae) by 5 µm diameter silica-alumina ceramic spheres [11]. It was shown

that the attachment strength of an isolated array of setae dropped to 40% of the clean ad-

hesion strength after contamination, but rebounded to 70% of the clean adhesion strength

after 8 simulated steps. The self-cleaning of the gecko foot seems to occur through nor-

mal use, as the gecko shears its foot along a surface it regains lost adhesion. To mimic

the natural motion of the gecko, a simulated stepping cycle was used, which consisted of

a series of motions that pressed the setae against a clean glass substrate, then dragged the

setae along the glass before being pulled away and repositioned over a clean patch. As a

point of reference, a clean gecko toe attaches to a substrate with a maximum shear stress

of over 200 kPa. However, a 40 g gecko only needs 20 kPa of attachment strength (10%

of the clean adhesion) to hold up its weight with a single toe with a contact patch 5 mm in

diameter, which is about the size of the tip of pencil eraser. Hansen and Autumn’s semi-

nal study used only one size of contaminating particle and did not show the mechanics of

the cleaning process as the setae where sheared. This leaves a gap in our understanding

of what the important parameters and what the precise mechanisms are for self-cleaning.

Other mechanisms of cleaning natural and synthetic gecko adhesives have also been re-

ported, included cleaning with compressed air [11], by contacting a conventional adhesive

surface [10], through vibration [180], and by rolling droplets of water along the surface
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of the adhesive [78, 152, 181]. Active cleaning methods have been proposed that utilize

vibration, wax casting, and contacting to conventional adhesive tape [10, 180].

Wet self-cleaning exploits the lotus-leaf effect to enable water droplets to pick up

and roll away dirt particles contaminating a hydrophobic surface. Although there is lit-

tle evidence that such a self-cleaning principle is exploited by the gecko, this may be

an easily applied feature for synthetic gecko-adhesives. As such, wet self-cleaning has

been demonstrated for synthetic gecko-adhesives composed of arrays of carbon nanotubes

(CNT) [152, 181] and for arrays of polyurethane microposts with mushroom shaped

tips [78]. Kim et al. showed that rolling droplets of water cleaned the surface of mush-

room tipped posts (in a process called the lotus effect). Kim et al.’s posts have significant

adhesion and friction, but dry contact self-cleaning was not reported [78]. We feel that

dry, contact-based self-cleaning is a more practical principle to apply to synthetic gecko-

adhesives, and we focus entirely on it for our investigation in this work.

Lee and Fearing [130] demonstrated dry, contact-based, self-cleaning of high aspect ra-

tio fibers which have significant friction but limited normal pull-off adhesion. They showed

that arrays of fibers 18 µm in height and 300 nm in diameter would lose all adhesive capa-

bility when contaminated with 6 µm diameter gold spheres, but would then recover 33% of

the clean attachment force after 30 shearing cycles similar to the simulated steps used by

Hansen and Autumn [11]. Lee and Fearing used different size particles for contamination

tests, and showed that there is a sharp delineation between “cleanable” and “uncleanable”

particles. They show that their nanofiber array can recover adhesion after contamination

by particles 3 or 4 µm in diameter, but cannot recover any adhesion when contaminated

with particles 6 or 10 µm in diameter. The clean array of nanofibers showed initial shear

attachment strengths of 8 kPa, less than 4% of the clean shear adhesion of the natural gecko

toe. Although the first work to show contact self-cleaning of synthetic gecko-inspired ad-

hesives, Lee and Fearing used a narrow range of particle sizes, only one size of nanofibers,

and did not demonstrate the microscale processes that lead to self-cleaning.

Gorb et al. [14] presented evidence for contamination resistance of arrays of micropil-

lars with mushroom-shaped tips. They showed that the mushroom tips conformed to small

dirt particles in such a way that the tips of the pillars still make sufficient contact with a sub-

strate to retain a large portion of the clean adhesion. Carbone et al. [80] presented a model



3. Self-Cleaning 76

that suggests that as long as the dirt particle diameter is much smaller than the mushroom

tip diameter, then the particle will not cause a defect to propagate at the contact interface.

This suggests that the mushroom tip will detach as it normally would without the presence

of the particle, which can be considered a form of contamination resistance. However,

these works did not investigate the possibility of recovering adhesive performance through

self-cleaning.

The field of structured adhesives, both natural and synthetic, has come to something of

an inflection point, with a drop in scholarly output on the topic in the last few years [21].

Recent reviews of the field point to the self-cleaning property as a significant feature still

missing in synthetic gecko-inspired adhesives [28, 29]. We propose that in addition to

the significant technical challenges in fabricating robust, long lasting structured adhesives,

we also need to develop scientific knowledge on the principles of self-cleaning that will

make these same adhesives practical in the real world. As a case in point, Kwak et al. [10]

presented a gecko-inspired adhesive as a replacement of traditional acrylic adhesives used

on medical diagnostic electrodes, but in a review of the field, Karp and Langer [113] point

out that such an adhesive must, among other problems, contend with contamination by

shedded skin cells.

To that end, the objective of this work is two-fold: to reveal possible avenues to solving

the challenge of creating self-cleaning synthetic gecko adhesives and to present a possible

solution to the challenge. What is lacking in previous studies of self-cleaning is a system-

atic analysis of how the sizes of dirt particle and adhesive microstructure are related, and

what the precise mechanisms of self-cleaning are. By investigating particles ranging in

size from 1 to 250 µm in diameter, and three sizes of mushroom-tipped micropillars (tip

diameters of 20, 30 and 95 µm), we find that there are two modes of self-cleaning that can

result in adhesion recovery: depositing of particles to a clean substrate, and embedding

the particles into the array of adhesive structures. This is in contrast with previous results

which only consider particles much greater in diameter than the fibers and only propose

self-cleaning by depositing [11, 130] or rolling [179]. The development of self-cleaning in

gecko-inspired adhesives is the critical next step required for the field to produce technolog-

ical solutions such as: extremely strong, reusable medical bandages; power-efficient,robust

climbing robots; and industrial robotic manipulators for tiny parts and large fragile devices.
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Figure 3.1: (a) SEM image of an array of small micropillars with large contaminating particles, and
(b) the same array after dry self-cleaning against a glass substrate, showing that the contaminating
particles embed to the backing layer. (c) Medium pillars contaminated with particles of similar size,
and (d) after partial cleaning. (e) Large micropillars contaminated with much smaller particles have
most of the contamination on the tips, but (f) after self-cleaning, most of the particles are embedded
in between the array.



3. Self-Cleaning 78

3.2 Materials and Methods

The arrays of polyurethane microfibers with mushroom tips were fabricated through pre-

viously demonstrated lithographic and dipping processes combined with soft mold cast-

ing [118]. The polyurethane used (ST-1060, BJB Enterprises) had a stiffness of 2.9 MPa

and has a work of adhesion to glass of 93 mJ m−2 [77]. The adhesives were manually cut

into square patches 500x500 µm2 in area and mounted onto a clear acrylic peg which acted

as the handling substrate.

Figure 3.2: Micrographs of the three sizes of micropillars used in this study, with dimensions in
microns. (a) The small micropillars are 25 µm in height and 20 µm in diameter at the tip, (b) the
medium pillars are 50 µm in height and 30 µm in diameter at the tip, and (c) the large micropillars
are 105 µm in height and 95 µm in diameter at the tip. The scale bar in the lower right is the
applicable to all three micrographs.

The testing protocol was carried out on a custom 3-axis motion control system built

onto an inverted view microscope (Eclipse LE200, Nikon) and was controlled through cus-

tom software. The linear stages (MFA-CC and VP-25XA, Newport) were used to move the

adhesive sample in the Z-axis to bring it in contact with a glass slide (Microscope Slide,

Pearl) which was moved in the Y-axis to apply shear to the adhesive sample. The normal

forces applied to the adhesive sample were captured with a load cell and signal amplifier

(GSO-50 and TMO-2, Transducer Techniques) and transmitted to our test computer via a

data acquisition board (NI PCI-6259, National Instruments). Since the contact was between

two flat surfaces, alignment was achieved through two rotational stages (GON40-U, New-

port). The visual information was captured via a color digital video camera (DFW-X710,

Sony) connected to our test computer. The contact and cleaning processes were captured
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via custom software that recorded and time-stamped the force data and video feed for later

analysis.

Figure 3.3: (a) Computer model rendering of the adhesion testing system built on an inverted view
microscope. (b) Close up of the model rendering and the (c) photograph of the actual testing system
show labeled components: A - goniometer, B - manual x and y axes stages, C - motorized y axis
stage, D - load cell, E - light source, F - adhesive sample, G - glass contact substrate, H - microscope
objective.

As our idealized contaminant, glass spheres of dimensions ranging in sizes from 1 to

250 µm were used (soda lime glass microspheres, Cospheric). To create a disperse mono-

layer as our simulated dirty surface, we took one of three approaches depending on the size

of the microspheres. For microspheres over 150 µm in diameter, it was sufficient to man-

ually pour them on to a glass slide, where they settled through gravity into a monolayer.
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Microspheres with diameters between 15 and 150 µm were poured onto a glass slide then

pressed with a glass cover slip to create a monolayer. For microspheres smaller than 15 µm

in diameter, we first dusted an aluminum surface with the spheres, then built up an electro-

static charge on a glass slide by rubbing it with a piece of lens paper, then brought the glass

slide near the dusted surface until the spheres were attracted to the glass slide. The contam-

ination of the array of microfibers was performed by pressing the array into the monolayer

of microspheres at 25 µm s−1 until a preload of 50 mN (200 kPa) was achieved, then the

array was retracted at the same speed. The small micropillars were preloaded with 10 mN

(40 kPa) Adhesion measurements were conducted by a simple compressive loading then

unloading motion perpendicular to the contacted substrate. The compressive load achieved

before pulling the adhesive sample away, called the preload, was 50 mN (200 kPa) for all

adhesive samples except the array of small pillars, which we loaded to 10 mN (40 kPa).

The preload was chosen to maximize the attachment force and was determined by ana-

lyzing the adhesion for preloads ranging from 1 mN (4 kPa) to 145 mN (580 kPa). The

cleaning cycle was conducted as follows: to begin the pillar array was pressed to a glass

slide at a rate of 25 µm s−1 until a preload of 100 mN (400 kPa) was achieved, then the

glass slide was displaced laterally for 750 µm at 50 µm s−1, and finally the fiber array was

retracted at 25 µm s−1. After each cleaning cycle, an adhesion measurement was taken as a

means of tracking how much adhesion was recovered at each step. The direction of lateral

displacement was alternated for each cleaning cycle to prevent any plastic deformation of

the backing layer. The glass slide was cleaned as needed by wiping with a dry piece of lens

paper then with compressed air.

3.3 Results and Discussion

Through experimentation we observed two modes of self-cleaning: deposition, where par-

ticles were transferred to the clean contact substrate, and absorption, where particles were

embedded into the array of micropillars itself. Figure 3.6 represents these two modes of

self-cleaning and which we label as depositing and for embedding. What is important about

these observations is that the act of recovering the initial clean adhesion strength is not nec-

essarily related to actually removing dirt from the adhesive. The principle of self-cleaning
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Figure 3.4: (a) Contamination is carried out by moving the array of micropillars into contact with
a monolayer of microspheres dispersed on a glass slide. (b) The cleaning process is conducted by
pressing the array into a clean patch of a glass slide, then displacing the glass substrate laterally
before retracting the array. (c) Adhesion measurements are taken after each cleaning cycle against
a clean patch of a glass slide.
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Figure 3.5: (a) Microscopy images of the array of large micropillars contaminated with small
spheres (Regime 3) during a cleaning cycle shows how the pillars collapse and the backing layer
deforms due to the applied shear displacement. The final image is a background-subtracted micro-
graph of the contact substrate showing the residue of deposited microspheres. (b) Images of the
same size of micropillars contaminated with much larger particles (Regime 1) shows that the sphere
makes contact with the glass substrate and is rolled off of the tips of the micropillars, leaving a clean
array in the final inset image. The arrows indicate the direction of motion of the contact substrate.
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is in recovering adhesion, and this is possible by just removing contamination from the tips

of the adhesive structures. Where the contaminant particles end up is not a critical part of

self-cleaning.

Figure 3.6: Schematic of the two modes of self-cleaning observed: (a) embedding particles into the
array of adhesive structures, and (b) deposition of the particles to a clean substrate.

We investigated the importance of the ratio of micropillar radius to particle radius by

dividing the relationships into three regimes. In regime 1 (R1) the contaminant particles

were much greater in size than the radius of the tip (at least 2 times the tip radius), in regime

2 (R2) the particles were anywhere from half to twice the tip radius, and in regime 3 (R3),

the particles were less than half the tip radius (Figure 3.7a). When particles diameters

where much larger than the micropillar tip diameters (regime 1), self-cleaning performance
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Figure 3.7: Self-cleaning is dependent on the relative sizes of contaminating particles and the char-
acteristic length of the micropillars. The characteristic length can be (a) the tip radius, (b) the length
of the fiber, or (c) the spacing between fibers. In the case of tip-radius dependency, we defined three
regimes for when: (R1) the particle radius is greater than twice the tip radius, (R2) about the same
size, and (R2) less than half the tip radius.
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was maximized, closely followed by regime 2, and finally by regime 3 (Figure 3.8). Regime

1 self-cleaning saturated to 62.9% (S.D. = 34.7%, N = 220) of clean adhesion performance

within 5 cleaning cycles, regime 2 self-cleaning saturated to about 56.2% (S.D. = 34.1%,

N = 83) in 12 cleaning cycles, and regime 3 self-cleaning saturated to 34.1% (S.D. = 9.8%,

N = 176) by 15 cleaning cycles. These results compare favorably with both the gecko

and synthetic adhesive self-cleaning performance. Isolated arrays of gecko setae dropped

to 40% of initial clean adhesion immediately after contamination, and after 4 cleaning

cycles had recovered adhesion back up to 70% of the clean adhesion [11]. Synthetic gecko-

adhesives have been demonstrated to adhere with 33% of their clean adhesion strength after

20 to 25 steps [130]. We hypothesize that since the long thin fibers presented by Lee and

Fearing make adhesive contact primarily in the manner of a line contact along the length

of the fibers, that they will be dominated by a different set of critical parameters than

geckos and tip-contact based synthetic adhesives. However, in the case of geckos and the

synthetic adhesives presented in this work, the critical parameters for self-cleaning are the

tip radius, the pillar height, and the spacing between pillars. It is important to note that these

same parameters, in addition to material properties, have been presented in other works in

schemes meant to optimize adhesive performance [105, 182].

We also investigated the ability of the arrays of micropillars to remain adhesive imme-

diately after contamination, a property we call contamination-resistance. The first adhesion

measurement after contamination, and before cleaning cycles began, revealed that regime

1 exhibits almost no contamination resistance. In regimes 2 and 3, adhesion remained at

20% and 17% respectively immediately post-contamination. There are two reasons for

contamination-resistance for regimes where the particles are close to or smaller than the

size of the micropillars. First, although the particles form a monolayer, they are stochasti-

cally distributed and some micropillars avoid contamination all together and hence retain

clean tip surfaces. Second, when particles are much smaller than the micropillar, the mush-

room tip can conform around the particle during subsequent adhesion measurements, a

finding confirmed in previous works [14, 80].

In addition to self-cleaning, it is important for the adhesive to attach strongly in both

its clean and cleaned states. As an example we analyzed the difference in adhesive perfor-

mance of the large and small micropillars in regimes 1 (Figure 3.10). The large micropillars
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Figure 3.8: This graph of cleaning coefficient versus cleaning cycles shows that different regimes of
particle and micropillar sizes results in different rates of adhesion recovery and different saturation
points.
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Figure 3.9: This graph represents the contamination resistance within the different size regimes as
determined by particle diameter and micropillar height. In regimes 1 and 2 and in the case of the flat,
unstructured surface, the particle diameter is large enough to physically block the micropillars’ tips
from contacting the glass slide. In regime 3, the mushroom shaped tip of the micropillar conforms
around the dirt particle to make contact with the glass slide, thus exhibiting some adhesion despite
being contaminated.
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had higher clean adhesion, demonstrating up to 35 mN of attachment force (140 kPa attach-

ment pressure for the 500x500 µm2 patch). This is comparable to the gecko’s foot, but it

is important to note that our observations are for a small patch, and as patch sizes increase

the observed performance tends to decrease [96].
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Figure 3.10: Measured adhesion force versus cleaning cycle of the large micropillars (95 µm tip
diameter) contaminated with large particles (150-250 µm diameter), which is in regime 1. The
micropillar arrays (N = 3) eventually recovered 100% of the initial clean adhesion (SD = 14%).

These results revealed that there are multiple regimes of self-cleaning behavior, and

that regime 1 has the least contamination-resistance but has the fastest adhesion recovery

rate and highest cleaning coefficient. This finding implies that in designing a self-cleaning

synthetic gecko-adhesive that it is important to make your micropillars as small as possible.

Our microscopic observations indicate that in regime 1, almost no particles are deposited

directly to the contact substrate, and instead the particles are rolled along the array until

they reach the edge of the adhesive patch (Figure 3.5). The observation of the mechanics
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of removing contaminants combined with the implication that regime 1 is the best case

scenario for self-cleaning leads to the conclusion that a large adhesive patch of very small

micropillars would require a large lateral displacement along a contact substrate to remove

the particles (Figure 3.11a). If instead the large adhesive patch is split up into a series

of smaller patches, with intervening spaces to act as particle traps, then the required dis-

placement amount shrinks to the lateral size of a given small patch (Figure 3.11b). This

finding supports utilizing hierarchy for designing synthetic gecko-adhesives. The top level

of hierarchy, with the smallest structures, acts in regime 1 and easily rolls away larger parti-

cles, and the bottom level of hierarchy shortens the required sheared distance for cleaning.

Additionally, the bottom level of the hierarchy effectively brings a second characteristic

length into play, the height of the large base-level structures acts in regime 3 and embeds

the particles.

Figure 3.11: (a) An adhesive patch of micropillars will require a lateral dragging distance greater
than or equal to the patch length. (b) If the adhesive patch is split into a hierarchical array of
micropillars on top of macropillars, then the required dragging distance will be reduced to an amount
greater than the length of an individual macropillars.
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Figure 3.12: The cleaning process can recover adhesion of the array of pillars, but it can also cause
degradation as evidenced in these video stills. The loading and shearing of the array eventually
causes the destruction of the pillars in the lower left hand section of the patch.
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3.4 Conclusions

In this work we have presented evidence for the dry, contact-based self-cleaning of syn-

thetic gecko-inspired adhesives. We observed significant adhesive recovery, far greater

than any previously reported synthetic in both absolute attachment strength and relative

recovery of pre-contamination attachment strength. Interestingly, our observations show

that synthetic gecko-adhesives can recover the lost clean adhesion at a similar rate to that

of the gecko. Although previous studies have proposed models that focus on how con-

taminating particles are deposited from the adhesive structures to the contact substrate, we

propose that a more common mode of self-cleaning for synthetic gecko-adhesives made of

relatively soft elastomers is embedding the particle within the array.

Furthermore, we observed that the relative size of contaminants to the characteristic

size of micropillars within the array of synthetic gecko-adhesive strongly determined how

and to what degree the adhesive could self-clean. In this study the pillar tip diameter,

length, and spacing dimensions were coupled, but we hypothesize that a complete study

of these dimensions will reveal which dimension defines the critical regime for when the

particle is at a similar scale. In fact, looking at Hansen and Autumn’s results with the actual

gecko adhesive foot, we suspect that they were actually operating near this critical regime

where some contaminating particles were only a little bigger than the spatulae (see Figure

4 in [11]).

Several other works have proposed that hierarchy may be a critical factor in creating a

synthetic gecko-inspired adhesive that could reliably adhere to rough surfaces, but accord-

ing to our observations, we propose that hierarchy is also critical for self-cleaning adhe-

sives. Taking inspiration from gecko’s adhesive structures, many synthetics are now made

with anisotropic structures which lead to the control of adhesion, which may also prove to

improve self-cleaning performance. We have used glass microspheres in this study as our

simulated dirt particle, but it to increase the practicality of self-cleaning synthetic gecko

adhesives, future works include the characterization of real-world contaminants and how

the regimes of self-cleaning proposed in this work apply to them.



Chapter 4
Conclusions

After over a decade of considerable research interest and discovery, gecko-inspired ad-

hesives are transitioning from a novel engineering material with great potential to a new

technology with demonstrated capabilities. Even so, much of our understanding of the

behavior and principles of gecko-adhesion is only academic and limited to contacting the

adhesives to smooth, rigid surfaces. For applications to emerge more readily and actual

devices to enter the public sphere, we must first understand the significance of several

until-now-neglected principles. Specifically, viscoelasticity, soft-material contact, rough

surface contact, and self-cleaning, are all topics which are only now emerging as dominant

paradigms in gecko-inspired adhesion.

The role of viscoelasticity in the attachment strength of unstructured conventional adhe-

sives is well known [173], and has been exploited for transfer printing micro-objects [108],

but its role in gecko-inspired adhesives is less clear. The review of soft contact theory

by Shull [107] indicates that viscoelasticity might be considered in two ways: the surface

viscoelasticity that depends on molecular interactions at the interface, and the bulk visco-

elasticity that dissipates energy internally over time. Initial experimental studies of the ef-

fect of viscoelasticity on gecko-inspired adhesion by Castellanos et al. [110] and Vajpayee

et al. [109] confirm that increased strain rates result in increased pull-off forces. What is

unclear is how viscoelastic contact theory can be applied to the array of structures, which

is critical if we are to optimally design the next generation of gecko-inspired adhesives.

As has been demonstrated by the recent studies on medical device applications for

92
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structured adhesives, what is still unclear is the role of highly-compliant substrates on ad-

hesion. Kwak et al. [10] demonstrated a gecko-inspired adhesive on skin, but did not sug-

gest design rules that others should follow in order to improve performance. On the other

hand, Mahdavi et al. [111] showed counterintuitive results for gecko-inspired adhesion on

organ tissue. We have a decade of research that tells us how gecko adhesives should be-

have against rigid substrates, but almost nothing that indicate whether these principles are

similar for soft substrates.

Of the seven principles of gecko-adhesion outlined by Autumn [6], the one that is the

least well understood and nearly non-existent in the literature is the principle of self-

cleaning: how contaminating particles on the adhesive structures are removed through

normal use. Current models of self-cleaning [11, 179] and current experimental re-

sults [14, 130] fail to explain the precise mechanisms for contaminant removal and also

fail to identify important parameters for designing self-cleaning adhesives. Gecko-inspired

adhesives are more attractive than traditional glue-based adhesives because they can ex-

hibit high attachment strength and still be removed, but for them to be reusable, the gecko-

inspired adhesives must reject contaminants to retain their strong adhesive properties.

Finally, we would like to predict what is possible for gecko-inspired adhesives if all

of the current short-comings are resolved. Looking at the applications already under de-

velopment, it seems clear that medical adhesives have great potential, and climbing robots

might achieve significant utility. In consumer products, gecko-adhesives might replace

Velcro®and zippers in clothing, and might become a critical component in sports gear, e.g.

soccer goal keeper and rock climber gloves. The reversible, controllable nature of the adhe-

sion, as well as its incredible bonding strength, suggests more impressive possibilities for

gecko-inspired adhesives: perhaps it might act as a fastener for temporary or emergency

construction. We might yet see rolls of single-sided and double-sided gecko-tape sold in

hardware stores, not as a replacement for duct tape, but as a replacement for nails, staples

and screws.
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4.1 Contributions of this Work

4.1.1 Adhesion Control of Angled Micropillars

Preload Control

Arrays of angled micropillars with round tips have been shown to exhibit changes in

strength of attachment with increasing magnitude of compressive load (preload) before

pull-off. This behavior lends itself to manipulation or gripping tasks where only one de-

gree of freedom is needed to change the attachment condition. This variation in adhesion

was shown to be controllable through loading and the speed of pull-off and was used to pick

and place a glass slide (0.40 g) from and to a glass slide. The arrays of micropillars exhib-

ited a factor of 30 reduction in attachment strength through higher preloads. In contrast,

varying only speed for a given preload changed adhesion by a factor of 5. Additionally,

a predictive model to find the preloads necessary to achieve this maximum controllability

was developed.

Vertical and Shear Displacement Control

We showed that the attachment strength of single angled micropillars with either flat or

round tips could be modulated purely through displacement based control. The advantage

of displacement control over load control was that it was not overly sensitive to input pa-

rameters causing mechanical instability in the pillar. We found that the picking-to-releasing

attachment force ratio of a round tip pillar under vertical displacement control was about

25 to 1. The flat tip pillar under shear displacement control exhibited a picking-to-releasing

attachment force ratio of about 40 to 1.

4.1.2 Model of contact area of the fiber under compressive load

The model is based upon the static analyses of contact area of a sphere indenting a half-

space as predicted by the JKR theory [65] and the large deflection of a fixed-free cantilever

beam loaded at its free end [175]. It was hypothesized that the contact area when the

fibers were compressively loaded would correlate with the adhesive force measured when
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they were pulled into tensile loading; the empirical adhesion results did, in fact, compare

favorably with the theoretical contact area results, and appeared to be directly proportional.

4.1.3 Demonstration of Micropillar Arrays and Single Structures as
Novel Manipulators

Developed new fabrication techniques to create arrays of structured adhesives

Glass cutting and microlaser milling were utilized to create millimeter sized glass sub-

strates with a controlled number of angled fibers for use in adhesion experiments and pick

and place demonstrations. Previous work on angled fiber fabrication has been modified

and refined to produce better and more repeatable arrays of structures, and work on these

fabrication techniques are ongoing.

Micromanipulation

Single angled flat tip micropillars were demonstrated as micromanipulators. We showed

that we could reliably pick-and-place a 100 µm on-a-side square silicon platelet, and even

that we could place one platelet on top of another. This demonstration highlights gecko-

inspired adhesives as having a potential impact in industries requiring the handling of frag-

ile devices of almost any material properties and in almost any environmental conditions,

including under water and in vacuum.

Macromanipulation

We used arrays of angled, round tip micropillars as macromanipulators. We showed that

thanks to the relatively large holding forces, we could pick up and hold a centimeter-scale

glass cover slip before releasing it to a glass receiving substrate. This demonstration shows

that the micropillars are a scalable manipulator, and can be applied to a wide range of part

sizes.
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4.1.4 Contamination-Resistant and Self-Cleaning Adhesives

Gecko adhesion is characterized by seven properties [6, 28, 30]: attachment dominated

by van der Waals forces, high ratio of adhesion to preload forces, low detachment forces,

anisotropic attachment, non-sticky default state, non-self-sticking, and dry, contact-based,

self-cleaning. If we, as a research community, can master these principles, then we can

present synthetic gecko adhesives as a mature technology for use in the real world. The

first six properties are well represented in the hundreds of papers on gecko adhesion and its

synthetic facsimiles, but only a handful of reports exist that propose mechanisms or present

evidence for self cleaning [11, 78, 130, 179, 180].

Demonstrated Significant Adhesion Recovery Through Dry, Contact Self-Cleaning

We were the first to demonstrate that arrays of mushroom tipped micropillars made from

relatively soft polyurethane could exhibit self-cleaning through dry contact processes. We

found that certain geometries of micropillars could recover almost 90% of their initial,

clean adhesion strength through repeated-shearing based cleaning. This is especially sig-

nificant because the gecko itself has been shown to recover a similar amount of its initial

clean adhesion.

Formulated Regimes of Self-Cleaning

In addition to demonstrating significant adhesion recovery, we formulated regimes of self

cleaning that are characterized by the proportional dimensions of the micropillars and the

contaminating particles. This is contribution will help the gecko-adhesive community be-

cause it presents a road map of interesting research that must be investigated to understand

self-cleaning as a universal principle for all gecko-inspired adhesives.
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4.2 Future Directions: Unsolved Challenges and Possible

Applications

4.2.1 Translate Micromanipulation Research Results into Industrial
Applications

Future work will seek to improve the consistency, repeatability and fine control of the

manipulation scheme. Specifically, we intend to utilize rotational stages to help orient parts

and visual tracking to automate the pick and place process. Fabricating smaller pillars has

been a challenge in the community, but doing so would allow for the manipulation of even

smaller parts, or large parts with greater control. We anticipate that all these improvements

will expand our ability to safely manipulate fragile microparts.

Characterize Viscoelastic Behavior in the Micromanipulator

For the micropillar to be useful as an industrial micromanipulator, it must be able to perform

its tasks quickly and repeatably. High rates of strain causes the elastomeric polyurethane to

exhibit viscoelastic properties which can limit its utility, but could also be used to enhance

the ratio of pick-to-release attachment forces. One viscoelastic behavior that has been ob-

served was how large deformations of the angled micropillar could require long relaxation

times before it regained its original shape, as can be seen in Figure 4.1. Characterizing

these viscoelastic properties will allow us to implement higher speed manipulation tasks in

a controlled and repeatable manner.

4.2.2 Improved Characterization and Modeling of Contact Process of
the Micromanipulators

We have characterized the contact process of the flat tip and round tip micropillars through

interferometric metrology, and suggested an explanation for how the contact process

evolves through finite element modeling. However, the models were approximations that

assumed no friction and a pinned interface between the tip of the pillar and the contact

substrate. Additionally, the high minimum speed (1 µm s−1) of the motorized stage used
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for the contact process, and the low frame rate (15 fps) of the video capture camera, limited

our ability to characterize the degree to which bulk viscoelasticity could effect the contact

evolution during loading and unloading. Future work on this topic will involve using a high

speed camera and a piezostack actuator to characterize the contact process more rigorously,

and will be compared with improved models that implement a friction boundary condition,

viscoelastic material properties, and a Dugdale-Barenblatt cohesive zone model to simulate

the contact and crack propagation processes.

Figure 4.1: The graph shows how the tip of the fiber relaxes back to its initial configuration after
being bent due to large compressive loads. The micrographs show the position of the tip at the
beginning (A) and end (B) of the graph’s data range.

Anisotropy in Micromanipulators

In our investigations of pick-and-place micromanipulation we found that the contact area

of the tip and edge were critical parameters in enabling control of attachment strength. We

showed that changing the tip shape had an effect on how the angled pillar behaved during
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the contact process, and we hypothesize that modifying the side-walls will likewise affect

the contact process. A possibility is to locally modify the stiffness of the pillar through

electron beam irradiation or through metal deposition. Both approaches have been demon-

strated on adhesive microstructures before [145, 183], and might be a useful in applications

for micromanipulation presented here. The main goal is to create a non-adhesive edge and

sidewall such that when the pillar loses tip contact and makes edge or side contact the

attachment force will be minimized.

Micromanipulation of Non-Rectilinear Parts in Parallel

Until now, our and our colleagues’ demonstrations of micromanipulation using adhesive

microstructures have been for parts which are highly regular and rectilinear. Although

most microfabricated and fragile devices are very regular shapes, they are not all flat, rect-

angular parts. We hypothesize that the principles of rough-surface adaptability observed

in structured adhesives can be applied to conforming to and picking up irregular parts,

but that it will require structures much smaller than the part and/or hierarchical structur-

ing. Additionally, we hypothesize that addressing the difficulty of picking-and-placing

irregular parts will lead to improved capabilities in handling many parts in a parallel (see

Figure 4.2). These improvements will advance the demonstrated micromanipulation capa-

bilities of gecko-inspired adhesives and be a significant step towards industrial application.

Automation of Micromanipulation

Perhaps the single biggest improvement that can be made to prepare the manipulator for

industrial applications is to integrate it in an automated system. This requires implemen-

tation of visual tracking of the micromanipulator and parts as well as intelligent failure

recovery behaviors, such as clearing away damaged parts and accurately identifying when

parts are not well attached to the manipulator. Additional degrees of freedom actuation is

also important to automatically align the micropillar to the part, since we have observed

that even slight misalignment can significantly degrade attachment strength (Figure 4.3).
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Figure 4.2: This schematic represents the contact process for the next generation micromanipulation
system. (a) Arrays of micropillars smaller in size than the pars to be manipulated are brought into
contact before (b) the tips are engaged by shearing the adhesive array and (c) the parts are lifted off
the donor substrate. Either (d1) shear displacement control or (d2) vertical displacement control is
used to (e) release the parts to the receiver substrate.

4.2.3 Developing and Improving Self-Cleaning Adhesives

Characterize Principles of Self Cleaning as it Relates to All Regimes of Structured
Adhesives

We have proposed regimes of self-cleaning that were observed in micropillars with mush-

room tips made of polyurethane with an elastic modulus of 10 MPa, but structured adhe-

sives cover a range of sizes down to the nanoscale and up to the milliscale, and elastic

moduli that are up to two orders of magnitude stiffer or softer. We hypothesize that our

proposed regimes of self-cleaning are valid for all regimes of structured adhesives and

that different sizes and stiffnesses of structures will clean in different ways. Furthermore,

we hypothesize that hierarchical adhesive structures actually combine multiple regimes of

self cleaning. What is unclear is at what critical length scales or stiffnesses the regimes

transition; further characterization of these parameters will lead to developing universal

principles that will help in the design of the next generation of gecko-inspired adhesives.
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Figure 4.3: This graph shows how with even slight misalignment, the adhesion force of an array of
micropillars can be reduced almost by half.
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Self-Cleaning of Real-World Contaminants

Our analysis, and, in fact, almost all studies found in the literature, of self-cleaning was

conducted in a laboratory environment with relatively well characterized spherical parti-

cles. For self-cleaning adhesives to have a real impact, they need to be robust to all forms

of contaminants. This requires a characterization of the most common contaminants and

extensive investigation into what principles of self-cleaning are universal for all sizes and

structures of dirt particles.

Implement Hierarchical Structures to Act as Particle Traps

The feet of geckos have flaps of tissue covered in tissue and separated from each other.

These flaps, called lamellae (Figure 4.4), may effectively act as particle traps, allowing

some particles to roll off of the adhesive setae and aid in adhesion recovery. Implementing

a similar structure in synthetic adhesives may be a key to creating self-cleaning adhesives.

Figure 4.4: An SEM image of the lamellae adorning the toes of geckos. The results from our self-
cleaning research suggest that lamellar structures may actually aid in adhesion recovery by leaving
a space for dirt particles to be trapped, away from the tips of the adhesive structures. (Copyright
Cliff Mathisen, FEI Company)
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Non-dimensional Parametric Analysis of Self-Cleaning

The results of our self-cleaning study revealed a relationship between particle size and the

ability of a structured adhesive to recover adhesion. We also found that the mechanics

by which an array of structures self-cleans was also related to the particle size. However,

for these results to have a broad impact on the field of gecko-adhesives, there must be a

parametric relationship in place that informs optimized design. Therefore we propose that

future work on this topic should focus on a systematic analysis of what geometric param-

eters, such as pillar height, length, and pitch, act as the critical dimensions that determine

the mechanics and degree to which self-cleaning occurs. A non-dimensional analysis com-

bining geometric parameters, with loading conditions and material properties may reveal

a universal relationship that is equally relevant to the gecko’s foot as it is to the synthetic

gecko-adhesives made in the lab.

Adhesion Recovery in Climbing Robots

We have presented Waalbot II, a climbing robot that used gecko-inspired adhesives for at-

tachment (see Appendix A). Waalbot was capable of obtaining information about its climb-

ing state in the world; it could sense the adhesion force on each of the 6 feet by using only

two force sensors mounted on the tails. Using the force sensor data, the robot was able to

regain adhesion lost due to fiber degradation, which it did by rocking its feet to be able to

continue climbing safely for a prolonged period of time. We hypothesize that the adhesion

recovery ws due to the structured adhesives conforming to dirt and roughness to allow clean

patches of micropillars to contact the climbing substrate. Our recent discoveries about the

regimes of self-cleaning in structured adhesives suggests that shearing the adhesive pads

will help recover adhesion and actively clean the adhesive feet. Implementing these princi-

ples to climbing robots will greatly improve their utility and practicality because they will

be able to climb dirty surfaces without loss of adhesion.



Appendix A
Waalbot II: Adhesion recovery and

improved performance of a climbing robot

using fibrillar adhesives

This appendix represents a work published in collaboration with Dr. Michael P. Murphy

(lead author), Casey Kute (co-author) and Prof. Metin Sitti (primary investigator) [22].

Waalbot was first introduced in Murphy et al. using flat elastomers to climb [155]. The

improvements presented in this appendix build upon the basic design principles of the robot

to increase capabilities. One major change was the utilization of dry fibrillar gecko-inspired

adhesives onto Waalbot II, initially introduced in [156], with further testing and perfor-

mance improvements presented in this paper. Since the adhesion ability of the footpads

increased due to the fibrillar adhesives’ performance, a better passive peeling mechanism

was implemented to increase reliability and mobility. Waalbot II is now equipped with

force sensors that allow for monitoring of the adhesive’s performance. Waalbot II, while

climbing, autonomously performs actions to regain adhesion and prevent detachment from

climbing surfaces, an action inspired by animals that use sensory feedback to determine

adhesion strength and prevent detachment by changing their climbing gaits when adhesion

is low [184]. Length scale optimization was investigated to compare the factor of safety

of this climbing robot using synthetic structural adhesives to the biological analogs found

in nature [26]. The chassis design of the robot was also changed to include two tails for

104
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stability and surface adaptation while climbing. Waalbot II also follows paths as generated

by a motion planner to traverse complex 3D environments. The chasis design is outside the

scope of this appendix, but may be found in the original work [22].

A.1 Introduction

Animal mobility far exceeds the capabilities of mobile robots in terms of agility, robustness,

and terrain flexibility. Climbing animals are able to navigate complex, unstructured 3D

environments while scaling a wide variety of surfaces, such as trees, rocks, and in the case

of geckos and many insects, smooth vertical and inverted surfaces. The gecko is able to

climb on smooth surfaces by exploiting surface contact forces, such as van der Waal’s

forces, between small hair-like structures on the feet and the climbing surface [37]. In

addition to demonstrating advanced agility capabilities, geckos have been shown to utilize

their tails as an emergency fifth leg to prevent falling after sensing a loss of adhesion [184].

Similar emergency behaviors are common among climbing animals, as the consequences

of a fall can be deadly. Recent advances in robot mobility have resulted in climbing robots

that scale vertical surfaces using various attachment mechanisms. A similar sensing and

recovery mechanism to that of the animal tail for climbing robots could prove useful to

prevent unwanted detachment from climbing surfaces.

In addition to climbing robots using attachment mechanisms such as grasping with

claws, spines, or grippers [185, 186, 187, 188, 189], magnetic clamping [190, 191, 192,

193, 194], pressure differential by suction cups [195, 196, 197, 198, 199, 200, 201] or scan-

ning suction cups [202, 203, 204, 205, 206, 207], and electroadhesion [208, 209], synthetic

dry fibrillar adhesives are starting to be utilized as attachment mechanisms for biologically-

inspired climbing robots. Recent advances in synthetic fibrillar adhesive technology, such

as high adhesion from carbon nanotube arrays [123, 125, 151, 152, 168], geometric fiber

tip control [70, 76, 77, 88], directional adhesion [5, 9, 141, 144], and hierarchical struc-

tures [4, 5], have increased the performance of these materials to the point where they can

be successfully implemented as attachment mechanisms in climbing robots. Daltorio et

al. outfitted their Mini Whegs robot with mushroom tipped synthetic dry adhesives and

demonstrated climbing smooth vertical glass [189]. Similarly, Kim et al. constructed a
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Figure A.1: a) Photograph of Waalbot with components labeled and an inset of an SEM image of
the gecko-inspired dry fibrillar adhesives used in the footpads; b) Details on naming conventions
used for the leg and its components.

legged robot resembling a gecko, which uses directional polymer adhesives to climb up

smooth surfaces [137]. Then, Santos et al. showed climbing on slightly underhanging

surfaces [210] and Asbeck et al. showed successful climbing on rough surfaces using hier-

archical adhesives [158].

Waalbot II (Fig. A.1), named after the van der Waal’s forces it dominantly uses to

climb, is a small-scale agile wall climbing robot able to climb on planar surfaces of any

orientation using flat adhesive elastomers or fibrillar adhesives for attachment [155]. The

essential morphology and force transfer concept of the Waalbot design was first seen in a

robot created by iRobot, named Mecho-Gecko, which had a tri-leg design that was used

to passively peel pressure sensitive adhesives off the climbing surface while climbing [39].

However, Waalbot II uses flat or fibrillar elastomer adhesives as the attachment material

and has steering and surface transitioning abilities. Using two actuated legs with rotary

motion and two passive revolute joints at each foot, this robot can climb and steer in any

orientation. The passive revolute ankle joints allow the feet to pivot forward to remain in

contact with the surface during stepping (Fig. A.2). An elastic is used to passively return

the foot to the forward position after each step. Due to the minimalistic and compact

design, a high degree of miniaturization is possible. The robot carries on-board power,
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computing, and wireless communication, which allows for semi-autonomous operation.

The average power consumption for Waalbot is 2.4 W for an average vertical climbing

speed of ∼5 cm/s (0.5 body lengths/s). Waalbot climbs using synthetic fibrillar adhesives

or a pressure sensitive dry adhesive elastomer and is also able to make sharp turns [155]

and plane transitions, including floor-to-wall, wall-to-wall, and wall-to-ceiling transitions.

The robot is also intended to climb real-world surfaces that are not completely smooth,

such as a painted wall or wood surface.

A B

C

a)          b)               c)

d)           e)

A B

C
A

B
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Figure A.2: CAD diagrams showing the stepping process for a forward step (leg rotating clockwise
in image). a) Two feet (A and B) are in contact; b) Foot A is peeled from the surface; c) Foot A
releases from the surface and the robot begins to move forward; d) Foot C rotates closer to make
contact with the surface; e) Foot C achieves contact with the surface and now foot B is the rear foot.
The process continually repeats for forward movement.

Waalbot was first introduced in Murphy et al. using flat elastomers to climb [155]. The

improvements presented in this work build upon the basic design principles of the robot to

increase capabilities. One major change was the utilization of dry fibrillar gecko-inspired

adhesives onto Waalbot II, initially introduced in [156], with further testing and perfor-

mance improvements presented in this paper. Since the adhesion ability of the footpads

increased due to the fibrillar adhesives’ performance, a better passive peeling mechanism

was implemented to increase reliability and mobility. Waalbot II is now equipped with

force sensors that allow for monitoring of the adhesive’s performance. Waalbot II, while

climbing, autonomously performs actions to regain adhesion and prevent detachment from

climbing surfaces, an action inspired by animals that use sensory feedback to determine

adhesion strength and prevent detachment by changing their climbing gaits when adhesion
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is low [184]. The chassis design of the robot was also changed to include two tails for

stability and surface adaptation while climbing. Waalbot II also follows paths as generated

by a motion planner to traverse complex 3D environments.

Length scale optimization is explored in section A.2. Waalbot II’s ability to regain

adhesion lost while climbing due to fiber degradation is discussed in section A.3. Imple-

mentation details and specifications for a motion planner to aid in the exploratory climbing

abilities of Waalbot II are also discussed in section A.3. Finally, conclusions and future

directions are reported in section A.4.

Figure A.3: Still image frames from a video of the robot climbing from the floor (a) to the wall
(b,c,d), transferring to the rear wall (e,f), and then transferring to the ceiling (g,h) of an acrylic cube.
The robot path is illustrated in (a) with an overlay. A weight is hung in the top corner for reference
to show that the direction of gravity is down.

A.2 Length Scale Optimization

The same physical laws govern the behaviors of animals and robots of vastly varying sizes,

but different forces tend to dominate at different scales. In climbing robots and animals the

two most important parameters are the total adhesive area and mass, and these parameters

scale differently. Given constant geometric proportions, as a climbing robot’s length scale

increases monotonically, its foot area increases as the square of the length and its mass
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Figure A.4: a) Plot showing force data from the two tail force sensors while the robot climbs on a
smooth, vertical surface; b) the robot starts out with sufficient adhesion to maintain attachment; c)
On the second step, the right side loses adhesion and detaches from the wall. The robot continues
moving sideways, stepping with both feet, but only the left side has sufficient adhesion and the right
side continues to slip.

increases as the cube of the length. This carries a very strong implication: a climbing robot

that is doubled in size will have four times as much adhesion but eight times as much mass

and hence its adhesion to weight ratio will have been halved. In this section we develop

an optimization model to help determine the appropriate size scale for a given payload

requirement.

In developing the optimization analysis certain constants and relationships were as-

sumed. First, the robot’s geometric proportions stay constant as its size varies (isometric

scaling). Additionally, a constant small mass of 10 g, for all robots, was included as the

weight of the electronics and sensors. Another constraint was applied to the maximum

available adhesion by limiting the adhesion to the amount that could be pulled off by ser-

vos in the weight class related to the length scale.

The objective function of the optimization was the theoretical factor of safety of the

climbing robot’s adhesion, and the independent variable was the length of the robot, which

was defined as the distance between the servo axle and the tip of the tail. The theoretical

factor of safety is the proportion of available adhesion to the mass of the robot, meaning

that a theoretical factor of safety of one represents a marginal design and less than one
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Figure A.5: Simulated length scale effect on a climbing robot’s theoretical factor of safety. With
increasing payload masses, the optimum size of a Waalbot increases. The shaded region along the
bottom is where the theoretical factor of safety is below 1. The dots represent the calculated factor
of safety for various types of pad-bearing lizards as adapted from [26].

represents a robot that cannot climb. The primary purpose of climbing robots is to carry

out some task, which requires carrying additional equipment, such as cameras, surfaces

inspection sensors, and wireless communications hardware, so the optimization plots the

theoretical factor of safety in relation to the length scale for varying payloads (Fig. A.5).

The theoretical factor of safety values emerging from the optimization are artificially large

because the analysis assumes ideal contact and no dynamic forces.

The optimization suggests that a larger robot will be able to carry more payload but

with a smaller theoretical factor of safety, and in fact this has been observed with two

different scales of Waalbot prototypes. The larger version, Waalbot II (Fig. A.1), with a

length is 95.6 mm, can climb vertically and carry up to 100 g payloads, but has difficulty

robustly climbing on ceilings. The smaller version (Fig. A.6), with a length of 56.1 mm,

is able to climb and transition easily at all surface orientations, but requires power and

electronics to be off-board and also has the problem of twisting off from the wall due to the
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single tail design. Video snapshots of the small prototype climbing inside an acrylic cube

in Fig. A.6 illustrate the prototype consecutively climbing down a wall (a), transitioning

from the wall to the floor (b), crawling across the floor (c), performing a floor-to-wall

transition (d), climbing a vertical wall (e), transitioning from wall-to-wall (f), steering on a

wall (g), transitioning from the wall to the ceiling (h), performing inverted steering (i), and

successfully climbing while inverted (j). These agility demonstrations indicated that both

scales have good performance and can achieve the performance objectives outlined in the

introduction. To increase the performance of the smaller scaled robot, the two tail design

should be implemented to mitigate any synchronization problems.

Figure A.6: Small-scale Waalbot climbing inside an acrylic cube with 30 cm sides demonstrating:
a) climbing down a wall; b) transitioning from a wall to the floor; c) crawling across the floor; d)
floor-to-wall transition; e) vertical wall climbing; f) wall-to-wall transition; g) steering on a wall; h)
wall-to-ceiling transition; i) inverted steering; j) inverted climbing.

A.3 Advancements for Semi-Autonomous Control

In order to move towards the development of an autonomous climbing robot, certain issues

facing the current Waalbot II design were addressed. By using dry fibrillar adhesives and

passive peeling, Waalbot II can climb on a variety of surfaces. However, different sur-

face conditions and the degradation of the adhesive forces can lead to catastrophic failure.

To address these limitations, Waalbot II exploits the force transfer design, by means of a

rocking maneuver, to regain adhesion when a loss of adhesion is detected. Additionally,

Waalbot II has kinematic constraints, such as its inability to step backwards and side step,

that require foresight in climbing so that it does not get stuck. To help Waalbot II navigate
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its environment safely, a motion planner that takes into consideration the robot’s unique

kinematic constraints was implemented.

A.3.1 Adhesion Recovery

One way to to increase the robustness of Waalbot II’s climbing ability is to introduce ad-

hesion sensing and recovery, which will allow the robot to regain adhesion lost due to

a misstep, or contaminated fibers. Animals that are skilled at climbing smooth vertical

surfaces are capable of sensing how well they are adhered to the surface. For example,

if the gecko senses loss in adhesion in the front feet, it will use its tail to counteract the

pitchback moment and regain adhesion [184]. Our goal was not to mimic the actions of

the animals, but to utilize the principles behind their robust climbing abilities. Therefore,

adhesion sensing was implemented on Waalbot using force sensors on each tail, which di-

rectly measures the adhesive force of the corresponding foot through the quasi-static force

transfer equations presented in [155].

A control scheme was implemented such that when the force of either foot dropped

below a certain threshold value the system began an adhesion recovery motion. From

experimental results, it is shown that the adhesion recovery is effective and leads to a more

robust climbing system. The recovery system takes the tail force as the input and compares

it to an empirically-defined threshold force, which can be obtained by running experiments

on the desired climbing surface. If the tail force is lower than the safety threshold, the

system initiates a rocking maneuver, which will be presented in detail. After the recovery,

the robot continues to climb normally until the tail force drops below the threshold again

when the rocking maneuver is again initiated.

Adhesion Sensor Selection

Adding force sensing to the footpads of the robot would be a challenging task due difficul-

ties of adding instrumentation to the six feet which are subject to continuous rotation of the

leg mechanisms. Instead, a force sensor at the end of each of the robot’s tails was added.

Only two sensors are required to capture the adhesion information about the force transfer

of all of the feet, and the tails are more easily instrumented due to their proximity to the
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Figure A.7: Free body diagram showing the forces present during a forward step on a surface at
angle ψ where the front foot is pressed against the surface and the rear foot is being peeled. FRX

and FFX are the rear and front forces, respectively, in the X direction. FRN and FFN are the rear
and front forces, respectively, in the normal ,Y , direction. FT is the tail force, whileW is the weight
of the robot acting on the center of gravity.

electronics and their static configuration. These sensors are able to capture the same force

information as footpad sensors would because the tail is used as a support to help detach

the feet during stepping. During the force transfer from the rear feet to the front feet, the

force on the tails are directly proportional to the pull-off force of the detaching foot [155].

If the adhesion force is as strong, or stronger than the gravity force, the adhesion can be

measured at any surface orientation, since the robot always uses the tail to transfer forces

while taking a step. The relationship can be obtained by solving for the tail force as a func-

tion of other known parameters, such as robot weight and geometry, using Fig. A.7 and

assuming negligible tail friction as

FFY =
FT [L+ dstep

2
] +Wcos(Ψ)[dstep

2
− Lxcg] +Wsin(Ψ)[−2Lycg]

dstep
(A.1)

where FFY is the normal force on the front food, FT is the tail force, dstep is the distance

between the ankles of two feet,W is the robot weight, Ψ is the climbing surface angle, Lxcg

and Lycg are the distances from the center of gravity, where the weight acts, to the center

of the servo horn and the climbing surface, respectively. To have a high safety factor, the
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gravity component of the tail force is minimized by having the robot body close to the wall,

which means a small Lycg. This equation is only accurate for climbing up or down a surface

at any orientation. If the robot climbs sideways, the equation would need to be modified to

reflect the imbalance in the distribution of the weight between the tails.

Piezoresistive force sensors (0.2” Interlink FSR) were chosen, due to their small mass

and size, and ease of integration. These sensors were added to the electronics in a voltage

divider configuration. The resistor value was selected to optimize the range of the output

voltage from the sensor over the force range that the robot is able to produce at the tail

(0–4 N ), determined using the value of the maximum torque output from the servo and

the moment arm between the servo and the tip of the tail. Tests were then run using a

load cell and a motorized stage with applied force values from 0–4 N and the sensor was

characterized for linearity, repeatability, and drift. Although the response was nonlinear,

the sensor had acceptable repeatability, and negligible drift.

Adhesion Level Sensing and Recovery

The tail force sensors were integrated into Waalbot II, and software was written to record

and report the maximum tail force sensed during each step. The maximum tail force occurs

right at pull off from the surface, however, this is a difficult event to catch as it is rapid.

To increase the chances of capturing the most accurate reading, the force sensors are con-

tinuously polled, at the limit of the microprocessor and program code, and the maximum

of the set of readings is taken as the maximum tail force. An instrumented Waalbot II was

tested with magnetic footpads on a metal surface to investigate the reliability of the adhe-

sion sensing. The adhesion from the magnetic feet was observed to remain constant over

many robot steps, indicating that the force sensors functioned as intended.

To regain adhesion, Waalbot II brings two feet on the side where adhesion was lost

into contact with the surface, and then commands the motors forward and backward at a

constant torque value without allowing either foot to completely detach. We propose that

pressing back and forth between the attached feet, using the same force to press down on

the feet each time, engages increasingly more fibers as they are able to avoid dirt particles

and thus a higher effective contact area is gained, which increases the adhesion (Fig. A.8).

The rocking motion applies normal forces to preload the front and rear feet without
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Surface

a) b)

Surface

Figure A.8: Possible mechanism of adhesion increase during rocking motion: a) Illustration show-
ing a piece of dirt that inhibits surrounding fibers from engaging with the surface; b) More fibers
can engage with the surface when repeatedly loaded and unloaded during rocking maneuvers.

letting the other foot detach from the surface by alternating the direction of the motor and

only allowing a small rotation of the leg. To test the hypothesis that rocking at a constant

torque setting, will increase the adhesion, an experiment was run. The robot, with fibrillar

adhesive footpads, was placed on a surface with a 10 lb load cell (MLP-10; Transducer

Techniques Inc.) under each foot on one side (Fig. A.9). The other side of the robot and

both tails were supported by a stationary surface. The voltage readings from both of the

load cells, which represent the force on the front and rear foots separately, were recorded

through a data acquisition board (NI PCI-6259; National Instruments). The robot then

performed the rocking maneuver and the forces were recorded. As seen in Fig. A.10, the

adhesive force increases with an increase in the number of rocking motions.

Load Cell Load Cell
Support Surface

Acrylic Acrylic

Figure A.9: Illustration showing the setup to examine the effect of a rocking motion using constant
preload.

To test the adhesion threshold value in situ, the robot was commanded to climb verti-

cally on an acrylic surface that had surface imperfections, and forces were recorded until

the robot fell from the surface. The adhesion values recorded before the robot detached

from the surface were taken as the safety threshold for the adhesion and was empirically
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set to be 0.325 N. The threshold value is dependent and needs to be updated if the environ-

mental conditions change, which includes continued degradation of the fibers. Increasing

the life-time of the adhesive and using more accurate force sensors would decrease the

sensitivity of the threshold value.
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Figure A.10: Experimental results showing the increase in adhesion when the number of rocking
maneuvers is increased, when rocking using a constant preload.

The recovery motion ceases once 5 rocking cycles have been completed, which exper-

iments show a sufficient adhesion recovery to continue climbing (Fig. A.10). As seen in

Fig. A.11, the adhesion recovery action begins once the force sensor value drops below

the threshold, 0.325 N. After the adhesion recovery event, the robot regains the adhesion

during the subsequent steps (Fig. A.11).

A.3.2 Motion Planning

There is significant interest in utilizing climbing robots for inspection and surveillance

applications. In motivating the design of a planning algorithm, we considered Waalbot

II’s use in a man-made environment with the benefit of external hardware for environment

modeling and robot localization. Our implementation assumes the use of VICON motion

capture cameras for modeling and localization tasks as presented by Halaas et al. [211] and
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Figure A.11: Plot showing the force on the feet over many steps as well as the increase in adhesion
due to regain adhesion events. When the force on the tail sensor drops below 0.325 N, the adhesion
regain event is triggered and the adhesion then increased on the subsequent step.

Saad et al. [212]. The critical aspect of the system is that it generates a tessellated 3D model

of the environment and robot pose and location which are then fed into our algorithm.

Our planner begins by decomposing this 3D environment into locally flat 2D regions. We

implement a hierarchical algorithm to find a multi-region solution trajectory across the

connected locally flat regions. This implementation was developed independently, but is

similar to the approach taken by Morisset et al. and Bretl et al. [213, 214].

The upper level planner generates a graph of valid configurations along the bound-

aries between regions, or more conveniently, waypoints. Then, using Euclidean distance

heuristics and A* search on the graph, the upper level planner chooses the lowest cost tra-

jectories between waypoints. The trajectories across a single 2D region are then updated

by the lower level planner, which functions as a primitive planner, wherein a separate A*

algorithm is used to search a discrete state space. The state space is expanded by gener-

ating new states of all possible motion primitives from the lowest cost state in the priority

queue at each iteration. The upper level planner updates the trajectory costs in its graph

according to the lower level planner’s actual costs and continues its search, only running

the more computationally intensive lower level planner as needed. When the upper level
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planner has completed its search and found the optimal path it creates a composite trajec-

tory from the multiple lower level planner trajectories, each across a single locally flat 2D

region (Fig. A.12). A video showing a solution trajectory being followed by Waalbot II

can be seen in Extension 2. The motion planning is conducted off-board and the motion

commands are sent to the robot wirelessly from a controller computer.
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Figure A.12: Overview of the 2-level motion planner: a) Waypoints are generated along transition-
able plane intersections and connected; b) Trajectories are generated to plan a path between the
waypoints. The relative orientations of the wall, floor, and ceiling is arbitrary.

A.4 Conclusion

The final wireless robot prototype demonstrates high agility by performing difficult ma-

neuvers, such as steering with a small turning radius, and transitioning between surfaces of

different orientations, including floor-to-wall, wall-to-wall, and wall-to-ceiling transitions,

while climbing with dry fibrillar adhesives. Climbing and steering on inverted smooth sur-

faces, and climbing and steering on non-smooth surfaces, such as wood, have been demon-

strated. The new design also exhibited the robot’s ability to carry a payload that is more

than the bodyweight of the robot. To the authors’ knowledge, no other dry adhesives based

climbing robot can perform sharp turns, plane transitions, inverted climbing, and climb on

non-smooth surfaces.
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In this paper, we showed and validated improvements to Waalbot’s mechanical design.

With the inclusion of fiber footpads, the passive peeling feet were necessary, and able to

lower power consumption, increase climbing speed, and robot dependability. The new

tail design, which included two tails and a passive pin joint, prevented unwanted cross-

body movements and can be applied to other climbing robots to increase their reliability.

Through an analysis of the scaling equations governing the robot design, an understanding

of the robot length and its subsequent ability to carry a payload of a certain mass with a

theoretical factor of safety was also explored. The results were then validated by building

and testing two different sized Waalbots.

The robot is now capable of obtaining information about its climbing state in the world.

The robot is capable of sensing the adhesion force on each of the 6 feet by using only two

force sensors, which are mounted on the tails. From the force sensor data, the robot is

then able to regain adhesion lost due to fiber degradation by rocking to be able to continue

climbing safely for a prolonged period of time. A two-level motion planner was developed

and implemented such that transitions between locally flat regions were identified using

the upper level planner and the specific robot trajectory was planned using an A* search.

Results show that the robot’s trajectories closely match the planned trajectories.

One of the major disadvantages of this robot design is that there is very little redun-

dancy with respect to adhesion failure. To maximize the agility of the robot, increasing its

speed and decreasing the turning radius, redundant attachment points were left out of the

design. Much of the time, there are only two feet attached to the surface. As the adhesives

gather dust and other contaminants, their performance degrades quickly. Therefore, these

adhesives are currently not suitable for dirty outdoor environments, walking across indoor

floors, or for long term tasks. Furthermore, the possibility of adhesion failure during a

plane transition when improper foot placement occurs is a dangerous flaw for a climbing

robot, but could be mitigated by adding additional passive degrees of freedom in the foot.

Future work includes further miniaturization of the robot for improved performance. As

the required on-board electronics, such as wireless communications, sensing, and control

become available in smaller packages, the robot should be easily scalable, at least to the

small-scale (15 g) size of the prototype from section A.2. Other improvements include the

ability to walk on dirty ground without contaminating the fiber footpads. Potentially, the
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robot could flip itself over simply by running the legs in reverse to walk on the back-sides

of its ankles. This improvement would also enable the robot to self-right in the case of

a fall where it lands on its back. Further improvements in fiber adhesives would include

addressing degradation issues to allow for more reliable adhesion and adding directional

adhesion to allow the robot to be even more power efficient in the removal of the feet from

the climbing surface. The tail and body design can be further improved to allow to robot to

traverse external transitions and thus increase the environmental space in which the robot

can operate.



Appendix B
Interfacial Contact Patch Visualization

through Interferometric Microscopy

This appendix covers the theory and implementation of utilizing interference microscopy

to visualize the area of contact of an interface.

The basic principle is that light reflecting from surfaces separated by a thin film of lower

index of refraction medium will interfere constructively and destructively depending on the

thin film thickness (Figure B.1). Since the Newton’s rings are related to the separation dis-

tance of the contacting surfaces, it is possible to count the number of rings starting from

the center of the dark contact patch, and calculate the gap [215]. By utilizing monochro-

matic green light, the wavelength of the light is fixed and the separation distance can be

calculated as

δ = n

(
1

2
λ

)
(B.1)

where n is the ring number (with the central dark region being counted as the 0th ring),

and λ being the wavelength of the light (546 nm in our contact visualization experiments).

Although this equation is essentially discretized, it is possible to directly measure the in-

tensity of the light and create a continuous function of the gap thickness in terms of light

intensity and lateral distance from the center of contact.

121
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Figure B.1: (a) Schematic of the classic experiment to visualize Newton’s rings [27]. (b) The
fringes are a result of interference of the reflected light from the planar and hemispherical surfaces.
The center of the dark band where destructive interference is seen indicates a region where the two
surfaces are separated by an integer number of wavelengths, nλ. The center of the light bands where
constructive interference is seen occurs where the surfaces are separated by some number of half
wavelengths, n

2λ.



Appendix C
Details of SU-8 Photolithography

This appendix covers the details of SU-8 photolithography in Carnegie Mellon’s Nanofab

clean room.

Fresh SU-8 2050 for structural layer, all procedures are for 100 µm thickness unless

otherwise noted.

Wafer Clean

1. Clean new wafer in wafer rinser/cleaner

2. Dry with N2 before pouring SU-8

HMDS Spin

1. 500rpm for 30s

2. 2000 rpm for 30s

SU-8 Spin

1. Hold the wafer in your non-dominant hand and the open bottle of SU-8 in your

dominant hand

2. Pour the SU-8 in a puddle near the edge,

(a) tip the bottle up and rotate slowly so as to minimize streamers of SU-8

123



C. SU-8 Photolithography 124

(b) “cut” the last string of SU-8 against the edge of the wafer as you pull the bottle

away

3. Slowly rotate the wafer so as to flow the SU-8, covering as much of the wafer as

possible without spilling over the edges.

4. Center wafer on the spinner chuck using the appropriate tool (wafer-holder-chuck-

centerer)

5. Spin according to the recipe

(a) 500 rpm for 10 s (should see that everything is covered)

(b) 1600 rpm for 30 s to achieve 100 µm thickness (SU-8 2050).

i. Hold two q-tips vertically, near the spinning wafer to draw away SU-8 as

it is flung off of the wafer

6. Do NOT clean the backside with a q-tip dipped in acetone while still on spinner

7. Remove from spinner and continue cleaning any large bits of SU-8, keeping the wafer

as level as possible.

Soft Bake

1. Ensure the hotplate is level

2. Place the wafer on the metal plate on top of the ceramic hot plate at room temperature

3. Ramp to 70◦C (takes about 10 minutes)

(a) Hold for 5 minutes

4. Ramp to 80◦C

(a) Hold for 5 minutes (start timer when temperature hits 78◦C)

5. Ramp to 90◦C

(a) Hold for 5 minutes (start timer when temperature hits 88◦C)
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6. Ramp to 100◦C

(a) Hold for 17 minutes (start timer when temperature hits 98◦C)

7. Turn off hotplate let the wafer cool to room temperature with hotplate heat mass

Exposing

1. Set up the MA-56 exposer (SEE the operating guide below) with the contact mask

and cooled down wafer

2. Expose for 90s for 100 µm thickness

(a) The MA-56 is currently set to 7.2 mW/cm2

(b) Microchem recommends 150-215 mJ/cm2 for 45-80 µm which comes to 20-29 s

Post Exposure Bake

1. Follow the same procedure as soft bake (above)

Developing

1. Fill a Teflon petri dish with SU-8 developer

(a) Place the cooled down wafer into the dish

2. Allow to develop for up to 20 minutes (for 100 µm thickness)

(a) Agitate lightly by rocking the dish or by lifting the wafer repeatedly with a

tweezer

3. Remove wafer from dish and rinse with IPA for 10 seconds

(a) If white film forms, it’s underdeveloped

i. Rinse the IPA residue with DI water

ii. Dry with N2 or air VERY carefully so as not to damage the structure

(b) Place the wafer back into the developer, return to step 2a
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4. Dry with compressed N2

Hard Bake

1. No hard bake

MA-56 UV Exposer Operating Guide

1. Turn on the three gas valves behind the machine

2. Turn on the lamp power switch

(a) Press and hold the Lamp button until the lamp light comes on

(b) Start timing yourself (the time the lamp is on is what you will put in the log

book)

(c) Wait for the display to show the lamp has warmed up to 275 W

3. Turn on the Main Power switch

(a) Press the Red “W/O Cass Load” button

(b) Press the White “Center Position” button

4. Load the mask into the mask holder

(a) NOTE: it should be BOTTOM side UP

(b) Press the White “Mask Load” button

(c) Make sure the mask is securely vacuumed to the holder

5. Load your wafer onto the wafer holder

6. Turn mask holder right-side up and slide onto the rail above the wafer

(a) Press the white “Maskh. Clamp” button

7. Press the white “Start Alligner” button

(a) If you hear a beeping, then there is most likely SU-8 on the back of your wafer

which is preventing the machine from making a strong vacuum seal.
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(b) SOLUTION: get a clean junk wafer and place it on the wafer holder, laying

your wafer on top of it. This will prevent you from doing very fine alignments.

8. Set your exposure timer

(a) NOTE: that the rightmost digit is 1/10 of a second.

(b) For example: 0300 is actually a 30 second expose.

9. Press the White “Align” button on the joystick, the “Expose” light should come on

(a) Press the Red “Expose” button on the joystick.

(b) Turn away so as to not expose your retina to UV light

10. After youre done exposing:

(a) Press the white “Maskh. Clamp” button and remove holder from rails

(b) Press the white “Mask Load” button and remove the mask from the holder

(c) Remove your wafer(s) from the wafer holder

(d) Turn off Main Power switch

(e) Turn off Lamp Power switch

(f) Make note of how long the lamp was on, and write it in the log book

(g) Turn off the PV and CA lines behind the machine

(h) Leave the Nitrogen line on for 10 more minutes before turning it off in order to

cool off the lamp

(i) If you leave the Nitrogen on you will be charged an extra fee
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[20] A. del Campo, C. Greiner, I. Álvarez, and E. Arzt, “Patterned Surfaces with Pillars
with Controlled 3D Tip Geometry Mimicking Bioattachment Devices,” Advanced
Materials, vol. 19, pp. 1973–1977, Aug. 2007. (document), 1.4, 1.4.1

[21] M. K. Kwak, C. Pang, H.-E. Jeong, H.-N. Kim, H. Yoon, H.-S. Jung, and K.-Y.
Suh, “Towards the Next Level of Bioinspired Dry Adhesives: New Designs and
Applications,” Advanced Functional Materials, vol. 21, pp. 3606–3616, Sept. 2011.
(document), 1.1, 1.4.3, 1.4.3, 1.5, 3.1

[22] M. P. Murphy, C. Kute, Y. Menguc, and M. Sitti, “Waalbot II: Adhesion Recov-
ery and Improved Performance of a Climbing Robot using Fibrillar Adhesives,” The
International Journal of Robotics Research, vol. 30, pp. 118–133, Oct. 2010. (doc-
ument), 1.5.1, 1.6, 2.4.3, A

[23] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, V. Mattoli, and M. R. Cutkosky,
“Whole body adhesion: hierarchical, directional and distributed control of adhesive
forces for a climbing robot,” in Proceedings 2007 IEEE International Conference on
Robotics and Automation, pp. 1268–1273, IEEE, Apr. 2007. (document), 1.6

[24] S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L.
Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstruc-
tured elastomeric surfaces with reversible adhesion and examples of their use in
deterministic assembly by transfer printing,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 107, pp. 17095–100, Oct. 2010.
(document), 1.3.2, 1.7, 1.5.1, 2.1, 2.2.3, 2.4.3

[25] Y. Menguc, S. Y. Yang, S. Kim, J. A. Rogers, and M. Sitti, “Gecko-Inspired Con-
trollable Adhesive Structures Applied to Micromanipulation,” Advanced Functional
Materials, 2011. (document), 1.4.1, 1.7, 1.5.1

[26] D. J. Irschick, C. C. Austin, K. Petren, R. N. Fisher, J. B. Losos, and O. Ellers,
“A comparative analysis of clinging ability among pad-bearing lizards,” Biological
Jounral of the Linnean Society, vol. 59, pp. 21–35, Sept. 1996. (document), 1.2,
1.2.1, 1.3.2, A, A.5

[27] I. Newton, Opticks. 4 ed., 1730. (document), B.1



References 131

[28] A. Jagota and C.-Y. Hui, “Adhesion, friction, and compliance of bio-mimetic and
bio-inspired structured interfaces,” Materials Science and Engineering: R: Reports,
Oct. 2011. 1.1, 1.1, 1.2.3, 3.1, 4.1.4

[29] L. F. Boesel, C. Greiner, E. Arzt, and A. del Campo, “Gecko-inspired surfaces: a
path to strong and reversible dry adhesives,” Advanced Materials, vol. 22, pp. 2125–
37, May 2010. 1.1, 3.1

[30] D. Sameoto and C. Menon, “Recent advances in the fabrication and adhesion testing
of biomimetic dry adhesives,” Smart Materials and Structures, vol. 19, p. 103001,
Oct. 2010. 1.1, 4.1.4

[31] M. Kamperman, E. Kroner, A. del Campo, R. M. McMeeking, and E. Arzt, “Func-
tional Adhesive Surfaces with ”Gecko” Effect: The Concept of Contact Splitting,”
Advanced Engineering Materials, vol. 12, pp. 335–348, May 2010. 1.1

[32] A. Majumder, A. Sharma, and A. Ghatak, “Bio-Inspired Adhesion and Adhesives:
Controlling Adhesion by Micronano Structuring of Soft Surfaces in Microfluids
and Microfabrication,” in Microfluidics and Microfabrication (S. Chakraborty, ed.),
ch. 7, pp. 283–307, Springer, 2010. 1.1

[33] K. Autumn, “How Gecko Toes Stick,” American Scientist, vol. 94, no. 2, p. 124,
2006. 1.1, 1.2.3, 3.1

[34] Aristotle, “Book IX,” in Historia Animalium, Oxford: Clarendon, 1918. 1.2, 3.1

[35] O. Cartier, “Studien uber den feineren bau der epidermis bei den geckotiden.,” Ver-
handlungen der Wurzburger Phys.-med. Gesellschaft, vol. 1, pp. 239–258, 1872. 1.2

[36] U. Hiller, “Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Rep-
tilien,” Zeitschrift fur Morphologie der Tiere, vol. 62, no. 4, pp. 307–362, 1968. 1.2

[37] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fear-
ing, and R. J. Full, “Adhesive force of a single gecko foot-hair,” Nature, vol. 405,
pp. 681–5, June 2000. 1.2, 1.2.1, 1.3.1, 1.4.1, 2.1, 3.1, A.1

[38] K. Autumn and A. M. Peattie, “Mechanisms of adhesion in geckos.,” Integrative
and Comparative Biology, vol. 42, pp. 1081–90, Dec. 2002. 1.2, 1.2.1, 1.2.3, 1.3.1,
1.4.1, 2.1

[39] K. Autumn, S. Hsieh, D. Dudek, J. Chen, C. Chitaphan, and R. Full, “Dynamics
of geckos running vertically,” Journal of Experimental Biology, vol. 209, no. 2,
pp. 260–272, 2006. 1.2, 1.2.3, 2.1, A.1



References 132

[40] N. E. Stork, “Experimental Analysis of Adhesion of Chrysolina Polita (Chrysomeli-
dae: Coleoptera) on a Variety of Surfaces,” Journal of Experimental Biology, vol. 88,
pp. 91–108, 1980. 1.2.1

[41] G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S. N. Gorb, and E. Arzt,
“Evidence for capillarity contributions to gecko adhesion from single spatula
nanomechanical measurements.,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 102, pp. 16293–6, Nov. 2005. 1.2.1, 1.3.2

[42] G. Huber, S. N. Gorb, R. Spolenak, and E. Arzt, “Resolving the nanoscale adhesion
of individual gecko spatulae by atomic force microscopy.,” Biology letters, vol. 1,
pp. 2–4, Mar. 2005. 1.2.1

[43] W. Sun, P. Neuzil, T. S. Kustandi, S. Oh, and V. D. Samper, “The nature of the gecko
lizard adhesive force.,” Biophysical journal, vol. 89, no. 2, pp. L14–7, 2005. 1.2.1

[44] P. H. Niewiarowski, S. Lopez, L. Ge, E. Hagan, and A. Dhinojwala, “Sticky gecko
feet: the role of temperature and humidity.,” PloS ONE, vol. 3, p. e2192, Jan. 2008.
1.2.1

[45] J. B. Puthoff, M. S. Prowse, M. Wilkinson, and K. Autumn, “Changes in materials
properties explain the effects of humidity on gecko adhesion,” Journal of Experi-
mental Biology, vol. 213, pp. 3699–704, 2010. 1.2.1

[46] M. S. Prowse, M. Wilkinson, J. B. Puthoff, G. Mayer, and K. Autumn, “Effects of
humidity on the mechanical properties of gecko setae.,” Acta Biomaterialia, vol. 7,
pp. 733–8, Feb. 2011. 1.2.1

[47] P. Y. Hsu, L. Ge, X. Li, A. Y. Stark, C. Wesdemiotis, P. H. Niewiarowski, and
A. Dhinojwala, “Direct evidence of phospholipids in gecko footprints and spatula-
substrate contact interface detected using surface-sensitive spectroscopy.,” Journal
of the Royal Society, Interface, Aug. 2011. 1.2.1

[48] O. Breidbach, “Die Tarsen von Insekten: ein Schoenes Beispiel von Konvergenz,”
Mikrokosmos, vol. 69, pp. 200–201, 1980. 1.2.2

[49] E. E. Williams and J. A. Peterson, “Convergent and alternative designs in the digital
adhesive pads of scincid lizards.,” Science, vol. 215, pp. 1509–11, Mar. 1982. 1.2.2

[50] H. Schliemann, “Haftorgane - Beispiele für gleichsinnige Anpassungen in der Evo-
lution der Tiere,” Funkt. Biol. Med, vol. 2, pp. 169–177, 1983. 1.2.2

[51] T. Eisner and D. J. Aneshansley, “Defense by foot adhesion in a beetle (Hemis-
phaerota cyanea),” Proceedings of the National Academy of Sciences, vol. 97,
pp. 6568–6573, June 2000. 1.2.2, 2.1



References 133

[52] O. Betz, “Performance and adaptive value of tarsal morphology in rove beetles of
the genus Stenus (Coleoptera, Staphylinidae),” Journal of Experimental Biology,
vol. 205, pp. 1097–1113, 2002. 1.2.2

[53] S. Niederegger, “Tarsal movements in flies during leg attachment and detachment on
a smooth substrate,” Journal of Insect Physiology, vol. 49, pp. 611–620, June 2003.
1.2.2

[54] J. D. Gillett and V. B. Wigglesworth, “The Climbing Organ of an Insect, Rhodnius
prolixus (Hemiptera; Reduviidae),” Proceedings of the Royal Society B: Biological
Sciences, vol. 111, pp. 364–376, Sept. 1932. 1.2.2

[55] W. Federle, W. Baumgartner, and B. Hölldobler, “Biomechanics of ant adhesive
pads: frictional forces are rate- and temperature-dependent,” Journal of Experimen-
tal Biology, vol. 207, pp. 67–74, 2004. 1.2.2

[56] R. G. Beutel and S. N. Gorb, “Ultrastructure of attachment specializations of
hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phy-
logeny,” Journal of Zoological Systematics and Evolutionary Research, vol. 39,
pp. 177–207, Dec. 2001. 1.2.2

[57] W. J. P. Barnes, “Functional Morphology and Design Constraints of Smooth Adhe-
sive Pads,” MRS Bulletin, vol. 32, pp. 479–485, Jan. 2007. 1.2.2

[58] M. Scherge and S. N. Gorb, Biological Micro- and Nanotribology: Natures Solu-
tions. Berlin: Springer, 2001. 1.2.3

[59] H. Gao, X. Wang, H. Yao, S. Gorb, and E. Arzt, “Mechanics of hierarchical adhesion
structures of geckos,” Mechanics of Materials, vol. 37, pp. 275–285, Mar. 2005.
1.2.3, 1.3.1

[60] R. H. C. Bonser, “The Young’s modulus of feather keratin,” Journal of Experimental
Biology, vol. 198, pp. 1029–1033, 1995. 1.2.3

[61] R. H. C. Bonser, “The Young’s modulus of ostrich claw keratin,” Journal of Materi-
als Science Letters, vol. 19, no. 12, pp. 1039–1040, 2000. 1.2.3

[62] B. N. J. Persson, “On the mechanism of adhesion in biological systems,” Journal of
Chemical Physics, vol. 118, pp. 7614–7621, 2003. 1.2.3, 1.3.2

[63] C. A. Dahlquist, Treatise on Adhesion and Adhesives, vol. 2. New York City:
Dekker, 1969. 1.2.3

[64] H. Hertz, Miscellaneous papers. London: Macmillan, 1896. 1.3.1



References 134

[65] K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface Energy and the Contact
of Elastic Solids,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 324, pp. 301–313, Sept. 1971. 1.3.1, 2.4.1, 2.4.2, 2.4.2,
2.4.2, 4.1.2

[66] T. Tang, C.-Y. Hui, and N. J. Glassmaker, “Can a fibrillar interface be stronger and
tougher than a non-fibrillar one?,” Journal of the Royal Society, Interface, vol. 2,
pp. 505–16, Dec. 2005. 1.3.1, 1.3.2, 1.3.2

[67] A. Peressadko and S. Gorb, “When less is more: experimental evidence for tenacity
enhancement by division of contact area,” The Journal of Adhesion, vol. 80, pp. 247–
261, Apr. 2004. 1.3.1

[68] C.-Y. Hui, N. J. Glassmaker, T. Tang, and A. Jagota, “Design of biomimetic fibril-
lar interfaces: 2. Mechanics of enhanced adhesion.,” Journal of the Royal Society,
Interface, vol. 1, no. 1, pp. 35–48, 2004. 1.3.1, 1.3.2, 1.3.2

[69] N. J. Glassmaker, A. Jagota, and C.-Y. Hui, “Adhesion enhancement in a biomimetic
fibrillar interface.,” Acta Biomaterialia, vol. 1, pp. 367–75, July 2005. 1.3.1, 2.1

[70] S. Kim and M. Sitti, “Biologically inspired polymer microfibers with spatulate tips
as repeatable fibrillar adhesives,” Applied Physics Letters, vol. 89, no. 26, p. 261911,
2006. 1.3.1, 1.3.2, 1.4.1, 1.4.1, 2.1, 2.2.1, 2.2.2, A.1

[71] J. Y. Chung and M. K. Chaudhury, “Roles of discontinuities in bio-inspired adhesive
pads.,” Journal of the Royal Society, Interface, vol. 2, pp. 55–61, Mar. 2005. 1.3.1

[72] A. Ghatak, L. Mahadevan, J. Y. Chung, M. K. Chaudhury, and V. Shenoy, “Peeling
from a biomimetically patterned thin elastic film,” Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences, vol. 460, pp. 2725–2735,
Sept. 2004. 1.3.1

[73] E. P. Chan, C. Greiner, E. Arzt, and A. J. Crosby, “Designing Model Systems for
Enhanced Adhesion,” Materials Research Society Bulletin, vol. 32, pp. 496–543,
2007. 1.3.1

[74] M. Varenberg, B. Murarash, Y. Kligerman, and S. N. Gorb, “Geometry-controlled
adhesion: revisiting the contact splitting hypothesis,” Applied Physics A, vol. 103,
pp. 933–938, May 2011. 1.3.1

[75] H. Gao and H. Yao, “Shape insensitive optimal adhesion of nanoscale fibrillar struc-
tures.,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 101, pp. 7851–6, May 2004. 1.3.2, 1.3.2, 1.4.1



References 135

[76] A. del Campo, C. Greiner, and E. Arzt, “Contact shape controls adhesion of bioin-
spired fibrillar surfaces,” Langmuir, vol. 23, pp. 10235–43, Sept. 2007. 1.3.2, 1.4.1,
2.2.1, A.1

[77] M. P. Murphy, B. Aksak, and M. Sitti, “Adhesion and anisotropic friction enhance-
ments of angled heterogeneous micro-fiber arrays with spherical and spatula tips,”
Journal of Adhesion Science and Technology, vol. 21, pp. 1281–1296, Oct. 2007.
1.3.2, 1.3.3, 1.4.1, 1.4.1, 1.4.1, 2.2.1, 2.2.2, 3.2, A.1

[78] S. Kim, E. Cheung, and M. Sitti, “Wet self-cleaning of biologically inspired elas-
tomer mushroom shaped microfibrillar adhesives,” Langmuir, vol. 25, no. 13,
pp. 7196–9, 2009. 1.3.2, 1.4.1, 3.1, 4.1.4

[79] A. V. Spuskanyuk, R. M. McMeeking, V. S. Deshpande, and E. Arzt, “The effect of
shape on the adhesion of fibrillar surfaces,” Acta biomaterialia, vol. 4, pp. 1669–76,
Nov. 2008. 1.3.2, 1.4.1, 2.2.1

[80] G. Carbone, E. Pierro, and S. N. Gorb, “Origin of the superior adhesive performance
of mushroom-shaped microstructured surfaces,” Soft Matter, vol. 7, no. 12, 2011.
1.3.2, 3.1, 3.3

[81] N. J. Glassmaker, A. Jagota, C.-Y. Hui, W. L. Noderer, and M. K. Chaudhury, “Bi-
ologically inspired crack trapping for enhanced adhesion.,” Proceedings of the Na-
tional Academy of Sciences of the United States of America, vol. 104, pp. 10786–91,
June 2007. 1.3.2

[82] W. L. Noderer, L. Shen, S. Vajpayee, N. J. Glassmaker, A. Jagota, and C.-Y. Hui,
“Enhanced adhesion and compliance of film-terminated fibrillar surfaces,” Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 463, pp. 2631–2654, 2007. 1.3.2

[83] L. Shen, N. J. Glassmaker, A. Jagota, and C.-Y. Hui, “Strongly enhanced static fric-
tion using a film-terminated fibrillar interface,” Soft Matter, vol. 4, no. 3, p. 618,
2008. 1.3.2

[84] H. Yao, G. D. Rocca, P. R. Guduru, and H. Gao, “Adhesion and sliding response of
a biologically inspired fibrillar surface: experimental observations.,” Journal of the
Royal Society, Interface, vol. 5, pp. 723–33, July 2008. 1.3.2

[85] S. Vajpayee, A. Jagota, and C.-Y. Hui, “Adhesion of a Fibrillar Interface on Wet and
Rough Surfaces,” The Journal of Adhesion, vol. 86, pp. 39–61, Jan. 2010. 1.3.2,
1.3.2, 1.3.2



References 136

[86] N. J. Glassmaker, T. Himeno, C.-Y. Hui, and J. Kim, “Design of biomimetic fibril-
lar interfaces: 1. Making contact.,” Journal of the Royal Society, Interface, vol. 1,
pp. 23–33, Nov. 2004. 1.3.2, 1.4.1

[87] A. Jagota and S. J. Bennison, “Mechanics of adhesion through a fibrillar microstruc-
ture.,” Integrative and Comparative Bology, vol. 42, pp. 1140–5, Dec. 2002. 1.3.2

[88] B. Bhushan, A. G. Peressadko, and T.-W. Kim, “Adhesion analysis of two-level hier-
archical morphology in natural attachment systems for ’smart adhesion’,” Journal of
Adhesion Science and Technology, vol. 20, pp. 1475–1491, Oct. 2006. 1.3.2, 1.3.2,
A.1

[89] C. Hui, A. Jagota, Y. Lin, and E. Kramer, “Constraints on Microcontact Printing
Imposed by Stamp Deformation,” Langmuir, vol. 18, pp. 1394–1407, Feb. 2002.
1.3.2

[90] K. G. Sharp, G. S. Blackman, N. J. Glassmaker, A. Jagota, and C.-Y. Hui, “Effect of
stamp deformation on the quality of microcontact printing: theory and experiment.,”
Langmuir, vol. 20, pp. 6430–8, July 2004. 1.3.2

[91] B. N. J. Persson and S. Gorb, “The effect of surface roughness on the adhesion
of elastic plates with application to biological systems,” The Journal of Chemical
Physics, vol. 119, no. 21, p. 11437, 2003. 1.3.2

[92] M. Schargott, V. L. Popov, and S. Gorb, “Spring model of biological attachment
pads,” Journal of Theoretical Biology, vol. 243, pp. 48–53, Nov. 2006. 1.3.2

[93] C.-Y. Hui, N. J. Glassmaker, and A. Jagota, “How Compliance Compensates for Sur-
face Roughness in Fibrillar Adhesion,” The Journal of Adhesion, vol. 81, pp. 699–
721, July 2005. 1.3.2

[94] P.-C. Lin, S. Vajpayee, A. Jagota, C.-Y. Hui, and S. Yang, “Mechanically tunable dry
adhesive from wrinkled elastomers,” Soft Matter, vol. 4, no. 9, p. 1830, 2008. 1.3.2
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