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A B S T R A C T

In this thesis, I derive generalization error bounds — bounds on the expected in-

accuracy of the predictions — for time series forecasting models. These bounds

allow forecasters to select among competing models, and to declare that, with

high probability, their chosen model will perform well — without making strong

assumptions about the data generating process or appealing to asymptotic theory.

Expanding upon results from statistical learning theory, I demonstrate how these

techniques can help time series forecasters to choose models which behave well

under uncertainty. I also show how to estimate the β-mixing coefficients for de-

pendent data so that my results can be used empirically. I use the bound explicitly

to evaluate different predictive models for the volatility of IBM stock and for a

standard set of macroeconomic variables. Taken together my results show how

to control the generalization error of time series models with fixed or growing

memory.
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N O TAT I O N

This thesis uses many different probability measures and σ-fields in different con-

texts. I list many of the symbols I will use in this document to avoid confusion.

P — The probability distribution of a single random variable Z or the pair (X, Y);

Used only in the context of independence

Pn — The joint distribution of n independent random variables; The n-fold

product measure
∏n
i=1 P = Pn

P1 — The probability distribution of a single random variable Y1 generated by

a dependent process

PC — The restriction of a probability measure to a specific σ-field C; also ap-

pearing as Pt if it is the restriction to the σ-field generated by the dependent

random variable at time t

Yi:j — The sequence of dependent random variables Yi, . . . , Yj

σi:j — The σ-field generated by the sequence Yi:j

Pi:j — The joint distribution of the sequence Yi:j; A measure on σi:j

Pi:j⊗k:l — The joint distribution of the sequences Yi:j and Yk:l

Pi:j ⊗ Pk:l — The product measure on two sequences of dependent random vari-

ables; Under this distribution Yi:j ⊥⊥ Yk:l

Y∞ — An infinite sequence of dependent random variables; Equivalent to Y−∞:∞
σ∞ — The σ-field generated by Y∞
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P∞ — The infinite dimensional distribution on σ∞
EP — The expected value with respect to the probability distribution P; i.e.

EP [g] :=
∫
gdP; When obvious, this may be written as EX for the expected

value taken with respect to the distribution of the random variable X or

simply as E
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A C R O N Y M S

aic — Akaike Information Criterion (see Akaike [1])

ar — Autoregressive

arma — Autoregressive Moving Average

bic — Bayesian Information Criterion

dsge — Dynamic Stochastic General Equilibrium

erm — Empirical Risk Minimization (or Minimizer)

frb — Federal Reserve Board (of Governors)

garch — Generalized Autoregressive Conditional Heteroscedasticity

gdp — Gross Domestic Product

iid — Independent and Identically Distributed

mcm — Multi-Country Model

mcmc — Markov Chain Monte Carlo

mps — MPS comes from the three collaborative centers where the model was

developed by Franco Modigliani, Albert Ando, and Frank de Leeuw of MIT,

the University of Pennsylvania, and the Social Science Research Council re-

spectively.

rbc — Real Business Cycle

srm — Structural Risk Minimization
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sv — Stochastic Volatility

var — Vector Autoregressive

varma — Vector Autoregressive Moving Average

vc — Vapnik-Chervonenkis
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Part I

T H E S I S O V E RV I E W A N D M O T I VAT I O N



1
I N T R O D U C T I O N

Researchers in statistics and machine learning have spent countless hours over the

past century on a quest to find estimators for huge varieties of applied problems.

Sometimes the goal is to be able to describe the unknown distribution from which

the data arose so as to inform scientists, government officials, or the general public

about phenomena of interest — the age of the universe, the costs and benefits of

universal health care, or the effect of coffee or soda on colon cancer [106]. Other

times, the goal is more ambitious: to predict the future. Huge numbers of smart

people devote time and energy to anticipating stock market fluctuations, mar-

keting experts recommend products consumers are unable to live without, and

geneticists wish to learn if different sequences of DNA can predict an individual’s

susceptibility to a particular disease. When making predictions from data, fore-

casters are concerned with two important questions: (1) given a new data point,

what is the mapping from predictors to responses; and (2) are the predictions any

good. I will briefly sketch the manner in which this analysis typically procedes

with more details to come in Chapter 3.

To address the first question, suppose that predictors live in some space X and

responses live in another space Y. Many methods of finding a mapping f : X→ Y

amount to choosing a class of candidate functions F and then picking the best

one by minimizing a loss function `(Y, f(X)) which measures the performance of

f. If F contains linear functions and `(Y, f(X)) = (Y − f(X))2, then this procedure

2



introduction 3

amounts to ordinary least squares. Using the negative log likelihood as the loss

function yields maximum likelihood estimation.

One possible answer to the second question requires the choice of functions

f ∈ F which minimize the loss in expectation. This quantity,

R(f) = EP[`(Y, f(X))], (1.1)

is the generalization error, or risk, of the prediction algorithm. Unfortunately,

while it is natural to want this to be small, one usually cannot hope to minimize

it. The expectation is taken with respect to the joint distribution of the predictors

and the response which also affects the learning algorithm’s choice of the optimal

f. While assumptions can be made about the true data generating process in or-

der to calculate the risk, this tactic negates the most useful quality of prediction

through risk minimization: the risk measures the cost of mistakes with respect to

the unknown data generating process. Researchers’ inability to calculate the risk

exactly has engendered work deriving upper bounds for the generalization error.

Besides providing guarantees regarding how bad the expected cost of mispredic-

tion can be, generalization error bounds are useful for other reasons. Good bounds

allow for straightforward model comparisons without making assumptions on the

data generating process in contrast to likelihood based methods. Bounds can also

be used to demonstrate the optimality of particular prediction algorithms, bound-

ing the best-case performance with respect to the least favorable data generating

process, i.e. minimaxity. Sometimes they can be used to naturally construct well

behaved learning algorithms through regularization. These possibilities motivate

the calculation of generalization error bounds not only as a theoretical and philo-

sophical indulgence but also for improved applied research.

Prediction problems in statistics and machine learning often assume that train-

ing data are independent and identically distributed, but most interesting data

are dependent and heterogeneous. Consequently, many existing risk bounds are
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useless for some types of problems, especially those involving time series data

such as economic forecasting.

Some generalization error bounds are known for time series, but they are not

useful for the learning algorithms which often arise in the economic forecasting

literature for two reasons. First, most generalization error bounds require that the

loss function be bounded, which is inconvenient in a regression setting. Second,

existing generalization error bounds for time series rely on quantifying the decay

of dependence in the data generating process. While positing known rates for the

decay of dependence leads to clean theoretical results, this knowledge is sadly

unavailable in reality. Thus it is necessary to be able to estimate these rates from

the data. In this thesis, I will (a) derive generalization error bounds for state space

models, (b) develop methods for estimating the dependence behavior from the

data so that the bound is useful, and (c) use the bounds to evaluate and compare

existing economic forecasting methods.

The motivation for this thesis comes mainly from time series forecasting par-

ticularly for macroeconomics. In Chapter 2, I discuss the history and current

methodology of macroeconomic forecasting, its relationship to standard time se-

ries models, and the benefits of generalization error bounds for risk analysis and

model selection relative to current practice. Chapter 3 discusses methods for con-

trolling generalization when the data are independent and identically distributed,

while Chapter 4 describes how to introduce dependence. The remainder of the

thesis presents theoretical results necessary to justify calculating generalization

error bounds for macroeconomic time series models as well as a few examples of

the use of these bounds in practice.



2
E C O N O M I C F O R E C A S T I N G

2.1 motivation and literature review

Generalization error bounds are provably reliable, probabilistically valid, non-

asymptotic tools for characterizing the predictive ability of forecasting models.

The theory underlying these methods is fundamentally concerned with choosing

particular functions out of some class of plausible functions so that the resulting

predictions will be accurate with high probability. While many of these results

are useful only in the context of classification problems (i.e., predicting binary

variables) and for independent and identically distributed (IID) data, this thesis

shows how to adapt and extend these methods to time series models so that eco-

nomic and financial forecasting techniques can be evaluated rigorously. In par-

ticular, these methods control the expected accuracy of future predictions based

on finite quantities of data. This allows for immediate model comparisons with-

out appealing to asymptotic results or making strong assumptions about the data

generating process in stark contrast to AIC and similar model selection criteria

frequently employed in the literature.

5



6 economic forecasting

2.2 history

Between 1975 and 1982, the art of macroeconomic forecasting underwent fairly

dramatic changes. Until 1976, macroeconomic forecasting concentrated mainly on

the use of “reduced-form” statistical characterizations of the economy. Forecasters

ran regressions of data on other data and lags of the data and postulated that cer-

tain time-series should be related to others in different ways. The first large scale

macroeconomic model of this type arose in 1966 with the implementation of the

MPS model.1 The MPS model consisted of around 60 estimating equations and

identities used to forecast economic time series on a quarterly basis (think GDP,

unemployment, productivity, inflation, etc.). The MPS model and its counterpart

the Multi-Country Model (MCM) which contained some 200 equations developed

into the FRB/US and its counterpart FRB/WORLD used since 1996 as the main

economic forecasting tools at the Federal Reserve Board of Governors (see Brayton

et al. [11] for an overview of this history and Brayton and Tinsley [10] for a dis-

cussion of the current version). The two models implemented today each use over

300 equations to forecast both the US economy and that of our trade partners.

These large scale macro models stand in stark contrast to the methods of fore-

casting used by most academic economists. In 1976, Lucas [61] issued a critique

of reduced-form models which became very famous. His basic argument was that

the sorts of statistical relationships exploited by the large scale macroeconomic

models are useless for evaluating the impact of policy decisions, because without

any behavioral theory underlying the construction of the models, only observed

associations, the policies are bound to change the estimated parameters. In other

words, the policy actions that modelers were attempting to evaluate were endoge-

nous to the model, not exogenous.

1 MPS comes from the three collaborative centers where the model was developed by Franco
Modigliani, Albert Ando, and Frank de Leeuw of MIT, the University of Pennsylvania, and the
Social Science Research Council respectively.



2.3 dynamic stochastic general equilibrium models 7

Kydland and Prescott [55] marked the beginning of the use of dynamic stochas-

tic general equilibrium (DSGE) models to combat this critique. Rather than focus-

ing on statistical relationships, economists aimed to build models for the entire

economy that are driven by individuals making decisions based on their prefer-

ences. In these models, consumers make decisions based on behavioral “deep”

parameters like risk tolerance, the labor-leisure tradeoff, and the depreciation rate

that are viewed as independent of things like government spending or monetary

policy. The result is a heavily theoretical class of models for forecasting macroeco-

nomic time series and the effects of policy interventions that tries to rely on some

notion of behavior — it incorporates individuals making optimal choices under

uncertainty based on their preferences. Unlike MPS, the FRB/US model tries to

incorporate some of these ideas, but its behavioral equations do not arise from

optimization the way a DSGE model’s do. The remainder of this section discusses

dynamic stochastic general equilibrium models and a simpler, more widely used,

structural model as well as the state space representations used to estimate them.

2.3 dynamic stochastic general equilibrium models

Kydland and Prescott [55] model the aggregate economy by considering a sin-

gle household, intended to be an infinitely long-lived agent representative of all

households and firms. The model which I discuss here, the canonical DSGE model,

is called the Real Business Cycle (RBC) model. It takes the form of the following

optimization problem.

1. The household seeks to maximize U, the expected discounted flow of utility

derived from consumption and leisure

max
ct,lt

U = E0

∞∑
t=0

βtu(ct, lt). (2.1)
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Here the E0 is the expectation conditional on information available at time

t = 0, β is the discount factor on future utility, and u(·) is an instantaneous

utility function. Future consumption and leisure are both functions of a ran-

dom variable.

2. The household can produce “goods” yt using the production function g(·)

yt = ztg(kt,nt), (2.2)

where kt and nt are capital and labor and zt is a random process referred

to as a technology shock or Solow residual in honor of Solow [91].

3. The remaining equations are as follows:

1 = nt + lt (2.3)

yt = ct + it (2.4)

kt+1 = it + (1− δ)kt (2.5)

ln zt = (1− ρ) ln z+ ρ ln zt−1 + εt (2.6)

εt
iid
∼ N(0,σ2ε). (2.7)

Together, these say that the time spent between labor and leisure in each

period must sum to 1, all output (income) is spent on consumption ct or

saved (invested) it, capital tomorrow is equal to investment today plus the

depreciated capital stock, and the log of the technology shock zt follows an

AR(1) process.

The only uncertainty in the model stems from random innovations to technol-

ogy. Thus, it is clear that this model has various implications: fiscal policy does

nothing, monetary policy does nothing, asset prices do nothing, etc. More elab-

orate models generally account for most of these things. A published model at

the Federal Reserve Board of Governors uses differentiated goods, differentiated

firms, sticky prices (they do not adjust immediately), and monetary policy (see
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Edge et al. [32]). The current version also adds in trade with 20 countries and uses

nearly 100 different time-series. Whether any of this additional flexibility is useful

for forecasting is unknown.

Estimation of these models is non-trivial and currently an area of active re-

search. All methods involve solving the constrained optimization problem and

then turning the result into a state space model through either linear or non-linear

approximation. The parameters are estimated through method of moments tech-

niques called calibration after Kydland and Prescott [55] or likelihood analysis

as in Sargent [82]. In either case, the resulting estimated model can be used for

forecasting. By nature, a DSGE is a nonlinear system of expectational difference

equations, and so estimating the parameters is nontrivial. Likelihood methods typ-

ically procede by finding a linear approximation using Taylor expansions and the

Kalman filter, though increasingly complex nonlinear methods are now an object

of intense interest. See for instance Fernández-Villaverde [34], DeJong and Dave

[19] or Dejong et al. [23]

2.4 other methods

The DSGE framework relies on specifying and solving a dynamic stochastic opti-

mization problem, using approximation techniques so that it may be mapped into

state space form, and then estimating the parameters. This is typically a long and

complicated process involving differential equations, linear algebra, and nonlinear

maximization. A much simpler, reduced form, tool for forecasting is the vector au-

toregression or VAR. In its most straightforward version, a VAR(p) is specified

as

xt = B1xt−1 + B2xt−2 + · · ·+ Bpxt−p + et (2.8)

where xt is a k × 1 observation vector, Bi is a k × k matrix, and et is a k × 1

mean zero noise term. The model is simple to fit using multiple least squares and

gives straightforward forecasts for the time series of interest. However, the number
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of parameters grows rapidly: ignoring the covariance structure, the VAR(p) has

pk2 parameters. Since n is necessarily small in economic forecasting problems

(usually consisting only of quarterly data since 1950), researchers frequently put

a default prior called the Minnesota prior on the Bi to avoid overfitting. While

this regularization results in better out of sample forecasting performance when

compared to unrestricted models [26], generalization error bounds may lead to

improved learning algorithms.

Many less common economic forecasting methods can be reexpressed in state

space form. Dynamic factor models like those in Kim and Nelson [48] are trivially

state space models. The turning point forecasting models such as DeJong et al.

[20] or Wildi [101] also have state space representations.

Economic forecasting is just one application for time series analysis by state

space models. Missile tracking applications as well as other linear dynamical sys-

tems motivated the path breaking work of Kalman [47]. More recently, state space

models have been used for robot soccer by Ruiz-del Solar and Vallejos [81], to

study the effects of a seat belt law on traffic accidents in Great Britain by Harvey

and Durbin [42], and for neural decoding applications as in Koyama et al. [54].

2.5 state space models

The most general form of a state space model is characterized by the observation

equation, the state transition equation, and an initial distribution for the state:

yt = ϕO(xt, εt) (2.9)

xt+1 = ϕS(xt,ηt) (2.10)

x1 ∼ P, (2.11)

where εt are ηt are marginally independent and identically distributed (IID) as

well as mutually independent. The vector {yt}
T
t=1 is observed, and the goal is
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to make inferences for the unobserved states {xt}
T
t=1 as well as any parameters

characterizing ϕO, ϕS, and the distributions of εt and ηt.

In the case where ϕO and ϕS are linear with εt and ηt normally distributed, the

Kalman filter can be used along with maximum likelihood or Bayesian methods

to derive closed form solutions for the conditional distributions of the states as

well as the parameters of interest given data. However, in many applications, re-

searchers are not so lucky. For nonlinear or non-Gaussian models, approximate so-

lutions exist using the particle filter and its derivatives (see for example Kitagawa

[49, 50] and Doucet et al. [27] for an exposition of the particle filter and Koyama

et al. [54] and DeJong et al. [22] for improvements).

2.6 model evaluation methods in time series and economics

There are many ways to estimate the generalization error. Traditionally, time se-

ries analysts have performed model selection by a combination of empirical risk

minimization, more-or-less quantitative inspection of the residuals — e.g., the Box-

Ljung test; see [87] — and penalties like AIC. In many applications, however, what

really matters is prediction, and none of these techniques, including AIC, really

work to control generalization error, especially for mis-specified models. Empiri-

cal cross-validation is a partial exception, but it is tricky for time series; see Racine

[77] and references therein.

In economics, forecasters have long recognized the difficulties with these meth-

ods of risk estimation, preferring to use a pseudo-cross validation approach in-

stead. This technique chooses a prediction function using the initial portion of

a data set and evaluates its performance on the remainder. Athanasopoulos and

Vahid [2] compare the predictive accuracy of VAR models with vector autoregres-

sive moving average (VARMA) models using a training sample spanning the 1960s

and 1970s and a test set spanning the 1980s and 1990s. Faust and Wright [33] com-

pare forecasts produced by the Federal Reserve called “Greenbook forecasts” with
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the predictions of various other atheoretical methods, however they ignore peri-

ods of high volatility such as 1979–1983. Christoffel et al. [14] compare the New

Area Wide Model for Europe with a Bayesian VAR, a random walk, and sample

means. The forecasts are evaluated during the relatively stable period of the late

1990s and early 2000s, and the models are updated yearly, giving pseudo-out-of-

sample monthly forecasts. Similarly, Del Negro et al. [24] reestimate DSGE-VARs

recursively based on rolling 30 year samples before forecasting two year periods

between 1985 and 2000. Smets and Wouters [90] compare DSGE models with Baye-

sian VARs over a similar period. Edge and Gurkaynak [31] argue that DSGEs (as

well as statistical or judgmental methods) perform poorly at predicting GDP or

inflation. Numerous other examples of model selection and evaluation through

pseudo-out-of-sample forecast comparions can be found throughout the literature.

Procedures such as these provide approximate solutions to the problem of esti-

mating the generalization error, but they can be heavily biased toward overfitting

— giving too much credence to the observed data — and hence underestimating

the true risk for at least three reasons. First, the held out data, or test set, is used to

evaluate the performance of competing models despite the fact that it was already

partially used to build those models. For instance, the structures of both exoge-

nous and endogenous variables in DSGEs are partially constructed so as to lead

to predictive models which fit closely to the most recent macroeconomic phenom-

ena. The recent housing and financial crises have precipitated numerous attempts

to enrich existing DSGEs with mechanisms designed to enhance their ability to

predict just such a crisis (see for example Goodhart et al. [40], Gerali et al. [38]

and Gertler and Karadi [39]). Testing the resulting models on recent data there-

fore leads to overconfident declarations about a particular model’s forecasting

abilities. Second, the distributions of the test set and the data used to estimate the

model may be different, i.e., it may be that the observed phenomena reflect only a

small sampling of possible phenomena which could occur. Models which forecast

well during the early 2000s were typically fit and evaluated using numerous oc-

currences of stable economic conditions, but few were built to also perform well
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during periods of crisis. Finally, large departures from the normal course of events

such as the recessions in 1980–82 and periods before 1960 are often ignored as in

[33]. While these periods are considered rare and perhaps unpredictable, models

which are robust to these sorts of tail events will lead to more accurate predictions

in future times of turmoil.

2.7 risk bounds for economics and time series

In contrast to the model evaluation techniques typically employed in the litera-

ture, generalization error bounds provide rigorous control over the predictive risk

as well as reliable methods of model selection. They are robust to wide classes of

data generating processes and are finite-sample rather than asymptotic in nature.

In a broad sense, these methods give confidence bounds which are constructed

based on concentration of measure results rather than appeals to asymptotic nor-

mality. The results are easy to understand and can be reported to policy makers

interested in the quality of the forecasts. Finally, the results are agnostic about the

model’s specification: it does not matter if the model is wrong, the parameters

have interpretable economic meaning, or whether the estimation of the parame-

ters is performed only approximately (linearized DSGEs or MCMC), one can still

make strong claims about the ability of the model to predict the future.

The meaning of such results for forecasters, or for those whose scientific aims

center around prediction of empirical phenomena, is plain: they provide objective

ways of assessing how good their models really are. There are, of course, other

uses for scientific models: for explanation, for the evaluation of counterfactuals

(especially, in economics, comparing the consequences of different policies), and

for welfare calculations. Even in those cases, however, one must ask why this model

rather than another?, and the usual answer is that the favored model gets the struc-

ture at least approximately right. Empirical evidence for structural correctness, in

turn, usually takes the form of an argument from empirical success: it would be



14 economic forecasting

very surprising if this model fit the data so well when it got the structure wrong. My

results, which directly address the inference from past data-matching to future

performance, are thus relevant even to those who do not aim at prediction as

such.



Part II

E X I S T I N G T H E O RY



3
S TAT I S T I C A L L E A R N I N G T H E O RY

The goal of this thesis is to control the risk of predictive models, i.e., their expected

inaccuracy on new data from the same source as that used to fit the model. In this

chapter, I summarize the basic forms of these results in the literature, filling in

what was only lightly sketched in Chapter 1.

3.1 the traditional setup

Consider predictors X ∈ X and responses Y ∈ Y. Let F be a class of functions

f : X→ Y which take predictors as inputs.

Define a loss function ` : Y× Y → R+ which measures the cost of making poor

predictions. Throughout this chapter I make the following assumption on the loss

function.

Assumption A. ∀f ∈ F

0 6 `(y,y ′) 6M <∞. (3.1)

Then, as in (1.1), I can define the risk of any predictor f ∈ F.

Definition 3.1 (Risk or generalization error).

R(f) :=

∫
`(f(X), Y)dP = EP

[
`(f(X), Y)

]
, (3.2)

where (X, Y) ∼ P.

16
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The risk or generalization error measures the expected cost of using f to predict

Y from X given a new observation. Just to emphasize, the expectation is taken with

respect to the distribution P of the test point (X, Y) which is independent of f; the

risk is a deterministic function of f with all the randomness in the data averaged

away.

Since the true distribution P is unknown, so is R(f), but one can attempt to

estimate it based on only the observed data. Suppose that I observe a random

sample Dn = {(X1, Y1), . . . , (Xn, Yn)} so that (Xi, Yi)
iid
∼ P, i.e. Dn ∼ Pn. Define

the training error or empirical risk of f as follows.

Definition 3.2 (Training error or empirical risk).

R̂n(f) :=
1

n

n∑
i=1

`(f(Xi), Yi). (3.3)

In other words, the in-sample training error, R̂n(f), is the average loss over the

actual training points. It is easy to see that, because the training data Dn and the

test point (X, Y) are IID, then given some fixed function f (chosen independently

of the sample Dn),

R̂n(f) = R(f) + γn(f), (3.4)

where γn(f) is a mean-zero noise variable that reflects how far the training sample

departs from being perfectly representative of the data-generating distribution.

Here I should emphasize that R̂n(f) is random through the training sample Dn.

By the law of large numbers, for such fixed f, γn(f) → 0 as n → ∞, so, with

enough data, one has a good idea of how well any given function will generalize

to new data.

However, one is rarely interested in the performance of a single function f with-

out adjustable parameters fixed for them in advance by theory. Rather, researchers

are interested in a class of plausible functions F, possibly indexed by some pos-

sibly infinite dimensional parameter θ ∈ Θ, which I refer to as a model. One

function (one particular parameter point) is chosen from the model class by mini-
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mizing some criterion function. Maximum likelihood, Bayesian maximum a poste-

riori, least squares, regularized methods, and empirical risk minimization (ERM)

all have this flavor as do many other estimation methods. In these cases, one can

define the empirical risk minimizer for an appropriate loss function `.

Definition 3.3 (Empirical risk minimizer1).

f̂ := argmin
f∈F

R̂n(f) = argmin
f∈F

(R(f) + γn(f)). (3.5)

It is important to note that f̂ is random and measurable with respect to the

empirical risk process R̂n(f) for f ∈ F. Choosing a predictor f̂ by empirical risk

minimization (tuning the adjustable parameters so that f̂ fits the training data

well) conflates predicting future data well (low R(f̂), the true risk) with exploiting

the accidents and noise of the training data (large negative γn(f̂), finite-sample

noise). The true risk of f̂ will generally be bigger than its in-sample risk precisely

because I picked it to match the data well. In doing so, f̂ ends up reproducing

some of the noise in the data and therefore will not generalize well. The difference

between the true and apparent risk depends on the magnitude of the sampling

fluctuations:

R(f̂) − R̂n(f̂) 6 sup
f∈F

|γn(f)| = Γn(F) . (3.6)

In (3.6), R(f̂) is random and measurable with respect to f̂.

The main goal of statistical learning theory is to control Γn(F) while making

minimal assumptions about the data generating process — i.e. to provide bounds

on over-fitting. Using more flexible models (allowing more general functional

forms or distributions, adding parameters, etc.) has two contrasting effects. On

the one hand, it improves the best possible accuracy, lowering the minimum of

the true risk. On the other hand, it increases the ability to, as it were, memorize

noise for any fixed sample size n. This qualitative observation — a generalization

of the bias-variance trade-off from basic estimation theory — can be made use-

1 I will sometimes use the more complete notation f̂erm
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fully precise by quantifying the complexity of model classes. A typical result is

a confidence bound on Γn (and hence on the over-fitting), which says that with

probability at least 1− η,

Γn(F) 6 Φ(Λ(F),n,η) , (3.7)

where Λ(·) is some suitable measure of the complexity of the model F. To give

specific forms of Φ(·), I need to show that, for a particular f, R(f) and R̂n(f) will

be close to each other for any fixed n without knowledge of the distribution of the

data. Furthermore, I need the complexity, Λ(F), to claim that R(f) and R̂n(f) will

be close, not only for a particular f, but uniformly over all f ∈ F. Together these

two results will allow me to show, despite little knowledge of the data generating

process, how bad the f̂ which I choose will be at forecasting future observations.

3.2 concentration

The first step to controlling the difference between the empirical and expected

risk is to develop concentration results for fixed functions. These finite sample

laws of large numbers control the difference between random variables and their

expectations. To illustrate what this means, consider a random variable Z with

probability distribution P such that P(a 6 Z 6 b) = 0. First I state the following

Lemma without proof which bounds the moment generating function of Z.

Lemma 3.4 (Equation 4.16 in [45]).

E[exp{s(Z− E[Z])}] 6 exp
{
s2(b− a)

8

}
. (3.8)

Then, I can combine the bound on the moment generating function with Markov’s

inequality to obtain Hoeffding’s inequality [45].
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Theorem 3.5 (Hoeffding’s inequality). Let Z1, . . . ,Zn be IID random variables each

with distribution P such that, P(a 6 Z 6 b) = 0 and product measure Pn =
∏n
i=1P.

Then,

Pn(|Z− E[Z]| > ε) 6 2 exp
{
−

2nε2

(b− a)2

}
. (3.9)

To provide some intuition for the general topic of concentration bounds, I pro-

vide the following proof.

Proof. First, I use Lemma 3.4 to bound the moment generating function of Z −

E[Z]:

E[exp{s(Z− E[Z])}] =

n∏
i=1

E
[
exp
{ s
n
(Z− E[Z])

}]
(3.10)

6
n∏
i=1

exp
{
s2(b− a)2

8n2

}
(3.11)

= exp
{
s2(b− a)2

8n

}
. (3.12)

Therefore I can use Markov’s inequality and the moment generating function

bound:

Pn(Z− E[Z] > ε) = Pn
(
exp{s(Z− E[Z])} > exp{sε}

)
(3.13)

6
E
[
exp{s(Z− E[Z])}

]
exp{sε}

(3.14)

6 exp{−sε} exp
{
s2(b− a)2

8n

}
. (3.15)

This holds for all s > 0, so I can minimize the right hand side in s. This occurs for

s = 4nε/(b− a)2. Plugging in gives

Pn(Z− E[Z] > ε) 6 exp
{
−

2nε2

(b− a)2

}
. (3.16)

Exactly the same argument holds for Pn(Z− E[Z] < −ε), so by a union bound, I

have the result. �
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Of course, this bound holds for the average of independent bounded random

variables, which is not necessarily that interesting. Often, one wants concentration

for some well-behaved function of independent random variables. One route to

concentration for functions is via McDiarmid’s inequality.

Theorem 3.6 (McDiarmid Inequality [63]). Let Z1, . . . ,Zn be IID random variables

taking values in a set A. Suppose that the function f : An → R is Pn-measurable and

satisfies

|f(z) − f(z ′)| 6 ci (3.17)

whenever the vectors z and z ′ differ only in the ith coordinate. Then for any ε > 0,

Pn(f− E[f] > ε) 6 exp
{
−
2ε2∑
c2i

}
. (3.18)

In later chapters, I will need both of these results. In the remainder of this

section, I show how to obtain concentration for the training error around the risk

for two different choices of the random variables Zi. This will lead to two different

ways of controlling Γn and hence the generalization error of prediction functions.

3.3 control by counting

Suppose I let Zi be the loss of the ith training point for some fixed function f.

Then by Hoeffding’s inequality, Theorem 3.5,

Pn(|R(f) − R̂n(f)| > ε) 6 2 exp
{
−
2nε2

M2

}
. (3.19)

This result is quite powerful, it says that the probability of observing data which

will result in a training error much different from the expected risk goes to zero

exponentially with the size of training set. The only assumption necessary was

that 0 6 `(y,y ′) 6M. In fact, even this assumption can be removed and replaced

with some moment conditions.
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Of course (3.19) holds for the single function f chosen independently of the

data. Instead, I want a similar result to hold simultaneously over all functions

f ∈ F and in particular, the f̂ choosen using the training data, i.e., I wish to bound

Pn
(

supf∈F |R(f) − R̂n(f)| > ε
)

.

For “small” models, one can simply count the number of functions in the class

and apply the union bound. Suppose that f1, . . . , fN ∈ F. Then

Pn

(
sup
16i6N

|R(fi) − R̂n(fi)| > ε

)
6

N∑
i=1

Pn
(
|R(fi) − R̂n(fi)| > ε

)
(3.20)

6 N exp
{
−
2nε2

M2

}
, (3.21)

by Theorem 3.5. Most interesting models are not small in this sense, but using an

appropriate way of “counting”, similar results can be derived.

There are many ways of “counting” the number of effectively distinct functions.

A direct, functional analysis, approach leads to covering numbers [76, 75] which

partitions functions f ∈ F into equivalence classes under some metric. Instead, I

focus on a measure which is both intuitive and powerful: Vapnik-Chervonenkis

(VC) dimension [96, 97].

VC dimension starts as a notion about a collection of sets.

Definition 3.7 (Shattering). Let U be some (infinite) set and S a subset of U with finite

cardinality. Let C be a family of subsets of U. One says that C shatters S if for every

S ′ ⊆ S, ∃C ∈ C such that S ′ = S∩C.

Essentially, C can shatter a set of points if it can pick out every subset of points

in S. This says somehow that C is very complicated or flexible. The cardinality of

the largest set S that can be shattered by C is the known as its VC dimension.

Definition 3.8 (VC dimension). The Vapnik-Chervonenkis (VC) dimension of a

collection C of subsets of U is

VCD(C) := sup{|S| : S ⊆ U and S is shattered by C}. (3.22)
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Figure 1: The top panel demonstrates shattering sets of points with linear functions. Here,
the points are contained in R2 so it is possible to shatter three point sets but not
four point sets. The bottom panel shows how to shatter points using F = {x 7→
sin(ωx) : ω ∈ R}.

Using VC dimension to measure the capacity of function classes is straightfor-

ward. Define the indicator function 1A(x) to take the value 1 if x ∈ A and 0

otherwise. Suppose that f ∈ F, f : U→ R. Then to each f associate the set

Cf = {(u,b) : 1(0,∞)(f(u) − b) = 1, u ∈ U, b ∈ R} (3.23)

and associate to F the class CF := {Cf : f ∈ F}.

VC dimension is well understood for some function classes. For instance, if

F = {u 7→ γ · u : u,γ ∈ Rp} then VCD(F) = p + 1, i.e. it is the number of

free parameters in a linear regression plus 1. It does not always have such a nice

correspondence with the number of free parameters however. The classic example

of such an incongruity is the model F = {u 7→ sin(ωu) : u,ω ∈ R}, which has only

one free parameter, but VCD(F) =∞. This result follows if one can show that for

every positive integer J and every binary sequence (r1, . . . , rJ), there exists a vector

(u1, . . . ,uJ) such that 1[0,1](sin(ωui)) = ri. If I choose ui = 2π10−i, then one can

show that taking ω = 1
2

(∑J
i=1(1− ri)10

i + 1
)

solves the system of equations.

Both of these examples are shown in Figure 1.

Given a model F such that VCD(F) = h, I can control the risk over the entire

model. This is one of the milestones of statistical learning theory
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Theorem 3.9 (Vapnik and Chervonenkis [98]). Suppose that VCD(F) = h and that

Assumption A holds. Then,

Pn

(
sup
f∈F

|R(f) − R̂n(f)| > ε

)
6 4GF(2n,h) exp

{
−
nε2

M2

}
, (3.24)

where GF(n,h) 6 exp{h(logn/h+ 1)}.

The proof of this theorem has a similar flavor to the union bound argument

given in (3.20)–(3.21). Essentially,GF(n,h) counts the effective number of functions

in F, i.e., how many can be told apart using only n observations.

This theorem has two corollaries. The first is to give a bound on the expected

difference between the training error and the risk for any f ∈ F. The second is a

high probability bound for the expected risk.

Corollary 3.10.

EPn

[
sup
f∈F

|R(f) − R̂n(f)|

]
= O

(√
h logn/h

n

)
. (3.25)

Proof. Define Z = supf∈F |R(f) − R̂n(f)|, k1 = 4GF(2n,h), and k2 = 1/M2. Then,

EPn [Z
2] =

∫∞
0

Pn(Z2 > ε)dε =

∫s
0

Pn(Z2 > ε)dε+

∫∞
s

P(Z2 > ε)dε (3.26)

6 s+
∫∞
s

Pn(Z2 > ε)dε (3.27)

= s+

∫∞
s

Pn(Z >
√
ε)dε (3.28)

6 s+ k1

∫∞
s

e−k2nεdε (3.29)

= s+
k1e

−k2ns

k2n
. (3.30)
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Set s = logk1
nk2

. Then,

EPn [Z] 6
√

EPn [Z2] 6

√
logk1
nk2

+
1

nk2
(3.31)

=M

√
1+ log 4GF(2n,h)

n
(3.32)

which gives the result. �

Corollary 3.11. Let η > 0. Then simultaneously for all f ∈ F, with probability at least

1− η,

R(f) 6 R̂n(f) +M

√
logGF(2n,h) + log 4/η

n
. (3.33)

Proof. Set

η = 4GF(2n,h) exp
{
−
nε2

M2

}
, (3.34)

and solve for ε in (3.34) to get the result. �

The probability statement in Corollary 3.11 is with respect to the joint distribu-

tion generating the training data, Pn.

The right side of (3.33) is very similar to standard model selection criteria like

AIC or BIC. If one assumes a normal likelihood, then the training error behaves

like the negative loglikelihood term while the remainder is the penalty. Here how-

ever, the bound holds with high probability despite lack of knowledge of P, and it

has nothing to do with asymptotics: it holds for any n. Just like AIC, the penalty

term M

√
1+log4GF(2n,h)

n goes to 0 as n → ∞, and, since Corollary 3.11 holse for

all f ∈ F, it holds in particular for f̂.
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3.4 control by symmetrization

Rather than looking at the losses at each training point and trying to count all the

functions in F, one can instead investigate the random variable

Ψn := sup
f∈F

(
R(f) − R̂n(f)

)
. (3.35)

Concentrating Ψn about its mean follows directly via Theorem 3.6.

Lemma 3.12. Let Assumption A hold. Then,

Pn(|Ψn − E[Ψn]| > ε) 6 2 exp
{
−
2nε2

M2

}
. (3.36)

Proof. Changing one pair (xi,yi) can change Ψn by no more than

|`(yi, f(xi))|/n 6M/n. So by McDiarmid’s inequality,

Pn(Ψn − E[Ψn] > ε) 6 exp
{
−
2nε2

M2

}
. (3.37)

Using the same logic

Pn(−Ψn + E[Ψn] < −ε) 6 exp
{
−
2nε2

M2

}
. (3.38)

Taking a union bound gives the result. �

One way to handle EPn [Ψn] is to use Corollary 3.10. But this is not the only way,

and in fact is generally suboptimal. An alternative is to use Rademacher Complexity

[52, 60, 80, 107, 5].

Definition 3.13 (Rademacher Complexity). The empirical Rademacher complexity

of a function class G composed of functions g : Z→ R for some set Z is

R̂n(G) := 2Ew

[
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

wig(zi)

∣∣∣∣∣
∣∣∣∣∣(Z1, . . . ,Zn)

]
, (3.39)
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where w = {wi}
n
i=1 is a sequence of random variables, independent of each other and every-

thing else, and equal to +1 or −1 with equal probability, and Z1, . . . ,Zn are IID random

variables taking values in the set Z with marginal distributions P. The Rademacher

complexity is

Rn(G) := EPn

[
R̂n(G)

]
. (3.40)

Lemma 3.14.

EPn [Ψn] 6 Rn(` ◦F), (3.41)

where ` ◦ F denotes the function class generated by composing the loss function ` with

functions f ∈ F.

Proof.

EPn [Ψn] = EPn

[
sup
f∈F

(R(f) − R̂n(f))

]
(3.42)

= EPn

[
sup
f∈F

(EPn [R̂
′
n(f)] − R̂n(f))

]
(3.43)

6 EPn⊗Pn

[
sup
f∈F

R̂ ′n(f) − R̂n(f)

]
. (3.44)
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where R̂ ′n(f) is based on a “ghost sample” {(X ′1, Y ′1), . . . , (X
′
n, Y ′n)} — an imaginary

sample from the same distribution, Pn, as the original — which is independent of

the original. Now by definition of R,

EPn [Ψn] 6 EPn⊗Pn

[
sup
f∈F

1

n

n∑
i=1

(`(f(X ′i), Y
′
i) − `(f(Xi), Yi))

]
(3.45)

= EPn⊗Pn⊗w

[
sup
f∈F

1

n

n∑
i=1

wi(`(f(X
′
i), Y

′
i) − `(f(Xi), Yi))

]
(3.46)

6 EPn⊗Pn⊗w

[
sup
f∈F

1

n

n∑
i=1

wi`(f(X
′
i), Y

′
i)

]

+ EPn⊗Pn⊗w

[
sup
f∈F

1

n

n∑
i=1

wi`(f(Xi), Yi)

]
(3.47)

= 2EPn⊗w

[
sup
f∈F

1

n

n∑
i=1

wi`(f(Xi), Yi)

]
. (3.48)

�

Using Rademacher complexity along with Lemma 3.12 gives the following gen-

eralization error bound.

Theorem 3.15. For any η > 0 and any f ∈ F, with probability at least 1− η,

R(f) 6 R̂n(f) +Rn(` ◦F) +M
√

log 2/η
2n

. (3.49)

Another benefit of Rademacher complexity is that it can be calculated empir-

ically. One can use the empirical version in place of the expected Rademacher

complexity with slight modifications to the risk bound.

Theorem 3.16. For any η > 0 and any f ∈ F, with probability at least 1− η,

R(f) 6 R̂n(f) + R̂n(` ◦F) + 3M
√

log 4/η
2n

. (3.50)
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Proof. Since changing one point of the sample changes R̂n(` ◦F) by at most 2M/n,

by McDiarmid’s inequality

Pn
(
Rn(` ◦F) − R̂n(` ◦F) > ε

)
6 exp

{
−
nε2

2M2

}
. (3.51)

Therefore with probability 1− η/2,

Rn(` ◦F) 6 R̂n(` ◦F) +M
√
2 log 1/η

n
. (3.52)

Combining this result with Theorem 3.15 for a confidence parameter η/2 gives the

result since

M

√
2 log 1/η

n
+M

√
log 4/η
2n

6 3M

√
log 4/η
2n

. (3.53)

�

Good control of E[Ψn] through the Rademacher complexity therefore implies

good control of the generalization error. Rademacher complexity is easy to han-

dle for wide ranges of learning algorithms using results in [5] and elsewhere.

Support vector machines, kernel methods, and neural networks all have known

Rademacher complexities. Furthermore, by applying Lipschitz composition argu-

ments in [57], I need to deal only with the Rademacher complexity of the function

class F rather that of the composition class ` ◦ F. For loss functions ` which are

ϑ-Lipschitz in their second argument with `(0, 0) = 0, R(` ◦F) 6 2ϑR(F).

3.5 concentration for unbounded functions

The main issue with all the results in the previous two sections is that they require

bounded loss functions. While in classification, as well as many other settings, this

is an intuitively reasonable requirement, this fails for regression. The Rademacher

complexity results cannot be extended to unbounded losses, as far as I know, be-

cause of the supremum over the function class. The result is that the Rademacher
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complexity will always be infinite. The VC method however can be extended to

unbounded losses. It simply requires bounding the relative difference between

the expected and empirical risks rather than the absolute difference.2 Similarly, it

requires control of the moments of the loss rather than the loss itself.

Assumption B. Assume that for all f ∈ F and some q > 2,

1 6

(
EP

[
(`(f(X), Y))q

])1/q
Rn(f)

< M. (3.54)

Assumption B is still quite general, allowing even some heavy tailed distribu-

tions while being more general than the bounded loss requirement. Furthermore,

with slight adjustments (see [96, p. 198]), one can allow 1 < q 6 2. It should be

noted that the lower bound is trivially true for any loss distribution.

Theorem 3.17 (Theorem 5.4 in Vapnik [96]). Under Assumption B,

Pn

(
sup
f∈F

R(f) − R̂n(f)

R(f)
> ε

)
6 4GF(2n,h) exp

{
−

nε2

4τ2(q)M2

}
, (3.55)

where τ(q) = q

√
1
2

(
q−1
q−2

)q−1
.

This concentration result can also be turned into a risk bound, but the penalty

is now multiplicative rather than additive.

Corollary 3.18. For any η > 0 and any f ∈ F, with probability at least 1− η,

R(f) 6
R̂n(f)

(1− E)+
, (3.56)

where

E = 2Mτ(q)

√
logGF(2n,h) + log 4/η

n
(3.57)

and (u)+ = max(u, 0).

2 It is possible that a similar method could be used to generalize the Rademacher complexity to
unbounded loss functions. However, I am not aware of any such results in the literature.
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3.6 summary

The concentration results in this chapter work well for independent data. To de-

velop them, I first showed how fast averages concentrate around their expectations:

exponentially fast in the size of the data. The second set of results generalizes from

a single function to entire function classes. All of these results depend critically

on the independence of the random variables, however for time series, I need to

be able to handle dependent data.





4
I N T R O D U C I N G D E P E N D E N C E

In this chapter, I show how to move from IID data to dependent data. I will as-

sume conditions of weak dependence. This step draws mainly on the notion of

“mixing”. Processes are said to be mixing if, as the separation between past and

future grows, the events in the past and future approach independence. This idea

is illustrated in Figure 2. As a increases, events in the past and future are more

widely separated. If, as this separation increases, these events approach indepen-

dence in some appropriate metric, then the process is said to be mixing.

Because time series data are dependent, the number of data points n in a sample

exaggerates how much information the sample contains. Knowing the past allows

forecasters to predict future data (at least to some degree), so actually observing

those future data points gives less information about the underlying process than

in the IID case. Thus, while in Theorem 3.5 the probability of large discrepancies

between empirical means and their expectations decreases exponentially in the

sample size, in the dependent case, the effective sample size may be much less

than n, resulting in looser bounds. Knowing the distance from independence for

some particular separation a of a mixing process allows me to determine the

effective sample size µ < n.

33
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● ●

0 a
Figure 2: This figure illustrates “mixing”. As a increases, events in the past and future are

more widely separated. If, as this separation increases, these events approach
independence in some appropriate metric, then the process is said to be mixing.

4.1 definitions

Mixing essentially describes the asymptotic dependence behavior of a stochastic

process. There are many different versions of mixing which require stronger or

weaker conditions on the behavior of the process. For an overview of the strong

mixing conditions, see Bradley [9]. These and many weaker versions are discussed

in Dedecker et al. [18]. I will be mainly concerned with β-mixing.

Mixing starts fundamentally as a measure of dependence between σ-fields. Con-

sider a standard probability space (Ω, S, P) and any two sub-σ-fields A and B ⊂ S.

Definition 4.1 (β-dependence).

β(A,B) := ||PA∪B − PA ⊗PB||TV , (4.1)

where A∪B := {A∪B : A ∈ A,B ∈ B} and PC denotes the restriction of P to the σ-field

C.

This definition makes clear that β-dependence is essentially measuring the dis-

tance between the joint distribution and the product of the marginal distributions

in total variation, i.e. the distance from independence.

While Definition 4.1 provides intuition, it is not the standard definition in the

literature. The following Lemma shows the equivalence between Definition 4.1

and that in [9].
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Proposition 4.2.

β(A,B) = sup
1

2

I∑
i=1

J∑
j=1

|P(Ai ∩Bj) − P(Ai)P(Bj)|, (4.2)

where the supremum is taken over all pairs of finite partitions {A1, . . . ,AI} and {B1, . . . ,BJ}

of Ω such that Ai ∈ A and Bj ∈ B for each i and j.

In the time series setting, one is interested mainly in the dependence between

past and future. This leads to specific choices for the σ-fields. To fix notation, let

Y∞ := {Yt}
∞
t=−∞ be a sequence of random variables where each Yt is a measurable

function from a probability space (Ωt, St, Pt) into a measurable space Y. A block

of this random sequence will be written Yi:j ≡ {Yt}
j
t=i where i and j are integers,

and may be infinite. I use similar notation for the sigma fields generated by these

blocks and their joint distributions. In particular, σi:j will denote the sigma field

generated by Yi:j, and the joint distribution of Yi:j will be denoted Pi:j.

There are many equivalent definitions of β-mixing (see for instance Doukhan

[28], or Bradley [9] as well as Meir [65] or Yu [105]), however the most intuitive is

that given in Doukhan [28] which has the framework of Definition 4.1.

Definition 4.3 (β-mixing). For each a ∈ N and any t ∈ Z, the β-mixing coefficient,

or coefficient of absolute regularity, βa, is

βa := sup
t

||P−∞:t ⊗Pt+a:∞ − P−∞:t⊗t+a:∞||TV , (4.3)

where || · ||TV is the total variation norm. A stochastic process is said to be absolutely

regular, or β-mixing, if βa → 0 as a→∞.

Loosely speaking, Definition 4.3 says that the coefficient βa measures the total

variation distance between the joint distribution of random variables separated

by a time units and a distribution under which random variables separated by a

time units are independent. This definition makes clear that a process is β-mixing

if the joint probability of events approaches the product of their marginal probabil-
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ities as those events become more separated in time, i.e., that Y is asymptotically

independent.

Another characterization, which is occasionally useful, comes from Meir [65].

Proposition 4.4. The β-mixing coefficient, βa, is given by

βa = sup
t

EP−∞:t sup
B∈σ∞t+a

|Pt+a:∞(B | σt−∞) − Pt+a:∞(B)|. (4.4)

The inclusion of the supremum over t in front of the total variation operator

gives the greatest generality, however, I will consider only stationary processes.

Definition 4.5 (Stationarity). A sequence of random variables Y∞ is stationary when all

its finite-dimensional distributions are invariant over time: for all t and all non-negative

integers i and j, the random vectors Yt:(t+i) and Y(t+j):(t+i+j) have the same distribu-

tion.

Stationarity does not imply that the random variables Yt are independent across

time, rather that the unconditional distribution of Yt is constant in time. For com-

pleteness, I present here a lemma giving the form of the β-mixing under station-

arity.

Lemma 4.6. For stationary professes, the β-mixing coefficient,

βa = ||P−∞:0 ⊗Pa:∞ − P−∞:0⊗a:∞||TV . (4.5)

4.2 mixing in the literature

Numerous results in the statistics literature rely on knowledge of mixing coef-

ficients. While much of the theoretical groundwork for the analysis of mixing

processes was laid years ago (cf. [102, 8, 30, 73, 3, 93, 104, 105]), recent work has

continued to use mixing to prove interesting results about the analysis of time-

series data. Non-parametric inference under mixing conditions is treated exten-

sively in Bosq [7]. Baraud et al. [4] study the finite sample risk performance of
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penalized least squares regression estimators under β-mixing. Kontorovich and

Ramanan [53] prove concentration of measure results based on a notion of mixing

defined therein which is related to the more common φ-mixing coefficients. Ould-

Saïd et al. [72] investigate kernel conditional quantile estimation under α-mixing.

Steinwart and Anghel [92] show that support vector machines are consistent for

time series forecasting under a weak dependence condition implied by α-mixing.

Asymptotic properties of nonparametric inference for time series under various

mixing conditions are described in Liu and Wu [59]. Finally, Lerasle [58] proposes

a block-resampling penalty for density estimation. He shows that the selected es-

timator satisfies oracle inequalities under both β- and τ-mixing.

Many common time series models are known to be β-mixing, and the rates of

decay are known up to constant factors which involve the true parameters of the

process. Among the processes for which such knowledge is available are ARMA

models [68], GARCH models [12], and certain Markov processes — see Doukhan

[28] for an overview of such results. Fryzlewicz and Subba Rao [37] derive upper

bounds for the α- and β-mixing rates of non-stationary ARCH processes. To my

knowledge, only Nobel [70] approaches a solution to the problem of actually esti-

mating mixing rates (rather than the coefficients themselves) by giving a method

to distinguish between different polynomial mixing rate regimes through hypoth-

esis testing.

In addition to the processes known to be mixing, functions of these processes

are β-mixing, as I show below. So if P∞ could be specified by a dynamic factor

model or DSGE or VAR, the observed data would be mixing since these processes

are functions of mixing processes.

Lemma 4.7. Let Y∞ be stationary and β-mixing with coefficients βa, a ∈ N. Then,

for a measurable function h, h(Y∞) := (. . . ,h(Y0:d),h(Y1:d+1), . . .) is β-mixing with

coefficients bounded by βa−d.
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Proof. By Equation 12 in Meir [65, §5], the sequence (. . . , Y0:d, Y1:d+1, . . .) is β-

mixing with coefficients bounded by βa−d. Since h is measurable, then σ(h(Yi:j))

is a sub-σ-field of σi:j. The result follows from the Definition 4.1. �

Knowledge of βa allows me to determine the effective sample size of a given

dependent data set Y1:n. In effect, having n dependent-but-mixing data points is

like having µ < n independent ones. Once I determine the correct µ, I can use

concentration results for IID data like those in Theorem 3.5 and Theorem 3.9 with

small corrections. One possible way of determining µ is to use the technique of

blocking described in the next section.

4.3 the blocking technique

To determine the effective sample size of a given data set, I use the method of

blocking outlined by Yu [104, 105].1 The purpose is to approximate a sequence of

dependent variables by an IID sequence. Consider a sample Y1:n from a stationary

β-mixing sequence. Let mn and µn be non-negative integers such that 2mnµn =

n. Now divide Y1:n into 2µn blocks, each of length mn. Identify the blocks as

follows:

Uj = {Yi : 2(j− 1)mn + 1 6 i 6 (2j− 1)mn}, (4.6)

Vj = {Yi : (2j− 1)mn + 1 6 i 6 2jmn}. (4.7)

As in Figure 3, let U be the entire sequence of odd blocks Uj (the first, third,

fifth, etc. blocks), and let V be the sequence of even blocks Vj. Finally, let U ′ be

a sequence of blocks which are independent of Y1:n but such that each block has

1 This technique is actually much older and is often attributed to Bernstein from 1924
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U1 V1 U2 V2 Uj Vj Uµn
Vµn

● ● ● ● ● ●

mn

mn

Figure 3: This figure shows how the blocks sequences U and V are constructed. There are
µ “even” blocks Uj and µ “odd” blocks Vj. Each block is of length mn.

the same distribution as a block from the original sequence. That is construct U ′j

such that

L(U ′j) = L(Uj) = L(U1), (4.8)

where L(·) means the probability law of the argument. The blocks U ′ are now an

IID block sequence, in that for integers i, j 6 2µn, i 6= j, U ′i ⊥⊥ U ′j, so standard

results about IID random variables can be applied to these blocks. See [105] for a

more rigorous analysis of blocking. Because the IID U ′ blocks are closely related

to the dependent U blocks, I can use the former to approximate the latter using

the following result.

Lemma 4.8 (Lemma 4.1 in [105]). Let φ be an event in the σ-field generated by the block

sequence U. Then,

|P̃(φ) − P
µn
1:mn

(φ)| 6 βmn(µn − 1), (4.9)

where P̃ is the joint distribution of the dependent block sequence U, and P
µn
1:mn

(φ) is the

distribution with respect to the independent sequence, U ′.

This lemma essentially gives a method for applying IID results to β-mixing data.

Because the dependence decays as the separation between blocks increases, widely

spaced blocks are nearly independent of each other. In particular, the difference

between probabilities with respect to these nearly independent blocks and proba-

bilities with respect to blocks which are actually independent can be controlled by

the β-mixing coefficient.
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Proof. I will demonstrate how to prove Lemma 4.8 in the simple case where mn =

1 and µn = n/2 to ease notation.

|P̃(Φ) − Pn/2(Φ)| 6
∣∣∣∣∣∣P̃ − Pn/2

∣∣∣∣∣∣
TV

(4.10)

6
∣∣∣∣∣∣P̃ − P×P3,5,...,n−1

∣∣∣∣∣∣
TV

+
∣∣∣∣∣∣P×P3,5,...,n−1 − Pn/2

∣∣∣∣∣∣
TV

(4.11)

=
∣∣∣∣∣∣P̃ − P×P3,5,...,n−1

∣∣∣∣∣∣
TV

+
∣∣∣∣∣∣P3,5,...,n−1 − P

n/2−1
∣∣∣∣∣∣
TV

(4.12)

6
∣∣∣∣∣∣P̃ − P×P3,5,...,n−1

∣∣∣∣∣∣
TV

+ ||P3,...,n−1 − P×P5,...,n−1||TV

+
∣∣∣∣∣∣P×P3,...,n−1 − Pn/2−1

∣∣∣∣∣∣
TV

(4.13)

=
∣∣∣∣∣∣P̃ − P×P3,...,n−1

∣∣∣∣∣∣
TV

+ ||P3,...,n−1 − P×P5,...,n−1||TV

+
∣∣∣∣∣∣P5,...,n−1 − Pn/2−2

∣∣∣∣∣∣
TV

(4.14)

6 · · · (induction) · · ·

6
∣∣∣∣∣∣P̃ − P×P3,...,n−1

∣∣∣∣∣∣
TV

+ ||P3,...,n−1 − P×P5,...,n−1||TV

+ · · ·+
∣∣∣∣Pn−3,n−1 − P2

∣∣∣∣
TV

. (4.15)

By Lemma 4.6, each total variation term is bounded by β1 and there are (n/2− 1)

terms giving the result. �

In the time series literature, mixing rates (and therefore the coefficients them-

selves) are assumed to be known. As mentioned in Section 4.2, many particular

process have rates which are known up to constant factors which depend on P∞.

However, in empirical work, one is faced with a particular data set generated by an

unknown process. In the next chapter, I construct a method for estimating mixing

coefficients from data without knowledge of P∞.
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5
E S T I M AT I N G M I X I N G

5.1 introduction

This chapter presents the first method for estimating the β-mixing coefficients for

stationary time series data given a single sample path. The methodology can be

applied to real data if one assumes that they were generated by some unknown

β-mixing process. Additionally, it can be used on processes known to be mixing

to determine exact mixing coefficients via simulation. Section 5.2 describes the es-

timator I propose. Section 5.3 presents a necessary preliminary result giving the

L1 convergence rates of histogram density estimators under β-mixing. Section 5.4

states and proves the consistency of our estimator as well as its behavior in fi-

nite samples. Section 5.5 demonstrates the performance of the estimator in some

simulations.

5.2 the estimator

The first step to deriving my estimator depends on recognizing that the distri-

bution of a finite sample depends only on finite-dimensional distributions. This

leads to an estimator of a finite-dimensional version of βa. Allowing the finite-

dimension to increase to infinity with the size of the observed sample gives a

consistent estimator of the infinite-dimensional coefficients.

42
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For positive integers d, and a, define

βda := ||P−d:0 ⊗Pa:a+d − P−d:0⊗a:a+d||TV . (5.1)

Let p̂d be the d-dimensional histogram estimator of the joint density of d consec-

utive observations, and let p̂2da be the 2d-dimensional histogram estimator of the

joint density of two sets of d consecutive observations separated by a time points.

I estimate βda from these two histograms. While it is clearly possible to replace

histograms with other choices of density estimators (most notably kernel density

estimators), histograms in this case are more convenient theoretically and com-

putationally as explained more fully in Section 5.6. Briefly, the major benefit of

histograms is that the total variation distance in Lemma 4.6 is computationally

simple regardless of the dimension of the target densities (which will be allowed

to approach infinity). If kernels are used instead, this integral will become increas-

ingly difficult to calculate. Define

β̂da :=
1

2

∫ ∣∣p̂2da − p̂d ⊗ p̂d
∣∣ (5.2)

I show in Theorem 5.5 that, by allowing d = dn to grow with n, this estimator

will converge on βa. This can be seen most clearly by bounding the `1-risk of the

estimator with its estimation and approximation errors:

|β̂dna −βa| 6 |β̂dna −βdna |+ |βdna −βa|. (5.3)

The first term is the error of estimating βda with a random sample of data. The

second term is the non-stochastic error induced by approximating the infinite

dimensional coefficient, βa, with its d-dimensional counterpart, βda. I thus begin

by proving the doubly asymptotic convergence of histogram density estimators

in Section 5.3, allowing both d → ∞ and n → ∞. Section 5.4 provides rates of

convergence for Markov processes and proves consistency for generally β-mixing

processes.
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5.3 L1 convergence of histograms

While convergence of density estimators is thoroughly studied in the statistics and

machine learning literatures, I am not aware of any results on the L1 convergence

of histograms under β-mixing, which is what this estimator needs.1 Therefore, I

now prove this convergence.

Additionally, the dimensionality of the target density is analogous to the order

of the Markov approximation. Therefore, the convergence rates I give are asymp-

totic in the bandwidth hn which shrinks as n increases, but also in the dimension

dn which increases with n. Even under these asymptotics, histogram estimation

in this sense is not a high dimensional problem. The dimension of the target den-

sity considered here is on the order of exp{W(logn)}, where W(·) is the Lambert

W function,2 a rate somewhere between logn and log logn.

Theorem 5.1. If p̂ is the histogram estimator based on a (possibly vector valued) se-

quence Y1:n from a β-mixing distribution with stationary density p, then for all ε >

E
[∫

|p̂− p|
]
,

P1:n

(∫
|p̂− p| > ε

)
6 2 exp

{
−
µnε

2
1

2

}
+ 2(µn − 1)βmn (5.4)

where ε1 = ε− E
[∫

|p̂− p|
]
.

To prove this result, I use the blocking method of Section 4.3 to transform the de-

pendent β-mixing sequence into a sequence of nearly independent blocks. I then

apply McDiarmid’s inequality to the blocks to derive asymptotics in the band-

width of the histogram as well as the dimension of the target density. Combining

1 Early papers on the L∞ convergence of kernel density estimators (KDEs) include [103, 6, 88]; Freed-
man and Diaconis [36] look specifically at histogram estimators, and Yu [104] considered the L∞
convergence of KDEs for β-mixing data and shows that the optimal IID rates can be attained. Tran
[94] proves L2 convergence for histograms under α- and β-mixing. Devroye and Györfi [25] ar-
gue that L1 is a more appropriate metric for studying density estimation, and Tran [93] proves L1

consistency of KDEs under α- and β-mixing.
2 The Lambert W function is defined as the (multivalued) inverse of f(w) = w exp{w}. Thus,
O(exp{W(logn)}) is bigger than O(log logn) but smaller than O(logn). See for example Corless
et al. [16].



5.3 L1 convergence of histograms 45

these lemmas allows me to derive rates of convergence for histograms based on

β-mixing inputs.

The following lemma provides the doubly asymptotic convergence of the his-

togram estimator for IID data. It differs from standard histogram convergence

results in the bias calculation. In this case I need to be more careful about the

interaction between d and hn.

Lemma 5.2. For an IID sample Z1, . . . ,Zn from some density f on Rd,

E

∫
dz|p̂(z) − E[p̂(z)]| = O

(
1/

√
nhdn

)
(5.5)∫

dz|E[p̂(z)] − p(z)| = O(dhn) +O(d
2h2n), (5.6)

where p̂ is the histogram estimate using a grid with sides of length hn.

Proof of Lemma 5.2. Let αj be the probability of falling into the jth bin Bj. Then,

E

∫
|p̂− E[p̂]| = hdn

J∑
j=1

E

[∣∣∣∣∣ 1

nhdn

n∑
i=1

1Bj(Zi) −
αj

hd

∣∣∣∣∣
]

(5.7)

6 hdn

J∑
j=1

1

nhdn

√√√√V

[
n∑
i=1

1Bj(Zi)

]
(5.8)

= hdn

J∑
j=1

1

nhdn

√
nαj(1−αj) (5.9)

=
1√
n

J∑
j=1

√
αj(1−αj) (5.10)

= O(n−1/2)O(h
−d/2
n ) = O

(
1/

√
nhdn

)
. (5.11)

For the second claim, consider the bin Bj centered at c. Let B be the union of all

bins Bj. Assume the following regularity conditions as in [35]:

1. p ∈ L2 and p is absolutely continuous on B, with a.e. partial derivatives

pi =
∂
∂zi
p(z)
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2. pi ∈ L2 and pi is absolutely continuous on B, with a.e. partial derivatives

pik = ∂
∂zk
pi(z)

3. pik ∈ L2 for all i,k.

Using a Taylor expansion

p(z) = p(c) +
d∑
i=1

(zi − ci)pi(c) +O(d2h2n). (5.12)

Therefore, αj is given by

αj =

∫
Bj

p(z)dz = hdnp(c) +O(d
2hd+2n ) (5.13)

since the integral of the second term over the bin is zero. This means that for the

jth bin,

E [p̂n(z)] − p(z) =
αj

hdn
− p(z) (5.14)

= −

d∑
i=1

(zi − ci)pi(c) +O(d2h2n). (5.15)

Therefore,

∫
Bj

|E [p̂n(z)] − p(z)| =

∫
Bj

∣∣∣∣∣−
d∑
i=1

(zi − ci)pi(c) +O(d2h2n)

∣∣∣∣∣ (5.16)

6
∫
Bj

∣∣∣∣∣−
d∑
i=1

(zi − ci)pi(c)

∣∣∣∣∣+
∫
Bj

O(d2h2) (5.17)

=

∫
Bj

∣∣∣∣∣
d∑
i=1

(zi − ci)pi(c)

∣∣∣∣∣+O(d2h2+dn ) (5.18)

= O(dhd+1n ) +O(d2h2+dn ) (5.19)
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Since each bin is bounded, I can sum over all J bins. The number of bins is J = h−dn

by definition, so

∫
dz |E [p̂n(z)] − p(z)| = O(h

−d
n )

(
O(dhd+1n ) +O(d2h2+dn )

)
(5.20)

= O(dhn) +O(d
2h2n). (5.21)

�

I can now prove the main result of this section.

Proof of Theorem 5.1. Let g be the L1 loss of the histogram estimator, g =
∫
|p− p̂n|.

Here p̂n(y) = 1
nhdn

∑n
i=1 1Bj(y)(Yi) where Bj(y) is the bin containing z. Let p̂U,

p̂V, and p̂U ′ be histograms based on the block sequences U, V, and U ′ respectively.

Clearly p̂n = 1
2(p̂U + p̂V). Now,

P1:n(g > ε) = P1:n

(∫
|p− p̂n| > ε

)
(5.22)

= P1:n

(∫ ∣∣∣∣p− p̂U

2
+
p− p̂V

2

∣∣∣∣ > ε) (5.23)

6 P1:n

(
1

2

∫
|p− p̂U|+

1

2

∫
|p− p̂V| > ε

)
(5.24)

= P1:n(gU + gV > 2ε) (5.25)

6 PU(gU > ε) + PV(gV > ε) (5.26)

= 2PU(gU − E[gU] > ε− E[gU]) (5.27)

= 2PU(gU − E[gU ′ ] > ε− E[gU ′ ]) (5.28)

= 2PU(gU − E[gU ′ ] > ε1), (5.29)

where ε1 = ε− E[gU ′ ]. Here,

E[gU ′ ] 6 E

∫
dz|p̂U ′ − E[p̂U ′ ]|+

∫
dz|E[p̂U ′ ] − p|, (5.30)
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so by Lemma 5.2, as long as µn → ∞, hn ↓ 0 and µnh
d
n → ∞, then for all ε

there exists n0(ε) such that for all n > n0(ε), ε > E[g] = E[gU ′ ]. Now applying

Lemma 4.8 to the the event {gU − E[gU ′ ] > ε1} gives

2PU(gU − E[gU ′ ] > ε1) 6 2PU ′(gU ′ − E[gU ′ ] > ε1) + 2(µn − 1)βmn (5.31)

where the probability on the right is for the σ-field generated by the independent

block sequence U ′. Since these blocks are independent, showing that gU ′ satisfies

the bounded differences requirement allows for the application of McDiarmid’s

inequality, Theorem 3.6, to the blocks. For any two block sequences u ′1:µn and

u ′1:µn with u ′` = u
′
` for all ` 6= j, then

∣∣gU ′(u ′1:µn) − gU ′(u ′1:µn)
∣∣ = ∣∣∣∣∫ |p̂(y; u ′1:µn) − p(y)|dy−

∫
|p̂(y; u ′1:µn) − p(y)|dy

∣∣∣∣
(5.32)

6
∫
|p̂(y; u ′1:µn) − p̂(y; u ′1:µn)|dy (5.33)

=
2

µnhdn
hdn =

2

µn
. (5.34)

Therefore,

P1:n(g > ε) 6 2PU(gU ′ − E[gU ′ ] > ε1) + 2(µn − 1)βmn (5.35)

6 2 exp
{
−
µnε

2
1

2

}
+ 2(µn − 1)βmn . (5.36)

�

5.4 properties of this estimator

In this section, I derive some properties of my proposed estimator. A finite sample

bound for the estimation error is the first step to establishing consistency for β̂dna .

This result gives convergence rates for estimation of the finite dimensional mixing
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coefficient βda and also for Markov processes of known order d, since in this case,

βda = βa. A second result shows convergence of the approximation error. Taken

together, I can show that under some conditions β̂dna is consistent.

Theorem 5.3. Consider a sample Y1:n from a stationary β-mixing process P∞. Let µn

and mn be positive integers such that 2µnmn 6 n and µn > d > 0. Then

P1:n(|β̂
d
a −β

d
a| > ε) 6 2 exp

{
−
µnε

2
1

2

}
+ 2 exp

{
−
µnε

2
2

2

}
+ 4(µn − 1)βmn ,

(5.37)

where ε1 = ε/2− E
[∫

|p̂d − pd|
]

and ε2 = ε− E
[∫

|p̂2da − p2da |
]
.

The proof of Theorem 5.3 relies on the triangle inequality and the relationship

between total variation distance and the L1 distance between densities.

Proof of Theorem 5.3. For any probability measures ν and λ defined on the same

probability space with associated densities pν and pλ with respect to some domi-

nating measure π,

||ν− λ||TV =
1

2

∫
|pν − pλ|d(π). (5.38)

Note that by stationarity, ∀t ∈ N, P0:d = Pt:t+d in the notation of Lemma 4.6.

Let P−d:0⊗a:a+d be the joint distribution of the bivariate random process created

by the initial process and itself separated by a time steps. By the triangle inequal-
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ity, one can upper bound βda for any d = dn. Let P̂0:d and P̂−d:0⊗a:a+d be the

distributions associated with histogram estimators p̂d and p̂2da respectively. Then,

βda = ||P0:d ⊗P0:d − P−d:0⊗a:a+d||TV (5.39)

=
∣∣∣∣∣∣P0:d ⊗ P0:d − P̂0:d ⊗ P̂0:d + P̂0:d ⊗ P̂0:d

− P̂−d:0⊗a:a+d + P̂−d:0⊗a:a+d − P−d:0⊗a:a+d

∣∣∣∣∣∣
TV

(5.40)

6
∣∣∣∣∣∣P0:d ⊗P0:d − P̂0:d ⊗ P̂0:d

∣∣∣∣∣∣
TV

+
∣∣∣∣∣∣P̂0:d ⊗ P̂0:d − P̂−d:0⊗a:a+d

∣∣∣∣∣∣
TV

+
∣∣∣∣∣∣P̂−d:0⊗a:a+d − P−d:0⊗a:a+d

∣∣∣∣∣∣
TV

(5.41)

6 2
∣∣∣∣∣∣P0:d − P̂0:d

∣∣∣∣∣∣
TV

+
∣∣∣∣∣∣P̂0:d ⊗ P̂0:d − P̂−d:0⊗a:a+d

∣∣∣∣∣∣
TV

+
∣∣∣∣∣∣P̂−d:0⊗a:a+d − P−d:0⊗a:a+d

∣∣∣∣∣∣
TV

(5.42)

=

∫
|pd − p̂d|+

1

2

∫
|p̂d ⊗ p̂d − p̂2da |+

1

2

∫
|p2da − p̂2da | (5.43)

where 12
∫
|p̂d ⊗ p̂d − p̂2da | is our estimator β̂da and the remaining terms are the L1

distance between a density estimator and the target density. Thus,

βda − β̂
d
a 6
∫
|fd − p̂d|+

1

2

∫
|f2da − p̂2da |. (5.44)

A similar argument starting from βda = ||P0:d ⊗P0:d − P−d:0⊗a:a+d||TV shows

that

βda − β̂
d
a > −

∫
|pd − p̂d|−

1

2

∫
|p2da − p̂2da |, (5.45)

so ∣∣∣βda − β̂da∣∣∣ 6 ∫ |pd − p̂d|+ 12
∫
|p2da − p̂2da |. (5.46)
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Therefore,

P
(∣∣∣βda − β̂da∣∣∣ > ε) 6 P

(∫
|pd − p̂d|+

1

2

∫
|p2da − p̂2da | > ε

)
(5.47)

6 P

(∫
|pd − p̂d| >

ε

2

)
+ P

(
1

2

∫
|p2da − p̂2da | >

ε

2

)
(5.48)

6 2 exp
{
−
µnε

2
1

2

}
+ 2 exp

{
−
µnε

2
2

2

}
(5.49)

+ 4(µn − 1)βmn , (5.50)

where ε1 = ε/2− E
[∫

|p̂d − pd|
]

and ε2 = ε− E
[∫

|p̂2da − p2da |
]
. �

Consistency of the estimator β̂da is guaranteed only for certain choices ofmn and

µn. Clearly µn →∞ and µnβmn → 0 as n→∞ are necessary conditions. Consis-

tency also requires convergence of the histogram estimators to the target densities

as given in the previous section. As an example to show that this bound can go

to zero with proper choices of mn and µn, the following corollary proves con-

sistency for first order Markov processes. Consistency of the estimator for higher

order Markov processes can be proven similarly. These processes are geometrically

β-mixing as shown in e.g. Nummelin and Tuominen [71].

Corollary 5.4. Let Y1:n be a sample from a first order Markov process with βa = β1a =

O(ρ−a) for some ρ > 1. Then under the conditions of Theorem 5.3,

E
[
|β̂1a −βa|

]
= O

√W (
2
3n log ρ

)
n

 (5.51)

where W(·) is the Lambert W function.
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Proof. Here, c are various constants.

E
[
|β̂1a −βa|

]
=

∫∞
0

dεP1:n

(
|β̂1a −βa| > ε

)
(5.52)

=

∫1
0

dεP1:n

(
|β̂1a −βa| > ε

)
(5.53)

6 c
∫1
0

dε exp(−cµnε2) +
∫1
0

dεcµnβmn (5.54)

6

√
c

µn
+ cµnρ

−a. (5.55)

These two terms are balanced by taking

µn = O

(
n

W
(
2
3n log ρ

)) (5.56)

giving the result. �

My main result in this section establishes consistency of β̂dna as an estimator

of βa for all β-mixing processes provided dn increases at an appropriate rate.

Theorem 5.3 gives finite sample bounds on the estimation error while some mea-

sure theoretic arguments show that the approximation error must go to zero as

dn →∞.

Theorem 5.5. Let Y1:n be a sample from an arbitrary β-mixing process.Let

dn = O(exp{W(logn)}) where W is the Lambert W function. Then β̂dna
P−→ βa as

n→∞.

The proof of Theorem 5.5 requires two steps which are given in the following

Lemmas. The first specifies the histogram bandwidth hn and the rate at which

dn (the dimensionality of the target density) goes to infinity. If the dimensionality

of the target density were fixed, one could achieve rates of convergence similar

to those for histograms based on IID inputs. However, I wish to allow the dimen-

sionality to grow with n, so the rates are much slower as shown in the following

lemma.
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Lemma 5.6. For the histogram estimator in Lemma 5.2, let

dn ∼ exp{W(logn)}, (5.57)

hn ∼ n−kn , (5.58)

with

kn =
W(logn) + 1

2 logn
logn

(
1
2 exp{W(logn)}+ 1

) . (5.59)

These choices lead to the optimal rate of convergence.

Proof. Let hn = n−kn for some kn to be determined. Then I need

n−1/2h
−dn/2
n = n(kndn−1)/2 → 0, (5.60)

dnhn = dnn
−k → 0, (5.61)

and

d2nh
2
n = d2nn

−2k → 0 (5.62)

as well as n→∞. Taking (5.60) and (5.61) first gives

n(kndn−1)/2 ∼ dnn
−kn (5.63)

⇒ 1

2
(kndn − 1) logn ∼ logdn − kn logn (5.64)

⇒ kn logn
(
1

2
dn + 1

)
∼ logdn +

1

2
logn (5.65)

⇒ kn ∼
logdn + 1

2 logn
logn

(
1
2dn + 1

) . (5.66)

Similarly, combining (5.60) and (5.62) gives

kn ∼
2 logdn + 1

2 logn
logn

(
1
2dn + 2

) . (5.67)

Equating (5.66) and (5.67) and solving for dn gives

⇒ dn ∼ exp {W(logn)} (5.68)
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where W(·) is the Lambert W function. Substituting back into (5.66) gives that

hn = n−kn (5.69)

where

kn =
W(logn) + 1

2 logn
logn

(
1
2 exp {W(logn)}+ 1

) . (5.70)

�

It is also necessary to show that as d grows, βda → βa. I now state this result.

For the proof, see Appendix A.

Lemma 5.7. βda converges to βa as d→∞.

The basic idea of the proof is to show that βda is a monotone increasing sequence

in d which is bounded above by βa. Therefore it must be that limd→∞ βda 6 βa.

Showing that the limit is equal to βa uses the Hahn decomposition theorem and

some measure theoretic results.

I can now prove my main result in Theorem 5.5: that β̂da is a consistent estimator

of βa.

Proof of Theorem 5.5. By the triangle inequality,

|β̂dn(a) −βa| 6 |β̂dn(a) −βdn(a)|+ |βdn(a) −βa|.

The first term on the right is bounded by the result in Theorem 5.3, where I have

shown that dn = O(exp{W(logn)}) is slow enough for the histogram estimator to

remain consistent. That βdn(a) dn→∞−−−−→ βa follows from Lemma 5.7. �

5.5 performance in simulations

To demonstrate the performance of our proposed estimator, I examine its perfor-

mance in three simulated examples. The first example is a simple two state Markov
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A B
pA,B = 1/2

pB,A = 1

pA,A = 1/2

Figure 4: This figure shows the two-state Markov chain St used for simulation results

chain. The second example takes this Markov chain as an unobserved input and

outputs a non-Markovian binary sequence which remains β-mixing. Finally, I ex-

amine an autoregressive model.

As shown in [17], homogeneous recurrent Markov chains are geometrically β-

mixing, i.e. βa = O(ρ−a) for some ρ > 1. In particular, if the Markov chain has

stationary distribution P1 and a-step transition distribution Ta, then

βa =

∫
P1(dy) ||T

a(y) − P1||TV . (5.71)

Consider first the two-state Markov chain St pictured in Figure 4. By direct

calculation using (5.71), the mixing coefficients for this process are βa = 4
9

(
1
2

)a
.

I simulated chains of length n = 1000 from this Markov model. Based on 1000

replications, the performance of the estimator is depicted in Figure 5. Here, I

have used two bins in all cases, but I allow the Markov approximation to vary as

d ∈ {1, 2, 3}, even though d = 1 is exact. The estimator performs well for a 6 5,

but begins to exhibit a positive bias as a increases. This is because the estimator

is nonnegative, whereas the true mixing coefficients are quickly approaching zero.

The upward bias is exaggerated for larger d. This bias will go to 0 as n→∞.

As an example of a long memory process, I construct, following Weiss [100], a

partially observable Markov process which is referred to as the “even process”.
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Figure 5: This figure illustrates the performance of our proposed estimator for the two-
state Markov chain depicted in Figure 4. I simulated length n = 1000 chains
and calculated β̂d(a) for d = 1 (circles), d = 2 (triangles), and d = 3 (squares).
The dashed line indicates the true mixing coefficients. I show means and 95%
confidence intervals based on 1000 replications.

Let Xt be the observed sequence which takes as input the Markov process St

constructed above. One observes

Xt =


1 (St,St−1) = (A,B) or (B,A)

0 else.
(5.72)

Since St is Markovian, the joint process (St,St−1) is as well, so I can calculate its

mixing rate βa = 8
9

(
1
2

)a
. The even process must also be β-mixing, and at least

as fast as the joint process, since it is a measurable function of a mixing process.

However, Xt itself is non-Markovian: sequences of one’s must have even lengths,

so I need to know how many one’s have been observed to know whether the next

observation can be zero or must be a one. Thus, the true mixing coefficients are

bounded above by 8
9

(
1
2

)a
due to Lemma 4.7, but the coefficients of the observed

process areunknown. Using the same procedure as above, Figure 6 shows the

estimated mixing coefficients. Again one observes a bias for a large due to the

nonnegativity of the estimator.
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2 4 6 8 10
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Figure 6: This figure illustrates the performance of our proposed estimator for the even
process. Again, I simulated length n = 1000 chains and calculated β̂d(a) for d =
1 (circles), d = 2 (triangles), and d = 3 (squares). The dashed line indicates an
upper bound on the true mixing coefficients. I show means and 95% confidence
intervals based on 1000 replications.

Finally, I estimate the β-mixing coefficients for an AR(1) model

Zt = 0.5Zt−1 + ηt ηt
iid
∼ N(0, 1). (5.73)

While, this process is Markovian, there is no closed form solution to (5.71), so

I calculate it via numerical integration. Figure 7 shows the performance of the

estimator for d = 1. I select the bandwidth h for each a by minimizing

E[|β̂(a) −βa|] (5.74)

where I calculate the expectation based on independent simulations from the pro-

cess. Figure 7 shows the performance for n = 3000. The optimal number of bins

is 33, 11, 7, 5, and 3 for a = 1, . . . , 5 and 1 for a > 5. However, since the use of one

bin corresponds to an estimate of zero, the figure plots the estimate with two bins.

Using two bins, one again sees the positive bias for a > 5.
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Figure 7: This figure illustrates the performance of our proposed estimator for the AR(1)
model. I simulated time series of length n = 3000 chains and calculated β̂(a)
for d = 1. The dashed line indicates the true mixing coefficients calculated via
numerical integration. I show sample means and 95% confidence intervals based
on 1000 replications.

5.6 discussion

I have shown that my estimator of the β-mixing coefficients is consistent for the

true coefficients βa under some conditions on the data generating process. There

are numerous results in the statistics literature which assume knowledge of the

β-mixing coefficients, yet as far as I know, this is the first estimator for them.

An ability to estimate these coefficients will allow researchers to apply existing

results to dependent data without the need to arbitrarily assume their values.

Additionally, it will allow probabilists to recover unknown mixing coefficients for

stochastic processes via simulation. Several other mixing and weak-dependence

coefficients also have a total-variation flavor, perhaps most notably α-mixing [28,

18, 9]. None of them have estimators, and the same trick might well work for them,

too. Despite the obvious utility of this estimator, as a consequence of its novelty,

it comes with a number of potential extensions which warrant careful exploration

as well as some drawbacks.
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Theorem 5.5 does not provide a convergence rate. The rate in Theorem 5.3 ap-

plies only to the difference between β̂d(a) and βda. In order to provide a rate in

Theorem 5.5, one would need a better understanding of the non-stochastic con-

vergence of βda to βa. It is not immediately clear that this quantity can converge

at any well-defined rate. In particular, it seems likely that the rate of convergence

depends on the tail of the sequence {βa}
∞
a=1.

The use of histograms rather than kernel density estimators for the joint and

marginal densities is surprising and perhaps not ultimately necessary. As men-

tioned above, Tran [93] proved that KDEs are consistent for estimating the station-

ary density of a time series with β-mixing inputs, so perhaps one could replace the

histograms in our estimator with KDEs. However, this would need an analogue

of the double asymptotic results proven for histograms in Lemma 5.2. In partic-

ular, one needs to estimate increasingly higher dimensional densities as n → ∞.

This does not cause a problem of small-n-large-d since d is chosen as a function

of n, however it will lead to increasingly higher dimensional integration. For his-

tograms, the integral is always trivial, but in the case of KDEs, the numerical

accuracy of the integration algorithm becomes increasingly important. This issue

could swamp any statistical efficiency gains obtained through the use of kernels.

However, this question certainly warrants further investigation.

The main drawback of an estimator based on a density estimate is its complex-

ity. The mixing coefficients are functionals of the joint and marginal distributions

derived from the stochastic process Y∞, however, it is unsatisfying to estimate

densities and solve integrals in order to estimate a single number. Vapnik’s main

principle for solving problems using a restricted amount of information is “When

solving a given problem, try to avoid solving a more general problem as an inter-

mediate step [97, p. 30].” However, despite my estimator’s complexity, I am able

to obtain nearly parametric rates of convergence to the Markov approximation

departing only by logarithmic factors.
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B O U N D S F O R S TAT E S PA C E M O D E L S

With the relevant background in Chapters 3–5 in place, I can put the pieces to-

gether to present my results. I use β-mixing to find out how much information is

in the data and VC dimension to measure the capacity of the state-space model’s

prediction functions. The result is a bound on the generalization error of the cho-

sen function f̂. In the remainder of this section, I redefine the appropriate concepts

in the time series forecasting scenario, I state the necessary assumptions for our

results, and I derive risk bounds for wide classes of economic forecasting models.

Section 6.1 states and proves risk bounds for the time series forecasting setting,

while I demonstrate how to use the results in Section 6.2. Section 6.4 discusses

the use of risk bounds for model selection. Finally, Section 6.5 concludes and illus-

trates the path toward generalizing our methods to more elaborate model classes.

6.1 risk bounds

6.1.1 Setup and assumptions

Consider a finite subsequence of random vectors Y1:n from a process Y∞ defined

on a probability space (Ω,σ∞, P∞) such that Yi ∈ Rp. I make the following as-

sumption on the infinite process.

61
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Assumption C. Assume that P∞ is a stationary, β-mixing distribution with known

mixing coefficients βa, ∀a > 0.

Under stationarity, the marginal distribution of Yt is the same for all t. I am

mainly concerned with the joint distribution of sequences Y1:n+1 wherein one

observes the first n observations and attempts to predict time n+ 1. For the re-

mainder of this chapter, I will call this joint distribution P. My results are easily

extended to the case of predicting more than one step ahead, but the notation

becomes cumbersome.

One defines generalization error and training error in the time series setting

slightly differently than in the IID setting. First one needs an appropriate loss

function. I will take the loss function ` to be some norm ||·|| on Rp, and I will

consider prediction functions f : Rn×p → Rp

Definition 6.1 (Time series risk).

Rn(f) := EP1:n+1

[
||Yn+1 − f(Yn

1 )||
]
. (6.1)

The expectation is taken with respect to the joint distribution P and therefore

depends on n. One may use some or all of the past to generate predictions. A

function which takes only the most recent d observations as inputs will be referred

to as having fixed memory d. Other functions have growing memory, i.e., one may

use all the previous data to predict the next data point. For this reason, I define

two versions of the training error depending on whether or not the memory of the

prediction function f is fixed.

Definition 6.2 (Time series training error with memory d).

R̂n(f) :=
1

n− d− 1

n−1∑
i=d

||Yi+1 − f(Yi−d+1:i)|| (6.2)
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Definition 6.3 (Time series training error with growing memory).

R̃n(f) :=
1

n− d− 1

n−1∑
i=d

||Yi+1 − f(Y1:i)|| (6.3)

The first case is useful for standard autoregressive forecasting methods, while

the second case is applicable to ARMA models, DSGEs, and linear state space

models. Additionally, I am writing f as a fixed function, but the dimension of

the argument changes with i. This is not an issue for functions which are linear

in the data, as is the case with ARMA models, linear state-space models, and

linearized DSGEs (see Section 2.3). For nonlinear models, I will consider only the

fixed memory version.

6.1.2 Fixed memory

I begin with the fixed memory setting before allowing the memory length to grow.

Theorem 6.4. Given a sample Y1:n such that Assumption B and Assumption C hold,

suppose that the model class F has a fixed memory length d < n. Let µ and a be integers

such that 2µa+ d 6 n. Then, for all ε > 0,

P1:n

(
sup
f∈F

Rn(f) − R̂n(f)

Rn(f)
> ε

)

6 8 exp
{

VCD(F)

(
ln

2µ

VCD(F)
+ 1

)
−

µε2

4τ2(q)M2

}
+ 2(µ− 1)βa−d, (6.4)

where τ(q) = q

√
1
2

(
q−1
q−2

)q−1
.

The implications of this theorem are considerable. Given a finite number of

observations n, one can say that with high probability, future relative prediction

errors will not be much larger than our observed training errors. It makes no dif-

ference whether the model is correctly specified. This stands in stark contrast to

model selection tools like AIC or BIC which appeal to asymptotic results as in
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Claeskens and Hjort [15]. Moreover, given some model class F, one can say ex-

actly how much data is required to have good control of the prediction risk. As

the effective data size increases, the righthand side goes to zero given appropri-

ate mixing rates and so the training error is a better and better estimate of the

generalization error.

One way to understand this theorem is to visualize the tradeoff between confi-

dence ε and effective data µ. Consider the following, drastically simplified version

of the result

P1:n

(
sup
f∈F

Rn(f) − R̂n(f)

Rn(f)
> ε

)
6 8 exp

{
ln 2µ+ 1−

µε2

4

}
(6.5)

where I have taken the VC dimension to be one and I ignore the extra penalty

from the mixing coefficient—i.e. βa = 0, ∀a > 0 and therefore µ = n. The goal is

to minimize ε, thereby ensuring that the relative difference between the expected

risk and the training risk is small. At the same time I want to minimize the right

side of the bound so that the probability of “bad” outcomes — events such that

the relative difference in risks exceeds ε — is small. Of course I want to do this

with as little data as possible, but the smaller I take ε, the larger I must take µ to

compensate. I illustrate this tradeoff in Figure 8.

The relative difference between expected and empirical risk is only interesting

between zero and one. By construction, it can be no larger than one since R̂n(f) > 0,

and due to the supremum, events where the training error exceeds the expected

risk are irrelevant. Therefore, I am only concerned with 0 6 R̂(f) 6 Rn(f), so I

need only consider 0 6 ε 6 1.

The figure is structured so that movement toward the origin is preferable. I

have tighter control on the difference in risks with less data. But moving in that

direction leads to an increased probability of the bad event — that the difference in

risks exceeds ε. The bound becomes trivial below the solid black line (the formula

says that the bad event occurs with probability larger than one). The desire for the
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Figure 8: Visualizing the tradeoff between confidence (ε, y-axis) and effective data (µ, x-
axis). The black curve indicates the region where the bound becomes trivial.
Below this line, the probability is bounded by 1. Darker colors indicate lower
probability of the “bad” event — that the difference in risks exceeds ε. The
colors correspond to the natural logarithm of the bound on this probability.

bad event to occur with low probability forces the decision boundary to the upper

right.

Another way to interpret the plot is as a set of indifference curves. Anywhere

in the same color region is equally desirable in the sense that the probability of

bad events is the same. So if I faced a budget constraint trading ε and data (i.e. a

line with negative slope), I could optimize within the budget set to find the lowest

probability allowable.

Before I prove Theorem 6.4 I will state a corollary the form of which is occasion-

ally more convenient.

Corollary 6.5. Under the conditions of Theorem 6.4, with probability at least 1− η, for

all η > 2(µ− 1)βa−d, the following bound holds simultaneously for all f ∈ F (including

the minimizer of the empirical risk f̂):

Rn(f) 6
R̂n(f)

(1− E)+
. (6.6)
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Here

E =
2Mτ(q)
√
µ

√
VCD(F)

(
ln

2µ

VCD(F)
+ 1

)
− ln(η ′/8), (6.7)

η ′ = η− 2(µ− 1)βa−d, τ(q) = q

√
1
2

(
q−1
q−2

)q−1
, and (u)+ = max(u, 0).

Proof of Theorem 6.4. The first step is to move from the actual sample size n to the

effective sample size µwhich depends on the β-mixing behavior. Now divide Y1:n

into 2µ blocks, each of length a. Identify “odd” blocks U and “even” blocks V as

in Chapter 4. To repeat,

Uj = {Yi : 2(j− 1)a+ 1 6 i 6 (2j− 1)a}, (6.8)

Vj = {Yi : (2j− 1)a+ 1 6 i 6 2ja}. (6.9)

Let U = {Uj}
µ
j=1 and let V = {Vj}

µ
j=1. Finally, let U ′ be a sequence of blocks which

are independent of Y1:n but such that each block has the same distribution as a

block from the original sequence — i.e.

L(U ′j) = L(Uj) = L(U1). (6.10)
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Let R̂U(f), R̂U ′(f), and R̂V(f) be the empirical risk of f based on the block se-

quences U, U ′, and V respectively. Clearly R̂n(f) = 1
2(R̂U(f) + R̂V(f)). Define τ(q)

as in the statement of the theorem. Then,

P1:n

(
sup
f∈F

Rn(f) − R̂n(f)

Rn(f)
> ε

)

= P1:n

(
sup
f∈F

[
Rn(f) − R̂U(f)

2Rn(f)
+
Rn(f) − R̂V(f)

2Rn(f)

]
> ε

)
(6.11)

6 P1:n

(
sup
f∈F

Rn(f) − R̂U(f)

Rn(f)
+ sup
f∈F

Rn(f) − R̂V(f)

Rn(f)
> 2ε

)
(6.12)

6 PU

(
sup
f∈F

Rn(f) − R̂U(f)

Rn(f)
> ε

)
+ PV

(
sup
f∈F

Rn(f) − R̂V(f)

Rn(f)
> ε

)
(6.13)

= 2PU

(
sup
f∈F

Rn(f) − R̂U(f)

Rn(f)
> ε

)
. (6.14)

Now, apply Lemma 4.8 to the the event
{

supf∈F
Rn(f)−R̂U(f)

Rn(f)
> ε
}

. This allows one

to move from statements about dependent blocks to statements about independent

blocks with a slight correction. Therefore,

2PU

(
sup
f∈F

Rn(f) − R̂U(f)

Rn(f)
> ε

)

6 2PU ′

(
sup
f∈F

Rn(f) − R̂U ′(f)

Rn(f)
> ε

)
+ 2(µ− 1)βa−d

(6.15)

where the probability on the right is for the σ-field generated by the independent

block sequence U ′. For convenience, define

Rqn(f) := E [||Yn+1 − f(Yn1 ))||
q] (6.16)
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despite the obvious abuse of notation. Then,

PU ′

(
sup
f∈F

Rn(f) − R̂U ′(f)

Rn(f)
> ε

)

= PU ′

(
sup
f∈F

Rn(f) − R̂U ′(f)

Rn(f)

1

M
>
ε

M

)
(6.17)

6 PU ′

(
sup
f∈F

Rn(f) − R̂U ′(f)

Rn(f)

Rn(f)
q
√
R
q
n(f)

>
ε

M

)
(6.18)

= PU ′

(
sup
f∈F

Rn(f) − R̂U ′(f)
q
√
R
q
n(f)

>
ε

M

)
(6.19)

= PU ′

(
sup
f∈F

Rn(f) − R̂U ′(f)
q
√
R
q
n(f)

> τ(q)
ε

Mτ(q)

)
(6.20)

6 8 exp
{

VCD(F)

(
ln

2µ

VCD(F)
+ 1

)
−

µε2

4M2τ2(q)

}
+ 2(µ− 1)βa−d, (6.21)

where I have applied Theorem 3.17 to bound the independent blocks. This result

is Theorem 6.4. To prove the corollary, set the right hand side equal to η, taking

η ′ = η− 2(µ− 1)βa−d, and solve for ε. Then for all f ∈ F, with probability at least

1− η,
Rn(f) − R̂n(f)

Rn(f)
6 ε. (6.22)

Solving the equation

η ′ = 8 exp
{

VCD(F)

(
ln

2µ

VCD(F)
+ 1

)
−

µε2

4M2τ2(q)

}
(6.23)

implies

ε =
2Mτ(q)
√
µ

√
VCD(F)

(
ln

2µ

VCD(F)
+ 1

)
− ln(η ′/8) =: E. (6.24)

�

The only obstacle to the use of Theorem 6.4 is knowledge of the VCD(F). For

some models, the VC dimension can be calculated explicitly.



6.1 risk bounds 69

Theorem 6.6. For FAR(d) the class of AR(d) models

VCD(FAR(d)) = d+ 1. (6.25)

Proof. The VC dimension of a linear classifier f : Rd → {0, 1} is d (cf. Vapnik [97]).

Real valued predictions have an extra degree of freedom. �

Corollary 6.7. The class of vector autoregressive models with d lags and k time series has

VC dimension kd+ 1.

Proof. Here, I am interested in the VC dimension of a multivariate linear classi-

fier. Thus, I must be able to shatter collections of vectors where each vector is a

binary sequence of length k. For a VAR, each coordinate is independent, thus, I

can shatter a collection of vectors if I can shatter each coordinate projection. The

result then follows from Theorem 6.6. �

Theorem 6.6 applies equally to Bayesian ARs. However, this is likely too conser-

vative as the prior tends to restrict the effective complexity of the function class.1

6.1.3 Growing memory

Of course, the vast majority of macroeconometric forecasting models have grow-

ing memory rather than fixed memory. These model classes include dynamic fac-

tor models, ARMA models, and linearized dynamic stochastic general equilibrium

models. However, all of these models have the property that forecasts are linear

functions of past observations, and in particular, the weight placed on the past de-

cays exponentially under suitable conditions. For this reason, I can recover bounds

similar to my previous results even for state-space models.

1 Here I should mention that these risk bounds are frequentist in nature. My meaning is that if I treat
Bayesian methods as a regularization technique and predict with the posterior mean or mode, then
our results hold. However, from a subjective Bayesian perspective, our results add nothing since all
inference can be derived from the posterior. For further discussion of the frequentist risk properties
of Bayesian methods under mis-specification, see for example Kleijn and van der Vaart [51], Müller
[69] or Shalizi [84]
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Linear predictors with growing memory have the following form with 1 6 d <

n:

Ŷn+1d+1 = BYn1 (6.26)

where

B =



bd,1 · · · bd,d

0
bd+1,1 · · · bd+1,d bd+1,d+1

...
...

. . .

bn,1 · · · bn.d bn,d+1 · · · bn,n


. (6.27)

With this notation, I can prove the following result about the growing memory

linear predictor.

Theorem 6.8. Given a sample Yn1 such that Assumption B and Assumption C hold,

suppose that the model class F is linear in the data and has growing memory. Fix some

1 6 d < n. Then the following bound holds simultaneously for all f ∈ F (including the

minimizer of the empirical risk f̂). Let µ and a be integers such that 2µa+ d 6 n. Then,

P1:n

(
sup
f∈F

Rn(f) − R̃n(f) −∆d(f)

Rn(f)
> τ(q)ε

)

6 8 exp
{

VCD(F)

(
ln

2µ

VCD(F)
+ 1

)
−

µε2

4τ2(q)M2

}
+ 2(µ− 1)βa−d,

(6.28)

where

∆d(f) = E
[
||Y1||

] ∣∣∣∣∣∣
∣∣∣∣∣∣
n−d∑
j=1

bn,j

∣∣∣∣∣∣
∣∣∣∣∣∣+ 1

n− d− 1

n−1∑
i=d+1

∣∣∣∣∣∣
∣∣∣∣∣∣
i−d∑
j=1

bi,jyj

∣∣∣∣∣∣
∣∣∣∣∣∣ . (6.29)
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The ∆d(f) term deserves some explanation. It arrises by approximating the

growing memory predictor with a finite sample version. The result is an implicit

tradeoff: as d ↗ n, ∆d(f) ↘ 0, but this drives µ ↘ 0, resulting in fewer effec-

tive training points whereas larger d has the opposite effect. Also, ∆d(f) depends

on E
[
||Y1||

]
which is not necessarily desirable. However, Assumption C has the

consequence that there exists L such that E
[
||Y1||

]
6 L < ∞. Finally, I will need∑n

j=1

∣∣∣∣bi,j∣∣∣∣ to be bounded ∀n or ∆d(f)→∞ as n→∞.

Corollary 6.9. The following bound holds simultaneously for all f ∈ F (including the

minimizer of the empirical risk f̂). Let µ and a be integers such that 2µa+ d 6 n. Then,

with probability at least 1− η, for η as in Theorem 6.4,

Rn(f) 6
R̃n(f) +∆d(f)

(1− E)+
(6.30)

where E and η ′ are as in Theorem 6.4.

Proof of Theorem 6.8 and Corollary 6.9. Let F be indexed by the parameters of the

growing memory model. Let F ′ be the same class of models, but predictions are

made based on the truncated memory length d. Then, for any f ∈ F, and f ′ ∈ F ′

Rn(f) − R̃n(f) 6 (Rn(f) − Rn(f
′)) + (Rn(f

′) − R̂n(f
′)) + (R̂n(f

′) − R̃n(f)). (6.31)

I will need to handle all three terms. The first and third terms are similar. Let B

be as above and define the truncated linear predictor to have the same form but

with B replaced by

B ′ =



bd,1 bd,2 · · · bd,d

0
bd+1,2 · · · bd+1,d bd+1,d+1

0
. . .

bn,n−d+1 · · · bn,n


. (6.32)
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Then notice that

R̂n(f
′) − R̃n(f) 6 |R̂n(f

′) − R̃n(f)| (6.33)

=

∣∣∣∣∣ 1

n− d− 1

n−1∑
i=d

||Yi+1 − biYi−d+1:i||

−
1

n− d− 1

n−1∑
i=d

∣∣∣∣Yi+1 − b ′iYi−d+1:i
∣∣∣∣∣∣∣∣∣ (6.34)

6
1

n− d− 1

n−1∑
i=d

∣∣∣∣(bi − b ′i)Yi−d+1:i
∣∣∣∣ (6.35)

by the triangle inequality where bi is the ith row of B and analogously for b ′i.

Therefore

R̂n(f
′) − R̃n(f) 6

1

n− d− 1

n−1∑
i=d

∣∣∣∣(bi − b ′i)Y
i
i−d+1

∣∣∣∣ (6.36)

=
1

n− d− 1

n−1∑
i=d

∣∣∣∣∣∣
∣∣∣∣∣∣
i−d∑
j=1

bi,jyj

∣∣∣∣∣∣
∣∣∣∣∣∣ (6.37)

For the case of the expected risk, I need only consider the first rows of B and B ′.

Using linearity of expectations and stationarity

Rn(f) − Rn(f
′) 6 E

[
||Y1||

] ∣∣∣∣∣∣
∣∣∣∣∣∣
n−d∑
j=1

bn,j

∣∣∣∣∣∣
∣∣∣∣∣∣ . (6.38)

Then,

Rn(f) − R̃n(f) −∆d(f) 6 Rn(f
′) − R̂n(f

′) (6.39)

where

∆d(f) = E
[
||Y1||

] ∣∣∣∣∣∣
∣∣∣∣∣∣
n−d∑
j=1

bn,j

∣∣∣∣∣∣
∣∣∣∣∣∣+ 1

n− d− 1

n−1∑
i=d

∣∣∣∣∣∣
∣∣∣∣∣∣
i−d∑
j=1

bi,jyj

∣∣∣∣∣∣
∣∣∣∣∣∣ (6.40)

Divide through by Rn(f) and take the supremum over F and F ′

sup
f∈F

Rn(f) − R̃n(f) −∆d(f)

Rn(f)
6 sup
f ′∈F ′,f∈F

Rn(f
′) − R̂n(f

′)

Rn(f)
. (6.41)
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Finally,

sup
f∈F, f ′∈F ′

Rn(f
′)

Rn(f)
6 1 (6.42)

since F ′ ⊆ F. So,

sup
f ′∈F ′,f∈F

Rn(f
′) − R̂n(f

′)

Rn(f)
= sup
f ′∈F ′,f∈F

Rn(f
′) − R̂n(f

′)

Rn(f ′)

Rn(f
′)

Rn(f)
(6.43)

6 sup
f ′∈F ′

Rn(f
′) − R̂n(f

′)

Rn(f ′)
. (6.44)

Now,

P1:n

(
sup
f∈F

Rn(f) − R̃n(f) −∆d(f)

Rn(f)
> ε

)
6 P1:n

(
sup
f ′∈F ′

Rn(f
′) − R̂n(f

′)

Rn(f ′)
> ε

)
.

(6.45)

Since F ′ is a class with finite memory, I can apply Theorem 6.4 and Corollary 6.5

to get the results. �

To apply Theorem 6.8, I describe the form of the linear Gaussian state space

model. I can then show how to calculate ∆d(f) directly from the model and demon-

strate that it will behave well as n grows rather than blowing up. Consider the

following linear Gaussian state space model, FSS:

yt = Aαt + εt, εt ∼ N(0,H),

αt+1 = Tαt + ηt+1, ηt ∼ N(0,Q), (6.46)

α1 ∼ N(a1,P1).

I make no assumptions about the dimensionality of the parameter matrices A, T ,

H, Q, a1, or P1. The only requirement is stationarity. This amounts to requiring

the eigenvalues of T to lie inside the complex unit circle. Stationarity ensures that

∆d(f) will be bounded as well as conforming to the assumptions about the data

generating process. While VCD(FSS) is unknown in general, I will actually only
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Algorithm 1: Kalman filtering

Recursively generate minimum mean squared error predictions Ŷt using
the state space model in (6.46).

1 Set Ŷ1 = Aa1.
2 for 1 6 t 6 n do
3 Filter

vt = Yt − Ŷt, Ft = (APtA
′ +H)−1,

Kt = TPtA
′Ft, Lt = T −KtZ,

at+1 = Tat +Ktvt, Pt+1 = TPtL
′
t +Q.

4 Predict

Ŷt+1 = Aat+1.

end
5 return Ŷ1:n+1

need the VC dimension of the finite memory approximation. As I show below, this

is linear in the data, so I can simply apply Theorem 6.6.

To forecast using FSS, one uses the Kalman filter [47]. The algorithm proceeds

recursively as shown in Algorithm 1. To estimate the unknown parameter matrices,

one can proceed in one of two ways: (1) maximize the likelihood returned by the

filter; or (2) use the EM algorithm by running the filter and then the Kalman

smoother which amounts to the E-step; then maximize the conditional likelihood

using ordinary least squares. Bayesian estimation proceeds similarly to the EM

approach replacing the M-step with standard Bayesian updates. In either case,

one can show (cf. Durbin and Koopman [29]) that given the parameter matrices,

the (maximum a posteriori) forecast of Yt is given by

Ŷt+1 = A

t−1∑
j=1

t∏
i=j+1

LiKjyj +AKtyt +A

t∏
i=1

Lia1 (6.47)
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This yields the form of ∆d(f) for linear state space models. I therefore have the

following corollary to Theorem 6.8.

Corollary 6.10. Let 1 < d < n. Then the following bound holds simultaneously for all

f ∈ F where F is a linear Gaussian state space model. With probability at least 1− η, for

η as in Theorem 6.4,

Rn(f) 6
R̃n(f) +∆d(f)

(1− E)+
(6.48)

where E and η ′ is as in Theorem 6.4, and

∆d(f) = E
[
||Y1||

] ∣∣∣∣∣∣
∣∣∣∣∣∣
n−d∑
j=1

n∏
i=j+1

LiKj

∣∣∣∣∣∣
∣∣∣∣∣∣

+
1

n− d− 1

n−1∑
t=d+1

∣∣∣∣∣∣
∣∣∣∣∣∣
t−d∑
j=1

t∏
i=j+1

LiKjyj

∣∣∣∣∣∣
∣∣∣∣∣∣ . (6.49)

Proof. This follows immediately from Corollary 6.9 and (6.47). �

It is simple to compute ∆d(f) using Kalman filter output. The corollary allows

me to compute risk bounds for wide classes of macroeconomic forecasting models.

Dynamic factor models, ARMA models, GARCH models, and even linearized

DSGEs have state space representations.

6.2 bounds in practice

The theory derived in the previous section is useful both for quantification of the

prediction risk and for model selection. In this section, I show how to use some

of the results above. I first estimate a simple stochastic volatility model using IBM

return data and calculate the bound for the predicted volatility using Theorem 6.8.
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Figure 9: This figure plots daily volatility (squared log returns) for IBM from 1962–2011.

6.2.1 Stochastic volatility model

To demonstrate how to use my results, I estimate a standard stochastic volatility

model using daily log returns for IBM from January 1962 until October 2011 which

gives us n = 12541 observations. Figure 9 shows the squared log return series.

The model I investigate is given by

yt = σzt exp(ρt/2), zt ∼ N(0, 1), (6.50)

ρt+1 = φρt +wt, wt ∼ N(0,σ2w), (6.51)

where the disturbances zt and wt are mutually and serially independent. This

model is nonlinear, but a linear approximation method can be used as in Harvey

et al. [43]. I transform the model as follows:

logy2t = κ+
1

2
ρt + ξt, (6.52)

ξt = log z2t − E[log z2t ], (6.53)

κ = logσ2 + E[log z2t ]. (6.54)

The noise term ξt is no longer normally distributed, but the Kalman filter will still

give the minimum mean squared linear estimate of the variance sequence ρ1:n+1.

Following the transformation, the observation variance is π2/2.
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To match the data to the model, let yt be the log returns and remove 688 obser-

vations where the return was 0 (i.e., the price did not change from one day to the

next). Using the Kalman filter, the negative log likelihood is given by

L(Yn1 |κ,φ,σ2ρ) ∝
n∑
t=1

log Ft + v2tF
−1
t .

Minimizing this gives estimates κ = −9.62, φ = 0.996, and σ2w = 0.003. Taking the

loss function to be root mean squared error gives a training error of 1.823.

To actually calculate the bound, I need a few assumptions. First, using the meth-

ods in Chapter 5, I can estimate β8 = 0.017 with 2 bins. For a > 8, the optimal

number of bins is 1 implying an estimate of 0. While this is likely an underes-

timate, I will take βa = 0 for a > 8. Second, take q = 3. This choice can be

justified by assuming that the distribution of Yn+1 − f(Yn1 ) is standard normal.

Then
∣∣∣∣yi+1 − f(Yi1)∣∣∣∣2 has a χ distribution with one degree of freedom, in which

case the qth normalized moment Mq, is given in [46] as

Mq = π
q−1
2q Γ1/q

(
q+ 1

2

)
. (6.55)

Using this formula, M3 = 1.46.

Combining these assumptions with the VC dimension for the stochastic volatil-

ity model will allow us to calculate a bound for the prediction risk. For d = 2, the

VC dimension can be no larger than 3, thus, I may use Corollary 6.10 with η as

in Corollary 6.5, i.e., I can take the VC dimension to be 3. Finally, taking µ = 538,

a = 11, d = 2, and E||Y1|| = 1, I get that ∆2(f) = 0.65+ 1.03 = 1.68. The result is

the bound

Rn(f) 6 16.68 (6.56)

with probability at least 0.85. In other words, the bound is much larger than the

training error, but this is to be expected: the data are highly correlated and so

despite the fact that n is large, the effective sample size µ is relatively small.
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Model Training error AIC-Baseline Risk bound (1− η > 0.85)

SV 1.83 -2816 16.68

AR(2) 1.88 -348 6.79

Mean 1.91 0 3.84

Table 1: This table shows the training error and risk bounds for 3 models. AIC is given as
the difference from the mean the Mean, the smaller the value, the more support
for that model.

For comparison, I also computed the bound for forecasts produced with an

AR(2) model (with intercept) and with the mean alone. In the case of the mean, I

take µ = 658 and a = 9 since in this case, d = 0. The results are shown in Table 1.

The stochastic volatility model reduces the training error by 5% over predicting

with the mean, an increase which is marginal at best. But the resulting risk bound

clearly demonstrates that given the small effective sample size, this gain may be

spurious: it is likely that the stochastic volatility model is simply over-fitting.

6.2.2 Real business cycle model

In this section, I will discuss the methodology for using applying risk bounds to

the forecasts generated by the real business cycle model presented in Section 2.3.

To estimate the parameters of this model, I use four data series. In the notation of

Section 2.3, these are GDP yt, consumption ct, investment it, and hours worked

nt. The data are freely available from the Federal Reserve Economic Database

(FRED). Appendix B gives the series names and data transformations necessary to

replicate the data set that I use. The resulting data set is shown in Figure 10.

The estimation procedure for this model is quite complicated and therefore de-

scribed more fully in Appendix B. The basic idea is to transform the model of

Section 2.3 into a linear state space model with the four observed variables listed

above and two unobserved state variables. There is a nonlinear mapping from un-
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Figure 10: This figure shows the data used to estimate the RBC model. This is quarterly
data from 1948:I until 2010:I. The blue line is GDP (output), the red line is
consumption, the green line is investment, and the orange line is hours worked.
These data are plotted as percentage deviations from trend as discussed in
Appendix B.

known parameters to the parameters of the linear state space model, but for each

parameter vector, the Kalman filter returns the likelihood, so that likelihood meth-

ods are possible. Because the data is uninformative about many of the parameters,

I minimize the negative penalized likelihood to estimate them. Then the Kalman

filter produces in sample forecasts which are linear in past values of the data so

that I could potentially apply the growing memory bound.

For macroeconomic time series, there is not enough data to result in nontriv-

ial bounds regardless of the mixing coefficients or the size of the finite memory

approximation. The data shown in Figure 10 has n = 248 observations. The mini-

mal possible finite approximation model is therefore a VAR with one lag and four

time series, so by Corollary 6.7, it has VC dimension 5. Assuming, as above, that

the third normalized moment of the loss function is bounded by M3 = 1.46 and

demanding confidence 0.85 (η = 0.15), then I would need 481 independent data

vectors to have a non-trivial bound. Under these assumptions, models which have

VC dimension 1 or 2 will result in non-trivial bounds for n = 248, but nothing
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Separation a # bins βa

1 5 0.25

2 4 0.17

3 3 0.03

4 1 0

4 2 0.10

Table 2: Estimated mixing coefficients for the multivariate time series [yt, ct, it, nt]. I
take d = 1. The final row shows if I had instead chosen two bins rather than one.

more complicated. Even if I am willing to reduce my confidence, say to η = 0.5,

models with VC dimension larger than 2 are too complicated for this size data set.

Allowing the data to be dependent only makes the situation worse.

Using the methods of Chapter 5, I can estimate the β-mixing coefficients of the

macroeconomic data set. For the estimator given in (5.2), I take d = 1, and I use

5, 4 and 3 bins in the histograms for the lags a ∈ {1, 2, 3}. However, after a = 3,

the estimated mixing coefficients increase, suggesting that the number of bins is

too large. This increase also occurs when using either 2 or 4 bins. Together, this

suggests, that the positive bias has kicked in, and I should estimate with 1 bin,

implying an estimate of β4 = 0. Assuming that this is approximately accurate (0

is of course an underestimate), this result suggests that the effective size of the

macroeconomic data set is no more than about µ = 30, much smaller then n = 48.

Assuming β4 = 0 and a confidence level of 1− η = 0.85, I would need around

15,000 quarterly data points to have a nontrivial bound, or about 3700 years of

data. The estimated mixing coefficients are shown in Table 2.

In some sense, the empirical results in this section seem slightly unreasonable.

Since the results are only upper bounds and may not be tight, it is important to

have get an idea as to how tight they may be. I address this issue in the next

section.
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6.3 how loose are the bounds?

In this section, I give some intuition as to how tight (or loose) the bounds pre-

sented in Section 6.1 may be. To gain some insight, I will investigate the following

quantities

Term(P1:n) :=

∫
dP1:n(Y1:n)Rn(f̂erm), (6.57)

T0(P1:n) := Rn(f
∗) (6.58)

L(P1:n) := Term(P1:n) − T0(P1:n) (6.59)

LM := sup
P1:n∈Π

L(P1:n), (6.60)

where f̂erm is the function chosen by minimizing the training error over the class

F and

f∗ = argmin
f∈F

Rn(f). (6.61)

Here P1:n is the joint distribution of a sequence Y1:n. The risk Rn is an expectation

taken with respect to the next time point Yn+1, whereas Term(P1:n) removes the

randomness in the procedure to choose f̂erm. I will consider a class of distribu-

tions Π is a of which P1:n is a member.

I will refer to LM as the “oracle classification loss”. It describes how well em-

pirical risk minimization works relative to the best possible predictor f̂ ∈ F over

the worst distribution π. Vapnik [96] shows that for classification and IID data, for

sufficiently large n, there exist constants c and C such that

c

√
h

n
6 LM 6 C

√
h logn/h

n
, (6.62)

where h = VCD(F). In other words, there is a gap of logn in the rates. Using

Rademacher complexity, it is possible to remove this gap, but I will take (6.62) as

the baseline and compare results for dependent data to it.
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I will derive similar bounds for the β-mixing setting. First I state the following

result.

Theorem 6.11. Given a sample Yn1 such that Assumption A and Assumption C hold,

suppose that the model class F has a fixed memory length d < n. Let µ and a be integers

such that 2µa+ d 6 n. Then, for all ε > 0,

P

(
sup
f∈F

|Rn(f) − R̂n(f)| > ε

)

6 8 exp
{

VCD(F)

(
ln

2µ

VCD(F)
+ 1

)
−
µε2

M2

}
+ 2(µ− 1)βa−d. (6.63)

The proof of Theorem 6.11 is exactly like that for Theorem 6.4.

Assumption D. The time series Y is exponentially β-mixing, i. e.

βa = c1 exp(−c2aκ) (6.64)

for some constants c1 and c2 and some parameter κ.

Theorem 6.12. Under Assumption A and Assumption D, for sufficiently large n, there

exist constants c and C, independent of n and h, such that

c

√
h

n
6 LM 6 C

√
h lognκ/(1+κ)/h

nκ/(1+κ)
. (6.65)

Proof. Theorem 6.11 implies that simultaneously

P1:n

(
|Rn(f̂erm) − R̂n(f̂erm)| > ε

)
6 8 exp

{
VCD(F)

(
ln

2µ

VCD(F)
+ 1

)
−
µε2

M2

}
+ 2(µ− 1)βa−d (6.66)
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and

P1:n

(
|Rn(f

∗) − R̂n(f
∗)| > ε

)
6 8 exp

{
VCD(F)

(
ln

2µ

VCD(F)
+ 1

)
−
µε2

M2

}
+ 2(µ− 1)βa−d. (6.67)

Since R̂n(f̂erm) − R̂n(f
∗) 6 0, then

P1:n

(
|Rn(f̂erm) − Rn(f

∗)| > 2ε
)

6 8 exp
{

VCD(F)

(
ln

2µ

VCD(F)
+ 1

)
−
µε2

M2

}
+ 2(µ− 1)βa−d. (6.68)

Then, letting Z = |Rn(f̂erm) − Rn(f
∗)|, k1 = 8GF(2µn,h), and k2 = 1/M2, pro-

ceeding as in the proof of Corollary 3.10, and ignoring constants,

E[Z2] 6 s+ k ′1

∫M
s

dεe−k2µnε + 4

∫M
0

dεµnβan−d (6.69)

LO 6 s+ k
′
1

∫∞
s

dεe−k2µnε + 4

∫M
0

dεµnβan−d (6.70)

= s+
k ′1e

−k2µnε

k2µn
+ k3µnβan−d. (6.71)

Using Assumption D, take an = n1/(1+κ), µn = nκ/(1+κ), and s =
logk ′1

nκ/(1+κ)k2
to

balance the exponential terms and linear terms. Then,

LM = O

√h lognκ/(1+κ)/h
nκ/(1+κ)

 . (6.72)

For the lower bound, apply the IID version. �

If I instead assume algebraic mixing, i.e. βa = c1a
−r, then I can retrieve the same

rate where 0 < κ < (r− 1)/2 (see Meir [65]). Theorem 6.12 says that in dependent

data settings, using the blocking approach developed here, I pay a penalty. In the

worst case of exponential mixing where κ = 1, that penalty is an extra square root
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factor. That said, as I will argue in the Chapter 8, the linear term in the risk bound

due to the blocking technique may be massive overkill.

6.4 structural risk minimization

My presentation so far has focused on choosing one function f̂ from a model

F and demonstrating that the prediction risk Rn(f̂) is well characterized by the

training error inflated by a complexity term. The procedure for actually choosing

f̂ has been ignored. Common ways of choosing f̂ are frequently referred to as

empirical risk minimization or ERM: approximate the expected risk Rn(f) with the

empirical risk R̂n(f), and choose f̂ to minimize the empirical risk. Many likelihood

based methods have exactly this flavor, but more frequently, forecasters have many

different models in mind, each with a different empirical risk minimizer.

Regularized model classes (ridge regression, lasso, Bayesian methods) implic-

itly have this structure — altering the amount of regularization leads to different

models F. Methods like these are given by an optimization problem like

f̂λ = argmin
f∈F

R̂n(f) + λ||f||, (6.73)

where || · || is some appropriate norm on the function space containing F. This is

the Lagrange dual of the constrained optimization problem

min
f∈F

R̂n(f)

s.t ||f|| < C,
(6.74)

for some constant C. Thus, C further constrains the allowable model space to

FC ⊆ F. Increasing C (or decreasing λ) leads to larger model classes up to the full

class F. More simply, one may just have many different forecasting models from

which to choose the best. These scenarios leads to a generalization of ERM called

structural risk minimization or SRM.
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Given a collection of models F1,F2, . . . each with associated empirical risk min-

imizers f̂1, f̂2, . . ., one wishes to use the function which has the smallest risk. Of

course different models have different complexities, and those with larger com-

plexities will tend to have smaller empirical risk. To choose the best function, one

therefore penalizes the empirical risk and selects that function which minimizes

the penalized version. Model selection tools like AIC or BIC have exactly this form,

but they rely on specific knowledge of the data likelihood and use asymptotic ap-

proximations to derive an appropriate penalty. In contrast to these methods, I have

derived finite sample bounds for the expected risk. This leads to a natural proce-

dure for model selection — choose the predictor which has the smallest bound on

the expected risk.

The generalization error bounds in Section 6.1 allow me to perform model se-

lection via the SRM principle without knowledge of the likelihood or appeals to

asymptotic results. The penalty accounts for the complexity of the model through

the VC dimension. Most useful however is that by using generalization error

bounds for model selection, we are minimizing the prediction risk.

If I want to make the prediction risk as small as possible, I can minimize the gen-

eralization error bound simultaneously over models F and functions within those

models. This amounts to treating VC dimension as a control variable. Therefore,

just like with AIC, I can minimize simultaneously over the empirical risk and the

VC dimension. Using the risk bound and following this minimization procedure

will lead to choosing the model and function which has the smallest prediction

risk, a claim which other model selection procedures cannot make [97, 62].

6.5 conclusion

This chapter demonstrates how to control the generalization error of common

macroeconomic forecasting models — ARMA models, vector autoregressions (Baye-

sian or otherwise), linearized dynamic stochastic general equilibrium models, and
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linear state space models. The results I derive give upper bounds on the risk which

hold with high probability while requiring only weak assumptions on the true

data generating process. These are finite-sample bounds, unlike standard model

selection penalties (AIC, BIC, etc.), which only work asymptotically. Furthermore,

they do not suffer the biases inherent in other risk estimation techniques such

as the pseudo-cross validation approach often used in the economic forecasting

literature.

While I have stated these results in terms of standard economic forecasting

models, they have very wide applicability. Theorem 6.4 applies to any forecasting

procedure with fixed memory length, linear or non-linear. This covers even non-

linear DSGEs as long as the forecasts are based on only a fixed amount of past

data. The unknown parameters can still be estimated using the entire data set.

The results in Theorem 6.8 apply only to methods whose forecasts are linear in

the observations, but a similar result could conceivably be derived for nonlinear

methods as long as the dependence of the forecast on the past decays in some

suitable way.

The bounds I have derived here are the first of their kind for time series fore-

casting methods typically used in economics, but there are some results for other

types of forecasting methods as in Meir [65] and Mohri and Rostamizadeh [66, 67].

Those results require bounded loss functions, as in the IID setting, making them

less general than my results, as well as turning on specific forms of regularization

which are more rare in economics. For another view on this problem, McDonald

et al. [64] shows that using stationarity alone to regularize an AR model leads

to bounds which are much worse than those obtained here, despite the stricter

assumption of bounded loss.



7
O T H E R B O U N D S

In Chapter 6, I used mixing to breed dependent data laws of large numbers

from the concentration results for IID random variables in Theorem 3.5 and Theo-

rem 3.6. In this chapter, I take a different approach: I use concentration results for

dependent data and show that the corresponding Rademacher complexity is very

similar to standard cases.

7.1 concentration inequalities

For IID data, the main tools for developing risk bounds are the inequalities of Ho-

effding [45] and McDiarmid [63]. Instead, I will use dependent versions of each

which generalize the IID results. These inequalities are derived in van de Geer

[95]. They rely on constructing predictable bounds for random variables based on

past behavior, rather than assuming a priori knowledge of the distribution.

Theorem 7.1 (van de Geer [95] Theorem 2.5). Consider a random sequence Y1:n where

Li 6 Yi 6 Ui a.s. for all i > 1, (7.1)

where Li < Ui are σ1:i−1-measurable random variables, i > 1. Define

C2n =

n∑
i=1

(Ui − Li)
2, (7.2)

87
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with the convention C20 = 0. Then for all ε > 0, c > 0,

P1:n

(
n∑
i=1

Yi > ε and C2n 6 c
2 for some n

)
6 exp

{
−
2ε2

c2

}
. (7.3)

Of course if Li and Ui are non-random, then Theorem 7.1 is the same as the

usual Hoeffding inequality. Here however, they must only be forecastable given

past values of the random sequence, not forecastable a priori.

Theorem 7.2 (van de Geer [95] Theorem 2.6). Fix n > 1. Let Yn be σ1:n-measurable

such that

Li 6 E[Yn | σ1:i] 6 Ui, a.s. (7.4)

where Li < Ui are σ1:i−1-measurable. Define C2n as above. Then for all ε > 0, c > 0,

P1:n
(
Yn − E[Yn] > ε and C2n 6 c

2
)
6 exp

{
−
2ε2

c2

}
. (7.5)

I will refer to (7.4) as “forecastable boundedness”. To see how this generalizes

McDiarmid’s inequality, I provide the following corollary.

Corollary 7.3. Let f(Y1, . . . , Yn) be some real valued function on Yn such that

∣∣∣∣E[f(Y1, . . . , Yn) | σ1:i] − E[f(Y1, . . . , Yn) | σ1:i−1]
∣∣∣∣ 6 ki (7.6)

where ki is σ1:i−1-measurable. Then,

P1:n

(
f(Y1, . . . , Yn) − E[f(Y1, . . . , Yn)] > ε and

∑
i

k2i < c
2

)

< exp
{
−
2ε2

c2

}
.

(7.7)
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In particular, this gives a couple of immediate consequences. Suppose that f is

bounded. Then,

ki 6 sup
Yni

sup
Yn′i

|f(Y1, . . . , Yi−1, Yi, . . . , Yn) − f(Y1, . . . , Yi−1, Y ′i , . . . , Y
′
n)|

=: bi. (7.8)

This contrasts with McDiarmid’s inequality in the IID case, wherein one only

needs to be concerned with one point that is different. For IID data, starting from

(7.6),

ki 6 sup
Yi,Y ′i

|f(Y1, . . . , Yi−1, Yi, . . . , Yn) − f(Y1, . . . , Yi−1, Y ′i , . . . , Yn)|

=: di, (7.9)

if f satisfies bounded differences with constants di. In other words, Theorem 7.2

conflates dependence with nice functional behavior.

7.2 risk bounds

Recall as in Chapter 3 that generalization error bounds can follow from deriving

high probability upper bounds on the quantity

Ψn = sup
f∈F

(
R(f) − R̂n(f)

)
, (7.10)

which is the worst case difference between the true risk R(f) and the empirical

risk R̂n(f) over all functions in the class F. In the case of time series, Ψn is σ1:n-

measurable, so one can get risk bounds from Theorem 7.2 if one can find suitable

Li and Ui sequences.
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Theorem 7.4. Suppose that Ψn satisfies the forecastable boundedness condition (7.4) of

Theorem 7.2. Then, for any 0 < η 6 1,

P

(
R(h) < R̂n(h) + E[Ψn] + c

√
log 1/η
2

or C2n > c

)
6 1− η. (7.11)

Proof. Applying Theorem 7.2 to the random variable Ψn gives

P
(
Ψn − E[Ψn] > ε and C2n 6 c

2
)
6 exp

{
−
2ε2

c2

}
. (7.12)

Setting the right side of (7.12) equal to η and solving for ε gives

ε = c

√
log 1/η
2

. (7.13)

Substitution and an application of DeMorgan’s Law gives the result. �

In many cases (as in the examples below), C2n will be deterministic, in which

case, the result above is greatly simplified. Essentially, the theorem says that as

long as each new Yi gives additional control on the conditional expectation of Ψn,

one can ensure that with high probability, forecasts of the future will have only

small losses.

Since EP1:n [Ψn] is often difficult to calculate, I upper bound it with the Rademacher

complexity. The standard symmetrization argument for the IID case does not work,

but, for time series prediction (as opposed to the more general dependent data

case or the online learning case), Rademacher bounds are still available.

Theorem 7.5. For a time series prediction problem based on a sequence Y1:n,

EP1:n [Ψn] 6 Rn(` ◦F). (7.14)

The standard way of proving this result in the IID case given in Lemma 3.14 is

through introduction of a “ghost sample” Y ′1:n which has the same distribution

as Y1:n. Taking empirical expectations over the ghost sample is then the same as
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taking expectations with respect to the distribution of Y1:n. Randomly exchanging

Yi with Y ′i by using Rademacher variables allows for control of EP1:n [Ψn] and leads

to the factor of 2 in Definition 3.13. However, in the dependent data setting, this is

not quite so easy.

For dependent data, both the ghost sample and the introduction of Rademacher

variables arise differently. A similar situation also occurs in the more complex

cases of online learning with a (perhaps constrained) adversary choosing the data

sequence. It is covered in depth in Rakhlin et al. [78, 79]. With dependent data I

will need a different version of the “ghost sample” than that used in the IID case.

Proof of Theorem 7.5. First, rewrite the left side of (7.14):

EP1:n [Ψn] = EP1:n

[
sup
f∈F

(
Rn(f) − R̂n(f)

)]
(7.15)

= EP1:n

[
sup
f∈F

(
EP1:n [`(Yn+1, f(Y1:n))] −

1

n

n∑
i=1

`(Yi+1, f(Y1:n))

)]
.

(7.16)

At this point, following [78, 79], I introduce a “tangent sequence” Y ′1:n. Construct

it recursively as follows. Let,

L(Y ′1) = L(Y1) (7.17)

and

L(Y ′i |Y1, . . . , Yi−1) = L(Yi|Y1, . . . , Yi−1). (7.18)

Starting from (7.16)

E[Ψn] = EP1:n

[
sup
f∈F

(
EP1:n

[
1

n

n∑
i=1

`(Yi+1, Y1:i)

]
−
1

n

n∑
i=1

`(Yi+1, Y1:i)

)]
(7.19)

= EY1:n

[
sup
f∈F

(
EY′1:n

[
1

n

n∑
i=1

`(Yi+1, Y′1:i)

]
−
1

n

n∑
i=1

`(Yi+1, Y1:i)

)]
. (7.20)
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Figure 11: This figure displays the tree structures for Y(w) and Y′(w). The path along each
tree is determined by one w sequence, interleaving the “past” between paths.

Then,

(7.20) 6 EY1:n,Y′1:n

[
sup
f∈F

1

n

n∑
i=1

`(Yi+1, Y′1:i) − `(Yi+1, Y1:i)

]
(7.21)

= EY1
Y ′1

EY2|Y1
Y ′2|Y

′
1

· · ·EYn|Y1:n−1
Y ′n|Y′1:n−1

[
sup
f∈F

1

n

n∑
i=1

`(Yi+1, Y′1:i) − `(Yi+1, Y1:i)

]
, (7.22)

where (7.22) is by Jensen’s inequality. Now, due to dependence, Rademacher vari-

ables must be introduced, carefully as in the adversarial case [78, 79]. Rademacher

variables create two tree structures, one associated to the Y1:n sequence, and one

associated to the Y′1:n sequence. I write these trees as Y(w) and Y ′(w), where w

is a particular sequence of Rademacher variables (e.g. (1,−1,−1, 1, . . . , 1)) which

creates a path along each tree. For example, consider w = 1. Then, Y(w) =

(Y1, . . . , Yn) and Y ′(w) = (Y ′1, . . . , Y ′n), the “always-move-right” path of both tree

structures. For w = −1. Then, Y(w) = (Y ′1, . . . , Y ′n) and Y′(w) = (Y1, . . . , Yn), the

“always-move-left” path of both tree structures. Figure 11 shows the root of the

two tree structures.

Changing wi from +1 to −1 exchanges Yi for Y ′i in both trees and chooses the

left child of Yi−1 and Y ′i−1 rather than the right child. In order to talk about the
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probability of Yi conditional on the “past” in the tree, one needs to know the path

taken so far. For this, define a selector function

χ(w) := χ(w,y,y ′) =


y ′ w = 1

y w = −1.
(7.23)

Distributions over the trees given by the selector functions then become the objects

of interest.

In the time series case, as opposed to the online learning scenario considered in

[78], the dependence between future and past means the adversary is not free to

change predictors and responses separately. Once a branch of the tree is chosen,

the distribution of future data points is fixed, and depends only on the preceding

sequence. Because of this, the joint distribution of any path along the tree is the

same as any other path, i.e. for any two paths w, w ′

L(Y(w)) = L(Y(w ′)) and L(Y ′(w)) = L(Y ′(w ′)). (7.24)

Similarly, due to the construction of the tangent sequence, L(Y(w)) = L(Y ′(w)).

This equivalence between paths allows us to introduce Rademacher variables

swapping Yi for Y ′i as well as the ability to combine terms.



94 other bounds

(7.22) = EY1
Y ′1

Ew1EY2|χ(w1,Y1,Y ′1)
Y ′2|χ(w1,Y ′1,Y1)

Ew2 · · ·EYn|χ(wn−1),...,χ(w1)
Y ′n|χ(wn−1),...,χ(w1)

· · ·

· · ·Ewn

[
sup
h∈H

1

n

n∑
i=1

wi(h(Y
′
i) − h(Yi))

]
(7.25)

= EY,Y ′,w

[
sup
f∈F

1

n

n∑
i=1

wi(`(Yi+1, Y′1:i) − `(Yi+1, Y1:i))

]
(7.26)

6 EY ′,w

[
sup
f∈F

1

n

n∑
i=1

wi`(Yi+1, Y′1:i)

]
+ EY,w

[
sup
f∈F

1

n

n∑
i=1

wi`(Yi+1, Y1:i)

]
(7.27)

= 2EY,w

[
sup
f∈F

1

n

n∑
i=1

wi`(Yi+1, Y1:i)

]
(7.28)

= Rn(` ◦F). (7.29)

�

While Theorem 7.5 allows me to recover something that looks like the standard

Rademacher complexity, it is not quite so simple. Here the expectation is with

respect to a dependent sequence rendering it slightly less intuitive. However, an-

other application of Theorem 7.2 yields an empirical version which concentrates

around its mean with high probability exactly as in Bartlett and Mendelson [5].

The main issue then in the application of Theorem 7.4 is the determination of

the forecastable bounds Li and Ui from the data generating process. In the next

section, I provide a few simple examples to aid intuition.

7.3 examples

I consider three different examples which should aid in understanding the nature

of the forecastable bounds. Here I present two extreme cases — independence and
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complete dependence — as well as an intermediate case. It is important to note

that C2n is deterministic in all three cases, though this need not be the case.

7.3.1 Independence

For IID data, one simply recovers IID concentration results. As noted in Corol-

lary 7.3, for IID data, the method of bounded differences yields good control.

Similarly, Theorem 7.1 gives the same results as Hoeffding’s inequality for IID

data. Dependence is more interesting.

7.3.2 Complete dependence

Let Y1:n be generated as follows:

Y1 ∼ U(a,b), b > a Yi = Yi−1, i > 2. (7.30)

Consider trying to predict the mean 1
n

∑n
i=1 Yi. Then, given no observations, the

almost sure upper bound U1 = b while the lower bound L1 = a. So (U1 − L1)
2 =

(b− a)2. For i > 1, conditional on σ1:i (and therefore σ1), Ui = Li. Thus, C2n =

(b− a)2 giving the entirely useless result:

P1:n

(
1

n

n∑
i=1

Yi − (b+ a)/2 > ε

)
< exp

{
−

2ε2

(b− a)2

}
. (7.31)

The right side is independent of n implying that one has essentially observed one

data point regardless of n.
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7.3.3 Partial dependence

Let Y1:n be generated as follows:

Y0 = 0, Yi = θYi−1 + ηi, i > 2, (7.32)

where θ ∈ (0, 1) and ηi
iid
∼ U(a,b) with b > a. Again, consider trying to predict

the mean 1
n

∑n
i=1 Yi. Define Li and Ui as follows:

Li =
a

n

1− θn−i

1− θ
+
1

n

i−1∑
k=1

Yk + θYi−1, (7.33)

Ui =
b

n

1− θn−i

1− θ
+
1

n

i−1∑
k=1

Yk + θYi−1. (7.34)

From this,

C2n =

n∑
i=1

(b− a)2

n2(1− θ)2
(
1− θn−i

)2
(7.35)

=
(b− a)2

n2(1− θ)2(θ2 − 1)

(
θ2n − 2θn+1 − 2θn +nθ2 + 2θ−n+ 1

)
(7.36)

<
(b− a)2

n(1− θ)2
. (7.37)

Therefore, by Theorem 7.2,

P1:n

(
1

n

n∑
i=1

Yi − (b+ a)/2 > ε

)
< exp

{
−
2nε2(1− θ)2

(b− a)2

}
. (7.38)

For comparison, if everything was IID, Hoeffding’s inequality gives

P1:n

(
1

n

n∑
i=1

Yi − (b+ a)/2 > ε

)
< exp

{
−

2nε2

(b− a)2

}
. (7.39)
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Therefore, the dependence in Yn1 reduces the effective sample size by (1− θ)2. If

θ = 1/2, then each additional datapoint decreases the probability of a bad event

by only a 1/4 relative to the IID scenario.

7.4 discussion

In this chapter, I have demonstrated how to control the generalization of time

series prediction algorithms. These methods use some or all of the observed past

to predict future values of the same series. In order to handle the complicated

Rademacher complexity bound for the expectation, I have followed the approach

used in the online learning case pioneered by Rakhlin et al. [78, 79], but I show that

in this particular case, much of the structure needed to deal with the adversary

is unnecessary. This results in clean risk bounds which have a form similar to the

IID case.

The main issue with risk bounds for dependent data is that they rely on knowl-

edge of the dependence for application. This is certainly true in this case in that

I need to know how to choose Ui and Li such that I almost surely control E[Ψn].

For the standard case of bounded loss, there are trivial bounds, but these will not

give the necessary dependence on n which would imply learnability of good pre-

dictors. More knowledge of the dependence structure of the process is required,

though this is in some sense undesirable. Results in the previous chapter also

have this requirement.1 They rely on precise knowledge of the mixing behavior

of the data which is unavailable. At the same time, mixing characterizations are

often unintuitive conditions based on infinite dimensional joint distributions. The

version here depends only on the ability to forecastably bound expectations given

increasing amounts of data which is perhaps more natural in applied settings.

1 IID results have an even more onerous requirement: one must be able to rule out any dependence
at all.
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A D VA N C I N G F U RT H E R

There are a number of directions future work along the lines pursued herein. In the

framework of Chapter 6, it is necessary to know the VC dimension of the model

class F in order to use my bounds. However, this knowledge may be unavailable

in practice. Second, the bounds presented in Chapter 6 are often quite loose for a

number of theoretical reasons, and it should be possible to tighten them. A third

potential extension would be to derive more data-driven methods of establishing

risk bounds. In the next few sections, I address each of these issues and give some

thoughts as to how future analysis might proceed.

8.1 measuring vc dimension

Previous work in Vapnik et al. [99] and Shao et al. [86] proposed methods for

measuring the VC dimension of a model class F by simulating data and estimat-

ing the model via empirical risk minimization. In particular [99] shows that the

expected maximum deviation between the empirical risks of a classifier on two

datasets can be bounded by a function which depends only on the VC dimen-

sion of the classifier. In other words, given a collection of classifiers F, and two

100
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data sets Dn = {(y1, x1), . . . , (yn, xn)} and D ′n = {(y ′1, x ′1), . . . , (y
′
n, x ′n)} where

(y1, x1), (y ′1, x ′1)
iid
∼ P, we have the bound

ξ(n) := EPn

[
sup
f∈F

(R̂n(f,Dn) − R̂n(f,D ′n))

]
6


1 n/h∗ 6 1

2

C1
log(2n/h∗)+1

n/h∗ if n/h∗ is small

C2

√
log(2n/h∗)+1

n/h∗ if n/h∗ is large,
(8.1)

where VCD(F) = h∗. If this bound is tight for all distributions P, then it may be

possible to simulate data sets and calculate empirical versions of ξ(n) for different

values of n. Then, given constants C1 and C2, the right hand side depends only

on the unknown VC dimension, so I could solve for it.

Vapnik et al. [99] suggest bounding (8.1) by Φh∗(n), viewed as a function of n

and parametrized by h:

Φh(n) =


1 n < h/2

a
log 2nh +1
n
h−a

′′

(√
1+

a ′(nh−a ′′)
log 2nh +1

+ 1

)
else.

(8.2)

Here the constants a = 0.16, a ′ = 1.2 were determined numerically in [99] to

adjust the trade-off between “small” and “large” in (8.1), and a ′′ = 0.15 was

chosen so that Φ(0.5) = 1 (this choice depends only on a and a ′′). If the bound

is tight, then since (8.2) is known up to h, one can estimate it given knowledge

of the maximum deviation on the left side of (8.1). I do not have such knowledge,

but I can generate observations

ξ̂(n) = Φh∗(n) + ε(n)

at design points n. Here ε is mean zero noise (since the bound is tight) having

an unknown distribution with support on [0, 1]. Given enough such observations

at different design points n`, I can then estimate the true VC dimension h∗ using

nonlinear least square, but generating ξ̂(n`) is nontrivial. Vapnik et al. [99] give an
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Algorithm 2: Generate ξ̂(n`)
Given a collection of possible classifiers F and a grid of design points
n1, . . . ,nk, generate ξ̂(n`). Repeat the procedure at each design point, n`,
m times.

1 Set k = 1
2 while k 6 m do
3 Generate a data set from the same sample space Y×X as the training

sample that is independent of the training sample. The generated set
should be of size 2n`: {(y1, x1), . . . , (y2n` , x2n`)}.

4 Split the data set into two equal sets, W and W ′.
5 Flip the labels (y values) of W ′.
6 Merge the two sets and train the classifier simultaneously on the entire

set: W with the “correct” labels and W ′ with the “wrong” labels.
7 Calculate the training error of the estimated classifier f̂ on W with the

‘correct’ labels and on W ′ using the “correct” labels.

8 Set ξ̂i(n`) =
∣∣∣R̂n`(f̂,W) − R̂n`(f̂,W

′)
∣∣∣.

9 k← k+ 1

end
10 Set ξ̂(n`) = 1

m

∑m
i=1 ξ̂i(n`).

algorithm for generating the appropriate observations. Essentially, at each (fixed)

design point n` : ` ∈ {1, . . . ,k}, one simulates m data points (ξ̂i(n`),Φh(n`)), for

i = 1, . . . ,m, so as to approximate ξ(n`) as defined in (8.1). This procedure is

shown in Algorithm 2.

The problem with this method is that the bound in (8.2) does not actually hold

for the constants proposed in [99]. In particular, the tradeoff between “small” and

“large” depends on P. For example, construct P as follows:

p(x) =
1

7
I(x ∈ {−3,−2,−1, 0, 1, 2, 3})

p(y|x) =


1 x < 0

0 else.

(8.3)

Take F = {(a,∞) : a ∈ R} which has VC dimension 1. Then I can calculate ξ(n)

exactly. Table 3 shows the exact values as well as the “bound”. It is clear that in



8.1 measuring vc dimension 103

n ξ(n) Φh(n)

1 0.67 0.72

2 0.50 0.49

3 0.42 0.39

Table 3: This table shows the exact value of ξ(n) for ν as defined in (8.3) as well as Φ(n).
Clearly for n > 1, ξ(n) exceeds the bound.

fact, ξ(n) > Φ1(n) for some values of n. A complete upper bound which holds

uniformly over all possible P is given in [99] as

Eν

[
sup
f∈F

(R̂n(f,W) − R̂n(f,W ′))

]

< min

{
1,

√
log 2n/h∗ + 1

n/h∗
+

3√
nh∗(log 2n/h∗ + 1)

}
(8.4)

< min

{
1, 3

√
log 2n/h∗ + 1

n/h∗

}
. (8.5)

However, this bound is so loose, that the methods of Vapnik et al. [99] and Shao

et al. [86] will lead to severe underestimates of the true VC dimension.

A better strategy would be to find a lower bound on ξ(n) which holds over some

plausible class of distributions (0 is a trivial lower bound if the ν is a point mass).

Given some way of measuring VC dimension, one can derive generalization error

bounds which use the measured version rather than the truth. These would have

a form much like the following.

Theorem 8.1. Choose appropriate values of δ and ϕ based on the lower bound for ξ(n).

Let ε > 0. Then, for any classifier f ∈ F where F has measured VC dimension ĥ,

P

(
sup
f∈F

∣∣∣Rn(f) − R̂n(f)∣∣∣ > ρ
)
6 4GF(ĥ+ δ, 2n) exp{−nε2}(1−ϕ) +ϕ. (8.6)
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8.2 better blocking

In Section 6.3, I demonstrated that the upper bound may not be tight. In particular,

under exponential or algebraic mixing, we gain a logarithmic factor as well as a

power of κ/(1+ κ relative to the IID setting. The looseness of these upper bounds

is attributable, at least in part, to the way it uses the β-mixing coefficients to

bound the difference between IID measures and dependent measures. Recall from

the proof of Lemma 4.8 that for an event φ in the σ-field generated by the block

sequence U,

|P̃(φ) − Pn/2(φ)| 6
∣∣∣∣∣∣P̃ − P×P3,...,n−1

∣∣∣∣∣∣
TV

+ ||P3,...,n−1 − P×P5,...,n−1||TV

+ · · ·+
∣∣∣∣Pn−3,n−1 − P2

∣∣∣∣
TV

(8.7)

where I have n/2 blocks each of length 1, P̃ is the joint distribution of these blocks

and P is the marginal distribution of a single block. The final step in the proof

was to bound each total variation term with the mixing coefficient β1.

Of course in the notation of (5.1), one could just as easily state the following

result.

Theorem 8.2. Let φ be an event in the σ-field generated by the block sequence U. Then,

|P̃(φ) − Pn/2(φ)| 6
µ−1∑
i=1

β
(2i−1)a
a . (8.8)

Clearly,
µ−1∑
i=1

β
(2i−1)a
a 6 (µ− 1)β

(2µ−3)a
a 6 (µ− 1)βa (8.9)

with equality only when the process is Markovian of order a, so that βa = βaa.

In fact, even the bound in Theorem 8.2 may be too loose. In simulations of the

“even process” in Section 5.5, the bound (µ− 1)βaa holds. If this could be shown to
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Algorithm 3: Bootstrapping Risk Bounds
Use the data to resample lengthy time series from the empirical
distribution to derive data dependent risk bounds

1 Take the time series Yn1 . Fit a model f̂ ∈ F, and calculate the in-sample risk,
R̂n(f̂).

2 Set b = 1
3 while b 6 B do
4 Bootstrap a new series Xn+N1 from Yn1 , which is several times longer

than Yn1
5 Fit a model to Xn1 , f̂boot, and calculate its in-sample risk, R̂n(f̂boot).
6 Calculate the test error of f̂boot on Xn+1+Nn and call it R̂N(f̂boot).

Because the process is stationary and N is much larger than n, this
should be a reasonable estimate of the generalization error of f̂boot.

7 Store the difference between the in-sample and generalization risks
R̂N(f̂boot) − R̂n(f̂boot).

8 b← b+ 1

end
9 Find the 1− η percentile of the distribution of over-fits. Add this to R̂n(f̂).

be true, then the mixing estimation results would be useful in even non-Markovian

settings, and it may be possible to remove the κ/(1+ κ) factor in Theorem 6.12.

8.3 bootstrapping

An alternative to calculating bounds on forecasting error in the style of statisti-

cal learning theory is to use a carefully constructed bootstrap to learn about the

generalization error. A fully nonparametric bootstrap for time series data uses the

circular bootstrap reviewed in Lahiri [56]. The idea is to wrap the data of length

n around a circle and randomly sample blocks of length q. There are n possible

blocks, each starting with one of the data points 1 to n. Politis and White [74]

give a method for choosing q. Algorithm 3 proposes a bootstrap for bounding the

generalization error of a forecasting method.
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While intuitively plausible, there is no theory, yet, which says that the results of

this bootstrap will actually control the generalization error.

8.4 regret learning

Another possible avenue is to target not the ex ante risk of the forecast, but the

ex post regret: how much better might our forecasts have been, in retrospect and

on the actually-realized data, had one used a different prediction function from

the model F [13, 78]? In this thesis, I have generally focused on evaluating the

performance of predictors f̂ through the risk or perhaps through the oracle risk

EP1 [`(Yn+1, f̂(Y1:n))] − inf
f∈F

EP1 [`(Yn+1, f(Y1:n))]. (8.10)

This quantity only makes sense under stationarity, and analysis like that pursued

herein used a few other assumptions. If the distribution changes with time, then

the above evaluation criterion will not work. Instead, one can consider an extreme

case: let an adversary choose the next data point Yt arbitrarily. In this case, I may

choose a different forecasting function at each time point f1, . . . , fn rather than a

fixed forecasting function f̂. Now performance is judged through the regret

1

n

n∑
i=1

`(Yi+1, fi(Y1:i)) − inf
f∈F

1

n

n∑
i=1

`(Yi+1, fi(Y1:i)). (8.11)

Essentially, this amounts to having a pool of experts F and choosing one expert fi

to make the forecast at each time i. We measure performance of our sequence of

forecasts in comparison to the best expert in the pool. If one targets regret rather

than risk, one can actually ignore mixing, and even stationarity [85].
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In this thesis, I have demonstrated how to generalize risk bounds from the stan-

dard results for independent and identically distributed random variables ana-

lyzed with computer science style models to the case of dependent data with

time series models. The basic procedure is to start with IID laws of large num-

bers and use the assumption of mixing combined with the blocking argument to

derive laws of large numbers for dependent data. I can then use VC dimension

to measure the complexity of real valued function classes. This results in bounds

which hold for finite sample sizes, mis-specified models, and broad classes of data

generating distributions. All that remains is to actually calculate the bound.

Statistical learning theory has proven itself in many practical applications, but

most of its techniques have been developed in ways which have rendered it im-

possible to apply it immediately to time series forecasting problems.

Most results in statistical learning theory presume that successive data points

are independent of one another. This is mathematically convenient, but clearly un-

suitable for time series. Recent work has adapted key results to situations where

widely-separated data points are asymptotically independent (“weakly depen-

dent” or “mixing” time series). Basically, knowing the rate at which dependence

decays lets one calculate how many effectively-independent observations the time

series has and apply bounds with this reduced, effective sample size. In Chap-
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ter 5, I showed how to estimate the mixing coefficients given one sample from the

process.

To develop my results I need to know the complexity of the model classes to

which I wish to apply the theory. In Chapter 6, I presented results which apply to

linear forecasting models. These work for the vast majority of standard economic

forecasting methods — vector autoregressions, linear state space models, and, in

particular, linearized DSGEs — but they can not yet work for general nonlinear

models with unknown VC dimension. In Chapter 8, I discuss some possible ways

to modify my results to deal with this case.

Taken together, these results can provide probabilistic guarantees on a proposed

forecasting model’s performance. Such guarantees can give policy makers reliable

empirical measures which intuitively explain the accuracy of a forecast. They can

also be used to pick among competing forecasting methods.
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P R O O F S O F S E L E C T E D R E S U LT S

Proof of Lemma 5.7. Let P−∞:0 be the distribution on σ−∞:0 = σ(. . . , Y−1, Y0), and

let Pa:∞ be the distribution on σa:∞ = σ(Ya, Ya+1, Ya+2, . . .) for a > 0. Let

P−∞:0⊗a:∞ be the distribution on σ−∞:0 ⊗ σa:∞ (the product sigma-field). Then

I can rewrite Definition 4.3 using this notation as

βa = sup
C∈σ∞

|P−∞:0⊗a:∞(C) − [P−∞:0 ⊗Pa:∞](C)|. (A.1)

Let σ−d:0 and σa:a+d be the sub-σ-fields of σ−∞:0 and σa:∞ consisting of the d-

dimensional cylinder sets for the d dimensions closest together. Let σ−d:0⊗σa:a+d
be the product σ-field of these two. For ease of notation define σd := σ−d:0 ⊗

σa:a+d. Then I can rewrite βda as

βda = sup
C∈σd

|P−∞:0⊗a:∞(C) − [P−∞:0 ⊗Pa:∞](C)| (A.2)

As such βda 6 βa for all a and d. I can rewrite (A.2) in terms of finite-dimensional

marginals:

βda = sup
C∈σd

|P−d:0⊗a:a+d(C) − [P−d:0 ⊗Pa:a+d](C)|, (A.3)
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where P−d:0⊗a:a+d is the restriction of P∞ to σ(Y−d+1, . . . , Y0, Ya, . . . , Ya+d−1).

Because of the nested nature of these sigma-fields,

βd1(a) 6 βd2(a) 6 βa (A.4)

for all finite d1 6 d2. Therefore, for fixed a, {βda}∞d=1 is a monotone increasing

sequence which is bounded above, and it converges to some limit L 6 βa. To

show that L = βa requires some additional steps.

Let R = P−∞:0⊗a:∞ − [P−∞:0 ⊗Pa:∞], which is a signed measure on σ. Let

Rd = P−d:0⊗a:a+d − [P−d:0 ⊗Pa:a+d],

which is a signed measure on σd. Decompose R into positive and negative parts

as R = Q+ −Q− and similarly for Rd = Q+d −Q−d. Notice that since Rd is

constructed using the marginals of P∞, then R(E) = Rd(E) for all E ∈ σd. Now

since R is the difference of probability measures,

0 = R(Ω) = Q+(Ω) −Q−(Ω)

= Q+(D) +Q+(Dc) −Q−(D) −Q−(Dc) (A.5)

for all D ∈ σ.

Define Q = Q+ +Q−. Let ε > 0. Let C ∈ σ be such that

Q(C) = βa = Q+(C) = Q−(Cc). (A.6)

Such a set C is guaranteed by the Hahn decomposition theorem (letting C∗ be a set

which attains the supremum in (A.2), I can throw away any subsets with negative

R measure) and (A.5) assuming without loss of generality that P−∞:0⊗a:∞(C) >
[P−∞:0 ⊗Pa:∞](C). One can use the field σ ′ =

⋃
d σ

d to approximate σ∞ in the
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sense that, for all ε, one can find A ∈ σ ′ such that Q(A∆C) < ε/2 (see Theorem D

in Halmos [41, §13] or Lemma A.24 in Schervish [83]). Now,

Q(A∆C) = Q(A∩Cc) +Q(C∩Ac) (A.7)

= Q−(A∩Cc) +Q+(C∩Ac) (A.8)

by (A.6) since A∩Cc ⊆ Cc and C∩Ac ⊆ C. Therefore, since Q(A∆C) < ε/2,

Q−(A∩Cc) 6 ε/2

Q+(Ac ∩C) 6 ε/2.
(A.9)

Also,

Q(C) = Q(A∩C) +Q(Ac ∩C) (A.10)

= Q+(A∩C) +Q+(Ac ∩C) (A.11)

6 Q+(A) + ε/2 (A.12)

since A∩C and Ac ∩C are contained in C and A∩C ⊆ A. Therefore

Q+(A) > Q(C) − ε/2.

Similarly,

Q−(A) = Q−(A∩C) +Q−(A∩Cc) 6 0+ ε/2 = ε/2

since A∩C ⊆ C and Q−(C) = 0 by (A.9). Finally,

Q+d(A) > Q+d(A) −Q−d(A) = Rd(A) (A.13)

= R(A) = Q+(A) −Q−(A) (A.14)

> Q(C) − ε/2− ε/2 = Q(C) − ε (A.15)

= βa − ε. (A.16)
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And since βda > Q+d(A), then for all ε > 0 there exists d such that for all d1 > d,

βd1(a) > βda > Q
+d(A) > βa − ε. (A.17)

Thus, it must be that L = βa, so that βda → βa as desired. �





B
D ATA P R O C E S S I N G A N D E S T I M AT I O N M E T H O D S F O R T H E

R B C M O D E L

b.1 model

Here I give the specific form of the RBC model presented initially in Section 2.3

and estimated in Section 6.2.2. The specific functional forms of the model sketched

in Section 2.3 is the following.

max
c,l
U = E0

∞∑
t=0

βt
(
cϕt l

1−ϕ
t

1−φ

)1−φ
(B.1)

subject to

yt = ztk
α
t n
1−α
t , (B.2)

1 = nt + lt, (B.3)

yt = ct + it, (B.4)

kt+1 = it + (1− δ)kt, (B.5)

ln zt = (1− ρ) ln z+ ρ ln zt−1 + εt, (B.6)

εt
iid
∼ N(0,σ2ε). (B.7)
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The first step to estimating the model is given by the following system of non-

linear stochastic difference equations which are the necessary conditions for the

optimization problem.

(
1−ϕ

ϕ

)
ct

lt
= (1−α)zt

(
kt

nt

)α
(B.8)

cκt l
λ
t = βEt

{
cκt+1l

λ
t+1

[
αzt+1

(
nt+1
kt+1

)1−α
+ (1− δ)

]}
(B.9)

ct + it = ztk
α
t n
1−α
t (B.10)

kt+1 = it + (1− δ)kt (B.11)

1 = nt + lt (B.12)

ln zt = (1− ρ) ln z+ ρ ln zt+1 + εt (B.13)

where κ = ϕ(1−φ) − 1 and λ = (1−ϕ)(1−φ).

From this system, holding zt constant, one can calculate the steady state values.

These are given by

ỹ

ñ
= η, (B.14)

c̃

ñ
= η− δθ, (B.15)

ĩ

ñ
= δθ, (B.16)

ñ =

(
1+

(
1

1−α

)(
1−ϕ

ϕ

)
[1− δθ1−α]

)−1

, (B.17)

l̃ = 1− ñ, (B.18)

k̃

ñ
= θ, (B.19)

where

θ =

(
α

1/β− 1+ δ

)1/(1−α)
, (B.20)

η = θα. (B.21)
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The next step is to map (B.8)–(B.13) into a linear system of the form

Axt+1 = Bxt +Cνt+1 +Dηt+1, (B.22)

where xt are the 7 time series in the model [yt, ct, it, nt, lt, kt, zt], νt are the

expectational errors, and ηt are the “exogenous structural shocks” as in DeJong

and Dave [19, §5.1]. Taking logs gives the following system:

0 = log
(
1−ϕ

ϕ

)
+ log ct+1 − log lt+1 − log(1−α) − log zt+1

−α logkt +α lognt+1 (B.23)

0 = κ log ct + λ log lt − logβ− κ log ct+1 − λ log lt+1

− log
(
α exp(log zt+1)

exp[(1−α) lognt+1]
exp[(1−α) logkt+1]

+ 1− δ

)
(B.24)

0 = logyt+1 − log zt+1 −α logkt − (1−α) lognt+1 (B.25)

0 = logyt+1 − log
(

exp(logct+1) + exp(log it+1)
)

(B.26)

0 = logkt+1 − log
(

exp(logit+1) + (1− δ) exp(logkt)
)

(B.27)

0 = − log
(

exp(lognt+1) + exp(log lt+1)
)

(B.28)

0 = log zt+1 − ρ log zt. (B.29)

Where I have deliberately used kt rather than kt+1 in (B.25). Note that the time de-

pendent terms in the model are now all in log deviations from steady state values.

Taking derivatives of the system with respect xt+1 and evaluating at the steady

state values gives the system matrix A while taking derivatives with respect to xt

gives the system matrix −B. The C and D matrices are determined by inspection.

In this case, C = [0, 0, 0, 0, 0, 0, 1] and D = [0, 1, 0, 0, 0, 0, 0].
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Given the system in (B.22), I use the method of Sims [89] to transform the model

into state space form.1 The code returns matrices F and G. Finally, to get every-

thing into the form of the linear Gaussian state space model in (6.46),

A = F[1 : 4, 6 : 7] H = diag(εy, εc, εi, εh) (B.30)

T = F[6 : 7, 6 : 7] Q = σ2(GG ′)[6 : 7, 6 : 7]. (B.31)

Now to return the likelihood, I can run the Kalman filter on (B.30) and (B.31).

b.2 data

Once the model is prepared, the data must be prepared. The data to estimate

the RBC model is publicly available from the Federal Reserve Economic Database

FRED. The necessary series are shown in the Table 4. All of the data is quar-

terly. The required series are PCESVC96, PCNDGC96, GDPIC1, HOANBS, and

CNP16OV. These five series are used to create four series [y ′t, c
′
t, i

′
t, h

′
t] as fol-

lows:

c ′t = 2.5× 105
PCESVC96+ PCNDGC96

CNP16OV
(B.32)

i ′t = 2.5× 105
GDPIC1

CNP16OV
(B.33)

y ′t = ct + it (B.34)

h ′t = 6000
HOANBS

CNP16OV
. (B.35)

I use the preprocessed data which accompanies DeJong and Dave [19]. This

data is available from http://www.pitt.edu/~dejong/seconded.htm. I then apply

the HP-filter described in Hodrick and Prescott [44] to each series individually to

1 Code for this transformation is available from http://sims.princeton.edu/yftp/gensys/.

http://research.stlouisfed.org/fred2/
http://www.pitt.edu/~dejong/seconded.htm
http://sims.princeton.edu/yftp/gensys/
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Series ID Description Unit Availability

PCESVC96 Real Personal Consumption
Expenditures: Services

Billions of
Chained 2005 $

1/1/1995

PCNDGC96
Real Personal Consumption
Expenditures: Nondurable
Goods

Billions of
Chained 2005 $

1/1/1995

GDPIC1 Real Gross Domestic
Investment

Billions of
Chained 2005 $

1/1/1947

HOANBS Nonfarm Business Sector:
Hours of All Persons

Index: 2005=100 1/1/1947

CNP16OV Civilian Noninstitutional
Population

Thousands of
Persons

1/1/1948

Table 4: Data series from FRED

calculate trend components
[
ỹt, c̃t, ĩt, h̃t

]
. The HP-filter amounts to fitting the

smoothing spline

x̃1:n = argmin
z1:n

n∑
t=1

(x ′t − zt)
2 + λ

n−1∑
t=2

((zt+1 − zt) − (zt − zt−1))
2, (B.36)

with the convention λ = 1600. I then calculate the detrended series that will be fed

into the RBC model as

xt = log x ′t − log x̃ ′t. (B.37)

The result is shown in Figure 10.

b.3 estimation

To perform the estimation, I maximize the likelihood returned by the Kalman filter,

but penalize it with priors on each of the “deep” parameters. This is because the

likelihood surface is very rough and there exists some prior information about the

parameters. Additionally, each of the parameters is constrained to lie in a plausible
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Prior Constraint

Parameter Estimate Mean Variance Lower Upper

α 0.24 0.29 2.5×10
−2

0.1 0.5

β 0.99 0.99 1.25×10
−3

0.90 1

φ 4.03 1.5 2.5 1 5

ϕ 0.13 0.6 0.1 0 1

δ 0.03 2 2.5×10
−2

1×10
−3

0 0.2

ρ 0.89 0.95 2.5×10
−2

0.80 1

σε 3.45×10
−5

1×10
−4

2×10
−5

0 0.05

σy 1.02×10
−6 – – 0 1

σc 2.30×10
−5 – – 0 1

σi 6.11×10
−4 – – 0 1

σn 1.68×10
−4 – – 0 1

Table 5: Priors, constraints, and parameter estimates for the RBC model.

interval. Each parameter has a normal prior with means and variances similar to

those in the literature. I generally follow those in DeJong et al. [21]. The priors,

constraints (which are strict), and estimates are shown in Table 5.
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