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Abstract

Geometric modeling of biomolecules plays an important role in the study of biochem-

ical processes. Many simulation methods depend heavily on the geometric models of

biomolecules. Among various studies, shape analysis is one of the most important topics,

which reveals the functionalities of biomolecules. To enable the geometric modeling and

shape analysis for various biomolecular complexes, we develop: (a) an efficient multi-scale

modeling method for the biomolecular complexes accelerated using the CPU- and GPU-

based parallel computation; (b) a structure-aligned surface parameterization method; (c) an

adaptive and anisotropic T-mesh generation algorithm; (d) a shape correspondence analy-

sis method for biomolecules based on volumetric eigenfunctions; and (e) a shape analysis

approach based on geometric operators from the second fundamental form of the surface.

Various algorithms for the analysis of biomoleucles have been developed based on

their surface or volumetric meshes. We introduce an efficient computational framework

to construct multi-scale models, which reflect the geometries of the biomolecular com-

plexes represented by atomic resolution data in the Protein Data Bank (PDB). A multi-

level summation of Gaussian kernel functions is employed to generate implicit models for

biomolecules. The coefficients in the summation are designed as functions of the structure

indices, which specify the structures at a certain level and enable a local resolution control

on the biomolecular surface. To improve the efficiency of Gaussian density map construc-

tion, an error-bounded atom elimination method is introduced to reduce the atom number.

Moreover, a method called neighboring search is adopted to locate the grid points close to

the expected biomolecular surface, and reduce the number of grids to be analyzed. For a

specific grid point, a KD-tree or bounding volume hierarchy is applied to search for the

atoms contributing to its density computation, and faraway atoms are ignored due to the

decay of Gaussian kernel functions. In addition to density map construction, three modes

are also employed and compared during mesh generation and quality improvement: CPU
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sequential, multi-core CPU parallel and GPU parallel. With all these techniques, quality

triangle and tetrahedral meshes can be quickly generated for large biomolecules.

Compared with the commonly used triangle meshes, quadrilateral meshes are known

to be more accurate in the Finite Element Analysis (FEA). Besides, the quadrilateral

meshes can also be used as the control meshes of spline or subdivision surfaces, enabling

more mathematical tools for the analysis of biomolecules. An important method to build

the quadrilateral meshes is the surface parameterization. In this thesis, we present a

structure-aligned approach for surface parameterization using eigenfunctions from the

Laplace-Beltrami operator. Several methods are designed to combine multiple eigen-

functions using isocontours or characteristic values of the eigenfunctions. The combined

gradient information of eigenfunctions is then used as a guidance for the cross field con-

struction. Finally, a global parameterization is computed on the surface, with an anisotropy

enabled by adapting the cross field to non-uniform parametric line spacings. By combining

the gradient information from different eigenfunctions, the generated parametric lines are

automatically aligned with the structural features at various scales, which are insensitive to

local detailed features on the surface when low-mode eignfunctions are used.

Another issue for geometric modeling is to build a T-spline representation for the

biomolecular surface, which enables the study of biomolecules using isogeometric anal-

ysis. In this thesis, an algorithm is developed to build the adaptive and anisotropic control

mesh of the T-spline surface, namely T-mesh, for the biomolecular surface. The adapta-

tion is achieved by adapting the parametric line spacings to different surface resolutions

in the cross field-based parameterization. Moreover, an anisotropy defined from an input

scalar field can also be achieved. From the parameterization results, we extract adaptive

and anisotropic T-meshes for the further T-spline surface construction. Finally, a gradient

flow-based method is developed to improve the T-mesh quality, with the anisotropy pre-

served in the quadrilateral elements. The effectiveness of the presented algorithm has been

verified using several large biomolecular complexes.
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Based on the geometric models, various shape analysis can be performed for

biomolecules. Tracking the deformation and comparing biomolecular shapes are essential

in understanding their mechanisms. In this thesis, a new spectral shape correspondence

analysis method is introduced for biomolecules based on volumetric eigenfunctions. The

eigenfunctions are computed from the joint graph of two given shapes, avoiding the sign

flipping and confusion in the order of modes. An initial correspondence is built based on

the distribution of a shape diameter, which matches similar surface features in different

shapes and guides the eigenfunction computation. A two-step scheme is developed to

determine the final correspondence. The first step utilizes volumetric eigenfunctions to

correct the assignment of boundary nodes that disobey the main structures. The second

step minimizes the distortion induced by deforming one shape to the other. As a result, a

dense point correspondence is constructed between the two given shapes, based on which

we approximate and predict the shape deformation, as well as quantitatively measure the

detailed shape differences.

Geometric operators are powerful mathematical tools for shape analysis of biomolecules.

In this thesis, we introduce two new geometric operators based on the second fundamen-

tal form of the surface, namely the secondary Laplace operator (SLO) and generalized

Giaquinta-Hildebrandt operator (GGHO). Surface features such as concave creases/regions

and convex ridges can be captured by eigenfunctions of the SLO, which can be used in

surface segmentation with concave and convex features detected, such as segmenting

protein pockets. Moreover, a new geometric flow method is developed based on the

GGHO, providing an effective tool for sharp feature-preserving surface smoothing.

In summary, several new geometric modeling methods are introduced in this thesis,

which build different types of meshes to represent the biomolecular surface, including the

triangle, tetrahedral, quadrilateral meshes and the T-mesh. Based on the geometric mod-

els, new methods for the shape analysis of biomolecules are developed based on surface or
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volumetric eigenfunctions from different geometric operators, such as the shape correspon-

dence analysis and pocket segmentation.

vii



Acknowledgements

First of all, I would like to give the most sincere gratitude to my advisor Dr. Yongjie

Jessica Zhang. I thank her for all the patient instructions and inspiring guidance throughout

my doctorial study. Not only the academic skills but also the enterprising spirit learned

from her will benefit me for the rest of my life.

I would like to thank my committee, Dr. Ge Yang, Dr. Kenji Shimada and Dr. Levent

Burak Kara for their great support and insightful comments and I have learned a lot from

them. Besides, I thank all our collaborators, Dr. Ge Yang, Dr. Guoliang Xu, Dr. Pete

Kekenes-Huskey, Xinge Li and Hao-Chih Lee. It was great experience to work with them.

I want to thank all my labmates, Dr. Wenyan Wang, Dr. Xinghua Liang, Dr. Jin Qian,

Lei Liu, Kangkang Hu, Xiaodong Wei, Yicong Lai, Aishwayar Pawar, and Arjun Kumar,

in the Computational Biomodeling Lab. I feel lucky to study in this great research group,

or family. Thank them all for the friendship and support for both my research and daily

life.

I would like to thank my parents and my sister for their love and selfless support in all

my life. I hope that this work makes them be proud of. Without them I could never finish

my Ph.D. study. Moreover, I want to thank my friend Yiming Jing, who always cares about

me like a brother. Thank Dr. Luoting Fu. The professional skills and spirit of innovation I

learned from him are of great help for me in my doctorial study. I also want to thank my

friends Xiaoxin Su and Xiaorui Wang. They gave me the warmest support and help for

planning my future career.

This work was supported by Y. Zhang’s NSF CAREER Award OCI-1149591, PECASE

Award N00014-14-1-0234 and CIT Dean’s Fellowship.

viii



To my parents.

ix



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 12

2.1 Geometric Modeling for Biomolecular Complexes . . . . . . . . . . . . . . 12

2.2 Surface Parameterization and T-mesh Generation . . . . . . . . . . . . . . 13

2.3 Shape Comparison and Correspondence Analysis . . . . . . . . . . . . . . 14

2.4 Eigenfunctions and Geometric Flow Method Based on Geometric Operators 15

3 Multi-core CPU or GPU-accelerated Multiscale Modeling for Biomolecular

Complexes 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Gaussian Density Map of Biomolecular Complexes . . . . . . . . . . . . . 21

x



3.2.1 Multi-level Summation of Gaussian Kernel Functions . . . . . . . . 21

3.2.2 Error-bounded Biomolecule Simplification . . . . . . . . . . . . . 26

3.2.3 Efficiency Improvement in Density Map Construction . . . . . . . 30

3.3 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Dual Contouring Method . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Paralleled Mesh Generation . . . . . . . . . . . . . . . . . . . . . 39

3.4 Quality Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Biomolecule Simplification Results . . . . . . . . . . . . . . . . . 41

3.5.2 Geometric Modeling Results . . . . . . . . . . . . . . . . . . . . . 43

3.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Structure-aligned Guidance Estimation in Surface Parameterization Using

Eigenfunction-based Cross Field 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Guidance Estimation Using Eigenfunctions . . . . . . . . . . . . . . . . . 54

4.3.1 Isocontours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Characteristic Value . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Cross Field Generation and Surface Parameterization . . . . . . . . . . . . 60

4.4.1 Overview of Cross Field-based Parameterization . . . . . . . . . . 60

4.4.2 Anisotropic Surface Parameterization . . . . . . . . . . . . . . . . 63

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Adaptive and Anisotropic Quality T-mesh Generation for Multi-resolution

Biomolecular Surfaces 70

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xi



5.2 Multi-resolution T-mesh Construction . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Multi-resolution Biomolecular Surface . . . . . . . . . . . . . . . 71

5.2.2 Surface Parameterization and T-mesh Construction . . . . . . . . . 72

5.3 T-mesh Quality Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Correspondence Analysis for Biomolecules Based on Volumetric Eigenfunc-

tions 88

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Review of Spectral Point Correspondence Computation . . . . . . . . . . . 90

6.3 Shape Correspondence Analysis Based on Joint Graph . . . . . . . . . . . 93

6.3.1 Eigenfunctions of Joint Graphs . . . . . . . . . . . . . . . . . . . . 93

6.3.2 Initial Correspondence . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.3 Initial Correspondence Improvement . . . . . . . . . . . . . . . . . 97

6.4 Applications and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.1 Shape Approximation and Prediction . . . . . . . . . . . . . . . . 102

6.4.2 Shape Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . 107

7 Secondary Laplace Operator and Generalized Giaquinta-Hildebrandt Opera-

tor with Applications on Surface Segmentation and Smoothing 110

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Review of Existing Geometric Operators . . . . . . . . . . . . . . . . . . . 112

7.2.1 Definitions of Existing Geometric Operators . . . . . . . . . . . . 112

7.2.2 Eigenfunction Computation . . . . . . . . . . . . . . . . . . . . . 113

7.3 SLO and Surface Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3.1 Generalized STO and SLO . . . . . . . . . . . . . . . . . . . . . . 116

xii



7.3.2 Surface Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 GGHO and Geometric Flow . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Conclusion and Future Work 130

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 133

xiii



List of Tables

3.1 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Ratio of analyzed grid points in 2KFX (513 × 513 × 513). . . . . . . . . . 31

3.3 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xiv



List of Figures

3.1 Multi-scale model for protein 2W4U. High resolution is shown for the actin

domain (cyan) with parameters PR = 0.8, PC = 0.5, and PD = 1.0; chain K

(magenta) and troponin C (orange) are further emphasized with PR = 2.0,

PC = 1.0, and PD = 1.0; and the rest of the protein (pink) is blurred with

PR = 0.5, PC = 0.3, and PD = 0.8. (a) Biomolecular surface; (b) exterior

tetrahedral mesh; and (c) exterior mesh with embeded protein. PR, PC and

PD are parameters to control the local resolution of residuals, chains and

domains, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Hierarchical structure of the biomolecules. . . . . . . . . . . . . . . . . . 22

3.3 Surface construction of 1J5E from a two-level summation of Gaussian ker-

nels. (a) Uniformly blurred surface, PR = 0.05 and PC = 0.5; (b) all details

on the model are strengthened, PR = 0.5 and PC = 1.0; and (c) only details

on chain B are strengthened, PR = 0.5 and PC = 1.0 for chain B while

PR = 0.05 and PC = 0.5 for the remaining structure. . . . . . . . . . . . . 24

3.4 Resolution control of 2W4U at the domain level, PR = 0.7, PC = 0.4. (a)

Blurred domain boundary for tropomyosin (red) and actin (green), PD =

0.25 for the entire protein; and (b) more detailed features are preserved

along the boundary of tropomyosin and actin, PD = 0.8 for these two do-

mains while PD = 0.25 for the remaining structure. . . . . . . . . . . . . . 24

xv



3.5 Biomolecular surfaces for the simplified protein 2O53 with PC = 1.0 and

κ = 0.3. Top row: PR = 0.25; Bottom row: PR = 0.5. The color represents

the distribution of eM
G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 The neighboring search algorithm. (a) The activated grid cell (magenta)

and its 1-ring neighbors; and (b) the newly activated cell (magenta) in the

1-ring neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Neighboring search results for 2KFX. (a) The interior domain (green); (b)

one detected band using dl = 0.9, du = 1.1 and kA = 0.026; and (c) another

detected band using dl = 0.1, du = 2.0 and kA = 0.12. . . . . . . . . . . . . 32

3.8 The bounding box system. (a) The bounding boxes of two peptides; and

(b) the bounding box of one peptide is subdivided into bounding boxes of

residues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 Eight proteins tested in Table 3.3. (a) 1BOR; (b) 1NEQ; (c) 1A63; (d)

1A7M; (e) 1BEB; (f) 1VNG; (g) 1GTP; and (h) 2KXH. . . . . . . . . . . . 37

3.10 Group of the edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11 Two biomolecualr complexes in human cardiac calcium signaling system.

(a-c) CERCA system with PR = 0.2, PC = 0.8 and PR = 0.2, PC = 1.1

for low and high resolution components, respectively; and (d-f) thin/thick

filament group (TFG) with PR = 0.5, PC = 0.3 and PR = 0.7, PC = 0.4

for low and high resolution components, respectively. (a) and (d) show

the protein structure with the blue region emphasized in high resolution;

(b) and (e) show exterior tetrahedral meshes; and (c) and (f) show exterior

meshes with embeded proteins. . . . . . . . . . . . . . . . . . . . . . . . . 47

xvi



3.12 Three large proteins. (a-b) 2W4A with PR = 0.2, PC = 0.8 and PR =

0.4, PC = 1.2 for low and high resolution components, respectively; (c-d)

1HTQ with PR = 0.3, PC = 0.8 and PR = 1.0, PC = 1.5 for low and

high resolution components, respectively; and (e-f) 2KU2 with PR = 0.5,

PC = 1.0 and PR = 1.6, PC = 2.0 for low and high resolution components,

respectively. (a), (c) and (e) show tetrahedral mesh of the proteins with

the blue region emphasized in high resolution, and the pink region shows

a cross section of the model; (b), (d) and (f) show the partition results in

parallel computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Eigenfunctions of the Hand model. (a) The first six eigenfunctions; and (b,

c) the gradient (black arrows) distribution for the first and second eigen-

functions of the Hand model. The length of the arrows represents the gra-

dient magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Process to generate a surface parameterizations using isocontours. (a) Iso-

contours from Modes 1 (green) and 2 (blue); (b) the corresponding feature

bands (green and blue) with the defined guidance directions (black arrows);

(c) the built smooth cross field, in which the singularities are marked in red

nodes; and (d) the resulting parametric lines. . . . . . . . . . . . . . . . . 56

4.3 The gradient for the 7th eigenfunction of the Eight model. The black and

white curves represent the isocontours with the isovalue of zero and fmax −

0.125( fmax − fmin), respectively. The normalized gradient for Regions A, B

and C is shown in the zoom-in pictures. . . . . . . . . . . . . . . . . . . . 57

4.4 The isocontours collected from various modes. The blue and red lines cor-

respond to αl and αu, respectively. . . . . . . . . . . . . . . . . . . . . . . 57

4.5 The gradient magnitude of Modes 2 and 3 eigenfunctions for the 4KYT

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xvii



4.6 Process of defining the guidance directions for the Hand model using the

characteristic value. (a) The feature patches for Modes 1 (green) and 2

(blue); and (b) the Dijkstra distance distribution on the surface with guid-

ance triangles (red triangles) and guidance directions (black arrows). . . . . 59

4.7 Hand model. (a, b) The generated guidance directions using the first six

modes; and (c, d) the resulting surface parameterization. Two ways are

used to represent feature regions: (a, c) the isocontours; and (b, d) the

characteristic values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Process of surface parameterization for Fig. 4.6(b). (a) The smooth cross

field (four arrows in each triangle) and singularities (red nodes); (b) disk-

like planar region from the original surface; and (c) parametric lines. . . . . 61

4.9 A tradeoff control for the parameterization using the guidance directions in

Fig. 4.7(c). (a) λ̄ = 0.05; and (b) λ̄ = 5.0. . . . . . . . . . . . . . . . . . . . 63

4.10 Anisotropic parameterization of the Bunny model using Mode 1 eigenfunc-

tion. (a) The gradient of the input field; (b) the invariant and transition re-

gions; (c, e) the original cross field and the corresponding parameterization

result; and (d, f) the adapted cross field and the corresponding parameteri-

zation result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.11 Surface parameterization results for the Thin Filament model guided by dif-

ferent numbers of eigenfunctions. (a) The first six modes; (b, c) guidance

directions using Modes 1-2 and 1-14, respectively; (d-f) surface parameter-

ization using Modes 1-2 (NS = 144), 1-14 and 1-39, respectively; and (g)

parameterization using the principal curvature directions (NS = 178). . . . . 67

4.12 Anisotropic parameterization for 4YKT (d) The gradient magnitude and

directions of Mode 3 eigenfunction; (e) invariant and transition regions;

and (f) the resulting parametric lines from the adapted cross field. . . . . . . 68

xviii



5.1 Adaptive parameterization for the multi-resolution surface of 2W4U. (a)

The multi-resolution triangle surface; (b) the cross field; (c) the adaptive

T-mesh; (d) the parametric lines; and (e, f) the T-meshes corresponding to

(d) before and after the removal of redundant vertices. . . . . . . . . . . . . 73

5.2 Two triangles across the patch boundary (orange). . . . . . . . . . . . . . . 75

5.3 Various parametric lines across the patch boundary and their resulting T-

meshes. (a-d) The parametric lines; and (e-h) the corresponding T-meshes. . 76

5.4 Anisotropic T-mesh generation from the Mode 2 eigenfunction of LBO

(α = 0.1). (a) The gradient and gradient magnitude of the input field; (b)

the adaptive and anisotropic parameterization; and (c) the corresponding

T-mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 (a) A neighboring element j surrounding Vertex xi; and (b) extending the

T-junction (orange) to form a local unstructured mesh. . . . . . . . . . . . 78

5.6 Ideal triangles from a square (a-b) or rectangle (c-d). (a, c) No T-junction;

and (b, d) with a T-junction. The orange dots are T-junctions. . . . . . . . . 79

5.7 Quality improvement results for the T-mesh in Fig. 5.4(c) using two differ-

ent methods. (a) The original T-mesh; (b-c) the improved T-meshes using

the triangle optimization method and our method, respectively; and (d-f)

the Jacobian distribution corresponding to (a-c). . . . . . . . . . . . . . . . 80

5.8 Multi-resolution surfaces for 2O53 and 4KYT. (a-c) 2O53; and (d-f) 4KYT.

Left column: adaptive parameterization; Middle column: T-mesh; Right

column: T-spline surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 Multi-resolution surfaces for 4N78, 4A7F and 2KU2. (a-c) 4KYT; (d-f)

4N78; and (g-i) 2KU2. Left column: adaptive parameterization; Middle

column: T-mesh; Right column: T-spline surface. . . . . . . . . . . . . . . 82

xix



5.10 Adaptive and anisotropic T-mesh construction of 4KYT from three differ-

ent eigenmodes. (a-c) The gradient direction and magnitude of the eigen-

functions; (d-f) surface parameterization; and (g-i) adaptive and anisotropic

T-meshes. Left column: results from Mode 2; Middle column: results from

Mode 3; and Right column: results from Mode 6. . . . . . . . . . . . . . . 84

5.11 Biomolecular surfaces for 2W4U emphasizing Chains 18 and 20 with dif-

ferent resolutions. (a) Adaptive parameterization; (b-c) the corresponding

T-mesh and T-spline surface. . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 The first four modes of 2BPF (a, c) and 2BPG (b, d). (a-b) Surface eigen-

functions from the LBO; and (c-d) volumetric eigenfunctions from the

graph Laplacian. The red and blue dots represent the maximal and min-

imal eigenfunction values, respectively. . . . . . . . . . . . . . . . . . . . 93

6.2 The histogram summarizing the shape diameter distribution around Node i. 95

6.3 The correspondence between shapes of 2BPF (top) and 2BPG (bottom).

(a) The initial correspondnence; (b) the correspondence after the first step

of improvement; and (c) the final shape correspondence. Each voxel is

colored with the first eigenfunction from independent graphs of 2BPF and

2BPG for visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 First four modes of 2BPF (left) and 2BPG (right) from the joint graph. (a-

b) Eigenfunctions resulted from the initial correspondence in Fig. 6.3(a);

(c-d) eigenfunctions resulted from the correspondence in Fig. 6.3(b); and

(e-f) eigenfunctions resulted from the final correspondence in Fig. 6.3(c). . 97

6.5 Deformed 2BPF shape based on shape correspondence. (a) The original

2BPF shape; (b) the deformed shape based on the initial correspondence;

(c) the deformation after the first step improvement; and (d-f) the deformed

shapes in the 10th, 75th and 150th iterations in the second step improvement. 98

xx



6.6 The shape correspondence between 2BPF and 1BPB. (a) The point corre-

spondence between 2BPF (left) and 1BPB (right); and (b) the deformed

shape of 2BPF according to (a). . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Chemical structure and eigenfunctions for the Integrin. (a-b) The deforma-

tion of chemical structure; and (c-d) the first eigenfunctions for the shapes

from (a) and (b), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.9 The deforming process from 2BPF to 2BPG. (a, d) The known shapes of

2BPF and 2BPG, respectively; and (b-c) the approximated shapes at differ-

ent time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.10 The deformation process of YE. (a-d) Deformation process of the chemical

structure of YE; (e-h) volumetric shapes built from (a-d); (i) shape corre-

spondence between (e) and (h); (j-k) the original and deformed shapes of

(e) according to the shape correspondence; and (l-o) the approximated and

predicted deformed shapes at different time. (i-k) are colored with the first

eigenfunction from independent graphs for visualization. . . . . . . . . . . 105

6.8 The harmonic field and local minima (blue) and maxima (red) in 2BPF. . . 106

6.11 Measurement of shape difference. (a-b) Comparison between 2BPF and

2BPG; (c-d) comparison between 2BPF and 1BPB; (a, c) the shape diame-

ter difference; and (b, d) the distortion. . . . . . . . . . . . . . . . . . . . . 107

6.12 Shape deformation of KCR. (a-d) Deformation of the chemical structure;

(e-h) volumetric shapes computed from (a-d); (i-k) are shape correspon-

dence between (e) and (f), (e) and (g), and (e) and (h), respectively; (l-n)

measurement of the shape differences based on the correspondence in (i-k)

with shape diameter difference (left) and distortion (right). (i-k) are colored

with the first eigenfunction from independent graphs for visualization. . . . 108

7.1 Elk model. (a) The input triangle mesh; and (b) the quadrilateral mesh. . . 115

xxi



7.2 Elk model. (a, b) The first four non-constant eigenfunctions of the LBO

and GHO for the Elk model, respectively; and (c) the segmentation result

from Modes 1-4 of the LBO. . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Disk model. (a) Modes 1-3 of the LBO eigenfunctions; (b-d) Modes 1-3

of the SLO eigenfunctions when Ψ = 1, Ψ = eK and Ψ = e−H , respec-

tively; (e) the spectra of LBO and SLO; and (f-i) the corresponding surface

segmentation results of (a-d). . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Elk model. (a, b) Modes 1-4 of the SLO eigenfunctions when Ψ = 1 and

Ψ = eK , respectively; and (c, d) the corresponding segmentation results of

(a) and (b), respectively. The red windows in (c, d) show the back face of

the horn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Smoothing results of geometric flow for the Moai model using different

geometric operators. (a) The original model; (b) the result from LBO; and

(c) the result from the GGHO (Iteration: 50; Step size: 0.02). . . . . . . . . 124

7.6 The eigenfunctions and segmentation results of the Bust model. (a-c)

Modes 1-3 of the LBO, CL and SLO, respectively; (d) the ground truth

for segmentation [17]; (e, f) segmentation results from LBO and CL

eigenfunctions; (g) the result from the SDF method; and (h) the result from

SLO eigenfunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.7 The first four eigenfunctions and segmentation results for the 1BYH model

from the LBO and SLO with Ψ = e−H . (a, b) Modes 1-4 eigenfunctions

of the LBO and SLO; (c) the segmentation result from Modes 1-4 of the

LBO; (d, e) segmentation results from Modes 1-2 and 1-4 of the SLO; (f) a

known binding between 1BYH and BETA-D-GLUCOSE (red circle); and

(g) the active site (orange) corresponding to Patch D in (e). . . . . . . . . . 127

xxii



7.8 The eigenfunctions and segmentation results for the the MAChE (1C2B)

model from the LBO and SLO with Ψ = e−H . (a, b) Modes 1-4 eigenfunc-

tions of the LBO and SLO; (c) the segmentation result from Modes 1-4 of

the LBO; (e) the segmentation result from Modes 1-4 of the SLO; and (d,

f) the crosssections of (c) and (e), respectively. . . . . . . . . . . . . . . . . 128

xxiii





Chapter 1

Introduction

1.1 Motivation

Biological functionalities of the biomolecules depend heavily on their geometries. Geo-

metric modeling and shape analysis play an important role in various applications such

as drug design and pathological study. Due to the complicated structures of biomolecular

complexes, efficient and adaptive modeling algorithms are of great help for the analysis.

On the other hand, eigenfunctions of various operators usually reveal specific geometric

features, which have been utilized in different fields. It is worthy exploring the properties

of eigenfunctions in the shape analysis of biomolecules. In this thesis, new algorithms for

the geometric modeling of biomolecules are introduced, and novel shape analysis methods

are developed based on eigenfunctions of different operators.

The biomolecular structures are usually represented in atomic resolution data, and im-

plicit or explicit model of biomolecules needs to be built to represent their geometries.

Different types of meshes have been utilized in various computations such as estimating

electrostatic potentials and diffusion-based calcium signaling [18, 43, 116, 115, 141, 36,

136]. As progressively larger biomolecular complexes are studied, we need to handle huge

amount of computation, which brings a great challenge for both modeling and simulation.
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To efficiently represent complex biomolecules, a multiscale modeling method that controls

the local resolution of the specified hierarchical structure is required, which can signifi-

cantly reduce the mesh size and thus lighten the compuational cost for simulations. In ad-

dition, with the rapid development of parallel computers, multi-core CPU and GPU-based

computation brings in new directions for the acceleration of modeling in various fields. In

this thesis we also aim to apply these parallel computation techniques to multiscale model-

ing for biomolecules.

The biomolecular surfaces can be represented using various types of meshes. Compared

with the commonly used triangle meshes, quadrilateral meshes are well known for higher

computational accuracy. Besides, the quadrilateral meshes can be used for the control

meshes of spline or subdivision surfaces, which enables more mathematical tools for the

geometric modeling. One of the commonly used quadrilateral mesh generation method

is the surface parameterization, which is of great importance for many applications, such

as quadrilateral meshing [12], texture mapping and synthesis [128, 66]. An important

issue for surface parameterization or quadrilateral generation is how to align parametric

lines with the feature directions. Some simplification-based techniques [85, 95, 119] were

developed to generate very coarse quadrilateral domain meshes with a good user control.

Although feature alignment was achieved in a certain degree [85], it is difficult to control

the simplification process to preserve surface features. Using the harmonic field [58, 122],

features can be captured, but feature alignment is limited due to the difficulty in generating

the field and placing singularities. In recent years, methods based on the cross field have

been introduced [58, 13, 51, 96, 99]. Generally, the captured features in the cross field are

represented by the principal curvatures, which are sensitive to the local detailed features

and may fail in capturing structural features of an object at desired scales.

In the context of isogeometric analysis, the T-spline surface provides a powerful basis

for computation in different applications [46, 8]. Due to the high efficiency of the T-spline

control mesh, namely T-mesh, the multi-resolution feature on the biomolecular surface
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can be represented efficiently. Basically, the T-meshes are quadrilateral meshes allowing T-

junctions in the connectivity, which can also be built based on the surface parameterization.

Because of the T-junctions, the adaptation can be achieved much easier compared with the

general quadrilateral meshes, without sacrificing the alignment of parametric lines.

Since the interactions between biomolecules depend heavily on their surface shapes,

shape analysis plays an important role for the study of biomolecules. Based on the surface

and volumetric models generated using our geometric modeling methods, various oper-

ations can be performed for the shape analysis of biomolecules. Due to the flexibility

of peptides, biomolecular shapes usually deform during the biochemical process, and the

functionality of many biomolecules depends on their shape deformations. Therefore, mea-

suring the shape differences and tracking the deformation of biomolecular shapes have be-

come important issues in various applications. Although these operations can be performed

based on the chemical structures of biomolecules, methods based purely on geometry still

need to be explored, which enable the researchers to study the behavior of biomolecules

simply based on their outline, and improve the efficiency of experimental study. To realize

this, shape correspondence analysis provides a proper basis, which can reveal the shape

differences or deformations explicitly based on the connections of corresponding nodes.

Behaviors of biomolecules are usually determined by special surface features such as

pockets. Geometric operators are powerful mathematical tools to detect surface features.

For example, eigenfunctions of the Laplace-Beltrami operator (LBO) reflect the structural

feature of the object and are insensitive to the surface curvature. Compared with the first

fundamental form of the surface which defines the LBO, the second fundamental form is

more sensitive to the curvature-based surface features, and the applications of their eigen-

functions still need to be explored. In this thesis, the properties of these eigenfunctions

are studied, and their applications such as detection and segmentation of protein pockets

are explored. Besides, these operators also provide a new basis for the geometric flow

operations for the purposes such as surface smoothing [72].
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1.2 Problem Statement

In this thesis, we study five main problems:

• CPU- and GPU-based parallel computation for biomolecular modeling. Given

a PDB/PQR file storing the atom centers and radii of a biomolecule, our method

aims at building a quality tetrahedral mesh efficiently. There are three main steps for

the modeling process: Gaussian density map computation; adaptive tetrahedral mesh

extraction; and quality improvement. The speed of the modeling process depends

heavily on the atom number in the biomolecule. An error-bounded atom elimina-

tion method is proposed to reduce the atom number by ignoring the low contribut-

ing atoms. Besides, a neighboring search algorithm is introduced together with the

KD-tree technique, which significantly improves the computational efficiency of the

Gaussian density map generation. The multi-core CPU- and GPU-based parallel

computation is applied for all the three steps to accelerate the entire modeling pro-

cess.

• Structure-aligned surface parameterization. One of the important issues for

quadrilateral mesh generation based on the surface parameterization is the alignment

of parametric lines. For many applications, an alignment to the main structure of the

object is preferred, because capturing the detailed surface features usually results in

more singularities in the mesh, which are undesired for the analysis. The gradients

of eigenfunctions of Laplace-Beltrami operators reflect the structural feature of the

object. However, an eigenfunction usually can only capture part of the structure.

Therefore, an algorithm is proposed to combine the structural information from

multiple eigenfunctions, and build a guidance for the parameterization that captures

the intact structure. To improve the efficiency of resulting quadrilateral meshes, an

improved parameterization method is proposed that adapts the parametric lines to

the input field by adapting the cross field.
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• Adaptive and anisotropic T-mesh generation for multi-resolution biomolecular

surfaces. Taking the advantage of the surface parameterization, we develop a method

for adaptive T-mesh construction for multi-resolution biomolecular surfaces. The

biomolecular surface is divided into patches with different resolutions, and different

parametric line spacings are set for each patch, with T-junctions on the patch bound-

aries. To make a strongly-balanced structure in the T-mesh, constraints are intro-

duced for the parameterization at the patch boundaries. Moreover, an anisotropy can

be introduced in the parameterization defined from an input guidance field. A quality

improvement method is specified for the T-mesh, which can preserve the anisotropy

in the T-mesh compared with other existing methods.

• Shape correspondence computation based on volumetric eigenfunctions. The

existing shape analysis algorithms for biomolecules are usually based on the sur-

face meshes, which is sensitive to the surface topology change. In this thesis, we

introduce a novel point correspondence computation method based on the volumet-

ric eigenfunctions. The volumetric model of the biomolecule consists of voxels in

a rectilinear grid, and eigenfunctions are computed by solving an eigenproblem of

the graph Laplacian of the volumetric model. The traditional spectral shape analysis

methods were usually limited by the perturbations from large deformations, which

destroys the invariance of eigenfunctions to shape deformations. Based on the joint

graph, a novel method for the eigenfunction computation is introduced in this the-

sis, which increases the similarity of eigenfunctions in the shapes of two deformed

biomolecules by setting additional constraints from the shape diameter. Besides, lo-

cal neighborhoods are preserved by minimizing the distortion in the correspondence-

based deformation. With the shape correspondence, various applications such as

approximating, predicting and quantitative comparison of different shapes can be

performed.
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• Geometric operator exploration based on the second fundamental form of sur-

faces. The traditional Giaquinta-Hildebrandt operator (GHO) based on the second

fundamental form is very sensitive to the flat regions on the surface, which makes it

difficult to apply its eigenfunctions in shape analysis. Therefore, a new geometric op-

erator, the secondary Laplacian operator (SLO) is introduced in this thesis. Different

from the commonly used LBO derived from the first fundamental form, eigenfunc-

tions from the SLO reveal the curvature information on the surface. Using different

parameters, the eigenfuncitons of SLO emphasizes different surface features, which

can be applied for surface segmentation for different purposes. Moreover, a gener-

alized Giaquinta-Hildebrandt operator (GGHO) is introduced analogy to the GHO,

and a new geometric flow method is proposed based on it, which can be used to

strengthen or weaken geometric features during surface smoothing.

1.3 Contributions

There are two targets for the methods introduced in this thesis. Contributions have been

made in each of them.

1. Constructing different types of quality models to represent the biomolecular surface.

• An efficient multi-scale modeling method for biomolecular complexes is intro-

duced with local surface resolution control, which is accelerated by CPU- and

GPU-based parallel computation;

• A new guidance for surface parameterization is developed based on eigenfunc-

tions of the Laplace-Beltrami operator, which aligns parametric lines to the

main structure of the object;

• An anisotropic parameterization method is introduced, which reflects the

anisotropy from an input field with different parametric line spacings; and
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• A new parameterization method is developed for T-mesh generation from multi-

resolution biomolecular surface, which adapts parametric line spacings to the

local surface resolution.

2. Introducing new mathematical tools based on eigenfunctions of various geometric

operators, which enable different operations for the shape analysis of biomolecules.

• A new shape correspondence analysis method for biomolecules is developed

based on the volumetric eigenfunctions from the joint graph of different

biomolecular shapes, which enables the operations such as approximating

and predicting the shape deformation and quantitative comparison of different

shapes; and

• Two new geometric operators, the SLO and GGHO, are introduced based on the

second fundamental form of the surface. The SLO yields eigenfunctions sensi-

tive to the curvature-related surface features, which can be applied for surface

segmentation for various purposes. A new geometric flow method is devel-

oped based on the GGHO, which preserves and strengthens the surface features

during smoothing.
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1.5 Outline of Dissertation

Following the introduction, Chapter 2 gives a background literature review. Chapter 3 in-

troduces an efficient biomolecular modeling method based on the Gaussian density map.

Chapter 4 proposes a structure-aligned surface parameterization method based on eigen-

functions of the LBO. Chapter 5 develops a new parameterization method for the construc-

tion of T-mesh for multi-resolution biomolecular surfaces. Chapter 6 presents our new

shape correspondence analysis method based on volumetric eigenfunctions. Chapter 7 in-

troduces new geometric operators from the second fundamental form of the surface, and

their applications for surface segmentation and smoothing. Finally, Chapter 8 draws the

conclusion and points out the future work.
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Chapter 2

Literature Review

2.1 Geometric Modeling for Biomolecular Complexes

There are three important biomolecular surfaces [21, 22]: the Van der Waals surface

(VdW), the Solvent Accessible Surface (SAS), and the Solvent Excluded Surface (SES).

For the VdW, atoms are represented as rigid spheres with Van der Waals radii, and the

biomolecular surface is defined as the envelope of these spherical surfaces. The SAS and

SES can be defined by assuming a probe rolling around the biomolecule and keeping

contact with the atoms. Then the SAS is formed by tracing the trajectory of the probe

center. The topological boundary of the union of all possible probes is called the SES,

with no intersection with atoms. A lot of research has been conducted in approximating

the SES, including the alpha-shapes [28, 1], the beta-shapes [56, 105], the MSMS [106],

the advancing front and generalized Delaunay approaches [59], NURBS approximation

[6], and PDE-based methods [133, 149, 44]. The biomolecules were also represented

as implicit models. The Gaussian kernel functions were applied in constructing density

maps for the biomolecules [10, 38, 62, 147, 140]. In [37], the atomic resolution Gaussian

density map was built and then filtered using an ideal filter to obtain a smooth biomolecular

surface.
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Fast computing is critical in biomolecular modeling [124, 129]. A variety of algo-

rithms were developed in improving the modeling efficiency. For example, the Fast Fourier

Transform was used in [149, 44] to get better performance of the PDE transform, and

a Non-uniform Fast Fourier Transform (NFFT) was adopted to improve the polynomial-

form summation of the kernel functions [7]. The programmable GPU has brought in a new

direction for vast data processing in geometric modeling [126, 68, 94, 54, 118].

2.2 Surface Parameterization and T-mesh Generation

In the context of isogeometric analysis [46, 8, 125, 49, 120], the T-spline surface provides

a powerful basis for computation in different applications, which can also greatly benefit

the analysis of biomolecules. Due to the high efficiency of the T-spline control mesh,

namely T-mesh, the multi-resolution feature on the biomolecular surface can be represented

efficiently. Various methods have been developed for T-mesh generation [130, 131, 89, 40,

69]. In recent years, the cross field-based global parameterization method provides new

clues for T-mesh generation, as it has been more and more commonly used in surface

quadrangulation [12, 89].

An important issue for surface parameterization is how to align parametric lines with

the feature directions. Some simplification techniques [85, 95, 119] were developed to

generate very coarse domain meshes with a good user control. Although feature alignment

was achieved in a certain degree [85], it is difficult to control the simplification process to

preserve surface features. Using the harmonic field [58, 122], features can be captured,

but feature alignment is limited due to the difficulty in generating the field and placing

singularities. Methods based on the cross field have been introduced [58, 13, 51, 96, 99].

The smooth cross field could be generated from a prescribed set of singularities [53], but it

was more common to guide the field using principal curvatures, which are sensitive to the
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local detailed features and may fail in capturing structural features of an object at desired

scales.

2.3 Shape Comparison and Correspondence Analysis

In previous literature, various methods have been introduced to measure the difference

between different shapes [71, 60, 70]. The shape of each object can be characterized by

the statistical information of the surface features. Various methods have been developed

to describe and compare different shapes. In [41], the outlines of different biomolecular

shapes were described and compared based on the multi-resolution Reeb graph (MRG). A

similar but improved method was developed in [70], which handled surfaces with arbitrary

genus based on the shape skeleton. Spectral analysis is another important way to compare

different shapes, which measures differences between shapes based on the spectrum of

the Lapace-Beltrami operator (LBO) [103, 104, 32]. These methods target at scoring the

similarities or dissimilarities between shapes for retrieval or classification, which usually

cannot give details of the differences between shapes.

Different from the shape matching methods, shape correspondence analysis methods

provide a means to explicitly show details about the similarity or difference between shapes

[50]. Among different methods, the spectral graph theory has been widely used [123, 19].

Since the eigenfunctions of the graph Laplacian or Laplace-Beltrami operator are supposed

to be invariant to the shape deformations, they can be used to match the corresponding

points in deformed shapes. Characterized by the eigenfunctions, points in the flexible

shapes were assigned to each other based on methods such as the Gaussian proximity

matrix [108, 111, 16], which were applied for tracking the movement of articulated mod-

els [86]. However, the invariance of eigenfunctions may be affected by the perturbations

such as expansion and compression, which may influence the accuracy of correspondence

[101, 92]. Rigid and nonrigid transformations were adopted in [86, 79, 80, 47] to reduce the
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influence of these perturbations. In [81], a joint graph was used to compute eigenfunctions

based on an initial correspondence obtained according to important features on the cerebral

cortex surfaces, which improved the similarity of eigenfunctions on different surfaces and

avoided the problems such as flipping and improper ordering. In [79, 80], a fast compu-

tation method was introduced, which significantly reduced the computational time for the

matching of large models. Many algorithms only care about the correspondence of some

points at important locations, namely the landmarks [50]. However for the shape analy-

sis of biomolecules, a dense point correspondence is preferred to perform the applications

such as measuring the change of a certain area on the surface.

2.4 Eigenfunctions and Geometric Flow Method Based on

Geometric Operators

Geometric operators are the basis for many algorithms in surface processing. Based on

the first fundamental form of the surface, the Laplace-Beltrami operator (LBO) is de-

fined and its eigenfunctions are well-known for their property of capturing shape behav-

ior and structural feature of an object [65, 102, 104, 113]. They vary along the object

surface and are invariant to different poses, which makes them ideal for applications in

pose-invariant Reeb graph construction [113], shape matching [65] or registration [86], the

Shape-DNA [104], and surface quadrangulation or parameterizaton [150, 74, 26, 45, 76].

Another important application of the LBO eigenfunctions is surface segmentation. The

distribution of eigenfunctions is used together with isocontours [102, 127, 78] and point

clustering [98, 142, 112] to segment surface into several components. In practice, different

methods were employed to improve the performance of LBO eigenfunctions [42, 132]. To

detect concavities, eigenfunctions from a concavity-aware Laplacian [127] were used to

generate a single segmentation field.
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Besides computing eigenfunctions, geometric operators are also used in various geo-

metric flows for surface fairing and smoothing [23, 63, 64, 144, 139, 148]. The mean cur-

vature and Gaussian curvatures are usually used to design geometric operators [139, 57].

Generally, geometric flows smooth surfaces and remove noise by moving nodes in the

normal direction, while the tangential movement regularizes the elements. The tangential

movement can also help strengthen surface features, which was seldom considered in the

existing methods.
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Chapter 3

Multi-core CPU or GPU-accelerated

Multiscale Modeling for Biomolecular

Complexes

Biomolecules are usually represented by the atomic resolution data, such as PDB files. For

many studies, geometric models are required to represent the biomolecular surface, which

wraps all the atoms inside. In this chapter, we introduce an efficient approach for multi-

scale modeling of biomolecular complexes, accelerated by CPU- and GPU-based parallel

computation. Quality triangle and tetrahedral meshes are generated, which can be directly

used for analysis.

3.1 Introduction

Numerical analysis has been essentially important for the study of biomolecular complexes

in a wide range of applications such as estimating electrostatic potentials and diffusion-

based calcium signaling [18, 43, 116, 115, 141, 36, 136]. As progressively larger biomolec-

ular complexes (see Fig. 3.1) are studied, we need to handle huge amount of computation,
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which brings a great challenge for both modeling and simulation. To efficiently represent

complex biomolecules, a multiscale modeling method that controls the local resolution of

the specified hierarchical structure is required, which can significantly reduce the mesh size

and thus lighten the compuational cost for simulations. In addition, with the rapid devel-

opment of parallel computers, multi-core CPU and GPU-based computation brings in new

directions for the acceleration of modeling in various fields. In this chapter we aim to ap-

ply these parallel computation techniques to multiscale modeling for biomolecules. In the

following, let us first briefly review previous work on biomolecular modeling and efficient

computation.

(a) (b) (c)

Figure 3.1: Multi-scale model for protein 2W4U. High resolution is shown for the actin
domain (cyan) with parameters PR = 0.8, PC = 0.5, and PD = 1.0; chain K (magenta)
and troponin C (orange) are further emphasized with PR = 2.0, PC = 1.0, and PD = 1.0;
and the rest of the protein (pink) is blurred with PR = 0.5, PC = 0.3, and PD = 0.8. (a)
Biomolecular surface; (b) exterior tetrahedral mesh; and (c) exterior mesh with embeded
protein. PR, PC and PD are parameters to control the local resolution of residuals, chains
and domains, respectively.

There are three important biomolecular surfaces [21, 22]: the Van der Waals surface

(VdW), the Solvent Accessible Surface (SAS), and the Solvent Excluded Surface (SES).

For the VdW, atoms are represented as rigid spheres with Van der Waals radii, and the

biomolecular surface is defined as the envelope of these spherical surfaces. The SAS and

SES can be defined by assuming a probe rolling around the biomolecule and keeping con-
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tact with the atoms. Then the SAS is formed by tracing the trajectory of the probe center.

The topological boundary of the union of all possible probes is called the SES, with no

intersection with atoms. A lot of research has been conducted in approximating the SES,

including the the alpha-shapes [28, 1], the beta-shapes [56, 105], the MSMS [106], the ad-

vancing front and generalized Delaunay approaches [59], NURBS approximation [6], and

PDE-based methods [133, 149, 44]. The biomolecules were also represented as implicit

models. The Gaussian kernel functions were applied in constructing density maps for the

biomolecules [10, 38, 62, 147, 140]. In [37], the atomic resolution Gaussian density map

was built and then filtered using an ideal filter to obtain a smooth biomolecular surface.

Fast computing is critical in biomolecular modeling [124, 129]. A variety of algo-

rithms were developed in improving the modeling efficiency. For example, the Fast Fourier

Transform was used in [149, 44] to get better performance of the PDE transform, and

a Non-uniform Fast Fourier Transform (NFFT) was adopted to improve the polynomial-

form summation of the kernel functions [7]. The programmable GPU has brought in a new

direction for vast data processing in geometric modeling [126, 68, 94, 54, 118].

In this chapter, we propose an efficient multi-scale modeling framework for biomolecules

based on the multi-level summation of Gaussian kernel functions [75]. The modeling pro-

cess contains three steps: Gaussian density computation, adaptive tetrahedral mesh

generation, and quality improvement. A special method called neighboring search is

applied for efficiency improvement, together with the KD-tree structure and the bounding

volume hierarchy (BVH). The multi-core CPU and GPU-based parallel computation

techniques are employed in all these three steps. The main contributions in this chapter

include:

1. Structure specified parameters are adopted in the multi-level summation of Gaussian

kernel functions, enabling a local resolution control for the hierarchical structure of

the complicated biomolecules;
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2. An error-bounded biomolecule simplification method is introduced, which improves

the computational efficiency by reducing the atom number;

3. Neighboring search is applied to locate the grid points close to the biomolecular

surface, and thus reduce the number of grids to be analyzed;

4. KD-tree and BVH are employed to quickly search contributing atoms around a grid

point. Faraway atoms are ignored due to the decay of Gaussian kernel functions; and

5. Multi-core CPU and GPU-based computation are employed in the entire modeling

process, which significantly accelerate the modeling process.

The remainder of this chapter is organized as follows. Section 3.2 describes the multi-

level summation of Gaussian kernel functions. Section 3.2.3 explains the Gaussian density

map construction, promoted by the neighboring search, KD-tree structure, BVH, and paral-

lel computation. Sections 3.3 and 3.4 talk about mesh generation and quality improvement,

respectively. Section 4.5 shows the results. Finally, section 3.6 draws conclusions and

points out the future work.

3.2 Gaussian Density Map of Biomolecular Complexes

3.2.1 Multi-level Summation of Gaussian Kernel Functions

As shown in Fig. 3.2, biomolecules usually have a complicated hierarchical structure, in-

cluding the atomic, residual, and chain scales. A variety of methods have been developed to

create multi-resolution models for the biomolecules [5, 147, 37, 133, 149]. However, most

of the previous works only considered the overall resolution control, and the local resolu-

tion control was seldom studied. In this chapter, we improve the multi-level summation of

Gaussian kernel functions and enable a local resolution control on the specific hierarchical

structure in biomolecules.
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Figure 3.2: Hierarchical structure of the biomolecules.

Gaussian kernel functions were introduced in biomolecular modeling by Blinn et al. in

1982 [10]. The biomolecular surface is generated as a level set (isocontour) of the volumet-

ric electron density map [3, 147]. Zhang et al. [147] improved the kernel functions to make

the distance between the generated surface and the VdW (Van de Waals surface) surface

as uniform as possible, resulting in smoother molecular surfaces. The kernel function is

defined as

GiA(x) = e
κ
(
‖x−xiA‖

2−r2
iA

)
, (3.1)

where κ is the decay rate, controlling how fast the Gaussian kernel function decays. xiA

and riA are the center and radius of the ithA atom, respectively. A multi-level summation

of Gaussian kernel functions was applied to control the resolution of biomolecule models

[147]. Lower level structures are classified into groups according to higher level struc-

tures. As the basic unit in the biomolecules, atoms are represented by NA = {N(0)
A , ...,N(n)

A }.

N(i)
R (i = 1, 2, ..., nR) are subsets of NA, representing the sets of residues. We have

nR⋃
i=1

N(i)
R = NA, and N(i)

R

⋂
16i, j6nR

N( j)
R = ∅. (3.2)
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The elements of NR := {N(i)
R }

nR
i=1 are further grouped into subsets N(i)

C (i = 1, 2, ..., nC),

representing peptides:

nC⋃
i=1

N(i)
C = NR, and N(i)

C

⋂
16i, j6nC

N( j)
C = ∅. (3.3)

Similarly, structures with a higher level (e.g., domains) can be represented as the subsets

of peptides. The density distribution of a higher level structure is obtained through the

summation of lower level density. For example, small proteins are made up of several

peptides, so the density map is generated by a two-level summation of Gaussian kernel

functions

G(x) =
∑
iC

∑
iR

∑
iA

GiA(x)

PR


PC

, (3.4)

where iC , iR and iA are the indices of the peptide, residue and atom, respectively. PR and

PC are constant coefficients that control the local resolution of the model. GiA is defined in

Eqn. 3.1.

To specify the structures at different levels in the biomolecule, non-uniform coefficients

are selected based on the structure indices. For example, the coefficient for the residue level

is defined as

PR = PR(iC , iR), (3.5)

where iC and iR are indices for the peptide and residue, respectively. The indices can

specify the concerned peptide or residue and control the resolution on the surface locally.

In Fig. 3.3(a), suppose we only want to emphasize the peptide B (marked in red) for

Ribosome 30S (1J5E). If we vary the coefficients uniformly, all the atomic-level details

on the biomolecular surface will be strengthened (Fig. 3.3(b)). However, varying only

the coefficients for the structures contained by chain B results in a local resolution control

on the certain peptide (Fig. 3.3(c)). Similarly, structures at any level (domain, chain or
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(a) (b) (c)

Figure 3.3: Surface construction of 1J5E from a two-level summation of Gaussian kernels.
(a) Uniformly blurred surface, PR = 0.05 and PC = 0.5; (b) all details on the model are
strengthened, PR = 0.5 and PC = 1.0; and (c) only details on chain B are strengthened,
PR = 0.5 and PC = 1.0 for chain B while PR = 0.05 and PC = 0.5 for the remaining
structure.

(a) (b)

Figure 3.4: Resolution control of 2W4U at the domain level, PR = 0.7, PC = 0.4. (a)
Blurred domain boundary for tropomyosin (red) and actin (green), PD = 0.25 for the entire
protein; and (b) more detailed features are preserved along the boundary of tropomyosin
and actin, PD = 0.8 for these two domains while PD = 0.25 for the remaining structure.

residue) can be emphasized by adjusting the corresponding coefficients, enabling a flexible

local resolution control at multiple scales.

Fig. 3.4 shows a macromolecular complex representing the thin filament subunit

in muscle fibers (PDB 2W4U). This protein contains 32 peptides, and these chains

are grouped into several higher level structures called protein “domains", including

tropomyosin (red) and actin (green). A three-level (residue, chain and domain) summation

24



is utilized here to construct the density map

G(x) =
∑
iD

∑
iC

∑
iR

∑
iA

GiA(x)

PR


PC


PD

, (3.6)

where iD is the domain index, and PD is the coefficient corresponding to the domain level.

Domain boundaries are blurred with a small coefficient PD, resulting in a smooth biomolec-

ular surface (Fig. 3.4(a)); when PD is set to be a large value, more detailed features are

preserved along the domain boundaries (Fig. 3.4(b)). Although PD controls the transition

region between different domains, the surface resolution inside each domain is mainly de-

cided by the lower level coefficients PC and PR. To have a full control of the multi-scale

biomolecular models, the number of levels in the summation of Gaussian kernel functions

should be consistent with the level of biomolecular structures. Sometimes higher level

structures consist of multiple chains, such as the the secondary and tertiary structures, are

considered in the simulation. We can simply increase the level of summation to control the

resolution at their scales.

Discussion 1: A two-level summation has two coefficients: PC and PR. PC controls

the boundary resolution of each chain, and PR controls the surface resolution inside the

chain. In a three-level summation, there is one more coefficient (PD), which controls the

boundary resolution of each domain. This local resolution control is very important in

some applications such as the diffusional distribution simulation of the calcium ions in

ventricular myocytes. Usually, the active site is a small region around certain residues. To

simplify the implicit model, we can use a small PD value to blur the domain boundary, and

adjust the PC and PR values to make a smooth surface for the domain while showing more

residue-level details at the active sites.

Discussion 2: Various kernel functions have been applied in building implicit models

for biomolecules. For example, piece-wise constant kernels were adopted in [149], in

which the density map must be filtered to obtain a smooth biomolecular surface. Compared
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with other smooth kernel function, such as the radial basis function (RBF), the Gaussian

kernel function defined in Eq. 3.1 can reflect the radius of atom without changing the decay

rate.

3.2.2 Error-bounded Biomolecule Simplification

Error-bounded Atom Elimination

Let S A be the set of all the atoms, S R be the set of remaining atoms after eliminating the

low-contributing atoms, and G−R (x, i) be the Gaussian density from all the atoms in S R

except Atom i. During the atom elimination, the change in Gaussian density around the

biomolecular surface should be sufficiently small. In a rectilinear grid, a region ΩS around

the surface consists of a set of grid points x with Gaussian density gl < G (x) < gu, here

we choose (gl, gu) = (0.9, 1.1). Due to the decay of Gaussian kernel functions, eliminating

Atom i only influences the Gaussian density map in its neighboring region Ωi, where all its

grid points x satisfy

‖x − xi‖
2 ≤ −

ln εr

κi
+ r2

i , (3.7)

and εr is a pre-defined threshold (e.g. εr = 10−6). The Gaussian density error ei
G of ignoring

Atom i can be defined as

ei
G = max

x∈Ωi∩ΩS

∣∣∣∣∣∣G (x) −G−R (x, i)
G (x)

∣∣∣∣∣∣ . (3.8)

In a rectilinear grid, the overall contribution Ci of Atom i to the surface is defined as

Ci =

 ∑
x∈Ωi∩ΩS

(
G− (x, i)

G (x)

)2

−1/2

, (3.9)

where G(x) and G−(x, i) are the Gaussian density with and without considering Atom i, re-

spectively. We sort all the atoms based on their overall contributions, and keep eliminating
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the one with the lowest contribution until we find an atom with the Gaussian density error

defined in Eq. (3.8) greater than εG, where εG is an input threshold. After atom elimination,

we build the Gaussian density map with the remaining atoms and extract a triangle mesh to

represent the simplified surface. The surface error can be measured as

eM
G = max

i

∣∣∣∣∣G (x) − 1
G (x)

∣∣∣∣∣ , (3.10)

where x is a vertex on the biomolecular surface mesh. See Algorithm 1 for the details.

Algorithm 1 Atom elimination
S R := S A;
for each grid point x do

Compute Gaussian density value G(x);
end for
Identify the region ΩS around the biomolecular surface, where gl < G(x) < gu;
for each atom i ∈ S A do

Identify its neighboring region Ωi using Eq. (3.7);
Compute the overall contribution Ci to the surface in Ωi ∩ΩS ;

end for
Sort all the atoms in S A based on Ci;
for the atom with the lowest contribution in S R do

Set this atom to be Atom i;
Compute the Gaussian density error ei

G using Eq. (3.8);
if ei

G > εG then
STOP;

else
S R := S R \ {i};
Continue;

end if
end for
Output the surface error eM

G according to Eq. (3.10).

During Gaussian density map construction, a neighboring search and BVH-based GPU

parallel method is employed for efficient computation [75]. Fig. 3.5 shows the simplifica-

tion results of 2O53 with different εG values and coefficients (PR, PC). As εG increases, the

Gaussian density error on the surface eM
G tends to increase faster in concave and valley ar-

eas than the rest of the surface. As shown in Tab. 3.1, as the surface resolution is improved
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with larger PR, less atoms can be eliminated. This is because more atoms are exposed on

the high resolution surface than the low resolution one.

εG = 0.01 εG = 0.02 εG = 0.05 εG = 0.1

Figure 3.5: Biomolecular surfaces for the simplified protein 2O53 with PC = 1.0 and
κ = 0.3. Top row: PR = 0.25; Bottom row: PR = 0.5. The color represents the distribution
of eM

G .

Table 3.1: Atom Elimination Results for 2O53.
εG = 0.0 εG = 0.01 εG = 0.02 εG = 0.05 εG = 0.1

Case 1

NR

eM
G

Optimized eM
G

TG

4, 912
(100%)

0.0
—

0.92

3, 316
(67.5%)
0.021
0.019
0.55

3, 011
(61.3%)
0.032
0.030
0.52

2, 810
(57.2%)
0.057
0.053
0.47

2, 557
(52.1%)
0.221
0.215
0.42

Case 2

NR

eM
G

Optimized eM
G

TG

4, 912
(100%)

0.0
—

0.98

3, 662
(74.6%)
0.023
0.021
0.81

3, 513
(71.5%)
0.028
0.024
0.79

3, 362
(68.4%)
0.060
0.057
0.76

3, 102
(63.2%)
0.210
0.208
0.72

Note: Case 1 - PR = 0.25; Case 2 - PR = 0.5; NR - the number of remaining atoms; atoms; eM
G - the

surface error defined in Eq. (3.10); and TG - time for Gaussian density map computation (unit:
second). The percentage of remaining atoms is shown in parentheses.
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Optimization of Remaining Atoms

To reduce the surface error of the simplified biomolecule, the parameters of the remaining

atoms can be optimized. Let NR be the number of remaining atoms. The atoms in S R are

sorted, and their parameters are optimized using a gradient flow method. The objective

function is defined as

F (f) =

∫
R3

(G(x) −GR(f, x))2dx, (3.11)

and in a rectilinear grid we have

F (f) =

NG∑
l=1

(G(xl) −GR(f, xl))2, (3.12)

where NG is the number of grid points, and f = (x1, y1, z1, r1, κ1, ..., xNR , yNR , zNR , rNR , κNR)T .

For the kth iteration of the gradient flow-based optimization, we have

fk+1 = fk − τ∇F, (3.13)

where τ is the step length, and

∇F =

(
∂F
∂x1

,
∂F
∂y1

,
∂F
∂z1

,
∂F
∂r1

,
∂F
∂κ1

, ...,
∂F
∂xNR

,
∂F
∂yNR

,
∂F
∂zNR

,
∂F
∂rNR

,
∂F
∂κNR

)T

.

As F is minimized step by step, the error in the Gaussian density map is minimized. In each

step, the parameters of the remaining atoms are updated until the change in the parameters

is less than a threshold ε f , ∥∥∥fk+1 − fk
∥∥∥
∞
< ε f . (3.14)

During the iteration in Eq. (3.13), the variation in f should be bounded. Let x0
i , r0

i and κ0
i

be the original location, radius and decay rate of Atom i. If
∥∥∥xk

i − x0
i

∥∥∥ > ρx (e.g., ρ = 0.5),
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then

xk
i = x0

i + ρx
xk

i − x0
i∥∥∥xk

i − x0
i

∥∥∥ ,
where ρx defines a sphere around x0

i and the updated atom center should be inside the

sphere. Similarly, the modifications in the radius |rk
i − r0

i | and the decay rate |κk
i − κ

0
i | are

bounded to ρr and ρκ (e.g., ρr = 0.5 and ρκ = 0.2), respectively. As shown in Tab. 3.1, the

surface error eM
G can be improved after the optimization of remaining atoms.

3.2.3 Efficiency Improvement in Density Map Construction

Computational efficiency is critical in biomolecular modeling, especially for large

biomolecular complexes with a complicated structure. When computing the Gaussian

density for each grid point, if we consider the contribution from all the atoms in the

biomolecule, the time complexity will be O(MN), in which M is the number of atoms and

N is the number of grid points. To improve the computational efficiency, the neighboring

search algorithm is applied to reduce the number of grid points to be analyzed; and the

KD-tree structure and a bounding volume hierarchy (BVH) are used to quickly find the

contributing atoms for the Gaussian density at a grid point. Moreover, the multi-core CPU

and GPU-assisted parallel computation are also employed to further accelerate the speed.

Neighboring Search

Biomolecular surface is extracted from the Gaussian density map as an isosurface. The grid

cell intersecting with the isosurface is called a boundary cell. Vertices on the biomolecular

surface are located either on the edges of (marching cubes [82]) or inside (dual contour-

ing [48]) the boundary cell. Therefore, the biomolecular surface is only determined by

the Gaussian density values at the grid points in boundary cells, while an accurate density

calculation is not necessary for faraway grids. This property has been used in the acceler-

ated isocontouring method [4], which detects the boundary cells to achieve a fast surface

extraction.
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Table 3.2: Ratio of analyzed grid points in 2KFX (513 × 513 × 513).
Lower threshold dl Upper threshold du Analyzed ratio kA

0.9 1.1 0.026
0.6 1.4 0.048
0.3 1.7 0.092
0.1 2.0 0.12

In this chapter, a similar idea is adopted and an algorithm called neighboring search

[2] is applied to reduce the number of grid points to be analyzed. This algorithm can find

out all the grid points near the expected isosurface, as long as the biomolecular surface is

a manifold. Therefore, we only need to calculate the Gaussian density at these grid points,

while the density value for the other grids is simply set as a constant. kA is the ratio of

the analyzed grid points over the total grid points. kA is controlled by a pair of predefined

parameters: a lower threshold dl and an upper threshold du. Fig. 3.6 shows an example

of neighboring search. The blue curves represent the isosurfaces of dl and du. The red

curve represents the target surface. The green cells are the 1-ring neighbors of a given

activated grid cell (magenta). The initially activated cell can be found by searching along a

line passing through the center of the grid. For each neighboring cell, the Gaussian density

values are computed at the eight vertices. If the density indicates that the cell intersects

with the band between the blue curves, the cell is activated. More cells can be activated

around the newly activated cells iteratively until there are no more updates. As a result, all

the grid points close to the surface are analyzed, while faraway points are ignored. Using

a flood fill algorithm, those faraway points are marked as interior or exterior grids. Fig.

3.7 shows the neighboring search results for 2KFX. In (a), the green region represents the

inside volume; and in (b) and (c), the green regions represent the band between dl and du.

kA varies with different dl and du, and also depends on the resolution of the grids. It is

generally a very small value, see Table 3.2.
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(a) (b)

Figure 3.6: The neighboring search algorithm. (a) The activated grid cell (magenta) and its
1-ring neighbors; and (b) the newly activated cell (magenta) in the 1-ring neighbors.

(a) (b) (c)

Figure 3.7: Neighboring search results for 2KFX. (a) The interior domain (green); (b) one
detected band using dl = 0.9, du = 1.1 and kA = 0.026; and (c) another detected band using
dl = 0.1, du = 2.0 and kA = 0.12.

Discussion: Neighboring search can effectively improve the complexity of Gaussian

density computation from O(MN) to O(kAMN), in which kA is output-dependent. This

method is based on the assumption that the biomolecular surface is a manifold and all the

grid points close to the expected surface are neighboring to each other. But sometimes

biomolecules have isolated components. If any isolated component is missed in the initial

search, the modeling result would be incorrect. However, if the biomolecular structure is

known beforehand, the initial search route can be easily modified to include all the compo-

nents.
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KD-tree Structure and Bounding Volume Hierarchy

A Gaussian kernel function decays quickly as it moves away from the atom center. For one

grid point, it is reasonable to ignore faraway atoms, which contribute little to the Gaussian

density map. Two methods are used here to quickly find the nearby atoms: the KD-tree

structure and the bounding volume hierarchy (BVH).

The KD-tree structure is a widely used space-partitioning data structure, which has been

employed in biomolecular modeling [54, 55, 109]. Differently, in this chapter a KD-tree

is used to quickly search atoms around grid points. The cost to build this data structure

is O(M log M). Searching atoms within a certain range around a grid point becomes quite

efficient due to the binary tree structure. The error of ignoring faraway atoms can be con-

trolled by a bounding radius Rkd in the KD-tree search. Suppose an atom is ignored when

its density contribution is less than ε, then Rkd should satisfy eκ(R
2
kd−r2) < ε. We have

Rkd >

√
ln ε
κ

+ r2, (3.15)

where r is the radius of the atom; and κ is the decay ratio in Eqn. 3.1. Pratically, the

maximum atom radius is usually 2.0Å and the decay ratio is 1.0. When ε = 10−6, the

bounding radius Rkd = 4.3 ensures that no atom around a grid point has a density contri-

bution smaller than ε. For each analyzed grid point, it takes O(log M) to find the nearby

atoms and compute the Gaussian density.

The bounding volume hierarchy is a tree structure on a set of geometric objects. All

geometric objects are wrapped in bounding volumes that form the leaf nodes of the tree.

This technique has been widely used in computer visulization, and also employed in protein

structure representation [30, 83, 109]. In this chapter, edges of the bounding volumes are

along the coordinate axes. The smallest box that contains all the atom centers belonging to

a structure is called the minimum bounding box of this structure. The minimum bounding

box is generally expanded by a certain ratio. The margin of the bounding box is constraint
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(a) (b)

Figure 3.8: The bounding box system. (a) The bounding boxes of two peptides; and (b) the
bounding box of one peptide is subdivided into bounding boxes of residues.

with at least RBVH = 4.3 to make sure all the contributing atoms can be searched (similar

with Eqn. 3.15). The bounding box of a higher level structure contains bounding boxes

of lower structures. Fig. 3.8 shows an example of the BVH for a protein with an atom-

residue-chain structure. In Fig. 3.8(a), the space is subdivided into the bounding boxes

(red and green) of two peptides. The bounding boxes of peptides are further subdivided

into the bounding boxes of residues (Fig. 3.8(b)). The subdivision allows overlaps and

gaps between the children boxes. Searching nearby atoms follows a top-down order in the

BVH tree structure. The time complexity for the BVH searching can be O(log M), but

in practice the efficiency would be a bit worse because the structures usually have many

overlaps. Moreover, as the atom order is organized following the hierarchical structure, the

construction of the BVH tree can be easily conducted.

Parallel Gaussian Density Computation

To further accelerate the speed, multi-core CPU and GPU-based parallel computation are

applied in the Gaussian density calculation. In each step of the neighboring search, the grid

points to be analyzed are distributed to different threads, and the returned Gaussian density

value is used as the input of the next step. The workload for various grid points can be

very different because the number of contributing atoms can vary a lot. For the 8-core CPU
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mode, the grid points are randomly distributed to different cores and the computation keeps

at full load for most of the time. Differently, the workload imbalance can seriously influence

the performance of the GPU-based computation. Therefore for GPU computation, the

contributing atom number of the previously analyzed grids are recorded, and the workload

of the newly analyzed grid points is estimated using these numbers. Grid points with similar

estimated workload are distributed to the same GPU blocks to achieve a better balance.

As shown in Fig. 3.9, a variety of proteins are tested using neighboring search, the KD-

tree structure and the BVH. A 2-level summation of Gaussian kernel functions are used,

with PR = 0.5 and PC = 1.0. Time costs are listed in Table 3.3. The rectilinear grid for

each protein is large enough to contain all the atom centers inside, and the margin on each

dimension is 4.0 Å. For all the proteins, we fix the resolution of the grid to be 0.25 Å. The

CPU-based results in Table 3.3 are obtained under 8-core parallel computation. All the

results are generated with an Intel E5-1620 CPU, a Nvidia GeForce GTX680 graphic card

and 16GB memory. The algorithms are implemented in C++ by using OpenMP for the

multi-core CPU computation and CUDA 5.0 for the GPU computation. T0 is the time cost

of CPU computation without any acceleration algorithms. Neighboring search, KD-tree

structure and BVH are compared in CPU-based implementations.

Generally, as the atom number M increases, the speedups for neighboring search, KD-

tree and BVH all become more significant. For KD-tree and BVH, the time complexity of

Gaussian density map generation is improved to O(N log M), compared with the original

O(NM). Therefore, it is easy to understand that the speedups of KD-tree and BVH increase

as M gets larger. For neighboring search, the corresponding time complexity is O(kANM).

At a certain resolution, kA decreases as M gets larger because generally the surface area

grows much slower than the grid size increases. Therefore, the speedup of neighboring

search also increases as M gets larger. Besides atom number, the efficiency speedups are

also affected by the biomolecular structure. The performance of BVH is directly related

to the hierarchical structure of the biomolecules, while the KD-tree is not. For example,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Eight proteins tested in Table 3.3. (a) 1BOR; (b) 1NEQ; (c) 1A63; (d) 1A7M;
(e) 1BEB; (f) 1VNG; (g) 1GTP; and (h) 2KXH.

1GTP and 2KXH have similar atom numbers, but the structures in 2KXH are much tighter

than in 1GTP, leading to many more overlaps among the bounding boxes. Therefore, the

speedup of BVH for 2KXH (8.01 times) is not as significant as 1GTP (30.88 times).

TCPU(NS +KD) and TGPU(NS +BVH) shows the effect of different combinations of the

techniques. As the hierarchical structure information is ignored in the KD-tree, a re-

organization of the atoms is required for multi-level summation of Gaussian kernel

functions. The re-organization needs a lot of memory. Therefore instead of KD-tree, the

BVH is chosen for GPU-based computation. The combination of neighboring search,

KD-tree structure and multi-core CPU computation results in a speedup varying from 6.01

to 111.54 times. For the combination of neighboring search, BVH and GPU computation,

the speedup can range from 19.44 times for the smallest protein (1BOR) to 1,367.74 times

for the largest protein (1GTP), due to the highly parallel computational capability of the

GPU and the maximum effect of neighboring search.
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3.3 Mesh Generation

The dual contouring method [48, 145] is applied to generate adaptive tetrahedral meshes

from the Gaussian density map. The multi-core CPU and GPU-based parallel computation

are employed to speed up mesh generation.

3.3.1 Dual Contouring Method

The biomolecular surface is defined as an isosurface of the Gaussian density map, from

which tetrahedral meshes can be extracted using the dual contouring method [145, 147]. A

strongly-balanced octree structure is built from the rectilinear grid that contains the Gaus-

sian density, and the mesh adaptation is controlled by a feature sensitive error function

[145]. To resolve topology ambiguities, we detect ambiguious cells using a trilinear func-

tion, and then split them into tetrahedral cells [146]. For each octree cell, the minimum and

maximum (min-max) density values are calculated, making it easy to tell if the octree cell

is inside or outside the domain to be meshed. For each leaf cell, a dual vertex is generated

and the tetrahedral mesh is constructed by connecting the dual vertices with octree grids.

For each octree boundary cell that intersects with the biomolecular surface, we choose the

mass center as the dual vertex. The mass center is defined as the the average of all the

intersection points between the biomolecular surface and the cell edges. For interior leaf

cells, the dual vertex is the cell center.

Tetrahedral elements are generated around each minimal edge, which is defined as an

edge of a leaf cube that do not properly contain any edge of its neighbors. The minimal

edge intersecting with the biomolecular surface is called a sign change edge, and those

inside the domain to be meshed are called interior edges. For each sign change edge, we

first find out all its surrounding leaf cells and obtain three or four dual vertices. These dual

vertices and the interior grid point of this edge form a tetrahedron or a pyramid. For each

interior edge, we also obtain three or four dual vertices. Differently, these dual vertices
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and two endpoints of this edge form a pyramid or a diamond. Later, the pyramids and

diamonds can be splitted into tetrahedra. The ambiguous leaf cells are split into tetrahedra,

and meshes are generated by analyzing the edges of these tetrahedra [146].

3.3.2 Paralleled Mesh Generation

GPU-based computation has been used in isocontouring for surface mesh generation [107].

Differently, in this chapter we aim to apply multi-core CPU and GPU-based techniques to

the dual contouring method for adaptive tetrahedral mesh generation. In the twelve edges

of one leaf cell, at least three of them are independent. As shown in Fig. 3.10, we divide

all the edges into four groups (orange, green, blue and red), and analyze one group in each

step. For example, the orange group (edge e01, e03 and e04) is analyzed for all the leaf

cells. Each octree cell is distributed to a CPU or GPU thread, and the connectivity can be

constructed in a parallel way. During octree subdivision, the most time-consuming step is

the min-max computation, which is more expensive for the lower level octree cells with

more grid points. To improve the workload balance, octree cells at the same or similar

levels are distributed to the same GPU blocks.

(a) (b)

Figure 3.10: Group of the edges.
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3.4 Quality Improvement

In our generated tetrahedral meshes, most elements are in good quality except some ele-

ments around the boundary. Therefore, we need to improve the mesh quality. First, let us

choose a few metrics to measure mesh quality [145, 64]: the edge ratio, the Jue-Liu param-

eter [77], and the dihedral angle. The edge ratio is the ratio of the longest edge length over

the shortest edge length in one element. The Joe-Liu parameter is defined as

Q =
8 · 3

5
2 V(∑6

j=1 e2
j

) 3
2

(3.16)

where {e j}
6
j=1 are six edge lengths, and V is the volume of a tetrahedron.

Three techniques are applied to improve the mesh quality: face swapping, edge contrac-

tion, and geometric flow [64]. Both face swapping and edge contraction are operations of

topological optimization. Face swapping reconnects vertices of some elements, while edge

contraction removes a few poor quality elements. Differently, geometric flow relocates

vertices iteratively to improve the overall mesh quality. Generally speaking, face swapping

and edge contraction only change the local topology for a few elements (< 1%), and the

process is very fast. Geometric flow smoothing needs to relocate vertices overally, which is

the most time-consuming part for quality improvement. Using a similar data structure with

[24], the parallel computation is applied to the smoothing step. Vertices are relocated and

updated one by one. In the CPU-based computation, METIS [52] is employed to partition

the mesh, and vertices in different parts are independent from each other. The location of

the vertices on the shared boundaries are synchronized after each smoothing step.

For GPU-assisted computation, vertices are relocated after each step to avoid any con-

flict. The workload imbalance is the main concern in the implementation. For adaptive

meshes, vertices with a large valence number may happen, which can cause serious work-

load imbalance during the GPU-based geometric flow smoothing. Therefore, vertices are
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grouped according to their valence number, and the ones with similar valence number are

distributed to the same GPU blocks.

3.5 Results and Discussion

The biomolecule simplification and Gaussian density computation methods introduced in

this chapter make up an efficient process for the geometric modeling of biomolecular com-

plexes, together with the CPU- and GPU- based parallel computation techniques. In this

section, various biomolecular complexes are tested using our methods. All the results are

generated from a computer with an Intel Xeon E5-1620 CPU, a Nvidia GeForce GTX680

graphic card, and 16GB of memory.

3.5.1 Biomolecule Simplification Results

Tab. 3.4 shows the results of atom simplification for proteins with various sizes. Among

them, 2O53 is a protein in human brain, and one of its two identical components is em-

phasized. 4KYT, 4N78, 4A7F and 2W4U are involved in the heart contractile process.

Components with important biological functions are chosen to be emphasized. 2KU2 is

one of the largest proteins in the PDB with 1.23M atoms. One of its seven symmetric

components is chosen to be emphasized. As shown in Tab. 3.4, the percentage of remain-

ing atoms varies from 39.3% to 69.6%, and tends to decrease as the protein size increases

because most atoms are buried inside the biomolecular surface. The number of remaining

atoms also depends on the size of emphasized components. For example in 2O53, when

the emphasized components are considered, the percentage of remaining atoms increases

by 16.3%. Contrast to the other proteins, the emphasized components in 4A7F are ex-

posed to the surface, and most of their atoms are kept during simplification. Therefore

the number of remaining atoms does not change much when considering these emphasized

components.
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3.5.2 Geometric Modeling Results

In this section, all the steps in our multi-scale modeling, including Gaussian density compu-

tation, mesh generation and quality improvement, are tested in three modes: CPU sequen-

tial, CPU 8-core parallel and GPU parallel. Among the tested biomolecular complexes (see

Figs. 3.1, 3.11 and 3.12), 2W4U, the CERCA system and the thin filament group (TFG) are

from the human cardiac calcium signaling system, while 2W4A, 1HTQ and 2KU2 are cho-

sen from the Protein Data Bank (PDB). A 3-level summation of Gaussian kernel functions

is applied for 2W4U, while the other models use a 2-level summation. Table 3.5 shows the

modeling results.

2W4U: 2W4U is an important thin filament in myofibrils, which is also the key func-

tional part in the muscle fibers. The contraction of muscle fibers rely heavily on the in-

teraction between the myosin heads and the filaments. To study the calcium ion signaling

process during the muscle contraction, a cuboidal outer boundary is inserted around the

thin filament, and the exterior tetrahedral meshes are generated, see Fig. 3.1.

CERCA system: The CERCA system works as a pump for the calcium ions in the

signaling. The system contains a segment of lipid and a protein 1SU4 intersecting with it.

As shown in Fig. 3.11(a-c), a cuboidal boundary is insert around it and intersecting with

the membrane. The exterior mesh is generated which is divided by the membrane into two

separated parts.

Thin filament group (TFG): During the heart muscle contraction, the calcium signal-

ing process is a combination of the interaction between the thin and thick filaments. A

model containing six thin filaments and four thick filaments is built with a cuboidal outer

boundary intersecting with the filaments, see Fig. 3.11(d-f). The exterior tetrahedral mesh

is generated to represent the environment around the filaments. The thin filaments here

contains six myosin heads, and the thick filaments are represented by cylinders. The den-

sity map for a single thin filament is generated using the multi-level summation of Gaussian
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kernel functions, it is used for the assembly of the intact density map containing six thin

filaments. The assembly step costs about ten seconds, which is not count in Table 3.5.

As shown in Fig. 3.12, three large proteins are chosen from the Protein Data Bank,

and tested using our modeling methods. 2W4A is a contractile protein for insect flight

muscle. 1HTQ is a glutamine synthetase from Mycobacterium tuberculosis, the second

largest protein we found in the PDB. 2KU2 is a hydrolase protein, which is also the largest

protein we found in the PDB.

In Gaussian density map generation, the rectilinear grid size for the Gaussian density

map is constraint to be 513 × 513 × 513. For the CPU-based computation, neighboring

search and the KD-tree structure are applied in both the sequential and parallel modes;

while the combination of neighboring search and BVH is employed in the GPU-based

mode. The speedups of the 8-core CPU computation are similar for all the complexes

(4.1∼5.2), while the speedups of the GPU-assisted computation vary from 14.1 to 73.5

times. The worst speedup of the GPU computation happens on the CERCA system, as

shown in Fig. 3.11(a). In CERCA, the lipid (pink) contains most of the atoms without a

hierarchical structure, which greatly reduces the subdivision efficiency of the BVH.

In both 8-core CPU and GPU-based computation, the time costs of mesh generation are

similar for all the tested models although the mesh size differs. This is because in mesh

generation, the most time-consuming step is octree subdivision. Compared to the uniform

grids, the adaptive octree construction requires a much more complicated index system,

which significantly limits the speedups. From Table 3.5, we can observe that the speedups

are 1.9∼2.0 times for the 8-core CPU computation, and 4.9∼5.6 times for the GPU-based

computation.

During quality improvement, for both the CPU sequential and the 8-core CPU computa-

tion, we can observe that the time cost increases as the mesh size becomes larger. However,

it is more complicated for the GPU-based computation due to its high sensitivity to the ver-

tex valence number, which also brings in serious workload imbalance on different threads.
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As discussed in Section 3.4, high valence numbers are introduced by mesh adaptation. In

particular, 2W4U, the CERCA system, and 1HTQ contain large volumes, and they require

more adaptive meshes to reduce the mesh size. Due to this reason, a workload imbalance is

introduced in their GPU computation. Therefore, for these three models the speedups are

only about 20.0∼25.2 times, not as significant as the others (26.6∼32.9 times).

For the whole modeling process, the 8-core CPU computation introduces a similar

speedup on the efficiency for all the tested proteins (4.1∼4.9 times), while the speedups

of the GPU-assisted computation vary from 16.1 to 65.2 times. In addition, from Table

3.5 we can observe that the obtained meshes are in good quality with the minimal dihedral

angle ≥ 14.86◦.

3.6 Conclusion and Future Work

In this chapter, a multi-level summation of Gaussian kernel functions is applied to generate

multi-scale implicit models for the biomolecules. Structures at different levels are specified

and emphasized with more details on the local surface. The computational efficiency is im-

proved by using a combination of neighboring search, KD-tree structure and bounding vol-

ume hierarchy. The CPU and GPU-assisted parallel computation techniques are employed

in all the modeling steps, including Gaussian density map construction, mesh generation

and quality improvement. In our approach, large proteins can be modeled quickly with

quality adaptive tetrahedral meshes as output.

In the future, it is worth to apply the multi-level summation of Gaussian kernel functions

in various application problems such as the diffusion simulation and boundary element

solvers of the Poisson-Boltzmann equation [34, 35, 84]. In particular, the study of large

biomolecules will benefit a lot from the high efficiency introduced by our techniques. The

multi-level summation can also be extended to work for a combination of biomolecular

information from the Protein Data Bank and Cryo-EM scanned images.
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Two biomolecualr complexes in human cardiac calcium signaling system.
(a-c) CERCA system with PR = 0.2, PC = 0.8 and PR = 0.2, PC = 1.1 for low and
high resolution components, respectively; and (d-f) thin/thick filament group (TFG) with
PR = 0.5, PC = 0.3 and PR = 0.7, PC = 0.4 for low and high resolution components,
respectively. (a) and (d) show the protein structure with the blue region emphasized in
high resolution; (b) and (e) show exterior tetrahedral meshes; and (c) and (f) show exterior
meshes with embeded proteins.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Three large proteins. (a-b) 2W4A with PR = 0.2, PC = 0.8 and PR = 0.4,
PC = 1.2 for low and high resolution components, respectively; (c-d) 1HTQ with PR = 0.3,
PC = 0.8 and PR = 1.0, PC = 1.5 for low and high resolution components, respectively;
and (e-f) 2KU2 with PR = 0.5, PC = 1.0 and PR = 1.6, PC = 2.0 for low and high
resolution components, respectively. (a), (c) and (e) show tetrahedral mesh of the proteins
with the blue region emphasized in high resolution, and the pink region shows a cross
section of the model; (b), (d) and (f) show the partition results in parallel computation.
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Chapter 4

Structure-aligned Guidance Estimation

in Surface Parameterization Using

Eigenfunction-based Cross Field

Different types of meshes may be preferred for various studies of biomolecules. For given

triangular biomolecular surfaces, quadrilateral meshes can be generated based on surface

parameterization. In this chapter, we present a novel cross field-based parameterization

method which aligns parametric lines to the main structures of objects, based on the eigen-

functions of Laplace-Beltrami operator. Compared with the existing methods based on

principal curvatures, our method yields fewer singularities in the cross field. Besides, an

anisotropy can be achieved in the parametric lines for a given scalar field.

4.1 Introduction

Surface parameterization is of great importance for many applications, such as quadrilat-

eral meshing [12], texture mapping and synthesis [128, 66]. An important issue for surface

parameterization is how to align parametric lines with the feature directions. Some simpli-
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fication techniques [85, 95, 119] were developed to generate very coarse domain meshes

with a good user control. Although feature alignment was achieved in a certain degree [85],

it is difficult to control the simplification process to preserve surface features. Using the

harmonic field [58, 122], features can be captured, but feature alignment is limited due

to the difficulty in generating the field and placing singularities. In recent years, methods

based on the cross field have been introduced [58, 13, 51, 96, 99]. Generally, the captured

features in the cross field are represented by the principal curvatures, which are sensitive

to the local detailed features and may fail in capturing structural features of an object at

desired scales.

Eigenfunctions of the Laplace-Beltrami operator (LBO) are well-known for their prop-

erty of capturing the shape behavior and structural feature of an object [65, 102, 104, 113].

Various eigenfunctions reflect structural features at different scales, which has been utilized

in surface segmentation and reconstruction [102, 112]. The eigenfunctions vary along the

object surface and are invariant to different poses, which makes them ideal for describing

the structural feature of the object. A variety of applications have been introduced taking

the advantages of eigenfunctions, such as pose-invariant Reeb graph [113], shape match-

ing [65] or registration [86], and the Shape-DNA [104]. Another important application

of eigenfunctions is surface quadrangulation or parameterizaton [150]. For example, the

Morse-Smale complexes [26, 45, 76] were built by connecting the saddle and extrema of

eigenfunctions, dividing the surface into several coarse quadrilateral patches. Despite of

these developments, feature alignment is still a challenging problem in surface parameteri-

zation.

In this chapter, we introduce a novel method to define a guidance for cross field gener-

ation using eigenfunctions, and generate a structure-aligned parameterization for the input

triangle mesh. A guidance is first constructed using the gradient of multiple eigenfunctions

of the LBO to capture the structural feature at various scales. Then a smooth cross field is
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built following the guidance, based on which a surface parameterization is computed. The

main contributions of our work include:

1. A novel structure-aligned approach is developed for surface parameterization using

eigenfunctions, which is insensitive to local detailed surface features;

2. Multiscale structural features are captured using the gradient of multiple eigenfunc-

tions as a guidance for cross field generation; and

3. A new algorithm is introduced to enable anisotropy in the parameterization by adapt-

ing the cross field to non-uniform parametric line spacings.

The remainder of this chapter is organized as follows. Sec. 4.2 describes eigenfunc-

tions. Sec. 4.3 explains how to define the guidance for cross field construction using the

gradient of multiple eigenfunctions. Sec. 4.4 discusses cross field construction and surface

parameterization. Sec. 4.5 shows some results. Finally, Sec. 4.6 draws conclusions and

points out future work.

4.2 Eigenfunctions

Given a G2 smooth surface S , the eigenproblem is to find the eigenvalues λ and their

corresponding eigenfunctions f defined on it, such that

− ∆S f = λ f , (4.1)

where ∆S is the LBO defined on surface S . Since −∆S is a symmetric and nonnegative

operator, the eigenvalues of −∆S are real and nonnegative. Eigenfunctions of the LBO

provide a set of convenient basis to describe the shape behavior or structural feature of

an object. Let M be a triangulation of surface S , {x}ni=1 be the vertex set of M. A given
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discretization scheme [29, 100, 137] for the LBO can be represented as

∆S f (xi) ≈
∑

j∈N(i)

wi j f (x j), wi j ∈ R, (4.2)

where N(i) contains the 1-ring neighborhood of xi, and wi j are the weights defined in dif-

ferent discretizations of the LBO. The eigenproblem becomes

−
∑

j∈N(i)

wi j f (x j) = λ f (xi) (4.3)

or in matrix form,

−WF = λF, (4.4)

where F =
[
f (x1), ..., f (xn)

]T and W is the coefficient matrix defined by wi j. Eq. 4.4

yields n modes, each corresponds to an eigenvalue and eigenfunction. Let λk and Fk (k =

0, 1, ..., n − 1) be the kth eigenvalue and the corresponding eigenfunction, we have

0 = λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn−1. (4.5)

λ0 = 0 represents a rigid-body mode, its eigenfunction F0 is a constant-scalar field. All the

eigenfunctions used in this chapter are normalized such that
∑n

i=1
[
f (xi)

]2
= 1.

Various methods have been developed for the discretization of LBO. In this chapter, we

use the cotangent scheme [65, 25, 67, 88, 97]. This discretization provides a symmetric

matrix, which makes all the resulting eigenvalues and eigenfunctions real. However, the

cotangent scheme was proved to be not convergent for irregular nodes, and it can not deal

with non-uniform meshes well [137]. There are some research conducted on convergent

discretization of the LBO. For example, a k-nearest neighbor of a vertex was considered

using a truncated heat kernel [9]. In [137], the Laplace matrix was constructed based on a

quadratic fitting and its convergence rate was proved to be linear [138]. This discretization
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provides a non-symmetric matrix, resulting in complex eigenvalues and eigenfunctions. In

this chapter we use the cotangent scheme LBO to obtain real eigenfunctions.

4.3 Guidance Estimation Using Eigenfunctions

Different eigenfunctions reflect surface features at different scales [102]. Compared with

the high-mode eigenfunctions used in [26, 45, 76], the low-mode eigenfunctions are less

sensitive to the detailed surface features and capture the major structure of the object. In

this chapter, we will use multiple low-mode eigenfunctions to design a direction guidance

and then build a cross field, from which we can obtain a structure-aligned surface parame-

terization.

The gradient of the eigenfunctions can be used to represent structural features. For

example in the Hand model in Fig. 4.1, the gradient of the first and second eigenfunctions

(black arrows) reflects the slim cylindrical structure of the fingers. However, a single eigen-

function may only reflect features in certain regions well. For example in (b), the gradient

of Mode 1 eigenfunction follows the middle finger and the thumb very well, but not the

little finger because the gradient magnitude is very small on it. Similarly in (c), the gra-

dient of Mode 2 eigenfunction follows the index, third and little fingers well but not the

thumb. From Fig. 4.1, we can observe that each eigenfunction plays a dominant role in

certain regions, where the gradient of this eigenfunction reflects the structural features at

a certain scale. We call such region a feature region of that eigenfunction. By combining

the gradient in the feature regions from multiple eigenfunctions, we can build a structure-

aligned guidance for the cross field construction. For example, we can define the middle

finger and the thumb as the feature region of Mode 1 and the index, third and little finger

as the feature region of Mode 2. Then the slim cylindrical structure of all five fingers can

be captured using these two modes.
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(a) (b) Mode 1 (c) Mode 2

Figure 4.1: Eigenfunctions of the Hand model. (a) The first six eigenfunctions; and (b, c)
the gradient (black arrows) distribution for the first and second eigenfunctions of the Hand
model. The length of the arrows represents the gradient magnitude.

Then, the next problem is how to represent the feature region for each eigenfunction.

Here, we design two different ways to represent the feature regions: isocontours and char-

acteristic values.

4.3.1 Isocontours

Isocontours of eigenfunction f can locate important structural features, and they are often

used for shape identification and segmentation [65, 102]. For each eigenfunction, we first

generate several representative isocontours, and then form the feature bands using the in-

tersecting triangles to represent the feature region of that mode. For example in Fig. 4.2(a),

the isocontours from Mode 1 (green curves) and Mode 2 (blue curves) are generated. The

green and blue bands in Fig. 4.2(b) represent the feature bands of the two eigenfunctions.

The guidance for the cross field is defined as the gradient directions on triangles in the

feature band, which we call the guidance directions. These triangles are called the guid-

ance triangles. The guidance direction in each feature band follows the gradient of the

eigenfunctions (black arrows).

To combine different modes using isocontours, we need to provide isovalues. One

common choice is zero-isovalue because the corresponding isocontour represents the static

region of a standing wave on the surface [65]. The gradient at the zero-isocontour of some

eigenfunctions may have a very small magnitude, and thus a large numerical error may
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(a) (b) (c) (d)
Figure 4.2: Process to generate a surface parameterizations using isocontours. (a) Isocon-
tours from Modes 1 (green) and 2 (blue); (b) the corresponding feature bands (green and
blue) with the defined guidance directions (black arrows); (c) the built smooth cross field,
in which the singularities are marked in red nodes; and (d) the resulting parametric lines.

happen in the gradient calculation. The region with the extreme value is not a good choice

either due to the same reason. For example in Fig. 4.3, the gradient magnitude is very small

in Region A (the black zero-isocontour) and Region B (the red area with the maximum

eigenfunction value), and the gradient directions vary intensively due to the large numerical

error. The gradient usually follows the structure well for an isocontour with an isovalue

away from the extreme and zero eigenfunction values, such as the orange area (Region C)

surrounding the white curve. To choose proper isovalues automatically, we define

αl = fmin + r( fmax − fmin) (4.6)

and

αu = fmax − r( fmax − fmin), (4.7)

where r ∈ (0, 0.5) is the parameter adjusting the location of the isocontours to define a good

direction guidance, and fmin and fmax are the minimal and maximal eigenfunction values.

Here we choose r = 0.125.

Generally if the guidance directions are very different in the adjacent triangles, the

smoothness of the cross field will be affected. This may happen when the adjacent guidance

triangles are from feature bands of different eigenfunctions. For example in Fig. 4.4, the
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A B C

Figure 4.3: The gradient for the 7th eigenfunction of the Eight model. The black and white
curves represent the isocontours with the isovalue of zero and fmax − 0.125( fmax − fmin),
respectively. The normalized gradient for Regions A, B and C is shown in the zoom-in
pictures.

blue and red isocontours on the wrist intersect with each other, defining very different

guidance directions for the triangles around the intersection. In this chapter, we define

the guidance directions in adjacent triangles as non-consistent if these triangles are from

feature bands of different eigenfunctions. Such a non-consistent situation can be avoided

by adjusting the r value in Eqs. 4.6-4.7 to separate isocontours from different modes.

Given certain modes, although the isocontours can be adjusted easily by modifying the

isovalues, it is difficult to avoid non-consistent situations automatically. To resolve this

problem, we need to leave enough space between guidance triangles in different feature

bands. In the following, we will talk about another method to represent the feature region,

which can automatically separate guidance triangles in different feature bands.

Mode 1 Modes 1-2 Modes 1-3 Modes 1-4 Modes 1-5 Modes 1-6

Figure 4.4: The isocontours collected from various modes. The blue and red lines corre-
spond to αl and αu, respectively.
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4.3.2 Characteristic Value

Instead of using isocontours, another way to represent the feature region is to divide the

surface into patches, and each patch represents a feature region. Here, we define a positive

characteristic value Ci,k for each triangle Ti of the kth mode. For a set of mode indices K,

triangle Ti is assigned to the kth mode if

k = arg max
j∈K

Ci, j. (4.8)

A feature patch is formed by the triangles assigned to the same mode.

In this chapter, we use the gradient magnitude of the eigenfunctions as the characteristic

value. An eigenfunction usually has a large gradient magnitude at certain regions with

special structural features. For example in Fig. 4.5, Modes 2 and 3 of the 4KYT model

have a large gradient magnitude around two chains, while almost zero gradient everywhere

else. Therefore, we define the characteristic value as Ci, j =‖ ∇Fi, j ‖, where

∇Fi, j =
1

4A2
i

{Fi, j(xa)
[
γ(xa, xb, xc) + γ(xa, xc, xb)

]
+ Fi, j(xb)

[
γ(xb, xc, xa) + γ(xb, xa, xc)

]
+ Fi, j(xc)

[
γ(xc, xa, xb) + γ(xc, xb, xa)

]
},

Ai denotes the area of Ti and γ(xa, xb, xc) = 〈xa − xb, xb − xc〉(xc − xa) ∈ R3.

Fig. 4.6(a) shows the obtained feature patches from Modes 1-2 using the characteristic

value. In each feature patch, the Dijkstra distance d from the center of each triangle to the

patch boundary is computed, which is shown in Fig. 4.6(b). Suppose the maximum distance

in Patch k is Dk, we choose triangles with distance 0.45Dk < d < 0.55Dk as the guidance

triangles (red triangles inside each feature patch, they form a feature band). The guidance

directions are the gradient of the kth eigenfunctions (black arrows). In this method, triangles
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Mode 2 Mode 3
Figure 4.5: The gradient magnitude of Modes 2 and 3 eigenfunctions for the 4KYT model.

(a) (b)

Figure 4.6: Process of defining the guidance directions for the Hand model using the char-
acteristic value. (a) The feature patches for Modes 1 (green) and 2 (blue); and (b) the
Dijkstra distance distribution on the surface with guidance triangles (red triangles) and
guidance directions (black arrows).

with a small gradient magnitude (≤ 10−6) are ignored to avoid large numerical error in the

gradient directions, see the grey regions in Fig. 4.6(a).

Discussion 3.1. Compared with the feature bands defined by the isocontours, feature

bands caused by different modes are separated using the characteristic value and thus non-

consistent guidance directions are avoided automatically. For example in Fig. 4.7(a), when

the first six modes are used, non-consistent directions happen on the wrist due to the in-

tersecting isocontours and feature bands (green and magenta bands) from Modes 1 and 4.
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(a) (b) (c) (d)

Figure 4.7: Hand model. (a, b) The generated guidance directions using the first six modes;
and (c, d) the resulting surface parameterization. Two ways are used to represent feature
regions: (a, c) the isocontours; and (b, d) the characteristic values.

However in Fig. 4.7(b), there is no intersecting feature band because each feature band lies

inside a feature patch and is also away from the patch boundary.

4.4 Cross Field Generation and Surface Parameterization

Using the guidance created from eigenfunctions, in this section we build a cross field via

a smoothing process, and generate a surface parameterization following the mixed integer

method [13]. Similar to [51, 93], we also enable a tradeoff control between the guidance

alignment and the field smoothness. Differently, we further introduce a new algorithm to

adapt the cross field to non-uniform parametric line spacings, enabling an anisotropy in the

parameterization.

4.4.1 Overview of Cross Field-based Parameterization

Let Tg be the set of guidance triangles, and T f be the set of free triangles on the surface. A

smooth cross field is constructed based on the guidance directions. The guidance direction

and the cross field in triangle Ti can be represented as (θi, ei) and (γi, ei), where θi and γi

are defined as a module of π/2, and ei is the reference edge in triangle Ti. Similar to [51],

our smoothness energy of the cross field on M is defined as
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Γs =
∑

ei j∈E

(θi + κi j +
π

2
pi j − θ j)2 + λ̄

∑
Ti∈Tg

(θi − γi)2, (4.9)

where ei j is the edge shared by triangle Ti and T j, E is the set of all the edges in the mesh, κi j

is the angle between the reference edges of triangle Ti and T j, and pi j is the integer valued

period jump of the cross field across ei j. A parameter λ̄ is used to control the tradeoff

between the alignment to the guidance directions and the field smoothness. The smooth

cross field is obtained by minimizing the energy function. We solve the minimization

problem using the mixed-integer solver introduced in [14].

(a) (b) (c)
Figure 4.8: Process of surface parameterization for Fig. 4.6(b). (a) The smooth cross field
(four arrows in each triangle) and singularities (red nodes); (b) disk-like planar region from
the original surface; and (c) parametric lines.

Fig. 4.8(a) shows the built cross field using the guidance defined in Fig. 4.6(b). Red

dots are the singularities of the field. The surface is cut into a disk-like planar region and

all the singularities should be on the boundary of the planar region [13], see Fig. 4.8(b).

In the disk-like planar region, the parametric coordinates (u, v) can be taken as two scalar

fields, and two directions ui and vi in each triangle Ti are defined as the gradient of these

two scalar fields, see blue and red arrows in Region A (singular) and Region B (regular) in

Fig. 4.8(a). ui is chosen as one of the four directions of the cross field in triangle Ti, which

is forced to be consistent with the neighboring triangles. vi is defined by rotating ui by π/2

following the clockwise direction.
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The parametric coordinates (ui, vi) of Vertex xi are computed by minimizing an orien-

tation energy [13]

Γo =
∑

Ti∈M

Ai ·
(
‖h∇T ui − ui‖

2 + ‖h∇T vi − vi‖
2
)
, (4.10)

where h is a parameter controlling the spacing of the parametric coordinates, Ai is the area

of triangle Ti, and ∇T ui and ∇T vi are two gradients. Integer constraints are set on the

parametric coordinates for the other vertices on the planar region boundary to ensure that

the integer-value parametric lines meet at the boundary. In this way, a quadrangulation of

the surface can be generated directly from the parametric lines. For example in Fig. 4.8(c),

the blue and red lines represent the integer-value parametric lines of u and v, respectively.

Discussion 4.1. As the cross field follows the guidance directions defined by eigenfunc-

tions, the resulting parametric lines align with structural features automatically. As shown

in Figs. 4.2(b), 4.6(b) and 4.7(a, b), the guidance directions are defined using the isocon-

tours and the characteristic values. They all yield parametric lines aligned with the five fin-

gers, see Figs. 4.2(d), 4.7(c, d) and 4.8(c). Compared with Fig. 4.7(b), Fig. 4.7(a) contains

non-consistent guidance directions generated using the isocontours. Generally, consistent

guidance directions yield good feature-aligned parameterization, see Fig. 4.7(d), while non-

consistent guidance may introduce distortions. On the wrist of the hand in Fig. 4.7(c), there

is a foldover in the parametric lines, where the resulting ∇T ui and ∇T vi are very different

with ui and vi. This can be improved by assigning larger weights for the triangles in this

region when minimizing the orientation energy [13].

Discussion 4.2. Reducing the distortion is an important issue for surface parameteriza-

tion. In previous literature [90, 91], the distortion was reduced by evolving a pre-defined

metric on the surface. Differently, we reduce the distortion mainly by using the character-

istic value to avoid non-consistent guidance directions and also modifying λ̄ in Eq. 5.1 to

balance the tradeoff between guidance alignment and field smoothness. A small λ̄ value can
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(a) (b)
Figure 4.9: A tradeoff control for the parameterization using the guidance directions in
Fig. 4.7(c). (a) λ̄ = 0.05; and (b) λ̄ = 5.0.

relax the constraint and thus the distortion is reduced, although the feature alignment may

be sacrificed at certain extent. Fig. 4.9 shows the parameterization results corresponding to

different λ̄ values. When a small λ̄ is chosen, the parametric lines fail in aligning with the

index finger, but the distortions in the wrist region are avoided (Fig. 4.9(a)). As λ̄ becomes

larger, the parametric lines align with the index finger better but distortions happen in the

wrist region as shown in Fig. 4.9(b) and Fig. 4.7(c) (λ̄→ ∞).

4.4.2 Anisotropic Surface Parameterization

While the alignment of the parametric lines are determined by the cross field, the spacing of

them depends on the parameter h in Eq. 5.2. A smaller h value results in denser parametric

lines which correspond to the integer value of the parametric coordinates u and v. Using a

constant h, we obtain uniform parametric lines. While using a non-uniform h from a sizing

field [11], the local spacing of the parametric lines can be controlled to achieve adaptive

and anisotropic parameterization at certain extent. But the parametric lines with different

spacings may not be compatible with each other. In this chapter we introduce a new method

to modify the original cross field and make it adapt to the variation of the parametric line

spacings.

First, we define a region that must follow the original direction as the invariant region,

and regions between invariant regions as the transition region. In each iteration, the cross
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field in the transition regions is modified according to the difference between the resulting

∇T ui and ui, or ∇T vi and vi. Given that the four directions of the cross field are perpendicu-

lar or parallel with each other, the modification of the cross field can be represented by the

modification in one of its directions. If |∇T ui·ui|
‖∇T ui‖

< |∇T vi·vi|
‖∇T vi‖

,

ui = ui + rc

(
∇T ui

‖ ∇T ui ‖
− ui

)
, (4.11)

else

vi = vi + rc

(
∇T vi

‖ ∇T vi ‖
− vi

)
, (4.12)

where rc ∈ (0, 1) is a pre-defined parameter and here we choose rc = 0.2.

Generally, a large gradient magnitude indicates an intensive varying of the field, so

the resulting mesh should be dense along that gradient direction. Therefore, we set the

anisotropy where ‖ ∇T Fa
i ‖> 0.5 ∗ max (‖ ∇T Fa ‖) (the region pointed by the red arrow in

Fig. 4.10(a)). Here, ∇T Fa
i is the gradient of Fa in triangle Ti. The h values in u, v directions

are defined as

hu,i =

[
|ui · ∇T Fa

i |

‖ ∇T Fa
i ‖

ra +

(
1 −
|ui · ∇T Fa

i |

‖ ∇T Fa
i ‖

)]
h0,

hv,i =

[
|vi · ∇T Fa

i |

‖ ∇T Fa
i ‖

ra +

(
1 −
|vi · ∇T Fa

i |

‖ ∇T Fa
i ‖

)]
h0,

(4.13)

where ra is a parameter controlling the ratio of line spacing in u, v directions, and h0 defines

the base size. We choose ra = 0.2 in this chapter. Fig. 4.10 shows an example of anisotropic

parameterization. (a) shows the input field Fa (Mode 1 eigenfunction). Using the original

cross field in (c), the parameterization fails because the line spacing varies intensively, see

(e). To adapt the cross field, a transition region is defined where 0.45 ∗ max (‖ ∇T Fa ‖) <‖

∇T Fa
i ‖< 0.5 ∗ max (‖ ∇T Fa ‖), as shown in (b). After adapting the cross field, a valid

parameterization is obtained with rc = 0.1 and 40 iterations, as shown in (d) and (f). In the

invariant region, the parametric lines keep aligned to the input field, while in the transition
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region the alignment is sacrificed and more singularities are introduced. As a result in the

region pointed by the red arrow in (a), the red parametric lines (perpendicular with the

gradient direction) are much denser than the blue ones.

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Anisotropic parameterization of the Bunny model using Mode 1 eigenfunc-
tion. (a) The gradient of the input field; (b) the invariant and transition regions; (c, e) the
original cross field and the corresponding parameterization result; and (d, f) the adapted
cross field and the corresponding parameterization result.

Discussion 4.3. In our anisotropic parameterization scheme, we define a novel tran-

sition region on the surface and adapt the cross field in this region to connect parametric

lines with different line spacings smoothly. Although extra singularities may be yielded

in the transition region, the orthogonality of the cross field is preserved during the entire

adaptation process and the u, v parametric lines are automatically aligned to two perpendic-

ular directions, resulting in quadrilateral elements with good quality. While the previous

anisotropic parameterization methods [58, 39] seldom consider the quality of the output

quadrilateral elements. For example in [58], the orthogonality was sacrificed to achieve the

anisotropy, resulting in extremely small angles in the mesh.
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4.5 Results and Discussion

Our surface parameterization algorithm has been applied to various models based on the

guidance of eigenfunctions. The resulting parametric lines differ when different eigenfunc-

tions are used. The results shown in this section were obtained using a computer with an

Intel Xeo E5-1620 CPU and 16GB of memory.

Using eigenfunctions to design guidance directions for cross field, multiscale structural

features can be captured. Generally speaking, major structural features can be captured

with a few low modes. For example, using only the first two modes, all the five fingers of

the Hand model are captured in Fig. 4.8(c). Fig. 4.11 shows the parameterization results for

the Thin Filament protein in the human heart muscle. The overall structure of the protein

can be easily captured using the first two modes as shown in (d). When more modes are

included in (e-f), more detailed features are captured on the actin (yellow region), which is

an essential component for the cardiac contractile mechanism.

The principal curvatures have been applied in various applications to capture surface

features at different scales [13, 51]. Here, we also compare our scheme with the princi-

pal curvature guided methods. The curvatures are estimated using a common technique

introduced in [13, 51, 20]. Similarly, we measure the relative anisotropy of the principal

curvatures using

τ =
||κmax| − |κmin||

|κmax| + |κmin|
,

and the principal directions in the region with τ > 0.8 are defined as the guidance for

the parameterization. Generally, both principal curvatures and eigenfunctions can be used

to capture the structural feature of an object. Compared to principal curvatures, eigen-

functions especially low-mode ones are less sensitive to the local detailed features on the

surface. For the Thin filament model in Fig. 4.11(d vs g), the trunk of the structure is full of

sags and crests. Compared with the results from principal curvatures, the parametric lines

from the eigenfunctions (Modes 1-2) are aligned to the axial direction of the object very
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well, ignoring the detailed sags and crests. Therefore, our eigenfunction-based method

could be a better choice when the users intend to exclude the influence of local detailed

features and small changes on the surface.

(a)

(b) (c)

(d) Modes 1-2 (e) Modes 1-14 (f) Modes 1-39 (g) Curvature

Figure 4.11: Surface parameterization results for the Thin Filament model guided by dif-
ferent numbers of eigenfunctions. (a) The first six modes; (b, c) guidance directions us-
ing Modes 1-2 and 1-14, respectively; (d-f) surface parameterization using Modes 1-2
(NS = 144), 1-14 and 1-39, respectively; and (g) parameterization using the principal
curvature directions (NS = 178).

Besides combining different modes to capture the overall structure of the object, we can

also construct anisotropic parameterization using the algorithm introduced in Sec. 4.4.2.

For an eigenfunction, denser parametric lines along one certain direction can be generated

in the region with large gradient magnitudes, achieving the anisotropy defined in Eq. 4.13.

Fig. 4.12 shows an example of anisotropic parameterization for the Mode 3 eigenfunc-
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tion of the 4KYT model. In the red region, the red parametric lines (perpendicular to the

gradient direction) are much denser than the blue lines.

(a) (b) (c)
Figure 4.12: Anisotropic parameterization for 4YKT (d) The gradient magnitude and di-
rections of Mode 3 eigenfunction; (e) invariant and transition regions; and (f) the resulting
parametric lines from the adapted cross field.

Our algorithm also has some limitations. Generally, the parametric lines align well

with the structural features using the guidance directions from eigenfunctions. However,

there are two factors that may affect the alignment results. Firstly, as discussed in [11]

the cross field generated by minimizing the smoothness energy (Eq. 5.1) may be affected

by the input mesh quality, and the directions of the cross field may even fail to follow the

guidance. Secondly, the parametric coordinates u and v are computed by minimizing the

orientation energy (Eq. 5.2), and the resulting parametric lines are not guaranteed to align

with the cross field due to the integer constraints. The anisotropic parameterization is also

limited by the input mesh. As shown in Fig. 4.10(f), the anisotropy is achieved with more

singularities introduced in the transition region. Generally, stronger anisotropy requires

more singularities. As the singularities locate on the mesh vertices, the possible anisotropy

is limited by the distribution of vertices in the input mesh. The number of singularities

can be reduced if T-junctions are allowed in parameterization. Finally, as all the other
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eigenfunction-based algorithms, we need users to provide which modes to be used, which is

not fully-automatic. Although eigenfunctions of the LBO operator have a clear multi-scale

behavior, they do not provide an immediate access to what a human would call different

structural scales on an object, so it is still difficult to decide which combination of modes

is reasonable.

4.6 Conclusion and Future Work

In this chapter, we have introduced a novel approach to define guidance directions for cross

field-based surface parameterization. Two methods are designed to combine the gradient

information from different eigenfunctions. Based on the guidance from multiple eigen-

functions, a cross field is built with a tradeoff between the guidance alignment and the

field smoothness. As a result, the parametric lines are aligned with the structural features

at multiple scales, also enabling an anisotropy by adapting the cross field to non-uniform

parametric line spacings. In the future, we intend to continue working on anisotropic pa-

rameterization and also extend our structure-aligned surface parameterization to T-spline

surface modeling.
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Chapter 5

Adaptive and Anisotropic Quality

T-mesh Generation for Multi-resolution

Biomolecular Surfaces

Surface parameterization can also be used to generate the control meshes of T-spline,

namely T-meshes, for the input biomolecular surfaces. In this chapter, a novel surface pa-

rameterization method is introduced, which adapts the parametric line spacing to multiple

resolutions on biomolecular surfaces. Similar with the previous chapter, an anisotropy can

also be achieved in the parametric lines. Based on the parameterization results, T-meshes

are generated, yielding T-spline representations for biomolecular surfaces.

5.1 Introduction

In the context of isogeometric analysis [46, 8, 125, 49, 120], the T-spline surface pro-

vides a powerful basis for computation in different applications, which can also greatly

benefit the analysis of biomolecules. Due to the high efficiency of the T-mesh, the multi-

resolution feature on the biomolecular surface can be represented efficiently. Various
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methods have been developed for T-mesh generation [130, 131, 89, 40, 69]. In recent

years, the cross field-based global parameterization methods were introduced in surface

quadrangulation [12], which capture surface features based on the principal curvature di-

rections [58, 13, 51, 96, 99, 73] or eigenfunctions of the Laplace-Beltrami operator [74].

These techniques provide a nice basis for us to build T-meshes for biomolecules with multi-

resolution features preserved efficiently.

In this chapter, an atom simplification method is developed to eliminate these atoms and

improve the computational efficiency. Based on the simplified structure, a multi-resolution

biomolecular surface can be built for quality T-mesh generation. The main contributions in

this chapter include:

1. An extended cross field-based method is developed for adaptive and anisotropic pa-

rameterization, which adapts the parametric line spacings to multi-resolution surface

features; and

2. A new gradient flow-based method is introduced for T-mesh quality improvement,

preserving the anisotropy in quadrilateral elements robustly.

The remainder of this chapter is organized as follows. Section 5.2 explains the extended

parameterization algorithm together with the new quality improvement method. Section 7.5

shows the results. Finally, Section 7.6 draws conclusions and points out the future work.

5.2 Multi-resolution T-mesh Construction

5.2.1 Multi-resolution Biomolecular Surface

For the analysis of large biomolecular complexes, usually only a specific component is es-

sential for accuracy. A multi-resolution surface can be used to represent the biomolecular

surface, maintaining high resolution details on the surface for the emphasized components

while providing low resolution for the rest. In this chapter, the emphasized components are
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defined as specific chains in the biomolecular complexes based on their biological func-

tions. For example in Fig. 5.1(a), the chains belonging to actin (blue and orange) in the

human Thin Filament protein should be emphasized because they are receptors for some

inhibitors. For the emphasized chains, we keep all the atoms and also use larger coefficients

(PR, PC) in Eq. (3.4) to obtain higher resolution; while for the rest of the biomolecule, we

simplify atoms and choose smaller (PR, PC). Sometimes, sharp noises may happen in the

Gaussian density map around the connection region of the lower and higher resolution sur-

face, which can be removed by applying a low-pass filter based on the fast Fourier trans-

form [31]. Then, the multi-resolution surface is extracted from the constructed Gaussian

density map using the dual contouring method [147, 145], and adaptive triangular meshes

are obtained. In the following, we will talk about how to construct surface parameterization

and quality T-meshes using these triangular meshes.

5.2.2 Surface Parameterization and T-mesh Construction

In this chapter, we extend the cross field-based parameterization method [58, 13, 51, 96,

99, 74] to T-mesh generation for biomolecular surfaces. Firstly, a cross field is built on the

triangle mesh guided by the principal curvature directions. Then an adaptive parameteriza-

tion is computed based on the cross field. Anisotropy can also be achieved during surface

parameterization. Finally, T-meshes are constructed by connecting the nodes with integer

parametric coordinates.

Review of Cross Field-based Parameterization. A cross field is defined in each tri-

angle Ti with four perpendicular vectors, which can be represented as an angle θi referring

to an edge ei of the triangle, namely the reference edge. These vectors can be initialized

using different inputs, such as the principal curvature directions. Then the cross field is
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Adaptive parameterization for the multi-resolution surface of 2W4U. (a) The
multi-resolution triangle surface; (b) the cross field; (c) the adaptive T-mesh; (d) the para-
metric lines; and (e, f) the T-meshes corresponding to (d) before and after the removal of
redundant vertices.

smoothed by minimizing the smoothness energy [13]

ΓS =
∑

ei j∈E

(θi + ϕi j +
π

2
pi j − θ j)2, (5.1)

where ei j is the edge shared by triangles Ti and T j, ET is the set of edges in the mesh, ϕi j is

the angle between the reference edges of triangle Ti and T j, and pi j is the integer valued pe-

riod jump of the cross field across ei j. By minimizing the smoothness energy, θi is updated
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in each triangle Ti and a smooth cross field is obtained, see Fig. 5.1(b). Then, the surface is

cut into a disk-like planar region with all the singularities (red dots) on its boundary (black

lines). The parametric coordinates (u, v) of each vertex behave as two piece-wise linear

scalar fields, which can be obtained by minimizing an orientation energy [13, 96, 74],

ΓO =

NT∑
i=1

Ai

(∥∥∥hu
i ∇Tiu − ui

∥∥∥2
+

∥∥∥hv
i∇Tiv − vi

∥∥∥2
)
, (5.2)

where NT is the number of triangles, Ai is the area of triangle Ti,
(
hu

i , h
v
i

)
are parameters

controlling the spacings of the parametric lines, (∇Tiu,∇Tiv) are gradients of (u, v) in Ti,

and (ui, vi) are two perpendicular vectors chosen from the cross field (red and blue arrows

in Fig. 5.1(b)). The parametric line spacings in u and v directions equal to 1/hu
i and 1/hv

i ,

respectively. Integer constraints are set on the planar region boundary to ensure consistent

parametric lines, enabling a valid quadrangulation of the surface.

Adaptive T-mesh Generation. For the multi-resolution surface in Fig. 5.1(a), we need

to generate denser elements in the high resolution regions (blue and orange) to capture the

detailed features. This can be achieved by adapting the line spacings in the orientation

energy in Eq. (5.2): smaller (hu
i , h

v
i ) values are set for the higher resolution regions, while

larger values are set for others. As shown in Fig. 5.2 when a higher resolution patch i (blue)

is connected with a lower resolution patch j (yellow), we restrict h j = 2mhi, where m is

a positive integer. In addition, the parametric coordinates at the patch boundaries should

satisfy 
(
uA,i, vA,i

)T
= 2mRAB

(
uA, j, vA, j

)T
+ 2m(Iu, Iv)T(

uB,i, vB,i
)T

= 2mRAB
(
uB, j, vB, j

)T
+ 2m(Iu, Iv)T

, (5.3)

where RAB is the rotation matrix across edge AB, (Iu, Iv) are integer-valued shift in the

parametric coordinates, and m controls the difference of the parametric line spacing across

the patch boundary. The parametric coordinates are computed by minimizing the orienta-

tion energy ΓO with the constraints in Eq. (5.3). By connecting vertices with integer-valued
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parametric coordinates, a quadrilateral mesh can be built with T-junctions on the edges.

To ensure the strongly-balanced structure in the T-mesh (m ≤ 1 for any two neighboring

elements), some quadrilateral elements in the transition region need to be subdivided.

Figure 5.2: Two triangles across the patch boundary (orange).

Fig. 5.1(d-e) shows the adaptive parameterization result for the multi-resolution sur-

face (a local region) of Thin filament (2W4U). High resolution is set for two emphasized

chains (Chains 18 and 20) with denser elements. To have a smooth transition from a higher

resolution to a lower one, some T-mesh elements need to be modified. Fig. 5.3 shows

four different connections across the patch boundary (orange curve). Here m = 2, so some

quadrilateral elements are subdivided to ensure a strongly-balanced structure. The obtained

T-meshes may be too fine in some regions, therefore we identify redundant vertices based

on their surface error and remove them from the T-meshes. Fig. 5.1(e-f) shows a compari-

son between the T-meshes before and after removing redundant vertices.

Anisotropic T-mesh Generation. Similar with [74], an anisotropy can be defined

from an input scalar field f . For the parametric lines following the gradient direction ∇ f ,

hi is set to be an uniform value h0. For the perpendicular direction to ∇ f , the line spacing

h⊥i is determined by the gradient magnitude,

1
h⊥i

= α ·
max (‖∇ f ‖)

h0 ‖∇ fi‖
, (5.4)

where α controls the minimum line spacing. If ‖∇ fi‖ < α · max (‖∇ f ‖), the line spacing

is set to be h⊥i = h0. As such, the quadrilateral elements are stretched along the direction
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.3: Various parametric lines across the patch boundary and their resulting T-
meshes. (a-d) The parametric lines; and (e-h) the corresponding T-meshes.

perpendicular to the gradient, and dense elements are generated in the gradient direction. In

Fig. 5.4, Mode 2 eigenfunction of the Laplace-Beltrami operator is used as the input scalar

field. Similar with the isotropic parameterization in Fig. 5.1(d), we adapt the parametric

line spacings to the surface resolution by quadrupling the line spacings across the patch

boundary.

5.3 T-mesh Quality Improvement

For a Vertex xi in Element j, the other vertices in the element can be represented as x j
i+1,

x j
i+2 and x j

i+3 in the counter-clockwise order, see Fig. 5.5(a). The scaled Jacobian [143, 33]

at xi equals to det ([v1, v2, v3]), where

v1 =
x j

i+1 − xi∥∥∥∥x j
i+1 − xi

∥∥∥∥ , v2 =
x j

i+3 − xi∥∥∥∥x j
i+3 − xi

∥∥∥∥ , and v3 =
v1 × v2

‖v1 × v2‖
.

The quality of Element j can be measured by the minimum Jacobian at its four vertices.

Generally, the overall quality of the T-mesh from surface parameterizaion is good in term

of Jacobian, except a few elements. To improve the Jacobian of the T-mesh elements,
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(a)

(b)

(c)

Figure 5.4: Anisotropic T-mesh generation from the Mode 2 eigenfunction of LBO
(α = 0.1). (a) The gradient and gradient magnitude of the input field; (b) the adaptive
and anisotropic parameterization; and (c) the corresponding T-mesh.

we apply a new gradient flow-based quality improvement method, which considers both

the original shape of elements and the orthogonality of edges. Contrast to other existing

approaches [135, 15], our method can preserve the anisotropy of the T-mesh.

As shown in Fig. 5.5(b), for each T-junction we extend it to make the surrounding

elements form a local unstructured quadrilateral mesh. Suppose Element j in Fig. 5.5(a) is
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(a) (b)

Figure 5.5: (a) A neighboring element j surrounding Vertex xi; and (b) extending the T-
junction (orange) to form a local unstructured mesh.

a neighboring element surrounding Vertex xi, the cross distortion at xi is defined as

ΓC (xi) =
∑
j∈Qi

1
a2

j

∥∥∥∥x j
i+1 − xi

∥∥∥∥2
+ 1

b2
j

∥∥∥∥x j
i+3 − xi

∥∥∥∥2

2
a jb j

∥∥∥∥(x j
i+1 − xi

)
×

(
x j

i+3 − xi
)∥∥∥∥ , (5.5)

where Qi is the set of neighboring elements of Vertex xi, and

(
a j, b j

)
=


∥∥∥∥x j

i+1 − xi

∥∥∥∥ +
∥∥∥∥x j

i+2 − x j
i+3

∥∥∥∥
2

,

∥∥∥∥x j
i+3 − xi

∥∥∥∥ +
∥∥∥∥x j

i+2 − x j
i+1

∥∥∥∥
2


are the feature lengths of Element j. The total cross distortion energy of the T-mesh is

defined as

ΓC
M =

N∑
i=1

ΓC (xi), (5.6)

where N is the number of vertices. The T-mesh quality can be improved by minimizing ΓC
M

via a gradient flow method. Let g = (x1, y1, z1, ..., xN , yN , zN)T be the vector containing the

coordinates of all the vertices in the T-mesh. For the kth step of the gradient flow, we have

gk+1 = gk − τ∇ΓC
M, (5.7)

where

∇ΓC
M =

∂ΓC
M

∂x1
,
∂ΓC

M

∂y1
,
∂ΓC

M

∂z1
, ...,

∂ΓC
M

∂xN
,
∂ΓC

M

∂yN
,
∂ΓC

M

∂zN

T

.
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Note that in each step, vertices can only move on the tangent plane. Therefore, we update

xk
i with xk+1

i −
(
ni · pk

i

)
ni, where ni is the surface normal and pk

i = xk+1
i − xk

i .

We also implemented an isotropic T-mesh quality improvement method based on the

triangle optimization [135, 15] and compared our method with it. For an isotropic T-mesh,

the ideal shapes of the elements are squares or rectangles, as shown in Fig. 5.6, which

can be decomposed into several ideal triangles. For a general quadrilateral element, we

decompose it into several real triangles following the same splitting format. An affine

mapping between a real triangle j and its corresponding ideal triangle jI can be defined as

fK : jI → j

x̃ 7→ x = K jx̃ + v,
(5.8)

where x is a vertex in the real triangle, x̃ is the corresponding vertex in the ideal triangle,

and v is a constant term. The distortion of the T-mesh is defined as

ΓT
M =

NQ∑
i=1

∑
j∈Ri

∥∥∥K j
∥∥∥2

F

det
(
K j

)
+

√(
det

(
K j

))2
+ 4δ2

, (5.9)

where NQ is the number of quadrilateral elements, Ri is the set of real triangles generated

from Element i,
∥∥∥K j

∥∥∥
F =

√
tr

(
K j

T K j
)

is the Frobenius norm of K j, and δ is an arbitrary

small value (e.g. δ = 0.1). Similar with Eq. (5.7), a gradient flow method can be applied to

minimize ΓT
M.

(a) (b) (c) (d)

Figure 5.6: Ideal triangles from a square (a-b) or rectangle (c-d). (a, c) No T-junction; and
(b, d) with a T-junction. The orange dots are T-junctions.

Fig. 5.7 shows a comparison between our method and the triangle optimization method.

We can observe that both methods can improve the mesh quality. As shown in (b-c), for the
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isotropic elements in Region B, both methods yield similar results. But for the anisotropic

elements in Region A, only our method preserves the anisotropic rectangle shape of the

elements.

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Quality improvement results for the T-mesh in Fig. 5.4(c) using two different
methods. (a) The original T-mesh; (b-c) the improved T-meshes using the triangle optimiza-
tion method and our method, respectively; and (d-f) the Jacobian distribution corresponding
to (a-c).

5.4 Results and Discussion

In this section, the biomolecule simplification and multi-resolution T-mesh generation al-

gorithms are applied to various biomolecular complexes. All the results are generated from

a computer with an Intel Xeon E5-1620 CPU, a Nvidia GeForce GTX680 graphic card,

and 16GB of memory.

Figs. 5.1, 5.8 and 5.9 show adaptive T-mesh generation results for the five proteins

in Tab. 3.4, which can be used directly as the control mesh to build rational T-spline sur-

faces [131]. The principal curvatures are used to guide the parametric line directions, there-
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fore the obtained T-meshes follow the local surface features. On the contrary in Fig. 5.10,

eigenfunctions are used to define the input vector field. Therefore, the obtained anisotropic

T-mesh follows the gradient direction of those eigenmodes. The variation of different

modes is reflected by both the element orientations and the stretched shapes. We can also

set various resolutions for different emphasized components. In Fig. 5.11, the parametric

line spacings are 1 : 2 : 4 for Chain 20 (orange), Chain 18 (blue) and the rest of the sur-

face. Tab. 5.1 shows statistics of all the T-mesh generation results. We can observe that

the number of T-junctions and the number of singularities vary for different proteins due

to their complex surface features. In addition, the generated T-meshes are in good quality

with Jmin ≥ 0.37.

(a) (b) (c)

(d) (e) (f)

Figure 5.8: Multi-resolution surfaces for 2O53 and 4KYT. (a-c) 2O53; and (d-f) 4KYT.
Left column: adaptive parameterization; Middle column: T-mesh; Right column: T-spline
surface.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9: Multi-resolution surfaces for 4N78, 4A7F and 2KU2. (a-c) 4KYT; (d-f) 4N78;
and (g-i) 2KU2. Left column: adaptive parameterization; Middle column: T-mesh; Right
column: T-spline surface.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.10: Adaptive and anisotropic T-mesh construction of 4KYT from three different
eigenmodes. (a-c) The gradient direction and magnitude of the eigenfunctions; (d-f) surface
parameterization; and (g-i) adaptive and anisotropic T-meshes. Left column: results from
Mode 2; Middle column: results from Mode 3; and Right column: results from Mode 6.
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(a)

(b)

(c)

Figure 5.11: Biomolecular surfaces for 2W4U emphasizing Chains 18 and 20 with different
resolutions. (a) Adaptive parameterization; (b-c) the corresponding T-mesh and T-spline
surface.
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5.5 Conclusion and Future Work

In this chapter, we have introduced a new approach to simplify low-contributing atoms and

generate quality T-meshes for multi-resolution biomolecular surfaces. An error-bounded

atom elimination algorithm is designed to reduce the atom number and preserve multi-

resolution surface feature at the same time. An extended cross field-based parameterization

is introduced to generate adaptive and anisotropic T-meshes, which can be used further for

T-spline surface construction. In addition, a new gradient flow-based method is introduced

for T-mesh quality improvement, preserving the anisotropy in the input T-mesh.

Isogeometric analysis has been applied in a lot of engineering fields, it also has a great

potential for applications in computational biology to study biomolecular complexes or

proteins. In the future we intend to explore along this direction.
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Chapter 6

Correspondence Analysis for

Biomolecules Based on Volumetric

Eigenfunctions

With the geometric models, various studies for shape analysis can be performed for

biomolecules. In this chapter, we introduce a novel shape correspondence analysis method

based on volumetric eigenfunctions, which enables applications such as deformation

tracking and detailed shape comparison for biomolecular shapes.

6.1 Introduction

Biomolecules such as proteins are the basic functional units of biological processes. Since

the biomolecular interactions depend heavily on their surface shapes, shape analysis such

as deformation tracking and shape comparison become essentially important for the study

of biomolecules. In previous studies, various methods have been developed to measure the

shape difference [71]. The shape of an object can be characterized by the statistical infor-

mation of the surface features. In [41], the outlines of different biomolecular shapes were
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described and compared based on the multi-resolution Reeb graph (MRG). A robust skele-

ton extraction method was developed for shape analysis of arbitrary-genus surfaces [70].

Spectral analysis compares shapes based on the spectrum of the Lapace-Beltrami oper-

ator (LBO) [103, 104, 32]. Mean shift clustering and dimension reduction are coupled

together to accelerate the computation and preserve geometrical structure for shape classi-

fication [61]. These methods focus on scoring the similarities between shapes for retrieval

or classification, and they usually cannot detect detailed shape differences.

Different from shape retrieval, shape correspondence analysis explicitly provides de-

tails of shape similarity or difference [50]. Since eigenfunctions of the graph Laplacian or

the LBO are invariant to deformations, they can be used to find correspondence between

two flexible objects [123, 19]. Usually, each point in one shape is associated to another us-

ing the Gaussian proximity matrix in a supervised [108, 111, 16] or unsupervised [86] way.

However, the invariance of eigenfunctions may be affected by large deformations, leading

to inaccurate correspondence results [101, 92]. Rigid and nonrigid transformations were

adopted in [86, 79, 80, 47] to reduce the influence of these perturbations. In [81], a joint

graph was defined based on an initial correspondence between similar features on the cere-

bral cortex surfaces, providing a guidance for the eigenfunction computation. In [79, 80],

a fast computation method was introduced for correspondence analysis of large models.

Instead of only considering several landmarks [50], shape analysis of biomolecules prefers

to a dense point correspondence.

In this chapter, we develop a novel spectral shape correspondence analysis method

based on the joint graph, matching each point in the volumetric shape of biomolecules.

The main contributions of this chapter include:

1. A new method is introduced for the initial correspondence construction, which

matches boundary nodes with a similar shape diameter distribution and guides the

volumetric eigenfunction computation;
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2. A two-step scheme is developed to correct node association violating the main struc-

tures, and preserve local neighborhoods of boundary nodes by minimizing the dis-

tortion from deforming one shape to another; and

3. Based on the correspondence results between biomolecular shapes, a shape approxi-

mation and prediction method is introduced, together with a quantitative comparison

of different shapes.

The remainder of this chapter is organized as follows. Section 6.2 briefly reviews spec-

tral shape correspondence analysis. Section 6.3 describes the eigenfunction computation

from the joint graph of different shapes, and the two-step scheme for shape correspon-

dence analysis. Section 6.4 presents two applications of our shape correspondence results.

Finally, Section 7.6 draws conclusions and points out future directions.

6.2 Review of Spectral Point Correspondence Computa-

tion

Biomolecular shapes can be obtained from the electron microscope data, or they can

be computed according to the atomic resolution structures. In this chapter for a given

biomolecular structure from the Protein Data Bank (PDB), we compute its Gaussian

density map in a rectilinear grid based on the multi-level summation of Gaussian kernel

functions [145, 75]. The shapes are represented by interior voxels where the density is

greater than 1.0. For each shape, a graph can be built by connecting the voxel centers

with their neighbors. In this chapter, we denote the center of the ith voxel as Node i.

Eigenfunctions are computed based on the graph Laplacian, and the corresponding nodes

in different shapes can be matched using the distribution of eigenfunctions.
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For Graph GA built from Shape A, the adjacency matrix WA is constructed to describe

the connections between nodes. Entries of WA can be computed as

wi j =


exp

(
−d2

i j

)
0

0

i f j ∈ N(i),

i f j < N(i),

i f j = i,

(6.1)

where di j denotes the distance between Nodes i and j, and N(i) is the set of 1-ring

neighbours of Node i. The normalized graph Laplacian matrix can be written as

LA = D−1/2
A WAD−1/2

A , where DA = diag
(∑

j
w1 j, · · · ,

∑
j

wM j

)
and M is the node num-

ber. Solving the eigenproblem of LA, we have

LAV = −λAV, (6.2)

where V is the eigenvector and λA is the eigenvalue. For the M × M matrix LA, M eigen-

values can be obtained with their corresponding eigenvectors, which are ordered according

to the ascending order of eigenvalues. Let ϕi
k be the ith element of the kth eigenvector, we

have the eigenfunction

ϕk(xi) = ϕi
k, (6.3)

where xi is the position vector of Node i. Each eigenfunction is normalized to [−1, 1].

The correspondence between two different Shapes A and B can be obtained by associ-

ating a node in Shape A to the corresponding node in Shape B. In this chapter, Shapes A

and B are called the observed shape and the targeted shape, respectively. Based on the first

K eigenfunctions, the nodes in both shapes can be mapped onto a K-dimensional space.

Suppose η j
k is the kth eigenfunction value at Node j in Shape B. For Node i in Shape A and

Node j in Shape B, we have

xi = (xi, yi, zi)T 7→ x̃i =
(
ϕi

1, ϕ
i
2, ..., ϕ

i
K

)T
,
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and

y j =
(
x j, y j, z j

)T
7→ ỹ j =

(
η

j
1, η

j
2, ..., η

j
K

)T
.

Since these eigenfunctions are invariant to the deformations, the corresponding nodes

should have similar coordinates in the K-dimensional space. The corresponding node β(i)

of Node i can be found as the one with the shortest distance in the K-dimensional space

[81],

β(i) = arg min
j

∥∥∥ỹ j − x̃i
∥∥∥ . (6.4)

In practice, manual work is usually required to order different modes before mapping the

nodes. This is because modes with similar patterns may switch the order for different

shapes [87].

Discussion 2.1. The LBO eigenfunctions on a triangle surface can be obtained with

a cotangent scheme discretization [74]. Fig. 6.1 shows the comparison between surface

eigenfunctions from the LBO and volumetric eigenfunctions of 2BPF and 2BPG, two pro-

teins with similar chemical structure but different poses with topological change. Com-

pared to the surface eigenfunctions from the LBO in (a-b), volumetric eigenfunctions in

(c-d) tend to be less sensitive to the topological change of the model, which is very com-

mon for many biomolecules. The red and blue dots in the first mode represent the maximum

and minimum values. Note that these dots may switch the colors due to the sign flipping

of eigenfunctions [86]. For a slim stick-like structure, these dots basically reflect the head

and tail locations. In volumetric eigenfunctions, we can observe that their locations are

barely affected by the bending deformation, while in surface eigenfunctions they move due

to the topological change of the surface. Therefore in this chapter, we adopt volumetric

eigenfunctions in our shape correspondence analysis.
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(a) (b)

(c) (d)

Figure 6.1: The first four modes of 2BPF (a, c) and 2BPG (b, d). (a-b) Surface eigenfunc-
tions from the LBO; and (c-d) volumetric eigenfunctions from the graph Laplacian. The
red and blue dots represent the maximal and minimal eigenfunction values, respectively.

6.3 Shape Correspondence Analysis Based on Joint

Graph

The invariance of eigenfunctions to different poses may be perturbed by large deformations.

As shown in Fig. 6.1(c-d), patterns of the first two modes are very similar with each other,

but the third and fourth modes are obviously different. These different modes may result

in incorrect node association, failing to reflect the shape similarity. In this chapter, we

introduce a new spectral shape correspondence analysis approach based on the joint graph

of two shapes. Surface features are used to guide the volumetric eigenfunction computation

and improve the shape correspondence.

6.3.1 Eigenfunctions of Joint Graphs

Instead of solving eigenproblems of graphs GA and GB independently, we can compute the

eigenfunctions using the joint graph of these two shapes [81]. The (M + N) × (M + N)
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adjacency matrix of the joint graph can be represented as

WC =

 WA WAB

WT
AB WB

 , (6.5)

where M and N are the node number of Shapes A and B, WA and WB are the adjacency

matrices of graph GA and GB respectively, and the M × N matrix WAB describes the initial

correspondence between these two shapes. Additional information can be included in WAB

to guide the eigenfunction computation. Let C be the set of nodes in the observed shape

(Shape A) where the initial correspondence is defined, the entries in WAB are initialized as

wi j =


0 i f i < C

0 i f i ∈ C & β(i) , j

c i f i ∈ C & β(i) = j

(6.6)

where c is a constant. The eigenvectors from matrix WC in Eq. (6.5) are (N + M) × 1

vectors. The first N elements of the kth eigenvector are embedded in Shape A and the fol-

lowing M elements are embedded in Shape B. The shape correspondence can be obtained

based on the shortest distance similar to Eq. (6.4). The initial correspondence builds a set

of virtual connections between different shapes, guiding the distribution of the resulting

eigenfunctions.

6.3.2 Initial Correspondence

Eigenfunctions from the joint graphs depend on the definition of initial correspondences. In

previous literature, the initial correspondences are usually built according to known land-

marks such as specific neocortices for the brain surfaces [81], which are hard to specify for

an arbitrary pair of biomolecules. Instead, here we detect the regions with similar surface

features in different biomolecular shapes and use them to define the initial correspondence.
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These regions imply similar components in the chemical structures, leading to the best

correspondence results. In this chapter, we characterize the local surface feature around

each boundary node using the local shape diameter distribution. By connecting nodes with

similar surface features, the initial correspondence can be built.

Figure 6.2: The histogram

summarizing the shape di-

ameter distribution around

Node i.

After that, a distance field from the boundary nodes is

constructed throughout the volumetric model. A skeleton is

constructed with all the local maxima of the distance field.

The shape diameter di of each boundary node i is the short-

est distance from it to the skeleton. Let dmin and dmax be

the minimal and maximal shape diameters for all the bound-

ary nodes respectively, and the diameter is normalized as

di = 2 (di − dmin) / (dmax − dmin) − 1. The neighborhood Ñ(i)

around Node i consists of boundary nodes lying within a cer-

tain distance do, such that Ñ (i) =
{

j|
∥∥∥xi − x j

∥∥∥ < do
}
. In this

chapter we choose do = 18
◦

A. The shape diameter distribution is summarized as a his-

togram with L bars, see Fig. 6.2. Then each boundary node i can be mapped onto an

L-dimensional space with coordinate ui =
[
µi

1, µ
i
2, ..., µ

i
L

]T
. Nodes with similar surface

features should be close to each other in the L-dimensional space.

Nodes at different locations of the shape (e.g. head and tail) may happen to have

similar surface features. Therefore, an additional dimension is considered in the initial

correspondence definition based on the first eigenfunctions shown in Fig. 6.1(c-d). Then

Node i in Shape A is mapped onto an (L + 1)-dimensional space with coordinate ui =[
µi

1, µ
i
2, ..., µ

i
L, ϕ

i
1

]T
, and Node j in Shape B is located at v j =

[
ν

j
1, ν

j
2, ..., ν

j
L, η

j
1

]T
. If sign

flipping happens between ϕ1 and η1, we need to correct it beforehand. Suppose set C con-

tains all the boundary nodes in Shape A. Each boundary node i is connected to the closest
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node in Shape B, then we have

β (i) = arg min
j

∥∥∥ui − v j
∥∥∥ . (6.7)

Fig. 6.3(a) shows the initial correspondences between 2BPF and 2BPG, which are obtained

directly from Eq. (6.7). Each pair of corresponding nodes are connected by a straight line.

Fig. 6.4(a-b) show the eigenfunctions resulted from Fig. 6.3(a), with similar patterns on

both shapes. However, some nodes are still incorrectly matched, which disobey the main

structure of two shapes, see the red circle region in Fig. 6.3(a). This is mainly caused by the

limited resolution of the voxel-based models. Therefore, we introduce a two-step scheme

to improve the initial correspondence.

(a) (b) (c)

Figure 6.3: The correspondence between shapes of 2BPF (top) and 2BPG (bottom). (a)
The initial correspondnence; (b) the correspondence after the first step of improvement;
and (c) the final shape correspondence. Each voxel is colored with the first eigenfunction
from independent graphs of 2BPF and 2BPG for visualization.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: First four modes of 2BPF (left) and 2BPG (right) from the joint graph. (a-b)
Eigenfunctions resulted from the initial correspondence in Fig. 6.3(a); (c-d) eigenfunctions
resulted from the correspondence in Fig. 6.3(b); and (e-f) eigenfunctions resulted from the
final correspondence in Fig. 6.3(c).

6.3.3 Initial Correspondence Improvement

Although surface features have been included in the shape diameter-based initial corre-

spondence, it is still very rough in matching two shapes. In the following, the initial corre-

spondence is improved in two steps.

Step 1 (Updating the initial correspondence with eigenfunctions). In the initial

correspondence, the connections disobeying the main structures can be taken as high-

frequency noises in the joint graph, see the red circle regions in Fig. 6.3(a) and Fig. 6.4(b).

The influence of these noises can be reduced by the low mode eigenfunctions, which filter

out high-frequency features. With these eigenfunctions, we can update the initial corre-

spondence. As shown in Fig. 6.3(b), most incorrect connections are eliminated and the

joint graph is updated, leading to much smoother eigenfunctions, see Fig. 6.4(c-d).
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When we deform the observed shape to match with the targeted shape by relocating

each node to its corresponding one, the deformation of the local neighborhood around each

node should be restricted. As shown in Fig. 6.5 when the shape of 2BPF in (a) is deformed

to match 2BPG according to the initial correspondence, the corresponding nodes of the

same neighborhood may be faraway to each other, see the red circle region in (b). This

is mainly because there are some ambiguities when matching nodes based on the shape

diameter. As shown in (c), the local neighborhoods are still not preserved well after the first

step improvements. This problem can be resolved using an iterative distortion minimization

(Step 2).

(a) (b) (c)

(d) (e) (f)

Figure 6.5: Deformed 2BPF shape based on shape correspondence. (a) The original 2BPF
shape; (b) the deformed shape based on the initial correspondence; (c) the deformation
after the first step improvement; and (d-f) the deformed shapes in the 10th, 75th and 150th

iterations in the second step improvement.
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Step 2 (Preserving local neighborhoods by minimizing distortions). The distortion

due to the correspondence-based deformation can be defined as

E =
∑
i∈C

∑
j∈Ñ(i)

∥∥∥∥(x′i − x′ j
)
− Ri

(
xi − x j

)∥∥∥∥, (6.8)

where xi and x′i are the locations of Node i and its corresponding node respectively, and

Ri is the rotation matrix of the neighborhood around Node i. Ri can be approximated using

the as-rigid-as-possible deformation [117]. The covariance matrix S i for Node i can be

computed as

S i =
∑

j∈Ñ(i)

ei je′Ti j, (6.9)

where ei j and e′i j represent edges connecting Nodes i and j, and their corresponding nodes,

respectively. Applying the singular value decomposition, we have

S i = UiΣVT
i . (6.10)

Then the rotation matrix can be approximated as

Ri = ViUT
i . (6.11)

In this chapter, a gradient flow method is applied for minimizing the distortion E. Let

Fn = [x′1, y
′
1, z
′
1, ..., x

′
NC
, y′NC

, z′NC
]T be the position vector of the corresponding nodes in the

nth iteration, we update it in the (n + 1)th iteration as

Fn+1 = Fn − r∇F, (6.12)

99



where NC is the node number in set C, r is the step length, and the gradient ∇F is defined

as

∇F =

 ∂E
∂x′1

,
∂E
∂y′1

,
∂E
∂z′1

, ...,
∂E
∂x′NC

,
∂E
∂y′NC

,
∂E
∂z′NC

T

.

In each iteration, the corresponding nodes are updated with the closest boundary nodes in

the targeted shape.

Fig. 6.5(d-f) shows the evolution of 2BPF using our two-step scheme, and it is obvious

that the local neighborhood is preserved iteratively. The minimization process terminates

when |E
n−En+1|

En < εE , where En and En+1 are the distortion energy in the nth and (n + 1)th

iterations, and εE is a predefined threshold (here we choose εE = 0.01). After the distortion

minimization, the joint graphs are updated for eigenfunction and shape correspondence

computation. Fig. 6.4(e-f) are the resulting eigenfunctions with consistent patterns for each

pair of corresponding eigenfunctions, and Fig. 6.3(c) shows the final shape correspondence

between 2BPF and 2BPG, where all the connections follow the main structures.

Discussion 3.1. Unlike traditional spectral correspondence methods, our algorithm is

robust of sign flipping and order confusion due to the usage of volumetric eigenfunctions

from the joint graph. In addition, our algorithm is quite automatic. Throughout the corre-

spondence analysis, the only required manual work is to correct the eigenfunctions from

independent graphs when sign flipping happens during the initial correspondence construc-

tion. By minimizing pre-defined distortions, our algorithm preserves the local neighbor-

hood of each boundary node. Therefore, we can track the deformation of local areas and

study the behavior of some active sites (e.g. surface pockets).

Discussion 3.2. Due to the invariance of low mode eigenfunctions to the shape defor-

mation, our shape correspondence method is very suitable for matching biomolecules with

different poses such as 2BPF and 2BPG. Together with the shape diameter distribution, the

resulting correspondence also reflects the association of their mutual chemical components.

Note that for biomolecules with different chemical structures such as 2BPF and 1BPB in
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Fig. 6.6, although the shape correspondence results follow their similar poses, it does not

indicate any association between the chemical structures.

(a) (b)

Figure 6.6: The shape correspondence between 2BPF and 1BPB. (a) The point correspon-
dence between 2BPF (left) and 1BPB (right); and (b) the deformed shape of 2BPF accord-
ing to (a).

Limitation. Our algorithm also has limitations since it assumes the first eigenfunctions

of two similar shapes are invariant to the deformation and also reflect the main structure.

For two biomolecules with very different poses and significant topology change as shown

in Fig. 6.7, their first eigenfunctions may be very different from each other, and we cannot

define any proper initial correspondence. In such situation, more biochemical information

can be included to help establish a proper initial correspondence.

6.4 Applications and Results

With the shape correspondence results, various operations can be performed for

the shape analysis of biomolecules. In this section, we present two applications

using the biomolecular complexes from the Macromolecular Movement Database

(http://www.molmovdb.org/), including shape approximation and prediction, as well

as shape comparison.
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(a) (b) (c) (d)

Figure 6.7: Chemical structure and eigenfunctions for the Integrin. (a-b) The deformation
of chemical structure; and (c-d) the first eigenfunctions for the shapes from (a) and (b),
respectively.

6.4.1 Shape Approximation and Prediction

In drug design and disease mechanism analysis, it is important to track the deformation of

biomolecules over time. Let S O be the observed shape and S T be the targeted shape of a

biomolecule at time tO and tT , the shape of the biomolecule at an arbitrary time t can be

approximated by deforming S O. In this section, the observation time ranges are normalized

to [0, 1], we have tO = 0 and tT = 1.

In this chapter, we approximate the intermediate shapes using as-rigid-as-possible de-

formation [117], which moves a set of landmarks and relocates other nodes by minimizing

the distortion. The landmarks are chosen as the local minima and maxima of a harmonic

field h(x). Similar to [27], the harmonic field is obtained by solving a Poisson equation

∆̄h (x) =
∥∥∥∆̄x

∥∥∥ , (6.13)

where ∆̄ is the graph Laplacian operator. Let H = [h1, h2, · · · , hM]T be a set of discretized

function value at each node, we have ∆̄H = WPH and ∆̄x =
[
∆̄x, ∆̄y, ∆̄z

]T
. The matrix WP
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is similar but different from the adjacency matrix in Sec. 6.2, and its entries are defined as

wP
i j =


0 i f j < N(i),

exp
(
−d2

i j

)
i f j ∈ N(i) & i , j,

−
∑
k,i

wP
ik i f i = j.

(6.14)

Fig. 6.8 shows the harmonic field in 2BPF, in which the blue and red dots represent the local

minima and maxima, respectively. The location of a landmark at time t is approximated as

x(t) = xO +
t − tO

tT − tO
(xT − xO) , (6.15)

where xO is the original location in Shape S O, and xT is the corresponding node in Shape

S T . Other nodes can be obtained by minimizing a distortion energy

D(F) =

M∑
i=1

∑
j∈N(i)

∥∥∥∥(x′i − x′ j
)
− Ri

(
xi − x j

)∥∥∥∥, (6.16)

where F = [x′1, y
′
1, z
′
1, ..., x

′
M, y

′
M, z

′
M]T is the position vector of all the nodes at time t. Ri is

the rotation matrix for Node i, which can be approximated based on the SVD of the local

covariance matrix described in Sec. 6.3.3.

The approximated shape is represented by voxels in a rectilinear grid. First, a blank

grid is initialized with the same resolution with the observed shapes. For the deformed

shape S O, each node is connected with its 1-ring neighbors by several edges, and all the

voxels intersecting with these edges are marked as voxels in the approximated shape. The

resulting binary data can be smoothed by filtering out the high-frequency components.

Fig. 6.9 shows the evolving process from 2BPF to 2BPG. By bending and twisting the

shape of 2BPF, we can obtain the shape of 2BPG, see the red arrows in (a). As shown

in (b, c), it is easy to handle the topological change of the surface using voxels. While

Fig. 6.9 is a conjectural process, Fig. 6.10(a-d) shows a simulated deformation process of

103



an enzyme complex of yeast (YE). (e-h) are the real biomolecular shapes built from (a-d).

We suppose the shapes in (e) and (h) are observed at t = 0 and t = 1, respectively. As

shown in (i), the shape correspondence is computed between these two shapes, from which

we can approximate the biomolecular shapes at t = 0.33 and t = 0.67, see (m) and (n). (j-k)

show the original neighborhoods and the deformed ones according to (i). To measure the

difference between the real shape and the approximated one, a volume error εV is defined

as

εV =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

∣∣∣ρi, j,k − ρ
′
i, j,k

∣∣∣
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

ρi, j,k

, (6.17)

where Nx, Ny and Nz are dimensions of the rectilinear grid in x, y and z directions, respec-

tively. If a voxel with index (i, j, k) belongs to the real shape or the approximated shape,

we set ρi, j,k = 1 or ρ′i, j,k = 1, otherwise ρi, j,k and ρ′i, j,k are set to be zero. As shown in

Fig. 6.10(m-n), the approximated shapes are very similar to the real ones in (f-g). Besides

approximating the shape during the observed time, we can also predict the shapes out of the

time range. Fig. 6.10(l) and (o) are predictions of the shape before and after the observed

time range at t = −0.33 and t = 1.33, respectively.

(a) t = 0 (b) t = 0.33 (c) t = 0.67 (d) t = 1

Figure 6.9: The deforming process from 2BPF to 2BPG. (a, d) The known shapes of 2BPF
and 2BPG, respectively; and (b-c) the approximated shapes at different time.

In this chapter, landmarks are detected using the harmonic field, which only depend

on the geometrical structure of biomolecules. Our method is flexible and extensible to
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(a) (b) (c) (d)

(e) t = 0 (f) t = 0.33 (g) t = 0.67 (h) t = 1

(i) (j) (k)

(l) t = −0.33 (m) t = 0.33 (n) t = 0.67 (o) t = 1.33

Figure 6.10: The deformation process of YE. (a-d) Deformation process of the chemical
structure of YE; (e-h) volumetric shapes built from (a-d); (i) shape correspondence between
(e) and (h); (j-k) the original and deformed shapes of (e) according to the shape correspon-
dence; and (l-o) the approximated and predicted deformed shapes at different time. (i-k)
are colored with the first eigenfunction from independent graphs for visualization.

incorporate additional biochemical information by specifying landmarks with important

chains or residues, leading to more realistic matching results.
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6.4.2 Shape Comparison

Figure 6.8: The harmonic

field and local minima

(blue) and maxima (red) in

2BPF.

Previous shape retrieving algorithms usually only score the

similarities or dissimilarities between two shapes [70, 50],

without identifying detailed differences. On the contrary, a

quantitative measurement of the shape difference can be per-

formed to show the detailed differences based on our corre-

spondence results. Two variables can be used to measure the

shape difference at each node: the shape diameter difference

and the local distortion induced by correspondence-based de-

formation. Let di and d′i be the shape diameter of Node i and

its corresponding node in the other shape, the shape diame-

ter difference is simply defined as δi = |di − d′i |. We denote

the average and maximal shape diameter difference and dis-

tortion as (ēS , emax
S ) and (ēD, emax

D ) respectively, which can also be used for shape retrieval

and classification.

Based on the shape correspondence results shown in Fig. 6.3(c) and Fig. 6.6(a), we

measure the differences between two pairs of protein shapes as shown in Fig. 6.11. The first

pair (2BPF and 2BPG) has similar chemical structure but different poses, while the second

pair (2BPF and 1BPB) has similar pose but different chemical structures. For convenience

of observation, the distribution of shape diameter difference and distortion are both shown

over the 2BPF shape. As shown in (a-b), the similar chemical structures result in small

shape diameter difference in (a), but a large concentration of distortion happens in (b),

which reflects the bending induced by deforming 2BPF to 2BPG. For 2BPF and 1BPB in

(c-d), both the shape diameter difference and distortion reflect their difference.

The behavior of a biomolecule during biochemical process can be characterized

by combining the information from both the shape diameter and distortion. The

KEAP1/CUL3/RBX1 complex (KCR) is an ubiquitin ligase in human. As shown in
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(a) (b) (c) (d)

Figure 6.11: Measurement of shape difference. (a-b) Comparison between 2BPF and
2BPG; (c-d) comparison between 2BPF and 1BPB; (a, c) the shape diameter difference;
and (b, d) the distortion.

Fig. 6.12(a-d), the KCR structure deforms due to the movement of main components (see

the red arrows), which is observed at different time. Besides, we assume the complex

loses Chain F (purple) during the deformation. The behavior of this biomolecule can

be described by comparing the biomolecular shapes at different time (f-h) (the targeted

shapes) with the original one in (e) (the observed shape) based on the shape correspon-

dence results in (i-k). As shown in (l-n), the sudden change of both metrics in Region

A implies the change of chemical structure, that is, the loss of Chain F at t = 0.67. In

Region B, the shape diameter difference is very small while distortion arises over time,

which indicates the bending and torsion in this region as well as the relative movement of

different components.

6.5 Conclusion and Future Directions

In this chapter, a new shape correspondence analysis method has been developed for

biomolecules based on volumetric eigenfunctions from the joint graph of two given

shapes. The shape diameter distribution is used to build the initial correspondence, which

guides eigenfunction computation with similar surface features preserved. A two-step

scheme was developed to analyze the shape correspondence, which eliminates node asso-
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(a) t = 0 (b) t = 0.33 (c) t = 0.67 (d) t = 1

(e) (f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Figure 6.12: Shape deformation of KCR. (a-d) Deformation of the chemical structure; (e-h)
volumetric shapes computed from (a-d); (i-k) are shape correspondence between (e) and (f),
(e) and (g), and (e) and (h), respectively; (l-n) measurement of the shape differences based
on the correspondence in (i-k) with shape diameter difference (left) and distortion (right).
(i-k) are colored with the first eigenfunction from independent graphs for visualization.

ciation against the main structure and preserves local neighborhoods of each node. Based

on the shape correspondence analysis results, we perform shape approximation, prediction

and comparison, which can be used to study the behavior of biomolecules.
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Our shape correspondence analysis method is designed based on the geometrical infor-

mation only. We can include additional biochemical information to improve the matching

accuracy. For specific proteins, special chains or ions can be used to help define the initial

correspondence, and the resulting shape correspondence will better reflect the deformation

of chemical structures. In the future, we plan to improve our method along this direction,

and also explore other shape analysis applications for biomolecules.
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Chapter 7

Secondary Laplace Operator and

Generalized Giaquinta-Hildebrandt

Operator with Applications on Surface

Segmentation and Smoothing

Some behaviors of biomolecules are determined by special surface features such as pock-

ets. Powerful mathematical tools are desired to detect and segment these features. In this

chapter, we introduce two new geometric operators based on the second fundamental form

of the surface, and develop various applications for them, including segmenting protein

pockets.

7.1 Introduction

Geometric operators are the basis for many algorithms in surface processing. Based on

the first fundamental form of the surface, the Laplace-Beltrami operator (LBO) is de-

fined and its eigenfunctions are well-known for their property of capturing shape behav-
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ior and structural feature of an object [65, 102, 104, 113]. They vary along the object

surface and are invariant to different poses, which makes them ideal for applications in

pose-invariant Reeb graph construction [113], shape matching [65] or registration [86], the

Shape-DNA [104], and surface quadrangulation or parameterizaton [150, 74, 26, 45, 76].

Another important application of the LBO eigenfunctions is surface segmentation. The

distribution of eigenfunctions is used together with isocontours [102, 127, 78] and point

clustering [98, 142, 112] to segment surface into several components. In practice, different

methods were employed to improve the performance of LBO eigenfunctions [42, 132]. To

detect concavities, eigenfunctions from a concavity-aware Laplacian [127] were used to

generate a single segmentation field.

Besides computing eigenfunctions, geometric operators are also used in various geo-

metric flows for surface fairing and smoothing [23, 63, 64, 144, 139, 148]. The mean cur-

vature and Gaussian curvatures are usually used to design geometric operators [139, 57].

Generally, geometric flows smooth surfaces and remove noise by moving nodes in the

normal direction, while the tangential movement regularizes the elements. The tangential

movement can also help strengthen surface features, which was seldom considered in the

existing methods.

In this chapter, we introduce two new operators, namely the secondary Laplace opera-

tor (SLO) and generalized Giaquinta-Hildebrandt operator (GGHO), based on the second

fundamental form of the surface. Different from the LBO eigenfunctions, the SLO eigen-

functions can capture concave and convex surface features which can be used to segment

concave and convex regions. The main contribution of this chapter includes

1. Two new geometric operators (SLO and GGHO) are introduced based on the second

fundamental form of the surface;

2. Surface segmentation methods are developed based on the SLO eigenfunctions with

concave creases/regions and convex ridges detected; and
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3. A new geometric flow method is developed based on the GGHO for surface smooth-

ing, which preserves and strengthens sharp features on the surface.

The remainder of this chapter is organized as follows. Section 7.2 reviews the defini-

tion of several existing geometric operators and eigenfunction computation. Section 7.3

introduces the SLO and its application on surface segmentation. Section 7.4 talks about the

GGHO and a new geometric flow method. Section 7.5 shows the results. Finally, Section

7.6 draws conclusions and points out the future work.

7.2 Review of Existing Geometric Operators

Before introducing our new operators, we first briefly review definitions of several existing

geometric operators. More detailed descriptions can be found in [138]. Eigenfunctions of

different operators can be computed using isogeometric analysis (IGA) based on Catmull-

Clark basis functions [134].

7.2.1 Definitions of Existing Geometric Operators

Let S = {x(u, v), (u, v) ∈ Ω ⊂ R2} be a smooth parametric surface in R3. (u, v) can also be

written as (u1, u2) for convenience. The coefficients of the first fundamental form of S are

defined as gαβ =
〈
xuα , xuβ

〉
(α, β = 1, 2), where xuα = ∂x

∂uα and xuβ = ∂x
∂uβ . The coefficients

of the second fundamental form of S are defined as bαβ =
〈
n, xαβ

〉
, where xuαuβ = ∂2x

∂uα∂uβ

and n = (xu × xv)/ ‖xu × xv‖. Let g = det[gαβ], [gαβ] = [gαβ]−1, and [bαβ] = [bαβ]−1. We

have the following geometric operators.

Curvatures. The mean curvature H and the Gaussian curvature K are defined as

H =
b11g22 − 2b12g12 + b22g11

2g
and K =

b11g22 − b2
12

g
. (7.1)
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Tangential gradient operator. Let f ∈ C1(S ), the tangential operator ∇ acting on f

is given by

∇ f = [xu, xv]
[
gαβ

] [
fu, fv

]T

= g∇u fu + g∇v fv,
(7.2)

where ∇ f ∈ R3, g∇u = 1
g (g22xu − g12xv) and g∇v = 1

g (g11xv − g12xu).

Second tangential operator (STO). Let f ∈ C1(S ), the STO ♦ acting on f is defined

as
♦ f = [xu, xv] K

[
bαβ

] [
fu, fv

]T

= g♦u fu + g♦v fv,
(7.3)

where ♦ f ∈ R3, g♦u = 1
g (b22xu − b12xv) and g♦v = 1

g (b22xv − b12xu).

Tangential divergence operator. Let v be a C1 smooth vector field on a surface S, the

tangential divergence operator divS acting on v is defined by

divS (v) =
1
√

g

[
∂

∂u
,
∂

∂v

] [√
g
[
gαβ

]
[xu, xu]T v

]
. (7.4)

Laplace-Beltrami operator (LBO). Let f ∈ C2(S ), the LBO acting on f is given by

4 f = divS (∇ f )

= 1√
g

[
∂
∂u ,

∂
∂v

] [√
g
[
gαβ

] [
fu, fv

]T
]
.

(7.5)

Giaquinta-Hildebrandt operator (GHO). Let f ∈ C2(S ), the GHO acting on f is

given by

� f = divS (♦ f )

= 1√
g

[
∂
∂u ,

∂
∂v

] [√
gK

[
bαβ

] [
fu, fv

]T
]
.

(7.6)

7.2.2 Eigenfunction Computation

Let f ∈ C2(S ), the eigenfunctions of LBO and GHO should satisfy

4 f = −λl f and � f = −λg f (7.7)
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respectively, where λl and λg are the eigenvalues. According to the Green formula, for

∀ f ∈ C2(S ) and ∀h ∈ C1(S ) we have

∫
S

(h 4 f + 〈∇ f ,∇h〉) dA = 0 (7.8)

and ∫
S

(h� f + 〈∇ f , ♦h〉) dA = 0. (7.9)

Therefore, we plug Eq. (7.7) into Eqs. (7.8-7.9) and obtain

∫
S

〈∇ f ,∇h〉 dA = λl

∫
S

h f dA (7.10)

and ∫
S

〈∇ f , ♦h〉 dA = λg

∫
S

h f dA. (7.11)

Let {ϕi}
N
i=1 be a set of basis functions defined on the surface and ϕi ∈ C2(S ), f can be

approximately represented as f =
N∑

i=1
wiϕi. Let h = ϕ j ( j = 1, 2, · · · ,N), then we have

N∑
i=1

wi

∫
S

〈
∇ϕi,∇ϕ j

〉
dA = λl

N∑
i=1

wi

∫
S

ϕi · ϕ jdA

and
N∑

i=1

wi

∫
S

〈
∇ϕi, ♦ϕ j

〉
dA = λg

N∑
i=1

wi

∫
S

ϕi · ϕ jdA

for the LBO and GHO, respectively. Let mL
i j =

∫
S

〈
∇ϕi,∇ϕ j

〉
dA, mG

i j =
∫
S

〈
∇ϕi, ♦ϕ j

〉
dA,

and ci j =
∫
S
ϕi · ϕ jdA. The eigenfunctions of LBO and GHO can be obtained by solving

the eigenproblems

MLW = λlCW and MGW = λgCW, (7.12)
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where ML =
[
mL

i j

]
, MG =

[
mG

i j

]
, C =

[
ci j

]
, and W = [w1,w2, ...,wN]T . Embedding

the eigenvector W on the surface, we obtain an eigenfunction of the specific geometric

operator.

In this chapter, we focus on the two new operators based on the second fundamental

form of the surface, and a cubic or higher order surface representation is required. While

many other methods can also be used, we choose the cubic Catmull-Clark subdivision

surface due to its wide adoption [134]. As shown in Fig. 7.1, for the input triangular sur-

faces we use cross field-based surface parameterization [13, 74] to generate semi-structured

quadrilateral meshes with only a few extraordinary nodes. Triangle subdivision schemes

such as the Loop subdivision can also be used to study SLO and GGHO, but attentions

should be paid to the number and placement of extraordinary nodes. Fig. 7.2(a-b) shows

the first four eigenfunctions of the LBO and GHO for the Elk model, respectively. The LBO

eigenfunctions vary smoothly on the surface following the main structure of the model, but

it is hard to detect curvature-related features (e.g., the concave creases connecting the four

wheels, the horn and the main Elk body) because the LBO is defined based on the first

fundamental form of the surface, see Fig. 7.2(c) for the segmentation result using the LBO

eigenfunctions. On the contrary, the GHO eigenfunctions hardly reveal any geometric fea-

ture of the object. This is because ♦ f is almost zero in the planar regions, which makes the

matrix MG close to singular. To better detect curvature-related features, we define two new

geometric operators (SLO and GGHO) in the following two sections.

(a) (b)

Figure 7.1: Elk model. (a) The input triangle mesh; and (b) the quadrilateral mesh.
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(a)

(b) (c)

Figure 7.2: Elk model. (a, b) The first four non-constant eigenfunctions of the LBO and
GHO for the Elk model, respectively; and (c) the segmentation result from Modes 1-4 of
the LBO.

7.3 SLO and Surface Segmentation

Based on the second fundamental form of the surface, we generalize the definition of the

STO, and introduce a new geometric operator named the SLO. Different from the LBO

eigenfunctions, the SLO eigenfunctions are sensitive to concave creases/regions and convex

ridges, providing a powerful basis for surface segmentation.

7.3.1 Generalized STO and SLO

We generalize Eq. (7.3) by replacing K with Ψ, and define a generalized STO (GSTO),

♦ f = [xu, xv] Ψ
[
bαβ

] [
fu, fv

]T

= g♦u fu + g♦v fv,
(7.13)

where

g♦u =
Ψ

b
(b22xu − b12xv) and g♦v =

Ψ

b
(b11xv − b12xu) .
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Here we choose Ψ = 1, eK or e−H for different purposes in surface segmentation, see

Sec. 7.3.2 for details. From Eq. (7.13), ∀ f , h ∈ C1(S), we can derive that

〈♦ f ,♦h〉 =
[
fu, fv

]
Ψ2

[
bαβ

] [
gαβ

] [
bαβ

]
[hu, hv]T

=
[
fu, fv

]
A [hu, hv]T ,

(7.14)

where

A = Ψ2
[
bαβ

] [
gαβ

] [
bαβ

]
=

[
aαβ

]
,

with

a11 =
Ψ2

b2

(
b2

22g11 − 2b22b12g12 + b2
12g22

)
,

a12 = −
Ψ2

b2

(
b22b12g11 −

(
b11b22 + b2

12

)
g12 + b11b12g22

)
,

a22 =
Ψ2

b2

(
b2

11g22 − 2b11b12g12 + b2
12g11

)
.

To detect curvature-related features, we define a new geometric operator based on the

second fundamental form of the surface, namely the secondary Laplace operator (SLO).

Given f ∈ C2(S ), the SLO N is defined implicitly which satisfies

∫
S

(
hN f +

〈
♦ f ,♦h

〉)
dA = 0, (7.15)

∀h ∈ C1S . The inner product of f and N f is

∫
S

( fN f ) dA = −

∫
S

〈
♦ f ,♦ f

〉
dA = −

∫
S

∥∥∥♦ f
∥∥∥ dA ≤ 0, (7.16)

therefore the SLO is a semi-negative definite geometric operator. The SLO eigenfunctions

should satisfy

N f = −λs f , (7.17)

117



where λs are the eigenvalues. By plugging Eq. (7.17) into Eq. (7.15), we have

∫
S

〈
♦ f ,♦h

〉
dA = λs

∫
S

h f dA. (7.18)

Similar to Eq. (7.12), the eigenfunctions of SLO can be obtained by solving an eigenprob-

lem

MS W = λsCW, (7.19)

where MS =
[
mS

i j

]
and mS

i j =
∫
S

〈
♦ϕi,♦ϕ j

〉
dA. Note that the explicit definition of the SLO

is not required during the eigenfunction computation.

As defined using the second fundamental form of the surface, the SLO eigenfunctions

are sensitive to curvature changes on the surface. By choosing different values for Ψ,

different surface features such as concave creases/regions and convex ridges can be detected

using the SLO eigenfunctions. In the following, we introduce three different choices of Ψ

for surface segmentation.

7.3.2 Surface Segmentation

Due to the second fundamental form in the definition of SLO, its eigenfunctions reflect the

curvature-related surface features, which provide a convenient basis for surface segmenta-

tion. Basically, surface segmentation consists of two main steps: computing eigenfunctions

and mapping vertices onto a k-dimensional space using the first k modes; and clustering

vertices into a series of groups or surface patches. In this chapter, point clustering is ful-

filled using Prediction Analysis for Microarrays (PAM) [121]. The clustering result can

be evaluated using the Davies-Bouldin value [114], which determines the optimal group

number.

With different choices of Ψ, the SLO eigenfunctions tend to emphasize different types

of surface features such as concave creases/regions and convex ridges. In this section, we

use the mean curvature H and Gaussian curvature K to define Ψ. To avoid generating
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singular matrices, we restrict

Ψ =


ψl if Ψ < ψl

ψu if Ψ > ψu

,

where ψl and ψu are the lower and upper bounds, respectively. Here we choose ψl = 0.5

and ψu = 10 in the computation. Three different values are adopted in this chapter:

1. Ψ = 1 for segmenting smooth faces with both concave creases and convex ridges.

For example in Fig. 7.3, the three cylindrical components contain concave creases at

the root and convex ridges at the top. When Ψ is a constant, the eigenfunction value

varies intensively across both concave creases and convex ridges and stays similar

in smooth regions surrounded by them, so each smooth region can be segmented as

a patch. Since the choice of the constant value does not change the distribution of

eigenfunctions, we simply choose Ψ = 1 in this chapter;

2. Ψ = eK for segmenting components with concave creases only. In many objects,

components with physical meanings are usually connected with concave creases

rather than convex ridges. For example in Fig. 7.4, the connection regions between

the horn, four wheels and the body of the Elk model are all concave creases. These

concave creases have negative K while convex ridges have positive K. In addition,

the SLO eigenfunctions tend to be more sensitive to regions with a smaller Ψ, where

the eigenfunction value varies intensively. For the regions with a larger Ψ, the eigen-

function value stays similar. Therefore, we choose Ψ = eK , so the intensive variation

of eigenfunctions only happens across concave creases and the regions surrounded

by them are segmented as patches; and

3. Ψ = e−H for segmenting concave regions from smooth surfaces. Some concave re-

gions we want to segment may not be surrounded by obvious concave creases or con-

vex ridges, such as the three shallow concave regions in the Disk model in Fig. 7.3.
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These concave regions have negative H, so we choose Ψ = e−H to set a large Ψ in

them and a small Ψ for the remaining surface. As a result, the eigenfunction value

stays similar inside the concave regions, and we segment each of them as a patch.

Note that each input mesh is scaled to make the maximal length unit in x, y and z directions.

For a different scaling, the choice of Ψ needs to be adjusted accordingly. Fig. 7.3(b-d)

shows the first three SLO eigenfunctions for the Disk model with three different choices of

Ψ, and (i-l) are the corresponding segmentation results. When Ψ = 1 in (b, g), each smooth

face is segmented as a patch, and each cylindrical component is separated into two patches

(top face and circumferential face). On the contrary when Ψ = eK in (c, h), these cylindrical

components are segmented as single patches because Ψ = eK cannot detect convex ridges.

When Ψ = e−H in (d, i), three concave regions are detected and segmented by the SLO

eigenfunctions. Since these regions are smoothly embedded in a planar region without any

obvious concave creases or convex ridges, they are ignored by the eigenfunctions in (b) and

(c). As shown in Fig. 7.3(e), the spectra of SLO are convex while the spectra of LBO tend

to be flat. (a, f) show the LBO eigenfunctions and the corresponding segmentation result.

It is obvious that the SLO eigenfunctions yield good segmentation results with concave and

convex features detected, while the LBO eigenfunctions cannot.

Compared with the LBO eigenfunctions in Fig. 7.2(a), the SLO eigenfunctions in

Fig. 7.4(a, b) are more sensitive to the variation of surface curvatures, which perform better

in determining the patch boundaries in the segmentation results in (c, d). For a certain ob-

ject, the choice of Ψ depends on specific purposes. For example when Ψ = 1, the horn of

Elk is separated into two planar regions in (c), which may be desired for design or manu-

facturing. But for structure recognition, the result in (d) may be preferred because the horn

is a single solid component.

120



(a) (b)

(c) (d) (e)

(f) (g) (h) (i)

Figure 7.3: Disk model. (a) Modes 1-3 of the LBO eigenfunctions; (b-d) Modes 1-3 of the
SLO eigenfunctions when Ψ = 1, Ψ = eK and Ψ = e−H , respectively; (e) the spectra of
LBO and SLO; and (f-i) the corresponding surface segmentation results of (a-d).

(a)

(b) (c) (d)

Figure 7.4: Elk model. (a, b) Modes 1-4 of the SLO eigenfunctions when Ψ = 1 and
Ψ = eK , respectively; and (c, d) the corresponding segmentation results of (a) and (b),
respectively. The red windows in (c, d) show the back face of the horn.

7.4 GGHO and Geometric Flow

Analogy to the definition of GHO in Eq. (7.6), we introduce a generalized Giaquinta-

Hildebrandt operator (GGHO) , which is defined as

� f = divS (♦ f ). (7.20)

121



Then we have

� f =
1
√

g

[
∂

∂u
,
∂

∂v

] [√
g Ψ

[
bαβ

] [
fu, fv

]T
]
. (7.21)

Let v = (v1, v2, v3)T ∈ R3 be a vector field, we define �v = (�v1,�v2,�v3)T ∈ R3. Acting

the GGHO on the coordinates of the surface point, we have

�x = 1√
g

([
∂
∂u ,

∂
∂v

] [√
g Ψ

[
bαβ

]
[xu, xv]T

])T

= 1√
g

([
∂
∂u ,

∂
∂v

]
Ψ
K

[√
gK

[
bαβ

]
[xu, xv]T

])T

= Ψ
K

1√
g

([
∂
∂u ,

∂
∂v

] [√
gK

[
bαβ

]
[xu, xv]T

])T
+([

∂
∂u

(
Ψ
K

)
, ∂∂v

(
Ψ
K

)] [
K

[
bαβ

]
[xu, xv]T

])T

= Ψ
K�x + ♦

(
Ψ
K

)
= 2Ψn + ♦

(
Ψ
K

)
,

(7.22)

where n is the normal. A geometric flow can be defined as

∂x
∂t

= �x + λvT , (7.23)

where vT is a vector in the tangential direction regularizing the quadrilateral elements, and

λ controls the strength of regularization (e.g. λ = 0.05). vT is usually defined based on

the geometric center of the 1-ring neighborhood of a node, but features might be blurred in

this way. In this chapter, we define an anisotropy in the 1-ring neighborhood based on the

principal curvature directions, and vT is an weighted average of the neighbors. Let Node

j be a neighbor of Node i, and κ1
j and κ2

j be the principal curvature directions. The feature

direction κ j is defined as the larger one between κ1
j and κ2

j . The weight of Node j is defined

as

wi j =
∣∣∣∣〈κi, κ j

〉
·
〈
ni,n j

〉∣∣∣∣ + εA, (7.24)

where εA is a predefined parameter and here we choose εA = 0.05 in our computation. We

obtain similar weights for the neighbors with a weak anisotropy, such as the flat regions.
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We have

vT =

∑
j∈N(i)

wi jx j∑
j∈N(i)

wi j
− xi, (7.25)

where N(i) is the 1-ring neighborhood of Node i. With Eq. (7.24), large weights are as-

signed to the neighbors located along the same concave or convex edge with Node i. Nodes

across concave or convex edges have little influence to each other. If Node i is not on the

sharp edge, vT will be the geometric center of its 1-ring neighbors. �x consists of two

components in the normal and tangential directions, respectively.

To strengthen concave creases and convex ridges on the surface, we choose Ψ = HK2
√

K2+δ2

in this chapter. In this way, these creases and ridges can be characterized by the sign of ψ,

negative for concave creases and positive for convex ridges. Then we have

�x =
2HK2
√

K2 + δ2
· n + ♦

(
H

K
√

K2 + δ2

)
, (7.26)

where δ is a small constant (e.g. δ = 0.1). Since GGHO is defined based on the second

fundamental form of the surface, it is more sensitive to the curvature-related features com-

pared with LBO, which is defined based on the first fundamental form. Fig. 7.5 shows the

smoothing results for the Moai model based on the LBO and GGHO. Compared with LBO,

some sharp edges such as the lower jaw and the eyebrow are preserved and sharpened using

GGHO.

7.5 Results and Discussion

In this section, various models are tested using our surface segmentation and geometric flow

methods. All the results are generated using a computer with an Intel Xeon E5-1620 CPU,

a Nvidia GeForce GTX680 graphic card, and 16GB of memory. Tab. ?? shows a summary

of the computation of eigenfunctions and segmentation results for LBO and SLO.
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(a) (b) (c)

Figure 7.5: Smoothing results of geometric flow for the Moai model using different geo-
metric operators. (a) The original model; (b) the result from LBO; and (c) the result from
the GGHO (Iteration: 50; Step size: 0.02).

Surface segmentation using Ψ = eK . For objects with only concave creases, we

choose Ψ = eK . To reveal the differences between the SLO and other operators, we adopt

the PAM clustering method to compute the segmentation results from the eigenfunctions of

LBO, concavity-aware Laplacian (CL) [127] and SLO. Triangle meshes are generated for

the CL eigenfunction computation by splitting each quadrilateral element into two trian-

gles. Since the vertex number is not changed, the computational time for the CL is similar

with LBO and SLO. The segmentation results can be evaluated quantitatively using the

Princeton benchmark and software [17], by comparing them with the ground truth from

human. There are four metrics [17] to measure the quality of segmentation results:

1. the cut discrepancy eD, which is the sum of distance between points along the cuts in

the computed segmentation to the closest cuts in the ground truth segmentation, and

vice-versa;

2. the Hamming distance eH , which measures the overall difference between the patches

in different segmentation results;
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3. the Rand index eR, which measures the likelihood that a random pair of elements are

in the same patch or not in different segmentation results; and

4. the consistency error eC , which measures the hierarchical similarities and differences

of different segmentation results.

Basically, the smaller these metrics are, the better the segmentation is. Figs. 7.6 shows

eigenfunctions and segmentation results from the LBO, CL and our SLO, together with the

segmentation result from the shape diameter function (SDF) method [110]. The metrics

shown in the figures indicate that the SLO yields the best segmentation results. Concave

creases are completely ignored by the LBO eigenfunctions, so the resulting segmentation

results miss the connection regions of different components, see (e). On the base of the

Bust model, all the patches shown in the ground truth in (d) can be obtained using the SLO

eigenfunctions as shown in (g), while some of them are missed in (f) and none is captured

in (e). Compared with [127], we obtain different segmentation results for the Bust using

the CL eigenfunctions. This is because here we use the PAM clustering for segmentation,

while in [127] an advanced segmentation method named the single segmentation field was

adopted. Using the SLO eigenfunctions, we obtain a lower eR for the Bust model (0.116 vs

0.286).

Protein pocket detection using Ψ = e−H . Protein pockets are concave regions on

the biomolecular surface, which determine the interactions between the protein and other

molecules. Detecting and segmenting these pockets are essentially important to predict

the behavior of biomolecules during the biological process. Since the pockets are concave

regions on the smooth protein surface, we adopt Ψ = e−H to detect and segment them.

Fig. 7.7 shows the results of 1BYH, a protein widely used for enzyme behavior study.

(a, b) show the eigenfunctions of LBO and SLO, respectively. Their segmentation results

are shown in (c, d). It is obvious that the SLO eigenfunctions segment the concave and

convex regions well, while the LBO eigenfunctions cannot. In (d), we choose the patch
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 7.6: The eigenfunctions and segmentation results of the Bust model. (a-c) Modes
1-3 of the LBO, CL and SLO, respectively; (d) the ground truth for segmentation [17];
(e, f) segmentation results from LBO and CL eigenfunctions; (g) the result from the SDF
method; and (h) the result from SLO eigenfunctions.

with negative average mean curvature as the pocket (Patch D), which is further subdivided

into two smaller patches in (e) when two more eigenfunctions are considered.

The protein pockets are candidates for active sites where the protein binds with other

molecules. We can use the bound structure to determine the real active sites, and also

use them to validate our segmentation results. Fig. 7.7(f) shows a known binding between

1BYH and a small molecule BETA-D-GLUCOSE. Let x j be a node on the protein sur-

face, the Gaussian density at x j can be computed using a summation of Gaussian kernel

functions [143, 75],

G(x j) =

M∑
i=1

eκ
(
‖xi−x j‖

2
−r2

i

)
, (7.27)

where M is the atom number of the small molecule, κ is the decay rate, and (xi, ri) are the

center and radius of Atom i. The average Gaussian density in a pocket can be computed as

Ḡ = 1
NP

NP∑
j=1

G(x j), where NP is the vertex number in the pocket. The pocket with the largest

average Gaussian density is identified as the active site, see the orange patch in Fig. 7.7(g).
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(a) (b)

(c) (d) (e) (f) (g)

Figure 7.7: The first four eigenfunctions and segmentation results for the 1BYH model
from the LBO and SLO with Ψ = e−H . (a, b) Modes 1-4 eigenfunctions of the LBO and
SLO; (c) the segmentation result from Modes 1-4 of the LBO; (d, e) segmentation results
from Modes 1-2 and 1-4 of the SLO; (f) a known binding between 1BYH and BETA-D-
GLUCOSE (red circle); and (g) the active site (orange) corresponding to Patch D in (e).

Fig. 7.8 shows the segmentation results for another polymorphic enzyme named 1C2B.

According to the combined structure, the red patch in (e-f) is detected as an active site.

Limitations. Since the SLO and GGHO are defined based on the second fundamental

form, a high-order representation of the surface is required to compute the eigenfunctions

of SLO and perform the GGHO-based smoothing, which are more complicated in compu-

tation compared with other LBO-based methods. In this chapter, we use the Catmull-Clark

basis functions and quadrilateral control meshes to represent the surface, so a remeshing

process is required for other forms of input meshes. The cross field-based surface pa-

rameterization may fail in generating quadrilateral meshes when the input triangle meshes

contain many complicated features, which limits the applications of our method.

7.6 Conclusion and Future Work

In this chapter, two new geometric operators, namely the secondary Laplace operator (SLO)

and generalized Giaquinta-Hildebrandt operator (GGHO), have been introduced based on

127



(a) (b)

(c) (d) (e) (f)

Figure 7.8: The eigenfunctions and segmentation results for the the MAChE (1C2B) model
from the LBO and SLO with Ψ = e−H . (a, b) Modes 1-4 eigenfunctions of the LBO and
SLO; (c) the segmentation result from Modes 1-4 of the LBO; (e) the segmentation result
from Modes 1-4 of the SLO; and (d, f) the crosssections of (c) and (e), respectively.

the second fundamental form of the surface. The eigenfunctions of SLO are sensitive to

curvature-related surface features, which segment the surface with concave creases/regions

and convex ridges detected. Based on the GGHO, a new geometric flow method has been

developed for surface smoothing, which preserves and strengthens sharp features on the

surface.

In this chapter, surface segmentation is introduced mainly to show the special proper-

ties of the SLO eigenfunctions. In the future, we plan to develop more robust segmentation

algorithms and explore other applications of the SLO eigenfunctions. On the other hand,

since most of the surfaces are still represented by triangle meshes, we also plan to investi-

gate the implementation of these new operators on triangle meshes.
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Chapter 8

Conclusion and Future Work

8.1 Conclusions

In this thesis, an efficient geometric modeling approach has been developed for the

biomolecular complexes. The biomolecular surface is represented by a Gaussian density

map, where the local resolution control is enabled. The computational efficiency for the

construction of Gaussian density map is improved using a combination of neighboring

search, KD-tree structure and bounding volume hierarchy. Besides, an error-bounded

atom simplification method is designed to speedup the computation by reducing the atom

number. Moreover, CPU- and GPU-assisted parallel computation techniques are used

to further improve the computational speed. With a quality improvement process, high-

quality triangle and tetrahedral meshes can be generated quickly for large biomolecular

complexes.

To enable the quadrilateral mesh generation, a surface parameterization method has

been developed based on the cross filed. A novel approach has been developed to define

the guidance directions for the construction of cross field. Two methods are designed to

combine the gradient information from different eigenfunctions of the Laplace-Beltrami

operator to capture the main structure of an object. As a result, the parametric lines are
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aligned with the structural features at multiple scales. Besides, an anisotropy is enabled by

adapting the cross field to non-uniform parametric line spacings. Addition to the quadrilat-

eral mesh, surface parameterization can also be used for T-mesh generation, which provides

an efficient tool in representing the multi-resolution biomolecular surfaces. An extended

cross field-based parameterization is introduced to generate adaptive and anisotropic T-

meshes, which can be used further for T-spline surface construction. In addition, a new

gradient flow-based method is introduced for T-mesh quality improvement, preserving the

anisotropy in the input T-mesh.

Besides geometric modeling, eigenfunctions also provide a powerful tool for the shape

analysis of biomolecules. A new shape correspondence analysis method has been intro-

duced based on the volumetric eigenfunctions from the joint graph of different biomolecu-

lar shapes. A two-step method has been developed to improve the shape correspondence,

which eliminates the node assignments against the main structure and preserves the local

neighborhood of each node by minimizing the distortion energy in the correspondence-

based deformation. Based on the shape correspondence analysis, a shape approximation

and prediction, and shape comparison method are designed, which can be used for analyz-

ing the behavior of biomolecules based on the variation of shape geometry.

Geometric operators have been applied in various operations for biomolecular surfaces.

Two new geometric operators, namely the secondary Laplace operator (SLO) and general-

ized Giaquinta-Hildebrandt operator (GGHO), have been introduced based on the second

fundamental form of the surface. The eigenfunctions of SLO are sensitive to curvature-

related surface features, which segment the surface with concave creases/regions and con-

vex ridges detected. Based on the GGHO, a new geometric flow method has been developed

for surface smoothing, which preserves and strengthens sharp features on the surface.
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8.2 Future Work

In the future, it is worth to apply our efficient multiscale modeling methods to various

applications of biomolecules. Based on our T-mesh generation, T-spline representations

can be built for biomolecular surfaces, enabling the isogeometric analysis. Another future

direction can be solving the Poisson-Boltzmann equation using the high-order basis of the

T-spline surface.

Some of our geometric modeling and shape analysis algorithms are designed for gen-

eral objects, instead of for biomolecules only. Since our methods are flexible, it is easy to

further enhance them specifically for biomolecules by including more biochemical infor-

mation. For example for the anisotropic surface parameterization and T-mesh generation,

the alignment of parametric lines can be guided by various scalar fields such as the distri-

bution of electrostatic potential, which improves the computational accuracy for specific

studies. For the shape correspondence analysis, important chains can be used to define the

initial correspondence, leading to more realistic deformation tracking and shape compari-

son results. Additionally, the electrostatic potential can be combined with the SLO eigen-

functions to improve the accuracy of detecting and segmenting protein pockets. Moreover,

during shape approximation, physical constraints such as pure bending can be set in de-

forming the biomolecular shapes.

Analogy to the LBO eigenfunctions which describe the stationary wave on the surface,

the SLO eigenfunctions may also correspond to a special physical phenomenon. Studying

the physical meaning of the SLO eigenfunctions can help us better understand the nature

of this new geometric operator and further explore its applications. Furthermore compared

with quadrilateral meshes, triangle meshes are more commonly used for surface repre-

sentation. It is worth to study the computation of SLO eigenfunctions over the Loop’s

subdivision surfaces.

132





Bibliography

[1] L. Albou, B. Schwarz, O. Poch, J. Wurtz, and D. Moras. Defining and characterizing
protein surface using alpha shapes. Proteins, 76(1):1–12, 2009.

[2] S. Artemova, S. Grudinin, and S. Redon. A comparison of neighbor search algo-
rithms for large rigid molecules. Journal of Computational Chemistry, 32(13):2865–
2877, 2011.

[3] C. L. Bajaj, J. Castrillon-Candas, V. Siddavanahalli, and Z. Xu. Compressed rep-
resentations of macromolecular structures and properties. Structure, 13:463–471,
2005.

[4] C. L. Bajaj, V. Pascucci, and D. Schikore. Seed sets and search structures for op-
timal isocontour extraction. Technical report, Texas Institute of Computational and
Applied Mathematics, 1999.

[5] C. L. Bajaj, V. Pascucci, A. Shamir, R. J. Holt, and A. N. Netravali. Multiresolution
molecular shapes. Technical report, TICAM Technical Report, 1999.

[6] C. L. Bajaj, V. Pascucci, A. Shamir, R. J. Holt, and A. N. Netravali. Dynamic
maintenance and visualization of molecular surfaces. Discrete Applied Mathematics,
127(1):23–51, 2003.

[7] C. L. Bajaj and V. Siddavanahalli. Fast error-bounded surfaces and derivatives com-
putation for volumetric particle data. Technical report, ICES 06-03, 2006.

[8] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton, M. Scott, and
T. Sederberg. Isogeometric analysis using T-splines. Computer Methods in Applied
Mechanics and Engineering, 199(5–8):229–263, 2010.

[9] M. Belkin, J. Sun, and Y. Wang. Discrete Laplace operator on meshed surfaces.
Symposium on Computational Geometry, pages 278–287, 2008.

[10] J. F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on
Graphics, 1(3):235–256, 1982.

[11] D. Bommes, M. Campen, H. Ebke, P. Alliez, and L. Kobbelt. Integer-grid maps for
reliable quad meshing. ACM Transactions on Graphics, 32(4):98:1–98:12, 2013.

134



[12] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, and D. Zorin. Quad-mesh
generation and processing: a survey. Computer Graphics Forum, 32(6):51–76, 2013.

[13] D. Bommes, H. Zimmer, and L. Kobbelt. Mixed-integer quadrangulation. ACM
Transactions on Graphics, 28(3):1–10, 2009.

[14] D. Bommes, H. Zimmer, and L. Kobbelt. Practical mixed-integer optimization for
geometry processing. In Curves and Surfaces, pages 193–206. Springer, 2012.

[15] M. Brovka, J. I. López, J. M. Escobar, J. M. Cascón, and R. Montenegro. A new
method for T-spline parameterization of complex 2D geometries. Engineering with
Computers, 30(4):457–473, 2014.

[16] M. Carcassoni and E. Hancock. Correspondence matching with modal clusters.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(12):1609–
1615, 2003.

[17] X. Chen, A. Golovinskiy, and T. Funkhouser. A benchmark for 3D mesh segmenta-
tion. ACM Transactions on Graphics, 28(3):73–84, 2009.

[18] Y. Cheng, C. A. Chang, Z. Yu, Y. Zhang, M. Sun, T. S. Leyh, M. J. Holst, and J. A.
Mccammon. Diffusional channeling in the sulfate activating complex: combined
continuum modeling and coarse-grained Brownian dynamics studies. Biophysical
Journal, 95(10):4659–4667, 2008.

[19] F. Chung. Spectral graph theory. American Mathematical Soc., 1997.

[20] D. Cohen-Steiner and J. Morvan. Restricted delaunay triangulations and normal
cycle. In Proceedings of the nineteenth annual symposium on Computational geom-
etry, pages 312–321. ACM, 2003.

[21] M. L. Connolly. Analytical molecular surface calculation. Journal of Applied Crys-
tallography, 16(5):548–558, 1983.

[22] M. L. Connolly. Molecular surface: A Review. Network Science, 1996.

[23] K. Crane, U. Pinkall, and P. Schröder. Robust fairing via conformal curvature flow.
ACM Transactions on Graphics, 32(4):61–72, 2013.

[24] J. P. D’Amato and M. Vénere. A CPU-GPU framework for optimizing the quality
of large meshes. Journal of Parallel and Distributed Computing, (0):–, 2013.

[25] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of irregular
meshes using diffusion and curvature flow. In Annual Conference on Computer
Graphics, pages 317–324, 1999.

[26] S. Dong, P. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Spectral surface quad-
rangulation. ACM Transactions on Graphics, 25(3):1057–1066, 2006.

135



[27] S. Dong, S. Kircher, and M. Garland. Harmonic functions for quadrilateral remesh-
ing of arbitrary manifolds. Computer aided geometric design, 22(5):392–423, 2005.

[28] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Transac-
tions on Graphics, 13(1):43–72, 1994.

[29] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey.
In Advances in multiresolution for geometric modelling, pages 157–186. Springer,
2005.

[30] R. Fonseca and P. Winter. Bounding volumes for proteins: a comparative study.
Journal of Computational Biology, 19(10):1203 – 1213, 2012.

[31] M. Frigo and S. Johnson. The design and implementation of FFTW3. Proceedings
of the IEEE, 93(2):216–231, 2005.

[32] Z. Gao, Z. Yu, and X. Pang. A compact shape descriptor for triangular surface
meshes. Computer-Aided Design, 53:62–69, 2014.

[33] R. Garimella, M. Shashkov, and P. Knupp. Triangular and quadrilateral surface mesh
quality optimization using local parametrization. Computer Methods in Applied Me-
chanics and Engineering, 193(9):913–928, 2004.

[34] W. Geng and F. Jacob. A GPU-accelerated direct-sum boundary integral Poisson-
Boltzmann solver. Computer Physics Communications, 184:1490–1496, 2013.

[35] W. Geng and R. Krasny. A treecode-accelerated boundary integral Poisson-
Boltzmann solver for electrostatics of solvated biomolecules. Journal of Compu-
tational Physics, 247:62–87, 2013.

[36] W. Geng and S. Zhao. Fully implicit ADI schemes for solving the nonlinear Poisson-
Boltzmann equation. Molecular Based Mathematical Biology, 1:109–123, 2013.

[37] J. Giard and B. Macq. Molecular surface mesh generation by filtering electron den-
sity map. International Journal of Biomedical Imaging, pages 263–269, 2010.

[38] J. A. Grant and B. T. Pickup. A Gaussian description of molecular shape. Journal
of Physical Chemistry, 99(11):3503–3510, 1995.

[39] I. Guskov. An anisotropic mesh parameterization scheme. Engineering with Com-
puters, 20(2):129–135, 2004.

[40] Y. He, K. Wang, H. Wang, X. Gu, and H. Qin. Manifold T-spline. In Proceedings of
Geometric Modeling and Processing, pages 409–422, 2006.

[41] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. Kunii. Topology matching for fully au-
tomatic similarity estimation of 3D shapes. In Proceedings of the 28th Annual Con-
ference on Computer Graphics and Interactive Techniques, pages 203–212, 2001.

136



[42] K. Hildebrandt, C. Schulz, C. von Tycowicz, and K. Polthier. Modal shape analysis
beyond Laplacian. Computer Aided Geometric Design, 29(5):204–218, 2012.

[43] M. Holst, N. Baker, and F. Wang. Adaptive multilevel finite element solution of
the Poisson-Boltzmann equation algorithms I: algorithms and examples. Journal of
Computational Chemistry, 21:1319–1342, 2000.

[44] L. Hu, D. Chen, and G. Wei. High-order fractional partial differential equation trans-
form for molecular surface construction. Molecular Based Mathematical Biology,
1:1–25, 2013.

[45] J. Huang, M. Zhang, J. Ma, X. Liu, L. Kobbelt, and H. Bao. Spectral quadran-
gulation with orientation and alignment control. ACM Transactions on Graphics,
27(5):147:1–147:9, 2008.

[46] T. Hughes, J. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Me-
chanics and Engineering, 194(39–41):4135–4195, 2005.

[47] V. Jain and H. Zhang. Robust 3D shape correspondence in the spectral domain. In
Shape Modeling and Applications 2006, pages 19–32, 2006.

[48] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of Hermite data.
SIGGRAPH, 21:339–346, 2002.

[49] B. Jüttler, M. Kapl, D. Nguyen, Q. Pan, and M. Pauley. Isogeometric segmentation:
the case of contractible solids without non-convex edges. Computer-Aided Design,
57(0):74 – 90, 2014.

[50] O. Van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. A survey on shape corre-
spondence. Computer Graphics Forum, 30(6):1681–1707, 2011.

[51] F. Kälberer, M. Nieser, and K. Polthier. Quadcover-surface parameterization using
branched coverings. In Computer Graphics Forum, volume 26, pages 375–384,
2007.

[52] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

[53] C. Keenan, D. Mathieu, and S. Peter. Trivial connections on discrete surfaces. Com-
puter Graphics Forum (SGP), 29(5):1525–1533, 2010.

[54] B. Kim, K. J. Kim, and J. K. Seong. GPU accelerated molecular surface computing.
Appl. Math, 6(1S):185S–ĺC194S, 2012.
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