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Abstract

Large-scale networks are becoming more prevalent, with applications in healthcare systems, financial net-

works, social networks, and traffic systems. The detection of normal and abnormal behaviors (signals) in

these systems presents a challenging problem. State-of-the-art approaches such as principal component anal-

ysis and graph signal processing address this problem using signal projections onto a space determined by an

eigendecomposition or singular value decomposition. When a graph is directed, however, applying methods

based on the graph Laplacian or singular value decomposition causes information from unidirectional edges

to be lost. Here we present a novel formulation and graph signal processing framework that addresses this

issue and that is well suited for application to extremely large, directed, sparse networks.

In this thesis, we develop and demonstrate a graph Fourier transform for which the spectral components

are the Jordan subspaces of the adjacency matrix. In addition to admitting a generalized Parseval’s identity,

this transform yields graph equivalence classes that can simplify the computation of the graph Fourier

transform over certain networks. Exploration of these equivalence classes provides the intuition for an inexact

graph Fourier transform method that dramatically reduces computation time over real-world networks with

nontrivial Jordan subspaces.

We apply our inexact method to four years of New York City taxi trajectories (61 GB after pre-

processing) over the NYC road network (6,400 nodes, 14,000 directed edges). We discuss optimization

strategies that reduce the computation time of taxi trajectories from raw data by orders of magnitude:

from 3,000 days to less than one day. Our method yields a fine-grained analysis that pinpoints the same

locations as the original method while reducing computation time and decreasing energy dispersal among

spectral components. This capability to rapidly reduce raw traffic data to meaningful features has important

ramifications for city planning and emergency vehicle routing.
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Chapter 1

Introduction

The primary motivation of this thesis is the development of methods that enhance the utility of graph-

based methods for the analysis of real-world network data. Applications include the study of metabolic and

energy flows in biological systems [1], traffic flows on transportation grids [2, 3], and information flows on

communications and social networks [4, 5]. Graph-based approaches for such analyses are attractive because

they exploit information from the underlying network structure to extract a richer and potentially more

meaningful set of patterns that describe the flow of data.

Real-world applications are often characterized by two salient features: (1) extremely large data sets

and (2) non-ideal network properties that require extensive computation to obtain suitable descriptions of

the network. These features can result in extremely long execution times for the analyses of interest. This

thesis presents methods that significantly reduce these computation times, for the particular case of graph

Fourier transform (GFT) methods [6, 7, 8].

The main body of this work extends the graph signal processing framework proposed by [6, 7, 8]

to consider spectral analysis over directed adjacency matrices. References [6, 7] note that the adjacency

matrix acts as a shift operator on a graph signal, which, by algebraic signal processing [9, 10, 11], allows a

digital signal processing framework over graphs. In particular, the eigenvectors of a graph adjacency matrix

represent spectral components of the graph corresponding to the eigenvalues, or graph frequencies.

The adjacency matrices of real-world large, directed, and sparse networks are frequently defective, or

non-diagonalizable. Such matrices can be characterized by the Jordan decomposition as in [6]. This de-

composition, however, requires determination of Jordan chains, which are expensive to compute, potentially

numerically unstable, and non-unique with respect to a set of fixed eigenvectors, resulting in non-unique

graph Fourier transforms. In this thesis, we reformulate the graph signal processing framework so that the
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graph Fourier transform is unique over defective networks and provide a novel method that enables rapid

computation of the graph Fourier transform.

Since our objective is to provide methods that can be applied to real-world systems, it is necessary

to consider computational costs. Efficient algorithms and fast computation methods are essential, and,

with modern computing systems, parallelization and vectorization of software allow decreased computation

times [12]. We provide methods here to accelerate computations so that the proposed graph signal processing

tools are tractable for massive data sets.

1.1 Previous work

Spectral methods. Principal component analysis (the Karhunen-Loève Transform) was one of the first

spectral methods proposed and remains a fundamental tool today. This approach orthogonally transforms

data points, often via eigendecomposition or singular value decomposition (SVD) of an empirical covariance

matrix, into linearly uncorrelated variables called principal components [13, 14, 15]. The transform is defined

so that the first principal components capture the most variance in the data; this allows analysis to be

restricted to the first few principal components, thus increasing the efficiency of the data representation.

Other methods determine low-dimensional representations of high-dimensional data by projecting the

data onto low-dimensional subspaces generated by subsets of an eigenbasis [16, 17, 18, 19]. References [16, 17]

embed high-dimensional vectors onto low-dimensional manifolds determined by a weight matrix with entries

corresponding to nearest-neighbor distances. In [18], embedding data in a low-dimensional space is described

in terms of the graph Laplacian, where the graph Laplacian is an approximation to the Laplace-Beltrami

operator on manifolds. Reference [18] also proves that the algorithm [16] approximates eigenfunctions of a

Laplacian-based matrix.

These methods focus on discovering low-dimensional representations for high-dimensional data, cap-

turing relationships between data variables into a matrix for their analysis. In contrast, our problem treats

the data as a signal that is an input to a graph-based filter. Our approach emphasizes node-based weights

(the signal) instead of edge-based weights that capture data dependencies. Related node-based methods in

the graph signal processing framework are discussed next.

Data indexed by graph nodes and Laplacian-based GFTs. The graph signal processing frame-

work developed in this thesis assumes that data is indexed by the nodes of a graph. Studies that analyze data

with this framework include [20, 21, 22], which use wavelet transforms to study distributed sensor networks.

Other transforms, such as those in [23, 24, 25, 26, 27, 28, 29] represent data in terms of the graph Laplacian

and its eigenbasis for localized data processing. In particular, [25, 24] defines a graph Fourier transform
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(GFT) as signal projections onto the Laplacian eigenvectors. These eigenvectors form an orthonormal basis

since the graph Laplacian is symmetric and positive semidefinite. Graph-based filter banks are constructed

with respect to this GFT in [26].

A major issue with analyses based on the graph Laplacian is the loss of first-order network structure

of the network, that is, any asymmetry in a digraph. These asymmetries affect network flows, random

walks, and other graph properties, as studied, for example, in [30, 31]. Our method captures the influence

of directed edges in a graph signal processing framework by projecting onto the eigenbasis of the adjacency

matrix.

Adjacency matrix-based GFTs. References [6, 7, 8] define the graph Fourier transform in terms of

the eigenvectors of the adjacency matrix 𝐴 ∈ C𝑁×𝑁 of a graph. These references adopt 𝐴 as the shift operator

in digital signal processing. According to the algebraic signal processing theory of [32, 9, 10, 11], the shift

generates all linear shift-invariant filters for a class of signals (under certain shift invariance assumptions).

By defining the graph Fourier transform in terms of the adjacency matrix, [6] shows that directed network

structures can be studied, in contrast to graph Laplacian methods. In addition, [6] develops the concepts of

graph filtering and convolution.

The graph Fourier transform of [6] is defined as follows. For a graph 𝒢 = 𝐺(𝐴) with adjacency matrix

𝐴 ∈ C𝑁×𝑁 and Jordan decomposition 𝐴 = 𝑉 𝐽𝑉 −1, the graph Fourier transform of a signal 𝑠 ∈ C𝑁 over 𝒢

is defined as

̃︀𝑠 = 𝑉 −1𝑠, (1.1)

where 𝑉 −1 is the Fourier transform matrix of 𝒢. This is essentially a projection of the signal onto the

eigenvectors of 𝐴. The eigenvectors provide a basis for an orthogonal projection when 𝐴 is symmetric.

When 𝐴 is normal (𝐴𝐻𝐴 = 𝐴𝐴𝐻), the eigenvectors form a unitary basis (i.e., 𝑉 −1 = 𝑉 𝐻).

This thesis focuses on the case of graph signal processing over defective, or non-diagonalizable adjacency

matrices. These matrices have at least one eigenvalue with algebraic multiplicity (the exponent in the

characteristic polynomial of 𝐴) greater than the geometric multiplicity (the kernel dimension of 𝐴), which

results in an eigenvector matrix that does not span C𝑁 .

The basis can be completed by computing Jordan chains of generalized eigenvectors [33, 34], but this

computation introduces degrees of freedom that render these generalized eigenvectors non-unique; in other

words, the transform (1.1) may vary greatly depending on the particular generalized eigenvectors that are

chosen. To address this issue, our approach defines the GFT in terms of spectral projections onto the Jordan

subspaces (i.e., the span of the Jordan chains) of the adjacency matrix.
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1.2 Contributions

This thesis makes the following contributions:

∙ We present a spectral projector-based graph signal processing framework and show that the resulting

graph Fourier transform is unique and unambiguous. This formulation addresses the degrees of freedom

that arise in the Jordan chain computation and characterize a choice of Jordan basis.

∙ We define and develop the concepts of isomorphic and Jordan equivalence classes. Isomorphic equiv-

alence classes permit re-orderings of node labels that enable more efficient matrix representations for

sparse graph structures. Jordan equivalence classes allow computations of graph Fourier transforms

over graphs of simpler topologies.

∙ Since our spectral projector method still requires a Jordan decomposition step, we propose an inexact

but efficient method for computing the graph Fourier transform that simplifies the choice of projection

subspaces. This method is motivated by insights based on our graph equivalence classes and dramat-

ically reduces computation on real-world networks. The runtime vs. fidelity trade-off associated with

this method is explored.

∙ We apply our methods to study four years of New York City taxi trip data over the Manhattan road

network. We provide computational details of the optimization steps necessary to create a signal

extraction framework on a 30-machine cluster with 16-core/16 GB and 8-core/8 GB RAM machines

that reduces computation time from 3,000 days to less than a day. We demonstrate empirically that the

inexact method disperses less energy over eigenvectors corresponding to low-magnitude eigenvalues.

1.3 Outline

The thesis is organized into four parts as follows:

I. Motivation and background: Chapters 2 and 3;

II. Derivation and properties of the graph Fourier transform (GFT) and inexact method: Chapters 4, 5,

and 6;

III. Methods and considerations for applying the graph Fourier transform: Chapters 7 and 8;

IV. Application to New York City taxi data: Chapters 9 and 10.
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Chapter 2 describes churn prediction in a 3.7 million mobile caller network in order to motivate the

importance of underlying directed graph structures. Chapter 3 provides technical details of the graph signal

processing formulation as presented in [6, 7, 8]. We define the subspace projector-based graph Fourier trans-

form in Chapter 4 and discuss a generalized Parseval’s identity as well as the relationship of the transform

to isomorphic graphs.

This projector allows the definition of Jordan equivalence classes of graphs over which our graph Fourier

transform is equal. This concept is explained in detail in Chapter 5 and shown to simplify GFT computations

over certain classes. However, these methods still require a full Jordan decomposition. This motivates the

inexact approach proposed in Chapter 6, which also discusses in detail the trade-offs associated with using

such methods.

Chapter 7 describes the general method of applying the GFT developed in Part II. Chapter 8 presents

two example matrices that illustrate potential stability issues in the eigendecompositions of defective and

near-defective matrices.

Lastly, in Chapters 9 and 10, we demonstrate the application of the inexact GFT to taxi traffic data

on the Manhattan street network. The three computational steps are explained in detail: fast computation

of taxi signals, eigendecomposition of the Manhattan road network, and computation of the GFT; some

of these results are presented in [35, 36]. Our results demonstrate the speed of the inexact method, and

show that it reduces energy dispersal over Jordan subspaces corresponding to low-magnitude eigenvalues.
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Part I

Motivation and Background

Part I provides motivation and background for the methods developed in the thesis. Chapter 2 moti-

vates the work by presenting the problem of churn detection for a large caller network. This network consists

of 3.7 million subscribers to a mobile service provider. About 2.5% of the subscribers switch providers every

month, or churn. The service provider would like to predict these churners before the fact in order to design

effective targeted advertising strategies. We present a method of extracting features based on localized,

directed subgraphs. This method improves churn detection and demonstrates that the underlying network

structure plays an important role in caller behaviors. In order to explore the influence of the graph structure,

we consider graph signal processing as a general tool and formulate transforms that are applicable to directed

networks.

Chapter 3 provides background in two areas: graph signal processing and linear algebra. The graph

signal processing framework is first defined in terms of [6, 7, 8]. Graph signals are defined, and the eigende-

composition of the adjacency matrix is presented as the foundation for defining graph filters. These filters

transform the signals to the graph Fourier transform domain, which enables spectral analysis of the signals.

A key observation is that matrices that are not diagonalizable need to be decomposed to an almost-diagonal

form called the Jordan normal form or Jordan canonical form. The concepts in linear algebra that relate to

computing Jordan chains and defining Jordan subspaces are presented and used in later chapters to define

a spectral projector-based graph Fourier transform that is invariant to the degrees of freedom in the Jordan

chain computation.
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Chapter 2

Motivation for Directed Networks

This chapter presents an example application of graph-based analysis to illustrate the power of these

methods and to motivate the graph method enhancements presented in this thesis. We consider an anomaly

detection problem associated with identification of churners in a caller network, and show how methods

based on directed graphs can improve the accuracy of classifiers for this application. Our approach leverages

a feature set that utilizes directed subgraphs localized around a node of interest, which increased the separa-

bility of the raw features and improved anomaly detection; the details are also provided in [37]. The chapter

provides a detailed problem description, an explanation of our graph-based techniques, and our results. In

particular, we develop the concept of integral affinity graphs and show their utility in a churn detection

application.

2.1 Churn Problem

The goal is to design a classifier that can flag potential churners in a network of 3.7 million prepaid cell

phone users; however, raw features from the data are indistinguishable among churners and non-churners.

For example, while Figure 2-1b shows that churners are characterized by low activity, there are at least 10

non-churners with low activity for every churner; the non-churner features are not all visible in Figure 2-1b

because they overlap with the churner features. While a detector built on these features would have a high

false positive rate, service providers require the false positive rate to be as low as possible in order to avoid

wasting resources to retain the consumer base. For this problem, a 5% false positive rate is too high, since

it corresponds to 185,000 misclassified subscribers. Churn detection is a typical example of the general class

of applications involving anomaly detection.

Anomaly detection on large user networks is complicated not only by the computational issues imposed
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(a) (b)

Figure 2-1: (a) Visualization of 3.7 million caller network with inset showing churners (red, 2.5% of network)
and non-churners (blue.) (b) Zoomed view of January raw features showing low activity for churners (black)
and non-churners (red). In-network call time is plotted versus out-network call time in seconds.

by the size of the data, but also by similarities between anomalous and non-anomalous behavior. For mobile

service providers with millions of subscribers, isolating the “churners” (the small percentage of customers

who will drop their carriers) is a challenging problem, especially for customers that do not have a fixed

period service contract that commits them to the service provider. Carriers would like to identify potential

churners before they actually churn; in this way, they can better target advertising and design incentives

to prevent or compensate for decreases in their consumer base. In the literature, churn detection has been

approached via signal processing techniques such as Kalman filtering [38] as well as machine learning [39],

for example. Here, we consider an alternative approach that leverages the underlying network structure of

mobile subscribers to train and test classifiers to identify churners. Anomaly detection for networks has been

studied in [40, 41], both of which use node neighborhoods to detect anomalies. In [40], neighborhoods in

bipartite graphs are explored via random walk-type methods to identify nodes that participate in multiple

non-overlapping neighborhoods. In [41], weighted adjacency matrices for localized subgraphs are used to

compute outlier statistics corresponding to anomalies in networks with up to 1.6 million nodes. Anomaly

detection for identifying faces in images with a cascaded classifier is discussed in [42].

To address the problem of feature separability, we construct a novel feature set that leverages the

underlying network structure. While previous studies discussed above also exploit the underlying network,

our approach is tailored to finding anomalous subgraphs that highlight churner activity patterns with a

method that is fast and efficient. This approach is based on a graph representation of the data set for

which nodes represent callers and edges connect callers who call each other. For a node A, a 16-dimensional

activity row vector is constructed that collects several usage statistics between a caller and its neighbors.

Then, node samples of size 𝑀 are constructed for each of the neighbors of A and for each of the neighbors of
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neighbors of A via snowball sampling (see Section 2.2). These 𝑀 callers form a subgraph called the affinity

graph of A, with an associated 𝑀 × 16 activity matrix consisting of the activity vectors of its nodes. These

classifiers are tested with 𝑀 = 20, 30, 40, 50, and 100. Next, an expanded set of features is constructed from

subgraphs of the affinity graph, and the associated activity vector sums for the callers within each subgraph

define the subgraph activity. The differences between subgraph activities are defined as features to classify

node A. To expedite feature computation, we extend the concept of integral images from [42] to a concept

of integral affinity graphs, allowing us to quickly compute subgraph activities and their differences. Details

are provided in Section 2.2.

In addition, these features are used to train a cascaded classifier, which reduces false alarm rate to less

than 0.1%, with a trade-off in the churn detection. The classifier construction and results are presented in

Sections 2.3 and 2.4. The significance of this work in the context of this thesis is discussed in Section 2.5.

2.2 Feature selection

The data set contains eleven consecutive months of cell phone activity for a caller network with over 3.5

million callers in each month [43]. The analysis in this paper is limited to the months of January and February

2009, each with 3.7 million callers. Networks are constructed for these two months of data; the first month is

used for training while the second month is used for testing the anomaly classifier. The networks for January

and February are denoted by 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) respectively, where 𝑉𝑡 is the set of nodes

and 𝐸𝑡 is the set of undirected edges, 𝑡 = 1, 2. The node set 𝑉𝑡 includes all callers of the network at month 𝑡

that make at least one in-network call in month 𝑡. An edge between two callers in 𝑉𝑡 exists in 𝐸𝑡 if there is

at least one call between them in month 𝑡.

This section first describes the activity vectors associated with each caller in the network and the

computed subgraph-activity features. Then the concept of integral images from [42] is extended to directed

graph structures. The extension to trees is first described and then expanded for the case of subnetworks of

arbitrary structure. These subgraphs are called integral affinity graphs.

Activity vectors and features. Four classes of activity are attributed to every caller 𝐴 ∈ 𝑉𝑡: calls

initiated by 𝐴 to an in-network user 𝐵 ∈ 𝑉𝑡; calls received by 𝐴 from an in-network user 𝐵 ∈ 𝑉𝑡; calls to an

out-of-network user 𝐶 /∈ 𝑉𝑡; and, lastly, calls received from an out-of-network user 𝐶 /∈ 𝑉𝑡. For each of these

classes, the corresponding number of calls, total call time, total number of SMS messages, and the number

of callers compose an activity vector of dimension 16 that is recorded for every 𝐴 ∈ 𝑉𝑡.

In addition, each caller 𝐴 ∈ 𝑉𝑡 has an associated affinity graph, denoted by 𝐺𝐴 = (𝑉𝐴, 𝐸𝐴), 𝑉𝐴 ⊂ 𝑉𝑡,

𝐸𝐴 ⊂ 𝐸𝑡. The affinity graph for caller 𝐴 is constructed by performing a snowball sample [44]. First, 𝐴 is
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added to node set 𝑉𝐴. Then, snowball sampling is performed to collect its neighbors (the first-wave or 1-hop

neighbors). If the target sample size 𝑀 has not yet been reached, another snowball sample is performed

to collect the neighbors of the 1-hop neighbors, which form the second-wave or 2-hop neighbors. Snowball

sampling continues until 𝑀 nodes have been chosen [44]. The corresponding node activity vectors for the

collected nodes in 𝑉𝐴 form the columns of an 𝑀 × 16 activity matrix 𝑈𝐴 associated with caller 𝐴. As

discussed in [45, 46, 47, 48, 49], sampled networks can preserve and discover global network properties such

as degree distributions. In addition, [49] shows that even biased estimates derived from network samples

without re-weighting can reflect global properties. While the primary interest here is in preserving the local

structure of a caller 𝐴 to identify its probability of churn based on its affinity graph, the idea that subsets

of the affinity graph reflect global properties motivates our decision to examine subregions of the affinity

graph 𝐺𝐴 to build our feature set. In particular, the features of interest are the differences of the activity

vectors of adjacent subgraphs of 𝐺𝐴.

To compute the features, let 𝑟 : 𝑉 → R16, represent the activity vector sum, and let its 𝑖th entry be

the sum of the 𝑖th entries of the activity vectors of the nodes in a subgraph 𝐺𝐴 = (𝑉𝐴, 𝐸𝐴), i.e.,

𝑟𝑖(𝐺𝐴) =
∑︁
𝑣∈𝑉𝐴

𝑈𝐴(𝑣, 𝑖), (2.1)

where 𝑈𝐴(𝑣, 𝑖) denotes the 𝑖th entry of the row for caller 𝑣 in the activity matrix 𝑈𝐴. Suppose 𝐺1 =

(𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are two connected subgraphs of 𝐺𝐴 and restrict 𝐺2 to the subgraphs of 𝐺1. For

pairs of such subgraphs, the feature set 𝐹𝐴 for an affinity graph 𝐺𝐴 is the set of activity sum differences

𝐹𝐴 = {𝑟(𝐺𝐴,1) − 𝑟(𝐺𝐴,2)} over the subgraphs. In Figure 2-2(b), one example feature subset would be

{𝑟(𝑇1) − 𝑟(𝑇𝑖) | 𝑖 ∈ [2, 10]}. To efficiently compute these features for affinity graphs, the notion of integral

images from [42] is extended to general directed graph structures.

Background on integral images. Consider an image 𝐺 = (𝑉,𝐸) – i.e., 𝐺 is a finite two-dimensional

lattice. Nodes are labeled in lexicographic order, starting from the top left corner node as node 1 and

proceeding sequentially from left to right and top to bottom. With this lexicographic order, the integral

image 𝑧(𝑣) replaces the image pixel value 𝑈(𝑣) at pixel 𝑣 with the pixel sum of all nodes above and to the

left of 𝑣. That is,

𝑧(𝑣) =

⎧⎪⎪⎨⎪⎪⎩
𝑈(𝑣) if 𝑣 = 1,

𝑈(𝑣) +
∑︀
𝑣′<𝑣

𝑧(𝑣) otherwise.
(2.2)

For example, the pixel sum of window D in Figure 2-2(a) can be computed in four array references: 𝑧(1) +

𝑧(4) − (𝑧(2) + 𝑧(3)).
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(a) (b) (c)

Figure 2-2: Example networks to illustrate integral affinity graphs: (a) a 2-D lattice from [42], (b) a tree,
and (c) a general network.

Integral affinity trees. The integral image concept is extended to trees using the following standard

definitions for a graph 𝐺 = (𝑉,𝐸) [50]. A path exists between any two nodes 𝑣, 𝑤 ∈ 𝑉 if a sequence of edges

in 𝐸 connects them. A (directed) tree 𝑇 = (𝑉,𝐸) is a graph such that any two nodes 𝑣, 𝑤 ∈ 𝑉 are connected

by exactly one path that has no repeated nodes. A node 𝑤 ∈ 𝑉 is a descendant of a node 𝑣 ∈ 𝑉 if there

exists a directed path from 𝑣 to 𝑤. Denote by D𝑣 the set of descendants of 𝑣. In addition, the subtree 𝑇𝑣 of

𝑇 with root node 𝑣 ∈ 𝑉 is the subgraph containing 𝑣 and descendants 𝑤 ∈ D𝑣.

For an affinity tree graph 𝐺𝐴 associated with node 𝐴, the features are extracted as the differences of

activity vector sums in adjacent subtrees, i.e., {𝑟(𝑇𝑣) − 𝑟(𝑇𝑣′) for 𝑣′ ∈ D𝑣}. To compute these features, an

integral affinity graph is defined as follows:

Definition 2.1. Consider an affinity tree graph 𝑇𝐴 = (𝑉𝐴, 𝐸𝐴) for a caller 𝐴. Then the integral affinity

graph 𝑧𝐴 at a node 𝑣 ∈ 𝑉𝐴 is defined as the activity vector sum of subtree 𝑇𝑣:

𝑧𝐴 (𝑣) =
∑︁
𝑣′∈𝑇𝑣

𝑈𝐴(𝑣′) = 𝑟(𝑇𝑣), (2.3)

where 𝑈𝐴(𝑣) is the activity matrix row corresponding to node 𝑣 and 𝑟 is the feature sum function in (2.1).

The integral affinity graph for trees can be expressed by the following recurrence relations:

𝑧𝐴 (𝑣) =

⎧⎪⎪⎨⎪⎪⎩
𝑈𝐴(𝑣) if |D𝑣| = 0

𝑈𝐴(𝑣) +
∑︀

𝑣′ a child of v

𝑧𝐴(𝑣′) otherwise
. (2.4)

Computing the difference between two subtree activities is equivalent to computing the integral affinity

graph difference at the two roots of the subtrees. In Figure 2-2(b), for example, the difference between the

subgraph activities for subtrees 𝑇2 and 𝑇5 is 𝑧1(2) − 𝑧1(5).

Extension to general networks. For non-tree affinity graphs 𝐺𝐴 = (𝑉𝐴, 𝐸𝐴), the integral affinity

graph is defined in terms of a tree-like structure that accounts for inter-level connections. Breadth first

11



search (BFS) is used to construct spanning trees, which entails exploring all neighbors of caller 𝐴 before

exploring neighbors of neighbors [50]. The BFS tree 𝑇𝐴 is constructed from root 𝐴 and denote the 𝑑th level

set of nodes in 𝐺𝐴 with respect to 𝑇𝐴 as 𝐿𝑇𝐴,𝑑, where 𝑑 = 1 is the root level and 𝑑 is no more than the

maximum depth of 𝑇𝐴. For example, Figure 2-2(b) shows the BFS tree of Figure 2-2(c), so nodes 5 and 6

belong to the level set 𝐿𝑇1,3. This representation accounts for connections between levels in the BFS tree

since the distance of subtrees from the root is of primary interest – i.e., the integral affinity graph for node 4

in Figure 2-2(c) will include not only the activity sums for its children, but also for the node 6. For simplicity,

intralevel edges, such as (2,3) or (3,4), are not accounted for. If properties such as clustering coefficients are

features of interest, they can be included in the activity matrix 𝑈𝐴. Note that this formulation exploits the

directed nature of influence from the seed node 𝐴 to its level sets as determined by the underlying graph

structure. Subtree differences are used to build features that capture interactions among different waves.

Let Ω𝑣 represent the neighbors of node 𝑣 ∈ 𝑉𝐴 in the arbitrary network 𝐺𝐴. Define a region 𝑅𝑣 with

root node 𝑣 ∈ 𝑉 at level 𝑖 in 𝑇𝐴 as

𝑅𝑣 = {𝑣 ∪ (Ω𝑣 ∩ 𝐿𝑇𝐴,𝑖+1)}. (2.5)

The resulting definition for general networks is as follows:

Definition 2.2. Consider an affinity graph 𝐺𝐴 = (𝑉𝐴, 𝐸𝐴) for a caller 𝐴. Let 𝑇𝐴 denote its corresponding

breadth-first-search tree with root 𝐴. Then the integral affinity graph with respect to 𝑇𝐴 for a level-𝑖 node 𝑤 ∈

𝑉𝐴 is defined as the sum of the activity vectors of 𝑤 and its neighbors in level set 𝑖 + 1:

𝑧𝐴 (𝑣) =
∑︁

𝑣′∈𝑅𝑣

𝑈𝐴(𝑣′) = 𝑟(𝑅𝑣), (2.6)

where 𝑅𝑣 is the region with root 𝑣 ∈ 𝑉𝐴, 𝑈𝐴(𝑣) is the activity vector of node 𝑣, and 𝑟(𝑅𝑣) is the activity

vector sum.

For a node 𝑣 ∈ 𝐿𝑇𝐴,𝑖, the corresponding recurrence relations are as follows:

𝑧𝐴 (𝑣) =

⎧⎪⎪⎨⎪⎪⎩
𝑈𝐴(𝑣) if |D𝑣| = 0

𝑈𝐴(𝑣) +
∑︀

𝑣′∈𝑅𝑣

𝑧𝐴 (𝑣′) otherwise
. (2.7)

The integral affinity graph allows efficient feature computation. Computing the BFS tree has worst-

case time complexity 𝑂(|𝑉 | + |𝐸|) [50], and computing the integral affinity graph requires traversing the

BFS tree from the leaves to the root, which has complexity 𝑂(|𝑉 |). Given the integral affinity graph, the

subgraph activity differences can be computed in two array references. For example, the difference between
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the regions 𝑅1 and 𝑅6 in Figure 2-2(c) is given by 𝑧1(1) − 𝑧1(6). Since the nodes are in tree levels 1 and 3

respectively, category 31 is assigned to this feature. An affinity graph 𝐺𝐴 with a 𝑑-level BFS tree 𝑇𝐴 will

have
(︀
𝑑
2

)︀
such feature categories. For 2,000 randomly selected nodes from the month 1 network and fixed

snowball sample size 𝑀 = 50, an example feature breakdown is 13,886 21 -features, 65,407 32 -features, and

26,692 42 -features. Note that subgraphs with BFS trees of different depths can be compared by encoding

the lack of a level in the associated feature vector. These categories of features are used to train and test a

cascaded classifier for churn detection, described in Section 2.3.

2.3 Classifier

Two types of base classifiers from the Python scikit-learn toolbox 0.14 [51] perform well with the constructed

features: naive Bayes and decision tree classifiers. Other classifiers that were investigated, including k-nearest

neighbor classifiers and stochastic gradient methods [52], did not perform as well. These base classifiers are

first described, and then implementation of the cascaded classifier is discussed.

Naive Bayes classifier. The Naive Bayes classifier applies Bayes’ theorem with strong independence

assumptions [52]. It has a conditional probability model 𝑝(𝑌 | 𝑋1, . . . , 𝑋𝑛), where 𝑌 is the dependent class

that is conditional on the feature variables 𝑋1, . . . , 𝑋𝑛. Applying Bayes’ Theorem and independence of the

features, the conditional probability can be written as

𝑝 (𝑌 | 𝑋1, . . . 𝑋𝑛) =
1

𝑍
𝑝 (𝑌 )

𝑛∏︁
𝑖=1

𝑝 (𝑋𝑖 | 𝑌 ) , (2.8)

where 𝑍 is a normalization constant. The estimated class ̂︀𝑦 given test data 𝑥1, . . . , 𝑥𝑛 is

̂︀𝑦 = arg max
𝑦

𝑝(𝑦)

𝑛∏︁
𝑖=1

𝑝 (𝑥𝑖 | 𝑦) . (2.9)

The class priors 𝑝(𝑦) are computed empirically from the training data; the independent probability distribu-

tions 𝑝(𝑥𝑖 | 𝑦) are Gaussian with mean and variance estimated empirically from the training data. Although

the constructed features are not independent and the Gaussian model is not accurate for the problem,

naive Bayes is efficient in terms of CPU and memory and is a commonly used testbench classifier in the

literature [53].

Decision tree classifier. The decision tree classifier infers simple decision rules from features to build

a tree and predict variable classes. Each node in the tree represents a type of feature, and each directed

edge from that node refers to a particular instance of that feature. The classifier sorts each instance of the

features down a tree from the root to a leaf node that specifies the class of the instance [52]. The C4.5
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decision tree algorithm [54] is used in the cascaded classifer.

Cascaded classifier. After tuning, both base classifiers yielded high detection rates but unfortunately

also exhibited high false alarm rates, as shown in Table 2.1. For example, given activity vectors of 1000

churners and 1000 non-churners for each month of the 3.7 million caller network, training and testing a naive

Bayes classifier with month 1 data yielded a 98% detection rate and a 44% false alarm rate for month 2. To

reduce the false alarm rate, a cascaded classifier [42] was built for churner detection.

The cascaded classifier operates in stages. At each stage, a feature category is chosen (see Section 2.2),

as well as a sample size 𝑀 , and a base classifier that together minimize the false alarm rate while ensuring

a detection rate above a given threshold. The nodes that are classified as non-churners in the first stage are

not considered in later stages and are discarded from the remaining test data. The second and subsequent

stages are conceptually equivalent to stage 1. This process continues until the target false alarm rate is

reached.

Denote by 𝑝𝑑,𝑖 the detection rate of the 𝑖th stage and by 𝑝𝑓,𝑖 the false alarm rate of the 𝑖th stage,

𝑖 ∈ [1, 𝐿]. Then the detection rate 𝑝𝑑 of the cascaded classifier is the product of the 𝐿 stage detection

rates 𝑝𝑑,𝑖. Likewise, the cascaded false alarm rate 𝑝𝑓 is the product of the 𝐿 stage false alarm rates 𝑝𝑓,𝑖.

Therefore, utilizing these stages drastically reduces the false alarm rate. For example, a 4-stage cascade with

a false alarm rate 0.4 at each stage will have an overall false alarm rate of 0.027. While the detection rates

also decrease at each stage, they decrease less rapidly than the false alarm rate. Such a classifier is applied

to obtain empirical results for the caller data.

2.4 Results

Two months of a 3.7 million caller dataset and their constructed networks are analyzed for churners. Seed

nodes are sampled uniformly at random from each month so that 1000 churners and 1000 non-churners are

collected. The method outlined in Sections 2.2 and 2.3 is used to compute features and train three cascaded

classifiers using month 1 data. Each classifier has an initial stage consisting of a naive Bayes classifier with

the activity vectors of the seed nodes as features. The remaining stages use either all naive Bayes classifiers,

all decision trees, or a combination of both. After tuning, the decision trees have maximum depth 1 and use

all features to find the best split.

Table 2.1 and Figure 2-3 illustrate the results. The mixed-stage classifier has the highest churn detection

rate at 71%, while its false alarm rate is 0.8% – that is, 710 of 1000 month 2 churners are correctly identified

while 8 of 1000 non-churners are incorrectly classified. In contrast, the initial stage correctly identifies 980

of 1000 churners while incorrectly classifying 440 of 1000 non-churners. Thus, the accuracy increases from
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Figure 2-3: Results for three cascaded classifiers. The circles (blue) show results for mixed naive Bayes and
decision tree classifiers across stages. The squares (red) are for only naive Bayes and the asterisks (black) are
for only decision tree classifiers across stages. We see that the subgraph activity difference features together
with the seed vertex vectors and mixed stages allow a false alarm rate of 0.08% with 71% detection.

Naive Bayes Decision Tree Mixed Stages

Stage 𝑝𝑑 𝑝𝑓 𝑝𝑑 𝑝𝑓 𝑝𝑑 𝑝𝑓

1 0.98 0.44 0.98 0.44 0.98 0.44

2 0.92 0.26 0.92 0.23 0.92 0.23

3 0.86 0.068 0.78 0.041 0.85 0.067

4 0.56 0.014 0.64 0.003 0.71 0.008

Table 2.1: Detection (𝑝𝑑) and false alarm (𝑝𝑓 ) rates for cascaded classifiers. Mixed stages yield the highest
detection rate.

77% to 85%. This improvement is due to exploitation of the local, directed graph topology in the design of

the input feature set to the cascaded classifier.

2.5 Significance

This chapter highlights the importance of coupling network structure with node-based features, particularly

the use of directed networks to obtain localized node information. We define integral affinity graphs to

capture this topology and efficiently build a large feature set. Our results demonstrate the utility of such

methods using a real-world application to churn detection in a caller network. In this example, the accuracy

of anomaly detection was improved utilizing information from the local graph topology.

These observations motivate further the development of graph-based methods for analysis, including

those described in this thesis. Since real-world applications commonly involve large, directed networks

that are characterized by sparse, defective matrices, we focus our attention on approaches that extend and

accelerate graph signal processing methods to these network topologies.
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Chapter 3

Background

This chapter reviews the concepts of graph signal processing and provides a reference for the underlying

mathematics. Much of this material is described in greater detail in [6, 7, 8], with additional background

on eigendecompositions in [33, 55, 34]. Section 3.1 defines the graph Fourier transform and graph filters.

Section 3.2 defines the generalized eigenspaces and Jordan subspaces of a matrix.

3.1 Graph Signal Processing

3.1.1 Graph Signals

Let 𝒢 = 𝒢(𝐴) = (𝒱, ℰ) be the graph corresponding to matrix 𝐴 ∈ C𝑁×𝑁 , where 𝒱 is the set of 𝑁 nodes and

a nonzero entry [𝐴]𝑖𝑗 denotes a directed edge 𝑒𝑖𝑗 ∈ ℰ from node 𝑗 to node 𝑖. In real-world applications, such

nodes can be represented by geo-locations of a road network, and the edges can be specified by one-way or

two-way roads. Define graph signal 𝑠 : 𝒱 → 𝒮 on 𝒢, where 𝒮 represents the signal space over the nodes of 𝒢.

We take 𝒮 = C𝑁 such that 𝑠 = (𝑠1, . . . , 𝑠𝑁 ) ∈ C𝑁 and 𝑠𝑖 represents a measure at node 𝑣𝑖 ∈ 𝒱. In real-world

applications, such signals can be specified by sensor measurements or datasets.

3.1.2 Graph Shift

As in [6, 8], the graph shift is the graph signal processing counterpart to the shift operator in digital signal

processing. The graph shift is defined as the operator that replaces the element 𝑠𝑖 of graph signal 𝑠 =

(𝑠1, . . . , 𝑠𝑁 ) corresponding to node 𝑣𝑖 ∈ 𝑉 with the linear combination of the signal elements at its in-

neighbors (nodes 𝑣𝑘 ∈ 𝑉 that participate in an edge 𝑒𝑖𝑘 ∈ ℰ), denoted by set 𝒩𝑖; i.e., the shifted signal has
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Figure 3-1: Directed cycle graph.

elements ̃︀𝑠𝑖 =
∑︀

𝑣𝑗∈𝒩𝑖
[𝐴]𝑖𝑗 𝑠𝑗 , or ̃︀𝑠 = 𝐴𝑠. (3.1)

Consistency with discrete signal processing can be seen by considering the directed cycle graph in Figure 3-

1, which represents a finite, periodic time-series signal. The adjacency matrix of the graph is the circulant

matrix

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

1

. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.2)

The shift ̃︀𝑠 = 𝐶𝑠 yields the time delay ̃︀𝑠𝑖 = 𝑠(𝑖−1)mod𝑁 .

Reference [6] provides more details that show that the graph shift justifies defining a graph Fourier

transform as the signal projection onto the eigenvectors of 𝐴. Our transform in Chapter 4 builds on this

concept to develop a framework to handle defective adjacency matrices.

3.1.3 Graph Filter

The graph shift is a type of graph filter, where a graph filter H ∈ C𝑁×𝑁 represents a (linear) system with

output H𝑠 for any graph signal 𝑠 ∈ 𝒮. As shown in Theorem 1 of [6], graph filter H is shift-invariant, or

𝐴 (H) 𝑠 = H (𝐴𝑠) , (3.3)

if and only if a polynomial ℎ(𝑥) =
∑︀𝐿

𝑖=0 ℎ𝑖𝑥
𝑖 exists for constants ℎ0, ℎ1, . . . , ℎ𝐿 ∈ C such that H = ℎ(𝐴) =∑︀𝐿

𝑖=0 ℎ𝑖𝐴
𝑖. This condition holds whenever the characteristic and minimal polynomials of 𝐴 are equal [6].

For defective 𝐴 with unequal characteristic and minimal polynomials such as the examples seen in later

chapters, shift-invariance cannot be claimed; however, an equivalent graph filter can be designed in terms

of a matrix that is the image of a polynomial of 𝐴 [6]. The properties of such graph filters are established

in [6].
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3.2 Eigendecomposition

Spectral analysis of graph signals involves the description of signals in terms of their decomposition as a

weighted sum of eigenvectors or weighted generalized eigenvectors. Because these eigenvectors reflect network

connectivity and interrelationships among nodes, spectral analysis provides an approach for characterizing

signal features in terms of the network strucutre. The determination and use of these eigenvectors underly

much of the work presented in this thesis. For this reason, a review of the basic concepts and definitions

associated with these eigendecompositions is presented here. Additional background may be found in [33,

55, 34, 56].

First, direct sums of subspaces, generalized eigenspaces of a matrix 𝐴 ∈ C𝑁×𝑁 , and cyclic Jordan

subspaces are presented. The Jordan decomposition is then defined, and examples are provided to clarify

their significance. Lastly, the Jordan subspaces are related to their counterparts in algebraic signal processing

as in [9, 10, 11].

Let 𝑋1, . . . , 𝑋𝑘 be subspaces of vector space 𝑋 such that

𝑋 = 𝑋1 + · · · + 𝑋𝑘. (3.4)

If 𝑋𝑖 ∩𝑋𝑗 = ∅ for all 𝑖 ̸= 𝑗, then 𝑋 is the direct sum of subspaces {𝑋𝑖}𝑘𝑖=1, denoted as

𝑋 =

𝑘⨁︁
𝑖=1

𝑋𝑖. (3.5)

Any 𝑥 ∈ 𝑋 can be written uniquely as 𝑥 = 𝑥1 + · · · + 𝑥𝑘, where 𝑥𝑖 ∈ 𝑋𝑖, 𝑖 = 1, . . . , 𝑘.

Consider matrix 𝐴 ∈ C𝑁×𝑁 with 𝑘 distinct eigenvalues 𝜆1, . . . , 𝜆𝑘, 𝑘 ≤ 𝑁 . The eigenvalues of 𝐴 are

the roots of the characteristic polynomial

𝜙𝐴(𝜆) = det(𝐴− 𝜆𝐼) =

𝑘∏︁
𝑖=1

(𝜆− 𝜆𝑖)
𝑎𝑖 , (3.6)

where 𝐼 is the identity matrix and exponent 𝑎𝑖 represents the algebraic multiplicity of eigenvalue 𝜆𝑖, 𝑖 =

1, . . . , 𝑘. Denote by Ker(𝐴) the kernel or null space of matrix 𝐴, i.e., the span of vectors 𝑣 satisfying 𝐴𝑣 = 0.

The geometric multiplicity 𝑔𝑖 of eigenvalue 𝜆𝑖 equals the dimension of null space

Ker (𝐴− 𝜆𝑖𝐼) . (3.7)
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The minimal polynomial 𝑚𝐴(𝜆) of 𝐴 has form

𝑚𝐴(𝜆) =

𝑘∏︁
𝑖=1

(𝜆− 𝜆𝑖)
𝑚𝑖 , (3.8)

where 𝑚𝑖 is the index of eigenvalue 𝜆𝑖. The index 𝑚𝑖 represents the maximum Jordan chain length or Jordan

subspace dimension, which is discussed in more detail below.

The eigenvectors and generalized eigenvectors of matrix 𝐴 ∈ C𝑁×𝑁 partition C𝑁 into subspaces, some

of which are spans of eigenvectors, eigenspaces, or generalized eigenspaces. The definitions of these subspaces

are provided here. Subspace G𝑖 = Ker (𝐴− 𝜆𝑖𝐼)
𝑚𝑖 is the generalized eigenspace or root subspace of 𝜆𝑖. The

generalized eigenspaces are 𝐴-invariant; that is, for all 𝑥 ∈ G𝑖, 𝐴𝑥 ∈ G𝑖. The subspace S𝑖𝑝 = Ker (𝐴− 𝜆𝑖𝐼)
𝑝,

𝑝 = 0, 1, . . . , 𝑁 , is the generalized eigenspace of order 𝑝 for 𝜆𝑖. For 𝑝 ≥ 𝑚𝑖, S𝑖𝑝 = G𝑖. The proper

eigenvectors 𝑣 of 𝜆𝑖, or simply eigenvectors of 𝜆𝑖, are linearly independent vectors in S𝑖1 = Ker (𝐴− 𝜆𝑖𝐼),

the eigenspace of 𝜆𝑖. There are 𝑔𝑖 = dim S𝑖1 = dim Ker (𝐴− 𝜆𝑖𝐼) eigenvectors of 𝜆𝑖. Subspaces S𝑖𝑝 form a

(maximal) chain of 𝒢𝑖 as depicted in Figure 3-2; that is,

{0} = S𝑖0 ⊂ S𝑖1 ⊂ · · · ⊂ S𝑖,𝑚𝑖
= S𝑖,𝑚𝑖+1 = · · · ⊂ C𝑁 (3.9)

where 𝑚𝑖 is the index of 𝜆𝑖. Vectors 𝑣 ∈ S𝑖𝑝 but 𝑣 /∈ S𝑖,𝑝−1 are generalized eigenvectors of order 𝑝 for 𝜆𝑖.

The generalized eigenspaces G𝑖 of 𝐴 corresponding to its 𝑘 distinct eigenvalues 𝜆𝑖 decompose

C𝑁 =

𝑘⨁︁
𝑖=1

G𝑖 (3.10)

as depicted in Figure 3-2d.

Let 𝑣1 ∈ S𝑖1, 𝑣1 ̸= 0, be one of the 𝑔𝑖 proper eigenvectors of 𝐴 corresponding to the eigenvalue 𝜆𝑖. It

generates by recursion the generalized eigenvectors

𝐴𝑣𝑝 = 𝜆𝑖𝑣𝑝 + 𝑣𝑝−1, 𝑝 = 2, . . . , 𝑟 (3.11)

where 𝑟 is the minimal positive integer such that (𝐴− 𝜆𝑖𝐼)
𝑟
𝑣𝑟 = 0 and (𝐴− 𝜆𝑖𝐼)

𝑟−1
𝑣𝑟 ̸= 0. Note that

𝑟 ≤ 𝑚𝑖. Such a sequence of vectors (𝑣1, . . . , 𝑣𝑟), of maximal length 𝑟, that satisfy (3.11) is a Jordan chain of

length 𝑟. The vectors in a Jordan chain are linearly independent and generate the Jordan subspace

J = span (𝑣1, 𝑣2, . . . , 𝑣𝑟) . (3.12)
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A Jordan subspace has dimension equal to the length of the Jordan chain from which it is generated. A

Jordan subspace is 𝐴-invariant. The Jordan subspace J is also cyclic since it can be written by (3.11) as

J = span
(︀
𝑣𝑟, (𝐴− 𝜆𝐼)𝑣𝑟, . . . , (𝐴− 𝜆𝐼)𝑟−1𝑣𝑟

)︀
(3.13)

for 𝑣𝑟 ∈ Ker(𝐴− 𝜆𝐼)𝑟, 𝑣𝑟 ̸= 0.

The number of Jordan subspaces corresponding to 𝜆𝑖 equals the geometric multiplicity 𝑔𝑖 = dim Ker(𝐴−

𝜆𝐼), since, as noted above, there are 𝑔𝑖 eigenvectors of 𝜆𝑖. Order the Jordan subspaces of 𝜆𝑖 by decreasing

dimension and denote by J𝑖𝑗 the 𝑗th Jordan subspace of 𝜆𝑖 with dimension 𝑟𝑖𝑗 ≤ 𝑚𝑖, where {𝑟𝑖𝑗}𝑔𝑖𝑗=1 are

called the partial multiplicities of 𝜆𝑖. It can be shown that the Jordan spaces {J𝑖𝑗}, 𝑗 = 1, · · · , 𝑔𝑖 and

𝑖 = 1, · · · , 𝑘, are all disjoint. Then the generalized eigenspace G𝑖 = Ker(𝐴− 𝜆𝐼)𝑚𝑖 of 𝜆𝑖 can be decomposed

as

G𝑖 =

𝑔𝑖⨁︁
𝑗=1

J𝑖𝑗 (3.14)

as depicted in Figures 3-2a-c. Combining (3.14) and (3.10), we see that C𝑁 can be expressed as the unique

decomposition of Jordan spaces

C𝑁 =

𝑘⨁︁
𝑖=1

𝑔𝑖⨁︁
𝑗=1

J𝑖𝑗 . (3.15)

Furthermore, the cyclic Jordan subspaces cannot be represented as direct sums of smaller invariant subspaces;

that is, the Jordan subspaces are irreducible (see, e.g., p. 318 of [55]); so, (3.15) decomposes C𝑁 into

irreducible components.

Figure 3-2 illustrates possible Jordan subspace structures of 𝐴, with the top row showing the tesselation

of the base vector space C𝑁 by the generalized or root eigenspace G𝑖 = Ker (𝐴− 𝜆𝑖𝐼)
𝑚𝑖 and by the Jordan

spaces J𝑖𝑗 , and the bottom row illustrating the telescoping of C𝑁 by the generalized eigenspaces of order 𝑝.

Figure 3-2a illustrates C𝑁 for a matrix with a single Jordan chain, represented by connected points in C𝑁 .

The case of a matrix with two Jordan blocks corresponding to the same eigenvalue is shown in Figure 3-2b.

Figure 3-2c shows C𝑁 for a matrix with a single eigenvalue and multiple Jordan blocks, and Figure 3-2d

depicts the tesselation of the space in terms of the generalized eigenspaces for the case of multiple eigenvalues.

Jordan decomposition. Let 𝑉𝑖𝑗 denote the 𝑁 × 𝑟𝑖𝑗 matrix whose columns form a Jordan chain of

eigenvalue 𝜆𝑖 of 𝐴 that spans Jordan subspace J𝑖𝑗 . Then the generalized eigenvector matrix 𝑉 of 𝐴 is

𝑉 =

[︂
𝑉11 · · ·𝑉1𝑔1 · · · 𝑉𝑘1 · · ·𝑉𝑘𝑔𝑘

]︂
, (3.16)

where 𝑘 is the number of distinct eigenvalues. The columns of 𝑉 are a Jordan basis of C𝑁 . Then 𝐴 has
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Figure 3-2: Illustration of generalized eigenspace partitions and Jordan chains of adjacency matrix 𝐴 ∈ C𝑁×𝑁

for (a) a single Jordan block, (b) one eigenvalue and two Jordan blocks, (c) one eigenvalue and multiple Jordan
blocks, and (d) multiple eigenvalues. In (a)-(c) (bottom), each point represents a vector in a Jordan chain
of 𝐴; points connected by lines illustrate a single Jordan chain. The partial multiplicities depicted for 𝜆1 are
(a) 𝑁 , (b) 𝑟11 = 𝑁 − 2 and 2, and (c) 𝑟11 = 𝑁 − 6, 2, 2, 1, and 1. Each generalized eigenspace G𝑖 in (d) can
be visualized by (a)-(c).

block-diagonal Jordan normal form 𝐽 consisting of Jordan blocks

𝐽(𝜆) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜆 1

𝜆
. . .

. . . 1

𝜆

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.17)

of size 𝑟𝑖𝑗 ; see, for example, [33] or [57, p.125]. The Jordan normal form 𝐽 of 𝐴 is unique up to a permutation

of the Jordan blocks. The Jordan decomposition of 𝐴 is 𝐴 = 𝑉 𝐽𝑉 −1.

Jordan chains are not unique and not necessarily orthogonal. For example, the 3 × 3 matrix

𝐴 =

⎡⎢⎢⎢⎢⎣
0 1 1

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎦ (3.18)

can have distinct eigenvector matrices

𝑉1 =

⎡⎢⎢⎢⎢⎣
1 −1 1

0 1 −2

0 0 1

⎤⎥⎥⎥⎥⎦ , 𝑉2 =

⎡⎢⎢⎢⎢⎣
1 0 0

0 1 −1

0 0 1

⎤⎥⎥⎥⎥⎦ , (3.19)
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where the Jordan chain vectors are the columns of 𝑉1 and 𝑉2 and so satisfy (3.11). Since Jordan chains are

not unique, the Jordan subspace is used in Chapter 4 to characterize the possible generalized eigenvectors

belonging to the Jordan chain.

Relation to algebraic signal processing. We briefly relate the Jordan subspaces to the algebraic

signal processing theory presented in [9, 10]. This bears mention because the thesis extends [6, 7], which

shows that the adjacency matrix provides a shift operator that, by algebraic signal processing theory, allows

the definition of filters on graphs. Similarly, algebraic signal processing shows that the Jordan subspaces

play an important role in the graph Fourier transform defined in Chapter 4.

In algebraic signal processing [9, 10], the linear signal processing model (𝒜,ℳ,Φ) for a vector space 𝑉 of

complex-valued signals generalizes filtering theory, where algebra 𝒜 corresponds to a filter space, module ℳ

corresponds to a signal space, and bijective linear mapping Φ : 𝑉 → ℳ generalizes the 𝑧-transform [9].

In this context, the irreducible, 𝒜-invariant submodules ℳ′ ⊆ ℳ are the spectral components of (signal

space) ℳ.

Since the Jordan subspaces discussed in this section are invariant, irreducible subspaces of C𝑁 with

respect to adjacency matrix 𝐴, they can be used to represent spectral components by algebraic signal

processing. This motivates our definition of a spectral projector-based graph Fourier transform in Chapter 4.
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Part II

Graph Fourier Transform and Inexact

Methods

Part II, which includes Chapters 4, 5, and 6, develops the theory behind and properties of the main

spectral analysis tools for this thesis: a spectral-projector based graph Fourier transform and an inexact

method that reduces computation time. Chapter 4 defines the graph Fourier transform in terms of projections

onto Jordan subspaces of adjacency matrix 𝐴 ∈ C𝑁×𝑁 . As discussed in Section 3.2 of Chapter 3, the Jordan

subspaces of 𝐴 decompose C𝑁 and are irreducible. Under this formulation, the spectral representation of a

graph signal is unique with respect to a set of fixed proper eigenvectors, which is an important difference

from previous methods when the graph adjacency matrix is not diagonalizable (defective). In addition, the

graph Fourier transform admits a generalized Parseval’s identity, which allows a definition for energy of

the signal projections onto the Jordan subspaces. This energy definition is used in Chapter 10 to rank the

spectral components of the Manhattan road network. Chapter 4 also shows that the GFT is invariant to

permutations of node orderings, which establishes an isomorphic equivalence class of graphs.

Chapter 5 shows that the GFT is equal over more than one defective network structure, which leads

to the notion of Jordan equivalence classes of graphs. These graphs are compared to isomorphic equivalence

classes and characterized for different types of Jordan normal forms. In addition, a total variation-based

ordering of the Jordan subspaces is proposed in terms of the Jordan equivalence class. This is similar to the

ordering of frequencies in the time domain and allows the notion of low-pass, high-pass, and pass-band for

graph signals.

Chapter 6 builds on Chapter 5 to define efficient, inexact methods for the GFT computations by

allowing signal projections on the generalized eigenspaces of 𝐴. This approach accelerates computation by

relaxing the requirement of computing a full Jordan basis, which is especially useful on sparse real-world

networks that have a single eigenvalue corresponding to nontrivial Jordan subspaces.
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Chapter 4

Spectral Projector-Based Graph Signal

Processing

A main contribution of this thesis is the development of a graph Fourier transform which, in the case of

matrices that do not permit diagonalization, allows a more natural representation in terms of the algebraic

structure. In particular, spectral components are defined to be the Jordan subspaces of the adjacency matrix.

Properties of this definition are explored in this chapter.

This transform admits a generalized Parseval’s identity that allows an energy of spectral components

to be computed. We also show equivalence of the graph Fourier transform over isomorphic graphs.

4.1 Definition of the Spectral Projector-Based Graph Fourier Trans-

form (GFT)

This section presents a basis-invariant graph Fourier transform with respect to a set of known proper eigen-

vectors. For graphs with diagonalizable adjacency matrices, the transform resolves to that of [6, 8]. The

interpretation of the spectral components is improved in the case of non-diagonalizable, or defective, adja-

cency matrices.

Consider matrix 𝐴 with distinct eigenvalues 𝜆1, . . . , 𝜆𝑘, 𝑘 ≤ 𝑁 , that has Jordan decomposition

𝐴 = 𝑉 𝐽𝑉 −1. (4.1)

Denote by J𝑖𝑗 the 𝑗th Jordan subspace of dimension 𝑟𝑖𝑗 corresponding to eigenvalue 𝜆𝑖, 𝑖 = 1, . . . , 𝑘, 𝑗 =
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1, . . . , 𝑔𝑖. Each J𝑖𝑗 is 𝐴-invariant and irreducible (see Section 3.2). Then, as in algebraic signal processing

theory [9, 10], the Jordan subspaces are the spectral components of the signal space 𝒮 = C𝑁 and define the

graph Fourier transform of a graph signal 𝑠 ∈ 𝒮 as the mapping

ℱ : 𝒮 →
𝑘⨁︁

𝑖=1

𝑔𝑖⨁︁
𝑗=1

J𝑖𝑗

𝑠 → (̂︀𝑠11, . . . , ̂︀𝑠1𝑔1 , . . . , ̂︀𝑠𝑘1, . . . , ̂︀𝑠𝑘𝑔𝑘) . (4.2)

That is, the Fourier transform of 𝑠, is the unique decomposition

𝑠 =

𝑘∑︁
𝑖=1

𝑔𝑖∑︁
𝑗=1

̂︀𝑠𝑖𝑗 , ̂︀𝑠𝑖𝑗 ∈ J𝑖𝑗 . (4.3)

The distinct eigenvalues 𝜆1, . . . , 𝜆𝑘 are the graph frequencies of graph 𝒢(𝐴). The frequency or spectral

components of graph frequency 𝜆𝑖 are the Jordan subspaces J𝑖𝑗 . The total number of frequency components

corresponding to 𝜆𝑖 is its geometric multiplicity 𝑔𝑖. In this way, when 𝑔𝑖 > 1, frequency 𝜆𝑖 corresponds to

more than one (unique) frequency component.

To highlight the significance of (4.2) and (4.3), consider the signal expansion of a graph signal 𝑠 with

respect to graph 𝒢(𝐴):

𝑠 = ̃︀𝑠1𝑣1 + · · · + ̃︀𝑠𝑁𝑣𝑁 = 𝑉 ̃︀𝑠, (4.4)

where 𝑣𝑖 is the 𝑖th basis vector in a Jordan basis of 𝐴, 𝑉 is the corresponding eigenvector matrix, and ̃︀𝑠𝑖 is
the 𝑖th expansion coefficient. As discussed in Section 3.2, the choice of Jordan basis has degrees of freedom

when the dimension of a cyclic Jordan subspace is greater than one. Therefore, if dimJ𝑖𝑗 ≥ 2, there exists

eigenvector submatrix 𝑋𝑖𝑗 ̸= 𝑉𝑖𝑗 such that span{𝑋𝑖𝑗} = span{𝑉𝑖𝑗} = J𝑖𝑗 . Thus, the signal expansion (4.4)

is not unique when 𝐴 has Jordan subspaces of dimension 𝑟 > 1.

In contrast, the Fourier transform given by (4.2) and (4.3) yields a unique signal expansion that is

independent of the choice of Jordan basis. Given any Jordan basis 𝑣1, . . . , 𝑣𝑁 with respect to 𝐴, the 𝑗th

spectral component of eigenvalue 𝜆𝑖 is, by (4.3), ̂︀𝑠𝑖𝑗 =
∑︀𝑝+𝑟𝑖𝑗−1

𝑘=𝑝 ̃︀𝑠𝑘𝑣𝑘, where 𝑣𝑝, . . . , 𝑣𝑝+𝑟𝑖𝑗−1 are a basis

of J𝑖𝑗 . Under this definition, there is no ambiguity in the interpretation of frequency components even

when Jordan subspaces have dimension 𝑟 > 1. The properties of the spectral components are discussed in

more detail in the next section.
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4.1.1 Spectral Components

The spectral components of the Fourier transform (4.2) are expressed in terms of basis 𝑣1, . . . , 𝑣𝑁 and its

dual basis 𝑤1, . . . , 𝑤𝑁 since the chosen Jordan basis may not be orthogonal. Denote the basis and dual basis

matrices by 𝑉 = [𝑣1 · · · 𝑣𝑁 ] and 𝑊 = [𝑤1 · · · , 𝑤𝑁 ]. By definition, ⟨𝑤𝑖, 𝑣𝑗⟩ = 𝑤𝐻
𝑖 𝑣𝑗 = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 is the

Kronecker delta function [56, 58]. Then 𝑊𝐻𝑉 = 𝑉 𝐻𝑊 = 𝐼, so the dual basis is the inverse Hermitian

𝑊 = 𝑉 −𝐻 .

Partition Jordan basis matrix 𝑉 as (3.16) so that each 𝑉𝑖𝑗 ∈ C𝑁×𝑟𝑖𝑗 spans Jordan subspace J𝑖𝑗 .

Similarly, partition the dual basis matrix by rows as 𝑊 = [· · ·𝑊𝐻
𝑖1 · · ·𝑊𝐻

𝑖𝑔𝑖
· · · ]𝑇 , with each 𝑊𝐻

𝑖𝑗 ∈ C𝑟𝑖𝑗×𝑁 .

Suppose 𝑉𝑖𝑗 = [𝑣1 · · · 𝑣𝑟𝑖𝑗 ] with corresponding coefficients ̃︀𝑠1, . . . , ̃︀𝑠𝑟𝑖𝑗 in the Jordan basis expansion (4.4).

Define an 𝑁 ×𝑁 matrix 𝑉 0
𝑖𝑗 = [0 · · ·𝑉𝑖𝑗 · · · 0] that is zero except for the columns corresponding to 𝑉𝑖𝑗 . Then

each spectral component corresponding to Jordan subspace J𝑖𝑗 can be written as

̂︀𝑠𝑖𝑗 = ̃︀𝑠1𝑣1 + · · · + ̃︀𝑠𝑟𝑖𝑗𝑣𝑟𝑖𝑗 (4.5)

= 𝑉 0
𝑖𝑗̃︀𝑠 (4.6)

= 𝑉 0
𝑖𝑗𝑉

−1𝑠 (4.7)

= 𝑉

⎡⎢⎢⎢⎢⎣
. . .

𝐼𝑟𝑖𝑗
. . .

⎤⎥⎥⎥⎥⎦𝑉 −1𝑠 (4.8)

= 𝑉

⎡⎢⎢⎢⎢⎣
. . .

𝐼𝑟𝑖𝑗
. . .

⎤⎥⎥⎥⎥⎦𝑊𝐻𝑠 (4.9)

= 𝑉𝑖𝑗𝑊
𝐻
𝑖𝑗 𝑠, (4.10)

for 𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . , 𝑔𝑖. If 𝑃𝑖𝑗 = 𝑉𝑖𝑗𝑊
𝐻
𝑖𝑗 , then 𝑃 2

𝑖𝑗 = 𝑉𝑖𝑗𝑊
𝐻
𝑖𝑗 𝑉𝑖𝑗𝑊

𝐻
𝑖𝑗 = 𝑉𝑖𝑗𝑊

𝐻
𝑖𝑗 = 𝑃𝑖𝑗 ; that is, 𝑃𝑖𝑗 is

the projection matrix onto 𝒮𝑖𝑗 parallel to complementary subspace 𝒮 ∖ 𝒮𝑖𝑗 .

The projection matrices {𝑃𝑖𝑗}
𝑟𝑖𝑗
𝑗=1 are related to the first component matrix 𝑍𝑖0 of eigenvalue 𝜆𝑖. The

component matrix is defined as [33, Section 9.5]

𝑍𝑖0 = 𝑉

⎡⎢⎢⎢⎢⎣
. . .

𝐼𝑎𝑖

. . .

⎤⎥⎥⎥⎥⎦𝑉 −1 (4.11)
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where 𝑎𝑖 =
∑︀𝑔𝑖

𝑗=1 𝑟𝑖𝑗 is the algebraic multiplicity of 𝜆𝑖. This matrix acts as a projection matrix onto the

generalized eigenspace, which is important in our formulation of the inexact method in Chapter 6.

Theorem 4.1 provides additional properties of projection matrix 𝑃𝑖𝑗 .

Theorem 4.1. For matrix 𝐴 ∈ C𝑁×𝑁 with eigenvalues 𝜆1, . . . , 𝜆𝑘, the projection matrices 𝑃𝑖𝑗 onto the 𝑗th

Jordan subspace J𝑖𝑗 corresponding to eigenvalue 𝜆𝑖, 𝑖 = 1, . . . , 𝑘, 𝑗 = 1, . . . , 𝑔𝑖, satisfy the following proper-

ties:

(a) 𝑃𝑖𝑗𝑃𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙𝑃𝑖𝑗, where 𝛿 is the Kronecker delta function;

(b)
∑︀𝑔𝑖

𝑗=1 𝑃𝑖𝑗 = 𝑍𝑖0, where 𝑍𝑖0 is the component matrix of eigenvalue 𝜆𝑖;

Proof. (a) Since 𝑊𝐻𝑉 = 𝐼, the partition of 𝑊𝐻 and 𝑉 that yields (4.10) satisfies 𝑊𝐻
𝑖𝑗 𝑉𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙𝐼𝑟𝑖𝑗×𝑟𝑘𝑙

,

where 𝑟𝑖𝑗 is the dimension of the Jordan subspace corresponding to 𝑃𝑖𝑗 , 𝑟𝑘𝑙 the dimension of Jordan subspace

corresponding to 𝑃𝑘𝑙, and matrix 𝐼𝑟𝑖𝑗×𝑟𝑘𝑙
consists of the first 𝑟𝑘𝑙 canonical vectors 𝑒𝑖 = (0, . . . , 1, . . . , 0),

where 1 is at the 𝑖th index. Then it follows that

𝑃𝑖𝑗𝑃𝑘𝑙 = 𝑉𝑖𝑗𝑊
𝐻
𝑖𝑗 𝑉𝑘𝑙𝑊

𝐻
𝑘𝑙 (4.12)

= 𝑉𝑖𝑗

(︀
𝛿𝑖𝑘𝛿𝑗𝑙𝐼𝑟𝑖𝑗×𝑟𝑘𝑙

)︀
𝑊𝐻

𝑘𝑙 . (4.13)

If 𝑖 = 𝑘 and 𝑗 = 𝑙, then 𝑃𝑖𝑗𝑃𝑘𝑙 = 𝑉𝑖𝑗𝐼𝑟𝑖𝑗×𝑟𝑖𝑗𝑊
𝐻
𝑖𝑗 = 𝑃𝑖𝑗 ; otherwise, 𝑃𝑖𝑗𝑃𝑘𝑙 = 0.

(b) Write

𝑔𝑖∑︁
𝑗=1

𝑃𝑖𝑗 =

𝑔𝑖∑︁
𝑗=1

𝑉

⎡⎢⎢⎢⎢⎣
. . .

𝐼𝑟𝑖𝑗
. . .

⎤⎥⎥⎥⎥⎦𝑉 −1 (4.14)

= 𝑉

⎛⎜⎜⎜⎜⎝
𝑔𝑖∑︁
𝑗=1

⎡⎢⎢⎢⎢⎣
. . .

𝐼𝑟𝑖𝑗
. . .

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠𝑉 −1 (4.15)

= 𝑉

⎡⎢⎢⎢⎢⎢⎢⎣
. . .

𝐼 𝑔𝑖∑︀
𝑗=1

𝑟𝑖𝑗

. . .

⎤⎥⎥⎥⎥⎥⎥⎦𝑉 −1 (4.16)

= 𝑍𝑖0, (4.17)

or the first component matrix of 𝐴 for eigenvalue 𝜆𝑖.
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Theorem 4.1(a) shows that each projection matrix 𝑃𝑖𝑗 only projects onto Jordan subspace J𝑖𝑗 . The-

orem 4.1(b) shows that the sum of projection matrices for a given eigenvalue equals the component matrix

of that eigenvalue.

While the Jordan basis, or choice of eigenvectors, is not unique, the image of 𝑠 under 𝑃𝑖𝑗 is invariant

to the choice of Jordan basis. Moreover, the basis of a Jordan subspace does not need to be a Jordan basis

of 𝐴 to satisfy (4.5). Choosing a non-Jordan basis preserves the Jordan normal form of 𝐴 but may change

its elements and the corresponding graph structure. For this reason, we can consider invariance of the graph

Fourier transform (4.2) to be an equivalence relation on a set of graphs. Equivalence classes with respect to

the GFT are explored further in Section 4.3 and Chapter 5. This concept also provides the insight underlying

an inexact method described in Chapter 6 that can substantially accelerate the computation of graph Fourier

transforms in real-world applications.

4.2 Generalized Parseval’s Identity

As discussed above, a chosen Jordan basis for matrix 𝐴 ∈ C𝑁×𝑁 , represented by the eigenvector matrix 𝑉 ,

may not be orthogonal. Therefore, Parseval’s identity may not hold. Nevertheless, a generalized Parseval’s

identity does exist in terms of the Jordan basis and its dual; see also [58]. For a dual basis matrix 𝑊 = 𝑉 −𝐻 ,

the following property holds:

Property 4.2 (Generalized Parseval Identity). Consider graph signals 𝑠1, 𝑠2 ∈ C𝑁 over graph 𝒢(𝐴), 𝐴 ∈

C𝑁×𝑁 . Let 𝑉 = [𝑣1 · · · 𝑣𝑁 ] be a Jordan basis for 𝐴 with dual basis 𝑊 = 𝑉 −𝐻 partitioned as [𝑤1 · · ·𝑤𝑁 ].

Let 𝑠 =
∑︀𝑁

𝑖=1⟨𝑠, 𝑣𝑖⟩𝑣𝑖 = 𝑉 ̃︀𝑠𝑉 be the representation of 𝑠 in basis 𝑉 and 𝑠 =
∑︀𝑁

𝑖=1⟨𝑠, 𝑤𝑖⟩𝑤𝑖 = 𝑊̃︀𝑠𝑊 be the

representation of 𝑠 in basis 𝑊 . Then

⟨𝑠1, 𝑠2⟩ = ⟨̃︀𝑠1,𝑉 , ̃︀𝑠2,𝑊 ⟩. (4.18)

By extension,

‖𝑠‖2 = ⟨𝑠, 𝑠⟩ = ⟨̃︀𝑠𝑉 , ̃︀𝑠𝑊 ⟩. (4.19)

Equations (4.18) and (4.19) hold regardless of the choice of eigenvector basis.

Energy of spectral components. The energy of a discrete signal 𝑠 ∈ C𝑁 is defined as [59, 60]

𝐸𝑠 = ⟨𝑠, 𝑠⟩ = ‖𝑠‖2 =

𝑁∑︁
𝑖=1

|𝑠|2 . (4.20)

Equation (4.19) thus illustrates conservation of signal energy in terms of both a Jordan basis and its dual.

The energy of the signal projections onto the spectral components of 𝒢(𝐴) for the GFT (4.2) is next
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defined. Write ̂︀𝑠𝑖,𝑗 in terms of the columns of 𝑉 as ̂︀𝑠𝑖,𝑗 = 𝛼1𝑣𝑖,𝑗,1 + . . . 𝛼𝑟𝑖𝑗𝑣𝑖,𝑗,𝑟𝑖𝑗 and in terms of the columns

of 𝑊 as ̂︀𝑠𝑖,𝑗 = 𝛽1𝑤𝑖,𝑗,1 + . . . 𝛽𝑟𝑖𝑗𝑤𝑖,𝑗,𝑟𝑖𝑗 . Then the energy of ̂︀𝑠𝑖𝑗 can be defined as

‖̂︀𝑠𝑖𝑗‖2 = ⟨𝛼, 𝛽⟩ (4.21)

using the notation 𝛼 = (𝛼1, . . . , 𝛼𝑟𝑖𝑗 ) and 𝛽 = (𝛽1, . . . , 𝛽𝑟𝑖𝑗 ).

The generalized Parseval’s identity expresses the energy of the signal in terms of the signal expansion

coefficients ̃︀𝑠, which highlights the importance of choosing a Jordan basis. This emphasizes that both the

GFT {̂︀𝑠𝑖𝑗} and the signal expansion coefficients ̃︀𝑠 are necessary to fully characterize the graph Fourier

domain.

Normal 𝐴. When 𝐴 is normal (i.e., when 𝐴𝐴𝐻 = 𝐴𝐻𝐴), 𝑉 can be chosen to have orthonormal

columns. Then, 𝑉 = 𝑊 so

⟨𝑠1, 𝑠2⟩ = ⟨̃︀𝑠1, ̃︀𝑠2⟩ (4.22)

and

‖𝑠‖2 = ⟨𝑠, 𝑠⟩ = ‖̃︀𝑠‖2 . (4.23)

Note that (4.22) and (4.23) do not hold in general for diagonalizable 𝐴.

4.3 Isomorphic Equivalence Classes

This section demonstrates that the graph Fourier transform (4.2) is invariant up to a permutation of node

labels and establishes sets of isomorphic graphs as equivalence classes with respect to invariance of the

GFT (4.2). Two graphs 𝒢(𝐴) and 𝒢(𝐵) are isomorphic if their adjacency matrices are similar with respect

to a permutation matrix 𝑇 , or 𝐵 = 𝑇𝐴𝑇−1 [61]. The graphs have the same Jordan normal form and the

same spectra. Also, if 𝑉𝐴 and 𝑉𝐵 are eigenvector matrices of 𝐴 and 𝐵, respectively, then 𝑉𝐵 = 𝑇𝑉𝐴. We

prove that the set G𝐼
𝐴 of all graphs that are isomorphic to 𝒢(𝐴) is an equivalence class over which the GFT

is preserved. The next theorem shows that an appropriate permutation can be imposed on the graph signal

and GFT to ensure invariance of the GFT over all graphs 𝒢 ∈ G𝐼
𝐴.

Theorem 4.3. The graph Fourier transform of a signal 𝑠 is invariant to the choice of graph 𝒢 ∈ G𝐼
𝐴 up to

a permutation on the graph signal and inverse permutation on the graph Fourier transform.

Proof. For 𝒢(𝐴),𝒢(𝐵) ∈ G𝐼
𝐴, there exists a permutation matrix 𝑇 such that 𝐵 = 𝑇𝐴𝑇−1. For eigenvector

matrices 𝑉𝐴 and 𝑉𝐵 of 𝐴 and 𝐵, respectively, let 𝑉𝐴,𝑖𝑗 and 𝑉𝐵,𝑖𝑗 denote the 𝑁 × 𝑟𝑖𝑗 submatrices of 𝑉𝐴

and 𝑉𝐵 whose columns span the 𝑗th Jordan subspaces J𝐴,𝑖𝑗 and J𝐵,𝑖𝑗 of the 𝑖th eigenvalue of 𝐴 and 𝐵,
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respectively. Let 𝑊𝐴 = 𝑉 −𝐻
𝐴 and 𝑊𝐵 = 𝑉 −𝐻

𝐵 denote the matrices whose columns form dual bases of 𝑉𝐴

and 𝑉𝐵 . Since 𝑉𝐵 = 𝑇𝑉𝐴,

𝑊𝐵 = (𝑇𝑉𝐴)−𝐻 (4.24)

= (𝑉 −1
𝐴 𝑇−1)𝐻 (4.25)

= 𝑇−𝐻𝑉 −𝐻
𝐴 (4.26)

= 𝑇𝑊𝐴 (4.27)

where 𝑇−𝐻 = 𝑇 since 𝑇 is a permutation matrix. Thus, 𝑊𝐻
𝐵 = 𝑊𝐻

𝐴 𝑇𝐻 = 𝑊𝐻
𝐴 𝑇−1.

Consider graph signal 𝑠. By (4.10), the signal projection onto J𝐴,𝑖𝑗 is

̂︀𝑠𝐴,𝑖𝑗 = 𝑉𝐴,𝑖𝑗𝑊
𝐻
𝐴,𝑖𝑗𝑠. (4.28)

Permit a permutation 𝑠 = 𝑇𝑠 on the graph signal. Then the projection of 𝑠 onto J𝐵,𝑖𝑗 is

̂︀𝑠𝐵,𝑖𝑗 = 𝑇𝑉𝐴,𝑖𝑗𝑊
𝐻
𝐴,𝑖𝑗𝑇

−1𝑇𝑠 (4.29)

= 𝑇𝑉𝐴,𝑖𝑗𝑊
𝐻
𝐴,𝑖𝑗𝑠 (4.30)

= 𝑇̂︀𝑠𝐴,𝑖𝑗 (4.31)

by (4.28). Therefore, the graph Fourier transform (4.2) is invariant to a choice among isomorphic graphs up

to a permutation on the graph signal and inverse permutation on the Fourier transform.

Theorem 4.4. Consider 𝐴 ∈ C𝑁×𝑁 . Then the set G𝐼
𝐴 of graphs isomorphic to 𝒢(𝐴) is an equivalence

class with respect to the invariance of the GFT (4.2) up to a permutation of the graph signal and inverse

permutation of the graph Fourier transform.

Theorem 4.3 establishes an invariance of the GFT over graphs that only differ up to a node labeling,

and Theorem 4.4 follows.

This chapter provides the mathematical foundation for a graph Fourier transform based on projections

onto the Jordan subspace of an adjacency matrix. A generalized Parseval’s identity is investigated, and the

isomorphic equivalence of graphs for this GFT is shown. In the next chapter, the degrees of freedom in graph

topology are further explored to define a broader GFT equivalence class.
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Chapter 5

Jordan Equivalence Classes

Since the Jordan subspaces of defective adjacency matrices are nontrivial (i.e., they have dimension

larger than one), a degree of freedom exists on the graph structure so that the graph Fourier transform of a

signal is equal over multiple graphs of different topologies. This chapter defines Jordan equivalence classes of

graph structures over which the GFT (4.2) is equal for a given graph signal. The chapter proves important

properties of this equivalence class that will be used in the applications presented in Chapters 6 and 9.

The intuition behind Jordan equivalence is presented in Section 5.1, and properties of Jordan equiv-

alence are described in Section 5.2. Section 5.3 compares isomorphic and Jordan equivalent graphs. Sec-

tions 5.4, 5.5, 5.6, and 5.7 prove properties for Jordan equivalence classes when adjacency matrices have 𝑁 ,

one, two, or 2 ≤ 𝑝 < 𝑁 Jordan blocks, respectively. Parseval’s identity is revisited in Section 5.8 to es-

tablish properties over Jordan equivalence classes. Finally, Section 5.9 derives an ordering of the spectral

components of a graph with respect to its Jordan equivalence class.

5.1 Intuition

Consider Figure 5-1, which shows a basis {𝑉 } = {𝑣1, 𝑣2, 𝑣3} of R3 such that 𝑣2 and 𝑣3 span a two-dimensional

Jordan space J of adjacency matrix 𝐴 with Jordan decomposition 𝐴 = 𝑉 𝐽𝑉 −1. The resulting projection

of a signal 𝑠 ∈ R𝑁 as in (4.10) is unique.

Note that the definition of the two-dimensional Jordan subspace J is not basis-dependent because

any spanning set {𝑤2, 𝑤3} could be chosen to define J . This can be visualized by rotating 𝑣2 and 𝑣3 on

the two-dimensional plane. Any choice {𝑤2, 𝑤3} corresponds to a new basis ̃︀𝑉 . While ̃︀𝐴 = ̃︀𝑉 𝐽 ̃︀𝑉 −1 does not

equal 𝐴 = 𝑉 𝐽𝑉 −1 for all choices of {𝑤2, 𝑤3}, their spectral components (the Jordan subspaces) are identical.

Consequently, the spectral projections of a signal onto these components are identical; i.e., the GFT (4.2) is
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Figure 5-1: Signal projection onto a nontrivial Jordan subspace in R3.

equivalent over graphs 𝒢(𝐴) and 𝒢( ̃︀𝐴). This observation leads to the definition of Jordan equivalence classes

which preserve the GFT (4.2) as well as the underlying structure captured by the Jordan normal form 𝐽

of 𝐴. These classes are formally defined in the next section.

5.2 Definition and Properties

This section defines the Jordan equivalence class of graphs, over which the graph Fourier transform (4.2)

is invariant. Here we will show that certain Jordan equivalence classes allow the GFT computation to be

simplified.

Consider graph 𝒢(𝐴) where 𝐴 has a Jordan chain that spans Jordan subspace J𝑖𝑗 of dimension

𝑟𝑖𝑗 > 1. Then (4.5), and consequently, (4.10), would hold for a non-Jordan basis of J𝑖𝑗 ; that is, a basis

could be chosen to find spectral component ̂︀𝑠𝑖𝑗 such that the basis vectors do not form a Jordan chain of

𝐴. This highlights that the Fourier transform (4.2) is characterized not by the Jordan basis of 𝐴 but by the

set J𝐴 = {J𝑖𝑗}𝑖𝑗 of Jordan subspaces spanned by the Jordan chains of 𝐴. Thus, graphs with topologies

yielding the same Jordan subspace decomposition of the signal space have the same spectral components.

Such graphs are termed Jordan equivalent with the following formal definition.

Definition 5.1 (Jordan Equivalent Graphs). Consider graphs 𝒢(𝐴) and 𝒢(𝐵) with adjacency matrices

𝐴,𝐵 ∈ C𝑁×𝑁 . Then 𝒢(𝐴) and 𝒢(𝐵) are Jordan equivalent graphs if all of the following are true:

1. J𝐴 = J𝐵; and

2. 𝐽𝐴 = 𝐽𝐵 (with respect to a fixed permutation of Jordan blocks).

Let G𝐽
𝐴 denote the set of graphs that are Jordan equivalent to 𝒢(𝐴). Definition 5.1 and (4.2) establish

that G𝐽
𝐴 is an equivalence class.
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Theorem 5.2. For 𝐴 ∈ C𝑁×𝑁 , the set G𝐽
𝐴 of all graphs that are Jordan equivalent to 𝒢(𝐴) is an equivalence

class with respect to invariance of the GFT (4.2).

Jordan equivalent graphs have adjacency matrices with identical Jordan subspaces and identical Jordan

normal forms. This implies equivalence of graph spectra, proven in Theorem 5.3 below.

Theorem 5.3. Denote by Λ𝐴 and Λ𝐵 the sets of eigenvalues of 𝐴 and 𝐵, respectively. Let 𝒢(𝐴),𝒢(𝐵) ∈ G𝐽
𝐴.

Then Λ𝐴 = Λ𝐵; that is, 𝒢(𝐴) and 𝒢(𝐵) are cospectral.

Proof. Since 𝒢(𝐴) and 𝒢(𝐵) are Jordan equivalent, their Jordan forms are equal, so their spectra (the unique

elements on the diagonal of the Jordan form) are equal.

Once a Jordan decomposition for an adjacency matrix is found, it could be useful to characterize other

graphs in the same Jordan equivalence class. To this end, Theorem 5.4 presents a transformation that

preserves the Jordan equivalence class of a graph.

Theorem 5.4. Consider 𝐴,𝐵 ∈ C𝑁×𝑁 with Jordan decompositions 𝐴 = 𝑉 𝐽𝑉 −1 and 𝐵 = 𝑋𝐽𝑋−1 and

eigenvector matrices 𝑉 = [𝑉𝑖𝑗 ] and 𝑋 = [𝑋𝑖𝑗 ], respectively. Then, 𝒢(𝐵) ∈ G𝐽
𝐴 if and only if 𝐵 has

eigenvector matrix 𝑋 = 𝑉 𝑌 for block diagonal 𝑌 with invertible submatrices 𝑌𝑖𝑗 ∈ C𝑟𝑖𝑗×𝑟𝑖𝑗 , 𝑖 = 1, . . . , 𝑘,

𝑗 = 1, . . . , 𝑔𝑖.

Proof. The Jordan normal forms of 𝐴 and 𝐵 are equal. By Definition 5.1, it remains to show J𝐴 = J𝐵 so

that 𝒢(𝐵) ∈ G𝐽
𝐴. The identity J𝐴 = J𝐵 must be true when span{𝑉𝑖𝑗} = span{𝑋𝑖𝑗} = J𝑖𝑗 , which implies

that 𝑋𝑖𝑗 represents an invertible linear transformation of the columns of 𝑉𝑖𝑗 . Thus, 𝑋𝑖𝑗 = 𝑉𝑖𝑗𝑌𝑖𝑗 , where 𝑌𝑖𝑗

is invertible. Defining 𝑌 = diag(𝑌11, . . . , 𝑌𝑖𝑗 , . . . , 𝑌𝑘,𝑔𝑘) yields 𝑋 = 𝑉 𝑌 .

5.3 Jordan Equivalent Graphs vs. Isomorphic Graphs

This section proves that isomorphic graphs do not imply Jordan equivalence, and vice versa. The results

of this section highlight that the equivalence classes are defined in terms of different equivalence relations.

First it is shown that isomorphic graphs have isomorphic Jordan subspaces.

Lemma 5.5. Consider graphs 𝒢(𝐴),𝒢(𝐵) ∈ G𝐼
𝐴 so that 𝐵 = 𝑇𝐴𝑇−1 for a permutation matrix 𝑇 . Denote

by J𝐴 and J𝐵 the sets of Jordan subspaces for 𝐴 and 𝐵, respectively. If {𝑣1, . . . , 𝑣𝑟} is a basis of J𝐴 ∈ J𝐴,

then there exists J𝐵 ∈ J𝐵 with basis {𝑥1, . . . , 𝑥𝑟} such that [𝑥1 · · ·𝑥𝑟] = 𝑇 [𝑣1 · · · 𝑣𝑟]; i.e., 𝐴 and 𝐵 have

isomorphic Jordan subspaces.
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Proof. Consider 𝐴 with Jordan decomposition 𝐴 = 𝑉 𝐽𝑉 −1. Since 𝐵 = 𝑇𝐴𝑇−1, it follows that

𝐵 = 𝑇𝑉 𝐽𝑉 −1𝑇−1 (5.1)

= 𝑋𝐽𝑋−1 (5.2)

where 𝑋 = 𝑇𝑉 represents an eigenvector matrix of 𝐵 that is a permutation of the rows of 𝑉 . (It is clear that

the Jordan forms of 𝐴 and 𝐵 are equivalent.) Let columns 𝑣1, . . . , 𝑣𝑟 of 𝑉 denote a Jordan chain of 𝐴 that

spans Jordan subspace J𝐴. The corresponding columns in 𝑋 are 𝑥1, . . . , 𝑥𝑟 and span(𝑥1, . . . , 𝑥𝑟) = J𝐵 .

Since [𝑥1 · · · 𝑥𝑟] = 𝑇 [𝑣1 · · · 𝑣𝑟], J𝐴 and J𝐵 are isomorphic subspaces [33].

Theorem 5.6. A graph isomorphism does not imply Jordan equivalence.

Proof. Consider 𝒢(𝐴),𝒢(𝐵) ∈ G𝐼
𝐴 and 𝐵 = 𝑇𝐴𝑇−1 for permutation matrix 𝑇 . By (5.2), 𝐽𝐴 = 𝐽𝐵 . To show

𝒢(𝐴),𝒢(𝐵) ∈ G𝐽
𝐴, it remains to check whether J𝐴 = J𝐵 .

By Lemma 5.5, for any J𝐴 ∈ J𝐴, there exists J𝐵 ∈ J𝐵 that is isomorphic to J𝐴. That is, if 𝑣1, . . . , 𝑣𝑟

and 𝑥1, . . . , 𝑥𝑟 are bases of J𝐴 and J𝐵 , respectively, then [𝑥1 · · ·𝑥𝑟] = 𝑇 [𝑣1 · · · 𝑣𝑟]. Checking J𝐴 = J𝐵 is

equivalent to checking

𝛼1𝑣1 + · · · + 𝛼𝑟𝑣𝑟 = 𝛽1𝑥1 + · · · + 𝛽𝑟𝑥𝑟 (5.3)

= 𝛽1𝑇𝑣1 + · · · + 𝛽𝑟𝑇𝑣𝑟 (5.4)

for some coefficients 𝛼𝑖 and 𝛽𝑖, 𝑖 = 1, . . . , 𝑟. However, (5.4) does not always hold. Consider matrices 𝐴 and

𝐵

𝐴 =

⎡⎢⎢⎢⎢⎣
2 0 −1

0 2 −1

0 0 1

⎤⎥⎥⎥⎥⎦ , 𝐵 =

⎡⎢⎢⎢⎢⎣
1 0 0

−1 2 0

−1 0 2

⎤⎥⎥⎥⎥⎦ . (5.5)

These matrices are similar with respect to a permutation matrix and thus correspond to isomorphic graphs.

Their Jordan normal forms are both

𝐽 =

⎡⎢⎢⎢⎢⎣
1 0 0

0 2 0

0 0 2

⎤⎥⎥⎥⎥⎦ (5.6)
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Figure 5-2: Jordan equivalent graph structures with unicellular adjacency matrices.

but they have eigenvector matrices 𝑉𝐴 and 𝑉𝐵 where

𝑉𝐴 =

⎡⎢⎢⎢⎢⎣
1 1 0

1 0 1

1 0 0

⎤⎥⎥⎥⎥⎦ , 𝑉𝐵 =

⎡⎢⎢⎢⎢⎣
1 0 0

1 1 0

1 0 1

⎤⎥⎥⎥⎥⎦ . (5.7)

Equation (5.7) shows that 𝐴 and 𝐵 both have Jordan subspaces J1 = span([1 1 1]𝑇 ) for 𝜆1 = 1 and

J21 = span([0 1 0]𝑇 ) for one of the Jordan subspaces of 𝜆2 = 2. However, the remaining Jordan subspace

is span([1 0 0]𝑇 ) for 𝐴 but span([0 0 1]𝑇 ) for 𝐵, so (5.4) fails. Therefore, 𝒢(𝐴) and 𝒢(𝐵) are not Jordan

equivalent.

The next theorem shows that Jordan equivalent graphs may not be isomorphic.

Theorem 5.7. Jordan equivalence does not imply the existence of a graph isomorphism.

Proof. A counterexample is provided. The top two graphs in Figure 5-2 correspond to 0/1 adjacency matrices

with a single Jordan subspace J = C𝑁 and eigenvalue 0; therefore, they are Jordan equivalent. On the

other hand, they are not isomorphic since the graph on the right has more edges then the graph on the

left.

Theorem 5.6 shows that changing the graph node labels may change the Jordan subspaces and the

Jordan equivalence class of the graph, while Theorem 5.7 shows that a Jordan equivalence class may include

graphs with different topologies. Thus, graph isomorphism and Jordan equivalence are not identical concepts.

Nevertheless, the isomorphic and Jordan equivalence classes both imply invariance of the graph Fourier

transform with respect to different equivalence relations as stated in Theorems 4.3 and 5.2.

The next theorem establishes an isomorphism between Jordan equivalence classes.

Theorem 5.8. If 𝐴,𝐵 ∈ C𝑁×𝑁 and 𝒢(𝐴) and 𝒢(𝐵) are isomorphic, then their respective Jordan equivalence

classes G𝐽
𝐴 and G𝐽

𝐵 are isomorphic; i.e., any graph 𝒢(𝐴′) ∈ G𝐽
𝐴 is isomorphic to a graph 𝒢(𝐵′) ∈ G𝐽

𝐵.
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Proof. Let 𝒢(𝐴) and 𝒢(𝐵) be isomorphic by permutation matrix 𝑇 such that 𝐵 = 𝑇𝐴𝑇−1. Consider

𝒢(𝐴′) ∈ G𝐽
𝐴, which implies that Jordan normal forms 𝐽𝐴′ = 𝐽𝐴 and sets of Jordan subspaces J𝐴′ = J𝐴 by

Definition 5.1. Denote by 𝐴′ = 𝑉𝐴′𝐽𝐴′𝑉𝐴′ the Jordan decomposition of 𝐴′. Define 𝐵′ = 𝑇𝐴′𝑇−1. It suffices

to show 𝒢(𝐵′) ∈ G𝐽
𝐵 . First simplify:

𝐵′ = 𝑇𝐴′𝑇−1 (5.8)

= 𝑇𝑉𝐴′𝐽𝐴′𝑉 −1
𝐴′ 𝑇−1 (5.9)

= 𝑇𝑉𝐴′𝐽𝐴𝑉
−1
𝐴′ 𝑇−1 (since 𝒢(𝐴′) ∈ G𝐽

𝐴) (5.10)

= 𝑇𝑉𝐴′𝐽𝐵𝑉
−1
𝐴′ 𝑇−1 (since 𝒢(𝐴) ∈ G𝐼

𝐵). (5.11)

From (5.11), it follows that 𝐽𝐵′ = 𝐽𝐵 . It remains to show that J𝐵′ = J𝐵 . Choose arbitrary Jordan subspace

J𝐴,𝑖𝑗 = span{𝑉𝐴,𝑖𝑗} of 𝐴. Then J𝐴′,𝑖𝑗 = span{𝑉𝐴′,𝑖𝑗} = J𝐴,𝑖𝑗 since 𝒢(𝐴′) ∈ G𝐽
𝐴. Then the 𝑗th Jordan

subspace of eigenvalue 𝜆𝑖 for 𝐵 is

J𝐵,𝑖𝑗 = span{𝑇𝑉𝐴,𝑖𝑗} (5.12)

= 𝑇 span{𝑉𝐴,𝑖𝑗}. (5.13)

For the 𝑗th Jordan subspace of eigenvalue 𝜆𝑖 for 𝐵′, it follows from (5.11) that

J𝐵′,𝑖𝑗 = span{𝑇𝑉𝐴′,𝑖𝑗} (5.14)

= 𝑇 span{𝑉𝐴′,𝑖𝑗} (5.15)

= 𝑇 span{𝑉𝐴,𝑖𝑗} (since 𝒢(𝐴′) ∈ G𝐽
𝐴) (5.16)

= J𝐵,𝑖𝑗 . (by (5.13)) (5.17)

Since (5.17) holds for all 𝑖 and 𝑗, the sets of Jordan subspaces J𝐵′ = J𝐵 . Therefore, 𝒢(𝐵′) and 𝒢(𝐵) are

Jordan equivalent, which proves the theorem.

Theorem 5.8 shows that the Jordan equivalence classes of two isomorphic graphs are also isomorphic.

This result permits an ordering on the frequency components of a matrix 𝐴 that is invariant to both the

choice of graph in G𝐽
𝐴 and the choice of node labels, as demonstrated in Section 5.9.

Relation to matrices with the same set of invariant subspaces. Let GInv
𝐴 denote the set of all

matrices with the same set of invariant subspaces of 𝐴; i.e., 𝒢(𝐵) ∈ GInv
𝐴 if and only if Inv(𝐴) = Inv(𝐵).

The next theorem shows that GInv
𝐴 is a proper subset of the Jordan equivalence class G𝐽

𝐴 of 𝐴.
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Theorem 5.9. For 𝐴 ∈ C𝑁×𝑁 , GInv
𝐴 ⊂ G𝐽

𝐴.

Proof. If 𝒢(𝐵) ∈ GInv
𝐴 , then the set of Jordan subspaces are equal, or J𝐴 = J𝐵 .

Theorem 5.9 sets the results of this chapter apart from analyses such as those in Chapter 10 of [55],

which describes structures for matrices with the same invariant spaces, and [62], which describes the eigen-

decomposition of the discrete Fourier transform matrix in terms of projections onto invariant spaces. The

Jordan equivalence class relaxes the assumption that all invariant subspaces of two adjacency matrices have

to be equal. This translates to more degrees of freedom in the graph topology. The following sections de-

scribe particular cases for adjacency matrices with diagonal Jordan forms, one Jordan block, and multiple

Jordan blocks.

5.4 Diagonalizable Matrices

If the canonical Jordan form 𝐽 of 𝐴 is diagonal (𝐴 is diagonalizable), then there are no Jordan chains and

the set of Jordan subspaces J𝐴 = {J𝑝}𝑁𝑝=1 where J𝑝 = span(𝑣𝑝) and 𝑣𝑝 is the 𝑝th eigenvector of 𝐴. Graphs

with diagonalizable adjacency matrices include undirected graphs, directed cycles, and other digraphs with

normal adjacency matrices such as normally regular digraphs [63]. A graph with a diagonalizable adjacency

matrix is Jordan equivalent only to itself, which is proven here.

Theorem 5.10. A graph 𝒢(𝐴) with diagonalizable adjacency matrix 𝐴 ∈ C𝑁×𝑁 belongs to a Jordan equiv-

alence class of size one.

Proof. Since the Jordan subspaces of a diagonalizable matrix are one-dimensional, the possible choices of

Jordan basis are limited to nonzero scalar multiples of the eigenvectors. Then, given eigenvector matrix 𝑉

of 𝐴, all possible eigenvector matrices of 𝐴 are given by 𝑋 = 𝑉 𝑈 , where 𝑈 is a diagonal matrix with nonzero

diagonal entries. Let 𝐵 = 𝑋𝐽𝑋−1, where 𝐽 is the diagonal canonical Jordan form of 𝐴. Since 𝑈 and 𝐽 are

both diagonal, they commute, yielding

𝐵 = 𝑋𝐽𝑋−1 (5.18)

= 𝑉 𝑈𝐽𝑈−1𝑉 −1 (5.19)

= 𝑉 𝐽𝑈𝑈−1𝑉 −1 (5.20)

= 𝑉 𝐽𝑉 −1 (5.21)

= 𝐴. (5.22)
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Therefore, a graph with a diagonalizable adjacency matrix is the one and only element in its Jordan equiv-

alence class.

When a matrix has nondefective but repeated eigenvalues, there are infinitely many choices of eigenvec-

tors [34]. An illustrative example is the identity matrix, which has a single eigenvalue but is diagonalizable.

Since it has infinitely many choices of eigenvectors, the identity matrix corresponds to infinitely many Jor-

dan equivalence classes. By Theorem 5.10, each of these equivalence classes have size one. This observation

highlights that the definition of a Jordan equivalence class requires a choice of basis.

5.5 One Jordan Block

Consider matrix 𝐴 with Jordan decomposition 𝐴 = 𝑉 𝐽𝑉 −1 where 𝐽 is a single Jordan block and 𝑉 =

[𝑣1 · · · 𝑣𝑁 ] is an eigenvector matrix. Then 𝐴 is a representation of a unicellular transformation 𝑇 : C𝑁 → C𝑁

with respect to Jordan basis 𝑣1, . . . 𝑣𝑁 (see [55] Section 2.5). In this case the set of Jordan subspaces has one

element J = C𝑁 . Properties of the unicellular Jordan equivalence classes are demonstrated in the following

theorems.

Theorem 5.11. Let 𝒢(𝐴) be an element of the unicellular Jordan equivalence class G𝐽
𝐴. Then all graph

filters 𝐻 ∈ G𝐽
𝐴 are all-pass.

Proof. Since 𝐴 is unicellular, it has a single Jordan chain 𝑣1, . . . , 𝑣𝑁 of length 𝑁 . By (4.4), the spectral

decomposition of signal 𝑠 over graph 𝒢(𝐴) yields

𝑠 = ̃︀𝑠1𝑣1 + · · · ̃︀𝑠𝑁𝑣𝑁 = ̂︀𝑠; (5.23)

that is, the unique projection of 𝑠 onto the spectral component J = C𝑁 is itself. Therefore, 𝒢(𝐴) acts as

an all-pass filter. Moreover, (5.23) holds for all graphs in G𝐽
𝐴.

In addition to the all-pass property of unicellular graph filters, unicellular isomorphic graphs are also

Jordan equivalent, as proven next.

Theorem 5.12. Let 𝒢(𝐴),𝒢(𝐵) ∈ G𝐼
𝐴 where 𝐴 is a unicellular matrix. Then 𝒢(𝐴),𝒢(𝐵) ∈ G𝐽

𝐴.

Proof. Since 𝒢(𝐴) and 𝒢(𝐵) are isomorphic, Jordan normal forms 𝐽𝐴 = 𝐽𝐵 . Therefore, 𝐵 is also unicellular,

so J𝐴 = J𝐵 = {C𝑁}. By Definition 5.1, 𝒢(𝐴),𝒢(𝐵) ∈ G𝐽
𝐴.

The dual basis of 𝑉 can also be used to construct graphs in the Jordan equivalence class of unicellular 𝐴.
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Theorem 5.13. Denote by 𝑉 an eigenvector matrix of unicellular 𝐴 ∈ C𝑁×𝑁 and 𝑊 = 𝑉 −𝐻 is the dual

basis. Consider decompositions 𝐴 = 𝑉 𝐽𝑉 −1 and 𝐴𝑊 = 𝑊𝐽𝑊−1. Then 𝒢(𝐴𝑊 ) ∈ G𝐽
𝐴.

Proof. Matrices 𝐴 and 𝐴𝑊 have the same Jordan normal form by definition. Since there is only one Jordan

block, both matrices have a single Jordan subspace C𝑁 . By Definition 5.1, 𝒢(𝐴𝑊 ) and 𝒢(𝐴) are Jordan

equivalent.

The next theorem characterizes the special case of graphs in the Jordan equivalence class that con-

tains 𝒢(𝐽) with adjacency matrix equal to the Jordan block 𝐽 = 𝐽(𝜆).

Theorem 5.14. Denote by 𝐽 = 𝐽(𝜆) is the 𝑁 ×𝑁 Jordan block (3.17) for eigenvalue 𝜆. Then 𝒢(𝐴) ∈ G𝐽
𝐽

if 𝐴 ∈ C𝑁×𝑁 is upper triangular with diagonal entries 𝜆 and nonzero entries on the first off-diagonal.

Proof. Consider upper triangular matrix 𝐴 = [𝑎𝑖𝑗 ] with diagonal entries 𝑎11 = · · · = 𝑎𝑁𝑁 and nonzero

elements on the first off-diagonal. By [55, Example 10.2.1], 𝐴 has the same invariant subspaces as 𝐽 = 𝐽(𝜆),

which implies J𝐽 = J𝐴 = {C𝑁}. Therefore, the Jordan normal form of 𝐴 is the Jordan block 𝐽𝐴 = 𝐽(𝑎11).

Restrict the diagonal entries of 𝐴 to 𝜆 so 𝐽𝐴 = 𝐽 . Then, 𝒢(𝐽),𝒢(𝐴) ∈ G𝐽
𝐽 by Definition (5.1).

Figure 5-2 shows graph structures that are in the same unicellular Jordan equivalence class by The-

orem 5.14. In addition, the theorem implies that it is sufficient to determine the GFT of unicellular 𝐴

by replacing 𝒢(𝐴) ∈ G𝐽
𝐽 with 𝒢(𝐽), where 𝐽 is a single 𝑁 × 𝑁 Jordan block. That is, without loss of

generality, 𝒢(𝐴) can be replaced with a directed chain graph with possible self-edges and the eigenvector

matrix 𝑉 = 𝐼 chosen to compute the GFT of a graph signal.

Remark on invariant spaces. Example 10.2.1 of [55] shows that a matrix 𝐴 ∈ C𝑁×𝑁 having

upper triangular entries with constant diagonal entries 𝑎 and nonzero entries on the first off-diagonal is both

necessary and sufficient for 𝐴 to have the same invariant subspaces as 𝑁 ×𝑁 Jordan block 𝐽 = 𝐽(𝜆) (i.e.,

Inv(𝐽) = Inv(𝐴), where Inv(·) represents the set of invariant spaces of a matrix). If 𝑎 = 𝜆, Definition 5.1

can be applied, which yields 𝒢(𝐴) ∈ G𝐽
𝐽 .

On the other hand, consider a unicellular matrix 𝐵 such that its eigenvector is not in the span of a

canonical vector, e.g.,

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 − 1

2
1
2

1
2

1
2 − 1

2 − 1
2 − 1

2

0 0 1
2 − 1

2

0 0 1
2 − 1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.24)
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with Jordan normal form 𝐽(0). Since the span of the eigenvectors of 𝐽(0) and 𝐵 are not identical, Inv(𝐽(0)) ̸=

Inv(𝐵). However, by Definition 5.1, 𝒢(𝐵) is in the same class of unicellular Jordan equivalent graphs as

those of Figure 5-2, i.e., 𝒢(𝐵) ∈ G𝐽
𝐽 . In other words, for matrices 𝐴 and 𝐵 with the same Jordan normal

forms (𝐽𝐴 = 𝐽𝐵), Jordan equivalence, i.e., J𝐴 = J𝐵 , is a more general condition than Inv(𝐴) = Inv(𝐵).

This illustrates that graphs having adjacency matrices with equal Jordan normal forms and the same sets of

invariant spaces form a proper subset of a Jordan equivalence class, as shown above in Theorem 5.9.

Remark on topology. Note that replacing each nonzero element of (5.24) with a unit entry results in

a matrix that is not unicellular. Therefore, its corresponding graph is not in a unicellular Jordan equivalence

class. This observation demonstrates that topology does not determine the Jordan equivalence class of a

graph.

5.6 Two Jordan Blocks

Consider𝑁×𝑁 matrix𝐴 with Jordan normal form consisting of two Jordan subspaces J1 = span(𝑣1, . . . , 𝑣𝑟1)

and J2 = span(𝑣𝑟1+1, . . . , 𝑣𝑟2) of dimensions 𝑟1 > 1 and 𝑟2 = 𝑁 − 𝑟1 and corresponding eigenvalues 𝜆1 and

𝜆2, respectively. The spectral decomposition of signal 𝑠 over 𝒢(𝐴) yields

𝑠 = ̃︀𝑠1𝑣1 + · · · + ̃︀𝑠𝑟1𝑣𝑟1⏟  ⏞  ̂︀𝑠1
+ ̃︀𝑠𝑟1+1𝑣𝑟1+1 + · · · + ̃︀𝑠𝑁𝑣𝑁⏟  ⏞  ̂︀𝑠2

(5.25)

= ̂︀𝑠1 + ̂︀𝑠2. (5.26)

Spectral components ̂︀𝑠1 and ̂︀𝑠2 are the unique projections of 𝑠 onto the respective Jordan subspaces.

By Example 6.5.4 in [33], a Jordan basis matrix 𝑋 can be chosen for 𝐴 = 𝑉 𝐽𝑉 −1 such that 𝑋 = 𝑉 𝑈 , where

𝑈 commutes with 𝐽 and has a particular form as follows.

If 𝜆1 ̸= 𝜆2, then 𝑈 = diag(𝑈1, 𝑈2), where 𝑈𝑖, 𝑖 = 1, 2, is an 𝑟𝑖 × 𝑟𝑖 upper triangular Toeplitz matrix;

otherwise, 𝑈 has form

𝑈 = diag(𝑈1, 𝑈2) +

⎡⎢⎢⎢⎢⎣
0 𝑈12

𝑈21 0

⎤⎥⎥⎥⎥⎦ (5.27)

where 𝑈𝑖 is an 𝑟𝑖 × 𝑟𝑖 upper triangular Toeplitz matrix and 𝑈12 and 𝑈21 are extended upper triangular

Toeplitz matrices as in Theorem 12.4.1 in [33]. Thus, all Jordan bases of 𝐴 can be obtained by transforming

eigenvector matrix 𝑉 as 𝑋 = 𝑉 𝑈 .

A corresponding theorem to Theorem 5.14 is proved here to characterize Jordan equivalent classes
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when the Jordan form consists of two Jordan blocks. The reader is directed to Sections 10.2 and 10.3 in [55]

for more details. The following definitions are needed. Denote 𝑝 × 𝑝 upper triangular Toeplitz matrices

𝑇𝑟2 (𝑏1, . . . , 𝑏𝑟2) of form

𝑇𝑝 (𝑏1, . . . , 𝑏𝑝) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏1 𝑏2 · · · 𝑏𝑝−1 𝑏𝑝

0 𝑏1
. . . 𝑏𝑝−2 𝑏𝑝−1

...
...

. . .
. . .

...

0 0 · · · 𝑏1 𝑏2

0 0 · · · 0 𝑏1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.28)

and define 𝑞 × 𝑞 upper triangular matrix for some 𝑞 > 𝑝

𝑅𝑞 (𝑏1, . . . , 𝑏𝑝;𝐹 ) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏1 𝑏2 · · · 𝑏𝑝 𝑓11 𝑓12 · · · 𝑓1,𝑞−𝑝−1 𝑓1,𝑞−𝑝

0 𝑏1 𝑏2 · · · 𝑏𝑝 𝑓22 · · · 𝑓2,𝑞−𝑝−1 𝑓2,𝑞−𝑝

...
...

...
. . .

...
...

0 0 0 · · · 𝑏𝑝 𝑓𝑞−𝑝,𝑞−𝑝

0 0 0 · · · 𝑏𝑝−1 𝑏𝑝

...
...

...
...

...

0 0 0 · · · 0 𝑏1 𝑏2

0 0 0 · · · 0 0 𝑏1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.29)

where 𝐹 = [𝑓𝑖𝑗 ] is a (𝑞 − 𝑝) × (𝑞 − 𝑝) upper triangular matrix and 𝑏𝑖 ∈ C, 𝑖 = 1, . . . , 𝑝. The theorems are

presented below.

Theorem 5.15. Consider 𝐴 = diag(𝐴1, 𝐴2) where each matrix 𝐴𝑖, 𝑖 = 1, 2, is upper triangular with diagonal

elements 𝜆𝑖 and nonzero elements on the first off-diagonal. Let 𝜆1 ̸= 𝜆2. Then 𝒢(𝐴) is Jordan equivalent

to the graph with adjacency matrix 𝐽 = diag(𝐽𝑟1(𝜆1), 𝐽𝑟2(𝜆2)) where 𝐽𝑟𝑖(𝜆𝑖) is the 𝑟𝑖 × 𝑟𝑖 Jordan block for
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eigenvalue 𝜆𝑖.

Proof. By Theorem 5.14, 𝒢(𝐴𝑖) and 𝒢(𝐽𝑟𝑖(𝜆𝑖)) are Jordan equivalent for 𝑖 = 1, 2 and 𝐴𝑖 upper triangular

with nonzero elements on the first off-diagonal. Therefore, the Jordan normal forms of 𝐽 and 𝐴 are the

same. Moreover, the set of irreducible subspaces of 𝐽 is the union of the irreducible subspaces of [𝐽1 0]𝑇

and [0 𝐽2]𝑇 , which are the same as the irreducible subspaces of [𝐴1 0]𝑇 and [0 𝐴2]𝑇 , respectively. Therefore,

J𝐴 = J𝐽 , so 𝒢(𝐴) and 𝒢(𝐽) are Jordan equivalent.

Theorem 5.16. Consider 𝐴 = diag(𝐴1, 𝐴2) where 𝐴1 = 𝑈𝑟1(𝜆, 𝑏1, . . . , 𝑏𝑟2 , 𝐹 ) and 𝐴2 = 𝑇𝑟2(𝜆, 𝑏1, . . . , 𝑏𝑟2),

𝑟1 ≥ 𝑟2. Then 𝒢(𝐴) is Jordan equivalent to the graph with adjacency matrix 𝐽 = diag(𝐽𝑟1(𝜆), 𝐽𝑟2(𝜆)) where

𝐽𝑟𝑖(𝜆) is the 𝑟𝑖 × 𝑟𝑖 Jordan block for eigenvalue 𝜆.

Proof. By Lemma 10.3.3 in [55], 𝐴 with structure as described in the theorem have the same invariant

subspaces as 𝐽 = diag(𝐽𝑟1(𝜆), 𝐽𝑟2(𝜆)). Therefore, 𝐴 and 𝐽 has the same Jordan normal form and Jordan

subspaces and so are Jordan equivalent.

Theorems 5.15 and 5.16 demonstrate two types of Jordan equivalences that arise from block diagonal

matrices with submatrices of form (5.28) and (5.29). These theorems imply that computing the GFT (4.2)

over the block diagonal matrices can be simplified to computing the transform over a union of directed chain

graphs. That is, the canonical basis can be chosen for 𝑉 without loss of generality.

As for the case of unicellular transformations, it is possible to pick bases of J1 and J2 that do not

form a Jordan basis of 𝐴. Any two such choices of bases are related by Theorem 5.4. Concretely, if 𝑉 is the

eigenvector matrix of 𝐴 and𝑋 is the matrix corresponding to another choice of basis, then Theorem 5.4 states

that a transformation matrix 𝑌 can be found such that 𝑋 = 𝑉 𝑌 , where 𝑌 is partitioned as 𝑌 = diag(𝑌1, 𝑌2)

with full-rank submatrices 𝑌𝑖 ∈ C𝑟𝑖×𝑟𝑖 , 𝑖 = 1, 2.

5.7 Multiple Jordan Blocks

This section briefly describes a special case of Jordan equivalence classes whose graphs have adjacency

matrices 𝐴 ∈ C𝑁×𝑁 with 𝑝 Jordan blocks, 1 < 𝑝 < 𝑁 .

Consider matrix 𝐴 with Jordan normal form 𝐽 comprised of 𝑝 Jordan blocks and eigenvalues 𝜆1, . . . , 𝜆𝑘.

By Theorem 10.2.1 in [55], there exists an upper triangular 𝐴 with Jordan decomposition 𝐴 = 𝑉 𝐽𝑉 −1 such

that 𝒢(𝐴) ∈ G𝐽
𝐽 . Note that the elements in the Jordan equivalence class G𝐽

𝐽 of 𝒢(𝐽) are useful since signals

over a graph in this class can be computed with respect to the canonical basis with eigenvector matrix 𝑉 = 𝐼.

Theorem 5.17 characterizes the possible eigenvector matrices 𝑉 such that 𝐴 = 𝑉 𝐽𝑉 −1 allows 𝒢(𝐴) ∈ G𝐽
𝐽 .
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Theorem 5.17. Let 𝐴 = 𝑉 𝐽𝑉 −1 be the Jordan decomposition of 𝐴 ∈ C𝑁×𝑁 and 𝒢(𝐴) ∈ G𝐽
𝐽 . Then 𝑉

must be an invertible block diagonal matrix.

Proof. Consider 𝒢(𝐽) with eigenvector matrix 𝐼. By Theorem 5.4,𝒢(𝐴) ∈ G𝐽
𝐽 implies

𝑉 = 𝐼𝑌 = 𝑌 (5.30)

where 𝑌 is an invertible block diagonal matrix.

The structure of 𝑉 given in Theorem 5.17 allows a characterization of graphs in the Jordan equivalence

class G𝐽
𝐽 with the dual basis of 𝑉 as proved in Theorem 5.18.

Theorem 5.18. Let 𝒢(𝐴) ∈ G𝐽
𝐽 , where 𝐴 has Jordan decomposition 𝐴 = 𝑉 𝐽𝑉 −1 and 𝑊 = 𝑉 −𝐻 is the

dual basis of 𝑉 . If 𝐴𝑊 = 𝑊𝐽𝑊−1, then 𝒢(𝐴𝑊 ) ∈ G𝐽
𝐽 .

Proof. By Theorem 5.17, 𝑉 is block diagonal with invertible submatrices 𝑉𝑖. Thus, 𝑊 = 𝑉 −𝐻 is block

diagonal with submatrices 𝑊𝑖 = 𝑉 −𝐻
𝑖 . By Theorem 5.4, 𝑊 is an appropriate eigenvector matrix such that,

for 𝐴𝑊 = 𝑊𝐽𝑊−1, 𝒢(𝐴𝑊 ) ∈ G𝐽
𝐽 .

Relation to graph topology. Certain types of matrices have Jordan forms that can be deduced from

their graph structure. For example, [64] and [65] relate the Jordan blocks of certain adjacency matrices to

a decomposition of their graphs structures into unions of cycles and chains. Applications where such graphs

are in use would allow a practitioner to determine the Jordan equivalence classes (assuming the eigenvalues

can be computed) and potentially choose a different matrix in the class for which the GFT can be computed

more easily. Sections 5.5 and 5.7 show that working with unicellular matrices and matrices in Jordan normal

form permits the choice of the canonical basis. In this way, for matrices with Jordan blocks of size greater

than one, finding a spanning set for each Jordan subspace may be more efficient than attempting to compute

the Jordan chains. Nevertheless, relying on graph topology is not always possible. Such an example was

presented in Section 5.5 with adjacency matrix (5.24).

Relation to algebraic signal processing. The emergence of Jordan equivalence from the graph

Fourier transform (4.2) is related to algebraic signal processing (see Section 3.2 and [9, 10]). We emphasize

that the GFT (4.2) is tied to a basis. This is most readily seen by considering diagonal adjacency matrix 𝐴 =

𝜆𝐼, where any basis that spans C𝑁 defines the eigenvectors (the Jordan subspaces and spectral components)

of a graph signal; that is, a matrix, even a diagonalizable matrix, may not have distinct spectral components.

Similarly, the signal model (𝒜,ℳ,Φ) requires a choice of basis for the signal space ℳ in order to define

the frequency response (irreducible representation) of a signal [9]. On the other hand, equivalence of the
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GFT (4.2) over graphs in Jordan equivalence classes was demonstrated and defined in this chapter, which

implies an equivalence of certain bases. This observation suggests the concept of equivalent signal models in

the algebraic signal processing framework. Just as working with graphs that are Jordan equivalent to those

with adjacency matrices in Jordan normal form simplifies GFT computation, we expect similar classes of

equivalent signal models for which the canonical basis can be chosen without loss of generality.

This section has shown how the graph Fourier transform via spectral decomposition of Chapter 4

results in Jordan equivalent classes. We next remark on the conservation of energy in the signal and Fourier

domains. Then in Section 5.9 the total variation of graph spectral components is defined.

5.8 Parseval’s Identity, Revisited

This section characterizes the generalized Parseval’s identity described in Section 4.2 in terms of particular

Jordan equivalence classes. Denote by 𝑉 and 𝑊 the eigenvector and biorthogonal eigenvector matrices of 𝐴,

respectively.

One Jordan block. By (5.23), a graph signal 𝑠 equals its GFT ̂︀𝑠 for unicellular 𝐴, which leads to the

following result.

Theorem 5.19. For unicellular 𝐴 ∈ C𝑁×𝑁 , the GFTs ̂︀𝑠1, ̂︀𝑠2 of signals 𝑠1 and 𝑠2 over 𝒢(𝐴) satisfy

⟨𝑠1, 𝑠2⟩ = ⟨̂︀𝑠1, ̂︀𝑠2⟩ (5.31)

and

‖𝑠1‖2 = ⟨𝑠1, 𝑠1⟩ = ‖̂︀𝑠1‖2 . (5.32)

Multiple Jordan blocks. Consider 𝐴 with Jordan normal form 𝐽 such that 𝒢(𝐴) is Jordan equivalent

to 𝒢(𝐽).

Theorem 5.20. Consider 𝐴 ∈ C𝑁×𝑁 with Jordan normal form 𝐽 and 𝒢(𝐴) ∈ G𝐽
𝐽 . Then for graphs signals

𝑠1 and 𝑠2 and their respective signal expansion coefficients ̃︀𝑠1 and ̃︀𝑠2 over 𝒢(𝐴),

⟨𝑠1, 𝑠2⟩ = ⟨̃︀𝑠1, ̃︀𝑠2⟩ (5.33)

and

‖𝑠‖2 = ⟨𝑠, 𝑠⟩ = ‖̃︀𝑠‖2 . (5.34)

Proof. Eigenvector matrix 𝑉 = 𝐼 can be chosen since 𝒢(𝐴) ∈ G𝐽
𝐽 . Then the dual basis 𝑊 = 𝐼, so the result

44



follows.

Unicellular adjacency matrices are a special case where the energy of the signal can be expressed in

terms of the spectral component as shown in Theorem 5.19. The cases discussed here illustrate defective

matrices over which Jordan equivalence allows the GFT (4.2) to be readily applied.

5.9 Total Variation Ordering

This section defines a mapping of spectral components to the real line to achieve an ordering of the spectral

components. This ordering can be used to distinguish generalized low and high frequencies as in [8]. An

upper bound for a total-variation based mapping of a spectral component (Jordan subspace) is derived and

generalized to Jordan equivalence classes.

As in [8, 66], the total variation for finite discrete-valued (periodic) time series 𝑠 is defined as

TV (𝑠) =

𝑁∑︁
𝑛=1

⃒⃒
𝑠𝑛 − 𝑠(𝑛−1)mod𝑁

⃒⃒
= ‖𝑠− 𝐶𝑠‖1 , (5.35)

where 𝐶 is the circulant matrix (3.2) that represents the DSP shift operator. As in [8], (5.35) is generalized

to the graph shift 𝐴 to define the graph total variation

TV𝐺 (𝑠) = ‖𝑠−𝐴𝑠‖1 . (5.36)

Matrix 𝐴 can be replaced by 𝐴norm = 1
|𝜆max|𝐴 when the maximum eigenvalue satisfies |𝜆max| > 0.

Equation (5.36) can be applied to define the total variation of a spectral component. These components

are the cyclic Jordan subspaces of the graph shift 𝐴 as described in Section 3.2. Choose a Jordan basis of 𝐴

so that 𝑉 is the eigenvector matrix of 𝐴, i.e., 𝐴 = 𝑉 𝐽𝑉 −1, where 𝐽 is the Jordan form of 𝐴. Partition 𝑉 into

𝑁 × 𝑟𝑖𝑗 submatrices 𝑉𝑖𝑗 whose columns are a Jordan chain of (and thus span) the 𝑗th Jordan subspace J𝑖𝑗

of eigenvalue 𝜆𝑖, 𝑖 = 1, . . . , 𝑘 ≤ 𝑁 , 𝑗 = 1, . . . , 𝑔𝑖. Define the (graph) total variation of 𝑉𝑖𝑗 as

TV𝐺 (𝑉𝑖𝑗) = ‖𝑉𝑖𝑗 −𝐴𝑉𝑖𝑗‖1 , (5.37)

where ‖ · ‖1 represents the induced L1 matrix norm (equal to the maximum absolute column sum).

Theorem 5.21 shows that the graph total variation of a Jordan chain is invariant to a relabeling of the

graph nodes.

Theorem 5.21. Let 𝐴,𝐵 ∈ C𝑁×𝑁 and 𝒢(𝐵) ∈ G𝐼
𝐴, i.e., 𝒢(𝐵) is isomorphic to 𝒢(𝐴). Let 𝑉𝐴,𝑖𝑗 ∈ C𝑁×𝑟𝑖𝑗
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be a Jordan chain of matrix 𝐴 and 𝑉𝐵,𝑖𝑗 ∈ C𝑁×𝑟𝑖𝑗 the corresponding Jordan chain of 𝐵. Then TV𝐺(𝑉𝐴,𝑖𝑗) =

TV𝐺(𝑉𝐵,𝑖𝑗).

Proof. Since 𝒢(𝐴) and 𝒢(𝐵) are isomorphic, there exists a permutation matrix 𝑇 such that 𝐵 = 𝑇𝐴𝑇−1

and the eigenvector matrices 𝑉𝐴 and 𝑉𝐵 of 𝐴 and 𝐵, respectively, are related by 𝑉𝐵 = 𝑇𝑉𝐴. This implies

that the Jordan chains are related by 𝑉𝐵,𝑖𝑗 = 𝑇𝑉𝐴,𝑖𝑗 . Then by (5.37),

TV (𝑉𝐵) = ‖𝑉𝐵,𝑖𝑗 −𝐵𝑉𝐵,𝑖𝑗‖1 (5.38)

=
⃦⃦
𝑇𝑉𝐴,𝑖𝑗 −

(︀
𝑇𝐴𝑇−1

)︀
𝑇𝑉𝐴,𝑖𝑗

⃦⃦
1

(5.39)

= ‖𝑇𝑉𝐴,𝑖𝑗 − 𝑇𝐴𝑉𝐴,𝑖𝑗‖1 (5.40)

= ‖𝑇 (𝑉𝐴,𝑖𝑗 −𝐴𝑉𝐴,𝑖𝑗)‖1 (5.41)

= ‖𝑉𝐴,𝑖𝑗 −𝐴𝑉𝐴,𝑖𝑗‖1 (5.42)

= TV (𝑉𝐴) , (5.43)

where (5.42) holds because the maximum absolute column sum of a matrix is invariant to a permutation on

its rows.

Theorem 5.21 shows that the graph total variation is invariant to a node relabeling, which implies that

an ordering of the total variations of the frequency components is also invariant.

The next theorem shows equivalent formulations for the graph total variation (5.37).

Theorem 5.22. The graph total variation with respect to GFT (4.2) can be written as

TV𝐺 (𝑉𝑖𝑗) =
⃦⃦
𝑉𝑖𝑗

(︀
𝐼𝑟𝑖𝑗 − 𝐽𝑖𝑗

)︀⃦⃦
1

(5.44)

= max
𝑖=2,...,𝑟𝑖𝑗

{|1 − 𝜆| ‖𝑣1‖1 , ‖(1 − 𝜆) 𝑣𝑖 − 𝑣𝑖−1‖1} . (5.45)

Proof. Simplify (5.37) to obtain

TV𝐺 (𝑉𝑖𝑗) =
⃦⃦
𝑉𝑖𝑗 − 𝑉 𝐽𝑉 −1𝑉𝑖𝑗

⃦⃦
1

(5.46)

=

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦
𝑉𝑖𝑗 − 𝑉 𝐽

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

𝐼𝑟𝑖𝑗

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦
1

(5.47)
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=

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦
𝑉𝑖𝑗 − 𝑉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

𝐽𝑖𝑗

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦
1

(5.48)

= ‖𝑉𝑖𝑗 − 𝑉𝑖𝑗𝐽𝑖𝑗‖1 (5.49)

=
⃦⃦
𝑉𝑖𝑗

(︀
𝐼𝑟𝑖𝑗 − 𝐽𝑖𝑗

)︀⃦⃦
1
. (5.50)

Let 𝜆 denote the 𝑖th eigenvalue and the columns 𝑣1, . . . , 𝑣𝑟𝑖𝑗 of 𝑉𝑖𝑗 comprise its 𝑗th Jordan chain. Then (5.44)

can be expressed in terms of the Jordan chain:

TV𝐺 (𝑉𝑖𝑗) =

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

[︃
𝑣1 . . . 𝑣𝑟𝑖𝑗

]︃
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 𝜆 −1

1 − 𝜆
. . .

. . . −1

1 − 𝜆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
1

(5.51)

=

⃦⃦⃦⃦
⃦
[︃

(1 − 𝜆) 𝑣1 (1 − 𝜆) 𝑣2 − 𝑣1 · · ·

]︃⃦⃦⃦⃦
⃦
1

(5.52)

= max
𝑖=2,...,𝑟𝑖𝑗

{|1 − 𝜆| ‖𝑣1‖1 , ‖(1 − 𝜆) 𝑣𝑖 − 𝑣𝑖−1‖1} . (5.53)

Theorem 5.23 shows that 𝑉 can be chosen such that ‖𝑉𝑖𝑗‖1 = 1 without loss of generality.

Theorem 5.23. The eigenvector matrix 𝑉 of adjacency matrix 𝐴 ∈ C𝑁×𝑁 can be chosen so that each

Jordan chain represented by the eigenvector submatrix 𝑉𝑖𝑗 ∈ C𝑁×𝑟𝑖𝑗 satisfies ‖𝑉𝑖𝑗‖1 = 1; i.e., ‖𝑉 ‖1 = 1

without loss of generality.

Proof. Let 𝑉 represent an eigenvector matrix of 𝐴 with partitions 𝑉𝑖𝑗 as described above, and let 𝐽𝑖𝑗

represent the corresponding Jordan block. Let 𝐷 be a block diagonal matrix with 𝑟𝑖𝑗 × 𝑟𝑖𝑗 diagonal blocks

𝐷𝑖𝑗 = (1/ ‖𝑉𝑖𝑗‖1)𝐼𝑟𝑖𝑗 . Since 𝐷𝑖𝑗 commutes with 𝐽𝑖𝑗 , 𝐷 commutes with 𝐽 . Note that 𝐷 is a special case

of the upper triangular Toeplitz matrices discussed in Section 5.6 of this thesis and [33, Example 6.5.4,

Theorem 12.4.1].
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Let 𝑋 = 𝑉 𝐷 and 𝐵 = 𝑋𝐽𝑋−1. Then

𝐵 = 𝑋𝐽𝑋−1 (5.54)

= 𝑉 𝐷𝐽𝐷−1𝑉 −1 (5.55)

= 𝑉 𝐷𝐷−1𝐽𝑉 −1 (5.56)

= 𝑉 𝐽𝑉 −1 (5.57)

= 𝐴. (5.58)

Therefore, both 𝑉 and 𝑋 are eigenvector matrices of 𝐴.

In the following, it is assumed that 𝑉 satisfies Theorem 5.23. Theorem 5.24 presents an upper bound

of (5.44).

Theorem 5.24. Consider matrix 𝐴 with 𝑘 distinct eigenvalues and 𝑁 × 𝑟𝑖𝑗 matrices 𝑉𝑖𝑗 with columns

comprising the 𝑗th Jordan chain of 𝜆𝑖, 𝑖 = 1, . . . , 𝑘, 𝑗 = 1, . . . , 𝑔𝑖. Then the graph total variation TV𝐺(𝑉𝑖𝑗) ≤

|1 − 𝜆𝑖| + 1.

Proof. Let ‖𝑉𝑖𝑗‖1 = 1 and rewrite (5.44):

TV𝐺 (𝑉𝑖𝑗) ≤ ‖𝑉𝑖𝑗‖1
⃦⃦
𝐼𝑟𝑖𝑗 − 𝐽𝑖𝑗

⃦⃦
1

(5.59)

=
⃦⃦
𝐼𝑟𝑖𝑗 − 𝐽𝑖𝑗

⃦⃦
1

(5.60)

= |1 − 𝜆𝑖| + 1. (5.61)

Equations (5.44), (5.45), and (5.61) characterize the (graph) total variation of a Jordan chain by

quantifying the change in a set of vectors that spans the Jordan subspace J𝑖𝑗 when they are transformed

by the graph shift 𝐴. While this total variation bound may not capture the true total variation of a spectral

component, it can be generalized as an upper bound for all spectral components associated with a Jordan

equivalence class. As seen in Sections 5.5, 5.6, and 5.7, defective graph shift matrices belong to Jordan

equivalence classes that contain more than one element, and the GFT of a signal is the same over any graph

in a given Jordan equivalence class. Furthermore, for any two graphs 𝒢(𝐴),𝒢(𝐵) ∈ G𝐽
𝐴, 𝐴 and 𝐵 have

Jordan bases for the same Jordan subspaces, but the respective total variations of the spanning Jordan

chains as computed by (5.44) may be different. Since it is desirable to be able to order spectral components
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in a manner that is invariant to the choice of Jordan basis, we derive here a definition of the total variation

of a spectral component of 𝐴 in relation to the Jordan equivalence class G𝐽
𝐴.

Let 𝒢(𝐵) be an element in G𝐽
𝐴 where 𝐵 has Jordan decomposition 𝐵 = 𝑉 𝐽𝑉 −1. Let the columns of

eigenvector submatrix 𝑉𝑖𝑗 span the Jordan subspace J𝑖𝑗 of 𝐴. Then the class total variation of spectral

component J𝑖𝑗 is defined as the supremum of the graph total variation of 𝑉𝑖𝑗 over the Jordan equivalence

class (for all 𝒢(𝐵) ∈ G𝐽
𝐴):

TVG𝐽
𝐴

(J𝑖𝑗) = sup
𝒢(𝐵)∈G𝐽

𝐴

𝐵=𝑉 𝐽𝑉 −1

span{𝑉𝑖𝑗}=J𝑖𝑗

‖𝑉𝑖𝑗‖1=1

TV𝐺 (𝑉𝑖𝑗) . (5.62)

Theorem 5.25. Let 𝐴,𝐵 ∈ C𝑁×𝑁 and 𝒢(𝐵) ∈ G𝐼
𝐴. Let 𝑉𝐴 and 𝑉𝐵 be the respective eigenvector matrices

with Jordan subspaces J𝐴,𝑖𝑗 = span{𝑉𝐴,𝑖𝑗} and J𝐵,𝑖𝑗 = span{𝑉𝐵,𝑖𝑗} spanned by the 𝑗th Jordan chain of

eigenvalue 𝜆𝑖. Then TVG𝐽
𝐴

(J𝐴,𝑖𝑗) = TVG𝐽
𝐵

(J𝐵,𝑖𝑗).

Proof. Let 𝑉 *
𝐴 denote the eigenvector matrix corresponding to 𝒢(𝐴*) ∈ G𝐽

𝐴 that maximizes the class total

variation of Jordan subspace J𝐴,𝑖𝑗 ; i.e.,

TVG𝐽
𝐴

(J𝐴,𝑖𝑗) = TV𝐺

(︀
𝑉 *
𝐴,𝑖𝑗

)︀
. (5.63)

Similarly, let 𝑉 *
𝐵 denote the eigenvector matrix corresponding to 𝒢(𝐵*) ∈ G𝐽

𝐵 that maximizes the class total

variation of Jordan subspace J𝐵,𝑖𝑗 , or

TVG𝐽
𝐵

(J𝐵,𝑖𝑗) = TV𝐺

(︀
𝑉 *
𝐵,𝑖𝑗

)︀
. (5.64)

Since 𝒢(𝐴) and 𝒢(𝐵) are isomorphic, Theorem 5.8 implies that there exists 𝒢(𝐵′) ∈ G𝐽
𝐵 such that

𝐵′ = 𝑇𝐴*𝑇−1; i.e., 𝑉𝐵′ = 𝑇𝑉 *
𝐴 where 𝑉𝐵′ is an eigenvector matrix of 𝐵′. By the definition of class total

variation (5.62), TV𝐺(𝑉𝐵′,𝑖𝑗) ≤ TV𝐺(𝑉 *
𝐵,𝑖𝑗). Then, Theorem 5.21 to isomorphic graphs 𝒢(𝐴*) and 𝒢(𝐵′)

yields

TV𝐺

(︀
𝑉 *
𝐴,𝑖𝑗

)︀
= TV𝐺 (𝑉𝐵′,𝑖𝑗) ≤ TV𝐺

(︀
𝑉 *
𝐵,𝑖𝑗

)︀
. (5.65)

Similarly, by Theorem 5.8, there exists 𝒢(𝐴′) ∈ G𝐽
𝐴 such that 𝐵* = 𝑇𝐴′𝑇−1, or 𝑉 *

𝐵 = 𝑇𝑉𝐴′ where 𝑉𝐴′

is an eigenvector matrix of 𝐴′. Apply (5.62) and Theorem 5.21 again to obtain

TV𝐺

(︀
𝑉 *
𝐴,𝑖𝑗

)︀
≥ TV𝐺 (𝑉𝐴′,𝑖𝑗) = TV𝐺

(︀
𝑉 *
𝐵,𝑖𝑗

)︀
. (5.66)
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Equations (5.65) and (5.66) imply that TV𝐺

(︀
𝑉 *
𝐴,𝑖𝑗

)︀
= TV𝐺

(︀
𝑉 *
𝐵,𝑖𝑗

)︀
, or

TVG𝐽
𝐴

(J𝐴,𝑖𝑗) = TVG𝐽
𝐵

(J𝐵,𝑖𝑗) . (5.67)

.

Theorem 5.25 shows that the class total variation of a spectral component is invariant to a relabeling

of the nodes. This is significant because it means that an ordering of the spectral components by their class

total variations is invariant to node labels.

Next, the significance of the class total variation (5.62) is illustrated for adjacency matrices with

diagonal Jordan form, one Jordan block, and multiple Jordan blocks.

Diagonal Jordan Form. As shown in Section 5.4, a graph shift 𝐴 with diagonal Jordan form is the

single element of its Jordan equivalence class G𝐽
𝐴. This yields the following result.

Theorem 5.26. Let 𝒢(𝐴) have diagonalizable adjacency matrix 𝐴 with eigenvectors 𝑣1, . . . , 𝑣𝑁 . Then the

class total variation of the spectral component J𝑖, 𝑖 = 1, . . . , 𝑁 , of 𝐴 satisfies (for ‖𝑣𝑖‖ = 1)

TVG𝐽
𝐴

(J𝑖) = |1 − 𝜆𝑖| . (5.68)

Proof. Each spectral component J𝑖 of 𝐴 is the span of eigenvector 𝑣𝑖 corresponding to eigenvalue 𝜆𝑖. The

class total variation of J𝑖 is then

TVG𝐽
𝐴

(J𝑖) = sup
𝒢(𝐵)∈G𝐽

𝐴

𝐵=𝑉 𝐽𝑉 −1

span{𝑣𝑖}=J𝑖

‖𝑣𝑖‖1=1

TV𝐺 (𝑣𝑖) (5.69)

= TV𝐺 (𝑣𝑖) (5.70)

= ‖𝑣𝑖 −𝐵𝑣𝑖‖1 (by (5.37)) (5.71)

= ‖𝑣𝑖 − 𝜆𝑖𝑣𝑖‖1 (5.72)

= |1 − 𝜆𝑖| ‖𝑣𝑖‖1 (5.73)

= |1 − 𝜆𝑖| . (5.74)

The result of Theorem 5.26 is consistent with the total variation result for diagonalizable graph shifts

in [8]. Next, the class total variation for defective graph shifts is characterized.
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One Jordan block. Consider the graph shift 𝐴 with a single spectral component J = C𝑁 and Jordan

form 𝐽 = 𝐽(𝜆). The next theorem proves that the total variation of J attains the upper bound (5.61).

Theorem 5.27. Consider unicellular 𝐴 ∈ C𝑁×𝑁 with Jordan normal form 𝐽 = 𝐽(𝜆). Then the class total

variation of G𝐽
𝐴 is |1 − 𝜆| + 1.

Proof. Graph 𝒢(𝐴) is Jordan equivalent to 𝒢(𝐽) since 𝐴 is unicellular. Therefore, the GFT of a graph signal

can be computed over 𝒢(𝐽) by choosing the canonical vectors (𝑉 = 𝐼) as the Jordan basis, as shown in (5.23).

By (5.45), the maximum of |1 − 𝜆| ‖𝑣1‖1 and ‖|1 − 𝜆| 𝑣𝑖 − 𝑣𝑖−1‖1 for 𝑖 = 2, . . . , 𝑁 needs to be computed.

The former term equals |1 − 𝜆| since 𝑣1 is the first canonical vector. The latter term has form

‖ |1 − 𝜆| 𝑣𝑖 − 𝑣𝑖−1‖1 =

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

|1 − 𝜆|

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
1

(5.75)

= 1 + |1 − 𝜆| , (5.76)

Since |1 − 𝜆| + 1 > |1 − 𝜆|, TV𝐺(𝐼) = 1 + |1 − 𝜆|. Therefore, (5.61) holds with equality, so the class total

variation of J = C𝑁 satisfies

TVG𝐽
𝐴

(J𝑖) = sup
𝒢(𝐵)∈G𝐽

𝐴

𝐵=𝑉 𝐽𝑉 −1

span{𝑉 }=J=C𝑁

‖𝑉 ‖1=1

TV𝐺 (𝑉 ) (5.77)

= TV𝐺 (𝐼) (5.78)

= |1 − 𝜆| + 1. (5.79)

Multiple Jordan blocks. Theorem 5.28 proves that the Jordan equivalence class 𝒢(𝐽) where 𝐽 is in

Jordan normal form attains the bound (5.61).

Theorem 5.28. Let 𝒢(𝐴) ∈ G𝐽
𝐽 where 𝐽 is the Jordan normal form of 𝐴 and J𝐴 = {J𝑖𝑗}𝑖𝑗 for 𝑖 = 1, . . . , 𝑘,

𝑗 = 1, . . . , 𝑔𝑖. Then the class total variation of J𝑖𝑗 is |1 − 𝜆𝑖| + 1.
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Proof. Since 𝒢(𝐴) ∈ G𝐽
𝐽 , the GFT can be computed over 𝒢(𝐽) with eigenvector matrix 𝑉 = 𝐼. Then each

𝑉𝑖𝑗 = 𝐼𝑟𝑖𝑗 that spans J𝑖𝑗 has total variation

TV𝐺 (𝐼𝑖𝑗) =
⃦⃦
𝐼𝑟𝑖𝑗 − 𝐽𝑖𝑗

⃦⃦
1

(5.80)

= |1 − 𝜆𝑖| + 1 (by (5.61)). (5.81)

Therefore,

TVG𝐽
𝐽

(J𝑖) = sup
𝒢(𝐵)∈G𝐽

𝐴

𝐵=𝑉 𝐽𝑉 −1

span{𝑉𝑖𝑗}=J𝑖𝑗

‖𝑉𝑖𝑗‖1=1

TV𝐺 (𝑉𝑖𝑗) (5.82)

= TV𝐺

(︀
𝐼𝑟𝑖𝑗
)︀

(5.83)

= |1 − 𝜆𝑖| + 1. (5.84)

Although the total variation upper bound may not be attained for a general graph shift 𝐴, choosing

this bound as the ordering function provides a useful standard for the comparison of spectral components

for all graphs in a Jordan equivalence class. The ordering proceeds as follows:

1. Order the eigenvalues 𝜆1, . . . , 𝜆𝑘 of 𝐴 by increasing |1 − 𝜆𝑖| + 1 (low total variation to high total

variation).

2. Permute the submatrices 𝑉𝑖𝑗 of eigenvector matrix 𝑉 to respect the total variation ordering.

Since the ordering is based on the class total variation (5.62), it is invariant to the particular choice of Jordan

basis for each nontrivial Jordan subspace.

Such an ordering allows a visualization of the spectral components of a graph signal that can be used

to study low frequency and high frequency behaviors of graph signals; see also [8]. Properties that can

be studied in this way include the energy (4.21) of signal projections onto the spectral components, which

provides a measure for relative component expression. Chapter 7 provides more details on analyzing and

applying the GFT to real-world networks.

The Jordan equivalence classes discussed in this section show that there are degrees of freedom over

graph topologies with defective adjacency matrices that enable the GFT to be equivalent over multiple graph

structures. Finding these classes still requires the eigendecomposition of an adjacency matrix in its class,
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however.

To avoid issues associated with computing Jordan chains, we present an inexact method in Chapter 6

that reduces the computation time of the eigendecomposition. Particular considerations for applying the

GFT are later presented in Chapter 7, and numerical issues associated with eigendecompositions of defective

and nearly defective matrices are illustrated in Chapter 8.
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Chapter 6

Agile Inexact Method for Accelerating

Graph Fourier Transform Computations

This chapter presents the Agile Inexact Method (AIM) for computing the graph Fourier transform (4.2)

in order to address the limitations of the spectral projector-based method of Chapter 4. The inexactness

of the AIM results from the abstraction of the Jordan subspaces that characterize (4.2). The agility of the

AIM is related to the Jordan equivalence classes discussed in Chapter 5, which demonstrate that the degrees

of freedom allowed by defective matrices yield GFT equivalence across networks of various topologies. We

emphasize that reducing computation time is a major objective for formulating the AIM.

To obtain the inexact method, the spectral components are redefined as the generalized eigenspaces of

adjacency matrix 𝐴 ∈ C𝑁×𝑁 , and the resulting properties are discussed here. Section 6.2 establishes the

generalized Parseval’s identity with respect to the inexact method. An equivalence class with respect to the

AIM is discussed in Section 6.3, which leads to a total variation ordering of the new spectral components

as discussed in Section 6.4. Section 6.5 discusses the utility of the AIM for real-world network analysis, and

Section 6.6 describes the trade-offs associated with its use.

The contributions of this chapter with respect to those of Chapters 4 and 5 are highlighted in the blue

boxes of Figure 6-1. The figure illustrates the uniqueness that is gained by projecting onto known eigenvectors

(columns of 𝑉known) and the Jordan subspaces of (4.2) or generalized eigenspaces of the adjacency matrix

(denoted by 𝐽 and 𝐺 in Figure 6-1).
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Figure 6-1: Summary of contributions for GFT analysis over defective network. The columns of 𝑉known

represent known eigenvectors. The GFT involves projections of a signal 𝑠 onto the columns of 𝑉known as
well as the the Jordan subspaces 𝐽 or generalized eigenspaces 𝐺 of the adjacency matrix. The execution
times mentioned in the figure refer to the NYC taxi data example of Chapter 10 when analyzed by parallel
processing on a 30-machine cluster with 16- and 8-core machines.

6.1 Definition

The Agile Inexact Method (AIM) for computing the graph Fourier transform of a signal is defined as the

signal projections onto the generalized eigenspaces of the adjacency matrix 𝐴. When 𝐴 has 𝑘 distinct

eigenvalues, the definition of a generalized eigenspace G𝑖 (see Section 3.2) is

G𝑖 = Ker (𝐴− 𝜆𝑖𝐼)
𝑚𝑖 , 𝑖 = 1 . . . , 𝑘 (6.1)

for corresponding eigenvalue 𝜆𝑖 and eigenvalue index 𝑚𝑖. Equation (3.14) shows that each G𝑖 is the direct

sum of the Jordan subspaces of 𝜆𝑖.

Then, the Agile Inexact graph Fourier transform of a graph signal 𝑠 ∈ 𝒮 is defined as

ℋ : 𝒮 →
𝑘⨁︁

𝑖=1

G𝑖

𝑠 → (𝑠1, . . . , 𝑠𝑘) . (6.2)

That is, the method applied to signal 𝑠 yields the unique decomposition

𝑠 =

𝑘∑︁
𝑖=1

𝑠𝑖, 𝑠𝑖 ∈ G𝑖. (6.3)
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We define the projection operator for the inexact method. Denote eigenvector matrix

𝑉 = [𝑣1,1 · · · 𝑣1,𝑎1 · · · 𝑣𝑘,1 · · · 𝑣𝑘,𝑎𝑘
], (6.4)

where 𝑣𝑖,𝑗 represents an eigenvector or generalized eigenvector of 𝜆𝑖 and 𝑎𝑖 is the algebraic multiplicity of 𝜆𝑖,

𝑖 = 1, . . . , 𝑘, 𝑗 = 1, . . . , 𝑎𝑖. Let 𝑉 0
𝑖 represent the 𝑁×𝑁 matrix that consists of zero entries except for columns

containing 𝑣𝑖,1 through 𝑣𝑖,𝑎𝑖 . Following (4.4), the signal expansion components are ̃︀𝑠 = 𝑉 𝑠 for signal 𝑠 ∈ C𝑁 ,

where

̃︀𝑠 = [̃︀𝑠1,1 · · · ̃︀𝑠1,𝑎1
· · · ̃︀𝑠𝑘,1 · · · ̃︀𝑠𝑘,𝑎𝑘

]𝑇 . (6.5)

Therefore,

𝑠𝑖 = ̃︀𝑠𝑖,1𝑣𝑖,1 + · · · ̃︀𝑠𝑖,𝑎𝑖𝑣𝑖,𝑎𝑖 (6.6)

= 𝑉 0
𝑖 ̃︀𝑠 (6.7)

= 𝑉 0
𝑖 𝑉

−1𝑠 (6.8)

= 𝑉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

𝐼𝑎𝑖

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑉 −1𝑠 (6.9)

= 𝑍𝑖0𝑠, (6.10)

where 𝑍𝑖0 is the first component matrix of the 𝑖th generalized eigenspace [33]. It is a projection matrix and

has an image equal to its generalized eigenspace; the reader is directed to Theorems 9.5.2 and 9.5.4 in [33]

for the proofs.

The AIM provides a unique, Fourier transform-like projection space for a signal that is analogous to

the definition (4.2) based on Jordan subspaces because the signal space is a direct sum of the generalized

eigenspaces. The generalized eigenspaces are not necessarily irreducible components of the signal space,

however, as explained in Chapter 3.2. Therefore, (6.2) is inexact, and is not strictly a formulation of a true

graph Fourier transform according to the definitions utilized in algebraic signal processing [9, 10].

Note that the AIM (6.2) resolves to the Jordan subspace-based GFT (4.2) whenever the maximum

number of Jordan subspaces per distinct eigenvalue is one (i.e., the characteristic and minimal polynomials

of 𝐴 are equal). Otherwise, Jordan subspace information is lost when the AIM is applied.
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Next, key properties of (6.2) are discussed, with particular emphasis on the generalized Parseval’s

identity, graph equivalence classes with respect to (6.2), and total variation ordering.

6.2 Generalized Parseval’s Identity

Since the full graph Fourier basis (comprising all eigenvectors and generalized eigenvectors) exists, regardless

of whether we compute it or not, the generalized Parseval’s identity of Chapter 4.2 still holds for the inexact

method. Therefore, the biorthogonal basis set can be used to define signal energy.

To define the energy of a signal projection onto an AIM GFT component 𝑠𝑖 for signal 𝑠, let 𝑉 and 𝑊

represent the eigenvector and biorthogonal eigenvector matrices, respectively. Write 𝑠𝑖 in terms of the

columns of 𝑉 as 𝑠𝑖 = 𝛼𝑖𝑣𝑖,1 + . . . 𝛼𝑎1
𝑣𝑖,𝑎𝑖

and in terms of the columns of 𝑊 as 𝑠𝑖 = 𝛽𝑖𝑤𝑖,1 + . . . 𝛽𝑎𝑖
𝑤𝑖,𝑎𝑖

.

Then the energy of 𝑠𝑖 can be defined as

‖𝑠𝑖‖2 = ⟨𝛼, 𝛽⟩ (6.11)

using the notation 𝛼 = (𝛼1, . . . , 𝛼𝑎𝑖) and 𝛽 = (𝛽1, . . . , 𝛽𝑏𝑖). Equation (6.11) is used in Chapter 10 to compare

the inexact method and original GFT formulations.

6.3 Graph Equivalence under the Agile Inexact Method

Just as different choices of Jordan subspace bases yield the same GFT over Jordan equivalence classes of

graph topologies, as explained in Chapter 5, different choices of bases for the generalized eigenspaces of the

adjacency matrix yield the same inexact GFT. We define a G -equivalence class as follows:

Definition 6.1 (G -Equivalent Graphs). Consider graphs 𝒢(𝐴) and 𝒢(𝐵) with adjacency matrices 𝐴,𝐵 ∈

C𝑁×𝑁 . Then 𝒢(𝐴) and 𝒢(𝐵) are G -equivalent graphs if all of the following are true:

1. 𝒢𝐴 and 𝒢𝐵 are cospectral; and

2. {G𝐴,𝑖}𝑘𝑖=1 = {G𝐵,𝑖}𝑘𝑖=1, where 𝑘 is the number of distinct eigenvalues, G𝐴,𝑖 is the generalized eigenspace

of 𝐴 corresponding to eigenvalue 𝜆𝑖, and G𝐵,𝑖 is the generalized eigenspace of 𝐵 corresponding to

eigenvalue 𝜆𝑖.

Denote by G𝐻
𝐴 the G -equivalence class of 𝒢(𝐴).

Graph equivalence under the AIM is independent of the Jordan subspaces and their dimensions (the

Segre characteristic), in contrast to Jordan equivalence classes in Chapter 5. As a result, the inexact GFT

is simpler and faster to compute, as discussed in greater detail in Section 6.6.
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6.4 Total Variation Ordering

In Section 5.9, we defined an ordering on the GFT spectral components based on the total variation of a

signal. In this section, similar results are proven for the GFT spectral components obtained via the AIM.

Denote by 𝑉𝑖 the submatrix of columns of eigenvector matrix 𝑉 that span G𝑖, the 𝑖th generalized

eigenspace. The (graph) total variation of 𝑉𝑖 is defined as

TV𝐺 (𝑉𝑖) = ‖𝑉𝑖 −𝐴𝑉𝑖‖1 . (6.12)

Then the following theorems follow immediately from the proofs of Theorems 5.21, 5.23, and 5.24.

Theorem 6.2. Let 𝐴,𝐵 ∈ C𝑁×𝑁 and 𝒢(𝐵) ∈ G𝐼
𝐴, i.e., 𝒢(𝐵) is isomorphic to 𝒢(𝐴). Let 𝑉𝐴,𝑖 ∈ C𝑁×𝑎𝑖

be a union of Jordan chains that span G𝑖 of matrix 𝐴 and 𝑉𝐵,𝑖 ∈ C𝑁×𝑎𝑖 the corresponding union of Jordan

chains of 𝐵. Then TV𝐺(𝑉𝐴,𝑖) = TV𝐺(𝑉𝐵,𝑖).

Theorem 6.3. The eigenvector matrix 𝑉 of adjacency matrix 𝐴 ∈ C𝑁×𝑁 can be chosen so that each union of

Jordan chains that span the 𝑖th generalized eigenspace, represented by the eigenvector submatrix 𝑉𝑖 ∈ C𝑁×𝑎𝑖 ,

satisfies ‖𝑉𝑖‖1 = 1; i.e., ‖𝑉 ‖1 = 1 without loss of generality.

Theorem 6.4. Consider matrix 𝐴 with 𝑘 distinct eigenvalues and 𝑁 × 𝑎𝑖 eigenvector submatrices 𝑉𝑖 with

columns corresponding to the union of the Jordan chains of 𝜆𝑖, 𝑖 = 1, . . . , 𝑘. Then the graph total variation

is TV𝐺(𝑉𝑖) ≤ |1 − 𝜆𝑖| + 1.

As in Chapter 5.9, we generalize the total variation to a class total variation defined over the G -

equivalence class associated with the graph of adjacency matrix 𝐴. We define the class total variation of

spectral component G𝑖 as the supremum of the graph total variation of 𝑉𝑖 over the G -equivalence class (for

all 𝒢(𝐵) ∈ G𝐻
𝐴 ):

TVG𝐻
𝐴

(G𝑖) = sup
𝒢(𝐵)∈G𝐻

𝐴

𝐵=𝑉 𝐽𝑉 −1

span{𝑉𝑖}=G𝑖

‖𝑉𝑖‖1=1

TV𝐺 (𝑉𝑖) . (6.13)

The remaining results of Chapter 5.9 follow in the same way. In particular, the low-to-high variation

sorting is achieved via the function 𝑓(𝜆𝑖) = |1 − 𝜆𝑖| + 1.
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Figure 6-2: (a) Eigenvalue magnitudes of a directed New York City road network adjacency matrix. The
magnitudes are small in the index range 1 to 699 (up to the dotted line). (b) Road network eigenvalues
(699 total) in the sorted index range 1 to 699 plotted on the complex plane. (c) Eigenvalue magnitudes of
the largest weakly connected component of a political blog network. The magnitudes are small in the index
range 1 to 548 (up to the dotted line). (d) Blog eigenvalues (548 total) in the sorted index range 1 to 548.

6.5 Applicability to Real-World Networks

This section discusses how the AIM can be applied on real-world large, sparse, and directed networks. In

particular, we highlight the ease of computing the AIM in the case of a single generalized eigenspace of

dimension greater than one.

6.5.1 Large, Directed, and Sparse Networks

In practice, sparsity in directed networks yields a zero eigenvalue of high algebraic and geometric multiplicities

that may not be equal. This behavior can be demonstrated using two examples. The first is a directed,

strongly connected road network 𝒢rd = 𝒢(𝐴rd) = (𝒱rd, ℰrd) of Manhattan, New York [35]; 𝒢rd contains 6,408

nodes that represent the latitude and longitude coordinates of intersections and mid-intersection locations

(available from [67]), as well as 14,418 directed edges, where edge 𝑒 = (𝑣1, 𝑣2) represents a road along which

traffic is legally allowed to move from 𝑣1 to 𝑣2 as determined from Google Maps [35]. The second network

example is the largest weakly connected component 𝒢bl = 𝒢(𝐴bl) = (𝒱bl, ℰbl) of a political blog network,

with 1,222 blogs as nodes and 19,024 directed edges, where edge 𝑒 = (𝑣1, 𝑣2) exists between blogs 𝑣1, 𝑣2 ∈ 𝒱bl

if 𝑣1 contains a link to 𝑣2 [68].

Figures 6-2b and 6-2d show that the numerical eigenvalues of these real-world networks occur in clusters

on the complex plane. These eigenvalues have small magnitude (lying left of the dashed lines in Figures 6-2a
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and 6-2c). On first inspection, it is not obvious whether the numerical eigenvalues are spurious eigenval-

ues clustered around a true eigenvalue of zero, or whether the numerical eigenvalues are indeed the true

eigenvalues.1 This phenomenon is typically observed in systems with multiple eigenvalues [69, 70, 71]. In

practice, we can verify that numerical zero is an eigenvalue using either pseudospectra [72] or techniques that

explore the numerical stability of the singular value decomposition [73, 74]. For the examples explored here,

the singular value decomposition demonstrated that the clusters of low-magnitude eigenvalues represented a

numerical zero eigenvalue. This method involves comparing small singular values to machine precision and

is discussed in more detail in Section 10.2.

Furthermore, the adjacency matrices 𝐴rd and 𝐴bl have null spaces of dimension 446 and 439, re-

spectively, confirming that eigenvalue 𝜆 = 0 has high algebraic (and geometric) multiplicity. In addition,

eigenvector matrices 𝑉rd and 𝑉bl computed with MATLAB’s eigensolver have numerical rank 6363 < 6408

and 910 < 1222, respectively, implying the existence of nontrivial Jordan subspaces (Jordan chains of length

greater than one) for 𝜆 = 0. While these general eigenspace properties can be readily determined, a substan-

tial amount of additional computation is required to determine the dimensions of each Jordan subspace for

eigenvalues 𝜆 = 0. For example, the Jordan subspaces for zero can be deduced by computing a generalized

null space as in [75], but this computation takes 𝑂(𝑁3) or 𝑂(𝑁4) for an 𝑁 ×𝑁 matrix.

On the other hand, the eigenvectors corresponding to eigenvalues of higher magnitude in these networks

are full rank. In other words, from a numerical perspective, the Jordan subspaces for these eigenvalues are

all one-dimensional.

In such networks, for which sparsity yields a high-multiplicity zero eigenvalue while the other eigenvalues

correspond to a full-rank eigenvector submatrix, the inexact method (6.2) can be applied in the following

way. Let 𝑉known be the full-rank eigenvector submatrix corresponding to nonzero eigenvalues. The remaining

submatrix ̃︀𝑉 must have columns that span the generalized eigenspace 𝒢0 corresponding to eigenvalue zero.

A simple way to find a spanning set of columns for ̃︀𝑉 is to find the kernel of 𝑉 𝑇
known. The resulting

inexact graph Fourier basis is ̂︀𝑉 =

[︃
𝑉known Ker

(︀
𝑉 𝑇
known

)︀]︃ . (6.14)

If the original network has adjacency matrix 𝐴 = 𝑉 𝐽𝑉 −1, then (6.14) implies that the network with ad-

jacency matrix ̂︀𝐴 = ̂︀𝑉 𝐽 ̂︀𝑉 −1 is in the same G -equivalence class as the original network. As shown in

Chapter 6.3, this implies that the AIM GFT is equal over both networks.

In this way, for large, sparse, and directed real-world networks that exhibit a single zero eigenvalue

of high multiplicity, the AIM can simplify the computation of a graph Fourier basis. Instead of computing

1The eigenvalues in Figure 6-2 were computed in MATLAB. Similar clusters appear using eig without balancing and schur.
They also appear when analyzing row-stochastic versions of the asymmetric adjacency matrices.
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Jordan chains or generalized null spaces to deduce the structure of the Jordan subspaces, a single kernel

computation (with SVD, for example) is needed to compute the spanning basis. This idea is explored further

in Section 6.6.

6.5.2 Multiple Nontrivial Jordan Subspaces

In the case of multiple distinct eigenvalues with large but unequal algebraic and geometric multiplicities, it

may be possible to compute a few Jordan chain vectors to differentiate the nontrivial generalized eigenspaces.

This approach is only computationally efficient if the number of Jordan chain vectors to compute is relatively

small, as discussed in [34, 76].

When this is not feasible, a coarser inexact method can be obtained by reformulating (6.14) so that

𝑉known consists of all known eigenvectors and is full rank. Then a basis of the kernel of 𝑉 𝑇
known can be

computed. These vectors can be allocated at random to the nontrivial generalized eigenspaces.

The dimensions of each generalized eigenspace must be known so that the correct number of vectors is

allocated to each eigenspace. The dimensions can be determined by recursively computing for eigenvalue 𝜆𝑖

𝑓(𝑙) = dim Ker(𝐴− 𝜆𝑖𝐼)𝑙 − dim Ker(𝐴− 𝜆𝑖𝐼)𝑙−1, 𝑙 = 2, . . . , 𝑁. (6.15)

This equation provides the number of Jordan chains of length at least 𝑙 [33]. The value of dim Ker(𝐴−𝜆𝑖𝐼)𝑙−1

for 𝑙 > 1 at which 𝑓(𝑙) = 0 is the dimension of generalized eigenspace G𝑖. If |𝜆max| > 1, the condition 𝑓(𝑙) = 0

may not be attained; instead, 𝑓(𝑙) becomes a monotonically increasing function for large 𝑙. In this case, the

value of dim Ker(𝐴−𝜆𝑖𝐼)𝑙−1 for 𝑙 at which this occurs is the approximate generalized eigenspace dimension.

The random assignment of missing eigenvectors to the nontrivial generalized eigenspaces would be a

coarser inexact method compared to the AIM method (6.2); in particular, it is unknown which eigenvector

assignment, if any, corresponds to a graph in the same G -equivalence class as the original graph. On the other

hand, the matrices built from a series of random assignments could be used to construct a filter bank such that

each assignment corresponds to a different graph filter. An optimal or near-optimal weighted combination

of such filters could be learned by using time-series of filtered signals as inputs to train a classifier. While

the resulting Fourier basis is only an approximation of the one required for the AIM method (6.2), such a

learned combination of filters would provide an interpretable tool to analyze graph signals while also ranking

each filter (representing a random assignment of vectors to generalized eigenspaces) in terms of its utility for

typical graph signals.
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6.6 Runtime vs. Fidelity Trade-off

While maximizing the fidelity of the network representation is desirable in general, obtaining as much

knowledge of the Jordan chains as possible is computationally expensive. As this section will demonstrate,

execution time for the Jordan decomposition is, to first order, linear with respect to the number of Jordan

chain vectors to compute. In practice, however, computation of increasing numbers of chains requires

allocating memory for matrices of increasing size. This memory allocation time can increase nonlinearly

once specific limits imposed by the computing hardware are exceeded. Since practical applications of GFT

analysis may be constrained by execution time requirements and available computing hardware, methods

that allow fidelity vs. speedup tradeoffs will prove useful.

Our inexact GFT approach provides precisely such a method for trading between higher fidelity analysis

(a greater number of Jordan chains computed) and execution time, as discussed in Section 6.5. In this section,

the details of such trade-offs are discussed in detail.

To illustrate the cost of computing the Jordan chain vectors of 𝐴 ∈ C𝑁×𝑁 that complete the generalized

eigenspace of eigenvalue 𝜆𝑖, consider the general algorithm given by:

1: function Compute_Chains
2: V = Full_Rank_Eigenvectors(𝐴)
3: R = Pseudoinverse(𝐴− 𝜆𝑖𝐼)
4: N = Ker(𝐴− 𝜆𝑖𝐼)
5: Nnew=[ ]
6: for c in 1..maximum chain length do
7: for v in N do
8: if [(𝐴− 𝜆𝑖𝐼) v] full rank then
9: v2 = R*v
10: Append v2 to V.
11: Append v2 to Nnew.
12: end if
13: end for
14: N = Nnew
15: end for
16: end function

The eigenvector and pseudoinverse computations are pre-processing steps that can be executed just once

for a network with stationary topology. Efficient methods for these computations include power iterations,

QR algorithms, and, for large, sparse matrices, Lanczos algorithms and Krylov subspace methods [34]. The

key bottlenecks of concern reside in the for loop. This loop consists of a rank-checking step to verify that

the current eigenvector is in the range space of 𝐴 − 𝜆𝑖𝐼. This step can be implemented using the singular

value decomposition, which has 𝑂(𝑘𝑀𝑁2 +𝑘′𝑀3) operations [34] on an 𝑀×𝑁 matrix, 𝑁 < 𝑀 ; constants 𝑘

and 𝑘′ could be 4 and 22, respectively, as in the R-SVD algorithm of [34]. In addition, the matrix-vector

product in the for loop takes about 2𝑀𝑁 operations. The original dimension of 𝑉 is 𝑀 × 𝑁(𝑗), where

the number of columns 𝑁(𝑗) approaches 𝑀 from below as the number 𝑗 of vectors traversed increases. The
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resulting time complexity for a single iteration is

𝑂(𝑘𝑀𝑁(𝑗)2 + 𝑘′𝑀3) + 𝑂(2𝑀𝑁(𝑗)). (6.16)

The first for loop will run for 𝑚𝑖 iterations, where 𝑚𝑖 is the maximum chain length corresponding

to 𝜆𝑖. This can be estimated as demonstrated in Section 10.3. The second for loop will first run for 𝑔𝑖

iterations, where 𝑔𝑖 is the dimension of the null space of 𝐴− 𝜆𝑖𝐼 (the geometric multiplicity of 𝜆𝑖). On the

𝑙th run of the outer loop, the number of iterations of the inner loop equals the difference of kernel dimensions

𝑓(𝑙) = dim Ker(𝐴− 𝜆𝑖)
𝑙 − dim Ker(𝐴− 𝜆𝑖)

𝑙−1, (6.17)

a monotonically decreasing function of 𝑙 [33]. Therefore, the total number of iterations is 𝑚𝑖 ·
∑︀𝑚𝑖

𝑙=1 𝑓(𝑙), or

𝑚𝑖 · (dim Ker(𝐴− 𝜆𝑖𝐼)𝑚𝑖 − dim Ker(𝐴− 𝜆𝑖𝐼)) = 𝑚𝑖 · (𝑎𝑖 − 𝑔𝑖), (6.18)

where 𝑎𝑖 and 𝑔𝑖 are the algebraic and geometric multiplicities of 𝜆𝑖, respectively. Since this total depends on

the adjacency matrix, we will denote it as 𝑏𝐴, which has an implicit dependence on the 𝑀×𝑁(𝑗) dimensions

of 𝐴. The total time complexity of the for loops is then

𝑏𝐴∑︁
𝑗=1

𝑂(𝑘𝑀𝑁(𝑗)2 + 𝑘′𝑀3) + 𝑂(2𝑀𝑁(𝑗)). (6.19)

In addition, the time to allocate memory for the matrix [(𝐴−𝜆𝐼) v] is 𝑂(𝑀𝑁(𝑗)) ·𝑚(𝑀𝑁(𝑗)), where

𝑚(·) is the platform-dependent time per unit of memory allocation as a function of the matrix size. Since

each for loop allocates memory in this way, the total memory allocation time is

𝑏𝐴∑︁
𝑗=1

𝑂(𝑀𝑁(𝑗)) ·𝑚(𝑀𝑁(𝑗)). (6.20)

Assuming 𝑐 is time per floating-point operation that is also platform-dependent and SVD constants 𝑘 = 4

and 𝑘′ = 22, the total expected runtime for the Jordan chain computation can be approximated as

𝑏𝐴∑︁
𝑗=1

𝑐
(︀
4𝑀𝑁(𝑗)2 + 22𝑀3 + 2𝑀𝑁(𝑗)

)︀
+ 𝑀𝑁(𝑗)𝑚 (𝑀𝑁(𝑗)) , (6.21)

where 𝑐 is the platform-dependent time per floating-point operation and the full SVD complexity coefficients

are set to 𝑘 = 4 and 𝑘′ = 22.
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Equation (6.21) shows that the runtime for the Jordan chain computations is linear with the number

of missing vectors one needs to compute. However, in practice, the time to allocate memory can scale

nonlinearly with the number of nodes as the size of the eigenvector matrix approaches system capacity. For

networks at massive scale, this can present a significant problem.

In contrast, the algorithm to compute an orthogonal set of missing vectors is very fast. The algorithm

is the following, where Vt denotes the transpose of 𝑉 :

1: function compute_missing
2: V = Full_Rank_Eigenvectors(𝐴)
3: Vt = Transpose(𝑉 )
4: Vnew = Ker(Vt)
5: V = [V Vnew]
6: end function

The slowest step is computing the null space of 𝑉 𝑇 , which has time complexity 𝑂(𝑘𝑀𝑁(𝑗)2+𝑘′𝑀3) for

a SVD-based null space computation. In addition, memory allocation for 𝑉 𝑇 and 𝑉 each takes 𝑂(𝑀𝑁(𝑗))

time. Notably, this allocation is only performed once in the AIM implementation, as compared to the

repeated allocations required in the for loop of the above Jordan chain decompositon.

This section demonstrates how our inexact method can be employed to enable GFT analysis to meet

execution time constraints by trading runtime for fidelity, by combining the inexact method with projections

onto Jordan subspaces. The analysis of execution times in these two cases provides the mathematical basis

for quantifying execution times.

In summary, this chapter defined the AIM (6.2) for applying the graph Fourier transform (4.2). This

formulation does not require the computation of Jordan chains but loses fidelity to the original graph eigen-

structure. We also show that the generalized Parseval’s identity and total variation ordering of spectral

components from the Jordan subspace-based transform apply to the inexact case.

Sections 6.5 and 6.6 demonstrate considerations that need to be addressed when applying the graph

Fourier transform to real-world problems. The general method for applying graph signal processing is dis-

cussed in the next chapter.
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Part III

Methods and Considerations for

Applying the Graph Fourier Transform

Part III summarizes the methodology and pitfalls of applying the graph Fourier transform to real-world

networks. Chapter 7 presents the general method, which consists of (1) signal extraction, (2) eigendecom-

position of the adjacency matrix, and (3) computation of the GFT. Particular issues regarding the choice of

platforms and pre-processing steps, as well as techniques for handling large-scale networks and massive data

sets, are discussed at a high level.
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Chapter 7

Applying Graph Signal Processing to

Real-World Networks

The graph Fourier transform identifies highly expressed spectral components that reflect localized

co-behavior of nodes in a network. For example, this framework is well suited for finding high-density

traffic locations on a road network or influential nodes in a social network. As the available data and

underlying networks increase in size, graph signal processing provides an especially attractive method for

finding localized behavior that may not be evident from raw signals or other methods. This chapter presents a

general approach for computing graph Fourier transforms of rich, batch signals on large, real-world networks.

The application of the graph Fourier transform (4.2) involves three distinct steps: signal extraction,

eigendecomposition, and computation of the graph Fourier transform itself. This chapter discusses these

steps in addition to computational and numerical properties that influence the design of platform-specific

implementations. Figure 7-1 illustrates that the GFT and inexact methods combine the signal extraction

and eigendecomposition outputs by projecting graph signals onto the known eigenvectors and the nontrivial

Jordan subspaces or generalized eigenspaces of the adjacency matrix. Projection onto generalized eigenspaces

is preferable when the Jordan chain computation is too expensive; see Section 6.6.

7.1 Signal Extraction

The first step in applying graph signal processing is construction of graph signals from the data. This section

briefly describes frameworks for real-world applications and related considerations.

Scientific computing languages such as Python [77] and MATLAB [78] as well as new computing
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Figure 7-1: Method for applying graph signal processing. The columns of 𝑉known represent known eigen-
vectors. The GFT involves projections of a signal 𝑠 onto the columns of 𝑉known as well as the the Jordan
subspaces 𝐽 or generalized eigenspaces 𝐺 of the adjacency matrix. The blue boxes highlight an example
analysis that can be performed with the GFT results.

languages such as Julia [79] provide platforms for computing statistics and modeling graphs and other

complex data structures. While these languages offer convenient features for rapid prototyping, they may

require substantial amounts of memory that limit their use on very large datasets. In memory-constrained

systems, signal extraction may require array-based implementations in the C programming language for

efficiency.

Additional speedups can be achieved by decomposing the signal extraction into jobs that can run simul-

taneously on high-throughput computing platforms such as Hadoop [80] and Spark [81] Spark uses resilient

distributed dataset (RDD) structures to provide faster computation times than the Hadoop framework for

iterative methods such as training machine learning algorithms. When the signal computation can be decom-

posed into small jobs with a low memory footprint, an appropriate platform is HTCondor, an open-source

high throughput computing environment that runs on a machine cluster [82].

Platform selection depends on the data format, the required data pre-processing, and the available

hardware. If the pre-processing requires in-memory storage of complex data structures at runtime, e.g., for

computing graph-based statistics, it is essential to choose platforms with minimal overhead and to utilize

or design memory-efficient data representations so that the problem is feasible. In addition, implementing

efficient algorithms facilitates parallelization of the signal extraction. We illustrate a design process for signal

extraction in Chapter 9.
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7.2 Eigendecomposition

Obtaining the eigendecomposition of the graph adjacency matrix 𝐴 ∈ C𝑁×𝑁 is essential for applying graph

signal processing. Numerically stable methods such as the power method, QR algorithms, and Jacobi meth-

ods for diagonalizable matrices are applicable methods for eigendecomposition; see [34] and the references

therein for more details. Furthermore, eigendecompositions of large, sparse matrices can be computed with

iterative Lanczos or Krylov subspace methods [34, Chapter 10], [83].

On the other hand, for defective or nearly defective matrices, small perturbations in network structure

due to numerical round-off errors can significantly perturb the numerical eigenvalues and eigenvectors; for

example, for a defective eigenvalue of 𝐴 corresponding to a 𝑝-dimensional Jordan block, 𝑂(𝜖) perturbations

in 𝐴 can result in 𝑂(𝜖1/𝑝) perturbations in 𝜆 [34, 84]. In addition, while computing the Jordan normal

form can be numerically unstable [73, 74, 76, 34], forward stability was shown for the Jordan decomposition

algorithm in [85] and forms the basis for an SVD-based implementation discussed in Chapter 10.

7.3 GFT Computation

The final step is the computation of the graph Fourier transform as in (4.2) or (6.2). The computation is

essentially a sparse matrix-vector or matrix-matrix computation since many real-world networks have highly

sparse connections. As a result, very large multiplications can be computed by vectorizing or optimizing

hardware; see, for example, [86].

The output of these multiplications is the projection of the signal onto invariant subspaces (either

Jordan subspaces or generalized eigenspaces) of the graph adjacency matrix 𝐴. The energy of the signal’s

projection onto each spectral component can be computed by (4.21) or (6.11) and ordered by total variation

as described in Sections 5.9 and 6.4. Such an ordering provides insight into the low-frequency versus high-

frequency nature of a signal; see [8] for more details.

In order to identify highly expressed spectral components, the following procedure can be applied.

First, the spectral components are ranked by decreasing energy. Then, a threshold is applied to extract

the components corresponding to a certain amount of signal energy. These components correspond to node

weights that highlight influential behaviors.

This chapter summarizes the steps of computing the GFT (4.2) or the AIM (6.2). One potential issue

of this method is ill-conditioning of the eigendecomposition step. The following chapter provides illustrative

examples to examine the numerical behavior of example defective and nearly defective matrices.
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Chapter 8

Numerical Issues for Perturbed

Eigendecompositions

The sensitivity of defective or nearly defective matrices to small perturbations is a source of concern

in the application of graph signal processing. For example, introducing an edge that has a weight equal

to a small 𝜖 > 0 worsens the conditioning of a binary (0/1) matrix and creates numerical instabilities even

for simple graph structures. This is an important and disconcerting issue when faced with the problem of

computing Jordan chains.

Our objective in this chapter is to illustrate particular cases where numerical eigendecompositions

behave erratically. Sensitivity of eigenvalues and eigenvectors to matrix perturbations has also been studied

in, for example, [76, 83, 87, 88, 89]. These references characterize properties of general perturbations to a

matrix 𝐴; i.e., they study behavior for matrices ̃︀𝐴 that satisfy ‖𝐴 − ̃︀𝐴‖ < 𝜖 for small 𝜖 > 0. This chapter

does not perform such analysis; instead, it considers a particular perturbed structure for 𝐴 and presents the

analysis in terms of the matrix eigendecomposition.

In order to understand the problem of numerical instability in more detail, we analyze two example

matrices: the Jordan block 𝐻𝑁 = 𝐽(0) and its powers in Section 8.1, and the adjacency matrix of a directed,

acyclic feed-forward network in Section 8.2. The corresponding digraphs are shown in Figures 8-1a and 8-2a.

Each section is ordered in the following way:

1. Eigendecomposition analysis of the adjacency matrix;

2. Numerical eigendecomposition;

3. Eigendecomposition analysis of a perturbed adjacency matrix; and
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(a) 𝒢 (𝐻𝑝
5 ) (b) 𝒢 (𝐻𝑝

5 |𝜖,𝑗)

Figure 8-1: Example digraphs for (a) Jordan block powers and (b) perturbed powers.

(a) 𝒢 (𝐴5) (b) 𝒢 (𝐴5|𝜖,5)

Figure 8-2: Digraphs for (a) 𝐴5 and (b) 𝐴5|𝜖,5. Edges that originate from the same node are shown with the
same color.

4. Numerical eigendecomposition for the perturbed case.

Omitted proofs for the eigendecompositions can be found in Appendices A and B.

8.1 Eigendecomposition for Jordan Blocks and Their Powers

This section presents results on the eigendecomposition of the 𝑁 × 𝑁 Jordan block 𝐻𝑁 = 𝐽(0) and its

powers. Section 8.1.1 constructs the Jordan normal form and eigenvector matrices for these matrices. Sec-

tion 8.1.2 discusses the ability to extract the eigendecomposition using MATLAB [78] as a numerical tool.

Perturbations that correspond to the digraphs in Figure 8-1b are also studied by exploiting underlying graph

structure to find the spectral decompositions in Section 8.1.3; also see [90, 91, 92]. The numerical behavior

of the perturbed matrices is illustrated in 8.1.4. Omitted proofs can be found in Appendix A.

8.1.1 Analysis for Eigendecomposition of 𝐻𝑝
𝑁

A recursive formulation for the Jordan canonical form is found. In addition, eigenvector matrices for the

matrix are computed.

Jordan normal form for 𝐻𝑝
𝑁 . A recursion for the structure of Jordan form of 𝐻𝑝

𝑁 , 𝑝 = 1, 2, . . . 𝑁 , is

shown here. Please see Appendix A for the proofs. Figure 8-1a shows that 𝐻𝑝
𝑁 corresponds to a digraph 𝒢 =

(𝒱, ℰ) consisting of 𝑝 disjoint connected components that are either isolated nodes, which have no out- or

in-edges in ℰ , or directed paths, where a directed path from 𝑣𝑖 to 𝑣𝑗 , 𝑖 ̸= 𝑗, is a sequence (𝑣𝑖, 𝑤1, . . . , 𝑤𝑘, 𝑣𝑗)

of distinct nodes in 𝑉 such that (𝑣𝑖, 𝑤1), (𝑤𝑘, 𝑣𝑗), (𝑤𝑙, 𝑤𝑙+1) ∈ ℰ for 𝑙 = 1, . . . , 𝑘− 1. For 𝑝 ≥ 𝑁 , the digraph

consists of 𝑁 isolated nodes since 𝐻𝑝
𝑁 = 0𝑁×𝑁 .
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Since 𝐻𝑁 and its powers are upper triangular with zero diagonal entries, they have a zero eigenvalue

with algebraic multiplicity 𝑁 . Define the Jordan decomposition 𝐻𝑝
𝑁 = 𝑉𝑁,𝑝𝐽𝑁,𝑝𝑉

−1
𝑁,𝑝. The next theorem

describes the form of 𝐽𝑁,𝑝.

Theorem 8.1. The following statements characterize the Jordan canonical form 𝐽𝑁,𝑝 of 𝐻𝑝
𝑁 :

(i) 𝐽𝑁,𝑝 consists of 𝑝 Jordan blocks.

(ii) The maximum block size of 𝐽𝑁,𝑝 is
⌈︁
𝑁
𝑝

⌉︁
, or the minimum integer greater than or equal to 𝑁

𝑝 .

(iii) The minimum block size of 𝐽𝑁,𝑝 is
⌊︁
𝑁
𝑝

⌋︁
, or the maximum integer less than or equal to 𝑁

𝑝 .

The properties of Theorem 8.1 lead to a recursion for the Jordan blocks of 𝐻𝑝
𝑁 that is dependent on the

Segre characteristic of the Jordan normal form, which is defined as the list of Jordan block sizes in decreasing

order for a given eigenvalue [33]. Together with the associated eigenvalues, the Segre characteristic uniquely

characterizes the Jordan form [33] and is provided for 𝐻𝑝
𝑁 in the following lemma.

Lemma 8.2. The Segre characteristic (𝑒1, . . . , 𝑒𝑝) of 𝐻𝑝
𝑁 is

𝑒𝑖 =

⎧⎪⎪⎨⎪⎪⎩
⌈︁
𝑁
𝑝

⌉︁
, if 𝑖 ∈ [1, 𝑁 − 𝑝𝑙 + 𝑝]⌊︁

𝑁
𝑝

⌋︁
, if 𝑖 ∈ [𝑁 − 𝑝𝑙 + 𝑝 + 1, 𝑝]

(8.1)

where 𝑙 is the maximum Jordan chain length of 𝐴.

Lemma (8.2) leads to a recursion for the Jordan form of 𝐻𝑝
𝑁 in the next theorem.

Theorem 8.3. The Jordan form 𝐽𝑁,𝑝 of 𝐻𝑝
𝑁 can be decomposed as the following (up to a permutation on

the order of blocks) for all integers 𝑝 = 1, . . . , 𝑁 − 1 and 𝑁 ≥ 3:

𝐽𝑁,𝑝 =

⎡⎢⎢⎢⎢⎣
𝐻⌈𝑁

𝑝 ⌉

𝐽𝑁−⌈𝑁
𝑝 ⌉,𝑝−1

⎤⎥⎥⎥⎥⎦ . (8.2)

Theorems 8.1 and 8.3 show the dependence of Jordan block counts and sizes on 𝑁 and 𝑝. As 𝑝 increases

for fixed 𝑁 , the maximum Jordan block size decreases. As seen in Figure 8-1a, the decrease in Jordan block

size is reflected in the corresponding digraph as an increase in the number of weakly connected components.

The proper and generalized eigenvectors are characterized in the next section.

Eigenvector matrices of 𝐻𝑝
𝑁 . This section finds proper and generalized eigenvectors of 𝐻𝑝

𝑁 . Let

the 𝑖th column of 𝐸𝑁,𝑘 ∈ R𝑁×𝑘 be the 𝑖th canonical vector.
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Theorem 8.4. One possible set of proper eigenvectors for the matrix 𝐻𝑝
𝑁 , 𝑝 = 1, . . . , 𝑁 is the set of columns

of 𝐸𝑁,𝑝.

The eigenvectors from Theorem 8.4 can be used to generate Jordan chains corresponding to the Jordan

blocks of Theorem 8.3. Lemma 8.5 shows the number of nontrivial Jordan chains.

Lemma 8.5. Of the 𝑝 eigenvectors of 𝐻𝑝
𝑁 , min(𝑁 − 𝑝, 𝑝) of them correspond to Jordan blocks of size 𝑟 > 1.

Proof. Choose the eigenvectors of 𝐻𝑝
𝑁 to be the columns of 𝐸𝑁,𝑝 as in Theorem 8.4. For a Jordan block of

size 𝑟 > 1 and 𝜆 = 0, the generalized eigenvectors for the Jordan chain satisfy the recurrence equation [33]

𝐻𝑝
𝑁𝑣𝑖 = 𝜆𝑣𝑖 + 𝑣𝑖−1 = 𝑣𝑖−1, 𝑖 = 2, . . . , 𝑟, (8.3)

where 𝑣1 is a proper eigenvector. If 𝑣1 is in the column space R(𝐻𝑝
𝑁 ) of 𝐻𝑝

𝑁 , (8.3) is consistent. Since the

column space of 𝐻𝑝
𝑁 is the span of the first 𝑁 − 𝑝 canonical vectors of R𝑁 , the matrix of proper eigenvectors

corresponding to Jordan blocks of size 𝑟 > 1, denoted here by 𝑊 , satisfies

span{𝑊} = span{𝐸𝑁,𝑝} ∩ R (𝐻𝑝
𝑁 ) (8.4)

= span{𝐸𝑁,𝑝} ∩ span{𝐸𝑁,𝑁−𝑝} (8.5)

= span{𝐸𝑁,min(𝑝,𝑁−𝑝)} (8.6)

where span{·} represents the span of the columns of a matrix. Therefore, there are min(𝑁 − 𝑝, 𝑝) proper

eigenvectors that correspond to Jordan blocks of size 𝑟 > 1.

Assuming the proper eigenvectors provided by Theorem 8.4, the nontrivial Jordan chains of 𝐻𝑝
𝑁 can be

characterized in terms of rectangular stride permutation matrices of order 𝑝 as described in the next theorem

.

Theorem 8.6. For Jordan blocks of 𝐻𝑝
𝑁 with size 𝑟 > 1, the proper and generalized eigenvectors can be

given by an 𝑁 × 𝑟 stride permutation matrix 𝑃
(𝑘)
𝑁,𝑟 of stride 𝑝:

[︁
𝑃

(𝑘)
𝑁,𝑟

]︁
𝑖𝑗

=

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑗 = 𝑘 + (𝑖𝑝mod𝑁) + ⌊𝑖𝑝/𝑁⌋

0, otherwise.

(8.7)

where 0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1 and 1 ≤ 𝑘 ≤ min(𝑁 − 𝑝, 𝑝).

Proof. By (8.6) in the proof of Lemma 8.5, any column of 𝐸𝑁,min(𝑝,𝑁−𝑝) corresponds to a proper eigenvector
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that generates a nontrivial Jordan chain. Set 𝑣1 to the 𝑘th column of 𝐸𝑁,min(𝑝,𝑁−𝑝) and note that it

corresponds to the first column of matrix 𝑃
(𝑘)
𝑁,𝑟 from (8.7).

Since 𝑟 > 1, the generalized eigenvectors 𝑣2, . . . , 𝑣𝑟 in the Jordan chain for 𝑣1 can be found by solving

the recurrence equation (8.3). We solve for the first generalized eigenvector 𝑣2. Let 𝑤 = 𝑣2 = (𝑤1, . . . , 𝑤𝑁 ).

There are 𝑁 − 𝑝 unit elements along the 𝑝th diagonal of 𝐻𝑝
𝑁 , so equation (8.3) constrains 𝑤𝑝+𝑘 = 1 in

addition to 𝑤𝑝+𝑛 = 0 for 𝑛 = 1, . . . , 𝑁 − 𝑝, 𝑛 ̸= 𝑘. The other elements of 𝑤 are arbitrary, so they can be set

to zero to get the second column of 𝑃 (𝑘)
𝑁,𝑟.

Solving the second generalized eigenvector 𝑤 = 𝑣3 yields the constraints 𝑤2𝑝+𝑘 = 1 and 𝑤𝑝+𝑛 = 0 for

𝑛 = 1, 2, . . . 𝑁 − 𝑝, 𝑛 ̸= 𝑝 + 𝑘. The other elements of 𝑤 are arbitrary, so they can again be set to zero. The

resulting vector 𝑤 = 𝑣3 is the third column of 𝑃 (𝑘)
𝑁,𝑟. By induction, the 𝑟th generalized eigenvector 𝑤 = 𝑣𝑟 for

proper eigenvector 𝑣1 is constrained by 𝑤(𝑟−1)𝑝+𝑘 = 1 and 𝑤𝑝+𝑛 = 0 for 𝑛 = 1, 2, . . . 𝑁 − 𝑝, 𝑛 ̸= (𝑟− 2)𝑝+𝑘.

Setting the other elements of 𝑤 to zero yields the 𝑟th column of matrix 𝑃
(𝑘)
𝑁,𝑟.

The next theorem combines the results of Theorem 8.4, Theorem 8.6 and Lemma 8.5 to define an

eigenvector matrix 𝑉𝑁,𝑝 of 𝐻𝑝
𝑁 .

Theorem 8.7. Let 𝑟1 ≥ 𝑟2 ≥ · · · ≥ 𝑟𝑘 denote sizes of Jordan blocks of 𝐻𝑝
𝑁 that are greater than one. Then

an eigenvector matrix 𝑉𝑁,𝑝 of 𝐻𝑝
𝑁 corresponding to Jordan form (8.2) is

𝑉𝑁,𝑝 =

[︃
𝑃

(1)
𝑁,𝑟1

𝑃
(2)
𝑁,𝑟2

. . . 𝑃
(𝑘)
𝑁,𝑟𝑘

𝐸𝑁−𝑝 (𝑘 + 1 : 𝑁 − 𝑝)

]︃
, (8.8)

where 𝐸𝑁−𝑝 (𝑘 + 1 : 𝑁 − 𝑝) denotes the last 𝑁−𝑝−𝑘 columns of proper eigenvector matrix 𝐸𝑁−𝑝, and 𝑃
(𝑖)
𝑁,𝑟𝑖

denotes the 𝑁 × 𝑟𝑖 stride permutation matrix (8.7) of stride 𝑝.

Proof. By Lemma 8.5, an eigenvector matrix 𝑉𝑁,𝑝 of 𝐻𝑝
𝑁 has 𝑘 = min(𝑁 − 𝑝, 𝑝) proper eigenvectors corre-

sponding to Jordan blocks of size greater than one. By Theorem 8.6, the Jordan chains for Jordan blocks

of size 𝑟𝑖 > 1 can be chosen to be 𝑃
(𝑖)
𝑁,𝑟𝑖

with stride 𝑝. The remaining proper eigenvectors corresponding to

Jordan blocks of size one can be set to the last 𝑁 − 𝑝− 𝑘 columns of 𝐸𝑁−𝑝.

Theorem 8.1, Theorem 8.3, and Theorem 8.7 provide the complete eigendecomposition of 𝐻𝑝
𝑁 . The

next section discusses the numerical evaluation of this decomposition in MATLAB.

8.1.2 Numerical Eigendecomposition of 𝐻𝑝
𝑁

The Jordan normal form and eigenvector matrix of Theorem 8.1 and Theorem 8.7 can be found numerically

by MATLAB jordan [78], which computes the Jordan decomposition symbolically. This was tested for
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matrix dimensions 𝑁 ∈ [10, 100]. The computation is very slow, however, so testing for 𝑁 on the order of

1000 was not feasible on a single 16-core, 16-GB machine. In contrast, computing the eigendecomposition of

𝐻𝑁 with MATLAB eig can be done for very large 𝑁 . The output consists of only the proper eigenvectors

as specified by Theorem 8.4. Therefore, the resulting eigenvector matrices are not full rank. In fact, the

eigenvector matrices found in this way for 𝐻𝑝
𝑁 have rank 𝑝. In this way, multiplicity information for the zero

eigenvalue can be deduced.

The next section studies perturbations on 𝐻𝑝
𝑁 in order to examine the behavior of the numerical

decomposition in the presence of perturbed data or numerical sensitivities.

8.1.3 Perturbed 𝐻𝑝
𝑁

Eigendecompositions of perturbations on𝐻𝑝
𝑁 are presented in this section. The convergence of the eigenvalues

of the perturbed matrix to the multiple zero eigenvalue of𝐻𝑝
𝑁 is analyzed. Proofs for this section are provided

in Appendix A.

Perturb 𝐻𝑝
𝑁 to 𝐻𝑝

𝑁 |𝜖,𝑗 = 𝐻𝑝
𝑁 + 𝜖𝐻 ′

𝑁,𝑗 , where 𝜖 > 0 and 𝐻 ′
𝑁,𝑗 ∈ R𝑁×𝑁 is zero except for [𝐻 ′

𝑁,𝑗 ]𝑗1 = 1

for 2 ≤ 𝑗 ≤ 𝑁 . For 𝑗 = 𝑁 , the matrix has characteristic polynomial

𝜙𝑁,1|𝜖,𝑁 (𝜆) = (−1)
𝑁 (︀

𝜆𝑁 − 𝜖
)︀

(8.9)

for 𝑝 = 1 and 𝑗 = 𝑁 , so the eigenvalues of 𝐻𝑁 |𝜖,𝑁 are

𝜆𝑟 = 𝜖
1
𝑁 exp

(︂
2𝜋𝑖𝑟

𝑁

)︂
, 𝑟 = 0, 1, . . . , 𝑁 − 1. (8.10)

The corresponding Jordan chains have length one because the eigenvalues are distinct (see also [83, p.15]).

Note that 𝐻𝑁 |𝜖,𝑁 corresponds to a weighted directed cycle as in Figure 8-1b and is related to the shift matrix

discussed in Section 3.1.2 as 𝜖 → 1.

For 2 ≤ 𝑗 < 𝑁 , the characteristic polynomial is given by

𝜙𝑁,1|𝜖,𝑗 (𝜆) = (−1)
𝑁
𝜆𝑁−𝑗

(︀
𝜆𝑗 − 𝜖

)︀
. (8.11)

Therefore, the eigenvalues of 𝐻𝑁 |𝜖,𝑗 are

𝜆𝑟 =

⎧⎪⎪⎨⎪⎪⎩
𝜖

1
𝑗 exp

(︁
2𝜋𝑖𝑟
𝑗

)︁
, 𝑟 = 0, 1, . . . , 𝑗 − 1,

0, 𝑟 = 𝑗, . . . , 𝑁.

(8.12)
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Figure 8-1b shows that digraph 𝒢(𝐻𝑝
𝑁 |𝜖,𝑗) may become disconnected for 𝑝 > 1 or lose strongly con-

nectedness for 𝑗 < 𝑁 . As in [90, 91, 92], this type of digraph component structure allows the derivation of

the spectrum. For this reason, Theorem 8.8 characterizes the structure of 𝐻𝑝
𝑁 |𝜖,𝑗 in terms of isolated nodes,

directed paths, and directed cycles, which are directed paths with identical start and end nodes.

Theorem 8.8. The following properties characterize the component structure of the digraph 𝒢𝑁,𝑝|𝜖,𝑗 of 𝐻𝑝
𝑁 |𝜖,𝑗:

(i) The digraph contains at most one directed cycle;

(ii) A directed cycle of length ⌈ 𝑗
𝑝⌉ exists in 𝒢𝑁,𝑝|𝜖,𝑗 if 𝑗 − 1 is a multiple of 𝑝.

(iii) The weakly connected components are directed chains or isolated nodes unless a directed cycle exists, in

which case one weakly connected component is either a directed cycle or the union of a directed cycle

and a directed path;

(iv) If a directed cycle exists, it is the sole strongly connected component of size greater than one. Other-

wise, 𝒢𝑁,𝑝|𝜖,𝑗 consists of 𝑁 strongly connected components of size one.

Theorem 8.8 implies the eigenvalues of 𝐻𝑝
𝑁 |𝜖,𝑗 as shown in the next theorem.

Theorem 8.9. If 𝑗 − 1 is a multiple of 𝑝, then 𝐻𝑝
𝑁 |𝜖,𝑗, 2 ≤ 𝑗 ≤ 𝑁 , has 𝑙 = ⌈ 𝑗

𝑝⌉ eigenvalues 𝜆𝑟 that satisfy

𝜆𝑟 = 𝜖
1
𝑙 exp

(︂
2𝜋𝑖𝑟

𝑙

)︂
𝑟 = 0, 1, . . . , 𝑙 − 1 (8.13)

and a zero eigenvalue of algebraic multiplicity 𝑁 − 𝑙. Otherwise, 𝐻𝑝
𝑁 |𝜖,𝑗 has a zero eigenvalue of algebraic

multiplicity 𝑁 .

The convergence of the eigenvalues 𝜆𝑟 to the multiple zero eigenvalue of 𝐻𝑝
𝑁 is analyzed next. Note

that 𝑙 = ⌈ 𝑗
𝑝⌉ becomes large for small 𝑝 and large 𝑗. Then, as 𝑝 → 1 and 𝑗 → ∞, log |𝜆𝑟| → 0, which implies

that |𝜆𝑟| → 1.

In the other direction, 𝑙 → 1 as 𝑗 decreases and 𝑝 grows. This implies log |𝜆𝑟| → log |𝜖|, or |𝜆𝑟| → 𝜖.

Define 𝜖 = 𝛼𝑁 , 0 < 𝛼 < 1. Then log |𝜆𝑟| = 𝑁
𝑙 log𝛼. This implies that eigenvalue magnitudes are on

the order of 𝛼 even for perturbations exponentially decaying with 𝑁 .

The number of Jordan blocks corresponding to the zero eigenvalue of 𝐻𝑝
𝑁 |𝜖,𝑗 is found next.

Theorem 8.10. The number of Jordan blocks 𝑘 corresponding to the zero eigenvalue of 𝐻𝑝
𝑁 |𝜖,𝑗, 2 ≤ 𝑗 ≤ 𝑁 ,

is

𝑘 = 𝑝− 1 + 𝛿 (𝑗 ∈ [2, 𝑁 − 𝑝]) , (8.14)

where 𝛿(·) is the Kronecker delta function.
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Proof. The number of Jordan blocks for eigenvalue zero equals the number of free variables in the system

𝐻𝑝
𝑁 |𝜖,𝑗𝑥 = 𝑏, where 𝑥, 𝑏 ∈ R𝑁 . Since a zero column of 𝐻𝑝

𝑁 |𝜖,𝑗 corresponds to a free variable and there are

𝑝− 1 such columns, there must be 𝑝− 1 Jordan blocks. An additional free variable is present if 𝜖 is not the

sole nonzero element in the 𝑗th row. Since rows 1 to 𝑁 − 𝑝 of 𝐻𝑝
𝑁 |𝜖,𝑗 contain unit elements and 𝑗 ≥ 2, there

is an additional Jordan block if 2 ≤ 𝑗 ≤ 𝑁 − 𝑝.

The next theorem provides the Jordan canonical form of 𝐻𝑁 |𝜖,𝑗 .

Theorem 8.11. The Jordan canonical form 𝐽𝑁,1|𝜖,𝑗 of 𝐻𝑁 |𝜖,𝑗, 2 ≤ 𝑗 ≤ 𝑁 , has form

𝐽𝑁,1|𝜖,𝑗 =

⎡⎢⎢⎢⎢⎣
𝐻𝑁−𝑗 0(𝑁−𝑗)×𝑗

0𝑗×(𝑁−𝑗) diag (Λ𝑗 |𝜖,𝑗)

⎤⎥⎥⎥⎥⎦ , (8.15)

where 𝐻𝑁−𝑗 is the Jordan block for 𝜆 = 0, and diag (Λ𝑗 |𝜖,𝑗) is the 𝑗 × 𝑗 diagonal matrix with entries equal

to the nonzero eigenvalues of Theorem 8.9.

Proof. By Theorem 8.9,𝐻𝑁 |𝜖,𝑗 has 𝑗 distinct nonzero eigenvalues if 𝒢𝑁 |𝜖,𝑗 contains a directed cycle. Let diag(Λ𝑗 |𝜖,𝑗)

denote a 𝑗 × 𝑗 diagonal matrix with the distinct eigenvalues on its diagonal. This provides the lower-right

matrix in (8.15).

For the zero eigenvalue, the algebraic multiplicity is 𝑁 − 𝑗, and the geometric multiplicity 𝑔0 equals

the dimension of Ker(𝐻𝑁 |𝜖,𝑗). If 𝑝 = 1 and 𝑗 = 𝑁 , there are no zero eigenvalues; otherwise, for 𝜖 in the 𝑗th

row of the first column of 𝐴 (i.e., [𝐴]𝑗1 = 𝜖, 2 ≤ 𝑗 < 𝑁), there is a single free variable corresponding to row 𝑗

in system 𝐻𝑝
𝑁 |𝜖,𝑗𝑥 = 𝑏, where 𝑥, 𝑏 ∈ R𝑁 . Thus, 𝑔0 = 1, the number of Jordan blocks for 𝜆 = 0.

The eigenvectors of 𝐻𝑁 |𝜖,𝑗 are next characterized. Theorem 8.12 finds eigenvectors for nonzero eigen-

values, and Theorem 8.13 finds eigenvectors for the zero eigenvalues.

Theorem 8.12. The elements of eigenvector 𝑣 = (𝑣1, . . . , 𝑣𝑁 ) corresponding to a nonzero eigenvalue

of 𝐻𝑁 |𝜖,𝑗 satisfy

𝑣𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜆𝑖−1𝑣1 if 1 ≤ 𝑖 ≤ 𝑗,(︀
𝜆𝑗 − 𝜖

)︀
𝑣1 if 𝑖 = 𝑗 + 1,

𝜆(𝑖−𝑗−1)
(︀
𝜆𝑗−1 − 𝜖

)︀
𝑣1 if 𝑗 + 1 < 𝑖 ≤ 𝑁.

(8.16)
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Proof. Solving 𝐻𝑁 |𝜖,𝑗𝑣 = 𝜆𝑣 yields

𝑣𝑖 = 𝜆𝑣𝑖−1, 𝑖 ̸= 𝑗 + 1 (8.17)

𝜖𝑣1 + 𝑣𝑖 = 𝜆𝑣𝑖−1, 𝑖 = 𝑗 + 1. (8.18)

For 1 < 𝑖 ≤ 𝑗, it can be shown by recursion that 𝑣𝑖 = 𝜆𝑖−1𝑣1. Combining 𝑣𝑗+1 = 𝜆𝑣𝑗 − 𝜖𝑣1 and 𝑣𝑗 = 𝜆𝑗−1𝑣1

yields 𝑣𝑗+1 = (𝜆𝑗 − 𝜖)𝑣1. This implies that 𝑣𝑗+2 = 𝜆𝑣𝑗+1 = 𝜆(𝜆𝑗 − 𝜖)𝑣1 for 𝑖 > 𝑗 + 1. It can be shown

recursively that 𝑣𝑖 = 𝜆𝑖−𝑗−1(𝜆𝑗 − 𝜖)𝑣1.

Since |𝜆| = 𝜖1/𝑁 < 1 for 𝜖 ∈ (0, 1) by (8.10), Theorem 8.12 implies that eigenvectors corresponding to

the nonzero eigenvalues have exponentially decaying elements.

The next theorem defines a set of proper eigenvectors for eigenvalue 𝜆 = 0.

Theorem 8.13. The proper eigenvector of 𝐻𝑁 |𝜖,𝑗 corresponding to the Jordan block for the zero eigenvalue

has two nonzero components 𝑣𝑗+1 and 𝑣1 = − 1
𝜖 𝑣𝑗+1.

Proof. Solving 𝐻𝑁 |𝜖,𝑗𝑣 = 0 yields 𝑣𝑖 = 0 for 𝑖 /∈ {1, 𝑗 + 1} and 𝜖𝑣1 + 𝑣𝑗+1 = 0. The latter equation shows

the relation between the only nonzero elements.

The 1/𝜖 factor in the first element of the eigenvector in Theorem 8.13 propagates through the Jordan

chain by (8.3). Therefore, it is expected to observe instability in the eigenvector components as 𝜖 → 0.

Furthermore, as the length of the Jordan chain increases (e.g., as 𝑁 → ∞ and 𝑗 → 1), the instability should

be more noticeable in the generalized eigenvectors. The numerical behavior of the eigendecomposition is

described in the next section.

8.1.4 Numerical Eigendecomposition of Perturbed 𝐻𝑁

The eigendecomposition of perturbed 𝐻𝑁 is computed with MATLAB eig and shown in Figure 8-3. As

the previous section discussed, the eigenvalue magnitudes of 𝐻𝑝
𝑁 |𝜖,𝑗 are on the order of the perturbation for

small 𝑙 = ⌈ 𝑗
𝑝⌉. Figure 8-3 confirms this behavior; for example, eigenvalue magnitudes for 𝑁 = 1000 decrease

from 0.9441 for 𝜖 = 10−5 to 0.8414 for 𝜖 = 10−15. Thus, convergence to the multiple zero eigenvalue of 𝐻𝑝
𝑁

is slow even for small 𝜖.

Theorem 8.12 shows that the eigenvectors for nonzero eigenvalues have exponentially decaying com-

ponents. To observe this phenomenon, the matrix decomposition is computed with MATLAB eig for 𝑁 =

𝑗 = 20 and 𝜖 = 10−15, which yields an eigenvector matrix 𝑉𝑁,1|𝜖,𝑗 with minimum elements on the order of 𝜖.
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Figure 8-3: Eigenvalues of 𝐻𝑁 |𝜖,𝑗 in the complex plane for 𝑗 ∈ {𝑁
5 ,

2𝑁
5 , 3𝑁

5 , 4𝑁
5 , 𝑁} denoted by black,

magenta, green, red, and blue, respectively. The magnitudes increase with 𝑁 , 𝜖, or 𝑗.

Therefore, a numerical rank computation is highly dependent on the choice of threshold. Computing the

rank of 𝑉𝑁,1|𝜖,𝑗 with threshold on the order of 𝜖 shows that the matrix has full numerical rank.

On the other hand, when the zero eigenvalue corresponds to nontrivial Jordan chains, Theorem 8.13

shows a 1/𝜖 factor in the proper eigenvectors that propagates through the Jordan chains. For an eigenvector

matrix computed with MATLAB jordan for 𝑁 = 20, 𝜖 = 10−15, and 𝑗 = 5, each proper eigenvector 𝑣1 for the

zero eigenvalue has first element 𝑣11 ∼ 1015, and the 𝑘th generalized eigenvector in the chain has 𝑣𝑘1 ∼ 1015𝑘.

This shows that the eigenvector instability increases in the presence of Jordan blocks of high dimension.

These results show that the effect of ill-conditioning is heavily pronounced when nontrivial Jordan chains

characterize the decomposition of 𝐴.

The effect of ill-conditioning on the proper eigenvectors is less pronounced when computing the eigen-

vector matrix with MATLAB eig. The numerical rank of the matrix in the previous paragraph assuming

threshold 𝜖 is 𝑗 + 1 as expected from Theorem 8.9 and Theorem 8.10. Although the generalized eigenvectors

are missing, the algebraic multiplicity of eigenvalue zero can be deduced and used to compute the vectors

through the recurrence equation (8.3).

This section has illustrated numerical behaviors of powers of the Jordan block 𝐻𝑁 and a perturbed

form. The next section presents a similar analysis for a denser directed network.
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8.2 Eigendecomposition for Feed-Forward Network

This section studies the 𝑁 ×𝑁 matrix 𝐴𝑁 =
∑︀𝑁−1

𝑖=0 𝐻𝑖
𝑁 where 𝐻𝑁 = 𝐽(0), or

𝐴𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 . . . 1

0 1
. . .

...

0
. . . 1

0
. . . 1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.19)

Since 𝐴𝑁 is upper triangular with diagonal entries of zero, all eigenvalues are zero.. Unlike the powers

of 𝐻𝑁 studied in Section 8.1, 𝐴𝑁 represents a denser digraph where every node connects to its rightward

neighbors as depicted in Figure 8-2a. The rightward neighbors are “leaders” in the sense that other network

members are influenced by their behavior; this situation occurs in real-world graphs such as those representing

blog networks [68] and diffusion networks [93, 94]. The leftmost node can be interpreted as the node of

maximum influence in a diffusion network.

Section 8.2.1 provides analysis for an eigendecomposition of 𝐴𝑁 with numerical comparisons given

in Section 8.2.2. Section 8.2.3 analyzes a perturbed form of 𝐴𝑁 . Section 8.2.4 compares the perturbed

eigendecomposition to numerical computations.

8.2.1 Analysis for Eigendecomposition of 𝐴𝑁

This section presents the full eigendecomposition of (8.19); certain proofs are provided in Appendix B.

The Jordan canonical form 𝐽𝑁 and eigenvector matrix 𝑉𝑁 are found for the Jordan decomposition 𝐴𝑁 =

𝑉𝑁𝐽𝑁𝑉 −1
𝑁 .

Theorem 8.14. The Jordan canonical form 𝐽𝑁 of 𝐴𝑁 is 𝐻𝑁 .

Proof. It suffices to show that 𝐴𝑁 has a single Jordan block of size 𝑁 . Perform elementary row operations

to put 𝐴𝑁 into row-reduced echelon form rref(𝐴𝑁 ). Since rref(𝐴𝑁 ) = 𝐻𝑁 , there is one free variable in

system of equations 𝐴𝑁𝑥 = 𝑏 for 𝑥, 𝑏 ∈ R𝑁 . The geometric multiplicity of 𝜆 = 0 equals the number of free

variables [33, 56], so there is a single Jordan block of size 𝑁 .

By Theorem 8.14, an eigenvector matrix 𝑉𝑁 of 𝐴𝑁 will have 𝑁 − 1 generalized eigenvectors corre-
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sponding to Jordan block 𝐽𝑁 . Theorem 8.15 shows an eigenvector matrix 𝑉𝑁 based on the upper-triangular

Pascal matrix 𝑃𝑁 defined as [95]

𝑃𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 . . . 1

1 2 3 4 . . . 𝑁 − 1

1 3 6 . . .
(︀
𝑁−1
2

)︀
1 4 . . .

(︀
𝑁−1
3

)︀
. . .

. . .
...

0 1 𝑁 − 1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.20)

Theorem 8.15. The inverse of the Pascal matrix (8.20) is an eigenvector matrix 𝑉𝑁 of 𝐴𝑁 .

Theorem 8.15 proves one possible eigenvector matrix for 𝐴𝑁 ; please see Appendix B.1 for the proof.

Since solving for the Jordan chains of a matrix that is not full rank introduces degrees of freedom, the gener-

alized eigenvectors of 𝐴𝑁 are not unique. The next theorem proves another possible eigenvector matrix 𝑉𝑁 .

Theorem 8.16. The matrix

𝑉𝑁 =

⎡⎢⎢⎢⎢⎣
1 0𝑇𝑁−1

0𝑁−1 𝑃−1
𝑁−1

⎤⎥⎥⎥⎥⎦ (8.21)

with inverse

𝑉 −1
𝑁 =

⎡⎢⎢⎢⎢⎣
1 0𝑇𝑁−1

0𝑁−1 𝑃𝑁−1

⎤⎥⎥⎥⎥⎦ (8.22)

is an eigenvector matrix for the matrix 𝐴𝑁 of (8.19), where 𝑃𝑁 denotes the 𝑁 × 𝑁 Pascal matrix defined

in (8.20).

The behavior of the numerical eigendecomposition of 𝐴𝑁 is discussed next.
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8.2.2 Numerical Eigendecomposition of 𝐴𝑁

Theorems 8.14, 8.15, and 8.16 are compared to the numerical decomposition of 𝐴𝑁 via the MATLAB eig and

jordan functions. For eig, the eigendecompositions yield the zero eigenvalue with multiplicity 𝑁 ; however,

the generalized eigenvectors are not computed, so the resulting eigenvector matrix 𝑉𝑁 has numerical rank 1

corresponding to the single proper eigenvector of 𝐴𝑁 . The Jordan form is then computed with MATLAB’s

jordan for 𝑁 ∈ [10, 100]. The algebraic and geometric multiplicities of eigenvalue zero as well as the

generalized eigenvectors are all found, since the Jordan canonical form matches Theorem 8.14 and the

eigenvectors match (8.21). However, the eigenvector matrices are ill-conditioned; for example, 𝑉10 and 𝑉100

have condition numbers 1.0717 × 1027 and 1.5233 × 1047, respectively. In this way, 𝑉𝑁 may not have full

numerical rank even though it is full rank in actuality.

8.2.3 Analysis for Eigendecomposition of Perturbed 𝐴𝑁

Perturb 𝐴𝑁 to 𝐴𝑁 |𝜖,𝑗 = 𝐴𝑁 + 𝜖𝐴′
𝑁,𝑗 , 2 ≤ 𝑗 ≤ 𝑁 , where 𝜖 > 0 and matrix 𝐴′

𝑁,𝑗 is zero except for

[𝐴′
𝑁,𝑗 ]𝑗1 = 1. When 𝑗 = 𝑁 , 𝐴𝑁 |𝜖,𝑗 corresponds to a strongly connected digraph as in Figure 8-2b, where a

larger 𝜖 represents a greater degree of strongly connectedness in the network. For 𝑗 < 𝑁 , the digraph consists

of a strongly connected subgraph of 𝑗 nodes. We will see that 𝐴𝑁 |𝜖,𝑗 exhibits a multiple zero eigenvalue

and distinct nonzero eigenvalues without spurious numerical computations; however, numerical instability is

shown in the eigenvectors.

Eigenvalues of 𝐴𝑁 |𝜖,𝑗. Lemma 8.17 below is needed to find the eigenvalues of 𝐴𝑁 |𝜖,𝑗 ; the proof is

provided in Appendix B.3.

Lemma 8.17. Define 𝑁 ×𝑁 matrix 𝑀𝑁 , 𝑁 ≥ 2, of form

𝑀𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

−𝜆 1 1 . . . 1

−𝜆 1 . . . 1

. . .
. . .

−𝜆 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.23)

where the elements below the diagonal of −𝜆 elements are all zero (𝑀𝑁 is upper Hessenberg). The determi-
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nant of 𝑀𝑁 is

det (𝑀𝑁 ) = (𝜆 + 1)𝑁−2. (8.24)

The next theorem follows from Lemma 8.17 and provides the eigenvalues of 𝐴𝑁 |𝜖,𝑗 , 2 ≤ 𝑗 ≤ 𝑁 .

Theorem 8.18. The characteristic polynomial of 𝐴𝑁 |𝜖,𝑗 is

𝜙𝑁 |𝜖,𝑁 (𝜆) = (−1)
𝑁
(︁
𝜆𝑁 − 𝜖 (𝜆 + 1)

𝑁−2
)︁
. (8.25)

for 𝑗 = 𝑁 ; for 2 ≤ 𝑗 < 𝑁 ,

𝜙𝑁 |𝜖,𝑗 = (−𝜆)
𝑁−𝑗

𝜙𝑁 |𝜖,𝑁 (𝜆) . (8.26)

Equivalently, substituting 𝑗 = 𝑁 − 𝑘,

𝜙𝑁 |𝜖,𝑁−𝑘 = (−𝜆)
𝑘
𝜙𝑁−𝑘|𝜖,𝑁 (𝜆) . (8.27)

Theorem 8.18 shows that 𝐴𝑁 |𝜖,𝑗 for 𝑗 < 𝑁 has a zero eigenvalue (zero root of (8.26)) of multiplicity𝑁−𝑗

and 𝑗 distinct eigenvalues characterized by the roots of (8.25). This shows that changing the location of 𝜖

induces multiple (non-spurious) zero eigenvalues.

Theorem 8.18 also gives the characteristic polynomial (8.25) of 𝐴𝑁 |𝜖,𝑁 , whose roots characterize the

non-zero, complex eigenvalues of 𝐴𝑁 |𝜖,𝑗 . The asymptotic behavior is studied to characterize convergence to

the multiple zero eigenvalue of 𝐴𝑁 . From (8.25), the eigenvalues of 𝐴𝑁 |𝜖,𝑁 satisfy

𝜆𝑁 = 𝜖 (𝜆 + 1)
𝑁−2 , or, (8.28)(︂

𝜆

𝜆 + 1

)︂𝑁

=
𝜖

(𝜆 + 1)
2 . (8.29)

Let Λ𝑁 |𝜖,𝑁 = {𝜆1, . . . , 𝜆𝑁} denote the eigenvalues satisfying (8.28) and (8.29), ordered by decreasing

magnitude. The spectral radius 𝜌𝑁,𝜖 = max1≤𝑖≤𝑁 |𝜆𝑖| is found for for 𝜆𝑖 ∈ Λ𝑁 |𝜖,𝑁 . Asymptotic behavior

for 𝜆 is proven to satisfy Re 𝑧 ≤ − 1
2 . Lastly, convergence to zero is demonstrated for small 𝜖 by applying

following lemma.

Lemma 8.19. For all 𝑧 ∈ C,

⃒⃒⃒⃒
𝑧

𝑧 + 1

⃒⃒⃒⃒
=

|𝑧|
|𝑧 + 1|

⎧⎪⎪⎨⎪⎪⎩
< 1 if Re 𝑧 > − 1

2

≥ 1 if Re 𝑧 ≤ − 1
2 .

(8.30)
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Proof. Note |𝑧𝑤| = |𝑧| |𝑤| for all 𝑧, 𝑤 ∈ C (see [96]). The result follows by substituting 𝑧 = Re 𝑧 + 𝑗Im 𝑧.

The next theorem shows the asymptotic behavior of the spectral radius 𝜌𝑁,𝜖 (the eigenvalue of maximum

magnitude).

Theorem 8.20. For 𝜖 ∈ (0, 1), the spectral radius 𝜌𝑁,𝜖 of 𝐴𝑁 |𝜖,𝑁 has the following asymptotic properties:

(i) lim𝑁→∞ 𝜌𝑁,𝜖 = ∞;

(ii) lim𝑁→0 𝜌𝑁,𝜖 = 0;

(iii) Let 𝜖 = 𝛼𝑁 , 0 < 𝛼 < 1. Then

lim
𝑁→∞,𝛼→1

𝜌𝑁,𝜖 = ∞ and lim
𝑁→∞,𝛼→0

𝜌𝑁,𝜖 = 0.

For certain epidemic models in diffusion networks, the spectral radius is inversely proportional to the

critical epidemic threshold [93]. By Theorem 8.20, 𝜌𝑁,𝜖 increases for large𝑁 and large 𝜖, so digraph 𝒢(𝐴𝑁 |𝜖,𝑁 )

is more robust to viral propagation as the number of nodes and the degree of strongly connectedness increase.

Theorem 8.21 shows the eigenvalue asymptotic behavior for Re𝜆 > − 1
2 .

Theorem 8.21. Let 0 < 𝜖 < 1. Eigenvalues 𝜆 of 𝐴𝑁 |𝜖,𝑁 satisfying Re𝜆 > − 1
2 have the following asymptotic

properties:

(i) For Re𝜆 > 0, lim𝑁→∞ |𝜆| = ∞, and, for Re𝜆 < 0, lim𝑁→∞ Re𝜆 = − 1
2

+
;

(ii) lim𝑁→0 |𝜆| = 0;

(iii) Let 𝜖 = 𝛼𝑁 , 0 < 𝛼 < 1. Then lim
𝑁→∞,𝛼→0

|𝜆| = 0. Moreover,

lim
𝑁→∞,𝛼→1

|𝜆| = ∞ for Re𝜆 > 0, and

lim
𝑁→∞,𝛼→1

Re𝜆 = −1

2

+

for Re𝜆 < 0.

Theorem 8.21 describes the asymptotic behavior of the eigenvalues of 𝐴𝑁 |𝜖,𝑁 with the restriction

Re𝜆 > − 1
2 . In particular, the eigenvalue magnitudes increase in this region for large 𝑁 and large 𝜖.

Furthermore, the eigenvalue magnitudes approach 0 sublinearly as 𝑁 → 0 and as 𝜖 decays exponentially

with 𝑁 . Theorem 8.22 shows that most eigenvalues lie in the region Re𝜆 > − 1
2 as 𝜖 → 0.

Theorem 8.22. There exists 𝜖′ > 0 such that, for all 𝜖 < 𝜖′, the eigenvalues Λ𝑁 |𝜖,𝑁 of 𝐴𝑁 |𝜖,𝑁 all converge

to the multiple zero eigenvalue of 𝐴𝑁 .
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By Theorem 8.22, the eigenvalues of 𝐴𝑁 |𝜖,𝑁 converge to the multiple zero eigenvalue of 𝐴𝑁 as 𝜖 → 0;

on the other hand, the numerical results of Section 8.2.4 show that this convergence is slow.

By the characteristic polynomial (8.26), moving 𝜖 up the first column (i.e., reducing the size 𝑗 of the

strongly connected component in digraph 𝒢(𝐴𝑁 |𝜖,𝑗)) decreases the number of non-zero eigenvalues. Thus,

even for 𝑁 → ∞, placing 𝜖 close to the main diagonal, such as at entry (2,1), results in a zero eigenvalue

of multiplicity 𝑚0 ≈ 𝑁 . Choosing small enough 𝜖 with this placement ensures the few nonzero eigenvalues

converge to zero.

The next theorem characterizes the Jordan form of 𝐴𝑁 |𝜖,𝑗 , 2 ≤ 𝑗 < 𝑁 .

Theorem 8.23. The Jordan form 𝐽𝑁 |𝜖,𝑗 of 𝐴𝑁 |𝜖,𝑗, 2 ≤ 𝑗 < 𝑁 , (unique up to a permutation of the Jordan

blocks) is

𝐽𝑁 |𝜖,𝑗 =

⎡⎢⎢⎢⎢⎣
𝐻𝑁−𝑗 0𝑁−𝑗×𝑗

0𝑗×𝑁−𝑗 diag (Λ𝑗 |𝜖,𝑗)

⎤⎥⎥⎥⎥⎦ , (8.31)

where 𝐻𝑁−𝑗 is the (𝑁 − 𝑗)× (𝑁 − 𝑗) Jordan block for eigenvalue zero and diag(Λ𝑗 |𝜖,𝑗) is the diagonal matrix

with entries equal to the eigenvalues 𝜆 ∈ Λ𝑗 |𝜖,𝑗 of 𝐴𝑗 |𝜖,𝑗.

Eigenvectors of perturbed 𝐴𝑁 . The eigenvectors of 𝐴𝑁 |𝜖,𝑁 are characterized here. Solve 𝐴𝑁 |𝜖,𝑁𝑣 =

𝜆𝑣 for 𝑣 ∈ C𝑁 :

𝑣𝑁−𝑘 =

⎧⎪⎪⎨⎪⎪⎩
𝜖
𝜆𝑣1, 𝑘 = 0,

1
𝜆

∑︀𝑁
𝑙=𝑁−𝑘+1 𝑣𝑙, 1 ≤ 𝑘 ≤ 𝑁 − 1,

(8.32)

or, 𝑣𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝜖
𝜆𝑣1, 𝑖 = 𝑁,

1
𝜆

∑︀𝑁
𝑙=𝑖+1 𝑣𝑙, 1 ≤ 𝑖 ≤ 𝑁 − 1.

(8.33)

An expression is developed for the eigenvector elements 𝑣𝑖 in Theorem 8.25. This requires the following

lemma.

Lemma 8.24.
𝑁∑︁

𝑙=𝑁−𝑘

𝑣𝑙 =

(︂
1 +

1

𝜆

)︂𝑘

𝑣𝑁 . (8.34)

Theorem 8.25. The elements 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑁 , of eigenvector 𝑣 = (𝑣1, . . . , 𝑣𝑁 ) of 𝐴𝑁 |𝜖,𝑁 can be expressed as

𝑣𝑖 =
1

𝜆

(︂
1 +

1

𝜆

)︂𝑁−𝑖−1

𝑣𝑁 . (8.35)
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Proof. Combine (8.32) and Lemma 8.24 to get (8.35) in terms of 𝑖 = 𝑁 − 𝑘.

Substituting 𝑣𝑁 = 𝜆(1 + 1
𝜆 )−(𝑁−1)𝑣1 in (8.35) yields

𝑣𝑖 =
1

𝜆

(︂
1 +

1

𝜆

)︂𝑁−𝑖−1

· 𝜆
(︂

1 +
1

𝜆

)︂−(𝑁−1)

𝑣1 (8.36)

=

(︂
1 +

1

𝜆

)︂1−𝑖

𝑣1 =

(︂
𝜆

𝜆 + 1

)︂𝑖−1

𝑣1. (8.37)

The next theorem shows that the elements 𝑣𝑖 of eigenvectors 𝑣 exponentially decay as index 𝑖 increases for

large 𝑁 and small 𝜖.

Theorem 8.26. Eigenvectors 𝑣 = (𝑣1, . . . , 𝑣𝑁 ) of 𝐴𝑁 |𝜖,𝑁 have exponentially decaying elements for small 𝜖 >

0.

Proof. By Theorem 8.22, there exists 𝜖′ such that Re𝜆 > − 1
2 for all 𝜖 < 𝜖′. Then, by Lemma 8.19,

⃒⃒⃒
𝜆

𝜆+1

⃒⃒⃒
< 1.

for all 𝜆 satisfying (8.28). Therefore, the geometric series (8.37) converges to zero as index 𝑖 → ∞ – i.e., as

𝑁 → ∞.

Theorem 8.26 and the corresponding effect on the numerical rank of the eigenvector matrix is discussed

in more detail in Section 8.2.4. The eigenvectors of the distinct Λ𝑁 |𝜖,𝑗 in (8.31) are found next.

Theorem 8.27. An eigenvector 𝑣 = (𝑣1, . . . , 𝑣𝑁 ) corresponding to a nonzero eigenvalue of 𝐴𝑁 |𝜖,(𝑁−𝑘),

2 ≤ 𝑘 < 𝑁 , has the following properties:

(i) Elements 𝑣𝑖, 𝑁 − 𝑘 < 𝑖 < 𝑁 , satisfy

𝑣𝑖 =
1

𝜆

𝑁∑︁
𝑗=𝑖

𝑣𝑗 =
1

𝜆

(︂
1 +

1

𝜆

)︂𝑁−𝑖

;

(ii)

𝑣1 =
1

𝜖

(︃
𝜆𝑣𝑁−𝑘 −

(︂
1 +

1

𝜆

)︂𝑘−1

𝑣𝑁

)︃
;

(iii) For 2 ≤ 𝑖 ≤ 𝑁 − 𝑘 − 1,

𝑣𝑖 =

(︂
𝜆

𝜆 + 1

)︂𝑖−1

𝑣1.

Proof. (i) Solving 𝐴𝑁 |𝜖,(𝑁−𝑘)𝑣 = 𝜆𝑣 yields

⎧⎪⎪⎨⎪⎪⎩
∑︀𝑁

𝑙=𝑖+1 𝑣𝑙 = 𝜆𝑣𝑖, 𝑖 ̸= 𝑁 − 𝑘

𝜖𝑣1 +
∑︀𝑁

𝑙=𝑖+1 𝑣𝑙 = 𝜆𝑣𝑖, 𝑖 = 𝑁 − 𝑘.

(8.38)
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Figure 8-4: Eigenvalues of 𝐴𝑁 |𝜖,𝑗 for 𝑗 ∈ {𝑁
5 ,

2𝑁
5 , 3𝑁

5 , 4𝑁
5 , 𝑁}, denoted by black, magenta, green, red, and

blue, respectively. The spectral radii increase with 𝑁 , 𝜖, or 𝑗.

Rows 𝑁 − 𝑘 + 1 to 𝑁 − 1 have form (8.32), so 𝑣𝑁−𝑘+1, . . . , 𝑣𝑁−1 satisfy Lemma 8.24. Substitution gives the

result.

(ii) The result follows from row 𝑁 − 𝑘 and Lemma 8.24.

(iii) Rows 1 to 𝑁 − 𝑘 − 1 can be written as

𝑣𝑖 =
𝜆

𝜆 + 1
𝑣𝑖−1, 2 ≤ 𝑖 ≤ 𝑁 − 𝑘 − 1. (8.39)

Recursively writing (8.39) in terms of 𝑣1 yields (iii).

Theorem 8.27 shows that the first element of an eigenvector 𝑣 for a nonzero eigenvalue is unstable as

𝜖 → 0. Since the first 𝑁 − 𝑘− 1 elements of 𝑣 are multiples of 𝑣1, these elements are also unstable. We next

find the eigenvectors for 𝜆 = 0.

Theorem 8.28. The proper eigenvector 𝑣 = (𝑣1, . . . , 𝑣𝑁 ) ∈ C𝑁 corresponding to the Jordan block 𝐻𝑁−𝑗×𝑁−𝑗

in (8.31) has three non-zero elements 𝑣1, 𝑣𝑁−𝑘 and 𝑣𝑁−𝑘+1 such that 𝑣1 = − 1
𝜖 𝑣𝑁−𝑘+1 and 𝑣𝑁−𝑘 = −𝑣𝑁−𝑘+1.

Proof. The result follows by inspecting rows 𝑁 − 𝑘 − 1 and 𝑁 − 𝑘 of the system of equations (8.38) for

𝜆 = 0.
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Figure 8-5: Ratio of numerical rank (with threshold 10−15) to matrix dimension 𝑁 versus log10 (𝜖) for 𝑁 = 10
(blue), 𝑁 = 100 (black), and 𝑁 = 1000 (red). The eigenvector matrix 𝑉𝑁,𝜖 does not lose rank for 𝑁 = 10.
The smallest 𝜖 at which 𝑉𝑁,𝜖 is full rank is 𝜖 = 10−15.29 for 𝑁 = 100, and 𝜖 = 10−13.43 for 𝑁 = 1000.

8.2.4 Numerical Eigendecomposition of Perturbed 𝐴𝑁

Numerical eigenvalues. The eigenvalues of 𝐴𝑁 |𝜖,𝑗 are computed with MATLAB eig and shown in Fig-

ure 8-4. The properties proven in the previous section are compared here to the numerical eigenvalues.

Theorem 8.18 implies that changing the location of 𝜖 induces multiple zero eigenvalues. This is true in

Figure 8-4, which shows that 𝐴50|𝜖,10 has 40 zero eigenvalues and 10 that are the roots of 𝜙50|𝜖,10(𝜆), while

𝐴50|𝜖,40 has 10 zero eigenvalues with the remaining 40 described by the roots of 𝜙50|𝜖,40(𝜆).

The convergence properties shown in Theorem 8.20 are observed in Figure 8-4 as well. Decreasing 𝑁

from 1000 to 50 causes the spectral radius to decrease from 𝜌1000,𝜖 = 51.01 to 𝜌50,𝜖 = 3.02 for 𝜖 = 10−5. This

convergence of 𝜌𝑁,𝜖 is sublinear with 𝑁 for fixed 𝜖.

In addition, the eigenvalues converge sublinearly to zero for fixed 𝑁 and decreasing 𝜖 as seen Figure 8-

4. For 𝑁 = 50 the resulting spectral radii are 𝜌𝑁,10−5 = 3.02, 𝜌𝑁,10−10 = 1.55, and 𝜌𝑁,10−15 = 0.95. Even

for a perturbation as small as 10−15 the spectral radius is significantly greater than zero. This verifies

Theorem 8.20(iii); i.e., the spectral radius does not approach zero if the perturbation does not exponentially

decay with 𝑁 . This means that the (multiple) zero eigenvalue in the unperturbed graph is not attained, and

knowledge of the unperturbed eigendecomposition does not influence the behavior of the perturbed case.

This is clearly seen in terms of the GFT (4.2), since the unperturbed case has a single spectral component

while the perturbed case has 𝑁 spectral components.

In addition, Figure 8-4 shows that the eigenvalue magnitudes increase in the region Re𝜆 > − 1
2 for

large 𝑁 and large 𝜖. The magnitudes approach 0 sublinearly as 𝑁 → 0 and as 𝜖 decays exponentially with 𝑁 .

These observations hold with the results of Theorem 8.21. Figure 8-4 also shows that most eigenvalues lie

in the region Re𝜆 > − 1
2 as 𝜖 → 0, which is formalized in Theorem 8.22.

The final result for the eigenvalues of 𝐴𝑁 |𝜖,𝑁 is that they converge to the multiple zero eigenvalue

of 𝐴𝑁 as 𝜖 → 0 by Theorem 8.22. This behavior is observed in Figure 8-4, although this convergence is slow.
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Numerical eigenvectors. The numerical rank of the eigenvector matrices are computed by the

MATLAB rank function with a threshold of 10−15. Figure 8-5 shows that the 𝜖 at which 𝑉𝑁 |𝜖,𝑁 is no

longer full rank decreases as 𝑁 increases; for example, 𝐴𝑁 |10−15,𝑁 is full rank for 𝑁 = 100 but loses rank

for 𝑁 = 1000. These behaviors are expected since Theorem 8.26 shows that, for large 𝑖 and small 𝜖, the

eigenvector elements 𝑣𝑖 become small enough that the numerical rank of the eigenvector matrix 𝑉𝑁 |𝜖,𝑁

decreases. While the eigenvalue computation of 𝐴𝑁 |𝜖,𝑗 does not result in stability issues as 𝑁 and 𝜖 vary,

Figure 8-5 shows that the eigenvector matrix 𝑉𝑁 |𝜖,𝑗 loses numerical rank as 𝑁 → ∞ and 𝜖 → 0, and that

the threshold 𝜖 at which this occurs increases with 𝑁 .

The first element of the eigenvector for 𝜆 = 0 is unstable for small 𝜖 by Theorem 8.28, and this

instability propagates to the generalized eigenvectors via (8.3). This is evident with MATLAB jordan. For

example, the proper eigenvector 𝑣1 for 𝜆 = 0 has first element 𝑣11 on the order of 1015 for 𝑁 = 20 and

𝜖 = 10−15; the 𝑘th generalized eigenvector in the Jordan chain has first element 𝑣𝑘1 ∼ 1015𝑘, 2 ≤ 𝑘 ≤ 𝑁 − 𝑗.

As a result, the eigenvector matrix 𝑉𝑁 |𝜖,𝑗 loses rank.

Despite the effects of ill-conditioning that are illustrated in this chapter, our results show that the

conditioning of the proper eigenvectors as found by MATLAB eig is reasonable as long as the threshold

for the numerical rank computation is on the order of the chosen 𝜖. In other words, a numerical (non-

symbolic) eigendecomposition can be used to estimate the eigenvalues and a set of proper eigenvectors for

a general adjacency matrix regardless of its defective or nearly defective properties. This is important for

applications in which a set of linearly independent eigenvectors is needed, such as computing the graph

Fourier transform (4.2) or inexact transform (6.2).

Consequently, the methods described in Chapter 7 can still be applied. This is demonstrated in the

following chapters, which detail the steps we took to apply the Agile Inexact Method (AIM) for the GFT (6.2)

to New York City taxi data. Chapter 9 describes the signal extraction step for the taxi data. Chapter 10

addresses the eigendecomposition of the Manhattan road network and shows results of the AIM.

88



Part IV

Application to New York City Taxi Data

In Part IV, our method for applying graph signal processing to four years (2010-2013) of New York

City taxi data is presented. Chapter 9 describes the signal extraction step, which requires converting the

static start-/end-location framework provided by the data to an estimate of a taxi’s trajectory. This specifi-

cation requires significant pre-processing. The chapter details the platforms and design trade-offs that were

necessary to obtain a solution that can compute the trajectories and statistics in less than a day.

Chapter 10 describes steps that are necessary to compute Jordan chains for the zero eigenvalue of

the Manhattan road network. This allows us to obtain a Jordan basis with which signal projections onto

eigenvectors can be obtained. This method is compared to the Agile Inexact Method (AIM) described in

Chapter 6, which is much faster to compute. The eigenvector and AIM results express the same eigenvector

locations, while the AIM disperses less energy among the Jordan subspaces.
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Chapter 9

Signal Extraction for New York City

Taxi Data

Understanding traffic flow in cities has significant ramifications, from optimizing daily commutes to

facilitating evacuations in the case of emergencies and natural disasters [97, 98]. In particular, the tempo

and pattern of traffic flow must be known in order to implement policies that can handle traffic congestion or

unforeseen events. With the advent of smart city initiatives such as New York City’s Open Data project [99],

information obtained from cameras [100] and taxi GPS records [101] provide new data sources for exam-

ining the movement of city traffic, opening new research in areas such as big urban data visualization and

analytics [97, 98, 102, 35].

This chapter and Chapter 10 demonstrate an application of the GFT(4.2) to four years (2010-2013) of

New York City taxi data. The data set consists of 700 million taxi trips for 13,000 medallions (taxi cabs)

with data fields including pick-up and drop-off locations and times [101]. Since the data does not include

taxi trajectories, computation of the taxi paths is an essential pre-processing step for our application. Other

studies based on tracking taxi GPS data over a road network include [2, 103, 104, 105]. In [2], GPS traces

for taxi trips in China are used to discover anomalous trajectories. In [106], optimal locations of traffic

monitoring units are determined using betweenness centrality measures based on origin and destination data

as well as a transportation network.

Our objective here is to apply the graph signal processing framework developed in this thesis to identify

sites of localized co-behavior in Manhattan which reflect traffic activity patterns that may not be obvious

from the raw data. In order to do this, the methods for analysis must be efficient in both memory utilization

and execution time so that the large scale of the available data can be fully exploited.
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Figure 9-1: Method for applying graph signal processing to NYC taxi data.

In this chapter, the computation behind extracting key spatial and temporal behaviors using four years

of New York City taxi data as traffic indicators is analyzed and discussed. In particular, we design a low-

latency, memory-efficient solution to compute statistics on taxi movement in New York City. Our overall

method is shown in Figure 9-1.

9.1 Data Set Descriptions

Our goal is to extract behaviors over space and time that characterize taxi movement through New York

City based on four years (2010-2013) of New York City taxi data [101]. Since the path of each taxi trip is

unknown, an additional processing step is required to estimate taxi trajectories before extracting statistics

of interest. For example, if a taxi picks up passengers at Times Square and drops them off at the Rockefeller

Center, it is desirable to have statistics that capture not just trip data at the landmarks, but also at the

intermediate locations as depicted in Figure 9-2a.

Estimating tax trajectories requires overlaying the taxi data on the New York City road network. We

describe the taxi data and define the network as follows.

9.1.1 NYC Taxi Data

The 2010-2013 taxi data we work with consists of 700 million trips for 13,000 medallions [101]. Each trip

has about 20 descriptors including pick up and drop off timestamps, latitude, and longitude, as well as the

passenger count, trip duration, trip distance, fare, tip, and tax paid. The data is available as 16.7 GB of

compressed CSV files.

Dynamic representation. Since the available data provides only static (start and end) information

for each trip, an estimate of the taxi trajectory is needed in order to capture the taxi locations interspersed

throughout the city at a given time slice. Section 9.2 explains our method for estimating these trajectories,
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(a) Example Dijkstra shortest path. (b) Example four-year average taxi statistics.

Figure 9-2: (a) Dijkstra shortest path of a single taxi trip from Times Square to the Rockefeller Center.
(Map data: Google [107]). (b) Examples of four-year average statistics computed at an intersection close
to Rockefeller Center: average number of trips (top right), average number of passengers (middle right),
and average tip fraction (bottom right). The hour index corresponds to an hour of the week with index 0
corresponding to Sunday 12am, index 12 to Sunday 12pm, index 24 to Monday 12pm, etc.

which is based on Dijkstra’s algorithm.

Once taxi paths are estimated, they are used to extract traffic behavior. Example statistics of interest

include the average number of trips that pass through a given location at a given time of day, the average

number of passengers of these trips, and the average tip paid. Figure 9-2b illustrates such statistics.

9.1.2 NYC and Manhattan Road Networks

The road network 𝐺 = (𝑉,𝐸) consists of a set 𝑉 of |𝑉 | = 79, 234 nodes and a set 𝐸 of |𝐸| = 223, 966 edges

which we represent as a |𝑉 | × |𝑉 | adjacency matrix 𝐴. The nodes in 𝑉 represent intersections and points

along a road based on geo-data from [67]. Each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , corresponds to a road segment

on which traffic may flow from geo-location 𝑣𝑖 to geo-location 𝑣𝑗 as determined by Google Maps [107]. An

edge of length 𝑑𝑖𝑗 > 0 is represented by a nonzero entry in the adjacency matrix so that [𝐴]𝑖𝑗 = 𝑑𝑖𝑗 . A zero

entry corresponds to the absence of an edge; i.e., no edges of length zero are present in the network.

The network 𝐺 is directed since the allowed traffic directions along a road segment may be asymmetric.

In addition, 𝐺 is strongly connected since a path (trajectory) exists from any geo-location to any other

geo-location.

Our analysis focuses on the Manhattan grid, which is a subgraph of G with 6, 408 nodes and 14, 418

edges. This subgraph is also strongly connected. The eigendecomposition in Chapter 10.1 is based on this

network.
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9.2 Summary of Method

Initially, computing taxi behaviors along each trajectory appears to be a single-pass problem. However,

as discussed in this chapter, better performance is attained by separating the trajectory estimation and

behavior extraction steps. This chapter motivates and explains the method taken to efficiently obtain paths

and statistics from 700 million taxi trips on a memory-constrained computer cluster of 32 16-core/16 GB

and 8-core/8 GB machines.

For our problem, the shortest path computation becomes a bottleneck. To illustrate this with an

extreme example, a Python implementation required one hour to compute the Dijkstra paths for 10,000

taxi trips when running on a 16 GB RAM/16-core machine. Scaling this result suggests that 3,000 days of

computing would be required to compute all 700 million trips. This chapter shows how the computation time

can be reduced to a few weeks by parallelizing the computation on a 30-machine cluster with an appropriate

high-throughput computing platform such as HTCondor [82, 108]. Nonetheless, this solution still involves

lengthy execution time, and does not provide the preferred time-to-solution of less than one day. The solution

described here has the following properties:

∙ It reduces computation from 3,000 days to less than a day.

∙ The problem is recast as a two-pass problem.

∙ The solution is presented for a memory-efficient, portable C implementation.

∙ It is parallelizable for HTCondor.

Since memory is one of our primary runtime constraints; this requires the implementation to eschew

data structures in favor of simple array-based representations. For this reason, our solution is implemented

in the C programming language. In addition, We chose to work with HTCondor, an open-source high

throughput computing environment [82], since this platform was installed on the available cluster of machines.

HTCondor works well when each job is designed to have a low memory footprint, which influences the design

we present in this chapter.

Related path-planning algorithms are described in Section 9.3. The problem formulation and the

engineering constraints are described in detail in Sections 9.4, 9.5, and 9.6. Appendix D provides further

details about the implementation. Results and depictions of particular signals are shown in Section 9.7.
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9.3 Motivation for Dijkstra’s algorithm

Dijkstra’s algorithm [109] is related to shortest path algorithms such as breadth-first search, the Bellman-Ford

algorithm, and the Floyd-Warshall algorithm [50, 110]. Breadth-first search can be used to find a shortest

path on an unweighted, directed graph. The Bellman-Ford algorithm finds shortest paths from a single

source on graphs that are both weighted and directed, but it computes distances to multiple destination

nodes. The Floyd-Warshall algorithm computes all-pairs shortest paths, takes 𝑂(|𝑉 |3) time, and can be

optimized as in [110]; it can be modified to find a single path but is usually used for dense graphs.

This chapter focuses on Dijkstra’s algorithm, which performs single-source single-destination path-

finding with non-negative (distance-based) edge weights. Dijkstra’s algorithm can run in 𝑂(|𝐸| log |𝑉 |) time

for sparse, strongly connected networks; more details are provided in Section 9.5. Variations on Dijkstra’s

algorithm include the A* algorithm, which partially computes a tree of paths to guide the search to the

destination node [111, 112, 113]. In addition, methods such as pre-computing distance oracles [113], creating

a hierarchical representation of the road network with contraction hierarchies [114, 115], or predicting sub-

networks that contain the desired path by pre-computing cluster distances [111] have been shown to improve

performance with a space trade-off.

We selected Dijkstra’s algorithm [109, 50] over the alternatives mentioned above because the benefits

of storing pre-computed paths to accelerate computation were outweighed by the utility of implementing

an algorithm with a low memory footprint. While Dijkstra’s algorithm may not reflect a true taxi tra-

jectory, we use it as an approximation to demonstrate our method. More details on improving the path

computation are in Section 9.8. Related evaluations of Dijkstra’s algorithm include [116], which provides

a probabilistic analysis to compare priority queue implementations, and [117], which compares serial and

parallel implementations of Dijkstra’s algorithm.

The following sections present the design considerations for implementing Dijkstra’s algorithm in a

high-throughput environment that requires a low memory footprint.

9.4 Memory-Efficient Design

This section presents the design decisions required for a memory efficient implementation on the available

computer cluster, which comprised 30 machines with 16 GB/16 cores or 8 GB/8 cores. Code snippets for

this section are provided in Appendix C.

Road network. Our method allows the entire road network to be available in memory at runtime to

compute shortest paths. While alternative methods such as contraction hierarchies or pre-computing cluster
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(a) Array of linked lists. (b) Array of arrays.

Figure 9-3: Adjacency list implementations.

distances to predict subnetworks that contain the shortest path do not require the entire network to be in

memory for each computation [111, 114], the additional memory cost of storing pre-computed trajectories

outweighs the benefit of faster path computations in terms of parallelization on HTCondor on the provided

cluster.

Similarly, using data abstraction to represent the road network is not ideal since it introduces un-

necessary overhead while jobs run on HTCondor require a low memory footprint. For these reasons, our

implementation is developed in the C programming language and uses memory-efficient representations of

the road network with C structs and arrays.

The road network is represented as an adjacency list instead of an adjacency matrix since the network

is highly sparse. An adjacency matrix takes 𝑂(|𝑉 |2) memory, while an adjacency list takes 𝑂(|𝑉 | + |𝐸|)

memory [50]. The adjacency matrix is sparse enough (|𝐸| << |𝑉 |2) that an adjacency list representation is

ideal.

A common implementation of an adjacency list is an array of linked lists as in Figure 9-3a. However,

memory must be allocated multiple times during the computation when using this approach. In addition,

storing pointers between the linked list entries each takes 8 bytes assuming IEEE 754 standard double-

precision floating point (64 bit). For our problem, we can compute the maximum degree of the network a

priori and implement the adjacency list as a two-dimensional C array as in Figure 9-3b. In this way, pointers

are not needed and memory is allocated only once.

Structures point_t and edge_t are defined to represent the full road network as shown in Figure C-

1. The full representation consists of four elements: an array of point_t structs to store the nodes, and

an array of edge_t structs to store the edges, an int array to store the out-degree of each node, and a

two-dimensional array to store the adjacency list. The node and edge arrays allow for constant-time lookup

of node and road segment properties, which is necessary for both shortest path computation and behavior

extraction.

In order to represent the adjacency list in a memory-efficient way, the second dimension of the adjacency

list array (the width of the array in Figure 9-3b, e.g.) is extended by a factor of two. This enables encoding

of both the node index and the edge index for each neighbor so that Dijkstra’s algorithm can traverse the

95



Struct name Memory Array name Memory

point_t 19B nodearr 1.5MB

edge_t 51B edgearr 11MB

degarr 320KB

adjlist 6MB

Total 20MB

Table 9.1: Memory required for road network representation.

road network with constant-time lookup of node and road segment properties. The number of neighbors of

each node in the adjacency list is encoded in the degree array.

Assuming double= 8B, int=4B, and 3B compiler padding of C structs, a point_t struct requires 19B

while an edge_t struct requires 51B. As a result, the node array takes 1.5MB, the edge array is 11MB, the

degree array is 320KB, and the adjacency list is 6MB as shown in Table 9.1, for a total of 20MB. These values

reflect the memory required to represent the complete network of 79K nodes and 220K edges. Although the

network is too large to be stored as a local variable, it is small enough to be stored as a global variable.

Shortest path computation. For the shortest path computation, the full road network in Figure C-1

is in memory at runtime as well as an additional fixed-length array to store the current path. The pick-up

and drop-off coordinates from the taxi data are also required for the path computation. Although the data

takes 16.7 GB of disk space, which is small enough to be stored on a desktop hard drive, it is infeasible to

load it at runtime on the available cluster machines, which have 8GB or 16GB RAM. For this reason, the

data is opened as a filestream and loaded a single line at a time to compute each shortest path.

Behavior extraction. To calculate taxi movement statistics at each node over time, counters are

pre-allocated to track the behavior of each node. For this purpose, a node_t struct is defined as in Figure C-

2. Assuming double=8B and int=4B as well as 3B padding, this struct takes 10MB, and a full array

takes about 800MB to store. In practice, more statistics can be added in order to track multiple behaviors

simultaneously; the full array would then consume about 2 or 3GB. In this way, the behavior extraction

has a much larger memory footprint than the shortest path computation, which only has the 20MB road

network as a major memory requirement. This difference in memory footprints is one reason to separate the

computations into pre- and post-processing jobs to submit to HTCondor.

In the next section, the algorithm choices and expected runtimes are analyzed.
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9.5 Algorithm Design

This section presents the algorithm design. The first step is to estimate the taxi trajectory, defined as the

path between a trip’s start and end coordinates that minimizes the distance traveled. Statistics along each

trajectory are then computed.

Shortest paths. The min-priority queue implementation of Dijkstra’s algorithm can be implemented

in 𝑂(|𝑉 |2 + |𝐸|) = 𝑂(|𝑉 |2) time [50]. Figure C-3 shows the inner loop of the algorithm. The runtime

depends on the implementation of the min-priority queue and has been shown to be faster with binary heaps

or Fibonacci heaps [50, 116]. Since the road network is sparse, binary heap implementations can run in

𝑂(|𝐸| log |𝑉 |) time on a strongly connected graph, assuming |𝐸| = 𝑜(|𝑉 |2 /log(|𝑉 |)) [50]. A Fibonacci heap

implementation runs in 𝑂(|𝐸|+ |𝑉 | log |𝑉 |) time [50]. Our solution implements binary heaps since they have

been shown to perform better in practice [116, 118].

An analysis of the shortest path algorithm performance is calculated here in terms of floating point oper-

ations per second (FLOPS). Since the NYC road network is sparse, Dijkstra’s algorithm runs in 𝑂(|𝐸| log |𝑉 |)

time, which requires about 300K · log(79K) or 1.5M floating-point operations. For a single core of an Intel

Core i5-6500T processor using x87 scalar code (2 flops per cycle at 2.5 GHz, or 5 GFLOPS), the correspond-

ing runtime is about 300𝜇s. Running 700 million computations (for all 700 million trips in our data set)

requires about 1015 floating point operations for a runtime of about 57 hours or 2.4 days. Assuming 20% of

peak performance (1 GFLOPS), the 700 million computations would run in about 290 hours, or 12 days on

a single CPU.

Behavior extraction. On the other hand, extracting statistics from a taxi trajectory is approximately

linear as 𝑂(|𝑉 |) since the computation is, to first order, a constant-time operation at each node of the shortest

path. Scaling to the 700 million trips, the theoretical runtime on the same Core i5-6500T 2.5 GHz processor

using x87 scalar code is about 3 hours at peak performance, or 15 hours assuming 20% peak performance.

Compared to the 12 days needed to run the Dijkstra algorithm, the computation time of the statistics

is relatively short. In this way, splitting the computation into a pre-processing step consisting of the Dijkstra

computations and a post-processing step for the statistics computations is appropriate.

To summarize, the design decisions for the path computation and signal extraction algorithms were

presented and analyzed. Reasons for separating the signal extraction into pre- and post-processing steps were

presented. Pre-processing requires loading the 20 MB road network and computing Dijkstra’s algorithm with

expected runtime of 12 days for 700 million computations on a single CPU. While post-processing requires

a 2 or 3 GB struct array in addition to the road network, it can complete in 15 hours on a single CPU.

The next section describes how the high-throughput nature of the problem was leveraged to shorten
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the 12-day shortest path computation and 15-hour behavior extraction.

9.6 High-Throughput Computing

The signal extraction problem fits a high throughput paradigm since small pieces of code need to be run for

millions of iterations. As seen in Section 9.5, the Dijkstra algorithm for a single taxi path can be computed in

300𝜇s with reasonable memory resources. As a result, these computations can be parallelized on HTCondor.

HTCondor is open-source and provides a high throughput computing environment [82]. A user submits

a series of jobs to HTCondor, which waits until a machine on the dedicated cluster is idle to start a job.

The available cluster has 32 machines that are either 16-core, 16 GB RAM or 8-core, 8 GB RAM. Assuming

8-core machines with the same Core i5 processors in Section 9.5, the 57 CPU-hour estimate can be reduced

to about 0.2 wall clock hours; at 20% peak performance, an HTCondor implementation is expected to reduce

the runtime from 290 CPU-hours (12 days) to 1 or 2 wall clock hours. Since these projections do not account

for overhead such as the time to load the road network into RAM, high-throughput computing is even more

essential for reducing the time to solution. This analysis shows the impact of exploiting the high-throughput

nature of the problem.

The design decisions described in this section are crucial to attain a workable solution because of the

large scale of the problem. Section 9.7 describes the achieved speedup and illustrates some generated signals.

9.7 Signal Extraction Results

This section compares our design over several frameworks in terms of relative speedup. Results for the

shortest path computations and the behavior extraction step are presented separately.

Pre-processing. Table 9.2 and Figure 9-4 summarize the speedup results for the pre-processing step.

The initial run of this algorithm was implemented in Python on a 64-bit machine with an Intel Core i5-4300U

CPU at 2.50 GHz. The time to solution for the first 10,000 shortest paths was about one hour. Each month

contains about 15 million trips, which would take about 1,500 hours to compute. There are 48 months in

the entire data set, so the total number of trips to compute is on the order of 48 · 1, 500 = 72, 000 hours,

or 3,000 days. The current implementation in C returns shortest paths for 500,000 trips in 1 hour, which

corresponds to 30 hours for 1 month, or 30 · 48 = 1440 hours or 60 days to get shortest paths for the entire

data set, which is 50x speedup compared to the Python implementation.

Using HTCondor to submit simultaneous jobs to a cluster of 32 machines that are either 16-core, 16 GB RAM

or 8-core, 8 GB RAM, shortest paths for the 700 million rides were computed in 6.5 hours, which is a speedup
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Figure 9-4: Dijkstra speedup results.

Platform No. trips per hour Total runtime (in hours) Speedup vs. Python Speedup vs. C

Python 10,000 72,000

C 500,000 1,440 50x

C + HTCondor 500,000 (1 job) 6.5 (1,584 jobs) 11,000x 220x

Table 9.2: Speedup across platforms for shortest path computations (pre-processing).

of about 220 compared to non-simultaneous performance and a speedup of about 11,000 compared to the

original Python implementation.

Post-processing. The node_t struct in Figure C-2 was designed to compute taxi counts, trip counts, tip,

passenger counts, return frequencies and return times for the paths as well as pickups and dropoffs. The time

resolution was chosen to be each hour of the week and the associated struct took about 2 GB in memory.

The time to solution for behavior extraction with the C implementation was one hour for 60 million

trips (1 year of taxi data), or about four hours for the 700 million trips. Each year’s data was processed as

a separate job on HTCondor so that the total statistics were computed in 1 hour (4x speedup). Averaging

required an additional 4 hours, for a total runtime of 5 hours for post-processing. Figure 9-5 shows some

example results.

In total, pre- and post-processing together have a runtime of 11.5 hours, or about half a day. Compared

to the single-machine Python implementation with projected runtime of 3,000 days, we achieve a workable

solution that can be run and rerun to study and evaluate taxi statistics on New York City.

Using the design principles discussed here, statistics on the New York City road network that char-

acterize taxi movement can be extracted. Weekly averages are computed and stored in 168-element arrays

such that index 0 corresponds to Sunday 12am-1am, index 1 corresponds to Sunday 1am-2am, index 24

corresponds to Monday 12am-1am, etc. For instance, the average number of trips and the average number

of passengers per trip are two example statistics shown in Figure 9-5. Figure 9-5a shows that the average
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number of taxis passing through Manhattan is much higher 8am–9am on Mondays compared to 8am–9am

on Sundays, reflecting the expected weekday rush hour congestion. The number of passengers can also be

studied; for example, Figure 9-5b shows that taxis that pick up more passengers tend to have trajectories

around the perimeter via Hudson River Parkway or FDR Drive instead of through the heart of Manhattan.

The average number of passengers per trip also decreases on Mondays for trips that travel through or near

the Brooklyn Bridge.

9.8 Note on Choice of Weights for Dijkstra’s Algorithm

The signals and subsequent analysis depend on the route-finding algorithm that was implemented, which

is Dijkstra’s algorithm with distances between geolocations on the road network as the weights (see Chap-

ter 9.5). This is a fast approximation of the true taxi trajectories that is feasible on the provided cluster of

machines. Since historical trajectory information is not provided, such information is not incorporated into

the Dijkstra weights.

Our particular choice of Dijkstra’s weights explains certain features in Figure 9-5, such as the high

number of trips on Broadway in Figure 9-5a. A possible modification could be a weighting scheme that

disperses the concentration of taxi trips. For example, the weight 𝑤𝑖𝑗 = 𝛼𝑑𝑖𝑗 + (1−𝛼)𝑛𝑖𝑗 can be defined for

each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 , where 𝛼 ∈ (0, 1), 𝑑𝑖𝑗 is the (normalized) Euclidean distance between 𝑣𝑖 and 𝑣𝑗 , 𝑛𝑖𝑗

is the (normalized) average number of trips from 𝑣𝑖 to 𝑣𝑗 . Since 𝑛𝑖𝑗 is an output of a single computation,

multiple iterations can be run such that the output 𝑛(𝑝)
𝑖𝑗 of iteration 𝑝 is the input to the weights of iteration 𝑝+

1. The iterations continue until the process converges (e.g.,
⃦⃦⃦
𝑛
(𝑝+1)
𝑖𝑗 − 𝑛

(𝑝)
𝑖𝑗

⃦⃦⃦
< 𝜖 for all 𝑖, 𝑗 and threshold

𝜖 > 0). The applicability of such an iterative method provides additional motivation for the development of

fast, efficient solutions to compute statistics.

In addition, different Dijkstra cost functions must be implemented to address different questions. For

example, historical congestion information for each NYC road, capacity of each road measured in terms

of the number of lanes, and the expected number of pedestrians that stop traffic at each intersection at a

particular time of day would provide invaluable information as to the optimal trajectory for a taxi to take

through the city. In addition, if the problem constraints change, such as if optimality is defined as the route

that minimizes air pollution as addressed in [119], the Dijkstra cost function should change to address the

problem.

The preceding discussion illustrates how incorporating additional constraints and data can improve the

accuracy of estimated trajectories. Use of such data, however, will also increase the computational scale of

the problem. In this case as well, the design considerations addressed in this section are crucial for attaining
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(a) Average number of trips. (b) Average number of passengers per trip.

Figure 9-5: Four-year average June-August statistics on Manhattan, NYC, for Sundays and Mondays 8am
to 9am. Colors denote log10 bins of (a) the average number of trips (699 log bins; white to yellow: 0–12,
orange: 12–92, red: 92–320, blue: 320–280, purple: 280–880, black: 880–1,430) and (b) the average number
of passengers per trip (499 log bins; white to yellow: 0–1.6, orange: 1.6–2.1, red: 2.1–3.4, blue:3.4–4.2,
purple:4.2–4.9, black: 4.9–6). The plots were generated with ggmap [120] and OpenStreetMap [121].

a feasible solution on memory-bound systems.

This chapter explains the design of a signal extraction implementation for the NYC taxi data. This

implementation is memory-efficient so that the taxi path computations can be parallelized with HTCondor,

and the computation completes in less than a day. The resulting signals are analyzed with the Agile Inexact

Method for the graph Fourier transform in the next chapter. As explained in Chapter 7, the next steps

for applying the graph Fourier transform are the eigendecomposition step and the transform computation.

Chapter 10 discusses the method in detail.
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Chapter 10

New York City Taxi Data:

Eigendecomposition and Graph Fourier

Transform

In order to apply the graph Fourier transform to the statistics computed in the previous chapter, it

remains to compute the eigendecomposition of the Manhattan network as well as the signal projections.

This chapter expands on the issues described in Chapters 6.5 and 8 and presents details for computing the

eigenvector matrix 𝑉 for the non-diagonalizable adjacency matrix 𝐴 of the Manhattan road network.

The Agile Inexact Method (AIM) for the graph Fourier transform developed in Chapter 6 is then

applied to the statistics of Chapter 9. Our method provides a fine-grained analysis of city traffic that should

be useful for urban planners, such as in improving emergency vehicle routing.

Sections 10.1– 10.4 describe our method to find the eigendecomposition of the Manhattan road network.

Section 10.5 demonstrates the AIM for computing the graph Fourier transform.

10.1 Eigendecomposition of Manhattan Road Network

The Manhattan road network described in Section 9.1 provides the adjacency matrix𝐴 ∈ R6408×6408 for which

we compute the eigendecomposition. For this particular adjacency matrix, the eigenvector matrix 𝑉obs ∈

C6408×6408 generated by a standard eigenvalue solver such as MATLAB or LAPACK is not full rank, where

the rank can be computed with either the singular value decomposition or the QR decomposition; i.e., 𝐴 is

not diagonalizable.
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In order to apply the GFT (4.2) or the original projections onto each eigenvector as in [6], Jordan chain

computations are required. These computations are costly as described in Section 6.6 and also potentially

numerically unstable. In contrast, the AIM (6.2) does not require this step.

Since it is instructive to compare the GFT with the AIM results, it is necessary to compute the Jordan

chains here. For this reason, the following sections detail our method for computing the Jordan chains for

the Manhattan road network.

10.2 Eigenvalue Verification and Maximum Jordan Chain Length

Since the dimension of the null space of 𝐴 (the geometric multiplicity of the zero eigenvalue) is 446, and

there are 699 eigenvalues of magnitude close to zero (as seen in Figure 6-2a), 699 − 446 = 253 generalized

eigenvectors must be determined to complete the Fourier basis.

As discussed in Section 6.5.1, there is ambiguity in determining whether the 699 eigenvalues of small

magnitude represent true zero eigenvalues. Consequently, accurately identifying eigenvalues of high algebraic

multiplicity can be a hard problem – see, for example, [70, 71, 72, 73, 76, 34]. Furthermore, these eigenvalues

of small magnitude form constellations with centers close to zero, as shown in Figure 6-2b. References [70]

and [71] show that the presence of such constellations may indicate the presence of an eigenvalue of high

algebraic multiplicity; [70] states that an approximation of this eigenvalue may be the center of the cluster

of numerical eigenvalues, while [71] presents an iterative algorithm to approximate a “pseudoeigenvalue.” It

is unclear from pure inspection1 whether the observed constellations are a result of the multiplicity of a zero

eigenvalue or are the actual eigenvalues of 𝐴. For these reasons, it is necessary to verify the existence of a

numerical zero eigenvalue before computing the Jordan chains. Our method is explained below; see also [35].

To verify a numerical zero eigenvalue, a result from [73] is applied, which states the following:

Definition 10.1 ([73]). Consider a matrix 𝐴 ∈ C𝑁×𝑁 with singular values 𝜎1(𝐴) > · · · > 𝜎𝑁 (𝐴) that is

scaled so that 𝜎1(𝐴) = 1. Let 𝑚𝑘 =
⃒⃒
Ker(𝐴𝑘)

⃒⃒
denote the dimension of the null space of 𝐴𝑘 . In addition,

let 𝛼 and 𝛿 be positive constants; 𝛿 is usually on the order of machine precision and 𝛼 is significantly greater

than 𝛿. Then 0 is a numerically multiple eigenvalue with respect to 𝛼 and 𝛿 if

𝜎𝑁−𝑚𝑘

(︀
𝐴𝑘
)︀
> 𝛼 > 𝛿 > 𝜎𝑁−𝑚𝑘+1

(︀
𝐴𝑘
)︀
, (10.1)

for 𝑘 = 1, 2, . . . , ℎ, where ℎ is the maximum Jordan chain length for the zero eigenvalue.

1Considering double-precision floating point (64 bit) and that the number of operations to compute the eigenvalues of an
𝑁 ×𝑁 matrix is 𝑂(𝑁3), the expected precision is on the order of 10−6 or 10−7. Numerous eigenvalues in Figures 6-2a and 6-2b
demonstrate this order of magnitude.
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𝑘 𝑚𝑘 𝑁 −𝑚𝑘 𝜎𝑁−𝑚𝑘

(︀
𝐴𝑘
)︀

𝜎𝑁−𝑚𝑘+1

(︀
𝐴𝑘
)︀

1 446 5962 1.9270 × 10−3 1.2336 × 10−15

2 596 5812 2.1765 × 10−6 6.9633 × 10−16

3 654 5754 1.4013 × 10−8 3.4250 × 10−16

4 678 5730 1.1853 × 10−10 3.1801 × 10−16

5 692 5716 2.0163 × 10−11 8.4063 × 10−14

6 700 5708 9.6533 × 10−11 8.2681 × 10−11

Table 10.1: Singular values to validate existence of a numerical zero.

Since the constants 𝛼 and 𝛿 have different orders of magnitude, Equation (10.1) implies that singular

value 𝜎𝑁−𝑚𝑘
(𝐴𝑘) is significantly greater than 𝜎𝑁−𝑚𝑘+1(𝐴𝑘).

Definition 10.1 serves two purposes for our application. First, it verifies the existence of a numerical

zero eigenvalue. It also implies that a value of 𝑘 at which Equation (10.1) fails cannot be the maximum

Jordan chain length of the zero eigenvalue. This suggests the following method to find the maximum Jordan

chain length ℎ: increment the value of 𝑘 starting from 𝑘 = 1, and let 𝑘 = 𝑘′ be the first value of 𝑘 such that

Equation (10.1) fails. Then the maximum Jordan chain length for eigenvalue zero is ℎ = 𝑘′ − 1.

Table 10.1 is obtained by applying Definition 10.1 to the adjacency matrix 𝐴 of the Manhattan road

network. The columns of the table correspond to the power 𝑘 of 𝐴, the dimension 𝑚𝑘 of the null space

of 𝐴𝑘, the index 𝑁 −𝑚𝑘 of the first singular value of 𝐴𝑘 to examine, and the values of the singular values

at indices 𝑁 −𝑚𝑘 and 𝑁 −𝑚𝑘 + 1. The results in the table are reasonable since the computational machine

precision was on the order of 10−16, and the first four rows of the table display singular values for which 𝛿 is

on the order of 10−15 or 10−16 and the constant 𝛼 is larger by 6 to 12 orders of magnitude. Therefore, the

inequality (10.1) holds for the first four rows of Table 10.1. The inequality begins to fail at 𝑘 = 5; thus, the

expected maximum numerical Jordan chain length is no more than 3 or 4.

10.3 Jordan Chain Computation

To find the eigenvectors for eigenvalue zero, the null space Ker(𝐴) of 𝐴 is first computed to find the corre-

sponding eigenvectors. Each of these eigenvectors corresponds to a Jordan block in the Jordan decomposition

of 𝐴, and the Jordan chains with maximum length ℎ (as determined by Definition 10.1 from [73]) are com-

puted by the recurrence equation [33]

𝐴𝑣𝑘 = 𝜆𝑣𝑘 + 𝑣𝑘−1 = 𝑣𝑘−1, (10.2)
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where 𝑘 = 1, . . . , ℎ and 𝑣0 ∈ Ker(𝐴). If the number of linearly independent proper and generalized eigenvec-

tors equals 𝑁 , we are done; otherwise, the Fourier basis must be extended.

Numerical instability. According to [122], finding the Jordan chains starting from the proper eigen-

vectors is numerically unstable and may lead to solving inconsistent systems of equations. For this reason,

the procedure shown in Section 6.6 is not implemented. Instead, the Jordan chains are generated from the

vectors in the null space of 𝐴ℎ, where ℎ is the maximum Jordan chain length; these computations are based

on the SVD or the QR decomposition, and so are more stable. Then the Jordan chain can be constructed

by direct application of the recurrence equation (10.2). The method we use here is related to that of [85],

which demonstrates forward stability since it is based on stable null space computations.

Computation details. A single pass of the Jordan chain algorithm requires about a week to run on

a 30-machine cluster of 16 GB RAM/16-core and 8 GB RAM/8-core machines; however, the algorithm does

not return a complete set of 253 generalized eigenvectors. To maximize the number of recovered generalized

eigenvectors, successive computations were run with different combinations of null space vectors as starting

points for the Jordan chains. After three months of testing, the best run yielded 250 of the 253 missing Jordan

chain vectors; the remaining eigenvectors were computed as in (6.14). The maximum Jordan chain length is

two, which is consistent with Definition 10.1 and Table 10.1. As a result, the constructed eigenvector matrix

captures a large part of the adjacency matrix structure. The next section describes our inexact alternative

to full computation of the Jordan chains, which provides a significant speedup in the determination of a

useful basis set.

10.4 Generalized Eigenspace Computation

In order to compute the generalized eigenspace for the zero eigenvalue, the known eigenvectors are determined

as in Section 10.3. Then the eigenvector matrix is computed as (6.14). This is a five minute computation

on a 64-bit machine with 16 cores and 16 GB RAM.

10.5 Demonstration of the Agile Inexact Method

In this section, the original graph Fourier transform, defined as eigenvector projections, is compared to the

Agile Inexact Method (AIM) (6.14) for the signals computed in Chapter 9. The four-year average of trips

that pass through Manhattan from June through August on Fridays from 9pm to 10pm is analyzed.

Figures 10-1a and 10-1b show the percentage of energy that is contained in the signal projections

onto eigenvectors and onto generalized eigenspaces, respectively, using our previously defined energy metric
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(a) Eigenvector spectral components.
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(c) Eigenvector component magnitudes.

Node Index
0 1000 2000 3000 4000 5000 6000

E
ig

en
ve

ct
o

r 
C

o
m

p
o

n
en

t 
M

ag
n

it
u

d
e

0

0.1

0.2

0.3

0.4

0.5

X: 5599
Y: 0.4453

(d) Eigenvector component magnitudes.

Figure 10-1: (a) Percentage of energy captured by signal projections onto eigenvectors, including generalized
eigenvectors. The horizontal axis corresponds to the eigenvector of the Manhattan road matrix based on the
ascending order of the corresponding eigenvalue magnitudes. (b) Percentage of energy captured by signal
projections onto generalized eigenspaces. The horizontal axis corresponds to the generalized eigenspace of
the Manhattan road matrix based on the ascending order of corresponding eigenvalue magnitudes. The first
projection energy onto the generalized eigenspace of 𝜆 = 0 is shown at index 699, corresponding to less than
1% of the total signal energy. The preceding indices are set to zero to match the indices of (a). The following
indices correspond to the same eigenvectors as in (a). The most energy is captured by projections onto the
eigenvector at index 706 (30% of the energy) and at index 707 (28% of the energy). (c) Eigenvectors of (a)
that capture 60% of the signal energy. The horizontal axis corresponds to a node (geo-coordinate) in the
Manhattan road network. The vertical axis corresponds to the magnitude of the corresponding eigenvector
component. There are 84 eigenvectors corresponding to about 60% of the signal energy, each shown in a
different color. (d) The two eigenvectors in (b) that correspond to 58% of the total signal energy, one depicted
as red lines and the other as blue x’s. The axes are identical to those in (c). The eigenvector components of
highest magnitude correspond to the same nodes, or locations in New York City. Furthermore, the locations
with highest eigenvector expression match those in (c).

(Section 6.2). The maximum energy contained in any of the eigenvector projections is 1.6% as shown in the

data point in Figure 10-1a. The observed energy dispersal in the eigenvector projections corresponding to

𝜆 = 0 is a result of oblique projections. The computed Jordan chain vectors are nearly parallel to the proper

eigenvectors (angles less than 1 degree), so the signal projection onto a proper or generalized eigenvector 𝑣

of 𝜆 = 0 parallel to C𝑁∖span(𝑣) has an augmented magnitude compared to an orthogonal projection. The

reader is referred to [123] for more on oblique projectors.

In contrast, projecting onto the generalized eigenspaces with the AIM method (6.2) concentrates energy

into two eigenspaces. The data points in Figure 10-1b at indices 706 and 707 contain 30% and 28% of the

signal energy, respectively. On the other hand, the energy concentrated on the generalized eigenspace for
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(a) Original signal. (b) Maximum eigenvector components.

Figure 10-2: (a) Original signal, representing the June-August four-year average number of trips through
each node on the Manhattan road network. Colors denote 699 log bins (white: 0–20, beige to yellow: 20–
230, orange: 230–400, red: 400–550, blue: 550–610, purple to black: 610–2,700). (b) Highly expressed
eigenvector in Figures 10-1c and 10-1d, where the maximum components and second maximum components
are represented by black and purple dots, respectively. These clusters correspond to locations through which
high volumes of taxi trips flow.

eigenvalue zero is less than 1%, as shown by the data point at index 699 in Figure 10-1b. Thus, the AIM

method decreases energy dispersal over the spectral components and reduces the effect of oblique projections

shown in Figure 10-1a.

For both the eigenvector projection method and the AIM method, the spectral components are ar-

ranged by the energies they contain, in decreasing order, and those that contain 60% of the signal energy

in the projections have their component magnitudes plotted in Figures 10-1c and 10-1d. There are 84 such

eigenvectors for the projections onto eigenvectors, compared to only two eigenvectors (eigenspaces) that

contain the most energy in the generalized eigenspace case; this illustrates that the eigenvector projections

disperse more energy than the generalized eigenspace projections. Figures 10-1c and 10-1d show that the

highly expressed eigenvector components are located at the same nodes for both methods. This demon-

strates that the AIM can provide similar results to the original formulation, with a significant acceleration

of execution time and less energy dispersal over the spectral components.

The highly expressed components of eigenvectors 706 and 707 in Figure 10-1d are plotted on the

Manhattan grid in Figure 10-2b. There are two clusters on the east side of Manhattan, one in black in

Gramercy Park and one in purple by Lenox Hill. These locations represent sites of significant behavior that

suggest concentrations of taxi activity. The corresponding graph signal, shown in Figure 10-2a, confirms

this. Since this signal represents the average number of taxi trips on Fridays from 9pm to 10pm, one possible
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explanation for this behavior is the proximity of the expressed locations to inexpensive restaurants that are

popular among taxi passengers. Visual comparison of Figure 10-2a and 10-2b highlights the utility of our

method in finding fine-grained behaviors that are otherwise non-obvious from the raw signal.

This chapter provides a detailed explanation of a Jordan chain computation for the Manhattan road

network. The expensive nature of this computation is a significant drawback for many real-world applications.

On the other hand, the inexact computation reveals the same eigenvector expression with computation time

on the order of minutes. In addition, the AIM reduces energy dispersal among the spectral components

corresponding to low-magnitude eigenvalues.
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Chapter 11

Conclusion

This thesis develops new results in two main areas: in graph signal processing over defective adjacency

matrices, and in formulating an approach for applying graph signal processing to signals derived from massive

data sets over large, directed, and sparse real-world networks. We have defined and explored the properties

of a spectral projector-based graph Fourier transform for which Jordan equivalence is shown over certain

classes of graphs, and derived an inexact transform motivated by Jordan equivalence. The necessary steps

for applying the method to real-world data are described and used to demonstrate our method using four

years of NYC taxi data.

Section 11.1 summarizes the material covered in each chapter of this thesis. Section 11.2 highlights the

contributions and explains their significance. Section 11.3 describes future work.

11.1 Summary

This section summarizes the key concepts that are covered in the four parts of the thesis.

Part I: Motivation and background. Chapter 2 presents a motivating example for the importance

of directed graphs. The chapter describes an anomaly detection problem on a large mobile subscriber network

that we solve by exploring directed subgraph structures to build a novel feature set that improves detector

accuracy. Chapter 3 provides the necessary background for graph signal processing over graph adjacency

matrices, which is the foundation for the main contributions of the thesis.

Part II: Spectral projector-based graph signal processing. Chapter 4 defines and proves prop-

erties of a graph Fourier transform based on projections onto the Jordan subspaces of the graph adjacency

matrix. Properties such as uniqueness with respect to a choice of proper eigenvectors and a generalized

Parseval’s equality are presented. In addition, we find and formulate the concept of equivalence classes of
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graphs over which the GFT is equivalent. These equivalence classes include isomorphic graphs.

Chapter 5 discusses Jordan equivalence classes of graphs, which are characterized by the same Jordan

normal forms and the same sets of Jordan subspaces. We show how the generalized Parseval’s identity

simplifies over certain Jordan equivalence classes. In addition, a ranking of spectral components in terms of

total variation over a class of graphs is discussed.

In Chapter 6, the Agile Inexact Method (AIM) for computing the graph Fourier transform is developed

for which the generalized eigenspaces are the spectral components. The generalized Parseval’s identity for

the inexact method is compared to that of the Jordan subspace projector method. In addition, we show that

the total variation-based ordering of spectral components does not change under the inexact computation.

The AIM simplifies the eigendecomposition step in real-world, sparse networks, and is associated with a

fidelity-runtime trade-off.

Part III: Applying the GFT. Chapter 7 presents the general method of applying the GFT or AIM

on real-world data sets. Specific considerations for the signal extraction, eigendecomposition, and GFT

computation steps are discussed.

In addition, numerical instability in the eigendecompositions of particular defective and nearly defective

graphs is demonstrated in Chapter 8. These examples show that the full Jordan decomposition, which

includes determining the Jordan normal form, should not be computed in general; instead, the eigenvectors

and eigenvalues should be computed first, followed by Jordan chain computations if necessary.

Part IV: New York City taxi application. Chapters 9 and 10 apply the GFT as described in

Part III to New York City taxi trip data. Chapter 9 shows the details of extracting signals from four years of

New York City taxi trip data using Dijkstra’s algorithm to estimate taxi trajectories. Memory considerations

and algorithm efficiency are discussed and analyzed. Chapter 10 discusses the eigendecomposition step, which

involves verifying the presence of a numerical zero eigenvalue and computing Jordan chains. Finally, the

AIM for the graph Fourier transform is applied and is shown to have less energy dispersal among the spectral

components compared to eigenvector projections.

11.2 Contributions and Significance

The following contributions are made in this thesis:

∙ We define a spectral projector-based graph Fourier transform. Unlike methods based on projections

onto generalized eigenvectors, which are non-unique in terms of the Jordan chain computation, our

formulation is unique and unambiguous since it is not dependent on a choice of Jordan basis. Fur-

thermore, our formulation decreases the signal energy dispersal among generalized eigenvectors that
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results from oblique projections.

∙ We define equivalence classes that enable computation of the graph Fourier transform over simpler

graph topologies. The concept of isomorphic equivalence classes shows that the graph Fourier trans-

form is invariant to re-orderings of node labels. In this way, methods that accelerate matrix-vector

computations by exploiting sparse matrix structures can be applied. Moreover, the concept of Jordan

equivalence classes demonstrates that the graph Fourier transform is equal over nonidentical defective

matrices that have the same eigenvalues and eigenvalue multiplicities in addition to having Jordan

chains that span the same Jordan subspaces. It is shown that knowledge of underlying graph struc-

tures can allow computations of graph Fourier transforms over graphs of simpler topologies. Arbitary

graph structures, however, may not correspond to a Jordan equivalence class that contains a simple

topology or algebraic structure to utilize. This leads us to define an inexact method.

∙ We present the Agile Inexact Method (AIM) for computing the graph Fourier transform. This method

simplifies the choice of projection subspaces by projecting onto generalized eigenspaces instead of Jor-

dan subspaces. Corresponding G -equivalence classes for which the AIM yields the same transform are

defined. For large, sparse, and directed real-world networks that are characterized by a single nontrivial

generalized eigenspace, the G -equivalence classes can dramatically reduce the computation time of the

AIM’s eigendecomposition. Since the resulting Fourier basis is an approximation of the original graph

structure, higher fidelity to the original graph can be achieved by tuning the eigendecomposition with

the trade-off between the number of computed Jordan vectors and the execution time.

∙ We formalize the applicability of our graph signal processing framework to real-world systems by

illustrating an application to New York City taxi trip data over the Manhattan road network. The

complete method consists of three steps: signal extraction, eigendecomposition, and computing the

graph Fourier transform via signal projections. For the signal extraction step, we optimize Dijkstra

path computations on a 30-machine cluster with 16-core/16 GB and 8-core/8 GB RAM machines and

reduce computation time from 3,000 days to less than a day. For the eigendecomposition step, we

illustrate the benefits of the AIM in attaining a fast approximation of the Fourier basis. Our results

show that the inexact method disperses less energy over eigenvectors corresponding to zero eigenvalues

while exciting the same highly expressed eigenvectors based on eigenvector projections.
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11.3 Future Work

We briefly discuss future work in the following areas: leveraging and understanding graph structures when

equivalence classes are applied, using our method in a supervised learning problem, and understanding

correlation versus causation in the results.

Graph topologies of equivalence classes. Each of the equivalence classes discussed in this thesis

(isomorphic, Jordan, and G ) can be studied further. Isomorphic classes, for example, can be applied to

transform sparse adjacency matrices to nearly diagonal or low-bandwidth matrices with methods such as

the Cuthill-McKee algorithm [124]. The signal projections and eigendecompositions for such matrices can

leverage sparse matrix-vector multiplication strategies to reduce computation time. The types of graphs for

which these re-orderings are useful can be studied in further detail.

For Jordan and G -equivalence classes, the adjacency matrix ̃︀𝐴 = ̃︀𝑉 𝐽 ̃︀𝑉 −1 of a graph has identical

algebraic properties as the adjacency matrix 𝐴 = 𝑉 𝐽𝑉 −1 of a graph in the same class. Structural properties

of the corresponding graph ̃︀𝒢 = 𝒢( ̃︀𝐴) as compared to the original graph 𝒢(𝐴) are not yet fully understood. For

example, degree distributions, connectedness, and sparsity patterns of potential ̃︀𝒢 remain to be studied. One

important aspect is determination of appropriate edge thresholds for an adjacency matrix that is numerically

constructed to preserve the properties of an equivalence class.

Supervised learning. The graph signal processing framework presented in this thesis represents

a solution to an unsupervised learning problem. For the example of NYC taxis on the Manhattan road

network, a graph signal is defined as the number of trips that pass through each intersection or specified

road location, and clusters of nodes that reflect taxi hotspots are determined by the eigenvectors or adjacency

matrix subspaces that are highly expressed in the Fourier expansion of the signal. An interesting follow-up

involves using the clusters discovered with our method as inputs to train classifiers such as deep neural

networks [125, 126]. The outputs of such classifiers could relate hotspot locations to parameters such as

time of day, business types (e.g., restaurants versus transportation hubs), and weather. Such a supervised

learning scenario is useful for planning optimal paths to direct emergency first responders and firefighters to

critical areas.

We emphasize that our method yields a fine-grained analysis of signal concentrations that leverages

the directed nature of the underlying graph topology in comparison to those found with methods based on

symmetric adjacency matrices, methods based on the graph Laplacian [127], and learned graph representa-

tions [128]. Building interpretable models based on our method in conjunction with other spectral methods

and tensor analysis [129, 130] is future work with important ramifications in urban planning.

Correlation vs. causation. Our method yields highly expressed eigenvectors or subspaces whose
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components of highest magnitude correspond to hotspots such as locations of heavy taxi concentrations in

Manhattan, NY. It is possible that several hotspots are identified by a single eigenvector or subspace, in

which case they represent intrinsic co-behavior based on the road network eigenstructure, even when the

hotspots represent non-adjacent geographical regions. While shutting down traffic at one of these hotspots

will affect taxi flows at the others, it is unclear how the effect will manifest (e.g., whether the taxi con-

centrations will increase or decrease, or whether a new eigenvector will be expressed). In other words, our

method characterizes correlation but not causation among hotspots. Studying the effects of localized pertur-

bations of a graph signal on the location of taxi hotspots can lead to further understanding of the hotspot

interrelationships.

To conclude, the novel graph signal processing methods we have developed in this thesis have the

potential to significantly decrease computation times for spectral analysis of massive data sets over large-

scale, directed networks. Our techniques provide effective methods to address previously intractable analyses

of real-world networks with defective adjacency matrices. In addition, our methods can be applied to other

types of data; other applications include studying the spread of viruses in populations or computer networks

and characterizing information flows over social networks.
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Appendix A

Proofs for Section 8.1

A.1 Proof of Theorem 8.1

Proof of Theorem 8.1. (i) If 𝑝 = 𝑁 , then 𝐻𝑁
𝑁 = 𝐽𝑁,𝑝 = 0𝑁×𝑁 ; i.e., the Jordan form consists of 𝑝 Jordan

blocks for eigenvalue 0.

Let 𝑝 = 𝑁 − 𝑘 for 1 ≤ 𝑘 < 𝑁 . The matrix 𝐻𝑁−𝑘
𝑁 consists of zeros except for 𝑘 unit elements along

the 𝑝th diagonal. Each non-zero element constrains a single variable in the system 𝐻𝑝
𝑁𝑥 = 𝑏, 𝑥, 𝑏 ∈ R𝑁 , so

there are 𝑝 = 𝑁 − 𝑘 free variables; i.e, the dimension of the null space of 𝐻𝑁−𝑘
𝑁 is 𝑁 − 𝑘 = 𝑝, so there are 𝑝

Jordan blocks.

(ii) The maximum Jordan block size (chain length) 𝑙 for matrix 𝐴 = 𝐻𝑝
𝑁 is found. Let Ker(𝐴) denote

the null space, or kernel, of 𝐴. The recurrence equation for the Jordan chain is

𝐴𝑣𝑖 = 𝜆𝑣𝑖 + 𝑣𝑖−1 = 𝑣𝑖−1, 𝑖 = 2, . . . , 𝑙, (A.1)

where 𝑣1 ∈ Ker(𝐴) and the 𝑖th vector 𝑣𝑖, 𝑖 ≥ 2, satisfies 𝑣𝑖 ∈ Ker(𝐴𝑖)∖Ker(𝐴𝑖−1) [33]. Applying (A.1) more

than 𝑙 times will yield no other linearly independent vector in the generalized eigenspace corresponding to

eigenvector 𝑣1, or

Ker(𝐴𝑙+1)∖Ker(𝐴𝑙) = ∅. (A.2)

Since 𝐻𝑁 is nilpotent, 𝐻𝑖
𝑁 = 0𝑁×𝑁 for all 𝑖 ≥ 𝑁 . The null space of such 𝐻𝑖

𝑁 has dimension 𝑁 , so we

satisfy (A.2) if 𝑖 ≥ 𝑁 . Thus, the maximum Jordan chain length of 𝐻𝑝
𝑁 is the minimum integer 𝑙 ∈ [1, 𝑁)

such that (𝐻𝑝
𝑁 )𝑙 = 0𝑁×𝑁 = 𝐻𝑁

𝑁 . This equals the minimum 𝑙 such that 𝑝𝑙 ≥ 𝑁 , or 𝑙 =
⌈︁
𝑁
𝑝

⌉︁
.

(iii) The number of Jordan blocks 𝑘𝑟 of size 𝑟 has a lower bound given by the difference between the
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dimensions of the null space of 𝐴𝑟 and the null space of 𝐴𝑟−1 [33, 56]:

𝑘𝑟 ≥ |Ker (𝐴𝑟)| −
⃒⃒
Ker

(︀
𝐴𝑟−1

)︀⃒⃒
. (A.3)

In addition, the number of Jordan blocks of size 𝑟 equals [33]

𝑘𝑟 = 2 |Ker (𝐴𝑟)| −
⃒⃒
Ker

(︀
𝐴𝑟−1

)︀⃒⃒
−
⃒⃒
Ker

(︀
𝐴𝑟+1

)︀⃒⃒
. (A.4)

From the proof of (ii),
⃒⃒⃒
Ker(𝐻𝑝𝑙

𝑁 )
⃒⃒⃒

= 𝑁 , and
⃒⃒⃒
Ker(𝐻

𝑝(𝑙−1)
𝑁 )

⃒⃒⃒
= 𝑝(𝑙 − 1) from (i). Apply (A.3) with equality

to compute the number of Jordan blocks 𝑘𝑙 of maximum length 𝑙 =
⌈︁
𝑁
𝑝

⌉︁
:

𝑘𝑙 =
⃒⃒⃒
Ker

(︁
𝐻𝑝𝑙

𝑁

)︁⃒⃒⃒
−
⃒⃒⃒
Ker

(︁
𝐻

𝑝(𝑙−1)
𝑁

)︁⃒⃒⃒
(A.5)

= 𝑁 − 𝑝 (𝑙 − 1) . (A.6)

Use (A.4) to compute the number of Jordan blocks of size 𝑙 − 1:

𝑘𝑙−1 = 2
⃒⃒⃒
Ker

(︁
𝐻

𝑝(𝑙−1)
𝑁

)︁⃒⃒⃒
−
⃒⃒⃒
Ker

(︁
𝐻

𝑝(𝑙−2)
𝑁

)︁⃒⃒⃒
−
⃒⃒⃒
Ker

(︁
𝐻𝑝𝑙

𝑁

)︁⃒⃒⃒
(A.7)

= 2𝑝 (𝑙 − 1) − 𝑝 (𝑙 − 2) −𝑁 (A.8)

= 𝑝𝑙 −𝑁. (A.9)

Since 𝑘𝑙 + 𝑘𝑙−1 = 𝑝 (the number of Jordan blocks by (i)), we get 𝑘𝑙−2 = · · · = 𝑘2 = 𝑘1 = 0 for 𝑙 ≥ 3.

(We can also show by (A.4).) Thus, the Jordan blocks have size 𝑙 or 𝑙 − 1.

Let 𝑝 be a factor of 𝑁 , i.e., there exists integer 𝑐 such that 𝑝𝑐 = 𝑁 . By (i), 𝑐 = 𝑙 (the maximum block

size), or 𝑝𝑙 = 𝑁 . By (A.9), 𝑘𝑙−1 = 0, so the minimum block size is 𝑙. Now suppose 𝑝 is not a factor of 𝑁 .

Then, 𝑘𝑙−1 ̸= 0, so the minimum block size is 𝑙 − 1 =
⌊︁
𝑁
𝑝

⌋︁
.

A.2 Proof of Lemma 8.2

Proof of Lemma 8.2. The proof of Theorem 8.1(iii) shows that 𝐽𝑁,𝑝 has blocks of size
⌈︁
𝑁
𝑝

⌉︁
and

⌊︁
𝑁
𝑝

⌋︁
with

counts given by (A.6) and (A.9), respectively. These details result in (8.1).
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A.3 Proof of Theorem 8.3

Proof of Theorem 8.3. By Theorem 8.1(ii), the Jordan form has maximum chain length 𝑙 =
⌈︁
𝑁
𝑝

⌉︁
correspond-

ing to the Jordan block 𝐻⌈𝑁
𝑝 ⌉, the upper-left matrix in (8.2). The form of the bottom-right matrix is found

next.

By Theorem 8.1(i) and(ii), 𝐽𝑁,𝑝 can be decomposed as

𝐽𝑁,𝑝 =

⎡⎢⎢⎢⎢⎣
𝐻⌈𝑁

𝑝 ⌉

0 𝑋

⎤⎥⎥⎥⎥⎦ , (A.10)

where the (𝑁−
⌈︁
𝑁
𝑝

⌉︁
)×(𝑁−

⌈︁
𝑁
𝑝

⌉︁
) matrix 𝑋 is composed of 𝑝−1 Jordan blocks. Since the Segre characteristic

of 𝐽𝑁,𝑝 is known by Lemma 8.2, let 𝑙 =
⌈︁
𝑁
𝑝

⌉︁
and apply (A.6) and (A.9) to get the numbers of blocks of size 𝑙

and size 𝑙 − 1:

𝑘𝑙 = 𝑁 − 𝑝𝑙 + 𝑝 (A.11)

𝑘𝑙−1 = 𝑝𝑙 −𝑁. (A.12)

The number of blocks of size 𝑙 and size 𝑙 − 1 in 𝑋 must be

𝑘
(𝑋)
𝑙 = 𝑘𝑙 − 1 = 𝑁 − 𝑝𝑙 + 𝑝− 1 (A.13)

𝑘
(𝑋)
𝑙−1 = 𝑘𝑙−1 = 𝑝𝑙 −𝑁. (A.14)

This is the Segre characteristic of 𝑋. One possible 𝑋 that satisfies (A.13) and (A.14) is 𝐽𝑁−⌈𝑁
𝑝 ⌉,𝑝−1. In

addition, since the Segre characteristic and eigenvalues 𝜆 = 0 are known, 𝑋 = 𝐽𝑁−⌈𝑁
𝑝 ⌉,𝑝−1 is unique up to

the order of Jordan blocks.

A.4 Proof of Theorem 8.4

Proof of Theorem 8.4. Solve the system of equations 𝐻𝑝
𝑁𝑣 = 0𝑁 . Matrix 𝐻𝑝

𝑁 has 𝑁 − 𝑝 unit elements along

the 𝑝th diagonal, so 𝑣𝑖 = 0 for 𝑖 = 𝑝 + 1, . . . , 𝑁 . It remains to determine 𝑣1, 𝑣2, . . . , 𝑣𝑝 to get 𝑝 linearly

independent eigenvectors. (There are 𝑝 proper eigenvectors since there are 𝑝 Jordan blocks by Theorem 8.1.)

Choosing the columns of 𝐸𝑁,𝑝 satisfies these constraints.
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A.5 Proof of Theorem 8.8

Proof of Theorem 8.8. (i) The digraph 𝒢𝑁,𝑝 of unperturbed matrix 𝐻𝑝
𝑁 is not strongly connected and has

nodes of in- and out-degree less than or equal to one; this means it is composed of directed paths and isolated

nodes. The digraph 𝒢𝑁,𝑝|𝜖,𝑗 adds weighted edge (𝑣𝑗 , 𝑣1) to 𝒢𝑁,𝑝. A directed cycle exists in 𝒢𝑁,𝑝|𝜖,𝑗 if a path

exists from 𝑣1 to 𝑣𝑗 in 𝒢𝑁,𝑝, such as by choosing exponent 𝑝 = 𝑗. The added edge (𝑣𝑗 , 𝑣1) closes a single

path, so 𝒢𝑁,𝑝|𝜖,𝑗 has at most one directed cycle.

(ii) A directed cycle exists if a directed path exists from node 𝑣1 to node 𝑣𝑗 . This occurs if 𝑗 − 1 is a

multiple of 𝑝. By inspection, the cycle length is 𝑗−1
𝑝 + 1, or ⌈ 𝑗

𝑝⌉.

(iii) Suppose 𝒢𝑁,𝑝|𝜖,𝑗 contains a directed cycle, i.e., an edge (𝑣𝑗 , 𝑣1) closes a directed path from 𝑣1 to 𝑣𝑗 .

If a path exists from 𝑣𝑗 to 𝑣𝑘, 𝑘 > 𝑗, the weakly connected component 𝒢1 containing the directed cycle is

the union of the cycle and the path from 𝑣𝑗 to 𝑣𝑘. The other components must be the directed paths and

isolated nodes of unperturbed 𝒢𝑁,𝑝 but whose nodes are not contained in 𝒢1. If there is no directed cycle,

the edge (𝑣𝑗 , 𝑣1) augments but does not close a directed path in 𝒢𝑁,𝑝, so all components in 𝒢𝑁,𝑝|𝜖,𝑗 are either

directed paths or isolated nodes.

(iv) The result follows from (i) and (iii).

A.6 Proof of Theorem 8.9

Proof of Theorem 8.9. The characteristic polynomial of 𝐻𝑝
𝑁 |𝜖,𝑗 is the product of the characteristic polyno-

mials of the strongly connected components in its digraph 𝒢𝑁,𝑝|𝜖,𝑗 [92]. If 𝑗−1 is a multiple of 𝑝, the digraph

has one directed cycle with = ⌈ 𝑗
𝑝⌉ nodes by Theorem 8.8(i) and (ii). The characteristic polynomial of the

cycle equals (8.9) with 𝑁 = 𝑙. The other strongly connected components 𝒢1, . . . ,𝒢𝑁−𝑙 are isolated nodes

with characteristic polynomials 𝜙𝒢𝑖(𝜆) = −𝜆, 1 ≤ 𝑖 ≤ 𝑁 − 𝑙. The eigenvalues of 𝐻𝑝
𝑁 |𝜖,𝑗 are the roots of the

characteristic polynomial of 𝐻𝑝
𝑁 |𝜖,𝑗

𝜙𝐻𝑝
𝑁 |𝜖,𝑗 (𝜆) = 𝜙𝐻𝑙

(𝜆)

𝑁−𝑙∏︁
𝑖=1

𝜙𝒢𝑖
(𝜆) (A.15)

= (−1)
𝑁
𝜆𝑁−𝑙(𝜆𝑙 − 𝜖). (A.16)

Suppose 𝑗− 1 is not a multiple of 𝑝. Then the characteristic polynomial becomes 𝜙𝐻𝑝
𝑁 |𝜖,𝑗 (𝜆) = (−𝜆)

𝑁 ;

i.e., all eigenvalues are zero.
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Appendix B

Proofs for Section 8.2

B.1 Proof of Theorem 8.15

Proof of Theorem 8.15. We proceed by induction. For 𝑁 = 1, 𝐴𝑁 = 0, so the single eigenvector 𝑉1 = 1,

which equals 𝑃1 = 𝑃−1
1 .

Let 𝑣𝑁 denote the first𝑁 elements of the (𝑁+1)th column of 𝑃𝑁+1 so that the 𝑖th element, 𝑖 = 1, . . . , 𝑁 ,

is given by

[𝑣𝑁 ]𝑖 =

(︂
𝑁

𝑖− 1

)︂
. (B.1)

Assume 𝐴𝑁 = 𝑃−1
𝑁 𝐽𝑁𝑃𝑁 , or 𝑃𝑁𝐴𝑁 = 𝐽𝑁𝑃𝑁 . We need to show 𝑃𝑁+1𝐴𝑁+1 = 𝐽𝑁+1𝑃𝑁+1. The left side

yields

𝑃𝑁+1𝐴𝑁+1 =

⎡⎢⎢⎢⎢⎣
𝑃𝑁 𝑣𝑁

0𝑇𝑁 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝐴𝑁 1𝑁

0𝑇𝑁 0

⎤⎥⎥⎥⎥⎦ (B.2)

=

⎡⎢⎢⎢⎢⎣
𝑃𝑁𝐴𝑁 𝑃𝑁1𝑁

0𝑇𝑁 0

⎤⎥⎥⎥⎥⎦ (B.3)

=

⎡⎢⎢⎢⎢⎣
𝐽𝑁𝑃𝑁 𝑃𝑁1𝑁

0𝑇𝑁 0.

⎤⎥⎥⎥⎥⎦ (induction). (B.4)
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Since
(︀
𝑛+1
𝑘+1

)︀
=
∑︀𝑛

𝑗=𝑘

(︀
𝑗
𝑘

)︀
for 1 ≤ 𝑘 ≤ 𝑛 [131], we can write

[𝑃𝑁1𝑁 ]𝑖 =

𝑁−1∑︁
𝑗=𝑖

(︂
𝑗

𝑖

)︂
=

(︂
𝑁

𝑖

)︂
(B.5)

Now consider 𝐽𝑁+1𝑃𝑁+1:

𝐽𝑁+1𝑃𝑁+1 =

⎡⎢⎢⎢⎢⎣
𝐽𝑁 0𝑁

0𝑇𝑁 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑃𝑁 𝑣𝑁

0𝑇𝑁 1

⎤⎥⎥⎥⎥⎦ (B.6)

=

⎡⎢⎢⎢⎢⎣
𝐽𝑁𝑃𝑁 𝐽𝑁𝑣𝑁

0𝑇𝑁 0

⎤⎥⎥⎥⎥⎦ . (B.7)

Multiplying 𝑣𝑁 by 𝐽𝑁 results in a circular shift of 𝑣𝑁 ’s elements so that [𝑣𝑁 ]𝑖 =
(︀
𝑁
𝑖

)︀
, 𝑖 = 1, . . . , 𝑁 , proving

the equality of the upper-right block matrices in (B.4) and (B.7).

B.2 Proof of Theorem 8.16

Proof of Theorem 8.16. It suffices to show that 𝐴𝑁+1 = 𝑉𝑁+1𝐽𝑁+1𝑉
−1
𝑁+1:

𝑉𝑁+1𝐽𝑁+1𝑉
−1
𝑁+1

=

⎡⎢⎢⎢⎢⎣
1 0𝑇𝑁

0𝑁 𝑃−1
𝑁

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0

[︃
1 0 . . . 0

]︃

0𝑁 𝐽𝑁

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0𝑇𝑁

0𝑁 𝑃𝑁

⎤⎥⎥⎥⎥⎦ (B.8)

=

⎡⎢⎢⎢⎢⎣
1 0𝑇𝑁

0𝑁 𝑃−1
𝑁

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0

[︃
1 0 . . . 0

]︃
𝑃𝑁

0𝑁 𝐽𝑁𝑃𝑁

⎤⎥⎥⎥⎥⎦ (B.9)

=

⎡⎢⎢⎢⎢⎣
0 1𝑇𝑁

0𝑁 𝑃−1
𝑁 𝐽𝑁𝑃𝑁

⎤⎥⎥⎥⎥⎦ (B.10)
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=

⎡⎢⎢⎢⎢⎣
0 1𝑇𝑁

0𝑁 𝐴𝑁

⎤⎥⎥⎥⎥⎦ (Theorem 8.15) (B.11)

= 𝐴𝑁+1. (B.12)

B.3 Proof of Lemma 8.17

Proof of Lemma 8.17. We prove by induction. Consider base cases 𝑁 ∈ {2, 3}. For 𝑁 = 2, 𝑀2 = 1, so

det(𝑀2) = 1 = (𝜆 + 1)0. For 𝑁 = 3, 𝑀3 has determinant 𝜆 + 1.

Assume (8.24) holds for 𝑁 = 𝑘 > 2. Let 𝐶
(𝑘)
𝑝,𝑞 be the (𝑘 − 2) × (𝑘 − 2) submatrix formed by re-

moving the 𝑝th row and 𝑞th column of 𝑀𝑙. Let 𝑐
(𝑘)
𝑝,𝑞 represent the 𝑝𝑞-cofactor of 𝑀𝑘 for 1 ≤ 𝑝, 𝑞 < 𝑘.

Compute det(𝑀𝑘+1) by expanding by minors along the first column:

det (𝑀𝑘+1) =

𝑘+1∑︁
𝑖=1

[𝑀𝑘+1]𝑖1 𝑐
(𝑘+1)
𝑖,1 (B.13)

= 𝑐
(𝑘+1)
1,1 − 𝜆𝑐

(𝑘+1)
2,1 . (B.14)

Note that 𝑐(𝑘+1)
1,1 corresponds to (𝑘−1)×(𝑘−1) matrix 𝐶

(𝑘+1)
1,1 , and that 𝐶(𝑘+1)

1,1 = 𝐶
(𝑘+1)
2,1 = 𝑀𝑘 has cofactors

𝑐
(𝑘+1)
1,1 = det(𝑀𝑘) and 𝑐

(𝑘+1)
2,1 = −𝑐

(𝑘+1)
1,1 . Rewriting (B.14), we get

det (𝑀𝑘+1) = det (𝑀𝑘) − 𝜆 (−det (𝑀𝑘)) (B.15)

= (1 + 𝜆)det (𝑀𝑘) (B.16)

= (1 + 𝜆)(1 + 𝜆)𝑘−2 (induction) (B.17)

= (1 + 𝜆)𝑘−1. (B.18)

B.4 Proof of Theorem 8.18

Proof of Theorem 8.18. Let 𝑗 = 𝑁 and 𝐵
(𝑁)
𝑝,𝑞 denote the (𝑁 − 1) × (𝑁 − 1) submatrix formed by removing

the 𝑝th row and 𝑞th column of 𝐴𝑁 |𝜖,𝑁 , 1 ≤ 𝑝, 𝑞 ≤ 𝑁 . Let 𝑏(𝑁)
𝑝,𝑞 (𝜆) = (−1)𝑝+𝑞det(𝐵

(𝑁)
𝑝,𝑞 ) denote the cofactors
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of 𝐴𝑁 |𝜖,𝑁 . Expand by minors along the first column of 𝐴𝑁 |𝜖,𝑁 − 𝜆𝐼𝑁 :

𝜙𝑁 |𝜖,𝑁 (𝜆) =

𝑁∑︁
𝑖=1

[𝐴𝑁 |𝜖,𝑁 ]𝑖1 𝑏
(𝑁)
𝑖,1 (B.19)

= −𝜆𝑏
(𝑁)
1,1 + 𝜖𝑏

(𝑁)
𝑁,1. (B.20)

The submatrix 𝐵
(𝑁)
1,1 for 𝑏(𝑁)

1,1 is upper triangular of form

𝐵
(𝑁)
1,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜆 1 1 . . . 1

−𝜆 1 . . . 1

. . .
. . .

. . . 1

−𝜆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.21)

so 𝑏
(𝑁)
1,1 = (−𝜆)𝑁−1 and the first term in (B.19) is (−𝜆)𝑁 . The submatrix 𝐵

(𝑁)
𝑁,1 corresponding to 𝑏

(𝑁)
𝑁,1 equals

𝑀𝑁 as in Lemma 8.17. Then, by Lemma 8.17, the corresponding cofactor 𝑏(𝑁)
𝑁,1 = (−1)𝑁+1(𝜆 + 1)𝑁−2. We

get

𝜙𝑁 |𝜖,𝑁 (𝜆) = (−𝜆)
𝑁

+ 𝜖(−1)𝑁+1 (𝜆 + 1)
𝑁−2 (B.22)

= (−1)
𝑁
(︁
𝜆𝑁 − 𝜖 (𝜆 + 1)

𝑁−2
)︁
. (B.23)

Let 2 ≤ 𝑗 < 𝑁 . Note that digraph 𝒢(𝐴𝑁 |𝜖,𝑗) has only one strongly connected component of size

greater than one. This component has form 𝒢(𝐴𝑁 |𝜖,𝑗). Equation (8.26) results since the characteristic

polynomial of 𝐴𝑁 |𝜖,𝑗 is the product of the characteristic polynomials of the strongly connected components

in its digraph 𝒢(𝐴𝑁 |𝜖,𝑗) as shown in [92].

B.5 Proof of Theorem 8.20

Proof of Theorem 8.20. (i) By the Perron-Frobenius Theorem, 𝜆 = 𝜌𝑁,𝜖 is real-valued for 𝐴𝑁 |𝜖,𝑁 . Substi-

tuting in (8.29) and taking the logarithm yields

log
𝜌𝑁,𝜖

𝜌𝑁,𝜖 + 1
=

1

𝑁
log

𝜖

(𝜌𝑁,𝜖 + 1)
2 . (B.24)
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Since 𝜖 ∈ (0, 1) and 𝜌𝑁,𝜖 is a positive real number,

𝜌𝑁,𝜖 > 0 >
√
𝜖− 1,

so (𝜌𝑁,𝜖 + 1)2 ≥ 𝜖, or 𝜖
(𝜌𝑁,𝜖+1)2

< 1. We then get

log
𝜌𝑁,𝜖

𝜌𝑁,𝜖 + 1
=

1

𝑁
log

𝜖

(𝜌𝑁,𝜖 + 1)
2 < 0. (B.25)

Let 𝑁 → ∞. Then, log
𝜌𝑁,𝜖

𝜌𝑁,𝜖+1 → 0−, or 𝜌𝑁,𝜖

𝜌𝑁,𝜖+1 → 1−. This implies that 𝜌𝑁,𝜖 → ∞.

(ii) Let 𝑁 → 0. Then, log
𝜌𝑁,𝜖

𝜌𝑁,𝜖+1 → −∞ from (B.25), or 𝜌𝑁,𝜖

𝜌𝑁,𝜖+1 → 0+. This implies 𝜌𝑁,𝜖 → 0+.

(iii) Let 𝜖 = 𝛼𝑁 , 0 < 𝛼 < 1. From (B.24),

log
𝜌𝑁,𝜖

𝜌𝑁,𝜖 + 1
= log𝛼 +

1

𝑁
log

1

(𝜌𝑁,𝜖 + 1)
2 . (B.26)

If 𝑁 → ∞, then log
𝜌𝑁,𝜖

𝜌𝑁,𝜖+1 → log𝛼−, or 𝜌𝑁,𝜖

𝜌𝑁,𝜖+1 → 𝛼−. The result follows for 𝛼 → 1 and 𝛼 → 0.

B.6 Proof of Theorem 8.21

Proof of Theorem 8.21. (i) Taking the magnitude of both sides of (8.29) yields

⃒⃒⃒⃒
⃒
(︂

𝜆

𝜆 + 1

)︂𝑁
⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒ 𝜖

(𝜆 + 1)
2

⃒⃒⃒⃒
⃒ , or, (B.27)

⃒⃒⃒⃒
𝜆

𝜆 + 1

⃒⃒⃒⃒𝑁
=

𝜖

|𝜆 + 1|2
. (B.28)

Take the logarithm of both sides and divide by 𝑁 :

log

⃒⃒⃒⃒
𝜆

𝜆 + 1

⃒⃒⃒⃒
=

1

𝑁
log

𝜖

|𝜆 + 1|2
. (B.29)

Since Re𝜆 > − 1
2 , we get

⃒⃒⃒
𝜆

𝜆+1

⃒⃒⃒
< 1 by Lemma 8.19, so both sides of (B.28) are less than 1. Therefore,

log

⃒⃒⃒⃒
𝜆

𝜆 + 1

⃒⃒⃒⃒
=

1

𝑁
log

𝜖

|𝜆 + 1|2
< 0. (B.30)

Let 𝑁 → ∞. By (B.29), log
⃒⃒⃒

𝜆
𝜆+1

⃒⃒⃒
→ 0−, or

⃒⃒⃒
𝜆

𝜆+1

⃒⃒⃒
→ 1−. If Re𝜆 > 0, then |𝜆| < |𝜆 + 1|, so |𝜆| → ∞.

Now let Re𝜆 < 0. We require |𝜆| → |𝜆 + 1|. Substitute 𝜆 = Re𝜆 + 𝑗Im𝜆 to get Re𝜆 → − 1
2

+
.

(ii) Let 𝑁 → 0. Then, log
⃒⃒⃒

𝜆
𝜆+1

⃒⃒⃒
→ −∞ by (B.30). This implies

⃒⃒⃒
𝜆

𝜆+1

⃒⃒⃒
→ 0+, or |𝜆| → 0+.
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(iii) Assume 𝜖 = 𝛼𝑁 , 0 < 𝛼 < 1. Then, from (B.29),

log

⃒⃒⃒⃒
𝜆

𝜆 + 1

⃒⃒⃒⃒
= log𝛼 +

1

𝑁
log

1

|𝜆 + 1|2
. (B.31)

If 𝑁 → ∞, then log
⃒⃒⃒

𝜆
𝜆+1

⃒⃒⃒
→ log𝛼−, or |𝜆| → 𝛼 |𝜆 + 1|−. Then, |𝜆| → 0 for 𝛼 → 0. If 𝛼 → 1, the proof

follows that of (i).

B.7 Proof of Theorem 8.22

Proof of Theorem 8.22. It is first shown by contradiction that Re𝜆 > − 1
2 must hold for all 𝜆 ∈ Λ𝑁 |𝜖,𝑁 to

ensure that |𝜆| → 0 as 𝑁 → 0. Let Re𝜆 < − 1
2 , so

⃒⃒⃒
𝜆

𝜆+1

⃒⃒⃒
> 1 by Lemma 8.19. Then, both sides of (B.28)

are greater than one, so both sides of (B.29) are greater than zero. As 𝑁 → 0, log
⃒⃒⃒

𝜆
𝜆+1

⃒⃒⃒
→ ∞, or |𝜆| → ∞.

This is a contradiction, so Re𝜆 ≥ − 1
2 .

Next, 𝜖′ is found such that, for all 𝜖 < 𝜖′, all eigenvalues converge to zero, or, equivalently, Re𝜆 ≥ − 1
2 .

By Theorem 8.21(ii), eigenvalue 𝜆 converges to zero as 𝑁 → 0 for all 𝜖 ∈ (0, 1) if Re𝜆 > 0, so it remains to

find 𝜖′ such that Re𝜆 has lower bound − 1
2 when Re𝜆 < 0.

Assume 𝜆 ∈ (− 1
2 , 0). From (8.28) and Lemma 8.19,

𝜖 = |𝜆 + 1|2
⃒⃒⃒⃒

𝜆

𝜆 + 1

⃒⃒⃒⃒𝑁
< |𝜆 + 1|2 . (B.32)

We require 𝜖 < |𝜆 + 1|2 for all 𝜆, i.e., 𝜖 < inf |𝜆 + 1|2 = 𝜖′. For 𝜆 ∈ (− 1
2 , 0) it follows that |𝜆 + 1|2 ∈ ( 1

4 , 1+𝜆2
𝑦),

so 𝜖′ = 1
4 . Thus, |𝜆| converges to zero for 𝜖 < 1

4 .

B.8 Proof of Theorem 8.23

Proof of Theorem 8.23. The characteristic polynomial (8.27) of 𝐴𝑁 |𝜖,𝑁 has 𝑁 − 𝑗 zero roots and 𝑗 roots

from the characteristic polynomial (8.25) of 𝐴𝑗 |𝜖,𝑗 . The eigenvalues of 𝐴𝑗 |𝜖,𝑗 are distinct with corresponding

Jordan block diag (Λ𝑗 |𝜖,𝑗). Since there are 𝑁 − 𝑗 zero roots, eigenvalue zero has algebraic multiplicity 𝑁 − 𝑗.

The geometric multiplicity, or number of Jordan blocks, for zero equals the dimension of the null space

of 𝐴𝑁 |𝜖,𝑗 , which is one because there is one free variable in system 𝐴𝑁 |𝜖,𝑗𝑥 = 𝑏, where 𝑥, 𝑏 ∈ R𝑁 . Therefore,

the Jordan block for eigenvalue zero is 𝐻𝑁−𝑗 , yielding (8.31).
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B.9 Proof of Lemma 8.24

Proof of Lemma 8.24. We prove by induction. For 𝑘 = 1, 𝑣𝑁−1 = 1
𝜆𝑣𝑁 by (8.32), which equals 1

𝜆

(︀
1 + 1

𝜆

)︀0
𝑣𝑁 ,

so the base case holds.

Assume (8.34) holds and compute
∑︀𝑁

𝑙=𝑁−(𝑘+1) 𝑣𝑙:

𝑁∑︁
𝑙=𝑁−(𝑘+1)

𝑣𝑙 = 𝑣𝑁−𝑘−1 +

𝑁∑︁
𝑙=𝑁−𝑘

𝑣𝑙 (B.33)

=
1

𝜆

𝑁∑︁
𝑙=𝑁−𝑘

𝑣𝑙 +

𝑁∑︁
𝑙=𝑁−𝑘

𝑣𝑙 (by (8.32)) (B.34)

=

(︂
1 +

1

𝜆

)︂ 𝑁∑︁
𝑗=𝑁−𝑘

𝑣𝑙 (B.35)

=

(︂
1 +

1

𝜆

)︂(︂
1 +

1

𝜆

)︂𝑘+1

𝑣𝑁 (induction) (B.36)

=

(︂
1 +

1

𝜆

)︂𝑘+1

𝑣𝑁 . (B.37)
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Appendix C

Code for Memory Efficient HTCondor

Solution

This chapter provides code snippets that illustrate the design decisions discussed in Sections 9.4, 9.5,

and 9.6.

point_t nodearr[max_nodes ];

edge_t edgearr[max_edges ];

int degarr[max_nodes ];

int adjlist[max_nodes ][ max_degree *2];

Figure C-1: Road network representation. Variables max_nodes, max_edges, and max_degree are set to |𝑉 |,
|𝐸|, and the maximum out-degree of the road network, respectively.
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typedef struct node_t{

int taxicount , tripcount;

int taxicount_t[TIMERES ];

int taxicountS_t[TIMERES ];

int taxicountD_t[TIMERES ];

int tripcount_t[TIMERES ];

int tripcountS_t[TIMERES ];

int tripcountD_t[TIMERES ];

double tipfracsum_nt[TIMERES ];

double tipfracsumS_nt[TIMERES ];

double tipfracsumD_nt[TIMERES ];

int passcount_nt[TIMERES ];

int passcountS_nt[TIMERES ];

int passcountD_nt[TIMERES ];

} node_t;

Figure C-2: Example C structure to extract taxi and trip counts, tips, and number of passengers for pickups
(“S”), dropoffs (“D”), and along the Dijkstra paths. Variable TIMERES refers to the number of time points to
track, e.g., 168 for each hour of the week.

for (i=0; i<degarr[v]; i++){

w = adjlist[v][i*2];

e = adjlist[v][i*2 + 1];

currdist = dist[v] + edgearr[e].len;

if (! visited[w] || currdist < dist[w]){

dist[w] = currdist;

endq = (endq + 1) % numnodes;

insert_by_priority(distQ ,Q,currdist ,w);

paths[w] = v;

}}

Figure C-3: Dijkstra inner loop at node v showing min-priority queue implementation with arrays Q and
distQ.
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Appendix D

Signal Extraction Implementation

Details

This appendix provides additional details that complement the design decisions in Chapter 9. Sec-

tion D.1 describes the parallelization of the Dijkstra and statistics computations with HTCondor. Sec-

tions D.2 and D.3 describe the step-by-step design decisions that were made for the shortest path computation

and behavior extraction implementations.

D.1 Parallelization

The overall workflow is the following:

1: function main

2: shortest path computation

3: behavior extraction

4: Averaging

5: end function

Lines 2 and 3 are separate high-throughput problems that can be run in HTCondor. The steps taken to

run the shortest path computations and behavior extraction as jobs on HTCondor are described here. The

requirements specified for job submission, the number of jobs to run per machine, and handling input and

output are also described.

Shortest paths on HTCondor. The first step is to determine the requirements of the cluster

machines in an HTCondor ClassAd. Since HTCondor writes the output as a text file to the scheduled
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Requirements = (Arch == \"INTEL\"

|| Arch == \" X86_64 \")

&& OpSys == \" LINUX \"

Request_Memory = 3G

Figure D-1: Example HTCondor ClassAd for shortest path computation.

machine, machines with enough physical memory to store uncompressed output are required. Assuming

that a job computes 500,000 shortest paths, the output file requires at most 3GB of physical memory. In

addition, machines that are either 32-bit or 64-bit with a Linux operating system are requested. A sample

ClassAd is shown in Figure D-1.

Each HTCondor job must be relatively fast so that each job can compute as few shortest paths as

possible. The cluster has 32 machines that are either 16-core, 16GB RAM or 8-core, 8GB RAM, so 300

to 500 cores are available at a time depending on user demand and the machines that are allocated by

HTCondor. However, since the HTCondor output is written to the submit machine, the output files need

to be compressed and transferred to a local machine. The submit and local machines both have limited

physical memory, so it is not possible to wait for 700 million shortest paths before compressing the data. At

the same time, many files cannot be compressed simultaneously, since the process consumes RAM and slows

down the cluster. In other words, HTCondor cannot write output when a large number of jobs ends at the

same time.

To account for these issues, each job runs about 500,000 shortest paths, which takes about an hour

(see Table 9.2). The total computation for 700 million taxi trips requires 1,500 jobs. The submit machine

can compress 30 CSV files of size 3GB simultaneously without too much weight on the system, so shell

scripts were written to handle thread synchronization for job completion, output compression, and output

transferral. After half of the original jobs are complete, another set of 30 jobs is added to the batch queue.

Behavior extraction on HTCondor. The node_t struct shown in Figure C-2 takes about 2GB of

memory assuming 64-bit (see Section 9.4). The ClassAd of Figure D-1 includes this memory requirement.

The behavior extraction runs over the shortest path files, so the jobs are allocated to match the shortest

path output files. Each job takes about 10-15 minutes to run, so a new batch of jobs can be submitted every

10 minutes.

The design considerations that were made for implementing Dijkstra’s algorithm and behavior extrac-

tion in C are described next. Section D.2 presents the pre-processing solution. Section D.3 presents the

post-processing solution.
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D.2 Pre-Processing Implementation

The pre-processing workflow is as follows:

1: function shortest path computation

2: Define NYC map.

3: Load NYC road network.

4: Open taxi data filestream.

5: for each line in taxi data do

6: Check for errors.

7: Match coordinates to map.

8: Compute shortest path and write to file.

9: end for

10: end function

These steps are discussed in more detail below.

Defining the New York City map. The New York City geography is represented as a union of

rectangular bounding boxes defined by the top-left, top-right, bottom-left, and bottom-right coordinates.

Other geography representations include ESRI Shapefiles [132], which have the benefit of providing more

detailed models for geographic boundaries such as coastlines and city boundaries. For each line of taxi data,

it is necessary to verify whether the start and end coordinates are contained in New York City. Since this

check is a frequent operation, the rough approximation provided by an array of bounding boxes is ideal for

our case.

Loading the road network. The road network must be loaded at runtime to compute the shortest

paths for our implementation; also see Section 9.4 for alternative methods.

Reading the taxi data. The 2010-2013 NYC taxi data consists of 16.7GB of compressed CSV files.

While this size is small enough to store on a hard drive, it is large enough that the data cannot be stored in

RAM at runtime since the cluster machines have 8 GB and 16 GB RAM.

Handling data errors. One important issue is the presence of errors in the NYC taxi data. These

errors appear as invalid geo-coordinates and timestamps as well as invalid trip distances and durations. For

example, certain geo-coordinates lie in the middle of Hudson River or on top of the Empire State building.

A set of criteria is developed to determine whether a trip is spurious or not. This ensures that the extracted

statistics are not spurious themselves.

The error checking works as follows. First, it is verified whether the start and end coordinates of a

trip are contained in the New York City bounding boxes as defined above. Trips with geo-locations that
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lie outside these boxes are discarded. Other GPS errors that are detected include zero geo-coordinates and

trip distances that are reported as less than the Euclidean distance between the start and end points. Trips

of duration less than a minute are also discarded, as well as trips of distance less than 0.2 miles, since the

resolution of the road network representation is such that each road segment is at least 0.2 miles long.

If both coordinates of a taxi trip satisfy the error-checking conditions, they are mapped to the road

network. This method is described below.

Map matching. The geo-coordinates in the taxi data are mapped to the road network coordinates and

stored in nodearr as shown in Figure C-1. The map-matching technique known as perpendicular mapping,

or nearest-point estimation, is implemented; other map-matching methods are discussed in [133, 134, 135].

This map-matching method finds the “closest” point in the road network by computing the orthogonal

distance to the road segments in the road network. The initial step involves finding a small subset 𝑉𝑠 ⊂ 𝑉

of nodes with the same latitude as the given coordinate; using binary search on the sorted node array, this

takes 𝑂(log |𝑉 |)) time.

The next step is to compute the orthogonal distance from the geo-coordinate to each road segment

that has at least one endpoint contained in the node subset; i.e., the distance is computed for all (𝑣𝑖, 𝑣𝑗) ∈ 𝐸

such that 𝑣𝑖 ∈ 𝑉𝑠 or 𝑣𝑗 ∈ 𝑉𝑠. If (𝑣*𝑖 , 𝑣
*
𝑗 ) is the road segment that minimizes the distance, then the coordinate

from the taxi data is mapped to the closest endpoint. Map matching is done for both the pick-up coordinate

and the drop-off coordinate.

In some cases, the distance between the original coordinate and the matched coordinate is very large.

The trip is discarded if this distance is greater than 0.2 miles for either the start or the end coordinate.

D.3 Post-Processing Implementation

In this section, the steps taken to implement behavior extraction of the NYC taxi data is described. The

overall method is as follows:

1: function behavior extraction

2: Update node_t.

3: Define NYC map.

4: Load NYC road network.

5: Open taxi data and shortest path filestreams.

6: for each line in taxi data do

7: Check for errors.

8: Match coordinates to map.
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9: Sync line to shortest path data.

10: Compute statistics and write to file.

11: end for

12: end function

These steps are described below.

Updating node_t. The node struct is updated to include statistics of interest, such as total number

of trips, total number of passenger, and total fare paid. These statistics are defined as arrays with length

corresponding to the time resolution we desire. Weekly averages are computed and stored in 168-element

arrays such that index 0 corresponds to Sunday 12am-1am, index 1 corresponds to Sunday 1am-2am, index 24

corresponds to Monday 12am-1am, etc.

Algorithm. For each valid trip, the data fields of interest are extracted. Then, for each node on the

shortest path, the fields in the corresponding node_t struct are updated with the values from the taxi data.

For a data-specific value such as total fare, the data value is extracted and used to update the corresponding

node struct value. For updating a trip count, the corresponding counter in the node struct is incremented.

These operations are constant-time but with a large constant because of the large number of paths to process.

It is straightforward to modify the operations to investigate other taxi behaviors as well. The simplicity

of these update operations is important in order to extract statistics quickly. More complex statistics can

then be computed in an analysis stage.

Writing output and computing averages. The output is written to a CSV file through HTCondor

as described in Section 9.6. Converting the totals to average statistics requires one more pass over the files

containing the statistics. The time to solution is described in Section 9.7.

Our post-processing step is easy to modify for research purposes. For example, the elements in the

node_t struct can be updated to track different taxi behaviors. Furthermore, the set of operations in the

statistics computation algorithm can be updated to handle more complex metrics. This step is designed to

be streamlined for fast behavior extraction to enable analysis of taxi movement.
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