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Abstract

Link-flooding attacks in which an adversary coordinates botnet messages to

exhaust the bandwidth of selected network links in the core of the Internet

(e.g., Tier-1 or Tier-2 networks) have been a powerful means of denial of

service. In the past few years, these attacks have moved from the realm of

academic curiosities to real-world incidents. Unfortunately, we have had a

limited understanding of this type of attacks and effective countermeasures

in the current Internet. In this dissertation, we address this gap in our under-

standing of link-flooding attacks and propose a two-tier defense approach.

We begin by identifying routing bottlenecks as the major cause of the In-

ternet vulnerability to link-flooding attacks. A routing bottleneck is a small

set of links whose congestion disrupts the majority of routes taken towards

a given set of destination hosts. These bottlenecks appear despite physical-

path diversity and sufficient bandwidth provisioning in normal (i.e., non-

attack) mode of operation, and are an undesirable artifact of the current

Internet design. We illustrate their pervasiveness for adversary-chosen sets

of hosts in various cities and countries around the world via experimental

measurements. We then present a real-time adaptive attack for persistent

flooding of chosen links in the discovered routing bottlenecks using attack

flows that are indistinguishable from legitimate traffic. We demonstrate the

feasibility of these strategies and show that disruptions can scale from tar-

geted hosts of a single organization to those of a country.

To counter the link-flooding attacks defined in this dissertation, one

could remove their root cause, namely the routing bottlenecks. However,

this would affect the cost-minimizing policy that underlies the current In-

ternet, change its routing architecture, and possibly affect communication

costs. Instead, we propose an attack-deterrence mechanism that represents

a first line of defense against link-flooding attacks by cost-sensitive adver-

saries. In the proposed defense, most link-flooding attacks are handled by

the low-cost, single-domain based mechanism. As a second line of defense,

which targets cost-insensitive adversaries that are undeterred, we propose

the use of a multi-domain coordinated defense mechanism that is harder to

orchestrate in the current Internet.
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Chapter 1

Introduction

As society becomes increasingly reliant on the Internet, availability of Internet services becomes increas-

ingly critical. Lack of service availability can cause serious economic, safety, and national-security prob-

lems [45, 127, 163]. Experience of the past decade shows that Internet services can become unavailable

due to a variety of causes, with the following four being predominant.

• Failures. The Internet comprises a vast number of electronic components (e.g., routers, switches,

optical cables) whose failures often cause small disruptions of operations before recovery takes

place; e.g., 50 msec [85]. Large-scale failures, such as disruptions caused by natural disasters (e.g.,

Northeast US Internet outage due to Hurricane Sandy [37]) may require a few hours to a day for

recovery.

• Human errors. Network-topology and control-plane setups in large networks are highly complex

and hence prone to operational errors [63]. A well-known example is the Youtube outage of 2008

when a clerical mistake of a Pakistani Internet Service Provider (ISP) caused a BGP misconfigura-

tion that disrupted Youtube access for two-thirds of the world [107].

• Disputes. Most of the Internet is operated by independent ISPs whose business interests are some-

times misaligned. Sometimes ISPs may deliberately harm network services of competitor ISPs (e.g.,

throttling bandwidth or even discontinuing services) for commercial advantage in highly competi-

tive markets [32, 153].
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• Attacks. Network attackers can degrade Internet availability by denying legitimate-user access to

selected services. Denial-of-service (DoS) attacks typically generate malicious traffic to overload

targeted end-points servers, network bandwidth, or both. Often, the attack traffic is generated from

compromised machines, or bots, that create significant numbers of attack flows. The goals of DoS

attacks might vary widely. Some adversaries disrupt government services for political-propaganda

reasons. Others aim to damage their competitors’ business. Recently, a growing number of DoS

attacks have been used as instruments of extortion [20]. Furthermore, criminals can use DoS attacks

as smokescreens to cover up theft or fraud [84].

This dissertation addresses Internet availability problems caused by deliberate DoS attacks. In partic-

ular, we focus on the network-layer flooding attacks, one of the most common types of DoS attacks [19],

where adversaries attempt to exhaust bandwidth resources by flooding network-layer devices with attack

packets. Traditionally, denial of service attacks have flooded end-point services by sending a large volume

of traffic directly to the chosen servers; e.g., by sending several Gbps of traffic, an adversary can flood the

direct access link to the targeted server. Worse yet, with larger volumes of attack traffic, adversaries can

flood the entire upstream network that provides Internet connectivity to the targeted servers [19].

This dissertation focuses on a non-traditional type of network-flooding attacks, where adversaries

target routers/links in the core of the Internet; e.g., Tier-1 or Tier-2 networks. This type of non-traditional

attacks have been considered to cause much greater damage than traditional attacks; viz., early academic

studies [13, 144]. Also, from recent real-world attack incidents [31, 68], it appears that the current Internet

is vulnerable to such non-traditional attacks in practice.

However, we have a limited understanding of this type of non-traditional attacks and their countermea-

sures. For example, on the one hand, it has not been thoroughly investigated why the Internet, which has

rich physical connectivity with ample redundancy, can suffer from massive connectivity degradation when

a few routers/links in its core are flooded. Also, it is still unknown whether such attacks can disconnect

a particular set of adversary-chosen hosts from the Internet, as opposed to disrupting unspecified Internet

hosts [144]. On the other hand, it is also unknown whether there exists any countermeasure that protects

the Internet from such attacks by removing any underlying vulnerability. Additionally, comprehensive

studies have not yet been conducted on the desired properties of the Internet to counter non-traditional at-
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tacks, particularly the properties that can be readily implemented in the current Internet. This dissertation

addresses this gap in our understanding about the non-traditional attacks and readily-available counter-

measures for the current Internet.

1.1 Link-Flooding Attacks

In this dissertation, we call these non-traditional attacks, which flood network links in the core of the

Internet (e.g., IP backbone links in Tier-1 or Tier-2 ISPs) to degrade the communication of end-point

servers, the link-flooding attacks. These attacks are indirect since the locus of the attack (i.e., flooded links)

is different from the ultimate target; e.g., end-point servers. Recently, we have witnessed a noticeable

increase in this type of attacks, which brings added real-life motivation to the research reported herein.

Research interest in link-flooding attacks appeared nearly two decades ago when Albert et al. con-

ducted a theoretical study on the topological vulnerability of the Internet to autonomous system (AS)

removal [13]. These authors assumed a large-scale attack that can remove several ASes entirely from the

Internet and found the conditions under which the Internet would break up into smaller isolated pieces.

Although AS removal attacks are subjects of only theoretical interest, they vividly illustrated the enormous

potential damage that can be caused by large-scale, link-flooding attacks.

In 2004, an Internet worm, known as SQL Slammer, showed that link-flooding attacks against routers

in the core of the Internet can cause severe damage. This worm spread rapidly to tens of thousand victim

machines within ten minutes, creating extremely high traffic volume that originated from infected ma-

chines and inadvertently flooding numerous Internet routers [132]. Slammer caused denial of service in

some Internet hosts and dramatically slowed down general Internet traffic.

In 2009, Studer and Perrig illustrated the first general link-flooding attack, called the Coremelt at-

tack [144]. This attack demonstrated how a set of bots can send packets to each other and flood a set of

backbone routers, without requiring unwanted messages. As a consequence, Coremelt eludes all defense

mechanisms that filter unwanted traffic.

In the past few years, the link-flooding attacks have quickly moved from the realm of academic cu-

riosities to real-world settings. We recently have witnessed two real-world incidents: an attack against the

Spamhaus service in 2013 and another one against the ProtonMail service in 2015. Unlike previous link
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flooding incidents (e.g., congestion due to SQL Slammer), these attacks intentionally targeted and flooded

links in the Internet core.

Spamhaus. On March 16, 2013, an individual launched a denial-of-service attack against the Spamhaus

web server1 with attack traffic that peaked at about 10 Gbps. The initial attack successfully disrupted the

web service for about two days until Spamhaus begun to use a content distribution network (CDN) service,

CloudFlare2, on March 19th. As soon as the content of the Spamhaus service was cached in multiple (i.e.,

13) distributed cloud servers, the initial attack became ineffective. CloudFlare used the anycast mecha-

nism to distribute the attack flows to the datacenters that are closer to the traffic generators and effectively

diffused them. After few days later, the same adversary changed his strategy and began to flood the four

Internet exchange points (IXPs) that provided connectivity to some of the CloudFlare data centers. This

second attack used DNS-based reflection and traffic amplification to generate 350 Gbps of attack traffic.

As a result of the indirect flooding attack, the Spamhaus service along with many other services protected

by CloudFlare suffered regional service disruptions, particularly in some European countries. Despite the

large-scale connectivity damage, this IXP flooding attack was countered after only a few hours mainly be-

cause the intense attack traffic was directly sent to the target routers and thus it became easily distinguished

from legitimate traffic and dropped [31, 106].

ProtonMail. In November 2015, a hacking group called the Armada Collective launched a direct

server-flooding attack against the data center of ProtonMail3 – an email service located in Switzerland.

The attack perpetrators asked for ransom in exchange for stopping the attack, which was paid by the

company running ProtonMail shortly after the attack began. Although the server flooding stopped, a

much larger-scale attack was launched by an unknown adversary almost immediately after the first attack

ended.

The second attack targeted several network links connecting multiple ISPs that provide Internet con-

nectivity to ProtonMail. The adversary carefully chooses these link targets so that the flooding disrupted

most user traffic to ProtonMail. Although details of the second-attack strategy remain largely unknown, all

evidence suggests that the attack flows have not been easily distinguishable from legitimate flows, unlike

1https://www.spamhaus.org
2https://www.cloudflare.com
3https://www.protonmail.com
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in the case Spamhaus attack. As a consequence, the targeted ISPs and ProtonMail had to spend seven days

to find countermeasures and still failed to identify all the attack traffic. The attack was finally countered

by significant ISP-level network topology changes4 and purchasing an on-demand cloud-based scrubbing

service.

1.2 Challenges of Countering Link-Flooding Attacks

The fact that the targets of link-flooding attacks are not end-point servers makes it difficult to utilize many

existing defense mechanisms already installed at these servers; e.g., firewalls, IDSs. Hence, countermea-

sures to link flooding need to be implemented primarily at the Internet core where these attacks could,

at least in principle, be handled. We identify three fundamental challenges of countering link-flooding

attacks in Sections 1.2.1 through 1.2.3 below.

1.2.1 Indistinguishable Attack Flows

From the point of view of an adversary seeking to launch a link-flooding attack, a desirable property of at-

tack traffic is flow indistinguishability; i.e., the traffic characteristics of attacks flows are so similar to those

of legitimate flows that a defender cannot distinguish attack flows legitimate ones. The first challenge a

defender faces is that an adversary can craft indistinguishable link-flooding flows much more easily than

server-flooding flows. The main reason for this adversary advantage is the inherent difference between the

router and end-point server functions. That is, routers are supposed to convey all Internet traffic while end-

point servers usually are intended to receive only certain types of traffic; e.g., web servers expect to see

mostly web traffic. Therefore, it is much harder for routers to define and filter out protocol non-conforming

or unwanted traffic than end-point servers. For example, the Coremelt attack generates only wanted flows

that need not be protocol-conforming. Bots can collaborate to flood backbone links via any private proto-

col and their flows can remain indistinguishable from legitimate traffic in routers [144]. Another example,

which we provide in Chapter 3, shows that an adversary can use different attack capabilities to generate

4ProtonMail simplified its Internet infrastructure by exclusively connecting to a large Tier-1 ISP. However, this appears to be

insufficient in general since this network configuration can still be flooded by more advanced attacks since links of Tier-1 ISPs

may still become effective targets for link-flooding attacks; viz., Chapter 2.
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indistinguishable flows; e.g., by utilizing low-rate, protocol-conforming flows.

When attacks use indistinguishable flows, handling link flooding at a target router reduces to a resource-

sharing problem, where multiple indistinguishable resource requesters (i.e., both legitimate and malicious)

contend for the same resource; i.e., the network link bandwidth. In this case, the operation of any requester

becomes dependent upon the operation of other – often malicious and unknown – requesters of that re-

source. The existence of this type of undesirable dependency among requesters is the necessary condi-

tion for all denial of service in resource-sharing problems [66], and can be countered only by enforcing

agreements among requesters (i.e., constraints placed on requester behavior) outside the shared-resource

service [170]. In contrast to requester-agreement schemes at the application layer (e.g., cryptographic

client puzzles [160], ticket-based rate control [67]), establishing agreements at the network layer is much

more challenging to implement. For example, adding requester-agreement functionality to the IP protocol

requires significant modifications to large portions of router and host design of the current Internet; e.g.,

‘congestion puzzles’ in the IP layer [161]. Furthermore, verification of these agreements in backbone

routers would undoubtedly affect line-rate performance due to the large traffic volume processed in the

backbone.

1.2.2 Cost Asymmetry

Whenever a countermeasure to link flooding reduces to finding a solution to a resource-sharing problem

(viz., Section 1.2.1), the cost of the resource for both adversaries and defenders (i.e., the cost of targeted

routers bandwidth) becomes a key factor in determining the effectiveness of both attacks and defenses. For

example, if the cost of generating attack traffic (i.e., the cost of the shared resource requests) is extremely

high, or if the cost of available bandwidth (i.e., resource provisioning) at the target network (i.e., resource

manager) is negligible, attacks would become very unattractive.

Unfortunately, in the current Internet, the opposite cost relation prevails, which makes link-flooding

attacks very attractive. That is, the cost of bandwidth for generating attack traffic is orders of magnitude

lower than that of provisioning backbone-link bandwidth; viz., Chapter 4. In other words, a severe cost

asymmetry exists that favors the adversary over the defender. Furthermore, removing this cost asymmetry

is not only a matter of changing the Internet design. Instead, whether the asymmetry can be removed
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depends on two independent markets: the botnet markets and backbone bandwidth markets. The former is

an underground online e-commerce market [34], where bot buyers can demand and sellers supply attack

bots, whereas the latter is a legitimate network-infrastructure market, where many entities compete by

well-established rules that determine the market price of backbone bandwidth.5

We note that removing the cost asymmetry, and even reversing it to favor the defender, does not

completely deter link-flooding attacks; e.g., cost-insensitive adversaries, such as those sponsored by a

state, could still launch link-flooding attacks. However, it would change today’s severely imbalanced cost

structure and would certainly deter cost-sensitive (e.g., rational) adversaries. Hence, it would yield an

effective first line of defense, as argued in Chapter 4.

1.2.3 A Defender’s Dilemma

Many link-flooding attacks rely on the existence of a few link targets whose congestion would disrupt the

majority of routes that pass the Internet core from a set of sources to a set of destination hosts. We call

these links the routing bottleneck of a set of sources and destinations, and we show that its existence is an

undesirable artifact of Internet design. Although in the attack-free mode of operation these bottlenecks

are not an operational hazard, we seek to remove them since they can constitute an Internet vulnerability

in the presence of a link-flooding adversary.

However, as we show in Chapter 2, removing routing bottlenecks to prevent link flooding is impractical

in the current Internet because they are the result of employing a cost-minimizing (or revenue-maximizing)

policy of the Internet routing and topology designs. In other words, the source of many link-flooding

vulnerabilities is, in fact, a very desirable feature of the Internet business model. Hence, a defender faces

the following dilemma: how can one remove a vulnerability of a system when it is caused by a very

desirable feature of the system’s design and operation?

As long as the causality between a route-cost minimization policy and the existence of flooding tar-

gets holds, any attempt to remove the latter would necessarily affect the former. However, in the highly

competitive Internet transit markets ISPs would naturally be very reluctant to adopt any countermeasure

5The market involves many layers of businesses, including equipment companies, optical cable companies, undersea cable

companies, Internet exchange points (IXPs), etc.
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that would increase route cost.

1.3 Future Internet Designs for Potential Solutions

We briefly review future Internet designs that could address the challenges of link-flooding attacks, and

are the subject of on-going research. In the last decade, several architectures have been proposed for more

flexible, extensible, and secure future Internet [40, 72, 82, 118, 129, 173]. These “clean-slate” designs

have substantial merit in solving many inherent problems of the current Internet, albeit at higher expected

transition costs then mere modifications of the existing Internet. Several clean-slate design features have

been proposed to address the challenges of link-flooding attacks mentioned above. The brief review of

these new features helps us understand some of the limitations of the current Internet and highlight the

potential benefits future designs.

• Route controllability. Currently, sources or destinations of the Internet have virtually no control

over the routes taken by routers in the middle of the Internet. Results presented in Chapter 2 suggest

that a certain level of route control (i.e., choices of routers on a path) at sources and destinations

could be useful to remove the cause of many link-flooding attacks [173].

• Source and path authentication. The current Internet inherently lacks source and path authenti-

cation mechanisms [17]. Thus, it is hard to detect source IP spoofing accurately at the core of the

current Internet. A source/path authentication mechanism embedded in the future Internet architec-

ture (e.g., [120, 167]) would be useful for accurate attack traffic identification, which is a necessary

condition for strong bandwidth guarantees to legitimate users [92].

• Coordinated defense. Currently, interactions among autonomous systems (ASes) are highly lim-

ited and static. Dynamic and global-scale AS coordination in the future Internet would be useful

to counter large-scale, link-flooding attacks by cost-insensitive adversaries. In particular, when at-

tacks flood multiple link targets in different ASes, a coordinated defense operation at multiple ASes

becomes necessary to identify the ultimate target servers; viz., Chapter 3. A working group called

DDoS Open Threat Signalling (DOTS), formed in 2015 by IETF, can motivate the technical discus-

sions on more active AS coordinations for DoS mitigations [111]. However, a more challenging task
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is to create strong incentive models that could fuel global AS coordination. For example, the cre-

ation of entire end-to-end Internet paths to protect a user’s traffic has been proposed recently [26].

However, establishing tangible economic models that demonstrably justify the necessity of global

AS coordination remains as an open problem.

1.4 Thesis Overview

The brief analysis of the link-flooding attacks presented above suggests the following thesis statement:

Thesis statement. Inherent Internet design features and economic factors render it vulnerable to a

large class of link-flooding attacks that can persistently degrade host connectivity in targeted areas; e.g.,

cities, countries. Despite this basic vulnerability, we can implement a two-tier defense approach for han-

dling link-flooding attacks: (1) a low-cost, first-line defense deters attacks by cost-sensitive adversaries

and (2) a second-line defense handles cost-insensitive adversaries by using multi-domain coordinated

defenses that are harder and more expensive to orchestrate and deploy.

1.4.1 Outline

Understanding inherent vulnerability. Initially, we focus on understanding the vulnerability of the

current Internet to link-flooding attacks. In Chapter 2, we identify routing bottlenecks for hosts in various

cities and countries around the world, and show that they render the current Internet vulnerable to link

flooding when they become the targets of attacks. In addition to routing bottlenecks’ pervasiveness, we

also explain their root causes and characteristics through Internet-scale measurements. Our root-cause

analysis reveals that routing bottlenecks are caused by a desirable feature of the Internet business, which

suggests the defender’s dilemma defined above.

Large-scale persistent link-flooding attack. Knowledge of routing bottlenecks, although useful, does

not provide a full understanding of the link-flooding attacks. In order to gain a full understanding, we

need to investigate the attack that can flood the network links in the discovered routing bottlenecks. The

generated attack flows must be indistinguishable from legitimate ones to make the attack undetectable

at the targeted routers. Also, the attack must take into account any possible reactions by the targeted

9



routers (e.g., reactive re-routing) to maintain its effectiveness potentially indefinitely. Thus, in Chapter 3,

we propose and demonstrate a real-time adaptive attack called Crossfire that persistently degrades the

connectivity of any given target geographic area by flooding link targets in the routing bottlenecks.

A first line of defense. Finally, in this dissertation, we propose a solution to the defender’s dilemma

defined above. That is, instead of removing the routing bottleneck vulnerability completely from the

Internet by redesigning the underlying routing architecture, which would involve a significant transition

cost, we propose a first line of defense mechanism that can be applied to the current Internet. In the

proposed defense in Chapter 4, most link-flooding attacks are handled by a low-cost, single-AS based

deterrence mechanism in the current Internet. This way, only attacks that are still not deterred need to

be handled by higher-cost, multiple-AS coordinated defense mechanisms, which may require changes

to the Internet architecture. This two-tier defense approach enables us to handle link-flooding attacks

readily in the current Internet at low cost, and complement higher-cost defenses in future Internet routing

architectures.
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Chapter 2

Routing Bottlenecks in the Internet:

Inherent Vulnerability to Link-Flooding

Attacks

2.1 Outline of the Chapter

Several academic investigations [13, 144] and real-life attacks [31, 68] have offered concrete evidence

that link-flooding attacks can severely degrade the connectivity of large numbers of hosts in the Internet.

However, neither the root cause nor pervasiveness of this vulnerability has been analyzed to date. Fur-

thermore, it is unknown whether certain network structures and geographic regions are more vulnerable to

these attacks than others. In this chapter we address this gap in our knowledge about these attacks by (1)

introducing the notion of the routing bottlenecks and its role in enabling link-flooding attacks at scale; (2)

finding bottlenecks for hosts in 15 countries and 15 cities distributed around the world to illustrate their

pervasiveness; and (3) measuring bottleneck parameters (e.g., size, link types, and distance to adversary-

selected hosts) to understand the magnitude of attack vulnerability. We also discuss both structural and

operational countermeasures and their limitations.

In principle, route diversity could enhance Internet resilience to link-flooding attacks against large

sets of hosts (e.g., 1,000 hosts) since it could force an adversary to scale attack traffic to unattainable
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Figure 2.1: Normalized route-count distribution in routes from S = 250 PlanetLab nodes to D = 1,000

randomly selected servers in Iran

levels to flood all possible routes. In practice, however, the mere existence of many routes between traffic

sources and selected sets of destination hosts cannot guarantee resilience whenever the vast majority of

these routes are distributed across very few links, which could effectively become a routing bottleneck.

To define routing bottlenecks more precisely, let S denote a set of (source) IP addresses of hosts that

originate traffic to a set of IP destination addresses, denoted by D. S represents any set of hosts distributed

across the Internet. In contrast, D represents a set of hosts of a specified Internet region (e.g., a country or

a city), which are chosen at random and independently of S. A routing bottleneck on the routes from S to

D is a small set B of IP (layer-3) links such that B’s links are found in a majority of routes whereas the

remaining links are found in very few routes. |B| is often over an order of magnitude smaller than both

|S| and |D|. If all links are ranked by the number of routes between S and D that traverse each link, the

bottleneck links, B, have a very high rank whereas the vast majority of the remaining links have very low

rank. The sharper the skew in the route counts of all the links, the narrower the bottleneck. Note that a

routing bottleneck is defined for the routes from S to D but not necessarily vice versa due to Internet route

asymmetry [73].

An Example. To illustrate a real routing bottleneck, we represent route sources S by 250 PlanetLab

nodes [125] distributed across 164 cities in 39 countries. For the route destinations, D, we select 1,000

web servers in one country (i.e., Iran in this example) at random from a list of publicly-accessible servers

obtained using the ‘computer search engine’ called Shodan (http://www.shodanhq.com). We trace
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the routes between S and D for this country, calculate the number of routes that traverse each unique link

IP address we see in the routes, and plot their route-count distribution, as shown in Fig. 2.1. This figure

clearly shows a very skewed route-count distribution, which implies the existence of a narrow routing

bottleneck; i.e., 72% of the routes are found in only |B| = 13 links; viz., Fig. 2.4.2.

In this chapter we argue that the pervasive occurrence of routing bottlenecks is a fundamental property

of the Internet design. That is, power-law distributions that characterize the route-count distribution are a

consequence of employing route-cost minimization, which is a very desirable feature of Internet routing;

viz., Section 2.2. Fortunately, routing bottlenecks do not lead to traffic degradation during ordinary Inter-

net use, because the bandwidth of bottleneck links is usually provisioned adequately for normal mode of

operation. Hence, these bottelnecks should not be confused with the bandwidth bottlenecks in end-to-end

paths [11, 76] since one does not always imply the other; viz., Section 2.6.3.

Problem. Unfortunately, however, bottleneck links provide a very attractive target to an adversary

whose goal is to flood few links and severely degrade or cut off connectivity of targeted servers, D,

in various cities or countries around the world. For example, an adversary could easily launch a traffic

amplification attack using NTP monlists (400 Gbps) [108] and DNS recursors (120 Gbps) [31] to distribute

an aggregate of 520 Gbps traffic across the 13-link bottleneck of Fig. 2.1. Such an attack would easily

flood these links, even if each of them is provisioned with a maximum of 40 Gbps capacity, severely

degrading the connectivity of the 1,000 servers of a country from the Internet; viz., Fig. 2.4.2. As we will

discuss later in Chapter 3, more insidious attacks can flood bottleneck links persistently with attack traffic

that is indistinguishable from legitimate traffic by routers and invisible to, and hence undetectable by, the

targeted servers, D.

To counter link-flooding attacks that exploit routing bottlenecks, we first define the parameters that

characterize these bottlenecks; e.g., size, link types, and average distance of bottleneck links from the

targeted servers, D. Then we define a connectivity-degradation metric to provide a quantitative view of

the risk exposure faced by these servers. The bottleneck parameters and metric are particularly important

for applications in the targeted country or city where Internet-facing servers need stable connectivity; e.g.,

industrial control systems [47], financial [143], defense and other government services. We illustrate the

usefulness of our connectivity-degradation metric in assessing the vulnerabilities posed by real life routing
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bottlenecks found for hosts in fifteen countries and fifteen different cities around the world; viz., Section

2.

Analysis of routing-bottleneck exploits explains why intuitive but naive countermeasures will not

work in practice; e.g., reactive re-routing to disperse the traffic flooding bottleneck links across multiple

local links; flow filtering at routers based on traffic intensity; reliance on backup links on exposed routes.

More importantly, our analysis provides a route-diversity metric, which is based on autonomous-system

(AS) path diversity, and illustrates the utility of this metric as a proxy for the bottleneck avoidance in the

Internet. Finally, we discuss operational countermeasures against link-flooding attacks, including inter-

and intra-domain traffic engineering, and their limitations.

Contributions. In summary, we make the following contributions:

• We explain the root causes and characteristics of routing bottlenecks in the Internet, and illustrate

their pervasiveness with examples found in 15 countries and 15 cities around the world.

• We present a precise quantitative measure of connectivity degradation to illustrate how routing

bottlenecks enable an adversary to scale link-flooding attacks without much additional attack traffic.

• We present several classes of countermeasures against attacks that exploit routing bottlenecks, in-

cluding both structural and operational countermeasures.

2.2 Routing Bottlenecks

2.2.1 Route-count measurements

To determine the pervasiveness of routing bottlenecks, we investigate the routing bottlenecks for hosts in

15 countries and 15 cities, selected by the following criteria. For the list of countries, we select 15 coun-

tries from the union of the two lists of countries: the top countries with largest IPv4 address allocation

and the top attack-traffic originating countries [10]. Table 2.1 shows the list of 15 countries we measure

their routing bottlenecks, where they are ordered by increasing route-count skew. Note that for the United

States and China (which are the two highest-ranked countries at the both lists of countries [10]) we mea-

sure the routing bottlenecks of their major cities instead of the entire countries for more fair comparison

with other countries. For the list of cities, we select 15 cities, five major cities from each of the three
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Index Country Index City

Country1 United Kingdom City1 London

Country2 Brazil City2 New York

Country3 France City3 Berlin

Country4 Germany City4 Rome

Country5 Italy City5 Los Angeles

Country6 Russia City6 Moscow

Country7 Turkey City7 Beijing

Country8 India City8 Paris

Country9 Japan City9 Shenzhen

Country10 Taiwan City10 Chicago

Country11 South Korea City11 Guangzhou

Country12 Israel City12 Philadelphia

Country13 Romania City13 Shanghai

Country14 Egypt City14 Tianjin

Country15 Iran City15 Houston

Table 2.1: List of 15 countries and 15 cities use for route-count measurement.
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groups: the United States, Europe, and China. In particular, we select the top five cities by population in

the United States and China. Table 2.1 also shows the list of 15 cities, ordered by increasing route-count

skew.

We measure the route-count distribution in a large number of the routes towards a selected destination

region. We perform traceroutes to obtain a series of link samples (i.e., IP addresses at either end of layer-3

links) on a particular route from a source host to a destination host in a selected Internet region. From

the collected link samples on the routes, we construct the route-count distribution by counting the number

of routes for each link. Then we select the minimum set of links whose removal disconnects all routes

to the destination region by removing redundant links. Section 2.4.1 describes the selection algorithm in

detail. In these measurements, we trace 250,000 routes by using traceroute from 250 source hosts (i.e.,

250 PlanetLab nodes [125]) to 1,000 randomly selected web servers in each of 15 countries and 15 cities.

Traceroute is a common network monitoring tool whose use is often fraught with pitfalls [141]. Care

was taken in analysing the traceroute dataset so that our measurement results are not affected by the typical

errors of traceroute use; e.g., alias resolution, load-balanced routes, accuracy of returned IP, hidden links

in MPLS tunnels. For a detailed discussion, see Section 2.3.3. We perform multiple traceroutes for

the same source-destination host pair to determine the persistent links; i.e., links that always show up

in the multiple traceroutes. We collect only the samples of persistent links because non-persistent links

do not lead to reliable exploitation of routing bottleneck. We have found extremely skewed route-count

distribution for the 1,000 randomly selected hosts in each of the 15 countries and 15 cities, which strongly

indicates the existence of routing bottlenecks for hosts in all the countries and cities in which we performed

our measurements.

2.2.2 Power-law in route-count distributions

The analysis of route-count distributions helps us understand both the cause of routing bottlenecks and

their physical characteristics (e.g., size, type, distance from destination hosts) as well as countermeasures

against flooding attacks that attempt to exploit them. To illustrate the skew of route-count distributions,

we present our measurements for 15 countries and 15 cities around the world in Fig. 2.2.2 and Fig. 2.2.2,

respectively. In these figures, we illustrate the relation between the route count normalized by the total
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Figure 2.2: Normalized route count/rank in traced routes to 1,000 randomly selected hosts in each of the

15 countries.
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Figure 2.3: Normalized route count/rank in traced routes to 1,000 randomly selected hosts in each of the

15 cities.

number of measured routes and the rank of links on log-log scale, for 1,000 servers in each country and

city. The normalized route count of a link is the portion of routes between S and D carried by the link;

e.g., if a link carries 10% of routes between S and D, its normalized route count is 0.1.

We observe that the normalized route-count distribution is accurately modeled by the Zipf-Mandelbrot

distribution; namely,

f (k) ∼ 1/(k + β)α,

where k is the rank of the link, α is the exponent of the power-law distribution, and β is the fitting

parameter. Exponent α is a good measure of route concentration, or distribution skew, and hence of

bottleneck size: the higher α, the sharper the concentration of routes in a few links. Fitting parameter β

captures the flatter portions of the distribution in the high-rank region; i.e., lower values on the x-axis. This
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region is not modeled as well by an ordinary Zipf distribution since its probability mass function would

be a straight line in log-log scale on the entire range. The flatter portion of the distribution in high-rank

region is due to the nature of link sampling via route measurement. That is, multiple links are sampled

together when each route is measured and there exist no duplicate link samples in a route in general due to

the loop-freeness property of Internet routes. Thus, the occurrences of extremely popular links are limited

and the high-rank region is flattened. (Similarly flattened occurrence of high-ranked data samples was

observed and explained in other measurements and modeling studies [70].)

To enable comparison of route concentration in a few links of different destination regions, we fix

the fitting parameter β and find the values of exponent α for the best fit across the fifteen countries; i.e.,

β = 7.8 causes the smallest fitting error. In Fig. 2.2.2 and Fig. 2.2.2, the fifteen countries and cities are

ordered by increasing value of α in the range 1.31 – 2.36.

2.2.3 Causes

What causes routing bottlenecks, or high skew/power-law distribution of route count? Often, power-

law distributions (especially the Zipf-Mandelbrot distribution) arise from processes that involve some

cost minimization. For example, research in linguistics shows that power laws defining the frequency

of word occurrences in random English text arise from the minimization of human-communication cost

[101, 155]. Thus, one would naturally expect that power-laws in route-count distributions are caused

by the cost minimization criteria for route selection and network design in the Internet; i.e., both intra-

and inter-domain interconnections and routing. Extra cost minimization is provided by the “hot-potato”

routing between domains.

Cost minimization in inter-domain routing

Inter-domain routing policy creates routing bottlenecks in inter-AS links: BGP is the de facto routing

protocol for inter-domain (i.e., AS-level) Internet connectivity. The rule-of-thumb BGP policy for choos-

ing inter-AS paths is the minimization of the network’s operating cost. That is, whenever several AS paths

to a destination are found, the minimum-cost path is selected; e.g., customer links are preferred over peer

links and over provider links. If there exist multiple same-cost paths, the shortest path is selected. This
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Figure 2.4: Normalized route count/rank in simulated inter-AS links in three countries.

policy is intended to minimize operating costs of routing in the Internet [61, 64].

To determine whether the rule-of-thumb routing policy (i.e., policy I) contributes to the creation of

routing bottlenecks, we compare its effects with those of a hypothetical routing policy that distributes

routes uniformly across possible inter-domain links (i.e., policy II). This hypothetical policy favors inter-

domain links that serve fewer AS paths for a particular destination. To perform this comparison, we run

AS-level simulations using the most recent (i.e., June 2014) CAIDA’s AS relationship, which is derived

by Luckie et al. [96]. We simulate the hypothetical policy using Dijkstra’s shortest-path algorithm [48]

with dynamically changing link weights, which are proportional to the number of BGP paths served.

Fig. 2.4 shows the normalized route count/rank plots for inter-AS links when we create BGP paths

from all stub ASes to the ASes in Country1, Country8, and Country15 according to the two BGP policies.

To clearly see the different skew of the route count distribution of the two policies, we measure the slopes

of link distributions in log-log scale in the high-rank region. Since the route-count distribution of policy

II is not modeled by Zipf-Mandelbrot distribution, we simply measure the slope in the high rank region

to compare the skew. Country1 has a barely observable skew in this region (i.e., the slope is less than

0.1) with policy II while it has a much higher skew (i.e., a slope of 0.44) with policy I. Country8 and

Country15 have small skews (i.e., slopes of 0.21 – 0.23) with policy II and much higher skews of 1.10 –

1.24 with policy I. This suggests that, even though inter-domain Internet topology may have no physical

bottlenecks (or very few, as in Country8 or Country15), the BGP cost-minimization policy creates inter-

domain routing bottlenecks.
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Figure 2.6: Percentage of link types of the 50 most occurred links for each of the 15 countries. Three

link types (i.e., intra-AS links, inter-AS links, and IXP links) and three AS types (i.e., Tier-1, Tier-2, and

Tier-3) are used for categorization.

Cost minimization in intra-domain network topology and routing

Internal AS router-level topology creates intra-domain routing bottlenecks: Most ISPs build and

manage hierarchical internal network structures for cost minimization reasons [95, 139] and these struc-

tures inherently create routing bottlenecks within ISPs. An ISP is composed of multiple points of pres-

ence (or PoPs) in different geographic locations and they are connected via few high-capacity backbone

links. Within each PoP, many low-to-mid capacity access links connect the backbone routers to the border

routers.

In general, ISPs aim to minimize the number of expensive long-distance high-capacity backbone links

by multiplexing as much traffic as possible at the few backbone links; viz., HOT network model in [95].

As a result, backbone links naturally become routing bottlenecks. To show this, we carry out simula-

tions using Tier-1 ISP topologies inferred by Rocketfuel [139]. We construct ingress-egress routes for

all possible pairs of access routers using shortest-path routing [100]. Fig. 2.5 shows the simulated nor-

malized route count/rank for the three ASes belonging to different ISPs. In all three ASes, we find that
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the Zipf-Mandelbrot distribution fits accurately for high value of skew α (i.e., 1.77 – 1.89) when β is

deliberately fixed to 2.1 to yield a best fit and allow direct skew comparison. That is, a few AS internal

links are extremely heavily used whereas most other internal links are very lightly used. Moreover, most

of the heavily used links (i.e., 70%, 70%, and 90% of 10 most heavily used links in each of the three

ISPs, respectively) are indeed backbone links that connect distant PoPs. We reconfirm the prevalence of

intra-domain bottleneck links later in Section 2.2.5 where we find that a large percentage (i.e., 30%) of

links in routing bottlenecks are intra-AS links.

Hot-potato routing policy in ISPs aggravates inter-domain routing bottlenecks: The hot-potato

routing policy is another example of a cost-minimization policy used by ISPs; i.e., this policy chooses the

closest egress router among multiple egress routers to the next-hop AS [148]. As already reported [154],

this policy causes a load imbalance at multiple inter-AS links connecting two ASes and thus aggravates

the routing bottlenecks at the inter-AS links.

2.2.4 Characteristics of Bottleneck Links

In this subsection we investigate the characteristics of the links in the routing bottlenecks in terms of

link types (e.g., intra-AS links, inter-AS links, or IXP links) and distance from the hosts in the target

region (e.g., average router and AS hops) as a backdrop to the design of countermeasures against attacks

that exploit bottleneck links. Our investigation suggests that the variety of link types found and their

distribution make it impractical to design a single ‘one-size-fits-all’ countermeasure. Instead, in Section

2.5, we discuss several practical countermeasures that account for the specific bottleneck link types.

2.2.5 Link types

We consider three link types based on their roles in the Internet topology: intra-AS links, which connect

two routers owned by the same AS; inter-AS links, which connect routers in two different ASes; and

IXP links, which connect routers of different ASes through a switch fabric. Although the link types are

clearly distinguished in the above definitions, the determination of link types via traceroute is known to

be surprisingly difficult and error prone due to potential inference ambiguity [103]. For example, the AS

boundary ambiguity [103] arises because routers at AS boundaries sometimes use IPs borrowed from their
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neighbor ASes for their interfaces. This is possible because the IPs at the both ends of the inter-AS links

are in the same prefix. Borrowed IPs make it difficult to determine whether a link is an intra- or inter-AS

link.

Our method of determining link type eliminates the AS boundary ambiguity by utilizing route diversity

at the bottleneck links. Unlike previous measurements and analyses [76, 103], we measure a large number

of disjoint incoming/outgoing routes to/from a bottleneck link. In other words, we gather all visible links

1-hop before/after the bottleneck link, and this additional information helps us infer the link types at AS

boundary without much ambiguity.1

Fig. 2.6 summarizes the percentage of the link types of the 50 most frequently found links for each

of the 15 countries. The average percentage of all 15 countries is presented in the rightmost bar. Notice

that the intra-AS and the inter-AS links are further categorized by the AS types; i.e., Tier-1, Tier-2, and

Tier-3 ASes. The list of Tier-1 ASes is obtained from the 13 selected ASes in Renesys’ Baker’s Dozen.2

ASes that have no customer but only providers or peers are Tier-3 ASes. The rest of the ASes are labeled

as Tier-2 ASes.

Our investigation found two unexpected results. The first is that the intra-AS links are a major source

of routing bottlenecks; see the rightmost bar in Fig. 2.6 where approximately 30% of routing bottleneck

links are intra-AS links while the other 30% and 20% are inter-AS links and IXP links, respectively. (The

balance of 20% is not determined due to lack of traceroute visibility). This high percentage of intra-AS

bottleneck links contradicts the common belief that ISPs distribute routes over their internal links very

well using complete knowledge of, and control over, their own networks. This result motivated us to

investigate the practical challenges of route distribution within individual ISPs; viz., Section 2.5.3. The

second unexpected result is that the majority of both intra-AS and inter-AS bottleneck links (i.e., 100% for

intra-AS type and 81.2% for inter-AS type) is exclusively owned and managed by large ASes; e.g., Tier-1

or Tier-2 ASes. This implies that the Tier-1/Tier-2 ASes are the primary sources of bottleneck links.

1For IP to ASN mapping, we use the public IP-to-ASN mapping database by Cymru (https://www.team-cymru.

org/Services/ip-to-asn.html).
2http://www.renesys.com/2014/01/bakers-dozen-2013-edition/
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Figure 2.7: Router-hop distances of 50 bottleneck links for each of the 15 countries from the target regions.
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Figure 2.8: AS-hop distances of 50 bottleneck links for each of the 15 countries from the target regions.

Link distance

We also measure the router-hop and AS-hop distance of the bottleneck links from the hosts in the target

regions. To measure a bottleneck link’s router-hop distance, we take the average of router-hop distances

from the 1000 hosts in a region. A challenge in measuring the router-hop distance via traceroute is that

some destinations used have firewalls in their local networks, which prevents discovery of the last few

router hops from the destinations. When traceroute does not reach a destination we assume the presence

of the destination immediately past the last hop found. Thus, the measured router-hop distance is a strict

lower-bound of the average router-hop distance from destination hosts.

Fig. 2.2.5 shows the average and standard deviation of the router-hop distance of the 50 bottleneck

links for each of the 15 countries. The average router-hop distance ranges from 6 to 10 router hops with

average of 7.9 router hops and no significant differences were found across the 15 countries. Considering

the average length of Internet routes is approximately 17 router hops [54], we conclude that the bottle-
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Figure 2.9: Connectivity degradation in the Ark dataset relative to the PlanetLab dataset for 50 flooding

links selected from the routes measured by the PlanetLab nodes.

neck links are located in the middle to the slightly closer to the target region on the routes to the target.

The distance analysis is also consistent with the observation that the most bottleneck links are within or

connecting Tier-1/Tier-2 ASes.

Fig. 2.2.5 shows the average and standard deviation of the AS-hop distance for the 15 countries. The

average AS-hop distance from the target to the bottleneck links ranges from 1 to 3 AS hops with average

of 1.84 AS hops. Again, the measured AS-hop distances are strict lower bounds of the average AS-hop

distances due to limited traceroute visibility.

2.3 Validation of Bottleneck Measurements

2.3.1 Independence of Route Sources

One of the common pitfalls in Internet measurements is the dependency on vantage point; that is, the

location where a measurement is performed can significantly affect the interpretation of the measurement

[124]. Here we argue that our routing-bottleneck results are independent of the selection of route sources

S. To show this, we validate our computation of routing-bottleneck results by comparing the connectivity

degradation (defined in Section 2.4.2) calculated using the original source set S (i.e., 250 PlanetLab nodes)

with that calculated using an independent source set S′ (i.e., 86 Ark monitors),3 as shown in Fig. 2.9.

3The CAIDA’s Ark project uses 86 monitors distributed over 81 cities in 37 countries and performs traceroute to all routed

/24’s. For consistent comparison, we use the Ark dataset that was measured on the same day when the PlanetLab dataset was

obtained and select a subset of the measured traces in the Ark dataset that has the same AS destination, D, used in the PlanetLab
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Figure 2.10: Maximum rank with sample size ≥ 50 for each of the 15 countries.
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Figure 2.11: Normalized route count/rank in traced routes to 1,000 randomly selected hosts in 3 countries.

Notice that we select 50 bottleneck links for each country by analyzing the routes measured by PlanetLab

nodes for both S and S′. The selection of these bottleneck links is discussed in Section 2.4.2. In most

countries, the ratios of the two connectivity degradations are slightly higher than or very close to 1, which

means that the bottlenecks of the PlanetLab dataset also become the bottlenecks of the independent Ark

dataset.

2.3.2 Sufficiency of Link-Sample Size

Another common pitfall in Internet measurements aiming to discover statistical properties of datasets is

the lack of a sufficiently large sample size; that is, it is possible that the sample size is insufficient to detect

possible deviations from a discovered distribution. For reliable parameter estimates, the rule of thumb is

that one needs to collect at least 50 samples for each element value [41]. Fig. 2.10 shows the maximum

rank of the links (ordered by decreasing route count) that are observed with at least 50 link samples for

the 15 countries in our measurement. The figure shows that for all 15 countries, all the high ranked links

dataset.
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(i.e., 0–100 rank) are observed with more than 50 link samples and thus the parameter estimates based on

these links (i.e., α and β in Fig. 2.2.2) are statistically sound.

Fig. 2.11 confirms that we have collected a sufficient number of link samples. In this figure, we

illustrate the normalized route count with the various sizes of disjoint D and observe how the route count in

the high rank region (i.e., rank 0–100) converges. We can conclude that |D| = 1,000 is sufficient to discover

the power-law distribution in the top-100 rank because it displays the same power-law distribution in the

range as that observed with smaller size for D; i.e., |D| <1,000. Thus, with a relatively small number

of measurements one can learn the power-law distribution of the few but frequently observed high-rank

links.

2.3.3 Traceroute Accuracy

In this subsection we review the common pitfalls in analyzing traceroute results and explain why they do

not affect our measurement results.

Inaccurate alias resolution: As shown in many topology measurement studies, it is extremely impor-

tant to accurately infer the group of interfaces located in the same router (or alias resolution) because its

accuracy dramatically affects the resulting network topology [105, 139]. Highly accurate alias resolution

still remains an open problem. Our measurements do not need alias resolution because we do not measure

any router-level topology, but only layer-3 links (i.e., interfaces) and routes that use those links.

Inaccurate representation of load-balanced routes: Ordinary traceroute does not accurately capture

load-balanced links and thus specially crafted traceroute-like tools (e.g., Paris traceroute [21]) are needed

to discover these links. Our measurement does not need to discover load-balanced links because they

cannot become the routing bottlenecks. Instead, we perform ordinary traceroute multiple times (e.g., 6

traceroutes in our measurement) for the same source-destination pair and ignore the links that do not

always appear in multiple routes.

Inconsistent returned IPs: In response to traceroute, common router implementations return the

address of the incoming interface where packets enter the router. However, very few router models return

the outgoing interface used to forward ICMP messages back to the host launching traceroute [103, 104]

and thus create measurement errors. However, our routing bottleneck measurement is not affected by this
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router behavior because (1) most of the identified router models that return outgoing interfaces are likely

to be in small ASes since they are mostly Linux-based software routers or lower-end routers [103], and

(2) we remove all load-balanced links that can be created by the routers which return outgoing interfaces

[104].

Hidden links in MPLS tunnels: Some routers in MPLS tunnels might not respond to traceroute and

this might cause serious measurement errors [164]. However, according to a recent measurement study

in 2012 [49], in the current Internet, nearly all (i.e., more than 95%) links in MPLS tunnels are visible to

traceroute since most current routers implement RFC4950 ICMP extension and/or ttl-propagate option to

respond to traceroute [49].

2.4 Routing-Bottleneck Exploits

Bottleneck links provide a very attractive target for link-flooding attacks; viz., attacks against Spamhaus [31]

or ProtonMail [68]. By targeting these links, attacks become both scalable and persistent. Scalable be-

cause the number of targeted hosts can be increased substantially by flooding only few additional links,

as shown later in this section. Persistent because adversaries can dynamically change the flooded link

sets while maintaining the same targeted hosts, making the attacks undetectable by traditional anomaly

detection methods. In this chapter, we focus primarily on the scalability of link-flooding attacks; i.e., we

discuss the selection of target bottleneck links, the expected degradation in connectivity to the targeted

hosts D, and how to increase attack targets without much additional measurement effort and attack traffic.

The persistence properties of routing-bottleneck exploits is discussed in detail in Chapter 3.

To measure the strength of a link-flooding attack, we first define an ideal attack that completely dis-

connects all routes from sources S to selected hosts of destinations D. Then, we define realistic attacks

that can cause very substantial connectivity degradation.

2.4.1 Disconnection Attacks

Let S be the 250 PlanetLab nodes and D the 1,000 randomly selected hosts in the target region; e.g., a

country or a city. For efficient disconnection attacks, the adversary needs to flood only non-redundant

links; that is, flooding of a link should disconnect routes that have not been disconnected by the other
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already flooded links. Link redundancy can be avoided by flooding the minimum-link set of the routes

from S to D, namely the minimum set of links whose removal disconnects all the routes from S to D,

which is denoted by M(S,D). Note that our notion of the minimum-link set differs from the graph-

theoretic mincut. Our minimum-link set is a set of links that cover all routes to chosen nodes whereas

the graph-theoretic mincut is a set of (physical) link cuts for an arbitrary network partitioning. Thus, one

cannot use well-known polynomial-time mincut algorithms of graph theory [149] for our purpose.

Finding M(S,D) can be formulated as the set cover problem: given a set of element U = {1, 2, · · · ,m}

(called the universe) and a set K of n sets whose union equals the universe, the problem is to identify the

smallest subset of K whose union equals the universe. Thus, our minimum-link set problem can be for-

mulated as follows: the set of all routes we want to disconnect is the universe, U ; all IP-layer links are

the sets in K, each of which contains a subset of routes in U , and their union equals U ; the problem is

to find the smallest set of links whose union equals U . Since the set cover problem is NP-hard, we run a

greedy algorithm [74] to calculate M(S,D). The greedy algorithm, which is explained in more detail in

the description of the new attack strategy in Chapter 3, iteratively selects (and virtually cuts) each link in

M(S,D) until all the routes from S to D are disconnected.

Our experiments show that flooding an entire minimum-link set, M(S,D), in any of the fifteen coun-

tries and cities selected would be rather unrealistic. For example, approximately 83 Tbps would be re-

quired to flood a minimum-link set of 2,066 links with 40 Gbps link capacity for a flooding attack against

1,000 servers in Country1. |M(S,D)| can be much larger than both |S| or |D| since in measuring the

size of M(S,D) we exclude network links that are directly connected to hosts in S or D. Worse yet, Fig.

2.12 (top curves) shows that the minimum-link set size, |M(S,D)|, grows as |D| grows. This implies that

any practical link-flooding attack that disconnects all the hosts of a target region, D, must scale with an

already large |M(S,D)|. However, as we show in the next section, an adversary does not need to flood an

entire minimum-link set to degrade connectivity of D hosts of a targeted region very substantially. Also,

by taking advantage of the power-law distributions of bottleneck links, an adversary can scale attacks to

very large target sets, D.
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Figure 2.12: Measured sizes of minimum-link sets, |M(S,D)|, and selected bottlenecks sizes,

|B(S,D)(δC)|, for given degradation ratios δC and varying |D| in 3 countries.

2.4.2 Connectivity Degradation Attacks

Feasible yet powerful connectivity-degradation attacks would flood much smaller sets of links to achieve

substantial connectivity degradation to the routes from S to D. To measure the strength of such attacks

we define a connectivity-degradation metric, which we call the degradation ratio, as follows:

δ(S,D)(B) =
number of routes that traverse B

number of routes from S to D
, (2.1)

where B is the subset of the minimum-link set M(S,D) links that are flooded by an attack.

The degradation-ratio metric represents the connectivity damage to the routes from S to D when all

the routes that pass through any link in B are disrupted due to link-flooding attacks. For example, the

degradation ratio of 0.5 represents that the half of the routes from S to D are damaged by the flooding

attacks against the links in B. We believe that this connectivity-damage metric also faithfully represents

the bandwidth damage of the communication from S to D; i.e., a portion of bandwidth from S to D that

is disrupted by the attack. For this, we make the assumption that network links provisioned adequately

for normal mode of operation; i.e., when there are no attacks. That is, a network link that carries large

numbers of routes is equipped with proportionally large link bandwidth to provide reliable services when

not under attacks. With this assumption, this connectivity damage becomes equivalent to the bandwidth

damage.4

B’s size, |B|, is determined by an adversary’s capability. Clearly, the maximum number of links

4Notice that accurate measurements of the bandwidth damage require massive bandwidth measurements of all the links in

M(S,D), which would be challenging for existing link-bandwidth measurement techniques (such as BFind [11], Pathneck [76])

due to the large size (e.g., 2,000) of M(S,D).
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Figure 2.13: Calculated degradation-ratio/number-of-links-to-flood for 1,000 servers in each of the 15

countries.
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Figure 2.14: Calculated degradation-ratio/number-of-links-to-flood for 1,000 servers in each of the 15

cities.

that an adversary can flood is directly proportional to the maximum amount of traffic generated by attack

sources controlled by the adversary; e.g., botnets or amplification servers. Here, we assume that the

required bandwidth to flood a single link is 40 Gbps and thus the adversary should create 40 × n Gbps

attack bandwidth to flood n links concurrently. Links with larger physical capacity (e.g., 100 Gbps) have

recently been introduced in the Internet backbone but the vast majority of backbone links still comprises

links of 40 Gbps or lower capacity [81].

Fig. 2.4.2 and Fig. 2.4.2 show the expected degradation ratio calculated for each of the 15 countries

and 15 cities for varying number of links to flood, or |B|, respectively. These countries and cities are

ordered by increasing the averaged degradation ratio over the interval 1 ≤ |B| ≤ 50. By definition, the

degradation ratio for B (i.e., δ(S,D)(B)) is the sum of normalized route counts of the links in B. Thus,

degradation ratio can be accurately modeled by the cumulative distribution function (CDF) of the Zipf-
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Mandelbrot distribution since the normalized route count follows this distribution. Parameters α and β

are listed in both figures. We note that the ordering of the degradation ratios in Fig. 2.4.2 and Fig. 2.4.2

is exactly the same as the ordering of the values of the distribution skew, α, of the 15 countries and 15

cities in Fig. 2.2.2 and Fig. 2.2.2, respectively. That is, countries and cities with low α have a lower

degradation ratio (i.e., are less vulnerable to flooding attacks) whereas countries and cities with high α

have high degradation ratio; i.e., are more vulnerable to flooding attacks. This confirms that the skew of

the route-count distribution, α, of the Zipf-Mandelbrot distribution is a good indicator of vulnerability to

link-flooding attacks.

Fig. 2.4.2 and Fig. 2.4.2 also show that the adversary can easily achieve significant degradation ratio

(e.g., 40% - 82%) when flooding only few bottleneck links; e.g., 20 links. Given the proliferation of traffic

amplification attacks achieving hundreds of Gbps or the extremely low costs of botnets, flooding several

tens of bottleneck links of selected hosts in different countries around the world seems very practical.

Sizes of Bottlenecks

The size of a bottleneck selected for attack clearly depends on the chosen degradation ratio δC sought by

an adversary. This size is defined as:

|B(S,D)(δC)| = minimum |B|, such that δ(S,D)(B) ≥ δC .

The bottlenecks selected for attack, B(S,D)(δC), are substantially smaller than their corresponding

minimum-link sets, M(S,D). Fig. 2.12 shows the set sizes of the minimum-link sets and the selected bot-

tlenecks for chosen ratios δC of 0.7 and 0.5 for varying sizes of D. The plots for the three countries show

that |M(S,D)| is one to two orders of magnitude larger than |B(S,D)(δC)| in the entire range of measured

|D| and δC . In other words, the attack against the selected bottlenecks requires a much lower adversary’s

flooding capability than for a minimum-link set while achieving substantial connectivity degradation; e.g.,

70%.

Scaling the Number of Targets

Our experiments suggest that an adversary need not scale routing measurements and attack traffic much

beyond those illustrated in this analysis for much larger target-host sets (i.e., |D| ≫ 1, 000) in a chosen
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region to obtain connectivity-degradation ratios in the range illustrated in this analysis. This is the case

following two reasons. First, our measurements for multiple disjoint sets of selected hosts in a target

region yield the same power-law distribution for different unrelated sizes of D; viz., Fig. 2.11. Hence,

increasing the number of routes from S to a much larger D will not increase the size of the bottlenecks

appreciably. In fact, we have already noted that, unlike the size of minimum-link sets, |M(S,D)|, the

size of the selected bottlenecks for a chosen degradation ratio δC , |B(S,D)(δC)|, does not change as |D|

increases, as shown by the lower two curves of in Fig. 2.12. Second, we showed that routing-bottleneck

discovery is independent of the choice of S, where |S| ≫ |B|; viz., Section 2.3.1. This implies that, to

flood the few additional bottleneck links necessary for a much increased target set D, an adversary needs

not increase the size of S and attack traffic appreciably.

2.5 Countermeasures

Defenses against attacks exploiting routing bottlenecks range from simple but naı̈ve approaches to far-

reaching structural countermeasures and operational countermeasures. We summarize these countermea-

sures, discuss their deployment challenges, and briefly evaluate their effectiveness. Naturally, defense

mechanisms for server-flooding attacks (viz., [62]) are irrelevant to this discussion.

2.5.1 Naı̈ve Approaches

The naı̈ve approaches presented here are the most probable responses that the current networks would

perform once the degradation attacks hit the routing bottleneck for hosts in any target region.

Local rerouting: Targeted networks can reactively change routes crossing flooded links so that the

flooding traffic (including both legitimate and attack flows that are indistinguishable from legitimate flows)

is distributed over multiple other local links. However, this might cause more collateral damage on the

other local links after all.

Traffic-intensity based flow filtering: Typical mitigations for volumetric DDoS attacks detect and

filter long-lived large flows only because otherwise they cannot run in real-time in large networks [89].

This countermeasure cannot detect nor filter attack flows in bottleneck links because these could be low-

rate and thus indistinguishable from legitimate.
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Figure 2.15: Correlation between power-law exponent and AS-level route diversity in 15 countries.

(Legend: number i = Countryi, for i = 1, · · · , 15)

Using backup links: Typical backbone links are protected by the backup links, such that whenever

links are cut, the backup links seamlessly continue to convey traffic. However, backup links cannot counter

link-flooding attacks because they could be flooded too.

2.5.2 Structural Countermeasures

Structural countermeasures range from changes of physical Internet topology to those of inter-AS relation-

ships. Although this type of countermeasures might require significant time (e.g., months) to implement,

it could widen routing bottlenecks and decrease link-flooding vulnerability significantly. For example, if

a country is connected to the rest of the world via only a handful of market-dominating ISPs, no matter

how well routes are distributed, the country would inevitably experience routing bottlenecks. To remove

these bottlenecks, the country would have to increase its route diversity through structural changes to its

connectivity to the outside world.

Fig. 2.15 illustrates how AS-level structural changes could solve the routing-bottleneck problem. The

x-axis is the metric called AS-level route diversity and it is calculated as

{number of intermediate ASes}

{average AS hops from Tier-1 ASes to target region}
, (2.2)

where the intermediate ASes are the ASes that connect the Tier-1 ASes with ASes located within each

target region. The list of ASes within a target region are obtained from http://www.nirsoft.
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net/countryip/. Ratio (2.2) is a good proxy for measuring the AS-level route diversity because it

represents the average number of possible ASes at every AS hop from the Tier-1 ASes to the target region.

The y-axis is the power-law exponent α obtained in Section 2.2.2. We see the clear correlation between

the AS-level route diversity and the power-law exponent for the 15 countries, which supports our claim

that the more AS-route diversity, the lower the power-law exponent.

We find that the Western European countries use significantly higher AS-level route diversity (i.e.,

24.5 on average) than the rest of the countries (i.e., 16.5 on average), and thus are much less vulnerable

to link-flooding attacks. This is undoubtedly due to long-standing policies (e.g., local-loop unbundling

[29]) in European Union to stimulate ISP competition; e.g., to lower the cost of entry in ISP markets [60].

We believe that similar policies that promote ISP competition will increase route diversity and ultimately

reduce the vulnerability to link-flooding attacks in other parts of the Internet.

2.5.3 Operational Countermeasures

Operational countermeasures could improve the management plane of various routing protocols (e.g.,

BGP or OSPF) to either decrease the skew of route-count distribution or better react to the exploits.

Although most of the countermeasures discussed here have been proposed in different contexts before

(e.g., [75, 113, 154, 166]) their effectiveness in reducing routing bottlenecks is unknown. Hence, we

briefly analyze these countermeasures and their limitations here.

Inter-domain traffic engineering

When an inter-AS link is flooded, at least one of the ASes should be able to quickly redirect the flood-

ing traffic to relieve congestion. To do this, an AS would need to update its BGP announcements to its

neighbors that use the flooded links. However, inbound traffic redirection via updated BGP announce-

ments [158] is not guaranteed since upstream ASes may have no positive incentives to re-route; i.e.,

upstream ASes would ignore these announcements whenever re-routing increases traffic cost. Even if

neighbour ASes followed the updated BGP announcements, the long BGP convergence time (e.g., up to

an hour [102]) would render them ineffective for timely response to link-flooding. Further delays would be

incurred because outbound inter-AS level redirection requires human intervention in the current Internet.
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That is, inter-AS traffic redirection can only be manually configured since inter-AS links are selected by

the coupling of BGP and IGP (e.g., OSPF) protocols [148]. Hence, added costs would become necessary

to diffuse flooding traffic [154]. Therefore, timely and cost-effective reaction to inter-AS link flooding re-

quires a dynamic mechanism that adaptively utilizes multiple parallel inter-AS links [154] and/or multiple

AS-level route with different next-hop ASes [166]. The specific design of such mechanisms is beyond the

scope of this paper.

Intra-domain traffic engineering

• Proactive load balancing. Many of today’s networks, especially those of large ISPs, deploy intra-

domain load-balancing mechanisms based on the Equal-Cost Multi-Path (ECMP) algorithm [75];

e.g., approximately 40% of Internet routes [21] are load balanced by it. We call a particular intra-

domain link is load-balanced when most of intra-domain flows crossing the link have alternative

equal-cost routes that do not include the link. Note that such load-balanced links cannot be the

routing bottleneck since flooding at the link cannot congest all the routes that it serves; viz., Sec-

tion 2.2.1. Thus, to prevent intra-domain routing bottlenecks, we can make all the intra-domain

links to be load-balanced. However, this requires a network condition which cannot always be sat-

isfied in practice unless an ISP has a symmetrical network topology and weight configuration. Thus,

in practice ISPs should identify potential link targets and perform real-time reconfiguration of their

networks (which appears to be a non-trivial network configuration task) so that the identified link

targets become load-balanced.

• Reactive MPLS traffic engineering. One of the most widely used traffic engineering mechanisms is

Multi-Protocol Label Switching (MPLS). As of 2013, at least 30% of Internet routes travel through

MPLS tunnels [49] and they are mostly deployed in the large ISPs. Unlike the local rerouting so-

lution discussed in Section 2.5.1, MPLS reconfiguration can perform fine-grained traffic steering to

avoid collateral damage on the other links. However, the widely used offline MPLS reconfiguration

cannot be very effective since it can reconfigure tunnels only on a time scale ranging from tens

of minutes to hours and days [55, 159]. Worse yet, the online MPLS reconfiguration, such as the

auto-bandwidth mechanism [113], which automatically allocates required bandwidth to each tunnel
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Figure 2.16: Reduction of degradation ratios due to four defense strategies when 20 bottleneck links are

flooded for each of the 15 countries.

and change routes, is susceptible to sustained congestion. This is because it cannot detect conges-

tion directly but only via reduced traffic rates caused by congestion. Thus, even an auto-bandwidth

mechanism would require human intervention to detect link-flooding attacks [142] thereby slowing

reaction time considerably.

Moreover, even if an MPLS traffic engineering mechanism can quickly and reliably balance the

flooding traffic at the targeted link, its effectiveness can be very limited. For example, in typical

ISP networks, the aggregate bandwidth of all the new MPLS tunnels after optimal online MPLS

traffic engineering tends to have only about 2 or 3 times more bandwidth than the initial target link

bandwidth; viz., Section 4.7 for simulated results. This small bandwidth provisioning by MPLS

traffic engineering is ineffective since the network can be easily flooded again as adversaries simply

double or triple their attack traffic.

We utilize the recently proposed real-time traffic engineering techniques that leverage software-

defined networking (SDN) architecture in ISP networks to implement traffic-engineering based

bandwidth expansion mechanism that tests and ultimately deters cost-sensitive adversaries; viz.,

Chapter 4.

Effectiveness of operational countermeasures

We assume that all the operational countermeasures discussed above can be effectively implemented,

albeit the provided practical challenges above. Then we evaluate the reduction of degradation ratios due

36



to the following four defense strategies using the operational countermeasures: (1) inter-domain load

balancing at all inter-AS links, (2) intra-domain load-balancing and traffic engineering at all intra-AS

links, (3) all operational countermeasures at all Tier-1 ASes, and (4) all operational countermeasures at

all Tier-1 and Tier-2 ASes. In this evaluation, the types of all flooded links are known. Fig. 2.16 shows

the reduction of degradation ratios in percentage for 15 countries. It shows that the defense strategies that

protect a specific type of links (i.e., strategy (1) and (2)) are not very effective in general (approximately

20% reduction on average) because adversaries can still find bottleneck links from the other types of

links. However, the defense strategies deployed by Tier-1 and/or Tier-2 ASes (i.e., strategy (3) and (4))

show much higher effectiveness: when all Tier-1 ASes implement all the operational countermeasures,

the degradation ratio is reduced by 40%; and when all Tier-2 ASes also join the defense, 72% of reduction

is achieved on the average. This confirms our previous observation that the large Tier-1 and Tier-2 ASes

are primarily responsible for routing bottlenecks.

2.5.4 Application Server Distribution

One might distribute application servers in different geographic locations, possibly using content distri-

bution (e.g., Akamai [119]) and overlay networks (e.g., RON [16], SOS [86]) to distribute routes. The

application servers have to be distributed in such a way that inherent route diversity is fully utilized;

i.e., analysis must show that no routing bottleneck arises. However, this might not be practical for some

domains such as industrial process systems, financial services, or defense services where constrained ge-

ography may restrict application distribution.

2.6 Related Work

2.6.1 Internet Topology Studies

A large body of research investigates the topology of Internet. Two long-term projects have measured the

router-level Internet topology via traceroute-like tools: CAIDA’s Archipelago project [35] and DIMES

project [137]. Rocketfuel [139] is another project that use approximately 800 vantage points for traceroute

to infer major ISP’s internal topology. Together these studies provide important insights into the layer-3
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topology of the Internet.

Our routing bottleneck measurement differs from the topology studies in two important ways. First, we

do not measure or even infer the router-level topology but simply observe how the routes are distributed

on the underlying router-level topology. Second, we do not need nor attempt to observe all the routes

covering the entire address space but focus on the route-destination regions of potential adversary interest.

2.6.2 Topological Connectivity Attacks

Faloutsos et al. analyzed traceroute data and concluded that the node degree of the routers and ASes

have power-law distribution [50]. Albert et al. confirmed the power-law behavior of the node-degree

distribution and concluded that the Internet suffers from an ‘Achilles’ heel’ problem; i.e., targeted removal

attacks against the small number of hub nodes with high node degree will break up the entire Internet into

small isolated pieces [13].

The Achilles’ heel argument has triggered several counter-arguments. Some find that node-removal

attacks are unrealistic because the number of required nodes to be removed is impractically high [98,

162]. Li et al. argue that the power-law behavior in node-degree distribution does not necessarily imply

the existence of hub nodes in the Internet by showing that power-law node-degree distribution can be

generated without hub nodes [95].

Our routing-bottleneck study discovers a new power-law distribution in the Internet. However, this

power-law is completely different from that of the above-mentioned work for two reasons. First, we

measure a power law for the link usage in Internet routes whereas the above-mentioned work finds power

laws in the node-degree distribution. Second, the scope of our power-law analysis is different; i.e., it is

focused on, and limited to, a chosen route-destination region whereas the above-mentioned work analyzes

the power-law characteristics of the entire Internet.

2.6.3 Bandwidth Bottleneck Studies

In networking research, the term ‘bottleneck’ has been traditionally used to represent the link with the

smallest available bandwidth on a route; i.e., the link that determines the end-to-end route throughput. To

distinguish it from a routing bottleneck, we call this link the bandwidth bottleneck. Several attempts have
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been made to measure bandwidth bottlenecks in the Internet; viz., BFind [11] and Pathneck [76]. However,

routing and bandwidth bottlenecks are fundamentally different as they do not necessarily imply each other.

That is, routing bottlenecks are unrelated to the available bandwidth or provisioned link capacity, but

closely related to the number of routes served by each link. Conversely, bandwidth bottlenecks can occur

in the absence of any routing bottlenecks.

2.6.4 Control-Plane and Link-Flooding Attacks

Attacks that cause instability of the control plane in Internet routing [133] and link-flooding attacks [144]

have been recently proposed and launched in real life already [31]. In contrast to the previous link-flooding

attacks, where we focus on the feasibility of flooding a small set of critical links, here we explore a

fundamental vulnerability of today’s Internet, namely, pervasive routing bottlenecks that can be exploited

by any flooding attack. We show the ubiquity of routing bottlenecks for hosts in various countries and

cities around the world via extensive measurements, and identify their root cause. We also explore the

characteristics of bottleneck links; e.g., link type and distance to targets. Last, we provide several practical

countermeasures.
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Chapter 3

Crossfire: Large-Scale Persistent

Link-Flooding Attacks

3.1 Outline of the Chapter

The previous chapter shows that routing bottlenecks are pervasive in today’s Internet and that in princi-

ple link-flooding attacks targeting routing bottlenecks can effectively disconnect large geographic areas

(e.g., cities, counties) from the rest of the Internet. However, studies on attack strategies that disconnect

particular adversary-chosen Internet servers have been uncommon, possibly because of the complexity of

selective server targeting and difficulty of flooding arbitrary bottleneck links in the Internet core. Instead,

most of these attacks cause route instabilities [133] and Internet connectivity disruption [144] that affect

unspecified servers rather than selective end-server disconnection (reviewed in Section 3.7). Nevertheless,

when disconnection of critical infrastructure (e.g., energy distribution, time-critical finance, command and

control services) from the Internet is the aim of an attack, link flooding can be extremely effective; e.g.,

current peak rates of a single botnet-driven attack can easily exceed 100 Gbps [116], making it possible to

flood the vast majority Internet links.

Link flooding by botnets cannot be easily countered by any of the traditional Internet defense methods

for three reasons. First, bots can use valid IP addresses, and thus defenses based on detecting or prevent-

ing use of spoofed IP addresses become irrelevant; e.g., defenses based on ingress filtering [56], capability
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systems [165, 168], or accountable protocol designs [17, 112]. Second, and more insidiously, botnets can

flood links without using unwanted traffic; e.g., they can send packets to each other in a way that targets

groups of routers [144]. Third, a botnet can launch an attack with low-intensity traffic flows that cross

a targeted link at roughly the same time and flood it; e.g., a botnet controller could compute a large set

of IP addresses whose advertised routes cross the same link (i.e., decoy IPs), and then direct its bots to

send low-intensity traffic towards those addresses. This type of attack, which we call the Crossfire attack1

and describe in this chapter, is undetectable by any server located at a decoy IP address, and its effects

are invisible to an ISP until (too) late2. Furthermore, current traffic engineering techniques are unable to

counter these attacks. The latency of offline traffic engineering is impractically high (e.g., hours and days

[55, 159]) whereas online traffic engineering techniques cannot offer strong stability guarantees [94], par-

ticularly when multiple ISPs need to coordinate their responses to counter an attack, and hence cannot be

deployed in the Internet backbone. Worse yet, even if online techniques could be deployed, an adversary

attack could change the set of target links in real time thereby circumventing online traffic engineering

defenses; viz., discussion in Section 4.8.

In this chapter, we present the Crossfire attack. This attack can effectively cut off the Internet con-

nections of a targeted enterprise (e.g., a university campus, a military base, a set of energy distribution

stations); it can also disable up to 53% of the total number of Internet connections of some US states,

and up to about 33% of all the connections of the West Coast of the US. The attack has the hallmarks of

Internet terrorism3: it is low cost using legitimate-looking means (e.g., low-intensity, protocol conform-

ing traffic); its locus cannot be anticipated and it cannot be detected until substantial, persistent damage is

done; and most importantly, it is indirect: the immediate target of the attack (i.e., selected Internet links)

is not necessarily the intended victim (i.e., an end-point enterprise, state, region, or small country). The

low cost of the attack (viz., Section 4.8) would also enable a perpetrator to blackmail the victim.

The main contributions of this chapter can be summarized as follows:

1This attack should not be confused with that of Chou et al. [38], which also uses the term “crossfire” for a different purpose;

i.e., to illustrate unintentionally dropped legitimate flows.
2Of course, an adversary could easily change the set of bots used in the attack; e.g., typical networks of 1M bots would allow

one hundred disjoint, and a very large number of different sets of 10K bots.
3Although common agreement on a general definition of terrorism does not exist, the means of attack suggested here are

common to most terrorist attacks in real life.

42



1) We introduce the Crossfire attack in the Internet and show how it can isolate a target area by flooding

carefully chosen links. In particular, we show that it requires relatively small botnets (e.g., ten thousand

bots) and is largely independent of the bot distribution. It has no effective countermeasure at either target

routers or end-point servers, and as a result, it can degrade and even cut off connections to selected Internet

areas ranging from a single organization to several US states, for a long time.

2) We show the feasibility of the Crossfire attack with data obtained from large-scale experiments. In

particular, our analysis of Internet traffic to targets confirms our previous discussion on routing bottlenecks

(i.e., the existence of very few links that are responsible for delivering the vast majority of all traffic to

a specific area) which makes this attack fairly easy to launch. Traffic concentration in a small set of

links located a few (e.g., three to four) hops away from a targeted area is intuitively attributable to the

shortest path routing by the Internet IGB/BGP protocols, and easily discoverable by common tools such as

traceroute. We show that the attack traffic on these links follows a power-law distribution that depends on

the targeted servers and cannot be anticipated by generic Internet-connectivity metrics; e.g., metrics based

on router connectivity [50, 90] or betweenness centrality [117]. Note that flooding routing-bottleneck

links degrades connections towards target areas (e.g., connections made from remote clients to servers in

a target area) but not necessarily the reverse connections.

3) We show that the Crossfire attack is persistent in the sense that it cannot be stopped either by

individual ISPs or by end-point servers, which are effectively disconnected by flooded links at least three

hops away, for a long time. Attack persistence is caused by three independent factors. First, the selected

attack routes become stable after the removal of all load balancing dynamics (which is consistent with

prior observations [43]). Second, the attack traffic is shaped such that (i) only a data plane of a link is

flooded while the control plane remains unaffected, and hence dynamic re-routing can be initiated only

after data-plane flood detection, which gives an adversary ample time to select alternate sets of links for

the same target area; and (ii) early congestion of links located upstream from a targeted link is avoided by

a priori estimation of the bandwidth available on the route to that link. Third, the availability of multiple,

disjoint sets of target links distributed across multiple ISPs implies that no single ISP can unilaterally

detect and handle this attack.

4) We argue that collaborative on-line, rather than offline, traffic engineering techniques would become
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Figure 3.1: The Elements of the Crossfire Attack

necessary to reduce the persistence of such attacks. In the absence of such measures, the Crossfire attack

must be handled by application protocol layers; e.g., overlays that detect effective host disconnection

from the Internet and re-route traffic via different host routes [15, 16, 86]. Botnet market disruption and

international prosecution of attack perpetrators may complement technical countermeasures against these

attacks.

3.2 The Crossfire Attack

In this section, we present the steps of the Crossfire attack. The adversary’s goal is to prevent legitimate

traffic from flowing into a specific geographic region of the Internet, and the capability she needs to

accomplish that goal is to flood a few network links in and around that region. We begin by defining the

two most common terms used in this chapter: the target area and target link. Then, we describe how an
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adversary designs an attack using the bots she controls. Fig. 3.1 illustrates the concept of the Crossfire

attack.

Target Area: A target area is a geographic region of the Internet against which an adversary launches

an attack;4 viz., the area enclosed by the circle in Fig. 3.1. A typical target area includes the servers of an

organization, a city, a state, a region, and even a country, of the adversary’s choice.

Target Link: A target link is an element of a set of network links the adversary needs to flood so that

the target area is cut off from the rest of the Internet. These carefully chosen network links are the actual

target of the flooding attack whereas the target area is the real, intended target.

To launch a Crossfire attack against a target area, an adversary selects a set of public servers within

the target area and a set of decoy servers surrounding the target area. These servers can be easily found

since they are chosen from publicly accessible servers (viz., Section 3.5.2). The set of public servers is

used to construct an attack topology centered at the target area, and the set of decoy servers is used to

create attack flows. Then, the adversary constructs a “link map”, namely the map of layer-3 links from

her bot addresses to those of the public servers. (The differences between a link map and a typical router-

topology map are discussed below.) Once the link map is created, the adversary uses it to select the best

target links whose flooding will effectively cut off the target area from the Internet. Next, the adversary

coordinates the bot-decoy (server) flows to flood the target links, which would eventually block most of

the flows destined to the target area. This can be easily done since target links are shared by flows to

the decoy servers and target area. A flow is defined by 5-tuple, which is a stream of packets having the

same source and destination IP addresses, same source and destination port numbers, and same protocol

number. Finally, the adversary selects multiple disjoint sets of target links for the same target area and

floods them one set at a time, in succession, to avoid triggering bot-server route changes. The three main

steps needed to launch the Crossfire attack consist of the link map construction, attack setup, and bot

coordination, as shown in Fig. 3.2. Note that, to extend the duration of the attack, the last step, namely the

bot coordination step, is executed repeatedly by dynamically changing the sets of target links, which we

will explain in detail in Section 3.2.4. We describe each of the adversary’s steps below.

4The attack may have side effects and affect other non-targeted areas. However, these side effects do not increase attack’s

detectability. They can be a desired feature whenever the adversary’s goal is to cut off most of the traffic at and around a target

area, rather than to surgically isolate a small number of specific servers.
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Figure 3.2: The steps of the Crossfire attack.

3.2.1 Link Map Construction

To flood links leading to a target area, an adversary needs to construct a link map of the Internet surround-

ing that area.

Traceroute from Bots to Servers

To construct the link map, the adversary instructs her bots to run traceroute and find all the router-level

routes to the public servers in the target area and the decoy servers. The result of a traceroute is a sequence

of IP addresses that are assigned to the interfaces of the routers on the route, where a link is identified by the
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IP address of the adjacent router’s interface. Thus, the sequence of IP addresses represents the sequence

of layer-3 links5 that the attack traffic would travel.

A link map for the Crossfire attack is different from a typical router-topology map [50] that attempts

to build a router-level connectivity to analyze topological characteristics (e.g., node degree). This attack

only needs the list of layer-3 links and their relationships to compute a set of target links on the bot-to-

target area routes, while each link’s membership to a specific router is irrelevant. Note that the link map

construction does not require IP alias resolution [138]; i.e., determining the set of IP interfaces owned by

the same router is unnecessary. As a consequence, an adversary can use the ordinary traceroute for the

link map construction regardless of how inaccurate its IP alias resolution may be [164].

A bot runs multiple traceroutes to the same server in order to determine the stability and multiplicity

(or diversity) of a route, both of which are used for selecting effective target links (discussed in Sec-

tion 3.5.4 in detail). The traceroute results are collected by the adversary and used to construct the link

map.

Link-Persistence

The link map obtained in the previous step cannot be directly used to find target links since some of the

routes obtained may be unstable. Unstable routes would complicate the attack since the adversary may

end up chasing a moving target. Route instability is primarily caused by ISPs’ load balancing processes

(i.e., forwarding traffic through multiple routes), which are supported by most commercial routers [21]. A

consequence of load balancing is that, for the same bot-to-server pair, some links do not always appear on

the trace of the route produced by multiple invocations of traceroute (viz., the arrowed links of step A-②

in Fig. 3.2). These links are said to be transient, whereas those that always appear on a route are said to

be persistent. The adversary identifies transient links and removes them from the set of potential target

links. Our Internet experiment shows that 72% of layer-3 links measured by traceroute are persistent6.

5Although a single layer-3 link consists of several lower layer connections that are invisible to the adversary, the flooding on

the layer-3 link is still effective whenever the adversary’s maximum bandwidth assumption (e.g., 40 Gbps in our experiments) is

correct along the layer-3 link.
6The link map obtained may not include backup links since these links typically do not show up in traceroutes. The exis-

tence of such links is largely immaterial to the effectiveness of Crossfire. If attack traffic spills over onto backup links and its
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3.2.2 Attack Setup

The adversary uses the obtained link map to discover the set of target links whose flooding cuts off the

largest number of routes to the target area. Clearly, the larger the proportion of cut routes out of all

possible routes to the target area, the stronger the attack. The attack-setup step consists of the following

two sub-steps.

Route-Count Computation

The adversary analyzes the link map for a target area and computes ‘target-specific route count’, or simply

route count henceforth, for each network link in the link map. The route count of a persistent link is the

number of flows between bots and target-area servers that can be created through that link, as defined in

Section 2.2. Hence, route count is a target-area-specific metric and can vary widely from one target area

to another (viz., Section 3.3.1). It is a very different metric from those used for Internet connectivity, such

as the “betweenness centrality” [117] and the degree of routers [50, 90] (viz., Section 3.3.1), and should

not be confused with them.

A high route count for a link indicates that the link delivers both a large number of attack and legitimate

(or non-attack) to a specific target area, and thus the link becomes a good attack target. We confirm that

the route count follows a power-law distribution in a link map (viz., Section 3.3.1) as we discussed in

Section 2.2, and this enables an adversary to easily discover a set of high route count links that delivers

most traffic to a target area.7 Furthermore, the computed route count remains largely unchanged for at

least several hours due to the well-known, long-term stability of Internet routes [43, 123]. Hence, route

count can be used as a stable and reliable metric by the adversary in selecting target links.

Target-Link Selection

In this step, the adversary finds multiple disjoint sets of target links to be flooded. The adversary selects

at least two disjoint sets of target links and uses them one at a time, in succession, to achieve attack

intensity dampens appreciably, the adversary could easily switch to a new set of target links for the same server area, as shown

in Section 3.2.4.
7The power-law of route count should not be confused with connectivity properties derived from traceroute, such as those for

the degree of router level topology [90].
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persistence (viz., Section 3.2.4). The goal of this step is to maximize the amount of disrupted traffic

flowing into the target area by optimal selection of target links using the link map and route count.

To quantify how much of the traffic to a target area can be cut off by a chosen target-link set, the

adversary computes the degradation ratio for that target area. The degradation ratio is the fraction of the

number of bot-target area routes cut by the attack over the number of all possible bot-target area routes;

viz., Eq. (2.1) in Section 2.4. We say that a route is cut by an attack if the route contains a target link that

is flooded by the attack.

To select the target links that maximize the degradation ratio to a target area, the adversary must

solve the generalized maximum coverage problem, which is a well-known NP-hard problem. Instead

of finding an exact solution, the adversary uses an efficient heuristic, namely a greedy algorithm [42],

presented in Section 3.4.4. The execution time of our heuristic is very small, namely less than a minute

in all experiments (viz., Section 3.4.4). This enables the adversary to adapt to dynamic route changes, if

necessary. The output of this algorithm shows that flooding a few target links can block a majority of the

connections to a target area. For example, flooding ten target links causes a 89% degradation ratio for a

small target area; flooding fifteen target links can block 33% of connections flowing to the West Coast of

the US (viz., Section 3.5.4).

3.2.3 Bot Coordination

Once target links are selected at step B-② (Fig. 3.2), the adversary coordinates individual bots to flood the

target links. To create flooding flows for a given set of target links, the adversary assigns to each bot (1) the

list of decoy servers and (2) the send-rates for packets destined to individual decoy servers. The send-rates

are assigned in such a way that individual attack flows have low intensity (or low bandwidth) while their

aggregate bandwidth is high enough to flood all target links. This step consists of two sub-steps.

Attack-Flow Assignment

The goal of the attack-flow assignment is to make the aggregate traffic rate at each target link slightly

higher than the link bandwidth so that all the legitimate flows are severely degraded in those links. Two

assignment constraints must be satisfied. The first is that the adversary must keep each per-flow rate
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low enough so that none of the network protection mechanisms in routers or intrusion detection systems

(IDS) at or near a server can identify the flow as malicious. The second is that the aggregate attack

traffic necessary to flood all the targeted links is relatively evenly assigned to multiple bots and decoy

servers. The first constraint ensures indistinguishability of attack flows whereas the second addresses

undetectability both at servers in the target area and at decoy servers; viz., Section 3.6 for details. The

adversary first sets the maximum target bandwidth for each target link and exhausts it with attack flows.

Then, she assigns individual flows for each target link.

The rate of an attack flow at a target link is lower-bounded by the route count. The average per-flow

rate for the target link should be higher than the target bandwidth divided by the maximum number of

available attack flows on the link, which is proportional to its route count. Moreover, the assignment

of the per-flow rate must take into account the maximum flow rate a decoy server can handle without

triggering traffic alarms. For example, if a decoy server is a public web server, one web click per second

on average (a HTTP GET packet per second ≃ 4 Kbps) would not be classified as abnormal traffic at the

server. Therefore, the adversary can easily assign a large enough number of attack flows with low per-flow

rates. The adversary also has to assign per-bot and per-decoy server rates that are evenly distributed. For

enhanced undetectability of attack traffic at the bots and the decoy servers, the adversary must account

for all previously assigned traffic rates at the bots and decoy servers whenever assigning new attack flows.

The adversary conservatively sets the target bandwidth to 40 Gbps, which is the most widely used link

bandwidth currently deployed (OC-768) for high bandwidth backbones.

Despite an adversary’s careful attack flow assignment, non-target links located upstream of the target

links could still become congested, which we call early congestion, if they have limited bandwidth and/or

the bot density in a certain area is too high. The adversary can avoid potential early congestion using a

priori link bandwidth estimation, which we discuss in detail in Section 3.4.3.

Target-Link Flooding

The adversary directs her bots to start generating the attack flows. Each bot is responsible for multiple

attack flows, each of which is assigned a distinct decoy server with the corresponding required send-rate.

Bots slowly increase the send-rates of their attack flows up to their assigned send-rates, which makes the
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attack flows indistinguishable from the traffic patterns of typical ”flash crowds” [83]. Bots can adjust the

intensity of their flow traffic dynamically, based on the state of each target link; i.e., if the actual bandwidth

of a target link is less than the assigned attack bandwidth (set in Section 3.2.3), the bots stop increasing

the rates of attack flows as soon as the target link is flooded.

3.2.4 Rolling attacks

The adversary can dynamically change the set of target links (among the multiple sets found previously)

and extend the duration of the Crossfire attack virtually indefinitely. Continuous link flooding of the same

set of target links would lead to bot-server route changes since it would inevitably activate the router’s

failure detection mechanism. Hence, changing the set of target links assures attack persistence and enables

the attack to remain a pure data-plane attack. The adversary can also dynamically change the set of bots

to further enhance the undetectability of the Crossfire attack. These dynamic attack execution techniques

are called rolling attacks in Section 3.4.2 where they are described in more detail.

3.3 Technical Underpinnings

In this section, we discuss the two characteristics of the current Internet which enable the Crossfire attack,

namely (1) the power law of route-count distribution, which is target-area specific, and (2) the indepen-

dence of the geographical distribution of bots from target links and attack targets, which gives an adversary

has a wide choice of bots in different locations on the globe.

3.3.1 Characteristics of Route-Count Distribution

Before analyzing the distribution of route count, we must distinguish between the attack-specific route

count and connectivity-specific metrics, such as the betweenness centrality [117] and the degree of routers

[50], which characterize an Internet topology. Recall that the route count of a link represents the number

of source-to-destination (i.e., bot-to-server in the target area in the Crossfire attack) pairs whose traffic

crosses the link persistently. In contrast, betweenness centrality, which is the number of shortest routes

among all vertices that pass through an edge in a graph, does not reflect actual traffic flows and their

dynamics. Similarly, the connectivity degree of a router, which represents the router’s layer-3 direct
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connections to neighbor routers, namely the topological connectivity of the router, does not capture any

dynamics of traffic flows. Thus, neither of these metrics could be used to evaluate the feasibility of the

Crossfire attack.

Our analysis on the route-count distribution is two-fold; first, we show that it is easy to find target

links that have extremely high route count for a selected target area; and second, we show that route count

of a link is not a constant but varies depending on a selected target area (i.e., route count is a target-area

specific metric).

Universal power-law property of route-count distribution

Notice first that the discussion on power-law property here confirms our previous power-low analysis in

Section 2.2. A power-law distribution exhibits a heavy-tail characteristic, which indicates that extreme

events are far more likely to occur than they would in a Gaussian distribution. More formally, a quantity

x obeys a power-law if it follows a probability distribution

p(x) ∝ x−α for x > x0, (3.1)

where α is a constant parameter of the distribution known as the scaling parameter [41]. The power-law

property appears in the tail of the distribution (i.e., x > x0)8. If a power-law distribution holds for route

count, that would imply that an adversary could easily find links whose route count is many orders of

magnitude higher than average. These links would become good targets for attack for a particular target

area.

We use the rigorous statistical test proposed by Clauset et al. [41]9 to show that a power-law holds

for route-count distributions. We first estimate the parameters (i.e., x0 and α) of power-law distribution

on our route-count datasets and test the power-law hypothesis with the estimated parameters. Fig. 3.3

8Some past research relied on simple data-fitting methods to conclude that their datasets follow a power-law distribution

[50, 115]; i.e., if a histogram of empirical datasets is well fitted to a straight line on log-log scale, a power-law behavior would

be ascribed to the datasets. However, recent studies [145, 164] show that these data-fitting methods are insufficient to conclude

the power-law compliance of empirical data. According to Clauset et al. [41], the majority of purported power-law datasets fail

to pass the rigorous statistical hypothesis test on their power-law distribution.
9The statistical tools, proposed by Clauset et al. [41], are available at http://tuvalu.santafe.edu/˜aaronc/

powerlaws/.
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Figure 3.3: Flow-density distributions for various target areas: (a) East Coast and (b) New York. The

complementary cumulative distribution functions (CCDFs) (i.e., Pr(X ≥ x)) of route count (x) for both

areas are plotted on log-log scale.

shows the route-count distributions of two different target areas: (a) East Coast and (b) New York. The

complementary cumulative distribution function (CCDF) (i.e., Pr(X ≥ x), where x is route count) of the

route-count datasets is plotted on a log-log scale. As the graphs show, both distributions are well fitted

to the diagonal lines at the tail. More precisely, we apply the power-law hypothesis test proposed by

Clauset et al. [41] to the measured route-count dataset and obtain the p-value, which indicates the degree

of plausibility of a hypothesis, for each test. The p-values for the two target areas (i.e., 0.68 and 0.96)

are much higher than the significance level, which is often set to 0.05. Hence, the plausibility of the null

hypothesis (i.e., the route-count distribution follows a power law) is accepted [130].

Target-area dependency of route count

Unlike connectivity-related metrics, which are dependent only on physical network connectivity but in-

dependent of attack targets, route count is an attack-specific metric; i.e., a target link that has high route

count for a target area may have a very different density for other areas.

Table 3.1 illustrates the top 20 links ordered by flows densities for three target areas of different sizes:

the East Coast, Massachusetts, and Univ2. Naturally, one would expect that the links’ flow densities

would follow the obvious link-map inclusion relations, namely the link map of Univ2 ⊂ link map of

Massachusetts ⊂ link map of the East Coast. However, Table 3.1 shows that the top 20 links for these

related target areas are very different: not only these links do not follow the link-map inclusion, but also

whenever some are shared between areas they have different density ranks. For example, link 19 has the
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Target area Indices of top 20 flow-density links

East Coast
01, 02, 03, 04, 05, 06, 07, 08, 09, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Massachusetts
19, 21, 13, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36, 37, 38

Univ2
39, 40, 30, 41, 42, 23, 43, 44, 45, 46,

47, 48, 49, 50, 51, 52, 53, 54, 55, 56

Table 3.1: Top 20 route-count links for three different target areas: the East Coast of the US, Mas-

sachusetts, and Univ2. Each link IP address is mapped to a link index. Bold indices denote the links

shared by different areas.

highest flow-density rank when the state of Massachusetts is targeted, and yet it only ranks next to the

last for the East Coast. Furthermore, link 19 does not even appear in the top 20 link densities of Univ2.

This clearly shows that route count is a target-area specific metric, which reveals a link’s usefulness in an

attack that targets a specific area.

3.3.2 Geographical Distribution of Bots

Although the selected target links are highly dependent on the target area of the attack, they are nearly

independent of the choice of bot distributions; i.e., even if an adversary uses different sets of bots that have

different geographic distributions to flood a target area, the effectiveness of the Crossfire attack would

remain nearly unchanged. To show this, we performed the following experiment. First, we partitioned

the set of bots into several subsets based on bots’ geolocation (viz., subsets denoted by Sj , j = 1, ..., 8 in

Table 3.2). Then, we selected different subsets to form six different bot distributions (viz., distributions

denoted by Distri, i = 1, ..., 6 in Table 3.2), and simulated a separate Crossfire attack for each distribution

against three different target areas; i.e., East Coast, Pennsylvania, and Univ1. Finally, we analyzed how

the different distributions affect the degradation ratios.

The geographical distributions of 620 PlanetLab nodes and 452 LG servers are as follows: 42% were

located in Europe, 39% in North America, 13% in Asia, and 6% in the rest of the world (viz., Figure 3.5).
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North America Europe Asia Others

S1 S2 S3 S4 S5 S6 S7 S8

Baseline X X X X X X X X

Distr1 X X X X X X

Distr2 X X X X X X

Distr3 X X X X X X

Distr4 X X X X X X

Disrt5 X X X X X X

Distr6 X X X X X X

Table 3.2: Different geographic distributions of bots (Distri) created using different subsets of PlanetLab

nodes and LG servers (Sj).

Since the distributions of PlanetLab nodes and LG servers in North America and Europe cover wider areas

than those in the rest of the world, we (1) assigned three disjoint subsets to each; i.e., S1, S2, and S3 to

North America and S4, S5, and S6 to Europe; and (2) constructed the bot distributions such that Distr1,

Distr2, and Distr3 cover a similar number of bots in North America and Asia, and Distr4, Distr5, and

Distr6 a similar number of bots in Europe and Asia.

Fig. 3.4 shows the degradation ratios for the six different bot distributions shown in Table 3.2 and

three different-size target areas chosen; i.e., East Coast, Pennsylvania, and Univ1. For each target area,

we defined a baseline degradation ratio (denoted by “Baseline” in Fig. 3.4) as the degradation ratio given

by an attack launched by all bots available. The six degradation ratios are computed using the same total

number of routes as that used in the baseline ratio. Thus, if the degradation ratio of a certain distribution

is close to the baseline, that distribution of bots is as damaging to the target area as the baseline (i.e., as

all available bots). As shown in Fig. 3.4, the choice of the six different distributions does not diminish the

effectiveness of the attack in a measurable way. That is, the effectiveness of an attack is nearly independent

of the geographical distribution of bots. This is particularly noticeable in the case of the small and medium

target area where the degradation ratios are almost indistinguishable from the baseline.
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Figure 3.4: Degradation ratios for different geographic distributions of PlanetLab nodes and LG servers.

3.4 Attack Persistence and Cost

3.4.1 Data-Plane-Only Attack: Indefinite Duration

In this subsection, we discuss how the Crossfire attack maintains its effectiveness, namely a high con-

nection degradation ratio for selected target areas caused by link flooding (data plane only), by avoiding

any route change (by the control plane) in the Internet. Clearly, the goal of the adversary is to avoid

control plane reaction since that would cause routes to change dynamically in response to any unexpected

network-state variations (e.g., due to link failures or high traffic load akin to link flooding).

The Crossfire attack takes advantage of the fact that the current Internet’s dynamic response to link

flooding is too slow for an adaptive adversary. That is, if the adversary periodically changes the set of

predetermined target links in less than 3 minutes, she can maintain a very high connection degradation

ratio without inducing any Internet route changes. Thus, the attack duration can be extended virtually

indefinitely. The technique of changing the set of target links, namely the rolling attack, is discussed in

detail in Section 3.4.2. The following two subsections illustrate how slowly the current Internet would

react to the Crossfire attack.

Link failure detection

Link-failure detection refers to a function of a routing protocol that enables a router to assess the physical

connectivity of its network link to its neighbor router [135]. A router which misses several consecutive
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control packets (e.g., hello packets for OSPF or keepalive messages for BGP) in a specific time interval

(default 40 seconds for OSPF or default 180 seconds for BGP) will conclude that the link failed and

broadcast the link failure to other routers. The consequence of the link failure is two-fold. First, if an

intra-AS link fails, the failure notification is sent to all the routers within the same AS, which leads to

internal topology changes. In contrast, if a link between two neighbor ASs (i.e., an inter-AS link) fails,

the failure, in the worst case, could propagate to all the BGP speaking routers in the Internet and cause a

global topology change. These topology changes would redirect the attack traffic to alternate routes and

invalidate the route counts computed for the on-going Crossfire attack.

To measure Internet reaction to link failures, Shaikh et al. [135] inject traffic that consumes 100%

of the capacity of a link and measure the time for the router to detect the link failure. This experiment

shows that it takes 217 seconds for a IGP router (that runs OSPF or IS-IS) and 1,076 seconds for a BGP

router to diagnose congestion as a failure10. Note that failure detection takes much longer than its default

waiting time interval for the control packets, namely 40 seconds for OSPF and 180 seconds for BGP. This

is because some control packets that are queued at the congested interface at a router can successfully

reach a neighbor router even in severe link congestion. Clearly, the congestion diagnostic times are too

long to enable rapid reaction to the Crossfire attack where the adversary can change the set of target links

for an area in much less than 3 minutes; viz., the rolling attacks of the next subsection.

Traffic engineering

Most commonly, ISPs use offline traffic engineering techniques, whereby network parameters are periodi-

cally re-optimized based on the estimated traffic matrix among the ingress/egress points of their networks

[159]. The network parameters can be the link weights of IGP protocols (e.g., OSPF or IS-IS) in pure

IP networks [57] or bandwidths of LSP (label switched path) tunnels in MPLS networks [46, 114]. Of-

fline traffic engineering produces new routes on a time scale ranging from tens of minutes to hours and

days [55], though more commonly in days and weeks [46, 114, 159]. Even though it is not frequently

10We assume that the OSPF and BGP protocols do not use shorter intervals for fast failure detection [58], but use default timers

(HelloInterval & RouteDeadInterval for OSPF and KeepaliveTimer & HoldTimer for BGP). Since most optical fiber connections

(e.g., SONET or SDH) provide failure reports in less than 50 ms, additional system configuration for faster link failure detection

at layer-3 is obviously unnecessary [78].
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used by ISPs due to its potential instability problem, online traffic engineering occurs on a smaller time

scale, namely from minutes to hours [94, 159]. Given that the adversary can repeatedly relaunch the

Crossfire attack for new routes, neither current offline nor online traffic engineering can offer effective

countermeasures.

3.4.2 Proactive Attack Techniques: the Rolling Attack

A Crossfire attack is said to be rolling if the adversary changes the attack parameters (e.g., bots, decoy

servers, and target links) dynamically while maintaining the same target area. A rolling attack can be

employed by an adversary to further increase indistinguishability of attack traffic from legitimate traffic

and undetectability of all target links by target area. Based on the types of attack parameters that can be

dynamically changed, rolling attacks can be categorized into two types: one that changes bots and decoy

servers while maintaining the same target links, and the other that changes target links while maintaining

the same target area.

The main advantage of the first type of attack is that it further increases the indistinguishability of the

Crossfire flows from legitimate flows while maintaining the same attack effects. Since the source and the

destination IP addresses seen at the selected target links change over time, the ISPs cannot easily identify

the source and the destination IP addresses that contribute to the attack. A potential disadvantage is that

this attack requires more bots and decoy servers than the minimum necessary to flood the target links.

However, the current cost of bots suggests that this disadvantage is insignificant (viz., discussion of bot

costs below).

The second type of rolling attack uses multiple sets of disjoint target links for the same target area.

To find the multiple disjoint sets, the adversary executes the target-link selection algorithm (viz., Sec-

tion 3.2.2) successively; i.e., the n-th best set of the target links is selected after removing the previously

selected links. The use of multiple disjoint sets of the target links enhances attack undetectability by ISPs

since ISPs could not anticipate the adversary’s choice of targets with certainty. More importantly, this

type of rolling attack enables Crossfire to remain a pure data plane attack, as discussed in the previous

subsection. A potential disadvantage is that this type of rolling attack may degrade the effectiveness of the

Crossfire attack since the degradation ratio caused by attacking a non-best target set can be lower than that
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Target link set

Target area Best set 2nd best set 3rd best set

Univ1 89% 77% 63%

Pennsylvania 42% 30% 24%

East Coast 21% 16% 14%

Table 3.3: Degradation ratios for different disjoint target link sets. Each set has 10 target links.

of attacking the best set. However, the degradation ratios of different sets of target links shown in Table 3.3

indicate that this degradation is minimal. In order to maximize attack effects while being undetected, the

adversary can alternate the target sets; she would use the best set for the most of attacks and switch to the

non-best sets only for a short time interval. For example, if the adversary repeatedly schedules 3 minutes

for the attack on the best set and next 30 seconds for the second-best set, she can maintain the attack

towards a target area indefinitely while limiting the reduction of the degradation ratio less than 4%.

3.4.3 Bandwidth Bottlenecks at Non Targeted Links

The Crossfire attack floods a set of targeted routing-bottleneck links and turns them into bandwidth-

bottleneck links; i.e., the links with the smallest available bandwidth on end-to-end routes. While flooding

the targeted links, the Crossfire must ensure that non targeted links do not become bandwidth bottle-

necked; otherwise, attack packets cannot reach the targeted links since they could be dropped at non

targeted links.

In general, the Crossfire attack can prevent bandwidth bottlenecks at non targeted links by dynamic

assignment of attack flows. First, bots can easily detect bandwidth bottlenecks at non targeted links by

regularly performing traceroutes to the target area. Then, the adversary can re-assign some attack flows

to other bots and remove the bandwidth bottlenecks at non targeted link. In other words, the adversary

adaptively assigns attack flows to geographically distributed bots, so that a sufficient number of attack

packets reach the target links and flood them without flooding non targeted links.

Note, however, that in some unusual network configurations, particularly when network bandwidth

is poorly provisioned, the proposed dynamic attack-flow assignment strategy might not be able to avoid

59



bandwidth bottlenecks at non targeted links. For example, let us consider an ISP in which the sum of

the bandwidth of its inter-domain links is smaller than a target internal backbone link bandwidth.11 This

unusual network bandwidth configuration can make it impossible to flood the target backbone link by the

Crossfire attack since the inter-domain links would become bandwidth bottlenecks before the target link

does. When facing such undesirable situations, adversaries can quickly find other link targets from the

routing bottleneck.

3.4.4 Execution Time of Target Selection Algorithm

The greedy algorithm of selecting a set of T target links runs as follows:

Let R, L and T be the set of all bot-to-target area routes, the set of candidate links for the target area, and

the set of target links, respectively. Let li be a link on a route.

1. Add all distinct links (l′is) of R to L.

2. Take out the highest route count link, lmax
i , from L and add it to T .

3. Recompute the route count for all li’s in L.

4. Repeat (2) and (3) until T target links are selected, i.e., until |T | = T .

The above algorithm finds the T best target links that disconnect the target area in terms of the degra-

dation ratio, in T iterations of steps (2) - (3). Step (3) re-evaluates route counts after removing all routes

of R that include lmax
i and as a consequence, the step ensures that the adversary selects the target link that

maximally disconnects the target area at each iteration. Table 3.4 shows the execution times taken by our

experiments. As expected, the execution time is proportional to the number of target links (T ) for all target

areas, and grows significantly for a large target area (e.g., 52 seconds in selecting 50 target links for the

East Coast of the US), since more unique links can be found in large target areas. However, the number of

unique links is bounded by a limited number of routes. This number is limited because bot-decoy pairs in

the same source and destination subnets produce a single unique route. Hence, the execution time of the

algorithm is short enough (e.g., at most a couple minutes) for an adversary to adapt to all potential route

changes even for a large target area, in practice.

11Such bandwidth provision would be uncommon since typical ISPs provision the internal bandwidth with high oversubscrip-

tion ratio (e.g., 10–100) [69].
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Target area T = 10 T = 20 T = 30 T = 40 T = 50

Univ1 0.94 1.87 2.79 3.72 4.65

Pennsylvania 3.10 5.46 7.38 8.99 10.38

East Coast 13.44 24.93 35.13 43.96 52.05

Table 3.4: Execution time (in seconds) to select T target links for different target sizes.

3.4.5 The Cost of the Crossfire Attack

To launch a Crossfire attack, an adversary needs bots. To get them, she can either infect user machines and

install her own bots or buy the bots from Pay-Per Install (PPI) botnet markets [34]. For cost estimation,

we assume that the adversary buys the bots from the markets. Our cost estimates are based on a recent

analysis of PPI botnet markets [34]. A possible option would be to rent cloud services for bot operation

from many, say one hundred, providers around the world. Given the low computation and communication

requirements of Crossfire bots and the high-bandwidth connectivity of data centers to the Internet, the

bots’ behavior during an attack would not trigger providers’ alarms.

PPI botnet markets have region-specific pricing plans. Generally, bots in the US or the UK are most

expensive and cost $100-$180 per thousand bots. Bots in continental Europe cost $20-$60 whereas bots

in the rest of the world cost less than $10 per thousand bots. The mix of bots used in our experiments

(presented in Section 3.3.2) has 49% of bots in the US or UK, 37% in continental Europe, and 14% in the

rest of the world. If we assume the size of a bot cluster (β) is 500, the total cost of the Crossfire attack is

roughly $46K. Our experiments also show (viz., Section 3.5.4) that the minimum number of required bots

that can flood 10 target links can be as low as 107,200 bots, and hence the attack cost can be as low as

$9K. This implies that a single organization or even an individual can launch a massive Crossfire attack. If

the attack is state- or corporate-sponsored, many more bots can be purchased and a much larger number of

links can be targeted. In this case, the Crossfire attack could easily disconnect almost 100% of the Internet

connections to a large target area.
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3.5 Experiment Setup and Results

In this section, we demonstrate the feasibility of the Crossfire attack and its effects on various target areas

using real Internet data. In particular, we show how one sets up the bots, decoy servers, and target area for

a Crossfire attack.

3.5.1 Bots

Instead of using real bots to perform our experiments, which would raise ethical [8, 79] and/or legal

concerns [53], we use PlanetLab nodes [125] and Looking Glass (LG) servers as attack sources. PlanetLab

is a global research testbed that supports more than one thousand nodes at 549 sites. An LG server is a

publicly available router that provides a Web-interface for running a set of commands, including traceroute

[150]. They have been used as vantage points for discovering Internet topology [22, 146, 157].

The PlanetLab and LG server networks provide a faithful approximation of a globally distributed bot

network. As seen in Fig. 3.5, the 620 PlanetLab nodes and 452 LG servers are located 309 cities in 56

countries. In Section 3.3.2, we will show that different bot distributions created using PlanetLab nodes

and LG servers, result in practically the same attack effectiveness. Hence, the Crossfire attack using real

bots (e.g., leased from botnet markets) would experience similar attack effects as in our experiments. A

single PlanetLab node or LG server represents several hundred bots, given (1) the high degree of clustering

observed in real-bot distributions [44, 140], and (2) the fact that bot-originated traffic from the same AS

domain would converge at a router and then follow the same route, due to the BGP’s single best route

selection policy. Hence, the routes we trace from the PlanetLab nodes or LG servers to the public servers

in the target area, allows us to build the actual Internet link map of the target area. We call the group of

bots represented by the same PlanetLab node or LG server a bot cluster, and experiment with cluster sizes

of 100, 200, and 500 bots.

3.5.2 Decoy servers

Decoy servers, which are the destinations for attack traffic, can be any public server whose physical

location is nearby a target area. Among various possible ways an adversary could select decoy servers, one

way is to find servers of public institutions (e.g., universities and colleges) physically located surrounding
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Figure 3.5: A map of geographic locations of the 620 PlanetLab nodes (red pins) and 452 LG servers

(blue pins) used in our experiments.

the target area. For example, the servers of a university or college are typically located on their campus12.

We found 552 institutions (i.e., universities and colleges) on both the East Coast (10 states) and West

Coast (7 states) of the US, which can provide large numbers of decoy servers. The list of institutions

in a specific US state is easily found on the Web13. An adversary can find a minimum of 1,000 public

servers within an institution. For example, we found 2,737 and 7,411 public web servers within Univ1

in Pennsylvania and Univ2 in Massachusetts, respectively, via port-scanning. Had we used real bots,

port scanning duties would be distributed to each bot and would be performed over a period of time, to

avoid triggering IDSs or firewall alarms at those institutions. Similarly, an adversary could use 351,000

public servers located in 351 institutions on the East Coast of the US, and 201,000 public servers in 201

institutions on the West Coast.

12The adversary might use a public search engine, such as SHODAN (http://www.shodanhq.com), to gather a large

number of publicly accessible IPs at a geographical location. However, use of SHODAN would require cross-validation of the

IP addresses in a geolocation due to possible search inaccuracies. Cross-validation would be a fairly simple matter of comparing

results of multiple IP geolocation services for a certain target area
13http://www.4icu.org/
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3.5.3 Target area

A target area is the geographic location where an adversary wants to block Internet traffic. To establish

that the Crossfire attack works for various target-area sizes, we used three different configurations: small,

medium, and large. For the small area size, we set a single organization as the target area. Specifically,

we set Univ1 and Univ2 as examples of small-sized target areas. As examples of medium-sized areas, we

picked four US states, namely New York, Pennsylvania, Massachusetts, and Virginia. Finally, we picked

ten states on the East Coast and seven on the West Coast as two examples for large target areas. Note that

the large target areas’ sizes could conceivably represent a medium-size country. For a small or medium

target area, we chose decoy servers outside the target area for the undetectability of attack flows. However,

for a large target area, we chose decoy servers inside the target area since the wide array of decoy servers

within the area would not diminish the Crossfire’s undetectability.

Table 3.5 illustrates the extrapolated numbers of public servers in the target areas and decoy servers

used for attacking those areas. Note that the extrapolation is based on that an adversary can find 1,000

public servers within an institution.

3.5.4 Results

We performed Internet-scale experiments to verify the feasibility and the impact of the Crossfire attack

based on the steps described in Section 3.2. For each attack target area illustrated in Table 3.5, we construct

a link map (Step 1, viz., Section 3.2.1) and select the target links (Step 2, viz., Section 3.2.2), using

the PlanetLab nodes and LG servers, and public servers in the target area. Bot-coordination (Step 3,

viz., Section 3.2.3) is performed via simulations, for obvious ethical and legal reasons. However, the

simulations use the real link map and data obtained from the first two attack steps illustrated in Fig. 3.2.

In this section, we summarize the results of our experiments.

Link map. We gather traceroute data from all the PlanetLab nodes and LG servers (i.e., sources) to

all the institutions in the target areas (i.e., destinations) and construct the link maps centered on the target

areas of the East and West Coasts of the US. For each source-destination pair, we run a traceroute six

times to diagnose link persistence. Since multiple traceroute packets (i.e., ICMP packets) to the same

destination are independently load-balanced at a load-balancing router [21], running six traceroutes is
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Target area Number of Number of

public servers decoy servers

in target area

Univ1 1,000 350,000

Univ2 1,000 350,000

New York 86,000 265,000

Pennsylvania 82,000 269,000

Massachusetts 54,000 297,000

Virginia 34,000 317,000

East Coast (US) 351,000 351,000

West Coast (US) 201,000 201,000

Table 3.5: The extrapolated numbers of public servers in target areas and decoy servers used for attacking

each target area in our experiments

enough to determine whether a link on the route is persistent or transient. We classify a link as persistent

if the link appears in all six traceroute results. The false positive probability, namely the probability that

we falsely determine a transient link as persistent, is at most 0.016 (≃ 2−6). This is the case because the

highest false positive probability is reported when a router, which has two load-balancing links to the next

hop router, happens to select the same link in forwarding six traceroute packets originated from the same

source. If the router has more load-balancing links, the false positive probability becomes lower.

We summarize the percentages of persistent links found by traceroutes in Table 3.6. Regardless of

the size of a target area, the majority of the discovered links are persistent and hence can be used for

the Crossfire attack. This result shows that even though traffic load-balancing through multiple links is

widely implemented by ISPs in the current Internet, a large portion of Internet links are persistent. This

enables the adversary to easily find (persistent) target links. In the following subsection, we discuss how

the adversary finds the target links whose congestion would effectively disconnect a target area.

Link Coverage. Although one could not demonstrate that all links leading to a target area can be

found by traceroute, one could show that all critical links can be found for a target area. To show this
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Target area Percentage of persistent links

Univ1 79.99 %

Univ2 70.37 %

New York 69.70 %

Pennsylvania 75.68 %

Massachusetts 74.11 %

Virginia 70.32 %

East Coast (US) 71.78 %

West Coast (US) 72.37 %

Table 3.6: Percentage of persistent links per target area

we selected different uniformly-distributed subsets of the 1,072 bots used (i.e., PlanetLab nodes and LG

servers); e.g., subsets of 10%, 20%,..., 90% of all bots. We computed their degradation ratios for three

target areas and plotted those against the baseline degradation ratio produced by all 1,072 bots. Figure 3.6

shows that, for each target area, beyond a certain bot-subset size, the differences in deviations from the

baseline degradation ratios taper off, indicating that additional critical links which would increase degra-

dation ratios can no longer be found; i.e., that size is approximately 10% of all bots for Univ1, 20% for

Pennsylvania, and 50% for the East Coast. In similar experiments, if we vary server-subset sizes beyond

a certain target-area related threshold, additional critical links that would increase the degradation ratios

could not be found any longer. These two experiments suggest that the critical links we find adequately

cover the flows toward a target area.

Route count. To compute route counts of all persistent links of the link map, we count the number bot-

to-target area routes on those links. As expected, the distribution of route counts is highly non-uniform,

namely it follows a power-law distribution; i.e., a few links have unusually high route counts while most

of the other links have much lower route counts (viz., Section 3.3.1). The power-law distribution of route

counts makes the Crossfire attack very effective indeed. That is, flooding only a few high flow-density

links would effectively disconnect a large number bot-target area routes.

After computing the route counts of all persistent links, we select a set of target links using the greedy
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Figure 3.6: Deviations from baseline degradation ratios for different bot subsets.

algorithm specified in Section 3.4.4. Recall that we do not select links that are located close to a target

area (more precisely, links whose distance from the target area is less than or equal to three hops) to avoid

attack detection by any servers in the target area. For example, the average hop distance from the selected

target links to Univ1 and Univ2 are 3.67 and 4.33, respectively14. Note that even though we eliminate

links that are less than three hops away from the target area, we can effectively find target links with

sufficiently large route counts as discussed in the following subsection.

Degradation ratio. Fig. 3.7 shows the degradation ratios for various target areas with different num-

bers of target links. As shown in this figure, the increase in the degradation ratio achieved by flooding

additional target links diminishes as we flood more links; e.g., flooding the first five target links for attack-

ing Univ1 results in an 83% degradation ratio whereas flooding five additional target links increases the

degradation ratio by only 6%. This trend clearly shows that the power-law distribution of the route count

enables the adversary to achieve a high degradation ratio by flooding only a few target links. In general,

the smaller the target area, the higher degradation ratio, because smaller target areas have relatively few

14For medium and large areas, the hop distance can be measured relative to the peripheral servers.
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Figure 3.7: Degradation ratios for various target areas for different numbers of target links.

links that deliver most of the traffic to them. For example, when flooding 15 target links, the degradation

ratio of a large area (i.e., West Coast of US) is as high as 32.85%, that of a medium area (i.e., Virginia) is

as high as 53.05%, and that of a small area (i.e., Univ1) is as high as 90.52%. This result may be misinter-

preted and conclude that the Crossfire attack would damage only small target areas. In reality, when the

attack effects are measured in terms of the total number of effectively disconnected end-users (or hosts) in

a target area, the attack appears to be far more lethal to a large target area than a small one. For example,

a Crossfire attack against West Coast using 15 target links effectively disconnects only 32.85% of traffic,

yet the number of affected servers is huge.

Attack bots and flows. To flood the selected target links, we assign attack flows to bots by providing

the list of decoy server IPs and corresponding flow rates. In our experiments, we set a 4 Kbps per-flow

rate, which can be achieved by sending one HTTP GET message per second, for the indistinguishability

of the Crossfire attack. While maintaining the low per-flow rate, we assign the attack flows evenly to the

multiple bots and decoy servers. We conservatively assume that the bandwidth of target links is 40 Gbps,

which ensures the presence of at least 107 (i.e., 40 Gbps/4 Kbps) attack flows through each target link.

Fig. 3.8 shows the per-bot and per-decoy server average send-rates for three target areas of different

sizes when flooding ten selected target links. Notice that for the large bot cluster size (β), we achieve

lower per-bot send-rate since the attack flows can be more evenly distributed. An important observation

is that for any target area, the per-bot average send-rate can be much lower than 1 Mbps when the bot

cluster size (β) equals 500 (i.e., 536,000 bots in total). This shows that the adversary can aggregate a

sufficiently large number (i.e., 107) of low-rate (i.e., 4 Kbps) attack flows at each selected target link and
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Figure 3.8: Per-bot, per-decoy server average send-rates for different bot cluster sizes (β).

thus successfully exceed the bandwidth (i.e., 40 Gbps) of the target link while maintaining low per-bot

and per-decoy server average send-rates. If the adversary uses more bots and decoy servers in practice,

these average rates would become even lower.

3.5.5 Approximation of Real-World Attacks

We claim that our attack evaluation is a good approximation of real-world Crossfire attacks despite some

measurement limitations. In particular, our evaluation lacks the measurement (or accurate estimation) of

the bandwidth of targeted and non targeted links. Without the link bandwidth measurement, it is difficult

to analyze whether it is possible to flood a particular link target in real-world attacks without causing any

bandwidth bottleneck at non targeted links; viz., Section 3.4.3. Therefore, some link targets found in our

evaluation can be in fact difficult to flood in real-world attacks and there could exist a gap between our

evaluation and real-world attacks in terms of degradation ratio.

However, this gap should be small and our evaluation is a good approximation of real-world attacks

because the real-world Crossfire attacks can adaptively change the link targets whenever a link is deter-

mined as a hard-to-flood target. That is, the Crossfire attacks can quickly identify if a link target is hard

be flooded due to the problem of bandwidth bottlenecks at non targeted links and then easily change its

link target to another link in the routing bottleneck. Crossfire can achieve effectively the same degradation

ratio even after changing the link target, since there are plenty of other link-target candidates in the routing

bottleneck for a given target area.
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3.6 Attack Characteristics

The Crossfire attack has four distinct characteristics which distinguish it from ordinary DDoS attacks,

namely undetectability, attack-flow indistinguishability, flexibility in the choice of targets, and persistence

in terms of attack duration.

Undetectability at the Target Area. The Crossfire attack uses all legitimate flows to flood target links.

Each bot creates ordinary connections (e.g., HTTP) with a set of decoy servers following the adversary’s

(i.e., the bot-master’s) assignments, and hence individual connections do not trigger an attack alarm at the

servers. Since a target area is not directly attacked and the decoy servers near the target area do not see any

suspicious traffic, the servers in the target area would be unable to detect the attack. Even decoy servers

would be unable to detect the attack since the well-coordinated flows to the decoy servers would cause

only a few Mbps bandwidth increase to each server. Furthermore, the adversary can easily select target

links among the links in the target set that are several hops (i.e., at least 3 hops in our experiments) away

from the target area since links with high route count are usually located in the core backbone networks.

This makes it difficult even for the target links to identify an attack.

Indistinguishability of Flows in Routers. In the Crossfire attack, a large number of low-rate attack

flows pass through a target link. Hence, a router connected to the target link cannot distinguish the attack

flows from legitimate ones. In other words, since all the attack flows carry different source IP addresses

and destination IP addresses, the high bandwidth aggregation mechanisms (e.g., Pushback [99], PSP [38])

become ineffective even if they are employed at all routers along the attack routes. Inspecting the payload

of each packet would not help either because the attack flows carry the same payload as that of legitimate

flows. Moreover, flooding target links with different sets of bots (e.g., the rolling attack, viz., Section 3.4.2)

would further enhance this inherent indistinguishability of attack flows in routers.

Persistence. The Crossfire attack is able to disconnect a target area persistently by controlling the bot

traffic so as not to trigger any control plane changes (e.g., route changes). This is achieved by using stable

routes in rolling attacks, which change an active set of target links dynamically (viz., Section 3.4.2). In

essence, a rolling attack makes the Crossfire attack a pure data plane attack, thereby leaving the control

plane of the Internet unchanged. This extends the attack duration virtually indefinitely. The details of the

attack persistence are presented in Section 3.4.1.

70



Flexibility. The Crossfire attack can be launched against any target area (regardless of its size) since

an adversary can usually find a large number of public servers inside that target area and decoy servers near

it; e.g., the adversary can select any of the many publicly accessible servers without needing permission

from that server. This offers a great deal of flexibility in the adversary’s choice of a target area, which

is one of the most important characteristics that distinguish the Crossfire attack from other link-flooding

attacks (viz., Related Work in Section 3.7). Our adversary’s choice is enhanced by its low-rate flows used

by the bots since the resulting attack flows would not trigger individual alarms in any potential target area.

3.7 Related Work

3.7.1 Control Plane DDoS Attacks

DDoS attacks against a network link, even if launched with low-rate traffic, can disrupt a routing protocol

(e.g. BGP) and ultimately trigger instability in the Internet. This class of attacks, which we call Control

Plane DDoS attack, first proposed by Zhang et al. [174], exploits the fact that the control plane and data

plane use the same physical medium. This fate-sharing allows an unprivileged adversary to convince a

BGP speaking router that its BGP session has failed. Schuchard et al. in [133] extended this attack to

multiple BGP sessions, which were selected based on the betweenness centrality measures of the network

topology. They showed that their CXPST attack can generate enough BGP updates to cripple the Internet’s

control plane.

In contrast, the Crossfire attack is pure data plane attack, which maintains the effects of the attack

persistently by suppressing any control plane reaction.

3.7.2 Attacks against Links

The recent Coremelt attack [144] demonstrates how a set of bots can send packets to each other and flood

a set of AS backbone routers. The key characteristic of Coremelt is that it creates only wanted traffic

and thus it eludes all defense mechanisms that filter unwanted traffic. Furthermore, this traffic is not

subject to the congestion-control mechanisms of TCP and can thus exceed typical TCP traffic bounds.

This unique advantage cannot be exploited in Crossfire, since the ends of its attack flows are not bots.
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Design Goal Crossfire Coremelt

Flexibility of targeting server areas High N/G

Bot-distribution independence Y N

Persistence Higher Lower

· Data vs. control plane distinction

· Robustness against route changes

Distribution of target links across multiple ISPs Y N/G

Indistinguishability at routers Y Y*

Undetectability at target area servers Y N/G

Reliance on wanted flows only N Y

(* only if bot-to-bot flow intensity does not exceed router bounds.

N/G = “Not a design Goal”)

Table 3.7: Crossfire vs. Coremelt [144] Differences

Thus, Crossfire uses protocol messages that are unencumbered by congestion control; e.g., HTTP GET

requests. In contrast with Coremelt, Crossfire creates very low intensity traffic (e.g., 4 Kbps flows) to

decoy servers, which can be any public IP addresses. Furthermore, it can flood any of the selected target

links regardless of the distribution of bots, and its server-disconnection effects at a target area are easily

predictable. Crossfire is more persistent than Coremelt, since it does not trigger control-plane reaction

(e.g., BGP route changes [133]) and it can easily evade route-change countermeasures produced by online

traffic engineering. Finally, unlike Coremelt, which targets the backbone routers of an AS, Crossfire aims

to select routers and links that are distributed across ASs of different ISPs, such that no single ISP could

counter the attack. In short, the Crossfire attack is different from Coremelt as it shares neither all the goals

nor the attack techniques of Coremelt. Table 3.7 summarizes the key differences between Crossfire and

Coremelt.
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3.7.3 Large-Scale Connectivity Attacks

The technical underpinnings of the Crossfire attack are also related to research on the robustness of Internet

connectivity to attacks that disable routers or links [13, 98, 162]. Albert et al. [13] illustrate that if an

adversary disables 4% of the highly connected routers, the entire Internet would break up into small

isolated pieces. However, later work by Magoni [98] and Wang et al. [162] concludes that all such attacks

would be infeasible because of the huge number of routers or links that need to be disconnected.

The main distinction between the Crossfire attack and this line of work is that our notion of (dis)connectivity

captures the practical realities of the Internet; we say that a node A is (effectively) disconnected from a

node B whenever the persistent route from A to B is severely congested (viz., Section 3.2.1).

The Crossfire attack also has a clearly different goal from the routing attack proposed by Bellovin and

Gansner that cuts multiple network links to attract a certain traffic to compromised routers for eavesdrop-

ping purposes [28].It is also different from the DoS source-detection technique proposed by Burch and

Cheswick [33] whereby a victim server attempts to flood various routers and measure decreasses in attack

traffic – a telltale sign indentifying attack sources on the router’s path.

3.7.4 Brute-Force DDoS Attacks

The goals of the Crossfire attack are fundamentally different from those of conventional brute-force DDoS

attacks [67, 83, 109, 110] in at least three respects. First, it has a flexible choice of targets in a much more

scalable range than those of DDoS attacks (e.g., from servers of a single enterprise, to those of a state or

country). Second, its attack sources (i.e., bot hosts) are undetectable by any targeted servers, since they do

not receive attack messages, and by network routers, since they receive only low-intensity, individual flows

that are indistinguishable from legitimate flows. Third, its persistence against the same set of targets can

be extended virtually indefinitely by changing attack parameters. The Crossfire advantage of the flexible

choice of targets in a geographic area is shared by the geo-targeted DDoS attacks in cellular networks

proposed by Traynor et al. [151]. However, these attacks are less relevant for the Internet.
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Chapter 4

SPIFFY: A First Line of Defense that

Deters Cost-Sensitive Link-Flooding

Attacks

4.1 Outline of the Chapter

As we have seen in the previous chapters, link-flooding attacks can cause massive connectivity degradation

when the attacks flood routing-bottleneck links. To prevent the link-flooding attacks, one could remove

the root cause of the problem, namely the routing bottlenecks. However, since routing bottlenecks are

the results of employing a cost-minimizing policy of the Internet routing and topology designs (viz.,

section 2.2.3), any attempt to remove routing bottlenecks would face a defender’s dilemma: How can one

remove a vulnerability of a system when it is caused by a very desirable feature of the system’s design

and operation? This dilemma suggests that a fundamental countermeasure would require major changes

to the underlying Internet design and economic models.

As an alternative, one can consider a countermeasure that mitigates the effectiveness of link-flooding

attacks at the individual routing-bottleneck links. However, as we saw with the example of the Crossfire

attack in Chapter 3, it is also challenging due to the indistinguishability property of the attack flows. That

is, advanced attacks can easily use low-rate, protocol-conforming attack flows that are indistinguishable
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from legitimate flows by the targeted links, rendering existing filtering mechanisms (e.g., elephant-flow

detection [89, 171]) ineffective. In this chapter, flows are defined by 5-tuple (i.e., source and destination IP

addresses, source and destination port numbers, and protocol number) and thus each flow is individually

rate controlled by senders TCP congestion control algorithms. A few recent proposals (e.g., CoDef [93],

SIBRA [26]) appear to be effective in handling link-flooding attacks, but they require global AS coordi-

nation, which would not be readily available in the current Internet.

In essence, prevention or mitigation of link-flooding attacks require large-scale adoption of new pro-

tocols and extended deployment period. However, as we discussed in Section 1.1, link-flooding attacks

are the current problem of the Internet and thus we need a solution to handle link-flooding attacks in the

current, not the future, Internet.

To that end, we propose a two-tier defense approach, where (1) a first-line defense deters only cost-

sensitive adversaries using low-cost defense operations that can be readily deployed in the current Internet

and (2) a second-line defense handles the undeterred, cost-insensitive adversaries by using a multi-domain

coordinated defense mechanism that is hard to orchestrate in the current Internet. In particular, in this

chapter, we focus on designing a low-cost deterrence mechanism as our first line of defense.

Our first-line defense mechanism targets rational adversaries only; i.e., cost-sensitive adversaries who

wish to remain undetected. All other (e.g., irrational, cost-unbounded) adversaries would not be deterred

by our first-line defense mechanism and need to be handled by a second-line of defense mechanism. We

believe that the majority of link-flooding attackers are rational in the current DDoS attack landscape.

According to a recent study in behavioral economics [126], there is a strong evidence that cyber criminals

are economically motivated. Also, rational adversary behaviors in DDoS attacks are observed in a study

that analyzed real DDoS attack incidents in 240 countries over 5 years [77]. Note that even though only

a fraction of adversaries turn out to be rational, our proposed first-line defense mechanism can be useful

since it has low-cost deployment and operation cost.

To deter economically motivated (or cost-sensitive) adversaries, we focus on one economic property

that is exploited by link-flooding attacks; namely, attackers have a fundamental cost-asymmetry advantage

with respect to defenders. To be specific, on the one hand, the cost of flooding a 10 Gbps network link

can be as low as US $80 and averages US $920, assuming 1 Mbps upload bandwidth per bot [34]. On
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Figure 4.1: Intuition for distinguishing legitimate senders from bots via temporary bandwidth expansion.

the other hand, the cost of the backbone link bandwidth is orders of magnitude higher. For example, 10

Gbps bandwidth in the Internet transit costs about US $6,300 as of 2015 [3]. This is approximately 7–80

times more expensive relative to the equivalent attack bandwidth. Unfortunately, removing the attack-

defense cost asymmetry is very difficult to achieve since these costs are determined by two fundamentally

independent markets, namely, pay-per-install bot markets [34] and Internet transit markets [152]. This

cost asymmetry enables attackers to easily launch link-flooding attacks. Our approach is to reduce or

even reverse the cost asymmetry to deter cost-sensitive adversaries. To that end, we design a low-cost,

single-AS mechanism that significantly increases the attack cost of flooding a link target.

Our countermeasure creates an untenable tradeoff between the cost and detectability. By definition,

any countermeasure that can either substantially increase the attack cost relative to the defense cost or

induce detectability will deter attacks by rational adversaries; i.e., cost-sensitive adversaries who wish to

remain undetected. In contrast, countermeasures for cost-insensitive, irrational adversaries are known to

be harder and more expensive to orchestrate and deploy; e.g., CoDef [93], SIBRA [26]. Thus, our efficient

deterrence is a very desirable first-line defense for cost-sensitive, rational adversaries.

We show, perhaps surprisingly, that is indeed possible to force the adversary into an untenable tradeoff

that either increases the attack cost or forces detectability. The high-level intuition behind our approach

is as follows; viz., Figure 4.1. Suppose we know the locus of the attack L (i.e., a specific ISP link) and

we have some capability to logically increase the bandwidth of L by some factor M temporarily; viz.,

Section 4.5 for detailed techniques for implementing this logical bandwidth increase in Tier-1 or Tier-2
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ISP networks. After the increase, we observe the response of the traffic source IPs that were traversing

L. Now, legitimate sources running TCP-like flows will naturally see a corresponding increase in their

throughputs as the bandwidth of their bottleneck link has increased. Attack sources, however, will not

observe this increase as a rational cost-sensitive attacker would have chosen to fully utilize the available

bandwidth of the upstream links of the sources in the first stage; i.e., before the temporary bandwidth

expansion. Thus, the bottleneck bandwidth increase will induce no increase in the effective throughput of

the attack sources. Alternatively, to avoid detection, the attacker could choose to keep each bot’s attack

traffic rate much lower than the available bandwidth of its upstream link. Note, however, that this will

increase the number of required bots and thus increase attack cost proportionally. In essence, adversaries

are forced to either allow their attack sources to be detected (via rate-change measurements) or accept an

increase in attack cost. Note that the key requirement is to monitor the change in throughput for traffic

sources after the bottleneck bandwidth increase; measuring the raw throughput itself alone will not help

detection as the attack flows are indistinguishable from normal flows.

However, there are three practical challenges that need to be addressed before this high-level intuition

can turn into a practical defense mechanism:

(1) Implementing bandwidth expansion: First, we need some mechanism for increasing the logical

bandwidth of L with a sufficiently large expansion factor. Note that a larger expansion factor will:

(a) make it easier to distinguish bots vs. legitimate sources (e.g., to create a clear separation ac-

counting for measurement noise) and (b) equivalently increase the effective attack cost. However,

it is infeasible and uneconomical for ISPs to have spare dark fibers for each link, and thus we need

deployable mechanisms to virtually increase the bandwidth, if only temporarily.

(2) Fast workflow: Second, we need the defense workflow to be fast and responsive to be effective

against real attacks. If the temporary bandwidth expansion and detection takes several hours, then

the damage is already done.

(3) Robust rate-change detection: Third, we need per-sender rate change measurements at scale,

which may in turn require high processing requirements on monitoring routers as well as high

control overhead for reporting these measurements. Furthermore, this detection must be robust to

TCP effects, especially given that many legitimate flows on the Internet are short flows.
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We address these practical challenges and present the design and implementation of SPIFFY.1 To ad-

dress (1), SPIFFY presents a new traffic engineering [57] technique based on software-defined networking

(SDN) whereby one can virtually increase the bandwidth by routing around the bottleneck. To address (2),

we develop fast greedy algorithms to solve a traffic optimization problem, which would otherwise take

several hours even with state-of-art solvers [2]. Finally, to address (3), we suggest simple sketch-based

change detection algorithms that can measure rate changes with low overhead [88, 171]. We develop a

proof-of-concept prototype using POX [7] and use a combination of real testbed evaluation and large-scale

simulations to validate the effectiveness of SPIFFY against link flooding attacks. SPIFFY relies on SDN’s

centralized control and traffic visibility to develop the first-known defense against such link-flooding at-

tacks.

Contributions: In summary, this chapter makes the following contributions:

• A low-cost solution to force link-flooding adversaries into an untenable tradeoff between cost and

detectability, which provides an effective first-line defense;

• A bandwidth expansion mechanism for SDN via traffic engineering based on a fast heuristic for

solving the underlying optimization problem;

• An SDN-based implementation of SPIFFY and an extensive evaluation demonstrating its robustness

with realistic TCP effects.

4.2 Background and Threat Model

In this section, we review the types of link-flooding attacks we address in this chapter and then formally

characterize the attacker goals and constraints.

Background: The link-flooding attacks we consider in this chapter target network links in the core of the

Internet (e.g., backbone links in large ISPs or inter-ISP links) and create a large number of attack flows

crossing the targeted links to flood and virtually disconnect them; viz., Figure 4.2. This is in sharp contrast

to traditional DDoS attacks that aim to choke the resources of the end target; e.g., computation, memory,

or access link bandwidth. Recent research (e.g., Coremelt [144] and Crossfire in Chapter 3) and real-life

1
SPIFFY stands for handling ‘Scalable Persistent Indistinguishable link-Flooding attacks with reduced cost asymmetrY.’
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Figure 4.2: An example of link-flooding attacks. Legitimate looking connections between the bots and

the legitimate public servers cross the link L in the ISP; viz., Chapter 3.

attacks against core routers of upstream networks (e.g., ProtonMail attack [68], Spamhaus attack [31]) are

the examples of such attacks.

In the general case, link-flooding attacks may flood multiple link targets, as exemplified in Crossfire

in Chapter 3. For simplicity of presentation, we focus on the link-flooding attacks against a single infras-

tructure link throughout this chapter. However, our system is also robust to multiple link-flooding attacks;

viz., Section 4.8.3 for a detailed discussion.

Threat model: We consider a rational adversary who wants to inflict as much damage as possible

on legitimate flows of the target network link using as few resources as possible, and while remaining

indistinguishable. Formally, our link-flooding adversary pursues three goals:

• Attack-Strength Maximization (Gstrength ): Suppose the network a mechanism to guarantee a per-

flow rate under “normal” network operation when there are no attacks; e.g., through a combination

of link capacity provisioning and traffic engineering [23]. Let this guaranteed rate be denoted by

rg. The adversary aims to reduce the per-TCP-flow fair-share rate of flows traversing the target link

to the degraded rate, denoted by rd. The degraded rate will be much smaller than the guaranteed

rate (i.e., rd ≪ rg); otherwise (e.g., rd ∼ rg) the attack would fail to degrade a legitimate flow

much beyond the guaranteed rate rg.

The degraded rate rd is an adversary-chosen parameter that measures the attack strength. A smaller

rd indicates a stronger attack since legitimate flow rates would be degraded more.

Flow rates are defined as the number of bytes transferred within each time window divided by the

time window size. We mainly focus on the rate changes in the order of few seconds (e.g., 5 second)
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and thus unless noted otherwise we use the time window of size 1 second in this chapter.

• Attack Persistence (Gpersistence ): To circumvent detection and hence be persistent, a link-flooding

attack needs to mimic legitimate traffic patterns. That is, the attack flows are indistinguishable

from legitimate ones via traffic analysis of headers/payloads and/or intrusion detection at the target

link. For instance, this can be achieved by using legitimate looking web sessions to decoy servers;

viz., Chapter 3. To this end, the adversary uses TCP-based flooding attacks. Because TCP traffic

constitutes the majority of the Internet backbone traffic, as it represents about 90 – 98% of the byte

volume of the backbone links, these attacks are more difficult to detect and filter than UDP-based

flooding attacks [172].

• Attack-Cost Minimization (Gcost ): A rational adversary will seek to minimize the cost of the

attack. In this chapter, we assume that the cost of the attack is proportional to the number of

bots necessary for the attack; thus, the number of bots is a good proxy for the attack cost. This

assumption is based on the observation that, in general, bots are sold in bulk (e.g., several thousands)

in the pay-per-install markets [34].

We assume that the network follows a per-flow fair-share allocation of link bandwidth to all flows

served. This is already widely observed in today’s Internet since TCP flows adjust their rates in response

to congestion, and thus approximate per-flow max-min fair rates [9]. If senders do not conform to the

TCP flow control (i.e., they send flows faster than the fair-share rates) they can be detected by other

mechanisms [89].

Based on this threat model defined, we develop and evaluate SPIFFY in the following sections.

4.3 SPIFFY Intuition and Security Analysis

In this section, we provide the intuition behind SPIFFY and the security analysis showing why it forces

adversaries to either increase costs (Gcost ) or forgo indistinguishability (Gpersistence ) while achieving rate

degradation for legitimate flows (Gstrength ).
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4.3.1 High-level Idea

The key reason why link-flooding attacks are so successful and dangerous is that they are affordable and

indistinguishable. Thus, our overall goal is to force attackers to compromise on either Gpersistence or Gcost

for a given Gstrength ; i.e., the attackers either become detectable or pay an increased cost.

The intuition behind our approach is as follows. During a link-flooding attack, a legitimate sender

would only be able to send traffic at a much lower per-host rate compared to the desired application-layer

data rates. This is because the attack with the rate-reduction goal (Gstrength ) decreases legitimate flow

rates significantly. However, an attacker who is trying to optimize cost (Gcost ) would have all its bots send

at their highest per-host send rate (i.e., saturate its upstream bandwidth), by creating additional attack

flows whenever its upstream bandwidth allows it. Due to these fundamental goal differences, a legitimate

sender and an adversary’s bot would react very differently when the congestion is relieved; viz., Figure 4.1.

A legitimate sender would very likely increase its send rate to meet its rate demand (e.g., buffered traffic

from application layer) due to TCP rate control while a bot would have no available bandwidth left for

further rate increase.

We can implement the controlled congestion relief by what we call the temporary bandwidth expan-

sion (TBE). That is, we temporarily increase the virtual bandwidth of the target link by some factor M to

allow senders suffering from congestion to increase their send rates. TBE enables us to measure the rate

increases of senders and ultimately distinguish bots from legitimate senders.

In order to prevent bots from being detected, a link-flooding adversary must give up fully utilizing the

upstream bandwidth of bots and mimic the legitimate senders’ rate increase when congestion is relieved,

as we will see below. However, this rate-increase mimicry will lower the bandwidth utilization of each

bot and in turn cause the link-flooding adversary to significantly increase the number of attack bots. As a

result, the link-flooding adversary faces an untenable choice: (1) she could maintain the low-attack cost

while allowing her bots to be detected, or (2) she could make bots indistinguishable while increasing the

attack cost significantly.
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4.3.2 Security Analysis

We begin by formulating the optimal attack strategy for a scenario without the SPIFFY defense and then

argue why SPIFFY creates a fundamental cost-detectability tradeoff for link-flooding adversaries. For

simplicity of presentation and without loss of generality, the following analysis assumes a homogeneous

bot deployment where each bot has the same upstream bandwidth u. Let B be the bandwidth of the target

link which is under the link-flooding attack.

Optimal adversary strategy without SPIFFY (AS¬spiffy ): An adversary can optimally satisfy the attack

goals Gstrength , Gcost , Gpersistence by using B/u bots, where each bot creates u/rd attack flows and

saturates its upstream bandwidth u.

Proof. To congest the target and reduce the per-flow TCP fair-share rate Gstrength , the attack first has to

flood the target link. Thus, the minimum number of bots required for the attack Gcost is nb = B/u. Also,

due to TCP per-flow fairness, the fair-share rate provided by the target is rFS = B
Nb

, where Nb represents

the total number of attack flows. This assumes no legitimate flows in the target link: the attack strategy

designed without considering legitimate flows guarantees meeting the attack goals even when legitimate

flows exist. Also, due to the rate-reduction goal the fair-share rate is reduced to the degraded rate Gstrength ,

rFS = rd. Since Nb attack flows are created by nb bots, on average each bot creates Nb/nb attack flows,

which is Nb/nb = (B/rd)/(B/u) = u/rd.2

An adversary with attack strategy AS¬spiffy has already saturated the upstream bandwidth of each bot.

As a result, bots cannot increase their sending rate by a factor of M and cannot avoid being detected by

SPIFFY. We argue that for the adversary to evade the test, it must satisfy a property we call rate-increase

mimicry.

• Rate-increase Mimicry (RM): Bots are capable of instantly increasing their send rate by a factor

of M when congestion is relieved at the bottlenecked link. This implies that bots must use only

u/M of their upstream bandwidth when congesting the target link.

The RM property enables the adversary to simultaneously satisfy Gstrength and Gpersistence while

compromising Gcost . If all bots are capable of rate increase with a factor of M , they pass the SPIFFY test

2For simplicity, we ignore small errors generated when converting real values to integers.
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and thus bots remain undetected. This leaves the adversary with the following new attack strategy under

SPIFFY.

Optimal attack strategy with SPIFFY (AS spiffy ): The attack strategy must satisfy the two conditions to

achieve the two attack goals Gstrength and Gpersistence under SPIFFY.

(1) the attack utilizes M · (B/u) bots and

(2) each bot creates (u/rd)/M attack flows by utilizing only 1/M of its upstream bandwidth u.

Proof. The proof is similar to that of the optimal attack strategy with SPIFFY (AS¬spiffy ). However, due

to the RM property, when attacking the target link, each bot uses only 1/M of its bandwidth limit u.

Therefore, the attack requires B/(u/M ) = M · (B/u) bots, where each bot creates u/rg = u/(M · rd)

attack flows.

Thus, a link-flooding adversary now faces the following mutually-exclusive options forcing a funda-

mental tradeoff between cost and detectability:

1. Adversary follows AS¬spiffy and requires (B/u) bots, potentially allowing detection of his/her bots

by SPIFFY.

2. Adversary follows AS spiffy and requires M · (B/u) bots, circumventing the bot detection.

We argue that an adversary has no other options than those listed above. To see why, let us consider two

attack strategies that differ from these: (1) Per-flow rate increase strategy: In this strategy, bots saturate

their bandwidth to attain the cost-minimization goal Gcost . They quickly detect the bandwidth expansion

and instantly allocate increased bandwidth to a set of selected flows by pausing (or terminating) other

attack flows, making the selected flows look legitimate. However, since SPIFFY measures per-sender

(not per-flow) rate changes, such bots would be detected due to their unchanged per-sender rates. (2) Bot

replacement strategy: This strategy also saturates the bots to achieve Gcost . The adversary replaces his/her

bots in operation with new bots whenever the current bots are detected by SPIFFY. Although this strategy

can be efficient for a short period of time, the cost of maintaining the attack persistence grows linearly

with attack duration increases since bots need to be replaced repeatedly.
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Figure 4.3: Workflow of SPIFFY

4.4 SPIFFY System Overview

In this section, we describe an end-to-end view of SPIFFY and highlight key practical challenges that we

need to address to realize it. We envision SPIFFY being run by an ISP where the target link L is located,

since the end customer who is the eventual target of the attack cannot detect or respond to link-flooding

attacks. We believe that ISPs have a natural economic incentive to protect their immediate customers (e.g.,

as a value-added service [1]) and offer such capabilities on demand to create new revenue streams.

To understand the key challenges in this deployment model, let us consider the three logical stages in

the SPIFFY workflow as seen in Figure 4.3:

1. Flooding detection. SPIFFY detects the existence of a link-flooding attack against a link (e.g., via

SNMP-based link-utilization measurements [39]) and estimates the degraded rate rd for the attack

by measuring the fair-share flow rate of the target link.

2. Temporary bandwidth expansion (TBE). For all senders that use the target link, SPIFFY provides

a temporarily expanded bandwidth M×(current per-sender rate), where bandwidth expansion factor

M ≫ 1. For the time being, let us imagine an ideal TBE that increases the target link’s physical

bandwidth B to M ×B. Section 4.5 explains how TBE can be implemented in real networks. Note

that the bandwidth expansion is temporary (e.g., < 5 seconds) and the bandwidth of the link returns

to B after TBE. The bandwidth expansion factor M is set to the ratio of the guaranteed rate rg to

the degraded rate rd, namely, M = rg/rd, to let the legitimate senders increase rates from rd to rg

in response to TBE. This value of M enables SPIFFY to identify senders with the per-sender rate

change close to M as legitimate ones.

3. Bot identification. SPIFFY measures the per-sender rate changes of all the senders that use the

target link. It starts measuring the per-sender rate before TBE and stops measuring after TBE. The

frequency of measurements should be high enough to capture the rate increase and calculate the
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ratio of the increase; e.g., every 1 second. Before TBE, flows from a legitimate sender will have

the flow rate rd (viz., Gstrength ), but during TBE the majority of the legitimate flows increases their

rates at least up to rg, and thus the total per-sender rate increases by a factor close to or higher than

M (= rg/rd). In contrast, a bot would not increase its send rate even if the bandwidth allocated to

it is expanded due to its saturated upload bandwidth; viz., Attack Strategy AS¬spiffy .

Challenges: Our focus in this chapter is on steps (2) and (3) of this workflow. We assume that existing

monitoring mechanisms are used for (1); e.g., [39]. Our two key challenges arise for steps (2) and (3).

First, the challenge in designing TBE is to provide the senders significantly expanded bandwidth.

Ideally, we want to physically increase the target link bandwidth, but this may not be viable unless the

target network has spare dark fiber. Instead, our goal is to find an immediate solution that does not rely on

spare optical fibers. Moreover, the operation of TBE has to be real-time to quickly react to the flooding

attacks; e.g., in a few seconds.

Second, bot identification is challenging because it requires real-time per-sender rate measurements

for all senders at the target link. In practice, it is difficult to keep track of these rate changes because

the number of senders might easily go up to tens or hundreds of thousands. Finally, the rate-change

estimation must be robust to real-world considerations; e.g., TCP effects in reacting to changes in the RTT

or the impact on short legitimate flows.

Key ideas: We address these two challenges as follows. SPIFFY can leverage recent advances in

software-defined networking (SDN) to implement the above workflow. An SDN’s central controller pro-

vides new capabilities for network management [52, 71, 122, 128]. While we do not claim that SDN

is necessary for countering link-flooding attacks, we consider it to be a natural enabler for realizing the

SPIFFY workflow. The overall system is illustrated in Figure 4.4.

• Practical TBE: To enable practical TBE, we develop a traffic engineering application that dynam-

ically changes traffic routing to meet desired goals [57]. At a high level, we increase the effective

bandwidth of the link-flooding target link by routing flows around the bottleneck. We also provide

practical techniques to work around the constraints of real networks where the bandwidth expan-

sion factor (M ) might be low. Finally, we develop fast heuristics to solve the traffic engineering

optimization.
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Figure 4.4: Overview of the SPIFFY using an SDN in the Internet core.

• Robust bot detection: First, to detect bots, we provide a scalable monitoring mechanism that relies

on simple “sketching” algorithms running in the edge switches [171]. This algorithm guarantees the

accurate per-flow rate change measurement with only small size of SRAM and few hash computa-

tions. Second, to obtain the robust bot-detection results, we develop strategies that yield very low

false-positive rate. We investigate several cases where legitimate senders might be misidentified as

bots (e.g., legitimate senders that do not react to TBE or TCP effects in response to changed RTT

measurements) and propose solutions to remove such undesirable events.

4.5 Scalable and Practical TBE

In this section, we focus on a practical implementation of TBE. As discussed earlier, there are two key

challenges here. First, given that networks do not have spare fibers lying around, we need a network-layer

solution for TBE. Second, we need this step to be fast because it ultimately impacts our ability to rapidly

test and detect bots.

Our network-layer TBE approach dynamically reroutes the flows traversing the target link through

other under-utilized links in the network. It computes the new routes, which provide large bandwidth
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expansion to all senders using the target link simultaneously, as if the target link bandwidth is physically

expanded. The new routes are calculated at a central controller and installed in SDN-supported switches

at the edge. Note that for ease of explanation we refer to the physical bandwidth expansion as the ideal

TBE.

The goal of the network-layer TBE is to emulate the ideal TBE with large bandwidth expansion factor.

The ideal bandwidth expansion factor we wish to achieve is Mideal = rg/rd, as described earlier. Then the

question that arises is how the network-layer TBE can achieve this high Mideal. To answer the question,

we first look at how much bandwidth expansion can be achieved by the network-layer TBE for a given

network. Then we evaluate whether the bandwidth expansion factor is large enough for Mideal.

We formulate the routing problem of finding the maximum bandwidth expansion factor, denoted as

Mnetwork, for a given a network configuration. Let us assume that we are given a network graph G =

(V,E), where V represents the set of routers and E represents the set of links between the routers. We

denote by b(x, y), where (x, y) ∈ E, the bandwidth that is not used at the time of TBE; i.e., residual

bandwidth. We define a flooding traffic matrix T where each ingress/egress pair (s, t) denotes the total

traffic rate T (s, t) between s and t that contribute to the flooding at the target link. Note that we assume

that the residual bandwidth b(x, y) and the flooding traffic matrix T are unchanged during TBE operation.

We associate a variable f
(s,t)
(x,y), with each pair (s, t) and each link (x, y) ∈ E, that denotes the fraction of

the traffic flow from s to t over the link (x, y). The problem of finding the maximum bandwidth expansion

factor for network-layer TBE is defined by following linear program:

Linear Programming 1 (LP.1)

maximize m (4.1)

subject to
∑

y:(x,y)∈E

f
(s,t)
(x,y) =





−m · T (s, t), if y = s

m · T (s, t), if y = t

0, otherwise

(4.2)

∑

(s,t)

f
(s,t)
(x,y) + f

(s,t)
(y,x) ≤ b(x, y), (x, y) ∈ E (4.3)

We denote the objective value of this linear program by Mnetwork. The objective (4.1) in the above
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optimization is to maximize the bandwidth expansion factor via rerouting. Conditions (4.2) represent the

flow conservation constraints that ensure the m-times expanded traffic T (s, t) is routed from the attack

relevant ingress/egress router pairs (s, t). Constraints (4.3) define the load on each link and ensure it is

smaller than its residual link bandwidth.3

Here, we face two challenges in solving the LP.1 and applying it for the ideal TBE emulation.

• Scalability: Although the LP.1 can be solved in polynomial time, the size of the problem becomes

impractically large when the number of routers R is large (e.g., R > 100). The time to solve the

problem grows rapidly with the network size and becomes unrealistic for real-time operations; e.g.,

few thousand seconds in a network of size R = 196.

• Small Mnetwork compared to Mideal: In practice, the value of Mnetwork is small compared to

Mideal. As we will see in detail in Section 4.7, Mnetwork is typically in the range of 2 – 3 and it is

likely that Mideal = rg/rd is 5 – 10 times larger than Mnetwork.

We solve the TBE scalability problem by greedy algorithm (Section 4.5.1) and the small Mnetwork

problem by randomized sequential TBE (Section 4.5.2).

4.5.1 Greedy algorithm for TBE Scaling

As a solution to the scalability problem, we propose a simple greedy routing algorithm that runs much

faster than solving LP.1 with off-the-shelf solvers. One can also use other efficient ways of solving such

problems in general; e.g., [24, 134]. The greedy algorithm presented here is one possible way for calcu-

lating an approximate solution.

The greedy algorithm takes as inputs the set of ingress/egress pairs and the number of their flows that

cross the target link, the desired bandwidth expansion factor m, and the network graph G = (V,E) and the

residual link bandwidth b(x, y) for each link (x, y) ∈ E. Then it outputs a feasible routing solution R(s, t)

for all ingress/egress pairs (s, t). The pseudocode of this algorithm is given in the following Algorithm 1.

We use a binary search procedure over the value of m in Algorithm 1 and obtain the estimate of the

maximum bandwidth expansion factor M̂network and the corresponding routing solution. We show in

3Since we use the undirected graph G, for any link (x, y) ∈ E we set b(x, y) = b(y, x) but we activate only one them for the

constraints (4.3).
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Algorithm 1 Greedy algorithm for TBE

1: Inputs: Set of ingress/egress pairs (s, t) crossing target link,

2: Number of flows on each ingress/egress pair n(s, t),

3: Desired bandwidth expansion factor m,

4: Network topology graph G = (V,E), and

5: Residual link bandwidth b(i, j) for (i, j) ∈ E.

6: while (∃(s, t) that has not yet selected) do

7: Select ingress/egress pair (s, t) at random w/o replacement.

8: Calculate the available network graph G′ = (V,E \ E′),

where E′={links w/ available bandwidth ≥ m · n(s, t) · rd}.

9: Calculate new route R(s, t) in G′.

10: if R(s, t) 6= NULL then

11: Move all flows in (s, t) to R(s, t).

12: Output: New routes R(s, t) for all ingress/egress pairs (s, t).

Section 4.7 that the difference between Mnetwork and M̂network is negligible in practice.

4.5.2 Randomized Sequential TBE

To solve the problem of small value of Mnetwork, we use a randomized sequential TBE approach. That is,

we test only a subset RTBE = Mnetwork/Mideal of senders at each TBE round so that a subset of senders

can have feasible routes that provide Mideal-times bandwidth expansion. We then repeat this process until

most of the senders are tested. If the obtained Mnetwork from LP.1 is larger than or equal to Mideal, no

more than a single TBE is required.

Random sender selection. We randomly select a fraction RTBE of senders in each ingress/egress

pair and reroute them using the solution of LP.1. The obtained routing solution provides the selected

senders Mideal-times expanded bandwidth. Since we randomly sample the senders at every TBE, an

adversary cannot anticipate when a particular bot will be tested. The number of TBE rounds that needs to

be performed to test the majority (e.g., 90%) of the senders depends on the fraction RTBE .
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4.6 Rate-change measurement tests

In this section, we focus on the rate-change measurement test. As previously mentioned, there are two key

challenges in designing the test. First, stateful per-sender rate monitoring could be expensive and induce

high control overhead at the SDN controller. Second, the robustness can be undermined by real world

TCP effects; e.g., prevalence of short-lived TCP flows or reaction to RTT changes.

4.6.1 Sketch-based Per-Sender Rate Change Detection

As mentioned, SPIFFY requires rate change detection for all senders that cross the target link. This raises

concerns about the computation and memory complexity of such “stateful” operations. Another concern is

that when the real-time per-sender rate measurements are reported back to the SDN controller the control

channel could be easily congested due to the large volume of control messages.

SPIFFY can address these challenges by utilizing sketch-based measurements [80]. Sketch is a

memory-efficient data structure that stores summaries of streaming data. In particular, a simplified variant

of sketch-based rate change detection [88] can be used for efficiently and quickly detecting per-sender

rate changes. With the sketch-based rate change detection, the edge switches report only the measurement

summary to the SDN controller, such as list of bot IPs, and significantly minimize the control channel

overhead.

Sketch-based rate-change measurement: We use the original sketch-based change detection mecha-

nism by Krishnamurthy et al. [88] for measuring per-sender rate changes. In fact, SPIFFY needs a simpler

version of the original sketch-based change detection since it measures with the granularity of a sender

(i.e., source IP), which is coarser than the granularity of a flow. The three basic components are the sketch

module, the forecasting module, and the change-detection module [88]:

1. The sketch module creates a sketch; i.e., a H ×K table of SRAM memory. When a packet arrives

at an edge switch, the source IP is fed into the H independent hash functions. Based on the modK

of the H hash outputs, H registers in the H rows are updated by the packet size u. By updating all

packets in a time interval t, we obtain a sketch S(t) at the end of the interval t.

2. The forecasting module uses the observed sketches in the past intervals S(t′) (t′ < t) to compute
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the forecast sketch Sf (t).

3. The change-detection module constructs the forecast error sketch Se(t) = S(t) − Sf (t). For each

sender’s IPsrc, this module calculates the forecast error.

Estimated measurement complexity: We analyze the estimated memory size and the sketch compu-

tations. The required memory size is determined by the number of independent hash functions H and the

size of sketch bins K for each hash function. For a real Internet trace dataset with more than 60 million

flows, H = 5 and K = 32K produce very accurate rate-change measurement; e.g., 95% accuracy for top

1000 flows with the maximum rate changes [88]. Our rate-change measurement will also be accurate with

these parameters, since each edge switch will not need to measure more than 60 million senders in most

cases. When we assume 3 bytes for each register in the sketch memory, each edge switch requires 480

KB SRAM memory space.

Sketch-based measurement requires H hash operations for individual incoming packets. Also, each

SRAM access requires few tens of nano seconds. However, since the hash operations and SRAM access

can be implemented in parallel in hardware, these per-packet operations can be very efficiently imple-

mented and thus do not affect the data plane throughput [171].

At every rate-change detection interval, each edge switch calculates the forecast sketches Sf (t) and

the forecast error sketches Se(t). These and the final rate-change calculation requires a computational

overhead of about 1.91 seconds, when for example H = 5, K = 64K, and 10 million flows are moni-

tored [88]. Our per-sender rate-change measurement would require much shorter (e.g., ≪ 1 sec) time for

the computation at each edge switch since today’s commodity CPUs are at least 3-4 times faster than the

one used (900 MHz CPU clock speed) more than a decade ago [88].

Bot-detection summary reports: Instead of reporting the rate-changes of all senders, each edge

switch can report only the subset of senders that are determined as bots (or legitimate senders). Thus,

the aggregate bandwidth for control channel can be limited to a few Mbps or less; e.g., only 4 MB data

transfer is required even when 1 million bot IPs are reported. Notice that the reports are made only when

the TBE is performed.
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4.6.2 Bot Detection Robustness to TCP Effects

The robustness of SPIFFY’s bot detection relies on the prompt and fast rate increase of legitimate senders

when TBE is performed. The rate increase is mainly determined by TCP operations at the senders since

they control the maximum flow rates at a given time. However, achieving robust bot detection can be

challenging due to the two following TCP effects: (1) short-lived flows (e.g., few packets in a flow) in the

Internet terminate before TCP increases their rates; (2) when TBE’s route changes cause sudden increase

of RTT values, TCP might decrease the send rates by decreasing congestion windows and/or causing

spurious timeouts.

To achieve robust bot detection, our primary focus is to maintain low false-positive rate because false-

positive events misidentify legitimate senders as malicious senders. In contrast, false-negative rate (i.e.,

the rate in which bots are misidentified as legitimate senders) is not a particularly useful metric since

SPIFFY allows false-negative events to happen for the cost-detectability tradeoffs. For example, if an

adversary is determined to remain undetected, she can make the false-negative rate to be practically one

at a highly increased attack cost.

Robustness to short TCP flows

Unlike long-lived flows, short-lived flows might not increase their rates in response to TBE because they

may not last long enough (e.g., few seconds) when the bottlenecked bandwidth is expanded. Therefore,

when the majority of flows are short-lived (as is the case of today’s Internet traffic), per-sender rate of

legitimate senders could be almost unchanged when TBE is performed, causing false-positive events.

Here, we first observe that the prevalence of short-lived flows does not affect the rate changes of

senders that create realistic traffic with the mixture of short- and long-lived flows. Moreover, we show

that SPIFFY can maintain false-positive rate as low as 1% or less by exempting senders with per-sender

rates lower than minimum per-sender rate from the bot detection process regardless of their rate-change

ratios.

To test our claims, we perform simulations with a synthetic web-traffic generator. We use the ns2

simulator with PackMime-HTTP web-traffic generator to construct diverse network environments and

simulate accurate TCP operations with realistic HTTP application traffic demand [4, 36]. Approximately
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Figure 4.6: An example per-sender rate-change measurements of randomly selected 100 legitimate senders

with mean and standard deviation when the bandwidth expansion factor M = 10.

70% of the synthetic web-traffic flows have size smaller than a single IP packet’s maximum size (1,500

Bytes) while a small number of large flows exist. We determine the queue size based on a rule-of-thumb

practice; i.e., QueueSize = RTT × C, where RTT is the average round-trip time of the flows crossing

the link and C is the data rate of the link [18]. For TBE, we assume that the bandwidth of the target link

is expanded by a factor of M = 10. As shown in Figure 4.5, we simulate 1000 pairs of clients/servers

exchanging HTTP traffic through a target network link. We set the ideal (i.e., when no traffic on the path)

round-trip time of 100 msec and the application-layer data rate of 1000 Kbps for the purpose of clear

illustration.

Figure 4.6 shows a rate measurements of 100 randomly selected senders. Before TBE starts at t = 10

seconds, all senders achieve approximately 100 Kbps with small standard devidations; however, after

TBE starts, most senders achieve 10 times higher rates within 2 seconds. This result shows that the rate

change detection is robust for the legitimate senders with realistic flows, in particular with large portion
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Figure 4.7: Simulated per-flow rates of flows in realistic HTTP web traffic (a) before and (b) during TBE

with bandwidth expansion factor M = 10.

of short-lived flows.

The reason for the negligible effect of short-lived TCP flows on the effectiveness of rate-change de-

tection is that a few long-lived flows from senders increase their rate significantly once TBE is performed

and thus induce the overall per-sender rate change. Figure 4.7 shows the simulated flow rates versus flow

sizes. Notice that before TBE only short-flows (i.e., small flow size) are observed. They achieve low rates

and long-lived flows are not even able to complete their TCP connections. This is because short-lived

flows spend most of their life in the TCP slow start and thus they can rapidly capture a greater proportion

of resources than long-lived flows in TCP congestion avoidance, often driving the long-lived flows into

timeouts. After TBE starts, long-lived flows achieve much higher rates whereas short-lived flows achieve

only slightly higher rates than before. This is because long-lived flows now have enough time to increase

the congestion windows.

Next, we evaluate the false-positive rate of the SPIFFY’s bot detection with realistic traffic and propose

a mechanism to maintain low false-positive rate. To simulate various types of realistic legitimate senders

in different locations with different traffic rates, we vary the end-to-end propagation delays (in msec) and

the application-layer data rate (in Kbps) per sender.

Figure 4.8 shows the measured rate-change ratio (RC) when the ideal round-trip time (RTT) (i.e.,

RTT measured when no traffic on the path) or the application-layer data rate (i.e., average HTTP data rate)

vary. Figure 4.8a shows that the vast majority of measured rate-change ratios are close to the bandwidth
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when the bandwidth expansion factor M = 10.
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expansion factor M = 10 and largely independent of the ideal RTT of the flows. This suggests that bot

detection can achieve low false-positive ratio when it uses a rate-change ratio threshold RCth close to

M to identify senders with RC < RCth as bots. However, as shown in Figure 4.8b, the rate-change

ratio RC is heavily affected by the application-layer data rate. While senders with high application-layer

data rates show rate-change ratios very close to the bandwidth expansion factor M = 10, senders with

low rates result in rate-change ratios that are spread over a large range. This would potentially induce

non-negligible false-positive ratios when bots are identified by thresholding the rate-change ratios.

From this observation, we set the minimum per-sender rate (ratemin) and exempt the senders with per-

sender rate lower than ratemin from bot detection. In other words, senders with per-sender rate lower than
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ratemin are not tested by the target network regardless of their rate change ratios. By exempting these

low-rate senders from the bot detection, we can also protect the legitimate, inherently low-rate senders

from being misidentified as bots; e.g., legitimate users with slow legacy cellular connections or casual

web surfing users with light activity are protected by this exemption.

Figure 4.9 shows the false-positive rate for varying rate-change ratios RCth and for several values

minimum per-sender rate ratemin. We first observe that the larger threshold ratio RCth, the higher false-

positive rate is expected because small rate fluctuations can cause false positive when the threshold ratio

RCth is high. We also notice that as we exclude more low-rate senders (i.e., set higher minimum per-

sender rate ratemin), we can reduce the false-positive rate. As shown in Figure 4.9, with proper parameters

we can easily maintain very low false-positive rate; e.g., 1% or less. Note that the exemption of low-rate

senders could contribute to some false-negative errors; i.e., indicating bots as legitimate. However, the

influence of the non-detected bots is limited since they do not send at the rate higher than the minimum

per-sender rate ratemin, which is the chosen small rate value.

Note that adversaries cannot exploit this exemption of low-rate senders. An adversary might configure

her bots to send at a rate lower than the minimum per-sender rate ratemin to avoid detection, but this only

increases the attack cost significantly because more bots are needed to create the same amount of attack

traffic to congest the target link.

Robustness to sudden RTT increase

Our TBE mechanism reroutes traffic around the target link. Rerouting may find a new route longer than

the initial one. According to our experiments (Section 4.7.2), TBE increases the route length (i.e., num-

ber of routers in a route) on average by up to 24%. This raises the question of whether this suddenly

increased RTT adversely impacts the false-positive rates of SPIFFY. We list two possible cases where

sudden RTT increase might cause false-positive events: (1) Some delay-based TCP variants (e.g., Com-

pound TCP [147] and TCP Vegas [30]) use RTT measurements at receivers to adjust TCP congestion

windows. These TCP variants consider RTT increase as the sign of congestion and reduces their sending

rates; (2) TCP senders might experience spurious timeouts and drop sending rates significantly. A spu-

rious timeout occurs when RTT suddenly increases and exceeds the retransmission timer that had been
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Figure 4.10: RTT and congestion window changes when TBE is performed.

determined a priori [97].

Here, we claim that such rate decrease due to RTT increase is not likely to happen becuase RTT will

actually be reduced significantly when TBE is performed. The rationale behind this is that TBE removes

high queueing delay at the (almost) full buffer of the target link. The RTT reduction due to this congestion

relief is in general much larger than the RTT increase due to TBE rerouting, ultimately causing RTT

reduction.

To support our claim, we measure RTT changes when TBE is performed in a simulation. We set the

ideal (i.e., when no congestion on a path) RTT to 100 msec and assume 25% increase of the RTT when

rerouting takes place. We assume the rule-of-thumb queue size (i.e., RTT times link capacity [18]) at the

target link. As shown in Figure 4.10a, as soon as TBE is executed at time 5.0 sec, the measured RTT is

significantly reduced to the near ideal RTT value. The new measured RTT is 25% higher than the ideal

RTT due to TBE’s rerouting, but it is still significantly smaller than the RTT measurements before TBE.

We also test how the two delay-based TCP variants, Compound TCP and TCP Vegas, adjust their con-

gestion window in response to TBE. Figure 4.10b shows that both TCP variants increase their congestion

window promptly when TBE is performed and reach the converged points less than 3 seconds.
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4.7 Evaluation

In this section, we evaluate SPIFFY in an SDN testbed to show its effectiveness (viz., Section 4.7.1).

Then we evaluate it using flow-level simulations to show its feasibility in large ISP networks (viz., Sec-

tion 4.7.2). Our current testbed and simulation based study can be extended later in real Tier-1/2 ISPs with

real attack traces in future work.

4.7.1 Testbed Experiments

Our evaluations are executed on a server-grade Dell R720 machine with 20-core 2.8 GHz Xeon CPUs

and 128 GB of memory, which runs the KVM hypervisor on CentOS 6.5 (Linux kernel v2.6.32). We use

Open vSwitch (OVS v2.3), virtual switches [6]. OVS v2.3 supports the OpenFlow v1.3 [5] specification.

We use OpenFlow-enabled switches only at the edges of our test network and traditional switches inside

the network. Note that we will interchangeably use switches and routers in this chapter. We implement

SPIFFY as a POX application [7] on the centralized network controller. Notice that in these SDN testbed

experiments, we test only long-lived TCP flows generated by iperf3. The effects of short-lived flows

are studied in packet-level simulations, as discussed in Section 4.6.2.

Effectiveness of Bot Detection

We evaluate how effective SPIFFY is in identifying bots when they are mixed with legitimate senders.

We implement the bots based on the Attack Strategy AS¬spiffy . Bot upstream is saturated by attack flows,

each of which have the degraded rate, rd. Note that the adversary in this evaluation does not apply the rate-

increase mimicry (RM) and thus her bots have no available bandwidth to demonstrate the rate increase.

In our simplified ISP network with two edge switches (one ingress and one egress) and 10 parallel

links that connect the two edge switches (one of them is the target link of the attack), we reroute traffic

crossing the target link to other parallel links and provide ten-times expanded bandwidth (i.e., M = 10)

to the two senders. For this, the SPIFFY application installs rules and MPLS labels (which are prevalently

used in large ISPs [49] and can be implemented by SDN switches [136]) at the edge switches.

Figure 4.11 shows the general parameters for the SPIFFY experiments. A bot bi (1 ≤ i ≤ m) has

upstream bandwidth ubi and a legitimate sender lj , (1 ≤ j ≤ n) has upstream bandwidth ulj . We set the
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Figure 4.11: Parameters for SPIFFY experiments.
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Figure 4.12: Rate-increase ratios of a bot and a legitimate sender in the SDN testbed.

number of bots m and their upstream bandwidths ubi in such a way that the fair-share per-flow rate at the

target link L equals rd (i.e., B∑m
i=1

fb
i +

∑n
j=1

f l
j

= rd) to achieve the attack goal Gstrength . Notice that all

bots generate f b
i = ubi/rd flows of rate rd to saturate their upstream bandwidth.

In our experiments, we set all senders (both bots and legitimate senders) to send 50 long-lived TCP

flows to make them indistinguishable to any per-host rate filtering mechanisms. Accordingly, all bots are

set to have upstream bandwidth ubi = f b
i × rd = 0.5 Mbps when rd = 10 Kbps. We set all legitimate

senders’ bandwidth to accommodate all 50 legitimate flows with guaranteed rate rg. That is, ulj = f l
j ×

rg = 5 Mbps when rg = 100 Kbps. Note that the upstream bandwidth parameters for bots and legitimate

senders are selected for illustrative purpose only. SPIFFY is effective for any practical upstream link

bandwidth. RTTs are set to be 200 msec to experiment the practically worst-case rate-change responsive

time for TBE operation.
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Figure 4.12 shows the per-sender rate changes of the two senders measured every second by the edge

switches. The rate is measured from t = 0 to t = 20 seconds, when the TBE operation is performed

at t = 10 second. Notice that before TBE (i.e., at t < 10), the two senders’ rates are almost identical.

However, once TBE is performed, within less than 5 seconds (i.e., at t < 15), the two senders show very

different rate changes; the legitimate sender’s rate increases by almost 10 times whereas the bot’s per-

sender rate remains the same. At the legitimate sender TCP adapts to the expanded bandwidth in less than

5 seconds. Note that after TBE ends (i.e., at t = 15), SPIFFY immediately starts the bot identification.

The target network notices the difference in the rate changes, identifies the bot, and filters its source IP at

the corresponding ingress switch of the network. As a result, after t = 15 the bot’s rate tapers off quickly

while the legitimate sender achieves the guaranteed rate rg = 100 Kbps = 5 Mbps / 50 flows.

Effectiveness of Increasing Attack Cost

Unlike the previous experiment, in this evaluation an adversary decides to follow the rate-increase mimicry

(RM) and increases her attack cost. To demonstrate how the number of bots required to achieve Gstrength

differ for defense strategies, we implement a simple adversary program that manages the bots and adapts

to the defense changes at the target network. This program increases the number of bots in the attack; i.e.,

if the attack is unsuccessful (i.e., the average per-flow rate, ravg, at the target network is larger than rd), it

adds more bots at the rate of one additional bot per second.

We evaluate the effectiveness and the cost of the attack against the three different defense strategies:

(a) no defense: a strategy that only provides per-flow fairness, which is automatically achieved by TCP’s

congestion control mechanism; (b) ordinary traffic engineering (TE): a strategy that provisions additional

bandwidth by rerouting traffic crossing the target link (both malicious and benign) persistently as long as

the flooding continues; and (c) SPIFFY: a strategy that performs TBE and rate-increase measurement on

demand to test the bots. Note that ordinary TE provisions the additional bandwidth persistently without

attempting to detect the bots, while the TBE operation is temporary and only for testing bots.

We utilize 130 bots and each of them have 1 Mbps of upload bandwidth limit. The per-flow rate

demand for legitimate senders is rg = 100 Kbps while bots have the rate demand of rd = 10 Kbps for no

defense and ordinary TE. However, since the attack against SPIFFY has the demand-rate mimicry goal
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Figure 4.13: Measured average per-flow rates (ravg) and the number of used bots (#bots) for the three

defense strategies.

(RM), its bots have the rate demand of rg = 100 Kbps. The target link bandwidth is set to be 8 Mbps.

The number of senders and the bottleneck bandwidth are limited by our experiment setup. Through

additional packet-level simulations (Section 4.6.2) and flow-level simulations (Section 4.7.2), we show

that the results from these limited-bandwidth experiments scale to large configurations.

Figure 4.13 shows the results of the evaluation over the three defense strategies. In the two plots, the

x-axis represents the wall-clock time of the experiment. The adaptive adversary program starts from time

t = 0, increasing its number of bots by 1 every second, if the adversary goal Gstrength is not satisfied.

Figure 4.13a shows the average per-flow rate changes over time. Figure 4.13b illustrates the number of

bots used in the attack, which represents the attack cost. The number of required bots varies widely for

different defense strategies. For no defense, only 10 bots are needed to achieve the goal. For ordinary

TE, initially the attack needs only 8 bots to achieve its goal. However, as soon as the target network is

flooded at around t = 12 seconds, ordinary TE expands its defense bandwidth by a factor of three and the

average per-flow rate of the target recovers the initial rg = 100 Kbps. As a result, the adversary needs to

further increase the number of bots up to 31. Notice that both the attack and defense costs increase roughly

three times, which suggests that there is no reduction in cost asymmetry. For SPIFFY, we observe that

the adversary requires 80 bots in total to achieve the rate-reduction goal Gstrength while the defense does

not use additional bandwidth.4 This shows that the rate-increase mimicry (RM) costs the adversary use

roughly M = 10 times more bots to achieve the attack goal Gstrength .

4
The TBE operations use additional bandwidth at the target only temporarily. Thus, the increase in defense cost on average is negligible.
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Cogent Tata UUNET NTT Deutsche

Telekom

#routers 196 144 48 46 38

#links 245 194 84 63 55

Table 4.1: Five ISP networks used for large-scale simulations and their number of routers and links.

(in seconds)

Cogent Tata UUNET NTT Deutsche

Telekom

LP solution Mnetwork 2,039.06 435.79 0.79 0.27 0.27

Greedy algorithm 14.71 9.07 0.65 0.35 0.26

solution M̂network

Table 4.2: Execution times for LP solution Mnetwork and greedy algorithm solution M̂network.

4.7.2 Large-Scale Flow-Level Simulations

In this section, we evaluate the feasibility of SPIFFY in large-scale flow-level simulations with up to about

200 routers. In particular, we focus on the implementation of the TBE to show that its proposed design

(Section 4.5.2) can be implemented in practical ISP networks. For scalable evaluation (e.g., millions of

flooding flows and hundreds of routers), we developed a simulator that models TCP flows (defined by

srcIP, dstIP, srcPort, dstPort, and protocol) as fluid flows [25]; i.e., each flow at each time epoch has its

flow rate and occupies the same amount of bandwidth at all the network links it travels. We model the

behavior of TCP flows by implementing the ideal fair-share rate property (i.e., allocating equal bandwidth

to all competing flows) at every attack-targeted link in the network. We examine the TBE algorithm using

the flow simulator with millions of flows. Our simulator models the five large ISP topologies from the

Topology Zoo database [87] as shown in Table 4.1. We use the uniform link-bandwidth model, where all

links have the same bandwidth, and non-uniform model, where links in the center of the ISP topology have

higher bandwidth. The simulation proceeds in discrete time ticks. At each tick, the simulation updates the

rates of all flows in the network by visiting each network link and updating the rates of all flows on the

link.
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Figure 4.14: Mnetwork values for the five ISPs in two link-bandwidth models.

Real-time operation of TBE in large networks. The TBE operation needs to calculate the new

route sets in real-time; e.g., within few seconds. We evaluate the execution time to calculate the new

routes using the greedy routing algorithm (i.e., Algorithm 1) and show how time efficient it is, compared

to solving the optimal LP.1. When solving the greedy algorithm solution M̂network, we apply a binary

search; viz., Section 4.5.1. We utilize the multi-core architecture of our SDN controller for the binary

search and evaluate 12 values of m concurrently at each iteration. Table 4.2 shows the execution time for

the LP solution Mnetwork and the greedy algorithm solution M̂network. LP.1 is solved with the CPLEX

solver in a server-grade machine with 20 cores. As explained, LP.1 requires an impractical amount of time

for networks with large number of routers R. In contrast, the greedy algorithm with binary search requires

only few seconds in general to calculate M̂network. Even in the largest network we evaluate (i.e., Cogent),

it takes only 14.7 seconds, which is less than 1 percent of the time taken by the LP solution, which is 2,039

seconds.

Optimal LP solutions Mnetwork and effectiveness of the TBE algorithm. We solve LP.1 in the five

ISP networks with two different link-bandwidth models. The uniform link-bandwidth model assumes the

same bandwidth of 40 Gbps for all the links. To model more realistic network bandwidth provisioning, we

also use the non-uniform model that assigns link bandwidth based on the betweenness centrality of each

link. The betweenness centrality of a link is the number of shortest-path routes between all pairs of edge

routers that include the link [59]. This metric represents how (logically) central the link is in the network

topology. We assign 40 Gbps link bandwidth to the 33% of links with the highest centrality, 5 Gbps

bandwidth to the 33% of links with the smallest centrality, and 10 Gbps bandwidth to all other links in
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Figure 4.15: Required number of TBE operations for varying RTBE = Mnetwork/Mideal and Ps.

the middle. For each case, we setup 10 different attacks, which target 10 different links for flooding. The

targeted links are chosen from the 10 links with the highest betweenness centrality in each ISP topology.

We assume that 30% of bandwidth of each link is already used for underlying traffic that is unrelated to

the link-flooding attack. Figure 4.14 shows the distribution of Mnetwork in the box plots. We achieve

Mnetwork close to 3 with the uniform model while Mnetwork is close to 2 with the non-uniform model.

The non-uniform model has smaller Mnetwork since it provides less bandwidth for alternative paths for

TBE than the uniform model. As we will see later in this section, a small value of Mnetwork ≃ 2 can

still be effective when used with the sequential TBE. Moreover, we also evaluate the accuracy of the

greedy algorithm solution M̂network compared to the LP solution Mnetwork. We find that in all five ISP

networks the greedy algorithm solution M̂network is nearly identical to the LP solution Mnetwork, showing

a difference of only few percentages (almost 1–2%). Also, we find that the new routes due to TBE need

just 1 to 3 more router hops (or 4 – 24% longer average route length in the target network) compared to

the original routes before TBE.

Operation of randomized sequential TBE. We also evaluate how many times the TBE operations

need to be performed to test the majority of all senders contributing to the congest on the target link.

As explained in Section 4.5, the required number of randomized sequential TBE operations, n, depends

on the ratio RTBE = Mnetwork/Mideal and the percentage Ps of senders that must be tested at least

once. Figure 4.15 shows the required number of TBE operations for various RTBE and Ps. As expected,

the higher RTBE , the lower n. Moreover, the lower Ps, the smaller the number of TBE operations are

required. Based on the observation that the five ISPs we evaluate have Mnetwork in between 2.21 and
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3.19, we conclude that roughly 4 – 10 TBE rounds are required.

4.8 Discussion

4.8.1 Dynamic acquisition of bots

To avoid SPIFFY’s bot detection mechanism, an adversary might attempt to add a significant amount

of temporary attack bandwidth that is purchased from botnet markets only for very short duration (e.g.,

5 seconds) in response to temporary bandwidth expansion (TBE). However, this dynamic acquisition of

bots is hard to be realized in practice for the following reason. Botnet markets cannot provide significantly

lower rates for such temporary botnet provisions since the operation of TBE, which is determined by the

network operators of the target network, cannot be anticipated by adversaries or botnet markets. This

unpredictable bandwidth resource needs render low-cost temporary attack bandwidth purchase impractical

in botnet markets.

4.8.2 Legitimate Senders with Application-layer Rate Adaptation

Although the rate of a legitimate sender is mainly determined by its TCP window control (as discussed

and evaluated in Section 4.6.2), application programs might also adapt their data rates and thus affect

the send rate of the legitimate senders. Such application-layer rate adaptation can potentially reduce the

effectiveness of bot detection. For example, let us assume a legitimate sender that has suffered from severe

congestion for few minutes and its application program has adapted (i.e., reduced) its data rate to a low

degraded rate. In such a case, if the adaptation of the application-layer data rate is slow (e.g., few minutes),

our bot detection mechanism might miss the send rate increase of the sender and false identify the sender

as a bot.

In practice, video streaming is one of the most popular examples of application-layer rate adapta-

tion. Today’s most video streaming services periodically (e.g., 1–10 seconds) adjust the quality of a video

stream to provide continuous playback under various range of available network bandwidth. An exper-

imental evaluation study with major video streaming services showed that the rate adaptation algorithm

can adapt its bitrate very quickly [12]. In particular, Netflix, the most popular video streaming service, is
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shown to quickly adapt to the sudden spikes of short-term (e.g., 2, 5, and 10 seconds) bandwidth expan-

sion; viz., Figure 12 in [12]. Based on this experimental evidence, we believe that SPIFFY is effective to

most legitimate senders with application-layer rate adaptation.

4.8.3 Robustness against Multiple Link-Flooding Attacks

Rational, cost-sensitive adversaries might also target multiple links concurrently to achieve higher damage

to end targets. In such cases, individual links interact with the SPIFFY test at each ISP. Thus, all the

security analyses in Section 4.3.2 are applicable to the multiple link-flooding attacks. That is, the attacks

must satisfy the rate-increase mimicry goal RM to circumvent the tests launched by each link target and

this causes the attacks to increase the number of bots by a factor of M for flooding each target link. If

multiple link targets are located in the same network, SPIFFY can simply measure the per-sender rate

changes as if single link in the network is being targeted.

Multiplexed link attack: Although simple extensions of single link attacks can be easily handled,

when an adversary carefully multiplexes the attack flows across her bots and a small number (e.g., 10)

target links, SPIFFY can detect the bots only probabilistically. The steps of a multiplexed link attack

are as follows. Each bot floods multiple (up to M ) link targets concurrently while using only 1/M of

its upload bandwidth (say u) for each link target. When one of the link targets starts testing a bot, the

bot allocates all of its upload bandwidth u to the flows that are dedicated to that link by pausing all the

other attack flows. As a result, the bot can pass the test by the link, and after the test the bot can continue

to flood the multiple link targets again. The bots in this attack can be detected probabilistically when a

bot is tested by more than one target link simultaneously since it cannot increase rates for the two tests

simultaneously. The detection of the multiplexed link attack can be improved to become deterministic

when the multiple SPIFFY operations in different ISPs exchange the sender information they are testing

(e.g., via standardized channels [111]) and test same bots simultaneously.

4.8.4 Multiple senders sharing a single IP address

When multiple senders in a local network are served by a single NAT gateway, they share the same source

IP. If some bots are located in the same local network, they might identified as legitimate senders by
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SPIFFY because their flows are mixed with other legitimate flows under the same source IP.

In such cases, we examine whether a particular IP address is shared or not; e.g., via existing mecha-

nisms [27]. Then, we perform the SPIFFY test with finer granularity of flow aggregates; e.g., per-source-

destination, per-source-protocol. This enables SPIFFY to test different smaller sender groups than the

entire sender set sharing the same source IP and thus improve the bot-identification accuracy even when

senders share a single source IP.

4.8.5 Potential false positives

Despite the mechanisms to minimizes the false positive rates (viz., Section 4.6.2, Section 4.8.4), there

are two types of legitimate senders whose behavior still can be misidentified as bots by SPIFFY. Note,

however, that these particular types of false positives would not be considered as serious collateral damage

since the false identification does not further penalize legitimate senders who already have been experi-

encing a severe flooding attack when SPIFFY is initiated.

First type of false positives is the legitimate senders that generate large numbers of inherently low-

rate legitimate flows. In other words, a sender that runs large numbers of legitimate applications, which

do not require higher network connections than the attack-degraded rates (e.g., a large SSH server), will

likely to be falsely identified since its rate does not respond to the temporary bandwidth expansion. Sec-

ond type of false positives is the legitimate senders that run large numbers of user applications whose

rate control slowly adapts to available network bandwidth. Although many application-layer rate control

would quickly increase application-layer rates (viz., Section 4.8.2), the senders can be falsely identified

whenever any custom application rate control mechanism does not quickly adapt to the increased network

bandwidth.

4.9 Related Work

We first summarize link-flooding attacks targeting core network links. We then categorize existing defense

approaches, which are insufficient to defend against the link-flooding attacks. Last, we list several other

flooding attacks and discuss their relationships with SPIFFY.
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Link-flooding attacks. The link-flooding attacks that target the core network links are the main threat

model we consider in this chapter. The Coremelt attack [144] utilizes bots to send attack traffic to other

bots. This Coremelt attack coordinates large numbers of bot pairs in a way that their communication paths

share the links in the Internet core. The Crossfire attack in Chapter 3 coordinates bots to send legitimate-

looking low-rate traffic to the attacker-chosen publicly accessible servers (e.g., HTTP servers) in a way

that their routes cross the link targets in the core Internet. All attack flows are indistinguishable since they

are the connections to the legitimate open services and low-rate protocol-conforming flows.

Profiling-based defense approaches. This type of mechanisms maintain the profiles of legitimate

traffic based on their flow rates, source IPs, destination IPs, protocols, etc., and distinguish attack traffic

from legitimate one. PSP [38] constructs the profiles of the rate history of origin-destination pairs in a

single ISP network. ACC (or Pushback) [99] utilizes the rate/history of flow aggregates at the intermediate

routers. Moreover, anomaly detection [91] monitors the unusual changes in the entropy of packet header

bits to detect attack traffic. All attack-profiling approaches, however, can be circumvented by an adversary

who can freely choose attack sources, destinations, and protocols, and completely conform to network

protocols (e.g., TCP congestion control) while successfully flooding a target.

Proof-of-work defense approaches. Proof-of-work mechanisms enable target routers (or servers) to

force both bots and legitimate senders to submit proofs (e.g., computation resource for solving puzzles

[121, 160] or network bandwidth resource [156]) that were performed before allowing access to the target.

These systems are fundamentally different from SPIFFY for multiple reasons: (1) proof-of-work systems

limit the traffic generation of legitimate senders while SPIFFY limits that of bots only; (2) proof-of-work

systems create significant waste of computation/bandwidth at traffic sources, which might be prohibitive

in energy/bandwidth-starved devices, whereas SPIFFY does not waste any unnecessary resources; and (3)

proof-of-work systems require significant modifications to the current Internet, including senders, routers,

end-servers, and protocols between them, while SPIFFY does not require such modifications.

Capacity-provisioning defense approaches. Instead of attempting to distinguish attack traffic or

prioritize legitimate traffic, the target network could simply provide more bandwidth either via physical

bandwidth addition or traffic engineering for both legitimate and attack traffic [65]. However, capacity

provisioning alone cannot be effective because (1) it does not reduce the attack-defense cost asymmetry
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(i.e., N -times-provision of bandwidth at the target network requires the same factor (N ) of increase of

attack bandwidth for successful attacks), and (2), if bandwidth is provisioned via traffic engineering, the

additional bandwidth available for the provisioning in typical ISP networks is very small (e.g., 2 – 4 times)

as shown in our evaluation in Section 4.7.

Collaboration-based defense approaches. These mechanisms require global collaboration among

networks under different ownership. CoDef [93] requires coordination between the attack-target ISP

and the ISPs hosting traffic sources to mitigate attack traffic. SENSS [14] assumes the collaboration

between the target ISP and the intermediate ISPs in the Internet to control the incoming flooding traffic.

SIBRA [26] utilizes the global ISP collaboration to provide botnet-size-independent end-to-end bandwidth

guarantees to premium traffic. Although ISP collaboration in general is not readily available in the current

Internet whose relationship between ISPs (e.g., [169]) are competitive rather than collaborative, increasing

interest in ISP collaboration for DDoS defense (viz., IETF DDoS Open Threat Signaling (DOTS) Working

Group [111]) may make these mechanisms feasible in the near future.

SDN-based DDoS defense approaches. Orthogonal to the above defense approaches, recent pro-

posals utilized SDN-based network architectures to handle DDoS attacks; e.g., Bohatei [51]. However,

their focus (in particular Bohatei) is on elastic scaling of defense for legacy DDoS attacks and they do not

tackle the link-flooding attacks we consider here.
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Chapter 5

Conclusion and Future Work

In this chapter, we conclude this dissertation and discuss directions for future research.

5.1 Conclusion

In this dissertation, we have investigated a class of link-flooding attacks that exploit the inherent vulner-

ability of today’s Internet and provided a low-cost, first line of defense for handling attacks launched by

cost-sensitive adversaries. We summarize our contributions below.

• First, we introduced the notion of the routing bottlenecks, defined it using power-law distributions

of route count in network links, and showed that it is a fundamental property of Internet design; i.e.,

it is a consequence of route-cost minimizations. We identified the key characteristics of these bot-

tlenecks in terms of size, link type, and distance from host destinations, and we measured the degra-

dation of host connectivity caused by attacks that flood bottleneck links, as shown in Section 2.4.

We showed that the routing bottlenecks are pervasive in experiments comprising 15 countries and

15 cities around the world and that certain geographic regions are more susceptible than others to

link-flooding attacks.

• Second, we presented the Crossfire attack that degrades connections to a variety of selected server

targets (e.g., servers of an enterprise, a city, a state, or a small country) by flooding only a few

routing-bottleneck links. In Crossfire, a small set of bots directs indistinguishable flows to a large
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number of publicly accessible servers to flood bottleneck links. The attack persistence can be ex-

tended virtually indefinitely by changing the set of bots, publicly accessible servers, and target links

while maintaining the same disconnection targets. We demonstrated the attack feasibility using In-

ternet experiments and attack simulations, and showed its massive effects on a variety of chosen

targets in Section 3.5.4.

• Finally, we proposed a system called SPIFFY as a first line of defense mechanism against indistin-

guishable link-flooding attacks. SPIFFY forces an adversary to choose between two unpleasant

alternatives, namely either allow bot detection or accept an increase in attack cost. This cost-

detectability tradeoff deters cost-sensitive adversaries who wish to maintain the minimum attack

cost while remaining undetected. This way, more complex and expensive collaborative defenses

among ASes are required only for the far fewer, cost-insensitive or irrational adversaries. We de-

veloped fast traffic-engineering algorithms to achieve effective bandwidth expansion and suggested

scalable monitoring algorithms for tracking the change in traffic-source behaviors. We demon-

strated the effectiveness of SPIFFY using a software-defined networking testbed and large-scale

packet-level and flow-level simulations found in Section 4.7.

5.2 Future Work

Extended routing-bottleneck measurements. In the future, we seek to measure the routing bottlenecks

over a longer period of time, such as months or years, to analyze the changes of routing bottlenecks

over time. Moreover, we seek to extend the scope of our routing-bottleneck measurements to include

servers in a cloud provider, which are often distributed in multiple data centers around the world. With the

discovered routing bottlenecks for cloud providers, we can evaluate link-flooding attacks (e.g., Crossfire

or new attacks) that degrade the connection between the cloud providers and the rest of the Internet.

Implementation. In this dissertation, we evaluated the effectiveness of the Crossfire attack and the

SPIFFY mechanism by simulations and small-scale SDN testbed experiments. In the future, we seek

to implement the attacks and defense mechanisms in real ISP networks and evaluate the attack effective-

ness and the defense performance in real networks. This would provide a more solid confidence in the
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goodness of the attack evaluations and the deployment benefit of the defense mechanism.

Coordinated SPIFFY. In our SPIFFY proposal in chapter 4, we focused on single-AS operations to pro-

vide readily available mechanisms in today’s Internet. Considering the recent industry efforts in local AS

collaboration for DDoS mitigations (e.g., DOTS [111]), in future studies we will seek to extend the current

SPIFFY mechanism so that individual SPIFFY instances in different ASes can coordinate themselves to

handle link-flooding attacks that target multiple ASes.
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