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Abstract
A high-fidelity and tractable mechanics model of physical interaction is essen-

tial for autonomous robotic manipulation in complex and uncertain environments.
This thesis studies several aspects of harnessing task mechanics for robotic push-
ing and grasping operations: mechanics model learning, pose and model uncertainty
reduction, and planning and control synthesis in the minimal coordinate space.

We begin with a study of the mechanics of planar sliding as captured by a
proposed efficiently identifiable convex polynomial force-motion model. Given a
position-controlled manipulator action, we derive a kinematic contact model that re-
solves the contact modes and instantaneous object motion. This enables a generic
quasi-static planar contact simulation validated with extensive robotic grasping and
pushing experiments.

Based on the contact model, we prove that quasi-static pushing with a stick-
ing contact is differentially flat using both graphical and algebraic derivations. The
pusher-slider system is reducible to the Dubins car problem where the sticking con-
tact constraints translate to bounded curvatures. For trajectory stabilization in the
presence of model uncertainty, we design closed-loop control using dynamic feed-
back linearization or open-loop control using two contact points as a form of me-
chanical feedback. To reduce initial pose perception uncertainty, we propose a prob-
abilistic algorithm that generates sequential uncertainty reduction actions based on
finger encoder feedback until the object pose is uniquely known (subject to symme-
try).

Going beyond position-controlled planar manipulation, we demonstrate grasp-
ing a large-size book where the robot needs to perform a sequence of non-prehensile
contact-rich actions to finish the task while obeying kinematic and hardware limi-
tations. Such actions include reorienting the book by force-controlled twisting and
pulling, and push-grasping in the gravity plane treating the table as a third supporting
finger.
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Chapter 1

Introduction

Manipulation Mason (2018) is the process of changing the physical state of the environment such

as picking up a pencil from the table and twirling it in hand. The human hand and arm system

is a truly marvelous piece of art. Animals are also impressive at manipulation: apes utilize tools

from nature and birds with minimal degree of freedom beaks build sophisticated nests. Industrial

robots performing tasks such as pick-and-place and welding are making a major impact in man-

ufacturing where the environment and assembly process are carefully controlled with minimized

uncertainty. Yet factory robots are merely programmable machines that execute fixed sequences

of actions. When leaving the factory floor, robots are far from being capable of interacting with

the unstructured world confidently and gracefully. A common manipulation pipeline often con-

sists of two stages. The first stage is to plan a collision free path to a pre-action pose followed by

an open-loop action. The second stage is to adjust the in-hand pose with pick-and-place actions

or fingertip motions. Contacts with the environment are minimized during the process. In sharp

contrast, humans actively embrace environment contacts using compliant motions under rich

feedback to guide manipulation, reduce uncertainty, and achieve dexterity. Mastering physical

interaction with frictional contact is essential to autonomous robotic manipulation in a complex,

cluttered and dynamically changing environment.

Planning and control without explicit reasoning about uncertainty and the task mechanics
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can lead to undesirable results. For example, grasp planning (Miller et al. (2003); Ferrari and

Canny (1992)) is often prone to failure: the object moves while the fingers close and ends up

in a final relative pose that differs from planned. Consider the process of closing a parallel jaw

gripper shown in Fig. 1.1, the object will slide when the first finger engages contact and pushes

the object before the other one touches the object. If the object does not end up slipping out, it

can be jammed at an undesired position or grasped at an unexpected position. A high fidelity

and easily identifiable model with minimum adjustable parameters capturing all these possible

outcomes would enable synthesis of robust manipulation strategy.

This thesis explores physics-based mechanics models for robotic grasping and pushing. To

summarize, we first address the following aspects in the context of planar manipulation:

1. Identification of computationally tractable models that obey physics principles.

2. High-fidelity simulation of sliding manipulation including pushing and grasping.

3. Use of reduction techniques to plan and control in minimal coordinate spaces.

4. Use of simple feedback for uncertainty reduction with sequential strategies.

We then study a case of book grasping that requires a sequence of contact-rich actions where we

employ compliance, force-control and external contacts to demonstrate the necesssity and ben-

efit of harnessing task mechanics. We conclude the thesis with some outlooks on manipulation

research with an emphasis on addressing the perception problem.

1.1 Exploitation of Task Mechanics

The general importance of task mechanics for robotic manipulation is well described in Lynch

(1996):

A good model of the mechanics of a task is a resource for the robot system, just as actuators,

sensors, and computers are resources. This model can be embedded in the structure of the

mechanism, encoded in a feedback scheme, or used explicitly in a manipulation planner. Dafle
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Figure 1.1: Simulation results using the proposed contact model illustrating the process of a
parallel jaw gripper squeezing along the y axis when the object is placed at different initial
poses. The initial, final and intermediate gripper configurations and object poses are in black,
red and grey respectively. Blue plus signs trace out the center of mass trajectory of the object.

et al. (2014) explores extrinsic dexterity for regrasp. Gravity, inertia, arm motions and external

contacts can be exploited to manipulate an object in the hand. The idea is validated with hand

scripted motion execution using a simple hand Mason et al. (2012) with only one degree of

actuation.

We consider four major perspectives of harnessing task mechanics. They are not mutually

exclusive and many of the listed representative works fall under multiple categories.

1.1.1 Compliance

Compliant motion Mason et al. (1982) is key to contact-rich manipulation including turning a

crank, inserting a peg, reaching into clutter to grasp objects, etc. In the context of contact-rich

3



assembly, Whitney (1983) analyzed the mechanics of wedging and jamming during peg-in-hole

insertion and designed the Remote Center Compliance device to increases the success of the

operation under motion uncertainty. With a well defined generalized damper model, Lozano-

Perez et al. (1984) and Erdmann (1986) developed strategies to chain a sequence of operations,

each with a certain funnel, to guarantee operation success despite uncertainty. These successes

stem from robustness analysis using simple physics models. In the context of grasping, some

recent notable work on underactuated soft hand Dollar and Howe (2010); Odhner et al. (2014)

adapt to object shapes through passive compliance built into the mechanism.

1.1.2 Pushing

As early as in the 70s, Shakey the robot Nilsson (1984) and the programmable assembly robot Bolles

and Paul (1973) developed in Stanford AI Lab have employed pushing to help achieve their re-

spective tasks: mobile manipulation and uncertainty reduction in sensor-based assembly. The

mechanics of pushing involving finite object motion with frictional support was first studied in

Mason (1986b). A notable result is the voting theorem which dictates the sense of rotation given a

push action and the center of pressure regardless of the uncertain pressure distribution. Figure 1.2

shows a hinge push-grasp example where the straightline two-finger push help reduce orientation

uncertainty. Brost (1988) took such idea one step further and construct the operational space for

planning squeezing and push-grasping actions under uncertainty assuming infinitely long fingers

approaching the object from infinitely far away. Peshkin and Sanderson (1988b) provided an

analysis on the bound of rotation speed given a single point push and used the result to design

fences for parts feeding Peshkin and Sanderson (1988a). Lynch and Mason (1996) derived con-

ditions for stable edge pushing such that the object will remain attached to the pusher without

slipping or breaking contact.
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(a) The process of push-grasping a hinge. (b) The voting theorem Mason (1986b) dic-
tates that the sense of rotation is counter-
clockwise.

Figure 1.2: Figure reprinted from Mason (1986b) with permission. Application of voting the-
orem for push-grasping a hinge. The fingers perform a straightline motion while closing. The
pose uncertainty with respect to the fingers are elinimated without any sensory feedback.

1.1.3 External Contact

Often, external contacts including tables, walls and fixtures can act as extra “fingers” to help task

execution. Kazemi et al. (2013) increased robustness for grasping small and thin objects through

compliant sliding against the supporting surface while closing the fingers. Deimel et al. (2016)

analyzed human grasp behavior and demonstrated robust robotic grasping based on constraint-

exploiting grasp strategies. Chavan-Dafle and Rodriguez (2015) studied prehensile pushing

when the robot pushes a grasped object against environment contacts. The object is held by a

simple parallel jaw gripper where the arm motion together with fixed external contact causes

different in-hand motion including translational sliding, pivoting and rolling. Chapter 3 provides

a case study.

1.1.4 Dynamics

Inertia, gravitational, centrifugal and Coriolis forces enable minimalistic robots performing com-

plicated taskes. Lynch and Mason (1999) demonstrated that a one joint robot capable of control-
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ling a planar object to full dimensional subset of six-dimensional state space by chaining action

phases including dynamic grasp, slipping, rolling and free flight. Juggling, or dynamic pick-and-

place by throwing and catching, has been studied by Buehler et al. (1994); Schaal and Atkeson

(1993). Furukawa et al. (2006) developed a fast multifingered hand system with high-speed

vision feedback to catch a falling object.

Dynamics is well exploited in locomoting machines. Raibert (1986) developed dynamically

stable running and hopping machines. McGeer et al. (1990) built a passive walker with no

motors and sensors by just cleverly harness the stable intrinsic dynamic behavior.

1.2 Related Work

Section 1.1 covers some related work that fall into the aforementioned categories. In this section,

we describe additional background and related work for the several aspects of harnessing task

mechanics for robotic manipulation: frictional contact models, funnels for uncertainty reduction

and control, minimal coordinate space planning and control. We also provide references for

cluttered manipulation and learning-based manipulation.

1.2.1 Frictional Contact Modeling

Isotropic Coulomb’s Law states that tangential point friction force is opposite to the sliding ve-

locity, with magnitude proportional to the normal force. The scaling factor is the coefficient of

friction. When the point is static, the tangential point friction force is bounded but the direction

is indeterminate without information about external contact forces. A geometrical characteri-

zation of the Isotropic Coulomb’s law is the friction cone (both in two-dimensional and three-

dimensional). Erdmann (1994) proposed a configuration space embedding of friction cone by

including the torque component. For multiple contact points, the composite friction cone is the

convex hull of each cone. Moreau (1988) formulated a generalized friction law that velocity and
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tangential friction force may not be parallel, but only need to obey maximum work inequality.

Hence the set of friction forces is a general convex set not restricted to a circle and the velocities

are normals to the set. In most practical applications, the contact geometry is surface-to-surface

rather than point-to-point.

For surface-to-surface contacts, the normal force distributions are often indeterminate, ren-

dering friction chacterization hard. Given pairs of pointer pusher velocities and the resultant

object motion, Yoshikawa and Kurisu (1991) solved an unconstrained least-squares problem to

estimate the center of friction and the pressure distribution over discrete grids on the contact

surface. With similar set up, Lynch (1993) proposed a constrained linear programming proce-

dure to avoid negative pressure assignment. However, methods based on discretization of the

support surface introduce two sources of error in both localization of support points and pressure

assignment among those points. Coarse discretization loses accuracy while fine discretization

suffers from the curse of dimensionality. Additionally, the instantaneous center of rotation of

the object can coincide with one of the support points, rendering the kinematic solution com-

putationally hard due to combinatorial sliding/sticking mode assignment for each support point.

In our work, we do not explicitly estimate the support point locations but directly estimate the

aggregate effects. The representation is smooth and computationally efficient.

Goyal et al. (1991) noted that all the possible static and sliding frictional wrenches, regardless

of the pressure distribution, form a convex set whose boundary is called a limit surface. Analytic

construction of limit surface from Minkowsky sum of frictional limit curves at individual support

points, however, is intractable. Howe and Cutkosky (1996) presented an ellipsoid approximation

of the limit surface assuming known pressure distribution. The ellipsoid is constructed by com-

puting or measuring the major axis lengths (maximum force during pure translation and maxi-

mum torque during pure rotation). Facets can be added by intersecting the ellipsoid with planes

determined by each support point. The pressure distribution (except for computable 3 points sup-

port with known center of pressure), nevertheless, is non-trivial to measure. We also show that

the ellipsoid approximation, as the convex quadratic special case of our convex polynomial rep-
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resentation, is less accurate due to lack of expressiveness particularly when the support regions

are scattered.

The linear complementarity formulation of point frictional contact Stewart and Trinkle (1996);

Anitescu and Potra (1997) provides a convenient representation and computation framework that

captures unilateral normal force and sliding/sticking Coulomb’s friction law. Posa et al. (2014)

applies direct methods for trajectory optimization through frictional contacts. The problem is

posed as mathematical programming with complementarity constraints solved using sequential

quadratic programming with iteratively relaxed complementarity constraints.Todorov (2011) re-

laxed the complementarity constraint to allow contact forces at nonzero distance such that the

inverse dynamics problem is convex. Mordatch et al. (2012); Tassa et al. (2012) used this smooth

model for trajectory optimization to synthesis simulated complex humanoid motion behaviors.

1.2.2 Funnels

Our work is related to the general framework of planning manipulation actions with funnels, i.e.,

the set of poses associated with a robot action that are guaranteed to reach a particular goal set.

Sensorless uncertainty reduction techniques have proven to be successful in many applications,

often using a possibilistic approach and assuming worst case motion error. Erdmann and Mason

(1988) demonstrated a parts feeding strategy using tray-tilting where mechanical motion alone

can eliminate uncertainty. Lozano-Perez et al. (1984) (Preimage backchaining) and Erdmann

(1986) (Backprojection) developed strategies to chain a sequence of operations to guarantee

operation success despite uncertainty. With sensors, sequential composition of active feedback

controllers with overlapping funnels can achieve the desired result, as studied in Burridge et al.

(1999); Tedrake et al. (2010).
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1.2.3 Planning and Control in Reduced Space

Much of the work in Section 2.3 is inspired by differential flatness techniques from nonlinear

control theory Murray et al. (1995). Such techniques are powerful for trajectory generation and

control for underactuated mechanical systems. Oriolo et al. (2002) designed dynamic feedback

linearization for wheeled mobile robots. A major success of applying the differential flatness

techniques is for quadrotor trajectory generation and control Mellinger and Kumar (2011).

1.2.4 Manipulation in Clutter

Suppose the robot needs to reach into a cluttered and constrained environment to grasp an object

of interest, a traditional planner would treat all objects as obstacles and try to find a collision

free path and grasping points. Suppose such grasps exist, the robot will then close the hand

assuming the fingers will arrive at the planned grasping points at roughly the same time. Such

approach is prone to failures due to inevitable uncertainty and unmodeled interactions. Dogar

and Srinivasa (2011, 2010) studied planning push-grasps actions for rearrangment and grasping

for a cluttered table top setting. Each action addresses a single object-to-robot interaction while

avoiding contact with others. In Dogar et al. (2012), the planner is extended to a clutter-centric

perspective where the robot can make simultaneous contacts with many objects while the object-

to-object interaction is ignored.

1.2.5 Learning-based Manipulation

Many tasks can be difficult or computationally intractable for strategies that rely purely on

physics-based modeling and control. Learning-based methods, by imitation learning of given

demonstrations or reinforcement learning, often prove to be powerful in mastering task-specific

skills. Kober et al. (2013) provides a recent survey on this topic.

Arimoto et al. (1984) explored the simple and effective iterative learning control ideas. Chris

Atkeson and his colleges ( Atkeson et al. (1997); Schaal and Atkeson (2010)) have pioneered
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locally weighted learning and trajectory-centric methods for learning to control robots.

Learning to push objects are explored in Hermans et al. (2013); Walker and Salisbury (2008);

Kopicki et al. (2009); Clavera et al. (2017). Boularias et al. (2014, 2011) address learning

to grasp based on geometrical feature similarities. Boularias et al. (2015) learns pushing and

grasping action reward and optimize policies for cluttered unknown objects.

Recent advances in deep learning demonstrate impressive results in computer vision Krizhevsky

et al. (2012) where data is abundant. Pinto and Gupta (2016) explores using robots to collect

grasping data and trains a deep learning network to predict table-top grasping quality. Levine

et al. (2016) learns a visual servoing strategy from raw pixel input for bin picking applications.

In Pinto and Gupta (2016) and Levine et al. (2016), the robot supervises itself from experimen-

tal data. Gualtieri et al. (2016); Mahler et al. (2017) apply deep learning to sythesis anti-podal

grasps from simulated depth point cloud. Byravan and Fox (2017); Agrawal et al. (2016) train

deep nets to predict object behavior under pushing actions.

Mitchell et al. (1989) explores the ability to explain failures and to deduce error recovery,

which is under-addressed in recent robot learning literature.

1.3 Thesis Outline

We start with analyzing the task mechanics for manipulating a single object on the horizontal

plane.

1. Section 2.1 proposes a convex polynomial force-motion model for the mechanics of planar

sliding Zhou et al. (2016). 1

2. Section 2.2 derives the kinematic contact model to resolve the contact modes and instanta-

neous object motion given a position controlled manipulator action Zhou et al. (2017a). 2

Section 2.3 shows the results on the differential flatness property of the pusher-slider sys-

1Robot experiments video: https://www.youtube.com/watch?v=BW6QaPOlpCk
2Robot experiments video: https://www.youtube.com/watch?v=LDSP1WOAri0
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tem and its application in motion planning and tracking control Zhou and Mason (2017).

3

3. Section 2.4 proposes a probabilistic algorithm that generates both sensored and sensorless

tree structured plans such that the post-action object pose is uniquely known (subject to

symmetry) Zhou et al. (2017b). 4

4. Chapter 3 describes a case study of a book grasping application where the gripper cannot

directly do a top down grasp due to limited finger width and needs to perform a series of

non-prehensile contact-rich strategy: reorienting the book by pressing and twisting, force

controlled pulling, straightline pushing for uncertainty reduction and push-grasping in the

gravity plane treating the table as a third supporting finger while obeying the workspace

constraints. 5

5. Chapter 4 concludes the thesis with the author’s thoughts on improving robotic manipu-

lation via building better physics models with data, deep learning powered 2d to 3d per-

ception trained from synthetic images and compliant manipulator hardware with visual

guidance.

3Robot experiments video: https://www.youtube.com/watch?v=fH8GEQGBqQY
4Robot experiments video: https://www.youtube.com/watch?v=G8q8HmD36xw
5Robot experiments video: https://www.youtube.com/watch?v=k_mpCreIhDE
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Chapter 2

Single Object Quasi-static Planar

Manipulation

This chapter studies sliding manipulation of a single object on a plane. We assume quasi-static

rigid body planar mechanics (Mason (1986a)) where inertia forces and out-of-plane moments are

negligible. The challenge lies in the indeterminate and stochastic nature of friction distribution

between the object and the supporting plane. Source code for the algorithms and simulation pack-

ages developed in the chapter can be found at https://github.com/robinzhoucmu/

PlanarManipulationToolBox.

2.1 Convex Polynomial Force-Motion Model

This section proposes a precise and statistically-efficient force-motion model with a computa-

tionally efficient identification procedure. We propose a framework of representing planar slid-

ing force-motion models using homogeneous even-degree sos-convex polynomials, which can

be identified by solving a semi-definite programming. The set of applied friction wrenches is the

1-sublevel set of a convex polynomial whose gradient directions correspond to incurred sliding

body twist.
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Figure 2.1: The robot randomly pokes the object of known shape with a point finger to collect
force-motion data. We then optimize a convex polynomial friction representation with physics-
based constraints. Stable pushing and grasping simulations under pose uncertainty are two ex-
ample applications of the model.

Fig. 2.1 illustrates the outline of this section.

We first introduce the following notations:

• O: the object center of mass used as the origin of the body frame1. We assume vector

quantities are with respect to body frame unless specially noted.

• R: the region between the object and the supporting surface.

• fr: the surface friction force applied by the object at a point r in R.

• V = [Vx;Vy;ω]: the body twist (generalized velocity).

1Throughout the paper, we use a local coordinate frame with the origin set as the projection of the COM onto
the supporting surface. However, the choice of the origin can be any other point of convenience.
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• F = [Fx;Fy;τ]: the generalized friction load. F equals the applied body wrench by the

manipulator when the object is in quasi-static balance.

• pi: each contact point between the manipulator end effector and object in the body frame.

• vpi: applied velocities by the manipulator end effector at each contact point in the body

frame.

• npi: the inward normal at contact point pi on the object.

• µc: coefficient of friction between the object and the manipulator end effector.

2.1.1 Background on Planar Friction

The classical Coulomb friction law states that for a point contact with instantaneous planar veloc-

ity v = [vx,vy]
T , the incurred friction force f = [ fx, fy]

T the point applies on the surface is parallel

to v, i.e., f/|f|= v/|v|. We refer the readers to Mason (1986b) for details of friction analysis for

planar sliding under isotropic Coulomb friction law. In this paper, we build our analysis on a

generalized friction law formulated first in Moreau (1988), in which v and f may not be parallel,

but only need to obey the maximum work inequality:

(f− f′) ·v≥ 0, (2.1)

where f′ is an arbitrary element from the set of all possible static and sliding friction forces.

We can compute the generalized friction load F by integration over R:

Fx =
∫

R
frx dr, Fy =

∫
R

fry dr, τ =
∫

R
(rx fry− ry frx)dr. (2.2)

The maximum work inequality in equation (2.1) can be extended for the generalized friction load
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F and twist V:

F ·V =
∫

R
frx(Vx−ωry)dr+

∫
R

fry(Vy +ωrx)dr

=
∫

R
frxvrx + fryvry dr =

∫
R

fr ·vr dr ≥ F′ ·V, (2.3)

among any other possible generalized friction load F′. Due to the converse supporting hyper-

plane theorem (Boyd and Vandenberghe (2004)), the set of all generalized friction loads form

a convex set F . An important work that inspires us is Goyal et al. (1991) who found that all

possible generalized friction loads during sliding form a limit surface (LS) constructed from the

Minkowsky sum of limit curves at individual support points. Points inside the surface correspond

to static friction loads. Points on the surface correspond to friction loads with normals parallel

to sliding velocity directions, forming a mapping between generalized friction load and sliding

velocity. An ideal LS is always convex due to the maximum work inequality but may not be

strictly convex when a single point supports finite pressure. As shown in Fig. 2.3b, facets can

occur since the object can rotate about one of the three support points whose velocity is zero with

indeterminate underlying friction.

Erdmann (1994) proposed a configuration space embedding of friction. In his work, the

third component of F is Fz = τ/ρ and the third component of V is Vz = ωρ , where ρ is the

radius of gyration. In doing so, all three components in F and V have the same unit. Observe

that such normalized representation also obeys maximum work inequality with ρ being any

characteristic length. In our experiments, we have found that the normalized representation

yields better numerical condition and different values of ρ including radius of gyration, average

edge length and minimum enclosing circle radius lead to similar performance.
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2.1.2 Representation and Identification

In this section, we propose the sublevel set representation of friction with desired properties and

show that convex even-degree homogeneous polynomials are valid solutions. Then we formulate

an efficient convex optimization procedure to identify such polynomials.

2.1.2.1 Polynomial sublevel set representation

Let H(F) be a differentiable convex function that models the generalized friction load and veloc-

ity as follows:

• The 1-sublevel set L−1 (H) = {F : H(F)≤ 1} corresponds to the convex set F of all gener-

alized friction loads.

• The 1-level set L1(H) = {F : H(F) = 1} corresponds to generalized friction loads (during

slip) on the boundary surface of F .

• The surface normals given by gradients {∇H(F) : F ∈ L1(H)} represent instantaneous

generalized velocity directions during slip, i.e., V = s∇H(F) where s > 0.

Theorem 1. The set of friction loads represented by the 1-sublevel set of a differentiable convex

function follows the maximum work inequality.

Proof. When the object remains static, F belongs to the interior of L−1 (H) and V equals zero, the

inequality holds as equality. When the object slips, F ∈ L1(H) and V is nonzero, we have for any

other generalized friction load F′ ∈ L−1 (H):

V · (F′−F) = s(∇H(F) · (F′−F))≤ s(H(F′)−H(F))≤ 0,

where the first inequality is due to the convexity of H(F).

In addition to enforcing convexity (discussed in 2.1.2.2), we choose H(F) to obey the fol-

lowing properties:
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1. Symmetry: H(F) = H(−F) and ∇H(F) =−∇H(−F).

2. Scale invariance: ∇H(sF) = g(s)∇H(F), where g(s) is a positive scalar function over

scalar s.

3. Efficient invertibility: efficient numerical procedures exist for finding a F ∈ L1(H) such

that ∇H(F)/‖∇H(F)‖ = V for a given query unit velocity V. We denote such operation

as F = Hinv(V).

Symmetry is based on the assumption that negating the velocity direction would only result in

a sign change in the friction load. Scale invariance is desired for two reasons: 1) scaling in

mass and surface coefficient of friction could only result in a change of scale but not other ge-

ometrical properties of the level-set representation; and 2) predicting directions of generalized

velocities (by computing gradients and normalizing to a unit vector) only depends on the direc-

tion of generalized force. Such a property is useful in the context of pushing with robot fingers

where applied loads are represented by friction cones. The inverse problem of finding the friction

load for a given velocity naturally appears in seeking quasi-static balance for stable pushing or

computing deceleration during free sliding. In general, efficient numerical solution to the inverse

problem, which our representation enables, is key to planning and simulation. One solution fam-

ily for H(F) that obeys these properties is the set of strictly convex even-degree homogeneous

polynomials.

Theorem 2. A strictly convex even degree-d homogeneous polynomial H(F;a)=∑
m
i=1 aiF

i1
x F i2

y Fd−i1−i2
z

with m (bounded by
(d+2

2

)
) monomial terms parametrized by a satisfies the properties of symme-

try, scale invariance, and efficient invertibility.

Proof. Proving symmetry and scale invariance are trivial due to the homogeneous and even-

degree form of H(F). Here, we sketch the proof that efficient invertibility can be achieved by

first solving a simple non-linear least square problem followed by a rescaling.

Construct an objective function G(F)= 1
2‖∇H(F)−V‖2 whose gradient ∂G

∂F =∇2H(F)(∇H(F)−

V). Note that its stationary point F∗, which iterative methods such as Gauss-Newton or trust-
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region algorithms will converge to, satisfies ∇H(F∗)−V = 0. Hence F∗ is globally optimal with

value zero. Let ∆Ft = ∇2H(Ft)
−1
(Vt −V),2 then the update rule for Gauss-Newton algorithm

is Ft+1 = Ft −∆Ft . Although the final iteration point FT may not lie on the 1-level set of H(F),

we can scale FT by F̂T = H(FT )
−1/dFT such that H(F̂T ) = 1 and ∇H(F̂t)/‖∇H(F̂t)‖ = V due

to the homogeneous form of H(F). Therefore Hinv(V) = F̂T .

2.1.2.2 Sum-of-squares Convex Relaxation

Enforcing strong convexity for a degree-2 homogeneous polynomial H(F;A) = FT AF has a

straightforward set up as solving a semi-definite programming problem with constraint of A� εI.

Meanwhile, for a polynomial of degree greater than 2 whose hessian matrix ∇2H(F;a) is a func-

tion of both F and a, certification of positive semi-definiteness is NP-hard. However, recent

progress (Parrilo (2000); Magnani et al. (2005)) in sum-of-squares programming has given pow-

erful semi-definite relaxations of global positiveness certification of polynomials. Specifically,

let z be an arbitrary non-zero vector in R3 and y(F,z)= [z1Fx,z1Fy,z1Fz,z2Fx,z2Fy,z2Fz,z3Fx,z3Fy,z3Fz]
T .

If there exists a positive-definite matrix Q such that

zT
∇

2H(F;a)z = y(F,z)T Qy(F,z)> 0, (2.4)

then ∇2H(F;a) is positive definite for all non-zero F under parameter a and H(F;a) is called as

sos-convex. Further, equation (2.4) can be written as a set of K sparse linear constraints on Q

and a.

Tr(AkQ) = bT
k a, k ∈ {1 . . .K}

Q� εI, (2.5)

2In practice, Ft will not be near the point of origin whose H(Ft) is all zero. A small diagonal regularization can
be added to H(Ft) before inversion to improve numerical stability.
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where Ak and bk are constant sparse element indicator matrix and vector that only depend on the

polynomial degree d. The number of constraints K equals 27 for d = 4.

2.1.2.3 Identification

This section sets up an efficient convex optimization for identifying the coefficient a of the poly-

nomial H(F;a) given a set of measured noisy generalized force-motion {Fi∈{1...N},Vi∈{1...N}}

pairs. In our experiments, we use homogeneous 4th order polynomial. The optimization should

find the coefficient a such that the measured forces Fi are close to the 1-level set surface and

the corresponding gradients are aligned well (up to scale) w.r.t measured velocities Vi. Let

αi = ||∇H(Fi;a)− (∇H(Fi;a) ·Vi)Vi||22 be the L2-projection residual of ∇H(Fi;a) onto the mea-

sured unit velocity vector Vi, and let βi = (H(Fi;a)−1)2 be a distance measurement of Fi from

the 1-level set of H(Fi;a). We set up the optimization as follows:

minimize
a,Q

‖a‖2
2 +

N

∑
i=1

(η1αi +η2βi) (2.6)

subject to Tr(AkQ) = bT
k a, k = 1, . . . ,K, (2.7)

Q� εI. (2.8)

The first term is for parameter regularization. η1 and η2 are trade-off parameters determined by

cross-validation. Equations (2.7) and (2.8) enforce convexity. Note that the objective is quadratic

in a with sparse linear constraints and a semi-definite constraint on Q. We would like to point out

that the formulation can be adapted online using projected gradient descent so that the importance

of historical data is diminishing as the object moves, enabling the estimation to adapt to changing

surface conditions.

20



2.1.3 Identification Experiments

We conduct simulation and robotic experiments to demonstrate the accuracy and statistical-

efficiency of our proposed representation. The model converges to a good solution with few

available data which saves experimental time and design efforts. We compare the following four

different force-motion model representations H : 1) degree-4 convex homogeneous polynomial

(poly4-cvx); 2) degree-4 homogeneous polynomial (poly4) without convexity constraints 3) con-

vex quadratic (quad) as degree-2 polynomial, i.e., H(F) = FT AF with ellipsoid sublevel set; and

4) gaussian process (GP) with squared exponential kernel3.

Denote by Vi the ground truth instantaneous generalized velocity direction and Vp(Fi;H )

as the predicted generalized velocity direction based on H for the input generalized load Fi, we

use the average angle δ (H ) = 1
N ∑

N
i=1 arccos(Vp(Fi;H ) ·Vi) between Vp(Fi;H ) and Vi as an

evaluation criterion.

2.1.3.1 Simulation Study

Two kinds of pressure distribution are studied.

• “Legged” support: Randomly sampled three support points on a unit circle with randomly

assigned pressure.

• “Uniform” support: Uniformly distributed 360 support points on a unit circle and 400

support points within a unit square. Each point has the same support pressure.

For each pressure configuration, we conduct 50 experimental trials. To generate the simulated

force-motion data, we assume a Coulomb friction model at each support point with a uniform

coefficient of friction. Without loss of generality, sum of pressure over all contact points is

normalized to one and the origin is set as the center of pressure. For each trial of “uniform”

support, we sampled 150 instantaneous generalized velocities directions Vi uniformly on the unit

3The squared exponential kernel gives better performance over linear and polynomial. Normalizing the input
load to a unit vector improves performance by requiring the GP to ignore scale. Every (F,V) input pair is augmented
with (−F,−V) for training.
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sphere and compute the corresponding generalized friction loads Fi. For each trial of “legged”

support, 75 (Fi,Vi) pairs are uniformly sampled on the facets (same Vi but different Fi for each

facet) and another 75 pairs are uniformly sampled in the same fashion as “uniform” support. In

doing so, the dataset has a diverse coverage. Among the 150 pairs, 50% is used for hold-out

testing, 20% is used for cross validation and four different amounts (7, 15, 22, 45) from the rest

of 30% are used as training. In order to evaluate the algorithms’ robustness under noise, we

additionally corrupt the training and validation set using Gaussian noise of standard deviation

σ = 0.1 to each dimension of both Fi and Vi (renormalized to unit vector). From Fig. 2.2 we

can reach the following conclusions. 1) Poly4-cvx has the smallest δ (H ) for different amounts

of training data and pressure configurations. 2) Both poly4-cvx and convex quadratic show

superior performance when data is scarce and noisy, demonstrating convexity is key to data-

efficiency and robustness. Poly4-cvx model additionally shows larger improvement as more

data is available due to stronger model expressiveness. 3) Poly4 (without convexity constraint)

performs the worst when only few data is available, but gradually improves as more data is

available for shaping the surface. For noise-free experiments shown in Fig. 2.2b and 2.2d, when

enough training data (more than 22) is presented, poly4 performs slightly better than poly4-

convex. We conjecture such difference is due to the gap between sos-convex polynomials and

convex polynomials (Ahmadi and Parrilo (2012)). GP has similar performance trends as poly4

but worse on average. 4) Polynomial models enjoy significant performance advantages when

limit surface is smoother as in uniform point support (approximation of uniform patch contact).

Such advantage is smaller for three-points support whose limit surface has large flat facets.

2.1.3.2 Robotic Experiment

We mount three screws at four different sets of locations underneath an alluminium right-angle

triangular work object that weighs 1.508kg with edge lengths of 150mm, 150mm and 212.1mm.

The four different set of support point locations (in mm) with respect to the right angle corner
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(a) Three support points with noisy train-
ing and validation data.
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(b) Three support points with noise-free
training and validation data.
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(c) Uniform circular support points with
noisy training and validation data.
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(d) Uniform circular support points with
noise-free training and validation data.

Figure 2.2: Test error comparison for simulation experiments with 95% confidence bar (50 ran-
dom evaluations) among different methods as amount of training data increases for three random
support points and 360 support points on a ring respectively. Results for uniform pressure distri-
bution within a square are similar to uniform circular support and omitted for space.

vertex are: [(10,10), (10,130), (130,10)], [(30,30), (30,90), (90,30)], [(10,10), (10,130), (90,30)],

[(30,30), (63.33,43.33), (43.33,63.33)]. Given known mass and COM projection, ideal ground

truth pressure for each support point can be computed by solving three linear equations assuming

each screw head approximates a point contact. Fig. 2.3a shows a flipped view of one arrangement

whose ideal LS is illustrated in Fig. 2.3b, constructed by Minkowski addition of generalized

friction at each single point support assuming Coulomb friction model with uniform coefficient of
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(a) Triangular block with
three support screws.
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(b) Ideal limit surface with
facets.

(c) Poly4 fit with 5 train-
ing and 5 validation data.

(d) Poly4-cvx fit with 5
training and 5 validation
data.

(e) Convex quadratic fit
with 10 training and 10
validation data.

(f) Poly4-cvx fit with 10
training and 10 validation
data.

Figure 2.3: Level set friction representations for the pressure arrangement in Fig. 2.3a. Red dots
and blue arrows are collected generalized forces and velocities from force-torque and motion
capture sensor respectively. Fig. 2.3c and 2.3d, Fig. 2.3e and 2.3f share the same data.

friction. Three pairs of symmetric facets4 characterize indeterminate friction force when rotating

about one of the three support points. Comparison among identified fourth-order homogeneous

polynomials with and without convexity constraint is shown in Fig. 2.3c and 2.3d. We can see

that convex-shape constraint is essential to avoid poor generalization error when little data is

available. Fig. 2.3e and 2.3f compare the level sets of a convex quadratic (ellipsoid) and a sos-

convex degree-4 homogeneous polynomial, demonstrating that the higher degree polynomial

captures the facets effect better than quadratic models.

We conduct robotic poking (single point pushing) experiments on wood and paper board sur-

faces. In each experiment, we generate 50 pokes (30 for training set, 10 for validation set and 10

for test set) with randomly chosen contact points and pushing velocity directions. During each

pushing action, the robot moves at a slow speed of 2.5mm/s with a total small push-in distance

4The third one is in the back not visible from presented view.
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(a) Test on sensor data (wood surface).
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(b) Test on data sampled from ideal LS
(wood surface).
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(c) Test on sensor data (paper board sur-
face).
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(d) Test on data sampled from ideal LS
(paper board surface).

Figure 2.4: Test error comparison for robotic experiments with 95% confidence bar (50 random
evaluations) among different methods as amount of training data increases for three support
points (averaged over four different arrangements) on wood and hard paper board surfaces.

of 15mm. Each generalized velocity direction is approximated as the direction of pose displace-

ment and generalized force is averaged over the action duration. Fig. 2.4 shows model accuracy

(averaged over four different pressure arrangments) with respect to increase in amount of train-

ing data for different methods evaluated on both the hold-out test sensor data and samples from

ideal LS. We can see similar performance trends as in simulation experiments. Note that both

evaluations only serve as certain reference criteria. Sensor data is noisy and all possible force

measurements from a single point pusher only cover a limited space of the set of friction loads.
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We also do not intend to treat the idealized limit surface as absolute ground truth as there is no

guarantee on uniform coefficient of friction between the support points and the underlying sur-

face. Additionally, point contact and isotropic Coulomb friction model are only approximations

of reality. Nevertheless, both evaluations demonstrate performance advantage of our proposed

poly4-cvx model.

2.1.4 Stable Push Action Generation

Prediction of the resultant object twist under a single point push action cannot be exactly accu-

rate. A two-points push action against an edge of the object, however, can be stable such that the

object will remain attached to the pusher without slipping or breaking contact (Lynch and Mason

(1996)). That is, the slider and pusher will move about the same center of rotation (COR) point

pc. Given the level set representation H(F), the condition of determining whether a two-points

push with instantaneous generalized velocity Vpc is stable or not is equivalent to check if the

corresponding generalized friction load Fpc = Hinv(Vpc) lies in the applied composite wrench

cone Fc. To validate predictions based on the model, we sampled 60 random CORs and exe-

cute with the robot for three different pressure arrangements on a novel support surface material

(hard poster paper). We use the same triangular block in Fig. 2.3a with two three-points contacts

[(10,10), (10,130), (130,10)], [(30,30), (30,90), (90,30)] as well as full patch contact. The 60

CORs are tight rotation centers within a 400mm×400mm square centered at the COM. 15 out

of the 60 CORs are labelled as stable. The training force-motion data are collected from pushing

the object on a wood surface. Table 2.1 and 2.2 summarize the classification accuracy and posi-

tive (stable) class recall measurements of three invertible methods with respect to increase in the

amount of training data. Fig. 2.5 shows an example (full patch contact) that the stable regions

generated from the identified poly4-cvx model is much larger than the conservative analysis as

in Lynch and Mason (1996) which misses the tight/closer rotation centers.
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Table 2.1: Comparison of average accuracy with 95% confidence interval as amount of training
data increases.

10 20 30
poly4-cvx 88.13±1.80 91.33±1.61 93.07±1.45

poly4 85.27±2.12 89.40±1.98 93.00±1.62
quadratic 87.93±1.72 87.20±1.65 88.00±1.39

Table 2.2: Comparison of average positive recall with 95% confidence interval as amount of
training data increases.

10 20 30
poly4-cvx 90.13±3.54 96.69±1.93 98.18±1.32

poly4 79.96±5.25 92.76±2.90 97.18±1.84
quadratic 73.18±4.61 73.38±4.69 73.87±4.63
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Figure 2.5: Hatched areas correspond to stable CORs region based on the conservative analysis
(Lynch and Mason (1996)). Red triangles are stable CORs and gray stars are non-stable CORs
based on the poly4-cvx model. The two push points are 50mm in width. The pusher and the
object are covered with electrical tape and gaffer tape respectively with measured coefficient of
friction equaling one.
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2.2 Kinematic Contact Model

This section derives a quasi-static kinematic contact solution for manipulation problems with

finite planar sliding motion. The algorithm maps a commanded rigid position-controlled end

effector motion to the instantaneous resultant object motion, with detection of equilibrium state

(jamming or grasping). The applied wrench is solved as an intermediate output. We show that

single contact with a convex quadratic force-motion model has a unique analytic linear solution

which extends Lynch et al. (1992). The case for a high order convex polynomial force-motion

model is reduced to solving a sequence of such subproblems. For multiple contacts (e.g., pushing

with multiple points or grasping) we need to add linear complementarity constraints (Stewart and

Trinkle (1996)) at the pusher points, and the entire problem is a standard linear complementar-

ity problem (LCP). The inherent stochasticity in frictional sliding is modelled by sampling the

physics parameters from proper distributions. We validate the model by comparing simulation

with large scale experimental data on robotic pushing and grasping tasks. The model serves as a

good basis for both open loop planning and feedback control.

With a position-controlled manipulator, we are given a single point finger contact at p with

inward normal np, pushing velocity vp and coefficient of friction µc between the pusher and the

object. The task is to resolve the incurred body twist V and contact mode (sticking, slipping,

breaking contact): find a V consistent with the contact mode at p while the applied wrench,

solved as an intermediate output (not a supplied control), equals the corresponding generalized

friction load.

2.2.1 Single point pusher

We introduce the concept of motion cone first proposed in Mason (1986b). Let the Jacobian

matrix Jp =

1 0 −py

0 1 px

, and denote by Fl = JT
p fl and Fr = JT

p fr the left and right edges of

the applied wrench cone with corresponding resultant twist directions Vl = ∇H(Fl) and Vr =
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∇H(Fr) respectively. The left edge of the motion cone is vl = JpVl and the right edge of the

motion cone is vr = JpVr. Mason (1986b) showed that if the contact point pushing velocity vp

is inside the motion cone, i.e., vp ∈K(vl,vr), the contact sticks. When vp is outside the motion

cone, sliding occurs. If vp is to the left of vl , the pusher will slide left with respect to the object.

Otherwise if vp is to the right of vr, the pusher will slide right as shown in Fig. 2.12.

The following constraints hold assuming sticking contact:

vpx = Vx−ω py (2.9)

vpy = Vy +ω px (2.10)

V = k ·∇H(F), k > 0 (2.11)

τ = −pyFx + pxFy (2.12)

In the case of ellipsoid (convex quadratic) representation, i.e., H(F)=FT AF where A is a positive

definite matrix, the problem is a full rank linear system with a unique solution. Lynch et al.

(1992) give an analytical solution when A is diagonal. We show that a unique analytic solution

exists for any positive definite symmetric matrix A. Let t = [−py, px,−1]T , D = [JT
p ,A

−1t]T and

Vp = [vp
T ,0]T , equations 2.9-2.12 can then be combined into one linear equation:

V = D−1Vp (2.13)

Theorem 3. Pushing with single sticking contact and the convex quadratic representation of

limit surface (abbreviated as P.1) has a unique solution from a linear system.

Proof. From equation 2.13, we only need to prove D is invertible.

1. The row vectors of Jp are linearly independent and span a plane.

2. Jpt = 0 implies t is orthogonal to the spanned plane.

3. If D is not full rank, then A−1t must lie in the spanned plane and is therefore orthogonal
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to t. This contradicts with the fact that 〈t,A−1t〉 > 0 for positive definite matrix A−1 and

nonzero vector t.

Corollary 1. Pushing with single sticking contact and the general homogeneous convex polyno-

mial representation of limit surface is reducible to solving a sequence of sub-problems P.1.

For general convex polynomial representation H(F), the following optimization is equivalent

to equations 2.9-2.12:

minimize
F

‖Jp∇H(F)−vp‖ (2.14)

subject to tT F = 0 (2.15)

When H(F) is of the convex quadratic (ellipsoidal) form, the analytical minimizer is F=A−1D−1Vp.

In the case of high order convex homogeneous polynomials, we can resort to an iterative solution

where we use the Hessian matrix as a local ellipsoidal approximation, i.e., set At = ∇2H(Ft) and

compute Ft+1 = A−1
t D−1Vp until convergence.

When vp is outside of the motion cone, assuming right sliding occurs without loss of gener-

ality, the wrench applied by the finger equals Fr. The resultant object twist V follows the same

direction as Vr with proper magnitude such that the contact is maintained:

V = sVr (2.16)

s =
np

T vp

npT vl
(2.17)

2.2.2 Multi-contacts

Mode enumeration is tedious for multiple contacts. The linear complementarity formulation for

frictional contacts (Stewart and Trinkle (1996)) provides a convenient representation. Denote by
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Figure 2.6: Mechanics of single point pushing. The square has a uniform pressure distribution
over 100 support grid points sharing the same coefficient of friction. We use a fourth-order
convex polynomial to represent the limit surface. The finger’s pushing velocity is to the right of
the motion cone and hence the finger will slide to the right. The instantaneous center of rotation,
computed using the model described in section 2.2.1, is marked as a circle with a negative sign
indicating clockwise rotation.

m the total number of contacts, the quasi-static force-motion equation is given by:

V = k∇H(F), (2.18)

where the total applied wrench is the sum of normal and frictional wrenches over all applied

contacts:

F =
m

∑
i=1

JT
pi
( fninpi +Dpifti). (2.19)
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fni is the normal force magnitude along the normal ni, and fti is the vector of tangential friction

force magnitudes along the column vector basis of Dpi = [tpi,−tpi]. The velocity at contact point

pi on the object is given by JpiV. The first order complementarity constraints on the normal force

magnitude and the relative velocity are given by:

0≤ fni ⊥ (nT
pi
(JpiV−vp))≥ 0. (2.20)

The complementarity constraints for Coulomb friction are given by:

0≤ fti ⊥ (DT
pi
(JpiV−vp)+ eλi)≥ 0, (2.21)

0≤ λi ⊥ (µi fni− eT fti)≥ 0, (2.22)

where µi is the coefficient of friction at pi and e = [1;1]. In the case of ellipsoid (convex

quadratic) representation, i.e., H(F) = FT AF where A is a positive definite matrix, equations

2.18 to 2.22 can be written in matrix form:



0

α

β

γ


=



A−1/k −NT −LT 0

N 0 0 0

L 0 0 E

0 µ −ET 0





V

fn

ft

λ


+



0

a

b

0


, (2.23)

0≤


α

β

γ

⊥


fn

ft

λ

≥ 0,

where the binary matrix E ∈ R2m×m equals


e

. . .

e

, µ = [µ1, . . . ,µm]
T , the stacking matrix

N ∈Rm×3 equals [nT
p1

Jp1; . . . ;nT
pm

Jpm], the stacking matrix L∈R2m×3 equals [DT
p1

Jp1; . . . ;DT
pm

Jpm],
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the stacking vector a ∈ Rm equals [−nT
p1

vp1 , . . . ,−nT
pm

vpm]
T and vector b ∈ R2m equals

[−DT
p1

vp1, . . . ,−DT
pm

vpm]
T .

Note that the positive scalar k will not affect the solution value of V since fn and ft will scale

accordingly. Hence, we can drop the scalar k and further substitute V = A(NT fn + LT ft) into

equation 2.23 and reach the standard linear complementarity form as follows:


α

β

γ

=


NANT NALT 0

LANT LALT E

µ −ET 0




fn

ft

λ

+


a

b

0

 , (2.24)

0≤


α

β

γ

⊥


fn

ft

λ

≥ 0.

Similarly, for the case of high order convex homogeneous polynomials, we can iterate between

taking the linear Hessian approximation and solving the LCP problem in equation 2.24 until

convergence.

Lemma 1. The object is quasi-statically jammed or grasped if equation 2.24 yields no solution.

Fig. 2.7 provides a graphical proof. When equation 2.24 yields no solution, either there is

no feasible kinematic motion of the object without penetration or all the friction loads associated

with the feasible instantaneous twists cannot balance against any element from the set of possible

applied wrenches. In this case, the object is quasi-statically jammed or grasped between the

fingers. Neither the object nor the end effector can move.

2.2.3 Stochastic Modelling

Frictional interaction is inherently stochastic. Two major sources contribute to the uncertainty

in planar motion: 1) indeterminacy of the supporting friction distribution fr due to changing

pressure distribution and coefficients of friction between the object and support surface; 2) the
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Figure 2.7: Using moment labeling (Mason (2001)), the center of rotation (COR) has positive
sign (counter-clockwise) and can only lie in the band between the two blue contact normal lines.
Further, the COR must lie on segment AB (contact point A sticks) or segment CD (contact point
C sticks) since otherwise both contacts will slip, but the total wrench from the two left edges of
the friction cones has negative moment which cannot cause counter-clockwise rotation. Without
loss of generality, we can assume COR (red plus) lies on segment AB, leading to sticking contact
at A and left sliding at C. Following a similar analysis using the force dual graphical approach
(Brost and Mason (1991)), each single friction force can be mapped to its instantaneous resultant
signed COR whose convex combination forms the set of all possible CORs under the composite
friction forces. The COR can either be of positive sign in the upper left hatched region or negative
sign in the lower right hatched region which contradicts with the proposed AB segment. Hence
jamming occurs and neither the gripper nor the object can move. This corresponds exactly to the
no solution case of equation 2.24.

coefficient of friction µc between the object and the robot end effector. We sample µc uniformly

from a given range and model the effect of changing support friction distribution by sampling

the parameters a in H(F;a) from a distribution that satisfies:

1. Samples from the distribution should result in a even degree homogeneous convex poly-

nomial to represent the limit surface.
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2. The mean can be set as a prior estimate and the amount of variance controlled by one

parameter.

The nd f degree of freedom Wishart distribution (Wishart (1928)) S ∼ W (Ŝ,nd f ) with mean

nd f Sest and variance Var(Si j) = nd f (Ŝ2
i j + ŜiiŜ j j) is defined over symmetric positive semidefi-

nite random matrices as a generalization of the chi-squared distribution to multi-dimensions. For

ellipsoidal (convex quadratic) H(F;A), we can directly sample from 1
nd f

W (Aest ,n) where Aest is

some estimated value from data or fitted for a particular pressure distribution. Sampling from

general convex polynomials is hard. Fortunately, we find that sampling from the sos-convex

polynomials subset is not. The key is the coefficient vector a of a sos-convex polynomial H(F;a)

has a unique one-to-one mapping to a positive definite matrix Q so that we can first sample Q̃

from 1
nd f

W (Q,nd f )
5 and then map back to ã through equation 2.5. The degree of freedom pa-

rameter nd f determines the sampling variance. The smaller nd f is, the noisier the system will

be.

2.2.4 Deterministic Pushing Model Evaluation

We evaluate the single contact deterministic model on the large scale MIT pushing dataset (Yu

et al. (2016)) and the data from the identification experiments in section 2.1.3.2. For the MIT

pushing dataset, we use 10mm/s velocity data logs for 10 objects6 on 3 hard surfaces including

delrin, abs and plywood. The force torque signal is first filtered with a low pass filter and 5

wrench-twist pairs evenly spaced in time are extracted from each push action log file. 10 random

train-test splits (20 percent of the logs for training, 10 percent for validation and the rest for

testing) are conducted for each object-surface scenario.

Given two poses q1 = [x1,y1,θ1] and q2 = [x2,y2,θ2], we define the deviation metric d(q1,q2)

which combines both the displacement and angular offset as d(q1,q2)=
√

(x1− x2)2 +(y1− y2)2+

5We have noted that adding a small constant on the diagonal elements of Q̃ improves numerical stability.
6Despite having the same experimental set up and similar geometry and friction property to the other two trian-

gular shapes, the results for object Tr2 is about 1.5 -2 times worse. Due to time constraint, we have not ruled out the
possibility that the data for object Tr2 is corrupted.
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rect1 rect2 rect3 tri1 tri3 ellip1 ellip2 ellip3 hex butter
poly4-delrin 8.28±0.29 5.37±0.23 6.10±0.21 9.71±0.33 7.54±0.23 7.68±0.51 8.90±1.40 7.35±0.38 6.38±0.28 4.83±0.27
quad-delrin 8.60±0.35 5.92±0.14 8.20±0.16 9.90±0.41 8.18±0.15 6.85±0.25 6.29±0.24 8.08±0.51 6.42±0.12 5.97±0.23
delrin 35.48 40.53 35.98 36.91 34.66 32.18 38.05 33.37 33.55 34.09
poly4-abs 5.86±0.11 7.48±0.80 3.59±0.12 7.13±0.26 5.17±0.38 8.45±1.13 9.18±1.26 5.93±0.19 7.56±0.39 3.94±0.11
quad-abs 6.07±0.16 6.74±0.27 6.19±0.18 8.00±0.37 7.17±0.37 6.66±0.28 7.69±0.27 5.78±0.21 8.19±0.21 5.39±0.15
abs 34.14 39.74 33.98 35.43 32.37 32.68 33.53 32.45 33.23 33.53
poly4-plywood 6.86±0.71 6.86±0.13 5.93±0.33 4.61±0.13 7.21±0.47 4.39±0.16 4.99±0.31 5.72±0.31 8.41±0.24 4.72±0.17
quad-plywood 6.20±0.20 7.22±0.18 6.88±0.18 5.96±0.19 9.43±0.56 4.42±0.12 5.84±0.20 6.46±0.26 8.85 ±0.17 6.05±0.22
plywood 31.86 33.22 32.94 32.81 33.78 27.24 28.23 33.29 32.77 34.10

Table 2.3: Average deviation metric (in mm) between the simulated final pose and actual final
pose with 95 percent confidence interval. The 3rd and 6th rows are the deviation from the ground
truth initial pose and final pose to indicate how much the object is moved due to the push. In most
cases, the fourth order convex (poly4) polynomial has better accuracy. The average normalized
percentage error for poly4 is 20.05% and for quadratic is 21.39%. However, the accuracy of a
fixed deterministic model is bounded by the inherent variance of the system.

ρ ·min(|θ1−θ2|,2π −|θ1−θ2|), where ρ is the characteristic length of the object (e.g., radius

of gyration or radius of minimum circumscribed circle). A one dimensional coarse grid search

over the coefficient of friction µc between the pusher and object is chosen to minimize aver-

age deviation of the predicted final pose and ground truth final pose on training data. Table 2.3

shows the average metric with a 95% percent confidence interval. Interestingly, we find that us-

ing more training data does not improve the performance much. This is likely due to the inherent

stochasticity and changing surface conditions as reported in Yu et al. (2016).

The well-machined objects in the MIT pushing dataset are close to uniform patch pressure.

We also test on discrete pressures. The triangular object used in the identification experiments in

section 2.1.3.2 are given different configurations of three points discrete support. We use wrench

twists pairs sampled from the ideal limit surface for training. The coefficient of friction between

the object and pusher is determined by a grid search over 40 percent of the logs. We use the

remaining 60 percent to evaluate simulation accuracy. Results are reported in Table 2.4.

2.2.5 Stochastic Pushing Model Simulation

Yu et al. (2016) reported the same 2000 straight-line pushes in a highly controlled setting result in

a distribution of final poses, demonstrating the inherent stochastic nature of pushing. We perform
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3pts1 3pts2 3pts3 3pts4
poly4-hardboard 3.52±0.21 2.75±0.25 2.92±0.27 2.80±0.23
quad-hardboard 3.82±0.24 3.63±0.27 3.35±0.23 3.96±0.28
hardboard 16.63 13.86 14.83 15.15
poly4-plywood 3.78±0.11 2.80±0.15 2.84±0.16 3.26±0.11
quad-plywood 4.24±0.15 3.56±0.17 3.28±0.08 4.12±0.13
plywood 16.56 13.81 15.27 14.20

Table 2.4: Average deviation (in mm) between the simulated final pose and actual final pose with
95 percent confidence interval for 3-point support. The wrench-twist pairs used for training the
model are generated from the ideal limit surface. The 3rd, 6th and 9th rows are the deviation from
the ground truth initial pose and final pose to indicate how much the object is moved due to the
push. The fourth order convex (poly4) polynomial has better accuracy for each pressure-surface
combination. The average normalized error for poly4 is 20.48% and for quadratic is 24.97%.

(a) Stochastic simulation
results.

(b) Figure 9 of Yu et al.
(2016), reprinted with per-
mission.
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Figure 2.8: Stochastic modelling of single point pushing with fourth order sos-convex polyno-
mial representation of the limit surface using wrench twist pairs generated from 64 grids with
uniform pressure. The degree of freedom in the sampling distribution equals 20. The contact
coefficient of friction between the pusher and the object is uniformly sampled from 0.15 to 0.35.
The trajectories are qualitatively similar to the experimental results in Figure 9 of Yu et al. (2016).

simulations using the same object and pusher geometry and push distance. The 2000 resultant

trajectories and histogram plot of pose changes are shown in Fig. 2.8. We note that although

the mean and variance pose changes are similar to the experiments with abs material in Yu et al.

(2016), the distribution resemble a single Gaussian distribution which differs from the multiple

modes distribution in Figure 10 of Yu et al. (2016). We conjecture this is due to a time varying

stochastic process where coefficients of friction between surfaces drift due to wear.

We also simulate the effects of initial pose uncertainty reduction with 2 point fingers under

the stochastic contact model. The circular object has a radius of 5.25cm. The two fingers sep-
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arated by 10cm perform a straight line push of 26.25cm. The desired goal is to have the object

centered with respect to the two fingers. Fig. 2.9a and 2.9b compare the resultant trajectories

under different amount of system noise. We find that despite larger noise in the resultant trajec-

tories, the convergent region of the stable goal pose differs by less than 5% and the difference

is mostly around the uncertainty boundary. A kernel density plot of the convergence region is

shown in in Fig. 2.9c for nd f = 10. This demonstrates multiple constraints can induce a large

region of attraction despite uncertainty.

(a) 100 pushed trajectories of dif-
ferent initial poses using ellip-
soid representation of H(F) with
nd f = 200.

(b) 100 pushed trajectories of dif-
ferent initial poses using ellip-
soid representation of H(F) with
nd f = 10 (larger noise).
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(c) Kernel density plot of the
convergence region for nd f = 10.
Convergent initial poses are in
red, and the rest are in black.

Figure 2.9: Simulation results using the proposed contact model illustrating the process of two
point fingers pushing a circle to reduce initial pose uncertainty. A total of 500 initial object center
positions are uniformly sampled from a circle of radius 7.88cm.

2.2.6 Grasping Simulation

We conduct robotic experiments to evaluate our contact model for grasping. Fig. 2.10a shows

two rectangular objects with the same geometry but different pressure distributions. Another

experiment is conducted for a butterfly shaped object shown in Fig. 2.11a. We use the Robotiq

C-85 2-finger gripper (ROBOTIQ (2017)) and represent it as a planar parallel-jaw gripper with

rectangular fingers in simulation as shown in Fig. 2.10b and Fig. 2.11b. Convex quadratic repre-

sentations of H(F) are trained from wrench-twist pairs assuming a uniform friction distribution

along the object boundary. The sampling degree of freedom nd f equals 250 with contact friction
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coefficient µc sampled uniformly from [0.015, 0.02]. For the rectangles of both pressure distribu-

tion, the simulated results with the stochastic contact model match well with experimental data.

However, the model fails to capture the stability of grasps and the deformation of objects. In the

case of a butterfly-shaped object, many unstable grasps and jamming equilibria exist, but as the

fingers increase the gripping force the object will “fly” away as the stored elastic energy turns

into large accelerations which violates the quasistatic assumptions of our model, as revealed in

the scattered post-grasp distribution in Fig. 2.11e. We also compare the cases where dynamics do

not play a major role: Fig. 2.11g shows the zoomed in plots to compare with simulation results

in Fig. 2.11c. Despite qualitative similarity, the simulation results deviate more compared with

the case for the rectangular geometry. As shown in the histogram plots in Fig. 2.11d and Fig.

2.11h, the simulation returns more jamming and grasping final states as illustrated by the spikes

in θ .

2.3 Differential Flatness, Trajectory Planning and Control

In this section, we prove that quasi-static pushing with a sticking contact and ellipsoid approxi-

mation of the limit surface is differential flat. Both graphical and algebraic derivations are given.

A major conclusion is the pusher-slider system is reducible to the Dubins car problem where

the sticking contact constraints translate to bounded curvature. Planning is as easy as comput-

ing Dubins curve with the additional benefit of time-optimality. For trajectory stabilization, we

design closed-loop control using dynamic feedback linearization or open-loop control using two

contact points as a form of mechanical feedback. We conduct robotic experiments using objects

with different pressure distributions, shape and contact materials placed at different initial poses

that require difficult maneuvers to the goal pose. The average error is within 1.67mm in trans-

lation and 0.5 degrees in orientation over 60 experimental trials. We also show an example of

pushing among obstacles using a RRT planner with exact steering.

The quasi-static pusher-slider system is a canonical hybrid system with model uncertainty due
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(a) Two 50mm × 35mm
rectangles with 6 points and
boundary pressure distribu-
tion.

X/m
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Y
/m

-0.05

0

0.05

(c) Distribution of the simu-
lated post-grasp poses using
the stochastic contact model.
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(e) Distribution of the exper-
imental post-grasp poses for
the boundary pressure.

X/m
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Y
/m

-0.06

-0.04

-0.02

0

0.02

0.04

(g) Distribution of the exper-
imental post-grasp poses for
the 6-points pressure.
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(b) Initial uncertainty of 600
poses.
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(d) Histogram plot of the
simulated post distribution.
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(f) Histogram of the exper-
imental post distribution for
the boundary pressure.
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(h) Histogram of the exper-
imental post distribution for
the 6-points pressure.

Figure 2.10: Experiments on the rectangular objects with different pressure distributions. 600
initial poses are sampled whose centers are uniformly distributed in a circle of radius of 20mm
and angles are uniformly distributed from -90 to 90 degrees.

to indeterminate and stochastic friction distribution. We assume pushing with rolling/sticking

contact where the object is constrained to a two dimensional space embedded in SE(2). The

nonholonomic constraint appears to be challenging but is fortunately not. Intuitively, the applied

force through the contact point is bounded inside the friction cone and hence the turning rate of

the object must be bounded, indicating similarity to the steering car system with bounded front
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(a) Butterfly shaped object
with boundary pressure dis-
tribution used for experi-
ment.

(c) Distribution of the simu-
lated post-grasp poses using
the stochastic contact model.

(e) Distribution of the ob-
ject poses after the grasp-
ing actions from experimen-
tal data.

(g) Zoomed-in distribution
of the object poses after the
grasping actions around the
origin.

(b) Initial uncertainty of 900
poses.

(d) Histogram plot for the
simulated post distribution.

(f) Histogram plot of the ex-
perimental post distribution.

(h) Histogram plot of the ex-
perimental post distribution
around the origin.

Figure 2.11: Experiments on the butterfly object. The longer diameter between the convex curves
is 39mm and the shorter diameter between the concave curves is 28.6mm. 900 initial poses are
sampled where the centers lie uniformly in a circle of radius 30mm and the frame angles are
uniformly distributed in -90 to 90 degrees.

wheel turning angle.

We use differential flatness techniques from nonlinear control theory Murray et al. (1995),

which offers some advantage for trajectory generation and control of underactuated mechanical

systems. A particular interesting system is the kinematic steering car whose flat output is the
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center of the rear axle. The problem is well-studied: the time-optimal motion planning solution

is given by Dubins curve Dubins (1957) and globally stable controller sythesized with dynamic

feedback linearization Oriolo et al. (2002). In this paper, we show that the pusher-slider system

with single sticking contact is differential flat, which opens new avenue for trajectory planning

and stabilization. We first give an intuitive graphical analysis and continue with algebraic deriva-

tion.

2.3.1 Motion Equations

We describe the single point pusher quasi-static motion model assuming rigid body mechanics

with Coulomb friction. The following notations are used:

• q: the object pose (x,y,θ ) in the world frame W .

• p: the contact point (px, py) in the local frame O.

• np: the inward normal in the local frame at p.

• f: the applied force by the pusher.

• fl, fr: the left and right edges of the friction cone.

• u: the pushing velocity of the pusher in the object local frame O.

• ul,ur: the left and right edges of the motion cone.

• F,V: the applied wrench and resultant twist in the object local frame.

The force-motion model for quasi-static pushing given certain pressure distribution can be ef-

ficiently established through limit surface representation Goyal (1989); Zhou et al. (2016); Howe

and Cutkosky (1996). Points inside the surface correspond to static friction wrenches. Points

on the surface correspond to friction wrenches with normals parallel to sliding twist directions,

forming a mapping between friction wrench and sliding twist.

Using a homogeneous even-degree convex polynomial H(F) representation for the limit sur-

face Zhou et al. (2016), the resultant object twist V follows the same direction as the gradient
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evaluated at the applied wrench F:

V = k∇H(F), k > 0, (2.25)

A global diagonal ellipsoid approximation Lynch et al. (1992); Hogan and Rodriguez (2016) is

often adopted as a convenient representation by existing literature on model-based pushing, i.e.,

assuming H(F) = FT AF, where A =


a 0 0

0 a 0

0 0 b

. In this paper, we find the closest vector of form

[a,a,b] to the diagonal vector of ∇2H(Fnp) as a local approximation, where Fnp is the normal

contact wrench at the contact point p, i.e., the wrench applied as if the contact is frictionless.

a = (∇2H(Fnp)11 +∇
2H(Fnp)22)/2 (2.26)

b = ∇
2H(Fnp)33 (2.27)

Choose the positive y axis of the local body frame to align with the vector pointing from the

contact point to the center of mass O. In doing so, px = 0. After absorbing the scalar k into f, we

have that in local frame

Vx = a fx (2.28)

Vy = a fy (2.29)

Vθ = bτ =−bpy fx. (2.30)
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The quasi-static motion equations in global frame are written as:

ẋ = a( fx cosθ − fy sinθ) (2.31)

ẏ = a( fx sinθ + fy cosθ) (2.32)

θ̇ =−bpy fx, (2.33)

and the friction cone constraint is given by

‖ fx‖ ≤ µ fy (2.34)

fy ≥ 0 (2.35)

Denote by Jp =

1 0 −py

0 1 px

 the Jacobian matrix at p and R(θ) =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

, equa-

tions 2.31 to 2.33 is equivalent to:

q̇ = R(θ)AJT
p f (2.36)

Note that the magnitude of f does not have physical meaning and is proportional to the magnitude

of the input velocity. Since the pusher is position controlled, we will need to relate the applied

force to pushing velocity. It can be shown ? that for sticking contact the applied force f and

pushing velocity u are linearly related, and have a one-to-one mapping:

u = JpAJT
p f. (2.37)

Further, the friction cone constraint is translated into motion cone K (ul,ur) where the left edge
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Figure 2.12: A rectangle pushed by a round finger. Blue arrows correspond to the friction cone
K ( fl, fr) edges and red arrows correspond to the motion cone K (ul,ur) edges. The instanta-
neous clockwise center of rotation (COR) is marked as a circle with negative sign. The contact
sticks since the pushing direction u is inside the motion cone.

ul and right edge ur of the cone are given by:

ul = JpAJT
p fl, ur = JpAJT

p fr. (2.38)

If u is within the motion cone, then the contact sticks as shown in Fig. 2.12. Left sliding occurs

if u is to the left of ul and right sliding occurs if u is to the right of ur. The planner and con-

troller described in the rest of the paper assumes the control input is applied force, which will be

converted to pusher velocity using equation 2.37.

2.3.2 Differential Flatness

The rough idea of differential flatness is to find flat output states (of the same dimension as

control input) as a function of the original states and control inputs. Such mapping also admits

an inverse function such that the original states and control inputs can be recovered from the flat

output states and their high order derivatives without any integration step.
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2.3.2.1 Graphical Derivation

From equations 2.28 to 2.30, an applied body wrench F = [fx, fy,τ] is mapped to a body twist V .

A twist in a plane can be further represented as a center of rotation (Vx/Vθ ,Vy/Vθ ) with the

same sign as Vθ ). Let r = |py| be the distance from the line of force to the local frame origin.

The distance r̃ from the center of rotation to the origin is inverse proportion to r:

r̃ =

√
V2

x +V2
y

V2
θ

=
a
br

. (2.39)

If we define the unit length as a/b, then the center of rotation lies on the opposite side along the

perpendicular line to the line of force through the contact point, with distance to the origin equals

1/r. As in projective geometry, the dual of a line is a point. Here, the line of applied force is

mapped to the resultant center of rotation point.

Proposition 1. The instantaneous rotation centers corresponding to applied frictional forces

through the contact point form a line perpendicular to the vector from the origin to the contact

point. The distance from the line to the origin equals a
br , where r is the distance from the contact

point to the origin.

This is similar to the force-dual method Brost and Mason (1991) that maps a line of force to

the acceleration center. The matrix A can be treated as a damping matrix that connects force to

velocity, analogous to the inertia matrix in Brost and Mason (1991) that maps force to accelera-

tion.

In Figure 2.13a, the friction cone is symmetric with respect to the origin as the contact point’s

normal passes through the origin. The friction cone constraints are represented using the force

dual graphical method. Denote by zl and zr the instantaneous rotation centers given applied

forces on the left edge fl and the right edge fr of the friction cone respectively. The allowable

motion of z can be characterized by a ray (blue) of counter-clockwise rotation center starting

from zr or a ray (magenta) of clockwise rotation center starting from zl . Figure 2.13b illustrates
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the general asymmetric case. Choose the positive y axis to be aligned with the vector pointing

from the contact point to the center of mass, the trajectory of the pushed object can be exactly

recovered from the trajectory of such point (flat output).

Y

X
O

Y

X

W

fl fr

zlzr z

(a) Symmetric case.

Y
X

O

Y

X

W

fl fr

zr

zl
z

(b) Asymmetric case.

Figure 2.13: Graphical analysis.

Theorem 4. Any point on the line of center of rotations is a differential flat output.

Proof. Section 2.3.2.2 provides an algebraic proof. We also give a geometrical proof sketch here.

1. Since the line of center of rotation is perpendicular to the positive y axis, the tangents along

the trajectory point in the directions of body positive y axis (heading) of the object.

2. After knowing the orientation of the body frame, we can compute the position of the body

frame since the point is fixed in the body frame.

3. The instantaneous center of rotation can be further determined from the curvature along

the trajectory. Therefore the velocity control input is also known.

A key observation is that if we choose the mid point (in red color) between zl and zr, then the

instantaneous motion constraints from the sticking contact are simply minimum turning radius

constraints. We now have a reduction to a Dubins car model LaValle (2006); Dubins (1957)

where the heading aligns with the positive body y axis and the mid point (red) of zl and zr is the

center of rear axle.
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2.3.2.2 Algebraic Derivation

This section derives the function mappings between cartesian pose and control to flat outputs.

Symmetric Case The symmetric case as shown in Figure 2.13a is when the pushing point’s

normal aligns with the vector pointing from the point p to the center of mass O. Hence we have

px = 0 and r =−py. cosθ× (2.31) +sinθ× (2.32) and −sinθ× (2.31) +cosθ× (2.32) yield

fx =
1
a
(ẋcosθ + ẏsinθ) (2.40)

fy =
1
a
(−ẋsinθ + ẏcosθ). (2.41)

Together with equation (2.33) yields

− a
br

θ̇ + ẋcosθ + ẏsinθ = 0. (2.42)

A choice of flat outputs are given by

z1 = x− a
br

sinθ (2.43)

z2 = y+
a
br

cosθ , (2.44)

whose derivative are

ż1 = ẋ− a
br

cosθθ̇ (2.45)

ż2 = ẏ− a
br

sinθθ̇ (2.46)

Rewrite equation (2.42) using z, ż we get

ż1 cosθ + ż2 sinθ = 0. (2.47)
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Therefore,

θ = arctan(
−ż1

ż2
) (2.48)

x = z1−
aż1

br
√

ż2
1 + ż2

2

(2.49)

y = z2−
aż2

br
√

ż2
1 + ż2

2

(2.50)

fx =
ż1z̈2− ż2z̈1

br(ż2
1 + ż2

2)
(2.51)

fy =

√
ż2

1 + ż2
2

a
(2.52)

The friction cone constraints represented in flat output space can be written as

| ż1z̈2− ż2z̈1

(ż2
1 + ż2

2)
3
2
| ≤ brµ

a
(2.53)

Note that constraints (2.53) is exactly the curvature of the trajectory of z(t). We can now conclude

that pushing with sticking constraint is equivalent to finding curves with bounded curvature that

connects two 2D oriented points. In particular, Dubins curve Dubins (1957) is the time-optimal

solution.

Figure 2.14 demonstrate two examples of trajectory planning with a single point sticking

contact. The friction cone constraint is converted to minimum turning radius constraint. Dubins

curve is generated in flat output space. Then the SE(2) poses of the object and control actions

are mapped back to the cartesian space as given in equations 2.48 and 2.49 to 2.52.

General Case We also derive the general case when the contact point’s normal is not aligned

with the the vector as shown in Figure 2.13b. Let the local frame origin be the COM and the

positive y-axis aligned with the vector pointing from the contact point p to center of mass O. We

show that with this choice of reference frame, any point on the dual line of the friction cone is
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Figure 2.14: Example planned trajectories with the initial pose in black and the final pose in blue.

differential flat, and conveniently we can simply choose the mid point between the two extreme

center of rotations that correspond to left and right edges of the friction cone. Denote by cx the x

component along the line of center of rotations, and ρ = a
b . The flat outputs are given by

z1

z2

=

x

y

+
cosθ −sinθ

sinθ cosθ


 c

ρ/r

 , (2.54)

where the vector

 c

ρ/r

 represents a point on the line of center of rotations (dual line of friction

cone) in body frame.

Following similar steps in section 2.3.2.2, we can map the flat outputs to cartesian pose and

applied force:

θ = arctan(
−ż1

ż2
) (2.55)x

y

=

z1

z2

− 1√
ż2

1 + ż2
2

 ż2 ż1

−ż1 ż2


 c

ρ/r

 (2.56)

 fx

fy

=
1

ż2
1 + ż2

2

 ż1z̈2−z̈1ż2
br

(ż2
1+ż2

2)
3
2−c(ż2

1+ż2
2)

a

 . (2.57)

50



Further, let cl and cr be the x components of the center of rotations corresponding to fl and fr. If

we set c = (cl +cr)/2, then the friction cone constraint is turned into a curvature upper bound of

2/|cl− cr| (or minimum turning radius of |cl− cr|/2.)

2.3.3 Stabilization

Uncertainty for robotic pushing mainly come from two sources: 1) perception uncertainty for the

initial object pose and 2) model uncertainty due to changing friction distribution. Single contact

pushing cannot be open-loop stable and needs active feedback control strategy. Section 2.3.3.1

derives a linear tracking controller in flat output space through dynamic feedback linearization.

Section 2.3.3.2 addresses improving robustness against model uncertainty through open-loop

stable two-points push that naturally induces mechanical feedback.

2.3.3.1 Dynamic Feedback Linearization Control

Equation 2.36 is in the form of driftless underactuated system with three degrees of freedom state

and two degrees of freedom control input:

q̇ = G(q)f. (2.58)

For such systems, dynamic feedback linearization finds a feedback compensator of the form:

ζ̇ = α(q,ζ )+β (q,ζ )w (2.59)

f = γ(q,ζ )+δ (q,ζ )w, (2.60)

where the kth derivative of flat output z can be directly controllable via w

zk = w. (2.61)
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Differentiating the flat output z with respect to time yields

ż =

0 −asinθ

0 acosθ


 fx

fy

 . (2.62)

We need to keep taking derivative since only fy affects ż. Denote by ζ = fy the dynamic feedback

compensator and s = ζ̇ .

z̈ = a

−sinθ −ζ br cosθ

cosθ −ζ br sinθ


 s

fx

 (2.63)

Let  s

fx

= (a

−sinθ −cosθ

cosθ −sinθ


1 0

0 ζ br

)−1

w1

w2

 (2.64)

=

 −sinθ/a cosθ/a

−cosθ/(aζ br) −sinθ/(aζ br)


w1

w2

 , (2.65)

which leads to

z̈ =

w1

w2

= w (2.66)

The dynamic feedback compensator is of the following form:

ζ̇ =−w1 sinθ/a+w2 cosθ/a (2.67)

fy = ζ (2.68)

fx =−w1 cosθ/(aζ br)−w2 sinθ/(aζ br) (2.69)
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We can therefore design a simple PD controller to track a planned trajectory zd(t).

w = z̈d− kp(z− zd)− kd(ż− żd). (2.70)

This PD controller is globally exponentially stable assuming the model does not change. A

robustness analysis for a changing model is beyond the scope of this paper. The manipulator

velocity control input can be further determined via equations 2.37 and 2.67 to 2.69.

A simulation experiment using a high-fidelity simulator Zhou et al. (2017a) is shown in

Figure 2.15b. The initial state is perturbed by -1mm in x, -2.5mm in y and 3.6 degrees in θ .

The system model parameter A in equation 2.36 is perturbed from


1.0537 0 0

0 1.0537 0

0 0 1.5087

 to


1.0719 −0.0177 −0.1782

−0.0177 1.0417 0.1599

−0.1782 0.1599 1.5104

. The gain for position error term is kp = [2.0,0.5] and the gain

for velocity error term is kv = [0.1,0.05]. The controller runs at 60Hz for 30 seconds and the final

pose error is 0.0034mm in x, 0.0012mm in y and 2.55 degrees in θ . The ABB robot is currently
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(a) Planned reference trajectory.
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(b) Trajectory tracking with dynamic
feedback linearization.

not suitable for closed-loop control due to low position control input frequency. In the future, we

will conduct robotic experiments with recently released externally guided motion package ABB

(2017b).
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2.3.3.2 Open Loop Stabilization With Kinematic Constraints

Lynch and Mason Lynch and Mason (1996) showed that a two-points push action against an edge

of the object can be stable such that the object will remain attached to the pusher without slipping

or breaking contact, despite the presence of uncertainty.

This can be seen as natural mechanical feedback that tolerates model uncertainty. The object

will follow a body twist motion V as long as the corresponding frictional wrench F is inside

the composite wrench cone Fc = K (F1
c ,F

2
c ) formed by the two wrench cones F1

c ,F
2
c at the

contact points, i.e., ∃F such that ∇H(F) = V and F ∈ Fc. The span of the composite wrench

cone provides redundancy to balance uncertain frictional wrench between the object and the

supporting surface.

Throughout our experiments, we use the mid point of the two points as a virtual contact point

and the average normal as the contact normal to plan reference trajectory. Perception uncertainty

is not addressed for this form of mechanical feedback although a sequence of designed open-loop

translational pushes can reduce the initial perception uncertainty Brost (1988).

2.3.4 Experiments

Figure 2.16: Experimental setup.
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2.3.4.1 Pushing using Multiple Actions

A pushing point in the body frame defines an action associated with a Dubins car reduction. If

we allow switching between multiple pushing points (actions), the object can be moved faster to

the goal state. It is also natural to specify a switching cost between actions. This section presents

a simple planner that gives the near-optimal path for a given query initial pose to the goal pose

at the origin. We first construct a graph using the following steps:

1. Sample SE(2) poses within the boundary as graph nodes.

2. For each node, split into k copies tagged with action id, where k equals the number of

actions.

3. Run Dijkstra’s algorithm Dijkstra (1959) and add switching cost to the edge weight if the

two nodes are tagged with different action ids.

The graph is organized as a tree structure whose paths to the goal are the shortest path subject to

the sampling resolution. Then for any new query pose, we treat it as a new node to connect to

the goal through either direct connection to the goal using one action or paths in the graph using

multiple actions.

The experimental setup is shown in Figure 2.16. We use the ABB-120 robot mounted with a

two-points pusher. The object bottoms are atached with AprilTags Olson (2011). The supporting

surface is a transparent acrylic table with a camera underneath to acquire the initial and final

poses. We use four objects with different pressure distributions, material and shapes. Trajectories

are generated using the mid point of the two points as a single point pusher and executed open-

loop. Each object is given three or four pushing points (actions). The triangular object has actions

of asymmetric push point. Three different initial locations that require difficult maneuvers are

chosen for each object with the same target location such that the local frame exactly aligns with

table frame at the center. Each initial condition is executed five times. Trajectories generated

from experimental logs are shown in Figure 2.17 to 2.20. The object initial poses (in sequence)

for each action are filled with red, purple and blue colors. The final pose is filled with black
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color. The average error is within 1.67mm in translation and 0.5 degrees in orientation over the

60 experiments7.

Figure 2.17: Rectangle with three-point pressure. The average error (mm, mm, degree) with
95% confidence interval from left to right are [0.03± 0.02,−3.19± 0.29,0.53± 0.11], [0.50±
0.13,−0.96±0.6,−0.48±0.61], [−0.23±0.11,−4.17±0.87,−1.29±0.5].

Figure 2.18: Rectangle with boundary pressure. The average error (mm, mm, degree) with 95%
confidence interval from left to right are [−0.26± 0.12,−3.31± 0.75,−0.46± 0.19], [0.42±
0.12,−1.49±1.63,−0.14±0.27], [−0.27±0.21,−4.56±0.43,−0.93±0.76].

2.3.4.2 Pushing Among Obstacles

The proposed reduction to Dubins curve benefits randomized motion planners since the two point

boundary value problem can be solved exactly via the reduction, i.e., the steering is exact. We

use a RRT LaValle and Kuffner Jr (2001) planner to generate a collision free pushing path shown

in Figure 2.21 and 2.22. The triangular object and the two-points pusher are not allowed to touch

the red obstacle nor the blue boundary of the map. The goal is to align the center of the triangle

with the red point in an up-right orientation.

7All 60 runs videos are available at https://www.dropbox.com/sh/2t6cwqwv3w95iji/
AABLHdlnRhSQzHKhcmg2zOT4a?dl=0.
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Figure 2.19: The butterfly object with boundary pressure. The average error (mm, mm, de-
gree) with 95% confidence interval from left to right are [−0.69± 0.17,−1.46± 0.06,4.40±
1.24], [−0.65±0.17,−1.38±0.07,5.89±2.37], [−0.96±0.08,−0.09±0.73,0.83±1.00].

Figure 2.20: Triangle with uniform pressure. The final error (mm, mm, degree) with 95% con-
fidence interval are [0.64± 0.05,1.04± 0.63,0.11± 0.31], [0.11± 0.65,−0.50± 0.30,−0.42±
0.44], [2.34±0.23,0.12±0.06,−1.06±0.42].

2.4 Uncertainty Reduction via Sequental Grasps

Equipped with an efficient kinematic contact model, we address the following question in this

section: how can a robot design a sequence of grasping actions that will succeed despite the pres-

ence of bounded state uncertainty and an inherently stochastic system? We propose a probabilis-

tic algorithm that generates both sensored and sensorless plans such that the post-action object

pose is uniquely known (subject to symmetry). The sensored plans assume encoder feedback

that gives a geometric partition of post-grasp configuration space based on contact constraints.

A planning tree is generated by interleaving open-loop plan search and feedback state estima-

tion with particle filtering. To speed up planning, we use learned approximate forward motion

models, sensor models, and collision detectors.

Prior works Brost (1988); Goldberg and Mason (1990); Goldberg (1993) on planning sequen-

tial actions for uncertainty reduction focus on strategies. However, many unrealistic assumptions
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Figure 2.21: Planned pushing actions among obstacles using RRT with exact steering.

are made in order to reduce the state space and create finite discrete transitions, including in-

finitely long fingers approaching the object from infinitely far away. We show that with simple

encoder feedback and a good model for open-loop action search, we can generate faster and more

realistic strategies.

2.4.1 Configuration Space Partition and Fast Approximate Models

2.4.1.1 Post-grasp Configuration Space Partition

Contact constraints parametrized by the post-grasp distance between the fingers naturally parti-

tion the configuration space to lower dimensional subspaces. Figure 2.24 shows the partitions of

the object poses based on different grasping outcomes indicated by the post-grasp finger widths.

The results are generated by first simulating trajectory roll-outs with different initial poses and

then performing k-means clustering of the final finger distances where k equals 4. Note that the

gripper widths within the same cluster has nonzero variance which matches the nonnegligible
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.22: Snapshots of the robot executing the plan.

real world sensor noise.

2.4.1.2 Fast approximate models

Our planning algorithm requires three components: 1) a forward motion model that maps an

initial object pose to a final object pose with respect to the hand frame; 2) a sensor model that

maps a final object pose to the expected post-grasp finger width; 3) A collision detector that

checks a given initial object pose with respect to the hand frame. Although they are all available

through trajectory roll-out simulations, planning with particle based belief representation needs

to be orders of magnitude faster.

We need to compute a forward model of planar grasping. A small deviation in initial pose can

be the difference between a successful grasp and a missed one. By probabilistically modeling

a planar grasp, we can capture this behavior. We will use kernel conditional density estimation

(KCDE) Rosenblatt (1969) so that we can capture the inherent non-linear, multimodal nature of
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Figure 2.23: A tree-based plan generated by our algorithm for a butterfly-shaped object where the
centers are uniformly distributed in a circle of radius 10mm and the frame angles are uniformly
distributed from -90 to 90 degrees. In each node, red boxes indicate the expected final gripper
pose and filled rectangles with blue boundary correspond to particle-based belief distribution of
the object poses where density is proportional the darkness. The total number of action choices
equals 4. A grasping action is applied at each non-terminal node which branches out child
nodes depending on the possible post-grasp distances between fingers. At the terminal nodes
(boxed in green), the robot predicts the average pose, with counts of successful and unsuccessful
predictions for a total of 856 experimental grasp trials.

the distribution. Let v = [x,y,ρθ ]T be the normalized pose with respect to the hand frame where

ρ is the radius of gyration (or any meaningful characteristic length) of the object. Denote the
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(a) Free space: the object slips out or is
not touched.

(b) The first constrained space: the object
is grasped at the long edges.

(c) The second constrained space: the ob-
ject is jammed between the diagonal ver-
tices.

(d) The third constrained space: the ob-
ject is grasped at the short edges.

Figure 2.24: Partition of the configuration space of a rectangle (30×21 mm) based on the post-
grasp distance between the fingers. Red boxes correspond to the average gripper pose.

RBF kernel by

Kh(v1,v2) =
1
η

exp
(
−‖v1−v2‖2/(2h2)

)
,

where η is a normalization term and h is the bandwidth. Suppose we have collected a data set

{vi,v f } of N initial and final object poses. The conditional probability of a final normalized pose

v f∗ to occur given an initial normalized pose v f∗ is given by:

P(v f∗|vi∗) =
∑

N
j Kh1(v

i∗,vi
j)Kh2(v

f∗,v f
j )

∑
N
j Kh1(vi∗,vi

j)
. (2.71)
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The bandwidths h1 and h2 throughout the experiments are set as 0.5. To sample from this distri-

bution, note that given an initial pose vi∗, Equation 2.71 becomes a mixture of Gaussians:

P(v f∗) =
N

∑
j

w jKh2(v
f∗.v f

j ) (2.72)

We can pick a center v f
j randomly according to the weights w j, and then sample from that

chosen Gaussian. Further speed-up is achieved by only using k nearest neighbors for prediction.

On a 2.4GHz i5 core, it takes about 1 second to roll out 5000 particles for a KCDE model trained

with 10000 data points and using 400 nearest neighbors (sped up by kd-tree) for prediction,

compared with 0.5 to 3 seconds to roll out 1 particle using the simulation.

Note that only one forward motion model is needed since we always transform the post-action

object poses to the next action hand frame.

We use a regression tree to predict the post-grasp finger distance given a final pose. The

collision detector is trained using a binary classification tree. Both trees achieve very fast and

accurate performance.

2.4.1.3 Belief Update With Subspace Projection

The free space and constrained subspaces are represented by storing corresponding final poses

through many trajectory roll-outs. These roll-outs start with randomly sampled initial poses from

a large enough uncertainty area which covers all the possible poses during the grasping sequence.

To perform belief updates after rolling out the KCDE forward motion, we use the sensor

model to predict the post-grasp gripper distance for each particle. For particles that belong to

the same subspace based on the predicted observation, we perform projection onto the subspace

using a nearest neighbor association.
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2.4.2 Tree-based Planner

The planning algorithm is summarized in Algorithm 1. It first constructs the root node C0, and

its associated belief C0.X , as the set of particles sampled from the initial uncertainty region.

ExpandTree(C0) will construct the tree.

For a given set of poses, SingletonRatio computes the ratio of poses within given tolerance

values δ = [δx,δy,δθ ] with respect to the average pose as a singleton (i.e. a unique, known final

pose). To compute the average pose of a given set of poses: we mapped the poses [x,y,θ ] to the

augmented space [x,y,cos(2θ),sin(2θ)] to take the average and then map back to the original

space.

Input: current node C, singleton tolerance values δ and threshold ratio rs
Output: Planning Tree
if SingletonRatio(C.X, δ ) > rs then

MarkTerminalNode(C);
Return;

else
[X ,Z,A] = OpenLoopSearch(C.X , d, δ ) ;
C.action = A;
foreach observation subset Xi,Zi do

Xi = BeliefUpdateProjection(Xi,Zi);
N = CreateNode(Xi, C.Z⊕Zi);
AddToTree(N) ;
ExpandTree(N, δ , rs);

end
end

Algorithm 1: ExpandTree

The sensorless subroutine OpenLoopSearch uses a breadth-first search to find the optimal

sequence of actions that maximizes the ratio of singletons. Algorithm 2 describes the expan-

sion procedure inside OpenLoopSearch. We use a pruning criteria that avoids expansion if the

singleton ratio decreases by (1 - α) compared with its parent. α is set as 0.75 throughout the

experiments. The first action in the sequence returned by the open loop search will be applied,

followed by sensor updates and node expansions. Note that we can also execute the entire open
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Input: Node element E, singleton tolerance values δ , queue Q
foreach action a do

Xt = TransformToHandFrame(E.X , a);
if CollisionFree-DecisionTree(Xt) then

Xp = ForwardMotionModel-KCDE(Xt);
Z f = SensorModel-RegressionTree(Xp);
X f = TransformToWorldFrame(Xp);
r = SingletonRatio(X f ,δ );
if r > αE.r then

AddQueueElement(Q, X f , Z f , E.A⊕a, r);
end

end
end

Algorithm 2: OpenLoopSearchBFSExpand

loop action sequence and perform sensor update afterwards. At the extreme is complete sensor-

less planning where the open loop planner keep searching until the best singleton ratio exceeds

threshold rs or the time exceeds the limit. We have found that feasible plans are much easier

to generate with feedback whereas completely open loop plans cannot find a feasible solution

unless given a much larger action space often rendering computation intractable. Additionally,

the length of open loop plans (if they exist) is usually much longer than the average length of

grasping sequence with feedback.

The steps of the tree generation is summarized as follows:

1. Sample initial poses from a large enough uncertainty and do trajectory roll out simulations

for a hand squeezing action.

2. Perform K-means clustering on the post-grasp finger distances and construct subspace par-

titions. Train approximate motion models, sensor models and collision detectors.

3. Sample initial poses from a query initial uncertainty and construct the root node.

4. Call Algorithm ExpandTree to construct an offline sensored tree plan. 8

Note that different query initial uncertainty for the same object can share the approximate models

8Call Algorithm OpenLoopSearch only to construct a pure open loop sequence plan.
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shape butterfly butterfly rectangle rectangle rectangle rectangle rectangle
pressure boundary boundary boundary boundary points boundary boundary
uncertainty size 15mm 10mm 12.75mm 12.75mm 25mm 25mm 25mm
gripper-object materials felt-abs felt-abs foam-abs steel-abs felt-paper foam-abs steel-abs
grasp trials 327 856 682 968 193 202 95
success rate 0.835 0.939 0.972 0.872 0.917 0.896 0.768

Table 2.5: Experimental results of grasping with different combinations of object shapes, fric-
tional materials, supporting pressure distributions and uncertainty sizes. The angular uncertainty
is uniformly distributed from -90 to 90 degrees.

so the first two time-consuming steps only need to be done once.

2.4.3 Experiments

The algorithm is implemented in Matlab. Example trees in Figure 2.25 (large uncertainty) and

Figure 2.23 (small uncertainty) take less than 2 hours and 5 minutes to generate offline, respec-

tively. For all trees in the experiments, we first generate simulation data through 9000 trajec-

tory roll-outs with initial poses sampled from a region 3 times the size of uncertainty. Convex

quadratic forms of H(F) are fitted assuming pressure distributions around the boundary of the

objects. The uncertain coefficient of friction between object and gripper is uniformly sampled

from 0.4 to 0.6. The gripper fingers are modeled as 27.5mm × 9.5mm rectangles. We then use

the simulation data to train KCDE-based forward motion models, sensor models and collision

detectors. To generate the tree plan, we uniformly sample 6000 particles from the initial uncer-

tainty region. The tolerance values are within ±2.5 mm in x and y and ±5 degrees in angle.

Additionally we construct a kd tree and use 400 nearest neighbors for KCDE-based forward

motion model prediction.

2.4.3.1 Setup

The experimental setup for planar grasping is shown in Figure 2.26a. We use a 6 degree-of-

freedom ABB industrial robot ABB (2017a). We attach to the arm a Robotiq C-85 2-fingered

parallel jaw gripper ROBOTIQ (2017). The two fingers open and close at the same time. The
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Figure 2.25: A tree-based plan generated by our algorithm for a rectangular object (30mm *
21mm) where the centers are uniformly distributed in a circle of radius 25mm and the frame
angles are uniformly distributed from -90 to 90 degrees. The total number of action choices
equals 20.

robot wrist is synchoronized with the finger motion to maintain the tip at fixed height throughout

the grasp. The vision system consists of a Logitech c930e webcam looking through a clear

acrylic table. We attach an an AprilTag Olson (2011) to the bottom of the object, and its pose is

found by the camera and projected onto the table. The camera’s intrinsics are calibrated using

the standard ROS camera calibration tool, and the camera’s frame is calibrated to the robot by

having the robot move a larger AprilTag around. Then, a further calibration is done by having

the robot grasp the object and move it around on the surface of the table. This allows us to obtain

a 0.3mm object pose estimation accuracy near the center of the table, and a 1.5mm accuracy near

the edge of the table. If the object or robot during a grasp would be too close to the edge of the

table, the robot drags the object back to the center before starting its next grasp.
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(a) Grasping platform showing ABB arm, Robo-
tiq gripper, object to grasp, transparent table, and
underneath camera for verification.

(b) 3D printed trial objects: (top) rectangu-
lar with boundary pressure distribution, (mid-
dle) rectangular (glued with hard paper) with dis-
crete point pressure distribution, (bottom) butter-
fly with boundary pressure distribution.

Figure 2.26: Experimental Setup

2.4.3.2 Results Analysis

During execution, we read the finger distance from the Robotiq hand encoders and descend to the

child node with the closest expected observation. The robot stops execution when terminal node

is reached and reads the ground truth object pose value from the vision system. Table 2.5 shows

the experimental results of over 3000 experiments on the robot. A grasp sequence is considered

successful if the combined metric d(q1,q2) =
√
(x1− x2)2 +(y1− y2)2+ρ ·min(|θ1−θ2|,2π−

|θ1−θ2|) between the predicted pose q1 = [x1,y1,θ1] at the terminal node and the ground truth

pose q2 = [x2,y2,θ2] from the camera is smaller than 3mm. The uncertainty for orientation is

uniformly distributed from -90 to 90 degrees. The centers of the objects are uniformly distributed
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in a circle of radius specified in the third row. For low uncertainty settings (columns 2 to 5), the

action space consists of 4 different angles with one fixed hand frame center. For high uncer-

tainty settings (columns 6 to 8), the action space consists of 4 different angles with 5 different

hand frame centers along a line. The best 4 step open loop plans with the same action choices

(increasing search depth does not improve performance) for the high friction low uncertainty

settings (columns 1 to 3) do not exceed 70 percent success due to unrecognizable repeated jam-

ming.

The most frequent failures are due to unexpected dynamic behavior when objects are jammed

in an unstable equilibrium: the large force applied by the stiff gripper on the light objects cause

“fly away” phenomenon not captured by the quasi-static simulation, particularly for the case of

low friction steel gripper material for large uncertainty in column 8 of Table 2.5. Other fail-

ure patterns include missing multi-modal patterns during node expansion and cascading small

amount of objects movement when the gripper looses each grasp, both of which can cause un-

expected collision. In our future, we plan to improve the models by incorporating experimental

data which will generate more stable plans.

2.4.4 Summary

We present a tree-based probabilistic planning algorithm for planar grasping under uncertainty

capable of generating action sequences with or without sensor feedback. To improve the plan-

ning speed, the forward motion model is approximated by kernel conditional density estimation.

Regression and classification trees are trained to approximate the sensor model and the collision

detector.

Learning from experimental data is crucial to capture high variance input-output mappings

that deviate from the underlying physics model assumptions, e.g., initial object poses that can

“fly away” later during the grasp action. To avoid these issues in the future, the planner could

prioritize more stable actions while making uncertainty reduction progress. We have not ad-
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dressed the optimality of the plans. The trees generated are not optimal: the sequences can be

longer than necessary and some terminal nodes are not visited. The system would also benefit

from automatic tuning of the bandwidth for the KCDE-based forward motion model. The plan

suffers from slow convergence speed and generates redundant actions if the bandwidth is too

large, whereas low probability outcomes are missed during node expansion if the bandwidth is

too small. Using a larger set of manipulation actions including pure pushing and push-grasps

can significantly increase the planner’s capability to deal with more complicated object geom-

etry and larger uncertainty region. We plan to use Monte Carlo Tree Search techniques Kocsis

and Szepesvári (2006) to deal with the computational challenges brought by a larger branching

factor.

Although our planner is capable of generating open-loop plans with fewer assumptions com-

pared with existing literature, we note that planning is easier, faster, and more robust with even

the simplest feedback – finger encoder readings (available for most off-the-shelf robot hands).

This sets up a promising framework of integrating basic proprioceptive feedback on an industrial

robot arm and gripper that produces more robust plans without the need for high cost external

sensors Canny and Goldberg (1994).
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Chapter 3

Force Controlled Pulling and Grasping

with External Contact

This chapter presents some extensions beyond position-controlled planar manipulation, where

we demonstrate grasping a large-size book that resembles how a human strategy. The robot

needs to perform a sequence of non-prehensile contact-rich actions to finish the task while obey-

ing kinematic and hardware limitations. Such actions include reorienting the book by force-

controlled twisting and pulling, and push-grasping in the gravity plane treating the table as a

third supporting finger.

3.1 Case Study: Book Grasping

Grasping a book with both width and height dimensions larger than the gripper’s maximum finger

openning distance requires moving the book to the edge of the table and picking from the side.

We decompose the involved action sequences as follows:

1. Estimate the pose of the book from point cloud data.

2. Move the gripper to a position above and align the gripper orientation with the book.

Executes a guarded move to ensure contact with the book by pressing with required normal
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force.

3. Reorient the book and move it to the edge of the table using force-controlled pulling.

4. Perform straightline two-point pushing to reduce orientation uncertainty.

5. Push-grasp in the gravity plane while obeying the robot’s workspace limit.

Figure 3.1 shows the several stages of the entire manipulation process.

(a) The robot lifts up to get a
global view of the table and es-
timates the planar pose of the
book.

(b) The robot aligns the hand
with the book orientation and
performs a guarded move to en-
gage contact.

(c) The robot reorients the book
by force-controlled twisting.

(d) The robot translates the book
to the edge of the table by force-
controlled pulling.

(e) The robot moves to pre-push
pose.

(f) The robot pushes the edge
with the gripper (two point con-
tacts) to reduce the orientation
uncertainty.

(g) The robot reaches to a pre-
grasp position that is about to
reach its kinematic limit.

(h) The robot performs a grasp-
ing with synchronized wrist mo-
tion while using the table as an
external supporting contact.

(i) The robot grasps the book in
hand and lifts it up from the table.

Figure 3.1: Book grasping demo
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3.1.1 Pose Estimation from RGBD Point Cloud

Before each execution, we lift up the wrist mount camera (Asus Xtion Pro) such that its field of

view covers all the reachable space on the table by the robot. The estimation steps are summa-

rized as follows:

1. Use Ransac algorithm Fischler and Bolles (1987) to fit the table plane and subtract it from

the point cloud.

2. Find a bounding box that covers the closest 95% of the points to the centroid of the re-

maining point cloud.

3. Use the principle component vectors as the book frame with respect to the robot base

frame.

Due to imperfect calibration, sensing noise and changing ambient light conditions, the pose

estimation errors are about 1 centimeter in translation and 5 degrees in orientation.

3.1.2 Force-controlled Twisting and Pulling

The Kuka Iiwa robot is under joint impedance control mode. The position gains for each joint

is [2000,1500,1500,1500,1000,500,500] (Nm per radian). The damping ratio is 1 (critically

damped). During the twisting and pulling, we maintain a normal force of 40N and the resultant

friction force due to sliding is compensated by the position gain as the robot needs to move in the

horizontal plane. During the twisting motion as shown in Figure 3.1c, slip can occur between the

robot fingers and the book, which will introduce around 5 to 10 degrees of uncertainty. During

the pulling motion, the contacts between the fingers and the book usually stick, and hence will

not introduce much additional uncertainty.
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(a) The initial book poses before
the pushing action.

(b) Sample trajectories for differ-
ent initial poses.

(c) The final book poses after the
pushing action.

Figure 3.2: The pushing action generates a mechanical funnel robust to initial uncertainty.

3.1.3 Pushing Funnels

The uncertainty induced in initial perception and the slip during the twisting motion needs to be

removed before the grasp. We employ a simple two point straightline pushing. Figure 3.2 shows

the simulation results for the final aligning by pushing steps from Figure 3.1g to Figure 3.1i.

The stochasticity modeling in the pressure distribution is similar to section 2.2.3 with degree

of freedom equals 200. The book is modeled as a rectangle of 18 centimeters in width and 23

centimeters in height. The opening width of the gripper width is 10 centimeters. The initial

three-dimensional pose uncertainty (x,y,θ ) in Figure 3.2a is reduced to the one-dimensional

uncertainty (y) in Figure 3.2c. Figure 3.2b shows some sample trajectories that correspond to

different initial poses, where the book contours are shown as grey boxes, the two fingers are

shown as red circles and the center of masses are shown as magenta dots.

3.1.4 Push-Grasp in the Gravity Plane

In this section, we analyze the kinematics for the grasping process as shown in Figure 3.1g to

Figure 3.1i. Due to limited workspace, the Kuka Iiwa robot cannot reach into a horizontal grasp

pose. Hence we embrace the idea of exploiting external contacts where the table can act as a third

finger to support the book while the robot executes a push-grasp in the gravity plane to re-orient

the book in hand. Figure 3.3 and 3.4 illustrate the contact conditions and kinematic reduction of
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the grasping process.

Figure 3.3: Illustration of the quasi-static balance. The book slides inward and hence the friction
force is on the right edge of the friction cone. The contact between the gripper and the book
sticks and the friction force inside the friction cone. The two friction forces and the line of
gravity intersects at a point and hence quasi-static balance can be achieved.

The following equations describe the kinematics of the book-finger (slider-pin joint) system:

xA(t) = xA(0)− vt cosα (3.1)

yA(t) = yA(0)− vt sinα (3.2)

xB(t) = xA(t)−Lcosθ(t) (3.3)

yB(t) = yA(t)−Lsinθ(t) = 0 (3.4)

The pose of the book (xB(t),yB(t),θ(t)) follows:

xB(t) = xA(0)− vt cosα−Lcos(arcsin((yA(0)− vt sinα)/L)) (3.5)

yB(t) = 0 (3.6)

θ(t) = arcsin((yA(0)− vt sinα)/L) (3.7)
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Figure 3.4: The sticking contact is equivalent to a pin joint between the book and the finger while
the sliding contact is equivalent to a prismatic joint. The pin joint is connected to the robot finger
link as a floating link not shown in the figure. We command the finger to move in a straight blue
line.

3.1.5 Experimental Result

https://www.youtube.com/watch?v=k_mpCreIhDE provides the video recording of

executive eight success runs. For each run, a human (including the author and a random lab

visitor) places the book with different initial poses on the table. The robot perceives the book

and executes the sequential strategy described above.

The robot starts to fail when enough experiments are performed and the wear on the book

cover due to force-controlled pulling and twisting results a decrease in the friction coefficient,

and hence more slippage occurs that exceeds the funnel tolerance in the subsequent straightline

two point pushing.
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Chapter 4

Conclusions and Future Work

4.1 Harnessing Task Mechanics

Robot actuators can be made faster, stronger and more durable than human muscles and tendons.

Accurate joint encoders, torque and current sensors are readily available to equip robots with bet-

ter proprieceptive sensing than humans. Many color and depth sensors capture higher resolution

images and finer three dimensional measurements than human vision. Additionally, human feed-

back system have much lower control frequency and higher delay than typical eletromechanical

systems. Yet, humans beat robots in almost every fine manipulation tasks. Why so? I conjec-

ture that humans achieve astounishing manipulation capabilities via intelligent exploitation of

“intuitive” physics (feed-forward) models, together with a lower frequency but intelligent senso-

rimotor controller based on vision and touch feedback. Since such physics models are quickly

learned from small observations and trials, it may suggest some strong prior knowledge built into

the brains.

A combination of analytical physics modeling and data-driven techniques could enable robots

to learn equally fast. This thesis partly explores such idea in the context of planar sliding manip-

ulation. However, the limitation is also evident: building detailed models may not be tractable

in the context of cluttered three dimensional world where humans effortlessly deal with. Thus,
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building approximate models where only a small number of free parameters that are online iden-

tified from visual data remains as important future work.

4.2 Preliminary Results on Improving Perception for Clutter

In the future, robots in the home need to recognize millions of different daily objects and pick

up the right one in a highly cluttered enviroment. Rather than tackling this task, we restrict the

setting to just clearing a random pile of objects from a bin or a drawer. The robot only needs to

pick up objects one by one without any specific order. The task is similar to the stowing task in

2017 Amazon Robotics Challenge Zeng et al. (2018).

The perception capability to segment each object instance is crucial for manipulation in clut-

ter. Recent advances in deep learning based segmentation systems Ren et al. (2015); Girshick

(2015); Li et al. (2017); He et al. (2017) have achieved impressive results. We trained an instance

segmentation system based on the Mask-RCNN architecture He et al. (2017) using only photo-

realistic simulation data given high-quality textured mesh models from the YCB dataset Calli

et al. (2015). In this section, we demonstrate some prelimary qualitative results.

Figure 4.1 shows the pipeline for synthetic data generation. A sample of 20 YCB objects that

cover a range of object geometries and textures is shown in Figure 4.2.

For each scene, we first choose a subset of objects from the database with random initial

pose above the bin. Then the Bullet Coumans (2010) physics engine simulates the objects falling

into the bin by gravity before settling down into a stable equilibrium state. To create possible

shadows and over exposures, the point lighting is varied with respect to location, intensity for

each rendering. The projective camera has a resolution of 640×480, focal length of 35mm and

sensor size of 32mm. To generate images from different perspective views, the camera position is

also sampled from a set of predefined viewpoints around the bin. Figure 4.3 shows some rendered

sample scenes. These randomly generated synthetic scenes are then used to train a Mask-RCNN

network pretrained using the resnet-50 He et al. (2016) architecture. Figure 4.4 shows some
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3D textured mesh models

camera

light

3D scenes + random texture

INPUT OUTPUT

RGB segments depth

Figure 4.1: Our pipeline for generating synthetic data based on textured object models. When the
physics simulation stabilizes, a frame is rendered with a textured background, specific lighting
condition and camera position. These ingredients are randomly sampled to increase the diver-
sity of the data. The output includes colored images, depth images and ground truth instance
segmentation results.

qualitative results on transferring to real images collected from the wrist mount camera. We

demonstrate some generation capabilities of the network by adding some novel objects in the

scene including Red Bull bottles, real bananas and Colgate toothpaste boxes.

4.3 Vision Guided Compliant Manipulators

From the Darpa ARM-S challenge Bagnell et al. (2012), the Amazon picking challenge Cor-

rell et al. (2016) to home robot tasks including clearing a random pile of objects on the table

and loading dishes into a dish washer, we have seen an increasing amount of efforts in tackling

manipulation challenges arising in semi-structured and unstructured environments. For these

sensor-rich manipulation tasks, how accurate does the manipulator needs to be? Perhaps the sub-

millimeter accuracy is not as important and the extreme rigidity and high position gain common

in industrial manipulators do not fit sensor-rich applications.

We need fast, compliant and reliable manipulators that are accurate enough to match the

sensor accuracy but not two orders of magnitude better. Compliant manipulators can be made

either intrinsically soft with springs and dampers Robotics; Pratt and Williamson (1995) or with
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Figure 4.2: YCB object set used for our rendering process. The above 20 objects cover common
shapes in manipulation scenarios. The images are rendered by Blender Blender.

high-bandwidth force control and accurate well calibrated sensors Albu-Schäffer et al. (2007).

It’s unclear that which one is better. For many applications, compliance in the wrist is sufficient

and the rest of the arm can still operate in high-gain position mode. We can design either passive

or active wrist to attach to the robot arm.

Of particular interest is putting both the arm and object pose estimation in a common fixed

camera frame Klingensmith et al. (2013). We may treat a successful engagement with the object

of interest as servoing for a target image. In many practical applications where operational speeds

are critical, the motion control scheme can start with open-loop motions to reach roughly correct

regions and followed by visual servoing to adjust for the positioning error.
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Figure 4.3: Sample RGB images from our generated dataset with a large variety of object com-
binations, lighting conditions, viewpoints and background textures. Both homogeneous objects
and challenging cluttered scenes are presented.

81



Figure 4.4: Detection and instance segmentation results on real-world data. The Red Bull bot-
tle, real bananas and Colgate toothpaste boxes are novel objects not in the object database for
training.
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hard Hirzinger. The dlr lightweight robot: design and control concepts for robots in human

environments. Industrial Robot: an international journal, 34(5):376–385, 2007.

Mihai Anitescu and Florian A Potra. Formulating dynamic multi-rigid-body contact problems

with friction as solvable linear complementarity problems. Nonlinear Dynamics, 14(3):231–

247, 1997.

Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki. Bettering operation of robots by

learning. Journal of Field Robotics, 1(2):123–140, 1984.

83

http://new.abb.com/products/robotics/industrial-robots/irb-120
http://new.abb.com/products/robotics/industrial-robots/irb-120
http://new.abb.com/products/ABB.PARTS.SEROP3HAC054376-001


Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning for

control. In Lazy learning, pages 75–113. Springer, 1997.

J Andrew Bagnell, Felipe Cavalcanti, Lei Cui, Thomas Galluzzo, Martial Hebert, Moslem

Kazemi, Matthew Klingensmith, Jacqueline Libby, Tian Yu Liu, Nancy Pollard, et al. An

integrated system for autonomous robotics manipulation. In Intelligent Robots and Systems

(IROS), 2012 IEEE/RSJ International Conference on, pages 2955–2962. IEEE, 2012.

Blender. Blender - a 3d modeling and rendering package. URL http://www.blender.

org/.

Robert Bolles and Richard Paul. The use of sensory feedback in a programmable assembly

system. Technical report, STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1973.

Abdeslam Boularias, Oliver Kroemer, and Jan Peters. Learning robot grasping from 3-d im-

ages with markov random fields. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ

International Conference on, pages 1548–1553. IEEE, 2011.

Abdeslam Boularias, James Andrew Bagnell, and Anthony Stentz. Efficient optimization for

autonomous robotic manipulation of natural objects. In AAAI, pages 2520–2526, 2014.

Abdeslam Boularias, J Andrew Bagnell, and Anthony Stentz. Learning to manipulate unknown

objects in clutter by reinforcement. In Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence, pages 1336–1342. AAAI Press, 2015.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press,

2004.

Randy C Brost. Automatic grasp planning in the presence of uncertainty. The International

Journal of Robotics Research, 7(1):3–17, 1988.

Randy C Brost and Matthew T Mason. Graphical analysis of planar rigid-body dynamics with

multiple frictional contacts. In The fifth international symposium on Robotics research, pages

293–300. MIT Press, 1991.

84

http://www.blender.org/
http://www.blender.org/


Martin Buehler, Daniel E Koditschek, and Peter J Kindlmann. Planning and control of robotic

juggling and catching tasks. The International Journal of Robotics Research, 13(2):101–118,

1994.

Robert R Burridge, Alfred A Rizzi, and Daniel E Koditschek. Sequential composition of dy-

namically dexterous robot behaviors. The International Journal of Robotics Research, 18(6):

534–555, 1999.

Arunkumar Byravan and Dieter Fox. Se3-nets: Learning rigid body motion using deep neural

networks. In Robotics and Automation (ICRA), 2017 IEEE International Conference on, pages

173–180. IEEE, 2017.

Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M

Dollar. The ycb object and model set: Towards common benchmarks for manipulation re-

search. In Advanced Robotics (ICAR), 2015 International Conference on, pages 510–517.

IEEE, 2015.

John F Canny and Kenneth Y Goldberg. ” risc” industrial robotics: recent results and open prob-

lems. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference

on, pages 1951–1958. IEEE, 1994.

Nikhil Chavan-Dafle and Alberto Rodriguez. Prehensile pushing: In-hand manipulation with

push-primitives. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Con-

ference on, pages 6215–6222. IEEE, 2015.

Ignasi Clavera, David Held, and Pieter Abbeel. Policy transfer via modularity and reward guid-

ing. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on,

pages 1537–1544. IEEE, 2017.

Nikolaus Correll, Kostas E Bekris, Dmitry Berenson, Oliver Brock, Albert Causo, Kris Hauser,

Kei Okada, Alberto Rodriguez, Joseph M Romano, and Peter R Wurman. Lessons from the

amazon picking challenge. arXiv preprint arXiv:1601.05484, 2016.

85



Erwin Coumans. Bullet physics engine. Open Source Software: http://bulletphysics. org, 1:3,

2010.

Nikhil Chavan Dafle, Alberto Rodriguez, Robert Paolini, Bowei Tang, Siddhartha S Srinivasa,

Michael Erdmann, Matthew T Mason, Ivan Lundberg, Harald Staab, and Thomas Fuhlbrigge.

Extrinsic dexterity: In-hand manipulation with external forces. In Robotics and Automation

(ICRA), 2014 IEEE International Conference on, pages 1578–1585. IEEE, 2014.
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