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Abstract

We perform atomistic simulations to study the mechanism of homogeneous

dislocation nucleation in crystalline films during nanoindentation. Initially

the crystal deforms elastically during nanoindentation and eventually, at some

point, it becomes unstable and dislocations nucleate in the bulk of crystal.

The velocity field or the critical eigenmode, just before nucleation, is found to

be localized along a line (or plane in 3D) of atoms with a lateral extent, ξ, at

some depth, Y ∗, below the surface, underneath the indenter of radius, R.

In the first chapter of this thesis, we study the effect of interaction potentials

and crystal geometry. We use realistic interatomic potentials such as embedded

atom method (EAM) potentials for Aluminium (Al) in addition to simple

pair-wise interactions such as linear springs. We show that for all interatomic

potentials, the macro scale properties i.e. the scaled critical load, Fc/R, and

scaled critical contact length, Cc/R, decrease to R-independent values in the

limit of large R. However, despite the R independence of Fc/R and Cc/R, ξ/R

and Y ∗/R display non-trivial scaling with R. We show that although both the

interaction potential and the orientation of the lattice affect the prefactors

in the scaling relations (e.g. the crystal with Hookean springs is much harder

than either EAM Aluminum or Lennard-Jones), all the scaling laws are robust.

We also show that the local strain based Λ criterion of vanVliet et. al. holds

equally well for all potentials and orientations. Furthermore, it predicts the

polarization of the critical eigenmode with excellent accuracy.

In the second chapter, we present meso-scale analysis, a computationally

inexpensive technique to analyze incipient dislocation nucleation. The lowest
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energy eigenmode for meso-regions of varying radius, rmeso, centered on the

localized region of the critical mode is computed. The energy of the lowest

eigenmode, λmeso, decays very rapidly with rmeso and λmeso ≈ 0 for rmeso & ξ.

The analysis of a meso-scale region in the material can reveal the presence of

incipient instability even for rmeso . ξ but gives reasonable estimate for the

energy and spatial extent of the critical mode only for rmeso & ξ. When the

meso-region is not centered on the localized region, called embryo, we show

that the meso-region should contain a critical part of the embryo (and not

only the center of embryo) to signal instability. This scenario indicates that

homogeneous dislocation nucleation is a quasi-local phenomenon. We also

observe that meso-scale eigenmode reveals instability much sooner than the

full system eigenmode, thus making the simulations much less computationally

expensive.

In the third chapter, the kinematic structure of the theory of Field Dislo-

cation Mechanics (FDM) is shown to allow the identification of a local feature

of the atomistic velocity field in these simulations as indicative of dislocation

nucleation. It predicts the precise location of the incipient spatially distributed

dislocation field, as shown for the cases of the Embedded Atom Method po-

tential for Al and the Lennard-Jones pair potential. We demonstrate the accu-

racy of this analysis for two crystallographic orientations in 2D and one in 3D.

Apart from the accuracy in predicting the location of dislocation nucleation,

the FDM based analysis also demonstrates superior performance than exist-

ing nucleation criteria in not persisting in time beyond the nucleation event,

as well as differentiating between phase boundary/shear band and dislocation

nucleation. Our analysis is meant to facilitate the modeling of dislocation nu-
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cleation in coarser-than-atomistic scale models of the mechanics of materials.
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Chapter 1

Introduction

1.1 Motivation

The mechanisms for plastic deformation in crystals, caused by dislocation motion,

have been studied since the 1930’s [6] and are fairly well understood. Crystals, at the

microscale typically contain thousands of pre-existing defects. In the bulk of these

microscale crystals, new dislocations are predominantly produced by multiplication

of pre-existing dislocations (called Frank-Read sources) [7]. With the advancement

in nanotechnology, namely, the tools such as nano-indentation and microscopy tech-

niques such as SEM and TEM, pristine nano-scale sections of materials are accessible

that do not contain any defects. Under appropriate loading conditions, these pris-

tine sections can nucleate dislocations. This process of nucleation of dislocations

in the bulk, in the absence of other defects is known as Homogeneous Dislocation

2



Figure 1.1: These images have been obtained from the work of Kelchner et. al.
[1]. The colors in these pictures show centrosymmetry parameter. The red atoms
form part of partial dislocations and yellow atoms correspond to stacking faults. (a)
Incipient dislocation loops observed during dislocation nucleation at the first plastic
yield point on Au(111) (b) (111) planes are slipping against each other for nucleating
a dislocation loop.

Nucleation. In past two decades, homogeneous dislocation nucleation (HDN) has

been observed by several authors ([1], [8], [9], [10]) through atomistic simulations.

Kelchner et. al. [1] observed the structure of incipient dislocation during indentation

on Au(111) in their MD simulations, as shown in fig. 1.1. Gouldstone et. al. [2]

experimentally demonstrated HDN through a bubble-raft experiment, using a two

dimensional crystal made of soap bubbles, as shown in fig. 1.2. Later, Rodriguez

de la Fuente et al. [3] showed HDN during nano-indentation of gold films. Hillocks

stemming from the indentation on Au(001) due to the nucleation of dislocation loops

are shown in fig. 1.3.

Under given loading conditions, the motion of dislocations and their growth in the

presence of Frank-Read sources is well understood and is considered predictable [7].

However, the material conditions resulting in HDN are not well understood. The

3



Figure 1.2: These figures have been obtained from the work of Gouldstone et. al. [2]
(a) Schematic of indentation on Bubble raft set-up is shown, (b) Initially defect free
rafts nucleating dipole of dislocation during indentation (c) Load on the indenter, P,
vs. indenter depth, h, during indentation. The discontinuities in the load vs. depth
curves correspond to the nucleation events.

question of when and where the dislocations are going to nucleate is relevant for

predicting the behavior of various nanoscale materials such as nanowires, nanopillars

and nanospheres. Gerberich et. al. [11] studied the dislocation morphology and

nucleation in the bulk of Silicon nanospheres. Jennings et. al. [12] have analyzed

the size effects of pillar diameter on the strength of nanowires. Jennings et. al. [12]

performed simulations of nanowires during homogeneous compression, at a finite

temperature and finite strain rate. In their work, dislocation nucleation in the bulk

of nanowires is driven by thermal gradients. During compression of nanospheres at

finite temperature [11], along with the thermal fluctuations, there is an inhomoge-

neous strain field in the crystal. In this dissertation, we perform nano-indentation

simulations of defect-free crystal films at absolute zero (0 K). Inhomogeneous loading

conditions due to the indenter motion result in the nucleation of a dislocation dipole

4



Figure 1.3: These images of nanoindentation on Au(001) have been obtained from
the publication by Rodriguez de la Fuente et al[3]. (a) STM image of two nanoin-
dentations on Au(001) surfaces. Bump like features, called Hillocks, arising from
indentation. (b) STM image of one of the Hillock, seen near the indentation point.
(c) Dislocation nucleation configuraion proposed for creating the Hillock shown in
(b).
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(in 2D) or a dislocation loop (in 3D).

1.2 Problem statement

Dislocation nucleation has been studied for the past two decades, but surprisingly,

still not that well understood. To overcome this limited understanding, multiple

research questions have been addressed in this dissertation:

1) Is it the material (inter-atomic potential), or the geometrical conditions (e.g. in-

denter radius, crystal structure), that are more important for these instabilities? In

continuum mechanics, one can distinguish between the material and the geometrical

part of the stiffness matrix when the governing equations are written in a particular

way. However, in atomistic systems there is no methodology to achieve this. Can

dislocations nucleate in a Hookean crystal, where the particles are connected by har-

monic springs?

2) How does the hardness of a defect-free crystal film depend on the indenter ra-

dius? How does the incipient dislocation loop location and structure depend on the

indenter radius? A related question is, what is the effect of interatomic potentials

and crystal orientations on these scaling laws?

3) How good is Hertzian contact mechanics for predicting nano-indentation atomistic

simulations? Can Hertzian contact mechanics predict the strains upto instability? If

not, upto what indenter depth can Hertzian contact mechanics be used?

4) Is the instability local, i.e. breaking of the bond between any two atoms, or global,

as in the case of buckling of the whole chain of atoms during compression? In other
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words, can we observe the material in a small region and predict instability? If yes,

what should be the size of meso-region to be analyzed? How good is this meso-scale

analysis in terms of computational efficiency?

5) Should one use a criterion based on the local resolved shear stress as used for the

motion of pre-existing dislocations? Or is a criterion based on the gradient of the

stress field more appropriate for defect creation? More generally, can the criterion

be phrased in a local way at all, or must one look at the global loading geometry as

in the case of buckling of an Euler beam?

6) Can we extract some kind of material parameter, or rule, that encodes the thresh-

old for elastic instability? How can this rule be used in coarse-grained schemes such

as Field Dislocation Mechanics?

1.3 Significance of this research

Atomistic scale models provide insight to higher scale models, such as: models based

on Discrete Dislocation Dynamics and Cauchy-Born rule [13]. As discussed in the

later chapters of this work, Field Dislocation Mechanics embodies HDN within the

theory to develop a criteria for predicting the location and instant of HDN. A criteria

based on meso-scale analysis in chapter 3 could serve as an outline for including

the atomistic details at the dislocation embryo in coarser-than-atomistic models.

The non-linear scaling laws for the incipient dislocation loop in chapter 2 show the

importance of lattice constant in higher scale models. A theory that involves the

indenter radius (R) as the only length related input parameter would be capable of
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predicting these non-linear scaling laws.

The results obtained from the atomistic simulations in this work can be used to

guide nanoindentation experiments. At such small scales, much remains unclear

about the kind of measurements required for identifying HDN. For instance: re-

solved shear stress, used predominantly for dislocation motion, cannot be used for

predicting HDN. This work contains a review of several quantities such as: stress

gradients, Hill’s continuum planewave stability criterion, velocity gradients to equip

experiments with different methodologies to study HDN. It is often challenging to

determine whether the observed nano-scale mechanical response in experiments is

the result of homogeneous or heterogeneous dislocation nucleation [? ]. The non-

linear scaling laws for embryo location given in chapter 2 can be potentially verified

in experiments. These scaling laws can be used to identify whether the nucleation of

new dislocations is in truly pristine materials or involves interaction with pre-existing

ones.

1.4 Dissertation structure

This dissertation is organized as follows. Each chapter forms a self contained paper,

having an ”introduction - modeling - methodology - results - conclusion” format.

Chapter 2 examines the research questions 1, 2 and 3. The nucleation of dislocations

in two dimensional crystals has been observed for different interatomic potentials,

including the Hookean potential. In chapter 2, it is shown that the scaling laws for
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incipient dislocation loop remain the same, irrespective of the interatomic potentials

and crystal orientations.

In chapter 3, research questions 4 and 5 are addressed. Dislocation nucleation is

shown to be a meso-scale process. A computationally efficient, meso-scale analysis

technique is developed to analyze the properties of the incipient dislocation nucle-

ation. The applicability of this technique is demonstrated for three dimensional

nano-indentation simulations of an FCC lattice for one crystal orientation.

Chapter 4 contains the linear stability analysis of the evolution equation of the dis-

location density tensor in Field Dislocation Mechanics (research question 6). This

analysis predicts the location, and the instant of dislocation nucleation for all con-

sidered interatomic potentials and crystal orientations. This analysis can be used to

model HDN in coarser-than-atomistic models.
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Chapter 2

Universal scaling laws for

homogeneous dislocation

nucleation during nano-indentation
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2.1 Introduction

Nanoindentation has become an increasingly important tool in recent years to char-

acterize the mechanical response of materials. With the advancement in microscopy

techniques (eg. TEM), it is possible to make concurrent measurements of load and

structure during the indentation process. In this work, we focus on the ideal case

where the material subject to indentation contains no pre-existing defects; voids,

dislocations, or grain boundaries. It is possible to realize this situation experimen-

tally in films that are on the order of thousands of atoms thick. Rodriguez de la

Fuente et al. [3] performed these type of indentation experiments on Au. They

showed nucleation of dislocations inside the Au sample and compared their sample

after the plastic yielding events with the atomistic simulations. Gouldstone et. al.

[2] also showed homogeneous dislocation nucleation events in 2D bubble raft experi-

ments. Kelchner et al. [1] were the first to show the dislocation embryos during the

indentation of Au in atomistic simulations.

In these experiments and simulations, the question of where in the sample and under

what conditions these instabilities nucleate is still surprisingly contentious. Moreover,

it is not understood at all if the material, as in the motion of a pre-existing dislocation

on approach to the Peierls threshold, or the system geometry, as in the Euler bucking

of a column, determines the threshold for nucleation of these instabilities.

In this work, we focus on the initial elastic bifurcation event. The bifurcation event

is accompanied by nucleation of a dislocation dipole in 2D or a dislocation loop in

3D. The nucleation process is governed by the vanishing of energy associated with

11



a single eigenmode, called the critical mode. The incipient dislocation structure

observed in the critical mode is called as the embryo.

We show that the geometry and loading conditions play a much more important role

than the interatomic interactions in the crystal. We study the scaling laws for critical

quantities such as: load, contact length, location and size of the incipient dislocation

loop at nucleation with indenter radius, R. We show that, these scaling laws remain

consistent for all the interatomic potentials such as embedded atom method (EAM)

potentials for Al in addition to simple pair-wise interactions such as Lennard-Jones.

Only the prefactors are governed by the interatomic interactions.

The critical quantities considered in this work include hardness, Fc/R, critical contact

length, Cc/R, depth of the embryo from surface, Y ∗ and size of the embryo, ξ. For

large values of R, we show that the critical indenter load, Fc, and the contact length,

Cc, scale linearly with R, but the increase of Y ∗ and ξ is non-trivial. Y ∗ can be

potentially determined in experiments by measuring the location of the first surface

step formed from the indentation axis. These scaling laws for Y ∗ and ξ need to be

verified in macro-scale models inherently using interatomic potentials (as used in,

e.g., reference [8]).

Many authors have also attempted to formulate a nucleation criterion to predict

elastic instability. Early simulations showed that simple criterion based on the atomic

level resolved shear stress, or Schmid factor, to be incorrect [1]. Later, Li et. al. [8]

introduced the Λ criterion, which was based on Hill’s analysis [14] of the stability of

plane waves in a homogeneously deformed solid. For any homogeneously deformed
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Figure 2.1: (a) Elastic energy, U , stored in the crystal as a function of indenter
depth, D, LJ crystal, L = 40, R = 40. (b) Corresponding load, F , on the indenter
in the vertical direction as function of indenter depth, D.

crystal, Λ is related to the vibrational frequencies of phonons in the crystal and

negative values imply instability. In the seminal papers by Zhu, Li and coauthors

[8] [15] [13], it was shown that the Λ criterion works well for indentation along the

< 111 > axis in FCC copper crystal for EAM, Mishin and Ackland potentials.

However, recently Miller and Rodney [10] pointed out some inconsistencies with the

Λ criterion. They showed that Λ becomes negative before the onset of instability

for EAM aluminum crystals. This presents a major conceptual difficulty in using Λ

criterion as a rigorous indicator of mechanical instability. They also showed that it

incorrectly predicts the location of nucleation for EAM aluminum with an unstable

surface orientation.

Here we present results on 2D fully atomistic simulations for EAM aluminum lattice
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using the same parameters that were used by MR, our results differ qualitatively.

We observe that the minimum value of Λ indeed predicts the location of the embryo

correctly, even though it becomes negative before dislocation nucleation. On one

hand, since Λ becomes negative before nucleation it cannot be used as a nucleation

criterion. On the other hand, the fact that Λ predicts the embryo location precisely

for all the potentials and orientations makes it very useful. Furthermore, we show

here that Λ can also predict slip-plane normal and direction of slip at the embryo

with excellent accuracy.

In section 2.2 we describe the modeling details and loading protocol for the various

crystal orientations and interatomic potentials. In section 2.3 we present a kinematic

description of the mechanism of HDN and our method for defining the embryo size.

In section 2.4 we look at the scaling of the critical quantities described above with

respect to the indenter radius for all our simulations. We then show in section 2.5 in

precisely what sense Λ does work as a predictor for dislocation nucleation, followed

by a brief summary and outlook in section 2.6.

2.2 Simulation Formalism

We perform athermal quasi-static nano-indentation simulations for 2D hexagonal

crystal films via energy minimization dynamics. The LAMMPS molecular dynamics

framework [16] is used to perform non-linear energy minimization with the Polak-

Ribiere algorithm, and a custom python code was developed to perform eigen-
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Figure 2.2: Schematic of 4 different orientations of crystal with respect to indenter
axis. The red atoms correspond to the crystal and the blue atoms correspond to the
rigid base a) O1 b) O2 c) O3 d) O4
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mode analysis using the sparse matrix routines in SciPy [17]. The resulting load-

displacement and elastic energy-displacement curves for a typical indentation process

are shown in fig. 2.1. The force on the indenter and total potential energy in the

crystal increase as the indenter moves into the crystal until the crystal becomes un-

stable. At the point of instability, the load and potential energy each undergo a

discrete, discontinuous drop. The load drop is accompanied by the nucleation of a

dislocation dipole as in fig. 2.5a. In this work, we are interested in the structure of

the unstable mode precisely at the onset of instability. To reach as close as numeri-

cally possible to the nucleation event, we use a dynamic indenter stepping algorithm

similar to the algorithm used by MR [10] [8]. When nucleation occurs, we return the

indenter to its last stable position before nucleation, reduce the step size by a factor

of 10 and restart our simulation.

We configure 2D hexagonal crystals as shown in fig. 2.2 and 2.3 with periodic

boundaries on the sides, rigid base at the bottom, and a circular indenter on top

of the crystal. The geometrical parameters are shown in the setup diagram in fig.2.3.

We chose wide enough Lx that it did not change results significantly. In the rest of

the document all the length parameters such as: Lx, L, R and C are measured in

units of lattice constant, a. Energy is measured in units of Ea2 where E is the 2D

Young’s Modulus for each interatomic potential crystal (see Appendix C).

We use a stiff, featureless, harmonic, repulsive, cylindrical indenter for all our sim-

ulations as in ([5], [10]). The interaction potential used to model the interaction
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Figure 2.3: Schematic of the setup. All the relevant geometrical parameters are
shown: crystalline film width, Lx; film thickness, L; indenter radius, R; contact
length, C; the crystal orientation with respect to indenter motion axis, O.

between the indenter and the atoms is of the form:

φ(r) = A(R− r)2 if r <= R,

0 if r > R

(2.1)

Here, R is the indenter radius and r is the distance of the particle from indenter

center. Therefore, R − r is the distance of closest approach of the particle to the

indenter surface. We set A to be large enough that it does not affect any results

but small enough that it does not cause numerical difficulties during the energy

minimization procedure.

We study 4 different crystallographic orientations which we label: O1, O2, O3, O4 as

shown in fig. 2.2. O1 has the nearest neighbor axis aligned normal to the indenter

motion axis. In O2 and O3 the nearest neighbor axes are roughly aligned at 14◦and

19◦ respectively from the indentation direction. In O4 the nearest neighbor axis is
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Figure 2.4: Lowest 4 energy eigenvalues, λ, for L = 40, R = 40, O1, LJ crystal, as
function of δD = D −Dc. The cyan line is a fit to λ ≈ (δD).

parallel to the indentation direction. Note that the surfaces of O2, O3 and O4 are

much rougher than the surface of O1.

To study the effect of the form of the interatomic interactions on the nucleation

process we use 4 different potentials: Lennard-Jones (LJ), Morse, Harmonic (or

Hookean), and an EAM potential. In the LJ and Harmonic potentials, there are no

free parameter. For Morse, the exponential coefficient, α, is 10 in our simulations.

We use the Ercolessi-Adams EAM potential for Al. [18].

2.3 Kinematic Description of Dislocation Nucle-

ation

The total potential energy, U(xiα, D), is a function of atomic positions, xiα, and

indenter depth, D. The first derivative of energy with respect to the particle position
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Figure 2.5: (a) Lowest eigenmode at δD = D − Dc≈ 10−6 for L = 40, R = 40, O1,
LJ crystal.
(b) Corresponding transverse mode gradient, Ω/Ωmax.
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Figure 2.6: Transverse mode gradient, Ω/Ωmax, vs. distance, s, along embryo for
L = 80, O1, LJ crystal.
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gives the force, Fiα, on each particle as:

Fiα = − ∂U

∂xiα
(2.2)

Latin characters are used to index particle number, and Greek characters to index

Cartesian components. Then, we use the Lanczos algorithm, as implemented in the

SciPy toolkit [17], to compute the lowest 4 eigenvalues of the Hessian matrix for the

relaxed configuration at each indenter step.

Hiαjβ =
∂2U

∂xiα∂xjβ
(2.3)

The forces induced by an infinitesimal external indenter motion, Ξiα, must be bal-

anced by the internal atomic rearrangements as shown in [19]: .

Ξiα = −∂Fiα
∂D

Hiαjβ ẋjβ = Ξiα

(2.4)

Here, ẋ
.
= dx

dD
. We refer to the derivative of the particle positions with respect to

indenter depth as velocities since D plays the role of time in quasi static indentation.

We may solve (2.4) at each indentation step to compute the atomic velocities. The

analytical expression of Hiαjβ can be simply derived for pair potentials such as LJ

potential and Morse Potential using (2.5) [20]

Miαjβ = (cij −
tij
rij

)nijαnijβ +
tij
rij
δαβ (2.5)
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where t and c are the first and second derivatives of the bond energy and nijα is

the unit normal pointing from particle i to particle j. Then, Hiαjβ = −Miαjβ for off

diagonal terms and Hiαiβ =
∑

jMiαjβ for diagonal terms. However, for multibody

potentials like EAM potential the calculation of Hessian matrix is more involved.

We outline the analytical form of the Hessian matrix for EAM type many-body

potentials in Appendix A.

We compute the lowest 4 eigenvalues of the Hessian matrix for the relaxed configu-

rations at each indenter step. In all cases, we observe that the system is driven to

instability along a single eigenmode. This mode shows anti-parallel motion of a small

number of atoms on adjacent crystal planes as shown in fig. 2.5. This ultimately

results in the emission of a pair of edge dislocations after the system is driven past

the point of stability. We denote the critical depth, Dc, as the depth of the indenter

at which the dislocation dipole nucleates. Then, δD = D−Dc is the distance of the

indenter from the critical depth. It was shown earlier by Hasan and Maloney [19]

that in this case of dislocation nucleation, the bifurcation mechanism is saddle-node

type. In a saddle-node bifurcation, a single eigenmode descends through the spec-

trum, and its eigenvalue vanishes as the square root of the distance to the bifurcation

point. We call the energy-eigenmode corresponding to the eigenvalue vanishing as

δD0.5, the critical mode. In fig. 2.4 the critical eigenvalue corresponds to the cyan

line.

To calculate the precise location and size of the embryo we define a scalar quantity

Ω. For a given vector field, Ω, is the transverse derivative of the vector field along a

particular crystal axis in the deformed configuration. The lattice is first triangulated,
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and on each triangle, Ω is computed by linear interpolation of the critical mode.

Fig. 2.5b, shows Ω corresponding to the mode shown in fig. 2.5a. As expected, Ω

is maximum at the center of the embryo. We define the center of the embryo to be

at the centroid of the triangle with maximum Ω. s is defined as the distance of each

triangle from the triangle corresponding to the maximum Ω along the crystal axis of

interest. Fig. 2.6 shows Ω(s) for L = 80 at various R for LJ in orientation O1. Note

that the width of these Ω profiles increases with indenter radius and have a roughly

Gaussian form near the embryo center. To define the embryo size, these Ω(s) profiles

are fit to Gaussian functions of the form:

Ω(s)/Ωmax = e−s
2/ξ2 (2.6)

We fit the log Ω(s) curves out to their half-maximum using the generalized least

square method to define, ξ, the embryo size. It is important to note that we look at

configurations just before nucleation. The strain, although large, is quite uniform in

the vicinity of the embryo, and these atomic configurations would have almost perfect

centrosymmetry [1] and almost vanishing slip vector [21]. Ω is roughly analogous to

a slipping rate rather than a slip.

2.4 Scaling Analysis

Here, we study the dependence of Fc
R

, Cc
R

, ξ
R

and Y ∗

R
with R. First, we ask how

well linear contact mechanics describes F and C vs. D before the bifurcation. The
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Figure 2.7: (a) Indenter load, F , as a function of contact length, C (b) Indenter load,
F , as a function of indenter depth, D for various L, R = 160, O1, LJ crystal.
Solid lines are the predictions of Hertzian contact theory (eq. 2.7 and eq. 2.8)
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Figure 2.8: Load as a function of square of contact length, C2, for different inter-
atomic potentials. The horizontal lines indicate the value of F (1− ν2)/C2 given by
Hertzian contact theory in the limit of infinite L (eq. 2.7) [4].
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analytical expressions for load and indenter depth for a thick linear elastic isotropic

infinite layer being indented by a long cylinder were developed by Meijers [4]. Equa-

tions 2.7 and 2.8 give load and indenter depth respectively as a function of indenter

radius, R, contact length, C, layer thickness, L, and material properties, E (Young’s

Modulus) & ν (Poisson’s Ratio). In these equations α0, α1, α2 are dependent on ν

and are given in [4]. For a central force pair potential on a hexagonal lattice, ν is

0.25 and α0, α1, α2 are -2.27, 5.4 and -7.24 respectively. Note that in equation 2.8,

D has logarithmic divergence with L.

F =
πC2E

16R(1− ν2)
[1 + 1/8 ∗ α1(C/2L)2 + 1/64(α2

1 + 6α2)(C/2L)4] (2.7)

D = C2/4R

((
1/2 + 1/16α1(C/2L)2 + 1/128(α2

1 + 6α2)(C/2L)4
)
ln(8L/C)

+1/4 + 1/4α0 + 1/64α1(3 + 2α0)(C/2L)2 + 1/512(2α0α
2
1 + 12α0α2 + 3α2

1 + 10α2)(C/2L)4
)

(2.8)

In fig. 2.7a, we study the variation of F vs. D for R = 160, LJ-O1. We see

that Hertzian theory gives a good description of load vs. depth with a slight but

systematic underestimation of the load just before nucleation. Note that since D has

a logarithmic divergence with L in Hertzian theory, it is more convenient to study F

vs. C as there is much more rapid convergence to the well defined infinite L limit,

and we plot this in fig. 2.7b. In general, we can expect L independence in the F vs.

C curves when L >> Cc/2. We show below that for all of our samples, Cc R/2, so

as long as L >> R/4, we can expect L independence in the F vs. C curves.
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Figure 2.9: (a) Critical contact length, Cc, as a function of indenter radius, R, for
various L, O1, LJ crystal . (b) Indenter Force, Fc, in the last stable configuration
scaled by indenter radius, R, as a function of R for different system sizes, O1, LJ
crystal.
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Figure 2.10: Critical force, Fc, scaled by R as a function of R for L = 160 (a) various
interatomic potentials (b) various orientations.
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For these 2D systems, we define hardness as the ratio of critical load, Fc, to the

indenter radius, R. In fig. 2.9, we plot the critical load and contact length as

a function of indenter radius for various sample sizes. As explained above, within

linear contact mechanics, F is determined by C, R and L. So as long as we are in the

L >> R limit and linear contact mechanics applies, the critical load, Fc, should be

determined by the critical contact length, Cc, and indenter radius, R. When R > 100

we observe collapse of hardness, Fc/R, for various L as shown in fig. 2.9b for LJ-O1.

For this range of R as observed in fig. 2.9a, Cc varies linearly with R, and according

to equation 2.7 Fc varies as C2
c /R. Therefore, hardness also remain independent of

R as can be seen in fig. 2.9b. For small indenter radii (R < 100), the crystal film

is relatively harder and indentation size effect (ISE) is observed in both Cc/R and

Fc/R curves (fig. 2.9)

We calculate hardness values for different interatomic potentials and non-dimensionalize

them by their Young’s Modulus, E, calculated for the initial undeformed crystals.

The variation of this nondimensional hardness as a function of R for different inter-

atomic potentials and orientations is shown in fig. 2.10. The fact that the nondi-

mensional hardness values for different potentials are not equal even though the

nondimensionalized F vs. C curves for all the potentials approximately collapse up

to nucleation (fig. 2.10 and 2.8), indicates the importance of non-linear behavior of

interatomic potentials for determining the prefactors. It is interesting that the har-

monic crystal has the highest non-dimensionalized hardness, and thus provides us

limiting value estimates of the hardness. Among different orientations, the most sta-

ble surface orientation, O1, has the lowest hardness value. O4, for which the indenter
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Figure 2.11: (a) Depth of embryo center, Y ∗, scaled by R0.75 (b) Embryo size, ξ,
scaled by R0.5 - as a function of R for different system sizes, O1, LJ crystal.

axis is parallel to the crystal axis has roughly twice the hardness of O1.

Previous authors ([10], [22]) have employed quasicontinuum simulations for signif-

icantly large system size regime such that their results are independent of L. For

EAM potential MR observed Fc/Cc to be between 0.28 ev/Ao3 - 0.33 ev/Ao3 for the

systems that were two order of magnitude bigger than our systems. For our L = 120,

R = 120 EAM potential crystal Fc/Cc is found to be 0.29 ev/Ao3 that matches well

with MR. Our simulation results clearly show that if L is bigger than 100, the sys-

tem size effects are no longer important and fully atomistic simulations can yield

the required information. For the range of R of interest, we also calculate Cc using

linear elasticity for known Fc and R. Fc/Cc using this linear elastic calculation is

0.25 ev/Ao3 which is roughly 13% lower than the actual value showing that deviation

from linear contact mechanics are non-negligible.

We measure depth of the embryo from the bottom most point of the deformed surface,
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Figure 2.12: (a) Embryo center depth, Y ∗, scaled by R0.75 (b) Embryo size, ξ, scaled
by R0.5 - as a function of R for different orientations and interatomic potentials.
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Y ∗, and the embryo size, ξ. Both were also found to be roughly independent of L as

shown in fig. 2.11 for LJ-O1. We observe the following scaling laws for Y ∗ and ξ.

Y ∗ ∼∝ R0.75 or
Y ∗

R
∼∝ R−0.25 (2.9)

ξ ∼∝ R0.5 or
ξ

R
∼∝ R−0.5 (2.10)

These scaling laws are essentially independent of interatomic potential and crystal-

lographic orientation as shown in fig. 2.12. In the limit of large R despite the R

independence of Fc/R and Cc/R, ξ/R and Y ∗/R display non-trivial scaling with R.

If R is the only relevant length scale, then any linear continuum description cannot

explain these scaling laws. This implies that even though the linear elastic calcu-

lation is close to the actual F vs. C curves the non-linear behavior of material is

important for explaining these non-trivial scaling laws for ξ/R and Y ∗/R. In ta-

ble 2.1, we show hardness, Fc/R, and embryo-size, ξ, for various orientations and

inter-atomic potentials. The exact form of the mathematical relation between Fc/R

and ξ is not clear, but the trend is clear - bigger embryo implies smaller hardness.

For instance, LJ-O4 is the hardest and has the lowest ξ among all orientations. As

intuitively expected, among all potentials Hookean-O1 is the hardest and has the

lowest embryo size.

29



Table 2.1: ξ/R0.5 and Fc/R for different potentials and orientations, R > 100

LJ-O1 LJ-O2 LJ-O3 LJ-O4 EAM-O1 Morse-O1 Hookean-O1
ξ

R0.5 0.66 0.65 0.64 0.57 0.60 0.58 0.38
Fc
R

0.05 0.056 0.061 0.1 0.052 0.049 0.33

2.5 Λ criterion

Another question that has been investigated by many authors before is, whether it

is possible to predict the onset of instability for HDN using a criterion? As shown

in fig. 2.5a, the instability process involves a cluster of atoms (10 to 20 atoms) and

is inherently non-local. Therefore, it is still not fully understood if this instability

can be predicted by a locally measurable threshold criterion . The first naive local-

criterion proposed was based on Maximum Resolved Shear Stress (MRSS) or Schmid

factor. The resolved shear stress, τ , can be calculated using the projection, of the

component of atomic-level shear stress on the critical plane, along the slip direction.

The naive expectation is that the dislocation loop will nucleate at the location of τmax,

when τ exceeds the source threshold characteristic of the material. The maximum

resolved shear stress (MRSS) calculated for LJ Potential, O1 and O4 is shown in

fig. 2.13. Clearly, the MRSS does not predict the location of embryo accurately, as

already shown by Kelchner [1].

Later, Li, VanVliet and co-workers formulated another local criterion, the Λ crite-

rion [8] [15] [13]. Λ is based on Hill’s analysis of the stability of plane waves in

a homogeneously deformed crystal. Λµν{~k} is the acoustic tensor. It is related to

the dynamical matrix which gives the vibrational frequencies of phonons of a given
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Figure 2.13: Maximum resolved shear stress for each atom in LJ crystal, O1 and O4.

wavevector. k2Λmin is then the lowest squared phonon frequency for the phonon of

given wavevector. A negative value of Λmin indicates an unstable phonon mode.

Λ is a function of local strain, which can be computed through several approaches,

given the atomic positions in the crystal. We describe here two methodologies for

local strain calculation, and for both cases our results are almost the same. One can

define the local strain on each triangle in a 2D hex lattice using linear interpolation,

as the strain was computed during the calculation of Ω in section 2.3. For each

atom, the local strain is the algebraic average of the strain of six triangles around

the atom. We also computed Λ for each triangle, instead of each atom, based on the

strain in each triangle and the results were also almost the same in this case. The

other procedure to calculate local strain is as done by Falk and Langer in [23] (see

Appendix B). In this case, the local strain for an atom is the best fit uniform strain

calculated using the nearest neighboring atoms. The acoustic tensor is defined for an
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infinite homogeneously deformed lattice. Given the local deformation gradient, F ,

at particle, a, the initial lattice is homogeneously deformed. The dynamical matrix,

Duv, for the can be computed as:

Duv(~k) =
∑
j

Huv( ~Raj) ∗ e−i
~k. ~Raj

(2.11)

where, ~Raj is the displacement vector defined from the local position, Ra, to the

neighboring particle, j, in the homogeneously deformed crystal. Huv contains the

elements of the hessian matrix for a homogeneously deformed crystal as described in

Appendix A. Equation 2.11 can be simplified to:

Duv(~k) =
∑
j

Huv( ~Raj)(cos(kk̂. ~Raj)− 1) (2.12)

Using the long wavelength approximation,

Duv(~k) ≈
∑
j

−0.5 ∗Huv( ~Raj) ∗ (kk̂. ~Raj)
2

≈ (k2) ∗
∑
j

−0.5 ∗Huv( ~Raj) ∗ (k̂. ~Raj)
2

(2.13)

Λuv =
1

k2
Duv(~k) (2.14)

For particle a, Λ is the minimum eigenvalue of Λuv over all ~k.

Λ for EAM and LJ potentials for the stable surface orientation, O1, and the unstable

surface orientation, O4, is shown in fig. 2.14. Note that Λ becomes negative before
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Figure 2.14: Minimum Λ value for each atom in LJ and EAM crystal, O1 and O4.

instability, this makes a strict correspondence between loss of stability and Λ < 0

untenable. Recently, MR [10] also showed that Λ becomes negative before the actual

instability. Furthermore, they observed that Λmin does not correspond to the embryo

location for EAM-O4. On the contrary, we always observe that Λ is minimum at the

center of the embryo irrespective of the crystal orientation and the inter-atomic

potential.
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(a) LJ Crystal, O1 orientaion (b) LJ Crystal, O4 orientaion

Figure 2.15: Wavevector direction, k̂; Normal to wavevector direction, k̂n; Polariza-
tion vector direction, p̂ corresponding to minimum Λ in LJ Crystal for (a): O1, (b):
O4.

In fig. 2.15 we also show the wave-vector, k, and the polarization vector, p, cor-

responding to the least stable phonon, for the atom with minimum Λ. As shown,

the wave-vector, k, is almost perpendicular to the slip plane. The eigenvector cor-

responding to the minimum eigenvalue of Λuv or the polarization direction, p, is not

perpendicular to the wave-vector, k; it is very close to the slip direction. These

results are consistent across all crystal orientations and inter-atomic potentials.

2.6 Discussion and Summary

We have performed quasi-static simulations of homogeneous dislocation nucleation in

the bulk of 2D hexagonal crystals for various orientations and interatomic potentials.

For all orientations and interatomic interactions discussed in this chapter, we observe

nucleation of a dipole of shear dislocations. The critical parameters: scaled critical
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indenter load, Fc/R, and scaled critical contact length, Cc/R, become independent

of R for large R values. However, the scaled size of embryo, ξ/R, and the scaled

depth of embryo, Y ∗/R, show non-trivial scaling with R even for large R values.

These scaling laws are consistent for different interatomic interactions and lattice

orientations. On simple dimensional grounds, no continuum theory containing only

R as geometrical parameters can predict these scaling laws, to describe the embryonic

location and size scaling. These scaling laws also need to be verified in macro-scale

models inherently using interatomic potentials (as used in, e.g., reference [8]).

We also show dislocation nucleation for a Hookean crystal with perfect linear springs.

The scaling laws are also robust for this Hookean crystal. This implies that the

instability is intrinsically geometrical. However, the dependence of prefactors in

the scaling laws on interatomic interactions and lattice orientations indicates some

importance of non-linear material behavior in homogeneous dislocation nucleation.

One of the criticisms associated with Λ given by MR was that it becomes negative

before instability nucleation. We concur with MR that Λ cannot be used as a nucle-

ation criterion in this sense. However, Λ is always minimum at the center of embryo

and it predicts the mode and the slip-plane accurately irrespective of the crystal

orientation and interatomic potential. Therefore, Λ is much more useful than our

expectations from the previous analysis by MR.

In this work we used a featureless infinite rigid indenter. In nano-indentation exper-

iments one typically uses an indenter with a finite stiffness. For direct comparisons

with experiments, the affect of indenter interaction with the substrate needs to be
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understood carefully.

Finally, the role of temperature for the scaling of energy barriers also has to be

studied. The energy barrier in the saddle node bifurcation mechanism of dislocation

nucleation is dependent on temperature and other macro-scale properties such as

indenter radius, R. This interdependence needs to be understood, to predict the

hardness at finite temperature.
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Chapter 3

Meso-scale analysis of

homogeneous dislocation

nucleation
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3.1 Introduction

In perfect crystals the onset of plasticity is indicated by the events of dislocation nu-

cleation. In microscale crystals, dislocations are typically produced by pre-existing

defects in the material. However, in recent years, tools such as nanoindentation and

the Atomic Force Microscopy (AFM) have allowed access to mechanical properties

in nanoscale samples where one can obtain practically defect-free crystals. There-

fore, homogeneous dislocation nucleation (HDN) during nano-indentation has been a

matter of interest lately. Miller and Rodney (MR) showed that HDN is a meso-scale

process involving tens of atoms forming an embryo underneath the indenter [10].

The importance of the non-local nature of this problem has also been emphasized in

the work of Delph and Zimmerman for the development of Wallace criterion for the

prediction of instability [24] [25]. The Wallace criterion is used for cavitation and

crack growth problems in FCC solids. For HDN, Miller and Rodney (MR) developed

a predictive criterion based on the meso-scale atomic acoustic tensor [10]. According

to this criterion, HDN is indicated by loss of positive definiteness of the meso-scale

acoustic tensor. The meso-scale criterion is similar to a previously proposed Λ crite-

rion. Λ is a local quantity, calculated on an atom-by-atom basis [14] [2] [8] [9] . On

the other hand, MR’s criterion is based on the acoustic tensor of a cluster of atoms.

For the non-local analysis described by MR, one has to judiciously choose the meso-

region for calculation of the acoustic tensor. MR did not discuss how the size and

the location of the meso-region would affect the analysis. Maloney et. al. described

the methodology for measuring the embryo size. They also showed that the embryo
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grows in a non-trivial way with the radius of curvature of the indenter tip. An

important question is what is the minimum size of the meso-region centered at the

embryo required to capture the defect. We show here that even if the meso-region

size is much smaller than the embryo, it can still reveal the instability. However, the

meso-region captures the full spatial extent of the embryo only if the meso-region is

bigger than the embryo.

Another important question we address in this work is: how far can the meso-region

move from the embryo center to detect the instability? If the instability is local,

one could naively assume that if the meso-region contains the minimum Λ location

(i.e. the embryo center), it can predict the instability. However, our preliminary

results contradict this. We determine the critical section of the embryo that the

meso-region should necessarily contain to detect the instability. In this work, we

also show that the meso-scale lowest eigenmode captures the embryo sooner than

the full system eigenmode. This further highlights the utility of meso-scale analysis

in terms of computational time and resources for atomistic simulations. We show

that the meso-mode signals the instability, four to six orders of magnitude of distance

(or load) to dislocation nucleation before the full system eigenmode.

The rest of this chapter is organized as follows. In section 3.2 we describe the

details of our simulations and give a brief kinematic description of the mechanism of

homogeneous dislocation nucleation. Section 3.3 contains our rationale and results

on the meso-scale analysis. In particular, we discuss the significance of meso-region

size by fixing the analysis at the center of embryo, and then vary the meso-region

spatially and temporally. Section 3.5 concludes with a brief summary and discussion
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Figure 3.1: (a) Elastic energy, U , stored in the crystal as function of indenter depth,
D, LJ crystal, L = 40, R = 40. (b) Corresponding load, F , on the indenter in the
vertical direction as function of indenter depth, D.

on implications of our results, together with outline of our future work.

3.2 Modeling and Eigenanalysis

We perform athermal quasi-static nano-indentation simulations for 2D hexagonal

Lennard Jones crystals via energy minimization dynamics. The simulation method-

ology and kinematic analysis is described in sec. 2.2 and sec. 2.3. All energies and dis-

tances in this chapter are measured in Lennard-Jones units. The load-displacement

and energy-displacement curves for the indentation process are shown in fig. 3.1. As

shown in sec. 2.2, the system is driven to instability along a single eigenmode, that

shows anti-parallel motion of small number of atoms on adjacent crystal planes, re-

sulting in the nucleation of a dislocation dipole as shown in fig. 3.2b. In fig. 3.2a, the
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Figure 3.2: Lowest 4 energy eigenvalues, λ, for L = 160, R = 40, O1, LJ crystal, as
function of δD = D −Dc. The cyan line is a critical energy eigenmode along which
the system is driven to instability.
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Figure 3.3: (a) Lowest eigenmode at δD = D −Dc≈ 10−6 for L = 160, R = 40, O1,
LJ crystal.
(b) Corresponding transverse mode gradient, Ω/Ωmax.
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lowest eigenvalue, λ, of a critical meso-mode decreases with distance to dislocation

nucleation, δD, as:

λ = a1 ∗ (δD)−0.5 (3.1)

The calculation of Ω for computing the embryo size is given in sec. 2.3. Fig. 3.3a

shows the Ω field corresponding to the mode shown in fig. 3.2b. Fig. 3.3b shows

Ω(s) profiles for L = 160, R = 40.

3.3 Meso-scale Analysis of Incipient Dislocation

3.3.1 Rationale

As shown in the top panel of fig. 3.4, the lowest energy eigenvalue of an undeformed

region scales as 1/r2, where r is the size of the meso-region. This is expected for an

isotropic, linear, elastic 2D sheet of atoms in a crystal with fixed boundaries. The

critical eigenmode for an undeformed region of radius, rmeso = 8, is a longwavelength

mode as shown in the bottom left panel of fig. 3.4.

Just before nucleation, the critical eigenmode for a meso-region is localized as shown

in the bottom right panel of fig. 3.4. The meso-region critical eigenmode, called

meso-mode, looks similar to the full system eigenmode shown in fig. 3.2b. The

lowest eigenvalue corresponding to the critical eigenmode falls off faster than any

power law as shown by the curve in the top panel fig. 3.4.

A meso-region of radius as small as six interatomic distance can capture the defect
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Figure 3.4: Top: Characteristic λmin ∼ rmeso curves for an undeformed and a de-
formed crystal close to nucleation (δD ∼ 10−6). Bottom: Meso-region eigenmodes
corresponding to the lowest energy eigenvalue of meso-region with radius rmeso = 8:
from an undisturbed crystal (left) and a configuration close to dislocation nucleation
(right).
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Figure 3.5: Structure of the meso-mode for 3 different rmeso from the system with
L = 160, R = 120 and δD ≈ 10−6. rmeso = ∞ corresponds to the entire system.
Note how quickly the meso-mode captures the structure of the incipient defect.

0 20 40 60 80
−6

−4

−2

0

2

4

r
meso

ln
 λ

 m
in

 

 
R = 40

R = 80

R = 120

R = 160

R = 225

R = 270

Figure 3.6: ln(λmin) versus rmeso curves for various indenter radii, R, and system
size, L = 160.
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as shown by the meso-mode in fig 3.5. Above a critical radius of the meso-region

centered at the hot atom, the structure of the meso-mode saturates. In fig 3.5,

the meso-mode for rmeso = 32 has the same spatial structure as the full system

eigenmode. The energy of the meso-region, or the lowest eigenvalue initially decreases

as the meso-region radius increases and then plateaus similar to the spatial structure

of the meso-region. Fig. 3.6 is a log-lin plot for the meso-region eigenvalue vs. rmeso

for different R. The height of the plateau is not function of R, it is governed by the

distance from nucleation, δD, for the meso-scale analysis. On the other hand, the

structure of the localized meso-mode is independent of the proximity to nucleation.

Therefore, the rest of this work is focused on the structure of the meso-mode versus

the eigenvalue associated with the meso-region.

3.3.2 Meso-Region centered at the Hot atom

We compute the eigenmode corresponding to the lowest energy eigenvalue, called

meso-mode, for various rmeso with meso-regions centered at the embryo. Fig. 3.5

shows the meso-mode corresponding to rmeso = 6 and rmeso = 32 for L = 160,

R = 120 and the critical portion of the eigenmode for full system(rmeso = ∞). The

Ω(s) profiles corresponding to these modes is shown in fig. 3.7. The width of the Ω

curve for rmeso = 8 is smaller than that of the full system. The Ω curves converge

when rmeso is greater than a critical value. As expected, they converge for rmeso & ξ,

however meso-regions smaller than ξ definitely have information about the inicipient

instability.
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Figure 3.7: Ω(s) curves on slip plane computed from lowest eigenmodes of various
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Figure 3.8: (a) ξmeso as a function of rmeso for various indenter radii, R and system
size, L = 160. Inset shows that the curves can be made to collapse by rescaling the
axes with their plateau value ξ∞. (b) Collapsed ξmeso versus rmeso curves (rescaled
by ξ∞) for indenter radius, R = 160 and different system sizes, L.
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We next measure the spatial extents, ξmeso, of the meso-region eigenmodes for all our

systems. ξ∞ is the spatial extent obtained from the full system eigenmode. Fig. 3.8a,

shows ξmeso ∼ rmeso for different indenter radii. As expected from fig. 3.8a, for small

rmeso, ξmeso increases before plateauing at ξ∞. The increase of ξmeso with rmeso for

meso-regions smaller than ξ∞ follows a power law. The insets shows the collapse of

these curves when rescaled by their corresponding plateau value: ξ∞. The collapsed

rescaled curve in fig. 3.8b is universal for all indenter-crystal geometries. The fact

that the plateauing of ξmeso is seen for rmeso > ξ∞ can be reasonably expected from

the fact that those meso-regions completely encompass the incipient dislocation.

The power law scaling of ξmeso strongly suggests that for rmeso smaller than ξ∞, the

spatial structure of the lowest meso-mode does reveal the structure of the critical

mode. However, for meso-regions of radius of one or two particle spacings the meso-

mode invariably ceases to have the structure typical of an incipient dislocation. This

scenario, where we can pick up the signature of an incipient dislocation with meso-

regions smaller than its spatial extent - but not too small, indicates that homogeneous

dislocation nucleation is a quasi-local phenomenon.

3.3.3 Meso-scale analysis centered off from the highest Ω

triangle

In this section, we analyze the lowest eigenmode for the meso-region, called meso-

mode, when the meso-region is not centered at embryo center. We define critical

meso-mode as the mode that contains the signature of an incipient dislocation. In
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(c) (d)

Figure 3.9: Structure of the lowest energy eigenmode for rmeso = 8 and indenter
radius, R = 40 when the meso-region is moved along the slip plane. The ’red cross’
corresponds to the embryo center and the ’green cross’ corresponds to the meso-
region center.
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Figure 3.10: Schematic diagram used to derive the geometrical relation between δc,
rmeso and x as in eq. 3.2. δc is the critical distance from the ’Hot atom’ upto which
the critical meso-mode has a lower energy than the long wavelength mode. x is the
critical portion of the embryo required to capture the defect.

fig. 3.9, the meso-mode is shown when the meso-region is moved spatially along the

slip plane. Upto a critical distance, δc, the meso-mode is the critical meso-mode. At

δc, the long wavelength mode has lower energy than the critical meso-mode and the

critical meso-mode no longer remians the meso-mode. The important question we

address here is: How δc varies with the radius of meso-region, rmeso, and the embryo

size, ξ?

We perform meso-scale analysis centered at atoms around the embryo for different

embryo sizes. In fig. 3.11, the size of the meso-region is fixed, rmeso = 40. The colors

at each atom represent maximum Ω for the meso-mode. The meso-mode is found to

be the critical meso-mode when the meso-region is centered on the red atoms. The

area formed by the red atoms depends on rmeso and ξ.

Again, δc is the critical distance from the center of the embryo upto which the critical

meso-mode has a lower energy than the long wavelength mode. If we assume that
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the meso-region should contain some critical portion of the embryo as shown in the

diagram 3.10, δc can be written as in eq. 3.2, where x is the critical portion of the

embryo.

x+ δccosθ = (r2meso − δ2csin2θ)0.5

δc = −xcosθ + rmeso(1− x2sin2θ/r2meso)
0.5

(3.2)

Assuming rmeso >> x,

δc = rmeso − xcosθ − (x2sin2θ)/(2rmeso) (3.3)

Along the slip plane, for θ = 0,

δc = rmeso − x (3.4)

To compute x, we move our meso-region along the slip plane for various rmeso and ξ

as shown in fig. 3.12a. For rmeso >> ξ, x is constant with varying rmeso and increases

with increase in ξ (or R). From fig. 3.12b, x is found to be 1.2 ξ. This value of x

is substituted back in eq. 3.3. Then, in fig. 3.11 δc based on the eq. 3.3 is shown

by the black curves for different R (or ξ). The black curves predict the area formed

by red atoms fairly well. This implies, if rmeso > ξ then it must encompass roughly

120% of ξ to be the critcal meso-mode.
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Figure 3.11: For fixed rmeso = 40 and various indenter radius, R when the meso-region
is centered at the ’red’ atoms, the lowest mode can detect the embryo. The colors
represent maximum Ω for the lowest mode. The black curve shows the prediction
based on the eq. 3.3 for δc.
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(a) (b)

Figure 3.12: Analysis when the meso-region is moved along the slip plane. (a):
Schematic diagram for eq. 3.4 (b): x, the portion of embryo necessary for the lowest
mode to be the critical mode vs. rmeso for different indenter radii, R.

3.3.4 Meso-scale analysis away from nucleation (temporally)

Here, we address: At what critical indenter depth, δD, the meso-mode becomes

localized. In other words, at what δD or δF , does the energy of the critical meso-

mode becomes lower than the long wavelength meso-mode. We study the dependence

of δD with rmeso. Before nucleation as shown in fig. 3.2a, the lowest eigenvalue, λ,

of a critical meso-mode decreases with distance to dislocation nucleation, δD, as:

λ = a1 ∗ (δD)−0.5 (3.5)

In section 3.3.1, it was described that the eigenvalue corresponding to the long-

wavelength meso-mode, λe, is a function of size of the meso-region, rmeso, given by:

λe = a2 ∗ (rmeso)
−2 (3.6)
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At critical distance, δD, or critical indenter force, δF , the energy of the critical meso-

mode becomes equal to the long-wavelength mode energy. This gives the analytical

relation between δD and rmeso:

δD = a(rmeso)
−4 (3.7)

We compute δD and δF vs. rmeso curves from simulations as shown in fig. 3.13. The

power law derived in eq. (3.7) is also observed in simulations. δD vs. rmeso curves

collapse when rmeso is scaled by intrinsic embryo size, ξ, and δF vs. rmeso collapse

when rmeso is scaled by ξ1.5. This can be derived from the fact that hardness, δF

scaled by R, is the critical quantity equivalent to δD and ξ increases as a square root

of R. From these curves it can be seen that, as the system size approaches infinity

δD goes to zero. In other words, meso-scale analysis predicts nucleation much earlier

than the full eigenmode analysis.

3.4 Scaling laws in fully three dimensional simu-

lations using meso-scale analysis

We perform computational nano-indentation on a face-centered cubic (FCC) lattice

using a spherical indenter of radiusR as described in sec. 4.2.2. At each indenter step,

the Hessian matrix is computed for the FCC lattice, similar to the two dimensional

simulations. Diagonalization of the Hessian matrix for a three dimensional system

can be computationally very expensive. Some of the systems considered for this
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Figure 3.13: The critical time (required for the lowest mode to be the critical mode)
measured from the bifurcation point, δt vs. rmeso for various indenter radius R.

work contain million atoms approximately. We use meso-scale analysis described in

sec. 3.3 to compute the critical meso-mode. First, we measure the embryo size, ξ,

and the embryo location, Y ∗, for a smaller system size, L, and a smaller indenter

radius, R, using full system kinematic analysis. Then the results for the smaller R

are extrapolated to calculate ξ and Y ∗ for the required R, assuming ξ ∝ R0.5 and

Y ∗ ∝ R0.5. These scaling laws for ξ and Y ∗ were obtained in chapter 2. Later in this

section they are shown to hold true for the FCC lattice as well. Then we use very

small meso-regions, rmeso ≈ 6, close to Y ∗ to find the embryo. Following sec. 3.3.1

and sec. 3.3.2, it was seen that very small meso-regions, rmeso ≈ 6, can capture the

embryo. It was noted in sec. 3.3.3 that the meso-region not centered at the embryo

can also capture the incipient dislocation. To search for the embryo, the meso-scale

analysis was performed only once in each spherical zone of a radius of 6 atomic units.

Since the meso-regions used were small, and the analysis was performed only at a
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few locations, locating the embryo was computationally quick. Once the embryo was

located, we used a meso-region of radius, rmeso ≈ 1.5ξ, centered at the embryo to

capture the structure of the critical eigenmode. We utilized the result obtained in

sec. 3.3 that rmeso ≈ ξ is needed to capture the structure of the embryo. It was

verified that increasing rmeso does not change the results.

The critical meso-mode for L = 65 and R = 65 is shown in fig. 3.14. At the onset of

instability, there are two planes slipping with respect to each other resulting in the

nucleation of a dislocation loop. The critical slip plane is (111) and the slip direction

is < 121 >. As shown, the embryo structure located on (111) is hexagonal. We

triangulate (111) plane containing the embryo using Delaunay triangulation. Each

triangle and the vertex atom on the adjacent plane forms a tetrahedron. The critical

meso-mode is interpolated on these tetrahedrons using linear finite element shape

functions. Using this interpolation, Ω is defined as the curl of the critical meso-mode

resolved in the direction perpendicular to the slip plane, as done in sec. 3.2 for the

two dimensional simulations.

We call the three diagonal axes of the hexagonal embryo as n1, n2 and n3, as shown

in fig. 3.15. Ω vs. s is plotted in fig. 3.15 to obtain the embryo size (as done in sec.

3.2). Interestingly, the Ω vs. s curves along the three diagonal axes collapse, implying

that the embryo is regular hexagon. The collapse of these curves was observed for

all indenter radii. The embryo size, Ω, can be calculated from these Ω vs. s curves

by fitting Gaussian profiles as done in sec. 3.2.

We observe the following scaling laws for the embryo location, Y ∗, and the embryo
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Figure 3.14: Critical meso-mode centered at the embryo core. Different views of the
embryo are shown. The colors show magnitude of the mode at each atom.
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Figure 3.15: Top: Ω vs. s along n1 and n4. Bottom: Ω vs. s along n1, n2, n3.
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Figure 3.16: Left: The embryo size, ξ, scaled by R0.5 as a function of R. Right: The
embryo core depth from the surface, Y ∗, scaled by R0.75 as a function of R.

size, ξ (fig. 3.16).

Y ∗ ∼∝ R0.75 or
Y ∗

R
∼∝ R−0.25 (3.8)

ξ ∼∝ R0.5 or
ξ

R
∼∝ R−0.5 (3.9)

These scaling laws are consistent with two dimensional simulations. These scaling

laws were shown to be independent of interatomic potentials and crystal orientation

for two dimensional hexagonal crystals. Similar to the two dimensional hexagonal

lattice, for FCC L-J lattice, ξ/R and Y ∗/R display non-trivial scaling with R despite

the R independence of hardness and indentation size effect is observed for small R.
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3.5 Discussion and Summary

In this chapter, we studied the nucleation of dislocation dipoles in the bulk of perfect

2D crystals subjected to nanoindentation with a circular, atomistic indenter under

athermal, quasistatic conditions. We performed meso-scale analysis of configurations

at the stability threshold, showing that small, non-local regions of the crystal, cen-

tered at the embryo, contain significant information about an incipient nucleation

event. However, unlike previous work that utilized the minimum eigenvalue of the

meso-regions as the main analysis tool [10] [24] [25], we focused our attention on the

spatial structure of the lowest meso-region eigenmode. We found that the relation

between ξmeso, the embryonic size inferred from the meso-region, and rmeso, the size

of the meso-region itself is universal. The lowest meso-mode and eigenvalue were

found to provide excellent estimates of the structure and energy of the true critical

mode, but only for meso-regions larger than rmeso > 1.5ξ. We also showed that the

meso-regions not centered at the embryo center also reveal the presence of embryo,

provided they encompass 1.2ξ. This scenario leads us to think of homogeneous dis-

location nucleation as quasi-local: full information about the nature of the embryo

can only be obtained by analyzing sufficiently large regions, however, its existence

can be inferred by examining regions much much smaller than its intrinsic size.

We have also understood the effects of the proximity to nucleation, δD, on meso-

scale analysis. Meso-scale analysis detects the embryo presence much before that

the full system kinematic analysis. Meso-scale analysis can be used to make simula-

tions computationally very efficient, especially for 3-D simulations where full system
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kinematic analysis could be challenging or, in some-cases impossible. We showed an

initial study for fully 3-D FCC crystal nano-indentation simulations using the meso-

scale analysis. The critical meso-mode was used to calculate the embryo size, ξ, and

the embryo location, Y ∗. ξ and Y ∗ vary as the square-root of indenter radius for

3-D FCC lattice. These scaling laws consistent with the two dimensional hexagonal

lattice simulationsd for various interatomic potentials and crystal orientations..

The ultimate use of the analysis presented here would be to inform coarser-grained

models, that do not explicitly take into account the atomic degrees of freedom, about

the creation of new dislocations out of the void. For example, in field dislocation

mechanics [27] [28] one introduces a continuous field to represent the dislocation

density. It is our hope that a criterion for dislocation nucleation based on a meso-

scale analysis like we presented here could serve as a guide for the introduction of

atomistic details at the dislocation embryo in concurrent multi-scale schemes built

on field theories like FDM.
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Chapter 4

A study of conditions for

dislocation nucleation in

coarser-than-atomistic scale

models
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4.1 Introduction 1

Homogeneous dislocation nucleation (HDN) has been studied experimentally [29] [30]

[3] and through modeling in many papers. Attempts have been made to formulate a

nucleation criterion [9] [5] [8] [10] that can be used in larger length-scale analysis to

predict the nucleation event. Ideally, the criterion should predict the precise location

and instant of instability. It should also be able to predict the line direction and the

Burgers vector associated with the nucleating dislocation loop. The simplest attempt

to predict nucleation was based on atomic level shear stress, called Schmid stress,

which was proven insufficient, when tested through numerical simulations. Rice and

co-workers [31] [32] also proposed a nucleation condition for dislocation emission from

crack tips, based on the notion of γ-surface given by Peierls and Nabarro [33] [34],

and Vitek [35]. This γ-surface approach has been shown to be very useful in analysis

of nucleation near crack tips [31] [32]. However, this approach fails qualitatively for

homogeneous dislocation nucleation [10]. Li et al. [8] introduced the Λ criterion,

which was based on Hill’s analysis [14] of stability of plane waves in a deformed

crystal. Miller and Acharya [5] proposed a stress gradient based approach to predict

HDN.

Miller and Rodney (MR) [10] showed that while these criteria work well for certain

interatomic potentials and indentation geometries, they fail qualitatively for others.

Another fundamental question that was raised by MR is whether the instability is

a local or a non-local process. They showed that HDN is inherently a non-local

1Sections 4.1, 4.4 and 4.6 were jointly written with Prof. Acharya and form parts of a paper
submitted for publication. They are included here for completeness.
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process because of the onset of collective floppiness. Supporting this argument,

quantitative estimations of the size of the non-local unstable embryo were obtained

in [36]. They also showed that Λ predicts the location of incipient nucleation in

a diffuse region for HDN irrespective of the interatomic potential and orientation.

However, Λ cannot predict the instant of nucleation. In this work, we review the

previously proposed criteria - the Schmid stress, Λ criterion, Stress Gradient criterion

and discuss their advantages and limitations. A major inadequancy associated with

these criteria is that none of them predicts the instant of nucleation. MR [10] claimed

that this is because of their inherently local nature. They also proposed a non-

local criterion based on the calculation of eigenvalues of mesoscale atomistic stiffness

matrix that precisely predicts the location and instant of nucleation. However, as

acknowledged by them, it is not clear how MR’s criterion can be extended to larger

length scale Discrete Dislocation Dynamics (DD) or continuum analysis. In this

work, we propose a technique based on linear stability analysis of the evolution

equation for dislocation density in the finite deformation theory of Field Dislocation

Mechanics (FDM) [27, 37, 38, 39]. While we evaluate it based on input from velocity

fields calculated from atomistic simulations, the analysis naturally lends itself to

application in self-contained continuum analysis including cases of non-homogeneous

nucleation. The analysis uses the local velocity gradient field; however it is non-

local in the sense that the velocity field is calculated using the boundary conditions,

loading conditions and the overall stiffness matrix encapsulating non-local effects.

We validate the predictions of the linear stability analysis of FDM in both two-

dimensional and fully three-dimensional simulations. We also examine this tech-
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nique for different crystal orientations and interatomic potentials such as Embedded

Atom Method (EAM) potentials for Al in addition to simple pair potentials such as

Lennard-Jones. This analysis precisely predicts the location and instant of instabil-

ity. In three-dimensional simulations, the nucleating dislocation density tensor lies

in the linear span of critical eigenmodes predicted by the analysis based on FDM.

Furthermore, we use a stress gradient criterion [40] to calculate the line direction for

3D simulations. Our results show that the stress gradient criterion predicts the line

direction correctly for edge dislocations. However, for mixed dislocations the stress

gradient criterion only predicts the edge component of the actual line direction. In-

terestingly, the proposed analysis discriminates between objective tensor rates; a

naturally emergent convected rate succeeds while its substitution by a correspond-

ing rate based on the skew part of the velocity gradient is shown to never predict

nucleation.

A very simple overall physical picture emerges for our analysis of nucleation. At the

atomistic level, dislocations are simply special arrangements of atoms, not immedi-

ately related to deformations of bodies and the compatibility of such deformations.

Thus, FDM theory treats them as a special field, separate from a direct connection to

the material motion. Special patterns of velocity fields defined on an atomic config-

uration give rise to the generation of the configurations we call as dislocated. As we

explain in detail in this paper, our analysis of dislocation nucleation simply consti-

tutes a detailed characterization of instantaneous velocity fields out of any attained

configuration of the body (the whole set of atoms involved) that has the potential

of generating configurations with dislocations. Interestingly enough, because of the
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existence of the interatomic spacing between any two atoms, a velocity field defined

from discrete atomistic velocities can almost always be considered as continuous,

with its gradient being necessarily compatible. It turns out that it is precisely this

compatibility of the velocity field that often plays a necessary role in being able to

predict the nucleation of a dislocation, classically considered a defect or a lack of

compatibility, as shown in section 4.4.

In section 4.2, we describe the modeling details and loading algorithm for different

crystal orientations and interatomic potentials. In section 4.3, we review the Schmid

stress, the Λ, and the Stress Gradient criteria. In section 4.4, we present the FDM

linear stability based analysis of dislocation nucleation. In section 4.5, we discuss the

results of this analysis for different orientations and potentials. Section 4.6 contains

some concluding remarks.

4.2 Simulation Formalism

4.2.1 2 Dimensional Simulation

The simulation methodology for 2-D simulations is given in sec. 2.2. The load-

displacement and elastic energy-displacement curves for the indentation process are

shown in Fig. 4.1.

We look at two different orientations: O1 and O2 for our analysis as shown in Fig.

4.2. O1 has the nearest neighbor axis aligned normal to the indenter motion axis. In
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Figure 4.1: (a) Elastic energy, U , stored in the crystal as function of indenter depth,
D, L-J crystal, L = 40, R = 40. (b) Corresponding load, F , on the indenter in the
vertical direction as function of indenter depth, D.

(a) (b)

Figure 4.2: Schematic of different orientations of crystal with respect to indenter
axis. The red atoms correspond to the crystal and the blue atoms correspond to the
rigid base a) O1 b) O2.

66



0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

D

F

 

 

Simulation

Hertzian Model

Figure 4.3: Indenter Load, F , as a function of indenter depth, D, for L = 65, R = 65.
F vs. D curve from the simulation has been compared to the Hertzian analytical
expression F ∝ D3/2.

O2 the nearest neighbor axis is parallel to indentation direction. O2 is the highest

surface energy orientation, hence we had to be careful in avoiding surface defects

while indenting these high surface energy orientation systems. In the rest of the

document length parameters: Lx, L, R and C are measured in units of the lattice

constant, a.

We use the Lennard-Jones (L-J) potential and the EAM potential for Al (Ercolessi

Adams [18]). The Lennard-Jones (L-J) interaction potential is a pair-potential of

the form;

U ′(xij) = ε((σ/xij)
12 − (σ/xij)

6). (4.1)

Here ε and σ set the energy and the length scales, and we set them equal to unity.

xij is the distance between particle i and j. We also validate the results for both the

orientations O1 and O2. The total potential energy, U , includes interatomic potential
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energy between particles and interaction energy due to the indentor i.e.

U =
∑
ij,i6=j

U ′(xij) +
∑
i

φ(ri), (4.2)

where ri is ri(xi, D). Latin characters are used to index particle number, and Greek

characters to index Cartesian components. The indenter depth, D, represents the

indenter motion towards the crystal. At each indenter step, we compute the Hessian

matrix, which is the second derivative of the total potential energy with respect to

the particle positions,

Hiαjβ =
∂2U

∂xiα∂xjβ
. (4.3)

The first derivative of energy with respect to the particle position gives the force on

each particle:

Fiα = − ∂U

∂xiα
. (4.4)

∂U(x,D)

∂xiα
= 0 represents equilibrium assuming D is an externally prescribed degree

of freedom. Then,

∂2U

∂xiα∂xjβ

dxjβ
dt

= − ∂2U

∂xiα∂D

dD

dt
. (4.5)

The rate of change in forces with respect to the motion of the indenter is denoted

by:

Ξiα =
∂Fiα
∂D

= − ∂2U

∂xiα∂D
. (4.6)
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Since D monotonically increases in time, t, (4.5) can be written as:

∂2U

∂xiα∂xjβ

dxjβ
dD

= − ∂2U

∂xiα∂D
. (4.7)

The forces induced by an infinitesimal external indenter motion must be balanced

by the internal atomic rearrangements as shown:

Hiαjβ ẋjβ = Ξiα. (4.8)

This is used to calculate particle ‘velocities’ ẋjβ =
dxjβ
dD

. The analytical expression

of Hiαjβ can be simply derived for pair potentials such as L-J potential using the

following expression (4.9) from [20],

Miαjβ = (cij −
tij
rij

)nijαnijβ +
tij
rij
δαβ. (4.9)

where t and c are the first and second derivatives of the bond energy with respect

to bond length and nijα is the unit normal pointing from particle i to particle j.

Then, Hiαjβ = −Miαjβ for off-diagonal terms and Hiαjβ =
∑

jMiαjβ for diagonal

terms. However, for multibody potentials like the EAM potential the calculation of

the Hessian matrix is more involved. For example, there can be non-zero terms in the

Hessian matrix for a pair of particles i and j even when i and j are not the neighbors.

Thus, the Hessian matrix for a multibody potential like EAM is less sparse than the

one corresponding to a pair potential.

The particle velocities computed using this formulation are used in section 4.4.
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4.2.2 3 D Simulation

We perform computational nano-indentation on a face-centered cubic (FCC) lattice

using a spherical indenter of radius R. The indenter moves along the [1 0 0] direction

to indent an L-J crystal. The load stepping algorithm is the same as in the two

dimensional simulations, section 4.2.1. When nucleation occurs, we take an indenter

step back, reduce the step size by a factor of 10 and restart our simulation. The

load vs. depth curve for system size, L = 65 and indenter radius, R = 25 for fully

3D simulations is shown in Fig. 4.3. The analytic expression for load vs. indenter

depth based on Hertzian contact theory for indentation by parabolic indenter on

an anisotropic half space was given by Willis [41]. A spherical indenter can be

approximated by a parabolic indenter up to first order. In general for an anisotropic

half space the contact area is elliptical, however the 4-fold symmetry in the (100)

plane results in circular contact area. In this case F vs. D is given by:

F = 4/3E∗R1/2D3/2. (4.10)

E∗ is the indentation modulus defined in [41]. As shown in Fig. 4.3, the analytical

Hertzian model fits our simulation results up to the linear regime. The velocity field

is computed using (4.8) as in 2D. However, diagonalization of a Hessian matrix for a

fully three dimensional system can be computationally very expensive. The system

considered for this work contains approximately 100,000 atoms. At the onset of

instability in three dimensional simulations, there are two planes of atoms slipping

with respect to each other resulting in nucleation of a dislocation loop. The critical
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(a) (b)

Figure 4.4: The Schmid stress, τ for each atom in L-J crystal just before dislocation
nucleation, O1, R = 120 and O2, R = 50. τ is not maximum at the point of
instability. The arrows at each atom represent velocity field.

slip plane for an FCC lattice is one (111) plane and the slip direction is < 121 >.

Just before nucleation, the slipping plane or the embryo structure is shown in Fig.

4.12a where the colors represent the magnitude of the velocity field at each atom.

4.3 Analysis of Existing Criteria

4.3.1 The Schmid stress

The simplest attempt to predict the dislocation nucleation process in terms of a single

material parameter involves computing appropriate projections of the atomic-level

shear stress [42]. Within this framework, it is assumed that a dislocation loop will

nucleate when the resolved shear stress, τ , on a given plane exceeds some threshold

71



value, τcrss. This idea is similar to commonly known local yield stress criteria,

τ ≥ τcrss (4.11)

where,

τ = max
s,n
|s.T.n| (4.12)

and T is the Cauchy stress tensor. At the embryo, s and n should predict the

slip direction and the slip plane normal respectively. It is well established that the

existing dislocations become mobile when the resolved shear stress, τ , on a dislocation

reaches a critical value, τcrss. This idea was extended to predict nucleation. In Fig.

4.4 the resolved shear stress, τ , just before instability is shown for two different

crystal orientations of L-J crystal. The figure shows that τ is not maximum at the

nucleation embryo core and hence, does not predict dislocation nucleation. In many

previous studies [8] [22] [21], this idea that the Schmid stress controls dislocation

nucleation has been shown to be incorrect.

4.3.2 Phonon Stability Criterion (Λ)

Li et al. [8] developed a criterion, called Λ criterion, based on Hill’s [14] analysis of the

stability of plane waves in a stressed, elastic continuum. Λ is related to the acoustic

matrix A defined below which gives the vibrational frequencies of phonons of a given

wavevector, k, and polarization direction, p. It is calculated for a homogeneously de-

formed crystal with deformation gradient equal to local atomic deformation gradient
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Figure 4.5: Phonon Stability Criterion, Λ value for each atom in L-J crystal (a) O1,
R = 120, just before nucleation (b)O2, R = 50, just before nucleation (c)O1, R = 120
after nucleation. Λ is negative in a large region around the dislocation core, so it is
difficult to judge the precise location of the core. Moreover, Λ decreases further after
nucleation when there is no real nucleation in the system.
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at ith particle:

Aiµν(k̂) = lim
|k|→0

1

|k|2
Diµν(k), (4.13)

where |k| :=
√
kαkα is the magnitude of the wavevector k, Aiµν is a 3 × 3 matrix

indexed by µ, ν, defined at ith particle and the dynamical matrix, Diµν , in the long-

wavelength approximation can be computed as

Diµν(k) = |k|2
∑
j

−0.5Hµν(Rijα)(k̂βRijβ)2, (4.14)

and k̂ represents the unit vector corresponding to the wavevector k. Rijα is the

displacement vector defined from the ith particle to the neighboring particle, j, in the

homogeneously deformed crystal. Hµν contains the elements of the Hessian matrix

for a homogeneously deformed crystal.

Λ is defined as the minimum eigenvalue of the acoustic tensor A over all directions

k̂ on the unit sphere i.e.

Λ = inf
k̂

min
β

eigβ A(k̂), (4.15)

where eigβ A(k̂) represents the βth eigenvalue of the matrix A(k̂), and β takes values

in the set {1, 2, 3}.

Λ corresponds to the least stable plane-wave perturbation, with Λ = 0 indicating

an unstable mode. Alternatively, Λ = 0 may as well be interpreted as the criterion

for loss of strong ellipticity of the governing equations of elasticity from a homo-

geneously deformed state. Thus, one seeks vectors (p, n) s.t. [Lrmiqprnmpinq] = 0
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with L defined in (4.22), and the energy function ψ defined as a function of the

local atomic deformation gradient based on the Cauchy-Born hypothesis. Recently,

MR [10] showed that Λ becomes negative before the actual instability and hence,

loses the conceptual framework. The detailed calculation of Λ is shown in [36]. Λ

for the L-J potential for the stable surface orientation O1 and the unstable surface

orientation O2 is shown in Fig. 4.5. In all cases we observe that Λ is minimum at the

embryo core. Note that Λ is also negative at the other symmetrically located embryo

core. These results qualitatively remain the same for EAM Al potential as shown in

[36]. However, as shown in Fig. 4.5c, Λ decreases further after nucleation around

the dislocation cores, when there is no real nucleation in the system. Hence, this

criterion cannot be used to predict the nucleation instant. Moreover, Λ is negative

in a large region around the embryo core and is therefore complicated for identifying

the exact location of the core.

4.3.3 Stress Gradient Criterion

The stress-gradient based criterion [5] identifies the embryo core through a quantity

Nm,l at each point in the crystal defined as

Nm,l = max
m,l
|m.curlT.l|, (4.16)

where, m and l are unit vectors in the direction of Burgers vector and line direction

respectively for the nucleating dislocation. T is the stress tensor. According to the

criterion, if Nm,l is greater than a critical value, Ncrit, nucleation occurs. Nm,l for
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Figure 4.6: Stress Gradient Criterion, maximum Nm,l value for each atom in L-J crys-
tal, R = 40, in (a) non-symmetric configuration just before nucleation; (b) symmetric
configuration, similar to MA [5] 2004, just before nucleation; (c) non-symmetric con-
figuration, after nucleation; (d) symmetric configuration, after nucleation. Similar
to Λ, Nm,l increases further after nucleation when there is no real nucleation in the
system. Also, Nm,l is high near the surface so only the bulk has to be considered to
calculate the precise location of nucleation, that makes the analysis complex.
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two different indentation geometries in L-J crystal, O1 is shown in Fig. 4.6a and

4.6b just before the nucleation. In Fig. 4.6b, the indenter is symmetrically located

with respect to the crystal. This results in nucleation of two symmetrically located

embryo loops. The geometry in Fig. 4.6b is similar to the system in [5], however the

interatomic-potential and indenter radius are different. Our results are qualitatively

similar to [5], with Nm,l high at the core along with the surface. However, the

thickness of the high Nm,l region at the surface is greater than in [5].

We observed that Nm,l is highest at the embryo core in the bulk for all the systems

considered. However, similar to Λ, Nm,l fails to predict the nucleation instant. It

increases further near the dislocation cores after nucleation, when there is no actual

nucleation in the system. This observation for Λ and Nm,l was also made by MR

[10].

4.4 Linear Stability of Dislocation Density Evolu-

tion in Field Dislocation Mechanics

4.4.1 Formulation of Criterion

We perform linear stability analysis of the equation for evolution of the dislocation

density field in finite deformation Field Dislocation Mechanics (FDM). We begin
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with the evolution equation written in Eulerian form [38]:

∂α

∂t
= −curl(α× (v + V )) + s, (4.17)

where the time derivative corresponds to the spatial representation of the α field.

Here, α is the dislocation density tensor, v is the material velocity vector, V is the

dislocation velocity vector relative to the material and s is a dislocation nucleation

rate tensor. A requirement is that s be the curl of a tensor field. The statement (4.17)

arises as the local form of an areal balance statement for Burgers vector content:

d

dt

∫
p(t)

αn da =

∫
c(t)

α× V dx+

∫
a(t

s n da, (4.18)

where p(t) is any oriented area patch of material particles (with unit normal field n)

convecting with the material velocity and c(t) is its closed boundary curve.

With s = 0, (4.17) may also be viewed as a statement of conservation of
∫
B
α dv

for any fixed spatial volume B in the absence of any flux of α carried into B by

the velocity field v + V . However, since α is a ‘signed’ density, unlike conservation

statements for strictly positive scalar density fields like mass, this conservation state-

ment allows nucleation of dislocation density fields within B whose volume integral

vanishes, e.g. a single loop contained within B. In the spirit of doing more with less,

we therefore utilize (4.17) with s = 0. Our strategy in this paper involves supplying

(4.17) with a finite-element interpolated (quasi-static) material velocity field from

atomistic simulations in which nucleation is monitored, and probing linear stability

of perturbations to the α field in (4.17). In addition, our primary interest here is
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simply in homogeneous nucleation, so we linearize (4.17) about the state α = 0. For

any physically reasonable constitutive equation for the dislocation velocity V , it may

be assumed that V = 0 if α = 0.

Then,

∂δα

∂t
= −curl((δα× (v + V )) + (α× δv) + (α× δV )), (4.19)

and since V = 0 here, the governing equation for linear stability analysis becomes

∂δα

∂t
= −curl(δα× v). (4.20)

In terms of components with respect to a rectangular Cartesian coordinate system,

(4.20) can be written as

∂δαij
∂t

= −ejrs(δαimvnesmn),r (4.21)

where ejrs is a component of the third-order alternating tensor.

As mentioned before, in our analysis to follow, we utilize a material velocity field

obtained from atomistic simulations. For the sake of completeness, we list here the

continuum governing equation controlling that velocity field in the special case of an

elastic material before any nucleation has happened (including the state for incipient

nucleation). Quasi-static balance of linear momentum is the statement

div[T ] = 0 (4.22)
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where, T is the Cauchy stress tensor and the div operator is on the current configu-

ration. Converted to the statement of continuing equilibrium (or the ‘rate form’) we

obtain

div
[
div(v)T + Ṫ − TLT

]
= 0,

and for an elastic material with a free-energy density per unit mass given by ψ(F ),

where F is the deformation gradient from the stress-free elastic reference, continuing

equilibrium can be further written as

div[LL] = 0, (4.23)

where, Lrmiq = ρF T
sm

∂2ψ
∂Frs∂Fij

F T
jq is the fourth order tensor of incremental moduli, ρ is

the mass density, and L is the velocity gradient. Of course, these equations apply to

the atomistic material only under the strong assumption that ψ(F ) is an adequate

representation of the energy density of the crystal.

Henceforth, we use the notation δα = a. (4.21) can be rewritten as

∂aij
∂t

+ aij,rvr = vj,maim − vr,raij. (4.24)

In terms of the material time derivative, (4.24) is equivalent to

daij
dt

= Kijrmarm

Kijrm =
(
vj,mδir − vk,kδirδjm

)
,

(4.25)
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and (4.25) constitutes the governing equation for the perturbation field a of the

dislocation density. It is to be noted that (4.25) represents the vanishing of the (back-

leg) contravariant convected derivative [43] of the two-point tensor a with respect to

the time-dependent tensor function 1
J
F with J = detF and F being measured from

an arbitrarily fixed reference configuration:

tr(L)a+
da

dt
− aLT =

d
(
aJF−T

)
dt

1

J
F T = 0. (4.26)

With the material velocity considered as a given field, this is simply the linearization

of the statement that the convected derivative of the two-point tensor field α vanishes,

i.e.

div(v)α +
dα

dt
− αLT = 0. (4.27)

This is the Lagrangian equivalent of (4.17) under the assumption that V = 0, s = 0

and div α = 0 [38], stating that the Burgers vector content of a material area patch

remains constant in the absence of dislocation sources and if the existing dislocations

threading the patch do not move with respect to the material.

We note that with the velocity gradient field considered as a given input, (4.25)

constitutes a pointwise system of ordinary differential equations (ODE) for the per-

turbation array a. For approximate analysis of stability of this system, we consider

it as a constant coefficient system of ODE governed by the velocity gradient field

at every point. For the analysis of growth of perturbations it helps to consider the

components of aij as a 9 × 1 vector A and (vj,mδir − vk,kδirδjm) as a 9 × 9 array
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denoted by N to write (4.25) as

dA

dt
= N A. (4.28)

If at any stage of deformation an eigenvalue of N has a positive real part at any point

of the body, then that state is deemed to be ‘linearly unstable’ and susceptible to the

nucleation of a dislocation. Of course, linear stability is only conclusive with respect

to stability, so for conditions of instability, we treat such positivity as a necessary

condition and probe magnitudes of the real parts of the eigenvalues as well.

We denote the maximum of the real parts of the eigenvalues of N at any point by

the value of the field η at that point.

To understand growth of the dislocation density field at the instant of incipient

instability, we note that (4.25) implies

d (aijaij)

dt
= 2aij(Djmδir −Dkkδirδjm)arm, (4.29)

where D is the symmetric part of the velocity gradient L, and we observe that our

nucleation criterion has the correct limiting behavior in the case of rigid motions,

implying that no growth of perturbations in dislocation density (i.e. nucleation) is

possible from a dislocation-free state in the case of arbitrary rigid motions. More

interestingly, we note the following facts.
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4.4.2 Convected rate vs. Jaumann rate

While in our theory the convected derivative with respect to
(
1
J
F
)

appearing in

(4.27) is a non-negotiable ingredient implied by the necessity of doing calculus on

a body occupying coherent regions of space parametrized by time, considerations of

frame-indifference alone would allow the convected rate to be posed as any appro-

priate objective rate for the two-point tensor field α. In particular, if one were to

arbitrarily choose the analog of the Jaumann rate for this two-point tensor field, i.e.

the convected rate with respect to the orthogonal tensor R∗ that at each point of

the body satisfies dR∗

dt
= Ω∗R∗, where Ω∗ is the material spin (the skew-symmetric

part of the velocity gradient L), then (4.25), (4.27), and (4.29) imply that nucleation

would never be possible.

4.4.3 Volterra and Somigliana distributions

Further insight into the possible predictions of nucleation from (4.25) can be obtained

by considering velocity fields with ‘planar’ spatial variation in only the x1 and x2

directions and dislocation density perturbations to be constrained to only ai3 6= 0

(i.e. straight dislocations with x3 as line direction). Then (4.24) directly implies

dai3
dt

= −vr,rai3. (4.30)

In particular, planar simple shearing in the x1 direction (only the v1 component as

non-zero) on planes normal to x2 with variation only in the x2 direction can cause no
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Figure 4.7: L-J crystal, O1 (a) Velocity field for R = 120, just before nucleation. (b)
Idealized velocity field for nucleation of a Volterra dislocation dipole. (c) η calculated
using linear stability of FDM, for velocity field in (a). (d) η, for velocity field in (b);
The yellow-lines in (b) and (d) show the position of the slip embryo. Because of the
continuously distributed slip distribution as shown in case (a) η is non-local as shown
in (c). On the other hand, in (d) η is localized at the points of nucleation because
of sharp drop-offs in slip at the boundary of embryo in (b).
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nucleation of straight dislocations threading the x1−x2 plane (assuming these are the

only type of dislocations that are allowed). However, if there exists a slip-direction

gradient of the shear strain-rate field, i.e. v1,21 is non-zero, then the compatibility of

the velocity gradient field (equality of the second partial derivatives) implies that v1,1

must be non-zero at such points and that this can cause nucleation of straight edge

dislocations according to our criterion (and similarly for the nucleation of straight

screws corresponding to shearing in the x3 direction with in-plane spatial variations).

In particular, if we have an incipient slip embryo where the v1 component is uniform

in the x1 direction except for sharp drop-offs at the boundary of the embryo, then

the possibility of a nucleating a Volterra edge dipole exists as shown in Fig. 4.7b

and 4.7d. On the other hand, if the v1 field varies smoothly along the x1 direction

within the embryo then the possibility nucleating a true continuously distributed

dislocation density field exists, corresponding to a Somigliana distribution, as shown

in Fig. 4.7a and 4.7c. In the simulations of section 4.4, a Somigliana distribution is

what appears to nucleate in atomic configurations under load.

Equation (4.30) was based on the assumption that only ai3 6= 0; however, we note

here that Figs. 4.7c and 4.7d are plots of the η field from calculations that allows for

all possible dislocation density perturbations, using the driving velocity fields shown

in Figs. 4.7a and 4.7b, respectively. In section 4.5, results utilizing actual atomistic,

nanoindentation velocity fields are reported.
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Figure 4.8: L-J crystal, O2 (a) Critical eigenmode for homogeneous compression just
before bifurcation. (b) Ω/Ωmax corresponding to the mode. (c) Λ, Λ decreases by an
order of magnitude and is almost zero in the whole configuration just before bifur-
cation. (d) η, η is almost zero everywhere and does not show dislocation nucleation.
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4.4.4 Shear band/phase boundary and dislocation nucleation

The nucleation of an ideal shear band or a pair of phase boundaries without termi-

nations within the body are cases that are controlled by the occurrence of localized

transverse gradients of the velocity field with respect to some planes. Here, by a

phase boundary we mean a single surface in the body across which the deformation

gradient is discontinuous; by a shear band we mean two such surfaces separated by

a small distance, and ânon-terminatingâ refers to the fact that these discontinuity

surfaces run from one external surface of the body to another. Maloney et al. [36]

defined Ω as the transverse derivative of the velocity field with respect to the slip

direction to identify location of dislocation nucleation. The Ω field in Fig. 4.8b is

high for the long-wavelength mode shown in Fig. 4.8a, that is not a case of nucleation

of dislocation dipole. Fig. 4.8a shows a smooth buckling mode from a state of ho-

mogeneous compression. The mode is the linearized precursor of a long-wavelength

nonlinear instability that occurs in this simulation with a flat indenter. Note that in

the case of homogeneous compression the critical mode is completely non-local and

extends to full system size, as compared to the critical mode for nano-indentation

discussed in section 4.2.1. In this case of the long-wavelength instability, η is close

to 0 and does not predict dislocation nucleation as shown in Fig. 4.8d. In the case

of a simple shear where v1,2 is non-zero and v1,1 is zero, η would be zero, whereas Ω

would be high.

For this case of homogeneous compression, Λ is almost 0 in the entire configuration as

shown in Fig. 4.8c. Since Λ is 0, it is reasonable to check whether a localized velocity
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mode with polarization and plane normal predicted using Λ is also an eigenmode of

the discrete atomistic Hessian matrix, as a check of the adequacy of local continuum

elastic response in reflecting the elasticity and instabilities of the atomic lattice. As

alluded to in the previous paragraph, we verified that a localized shear band mode

predicted by the continuum analysis is not an eigenmode of the atomistic stiffness

matrix even though Λ is 0. This difference can be attributed to the atomistic details

in the stiffness or the Hessian matrix; roughly speaking, an atomistic model may be

assumed to correspond to higher than second-order boundary value problems and

the linearization of such a system governing instabilities is naturally different from

that of the corresponding second-order system. This analysis suggests that Λ cannot

always be used even for the case of phase boundary nucleation. Moreover, in this

case of homogeneous compression, Λ is critical i.e. 0 everywhere and its critical

eigenmode does not correspond to the nucleation of a dislocation dipole.

4.4.5 Hydrostatic Compression

In the fully 3-D simulations if a pure hydrostatic velocity field is considered, then

vj,m = eδjm (4.31)

where, e is a constant and (4.25) becomes

daij
dt

= −2eaij. (4.32)
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Since e is negative for compression, aij always shows growth. As shown in section

4.5, our analysis requires η should grow by orders of magnitude for implying dislo-

cation nucleation. In this case of hydrostatic compression, if the compression rate is

uniform then η would be constant and would not indicate nucleation. However, by

the same token, were a non-uniform-in-time, purely hydrostatic compression state

to be achieved in a real deformation, then the FDM based indicator would imply

growth of dislocation density.

Leaving aside the question of the physical merit of this case, the reason behind this

awkward implication may be understood as follows. From a dislocation-free state, a

governing constraint behind the prediction of growth of dislocation perturbations is

(4.27) which is equivalent to

d

dt

∫
p(t)

αn da = 0

for any material area patch p(t) in the body, and the net Burgers vector of any area

patch is conserved. Thus, if a deformation tends to shrink areas then the dislocation

density has to grow to conserve the Burgers vector content of the perturbation.

Interestingly, it appears that it is this kinematic ‘mechanism’ that predicts correct

trends for the initiation of dislocation nucleation as shown in the results of this

paper. Of course, once the dislocation density perturbation grows, subsequent states

of evolution have non-zero dislocation density and then Burgers vector content of

area patches is also affected by the flow term α× V and its spatial variation.
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Figure 4.9: η calculated using linear stability of FDM for L-J crystal, O1, R = 120
in (a),(b) much before dislocation nucleation event; (c) just before nucleation; (d)
after nucleation. η is precisely maximum at the embryo. It decreases by order of
magnitudes after nucleation.
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Figure 4.10: η calculated using linear stability of FDM for EAM-Al. crystal, O1,
R = 40 in (a),(b) much before dislocation nucleation event; (c) just before nucleation;
(d) after nucleation. η is precisely maximum at the embryo. It decreases by order of
magnitudes after nucleation.
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Figure 4.11: η calculated using linear stability of FDM, for L-J crystal, O2, R =
50 in (a) much before dislocation nucleation event; (b) just before nucleation; (c)
after nucleation. η is precisely maximum at the embryo. It decreases by order
of magnitudes after nucleation. Only one-half of the crystal in which dislocation
nucleation happens is shown.
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Figure 4.12: L-J 3D - FCC crystal, R = 25. Indentation axis is along [1 0 0]
axis. The crystal is sliced along the plane (111). The colors represent: (a) Velocity
field magnitude; (b) η, note that the balls plotted in this figure are located at the
centroid of tetrahedrons formed by atoms where η is calculated. Similar to 2D, in
fully 3D simulations η increases by two orders of magnitude just before nucleation
and it decreases by two orders of magnitude after nucleation. The full FCC Lattice
is shown in (c). There are periodic boundaries conditions in the normal directions
to the indentation axis. Black solid lines in (c) show the periodic box size. (d) η
computed by substituting the Convected rate by Jaumann rates in the linear stability
analysis of FDM. Interestingly only the emergent convected rates from linear stability
analysis show instability.
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4.5 Results

We mesh both two and three dimensional systems using Delaunay triangulation. Us-

ing section 4.2.1, particle velocities are known at each atom or node. We use linear

shape functions to interpolate these velocities on each element and compute deriva-

tives. The velocity derivatives are needed to calculate the maximum positive real

part of eigenvalues of N , η, at the centroid of each triangle (in 2D) or tetrahedron

(in 3D). In all figures in this work, the arrows correspond to the particle velocity.

In two dimensional simulations, there are two planes of atoms slipping against each

other as shown in Fig. 4.4 and give rise to a pair of dislocations.

For orientation O1, the spatial η field is shown at various indenter depths for L-J

crystal in Fig. 4.9. η is around 6 × 10−4 much before nucleation as shown in Figs.

4.9a and 4.9b. Note that positive η does not necessarily imply nucleation, this being

a limitation of constant-coefficient linear stability analysis. Just before nucleation, η

increases by three orders of magnitude. Also, it is highly positive only for the triangles

formed by atoms on the slipping planes. After nucleation, η decreases by four orders

of magnitude and does not persist at the dislocation cores. In Fig. 4.10, we show

similar analysis for EAM-Al crystals. Initially η is around 6 × 10−9 and just before

nucleation it increases by three orders of magnitude. Similar to L-J, for the EAM-

Al crystal, η drops by three orders of magnitude after nucleation. Similar results

are observed for L-J O2 orientation in Fig. 4.11. Even though before nucleation η

depends on the crystal orientation and inter-atomic potential, it increases by three

orders of magnitude just before nucleation and decreases by the same amount after
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nucleation for all systems in 2D.

In Fig. 4.12a, 4.12b and 4.12d, results for the fully 3D simulations are shown.

In these figures the FCC lattice is sliced along the plane containing the unstable

embryo. In Fig. 4.12a the colors represent the magnitude of velocity field. Long

before nucleation, η is around 3 × 10−7. Just before nucleation, η increases by two

order of magnitude as shown in Fig. 4.12b and then, after nucleation it drops by

roughly two orders of magnitude as in Fig. 4.12d.

For predicting the line direction, l, we calculated the eigenmodes of N . The eigen-

modes correpond to the nucleating dislocation density tensor. At the points of inter-

est, N had more than one eigenvalues with positive real part. We verified that the

nucleating dislocation density tensor lies in the linear span of the eigenmodes of the

eigenvalues with positive real parts. An expression for predicting the line direction,

l, was formulated in [40] as shown in (4.33). This expression is related to the stress

gradient criterion described in section 4.3 and is given by

l = gradτ × n. (4.33)

τ is the resolved shear stress on the slip plane with normal n. We find that (4.33)

predicts the line direction correctly only for edge dislocations, where the line direction

is normal to the Burgers vector. For mixed dislocations, the stress gradient criterion

predicts only the edge component of the actual line direction.

In (4.24) the convected rate emerges naturally. If we replace the convected rate by

the analog of the Jaumann rate for a two-point tensor, N becomes a skew-symmetric
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matrix. A skew-symmetric matrix always has imaginary eigenvalues and can never

be positive-definite. Hence, the Jaumann rate based N cannot predict nucleation.

The numerical result for maximum eigenvalue of the Jaumann rate based N , just

before nucleation, is also shown in Fig. 4.12d. As the discussion surrounding (4.29)

shows, it does not predict nucleation.

4.6 Concluding Remarks

The kinematics of dislocation density evolution in FDM appears to be sufficiently

versatile in embodying homogeneous dislocation nucleation within the theory and

for developing criteria that can be used in other modeling paradigms. In order to

isolate and understand this capability, we have tested the feature with atomistically

generated velocity fields that, obviously, have analogs in coarser-than-atomic-scale

simulation models like Discrete Dislocation Dynamics and Field Dislocation Mechan-

ics. In this sense, our analysis represents an advance in putting forward a conceptual

framework for dislocation nucleation that naturally connects to coarser scale models.

A main question that arises at this point is the extent to which these coarser length

scale models can produce the requisite material velocity fields. Clearly, nonlinear

kinematics is important and our analysis in section 4.4.4 shows that dislocation nu-

cleation criteria and associated velocity modes based on classical ideas of loss of

strong ellipticity of nonlinear elastic models, even when driven by atomistic input

through the Cauchy-Born (CB) hypothesis, may not always be adequate. However,

during nano-indentation simulations that induce a strong inhomogeneous deforma-
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tion, sufficiently close to the bifurcation point of the lattice statics calculation, the

polarization direction and discontinuity-plane normal predicted from the (contin-

uum) acoustic tensor corresponding to Λ predicts the correct slip plane and Burgers

vector direction for the nucleating dislocation dipole. This holds irrespective of the

crystallographic orientation and inter-atomic potential. Based on this evidence, dis-

location nucleation criteria relying on velocity fields generated from CB-based con-

tinuum elasticity coupled with the FDM-based dislocation nucleation indicator we

have developed herein appears to be a logical step to pursue in future work. Further-

more, higher-order elasticity can be folded into a framework like Field Dislocation

Mechanics and even without resorting to nonlocal/gradient elasticity, FDM in the

finite deformation setting incorporating a dislocation density contributing to core

energy has a significantly different stress response function [39] than the classical

case. The effect of such enhancements in predicted velocity fields from full nonlinear

analyses remain to be explored.
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101



[29] W. W. Gerberich, J. C. Nelson, E. T. Lilleodden, P. Anderson, and J. T.

Wyrobek, “Indentation induced dislocation nucleation: The initial yield point,”

Acta Materiala, vol. 44, p. 3585â3598, Sept. 1996.
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Appendix A

Hessian matrix calculation for

Ercolessi - Adams (EAM) Al.

Potential

The total energy Ei of an atom I is given by

Ei = F

(∑
j 6=i

ρ(rij)

)
+

1

2

∑
j 6=i

φ(rij) (A.1)

where F is the embedding energy which is a function of the atomic density ρ, φ is

a pair potential interaction. F, ρ and φ are given in discrete form. To interpolate

we use cubic spline interpolation and calculate derivatives of the interpolated energy

function for computing the forces and hessian. The cubic interpolation function, y(x)
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is of the form:

y = ax3 + bx2 + cx+ d (A.2)

For given (xi,yi) where i = 1, ....... ,n are n points, the coefficients of this third order

polynomial are calculated using the following algorithm.

c(i) =
(

(y(n− 2)− y(n+ 2)
)

+ 8/12
(

(y(n+ 1)− y(n− 1)
)

b(i) = 3
(

(y(n+ 1)− y(n− 1)
)
− 2c(i)− c(i+ 1)

a(i) = c(i) + c(i+ 1)− 2
(

(y(n+ 1)− y(n− 1)
)

d(i) = y(i)

(A.3)

The boundary conditions used are:

c(1) = y(2)− y(1)

c(2) = 0.5
(
y(3)− y(1)

)
c(n− 1) = 0.5

(
y(n)− y(n− 2)

)
c(n) = y(n)− y(n− 1)

a(n) = 0, b(n) = 0

(A.4)
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A.1 Calculation of Force

For ith atom τi is defined as:

τi =
∑
j 6=i

ρ(rij) (A.5)

Etotal =
∑
i

Ei (A.6)

~fi = − ~∇riEtotal = − ~∇ri

(
F (τi) +

∑
j 6=i

F (τj) +
∑
j 6=i

φij(rij)

)
(A.7)

= −
∑
j 6=i

(
∂F (τ)

∂τ
|τ=τi

∂ρ(r)

∂r
|r=rij +

∂F (τ)

∂τ
|τ=τj

∂ρ(r)

∂r
|r=rij +

∂φij
∂r
|r=rij

)
(A.8)

A.2 Calculation of Hessian

∑
i

Ei =
∑
i

[
F

(∑
j 6=i

ρ(rij)

)
+

1

2

∑
j 6=i

φ(rij)

]
= Ueam + Upair (A.9)

Using cubic spline interpolation,
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F

(∑
j 6=i

ρ(rij)

)
= F (τi) =

3∑
p=0

cp(τi)
p

Ueam =
∑
i

3∑
p=0

cp(τi)
p

(A.10)

H ij
αβ = − ∂

2Ueam

∂xjβ∂x
i
α

= Aijαβ +Bij
αβ (A.11)

Aijαβ = pχij1

(( ρijrr
(rij)2

− ρijr
(rij)3

)
rijα r

ij
β + δαβ

ρijr
(rij)

)

Aiiαβ = p
∑
m 6=i

χmi1

(( ρmirr
(rmi)2

− ρmir
(rmi)3

)
rmiα rmiβ + δαβ

ρmir
(rmi)

)

where, χij1 =

((∑
l 6=i

ρil
)p−1

+
(∑
l 6=j

ρjl
)p−1)

(A.12)
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Bij
αβ = p(p− 1)

∑
m 6=i,j

((
φmir

rmiα
rmi

)(∑
p 6=m

φmp
)p−2(

φmjr
rmjβ
rmj

))

+p(p− 1)

((
φjir

rjiα
rji

)(∑
q 6=j

φjq
)p−2(∑

l 6=j

φljr
rljβ
rlj

))

+p(p− 1)

((∑
n6=i

φnir
rniα
rni

)(∑
q 6=i

φiq
)p−2(

φijr
rijβ
rij

))

Bii
αβ = p(p− 1)

∑
m 6=i

((
φmir

rmiα
rmi

)(∑
p 6=m

φmp
)p−2(

φmir
rmiβ
rmi

))

+p(p− 1)

((∑
m 6=i

(φimr
rimα
rim

)(∑
p6=i

φi
)p−2(∑

l 6=i

φilr
rilβ
ril

))

(A.13)
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Appendix B

Local strain calculation in Phonon

Stability Analysis

The local strain is calculated as given in [23]. The local strain εij for an atom is used

to homogeneously deform the initial crystal. εij is defined such that the mean square

difference between the actual displacements and displacements in the homogeneously

deformed crystal of neighbors of the atom of interest is minimum. The expression

for εij is given below.
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Xij =
∑
n

(
rin(t)− ri0(t)

)(
rjn(0)− rj0(0)

)
Yij =

∑
n

(
rin(0)− ri0(0)

)(
rjn(0)− rj0(0)

)
εij =

∑
k

XikY
−1
jk − δij

(B.1)

where i and j represent spatial components of the position of nth atom in the current

configuration. n = 0 is the atom of interest and t = 0 corresponds to the initial

configuration.
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Appendix C

Young’s Modulus Calculation for

triangular lattice

The 2D hexagonal crystal considered in this work is isotropic so that the elastic

constants take only two independent values. The stress-strain relationship for an

isotropic material is given by: σij = 2µεij + (K − µ)εii where K is the bulk modulus

and µ is the shear modulus. The Young’s Modulus, E, and Poisson’s ratio, ν, in

terms of K and µ can be expressed as:

ν =
K − µ

2K

E =
µ(3K − µ)

K

(C.1)
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For pair potentials the bulk modulus, K, and the shear modulus, u, are given by:

CBorn
αβκχ = 1/A

∑
ij

(rijcij − tij)rijnαijn
β
ijn

κ
ijn

χ
ij

K = 1/4(Cxxxx + Cxxyy + Cyyxx + Cyyyy)

µ = 1/4(Cxyxy + Cxyyx + Cyxyx + Cyxxy)

(C.2)

where nij is the normalized vector between pair of particles, tij is the bond tension

and cij is the bond stiffness. For EAM potential we compute E numerically by

applying a small εyy to the initial stress free crystal using an indenter with free

boundary conditions in the x direction. The emperical relations used to compute E

for this case are:

ν = εxx/(εxx − εyy)

E = σyy(1− ν2)/εyy
(C.3)
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