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Abstract

Markov distributions describe multivariate data with conditional independence structures.

Dawid and Lauritzen (1993) extended this idea to hyper Markov laws for prior distribu-

tions. A hyper Markov law is a distribution over Markov distributions whose marginals

satisfy the same conditional independence constraints. These laws have been used for

Gaussian mixtures (Escobar, 1994; Escobar and West, 1995) and contingency tables (Liu

and Massam, 2006; Dobra and Massam, 2009).

In this paper, we develop a family of non-parametric hyper Markov laws that we call

hyper Dirichlet processes, combining the ideas of hyper Markov laws and non-parametric

processes. Hyper Dirichlet processes are joint laws with Dirichlet process laws for particular

marginals. We also c describe a more general class of Dirichlet processes that are not hyper

Markov, but still contain useful properties for describing graphical data. The graphical

Dirichlet processes are simple Dirichlet processes with a hyper Markov base measure. This

class allows an extremely straight-forward application of existing Dirichlet knowledge and

technology to graphical settings.
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Given the wide-spread use of Dirichlet processes, there are many applications of this

framework waiting to be explored. One broad class of applications, known as Dirichlet

process mixtures, has been used for constructing mixture densities such that the underlying

number of components may be determined by the data (Lo, 1984; Escobar, 1994; Escobar

and West, 1995). I consider the use of the new graphical Dirichlet process in this setting,

which imparts a conditional independence structure inside each component. In other words,

given the component or cluster membership, the data exhibit the desired independence

structure.

We discuss two applications. Expanding on the work of Escobar and West (1995),

we estimate a non-parametric mixture of Markov Gaussians using a Gibbs sampler. Sec-

ondly, we employ the Mode-Oriented Stochastic Search of Dobra and Massam (2009) for

determining a suitable conditional independence model, focusing on contingency tables. In

general, the mixing induced by a Dirichlet process does not drastically increase the com-

plexity beyond that of a simpler Bayesian hierarchical models sans mixture components.

We provide a specific representation for decomposable graphs with useful algorithms for

local updates.
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Chapter 1

Introduction

1.1 Graphs and Markov Random Fields

Markov distributions are multivariate measures that satisfy a specified set of conditional

independence relations, often represented by an undirected graph. A measure is Markov

with respect to an undirected graph if, whenever two variables do not have an edge be-

tween them, they are conditionally independent given the remaining variables. Markov

distributions, or Markov random fields, have been used for a wide variety of problems,

including demography (Sebastiani, 2003), flood prediction (Allcroft and Glasbey, 2003),

and telecommunications (Zachary and Ziedins, 1999).

In telecommunications, Zachary and Ziedins (1999) analyzed loss networks using Markov

distributions. Their model described a communications system with multiple resources,

each having a limited capacity. The system handles different types of calls, each requiring
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a specific subset of the resources. If the system’s resources are sufficient, then the call is

put through. If the system’s resources are insufficient, then the call is lost. The stationary

distribution for the amount of unused resources is interesting because it directly impacts

the percentage of lost calls. Zachary and Ziedins suggested a graphical model with the

various resources represented by nodes. In their model, two resources were considered

neighbors if at least one type of call required both of them. They then approximated the

stationary distribution with a Markov distribution on this graph.

This example shows the practical importance of Markov models. Zachary and Ziedins

(1999) state that the normalizing constant for the stationary distribution is too complex for

any networks of realistic size. This is essentially due to the necessity of summing over all

possible combinations of quantities of the various call types which do not exceed network

capacity. When employing a Markov random field, this sum can be broken into more

manageable summations over smaller subsets.

1.2 Markovity for Prior Distributions

Dawid and Lauritzen (1993) extended the notion of Markov distributions for variables to

hyper Markov distributions for parameters. In Bayesian statistics, one considers a random

distribution, which therefore has its own distribution called the prior. A prior law over

Markov measures is hyper Markov if the random marginal measures also satisfy the condi-

tional independence structure. This is equivalent to requiring that the distribution of each

variable is conditionally independent of the joint distribution of the other variables given



CHAPTER 1. INTRODUCTION 3

the joint distribution of its neighbors. This leads to some useful properties as we discuss

in Chapter 2.

For parametric models, we can specify hyper Markov laws by placing certain constraints

on the prior laws for the parameters. For example, we consider the hyper Normal prior law

presented by Dawid and Lauritzen (1993). Suppose we observe data from a location family

with an unknown mean. We may decide to model the mean using a Normal prior law.

The hyper Markov version of this law equates to setting certain elements of the precision

matrix to be zero.

1.3 Non-Parametric Hyper Markov Priors

Graphical models are especially important in high-dimensional problems for which dimen-

sion reduction greatly reduces computational burden. Bayesian non-parametric approaches

are useful in these same situations when there is more uncertainty about the underlying

structure of a distribution. Since both of these approaches may be desirable in similar

situations, it is the goal of this thesis to explore how these concepts may be united. We

shall call a model non-parametric if it can closely approximate any arbitrary distribution.

Specifically, we focus on the class of Dirichlet processes first described by Ferguson

(1973). The Dirichlet process is one of the best-known and most widely applied non-

parametric priors. One possible detraction of a Dirichlet process is that it generates an

almost-surely discrete distribution; however Antoniak (1974) introduced the concept of

a mixture of Dirichlet processes which uses this feature advantageously and Lo (1984)



CHAPTER 1. INTRODUCTION 4

showed how these mixtures could be used for density estimation. The result is a Bayesian

method for specifying mixture distributions in which the number of mixing components

can be determined by the data and easily accommodates further observations. An example

application is provided by Escobar and West (1995) who develop a Gibbs sampling scheme

for a Dirichlet Mixture of univariate Gaussians.

Following the work of Dawid and Lauritzen (1993) we can specify hyper Dirichlet

process as the joint law of certain marginal Dirichlet processes. The major theoretical

contribution are the necessary and sufficient conditions for a hyper Dirichlet process to

be a Dirichlet process. This allows straightforward application of existing theory and

technology surrounding Dirichlet processes. We also present a useful class of Dirichlet

processes, called graphical Dirichlet processes that we can obtain by relaxing some of the

aforementioned conditions. These processes are not hyper Markov, but still induce useful

graphical properties on the distribution of observable data.

Graphical Dirichlet processes are convenient because they are a special case of the

well-known Dirichlet process. This allows straightforward extension of Dirichlet processes

to incorporate conditional independence constraints. As an example, we explore the use

of graphical Dirichlet processes for density estimation. The result is a mixture model

of an unknown number of components. Within each component, the desired conditional

independence constraints are satisfied. Finally, we present a method for comparing various

graphical Dirichlet process models.
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In the second chapter I explain notation and definitions as well as review some well-

known and lesser-known properties of graphical models. The third chapter covers the

topic of non-parametric priors. I discuss therein various representations, properties, and

generalizations of the Dirichlet Process and other non-parametric processes. I also provide

a formal proof for a property of the Dirichlet distribution that will be useful for proving

independence properties of hyper and graphical Dirichlet processes. Together, chapters two

and three represent the majority of the necessary background to understand the theory

behind and applications of the hyper and graphical Dirichlet process. In some cases,

additional background is covered in specific chapters for emphasis or clarity. The fourth

chapter introduces the hyper Dirichlet process and fundamental theory, including how we

can specify a hyper Dirichlet process and its relationship to the classic Dirichlet process.

In chapter five, I introduce a C++ class I developed to maintain a useful representation

of a graph through local updates. This representation is a fundamental component for

the hyper Dirichlet process applications I present in chapters six and seven. Chapter six

extends the notion of a mixture of Dirichlet processes, by exploring the application of

hyper Dirichlet processes in this framework and the resulting independence relationships.

The seventh chapter provides results of stochastic searches for both simulated and real

contingency table data. Finally, the eighth chapter provides some insights about possible

extensions and improvements to the framework I have developed.
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Chapter 2

Graph Notation and Theory

As a pre-requisite for understanding the material in this chapter and beyond, we establish

notation and introduce some preliminary results in graph theory.

2.1 Definitions and Notation

Throughout this paper we consider a multivariate random variable X = (Xv) where v

ranges over some index set, V of dimension |V|. We denote the range of X by X =

(×v∈VXv) which has some associated σ-field, F = (×v∈V). Marginal values of these values

on some subset A of V are denoted by subscripts:

XA = (XA : v ∈ A)

XA = ×v∈AXv

FA = ×v∈AFv
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If α is a measure over some space (X ,F), then α = α/α(X ) is the probability measure

proportional to α. If A ⊆ V, then αA is the marginal of α over XA. Thus, αA(U) =

α(U × XV\A), ∀ U ∈ FA. If B is another (possibly improper) subset of V, then αB|A is

the collection of marginal distributions of XB given XA = xA induced by α.

If α and β are both measures on some space (X ,F), then we define their sum, α + β,

by

[α+ β](U) = α(U) + β(U), ∀ U ∈ F . (2.1)

For x ∈ X , we define δx as a point mass concentrated at x.

δx(U) =


1, x ∈ U

0, x 6∈ U
, ∀U ∈ F . (2.2)

A graph, G = (V,E), is defined by a vertex set (or node set) V and an edge set E.

There is an edge from one vertex, v1, to another vertex, v2, if (v1, v2) ∈ E. Unless indicated

otherwise, we restrict our attention to undirected graphs, which means that (vi, vj) ∈ E

if and only if (vj , vi) ∈ E. We shall therefore take the statement (vi, vj) ∈ E to imply

(vj , vi) ∈ E. In this case, we shall say that vi and vj are neighbors and write vi ∼ vj . By

convention, we assume that (v, v) ∈ E for all v ∈ V. We call such edges loops. For our

purposes, there is no practical difference if loops are excluded from E, though some minor

changes are required for certain definitions. If A ⊆ V, then GA is a subgraph of G over A,

which has vertex set A and edge set EA = (A×A)∩E. In other words, the subgraph GA

is obtained from G by removing all vertices in V \ A and edges which have at least one

endpoint outside of A. We say that A induces the subgraph GA.
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A path from vi to vj is a sequence of nodes starting with vi and ending with vj such that

nodes that are adjacent in the sequence are neighbors in the graph. We further stipulate

that with the possible exception of vi = vj , all nodes in the path are unique. If there is a

path from vi to vj , then we say that they are connected. A connected component is a set of

pair-wise connected nodes that are not connected to any nodes outside the component. If

only one such connected component exists, we call G a connected graph. A path that starts

and ends with the same node is called a cycle. A triangulated or chordal graph is a graph

with the property that every cycle of length four or longer contains a chord, that is, two

non-consecutive nodes which are neighbors. If the graph contains no cycles at all, then it

is a tree. An immediate consequence of this definition is that all paths in a tree are unique.

(This may be seen by contradiction. Choose vi and vj such that two different paths exist

from vi to vj , say p1 and p2. Then the sequence formed by concatenating p1 forwards and

p2 in reverse is a cycle.)

A set S is said to separate vi and vj if every path between them contains an element

of S. By extension, S separates A and B if it separates va and vb whenever va ∈ A and

vb ∈ B.

The graph G = (V,E) is a complete graph if E = V ×V. Similarly, a subset A ⊆ V

is called complete if it induces a complete subgraph. We reserve the term clique only for

complete subsets that are maximal with respect to inclusion (whereas some refer to any

complete subset as a clique and use the term maximal clique if no proper superset is also

complete.) A decomposition of G is a pair of sets A,B ⊆ V such that A ∪B = V, A ∩B

is complete and A ∩B separates A and B. The decomposition is proper if both A and B
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are proper subsets of V. Finally, we say that G is decomposable if it is complete or there

exists a proper decomposition (A,B) such that GA and GB are decomposable. Thus, a

decomposable graph may be continuously decomposed into its cliques. Perhaps the most

well-known result on graph theory is that a graph is decomposable if and only if it is

triangulated (see Lemma 2.1.3).

For simplicity, we focus almost exclusively on decomposable graphs, though we discuss

more general applications from time to time. A decomposable graph admits a perfect

ordering of its cliques.

Definition 2.1.1 (Perfect Ordering). Suppose a graph G has n cliques. Let the cliques have

an arbitrary ordering C1, . . . ,Ck. Define Hi = ∪ij=1Cj. For i ≥ 2 define Si = Ci ∩Hi−1

and Ri = Ci \Hi−1. The ordering of the cliques is a perfect ordering if for each 2 ≤ i ≤ n,

there exists j < i such that Si ⊂ Cj.

The sets Hk are called the histories. The separators, Sk, separate Ck from the previous

history. The sets Rk are called the residuals, which represent the new nodes being added

to the history. In a perfect ordering, each separator is complete. In general, we will allow

some or all separators to be empty, which occurs if and only if G is disconnected. Note

that the perfect ordering is not unique. In fact, each clique can be taken to be C1 in some

perfect ordering.

Closely related to the concept of a perfect ordering is the definition of a simplicial set or

node. A node or set of nodes is simplicial if its boundary is complete. The boundary of a

node is the set of all neigbors of v excluding v itself. That is bd(v) = {vj : vj ∼ v, vj 6= v}.
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The boundary of a set is bd(A) = ∪v∈Abd(v) \A. A perfect ordering of cliques is one such

that for i ≥ 2, Ci is simplicial in GHi−1 . The related idea of a perfect ordering of nodes is

an ordering v1, . . . , v|V| such that for i ≥ 2, vi is simplicial in G∪j<ivj .

A consequence of a perfect ordering is that decomposable graphs can be represented

by a junction tree.

Definition 2.1.2 (Junction Tree). Let G be a decomposable graph with clique set C =

{C1, . . . ,Ck}. A junction tree representation of G is a tree, T , with node set C such that

for any A,B,C ∈ C , if C is on the unique path from A to B, then A ∩B ⊆ C.

Note that we may take the subset property (also known as the junction tree property) to be

proper because otherwise C ⊂ A and is not a clique. If C1, . . . ,Ck is a perfect ordering,

then the junction tree may be constructed using the edge set E = {(Ci,Cj) : i = 2, . . . , k},

where j < i, and Si ⊂ Cj .

When dealing with a disconnected graph, some authors choose to represent it as a

junction forest, which is a collection of junction trees for each connected component. While

the extended analogy is cute, we point out that it is unnecessary. We can simply connect

the individual trees with arbitrary edges. By definition, A ∩ B is empty when the sets

are in different connected components so it is trivially the case that these additional edges

will not break the junction tree property. As we see in Chapter 5, a convenient method

will be to include an additional C0 = Ø and add an edge between it and each connected

component.
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2.1.1 Fundamental Theorems about Decomposable Graphs

In Chapter 7, we will utilize a stochastic search for finding a decomposable graphical

model. We will need an algorithm for proposing moves between graphical models that

is capable of exploring the entire space of decomposable graphs. Toward that end, we

present three lemmae which have been proven previously about this class of graphs. The

first lemma guarantees that the set of decomposable graphs can be traversed by toggling

one edge at a time. That is, it is enough to propose moves between graphs that differ by

exactly one edge. The second (Frydenberg and Lauritzen, 1989) and third (Giudici and

Green, 1999) results provide the method for testing whether or not a proposed move would

result in a decomposable graph. For completeness, we first present equivalent definitions

of decomposability that we will use to prove the trio of lemmae and various other results

in this paper.

Lemma 2.1.3. The following are equivalent:

(i) G is decomposable.

(ii) G is triangulated.

(iii) The nodes of G have a perfect ordering.

(iv) The cliques of G have a perfect ordering.

Proof. (i ⇒ ii). Suppose G is decomposable. We prove that it is triangulated by induction

on |V| . For |V| ≤ 3, all graphs are triangulated. Assume that |V| > 3, and that any

smaller decomposable graph is triangulated. Let v0, v1, . . . , vn = v0 be a chordless cycle
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with n ≥ 4. Since G is decomposable, there exists a proper decomposition (A,B) such that

GA and GB are each decomposable. By the inductive hypothesis, either A or B contains the

cycle, then it must have a chord and we are done. Consequently, assume that {v0, . . . , vn}

is not a subset of A or B. Clearly, the choice of v0 is arbitrary, so choose a vertex in A\B.

Define i = min{k : Vk ∈ B \A} and j = max{k : Vk ∈ B \A}. We have vi−1 ∼ vi with

vi−1 ∈ A and vi ∈ B. By definition of a decomposition, either vi−1 or vi is in A ∩B.

By construction, vi 6∈ A, so vi−1 ∈ A ∩B. A similar argument shows vj+1 ∈ A ∩B.

By our choice of v0 = vn ∈ A \ B, we have that i − 1 6= 0 and j + 1 6= n. Therefore,

0 < i− 1 < i ≤ j < j + 1 < n. By definition, A ∩B is complete so vi−1 ∼ vj+1 is a chord.

(ii ⇒ iii). Suppose G is triangulated. We prove its nodes have a perfect ordering by

induction on |V|. For |V| = 1, there is nothing to show. Suppose |V| > 1 and that

the implication holds for |V| − 1. By induction, it is enough to find one vertex which

is simplicial in G. If G is disconnected, then a perfect ordering exists for each connected

subgraph. Concatenating these yields a perfect ordering for G. Henceforth, assume G is

connected. To establish a contradiction, we suppose that no vertices are simplicial in G and

show that this induces a chordless cycle. Let {v1, . . . , vn} be the longest path in G along

distinct vertices. By choosing the longest path, we guarantee that bd(v1) is contained by

this path, whence GV\{v1} is connected. Choose u simplicial in GV\{v1}. By supposition, u

is not simplicial in G, so there exists t ∈ bd(u) such that t 6∼ v1. Since {u} ∪ bd(u) \ {v}

is complete, the same reasoning implies that there exists s 6∈ bd(u) such that v1 ∼ s. Let

t = a0, . . . , an = s be the shortest path from t to s in GV\{v1}, which exists since GV\{v1}
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is connected. Choose i =min{j : aj ∼ v1 in G}. Recall that v1 6∼ t = a0, so j ≥ 1. We see

that a0, . . . , aj , v1, u, t = a0 is a chordless cycle of length 3 + j.

(iii ⇒ iv). Suppose that the nodes of G admit a perfect ordering. We prove that the

cliques admit a perfect ordering by induction on |V|. There is nothing to show for |V| = 1.

Suppose |V| > 1 and the implication holds for |V| − 1. Let k be the number of cliques

in G. It is enough to find the last clique in the perfect ordering. That is, we will find a

clique, Ck such that Sk ⊂ Cj for some j, where Sk = Ck ∩ (∪i<kCi). Choose u simplicial

in G. It is simple to verify that Ci = {u} ∪ bd(u) is a clique and u is not an element of

any other clique. If bd(u) is a proper subset of another clique, say Cj , then let Ck = Ci.

Clearly, Sk = bd(u) ⊂ Cj . If bd(u) is not a proper subset of another clique besides Ci, then

consider the graph G∗ = GV\{u}. Let C∗1 = C1 \ {u}, . . . ,C∗k \ {u} be a perfect ordering in

G∗ with S∗k ⊂ C∗j . Since u is in exactly one clique in G, we see Sk = S∗k ⊂ C∗j ⊆ Cj .

(iv ⇒ i). Let C1, . . . ,Ck be a perfect clique ordering of G. We show that G is decom-

posable by induction on k. For k = 1, G is complete and thus decomposable by definition.

Assume k > 1 and the implication holds for k − 1. We have a proper decomposition,

(Ck,Hk−1), where GCk
is decomposable by virtue of being complete, and GHk−1

is decom-

posable by the inductive hypothesis.

Lemma 2.1.4 is originally Lemma 5 of Frydenberg and Lauritzen (1989). Here we

present a slightly simpler proof. This is the first of the three lemmae that we will need for

the stochastic search.
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Lemma 2.1.4. Let G = (V,E) and G∗ = (V,E∗) be decomposable graphs with E ⊂ E∗.

There exists an increasing sequence of decomposable graphs G = G0 ⊂ · · · ⊂ Gn = G∗

differing by exactly one edge.

Proof. By induction, it suffices to find an edge e ∈ E∗ \ E such that (V,E ∪ {e}) is

decomposable. If G and G∗ differ by exactly one edge, then e is that edge. Henceforth,

assume G and G∗ differ by more than one edge. For |V| ≤ 3, the lemma is trivial. Suppose

|V| > 3 and assume it holds for |V| − 1. By Lemma 2.1.1, there is a node u which is

simplicial in G. Choose an edge e such that (V \ {u},EV\{u} ∪ {e}) is triangulated. Let

G1 = (V,E ∪ {e}). Any chordless cycles of length 4 or more must include u, but such a

one can not exist because bd(u) is still complete in G1.

With Lemma 2.1.4, we need only consider moves between decomposable graphs ob-

tained by toggling a single edge. The next two lemmae provide criteria for deciding it a

proposed toggle will lead to a decomposable graph. The first is useful in case we propose

to remove an existing edge.

Lemma 2.1.5. Suppose G = (V,E) is decomposable, and G− = (V,E \ {(a, b)}). G− is

decomposable if and only if {a, b} is contained in exactly one clique.

Proof. Clearly, G− is triangulated unless there exists a 4-cycle (a, v, b, u, a) in G such that

a ∼ b is the only chord. This cycle exists if and only if there exists some v, u ∈ bd(a)∩bd(b)

such that v 6∼ u. Such u, v exist if and only if {a, b, u} and {a, b, v} are contained in two

distinct cliques.
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The next lemma is a counterpart to Lemma 2.1.5. It provides a method for testing if a

graph will still be decomposable when a given edge is added. We present two proofs, the

first of which is a new proof that is very simple yet not so useful from an implementation

point-of-view. This will demonstrate the usefulness of the junction tree representation for

decomposable graphs. The second proof makes use of junction trees and provides a method

which more readily lends itself to implementation.

Lemma 2.1.6. Suppose G = (V,E) is a decomposable graph in which a 6∼ b, and G+ =

(V,E ∪ {(a, b)}). G+ is decomposable if and only if S = bd(a) ∩ bd(b) separates a and b in

G.

Proof. If G+ contains a cycle which is not already in G, then the edge (a, b) closes a

path a = v1, . . . , vn = b from a to b in G. Thus, we consider paths in G of the form

a = v1, . . . , vn = b with n ≥ 4. We show sufficiency first. Assume S = bd(a) ∩ bd(b)

separates a and b. By definition, at least one vi ∈ S. For i > 1, (a, vi) is a chord; for

i < n, (b, vi) is a chord. To show necessity, assume S = bd(a) ∩ bd(b) does not separate a

and b. In this case, we choose the shortest path from a to b which does not intersect S.

By choosing the smallest path, we ensure that vi ∼ vj if and only if |i− j| = 1. Thus, the

corresponding cycle in G+ contains no chords. Furthermore, b 6∼ v2, because v2 is chosen

in bd(a) \ bd(b). We conclude that n ≥ 4 and G+ is not decomposable.

As noted, Lemmae 2.1.4-2.1.6 enable the use of stochastic searches on the space of

decomposable graphs. Lemma 2.1.4 states that the search can cover the entire space

simply by toggling one edge at a time. Thus, we can simply propose a pair of cliques,
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(a, b). If a ∼ b, we consider deleting the edge and use Lemma 2.1.5 to decide if the move

is legal. On the other hand, if a 6∼ b, we consider adding the edge and use Lemma 2.1.6

to decide if that move is legal. The difficulty is implementing these decisions. To apply,

Lemma 2.1.5 we need to examine cliques which contain a, stopping if we find two which

also contain b or we exhaust the clique set. To apply, Lemma 2.1.6 we need to find bd(a)

and bd(b), their intersection, and then somehow determine if that intersection separates a

and b. The solution is to represent G as a junction tree.

By Lemma 2.1.1 every decomposable graph has a perfect clique ordering. A junction

tree can be considered a graphical representation of this ordering. Construct the tree by

beginning with C1. For i > 1, add the vertex Ci and an edge (Ci,Cj), where j < i is

such that Cj ⊃ Si. Note that for i > 1, bd(Ci) contains exactly one clique Cj such that

j < i. This property ensures that the junction graph is indeed a tree. To see that this tree

satisfies the junction property, choose any Ci,Cj ∈ C , and let Cj = Cr1 , . . . ,Cr` = Ci be

the unique path between them. Without loss of generality, assume i > j. By construction,

r1 < r2 < · · · < r` and for n < m, (Crn ∩Crm) ⊆ (Crm ∩Crm−1). Therefore,

(Cj ∩Cr`−1
) ⊆ (Cj ∩Cr`−2

) · · · ⊆ (Cj ∩Ci) (2.3)

Thus, the tree satisfies the junction property.

There are many clique orderings which yield the same junction tree, but the junction

tree representation is not unique. Indeed, the junction tree indicates that every clique is

first in some perfect ordering. Let C1 be an arbitrary clique, and for i > 1 choose Ci

such that in the junction tree, Ci is connected to some Cj with j < i. For each, i we see
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that {C1, . . . ,Ci} is connected in the junction tree. By virtue of the junction property,

(Ci ∩ Cm) ⊆ Cj for any m < i. Therefore, we can construct a perfect clique ordering

beginning with any clique.

Using junction trees provides an easier method for testing whether proposed graphs

are decomposable. Using the following lemma, if we find one clique C that contains {a, b},

then we only need to check its neighbors in the junction tree.

Lemma 2.1.7. Suppose G = (V,E) is a decomposable graph containing a clique C ⊃

{a, b}, and G− = (V,E\{(a, b)}). G− is decomposable if and only if {a, b} is not contained

in a clique C∗ where C∗ ∼ C in the junction tree for G.

Proof. By Lemma 2.1.5, G− is decomposable if and only if {a, b} is not included in any

other clique of G. Suppose C∗∗ is a clique other than C that contains {a, b}. If such a

clique exists, then let C∗ be the clique which neighbors C in the unique junction tree path

from C∗∗ to C. By the junction property, {a, b} ⊆ C∗. Therefore C∗∗ exists if and only if

C∗ exists.

We will now find a decision process for adding a proposed edge which utilizes the

junction tree representation. The decision involves the notion of the shortest path between

a and b in the junction tree. Specifically, we require the shortest path in the junction tree

between any cliques A and B with a ∈ A and b ∈ B. We show now that the shortest path

is unique and that the endpoints separate a and b.
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Let B be an arbitrary clique which contains b. Let A = C1, . . . ,Cn = B be “a” shortest

path to B starting from any A 3 a. We will show that this path is unique and therefore

well-defined. Let A∗ = C∗1, . . . ,C
∗
m = B, m ≥ n be any other path. Clearly, these paths

intersect (if only because B = Cn = C∗m). Set i =min{i : Ci = C∗j for some j} and choose

j such that C∗j = Ci. C1, . . . ,Ci = C∗j , . . . ,C
∗
1 is the path from A to A∗ in the junction

tree. By the junction property, a ∈ Ci. Therefore, Ci, . . . ,Cn = B is a path from a set

containing a to B, so i = 1 by our choice of the shortest path. We conclude that either

m > n (the second path is not as short as the first) or A∗ = A (the paths are identical).

Once A is proven to exist, we can apply the argument again to find the shortest path from

a B 3 b to A. We see too that if A∗ and B∗ are any other cliques that contain a to b then

the path between them in the junction tree includes A and B. This is important for the

following reason. If v ∈ {a} ∪ bd(a) and u ∈ {b} ∪ bd(b), then there are cliques A∗ and B∗

such that {a, v} ⊆ A∗ and {b, u} ⊆ B∗. Invoking the junction property, we see that A and

B each separates {a}∪bd(a) and {b}∪bd(b). This leads to the restatement of Lemma 2.1.6

for the junction tree representation.

Lemma 2.1.8. Let G = (V,E) be a decomposable graph such that a ∼ b. Let A =

C1, . . . ,Cn = B be the shortest path between a clique containing a to a clique containing b

in a junction tree representation of G. The graph G+ = (V,E ∪ {a, b}) is decomposable if

and only if A ∩B = Ci ∩Ci+1 for some i.

Proof. We have already seen that A and B each separate bd(a) from bd(b). Hence, if

bd(a) ∩ bd(b) separates A and B, then it also separates bd(a) from bd(b). Clearly, this
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condition is also necessary since A ⊆ bd(a) and B ⊆ bd(b). Finally, the junction property

implies that A ∩ B = bd(a) ∩ bd(b). These facts combined show that the condition of

Lemma 2.1.6 is equivalent to the condition that A ∩B separates A and B. This holds if

and only if A ∩B is a separator on the unique path from A to B.

In Chapter 5 we discuss details for implementing Lemma 2.1.7 and Lemma 2.1.8, in-

cluding finding cliques which contain a given node, testing adjacency, computing shortest

paths, and local updates to the junction tree when edges are added or dropped.

2.2 Markov Measures for Graphical Models

An undirected graph depicts the conditional independence structure for some variable X.

Distributions that satisfy these constraints are called Markov probability measures.

Definition 2.2.1 (Markov Probability Measure). If θ is a probability measure on (X ,F),

we say it is Markov on a decomposable graph, G, if for any proper decomposition (A,B),

XA ⊥⊥ XB | XA∩B[θ].

● ● ●

I J K

Figure 2.1: A graph depicting conditional independence of XI and XK given XJ .



CHAPTER 2. GRAPH NOTATION AND THEORY 20

For example, let G be the graph depicted in Figure 2.1. A measure θ is Markov on G, if

and only if XI ⊥⊥ XK | XJ [θ]. Implicit in the definition is the fact that it is only sensible to

refer to a measure as Markov in relation to a specific graph. For example, if the measure

θ is not Markov on the graph in Figure 2.1, is still Markov on the complete graph with

V = {I, J,K}. Since a complete graph admits no proper decomposition, all measures over

XV are trivially Markov. Alternatively, a measure such that the components {Xv} are

mutually independent is Markov on any graph (with the appropriate vertex set.)

We denote the set of all distributions that are Markov on G by M (G). As written, the

conditional independence property in Definition 2.2.1 applies only when A and B are a

decomposition of G. Dawid and Lauritzen (1993) provide an equivalent expression in terms

of more general sets. They show that a probability measure is Markov if and only if it

satisfies the global Markov property:

Definition 2.2.2 (Global Markov Property). A measure θ on (X ,F) satisfies the global

Markov property if for X ∼ θ,

XA ⊥⊥ XB | XS[θ] whenever S separates A and B. (2.4)

This property is global in the sense that A and B may be any subsets of V. Likewise,

S may be any subset that separates A and B; it need not be their intersection.

2.2.1 Markov Combinations

Let us consider a graph consisting of exactly two cliques, A and B with separator S = A∩B.

This graph admits only one proper decomposition, namely (A,B). Thus, a measure θ is
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Markov on this graph if and only if XA ⊥⊥ XB | XS[θ]. Dawid and Lauritzen (1993) show

that such a measure is uniquely identified by its marginals θA and θB. That is to say that

if there exist two appropriate marginal measures for the two cliques, then there is only one

joint measure that is Markov and has those marginals. We will now formally express the

notion of “appropriate” and the result of Dawid and Lauritzen.

Definition 2.2.3 (Consistency of Probability Measures). Let Q be a measure on (XA,FA)

and R be a measure on (XB,FB). We say that Q and R are consistent probability measures

if QA∩B = RA∩B.

Proposition 2.2.4 (Markov Combination). Let Q be a measure on (XA,FA) and R be

measure on (XB,FB) such that Q and R are consistent. There exists an almost everywhere

unique distribution θ such that θA = Q, θB = R, and XA ⊥⊥ XB | XA∩B[θ].

We call the distribution θ satisfying Proposition 2.2.4 the Markov Combination of Q

and R and write θ = Q ? R. Clearly, if G is a decomposable graph with two cliques A

and B then θ is Markov on G. More generally, let G be a decomposable graph with cliques

given by C1, . . . ,Ck. A unique Markov distribution can be constructed from a given set

of pairwise consistent marginal distributions by iteratively forming Markov combinations.

Let θCi be a measure on (XCi ,FCi) with the consistency constraint that for all i, j, θCi and

θCj induce the same marginal for (XCi∩Cj ,FCi∩Cj ). Define the ith history, Hi = ∪j<=iCj .

Of course, θH1 = θC1 . For i ≥ 2, set θHi = θCi ? θHi−1 . The last combination, θHk
is the

unique probability measure which is Markov with respect to G and has the given clique

marginals {PCi}. We will denote this relationship by θHk
= ?(θC1 , . . . , θCk

).
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2.3 Hyper Markov Prior Laws

Dawid and Lauritzen (1993) extend the notion of Markovity from random variables to

random parameters. To reduce confusion, we will refer to a distribution over distributions

as a law. By a law over A or GA we shall mean a prior law for θA, the marginal distribution

of XA. Consider a graphical model, θ ∈ M (G) and X|θ ∼ θ. In a Bayesian frame set,

θ is a random distribution, so we specify a prior law L over M (G). When the prior law

also satisfies the conditional independence structure of G, we say that it is (weak) hyper

Markov. This is expressed formally in Definition 2.3.1. We shall see in Section 2.3.1 that

under this constraint, L is defined by its clique marginals. In Section 2.3.2, we discuss the

stronger version of this property, which to leads several desirable results.

2.3.1 The Weak Hyper Markov Property

Definition 2.3.1 (Hyper Markov Law). A prior law L is (weak) hyper Markov with

respect to a graph G if it gives probability one to M (G) and for any decomposition (A,B)

of G:

θA ⊥⊥ θB | θA∩B. (2.5)

The analogy of this definition to Markov distributions is clear. The analogy can be ex-

tended, in that many of the properties of Markov distributions are also true for hyper

Markov laws. For example, hyper Markovity may be expressed as an equivalent “global”

property. A law L is hyper Markov with respect to G if and only if it satisfies the global

hyper Markov property.
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Definition 2.3.2 (Global Hyper Markov Property). A law L on (X ,F) satisfies the global

hyper Markov property if for θ ∼ L ,

θA ⊥⊥ θB | θS[L ] whenever S separates A and B. (2.6)

As the goal of this section is to consider prior laws for θ ∈ M (G), it is desirable to

construct an operation which combines marginal laws on the cliques of G in the same vein

as the Markov combination of Proposition 2.2.4. Of course, we first need a consistency

criterion.

Definition 2.3.3 (Consistency of Hyper Markov Laws). Let Q be a law for θA and R be

a law for θB. We say that Q and R are hyper consistent laws if QA∩B = RA∩B.

As with Markov measures, hyper Markov laws are determined by their clique marginals.

Suppose each clique is endowed with a prior law for some random distribution.

Definition 2.3.4 (Hyper Markov Combination). Let Q be a prior law for θA and R be a

prior law for θB such that Q and R are hyperconsistent. The hyper Markov combination

of Q and R, denoted Q �R, is the unique law, L , such that:

1. θ ∈M (G) a.s.[L ],

2. LA = Q,

3. LB = R,

4. θA ⊥⊥ θB | θA∩B[L ].
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This law exists and is almost-everywhere unique by Lemma 3.3 of Dawid and Lauritzen

(1993).

If G is a decomposable graph and its cliques are A and B, then L in Definition 2.3.4 is

hyper Markov with respect to G. As desired, this idea may be used iteratively for construct-

ing hyper Markov laws for general decomposable graphs. Let G be a decomposable graph

with cliques C1, . . . ,Ck, each with a marginal law LCi for θCi such that the marginal laws

are pair-wise hyperconsistent. Take LH1 = LC1 . For i ≥ 2, define LHi = LCi �LHi−1 .

L = LHk
is the unique law which is hyper Markov with respect to G and has the given

clique marginal laws {LCi}. We will denote this relationship by L = �(LC1 , . . . ,LCk
).

2.3.2 The Strong Hyper Markov Property

Once again, we consider a graphical modelX ∼ θ, where θ ∈M (G) is a random distribution

with prior law L . Since θ is Markov, the data X are guaranteed to exhibit the desired

independence graph, but only conditionally given θ. That is, the marginal distribution of X

is not guaranteed to be Markov. Thus, marginal calculations lose the dimension-reducing

advantage of graphical models. It turns out that even if L is hyper Markov, the marginal

distribution of X may not by Markov; a stronger property is needed. This strong hyper

Markov property will ensure that the distribution of X is Markov, which will be a useful

property when we discuss graph selection (see Section 2.4.2.)
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Definition 2.3.5 (Strong Hyper Markov Law). A law L on M (G) is called strong hyper

Markov over G if for any decomposition (A,B) of G

θB|A ⊥⊥ θA[L ]. (2.7)

Note that this property implies that L is weak hyper Markov, so the discussion of weak

hyper Markov priors applies. For example, a hyper Markov law on a graph G is determined

by its clique marginal laws. For a given set of marginals, there is one hyper Markov law.

Whether that law is strong or weak must therefore depend on properties of the marginals.

In fact, Dawid and Lauritzen (1993) show the following:

Proposition 2.3.6. Let L be hyper Markov over G. Then L is strong hyper Markov if

and only if, for all cliques C of the graph G and all subsets A of C we have

θC\A|A ⊥⊥ θA [L ] (2.8)

Proof. This is Proposition 3.16 of Dawid and Lauritzen (1993).

Dawid and Lauritzen (1993) prove the next proposition about the joint law of θ and

X ∼ θ.

Proposition 2.3.7. If L (θ) is hyper Markov over G, and X ∼ θ, then the joint distribution

of (X, θ) satisfies, for any decomposition (A,B) of G,

(XA, θA) ⊥⊥ (XB, θB) | (XA∩B, θA∩B). (2.9)

Additionally, if L (θ) is strong hyper Markov, then

(XA, θA) ⊥⊥ (XB, θB|A) | XA∩B. (2.10)
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This proposition has three important corollaries for our work. The first corollary states

that the family of (strong) hyper Markov laws is conjugate to the family of Markov dis-

tributions for a particular graph. We show the result for a single observation X, which

implies inductively to a sample of size n > 1 since we may introduce one observation at a

time.

Corollary 2.3.8 (Conjugacy of Hyper Markov Laws). If the prior law of θ is hyper Markov,

so is the posterior obtained by conditioning on a complete observation X = x. If the prior

law is strong hyper Markov, then so is the posterior

Proof. From Equation 2.9, it follows immediately that

θA ⊥⊥ θB | (θA∩B, XA∩B, XA, XB). (2.11)

.

Since (A,B) is a decomposition of G, we have V = A ∪B. Therefore, X and the triplet

(XA, XB, XA∩B) are functions of each other so conditioning on the triple is equivalent to

conditioning on X. Equation 2.11 becomes

θA ⊥⊥ θB | (θA∩B, X). (2.12)

The proof is similar in the strong hyper Markov case.

The remaining two corollaries only apply when the prior law is strong hyper Markov.

Under this condition, we are guaranteed two results which will be of much importance
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throughout this work for discussing applications of the hyper Dirichlet process. The first

states that when the prior law is strong hyper Markov, we can determine the posterior

by locally updating the prior marginal laws for the cliques. The second states that the

marginal distribution of X is Markov.

Corollary 2.3.9 (Local Updates for Strong Hyper Markov Laws). Let G be a decomposable

graph with clique set C . If the prior law L (θ) is strong hyper Markov on G, then the

posterior law of θ is the unique strong hyper Markov law L ∗ specified by the clique marginal

laws {L ∗
C : C ∈ C }, where L ∗

C is the posterior law of θC based on the prior law LC and

the clique-specific data, XC = xC.

Proof. If C is any clique in G, then it forms a proper decomposition of G with the union of

the remaining cliques. Straightforward application of Equation 2.10 reveals θC ⊥⊥ X|XC.

Thus θC depends on the data only through XC. Applying this to each clique, we see that

the clique marginals of L , namely {L ∗
C : C ∈ C }, may be computed locally by considering

only the clique-specific data xC. By Corollary 2.3.8, L ∗ is strong Hyper Markov, and by

Definition 2.3.4 it is unique.

Corollary 2.3.10 (Data Marginal under Strong Hyper Markov Laws). If the prior law of

θ is strong hyper Markov, then the marginal distribution of X is Markov.

Proof. This follows directly from Equation 2.10 since θA and θB|A may be removed while

maintaining the conditional independence property.
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To elucidate the discussion of this section we provide two examples of hyper Markov

laws: one that is strong and one that is weak (Dawid and Lauritzen, 1993).

Example 2.3.1 (Strong Hyper Markov Law). Suppose X = (XI , XJ , XK) is a discrete

random variable with P(X = (i, j, k)) = θijk. We construct a law L which is hyper Markov

on the graph G shown in Figure 2.1. θ ∈M (G) if it satisfies

θijk = θij+θ+jk/θ+j+. (2.13)

We specify the marginal laws for {θij+} and {θ+jk} as Dirichlet laws with {αij} and {βjk}.

Note that these are hyperconsistent if and only if α+j = βj+ for all j. By Definition 2.3.4

there is a unique hyper Markov law L with these marginals. In other words, if we constrain

L (θ) to satisfy the hyper Markov property for G,

θij+ ⊥⊥ θ+jk | θ+j+[L ], (2.14)

then the law L is uniquely determined by {αij} and {βjk}.

We now show that the law L constructed above is strong hyper Markov. Consider the

marginal law for {θij+}, which we have stated is Dirichlet with parameters {αij}. Note

that the conditional distributions θI|J are equal to {θij+/θ+j+}, where θ+j+ =
∑

i θij+.

From Dirichlet Property 3.1.5, we see that {θij+/
∑

i θij+} ⊥⊥ {
∑

i θij+}. Therefore we have

θI|JK = θI|J is independent of θJ and therefore θJK . By symmetry, θK|IJ ⊥⊥ θIJ . Since

(IJ, JK) is the only proper decomposition of G, we conclude that L is strong hyper Markov.

Technically, we must also show the independence property for improper decompositions

since it is not guaranteed; however in this case, it is trivial to show that the θA|V ⊥⊥ θV for

any complete set A.
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The next example of a hyper Markov law is strictly weak.

Example 2.3.2 (Hyper Markov Sampling Law for MLE). Consider a three-way contin-

gency table for the counts {Nijk} which are assumed to follow a multinomial distribution

with size n and probabilities θ = {θijk}. When θ is assumed to be Markov on the graph G

in Figure 2.1, then the maximum likelihood estimator satisfies

θ̂ijk =
Nij+N+jk

nN+j+
. (2.15)

The marginal MLE for θIJ satisfies

θ̂ij+ =
∑
k

θ̂ijk =
Nij+

n
. (2.16)

Therefore, {θ̂ij+ ⊥⊥ θ̂+jk|θ̂+j+} and we conclude that the sampling distribution of the MLE

is hyper Markov. It is straightforward to show that this law is not strong hyper Markov.

The set of marginal distributions θI|J satisfies

θ̂i|j =
θ̂ij+

θ̂+j+

=
Nij+

N+j+
, (2.17)

which is not independent of θ̂+j+ = N+j+/n because nθ̂i|j θ̂+j+ = Nij+ is constrained to be

an integer. Given that there is a unique hyper Markov combination, we can also conclude

that there is no strong hyper Markov sampling law for the MLE.

2.4 Graph Selection and Models

Suppose we have a set of observations X(n) = (X1, . . . , Xn), which are a random sample

from a distribution θ. In some applications, we may desire to find the sparsest possible
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graph for which θ is Markov. By “sparsest”, we mean that the graph does not have any

“extra” edges. This is to say

XA ⊥⊥ XB | XS[θ], (2.18)

if and only if S separates A and B. In other words, the graph we seek, G, is the decom-

posable graph such that θ ∈M (G), and if G∗ is another decomposable graph obtained by

deleting one or more edges from G, then θ 6∈M (G∗).

For each graph, G, let LG be a hyper Markov prior law over M (G). We shall refer to

these {LG} as graphical models. One approach to choosing between the graphs is to choose

the corresponding graphical model with the highest marginal likelihood for the data X(n).

A more Bayesian approach is to place a prior distribution over the competing graphs,

then choose the graphical model with the highest posterior probability. The posterior

probability is determined by weighing the prior probability by the marginal likelihood of

the data under the corresponding model.

2.4.1 Compatible Priors

The prior laws we choose for graph selection, {LG}, will necessarily vary from graph to

graph because the space of Markov distributions depends on the graph. However, it makes

sense that these laws be as close as possible in some sense, unless there is some expert

reason to do otherwise. In this way, the difference between marginal likelihoods or posterior

probabilities for the graphs will - as much as is possible - be attributable to real differences

between the graphs and not artificially different priors. We begin by considering the special
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case of two competing models for which one graph can be obtained by deleting one or more

edges from the other. In this case, we call the former graph a specialization of the latter.

We then generalize by considering two graphs such that neither is a specialization of the

other. Finally, we will be ready to consider comparing multiple graphs, including choosing

among all decomposable graphs.

Let G = (V,E) and G∗ = (V,E∗) be two competing graphs such that E∗ ⊂ E. Since

G∗ is a specialization of G, a law over M (G) specifies a natural choice for a law over M (G∗).

If LG is the graphical model for G, then the marginal law LG∗ for each clique of G∗ should

be equal to the marginal law of the set induced by LG . As these marginals are induced

by the overall measure LG(θ), they are necessarily hyperconsistent. Thus, our choice is

the unique law, LG∗ which is hyper Markov on G∗ and gives the cliques of G∗ the same

marginal laws as LG does. This process works because each clique in G∗ is complete in G,

so all the necessary interactions of LG∗ are extant in LG .

Let us now consider a more general scenario of two graphs, in which neither graph

is a specialization of the other. Suppose we wish to decide between G = (V,E) and

G∗ = (V,E∗). A compatible prior can be specified by considering G+ = (V,E+), where

E+ = E ∪ E∗. If G+ is decomposable, we can place a prior law on M (G+) and form LG

and LG∗ by marginalization as above. If G+ is not decomposable, then we can make it

so by adding chords to its edges until it is triangulated. Note that removing edges is not

an option because we need each clique in G and G∗ to be complete in G+. Alternatively,

we may still be able to choose LG+ such that it satisfies the conditional independence
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structure even if G+ is not decomposable. This requires a generalizing the work on hyper

Markov priors to accommodate non-decomposable graphs.

It is simple to extend the procedure of specifying compatible priors when we have

multiple competing priors, {G1, . . . ,Gm}. Let G+ be a “generalized” graph which contains

any edge that exists in any of the m competing graphs. If G+ is decomposable, then we

simply specify a hyper Markov law LG+ over M (G+). (If G+ is not decomposable, and this

is a problem, we simply add chords to its cycles until it is triangulated before specifying

LG+ .) For example, if we wish to compare all decomposable graphs, then we specify a prior

law for the complete model. There are no restrictions on this law because all laws are hyper

Markov with respect to the complete graph. The hyper Markov prior for any particular

graph is the unique hyper Markov law whose clique marginals are equal to marginal laws

for the overall prior of the complete graph.

2.4.2 Strong Hyper Markov Priors for Graph Selection

The graph selection process is more efficient when the competing graphical models in-

corporate strong hyper Markov prior laws. Let G be a decomposable graph with a perfect

sequence of cliques, C1, . . . ,Ck having separators S2, . . . ,Sk. Consider the graphical model

where L (θ) is a hyper Markov prior over M (G) and X|θ ∼ θ. In this case, Corollary 2.3.10

ensures that the marginal distribution of the data is Markov, which means that we can

compute it locally.
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f(x) = fC1(xC1)
k∏
i=2

fCi|Hi−1
(xCi |XHi−1 = xHi−1) (2.19)

Since the cliques are perfectly ordered, we have that Si separates Ci and Hi−1. Invoking

the Global Markov Property,

f(x) = fC1(xC1)
k∏
i=2

fCi|Si
(xCi |XSi = xSi). (2.20)

By definition, Si ⊂ Ci which implies {XSi = xSi} ⊃ {XCi = xci} for any given value x.

Therefore, fCi|Si(xCi |XSi = xSi) = fCi(xCi)/fSi(xSi). This yields

f(x) = fC1(xC1)
k∏
i=2

fCi(xCi)
fSi(xCi)

. (2.21)

We see that the calculation of the data marginal may be computed locally, within each

clique and separator.

Dawid and Lauritzen (1993) discuss another advantage of compatible hyper Markov

priors for log-likelihood tests. Suppose G∗ ⊂ G are decomposable graphical models which

differ only by one edge, e = (a, b). By Lemma 2.1.5, {a, b} is contained in exactly one

clique in G, say C. Choose a perfect ordering of the cliques of G where C = C1. Therefore

Equation 2.21 is the likelihood for the model G where C = C1. Certainly, C is not

a clique in G∗. However, note that {a, b} is not contained in any separator Si so each

Si remains complete in G∗. Therefore, it is not too hard to see that Equation 2.21 can

also be used to calculate f∗(x), the likelihood for G∗. Furthermore, if the prior laws
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are compatible, fCi(xCi) = f∗Ci
(xCi) and fCi(xCi) = f∗Ci

(xCi) for i > 1. Thus the

likelihood ratio for the two models is L(G∗ : G) = f∗C(xC)/fC(xC). Note that f∗C(xC) =

f∗Ca
(xCa)f∗Cb

(xCb
)/f∗C0

(xC0), where Ca = C\{a},Cb = C\{b}, and C0 = C\{a, b}. Note

that each of these sets is complete in both G and G∗. Since the prior laws are compatible,

the marginal likelihoods are the same for both models. Hence, the likelihood ratio can be

written

L(G∗ : G) =
fCa(xCa)fCb

(xCb
)

fC0(xC0)fC(xC)
. (2.22)

To reiterate, Equation 2.22 holds when G and G∗ are both decomposable, such that G

and G∗ differ only by the presence of edge (a, b) in G, and the priors are compatible strong

hyper Markov laws.

Lastly, Equation 2.21 can be written

f(x) =
∏k
i=1 fCi(xCi)∏k
i=2 fSi(xSi)

. (2.23)

As we will be focusing on strong hyper Markov priors, we will use the short-hand notation

∏
A∈C \S

fA(xA) =
∏k
i=1 fCi(xCi)∏k
i=2 fSi(xSi)

. (2.24)

where C and S are the cliques and separators of G, assumed to be perfectly ordered.

Additionally, this notation will be convenient for the priors and posteriors of both weak

and strong hyper Markov laws.
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2.4.3 Parametric Graphical Models

Up to now, the discussion of this chapter focused on Markov distributions and hyper

Markov laws in general. If in addition we think that the data come from some parametric

family then we restrict our attention to some family F . Let X ∼ θ ∈ F . A graph G of the

conditional independence structure of X denotes the belief that θ is Markov with respect

to G. Thus, it restricts the model to a sub-family, FG = F ∩M (G). Graph selection is the

problem of determining the smallest FG that contains θ. The most prevalent examples are

graphical Gaussian models. Graph selection for Gaussian models is often called covariance

selection. In this setting, the relevant family is the set of p-variate Gaussian distributions.

Denote this family N = {Np(µ,Σ) : µ ∈ Rp,Σ ∈ M+
p }, where M+

p is the cone of real-

valued, symmetric p×p matrices that are positive definite. Specifying a graph, G, translates

to putting constraints on Σ. Speed and Kiiveri (1986) showed that a sufficient statistic

for the covariance matrix is the collection of sub-matrices for each clique. In other words,

if there is no edge between nodes i and j, then σij is a function of the other covariance

elements. For example, if (x1, x2, x3) is such that x1 ⊥⊥ x3|x2, then σ13 is no longer a free

parameter, but a function of σ11, σ22, σ33, σ12, and σ23. In general, denote the sub-family of

Gaussian distributions Markov on G by NG . Let PG be the set of positive definite matrices

such that if K ∈ PG , then Kij = 0 for all (i, j) 6∈ E; let QG be the image of PG under matrix

inversion. If Np(µ,ΣG) is Markov with respect to G, then ΣG ∈ QG . The goal of covariance

selection is to find the smallest QG containing Σ, the population covariance matrix.
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Much progress has been made with graph selection for parametric models. Dawid and

Lauritzen (1993) proved many results for decomposable graphical models, including multi-

nomial and multivariate Gaussian problems. For example, they present the distribution of

the restricted maximum likelihood estimate of Σ for the NG model with µ known. This dis-

tribution is called the hyper Wishart distribution since the marginal law for each clique is

Wishart. Several others have run with this idea. Letac and Massam (2007) have extended

the hyper inverse Wishart to a richer family of distributions on QG and PG . Giudici and

Green (1999) implemented a reversible jump Markov chain Monte Carlo algorithm for de-

termining G. Carvalho et al. (2007) provide an algorithm for generating random variables

from this family. For decomposable models, the process is simplified by the presence of a

perfect ordering. For two cliques, the algorithm begins by generating an inverse Wishart

variable on one clique. If the cliques overlap, this determines some of the parameters for the

other clique. Therefore, one needs to generate a conditional Wishart variable given those

entries. For multiple cliques, one simply repeats this process. With a perfect ordering,

the process is simpler because each new clique is conditioned on only one previous clique.

Conditioning on multiple cliques can lead to moderate complications in the conditional

distribution, because the conditioning set is incomplete. Hence, decomposable models are

computationally convenient.

If we wish to impose fewer constraints on the model, then we may consider a non-

parametric family for the graphical model. Most work to date has focused on parametric

models. Specifically, we refer to the generalized hyper Dirichlet models for analyzing contin-

gency tables (Letac and Massam, 2007; Dobra and Massam, 2009) and graphical Gaussian
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models (Giudici and Green, 1999). The major focus of this dissertation is to provide the

mechanism for extending the great amount of knowledge on graphical models to allow one

to choose non-parametric hyper Markov processes. In particular, we focus on a hyper

Markov version of the Dirichlet process, which we dub a hyper Dirichlet process.
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Chapter 3

Non-Parametric Processes

A parametric model constrains the space of available functions or distributions to lie within

a finite-dimensional subspace. For example, a (global) linear regression projects the func-

tion E(Y |X = x) to the space of linear functions. Such constraints are acceptable only if

one believes the function is “close” to this space in some sense. In this case, the loss of

information may be outweighed by the benefit of a simpler structure. On the other hand,

if one lacks a good idea of the structure of a distribution, a parameterized space can lack

the flexibility to find a suitable estimate. By contrast, a non-parametric family can closely

approximate any arbitrary distribution (van Belle et al., 2004). The best-known example

of a non-parametric family may be the Dirichlet process laws (Ferguson, 1973). The Dirich-

let process is convenient due to several “neutrality” properties, which we discuss further

in this chapter. Briefly, if B ⊆ A are measurable sets, then P (B|A) ⊥⊥ P (A). In other

words, the probability of any measurable set provides no information about how that mass
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is distributed among its subsets. Likewise, the probability of any measurable set provides

no information about how the remaining mass is distributed among any disjoint sets.

3.1 The Dirichlet Distribution

The Dirichlet process is constructed to have Dirichlet distributions for all finite-dimensional

distributions. Many of the Dirichlet process’ convenient properties stem from this fact. It

is therefore instructive to gain an understanding of the Dirichlet distribution and its many

beautiful properties.

The Dirichlet distribution is a probability distribution of vectors ~X = (X1, . . . , Xn)

such that the X ′is are non-negative and sum to unity. Geometrically speaking, we say

that (X1, . . . , Xn) exists on the (n− 1)-dimensional simplex. For this reason, the Dirichlet

distribution can be used as a prior for a discrete random variable, where P(Y = i| ~X =

~x) = xi. It is the conjugate prior for the family of multinomial vectors.

Definition 3.1.1 (Dirichlet Distribution). Let α1, . . . , αn be non-negative real numbers,

where at least one αi is strictly positive. The Dirichlet distribution, Dir(α1, . . . , αn), has

density

dDir(x1, . . . , xn;α1, . . . , αn) =
Γ(α1 + α2 + . . .+ αn)
Γ(α1)Γ(α2) . . .Γ(αn)

xα1−1
1 xα2−1

2 . . . xαn−1
n , (3.1)

if each xi is non-negative and
∑n

i=1 xi = 1. In all other cases, the density is 0.
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3.1.1 Representations of Dirichlet Random Vectors

The Dirichlet distribution has various representations in terms of smaller-dimensional

Gamma, Beta, and Dirichlet random variables. The Gamma and Beta representations are

well-known. The representation of a Dirichlet random vector in terms of smaller Dirichlet

vectors is possibly widely believed, but it is infrequently stated. We first note that the

Dirichlet distribution is a generalization of the Beta distribution. If x ∼ Beta(α1, α2) then

it is easily seen that (x, 1−x) ∼ Dir(α1, α2) by comparing the density functions. It is well-

known that Beta distribution can be represented in terms of Gamma random variables. If

ψ1 ∼ Gamma(α1, β) and ψ2 ∼ Gamma(α2, β), then ψ1/(ψ1 + ψ2) ∼ Beta(α1, α2). This

representation can be generalized for the Dirichlet distribution.

Dirichlet Property 3.1.2 (Gamma Representation). Let α1, . . . , αn be a sequence of

non-negative real numbers, where at least one αi is strictly positive. For each i, let

ψi ∼Gamma(αi, 1), where Gamma(0, 1) = δ0. If Xi = ψi/
(∑n

j=1 ψj

)
, then

(X1, . . . , Xn) ∼ Dir(α1, . . . , αn). (3.2)

The Gamma representation implies that for each i,Xi = 0 if and only if αi = 0 with

probability one.

Gamma random variables are additive, such that if ψ1 ∼ Gamma(α1, β), and ψ2 ∼

Gamma(α2, β), then their sum has distribution Gamma(α1 + α2, β). As a result, the

Dirichlet distribution also has an additivity property. In the Gamma representation, we see

that the Dirichlet vector is the vector of proportions of each Gamma random variable to the

total. Consider the distribution of the vector (Y = X1 +X2, X3, . . . , Xn). Mathematically,
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the ratio of ψ1 + ψ2 to the grand total is the sum of their individual ratios. Thus, we can

generate (Y,X3, . . . , Xn) by generating ψ1, . . . , ψn, and setting Y = ψ1 + ψ2. Of course,

this is equivalent to generating ψ1 +ψ2 ∼ Gamma(α1 +α2, 1) directly. Hence, we see that

(Y,X3, . . . , Xn) ∼ Dir(α1 + α2, α3, . . . , αn). The next property is a generalization of this

idea.

Dirichlet Property 3.1.3 (Additivity). Suppose (X1, . . . , Xn) ∼Dir(α1, . . . , αn). Choose

any 0 = r0 < r1 < . . . < rk = n. r1∑
i=r0

Xi,

r2∑
i=r1+1

Xi, . . . ,

rk∑
i=rk−1+1

Xi

 ∼ Dir

 r1∑
i=r0

αi,

r2∑
i=r1+1

αi, . . . ,

rk∑
i=rk−1+1

αi

 (3.3)

The major implication of this property is seen in Section 3.2 where it ensures that the

Dirichlet process is consistent in the sense that marginal values do not depend on how you

compute them. The additivity of Dirichlet processes also tells us the marginal distribution

for each component. For example, (X1, X2 + . . .+Xn) ∼Dir(α1, α2 + . . .+ αn), which we

know is equivalent to a Beta random variable. Now consider the conditional distribution of

X2 given X1 = x1. Specifically, X2/(1−X1) = γ2/(γ2 + · · ·+ γn) is another Beta random

variable. This leads to a component-wise construction of the Dirichlet distribution via its

Beta marginals. (As a technical note, the Beta(0, 0) definition is ill-defined, but our choice

of definition is immaterial. To see this, suppose αi = βi = 0 and we have chosen the

smallest i with this property. In this case, αi−1 > βi−1 = 0 which implies that φi−1 = 1.

Therefore
∑i−1

j=1Xj = 1, so Xj = 0 for all j ≥ i.)

Dirichlet Property 3.1.4 (Beta Representation). A Dirichlet random vector can be gen-

erated one element at a time. Let α1, . . . , αn be non-negative real numbers where at least one
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αi is strictly positive. Let βi =
∑n

j=i+1 αj. Let X1 = φ1 ∼ Beta(α1, β1). For 1 < i < n,

let φi ∼ Beta(αi, βi), and set Xi = φi(1 −
∑i−1

j=1Xj). Let Xn = 1 −
∑n−1

i=1 Xi. Then

(X1, . . . , Xn) ∼Dir(α1, . . . , αn).

The first step is obvious, since X1 ∼ Beta(α1, β1). The remaining components can be

understood by applying the Gamma representation. Note that φ2 = X2/(1 −X1). Using

the Gamma representation, we can write φ2 = ψ2/(
∑n

i=2 ψi). Thus, it is the marginal

for a (n − 1)-dimensional Dirichlet vector, and has distribution Beta(α2, β2). Likewise,

φ3 = X3/(1−X1−X2) ∼ Beta(α3, β3). This algorithm continues until we have determined

X1, . . . , Xn−1. Since the support of the Dirichlet distribution is the (n − 1)-simplex, we

must have Xn = 1−
∑n−1

i=1 Xi.

Alternatively, we can think about a Dirichlet vector as dividing a stick or interval of unit

length into randomly-sized pieces. We begin by breaking of a fraction, φ1 and assigning

this to X1. Next, we break off a fraction, φ2, of the remaining stick and assign this to X2.

Thus, X2 = φ2(1− φ2). After i breaks, the length of the remaining piece is
∏i
j=1(1− φj).

Note that this quantity is equal to 1−
∑i

j=1Xi, so this method is a simple restatement of

the Beta Representation. This representation will resurface in Section 3.4.1 when we talk

about stick-breaking processes.

Rather than break off one piece at a time, a second way to divide an interval is to divide

it into two smaller intervals and then divide each of these into pieces. More generally,

we consider the stick-breaking process as a two-phase process. In the initial phase, we

divide the stick into n smaller pieces. In the second phase we sub-divide each piece. This
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two-phase process is equivalent to the simpler stick-breaking scheme assuming a certain

correspondence between the parameters. If we consider each division as a Dirichlet random

variable, this leads to a new characterization of the Dirichlet distribution in terms of

smaller-dimensional Dirichlet random variables.

Dirichlet Property 3.1.5 (Dirichlet Representation). Suppose (w1 . . . wk) ∼ Dir(a1 . . . ak)

and for 1 ≤ i ≤ k, (vi1 . . . vin) ∼ Dir(ai1 . . . ain), where the vectors are mutually independent

and ai =
∑n

j=1 aij for each i. If xij = wivij, then (x11 . . . xkn) ∼ Dir(a11 . . . akn).

Proof. This proof is a straight-forward, though messy application of the pdf-method for

changes of variables. Fortunately, most of the book-keeping is involved in finding the

determinant of the transformation, which is already done by Lemma A.0.1. For i < k,

define si =
∑n

j=1 xij . Note that some of the variables specified are not free. These are

wk, xkn, and for each i, vin. Therefore, we express the inverse transformation without

reference to them.

wi = si, for i < k (3.4)

vij = xij/si, for i < k, j < n (3.5)

vkj = xkj/(1−
∑
i

si) (3.6)

Using this notation, we now express the partial derivatives. For wi (i < k), the partial

derivatives are
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∂wi
∂x`m

=


1, ` = i

0, ` 6= i

. (3.7)

For vkj , the partial derivatives are

∂vkj
∂x`m

=


(1−

∑
i si)

−1, (k, j) = (`,m)

xkj/(1−
∑

i si)
−2, ` < k

. (3.8)

For the other v’s, such that i < k and j < n, the partial derivatives are

vij
∂x`m

=



(si − xij/(si)2, ` = i,m = j

−xij/(si)2, ` = i,m 6= j

0, o.w.

. (3.9)

The Jacobian is an nk − 1 square matrix, but it has a rather simple block structure.

Define Jk = (1−
∑

i si)
−1In−1, where In−1 is the (n− 1)-identity matrix. For i < k, define

Ji =



1 1 · · · 1 1

si−xi1
s2i

−xi1
s2i

· · · −xi1
s2i

−xi1
s2i

−xi2
s2i

si−xi2
s2i

· · · −xi2
s2i

−xi2
s2i

...
...

...
...

...

−xi,n−1

s2i

−xi,n−1

s2i
· · · s−xi,n−1

s2i

−xi,n−1

s2i


. (3.10)



CHAPTER 3. NON-PARAMETRIC PROCESSES 45

Finally, define

K =
1

1−
∑k−1

i=1 si
·


xk1 · · · xk1

...
...

...

xk,n−1 · · · xk,n−1

 . (3.11)

Using this notation, the Jacobian for the inverse transformation is

J =



J1 0 · · · 0

0 J2 · · · 0

0 0
. . . 0

K K · · · Jk


. (3.12)

A well-known fact from linear algebra is that this matrix has determinant |J | =
∏k
i=1 |Ji|.

Lemma A.0.1 provides all the necessary determinants:

|Jk| = (1−
k−1∑
i=1

si)−(n−1) (3.13)

|Ji| = (−1)n−1s
−(n−1)
i (3.14)

||J || =
k−1∏
i=1

(1− si)−(n−1) · (1−
k−1∑
i=1

si)−(n−1) (3.15)

We are now ready to calculate the pdf of (X11 . . . Xnk).
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fX(~x) = fW,V (~w(~x), ~v(~x) · ||J || (3.16)

= fW (~w(~x))× fV (~v(~x))× ||J || (3.17)

=
k−1∏
i=1

sai−1
i (1−

k−1∑
i=1

si)ak−1

×
k−1∏
i=1

n∏
j=1

(
xij
si

)aij−1 n∏
j=1

(
xkj

1−
∑k−1

i=1 si

)akj−1

×
k−1∏
i=1

s
−(n−1)
i

(
1−

k−1∑
i=1

si

)−(n−1)

(3.18)

=
k−1∏
i=1

s
ai−1−(

Pn
j=1 aij−n)−n+1

i (1−
k−1∑
i=1

si)ak−1−(
Pn
k=1 akj−n)−n+1

×
k∏
i=1

n∏
j=1

x
aij−1
ij (3.19)

=
k−1∏
i=1

s
ai−

Pn
j=1 aij

i (1−
k−1∑
i=1

si)ak
Pn
k=1 akj ·

k∏
i=1

n∏
j=1

x
aij−1
ij (3.20)

fX(~x) ∝
k∏
i=1

n∏
j=1

x
aij−1
ij (3.21)

The penultimate line emphasizes the necessity that ai =
∑n

j=1 aij . It is merely a

notational convenience that ~vi has k components for each i. This constraint can be dropped

without breaking the backbone of the proof.

3.1.2 Neutrality and the Generalized Dirichlet Distribution

Implicit in the Beta representation of the Dirichlet distribution is that X2/(1−X1) is inde-

pendent of X1. In fact, X1 is independent of the entire vector (X2/(1−X1), . . . , Xn/(1−

X1). In the language of Connor and Mossiman (1969), we say that X1 is neutral. In
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other words, the value of X1 does not affect how the remaining (1 − X1) is divided

among the remaining components. Continuing, (X1, X2) is independent of (X3/(1−X1 −

X2), . . . , Xn/(1 − X1 − X2) and so on. In general, at each step i + 1, the proportions

(X1, . . . , Xi) are independent of the relative values of the other n − i proportions. This

property is expressed by the following definition.

Definition 3.1.6 (Completely Neutral Random Vector). A random vector (X1, . . . , Xn)

is completely neutral if for all i < n,

(X1, . . . , Xi) ⊥⊥

(
Xi+1

1−
∑i

j=1Xj

, . . . ,
Xn

1−
∑i

j=1Xj

)
(3.22)

A Dirichlet random vector is completely neutral regardless of the ordering of its com-

ponents. This is easy to see because the Dirichlet density is symmetric among the αi’s.

For general random vectors this is not the case. In fact, Mossiman (1962) shows that, if we

exclude cases for which some of the Xi’s are degenerate, then the Dirichlet distribution is

the only distribution where this is the case. The Dirichlet representation (Dirichlet Prop-

erty 3.1.5) shows that Dirichlet random vectors have an even deeper level of neutrality:

for any subset of Xi’s, their total value is independent of how that total is divided among

that subset. Mathematically, for any A ⊆ {1, . . . , n}, TA ⊥⊥ {Xi/TA : i ∈ A}, where

TA =
∑

i∈AXi. Heuristically, this property may be implied by complete neutrality for all

permutations, as the Dirichlet distribution is the only probability measure which satisfies

either one.
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Using the idea of neutrality, Connor and Mossiman (1969) develop a generalized Dirich-

let distribution for random vectors that are completely neutral only for one ordering of

components.

Definition 3.1.7 (Generalized Dirichlet Distribution). Let α1, . . . , αn, β1, . . . , βn positive

real numbers. The generalized Dirichlet distribution, GD(α1, . . . , αn, β1, . . . , βn), has den-

sity

dGD(~x; ~α, ~β) =

[
n−1∏
i=1

B(αi, βi)

]−1

xβn−1−1
n

n−1∏
i=1

xαi−1
i

 n∑
j=i

xj

βi−1−(αi+βi)
 , (3.23)

where B is the beta function, if each xi is non-negative and
∑n

i=1 xi = 1. In all other cases,

the density is 0.

Recall that we can construct a Dirichlet random vector by successive Beta random

variables, where Zi = Xi/(1 −
∑

j<iXj) ∼ Beta(αi,
∑

j>i αj). The generalized Dirichlet

has a similar construction in which Zi ∼ Beta(αi, βi). It is easily seen that if βi−1 = αi+βi

then we recover the Dirichlet distribution. Tying it back to the Beta representation, this

constraint is equivalent to βn−1 = αn, and for i < n, αi =
∑

j>i αj .

3.2 The Dirichlet Process

The Dirichlet process is a much-publicized non-parametric process formally introduced by

Ferguson (1973). It is a prior law over probability distributions whose finite-dimensional

marginals have a Dirichlet distribution. Dirichlet processes have been used for modeling
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Gaussian mixtures when the number of components is unknown (Escobar and West, 1995;

Rasmussen, 1999), hidden Markov models with infinite state spaces (Beal et al., 2001), and

evolutionary clustering in which both data and clusters come and go as time progresses

(Xu et al., 2008).

Definition 3.2.1 (Dirichlet Process (Ferguson, 1973)). Let α be a measure over some

measurable space (Θ,A), and let P be a random probability measure over the same space.

We say that P is a Dirichlet process with base measure α, and write P ∼ DPα, if

(P (A1), P (A2), . . . , P (Ak)) ∼ Dir(α(A1), α(A2), . . . , α(Ak)), (3.24)

whenever (Ai)ni=1 is a finite partition of Θ.

Remark 3.2.1. An alternative definition of the Dirichlet process comes from substituting

α with νH, where ν = α(Θ) and H = α. In this case we say that P ∼ DP (νH) is a

Dirichlet process with base distribution (or measure) H and precision ν.

Immediately, several properties emerge from this definition. From Dirichlet Prop-

erty 3.1.2, it is clear that P(A) = 0 if and only if α(A) = 0. In particular, we have

the axiomatic (P(Θ),P(Ø)) = (1, 0) almost surely.

The Dirichlet process satisfies an important consistency property that is necessary for

any reasonable distribution. Suppose A1, . . . , Ak is a partition of Θ. For each, i, let

Ai1, . . . , Aini be a partition of Ai. The collection {Aij} is a refinement of {Ai}. Since these

sets are disjoint and have union Ai, we require that P(Ai) =
∑ni

j=1 P(Aij) almost surely.

This is exactly Property 3.1.3.
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The Dirichlet process also satisfies for any A∗ ⊆ A ⊆ X, P(A∗|A) ⊥⊥ P (A). This is easily

seen from the representation of a Dirichlet distribution by smaller-dimensional Dirichlet

distributions and the fact that P (A∗|A) = P (A∗)/P (A).

3.2.1 Stick-Breaking Representation of a Dirichlet Process

As Ferguson (1973) proved, the Kolmogorov extension theorem guarantees the existence

of Dirichlet processes. Unfortunately, mere proof of existence does not imply a usable

working definition. In fact, for twenty-one years, it was easier to generate a sample from

an unknown random measure P ∼ DPα than to generate P itself! In 1994, Sethuraman

finally published the first useful constructive definition of a Dirichlet process. We have

already seen that a Dirichlet distribution can be constructed component-wise using Beta

random variables. Sethuraman showed that this can be extended ad infinitum to include

Dirichlet processes. The result is a stick-breaking process.

Theorem 3.2.2 (Stick-Breaking Definition of the Dirichlet Process). Let (φ1, φ2, . . .) be a

sequence of independent random variables with distribution Beta(1, ν). Independent of this

sequence, let (Z1, Z2, . . .) be a sequence of independent random variables with distribution

H. Define p1 = φ1, and for i > 1, define pi = φi
∏
j<i(1 − φj). The random measure

P =
∑

i∈N piδZi is a Dirichlet process with precision ν and base measure H.

The proof is too long to reconstruct here, but we can get an intuitive sense of this

definition. Recall from Section 3.1, that we can construct a Dirichlet vector from a se-

quence of independent Beta random variables. We can loosely imagine that the sequence
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(p1, p2, . . .) is an infinite-dimensional extension of the Dirichlet distribution. Choose any

finite partition, (B1, B2, . . . , Bn). We define Ai = {j : Zj ∈ Bi}. Clearly, (A1, . . . , An) is

a partition of the natural numbers, with P (Bi) =
∑

j∈Ai pj . If Property 2 of the Dirichlet

Distribution applies to infinite-dimensional vectors, then we see that (P (B1), . . . , P (Bn))

is a Dirichlet vector.

The stick-breaking definition is important because it provides a constructive definition

of a Dirichlet process. It also simplifies the proofs for some of the properties of the Dirichlet

process. For example, it is trivial to see that the Dirichlet process gives probability one

to the space of discrete distributions. The representation is especially important in the

current work since we will use it to validate our method of constructing hyper Markov

Dirichlet processes.

3.2.2 Independence Properties of the Dirichlet Process

It is well-known that a Dirichlet process on the real line is tail-free as defined by Freedman

(1962) and Fabius (1964). A process is tail-free with respect to (s,∞) if for all t0 = s <

t1 < · · · < tk, (F (t1), . . . , F (tk) is completely neutral. Doksum (1974) shows a more general

independence property that is applicable to Dirichlet processes on other spaces.

Let {Πm : m = 0, 1, . . .} denote a sequence of nested, measurable partitions with π0{θ}.

Denote Πm by {Am,1, . . . , Am,lm} and for s < m define l(i) such that Am,i ⊆ As,l(i).

Definition 3.2.3 (F-neutral). A stochastic process, P , is F-neutral with respect to the

sequence {Πm} of nested, measurable partitions if there exist non-negative random variables
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{Zm,i : i = 1, . . . , km;m = 1, 2, . . .} such that for each m ≥ 1 the families {Z1, i : i =

1, . . . , k1}, . . . , {Zm+1,i : i = 1, . . . , km+1} are independent and

(P (Am,1), . . . , P (Am,km)) d= (
m∏
s=1

Zs,l(1), . . . ,
m∏
s=1

Zs,l(km)). (3.25)

Definition 3.2.4 (Neutral). A stochastic process, P , is neutral with respect to the se-

quence {Πm} of nested, measurable partitions if for each m ≥ 1 there exist non-negative

independent random variables, Vm,1, . . . , Vm,k, with Vm,km = 1 and

(P (Am,1), P (Am,2), . . . , P (Am, km)) d= (Vm,1, Vm,2(1− Vm,1), . . . , Vm,km
km−1∏
j=1

(1− Vm,j)).

(3.26)

The concept of F-neutrality refers to independence properties among partitions. It

describes how the process is refined as the partitions become more detailed. Essen-

tially, it means that when the value of the process is known at one level of refinement

Πs, the relative probabilities for the refined partition Πs+1 are independent. For exam-

ple, the conditional distributions (P (As+1,i|As,l(i)) : i = 1, . . . , ks+1)) are independent of

(P (As,1), . . . , P (As,ks)). Moreover, this independence property holds simultaneously at all

partition levels: the families

{P (A1,i)}, {P (A2,i|A2,l(i))}, . . . , {P (Am+1,i|Am,l(i))} (3.27)

are jointly independent.

The concept of neutrality refers to independence properties within a partition. Basi-

cally, for all m ≥ 1,

(P (Am,1), P (Am,2), . . . , P (Am,km)), (3.28)
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is completely neutral.

The Dirichlet process is F-neutral and neutral for every sequence of measurable parti-

tions. It is neutral because for any partition Πm, (P (Am,1), . . . , P (Am,km)) has a Dirichlet

distribution by definition, which Connor and Mossiman (1969) have shown is completely

neutral. To show F-neutrality, we first consider the case m = 2. In this case, {P (A1,i)} ∼

Dir({α(A1,i)}), and for all i ≤ k1,

{P (A2,j |A2,l(j)) : l(j) = i} =
{
P (A2,j)
P (A1,i)

: l(j) = i

}
∼ Dir({α(A2,j) : l(j) = i}). (3.29)

Applying Property 3.1.5 of the Dirichlet distribution, we see

{P (A2,j)} =
{
P (A2,j)
P (A1,l(j))

· P (A1,l(j))
}
∼ Dir({α(A2,j)}). (3.30)

It is clear that for any m, {P (Am,j |Am−1,l(j)} is independent of {P (As,i) : s < m − 1, i =

1, . . . , ks}; induction on m proves that the Dirichlet process is F-neutral.

The Dirichlet process is both F-neutral and neutral to all sequences of partitions. Fur-

thermore, Doksum (1974) state that the Dirichlet process is essentially the only stochastic

process with either type of neutrality with respect to all sequences. Define the class C1

consisting of processes which are (i) degenerate at a given probability distribution, (ii)

concentrated at a random point, or (iii) concentrated on two non-random points. Dirichlet

processes are the only stochastic processes that are not in C1 that are F-neutral to all

sequences of measurable partitions. They are also the only stochastic processes that are

not in C1 that are neutral to all sequences of partitions. Because a Dirichlet process is

F-neutral to any partition, the posterior distribution of P (A) for any A ∈ F depends only
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on the number of observations which fall in A and not on where they fall inside or outside

of A. Furthermore, Dirichlet processes are the only stochastic processes not in C1 for which

this is true.

3.2.3 Sampling from Dirichlet Processes

We turn our attention to samples from Dirichlet processes. We employ a hierarchical

model, P ∼ DPα and given P , θ1, . . . , θn are independent draws from P . Antoniak (1974)

uses the more formal definition:

Definition 3.2.5 (Sample from a Dirichlet Process). Let P be a Dirichlet process on

(Θ,A). We say that θ1, . . . , θn is a sample of size n from P if for any m ∈ N, and

measurable sets A1, . . . , Am, C1, . . . , Cn,

P(θ1 ∈ C1, . . . , θn ∈ Cn|P (A1), . . . , P (Am), P (C1), . . . , P (Cn)) =
n∏
i=1

P (Ci) a.s. (3.31)

We next discuss the marginal distribution of a sample from a Dirichlet process. The

next theorem concerns the special case n = 1.

Theorem 3.2.6. Let θ be a sample of size 1 from P ∼ DPα. The marginal distribution of

θ and the expectation of P are both α.

Proof. For any measurable setA, P(θ ∈ A) =
∫ 1

0 P (A)dP (A), where P (A) ∼ Beta(α(A), α(Ac)).

Therefore, P(θ ∈ A) is the expectation of a Beta random variable which is well-known to

be α(A)/(α(A) + α(Ac)) = α(A). The same argument shows E(P ) = α.
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We note that for general samples of size n, θ1, . . . , θn are no longer independent but

they are exchangeable. In particular, for n = 2 we have P(θ2 ∈ A2|θ) =
∫ 1

0 P (A2)dPθ1(A2),

where Pθ1(A2) is the posterior distribution of P (A2) given θ1 and is given by the next

theorem.

Theorem 3.2.7. Let θ1, . . . , θn be a sample of size n from P ∼ DPα. The posterior

distribution of P is DP with a base measure of α+
∑n

i=1 δθi.

Proof. For a completely formal proof see Schervish (1995). We simply point out that the

following relationship holds for partitions with arbitrarily small sets. For any set A, let

N(A) =
∑n

i=1 δθi(A) be the number of draws in A. Let A1, . . . , Ak be a measurable parti-

tion of Θ. (P (A1), . . . , P (Ak)) ∼Dir(α(A1), . . . , α(Ak)) and (N(A1), . . . , N(Ak)) is a multi-

nomial draw conditional on the vector of probabilities. It is well-known that the posterior

distribution of (P (A1), . . . , P (Ak)) in this model is Dir(α(A1)+N(A1), . . . , α(Ak)+N(Ak)).

We point out that α(Aj) +N(Aj) = [α+
∑n

i=1 δθi ](Aj).

Returning to a sample of size n = 2 from P ∼ DPα, we see that P (θ2 ∈ A2|θ1) =

(α(A2) + δθ1(A2))/α(Θ) + 1). In other words, the conditional distribution of θ2 is the

mixture pα+ qδθ1(A2), where p = α(Θ)/(1 + α(Θ)) and q = 1/(1 + α(Θ)).

We now turn to the problem of practically sampling from a Dirichlet process. Sethu-

raman (1994) noted that even with his constructive definition, it is impossible to fully

sample P because it is a weighted average of an infinite number of atoms. Regardless, we

can truncate the stick-breaking process at any finite sequence leaving the last 1−
∑n

i=1 pi

mass unknown. This allows us to specify a distribution P ∗ which is as close to P as



CHAPTER 3. NON-PARAMETRIC PROCESSES 56

needed. In particular, we can sample the random outcomes θ1, . . . , θn from the exact dis-

tribution P , even though we cannot generate P exactly. Suppose for now that we knew

the stick-breaking weights p1, p2, . . . and atoms Z1, Z2, . . . as defined in Equation 3.2.2. Let

U1, . . . , Un be independent uniform random variables on [0, 1). For each i ≤ n, define ri =

min{m :
∑m

j=1 pj < Ui} and set θi = Zri . We see that θ1, . . . , θn is a sample of size n from

P , but that we did not require knowledge of (pj , Zj) for j > max{ri}. Therefore, we could

also generate the sample by beginning with U1, . . . , Un and carrying out the stick-breaking

construction until
∑

j pj ≥ max{Ui}.

The stick-breaking construction is useful because we can generate a distribution P ∗

that agrees with P ∼ DPα except on a set U satisfying P (U) < ε. We can do so by

continuing the stick-breaking construction until 1−
∑

j pj < ε.

We now describe the method of Blackwell and MacQueen (1973) which generates P ∗

and θ1, . . . , θn using a Pólya urn. While the stopping criterion is less straightforward, the

method is important both because historically and theoretically because it very clearly

shows the predictive distribution of θn+1. (Sethuraman (1994) also proves the predictive

distribution using his stick-breaking construction, but the urn scheme is more straightfor-

ward in this area.)

Sampling from a Dirichlet Processes via a Pólya Urn Scheme

Pre-dating the stick-breaking process, Blackwell and MacQueen (1973) provided a method

of sampling from a Dirichlet process using a Pólya urn scheme. They define the following:
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Definition 3.2.8 (Pólya Sequence). Let α be a finite positive measure on a separable space

(Θ,A). A sequence of random variables, {θn : n ≥ 1} is a Pólya sequence with parameter

α if for every U ∈ A,

P (θ1 ∈ U) ∼ α(U)/α(Θ) (3.32)

P (θn+1 ∈ U |θ1, . . . , θn) ∼ αn(U)/αn(Θ), (3.33)

where αn = α+
∑n

i=1 δθi.

For finite n, a Pólya sequence represents a sequence of draws from an urn that begins with

α(θ) balls of color θ where after each draw, the chosen ball is replaced and another ball of

the same color is added.

Blackwell and MacQueen (1973) prove that the measure αn = α +
∑n

i=1 δθi converges

to a random limiting distribution P whose distribution is a DPα. They also show that

given P , the variables θ1, . . . , θn are independent with distribution P . In other words, the

Pólya urn scheme represents the hierarchical model P ∼ DPα, and θ1, . . . , θn|P ∼ P . The

Pólya urn scheme nicely illustrates the posterior distribution of P given θ1. After θ1 is

drawn, it is clear that the sequence θ2, θ3, . . . is a Pólya sequence starting with α(θ1) + 1

balls of color θ1 and α(θ) balls of color θ for θ 6= θ1. Therefore, the limiting distribution

of P given θ1 is a Dirichlet process with measure α + δθ1 . Furthermore, we see that the

distribution of θn+1 given θ1, . . . , θn is α+
∑n

i=1 δθi .
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Illustration: Chinese Restaurant Process

The Pólya urn scheme shows that there is a positive probability that some balls will be of

the same color. After the nth draw, the colors of the balls provide a random partition of

{1, . . . , n}; the sets are defined by groups of balls that have the same color θ. This fact

is famously illustrated by the Chinese restaurant process. The first person sits at a table,

and orders a dish, which is chosen randomly with distribution H. The second person will

join his table with probability 1/(1 + ν), otherwise he will sit at a new table, and order

a dish according to probability H. In general, after n people have been seated, the next

customer will choose to sit at a new table with probability ν/(n + ν). Otherwise, he will

join one of the existing tables with probabilities proportional to the number of people at

the table already. On a technical note, we will assume that this particular restaurant has

an infinite number of tables, and that each table seats an infinite number of people. If θi

represents the ith person’s dish, then it is easy to see that

F (θn+1|ν,H, θ1, . . . , θn) ∼
n∑
j=1

1
n+ ν

δθj +
ν

n+ ν
H. (3.34)

Let ~t = {t1, . . . , tn} denote the table at which the ith customer is sitting. For each

i ≤ n, define mi as follows. If i = min{j : tj = ti} then the ith customer is the first person

at their table and we set mi = ν, otherwise mi = |{j < i : tj = ti}| is the number of

previous customers at the table. The distribution of a particular seating arrangement is

P (~t = {t1, . . . , tn}) =
n∏
i=1

mi

ν + i− 1
, (3.35)
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or if we pull out the denominators and group the numerators by table,

P (~t = {t1, . . . , tn}) =

 k∏
j=1

∏
i:ti=j

mi

 n∏
i=1

(ν + i− 1)−1, (3.36)

where k = max{ti ∈ ~t} is the number of occupied tables.

Consider a particular table, say j. For the first person to arrive at this table, mi = ν.

For the second person, mi = 1. For the third, mi = 2, and so on. Therefore,
∏
i:ti=tj

mi =

ν ·
∏nj−1
i=1 i, where nj is the number of customers at table j. Equation 3.36 is equivalent to

P (~t = {t1, . . . , tn}) = νk

 k∏
j=1

nj−1∏
i=1

i

 n∏
i=1

(ν + i− 1)−1. (3.37)

Thus, the number of number of tables, k, and the number of people at each table (n1, . . . , nk),

are sufficient statistics for the seating arrangement. Furthermore, conditional on the seat-

ing configuration, the dishes are a sequence of k independent and identically distributed

variables with distribution H. This shows that the sequence (θ1, . . . , θn) is exchangeable.

The correspondence between a Chinese restaurant process and a Pólya urn scheme is

evident. We begin with ν balls in the urn. The distribution of X1 is α = H. After the first

n draws, the ν original balls are mixed with n additional balls with colors matching X1

through Xn. With probability ν/(n+ ν) the next draw will select one of the original balls

and Xn+1 will have distribution H. On the other hand, we may draw the ball representing

Xi with probability 1/(n + ν). In this event, Xn+1 = Xi. Therefore, the distribution of

Xn+1 is a mixture of H and n atomic distributions which is given in Equation 3.34.
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3.3 Mixtures of Dirichlet Processes

Antoniak (1974) developed properties for mixtures of Dirichlet processes. Notably, these

mixtures arise as posterior distributions when a Dirichlet process is sampled with noise.

Basically, we consider an index set (U ,B, H∗), where the probability measure H∗ is called

a mixing measure. Conditional on u, P is a Dirichlet process on some space (Θ,A) with

base measure α(u, ·). In general α(u,Θ) may not be constant for u ∈ U .

We have already seen that if θ is a sample from P ∼ DPα, then the posterior distribution

of P is DPα+δθ . If we know only that θ lies in some set A, then the resulting conditional

for P is a mixture of Dirichlet processes. Specifically, let P be a Dirichlet process on

(Θ,A) and let θ|P ∼ P . The conditional distribution of P given θ ∈ A is a mixture of

Dirichlet processes with index set (A,A ∩A), mixing distribution HA(·) = α(·)
α(A)1A(·), and

α(u, ·) = α + δu. In other words, the conditional distribution for P is a mixture of the

posteriors P |θ = u, weighted by the conditional distribution of θ given θ ∈ A.

A similar result occurs when θ is sampled with noise. We consider hierarchical models

like the following:

P ∼ DPα (3.38)

θ|P ∼ P (3.39)

X|(θ, P ) ∼ F (X; θ), (3.40)

where X ⊥⊥ P | θ. An example is when P is a Dirichlet process on the real line, and X|θ is

Normal with mean θ.
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Theorem 3.3.1 (Posterior Dirichlet Process under Noisy Sampling). Let P be a Dirichlet

process on (Θ,A) with base measure α, θ|P ∼ P , and X|(θ, P ) ∼ F (X; θ). Define Hx as

the posterior distribution of θ given X = x for the hierarchical model θ ∼ α,X|θ ∼ F (X; θ).

The posterior distribution of P given X = x is a mixture of Dirichlet processes with mixing

distribution Hx on index set (Θ,A) and α(u, ·) = α+ δu.

Proof. From Theorem 3.2.6 we know that the marginal distribution of θ is α. It follows

that X|θ ∼ F (X; θ), from which we see that θ|X = x ∼ Hx. Given θ, P is condition-

ally independent of X. Hence, P |(θ,X) ∼ DPα+δθ . Integrating this with respect to the

conditional distribution of θ|X = x yields

P |X = x ∼
∫

Θ
DPα+δθdHx(θ). (3.41)

We now consider a noisy sample of size n = 2. The notation Hx still represents the

posterior distribution of θ when θ ∼ α and X|θ ∼ F (X; θ). Consider the case for which

θ1 6= θ2. Generalizing the above theorem, we can see that P |(X1 = x1, X2 = x2, θ1 6= θ2) is a

mixture of Dirichlet processes with mixing distributionHx1×Hx2 on index set (Θ×Θ,A×A)

and α((u1, u2), ·) = α+ δu1 + δu2 . On the other hand, if θ1 = θ2, then we essentially have

two noisy measurements from a sample of size 1. In this case, let Hx1,x2 be the posterior

distribution of θ when (X1, X2) are independent with distribution F (X; θ). Continuing

along the same line of reasoning, P |(X1, X2, θ1 = θ2) is a mixture of Dirichlet processes

with mixing distribution Hx1,x2 on index set (Θ,A) and α(u, ·) = α + δu. Logically,

the posterior for P given (X1, X2) is a mixture of these two processes weighted by the

likelihood that θ1 = θ2. As the sample size increases, the number of mixing components
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in the posterior for P increases combinatorially. For this reason, it is common to rely on

Markov chain Monte Carlo techniques.

3.3.1 Gibbs Sampling for Mixtures of Dirichlet Processes

In this section, we discuss the general construction of a Gibbs sampler when a Dirichlet

process is sampled with noise. Our goal for now is the determine the distribution of

θ1, . . . , θn given the noisy observations (X1, . . . , Xn) = ~X ∈ Rn. We will also use the

notation DP (νH) for DPνH .

To develop a Gibbs sampling scheme for the Dirichlet mixture model specified by Equa-

tions 3.38-3.40, we need to know the conditional distribution of θi given the other θj ’s and

the data ~X. As an illustration, we consider the Chinese restaurant process (CRP) in

which each “dish” specifies a distribution F (X; θ). The CRP makes it clear that the

θi’s are exchangeable so it is enough to specify the conditional distribution of θn given

(θ1, . . . , θn−1, ~X). We know that the table at which the nth customer will sit depends

only on the number of people at each table. Therefore, θn is conditionally independent of

(X1, . . . , Xn−1) given (θ1, . . . , θn−1). Given Equation 3.34 we have

θn|(X1, . . . , Xn−1, θ1, . . . , θn−1) ∼ ν

ν + n− 1
H +

1
ν + n− 1

n∑
i=1

δθi . (3.42)

(For the remainder, we will not explicitly state the conditioning on (X1, . . . , Xn−1) due to

the conditional independence.)
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We see that the prior distribution π(θn|θ1, . . . , θn−1) is a mixture of a continuous dis-

tribution and n − 1 degenerate models. We find the posterior distribution for θn in light

of Xn = xn by updating the posterior individually for each model and scaling the weights

by the likelihood of xn under those models. For the degenerate models, the posterior dis-

tribution of θn is still δθi and the likelihood of xn under this model is simply dF (xn; θi).

On the other hand, if θn ∼ H, let Hxn be the posterior update for θn given xn and

fxn =
∫
f(Xn|θn)dH(θn) be the marginal likelihood of xn under this model. After observ-

ing Xn = xn, the posterior update for θn|(xn, θ1, . . . , θn−1) is

θn|Xn, θ1, . . . , θn−1 ∝ νfXnHXn +
n−1∑
i=1

f(Xn; θi)δθi . (3.43)

Equation 3.43 gives a simple method for updating the nth parameter in the face of data.

Since some θi’s coincide with non-zero probability, we choose to re-write this posterior in

terms of the unique values. We will also explicitly express it for an arbitrary i ≤ n. Denote

the unique values of θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) by θ∗1, . . . , θ
∗
k, and let nj be the number

of times each unique value occurs. Another way to write the conditional distribution of θi

emphasizes the clustering properties of the Dirichlet process mixture model.

θi|θ−i, Xi ∼ w0HXi +
k∑
j=1

wjδθ∗j , (3.44)

where the mixing weights are proportional to νfXi for w0 and njf(Xi|θ∗j ) for j > 0.

In particular, note that the probabilities of existing parameter values are weighted by

the likelihood of Xi under those parameters. Therefore, Xi is more likely to be clustered
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with other observations that have high density under similar parameters. If F (·|θ) is

unimodal, observations that are near each other are more likely to be clustered together.

The Dirichlet process mixture behaves similarly to parametric mixtures in this sense.

Generating θi from its full conditional can be done as follows:

1. Calculate w0 = νfXi .

2. For j = 1, . . . , k, calculate wj = njf(Xi|θ∗j ).

3. Generate U ∼ Unif
(

0,
∑k

j=0wj

)
.

4. If U ≤ w0, then generate θi ∼ G, otherwise set θi = θ∗j , where wj−1 < U ≤ wj .

The only two pieces that depend on the specific model are: calculating the marginal fxi ,

and generating θi ∼ Hxi if necessary. Convenient choices of F and H enable these to be

done simply. In the next subsection, we present an example where H is conjugate to the

family F (X|θ) and has a direct sampling scheme, which simplifies the latter. An important

fact is that fXi does not depend on ~θ, thus these marginals only need to be computed when

the sample is initialized. This is not true if we specify additional hyperparameters for H(θ)

that we also wish to update.

In theory, we can construct a Gibbs sampler wherein each iteration consists of updating

each θi in turn, conditional on Xi and the other parameter values. MacEachern (1994)

shows that this Gibbs sampler may be slow to converge and exhibit severe autocorrelation.

He proposes a modified version that includes “remixing” the parameters as the last step of

each iteration. MacEachern chooses to express the parameter vector as a vector of unique
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values (~θ∗) and a configuration vector, ~t = (t1, . . . , tn), where θi = θ∗ti . In terms of the

Chinese restaurant process, we understand ~θ∗ to be the dishes at each table, and ~t to

be the vector of table assignments for the n customers. Essentially, sampling (θ1, . . . , θn)

implicitly samples ~t. The final step in each iteration is then to sample ~θ∗ conditional on ~t

and the data. This is easy because conditional on ~t, the θ∗i are a random sample from H.

Thus, each update is a typical Bayesian posterior update given the cluster of observations

{Xj : tj = i}. MacEachern proves that this revised sampler still converges to the correct

posterior distribution, but does so more efficiently in many cases.

3.3.2 A Dirichlet Mixture of Gaussians

To see how the Dirichlet process works, we briefly present an application due to Escobar

and West (1995). In this example, F (·|θ) is the Gaussian family, where θ = (µ, σ2) is the

mean and the precision. Escobar and West (1995) use a Dirichlet process as a random prior

law for the mean and variance of each observation. This leads to the Dirichlet mixture

models that we discussed in Section 3.3. Specifically,

P ∼ DP (νH) (3.45)

(µi, θi)|P ∼ P (3.46)

Xi|(µi, σ2
i ) ∼ N(µi, σ2

i ), (3.47)

where for (µ, σ2) ∼ H,
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σ2 ∼ IG(s/2, S/2) (3.48)

µ|σ2 ∼ N(m, τσ2). (3.49)

We call this measure the Normal×Inverse-Gamma (N × IG) distribution.

Due to the discrete nature of the Dirichlet process, some of the parameters will coincide

with positive probability. Thus, the result is a mixture of Gaussians, but the number of

components is not known and is allowed to increase as more data are observed. As noted

in Section 3.3.1, we can construct a Gibbs sampler to estimate the posterior distribution.

We require the posterior and marginal distributions for the simple Bayesian model when

(µi, σ2
i ) ∼ H and Xi|(µi, σ2

i ) ∼ N(µi, σ2
i ). These calculations are simplified because the

N × IG prior specified by Equations 3.48 and 3.49 is conjugate to the Normal distribution.

The posterior distribution of θi given Xi is N × IG with σ2
i ∼ IG

(
(1 + s)/2, Si/2

)
,

where Si = (S+ (Xi−m)2)/(1 + τ); and µi|σ2
i ∼ N

(
(m+ τXi)/(1 + τ), τσ2

i /(1 + τ)
)
. The

marginal distribution of Xi is T (s,m,M), the t-distribution with s degrees of freedom,

non-centrality parameter m, and scale M1/2, where M = (1 + τ)S/s. With Equation 3.44,

this gives enough information to specify a Gibbs sampler.

In order to increase efficiency, we could incorporate the remixing step of MacEachern

(1994). To do so, we also require the posterior distribution of the unique parameters θ∗i

given a sample {Xj : θj = θ∗j}. In this case, we simply need to calculate the posterior for

θ∗i = (µi, σ2
i ). We have that σ2

i ∼ IG
(
(ni+s)/2, S∗i /2

)
and µi|σ2

i ∼ N
(
(τ
∑

j Xj +m)/(1+
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nτ)
)
, τσ2/(1 + nτ)), where ni = |{j : θj = θ∗j}|, S∗i = (S +

∑
j(Xj −m)2)/(1 + niτ) and

the summations are over {j : θj = θ∗i }.

3.3.3 Non-Parametric Mixtures and Clustering

The Dirichlet mixture in Section 3.3.2 is a general class of models called non-parametric

mixtures. The benefit to non-parametric mixtures is that they allow for the gradual ad-

mission of new mixture components as more data are observed (McAuliffe et al., 2006).

As with parametric mixture models, we can use non-parametric mixtures to cluster obser-

vations based on shared parameters. Unfortunately, Dirichlet mixtures tend to find too

many clusters with too few members. Thus, a Gaussian component is likely to be better fit

by two or more smaller components, according to the model posterior. This has been my

experience in my own applications (Chapter 6), which echoes the results of Escobar and

West (1995) and others. Nevertheless, the terminology of clusters and mixture components

is useful for describing posterior distributions in Dirichlet process mixture models.

3.4 Generalizations of the Dirichlet Process

3.4.1 General Stick-Breaking Processes

In Section 3.2.1 we saw that we can construct a Dirichlet process with precision ν as a

stick-breaking measure where φi ∼ Beta(1, ν), p1 = φ1, and pi = φi(1 −
∑

j<i pi). A

generalization of this idea is to allow the Beta parameters to depend on i, analogously to
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how we generalize the Dirichlet distribution. This leads to a more general definition of a

stick-breaking process.

Definition 3.4.1 (Stick-Breaking Process). Let (Zi)Ni=1 be a countable sequence of iid

random variables with distribution H. Independent of this sequence, let (φi)Ni=1 be a count-

able sequence of independent Beta random variables, for which φi ∼ Beta(ai, bi). De-

fine p1 = φ1. For 1 < i < N , define pi = φi ·
∏i−1
j=1(1 − φj). If N < ∞, define

φN =
∏N−1
j=1 (1− φj), so that the φ-sequence sums to one. If

P =
N∑
i=1

piδZi , (3.50)

then P is a random discrete measure whose law is a stick-breaking process.

The moniker comes from the method for assigning the random weights. We can think

of a stick of unit length which represents the mass to be distributed. At each step, we break

off a proportion of the remaining stick, φi, and assign this mass to the point Zi. Ishwaran

and James (2001) provide Gibbs-sampling measures for fitting the types of hierarchical

models discussed in Section 3.3, but where the random measure P satisfies this more

general stick-breaking process.

3.4.2 Pitman-Yor Process

The Pitman-Yor process (Pitman and Yor, 1997), or two-parameter Poisson-Dirichlet pro-

cess, is a generalization of the Dirichlet process and an example of a stick-breaking measure.

In addition to the base measure, H, it has a discount parameter, 0 ≤ d ≤ 1, and a strength
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parameter, ν > −d. We discuss the generalization in the setting of the Chinese restaurant

process. We consider a hierarchical model with θ1, θ2, . . . being a sequence of iid random

variables with random distribution P , where P has a Pitman-Yor process prior. Similar

to the Chinese restaurant process, we can define a generative scheme for the marginal

distribution of the data, with P marginalized out. As before, θ1 ∼ H. For a subsequent

draw,

θn+1|θ1, . . . , θn+1 ∼
k∑
i=1

ni − d
n+ ν

δθ∗i +
ν + kd

nν
H. (3.51)

where {θ∗1, . . . , θ∗k} are the unique values of the previous draws, with multiplicities (n1, . . . , nk).

The discount parameter, d, reduces the clustering effect. For the limiting case with d = 1,

θ1, . . . , θn is an iid sample from H. On the other extreme, if d = 0, then we recover the

Dirichlet process. The strength parameter ν is similar to the precision parameter of the

Dirichlet process. It is equivalent to the prior sample size, and also helps control the degree

of clustering. As Teh (2006) shows, the number of unique values increases stochastically

with both d and ν.

The Pitman-Yor process with discount d and strength ν is a stick-breaking process, for

which ai = 1 − d and bi = ν + id. It produces heavier tails than the Dirichlet process,

and is especially useful in natural language processing (Teh, 2006; Goldwater et al., 2006;

Wallach et al., 2008). Sudderth and Jordan (2008) used it for image processing.
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3.4.3 Neutral to the Right and Tailfree Priors

Neutral to the right priors were first introduced by Doksum (1974) by relaxing some of the

independence constraints for a Dirichlet process. Recall that a Dirichlet process is the only

non-trivial process which is neutral with respect to every sequence of nested partitions.

Nonetheless, the priors that Doksum introduces are neutral with respect to a broad set of

partitions. These partitions can only be specified for a space with some natural ordering,

e.g. R.

Definition 3.4.2. A random distribution function, F , and its law are said to be neutral

to the right if and only if, for all increasing sequences, t1 < t2 < . . . < tk,

⊥⊥
{
F (t1),

F (t2)− F (t1)
1− F (t1)

, . . . ,
F (tk)− F (Tk−1)

1− F (tk−1)

}
. (3.52)

Essentially, these priors are neutral with respect to any nested sequence of partitions

{Πm} such that for each m, Am,1, . . . , Am,km are sub-intervals dividing the space from left-

to-right. Clearly, the Dirichlet process is neutral to the right, but Doksum (1974) shows

that there are other interesting processes with this property. These more general priors

satisfy some of the same desirable properties; they are closed under sampling and posterior

updates are not complicated.

Related to neutral to the right priors are the tailfree priors of Freedman (1962) and

Fabius (1964). A prior is tailfree with respect to the tail (s,∞) if it is neutral to the right

for all increasing sequences beginning with t1 = s.
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3.4.4 Pólya Trees

Like neutral to the right priors, Pólya trees arise when independence constraints of Dirichlet

processes are relaxed. They are important because they are tailfree processes that, unlike a

Dirichlet process, may be continuous (Ferguson, 1974). Essentially, a Pólya tree is a process

which is F-neutral and neutral with respect to a specific sequence of nested partitions. Let

Π = {Πm} be a nested sequence of partitions where Πm = {Am1, . . . , Akm}. Denote the

unique j such that Am,i ⊆ Am−1,j by `(m, i). Let A = {aij : i = 1, 2, . . . , j = 1, . . . , ki}

be a set of non-negative numbers associated with each set in the sequence of partitions.

The random measure P is a Pólya tree if for every m, j, {P (Am,i|Am−1,j) : `(m, i) = j}

is a Dirichlet random variable with parameters {am,i : `(m − 1, i) = j}. Sometimes the

definition of a Pólya tree is restricted so that each Am,i ∈ Πm is divided into exactly two

sets in the next partition Πm+1. Lavine (1992) notes that both definitions lead to the same

set of available processes.

A Dirichlet process is a special case of a Pólya tree for which am,i =
∑

j:`(m+1,j)=i am+1,j .

The posterior update for a Pólya tree is easy to calculate. For θ ∼ P , we increment by

one each am,i such that θ ∈ Am,i.

3.4.5 Hierarchical Dirichlet Process

The hierarchical Dirichlet process (Teh et al., 2006) is an extension of the Dirichlet mixture

model to account for an additional level of clustering. In some settings it is desirable to

have observations in one cluster inform about parameters in other clusters. That is, we
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may want the distributions in each cluster to “shrink” toward some global mean. Instead

of one Dirichlet process, we have K processes corresponding to K sub-populations. A

straightforward application of this idea is Pi ∼ DP (νH0), θi|Pi ∼ Pi, Xi|θi ∼ F (X; θi).

The problem, as Teh et al., describe it is that no learning takes place between the sub-

populations. This is due to the fact that H0 is continuous which leads to completely distinct

atoms for each Pi. The solution is to find a distribution for H0 which is both discrete and

flexible. . . like the Dirichlet process. Therefore, Teh et al. put a Dirichlet process prior on

H0. The full model is:

H ∼ DP (ν0, H0)

Pi|H ∼ DP (ν,H)

θi|Pi ∼ Pi

Xi|θi ∼ F (X; θi)

This process can be illustrated by an extended urn model. At the beginning, we have

a “top urn” containing H0(θ) balls of color θ and for each of the K groups we have an

urn with ν white balls. Each sample is made by choosing a ball from the urn for the

observation’s group. If the ball is not-white, then its color identifies θ and we replace the

ball and one more of the same color. If the ball is white, then θ is the color of a ball drawn

from the top urn and we replace the ball and one more of the same color to the “top urn”.

We also replace the white ball and another ball matching θ to the group urn.

In the Chinese restaurant franchise analogy, we consider a chain of an infinite number

of restaurants with a shared menu, wherein each restaurant has an infinite number of
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tables. Each time somebody enters a restaurant, he chooses a table as in a simple Chinese

restaurant process at that specific restaurant with parameters ν and H. For example,

suppose there are mk people at the restaurant and mkj people at the jth table there. The

new customer will sit at table j with probability mkj/(mk + ν) and he will sit at a new

table with probability ν/(mk + ν). Additionally, the first person at each table decides on a

dish for the table which is drawn from a global menu. The choice of a new dish is weighted

by the number of tables that already are eating that dish —across the entire franchise. For

example, suppose that there are currently n tables being used across the entire franchise

and that ni of those tables are eating dish i. The probability that the new customer chooses

dish i is ni/(n+ ν0). On the other hand, the customer will choose a new dish drawn from

H0, with probability ν0/(n+ ν0).

Teh et al. (2006) apply their hierarchical Dirichlet process to document modeling. Each

document in a corpus represents a sub-population and is represented by a distribution over

some unknown number of topics. In this situation, it is sensible to have different topics

shared partly between different documents, and the hierarchical Dirichlet process enables

this. Furthermore, they extend this idea to another layer of hierarchy representing a sit-

uation with multiple collections of documents. Here, the “doubly” hierarchical Dirichlet

process enables sharing of topics among documents in a collection, but also between collec-

tions. Under this scheme, documents from the same collection are modeled to be contain

more similar topics than documents from different collections.
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3.4.6 Spatial and Dependent Dirichlet Process

MacEachern (2000) developed a class of Dirichlet processes which depend on some covariate

for the use of nonparametric models of error in regression. His criteria of a flexible prior

that varied smoothly as the covariate changed led him to propose the use of dependent

Dirichlet processes (DDPs).

Recall the stick-breaking construction of Sethuraman (1994) with random weights {pi}

from the stick-breaking construction and random atoms {Zi} from the underlying base

measure, H. Let X be the covariate space. One method to construct a DDP is to specify a

set of atoms {Zix} for each x ∈ X . MacEachern (2000) calls this process a “single-p DDP”.

More general forms of the DDPs are constructed by allowing base measure H to depend

on x so that the expected error varies in X . For “multiple-p DDP”, one can generate a

different set of random weights for each x ∈ X and in this case one may consider changing

the precision to specify differing levels of confidence across X . If the stochastic processes

which generates the atoms and the weights are continuous in X , then the resulting DDP

will be continuous in X and satisfy both of MacEachern’s desiderata. The posterior process

is a collection of Dirichlet processes for x ∈ X . (He also briefly describes dependent versions

of other non-parametric priors.) When the covariate x ∈ X represents location, a DDP is

also known as a spatial Dirichlet process (Gelfand et al., 2005; Duan et al., 2007).

Griffin and Steel (2006) present an interesting twist on the DDP concept that they call

an order-based dependent Dirichlet process (πDDP). This process is again defined using a

stick-breaking representation. Let φ1, φ2, . . . ∼ Beta(ai, bi) be the Beta sequence for a stick-
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breaking prior and define V0 = 0. In a typical stick-breaking process, pi = φi
∏
j<i(1−φj).

In a πDDP, each covariate x ∈ X specifies a partial permutation π(x) of N, meaning that

π(x) is a permutation of a possibly proper subset of N. In other words, π(x) = {πi(x)}

where πi(x) ∈ N and πi(x) = πj(x) only if i = j. The stick-breaking weights are then

pix = φπi(x)

∏
j<i(1 − φπj(x)). An important component in a πDDP is to specify the

stochastic distribution which generates π(x) to be continuous in X . This ensures that when

x, y ∈ X are close, they have similar weights and therefore similar marginal processes.

3.4.7 The Indian Buffet Process (Beta Process)

Recall that the Chinese restaurant process clusters observations based on the tables at

which customers sit. Customers who sit at the same table are considered to be clustered

together. In the Dirichlet mixture model, observations in the same cluster share a common

parameter (or more generally a common distribution.) The Indian buffet process of Griffiths

and Ghahramani (2006) is a culinary analog for soft-clustering. Instead of belonging to a

single cluster, observations have some set of features belonging to multiple clusters. This

arrangement is typically called soft clustering.

Imagine a buffet with an infinite number of dishes. Customers enter one at a time

and decide to sample some subset of the available dishes. The first customer will sample

a Pois(ν) number of dishes, each one generated according to some base measure H. The

following customers, i = 2, 3, . . . will taste some of the dishes sampled by previous customers

as well as some new dishes. The probability that customer i tries a previous dish j is

(ν/Ki−1 +mi−1,j)/(ν/Ki−1 + i−1), where mi−1,j is the number of previous customers who
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have tried dish j, and Ki is the total number of dishes sampled by the first i customers.

The ith customer will also sample a Pois(ν/i) number of new dishes, generated according to

H. Each dish in the analogy represents a latent feature and the customers are observations.

Let Xi be the ith observation and set Zij = 1 if observation i has feature j and 0 otherwise:

Xi ∼ F (X;Zi1, . . . , ZiKi) where Ki is the total number of features active (dishes sampled)

so far.

There are several similarities between the Chinese restaurant process and the Indian

buffet process. The order in which customers enter does not change the probability so the

observations are exchangeable. As in the Chinese restaurant process, we see a strengthening

effect such that popular dishes are more likely to be tried. Thibaux and Jordan (2007)

find an underlying stochastic process for the distribution of features and also present a

hierarchical version. Teh et al. (2007) also provide a stick-breaking construction, though

it is not quite a stick-breaking measure.

By DeFinetti’s theorem, because the observations are exchangeable, there must be a

latent measure P such that X1, . . . , Xn are independent. For example, in the Chinese

restaurant process, the underlying measure is the Dirichlet process. Thibaux and Jordan

(2007) show that the underlying measure is a Beta process first defined by Hjort (1990)

for modeling hazard rates in survival analysis. Specifically, it is a special case called a

Bernoulli process which can be generated as follows for some base measure β. Denote

the atoms of β by c1, . . . , ck and let β0 = β −
∑k

i=1 β(ci)δci be the continuous part of β.

Let N ∼ Pois(β0(Θ)) and for each i = 1, . . . , N let Zi ∼ β0. For i = 1, . . . , k, let bi ∼
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Bernoulli(β(ci)). The random measure P =
∑N

i=1 δzi +
∑k

i=1 biδci is a Bernoulli process

with base measure β.

The stick-breaking construction for the Bernoulli process with base measure β proceeds

as follows (Teh et al., 2007). Let φ1, φ2, . . . be independent Beta(β, 1) random variables

and set φ0 = 1. Define the random weights pi = φi
∏
j<i φj and the random atoms

Z1, Z2, . . . ∼ β, where the atoms are independent of each other and the weights. The

measure P =
∑

i piδZi is a Bernoulli process with base measure β. Teh et al. point

out that this result could open up the Indian buffet process to various generalizations, as

the Sethuraman construction did for the Chinese restaurant process. They also note a

remarkable relationship between the Bernoulli process and the Dirichlet process. In both

constructions, we begin with a stick of length 1 and proceed at step i by breaking off a

proportion φi of the remaining stick. The difference is that in the Dirichlet process we

record the broken off piece as the random weight; in the Bernoulli process we record the

remaining length of the stick.
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Chapter 4

The Hyper Dirichlet Process

In this chapter we present the theory for the hyper Dirichlet process (Asci et al., 2006;

Heinz, 2009). This prior will allow us to specify conditional independence constraints while

retaining the flexibility of Dirichlet processes. Dawid and Lauritzen (1993) define hyper

Markov priors by specifying the complete version as the clique marginals and forming the

hyper Markov combination of those marginals. For example, the hyper inverse Wishart

law is the hyper Markov combination of “regular” inverse Wishart laws on each clique.

We will define the hyper Dirichlet process in the same way. That is, a hyper Dirichlet

process is the hyper Markov combination of hyperconsistent Dirichlet processes. We will

also find necessary and sufficient conditions for the hyper Dirichlet process to be a “regular”

Dirichlet process. In this case, the construction of the random measure is much simpler.

We will then remove one of these conditions, which results in a graphical Dirichlet process.

This is a Dirichlet process with a Markov base measure that is “not quite hyper Markov”
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process. Nevertheless it retains much of the benefit of using a hyper Dirichlet process in the

type of mixtures that we discussed in Section 3.3 when the random measure is integrated

out. In the terminology of a Chinese restaurant process, the choice of dishes (θ) will be

hyper Markov given the table assignments.

4.1 Consistency of Dirichlet Processes

Let G = (V,E) be a decomposable graph with a perfect ordering of cliques C = (C1, . . . ,Ck)

and separators S = (S2, . . . ,Sk). For convenience of notation, we may include an empty

separators, S1 = Ø; in this case we use the convention that if X = (Xv : v ∈ V) has

distribution F , then the marginal FØ(xØ) = 1.

In some cases, it is easier to specify a prior for certain marginals, e.g. a prior for each

clique. Dawid and Lauritzen (1993) show that, as long as the prior laws are consistent,

there is a unique (hyper) Markov law with those marginals. Following this strategy, we

would like to specify Dirichlet process priors for each clique. In this section we present the

simple method of ensuring that these processes are consistent. Because the parameter of

a Dirichlet process is a finite measure, we present a slight generalization of the definition

of consistency for probability measures and Markov combinations.

Definition 4.1.1 (Consistency of Finite Measures). Let µ be a finite measure over (XA,FA)

and λ be a finite measure over (XB,FA). We say that µ and λ are consistent if they induce

the same marginal measure over A ∩B. That is, µ and λ are consistent if
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µ(XA\B × U) = λ(XB\A × U) ∀ U ∈ FA∩B. (4.1)

Recall that µ is the probability measure proportional to µ. Equation 4.1 holds automat-

ically if A ∩ B = Ø, otherwise, it holds if and only if the following two conditions are

satisfied:

1. µ and λ are consistent.

2. µ(XA) = λ(XB).

If µ and λ are probability measures, then the second condition is trivial. Thus, this

definition is exactly a generalization of Definition 2.2.3.

Consider these two conditions in the context of base measures for Dirichlet processes.

µ is the prior guess about the probability distribution of XA, and λ is the prior guess for

XB. The first condition therefore states that the priors must agree about the distribution

of XA∩B. It is reasonable to require that our prior be coherent in this way. The second

condition states that the prior sample sizes for both sets of variables must be equal. This

constraint is perhaps less desirable. It would be perfectly logical to be more certain about

certain dimensions than others. Unfortunately, any measure on XA∪B must satisfy

α(XA∪B) =
∫
XA∪B

dα =
∫
XA

∫
XB\A

dα =
∫
XA

dαA = αA(XA). (4.2)

Similarly, we have αB(XB) = α(XA∪B) = αA(XA). Therefore, if µ(XA) 6= λ(XB) there

can be no measure α on XA∪B satisfying αA = µ and αB = λ. This is not specific to non-
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parametric priors; Dawid and Lauritzen (1993) mention this constraint in their discussion

of the hyper Dirichlet distribution. There they mention that if G is connected, then the

prior counts for each clique have the same grand total.

In some situations, this constraint is not too severe. Using stick-breaking notation, we

express µ = ν1H
(1) and λ = ν2H

(2). The consistency conditions translate to H
(1)
A∩B =

H
(2)
A∩B and ν1 = ν2. If only the second condition fails, then it is still possible to find

H = H(1) ? H(2). Employing the stick-breaking condition, we can generate random atoms

from H. The problem lies in assigning weights to each atom. Fortunately, in density

estimation, the value of the prior precision (ν) is typically small compared to the sample

size (n). If the estimate is robust to changes in ν, we may justifiably scale the base

measures so that ν1 and ν2 are equal. In this case, it is only important that H(1) and H(2)

are consistent. In other words, the base measures µ and λ only need to be proportional to

each other over XA∩B.

There may be other situations in which scale is important. Unfortunately, as Equa-

tion 4.2 shows, we cannot find a suitable base measure for the prior that satisfies both µ

and λ. Without a suitable prior, there can be no suitable posterior. If the goal is to esti-

mate a distribution and there is genuine concern about the precision of the prior estimate,

then both conditions must be satisfied.

Subsequently, we assume that both consistency conditions are satisfied. This leads

to a natural extension of a Markov combination to finite measures. We have defined

consistency of base measures in terms of consistency of probability measures. Thus, we
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generalize Markov combinations to include consistent finite measures by scaling them to

probability measures, finding the Markov combination, and rescaling the measures.

Definition 4.1.2 (Markov Combination of Finite Measures). Let µ be a finite measure on

(XA,FA). Let λ be a finite measure on (XB,FB) that is consistent with µ. The Markov

combination of µ and λ is denoted µ ? λ, where

µ ? λ = µ(XA) · [µ ? λ] = λ(XB) · [µ ? λ]. (4.3)

This definition is a generalization of Proposition 2.2.4 for probability measures. Note that

the Markov combination defined in this way is unique almost everywhere, since [µ ? λ] is

unique almost everywhere.

It is easy to show that the · and ? operations commute (with respect to composition).

Theorem 4.1.3. If µ and λ are consistent measures, then µ ? λ = µ ? λ.

Proof.

µ ? λ =
[µ ? λ]

[µ ? λ](XA∪B)
(4.4)

=
µ(XA) · [µ ? λ]

µ(XA) · [µ ? λ](XA∪B)
(4.5)

= µ ? λ. (4.6)

Writing the base measures in the precision-probability measure notation, set µ = νH(1)

and λ = νH(2). Theorem 4.1.3 states that µ ? λ = H(1) ? H(2). Therefore, the Markov

combination of νH(1) and νH(2) can be written ν(H(1) ? H(2)).
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To decide if two Dirichlet process laws are hyperconsistent, we need to know their

marginal laws.

Theorem 4.1.4 (Marginal Dirichlet Process). Let P = DPα be a Dirichlet process law on

some cross-product space (ΘV,AV). For any A ⊆ V, the marginal law PA is a Dirichlet

process law on (ΘA,AA) with base measure αA.

Proof. Let A1, . . . , An be a measurable partition of ΘA and set Bi = Ai×ΘV\A for each i ≤

n. For a random measure P ∼ DPα, we have (P (B1), . . . , P (Bn)) ∼ Dir(α(B1), . . . , α(Bn)).

PA(Ai) = P (Bi) and αA(Ai) = α(Bi) for all i, so (PA(A1), . . . , PA(An)) ∼Dir(αA(A1), . . . , αA(An)).

Therefore, PA ∼ DPαA = PA.

This leads to the following criterion for determining if two Dirichlet processes are hyper-

consistent.

Theorem 4.1.5 (Hyperconsistent Dirichlet Process Laws). Let Q = DPµ be a Dirichlet

process prior on (ΘA,AA) and R = DPλ be a Dirichlet process on (ΘB,AB). Q and R

are hyper consistent laws if and only if µ and λ are consistent as per Definition 4.1.1.

Proof. By Theorem 4.1.4, the marginal law QC = DPµC and by symmetry RC = DPλC
.

These marginals are equal if and only if µC(U) = λC(U) for every U ∈ FC (i.e. µ and λ

are consistent finite measures.)

Let G be a decomposable graph with clique set C and a set marginal laws {DPαC : C ∈

C }. If these laws are hyperconsistent, then we will say that their hyper Markov combination
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is a hyper Dirichlet process. From Theorem 4.1.5, we see that the base measures must be

pairwise consistent so we may represent the set {αC} by the unique Markov combination.

Definition 4.1.6. Let α be a Markov measure on a decomposable graph G with cliques

C1, . . . ,Ck. The hyper Dirichlet law with base measure α is denoted HDPα and defined by

HDPα = �(DPαC : C ∈ C ). (4.7)

The hyper Dirichlet process so-defined is a strong hyper Markov measure.

Theorem 4.1.7. The hyper Dirichlet process law HDPα is strong hyper Markov.

Proof. Let C be any clique and choose any A ⊂ C, letting Ac = C \ A. By Propo-

sition 2.3.6, it is enough to verify that PAc|A ⊥⊥ PA. Choose any θA ∈ ΘA such that

PA(θA) > 0, and B ∈ AAc . Let Bc = ΘAc|A \ B. If HA(θA) = 0, then it is almost sure

that ZAi = θA for exactly one value of i. Therefore, PAc|A(B|θA) = δZAci
, which has

distribution HAc|A(B|θA) and is independent of PA. Henceforth, assume HA(θA) > 0. In

this case, we note that {B × {θA}, Bc × {θA},ΘAc ×ΘA \ {θA}} is a partition of ΘC and

therefore

(
PC (B × {θA}) , PC (Bc × {θA}) , 1− PA (θA)

)
∼ Dir

(
HC(B × {θA}), HC(Bc × {θA}), 1−HA(θA)

)
. (4.8)

Using the Gamma representation of the Dirichlet distribution, it follows that
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(
PC(B×{θA})

PC(B×{θA})+PC(Bc×{θA}) ,
PC(B×{θA})

PC(B×{θA})+PC(Bc×{θA})

)
∼ Dir

(
HC(B × {θA}), HC(Bc × {θA})

)
.

(4.9)

Note that the left-hand side is exactly (PAc|A(B|θA), PAc|A(Bc|θA)), which we see does

not depend on PA.

As we reviewed in Section 2.3.2, Dawid and Lauritzen (1993) proved that strong hyper

Markov laws have many useful properties. The implications are discussed in the Section 4.5.

4.2 The Dirichlet Process as a Hyper Dirichlet Process

By Definition 2.3.4, the hyper Dirichlet process exists. Furthermore, the law DPα for the

entire graph will have the correct marginals by Theorem 4.1.4. Therefore, DPα = HDPα

if and only if DPα is hyper Markov, but this is not generally true. We begin by finding

the necessary conditions for DPα to be a hyper Dirichlet process. This will lead us to a

constructive definition of the hyper Dirichlet process for more general cases in Section 4.3.

In Section 4.4, we will relax the conditions to develop the class of “graphical” Dirichlet

process that are not hyper Markov, but do retain useful independence properties for the

marginal distribution of the observations.

Some extra notation is useful. If µ is a measure on a space (Θ,A), we will denote the

set of atoms by Θ+ = {θ : µ(θ) > 0}. If Θ is empty, then we say that µ is continuous (also

non-atomic). We call the measure µ discrete if µ(Θ+) = µ(Θ). If a measure is neither

continuous nor discrete, we say it is mixed. A distribution which is either mixed or discrete
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is atomic. For a general measure µ, let µ+ =
∑

θ∈Θ+ µ(θ)δθ and set µ0 = µ − µ+. Thus,

a measure can be decomposed into discrete and continuous measures that are mutually

singular by µ = µ+ + µ0. We allow the possibility that any or all of these measures are

identically zero.

Note that a discrete measure, µ can be uniquely expressed by a set of (distinct) atoms

and their masses µ̃ = {(θ, µ(θ)) : µ(θ) > 0}. We call µ̃ the table representation of µ as it

is basically a pmf table that is taught in introductory statistics classes. Importantly, the

table representation is invertible. Given the set of atom-weight pairs, µ̃ = {(θi,mi)}, we

can recover µ =
∑

imiδθi . Therefore, from an information standpoint we can interchange

µ and µ̃ in independence relationships as long as µ is discrete. Since Dirichlet processes

are almost surely discrete, this will be useful for proving hyper Markovity.

4.2.1 The Dirichlet Process on Two Connected Cliques

Throughout this section, G will be a decomposable graph that has two cliques A and B

with non-empty separator S = A ∩B. Q = DP (νQ) on (ΘA,AA) and R = DP (νR) on

(ΘB,BB) will be hyperconsistent Dirichlet process laws. By Theorem 4.1.5 Q and R are

consistent measures, so let H = Q ? R and L = DP (νH). Our goal for this section is to

find necessary and sufficient conditions for L to be the hyper Markov combination Q�R.

We note that by Theorem 4.1.4 and the definition of a Markov combination, H = Q ? R

implies that LA = Q and LB = R. Therefore we need to find conditions such that for

P ∼ L , P ∈M (G) a.s.[L ] and PA ⊥⊥ PB|PS.
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Using the stick-breaking construction, P =
∑

i piδZi , where Z1, Z2, . . . have distribu-

tion H and are independent of each other. Let ~Z denote the infinite-dimensional vec-

tor (Z1, Z2, . . .). Denote by ZDi the marginal value of Zi for some D ⊆ V and let

~ZD = (ZD1, ZD2, . . .) be the sequence of marginal values. We denote the distinct val-

ues of {Z1, Z2, . . .} by θ̃ = {θ1, θ2, . . .}, where each θi is unique. For some D ⊆ V,

θ̃D = {θD1, θD2, . . .} shall be the distinct values of {ZD1, ZD2, . . .}.

The reason for the distinction between ~ZD and θ̃D is that PD is equivalent to {(θDi,

PD(θDi)) : PD(θD) > 0}. Therefore, to show a property such as PA ⊥⊥ PB|PS we will need to

work with the unordered, unique values instead of the original ordered vectors. This is not

a trivial substitution. As a counterexample, suppose for i = 1, 2, 3 that Zi ∼ Bernoulli(.5)

and given Zi, Xi and Yi are independent uniform random variables on (Zi, Zi+1). Clearly,

(X1, X2, X3) ⊥⊥ (Y1, Y2, Y3) | (Z1, Z2, Z3). On the other hand, if {Z1, Z2, Z3} = {0, 1},

then {X1, X2, X3} will have two elements greater than 1 if and only if {Y1, Y2, Y3} does.

Therefore, the conditional independence of the ordered vectors does not transfer to the

unordered sets. It is possible that for infinite vectors the independence property would

transfer due to an asymptotic property of empirical distributions. Nonetheless, we may not

want to rely on this even if it is true. For example, if we wish to generate a random Dirichlet

process, we need to approximate it with a finite stick-breaking construction. Fortunately,

the next theorem provides a sufficient condition to ensure conditional independence in the

sets.

Lemma 4.2.1. Suppose ~X = (X1, . . . , XN ) is a possibly infinite sequence of iid random

variables and ~Z = (Z1, . . . , ZN ) is another sequence of iid random variables having the
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same length. Let Y be any random variable or sequence. If ~X ⊥⊥ Y | ~Z and Zi 6= Zj for all

i 6= j, then

X̃ ∈ Y | Z̃, (4.10)

where X̃ and Z̃ are the unordered set of unique values in ~X and ~Z, respectively.

Proof. Since ~Z is a sequence of unique values, we see that Z̃ has N elements. Set Z̃ =

{Z ′1, . . . , Z ′N}, where the ordering is arbitrary and serves only to distinguish the elements.

Let B = { ~X : {X1, X2, . . .} = X̃} be the set of vectors ~X whose unordered distinct values

make up the set X̃.

F (X̃ | Y, ~Z, Z̃) =
∑
~X∈B

N∏
i=1

F (Xi | Zi). (4.11)

Let σ be a permutation of {1, . . . , N}. Certainly, ~X ∈ B if and only if (Xσ(1), . . . , Xσ(N)) ∈

B.

F (X̃ | Y, ~Z, Z̃) =
∑
~X∈B

N∏
i=1

F (Xσ(i) | Zi). (4.12)

By change of variables j = σ(i),

F (X̃ | Y, ~Z, Z̃) =
∑
~X∈B

N∏
j=1

F (Xj | Zσ−1(j)). (4.13)

This holds for any permutation, so choose σ such that Zσ−1(j) = Z ′j . Using this σ in

Equation 4.13 yields

F (X̃ | Y, ~Z, Z̃∗) =
∑
~X∈B

N∏
j=1

F (Xj | Z ′j), (4.14)
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whence X̃ ⊥⊥ (Y, ~Z) | Z̃) and the lemma follows.

Note that PA is not just a set of atoms, but a set of atom-weight pairs {θA, PA(θA)}.

Therefore we need to incorporate the random weights into Lemma 4.2.1. Since the weights

are not iid, we need a more general theorem. We state this formally as Lemma 4.2.2.

Because the sequence of weights are independent of the random atoms, the proof follows

very similar logic. We include it here for completeness as we will use the result repeatedly.

Lemma 4.2.2. Let ~X, ~Z, and Y be as in Lemma 4.2.1. Let ~p = (p1, . . . , pN ) be a possibly

non-iid sequence of the same length as ~X and let W be any random variable, such that

(~p,W ) ⊥⊥ ( ~X, ~Z, Y ). If ~X ⊥⊥ Y | ~Z and Zi 6= Zj for all i 6= j, then

{(Xi, pi)} ⊥⊥ (Y,W ) | {(Zi, pi)} (4.15)

Proof. The proof follows almost identically to Lemma 4.2.1. Denote {(Xi, pi)} by X̃∗ and

{(Zi, pi)} by Z̃∗. Let B be the set of sequences ((X1, p1) . . . (XN , pN )) whose unordered

unique values form the set X̃∗. We note again that the set Z̃∗ has N elements and we

denote them by some arbitrary index, Z̃∗ = {(Z ′1, p′1), . . . , (Z ′N , p
′
N )}.

Given that (~p,W ) ⊥⊥ ( ~X, Y, ~Z), we see immediately that

F ( ~X, ~p|Y,W, ~Z, ~p, Z̃∗) =
N∏
i=1

F (Xi|Zi) · I (pi = pi) , (4.16)

and

F (X̃∗|Y,W, ~Z, ~p, Z̃∗) =
∑

( ~X,~p)∈B

N∏
i=1

F (Xi|Zi) · I (pi = pi) . (4.17)
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Let σ be a permutation of 1, . . . , N such that Zi = Z ′σ(i) (and hence pi = p′σ(i)). We have

F (X̃∗|Y,W, ~Z, ~p, Z̃∗) =
∑

( ~X,~p)∈B

N∏
i=1

F (Xσ(i)|Zi) · I
(
pσ(i) = pi

)
(4.18)

=
∑

( ~X,~p)∈B

N∏
i=1

F (Xi|Zσ−1(i)) · I
(
pi = pσ−1(i)

)
(4.19)

=
∑

( ~X,~p)∈B

N∏
i=1

F (Xi|Z ′i) · I
(
pi = p′i

)
(4.20)

We see that X̃∗ ⊥⊥ (Y,W, ~Z, ~p) | Z̃∗ and the lemma follows.

Immediately from Lemma 4.2.2 we find a sufficient condition for DP (νQ ? R) to be

hyper Markov. This condition will serve as a starting point for finding a necessary and

sufficient condition.

Theorem 4.2.3. Let Q = DP (νQ) over (ΘA,AA) and R = DP (νR) over (ΘB,BB)

be hyperconsistent Dirichlet process laws. If QA∩B = RA∩B is continuous, then the hyper

Markov combination L = Q�R = DP (νH), where H = Q?R is the Markov combination

of the base measures.

Proof. L has the appropriate marginals by Theorem 4.1.4; we need only prove it is hyper

Markov. Suppose P ∼ L . It is easy to see that P ∈ M (G). Since the atoms ~ZS are

almost surely distinct, we have that PA|S = δZi , where Zi is the unique atom such that

ZSi = θS. Therefore, θA is completely determined by θS. To complete the proof, we must

show that PA ⊥⊥ PB | PS. Consider the stick-breaking construction of a Dirichlet process.

Let P =
∑n

i=1 piδZi , where pi are the stick-breaking weights and Z1, Z2, . . . are independent

with distribution H. Let S = A ∩B. Since H is Markov, ~ZA ⊥⊥ ~ZB | ~ZA∩B. Furthermore,
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HS is continuous, so the marginal atoms ~ZS are almost surely distinct and we may apply

Lemma 4.2.2 with ~X = ~ZA, Y = ~ZB, ~Z = ~ZS and ~p = W .

{(ZAi, pi)} ⊥⊥ (~ZB, ~p) | {(ZSi, pi)}. (4.21)

Again noting that the marginal atoms ~ZS are distinct, we realize that {(ZSi, pi)} is exactly

P̃S. Therefore, we may condition on PS instead. Furthermore, PA and PB are functions of

{(ZAi, pi)} and (~ZB, ~p). Therefore, these are also independent given PS, which is what we

wanted to show.

Asci et al. (2006) provide a different proof of this result that relies on the method of

moments. By contrast, our proof relies on Lemma 4.2.2, which is more general in the sense

that no distributional assumptions are needed. We use this advantage in Section 4.6 to

generalize our work to other stick-breaking processes.

Note that it is vital to the proof of Theorem 4.2.3 that HS is continuous. This ensures

that the random atoms are distinct over ΘS, which implies that the stick-breaking weights

are the probabilities of the distinct atoms in PS. In other words, PS identifies the random

weights up to a permutation. In the general case, some of the ZSi may coincide. If they

do, PS no longer identifies the stick-breaking weights. For example, if ZS1 = ZS2, then PS

identifies p1 +p2, but not the individual weights. (To be more precise, even that statement

is optimistic; if Z is an atom of HS, we know only that an almost surely countably infinite

number of ZSi = Z, and have no method of telling which ones.) Therefore, if HS is not

discrete, the masses may break the conditional probability relationship even though the
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atoms are generated by a Markov distribution. To illustrate this, consider an example for

which HS is a point mass. For H ∈M (G), this implies that HA ⊥⊥ HB. Further suppose

that HA and HB are non-atomic. In this case, for P ∼ DP (νH), PS is a constant and

carries no information. On the other hand PB identifies the stick-breaking weights modulo

permutation. This in turn identifies the masses in PA, though not the atoms. Therefore,

PA and PB are not independent given PS.

Before we are ready to generalize to other Dirichlet processes, we present a simple

result for constructing Dirichlet processes. Simply put, we consider a two-stage process

which takes advantage of Property 3.1.5 of the Dirichlet distribution. This theorem will

allow us to construct P from two independent Dirichlet processes, one of which satisfies

the conditions of Theorem 4.2.3. For notational simplicity, we will use the convention that

if P is a Dirichlet process with a base measure equal to zero everywhere, then P = 0

everywhere.

Theorem 4.2.4. Suppose H is a probability measure on a space (Θ,A) and ν > 0. Let

Θ(1), . . . ,Θ(k) be any finite measurable partition of Θ and for each i set H(i)(·) = H(·∩Θ(i)).

If (h1, . . . , hk) ∼ Dir(νH(Θ(i)
1 ), . . . , νH(Θ(k))); and P (i) ∼ DP (νH(i)) are independent

Dirichlet processes that are also independent of ~h, then

P =
k∑
i=1

hiP
(i) ∼ DP (νH) (4.22)

Proof. Let A1, . . . , An be a measurable partition of Θ and set Aij = Aj ∩Θ(i). {Bi
j} is also

a measurable partition. By construction, H(i) and H(i′) are mutually singular whenever

i 6= i′. Therefore, H(Aij) = H(i)(Aij) for all i, j. We note that (P (i)(Ai1), . . . , P (i)(Ain)) ∼
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Dir(νH(Ai1), . . . , νH(Ain)); (h1, . . . , hk) ∼ Dir(νH(Θ(1)), . . . , νH(Θ(k))); and νH(Ai) =∑n
j=1 νH(Aij) for all i, j. By Property 3.1.5 of the Dirichlet distribution,

(hiP (i)(Aij) : i = 1 . . . k, j = 1 . . . n) ∼ Dir(νH(Aij) : i = 1 . . . k, j = 1 . . . n). (4.23)

Because H(i) and H(i′) are mutually singular for i 6= i′, so too are P (i) and P (i′). Therefore,

for each Aj in the partition we have P (Aj) =
∑k

i=1 hiP
(i)(Aj) =

∑k
i=1 hiP

(i)(Aij). Further-

more, H(Aj) =
∑k

i=1H(Aij). Using the additivity property of the Dirichlet distribution

(Property 3.1.3), we see

(P (A1), . . . , P (An)) ∼ DP (νH(A1), . . . , νH(An)). (4.24)

By considering the limit as n→∞, Asci et al. (2006) show that this theorem holds for

countable partitions of Θ. They rely on this more general proof to find conditions for a

Dirichlet process to be the hyper Dirichlet process. For our purposes, we develop the same

conditions relying only on n finite, however their limiting case leads to an illuminating

constructive definition of the hyper Dirichlet process (Proposition 4.3.1).

As an example of Theorem 4.2.4, we next construct a Dirichlet process from two inde-

pendent Dirichlet processes based on one of the marginals.

Example 4.2.1. Suppose H is a measure on (Θ,A) and ν > 0. Let Θ(+) = {θ : HS(θS) >

0} and Θ(0) = Θ \ Θ(+). Define the measures, H(+)(·) = H(· ∩ Θ(+)) and H(0)(·) =

H(· ∩ Θ(0)). If (h+, h0) ∼ Dir(νH(Θ(+)), νH(Θ(0))); P (+) ∼ DP (νH(+)); and P (0) ∼

DP (νH(0)), then P = h+P
(+) + h0P

(0) ∼ DP (νH).
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Before showing the main result of this section, we prove one more lemma.

Lemma 4.2.5. Let S1, . . . , Sk be a finite measurable partition of ΘS and set Θ(i) = ΘV\S×

Si. Then Θ(1), . . . ,Θ(k) is a decomposition of Θ. Decompose P ∼ DP (νH) by
∑k

i=1 hiP
(i)

as in Theorem 4.2.4. The law DP (νH) is hyper Markov if and only if the laws of P (i) are

each hyper Markov.

Proof. We first show that P is almost surely Markov if and only if every P (i) is almost

surely Markov. Choose any θB ∈ ΘB. Note that θB is in the support of P if and only if

it is in the support of P (i) for some i. Furthermore, PA|B(·|θB) = P
(i)
A|B(·|θB), since the

various P (j)s are mutually singular. Therefore, the LHS depends on θS alone if and only

if the RHS does. That is, P is Markov if and only if each P (i) such that P (i)(ΘB) > 0 is

Markov. If any other P (i) exist such that P (i)(ΘB) = 0, then they are trivially Markov.

To complete the proof we must show that PA ⊥⊥ PB | PS if and only if the same condi-

tional independence holds for each P (i). Since the random P (i)s are mutually independent

and also independent of ~h we have that P (i)
A ⊥⊥ P

(i)
B | P (i)

S for all i, if and only if

(P (1)
A , . . . , P

(k)
A ,~h) ⊥⊥ (P (1)

B , . . . , P
(k)
B ,~h) | (P (1)

S , . . . , P
(k)
S ,~h) (4.25)

Now take D to be any of A,B, or S. We note that PD|(P
(1)
D , . . . , P

(k)
D ,~h) is the function∑k

i=1 hiP
(i)
D and that this function is invertible since hi = PD(Θ(i)) and P (i)

D (·) = PD(·)/hi.

Therefore the relation in Equation 4.25 is equivalent to PA ⊥⊥ PB | PS.
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We are now ready to find the necessary and sufficient conditions for L = DP (νH) to

be a hyper Dirichlet process law. The proof will rely on Theorems 4.2.3 and 4.2.4 as well

as Lemma 4.2.5.

Theorem 4.2.6. Suppose G = (V,E) is a graph with two cliques A and B and non-empty

separator S = A ∩B. The random measure P ∼ DP (νH) on (Θ,A) is a hyper Dirichlet

process if and only if

(i) H is Markov on G and

(ii) For each θ such that HS(θS) > 0, at least one of HA|S(·|θS) and HB|S(·|θS) is degen-

erate.

Proof. (Sufficiency.) We will decompose P as in Lemma 4.2.4. Let Θ(+) = {θ ∈ Θ :

HS(θS) > 0}, and Θ(0) = Θ \Θ(+). Let Θ(1) be the set of θ ∈ Θ(+) such that HA|S(·|θS) is

degenerate, and set Θ(2) = Θ(+)\Θ(1). Θ(0),Θ(1),Θ(2) is a partition of Θ. Let (h0, h1, h2) ∼

Dir
(
νH(Θ(0)), νH(Θ(1)), νH(Θ(2))

)
, and for i = 0, 1, 2 set H(i)(·) = H(· ∩ Θ(i)). Suppose

P (i) ∼ DP (νH(i)) are independent Dirichlet process (also independent of (h0, h1, h2)). By

Theorem 4.2.4, P d= h0P
(0) + h1P

(1) + h2P
(2). By Lemma 4.2.5, P is a hyper Dirichlet

process if P (0), P (1), and P (2) are.

The law of P 0 is hyper Markov by Theorem 4.2.3. We now show that the law of P (1) is

also hyper Markov. Consider the stick-breaking representation of P (1) =
∑∞

i=1 piδZi , where

Z1, Z2, . . . are independent with distribution H(1). For each i, Zi ∈ Θ(1), HA|B(·|ZSi) is

degenerate by construction. Therefore, given ZSi, the conditional probability of ZAi is

equal to one for some element of Θ(1). We denote that element by the function a(ZSi).
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Certainly, ZAi = θA = a(ZSi) for each i, so therefore, ZAi = θA if and only if a(ZSi) = θA.

Therefore, for any element θA ∈ Θ(1)
A ,

P
(1)
A (θA) =

∞∑
i=1

piI (ZAi = θA) =
∞∑
i=1

piI (a(ZSi) = θA). (4.26)

Let s(θA) = {θS : a(θS) = θA} and group the addends in the rightmost summation by

shared value of ZSi.

P
(1)
A (θA) =

∑
θS∈s(θA)

∞∑
i=1

piI (ZSi = θS) (4.27)

=
∑

θS∈s(θA)

P
(1)
S (θS). (4.28)

From Equation 4.28, we see that the set of atoms of P (1)
A is the set of θA such that s(θA)

has positive probability under P (1)
S . Furthermore, the probability of those atoms is almost

surely P
(1)
S (s(θA)). We stress that the functions s(·) is determined by the underlying

measure H(1) and it is not random. Therefore, we have shown that P (1)
A is a non-random

function of P (1)
A . It follows that P (1)

A is conditionally independent of anything when P (1)
S is

known. Furthermore, since ZAi is determined by θSi, it must hold that θA is determined

by ZS for θ ∼ P . Therefore, the law of P (1) satisfies both conditions of a hyper Markov

law. We infer by symmetry that the law of P (2) is also hyper Markov, because Θ(2) =

Θ(0) \Θ(1) ⊆ {θ ∈ Θ(0) : HB|S(·|θS) is degenerate}.

(Necessity). We first show that (ii) is not by itself sufficient and therefore (i) is required,

then complete the proof by showing that (ii) is also necessary. Begin by supposing (ii)
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holds, but not (i). Note that if condition (ii) is satisfied and H is discrete, then H must

be Markov (i.e.- both conditions are satisfied). To see this, suppose H is discrete and

satisfies (ii). Choose any atom (θB, θS). If HA|S(·|θS) is degenerate, then θA|(θB, θS) is a

non-random function of θS. If HB|S(·|θS) is degenerate, then θB is a non-random function

of θS and therefore (θB, θS) provides the same information as θS. In either case, we see that

every conditional given (θA, θS) is a function of θS alone, which is the very definition of

conditional independence. Note further that if the continuous part of H is Markov and (ii)

holds, then a similar argument shows that H itself is Markov. Therefore, we may assume

that H is not purely discrete and that the continuous part is not hyper Markov.

Decompose H and P as into H(+), H(0), P (+) and P (0) as in Example 4.2.1. In part,

this means that P (0) ∼ DP (νH(0)). We have already shown that H(0) is neither zero nor

Markov. Therefore, we choose A ∈ AA; θB, θ∗B ∈ ΘB; and θS ∈ ΘS such thatH(A|θB, θS) 6=

H(A|θ∗B, θS). Note that S ⊂ A so that we may assume A = A′×{θS} for some A′ ⊂ ΘA\S.

Because H(0)
S (θS) = 0, if P (0)

S (θS) > 0 then it is almost surely the case that exactly one

atom is equal to θS, say ZSi. Therefore, PA(A) = PS(θS) if ZAi ∈ A, and PA(A) = 0

otherwise, but this event depends on whether or not ZBi = θB, which in turn is equivalent

to the event PB(θB) > 0. Therefore, PA(A) and PB(θB) are not conditionally independent

given PS. Hence, we have shown that (i) is necessary.

To finish the proof, suppose (ii) fails. Choose s such that HS(s) > 0 but neither

HA|S(·|s) nor HA|B(·|s) is degenerate. Choose a partition (A∗1, A
∗
2) of ΘA\S such that

both sets have positive probability under HA|S(·|s) and a similar partition (B∗1 , B
∗
2) of

ΘB\S. Define Ai = A∗i × {s}, Bi = B∗i × {s}, Dij = A∗i × {s} × B∗j , hij = νH(Dij), and
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pij = P (Dij). Regarding {P (Dij)}, conditioning on PS is equivalent to conditioning on

PS(s), since the Dirichlet process is F-neutral. The conditional distribution of {P (Dij)}

given PS(s) satisfies

PS(s)−1 · (p11, p12, p21, p22) ∼ Dir(h11, h12, h21, h22), (4.29)

By additivity of Dirichlet vectors, the conditional distribution of (PA(A1), PA(A2)) given

PS(s) is

PS(s)−1 · (PA(A1), PA(A2)) = PS(s)−1 · (p11 + p12, p21 + p22) ∼ Dir(h11 + h12, h21 + h22).

(4.30)

On the other hand, if we condition on both PS(s) and PB(B1) then Equations 4.29 and

4.30 are subject to the constraints p11 + p21 = PB(B1) and p12 + p22 = B(B2). For

convenience, we will write w = p11 + p12 and v = p11 + p21. The above analysis raises the

question of finding the distribution of one sub-total (w) when you know the distribution

of an intersecting sub-total (v). We will show that w and v are not independent and infer

that PA(A1) is not independent of PB(B1) given PS(s).

From the neutrality of Dirichlet vectors, we know that p11/v ∼Dir(h11, h21) and p12/(1−

v) ∼Dir(h12, h22).
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f(w|v) =
∫ w

0
f(p11|v)f(w − p11|v)dp11 (4.31)

=
∫ w

0
dBeta

(p11

v
;h11, h21

)
· dBeta

(
w − p11

1− v
;h12, h22

)
dp11 (4.32)

∝
∫ w

0

(p11

v

)h11−1 (
1− p11

v

)h21−1

×
(
w − p11

1− v

)h12−1(
1− w − p11

1− v

)h22−1

dp11. (4.33)

(4.34)

This certainly does not look constant with respect to v, and we conclude by proving it is

not. We adopt the notation rn(w) to indicate a polynomial of degree n in w. We will also

use h+ as an abbreviation for h11 + h12 + h21 + h22.

f(w|v) ∝
∫ w

0
rh+−5(p11)p(h+−4)

11 v−(h11+h21−2)(1− v)−(h21+h22−2)dp11 (4.35)

∝ rh+−4(w)
1

h+ − 3
w(h+−3)v−(h11+h21−2)(1− v)−(h21+h22−2). (4.36)

We conclude that f(w|v) is not constant with respect to v. Thus, PA(A1) and PB(B1)

are not independent given PS and we see that condition (ii) is necessary for a hyper Dirichlet

process, which completes the proof.

In Section 4.5 we will see that even without condition (ii), a Dirichlet process with a

Markov base measure retains many useful properties.
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4.2.2 The Dirichlet Process for Connected Decomposable Graphs

In this section we consider a connected decomposable graph, G, with a perfect ordering of

cliques given by C = {C1, . . . ,Ck}. Since G is connected, none of the separators S2, . . . ,Sk

are empty. We denote the histories by Hi = ∪ij=1Ci. We will construct a hyper Dirichlet

process for the entire graph.

Theorem 4.2.7. Let G be a decomposable graph with a perfect ordering of cliques C1, . . . ,Ck.

Denote the ith separator and history by Si and Hi. P ∼ DP (νH) is a hyper Dirichlet pro-

cess on G if and only if:

(i) H is Markov with respect to G.

(ii) For each i, s such that HSi(s) > 0, at least one of HHi−1|Si(·|s) and HCi|Si(·|s) is

degenerate.

Proof. We show this by induction on k. Theorem 4.2.6 shows the case where k = 2. Now

suppose k > 2 and the theorem holds for k − 1. We can apply Theorem 4.2.6 again with

A = Hk−1,B = Ck, and S = A ∩B = Sk.

We conclude the section by showing that if a Dirichlet process is hyper Markov, then

so is the posterior process.

Theorem 4.2.8. Suppose P ∼ DP (νH) is a hyper Dirichlet process on a graph G and that

θ1, . . . , θn are an iid sample from P . The posterior law of P , namely DP (νH +
∑n

i=1 δθi)

is also a hyper Dirichlet process.
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Proof. It is well-known that the posterior law is DP (νH+
∑n

i=1 δθi) and by Corollary 2.3.8,

(strong) hyper Markov laws are closed under sampling.

4.3 General Version of a Hyper Dirichlet Process

Section 4.2 provided the necessary and sufficient conditions for a Dirichlet process to be

hyper Dirichlet process. Asci et al. (2006) arrive at the same conclusion through very

different means. While we concentrated on the stick-breaking definition of a Dirichlet

process, Asci et al. (2006) characterized the Dirichlet process as the limit of Dirichlet

distributions as the dimension increases to infinity.

We noted in Section 4.2.1, that a Markov base measure is not enough to ensure that a

Dirichlet process is hyper Markov. This is due to the fact that the random marginals may

share information about the stick-breaking weights. This suggests that we could form a

hyper Dirichlet process by generating the random atoms from the Markov base measure

and generating the weights in a different way. Using this reasoning, Asci et al. (2006)

provide a constructive definition of a hyper Dirichlet process.

For simplicity, we return to the case where G is connected with cliques A and B

and non-empty separator S = A ∩ B. Suppose P ∼ DP (νH) and H ∈ M (G). Let

S+ = {θS : HS(θS) > 0} be the atoms of HS; set S0 = ΘS \ S+. We can decompose P

into mutually singular Dirichlet processes as in Theorem 4.2.4 by P = h+P
(+) + h0P

(0).

Since H(0)
S is non-atomic by construction, we know that P (0) is hyper Markov. Therefore,
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we can construct P (0) as a regular Dirichlet process; we need only alter the stick-breaking

weights for P (+). The next proposition provides the details of this construction.

Proposition 4.3.1 (Asci et al. (2006)). Let G be a graph with two cliques A and B having

non-empty separator S = A ∩B. Suppose ν > 0 and H is a Markov measure on (Θ,A).

Let S+ = {si : HS(si) > 0} be the atoms of HS. Define S(0) = ΘS \ S+ and for i > 0

define S(i) = {si}. For i ≥ 0, also define Θ(i) = ΘV\S × S(i), H(i)(·) = H(· ∩ Θ(i)), and

νi = HS(S(i)). Suppose the following Dirichlet processes are mutually independent:

P ∗ ∼ DP (νHS) (4.37)

P (0) ∼ DP (ν0H
(0)) (4.38)

P
(i)
A ∼ DP (νiH

(i)
A ) (4.39)

P
(i)
B ∼ DP (νiH

(i)
B ) (4.40)

For i ≥ 0, define hi = P ∗(S(i)). For i > 0, define the random measure P (i) = P
(i)
A ? P

(i)
B .

(This is possible since both random marginals give probability one to {si}.) The measure

P =
∑|S+|

i=0 hiP
(i) has law HDP (νH).

This construction reveals a serious problem with the general case of hyper Dirichlet

processes. For each atom of S, we need the markov combination of two Dirichlet processes.

This requires 2+2m1 stick-breaking sequences, where m1 is the number of atoms in S. Now

suppose that the graph had three cliques (A,B,C) instead of two and let mi be the number

of atoms in the ith separator. In this case, we would form the hyper Markov combination

of a hyper Dirichlet process on ΘA∪B and a Dirichlet process on ΘC. Therefore, we for
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each i = 1, . . . ,m2, we would form a Markov combination of a Dirichlet process and a

hyper Dirichlet process, each of which requires 2m1 + 2 stick-breaking sequences. For the

continuous part of HS2 , we require another 2m1 + 2 stick-breaking sequences. Finally,

we have the regular Dirichlet process to weight the various components. In total, we see

that we would require 2m2m1 + 2(m1 +m2) + 1 stick-breaking sequences! Therefore, it is

important to discuss the conditions that allow us to construct a hyper Dirichlet process

with a relatively few number of stick-breaking sequences.

Note that a hyper Dirichlet process with only one stick-breaking sequence would be a

Dirichlet process. Therefore, the theory of Section 4.2 provides a good starting ground. In

particular, Theorem 4.2.7 provides conditions for a Dirichlet process to be hyper Markov. It

is beneficial to consider how general these conditions on H are. Requiring H to be Markov

is entirely reasonable; it is exactly what is required in a parametric setting. Therefore,

we focus on condition (ii). If H is continuous and the graph is connected, then this

condition is trivially satisfied, but two classes of models are excluded here. First, one may

desire an atom in P for a specific variable to force a certain value (e.g. zero) to have

positive probability. If this variable is in a separator, condition (ii) states that at least

one clique marginal is degenerate when a the atom occurs. In this case, condition (ii) is a

handicap and if we require many such atoms, then we will need a large number of stick-

breaking sequences. More importantly, condition (ii) of Theorem 4.2.7 is not reasonable

for disconnected graphs. If the graph is disconnected, then condition (ii) essentially means

that all but one connected components must have a degenerate distribution. We can see

this because an empty separator always has the same value (i.e.- Ø) and in this case we
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may interpret the degenerate conditional distribution as implying a Dirac measure for one

of the connected components. More concretely, suppose A and B are in different connected

components. If PA and PB are generated by the same stick-breaking procedure DP (νH),

then the weights in PA provide information about the distribution PB unless one of them is

degenerate. This is clearly unacceptable, so the Dirichlet process is not useful for a hyper

Markov prior on a disconnected graph. Fortunately, if the base measure on each connected

component is continuous, then the hyper Dirichlet process for a disconnect graph is just

a cross product of mutually independent Dirichlet processes. This only requires one stick-

breaking sequence per connected component.

As noted, Theorem 4.2.6 agrees with the result shown by Asci et al. (2006), though

our proof is significantly different. Asci et al. also provide a very nice constructive def-

inition. Unfortunately, we have just seen that it has limited practical use. As discussed

above, the issue lies not with the construction itself, but with the very nature of the hyper

Dirichlet process. Namely, the complexity of generating a random hyper Dirichlet process

can increase greatly if it is not also a Dirichlet process. For this reason, our concentration

in the present work differs dramatically from theirs. Instead of concentrating on updating

existing methods to handle hyper Dirichlet processes, we focus on how to apply a simple

Dirichlet process to more situations. In Section 4.4, we discuss a third class of Dirich-

let processes, obtained by requiring condition (i) but not condition (ii) in Theorem 4.2.7.

These processes, which we call graphical Dirichlet processes, lie in some sense between the

hyper Dirichlet process and the simple Dirichlet process. A graphical Dirichlet process

retains the simplicity of a Dirichlet process, but we see in Section 4.5 that there is much
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to be gained in terms of hyper Markov models. Essentially, I prove that if we are going

to integrate out the random Dirichlet process, as per usual, then the graphical Dirichlet

process leads to the same independence structure as the more complicated hyper Dirichlet

process.

4.4 Graphical Dirichlet Process

In Section 4.3, we saw that the construction of a hyper Dirichlet process can be unwieldy

when it is not also a Dirichlet process. Unfortunately, Dirichlet processes do not work

as hyper Markov laws in some situations, most notably for disconnected graphs. Let us

examine the conditions of Theorem 4.2.7. In terms of the stick-breaking process, condition

(i) ensures that the random atoms have a Markov distribution. Condition (ii) ensures

that information about the stick-breaking weights does break the conditional independence

structure. Of course, in many applications of the Dirichlet process, the actual measure P

will be integrated out. In this case, we care not about the independence structure of P , but

about the induced independence structure on the sample (~θ) and the noisy observations

( ~X). Therefore, we will consider the following class of Dirichlet processes that satisfy

condition (i) but not necessarily condition (ii):

Definition 4.4.1 (Graphical Dirichlet Process). If ν > 0 and H ∈ M (G), then P ∼

DP (νH) is a graphical Dirichlet process on G.

From the Chinese restaurant process, we see that the unique values of θ are iid with

distribution H. Thus, the unique values satisfy the conditional independence expressed
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by G, even though the full ~θ does not. We will consider this class of Dirichlet processes

more thoroughly in the discussion of independence properties of a hyper Dirichlet process

mixture in the next section.

4.5 Hyper Dirichlet Process Mixtures

In this section, we discuss Dirichlet process mixture models when a hyper Dirichlet process

is used. It is a hierarchical model specified by a base measure H, a real number ν, and a

transition measure F (X; θ).

P ∼ HDP (νH)

θi|P ∼ P

Xi|P, θi ∼ F (X; θi)

The θi’s and Xi’s are mutually independent in the listed conditional distributions. We use

the notation ~θ and ~X to refer to the full samples. We shall understand the nodes of G to be

either marginal values of θ or X as context dictates. This is a slight abuse of notation, but

we shall focus on models for which F (X; θi) ∈M (G), meaning that X and θ have the same

conditional independence structure. In this case, we shall refer to the model as a hyper

Dirichlet mixture model. We also point out that the setting has slightly changed from the

previous sections. Particularly in Section 4.2 we considered θ to be an observation from a

random distribution P . We therefore referred to the distribution of θ and the base measure

H as “Markov”. In this section, θ is in turn a random distribution for X. Therefore, we

may consider its law (and H) to be hyper Markov when considered in relation to X. Both
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terms imply the same conditional independence structure of θ. The only difference is that

saying that the law (or H) is hyper Markov implies θ ∈M (G) almost surely. We first note

that since they hyper Dirichlet process law is strong hyper Markov, the posterior law of

P |~θ is also strong hyper Markov by Corollary 2.3.8.

Consider now the full hierarchical model, in which θ is observed with noise. That is,

we do not observe ~θ directly; we observe ~X, where Xi ∼ F (X; θi). If F (X; θi) is Markov

with respect to the same graph G, then the observations are Markov (given ~θ). Since we

have purposely constructed P to be hyper Markov, this is to be expected.

Theorem 4.5.1. In the hyper Dirichlet mixture model, the law of ~θ|P is hyper Markov

and the distribution of ~X|(~θ, P ) is Markov.

Proof. Since P is hyper Markov, θA ⊥⊥ θB|θA∩B for any decomposition (A,B) of G. Fur-

thermore, ~XA|( ~XB, ~θ, P ) ∼
∏n
i=1 F (XAi|XBi, θi) =

∏n
i=1 F (XAi|XSi, θi).

Note that ~θ|P is typically not strong hyper Markov. Given XB, the conditional prob-

ability of XA ∈ A is equal to
∑
FA(A; θA)PA|B(θA|θB)HxB(θB|XB), where HxB is the

posterior distribution of θB given XB and the sum is over the set where the posterior is

positive. Letting FB(XB) be the marginal distribution of XB,

PA|B(θA|θB)HxB(θB|XB) =
P (θA, θB)
PB(θb)

PB(θB)FB(XB; θB)
FB(XB)

. (4.41)
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~θ|P is strong hyper Markov only if this quantity is independent of θB. Furthermore, when

~θ|P is not strong hyper Markov, there is no guarantee that ~X|P is Markov. If instead we

integrate over the random measure P , we get the next theorem.

Theorem 4.5.2. In the hyper Dirichlet mixture model, the law of ~θ is hyper Markov and

the distribution of ~X|~θ is Markov.

Proof. Let (A,B) be a decomposition of G. HDP (νH) is strong hyper Markov. By

Corollary 2.3.10, ~θA ⊥⊥ ~θB | ~θA∩B. Furthermore, the distribution of ~X given ~θ does not

depend on P so it is still Markov when P is integrated out.

Again, the marginal law for ~θ is typically not strong hyper Markov. Certainly, for a

sample of size n = 1, we know that the marginal law for θ1 is H which we may choose

to be strong hyper Markov. This does not apply in general for n > 1. That is, even if

H is strong hyper Markov, the marginal distribution of ~θ is not strong hyper Markov. To

see this, suppose H is continuous and let A,B be an decomposition of V. For n = 2,

consider the two cases θB1 = θB2 and θB1 6= θB2. In the first case, XA1 and XA2 are two

observations from a single θA. To be more specific, let dµi be the distribution of θA given

XB = xBi when θ ∼ H and X|θ ∼ θ; let dµ be the distribution of θA given XB1 = xB1

and XB2 = xB2 when θ ∼ H and X1, X2|θ are independent with common distribution θ.

If θB1 = θB2, then

F (xA1, xA2|XB1 = xB1, XB2 = xB2) =
∫
F (xA1|θA)F (xA2|θA)dµ(θA). (4.42)
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On the other hand, if θB1 6= θB2, then

F (xA1, xA2|XB1 = xB1, XB2 = xB2) =
∫
F (xA1|θA1)F (xA2|θA2)dµ1(θA1)dµ2(θA2).

(4.43)

Therefore, we see that FA|B is not independent of ~θB in general.

4.5.1 Graphical Dirichlet Process Mixtures

Let us examine the distribution of θ2|θ1 more closely when H is strong hyper Markov.

As noted, this distribution is a mixture of H and δθ1 . If we know θ2 ∼ H, then θ2 has

strong hyper Markov law. If we know θ2 ∼ δθ1 , then the law of θ2 is still strong hyper

Markov. Therefore, the reason θ2 does not have a strong hyper Markov law must be due

to the weighting of these two components. We illustrate this using the imagery of the

Chinese restaurant process. When the nth customer enters, there are k ≤ n − 1 tables

occupied by previous customers. We are curious about the conditional probability of θn

given θ1, . . . , θn−1. Therefore, we condition on knowing the tables for the previous n − 1

customers and the dish at each table, {θ∗j : j ≤ k}. If we know which table the nth

customer chose, then either we know θn (previous table), or we know θn ∼ H (new table.)

This corresponds to each mixing component being (strong) hyper Markov if H is (strong)

hyper Markov.

We now consider the entire mixture distribution of θ combining all tables. Recall that

this nth customer will sit at the jth table with probability nj/(ν + nj), where nj is the

number of previous customers at the table. With probability ν/(ν + n − 1) he will sit at
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a new table. Suppose now that we are curious which table the nth customer chose. If we

know θA for some A ∈ V, then this gives a lot information about his table. Indeed, we

can rule out any table where θ∗Aj 6= θAn. This corresponds to the conditional probability

of θ|θAn and we note that the mixing probabilities have changed. To continue the analogy,

suppose we do not know θAn, but we have a noisy observation of it (XAn). In this case,

the probability that the nth customer chose an occupied table j must be updated - in the

sense of a Bayesian posterior - by the probability of θ∗Aj given XAn for previous tables.

This in turn changes the conditional probability.

In the preceding analysis, the issue at play is that the conditional independence struc-

ture may be broken because marginal values change the posterior probability of the tables.

Therefore, it is instructive to represent ~θ by the unique values of θ∗j and the table assign-

ments ~t = (t1, . . . , tn). We will consider the distribution of ~θ and ~X conditional on the

table assignments ~t. Importantly, we will no longer assume that DP (νH) is hyper Markov;

we require only that H is a hyper Markov law for θ. In other words, these properties do

not require condition (ii) of Theorem 4.2.7. Thus, DP (νH) is a graphical Dirichlet process

law as in Definition 4.4.1.

Theorem 4.5.3. Suppose ~θ = (θ1, . . . , θn) is a sample of size n from a Dirichlet process

P ∼ DP (νH), where H is Markov on some graph G = (V,E). Conditional on θi, let

Xi ∼ F (X; θi) independently of everything else, where F (X; θi) is also Markov on G.

Denote the vector of observations by ~X = (X1, . . . , Xn) and the unique values of ~θ by

~θ∗ = (θ∗1, . . . , θ
∗
k). For each i, choose ti such that θi = θ∗ti. Under these conditions:



CHAPTER 4. THE HYPER DIRICHLET PROCESS 111

(i) the conditional law of ~θ given ~t is hyper Markov; if H is strong hyper Markov, then

the conditional law is strong hyper Markov.

(ii) If H is strong hyper Markov, then the conditional distribution of ~X|~t is Markov.

Proof. We first point out that condition (ii) is implied by condition (i) and Corollary 2.3.10.

Therefore, we need only show condition (i), which we do by induction on the sample size,

n. Let L n denote the distribution of ~θ, and for n > 1, let L (n) denote the conditional

distribution of θn given (θ1, . . . , θn−1,~t). For a sample of size n = 1, ~t = (1) is constant and

L 1 = H which is either hyper Markov of strong hyper Markov by supposition. Suppose

now that n > 1 and that (i) holds for n − 1. Let (A,B) be any decomposition of G. If

there exists i < n such that tj = tn, then L (n) = δθj ; if no such j exists, then L (n) = H.

In either case L
(n)
A|B = L

(n)
A|A∩B and so L n = L (n)L n−1 is hyper Markov. Furthermore,

suppose H is strong hyper Markov. If L (n) = H, then it must be strong hyper Markov. If

there exists j < n such that ti = tj then L (n) is degenerate and therefore θBn is constant.

In either case, L (n) is strong hyper Markov and so is L n = L (n)L n−1.

Theorem 4.5.3 provides insight into the effect of incorporating a graphical model into

a Dirichlet mixture. Simply put, the observations are considered to be members of an

unknown number of latent classes. The graph describes the conditional independence

structure within each class. Importantly, we see that this theorem requires only that

H is a hyper Markov law for θ. Therefore, this framework can be used without regard

for condition (ii) in Theorem 4.2.7 if we are willing to condition on class membership.

In particular, we may incorporate disconnected graphical models to the mixture without
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requiring a stick-breaking sequence for each connected component. Finally, it is important

to note that conditioning on the latent class membership is common in Dirichlet mixtures.

For example, in the Gibbs sampler of Section 3.3.1, the conditional distribution of θi given

everything else is expressed as a mixture model and θi is randomized by first choosing its

class membership according to the posterior probabilities.

Theorem 4.5.3 will also be useful in Chapter 7. Graph selection requires integrating

out ~θ to find the marginal distribution of ~X given a graph G. Theorem 4.5.3 will allow us

to integrate out everything except the latent class memberships. This will give rise to a

simple Monte Carlo estimation of the marginal in which latent classes are sampled from

the Chinese restaurant process. This estimation is simple since the class memberships can

be chosen based solely on the number of previous observations in the class without regard

to any probability calculations or distributional constraints.

4.6 Other Hyper Markov Stick-Breaking Measures

We now consider hyper Markov versions of other stick-breaking measures. As a simple

generalization, if the marginal laws for the cliques of a graph are hyperconsistent stick-

breaking processes, then we will call their hyper Markov combination a hyper stick-breaking

process. The first question is of course, “When are the marginal laws hyperconsistent?” It

is easily seen that marginal measure

PA =
∑
i

piδZAi(A) (4.44)
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has a stick-breaking law with the same Beta parameters and base measure HA. There-

fore, two stick-breaking laws are hyperconsistent when the underlying base measure, H, is

Markov.

Next we consider generalizing the construction of the hyper Dirichlet process in Propo-

sition 4.3.1. As before, we see that the number of stick-breaking sequences can be unwieldy.

Therefore, it is beneficial to understand the conditions for which a stick-breaking process is

a hyper stick-breaking process. As a technical note, the construction of Proposition 4.3.1 re-

lies on the fact that the finite dimensional distributions are Dirichlet. Therefore, it may not

be applicable to all stick-breaking laws. In this case, it is even more imperative to know

when a simple stick-breaking process is hyper Markov as this guarantees a constructive

definition.

While our analysis in Theorems 4.2.6 and 4.2.7 relied on the fact that the Dirichlet

distribution is neutral, Heinz (2009) provides a proof without regard to the distribution

of weights. As it is the stick-breaking weights that distinguish a Dirichlet process from

other stick-breaking measures, it shows that the framework of hyper Dirichlet process can

extended to other stick-breaking measures. Note that if HS is non-atomic, then we may

apply Theorem 4.2.3 which relied on Lemma 4.2.2 but not any distributional assumptions

of the random atoms. Therefore, we jump immediately to the more general case when HS

is mixed. Heinz points out that the following conditions are sufficient, but perhaps not

necessary. A lot of the work of this proof is provided by Lemma 4.2.2, which we purposely

made general enough to accommodate this theorem.
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Theorem 4.6.1 (Hyper Stick-Breaking Process). Suppose G is a decomposable graph with

two cliques A and B with non-empty separator S = A∩B. Let H be a probability measure

on ΘA∪B and let {ai, bi} be a countable sequence of non-negative numbers such that ai+bi >

0 for all i. Define L to be the stick-breaking process with parameters (H,~a,~b). L is hyper

Markov on G if the following conditions hold:

(i) H is Markov on G and

(ii) HD|S(·|θS) must be degenerate for all θS such that HS(θS) > 0, where D can be either

B or A. (In contrast to Theorem 4.2.6, the same set of conditionals must be used

for all θSs.)

Proof. Without loss of generality, we shall assume that D = A for the second condition.

Define A′ = A \ S and B′ = B \ S. Note that A = S ∪ A′, so that ZAi = ZAj ⇒

(ZAi, ZiA′) = (ZSj , ZiA′). In other words, the second condition can be expressed equiva-

lently as an “if and only if” statement:

ZSi = ZSj ⇐⇒ ZAi = ZAj a.s.[H]. (4.45)

Consider P ∼ L . The hyper Markov property has two conditions:

1. P(P ∈M (G)) = 1, and

2. PA ⊥⊥ PB|PS.
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The first condition follows from Equation 4.45. Let θ = (θA′ , θS, θB′) be any point in

Θ such that PA(θA) > 0. That is, there exists some i such that ZAi = θA. Equation 4.45

states that ZSj = ZSi = θS if and only if ZAj = ZAi = θA (a.s.[H]). Hence, {j : ZSj =

θS} = {j : ZAj = θA}. Using the stick-breaking representation, we write the distribution

of θB|θA.

PB|A(θB|θA) =

∑
i:ZAi=θA

wi1{ZBi=θB}∑
i:ZAi=θA

wi
(4.46)

=

∑
i:ZSi=θS

wi1{ZBi=θB}∑
i:ZSi=θS

wi
(4.47)

= PB|S(θB|θS). (4.48)

Therefore, P ∈M (G).

It remains to show that PA ⊥⊥ PB | PS. Since P is almost surely discrete, we will use

the table representation, PD = {(θD, PD(θD)) : PD(θD) > 0}, where D is any of A,B, or

S. Furthermore, we will partition these sets based on whether or not HS(θS) > 0.

θ̃+
D = {(θ+

D, PD(θ+
D)) : PD(θ+

D) > 0, HS(θ+
S ) > 0}; (4.49)

θ̃0
D = {(θ0

D, PD(θ0
D)) : PD(θ0

D) > 0, HS(θ0
S) = 0}, (4.50)

where D is either A,B or S. Note that HS(θS) is not random so (θ̃+
D, θ̃

0
D) is equivalent to

the original table representation and hence also to PD.
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Because H is Markov, the independence properties we have at hand are in terms of the

original ordered sequence of atoms, and not in terms of these sets. Therefore, it is useful

to define the following, where we once again understand D to be any of A,B, and S:

~Z+
D = (ZDi : HS(ZSi) > 0) (4.51)

~Z0
D = (ZDi : HS(ZSj) = 0) (4.52)

~p+ = (pi : HS(ZSi) > 0) (4.53)

~p0 = (pi : HS(ZSi) = 0) (4.54)

By the Markov property, ~Z0
A ⊥⊥ ~Z0

B | ~Z0
S. Since the atoms are iid draws from H, we also

have ~Z0
A ⊥⊥ (~Z+

B ,
~Z+
S ). Combining these two expressions yields

~Z0
A ⊥⊥ (~Z0

B,
~Z+
B ,
~Z+
S ) | ~Z0

S. (4.55)

By construction, HS(z) = 0 for any z ∈ ~Z0
S. Therefore, the atoms Z0

Si are unique. We

recall that the stick-breaking weights are independent of the atoms, and note that ~p0 is a

sequence of the same length as ~Z0
A and ~Z0

S. Thus, we can apply Lemma 4.2.2 where we

choose X = ~Z0
A, Z = ~Z0

S, Y = (~Z0
B,
~Z+
B ,
~Z+
S ), ~p = ~p0 and W = (~p+, ~p0).

{(Z0
Ai, p

0
i )} ⊥⊥ (~Z0

B,
~Z+
B ,
~Z+
S , ~p

0, ~p+) | {(Z0
Si, p

0
i ).} (4.56)

Again we note that the atoms Z0
Si are distinct, so {(Z0

Si, p
0
i )} = θ̃0

S. We note that θ̃0
A

is a function of {(Z0
Ai, p

0
i )} and that the triplet (θ̃0

B, θ̃
+
B, θ̃

+
S ) is a function of the quintet.

Therefore, Equation 4.56 implies
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θ̃0
A ⊥⊥ (θ̃0

B, θ̃
+
B, θ̃

+
S ) | θ̃0

S. (4.57)

Note that the conditional independence also holds if we condition on θ̃+
S and remove it

from the triplet.

θ̃0
A ⊥⊥ (θ̃0

B, θ̃
+
B) | (θ̃0

S, θ̃
+
S ). (4.58)

This almost proves the lemma. We need only include θ̃+
A on the left-hand side. By

the conditions of the lemma, HA|S(·|si) is degenerate for each si ∈ ~Z+
S . Thus Z+

A is a

function of Z+
S , which we denote by Z+

A = (h(s1), h(s2), . . .). Furthermore, it follows from

Equation 4.45 that PA(h(si)) = PS(si). Therefore,

θ̃+
A = {(h(s), PS(s)) : s ∈ ~Z+

S } = {(h(s), PS(s)) : (s, PS(s)) ∈ θ̃+
S }. (4.59)

Since θ̃+
A is a function of θ̃+

S , we may include it in Equation 4.58 to get

(θ̃0
A, θ̃

+
A) ⊥⊥ (θ̃0

B, θ̃
+
B) | (θ̃0

S, θ̃
+
S ), (4.60)

which is equivalent to PA ⊥⊥ PB | PS.

The extent to which this is useful is undecided. Except for Dirichlet processes, stick-

breaking processes are not F-neutral with respect to every sequence of partitions. There-

fore, there are probably more conditions necessary for a stick-breaking law to be strong



CHAPTER 4. THE HYPER DIRICHLET PROCESS 118

hyper Markov. If the law is not strong hyper Markov, then the marginal distribution of

~θ is not guaranteed to be marginally Markov. It is likely that graphical stick-breaking

mixtures will still be useful for some stick-breaking priors. Ishwaran and James (2003)

discuss a more general Chinese restaurant process for certain stick-breaking measures. For

these measures, the unique observations ~θ∗ are still an iid sample from the base measure

H and therefore the proof of Theorem 4.5.3 still applies. Therefore, if H is strong hyper

Markov, then the observations still have a Markov distribution conditional on the latent

class assignments. In analogy to Section 4.4, we could use a graphical stick-breaking pro-

cess to induce conditional independence constraints within each component of a mixture

distribution.
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Chapter 5

Algorithms for Graphical Model

Selection

In Chapter 2, we discussed the necessary theory for a stochastic model search. In this

section, we present implementation of those theories. Specifically, we show algorithms to

decide if the decomposable graph, G = (V,E) will continue to be decomposable when an

edge e = (a, b) is toggled. Of course, the fundamental decision is to test whether or not

e ∈ E. There are a variety of ways to do this with various benefits and costs. We present

a somewhat novel algorithm in this chapter based on an “oriented” junction tree. If the

e ∈ E is in a clique C, then Theorem 2.1.7 states that the edge can be removed if and

only if e is not contained in a neighbor of C in the junction tree. Therefore, we will need

algorithms to find C and iterate over its neighbors. On the other hand, if e 6∈ E, then

Theorem 2.1.8 states that the edge can be added if A ∩ B is a separator on the path
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between A and B, where A and B are the endpoints of the shortest path from a to b. As

such, we require algorithms to find the shortest path and then traverse it. In any case, we

will need to update the junction tree representation; for the sake of efficiency, we desire an

algorithm that performs the update locally.

All of these algorithms have been tested for every possible complication I could conceive

of. I also randomly tested these algorithms by randomly selecting 10000 edges in a graph

of size |V| = 30, deciding if those edges could be toggled and updating the graph if

needed. The test program finished without any problems, and the transitions that I checked

manually were correct.

5.1 Graphical Representations

Computer representations of graphical models must balance the speed of information access

with memory and update efficiency. In essence, information that is stored in memory is

faster to access because it need not be computed, but this increases the amount of memory

needed to represent the graph. A classic example of this interplay is a simple test for

adjacency. Suppose G is a graph with p nodes. One representation is a p×p binary matrix,

with bit gab = 1 if a ∼ b. This representation allows adjacency tests in constant time,

but requires p2 bits. One way to reduce the memory cost, especially if G is sparse, is to

store only the 1s (i.e.- the extant edges). If the graph is represented by p sets, where the

ath set contains a’s neighbors, then the complexity of an adjacency test is log(n), where n
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is the average number of neighbors for each node. Thus, memory is saved at the cost of

computational speed for adjacency tests.

I used three main factors for deciding on a representation. Namely, I considered which

statistics of the graph were needed, how transient those statistics were, and how efficiently

those statistics could be updated. Obviously, when choosing a representation, it is im-

portant to consider what actions we will need to take. For example, in examining hyper

Markov models, we need to know the set of cliques in G. Neither the full matrix nor sets

of neighbors mentioned above allow this to be done easily, so they are not very good rep-

resentations for our purpose. Another important consideration is the permanence of the

requisite statistics. There is no purpose to write information that is likely to change before

it is needed again. Finally, we aim to explore various graphs by adding and removing edges,

so the efficiency of updating the representation is significant. Specifically, we prefer repre-

sentations that can be maintained via local updates. As an example, I originally considered

the feasibility of a graphical representation based on a perfect vertex elimination scheme,

however this ordering of nodes can be drastically altered by the addition or removal of a

single edge. Therefore, I abandoned this concept in favor of a junction tree representation.

As we shall soon see, if we make changes to A and B in a junction tree, then we need only

update cliques on the path connecting them. If we remove a set A, then we need only

update the neighboring cliques.
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5.1.1 Oriented Junction Tree Representation

The basic junction tree representation is a collection of cliques that must be linked together

in some fashion. The natural choice is to associate with each clique a list of pointers that

reference its neighbors. This allows us to identify all the neighbors of a clique with ease.

On the other hand, there is no efficient way to find a path between two specific cliques.

To see this, imagine trying to find a path from A to B in the junction tree. To do so, we

need to see if B is one of A’s neighbors. If not, we need to see if B is one of A’s neighbor’s

neighbors. This process must continue, spreading out like a search party, until we find

B. In a worst-case scenario, it is possible to search the entire graph before finding the

path! The solution we implement is to orient the junction tree by identifying one clique

as the “root”, which we denote here by C0. If A 6= C0, then exactly one neighbor of

A (possibly C0 itself) lies on the path between A and C0. Borrowing terminology from

directed graphs, we call this neighbor the parent of A, denoted Apar, and say that A is a

child of Apar. Thus, we can easily find paths from A to C0 and from B to C0 by traveling

“upward” from parent to parent. If B is on the path from A or vice versa, then we are

done. Otherwise, we concatenate the first path with the reverse of the second path to find

the complete path from A to C0 to B. Note that if C0 = {a, b}, and the edge (a, b) is

removed, then we may need to remove C0 from the graph and choose a new root clique.

For simplicity, we add an empty pseudo-clique to the junction tree as the root, C0 = Ø.

As a result, the root remains constant and all of the true cliques has a parent.



CHAPTER 5. ALGORITHMS FOR GRAPHICAL MODEL SELECTION 123

A second problem with the basic clique representation is finding the subgraph of cliques

which contain a given node. To wit, if we wish to test if a and b are neighbors, we do not

want to traverse the entire graph trying to find the cliques that contain a and b! Therefore,

in addition to the oriented junction tree, our representation will include a vector of pointers

where the ath pointer references a clique that contains a. We will denote this vector by

~v = (v1, v2, . . . , vp). By the junction property, all cliques that contain a form a connected

set in the junction tree. Therefore, we can find all such cliques locally once we have a

starting place.

5.1.2 Clique Representations

As mentioned in Section 5.1.1, one of the basic component of the junction tree represen-

tation is the set of cliques. Obviously, each clique should identify the nodes it contains.

Testing for adjacency requires us to check if the two given nodes are members of a clique.

Furthermore, we may need to insert or remove elements as edges are added or deleted. We

could consider any of the various Standard Template Library (STL) containers. The three

most common containers are linked lists, vectors, and sets. Vectors afford the ability to

check for inclusion in constant time, but do not allow efficient deletion of elements from

the middle of the vector. Conversely, linked lists allow efficient deletion of elements, but

the complexity of inclusion tests increases linearly with the size of the clique. Therefore,

we choose to represent the cliques by sets. Sets are ordered containers, which allows effi-

cient deletion and insertion of elements and the complexity of inclusion tests increases only

logarithmically with the size of the clique.
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For calculating Markov distribution functions, we also need the separators in a perfect

clique ordering. Therefore, we associate with each clique Ci, its separator Si for some

perfect ordering. Note that a perfect ordering can be constructed by beginning with the

children of C0, which are the cliques that are direct neighbors of C0. We next include all

cliques which are two edges away from C0, then three edges, and so on until all cliques

have been enumerated. By this construction, each Ci is included after its parent, which

contains Si by the junction property. Hence, the separator associated with a clique is simply

the intersection of that clique with its parent. We have a choice between storing these

separators or calculating them when needed. By the following reasoning, the separators

are fairly persistent when edges are toggled. Recall that if a ∼ b and the edge can be

removed, then (a, b) is an edge in exactly one clique. Similarly, if a 6∼ b, and the edge

can be added, then (a, b) is an edge in exactly one clique of the new graph. In either

case, only one separator needs to be updated for each move. Furthermore, we shall see

that only minor changes need to be made to the separator. Thus, it is beneficial to store

the separators to enhance speed. We will denote the separator associated with clique C

by Csep. As with the cliques, we represent the separators as a set of elements. Looking

forward, we note that when edges are added, we may need to update the junction tree

to maintain a perfect clique ordering. Thus if A is the parent of B in the current graph,

this relationship may be reversed in the updated graph. In this case, the separator A ∩B

remains the same, but it is associated with A instead of B in the new graph. Therefore,

it is beneficial to store the separators outside of the cliques and simply have each clique

contain a pointer to its associated separator. In doing so, we can easily swap separators
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by swapping the pointers. This is called a shallow swap, and is much more efficient than a

deep swap, which entails element by element copying and erasing.

We also choose to record the residuals, though the benefits are less clear cut. Our

reasoning is that they are required for generating hyper inverse Wishart and hyper Normal

random variables. Like the separators, most residuals do not change for each graph update,

so we store their value rather than compute them on demand.

5.2 Algorithms and Proofs

In this section, we provide algorithms and proofs for performing the requisite tests as well

as for updating the junction tree representation.

5.2.1 Adjacency Test

The first necessary test is to decide if a and b are neighbors. Recall that our extended

junction tree representation includes a pointers to cliques A and B that contain a and b.

We can test for adjacency by exploring the subgraph of cliques that contain a starting at

A. In fact, the following algorithm does even better as the entire subgraph need not be

explored necessarily.

Algorithm 5.2.1 (Adjacency Test).

1. Define C← A.

2. While a ∈ C:
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(a) If b ∈ C, return True.

(b) Set C← Cpar.

3. Set C← B.

4. While b ∈ C:

(a) If a ∈ C, return True.

(b) Set C← Cpar.

5. Return False

Proof. Note that if any ancestor of A contains (a, b), say D, then the junction property

ensures us that a is a member of every clique on the path from A to D. Therefore, the

first while loop will continue until C = D or C is some other clique containing (a, b). In

either case, the algorithm returns True correctly. Similarly, if any ancestor of B contains

(a, b), then the second while loop returns True. Now suppose that no ancestors of A

or B contain (a, b). In this case, the algorithm returns False. Therefore, we must show

that no cliques in G contains (a, b). For a contradiction, suppose D ⊇ {a, b} exists. Let

p(a) = (p(a)
1 , . . . , p

(a)
na ) be the path from A to C0 and let p(b) = (p(b)

1 , . . . , p
(b)
nb ) be the

path from B to C0. Note that these paths intersect, if only because p(a)
na = C0 = p

(b)
nb .

Therefore, choose i = min{i : p(a)
i ∈ p(b)} and j such that p(b)

j = p
(a)
i . We see that

(A = p
(a)
1 , . . . , p

(a)
i = p

(b)
j , . . . , p

(b)
1 = B) is the unique path from A to B. Note that none

of the cliques on this path contain both a and b. In particular, D is not on the path.



CHAPTER 5. ALGORITHMS FOR GRAPHICAL MODEL SELECTION 127

Therefore, either A is on the path from D to B, or B is on the path from D to A. In

either case, the junction property is violated, so D cannot exist.

Note that we can test a ∈ Apar by seeing if a is in the separator of C. This is because

we’ve already established a ∈ C, so if a is also in the parent, then it must be in the

separator of C by our construction. This increases the speed of the test since a smaller set

can be checked.

We make two small changes to the algorithm that do not alter the decision process.

First, if the algorithm finds a clique which contains (a, b), then we have it return a pointer

to this clique instead of a simple True value. This pointer is useful for testing if an

edge can be added, as in Section 5.2.2. Secondly, we update the pointers va and vb in the

following way. If the first while loop finds that a 6∈ Cpar, then we update va = C; we do the

same for vb in the second loop. The primary benefit to this approach is that if a 6∼ b, then

va and vb point to the highest cliques in the tree that contain a to b when the algorithm

ends. In Section 5.2.3, this will be helpful for finding the shortest path from a to b, which

is necessary for deciding if the edge (a, b) may be inserted. A secondary benefit is that this

may increase the efficiency of future adjacency checks involving a and b. This is because

the algorithm is most efficient when A and B are the highest cliques in the junction tree

which contain a and b. In this situation, the algorithm only needs to examine one or two

cliques.
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5.2.2 Dropping an Edge

In this section, we provide the algorithms for dropping edges to a decomposable graph.

Of course, before attempting to drop an edge, we should check to see that the edge exists

using Algorithm 5.2.1. As discussed above, if a ∼ b, then the adjacency test gives us (a

pointer to) a clique, say C, that contains (a, b). The first algorithm tests if a missing edge

can be added without losing decomposability.

Algorithm 5.2.2 (Test for Edge Deletion).

1. If a ∈ Csep and b ∈ Csep return False.

2. Let D iterate over the children of C:

(a) If a ∈ Dsep and b ∈ Dsep return False.

3. Return True

Proof. By Lemma 2.1.7, the edge (a, b) can be dropped if and only if no neighbors of C

contain (a, b). The first step checks C’s parent, and the loop checks all of C’s children.

The decision is made when a neighbor containing (a, b) is found, or when all neighbors

have been examined.

If the test evaluates True, then we can use the next algorithm to update the extended

junction tree representation. Once again, we take advantage of our pointer to C, which we

now know is the only clique containing (a, b). Let U = C \ {a, b}. After the edge (a, b) is

removed, we know that C is no longer a clique and that Ua = U ∪ {a} and Ub = U ∪ {b}
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are complete sets. Is Ua a clique? This depends on whether or not there already exists

another clique, say D ⊇ Ua, that contains Ua. Therefore, in order to update the graph,

we need to see if such a clique exists. We note that D may not be unique, however, if D

does exist, then D ∩ C = Ua. Thus by the junction property, every clique on the path

between D and C must also contain Ua. Hence, it is enough to check if a neighbor of C

contains Ua. Of course, a similar test is performed for a clique containing Ub. The details

are presented in the next algorithm.

Denote the current graph by G = (V,E) and the new graph by G∗ = (V,E\{(a, b)}). If

neither Ua nor Ub is contained by another clique of G, then both are cliques in G∗. In this

case, Ua can be formed by removing b from C and Ub is created by making a new clique.

On the other hand, suppose Ua is contained in another clique of G, but Ub is not. In this

case, Ua is not a clique of G∗, and we need only remove a from C. Finally, if both Ua and

Ub are contained by other cliques of G. In this case, we need to remove C completely to

form G∗. Therefore, we see that there are three general cases, which we will need to handle

separately. Furthermore, we treat the case where Ua or Ub is contained in the parent

specially. This reduces the number of necessary operations to update the separators and

residuals. In general, we will come across several examples in which we know one set is a

subset of another, so we can check equality by comparing cardinality. In any case, we need

to also update separators, residuals, and possibly the structure of the tree.

The algorithm is somewhat simpler if Ua or Ub is contained in the Cpar. Note that

Cpar cannot contain both a and b by Lemma 2.1.7. Thus at least one of a and b is in Cres.

Furthermore, if |Cres| = 1, then only a or b is in the residual. This means that we can
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test (Ua ⊂ Cpar or Ub ⊂ Cpar), by checking if |Cres| = 1, which is a single comparison.

For clarity, we focus on the oriented junction tree and discuss updating the accompanying

vector of pointers afterward.

Algorithm 5.2.3 (Drop edge: |Cres| == 1).

1. If Cres contains a, then swap the values of a and b.

2. Set A← Cpar.

3. Initialize B← Null.

4. Let D iterate over the children of C:

(a) If |Dsep| == |C| − 1 and b ∈ Dsep, then:

i. Set B← D

ii. Remove B from ~Cch

iii. stop iterating

5. If B == Null then:

(a) Remove a from C and Csep.

(b) Let D iterate over the children of C:

i. If |Dsep| contains a, then:

A. Set Dpar ← A

B. Remove Dpar from ~Cch
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C. Insert Dpar into ~Ach.

5′. else:

(a) Set Bpar ← A.

(b) Insert B into ~Ach.

(c) Insert b into Bres.

(d) Remove b from Bsep.

(e) Let D iterate over the children of C:

i. If |Dsep| contains b, then:

A. Set Dpar ← B

B. Remove Dpar from ~Cch

C. Insert Dpar into ~Bch.

i′. else:

A. Set Dpar ← B

B. Remove Dpar from ~Cch

C. Insert Dpar into ~Bch.

(f) Delete C

Proof. Line 1 ensures that Cpar contains Ua, by swapping the values of a and b. This is

done to simplify the remaining algorithm. Line 3 and the loop at Line 4 decides if Ub is a

clique in G∗. As noted, we do this by seeing if a neighboring clique contains Ub. Since Dsep
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cannot contain both a and b, we have that |Dsep| = |C| − 1 must imply either Dsep = Ua

or Dsep = Ub. We decide between these two by checking if b ∈ Dsep.

In the event that no B ⊃ Ub is found, we know that Ub is a clique in G∗. Rather than

create Ub from scratch, we simply update C. We note that Ub = C\{a}, and Ub
sep∩Cpar =

U = Csep \ {a}. These values are set by 5a. We also note that Ub
res = {b} = Cres, so no

change is needed there. Finally, we note that if D ∈ ~Cch, then C is in between D and Cpar

in the junction tree. Therefore, if a ∈ D, we must make D a child of A rather than C. It

is easy to verify that the separator and residual for each such D remains unchanged and

hence that the junction property is maintained.

In the event that we find a B ⊃ Ub, then Ub is not a clique of G∗. In this case, we

must remove C from the tree. Therefore we connect B directly to Cpar, by-passing C.

This requires making Cpar the parent of B (Line 5′a) and adding B to the list of Cpar’s

children (Line 5′b). To find Bsep in G∗, we have that

B ∩U ⊆ B ∩Cpar ⊆ B ∩C = (B ∩U) ∪ {b}, (5.1)

where the second relation is guaranteed by the junction property for G. Since b 6∈ Cpar, we

conclude that Bsep = B∩Cpar = (B∩C) \ {b}. Since b is no longer in Bsep, it must be in

Bres. Finally, we need to connect each D ∈ ~Cch to a new clique. We choose to connect D to

A or B, based on whether or not b ∈ D. It is easy to verify that the separator and residual

for each D remains unchanged and hence that the junction property is maintained.
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We next show the second half of the algorithm that is used when neither Ua nor Ub is

contained in Cpar.

Algorithm 5.2.4 (Drop edge: |Cres| > 1).

1. Set A← B← Null.

2. If b ∈ Csep, then swap values of a and b.

3. For D ∈ ~Cch:

(a) If |Dsep| = |C| − 1:

i. If a ∈ Dsep and A == Null, then set A← D and remove A from ~Cch.

• (stop iterating if B has been found as well)

ii. If b ∈ Dsep and B == Null, then set B← D and remove B from ~Cch.

• (stop iterating if A has been found as well)

4. If A == Null, then:

(a) Set A← C.

(b) Remove b from A and Ares.

(c) If B == Null, then:

i. Create a new clique B = Ub, with Bsep = U and Bres = {b}.

ii. Set Bpar ← A and insert B into ~Ach.

(b′) else move b from Bsep to Bres.
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(d) For D ∈ ~Ach:

i. If b ∈ Dsep, then move D from ~Ach to ~Bch.

4′. else (A! = Null):

(a) Swap Asep and Csep and set Ares = A \Asep.

(b) Set Apar ← Cpar and insert A into ~Cparch.

(c) If B == Null, then

i. Set B← C.

ii. Remove a from B and Bsep

iii. Set Bres ← {r}.

iv. For each D ∈ ~Cch, if a ∈ D, then set Dpar ← A and move D from ~Cch to

~Ach.

(b′) else:

i. Move b from B to Bres.

ii. For each D ∈ ~Cch

* If b ∈ D then set Dpar ← B and move D from ~Cch to ~Bch, else set

Dpar ← A and move D from ~Cch to ~Ach.

(d) Set Bpar ← A and move B from ~Cparch to ~Ach.

Proof. Line 2 simplifies the algorithm by allowing us to assume b 6∈ Cpar. The loop in Line

3 finds sets A and B that contain Ua and Ub, or else determines that such sets do not

exist in G. If A does not exist, then we simply create the clique A = Ua by removing b
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from C and Cres. If B also does not exist, then we must create a new clique containing

the appropriate nodes, separator and residual. We then connect this clique to A. On the

other hand, if B does exist, then we use Equation 5.1 to see that B ∩A = (B ∩C) \ {b}.

In this case, B is already connected to A, so no edges need to be changed. Whether or

not B exists, we must move any children in ~Ach if they contain b in order to maintain the

junction property. It is easy to see that no other separators or residuals need to change,

so the junction property is preserved in the updated tree.

We now examine the lines beginning at Line 4′, for the case where A ⊃ Ua does exist

in G. Note that

Ua ∩Cpar ⊆ A ∩Cpar ⊆ C ∩Cpar = Ua ∩Cpar, (5.2)

whence A ∩Cpar = C ∩Cpar. Therefore, we simply swap the two separators and update

the residual of A by its definition. If B ⊇ Ub does not exist, then we simply create B

from C by removing a. Recall that we swapped the separators of A and C, so Csep = Ua

now. Therefore, we need to remove a from this separator so that Bsep = Csep = U. We

also update the residual to contain the single element b. As usual, we need to move any

children of C that contain a so that they are children of A. Once again, it is easy to see

that the separators and residuals remain the same for these sets, so this does not break the

junction property. If B and A both exist, then we simply collapse the tree by removing C

as in Algorithm 5.2.3.
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To complete our algorithms for dropping edges, we must also maintain the vector of

pointers for each element. This is quite simple, especially in comparison to updating the

oriented junction tree. In the event that we remove a from C, we simply check if va

references C. If it does, then we set va to reference whichever clique contains Ua in G∗.

We do likewise when we remove b from C. The only other time we remove elements from

C - and thus potentially invalidate ~v - is when we collapse the graph and remove C. In

this situation, it is simple to iterate over each c ∈ C and set vc to reference either A or B

if necessary. Both cliques contain U and therefore, the reference is valid.

As a technical note, we could simplify the algorithms for dropping an edge by simply

removing a from C, creating a new clique C∗ = C \ {a}, and then collapsing the graph if

needed. In contrast, our algorithm is more complicated, but more efficient because we only

need to create a new clique from scratch in some cases and we make the minimal number

of updates.

We also make one small change to the updating algorithm that isn’t strictly necessary.

Namely, if removing the edge (a, b) causes a and b to be disconnected, instead of having

B as a child of A, we make it a child of the empty root clique C0. Most importantly,

this keeps the graph from becoming too wide. Since some of the algorithms we develop

involve forming paths between a clique and C0, it is helpful to keep the number of edges

small. Secondly, by making C0 the parent of B, we keep all connected components well-

separated at the top level. This means that if we ever need to quickly find all the connected

components, we can do so. It turns out that this also makes displaying the graph cliques

somewhat nicer since the connected components are written in contiguous pieces.
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5.2.3 Adding an Edge

In this section we consider adding an edge (a, b) to a graph G = (V,E) to obtain a

new graph G∗ = (V,E ∪ {(a, b)}). From Lemma 2.1.8, we know that testing if G∗ is

decomposable requires finding the shortest path between a clique A containing a and a

clique B containing b. The explanation is easiest if we pretend to know A and B. The

process requires only a small fix to rectify this faulty assumption. If A is an ancestor of B,

then we can find a path from B to A by following B,Bpar,Bparpar, . . . until we reach A,

which is the first set containing a. The shortest path has a similar form if B is an ancestor

of A. On the other hand, if neither A nor B is the ancestor of the other, then we can find

the shortest path by first finding the paths from A to C0 and from B to C0. Since C0

is an ancestor of every clique, this is easy. Note that both paths must intersect at some

point, if only at C0. Letting D denote the earliest intersection, we can form the path from

A to D to B.

Thus far, we have pretended to know the endpoints, A and B, of the shortest path. If

we don’t know these endpoints, then we simply start from the cliques A∗ and B∗ that are

referenced by va and vb. In the case where A is an ancestor of B, the junction property

implies that B is an ancestor of B∗. Therefore, we simply find the path from B∗ to A.

The last clique in this path that contains b must be B, so we simply remove every set

before B in the path. The process is analogous when B is an ancestor of A. Recall that

in Section 5.2.1, we decided to set va and vb to be the highest-level clique in the tree that

contain A and B. Therefore, if A is an ancestor of B, we see that vb indeed points to
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B. If B is an ancestor of A, then va points to A. In either case, we save the trouble of

traveling through some unnecessary cliques. Similarly, if neither A nor B is an ancestor of

the other, we can find the path from A∗ to B∗ and trim all but the last clique containing

a and all but the last clique containing b. In this case, we see that va references A and vb

references B, so we save time on both ends.

The last detail we must handle is the fact that we do not know if A or B is an ancestor

of the other. Therefore, the shortest path algorithm must be able to handle all three cases

simultaneously. We do so by using flags that we update when we discover which case is

true. We will also let A∗ and B∗ denote the cliques referenced by va and vb. Again noting

that the junction tree is oriented, it is helpful to partition the shortest path into (pa, pb,D),

where pa is the path upward through A’s ancestors, pb is defined similarly, and D is where

the paths intersect. In doing so, we maintain the proper orientation toward the root clique

in pa and pb.

Algorithm 5.2.5 (Shortest Path).

1. Set Aflag ← Bflag ← 0

2. Set Ca = A∗; set Cb = B∗

3. Set pa = (A); set pb = (B).

4. While Aflag == Bflag == 0:

(a) If b ∈ Ca
par then set Aflag ← 2

(b) elseif a ∈ Cb
par then set Bflag ← 2
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(c) elseif Ca
par == C0 then set Aflag ← 1

(d) elseif Cb
par == C0 then set Bflag ← 1

(e) else

i. Set Ca ← Ca
par; set Cb ← Cb

par

ii. Append Ca to pa; append Cb to pb

5. If Aflag == 1 then:

(a) While Bflag == 0:

i. If a ∈ Cb
par then set Bflag ← 2

ii. elseif Cb
par == C0 then set Bflag ← 1

iii. else set Cb ← Cb
par; append Cb to pb.

5′. elseif Bflag == 1 then:

(a) While Aflag == 0:

i. If b ∈ Ca
par then set Aflag ← 2

ii. elseif Ca
par == C0 then set Aflag ← 1

iii. else set Ca ← Ca
par; append Ca to pa.

6. If Aflag == 2 then clear pb; return (pa, pb,Ca
par).

7. If Bflag == 2 then clear pa; return (pa, pb,Cb
par)

8. While the last elements of pa and pb are equal:

(a) Set D to be the common last element.
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(b) Remove the last elements of pa and pb.

9. Return (pa, pb,D)

Proof. The while loop at Line 4 simultaneously constructs the path from A∗ and B∗ until

pa reaches B, pb reaches A, or either reaches the root clique C0. The simple use of flags

indicates why the loop stopped. Aflag is 1 if pa reached C0, Aflag is 2 if pa reached B, and

similarly for Bflag. Note that if the loop ends because pa reached B, then we have our

shortest path and we are done. In this case, Lines 4c and 4d are not evaluated, so the Bflag

remains equal to 0. The conditions at Line 5 and 5′ are False and the algorithm returns

the path at Line 6. Similarly, if pb reached A, then the conditions at Lines 5, 5′ and 6

are False and the algorithm returns the path at Line 7. On the other hand, suppose that

the while loop at Line 4 quit because one path, say pa, reached C0. In this case, we know

that B is not an ancestor of A, but it may still be the case that A is an ancestor of B.

Therefore, if Aflag == 1, we finish constructing the path from B∗ in Line 5a. Similarly, if

pb reached C0, we have Bflag == 1 and we finish constructing the path from A∗ in Line

5′a. At this point we have fully constructed both pa and pb. If B is an ancestor of A,

then Aflag == 2 and pa is the shortest path, which we return in Line 6. If not, and A is

an ancestor of B, then Bflag == 2 and pb is the shortest path, which we return in Line 7.

Finally, if neither clique is the ancestor of the other, then Aflag == Bflag == 1. In this

case, we find the earliest point where these paths intersect and store this as D. We trim

both pa and pb from D onward, and construct the shortest path from pa, pb, and D.
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Once the shortest path is found (pa, pb,D), it is almost trivial to test if G∗ is decom-

posable.

Algorithm 5.2.6 (Test for Edge Addition).

1. If D == C0, then return True.

2. Set S← {}; set i← j ← 1

3. While i ≤ |A∗| and j ≤ |B∗|:

(a) If ai < bi then set i← i+ 1

(b) elseif bi < ai then set j ← j + 1,

(c) else set S← S ∪ {ai}, i← i+ 1, and j ← j + 1

4. For each C ∈ pa, if |Csep| == |S| then return True.

5. For each C ∈ pb, if |Csep| == |S| then return True.

6. Return False.

Proof. By Lemma 2.1.8, we need to see if one of the separators on the path is equal to

A ∩B. There are two special cases that can be solved very efficiently. We first note that

if D = C0, where C0 is the empty root clique, then A ∩B = Ø is the separator between

C0 both adjacent cliques on the graph. We test this case in Line 1 since it does not even

require calculating the intersection. (This corresponds to a and b being disconnected, in

which case it is trivial to see that the edge can be added.) If S is not empty, we resort to

checking each separator in the shortest path. Recall that the shortest path is of the form
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(A,Apar,Aparpar, . . . ,D, . . . ,Bparpar,Bpar,B). (5.3)

Therefore, the separators on the path are {Csep : C ∈ pa ∪ pb}. We also note that for

each clique C ∈ pa ∪ pb, the junction property ensures that S = A ∩ B ⊆ Csep. Taking

advantage of this fact, we see that S == Csep if and only if |S| == |Csep|.

At this point, we have decided if the edge (a, b) can be added to G. We still need to

determine a way to update the graph locally to find G∗. Once again, let S = A∩B. When

we add an edge between a and b, we can see that U = S ∪ {a, b} will be a clique in G∗.

Where should we connect U in the graph? We note that U ∩A = S ∪ {a}, but S ∪ {a} is

not guaranteed to be in all or even any of Csep in the path. Therefore, we must connect

U to A in order to maintain the junction property, but an analogous argument shows that

we must connect U to B. If A and B are neighbors in the junction tree, it is easy to see

that we can simply insert U between them, so that A ∼ U ∼ B. On the other hand, if A

and B are not neighbors, then connecting U to both creates a loop in the junction tree.

Therefore, we need a method to rearrange the tree so that A and B are neighbors.

Denote the shortest path from A to B by

(A = A0,A1,A2, . . . ,Ana = D = Bnb , . . . ,B2,B1,B0 = B). (5.4)

Recall that Algorithm 5.2.6 finds a clique C ∈ pa ∪ pb such that Csep = S. It is a simple

matter to extend the algorithm to return C and record if C ∈ pa or C ∈ pb. Without loss
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of generality, we assume C ∈ pa, say C = Ai. We rearrange the path by breaking the edge

between Ai and Ai+1 and joining A and B. Thus, the path in Equation 5.4 becomes

(Ai+1, . . . ,Ana = D = Bnb , . . . ,B1,B0 = B,A = A0,A1, . . . ,Ai). (5.5)

To check that the junction property holds, take any U and U′ in the path. Note that if U

and U′ are on the same side of Ai in Equation 5.4, then any sets between them after the

rearrangement were also between them before the rearrangement, so the junction property

of the original path will still hold. Therefore, it is enough to show that the junction property

holds if U ∈ {A, . . . ,Ai} and U′ ∈ {Ai+1, . . . ,B}. In this case, the junction property for

the original path implies that

S = A ∩B ⊆ U ∩U′ ⊆ Ai
sep = S, (5.6)

whence U ∩ U′ = S. Finally, note that A ∩ B = S by definition, and that every other

separator in the new path is also a separator in the original path, which must contain S

by the junction property.

Since the junction tree we utilize is oriented toward the root, we need to change the

direction of some edges. For simplicity, we still assume that the break point for this

rearrangement is C ∈ pa. Note that in the new path, the root is no longer an ancestor of

A according to the internal representation, which still lists Apar = A1, A1
par = A2, etc.

We reach a dead end at Ai since it is no longer connected to Ai+1! Therefore, we make

B the parent of A and reverse the parent-child relationship for A, . . . ,Ai. Finally, we
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note that the separator between S′ between Aj and Aj+1 is still the same, but after the

rearrangement, Aj is the parent and so S′ = Aj+1
sep whereas in the previous arrangement we

had S′ = Aj
sep. All of these details are expressed in the next algorithm, where we denote

the shortest path by (pa, pb,D), the breaking point for the rearrangement by C, and set

f = I (C ∈ pa).

Algorithm 5.2.7 (Rearrange Junction Tree).

1. Set i, v such that C = pvi .

2. Remove C from ~Cparch.

3. Set S = Csep.

4. For j = i− 1, . . . , 0:

(a) Set F← pvj ; set F+ ← pvj+1.

(b) Remove F from ~F+
ch.

(c) Insert ~F+
ch into ~Fch; set F+

par ← F.

(d) Set F+
sep ← Fsep; set F+

res ← F \ F+
sep.

5. If f == 0, then swap A and B.

6. Set Apar ← B; Insert A into ~Bch.

7. Set Asep ← S; set Ares ← A \Asep.

Proof. This algorithm is a straightforward implementation of the preceding discussion.
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After applying Algorithms 5.2.5-5.2.7, we know that edge (a, b) can be added to the

graph between the cliques A and B. Recall that S = A ∩B, so a ∼ s ∼ b for each s ∈ S.

Therefore, C = S ∪ {a, b} will be a clique in the updated graph G∗. On the other hand, if

A = S ∪ {a}, then A will no longer be a clique. Once again using inclusion properties, we

have that S∪ {a} ⊆ A and we can test for equality by checking if |A| = |S|+ 1. Similarly,

if |B| = |S| + 1, then B is not a clique in G∗. Hence, we have four possible cases to deal

with depending on which of A and B remain cliques in G∗.

Algorithm 5.2.8 (Add Edge).

1. If Bpar == A then swap A with B and a with b.

2. If |A| == |S|+ 1, then:

(a) If |B| == |S|+ 1 then:

i. Set C← B; insert a into C.

ii. Insert a into Cres.

iii. Remove A from ~Cch

iv. For each D ∈ ~Ach, set Dpar ← C.

v. Splice ~Ach onto ~Cch.

vi. Delete A.

(a′) else:

i. Set C← A; insert b into C.

ii. Insert b into Csep.
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2′. else:

(a) If |B| == |S|+ 1 then:

i. Set C← B; insert a into C.

ii. Insert a into Cres.

(a′) else:

i. Create a new set C = S ∪ {a, b}.

ii. Set Csep = S ∪ {b}; set Cres ← {a}.

iii. Remove A from B.

iv. Insert A into ~Cch; set Apar ← C.

v. Insert C into ~Bch; set Cpar ← B.

Proof. Line 1 simply allows us to assume that B = Apar. The conditional at Line 2a is

the case when neither A nor B are cliques. In this case, G∗ will have one fewer cliques

than G. Rather than remove B and create a new clique for C. We simply update B to

include a. The separator C∩Bpar = (B∪{a})∩Bpar. By the junction property, a 6∈ Bpar,

so the separator is just B ∩ Bpar and does not need to be changed. We also see that

Cres = C \Csep = Bsep ∪ {a}. Finally, we need to remove A from the tree, so its children

should be connected to C. Since A ⊂ C, this does not break the junction property. The

case where B is a clique in G∗, but A is not, is treated by Line 2a′. In this case, we just

update A to include b and realize that Csep ∩ B = U ∪ {b} = Asep ∪ {b}. The residual

Cres = Ares = {a} remains unchanged. The case where A is a clique, but B is not, is

handled by Line 2′a. In this case, we update B to find C exactly as in the first case (Line
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2a), except that we do not move the cliques in ~Ach since we are not going to delete A. The

fourth and final case is when both A and B continue to be cliques in G∗. In this case, we

simply create the clique C from scratch. The separator is C∩B = (S∪{a, b})∩B = S∪{b}

and the residual is therefore C \ (S ∪ {b}) = {a}. Finally, we insert C between A and

B. Thus, we set Cpar = B and include C in the list of B’s children. In addition, A is no

longer a child of B. Instead it is a child of C and Apar = C.

As a technical note, we could simplify Algorithm 5.2.8 by simply inserting a new clique

C and collapsing the tree to remove A and/or B as necessary. In contrast, our algorithm

is more complicated, but more efficient because we only need to create C from scratch

in one out of four cases and we make the minimal number of updates. To complete our

specification, we also need to update v, the vector of pointers for each element. Since we

are adding elements to cliques rather than removing them, the only time the pointers may

be invalidated is when A is deleted in 2a.vi. In this case, we simply need to check if vu

references A for each u ∈ A. If it does, we alter it to reference C instead.
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Chapter 6

Non-Parametric Mixtures with the

HDP

We discussed in Chapter 3 how we can use Dirichlet Processes for constructing non-

parametric mixture models. We continue to study this hierarchical model where θ1, . . . , θn

is a random sample from the random measure P is a Dirichlet process with precision ν and

base measure H, and the datum Xi|θi is a noisy observation of θi with distribution F (Xi; θi)

independently of everything else. In this chapter, we show an extension of this application

by incorporating hyper Dirichlet processes. We consider a hyper Dirichlet mixture, mean-

ing that the underlying Dirichlet process is hyper Markov. Alternatively, we can choose a

graphical Dirichlet process which requires only that H is hyper Markov and F (Xi; ·) is a

family of Markov distributions. The resulting mixture is one in which the random observa-

tions satisfy the prescribed graphical structure within each mixture component. That is,
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if we take the cluster membership into account, then the desired conditional independence

constraints are satisfied within each component. Once again, we note that it is sufficient for

this property if P is only a graphical Dirichlet process instead of a hyper Dirichlet process

as shown by Theorem 4.5.3.

Throughout this chapter, for a probability measure F(θ) with parameter θ, we will

denote by ∂
∂XF(X; θ) its probability density function evaluated at the point X.

6.1 Hyper Dirichlet Mixture of Gaussians

As an illustration of a hyper Dirichlet process, we will consider a hyper Dirichlet mixture

of Gaussians. This model is a multivariate and graphical extension of the work presented

by Escobar and West (1995). In their model, F (·|θ) is a univariate Gaussian distribution,

where θ = (µ, σ2) is the mean and variance. For θ ∼ H

σ2 ∼ IG(s/2, S/2) (6.1)

µ|σ2 ∼ N(m, τV ) (6.2)

which we call a Normal × Inverse-Gamma distribution. Given (µ, σ2) ∼ H, let X1, . . . , Xn

be a random sample from N(µ, σ2). The posterior distribution of (µ, σ2) is also a Normal

× Inverse-Gamma law with
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σ2|(X1, . . . , Xn) ∼ IG
(
n+ s

2
,
S +

∑n
i=1(Xi −m)2/(1 + nτ)

2

)
(6.3)

µ|(σ2, X1, . . . , Xn) ∼ N
(
τ
∑n

i=1Xi +m

1 + nτ
,

τ

1 + nτ
σ2

)
(6.4)

6.1.1 Moving to Multiple Dimensions

The Inverse-Wishart distribution is a multivariate generalization of the Inverse-Gamma

distribution. Therefore, we replace the Normal × Inverse-Gamma distribution with a

multivariate Normal × Inverse-Wishart distribution. The p-variate Normal distribution

with mean m and covariance τV has density

∂

∂µ
N(µ;m, τV ) = (2πτ)−p/2|V |−1/2 exp

{
1
2τ

(µ−m)TV −1(µ−m)
}
, (6.5)

where µ,m ∈ Rp, τ is a positive real number, and V is a p × p positive definite matrix.

Using the parameterization of Dawid (1981), the p-variate hyper Inverse-Wishart with d

degrees of freedom and location (mean) D has density

∂

∂V
IW(V ; d,D) =

|D|(d+p−1)/2|V |−(d/2+p) exp{−tr(DV −1)/2}
2(d+p−1)p/2Γp((d+ p− 1)/2)

, (6.6)

where d is a positive real number, D and V are positive definite p×p matrices, tr(·) denotes

the trace function, and

Γp(x) = πp(p−1)/4
p∏
i=1

Γ(x+ (1− i)/2) (6.7)
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is the multivariate gamma function.

To incorporate a specific decomposable graphical model, we need to use the hyper

Markov versions of these distributions as specified by Dawid and Lauritzen (1993). The

hyper Normal distribution is the (hyper) Markov combination of consistent marginal Nor-

mal distributions for each clique. Let A and B be subsets of V with S = A ∩ B. For

a p × p matrix V , let VAB = {vij : i ∈ A, j ∈ B} be the submatrix with rows in A

and columns in B. We shall also understand V −1
AB to mean the inverse of VAB (rather

than a submatrix of the entire inverse V −1.) For convenience, we define VA = VAA. The

marginals N(mA, VA) for µA and N(mB, VB) for µB are (hyper) consistent if the marginal

value of (mS, VS) is the same whether obtained as submatrices of (mA, VA) or of (mB, VB).

Likewise, the Inverse-Wishart marginals IW(d,DA) and IW(d,DB) are hyper consistent

when the submatrix DA∩B is the same whether obtained from DA or DB.

Let G be a decomposable graph with cliques C and separators S . The hyper Normal

distribution has density function

∂

∂µ
HNG(µ;m, τV ) =

∏
A∈C \S

∂

∂µA
N(µA;mA, τVA), (6.8)

where ∏
A∈C \S

∂

∂µA
N(µA;mA, τVA) =

∏
C∈C

∂
∂µC

N(µC;mC, τVC)∏
S∈S

∂
∂µS

N(µS;mS, τVS)
. (6.9)

For a collection of consistent clique marginal Inverse-Wishart laws, the hyper Inverse-

Wishart law has density function
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∂

∂V
HIW(V ; d,D) =

∏
A∈C \S

∂

∂VA
IW(VA; d,DA). (6.10)

We are now ready to define a hyper Dirichlet process mixture of Gaussians.

P ∼ HDPG(νHG) (6.11)

(µi, Vi)|P ∼ P (6.12)

Xi|(µi, Vi) ∼ HNG(µi, Vi), (6.13)

where HG is a HNG× HIWG law with density ∂
∂µi

HNG(µi;m, τVi)· ∂
∂Vi

HIWG(Vi; d,D). We

point out that we can replace the hyper Dirichlet process with a graphical Dirichlet process

if needed. For example, if G is disconnected, the hyper Dirichlet process requires indepen-

dent processes for each component, but the graphical Dirichlet process only requires one

process for the entire graph. The hyper parameters for this model are ν,m, τ, d,D. Here, ν

is the precision of the underlying Dirichlet process precision and indirectly specifies a prior

for the number of mixture components (Antoniak, 1974). m is the center of the means

for each component, and τ specifies how far apart the component locations are relative to

the variance within the components. Escobar and West (1995) show empirically that the

prior number of modes increases stochastically with τ . This is intuitive because when the

components are farther apart, it decreases the chance that the mode for one component is

occluded by one or more other component density curves. The examples in this chapter

reveal that this is true in the multivariate case as well. Interestingly, we will see that larger
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values of τ lead to more modes, but fewer mixture components in the posterior distribution,

relative to smaller values of τ .

Our first task is to show that HG is indeed a hyper Markov law, so that the specified

model is a hyper Dirichlet mixture. In fact, as the next theorem shows, HG is actually

strong hyper Markov.

Theorem 6.1.1. For m ∈ Rp, τ, d > 0, and a p× p positive definite matrix D, the HNG×

HIWG law for (µ, V ) with density ∂
∂µHNG(µ;m, τV )· ∂

∂V HIWG(V ; d,D) is strong hyper

Markov.

Proof. Let A ⊂ C be a subset of any clique and set B = C \ A. By Proposition 2.3.6,

it suffices to show that the set of conditional distributions for XB given XA = xA are

independent of (µA, VA). Recall that

XB|(XA = xA) ∼ N
(
µB + VBAV

−1
A (XA − µA), VB − VBAV

−1
A VAB

)
, (6.14)

so we must show that the mean of this Normal distribution (denoted µB|A(xA)) and the

covariance matrix (denoted VB|A) are independent of (µA, VA). Invoking the usual condi-

tional distribution for a multivariate Normal vector, we first note that

µB|(µA, V ) ∼ N
(
mB + τVBA(τVA)−1(µA −mA), τVB|A

)
, (6.15)

whence
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µB − VBAV
−1
A µA|(µA, V ) ∼ N

(
mB + τVBA(τVA)−1(µA −mA)− VBAV

−1
A µA, τVB|A

)
.

(6.16)

The τs cancel each other out, so that the terms containing µA sum to 0. Therefore, µB −

VBAV
−1
A µA depends on µA and V only through VBAV

−1
A and VB|A. Because µB|A(xA) =

µB − VBAV
−1
A µA + VBAV

−1
A xA, we infer that

µB|A(xA) ⊥⊥ (µA, VA) | (VBAV
−1
A , VB|A). (6.17)

To complete our proof, we will also need the following two properties:

VB|A ⊥⊥ VA (6.18)

VBAV
−1
A ⊥⊥ VA | VB|A (6.19)

We show both of these relations by citing the generative method of Carvalho et al. (2007)

for creating random (hyper) Inverse Wishart matrices. From their construction, we see

that

VB|A|VA ∼ IW(d+ |B|, DB −DBAD
−1
A DAB) (6.20)

and

VBAV
−1
A |(VA, VB.A) ∼ MN(DBAD

−1
A , VB|A, D

−1
A ). (6.21)
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Neither of these distributions depends on VA, so the conditional independence proper-

ties of Equations 6.18 and 6.19 are true. Furthermore, we may incorporate µA into these

relationships because the distribution of µA|(VB|A, VBAV
−1
A , VA) is a Normal random vari-

able with mean mA and variance τVA. Therefore, we have shown

VB|A ⊥⊥ (µA, VA) (6.22)

VBAV
−1
A ⊥⊥ (µA, VA) | VB|A (6.23)

Equations 6.17 and 6.23 together imply

µB|A(xA) ⊥⊥ (µA, VA) | VB|A. (6.24)

This equation, along with Equation 6.22, implies that

(µB|A, VB|A) ∈ (µA, VA), (6.25)

which is what we needed to show.

6.1.2 Gibbs Sampling for the Hyper Dirichlet Mixture of Gaussians

In Section 3.3.1, we showed that we can construct a Gibbs sampler to sample from the

posterior distribution of ~θ| ~X. This construction requires us to compute the marginal den-

sity of Xi, when θi ∼ HG . We also need to generate random deviates from the posterior

θi|Xi = xi. In order to utilize MacEachern’s (1994) re-mixing scheme we also need to
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sample from the posterior of the unique θ∗i given all members of that cluster partition. As

we shall see, the HNG× HIWG prior is conjugate under sampling from the Normal distri-

bution, which simplifies these calculations. We can compute the marginal density of Xi

analytically and generate all necessary random variable generation directly.

Since the HNG× HIWG law is strong hyper Markov, we can compute posterior updates

locally for each clique. Therefore, we proceed for the time being by focusing on complete

sets, for which the HNG× HIWG law is equal to the simple N × IW law. We will consider

X1, . . . , Xn to be observations which are independent with common parameters (µ, V ),

where (µ, V ) have a N × IW prior law. We begin by finding the conditional distribution

of µ given the observations and V .

f(X1, . . . , Xn, µ|V )

=
n∏
i=1

∂

∂Xi
N(Xi;µ, V ) · ∂

∂µ
N(µ;m, τV ) (6.26)

∝ exp

{
−1

2

n∑
i=1

(
(Xi − µ)TV −1(Xi − µ)

)
− 1

2τ

(
(µ−m)TV −1(µ−m)

)}
(6.27)

∝ exp

{
−1

2

[(
n+

1
τ

)
µTV −1µ− µTV −1

(
n∑
i=1

Xi +
1
τ
m

)

−

(
n∑
i=1

Xi +
1
τ
m

)T
V −1µ+

n∑
i=1

(XT
i V
−1Xi) +

1
τ
mTV −1m

 (6.28)
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∝ exp

{
−1

2

(
nτ + 1
τ

)[
µTV −1µ+

(
τ

nτ + 1

) n∑
i=1

(XT
i V
−1Xi)

−µTV −1

(
τ
∑n

i=1Xi +m

nτ + 1

)
−
(
τ
∑n

i=1Xi +m

nτ + 1

)T
V −1µ

+
(
τ
∑n

i=1Xi +m

nτ + 1

)T
V −1

(
τ
∑n

i=1Xi +m

nτ + 1

)
(6.29)

−
(
τ
∑n

i=1Xi +m

nτ + 1

)T
V −1

(
τ
∑n

i=1Xi +m

nτ + 1

)
+
(

1
nτ + 1

)
mTV −1m

]}
∝ exp

{
−1

2

(
nτ + 1
τ

)[(
µ−

τ
∑n

i=1Xi +m

nτ + 1

)T
V −1

(
µ−

τ
∑n

i=1Xi +m

nτ + 1

)]}

· exp

{
−1

2

[
n∑
i=1

(XT
i V
−1Xi)−

(τ
∑n

i=1Xi +m)T V −1 (τ
∑n

i=1Xi +m)
nτ2 + τ

(6.30)

+
mTV −1m

τ

]}

From the first factor in Equation 6.30, we see

µ|(X1, . . . , Xn, V ) ∼ N
(
τ
∑n

i=1Xi +m

nτ + 1
,

τ

nτ + 1
V

)
. (6.31)

Analyzing further, the second factor of Equation 6.30 leads to the distribution ofX1, . . . , Xn

given their common covariance matrix V . Intuitively, the Xi are exchangeable with iden-

tical Normal distributions, but are no longer independent.
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f(X1, . . . , Xn|V )

∝ exp

{
−1

2

[
n∑
i=1

(XT
i V
−1Xi) +

mTV −1m

τ

−
(τ
∑n

i=1Xi +m)T V −1 (τ
∑n

i=1Xi +m)
nτ2 + τ

]}
(6.32)

∝ exp

{
−1

2

[(
1− τ

nτ + 1

) n∑
i=1

(XT
i V
−1Xi)−

1
nτ + 1

n∑
i=1

XT
i V
−1m

− 1
nτ + 1

mTV −1
n∑
i=1

Xi −
τ

nτ + 1

n∑
i=1

∑
j 6=i

XT
i V
−1Xj (6.33)

+
n

nτ + 1
mTV −1m

]}

Let X and M be the n × p matrices, where the ith row of X is Xi and each row of M is

m. Let In denote the n× n identity matrix and Jnp the n× p matrix of 1s. We note that

Q−1 = In − τ/(nτ + 1)Jnn is well-defined since the RHS is non-singular. In fact, it is easy

to verify that Q = In + τJnn. It is easy to see by comparing coefficients in the summands

that we can rewrite Equation 6.33 by

f(X1, . . . , Xn|V ) ∝ exp
{
−1

2
tr
(
V −1(X −M)TQ−1(X −M)

)}
. (6.34)

To see this, we will define Y = X−M , U = Y TQ−1, S = Y TQ−1Y , and R = V −1Y TQ−1Y .

We have the following equalities, which follow from the very definitions of cross product,

transpose, and trace:
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Uki =
n∑
j=1

YjkQ
−1
ji (6.35)

Skh =
n∑
i=1

UkiYih =
n∑
i=1

n∑
j=1

YjkQ
−1
ji Yih (6.36)

Rgh =
p∑

k=1

V −1
gk Skh =

p∑
k=1

n∑
i=1

n∑
j=1

V −1
gk YjkQ

−1
ji Yih (6.37)

tr(R) =
p∑
g=1

Rgg =
p∑
g=1

p∑
k=1

n∑
i=1

n∑
j=1

V −1
gk YjkQ

−1
ji Yig (6.38)

Note that Q−1
ij = I (i = j)− τ/(nτ + 1), where I (i = j) is 1 if i = j and 0 otherwise.

tr(R)

=
n∑
i=1

p∑
g=1

p∑
h=1

YigV
−1
gk Yik −

(
τ

nτ + 1

) n∑
i=1

n∑
j=1

p∑
g=1

p∑
h=1

YigV
−1
gk Yjk (6.39)

=
n∑
i=1

(Xi −m)TV −1(Xi −m)−
(

τ

nτ + 1

) n∑
i=1

n∑
j=1

(Xi −m)TV −1(Xj −m)(6.40)

=
n∑
i=1

XT
i V
−1Xi −

n∑
i=1

XT
i V
−1m−

n∑
i=1

mTV −1Xi + nmTV −1

− τ

nτ + 1

 n∑
i=1

n∑
j=1

XT
i V
−1Xj − n

n∑
i=1

XT
i V
−1m (6.41)

−n
n∑
i=1

mTV −1Xi + n2mTV −1m

)

By collecting terms, we see
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tr(R)

=
(

1− τ

nτ + 1

) n∑
i=1

(XT
i V
−1Xi)−

1
nτ + 1

n∑
i=1

XT
i V
−1m

− 1
nτ + 1

mTV −1
n∑
i=1

Xi −
τ

nτ + 1

n∑
i=1

∑
j 6=i

XT
i V
−1Xj +

n

nτ + 1
mTV −1m. (6.42)

Hence, exp
{
−1

2tr(V −1(X −M)TQ−1(X −M))
}

is equivalent to Equation 6.33. The nor-

malizing constant for this expression is [(2πV )n(2πQ)p]−1/2. The distribution of X is called

a Matrix Normal density. Notation and theory for this distribution is presented by Dawid

(1981), who would denote the distribution of (X −M) by N (Q,V ). Here, we will use

the notation MN(M,Q, V ) since we want to consider location as well as scale. There are

several ways to think about this distribution. Dawid (1981) define (X−M) as the random

matrix AZB, where AAT = Q, BTB = V , and the entries of Z are independent standard

Normal random variables. Alternatively, we may write X = AY + M , where the rows of

Y are independent N(0, V ). Note that the rows of Y have the same distribution as the

observations when µ is known. In this sense, we may understand the effect of marginaliz-

ing out µ to be skewing the observations by A = (In − τ/(nτ + 1))−1/2, which introduces

covariance between the observations. The covariance between Xi,j and Xi∗,j∗ is

Cov(Xi,j , Xi∗,j∗) = Qi,i∗Vj,j∗ =


(1 + τ)Vj,j∗ , i = i∗

τVj,j∗ , i 6= i∗
. (6.43)

For i 6= i∗, an interesting feature of Equation 6.43 is that when τ increases the covari-

ance of Xi,j and Xi∗,j∗ increases relative to Cov(Xi,j , Xi,j∗). Intuitively, when there is more
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uncertainty (relative to the within group variance) about the group mean, µ, the obser-

vations provide more information about the center of the group, and hence also the other

observations. In fact, as τ → ∞, the prior for µ becomes an improper uniform prior over

the entire real line. Therefore, one observation provides good insight about the value of

the remaining observations. In the other extreme, as τ → 0, the group mean is identically

m, and the observations remain independent.

We are now ready to consider the conditional distribution of V given the observations,

and the marginal distribution of (X1, . . . , Xn).

f(X1, . . . , Xn, V ) =
∂

∂X
MN(X;M,V,Q) · ∂

∂V
IW(V ; d,D) (6.44)

=
exp

{
−1

2tr((X −M)TQ(X −M)V −1)
}

(2π)np/2|V |n/2|Q|p/2

·
|D|(d+p−1)/2|V |−(d/2+p) exp

{
−1

2tr(DV −1)
}

2(d+p−1)p/2Γp((d+ p− 1)/2)
. (6.45)

(6.46)

Once again writing S = (X −M)TQ−1(X −M), we see

f(X1, . . . , Xn, V ) =
|D + S|(d+n+p−1)/2V −((d+n)/2+p) exp

{
−1

2tr([D + S]V −1)
}

2(d+n+p−1)p/2Γp((d+ n+ p− 1)/2)

·π−np/2|Q|−p/2 Γp((d+ n+ p− 1)/2)
Γp((d+ p− 1)/2)

|D|(d+p−1)/2

|D + S|(d+n+p−1)/2
(6.47)

From the first factor in Equation 6.47, we see

V |(X1, . . . , Xn) ∼ IW(d+ n,D + (X −M)TQ−1(X −M)) (6.48)
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The second factor in Equation 6.47 is the marginal distribution of the data.

f(X1, . . . , Xn) = π−np/2
Γp((d+ n+ p− 1)/2)

Γp((d+ p− 1)/2)
|Q|−p/2|D|(d+p−1)/2|D + S|−(d+n+p−1)/2.

(6.49)

The distribution in Equation 6.49 of X is called a (Non-Central Scaled) Matrix T

density. This is a generalization of the Matrix T distribution presented by Dickey (1967),

which itself is a generalization of the multivariate t-distribution. Dawid (1981) describes

this as the marginal distribution of A(X − M), where Σ ∼ IW(d, Ip), (X − M)|Σ ∼

MN(0, In,Σ), and ATA = Q. He denotes the distribution of (X−M) by T (d;Q,D). Here,

we will use the notation T(d,M,Q,D) since we want to consider location as well as scale.

From the above analysis, it is easy to see that the posterior distribution of (µ, V ) is

also a N × IW law. Thus, this family is a conjugate prior for sampling from the Normal

distribution. In particular, we note that the covariance matrix of µ is τ/(nτ + 1) ·V . Since

this is a scalar multiple of V , we are assured that the posterior distribution is also strong

hyper Markov.

In the context of the Gibbs sampler we’ve discussed throughout this work, we will often

work with the case n = 1. During each loop and for every observation Xi, we shall decide

if Xi should be a member of an existing cluster or if we should create a new cluster for it.

We choose the latter with probability proportional to f(Xi), in which case we generate new

parameter values with density f(V |Xi)f(µ|V,Xi). Therefore, it is beneficial to consider

this special case. Note that Q = 1 + τ is a scalar when n = 1.
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µ|(X1, V ) ∼ N
(
τX1 +m

τ + 1
,

τ

τ + 1
V

)
(6.50)

X1|V ∼ N(m, (τ + 1)V ) (6.51)

V |X1 ∼ IW
(
d+ 1, D +

1
τ + 1

(X1 −m)(X1 −m)T
)

(6.52)

X1 ∼ T(d,m, 1 + τ, V ) (6.53)

The Matrix T density for X1 reduces rather nicely to a multivariate T distribution. First

consider the ratio

|D|(d+p−1)/2|D + S|−(d+p)/2 = |D|−1/2|Ip +D−1S|−(d+p)/2. (6.54)

Noting that S = (1+ τ)−1(X−M)T (X−M) = (1+ τ)−1(X1−m)(X1−m)T and applying

Sylvester’s Determinant Theorem to the second determinant, we see

|D|(d+p−1)/2|D + S|−(d+p)/2 = |D|−1/2(1 + (X1 −m)TD−1(X1 −m))−(2+p)/2 (6.55)

We can also reduce the ratio of multivariate gamma functions to a ratio of two univariate

gamma functions. Recall that the multivariate gamma can be specified recursively as

Γp(x/2) = πp(p−1)/4
∏p
j=1((x+ 1− j)/2). Therefore,

Γp
(
d+p

2

)
Γp
(
d+p−1

2

) =
πp(p−1)/4Γ

(
d+p

2

)
Γ
(
d+p−1

2

)
· · ·Γ

(
d+1

2

)
πp(p−1)/4Γ

(
d+p−1

2

)
· · ·Γ

(
d+1

2

)
Γ
(
d
2

) , (6.56)

which neatly telescopes to
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Γp
(
d+p

2

)
Γp
(
d+p−1

2

) =
Γ
(
d+p

2

)
Γ
(
d
2

) . (6.57)

Finally, combining Equations 6.55 and 6.57 with the remaining constants in Equa-

tion 6.49, we see that the marginal distribution of XA is

f(X1) =
π−p/2Γ

(
d+p

2

)
Γ
(
d
2

)
(1 + τ)p/2|D|1/2

·
(

1 + (X1 −m)TD−1(X1 −m)
)−(d+p)/2

(6.58)

This distribution is a non-central, scaled version of the multivariate t-distribution, with

center m and scale (1 + τ)D.

We are now ready to specify the distributions for our graphical model, the HNG ×

HIWG law. In Theorem 6.1.1 we showed that the HNG × HIWG law is strong hyper

Markov. Therefore, Corollary 2.3.9 allows us to compute the posterior update for each

clique locally. That is, the posterior distribution of (µC, VC) for any clique C depends

only on X1C, . . . , XnC. Since each clique is complete, we can apply the above analysis.

For example, the posterior distribution of µC|VC is a Normal distribution. Therefore, the

posterior for µ given V is hyper Normal by definition. Similarly, the posterior distribution

of V is hyper Inverse-Wishart. We see that the posterior distribution for (µ, V ) is a HNG×

HIWG law, which is to say that this family of laws is conjugate to sampling from the Normal

distribution. Last but not least, since the prior law for (µ, V ) is strong hyper Markov, we

know that the marginal distribution of the observations is Markov by Corollary 2.3.10. We

have shown that the marginal distribution of X is matrix T for each clique, whence the

distribution of X is hyper matrix T.
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6.1.3 Random Variable Generation

A major advantage to computing the density function of a (hyper) Markov distribution is

that computations can be computed in blocks for each clique. In particular, each of the

density calculations for Normal, Inverse Wishart, and T densities require inverting a p× p

matrix. Despite the fact that positive definite matrices can be inverted via a relatively

efficient Cholesky factorization, they still require on the order of p3 operations. Thus, it is

often faster to invert several smaller matrices than one large matrix, especially if p is large

(where efficiency matters most) and the graph G is sparse. The (hyper) Markov versions

of these distributions are given by the next three equations, where G is a decomposable

graph with clique set C and separator set S .

∂

∂X
HNG(X;µ, V,G) =

∏
A∈C \S

∂

∂XA
N(XA;µA, VA) (6.59)

∂

∂V
HIWG(V ; d,D,G) =

∏
A∈C \S

∂

∂VA
dIW(VA; d,DA) (6.60)

∂

∂X
HTG(X;M,Q,D) =

∏
A∈C \S

∂

∂XA
dT(XA;MA, QA, VA) (6.61)

The last major computational hurdle of our Gibbs sampler is that we need to simulate

µ from a hyper Normal distribution and V from a hyper Inverse Wishart distribution.

Algorithms for generating Normal random variables are well-known, as are the conditional

distributions of Normal vectors given some of its components. Therefore, hyper Normal

random variables are relatively straightforward to generate. Let C1, . . . ,Ck be a perfect

sequence of cliques with separators S2, . . . ,Sk. We simulate a hyper Normal random vari-
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able with distribution HNG(m,V ), by first generating the marginal value µC1 . Then for

i = 2, . . . , k, we generate the value of µCi given µSi , which is a Normal random variable

with mean mCi + VCiSiV
−1
Si

(µSi −mSi) and covariance matrix VCi − VCiSiV
−1
Si
VSiCi .

Before specifying the simulation of HIWG random variables, we first review a generative

method for the Inverse-Wishart distribution. Let D be a p × p positive definite matrix

KTK = D−1 and d > 0. It is well-known (Kshirsagar, 1959), that if L is a random

p × p lower triangular matrix with independent entries such that L2
i,i ∼ χ2

d+p−i, and for

j < i, Li,j ∼ N(0, 1), then W = (KL)(KL)T ∼W (d+ p− 1, D−1). Therefore, V = W−1 ∼

IW(d,D). Functionally, in order to invert W we first calculate its Cholesky square root,

KL, which is triangular and easy to invert. Hence, we stop shy of computing W and work

directly with KL.

Now that we understand how to simulate Inverse Wishart variables, we are ready to

discuss generating V ∼ HIWG(d,D). We employ the method of Carvalho et al. (2007).

Once again, let C1, . . . ,Ck be a perfect sequence of cliques with separators S2, . . . ,Sk and

residuals R2, . . . ,Rk. Let Ai = ∪i−1
j=1Cj \Si. We also define VRi|Si = VRi−VRiSiV

−1
Si
VSiRi

and DRi|Si = DRi − DRiSiD
−1
Si
DSiRi . We start by generating VC1 ∼ IW(d,DC1). Then

for i = 2, . . . , k we generate VCi given VSi using the following algorithm.

1. Generate VRi|Si ∼ IW(d+ |Ri|, DRi −DRiSiD
−1
Si
DSiRi).

2. Generate (VRiSiV
−1
Si

) ∼ MN(DRiSiD
−1
Si
, VRi.Si)

3. Set VRi = VRi|Si + VRiSiVSiRi .
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4. (optional) Set VRiAi = VRiSiV
−1
Si
VSiAi .

Because we shall work with hyper Markov distributions, it is enough to generate VCi for

i = 1, . . . , k. Therefore, the fourth step in the above algorithm is not necessary unless we

desire to fully specify the covariance matrix.

For the current work, we utilized the GNU Scientific Library (GSL) to generate chi-

squared and standard Normal random variables. We also used the GSL for Cholesky

factorizations. We invoked the C Basic Linear Algebra Subprograms (CBLAS) library for

many other matrix operations. A few matrix operations were coded anew when suitably

efficient routines were not available in CBLAS. For example, we were surprised to see that

CBLAS had no routine for multiplying two triangular matrices! Thus, we needed our

own routines to take advantage of the efficiency of this special class of matrices. Notably,

triangular matrices can be multiplied in place which reduces memory overhead. In fact,

we can even square a triangular matrix, ATA or AAT , in place.

6.1.4 Gibbs Sampling Algorithm

Having found the necessary conditional distributions and methods for generating the req-

uisite random variables, we are now ready to specify the Gibbs sampler. In the algorithm

below, we denote the number of unique parameter values by k, and denote the jth unique

value by (µ∗j , V
∗
j ). We denote the parameters for the ith observation by (µi, Vi) and set

j∗ = {i : (µi, Vi) = (µ∗j , V
∗
j )}. The number of observations whose parameters are (µ∗j , V

∗
j )

is nj , while n(−i)
j is the number of such observations, excluding Xi. We denote by Xj∗ the
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nj × p matrix whose rows are the observations, Xi such that i ∈ j∗. The mean matrix Mj∗

is the nj × p matrix whose rows are identically m and Qnj is the nj × nj matrix equal to

Inj + τJnjnj . Finally, n represents the total number of observations, and B is the total

number of iterations for the Gibbs sampling loop, including burn-in.

1. For i = 1, . . . , N : Set w0
i = ∂

∂Xi
HTG(Xi; d, (1 + τ), D).

2. For i = 1, . . . , N

(a) Generate Vi ∼ HIWG(d+ 1, D +XiX
T
i /(τ + 1)).

(b) Generate µi ∼
∑

HNG((τXi +m)/(τ + 1), τVi/(τ + 1)).

3. For b = 1, . . . , B:

(a) For i = 1, . . . , n:

i. For j = 1, . . . , k: Set w0 = w0
i and wi = n

(−i)
j · ∂

∂Xi
HG(Xi;µ∗j , V

∗
j ).

ii. Generate U ∼ Unif(0,
∑
wj)

iii. Set h = min
{
h : U ≤

∑h
j=1wj

}
.

iv. If h = 0, generate Vi ∼ HIWG(d+ 1, D +XiX
T
i /(τ + 1))

and µi ∼
∑

HNG((τXi +m)/(τ + 1), τVi/(τ + 1)).

v. If h > 0, set Vi = V ∗h and µi = µ∗h.

(b) For j = 1, . . . , k

i. Generate V ∗j ∼ HIWG(d+ nj , D + (Xj∗ −Mj∗)TQ−1
n∗j

(X∗j −Mj∗)

ii. Generate µ∗j ∼ HNG(τ
∑

i∈j∗ Xi +m/(njτ + 1), τV ∗j /(njτ + 1)).
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6.2 Simulation Study 1: Bivariate Gaussian Data (2 Groups)

A mixture of two bivariate Gaussian data comprised the first set of simulation studies.

Data were generated from two groups with means (−5, 0) and (5, 0) The covariance matrix

for both groups was I2, which satisfies the independence graph. There were n1 = 50

observations from the first group, and n2 = 30 from the second. Note that since both

groups were centered on the x-axis and had the same covariance matrix, data set satisfied

the independence model, E = Ø, even when collapsed across groups.

We chose to center and scale the data so that the overall data have mean 0 and variance

I2, though the individual components do not. This was a logical first step to simplify

analyses, with no knowledge of the underlying mixture. We repeated the Gibbs sampling

process several times with varying parameter values to assess how these parameters affect

inference. Table 6.1 shows the settings for each run, as well as the running time. This

does not encompass all trials, merely the ones we will discuss below. For example, we

ran several Gibbs samplers using a burn-in of only 1000 iterations, but early diagnostics

suggested longer burn-ins would be safer.

As a convergence criterion, we ran several parallel samplers and found where the mean

number of components leveled off. From Figure 6.1, we see that the mean number of compo-

nents approximately reaches its limit by 1000 iterations, though the particular limit varies

with the model parameters. It seems that 1000 may be enough iterations, but we chose a

burn-in of 5000 iterations to be safe. Contour plots of the estimated density confirm this

choice (Figure 6.2). By 5000 iterations, the posterior density is very stable. Unfortunately,
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Runs ν τ d m D n g Burn Iter Samp. Iter. Time (s)

001 - 005 1 1 2 0 I2 80 2 5k 10k 558

006 - 008 .01 1 2 0 I2 80 2 5k 10k 524

009 - 011 10 1 2 0 I2 80 2 5k 10k 644

012 - 014 1 10 2 0 I2 80 2 5k 10k 551

015 - 017 1 .1 2 0 I2 80 2 5k 10k 753

018 - 020 1 1 10 0 I2 80 2 5k 10k 570

021 - 023 1 1 50 0 I2 80 2 5k 10k 577

Table 6.1: Partial list of parameter settings and runtimes for the Gibbs sampler in the first

simulation study.

autocorrelation plots showed significant autocorrelation in the number of components for

around lags 2 to 5, depending on the parameter values. To get an approximately inde-

pendent sample, we only take every 10th observation, although side-by-side contour plots

reveal that there is little difference in the posterior density (Figure 6.3). Taking every 10th

iteration leaves only 1000 samples with which to estimate the posterior density. In order

to see if this is a large enough sample, we compared posterior density estimates from five

runs of the sampler with (ν, τ, d) = (1, 1, 2). Three of the estimates are shown in Figure 6.8

(first column). The other two estimates match those that are pictured. Seeing that all the

densities are identical, we can conclude that 1000 is an adequate sample size.
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Figure 6.1: Convergence of mixture sizes for various parameter settings in the first simu-

lation study. Not pictured: (1, 1, 50) coincides with the group for (1, 1, 10), indicating that

both models behave similarly in this regard.
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Figure 6.2: A sequence of estimates of the posterior distribution estimates in the first

simulation study indicates that the Gibbs sampler has converged by around 1000 iterations.
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Figure 6.3: Posterior density estimates in the first simulation study for (ν, τ, d) = (1, 1, 2)

for 1000 approximately independent Gibbs samples taking every tenth iteration (top); and

10000 consecutive Gibbs samples with autocorrelation (bottom). Comparison reveals that

both methods yield the same posterior.
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6.2.1 Analysis of Run Time

A primary question of interest is how quickly we can generate samples from the posterior

distribution. As we see in Table 6.1, the time required for 15,000 iterations was around

9-12 minutes, depending on the parameter values. Quite naturally, the main explanation

for the difference in run time is the average number of components. When we sample the

posterior distribution of θi|Xi, we require a weight for each component in the mixture. After

updating each θi, we then remix by updating the unique parameter values, one for each

component. These two steps comprise the vast majority of the computational complexity

within each iteration. Therefore, we expect an approximately linear relationship between

the average number of components and the runtime. Figure 6.4 reveals that this is true

in general. One significant deviation from the linear pattern are the points pertaining to

(ν, τ, d) = (1, 10, 2). The reason for this is unclear, but a good guess is that the workload

for the computer was higher during those runs.

We can analyze the linear pattern further. The line in Figure 6.4 is the ordinary least

squares regression line, which has an intercept of 415 seconds and a slope of 9.48 seconds

per component. The intercept pertains roughly to the overhead involved in the Gibbs

sampler, including reading in the data, graph, other parameters, and calculating the initial

weights. The slope, of course, is the increase in runtime when the mixtures have one more

component on average. By dividing by the total number of iterations, we approximate that

the cost of one additional component is 0.6ms for a single iteration. A simple R2 value for
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the ordinary least squares regression shows that the linear relationship accounts for over

96% of the variation in runtime.
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Figure 6.4: Runtime versus average number of components for various hyperparameters in

the first simulation study.

6.2.2 Analysis of the Number of Mixture Components

We can see how the parameter values affect the number of clusters by comparing the

posterior distribution for various settings of the hyperparameters. The analyses in this

section are based on using every 10th sample in order to minimize any correlation in the

sample.
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Figure 6.5 shows the distribution of the number of components at each iteration, with

(τ, d) fixed at (1, 2). As expected, the number of unique parameter values (and the spread)

increases with ν. This follows the theory presented by Antoniak (1974) who showed that

the number of components increases stochastically with ν. The prior expectation for the

number of components is 1.05, 4.97, and 22.4 for ν = .01, 1, and 10, respectively. The

posterior means, based on the Gibbs samples are 12.8, 15.8, and 23.3. In other words, the

posterior mean is weighted toward the prior mean for an ν around 10 to 11. We consider

inference for ν more fully in Section 6.5.

The posterior distribution for the number of components at various levels of τ is shown

in Figure 6.6. Clearly, the number of components increases with τ . The makes intuitive

sense, because large values of τ imply that the marginal T distribution for Xi is flat with

large variance. Hence, the probability of creating a new component, which is proportional

to the marginal density evaluated at Xi, is small for large τ .

In contrast to ν and τ , the hyperparameter d does not seem to have much influence on

the posterior number of components. There appears to be little difference between 2 and

10 degrees of freedom. There is even less difference when comparing 10 and 50 degrees of

freedom. The difference in the posterior mean is around .4 components, and there appears

to be a very slight decrease in the variance of the mixture sizes.

In general, we see that the number of mixture components is vastly overestimated. This

is consistent with the results of Escobar and West (1995) in the univariate case.



CHAPTER 6. NON-PARAMETRIC MIXTURES WITH THE HDP 177

6.2.3 Analysis of Posterior Densities

The hyperparameters affect the posterior distribution in logical ways. Contours of the

posterior distribution are shown in Figure 6.8 for various levels of ν, τ , and d. We consider

each of these parameters in turn. The plots in the first column are three independent runs

with ν = τ = 1 and d = 2. We shall consider this a “baseline” and compare the other

densities to them.

We can see the effect of changing ν in the first row of Figure 6.8. It is well-known that

Dirichlet processes tend to result in a small number of sharp peaks when ν is small, and

we see that in the first two plots. By contrast, in the third plot with ν = 10, the posterior

distribution is relatively flat.

The effect of different levels of τ is demonstrated in the second row. Interestingly,

the second plot is the only plot in Figure 6.8 that is unimodal. This is explained by the

very definition of τ , meaning that the distribution of group means (µ∗i s) has very little

variance. As we expected, this results in the location of each mixture component being

near m = 0. As an added note, recall that τ = .1 also led to a increased number of mixture

components. This is because none of the observations are very close to the group means

and therefore a new cluster is created for them. Therefore, the unimodal distribution for

τ = .1 is actually a large number of Gaussian components overlapping. For τ = 10, the

modes in the posterior are more peaked than the baseline τ = 1. This is a result of the

decreased number of components. As explained above, the large value of τ yields a rather

uninformative prior for µ∗i and hence small values for the marginal f(Xi). This results in
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a stronger chance of combining observations into a single components, which in turn gives

a more precise measurement of the covariance for that component.

The effect of d, shown in the first row of Figure 6.8, is straightforward. Larger degrees of

freedom for the inverse Wishart prior results in smaller determinants |Vi|. This means that

the individual Gaussian components have less variance, and therefore there is a decreased

chance that any two given components will overlap. The end result is a relatively large

number of sharp peaks compared to when d = 2.
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Figure 6.5: Posterior distribution of the number of components with (ν, τ, d) = (ν, 1, 2) in

the first simulation study.
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Figure 6.6: Posterior distribution of the number of components with (ν, τ, d) = (1, τ, 2) in

the first simulation study.
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with (ν, τ, d) = (1, 1, d). The green lines pertaining to d = 50 are occluded by the blue

lines for d = 10 because the posterior means are almost identical.
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Figure 6.8: Comparison of posterior density estimates in the first simulation study. The top

row compares models with ν varying from among {1, .01, 10} (left to right) with (τ, d) =

(1, 2). The middle row compares models with τ varying among {1, .1, 10} with (ν, d) fixed at

(1, 2). The bottom row compares models with d varying among {2, 10, 50} with ν = τ = 1.
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6.3 Simulation Study 2: Bivariate Gaussian (3 Groups)

For further analysis, we combined data from the previous study with n3 = 40 observations

from a third Gaussian component with mean µ = (0, 5) and a diagonal variance matrix

V with V11 = .5 and V22 = 1. Figure 6.9 reveals that a burn-in of 5000 iterations is still

adequate. Once again, in order to minimize autocorrelation in the estimates, we used every

10th iteration after the burn-in. This gives an effective sample size of 1000. As before, the

posterior density estimate fits the data well, with some shrinkage toward the overall center

(Figure 6.10).

In comparing the density of the number of components (Figures 6.11-6.13), we see that

the components continue to have the same effect as in the smaller simulation. Increases in

ν lead to a higher mean and larger spread in the number of mixture components, whereas

increases in τ lead to fewer mixture components and less variance. The degrees of freedom,

d, has little to no effect on the number of components.

Contour plots of the posterior density are shown in Figure 6.14. The first column shows

three independent runs with the “baseline” parameters (ν, τ, d) = (1, 1, 2). The similarity

among these three plots shows that 1000 samples is sufficient for determining the posterior.

Overall, the contours exhibit a relationship similar to this in Figure 6.8 from Simulation 1.

Briefly, as ν increases, the posterior estimate flattens, whereas the posterior has relatively

sharp peaks for ν equal to 1 or .01. Setting τ = .1 once again constrains the means to be

near zero, which leads to a large number of components but only one mode. Finally, as d
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increases, the Gaussian components are more concentrated, leading to the “island” pattern

in the bottom-right contour.

Run ν τ d m D n g Burn Iter Samp. Iter. Time (s)

101 - 105 1.00 1.0 2 0 I3 110 3 5k 10k 1410

106 - 108 0.01 1.0 2 0 I3 110 3 5k 10k 1365

109 - 111 10.00 1.0 2 0 I3 110 3 5k 10k 1452

112 - 114 1.00 10.0 2 0 I3 110 3 5k 10k 1393

115 - 117 1.00 0.1 2 0 I3 110 3 5k 10k 1585

118 - 120 1.00 1.0 10 0 I3 110 3 5k 10k 1425

121 - 123 1.00 1.0 50 0 I3 110 3 5k 10k 1541

Table 6.2: Partial list of parameter settings and runtimes for the Gibbs sampler in the

second simulation study.
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(1, 1, 50) is not shown because it coincides with (1, 1, 10).
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Figure 6.10: Contour plot of the posterior density estimation from a Gibbs sample with

(ν, τ, d) = (1, 1, 2) overlayed on the data for the second simulation study. As in the first

simulation, component means exhibit shrinking toward the overall center.
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Figure 6.11: Posterior distribution of the number of components in the second simulation

study with (ν, τ, d) = (ν, 1, 2).
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Figure 6.12: Posterior distribution of the number of components in the second simulation

study with (ν, τ, d) = (1, τ, 2).
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Figure 6.13: Posterior distribution of the number of components with (ν, τ, d) = (1, 1, d)

in the second simulation study. The green lines pertaining to d = 50 are occluded by the

blue lines for d = 10 because the posterior means are almost identical.
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Figure 6.14: Comparison of posterior density estimates in the second simulation study. The

top row compares models with ν varying from 1, .01, 10 (left to right) with (τ, d) = (1, 2).

The middle row compares models with τ varying from 1, .1, 10 with (ν, d) fixed at (1, 2).

The bottom row compares models with d varying from 2, 10, 50 with ν = τ = 1.
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6.4 Comparison of Hyper Dirichlet Mixture and Kernel Den-

sity Estimation

To assess the benefits of using a hyper Dirichlet process, we compared posterior distri-

butions from our model against kernel density estimates using an independent bivariate

Gaussian kernel. As we see in this section, Dirichlet process mixtures are similar to using

local bandwidth selection. As our goal here is simply to understand Dirichlet process mix-

tures using the terminology and parameters of kernel density estimates, we prefer to study

the behavior of kernel density esimates using various bandwidths instead of more formal

selections using cross-validation.

Figure 6.15 shows results from the first simulation study. The first three plots are

density estimates from various bandwidths and the fourth plot is the posterior density from

the hyper Dirichlet mixture model using our baseline parameters ν = τ = 1 and d = 2.

An immediate observation is that the kernel density estimate in the topleft plot fits very

poorly. This is because the bandwidth is the same in both dimensions. The observations

have been scaled to have unit variance, but the resulting structure is two very non-spherical

density components. Of course, we can fix this problem in the two-dimensional case by

choosing separate bandwidths. In the bottomleft plot, we can get a very good fit by using

a bandwidth of 0.2 for the x-axis and a bandwidth of 1 for the y-axis. For p dimensions, we

would need to determine a good bandwidth for each dimension separately, for example by

cross-validation. This process does not work well if the various components have different

variances, as in the next two simulations.
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Figure 6.16 compares kernel density estimates to they hyper Dirichlet mixture posterior

for the second simulation study. For this data, using equal bandwidths for both dimensions

works reasonably well. Here, the problem is that the components in the bottom corners are

roughly spherical, but the group at the top is more oblong. Therefore, if equal bandwidths

are chosen, the kernel density estimate yields ill-fitting circular contours for the topmost

component. This can be seen in any of the three kernel density estimates for this data.

By contrast, the hyper Dirichlet mixture fits differently shaped distributions in each of the

three areas.

The effect of components with unequal variances can be seen even more clearly in Fig-

ure 6.17. This figure shows estimates from a third simulation of 120 observations generated

with the following parameters:

i µi Vi ni

1

 −5

0


 2 0

0 4

 50
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0 1
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 .5 0

0 4

 40

As before, we scaled and centered the observations so that the overall data had mean 0

and variance I2.
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Figure 6.17 shows that the kernel density estimation simply cannot handle this type

of mixture distribution well. The fit for the group in the lowerleft corner is reasonable,

but the contours around the other two groups do not match the shape of the data. By

contrast, the hyper Dirichlet mixture fits all three groups reasonably well. Of particular

note is that the mixture model identified the small variance of the lowerright group, which

is indicated by the relative proximity of successive contours compared to contours for the

other groups.

The wisdom of Escobar and West (1995) seems to provide a good clue about the

relationship between the kernel density estimate and a Dirichlet mixture. They state that

in restricted Dirichlet mixtures, for which each group has variance Vi = V , the choice of τ

relates to the choice of window-widths in traditional kernel density estimation. Logically,

it follows that by allowing Vi to vary by component, we are essentially working with local

bandwidth selection. This concept is illustrated nicely by our analysis of the second and

especially the third simulation studies. The posterior estimate from the hyper Dirichlet

mixture allows the spread of the Gaussian components to vary throughout the range of the

observations. Of course, it is theoretically possible to calculate kernel density estimates

with local bandwidths, but this is increasingly more complex as the dimension increases.

By contrast, the hyper Dirichlet mixture that we have presented worked reasonably well

with a HIW (2, I2) prior for the component covariance matrices.
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Figure 6.15: Data from Simulation 1 - Bivariate kernel density estimation with bandwidths

of (.3, .3) (topleft); (.5, 1) (topright); and (.2, 1) (bottomleft). On the bottomright is the

posterior distribution from the hyper Dirichlet mixture model with (ν, τ, d) = (1, 1, 2).
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Figure 6.16: Data from Simulation 2 - Bivariate kernel density estimation with bandwidths

of (.5, .5) (topleft); (.2, .2) (topright); and (.1, .1) (bottomleft). On the bottomright is the

posterior distribution from the hyper Dirichlet mixture model with (ν, τ, d) = (1, 1, 2).
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Figure 6.17: Data from Simulation 3 - Bivariate kernel density estimation with bandwidths

of (.5, .5) (topleft); (.2, .2) (topright); and (.1, .1) (bottomleft). On the bottomright is the

posterior distribution from the hyper Dirichlet mixture model with (ν, τ, d) = (1, 1, 2).
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6.5 Inference for ν and τ

Sections 6.2 and 6.3 show some insight into how the hyperparameters affect inference. In

particular, we saw that changing ν and τ induced differing numbers of components in

the posterior as well as changes in the actual shape of the density. Therefore, we may

desire to let these parameters vary by specifying a prior distribution. The inverse-Gamma

distribution is a conjugate prior for τ ; Escobar and West (1995) provide a clever method

for updating ν when it is given a Gamma prior.

Of course, we could also consider setting priors for the other parameters, d,m, and D.

For our purposes, we will not pursue this. Regarding the degrees of freedom parameter,

d, we noted that it had very little effect on the number of mixture components. We also

saw in Figures 6.8 and 6.14 that large values of d lead to very tight Gaussian components

that seem to overfit the data in the simulation studies. Therefore, it is best to choose a

small value for d > 0 and the results seem to be fairly stable unless we choose large d.

Regarding m and D, we simply choose to center and scale the data, then set m to the

zero vector and D to the identity matrix. For our simulations, the component groups are

roughly equidistant and of similar size. Thus, the overall mean is close to the average of

the group means. In more general settings, we could use a conjugate Normal prior for m,

but we eschewed this addition in favor of simplicity. For the same reason, we decided not

to introduce a prior for D. As noted in the comparison with the kernel density estimates,

one of the benefits of the hyper Dirichlet mixture is a sort of automatic local bandwidth

selection. In other words, the choice of D = I seems to do reasonably well in our studies.
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Suppose τ ∼ IG(w,W ) and that the data ( ~X), group means (~µ∗), group covariance

matrices (~V ∗), group assignments (~t) and all the other parameters (ν,m, d,D) are given.

Let n be the number of observations and k the number of unique parameter values.

f( ~X, ~µ∗, ~V ∗, τ |ν,~t,m, d,D,w,W )

=
n∏
i=1

dHNG(Xi;µ∗ti , V
∗
ti )

k∏
i=1

dHNG(µ∗i ;m, τV
∗
i ) (6.62)

= ×
k∏
i=1

dHIWG(V ∗i ; d,D)dIG(τ ;w,W ),

whence we see that τ |(w,W,m, ~V ∗) is conditionally independent of everything else. Fur-

thermore,

f(τ |~µ∗, ~V ∗, w,W )

∝ τ−|V|k/2 exp

{
−

(
1
2

k∑
i=1

(µ∗i −m)T (V ∗)−1
i (µ∗i −m)

)
τ−1

}
(6.63)

×τ−(w+1) exp{−W/τ}

Therefore, the posterior distribution of τ is Inverse-Gamma with shape |V|k/2 + w and

inverse-scale equal to 1
2R+W , where R =

∑k
i=1(µ∗i −m)T (V ∗)−1

i (µ∗i −m).

We next present the scheme for updating ν, which is due to Escobar and West (1995).

Recall that ν implies an indirect prior for k, the number of distinct parameter values. From

Antoniak (1974), we know that the prior distribution of k follows
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p(k|ν, n) = cn(k)n!νk
Γ(ν)

Γ(ν + n)
, (6.64)

where cn(k) = p(k|ν = 1, n). Note that

Γ(ν)
Γ(ν + n)

=
Γ(ν)Γ(ν + n+ 1)B(ν + 1, n)

Γ(ν + n)Γ(ν + 1)Γ(n)
, (6.65)

where B(a, b) =
∫ 1

0 x
a−1(1 − x)b−1 = Γ(a)Γ(b)/Γ(a + b) is the beta function. Using the

identity Γ(a+ 1) = aΓ(a), the left hand side reduces to (ν + n)B(ν + 1, n)/(νΓ(n)). Thus,

given a prior f(ν) for ν, we see that

f(ν|k, n) ∝ f(ν)νk−1(ν + n)
∫ 1

0
xν(1− x)n−1dx, (6.66)

where we have used the integral form of the beta function.

As Escobar and West (1995) point out, Equation 6.66 implies that the posterior dis-

tribution of ν can be calculated as the marginal from a joint distribution for ν > 0 and

0 < η < 1 where f(ν, η) = f(ν)νk−1(ν + n)ην(1− η)n−1. From the form of Equation 6.66

we see that f(η|ν, k, n) ∝ ην(1−η)n−1, which is the Beta(ν+1, n) distribution as described

in Chapter 3. Furthermore, under a Gamma(a, b) prior for ν, we see that

f(ν|η, k, n) ∝ νa−1e−bν(ν + n)νk−1ην (6.67)

∝ νa+k−1e−(b−log(η))ν + nνa+k−2e−(b−log(η))ν . (6.68)
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Equation 6.68 is clearly a mixture of two Gamma distributions. We simply need to fill in

the appropriate normalization constants to find the mixing weights. This leads to

f(ν|η, k, n) ∝ Γ(a+ k)
(b− log(η))ν+k

· dG(ν; a+ k, b− log(η))

+
Γ(a+ k − 1)

(b− log(η))ν+k−1
· dG(ν; a+ k − 1, b− log(η)). (6.69)

The methods outlined in this section provide a simple method to extend our Gibbs

sampler to include inference for τ and ν. We simply need to include an extra step at the

end of each iteration in which we sample values for τ and ν from their respective condi-

tional distributions. For τ , this is as simple as generating τ−1 from its conditional Gamma

distribution given the unique parameter values and m. Sampling ν is marginally more com-

plicated and requires a few extra steps. We first generate a random η from its conditional

Beta distribution given ν and k. Secondly, we generate U from the uniform distribution on

(0, 1). If U ≤ Γ(a+ k)/(b− log(η)), then we generate ν from the Gamma(a+ k, b− log(η))

distribution; otherwise, we generate ν from the Gamma(a+ k− 1, b− log(η)) distribution.

After making this change to our Gibbs sampler, we can estimate the posterior distributions

of τ and ν as normal using values from the Gibbs sampler after it has converged.

A simple way to detect convergence is to see when some of the summary statistics reach

their limit. Figure 6.18 shows the mean number of components, the sample average of τ ,

and the sample average of ν plotted against the iteration number for all three simulations.

It is immediately obvious from these plots that the variance in the number of components

is large compared to our previous analyses with ν and τ fixed. This is not surprising, but
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we see that a much longer burn-in is required. For all of the measures and all simulations,

a burn-in of 10000 seems adequate, and we used 15000 to be conservative. As before,

autocorrelation plots revealed significant correlation as far as lag 5 or 6. A second series

of plots showed that taking every 10th iteration is sufficient to get independent samples.

As Figure 6.19 reveals, the posterior estimate from this model fits the observed data

quite well. In contrast to the earlier studies, there is little to no shrinkage toward the

overall center. Each row of this figure pertains to one of the three simulated data sets.

By comparing the plots in each row, we get a sense of whether or not the Gibbs sample

is large enough. In particular, there are some small differences in the first and third row,

which suggests that a slightly larger number of iterations would be useful. Histograms of

sample draws for the mixture size, ν, and τ agree with this assessment.

Figures 6.20-6.22 show the estimated posterior distributions for the mixture size, ν, and

τ . These are combined estimates using three runs of the Gibbs sampler for each simulation,

so the effective sample size is 3000. The histograms reveal interactions between the various

statistics. Notably, Simulation 2 contains fewer mixture components that either Simulation

1 or 3. This is odd at first glance because there are actually 50% more observations in

Simulation 2, relative to Simulation 1. This is due to the fact that the within group variance

is smaller relative to the between group variance in Simulation 2. In any case, this allows

us to see an interesting interaction between the three statistics. We note that the smaller

number of mixture components in Simulation 2 is paired with smaller estimates for the

precision ν. This is to be expected since k increases stochastically with ν. Less obvious,

though still somewhat intuitive, is that the standard error for estimating τ is large for
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Simulation 2 compared to the other two simulations. With fewer unique parameter values,

there is less information about τ . We also note that the estimates for τ are smallest

in Simulation 3. This is to be expected since the three Gaussian components are more

proximate than in Simulations 1 and 2. Hence, the variance for the unique µ∗i is smaller.

Finally, we note one more feature of the histograms. Namely, the posterior density of

mixture size and τ are very similar between Simulations 1 and 3. This is odd since the

two distributions are quite different. In fact, Simulation 3 is a lot closer to Simulation

2 in most, if not all, respects. For example, we compared sample variances for all three

simulations, but the variances in Simulation 2 and 3 were very similar and different than

the variance in Simulation 1. It seems therefore, that this similarity is mere coincidence,

but it is not certain.
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Figure 6.18: Converge of mixture sizes, ν, and τ for all three simulation studies with a

prior for ν and τ .
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Figure 6.19: Comparison of posterior density estimates for independent Gibbs samples

with a prior for ν and τ for Simulation studies 1 (top) to 3 (bottom).
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Figure 6.20: Posterior density of mixture sizes with a prior for ν and τ in Simulation 1

(topright), Simulation 2 (bottomleft), and Simulation 3 (bottomright).
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Figure 6.21: Posterior density of ν with a prior for ν and τ in Simulation 1 (topright),

Simulation 2 (bottomleft), and Simulation 3 (bottomright).
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(topright), Simulation 2 (bottomleft), and Simulation 3 (bottomright).
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Chapter 7

Model Selection with Graphical

Dirichlet Processes

We now show how to use a graphical Dirichlet Process to choose among competing models.

Specifically, we will compare graphical Dirichlet process mixtures whose components are

hyper Markov models with respect to various graphical models. In the Bayesian paradigm,

we may choose the model with the highest posterior probability. Alternatively, we may

select a set of competing models with similar posterior probabilities, either to establish a

credible set for the model or to narrow the choice of models from which to choose using

other criteria (e.g. parsimony). We shall see that choosing a good model is much easier

than actually fitting a model. This is due to Theorem 4.5.3, which states that the parameter

distribution is Markov given the cluster assignments (and a graph). In the terminology

of the Chinese restaurant process, the distribution of the parameters (dishes) satisfies
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the conditional independence once we account for each patron’s table choice. Therefore,

posterior calculations can be made rather easily by a Monte Carlo method in which we

randomize table assignments, which allows us to compute the marginal distribution for

each table analytically in the case of conjugate models. The benefit to this approach is

that the graphical Dirichlet process allows us to fit a graphical model which takes into

account a latent class variable with an unspecified number of levels. In this chapter, we

focus on the Mode-Oriented Stochastic Search (Dobra and Massam, 2009) to select a graph

for the graphical Dirichlet mixture model. We could also consider other stochastic searches

such as the shotgun stochastic search of Jones et al. (2005) and Hans et al. (2007) or the

MC3 algorithm of Madigan and York (1995).

7.1 Monte Carlo Estimation of the Marginal Likelihood

Denote the set of competing models by G , where G ∈ G is a decomposable graphical model.

In the absence of expert information, we may choose to use an uninformative prior. For a

set of variables, |V |, there are
(|V |
k

)
possible k-way interactions. As a result, |G | is bounded

by above by
∑|V |

k=1

(|V |
k

)
, so the prior p(G) = |G |−1 is both proper and uninformative. On

the other hand, if expert information is available, a more complicated prior may be used.

For example, we may choose to put more prior weight on parsimonious models.

To calculate the posterior probability of G ∈ G , we simply weigh the data likelihood

given G by the prior probability of G. All that is required is a method for calculating f( ~X|G).

Note that here, and throughout this chapter, we treat any parameters that describe the
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distribution of ~X as nuisance parameters. For example, if the distribution of ~X given G is a

non-parametric graphical Dirichlet mixture of Gaussians as in Chapter 6, then we wish to

integrate out the parameters ~µ and ~V as well as the random Dirichlet process measure P .

If needed, we can use the methods of Chapter 6 to find posterior densities for parameters

once we have narrowed down the candidate models to a more manageable size.

As a consequence of a Dirichlet process prior, it is difficult to integrate out the nuisance

parameters analytically. On the other hand, the difficulty of an analytical solution lies

in accounting for the unknown cluster assignments. This is to say that if the cluster

assignments were known, then the marginal calculation may be carried out in the same

way as any other Bayesian hierarchical model within each component. In the particular

case of a conjugate model, we can calculate the marginal distribution of the data using a

straightforward Monte Carlo integral. Alternatively, we could consider a more complicated

Markov chain Monte Carlo estimation when the model is not conjugate.

For a particular graph, we have the following hierarchical model:

P |G ∼ DP (ν,HG)

θi ∼ P

Xi|θi ∼ F (Xi|θi),

where the base measure on HG is hyper Markov with respect to the graphical model G.

Here we have made explicit the conditioning on G. It is not necessary for P to be hyper

Markov; a graphical Dirichlet process suffices. We prefer to use a graphical model in this
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chapter for simplicity. In particular, we need do not need a separate Dirichlet process for

each connected component as is required for a hyper Dirichlet process.

Using P to denote the support of P , the marginal likelihood for X1, . . . , Xn is

f( ~X|G) =
∫

Θn

∫
P
f( ~X, ~θ, P |G)dPd~θ (7.1)

=
∫

Θn

∫
P
f( ~X|~θ,G)f(~θ, P |G)dPd~θ, (7.2)

where we use the fact that ~X given ~θ is conditionally independent of P . We note that

f(P |G) is a Dirichlet Process, and ~θ|P,G is a random sample of the random distribution

P . Therefore, random deviates from the marginal f(~θ|G) can be simulated using a Chinese

restaurant process. This bypasses the need to generate P , so we can integrate it out of the

previous equation. The marginal for ~X is now

f( ~X|G) =
∫

Θn
f( ~X|~θ)f(~θ|G)d~θ (7.3)

= E~θ(f( ~X|~θ), (7.4)

where the expectation is with respect to the conditional distribution f(~θ|G). In this form,

the Monte Carlo integration is evident. To approximate the marginal for ~X given G,

we generate a random sample of ~θ from independent Chinese restaurant processes, then

evaluate the sample average of f( ~X|~θ).

The estimation can be improved in some cases by considering the form of ~θ in more

detail. Recall that there is positive probability that some values of θi coincide. Let ~θ∗ =
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(θ∗1, . . . , θ
∗
k) be the vector of unique θis and define ~t = (t1, . . . tn) where ti = j if θi = θ∗j . In

other words we are rewriting the vector of parameters in terms of the k clusters and the

cluster assignments for each xi.

f( ~X|~θ) = f( ~X|~θ∗,~t). (7.5)

In place of Equation 7.3, we write

f( ~X|G) =
∫
T

∫
Θn

∏
j=1

f( ~X|~θ∗,~t)f(~θ∗,~t)d~θ∗d~t, (7.6)

where T is the set of all possible cluster assignments.

The importance of this specification, is that ~t and ~θ∗ are easy to specify using the

Chinese restaurant process. ~t is the seating arrangements from the process, which depends

only on ν; ~θ∗|~t is a simple random sample from HG . Therefore, we may compute the integral

over Θ separately for each θ∗j . Denote the subset of observations with table assignment j

by Xj∗

f( ~X|G) =
∫
T

k∏
j=1

(∫
Θ
f(Xj∗ |θ∗j ,~t,G)f(θ∗j |~t)dθ∗j

)
f(~t)d~t, (7.7)

where f(θ∗j |~t) = dHG(θ∗j ), and f(~t) is the distribution of table assignments induced by the

Chinese restaurant process.

Consider the innermost integral of Equation 7.7,
∫

Θ f(Xj∗ |θ∗j ,~t)f(θ∗j |~t). This integral

is the calculation for the marginal data likelihood of a sample in a Bayesian graphical
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model sans clustering. Therefore, we can compute the integral (i.e. f(X(j)|~t,G)) using

procedures that are already well-known. For example, in conjugate cases, we may compute

this integral analytically. We calculate this density once for each component, then the full

integral, which equals f( ~X|~t,G), is simply the product of these component densities. After

integrating out the unique parameters, we see

f( ~X|G) =
∫
T
f( ~X|~t,G)d~t = E[f( ~X|~t)], (7.8)

with expectation relative to f(~t). Antoniak (1974) specified the distribution of f(~t), but it is

difficult to integrate analytically. Fortunately, it is easy to generate random deviates using

the Chinese restaurant process. In other words, we can approximate f( ~X|G) by randomly

generating the cluster assignments, ~t, and averaging the sample values of f( ~X|~t,G). This

is specified in the next algorithm.

Algorithm 7.1.1. Monte Carlo Estimate of Data Distribution

Set f ← 0.

For b = 1, . . . , B:

1. Set t1 ← k ← 1.

2. For i = 2, . . . , n:

(a) Generate U ∼ Unif(0, ν + i− 1).

(b) If U > i− 1 then set ti ← k ← k + 1,

otherwise set ti ← j, where
∑j−1

l=1 < U ≤
∑j

l=1.
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3. Set fb ← 1.

4. For j = 1, . . . , k:

(a) Set f → f · f(X(j)|G), where X(j) is the subset of data such that ti = j and

f(X(i)|G) is its marginal density for the non-mixture graphical model.

5. Set f ← f + fb.

Approximate f( ~X|G) by f/B.

Note that the only step in Algorithm 7.1.1 that depends on the specific model is the

calculation of f(X(j)|G). Furthermore, this is one of the rudimentary calculations that

Bayesians work with routinely. In particular, we have noted that we may compute this

marginal easily for conjugate models. In more complex settings, this step may be a nu-

merical integration or possibly a full Markov chain Monte Carlo integral. As examples of

the algorithm, we compute this density for a graphical Dirichlet mixture of Gaussians, as

well as a graphical Dirichlet mixture of multinomials.

7.1.1 Covariance Selection with a Dirichlet Mixture of Gaussians

Let G be a given decomposable graphical model. Recall that a graphical Dirichlet mixture

of Gaussians, is a hierarchical model following the form:
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P |G ∼ DP (ν,HG)

µi, Vi|P ∼ P

Xi|µi, Vi ∼ HNG(µi, Vi)

where the subscript G denotes a measure that is (hyper) Markov with respect to G, HG is a

HNG×HIWG base measure, and HNG(µi, Vi) is the hyper Normal distribution with mean

µi and covariance matrix Vi. Momentarily, we consider the smaller problem in which there

exists a random sample X1, . . . , Xn|G, µ, V ∼ HNG(µ, V ), where V |G ∼ HIWG(d,D) and

µ|G, V ∼ HNG(m, τV ). The matrix X is the n× p matrix whose ith row is Xi. We showed

in Section 6.1.2 that the marginal distribution of f( ~X|G) is a hyper matrix T distribution.

f(X1, . . . , Xn|G)

=
∏

A∈C \S

π−n|A|/2
Γ|A|((d+ n+ |A| − 1)/2)

Γ|A|((d+ |A| − 1)/2)
· |Q|

−|A|/2|DA|(d+|A|−1)/2

|DA + SA|−(d+|A|+p−1)/2
, (7.9)

where Q = In + τJnn, and SA = (XA −MA)TQ−1(XA −MA) is a p× p matrix.

Given a vector of cluster labels (~t), let t(i) = {j : tj = i} be the set of observations

from the ith cluster. We will use ni = |t(i)| to denote the number of observations from this

component. Let X(i) be the ni × p matrix with rows equal to Xj for j ∈ t(i) and let M(i)

be the ni × p whose rows are each ~m. We can compute the overall density of the data by

using Equation 7.9 within each cluster.
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f(X1, . . . , Xn|~t,G)

=
k∏
i=1

∏
A∈C \S

π−nip/2
Γp((d+ ni + p− 1)/2)

Γp((d+ p− 1)/2)
|Qi|−p/2|D|(d+p−1)/2|D + Si|−(d+ni+p−1)/2,(7.10)

where Q(i) = Ini + τJnini and S
(i)
A = (X(i)

A −M(i)
A )T (Q(i))−1(X(i)

A −M(i)
A ). As noted

previously, this is enough to specify Algorithm 7.1.1 and numerically compute f( ~X|G).

7.1.2 Conditional Independence for Contingency Tables

Suppose that we have data that are cell counts from an n-way contingency table. A simple

way to model this data would be to specify a multinomial model with a Dirichlet prior for

cell probabilities. Alternatively, we could specify a mixture of multinomial models with

k components. This would correspond to a latent variable having k levels that defines k

clusters for the observations and a separate multinomial model within each cluster. As a

further modification, we could model the counts using a Dirichlet mixture of multinomial

models. This represents a similar mixture model, but one for which the latent variable has

an unknown finite number of levels that may increase as more data are observed. Finally,

as we discuss in this section, we may consider a graphical Dirichlet mixture. The interpre-

tation is that some decomposable graphical model describes the conditional independence

structure within the clusters. In other words, the various marginal values satisfy certain

independence relations given the value of the latent variable.

Let HG be a hyper Markov base measure over the (p − 1)-dimensional simplex. Sup-

pose θ1, . . . , θn is a sample from the random measure P , where P is a graphical Dirichlet
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process with law DP (νHG). Let Xi|θi be a multinomial draw with θi being the vector

of probabilities. This is a graphical Dirichlet process mixture of multinomials, which we

express mathematically by

P |G ∼ DP (ν,HG)

θi|P ∼ P

xi|θi ∼ Mult(θi)

For our base measure HG , we choose to use the hyper Dirichlet law described by Dawid

and Lauritzen (1993), which is conjugate to multinomial sampling. As in the Gaussian case,

we wish to approximate the marginal data likelihood given G with all parameters integrated

out. Once again, we begin by considering the simpler problem without clustering.

Let X1, . . . , Xn be multinomial observations with probability vector θ, where θ ∼

HDG(λ), and λ is an arbitrary table of positive numbers. Given G, it is sufficient to specify

the marginal tables λC for each clique C ∈ C . Dawid and Lauritzen show that a suffi-

cient statistic for θ is the set of clique marginal tables, {XC}, and that the clique-specific

posterior distribution of θC| ~X is Dir(λC + XC). The overall law for θ| ~X is the unique

hyper Markov combination of the clique posteriors, which Dawid and Lauritzen (1993) call

a hyper Dirichlet distribution. The authors also show that the marginal distribution for

XC|G, with θ integrated out is:

f(XC|G) ∼
(

Γ(
∑p

i=1 λi)
Γ(n+

∑p
i=1 λi)

) p∏
i=1

(
Γ(λi + niC)

Γ(λi)

)
. (7.11)
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Returning to the larger setting of graphical Dirichlet mixtures, suppose we have a vector

of cluster assignments, which we denote by ~t. Within each cluster, the marginal distribution

of the data follows Equation 7.11. Hence, we can analytically calculate f(X|G,~t).

7.1.3 Efficiency of Monte Carlo Integration for 2-Way Tables

Calculations for 2p-way contingency tables are very efficient if we take advantage of the

binary nature of computers. Specifically, computer programmers keep track of several

Boolean (i.e.- binary) variables through the use of flags and masks. Perhaps the best known

example of this practice is the file permission flag system. In this system, the ability to

execute a file is given a value of 1, whereas write permission is 2 and read permission is 4.

These file settings are generally known as flags. It is clear that given a sum between 0 and

7, the values of all three flags are uniquely identified.

In general, we need only n bits to specify n Boolean variables. Thus a single byte stores

up to 8 flags. For 2p-way contingency tables, we simply need to treat each value as “on”

or “off”, and we can take advantage of this type of flag system. Taking a page out of the

computer scientist’s book, we treat an observation as a set of p flags, rather than a vector

of p distinct values. This is why such tables are incredibly efficient with respect to memory.

For the price of a single 4-byte integer, we can specify an observation’s cell in a 232-way

table.

Besides being memory efficient, 2n-way tables are also quite fast due to a method known

as masking. C++and similarly low-level programming languages have an operator called
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the bitwise-AND operator (denoted &). Given two bit strings, say 1100 and 1010, the

result of the bitwise-AND operation is a third string whose ith bit is 1 if and only if the

ith bit of both arguments is 1. Thus, 1100 & 1010 = 1000. This operation turns out to

be very useful for calculating a marginal value in a 2n-way table. For example, suppose

an observation occurs in the cell identified by the string 00110001. In other words, the

first, fifth and sixth binary variables are “on”, while the second, third, fourth, seventh and

eighth variables are “off”. To find the appropriate cell in some marginal table, we can use

a special bit string called a mask. For example, consider the marginal table identified by

the the 3rd and 5th variables. In this case, we only care about the third and fifth bits, so

we use a mask (in this case 00010100) and the bitwise AND operation:

00110001 & 00010100 = 00010000, (7.12)

so we see that the fifth variable is “on” and the third variable is “off”. We can see if two

observations share a cell in the marginal table by comparing the results of this operation.

For example,

00110001 & 00010100 = 00010000 = 00010001 & 00010100, (7.13)

so 00110001 and 00010001 share the same cell in the marginal table, but 0011001 and

00010100 are in different cells. Essentially, we have zeroed out all the bits that don’t

matter. We then compare the resulting value, which depends only on the values of the 3rd

and 5th variables. This is exactly what we require for a marginal table comparison.
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We could go into much more detail about how the bitwise-AND and other bitwise

operations increase the speed our calculations. Suffice it to say that bitwise operations are

very efficient in compiled code. Therefore, there is a big advantage to thinking about our

data from this unusual (for us statisticians) angle.

7.2 The Mode Oriented Stochastic Search

We now know how to score a graphical model, but we still need a way of searching through

the enormous space of decomposable graphs to find the best one - or at least a very

good one. The algorithm we chose to implement is the Mode Oriented Stochastic Search

(MOSS) presented by Dobra and Massam (2009). The basic premise of this search is to

explore models by scoring not just the graph, but also all of its neighbors. If a neighbor

scores well, relative to the best model found so far, then we add it to the list of models we

wish to explore. The overarching goal of the search is to find all graphs whose posterior

probability is above a given threshold set relative to the posterior mode. As a practical

matter, this strategy requires two threshold values. The lower threshold enables the search

to escape local maxima by traveling through nearby bad models as long as they are not

too bad. These moderately bad models are saved temporarily, but are discarded after each

move with probability q. The MOSS procedure is specified by the next algorithm.

Algorithm 7.2.1 (MOSS( q, c, c∗ )).

1. Initialize a starting set of models S .
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2. For each graph G ∈ S , find the posterior probability G( ~X) and mark the graph

“unexplored”.

3. Set S ← max{f(G| ~X)|G ∈ S }.

4. While any unexplored models exist:

(a) Let L ⊆ S be the set of unexplored graphs.

(b) Choose a random graph G from L with probabilities proportional to f(G| ~X).

(c) For each neighbor G∗ of G:

i. Calculate f(G∗| ~X).

ii. If f(G∗| ~X) ≥ c∗S, then mark G∗ “unexplored” and add it to S .

iii. If f(G∗| ~X) > S, then set S ← f(G∗| ~X) and remove from S all models G

such that f(G| ~X) ≤ c∗S.

(d) With probability q, remove from S all G such that f(G| ~X) ≤ cS.

5. Remove from S all G such that f(G| ~X) ≤ cS.

7.2.1 Comparing Graphs for Equality

As part of the MOSS procedure, we need to be able to test graphs for equality. We do

not want to insert a second copy of the same graph into our set of models, and in fact

we do not want to waste time scoring the model again. We would like to make these

comparisons efficiently, but we are not aware of any simple summary statistics that can

uniquely identify a decomposable graph. Fortunately, we can greatly increase the speed of
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these comparisons even with a non-unique identifier. What we really require is a statistic

that is easily computed, easily compared, and as “unique as possible”. Our solution to

this problem is to score the edge i ∼ j by (i + 1)(j + 1). We add 1 since the internal

representation of nodes runs from 0 to |V| − 1, which implies that i · j = 0 for any edge

with 0 as an endpoint. The ID code for a graph is simply the total value of all of its edges.

For example, the null graph would have an ID code equal to 0, whereas the graph [012][123]

would have an ID code of 25. Note that this ID may be slow to compute for larger graphs,

but this is of limited importance. Each new graph differs from an old graph by exactly one

edge, so we may compute its ID by adding or subtracting a single edge value.

If two graphs have different IDs, then they are obviously different. On the other hand,

if two graphs have the same ID, we must resort to a clique-by-clique comparison because

equality of IDs does not imply equality of graphs. We believe that the equivalence classes

of IDs is quite small, so most inequalities can be decided quickly, but this is an exercise

in number theory we have not investigated. At any rate, the non-unique ID method is

certainly faster than a clique-wise comparison for every pair of graphs.

7.2.2 Visualizing Results

Recall that MOSS returns all models that score above some cut-off that is set relative to

the best graph discovered. It is useful to have a way to summarize this information. We

weight the set of models returned by MOSS by their posterior probabilities. The weight

for an edge is simply the sum of weights for all graphs that contain the edge. Dobra and

Massam (2009) summarize these graphs using the “median model” which is the model
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containing all edges that have a weight of 0.5 or higher. Alternatively, the information can

be visualized very nicely for graphical models that are not too large. We do so by using a

typical graph display, but the color and thickness of each edge is proportional to its weight.

For example, an edge with weight 1 is a relatively thick black line. For an edge with weight

.5, the edge is a 50% gray-scale line that is half as thick. As the weight approaches 0, the

line becomes lighter and thinner. The overall effect is that edges that have low probability

are gossamer, but edges with high weight are very vivid. Additionally, we use broken lines

for weights under .5 and solid lines for weights that are at least .5. This enables us to

quickly read the median model from the weighted graph.

7.3 Simulation Studies for Multinomial Mixtures

We concentrate our analysis on the graphical Dirichlet mixture of multinomials, because

this model is much more efficient than the Gaussian mixture model with the aid of bitwise

operations. We tested the MOSS procedure for graphical Dirichlet mixtures of multinomial

data by examining simulations of various sizes from various mixtures of decomposable

graphical models. In this setting, the data form a contingency table of observations. Each

Xi is taken to be a vector (Xi1, . . . , Xip). For simplicity and efficiency, each Xij was a

binary decision. As discussed in Section 7.1.3, we represent Xi by
∑p

j=1Xij2j−1, which is

easily seen to be an invertible mapping of the vector representation.

Models for our simulation study included a 5-star graph, [01][02][03][04][05], in which

the Xi’s are independent given X1; an autocorrelation graph, [01][12][23][34]; and three
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other graphs: [01][02][34], [0][12][34], [012][34]. The last three graphs are very similar, and

are an interesting test to see how the procedure differentiates them.

Each data set consisted of a mixture of three components. Marginal probabilities varied

by component, but were equal for all Xij within a given component. Likewise, the degree of

correlation varied by component. For consistency, model parameters were held as constant

as possible between the simulations. The general model was:

Xij = αg + βg
∑
{k:j∼k}

Xik, (7.14)

where αg is the marginal probability for the gth component and βg controls the degree of

correlation between neighbors on the graph. The parameters were set as in Table 7.1, and

we generated data sets of size 250, 1250, and 2500.

g αg βg n
(1)
g n

(2)
g n

(3)
g

1 0.4 0.2 100 500 1000

2 0.5 0.25 80 400 800

3 0.6 0.2 70 350 700

Table 7.1: Model parameters for the first three multinomial mixture simulation studies.

n
(i)
g is the group size for the ith simulation.

Each of our graphs have p = 5 nodes, and hence the data form a contingency table

with 25 = 32 cells. The model has only two hyper parameters: ~λ and ν. ~λ is the parameter

of the Dirichlet base measure, and ν is the precision of the Dirichlet process prior over
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Dirichlet laws. To signify lack of prior knowledge, we use a flat Dirichlet base measure,

λi = λ/32 for all 32 cells. Continuing to be non-informative, we choose λ to be small.

Initial analyses showed that for around λ = 1, spurious edges would appear in the

mean graph. This is explained by the clustering property of the Dirichlet process. Setting

λi = 1/32 quite naturally corresponds to a prior count of 1/32 observations in each cell,

per cluster. To counter this, we proceeded to use λi = 1/3200, so that the prior would not

unduly favor more heavily connected graphs.

Figures 7.1 and 7.2 show the median graphs selected by the MOSS procedure. The

graphs depicted are for the smallest simulation (N = 250). Results did not vary between

the different sample sizes. In most cases, the MOSS procedure with a graphical Dirichlet

mixture model detects the correct graph. The only problem is for the graph [012][34],

which did not find the edge between nodes 1 and 2. The reason for this is unclear.
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Figure 7.1: Fitted model (left) and true model (right) for star graph (top) and autocorre-

lation graph (bottom).
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Figure 7.2: Fitted model (left) and truth (right) for graphs [123][45] (top), [1][23][45]

(middle), and [12][13][45] (bottom).
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7.3.1 Comparison to Non-Mixing Model

We were concerned that if the data arose from a non-mixture distribution, the Dirichlet

process might find spurious interactions due to its clustering effect. To resolve this issue,

we simulated data from the 5 graphs discussed above, but used parameter values for only

one group, which results in non-mixture data. In all cases, the MOSS procedure chose the

correct model, indicating that the graphical Dirichlet mixture model works at least as well

as the simple Bayesian hierarchical model when the data do not come from a mixture.

We were also curious how well the simple Bayesian model sans Dirichlet process mixing

would fit the mixture data from the previous simulations. As it turns out, the MOSS

procedure with the simple model also tended to choose the correct graph. A likely expla-

nation is that the various mixture components were not sufficiently different and so did

not add or remove interactions when the data are collapsed across the latent variable. It is

important to note that with model selection, we are not trying to find a good distribution

for the observed data; we seek simply to enumerate the interactions. Because of this, the

simple model can determine the correct graph unless collapsing across mixture components

induces edges (positively or negatively). It is easy to see that cases do exist. We present

one example now.

Suppose that Z is a latent variable taking levels 1 with probability w and 2 with

probability 1 − w. Let X1, X2, X3 be binary random variables such that X2 and X3 are

conditionally independent and identically distribution given Z, with a distribution specified

by the following table:
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Z = 1 Z = 2

P(X1 = 1) 0.5 0.5

P(X2 = 1),P(X3 = 1) 0.6 0.4

P(X2 = 1|X1 = 1),P(X3 = 1|X1 = 1) 0.3 0.7

P(X2 = 1|X1 = 0),P(X3 = 1|X1 = 0) 0.9 0.1

Summed across both levels of the latent Z,

P(X3|X1, X2) =
.045w + .245(1− w)
.15w + .35(1− w)

, (7.15)

and

P(X3|X1) =
.15w + .35(1− w)

.5
, (7.16)

whence we see that X2 6 ⊥⊥ X3 in the overall mixture distribution.

We simulated more binary data according to this distribution. The resulting graphs

selected by the MOSS procedure are shown in Figure 7.3. In the first set of data, there

were 1250 observations in each group, implying w = .5. In a second simulation, there were

2000 observations from group 1 and 500 observations from group 2, implying that w = .8.

As expected, the simple Bayesian model is unable to detect the presence of the latent

variable mixing in either case. More interesting is that the graphical Dirichlet mixture

worked, but only sometimes. In the balanced data, the MOSS procedure with graphical

Dirichlet mixing detected that no three-way interaction term is present, but the wrong
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two-way interactions are concluded. This is probably because the Monte Carlo approach

randomizes cluster assignments based on the prior distribution. As such, a given cluster is

actually slightly more likely to contain observations from both groups instead of only one

group. In other words, a given cluster may not be fit well by the true graph because the

clusters may be composed of data from multiple component distributions. Thus, there is a

need for an improved method for assigning clusters. A possibility is to randomly generate

the number of clusters based on the distribution presented by Antoniak (1974), then choose

the cluster assignments conditional on this and the observed data. When the group sizes

are imbalanced, then the graphical Dirichlet mixture does quite well. Naturally, in the

imbalanced case, the probability that a cluster contains a majority of points from a single

component distribution is increased.

Admittedly, there is room to improve the model selection, but we have seen that the

graphical Dirichlet mixing does at least as well as the simpler Bayesian model, in some

cases even outperforming it. When the data are not from a mixture, then the graphical

Dirichlet model does as well as the simpler Bayesian model. For certain mixtures, if

the components just happen to exhibit the same conditional independence structure in

the overall distribution as in the cluster distributions, then both procedures are again

comparable. On the other hand, there are definitely mixture models that the simpler

Bayesian model cannot possibly determine. In these cases, the graphical Dirichlet mixture

performed better when the component distributions had unequal probabilities.
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Figure 7.3: Fitted models using graphical Dirichlet mixing (left) and a single Dirichlet-

Multinomial law (right) for the graphs [12][13]. The top row is from a simulation using

balanced group sizes. The bottom row shows results for imbalanced groups. The cor-

rect graph is the bottom-left, indicating that the graphical Dirichlet mixture succeeds for

imbalanced groups and the simple model never succeeds.
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7.4 Czech Autoworkers Data

As an application of this method to real world data, we analyzed the Czech autoworkers

data that Dobra and Massam (2009) used when they presented the MOSS procedure.

Edwards and Havranek (1985) first examined this data, which classifies N = 1841 workers

from a Czechoslovakian car factory by the presence or absence of p = 6 risk factors for

coronary thrombosis. We enumerate these 6 risk factors as follows: (1) the worker smokes,

(2) strenuous mental work, (3) strenuous physical work, (4) systolic blood pressure ≥ 140,

(5) ratio of β to α lipoproteins ≥ 3, and (6) family history of coronary heart disease. In all

cases, we treat the presence of a risk factor as 1, and the absence by 0. As mentioned in

Section 7.1.3, this 26-way table is incredibly memory efficient, requiring only 1841 bytes for

the entire contingency table without resorting to any special data types. Additionally we

can use bit shift operators and bitwise comparisons to efficiently compute marginal tables

on demand.

We ran the MOSS algorithm multiple times, varying λ in {.01, .1, 1, 10}. These corre-

spond to a prior count of 1/3200, 1/320, 1/32, 1/3.2 observations in each cell per component.

We chose the same MOSS settings as Dobra and Massam (2009): c = .1, c′ = .001, q = .1.

Table 7.3 shows the resulting model selection and their relative probabilities. Also in-

cluded are the median graphs, which contain all edges with a posterior weight of 0.5 or

more. These tables are summarized graphically in Figure 7.4. Our results echo those of

Dobra and Massam: as λ increases, the posterior favors higher-level interaction terms and

places more weight on already present interactions.
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It is interesting to compare the results of the MOSS procedure with the graphical Dirich-

let mixing versus those of Dobra and Massam (2009), who used a non-mixed Dirichlet-

multinomial model. Essentially, the two models are the same, except that the mixture

model allows for the possibility of clustering. Specifically, if the posterior graphs differ, it

suggests the presence of a latent variable which explains some of the relationships among

the measured variables. If the graphs are similar, then it suggests no such latent variable

exists.

Figure 7.5 shows the posterior graph inference for both types of models for λ ∈ {1, 2, 3}.

Notably, the two median models (solid lines) agree in all cases, except that for λ = 1, the

Dirichlet mixture model gives the edge (1, 4) a weight just less than .5. In most cases, the

two models even approximately agree about the relative weighting of the edges. In general,

because the two processes agree so well, it does not seem like there are any important latent

variables present which influence the conclusions about the independence structure. We

emphasize that this conclusion cannot be reached using the simpler model alone. While

the graphical Dirichlet process did not change our conclusions, it did provide a way to

verify them.
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Figure 7.4: Visual representation of the median graphs for the Czech auto workers data

set. Thicker darker lines indicate higher posterior probability of an edge. Dashed lines

indicate that the edge has weight < .5 and is not in the median graph. From left to right

and top to bottom: λ = .01, λ = .1, λ = 1, λ = 10
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Figure 7.5: Comparison of posterior edge weights for MOSS procedure using graphical

Dirichlet mixtures (top) and the simple Dirichlet-multinomial model (bottom). From left

to right, columns correspond to λ = 1, 2, 3.
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λ = .01 λ = .1 λ = 10

model P model P model P

[13][23][45][6] .279 [13][14][23][35][6] .229 [135][145][23][6] .539

[13][23][25][45][6] .215 [13][23][35][4][6] .174 [135][145][16][23] .174

[13][23][4][5][6] .164 [13][23][25][45][6] .131 [135][145][23][26] .129

[13][23][35][4][6] .140 [13][23][25][4][6] .108 [135][145][23][6] .104

[13][23][15][4][6] .127 [13][23][45][6] .070 [135][145][23][56] .054

[13][23][25][4][6] .044 [13][15][23][45][6] .069

[13][23][35][45][6] .030 [13][15][23][4][5] .063

[13][23][35][45][6] .062

[135][23][4][6] .037

[13][14][15][23][6] .030

[13][14][23][25][6] .027

[13][23][4][5][6] (med) [13][23][35][4][6] (med) [135][145][23][6] (med)

Table 7.2: MOSS output - models with high posterior probability for the autoworkers data

set for λ ∈ {.01, 1, 10}. P is the relative posterior probability within each set.

λ = 1 λ = 2 λ = 3

model P model P model P

[135][23][45][6] .334 [135][145][23][6] .410 [135][145][23][6] .538

[135][145][23][56] .155 [135][23][45][6] .286 [135][23][45][6] .223

[135][145][23][6] .116 [135][23][45][26] .094 [135][145][23][26] .151

[135][14][23][6] .104 [135][145][23][26] .091 [135][145][23][56] .087

[135][23][45][26] .101 [135][14][23][6] .062

[13][15][23][45][6] .085 [135][145][23][56] .057

[13][23][35][45][6] .070

[135][14][23][26] .035

[135][145][23][6] (med) [135][145][23][6] (med) [13][145][23][6] (med)

Table 7.3: MOSS output - models with high posterior probability for the autoworkers data

set for λ ∈ {1, 2, 3}. P is the relative posterior probability within each set.
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Chapter 8

Further Work and Extensions

The main purpose of this dissertation is to extend knowledge about the Dirichlet process to

incorporate hyper Markov priors. Key results included determining when a hyper Dirichlet

process is also a simple Dirichlet process. To put it conversely, when is the distribution

of a Dirichlet process, as defined by Ferguson (1973), a hyper Markov prior law? In

Theorem 4.2.7, we provided the necessary and sufficient conditions for this property. While

these conditions were shown independently by Asci et al. (2006), we provide a second

proof, as well as advance in the resulting theory. On the theoretical front, Section 4.5

explores the noisy observations of a random sample of a Dirichlet process, and the resulting

hyper Dirichlet process mixture. In this section, we explore what conditional independence

structures persist in various marginal and conditional distributions for the random Dirichlet

process measure P , a random sample θ1, . . . , θn ∼ P , and noisy observations Xi ∼ F (·; θi).

The key result is Theorem 4.5.3, which states that if we condition on cluster memberships,
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then the distributions of θi and Xi are respectively a hyper Markov prior law and a Markov

measure. Most importantly, this result does not require our “hyper” Dirichlet process to

actually be hyper Markov! Instead, we are guaranteed the same properties if we use a

(non-hyper) Dirichlet process as long as its base measure is hyper Markov. We call such

a Dirichlet process a graphical Dirichlet process to avoid confusion with the usual modifier

“hyper”. In fact, since the graphical Dirichlet process is by definition a Dirichlet process,

a lot of current knowledge, and algorithms translate directly. For this reason, it is safe to

say that we have accomplished our goal of joining the fields of graphical models and non-

parametric inference. In general, once we account for the clustering effect of the Dirichlet

process, we can apply the multitude of theorems that Dawid and Lauritzen (1993) and

others have presented for hyper Markov laws. In particular, if the base measure is strong

hyper Markov, the marginal distribution for each cluster of observations is Markov, and

posterior calculations can be computed locally by clique and component.

Several open questions remain about the current work, which also provide opportunities

for further study. An important problem is the issue of clustering for model selection as

discussed in Chapter 7. We calculated the likelihood of the data by generating random

table assignments from the Chinese restaurant process (i.e.- the prior distribution). Because

we used the prior distribution, clustering was not done “smartly” by taking values near

each other. More work is needed in this area before the hyper Dirichlet process reaches

it full potential for model selection. At the very least, we have seen that it works when

the collapsed data are close to a non-mixture distribution, and that it also works for

mixtures in which the components are unequally weighted, which is the benefit to using
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graphical Dirichlet mixtures rather than simpler Bayesian models. Our approach to the

Czech autoworkers data was to use both types of models. This allowed us to determine that

there were no important latent variables that helped explain the independence structure

in the data.

Another important issue is that of consistency. For Gaussian mixtures, Escobar and

West (1995) show that their univariate Gibbs sampler converges to the correct posterior

distribution. The same logic applies in the multivariate setting. Of course, we also want

the posterior distribution of the Dirichlet mixture to converge to the correct distribution!

Ghosal et al. (1999) provide some conditions for weak and L1 convergence for location-scale

mixtures of Normals. These results are a good place to begin to show when convergence

occurs in the hyper Normal case.

Consistency is also a concern when using graphical Dirichlet processes for model selec-

tion. That is to say, we would like to show that the posterior probability of the correct

graph converges toward one as the sample size increases. It is beneficial to know when this

consistency occurs and how many observations are needed for the posterior probability of

the correct graph to be greater than, say 1− ε, with large probability. A related question

is what kind of errors can we expect when the sample size is smaller. This question is

particularly important, because convergence is often slow or impossible with latent vari-

able models. For example, Fienberg et al. (2010) show that the posterior distribution in

latent variable models is typically multimodal. In these cases, finding the global posterior

maximum is particularly hard.
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In Section 6.4, we saw that non-parametric mixture models using the Dirichlet processes

are similar in effect to local bandwidth selection for kernel density estimators. As such,

it would be enlightening to compare Dirichlet mixtures to other methods for local band-

width selection. We note that using cross-validation to choose local bandwidths for each

dimension is complex for even moderate dimensions. A simpler method is to choose what-

ever bandwidth includes the k nearest neighbors for each point and use cross-validation to

choose k. Further investigation is required to understand how these two methods compare

to Dirichlet process mixtures in terms of both results and computational complexity.

In Chapter 7, we used graphical Dirichlet mixtures and the MOSS procedure (Dobra

and Massam, 2009) to select a conditional independence model. We compared our results

to those of Dobra and Massam who used MOSS with non-mixture models, but there are

a variety of other methods we could use for comparison. These include other stochastic

searches that could work with graphical Dirichlet mixtures or non-mixture models such as

the shotgun stochastic search of Jones et al. (2005) and Hans et al. (2007) or the MC3

algorithm of Madigan and York (1995). There are also a variety of methods including the

PC algorithm of Spirtes et al. (2001) and Kalisch and Buhlman (2007); and the Min-Max

Hill-Climbing method of Tsamardinos et al. (2006). Tsamardinos et al. provide a list of

many other model selection methods for comparison.

Clearly, the next step is to expand this work to more observations in larger dimensions.

The issue in these more complex settings is two-fold. As a practical matter, we need to

investigate how computation time scales as the sample size and dimension increase. In

the Gaussian mixtures, it is well-known that the computational complexity of inverting
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a p × p matrix is on the order of p3. Fortunately, we have already seen in Chapter 6

that the hyper Normal distribution is not so severe because we can take advantage of the

conditional independence structure. To recall, we can invert the submatrix pertaining to

each clique and separator individually. Nonetheless, it is possible that the straightforward

Gibbs sampling algorithm may not be useful in these settings. In this case, we may need

to turn to variational inference or other approximations to reduce the complexity of the

problem.

The second issue in large-dimensional settings is overcoming sparsity, the problem of

having little to no information for much of X , the space of observations. In the case of

contingency tables, this corresponds to having many empty cells with no observations. How

well does the model selection procedure of Chapter 7 work when various marginal tables

place all weight into one cell? To answer this question, we need to investigate some more

complex data sets. For example, Dobra and Massam (2009) cite two studies that provide

28- and 216-way contingency tables. The first is a study of households in Rochdale that

concerns eight binary variables related to women’s economic activity and their husbands’

unemployment. The sample of 665 observations results in zeros for 165 of the possible 256

cells. The second study is the National Long-Term Care Survey, whose 21, 574 observations

result in 62, 384 zeros, which is 95.19% of the available cells in a 216-way table.

We should also like to extend our applications to non-decomposable graphs. Once

again, we rely on Theorem 4.5.3. Liu and Massam (2006) provide a general conjugate prior

for hierarchical log-linear models. We need only use this class of measures as our Dirichlet

process base measure. Once we account for cluster memberships, the distribution within
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each component is the typical Bayesian model, θ∗i ∼ H and X1, . . . , Xni |θ∗i ∼ F (·; θ∗i ).

Therefore, posterior and marginal calculations proceed as in the simple non-clustered case,

but repeated for each component. Even though we can extend the theory in this way to

incorporate non-decomposable graphs, implementation is still a concern. This is because

θ∗i can not be marginalized out of the posterior laws of Liu and Massam unless the graph

is decomposable. Dobra and Massam (2009) provide methods for numerical calculations,

but the computational complexity is a concern.

As we have noted throughout this work, the graphical Dirichlet process is convenient

because it is a special case of the Dirichlet process, so it allows immediately use of existing

theory. For example, we discuss Dirichlet mixtures of Gaussians in Chapter 6. Another

application that we could explore is the infinite hidden Markov models of Beal et al. (2002).

In these models, the Dirichlet process enables us to consider a hidden Markov model in

which the number of hidden states is finite, but unknown. Similar to Dirichlet process

mixtures, the number of hidden state spaces may grow as more data are observed.

Another way to extend the theory that of Chapter 4 is to consider what other non-

parametric processes may have interesting hyper Markov generalizations. We saw immedi-

ately that Theorem 4.5.3 applies to all stick-breaking processes as long as the base measure

is hyper Markov. Therefore, our work immediately allows us to incorporate any current

or future application of a stick-breaking process as long as we are willing to condition on

the cluster memberships as in the Gibbs sampling procedures of MacEachern (1994) and

Ishwaran and James (2001).
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Hyper Markov versions of some of the extended Dirichlet process family seem rather

straightforward. This is again thanks to Theorem 4.5.3. For example, the hierarchical

Dirichlet process can be used in graphical settings by using a graphical Dirichlet process

at the highest level. Thus, any draws from this process will be hyper Markov distribu-

tions, which will trickle down through the various layers in the hierarchy. At the bot-

tommost layer, we will again have a graphical Dirichlet process, so we may again apply

Theorem 4.5.3.

Particularly exciting is the idea of a hyper Markov Beta process. It would not be so

simple to directly apply my work to describe a hyper Markov version of a Beta process, but

the interpretation is extremely interesting. Although the Beta process has a stick-breaking

representation (Teh et al., 2007), it is not a stick-breaking process. This is easily seen since

the random weights in the Beta process do not sum to one. The reason behind this is that

a given observation can be a combination of several atoms, and thus the random atoms are

no longer mutually exclusive. This process leads to fuzzy clustering or feature selection,

as opposed to the hard clustering of the Dirichlet process. Herein lies the interesting

interpretation of a hyper Beta process: the various features can be selected according to

some independence model (in theory.) To extend the example of Teh et al. regarding

films, are the features “action” and “comedy” independent given that the movie “stars

Jackie Chan”? This type of question has applications for trying to understand customer

preferences, which is certainly a hot topic at present. Other examples of soft clustering

include mixed-membership models (Erosheva and Fienberg, 2005) and the related latent

Dirichlet allocation model of Blei et al. (2003).
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A major extension of this work is to allow for the graphical models to vary between

the components. In this case, it would no longer make sense to use the type of hyper or

graphical Dirichlet processes we have discussed in this dissertation. These models constrain

the base measure to be hyper Markov with respect to some graph, which then becomes the

graphical model within each component. There are a few potential candidates to replace

this idea in the non-identical graph situation. One idea is to use a base measure for the

full graphical model that gives positive mass to some proper subspaces. This would lead

to a positive probability of choosing a graph besides the saturated graph, and hence the

graphical model would be permitted to differ between components. Another possibility is

to put a prior over the space of graphs, with a Dirichlet process for each permissible model.

An interesting twist on this idea would be to use a model similar to the hierarchical model

which could share information between the various graphs. For example, if a certain

interaction term is present, we may be able to estimate it by combining information from

all graphs which contain the appropriate edge.

Generally speaking, there are a variety of interesting ways to extend the work presented

here.
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Appendix A

Matrix Algebra Proof

Lemma A.0.1. For real numbers, x1, . . . , xn, set s =
∑n

i=1 xi and define the matrices

An(x1 . . . xn) =


1 1 · · · 1 1

s−x1
s2

−x1
s2

· · · −x1
s2

−x1
s2−x2

s2
s−x2
s2

· · · −x2
s2

−x2
s2

...
...

...
...

...
−xn−1

s2
−xn−1

s2
· · · s−xn−1

s2
−xn−1

s2

 (A.0.1)

Bn−1(x1 . . . xn) =
1
s2

 s− x1 −x1 · · · −x1

−x2 s− x2 · · · −x2

−xn−1 −xn−1 · · · s− xn−1

 . (A.0.2)

These matrices have the following determinants

|An(x1 · · ·xn)| =
(−1)n−1

sn−1
(A.0.3)

|Bn−1(x1 · · ·xn)| =
xn
sn

(A.0.4)

We first make two remarks.

Remark A.0.1. Let a = (a1, . . . , ad) and b = (b1, . . . , bn) be in Rd and consider the d× d
matrix C(a, b), where cij = aibj. For any λ ∈ R, |λId − C(a, b)| = λd−1(λ −

∑d
i=1 aibi).

This is true because the columns of C(a, b) are scalar multiples of each other, meaning that
the matrix has rank 0 or 1. Therefore, C(a, b) has 0 as an eigenvalue of multiplicity d or
d−1. Furthermore, aT is an eigenvector of C(a, b) with eigenvalue

∑d
i=1 aibi. This implies

that the characteristic polynomial of C(a, b) is λd−1(λ−
∑d

i=1 aibi).

Remark A.0.2. If A and D are square matrices of order p and q such that D−1 exists,
then
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(
A B
C D

)
=
(
Ip BD−1

0 Iq

)(
A−BD−1C 0

0 D

)(
Ip 0

D−1C Iq

)
, (A.0.5)

so that

∣∣∣∣( A B
C D

)∣∣∣∣ = |D| ·
∣∣A−BD−1C

∣∣ . (A.0.6)

Proof of Lemma A.0.1. Consider two vectors a = (x1, . . . , xn−1) and b = (1, . . . , 1) in
Rd−1. We note that Bn−1(x1, . . . , xn) = s−2(sIn−1−C(a, b). We apply Remark A.0.1 with
d = n− 1 and λ to obtain

|Bn−1(x1, . . . , xn)| =
∣∣∣s−2(n−1)(sIn−1 − C(a, b)

∣∣∣ =
1

s2n−2
sn−2

(
s−

n−1∑
i=1

xi

)
=
xn
sn
.

(A.0.7)

For the determinant of An(x1, . . . , xn), we consider

A∗n =


s− x1 −x1 . . . −x1 −x1

−x2 s− x2 . . . −x2 −x2
...

...
...

...
...

−xn−1 −xn−1 . . . −xn−1 −xn−1

s2 s2 . . . s2 s2

 , (A.0.8)

which is obtained by a circular permutation of the rows of s2An(x1, . . . , xn). Since the
signature of such a permutation is (−1)n−1, we have |An(x1, . . . , xn)| = s−2n(−1)n−1 |A∗n|.
Note that we can write A∗n as the block matrix

A∗n =
(
s2Bn−1(x1, . . . , xn) −aT

s2b s2

)
. (A.0.9)

We apply Remark A.0.5 with p = n− 1, q = 1, A = s2Bn−1(x1, . . . , xn) = sIn−1 −C(a, b),
B = −aT , C = s2b, and D = s2. Note that BD−1C = −C(a, b) and A−BD−1C = sIn−1.
Hence, |A∗n| = (−s)n+1, which implies that |An(x1, . . . , xn)| = (−1)n−1/sn−1.
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Appendix B

Description of Novel Application
Programs

B.1 Gibbs Sampler for Dirichlet Mixtures

The Gibbs sampling program is designed to be extended to other mixture models via class

inheritance. New models require a class for reading and accessing hyper parameters and

options that inherit from the Base classes. In addition, the functions must be defined to

calculate the density of an observation for an existing component (i.e.- cluster), calculate

the marginal density of an observation to weight the probability of a instating a new

component, and optionally update hyper parameters. All code is available upon request.

B.2 MOSS Procedure for Model Selection

The implementation of the MOSS Procedure is general and not restricted to any specific

family of graphical models. Adaptation to a new model requires a function for scoring

models, locally scoring models based on neighboring graphs, reading in an appropriately
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gibbs.cpp Main Program
BaseHyperPar.cc Virtual class for model hyper parameters
BaseOptions.cc Virtual class for storing and accessing options
Data.cc Simple class to read in data matrix without knowing size
Exception.h Exception handling class
gauss.cc Density calculations for hyper Normal and hyper T distribution

random variable generation for hyper Normal
and hyper Inverse-Wishart

GaussComponent.cc Class containing covariance matrix,
mean vector, cluster members, etc.

GaussHyperPar.cc Hyper parameter class for Gaussian mixture models
GaussOptions.cc Options class for Gaussian mixture models
GenMat.cc General Matrix class
gibbs gauss.cc Routines specific to Gaussian mixtures (density calculation, etc.)
Graph.cc Graph class using algorithms in Chapter 5
matrix.cc Matrix calculations and partial CBLAS interface

(necessary for Gaussian model calculations)
Observation.cc Class for a single vector-valued observation or parameter
SpdMat.cc Symmetric Positive Definite Matrix class
TriMat.cc Triangular Matrix class

Table B.1: Program components for Gibbs sampler

formatted data file, and reading in options and/or parameters. All code is available upon

request.



APPENDIX B. DESCRIPTION OF NOVEL APPLICATION PROGRAMS 248

moss.cpp Main Program
DirMix.cc Function for randomizing the Chinese restaurant process
Exception.h Exception handling class
GenMat.cc General Matrix class
Graph.cc Graph class using algorithms in Chapter 5
matrix.cc Matrix calculations and partial CBLAS interface

(necessary for Gaussian model calculations)
Model.cc Extended Graph class to calculate an ID (Section 7.2.1)

and track posterior probability
modelDir.cc Density calculations for multinomial mixtures
modelGauss.cc Density calculations for Gaussian mixtures
ModelSet.cc Container class for Models that allows

easy sorting, inserting, and removing models
SpdMat.cc Symmetric Positive Definite Matrix class
TriMat.cc Triangular Matrix class

Table B.2: Program components for model selection with MOSS
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Appendix C

Gaussian Mixture Data

C.1 First Simulation (2 Groups, N = 80)

C.1.1 Group 1

-0.96252 -1.7709
-0.3757681 0.279161
-0.649096 0.6896103
-0.7577688 0.6744051
-0.854872 0.3806457
-0.8463264 -0.06467736
-0.856552 0.1632653
-0.9185322 0.3274943
-1.125838 -1.175224
-1.023435 0.2870387
-0.5561287 2.24312
-0.6087618 -0.509932
-0.7675085 0.9609931
-0.7982847 -1.265946
-0.6955114 0.620941
-0.7281424 -2.062863
-0.7789618 -0.6583404
-0.8837022 -1.048387
-0.898037 -0.3055856
-0.7096705 -0.6438723
-0.6548463 2.40493
-1.045544 0.1936726
-0.8533627 0.7614752
-0.6823466 1.392846
-0.8215265 -0.5845036
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-0.5219728 0.8755979
-1.025816 1.490722
-0.562838 -0.3390962
-0.8132794 0.9939994
-0.6065489 -0.8239922
-0.6529929 -1.767877
-0.6262193 -0.1626263
-0.8587752 0.1232434
-0.4556338 1.033686
-0.6710562 -1.078418
-0.6966584 -0.1826885
-1.232063 0.8179208
-0.3252679 -0.04129751
-0.8384499 -1.353489
-0.7214294 -0.4798759
-0.6676924 -0.9843735
-0.9075145 -0.4347082
-0.8740164 1.287443
-0.2982996 -1.639237
-0.2526371 -0.5308874
-0.9344895 0.4519744
-0.6680409 0.6427215
-1.048147 -0.720952
-0.501346 -0.682268
-0.9206802 -0.483624

C.1.2 Group 2

1.59758 1.125016
1.257029 -0.9700945
1.118404 0.1892425
1.262351 -1.25831
0.9114809 -1.124827
1.469418 2.908482
1.346539 1.717096
1.439406 0.7294625
1.471952 -0.637986
1.377825 -0.3210632
1.466749 -0.6646276
0.8195599 0.8443221
1.292487 -0.6839993
0.9607036 0.8171132
1.592922 0.005989548
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1.362352 -0.4750972
1.370255 -0.7129749
1.394153 1.002271
1.351645 0.100199
1.573454 -0.327239
1.377118 -0.2839906
1.074378 1.945562
1.087292 0.3537159
0.7836717 -0.4752664
1.157849 -0.1229258
1.258187 -0.8128672
1.439963 -1.233051
1.075225 1.030824
1.162404 0.3388
0.682555 -0.3050413

C.2 Second Simulation (3 Groups, N=120)

-1.272848 -1.272156
-0.5652529 -0.5636246
-0.8948735 -0.4217673
-1.025928 -0.4270224
-1.14303 -0.52855
-1.132724 -0.6824602
-1.145056 -0.6036798
-1.219801 -0.5469199
-1.469802 -1.066282
-1.346309 -0.560902
-0.7827593 0.1151486
-0.8462324 -0.8363467
-1.037674 -0.3279734
-1.074788 -1.097636
-0.9508483 -0.4455004
-0.9901998 -1.373062
-1.051486 -0.8876389
-1.177798 -1.022445
-1.195085 -0.7657216
-0.9679236 -0.8826385
-0.9018082 0.1710726
-1.372971 -0.5931706
-1.14121 -0.3969297
-0.9349723 -0.1787185
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-1.102817 -0.8621198
-0.7415689 -0.3574872
-1.34918 -0.1448912
-0.7908505 -0.7773034
-1.092871 -0.3165659
-0.8435638 -0.9448906
-0.899573 -1.271111
-0.8672853 -0.7163128
-1.147737 -0.617512
-0.6615672 -0.3028495
-0.9213566 -1.032824
-0.9522316 -0.7232466
-1.597905 -0.3774213
-0.504352 -0.6743798
-1.123226 -1.127892
-0.9821042 -0.8259589
-0.9172999 -1.000321
-1.206514 -0.8103483
-1.166117 -0.2151474
-0.4718295 -1.226651
-0.4167627 -0.8435892
-1.239045 -0.5038977
-0.9177202 -0.4379727
-1.37611 -0.9092784
-0.716694 -0.8959086
-1.222391 -0.8272543

C.2.1 Group 2

1.814513 -0.2712846
1.403824 -0.9953857
1.236649 -0.5947017
1.410242 -1.094997
0.9871092 -1.048863
1.659955 0.3451074
1.51177 -0.06665302
1.623762 -0.4079938
1.663012 -0.8806041
1.549498 -0.7710709
1.656737 -0.8898118
0.8762568 -0.3682966
1.446585 -0.896507
1.04647 -0.3777004
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1.808895 -0.6580367
1.530839 -0.8243073
1.540369 -0.9065214
1.569189 -0.3137073
1.517927 -0.6254765
1.785417 -0.7732053
1.548646 -0.758258
1.183556 0.01230825
1.199129 -0.5378573
0.8329773 -0.8243658
1.284218 -0.7025917
1.40522 -0.9410456
1.624433 -1.086267
1.184577 -0.3038388
1.28971 -0.5430125
0.7110353 -0.7655335

C.2.2 Group 3

0.005056816 0.9752276
0.1346278 1.749739
0.4183162 0.9987685
0.4441468 0.6102641
0.3264747 1.558365
-0.06595759 1.021703
0.2773774 1.228761
0.3588781 1.383504
0.155543 1.751748
0.05294463 1.147564
0.3487071 1.212559
0.5110467 0.9623233
-0.1158666 1.233439
-0.03860848 1.325969
0.1740918 0.7374434
0.09227962 1.573248
0.1492266 2.057101
0.2850054 1.985774
0.3942652 1.676832
0.4733483 1.843865
0.3118394 1.300251
0.6066388 1.511629
0.2229918 1.526994
0.1802363 1.247405
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-0.01730635 1.726108
0.2289823 1.05661
0.2007447 0.7193761
0.273882 1.641478
0.2075747 1.320678
0.3580804 1.330512
0.09909286 1.182937
0.3605706 0.7130042
0.3673858 0.6312578
0.1269241 1.360492
0.3882338 1.507009
0.2109494 1.228037
0.1192166 1.466044
0.2059637 1.488257
0.1415698 1.465119
-0.006944648 1.351143

C.3 Third Simulation (3 Groups, N=120)

C.3.1 Group 1

-1.07232632698244 0.365416568060968
-0.68146117103353 -0.661843740806224
1.37044977155614 -0.70923945226658
-1.25587260372295 -0.807957535366028
0.223000661414888 1.47672922816427
-1.14583705419235 -1.68561655314086
0.277012945182815 1.03216173499748
1.27012635229262 0.0969505576368773
-1.16868726005606 0.0882601975216972
0.181748240545161 1.69844487476056
-1.3221529914788 -0.531569195419415
1.29747211319929 -0.916326722388026
0.473949943917318 0.573605631877731
-0.494562786985223 -0.355244791700483
1.40919714147866 -0.390828050707983
1.60995346396902 -0.507447045263485
0.176286888806879 1.41040121599526
-1.31722297258992 -0.620348468341057
1.26782487439168 -0.109854961528088
0.246991447135737 1.78575152089344
0.514137733932112 1.80560093127146
-1.23932547989891 -1.8427657256247
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0.286187678161086 0.919024376808327
-1.34463539603662 0.331231948072771
1.79852188352525 -0.521229502940919
0.472189404752624 1.06030099737809
0.255400301598607 1.2752771357267
-1.34379748494324 -2.08102492585022
0.324521763482157 1.52897381492056
-1.43041179914401 -0.271317349526568
-1.09756851440387 -0.663586759722812
-1.04372092182988 -1.31261570557139
-1.64280281807315 0.568441836069828
1.29042671600037 -0.343301849074761
1.55295560344453 -0.198732246363775
0.222877736154015 0.91230421218286
-1.17482970389165 -1.24862129530304
-1.17046168724993 0.0548115865036639
1.33136978333496 -0.252979627369859
-0.571506403539276 0.878867334181586

C.3.2 Group 2

-1.16746441908748 -0.335962910514146
-1.34294013060903 -0.512400008273499
-0.721264031173109 -0.091574921418631
-0.88478886212507 -1.11271966484283
1.29510536156124 -0.618435732922602
-0.771271815148217 -0.392950775415555
1.17395383348143 -0.640719078349997
0.0048785180954753 -0.489892765175499
-0.928552125250176 -1.03290026894456
-0.0522179474361349 0.776695272924482
-0.0825968539139523 0.549140706393836
1.33670880468296 -0.745034190973435
-0.910051187188799 -0.83492114946746
0.276076544815898 0.991027680894188
1.27076867364182 -0.544861273246977
-1.07615872863243 -1.23185957098382
0.409782480919684 0.881288458045092
-0.65098342808144 -0.453505604254917
1.14990647950309 -0.728237045627949
0.288538435418871 1.2235094802462
1.37062152018357 -1.0426814825097
-1.41688671046778 -1.50009028685562
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0.111361833817917 1.80764469594734
0.0848929167797318 1.75095139318827
-0.332431851227817 0.0640866948053936
-1.16117291040544 -0.427771578598902
-0.721054784866919 -0.93111793410897
1.38258675171664 -0.782805372208657
-0.943799561010877 -0.0950729459554145
0.0112723815525064 0.168753132003603

C.3.3 Group 3

-0.815262841951742 -0.884225822754394
-0.787154628243534 -0.0871836020654103
0.832213645786596 -1.00712663642927
1.63592847639642 -0.820860619292854
-1.09062496275221 -0.986389956297472
0.193430406267649 1.67304479613017
0.387118004299425 1.56231714589633
-1.47997817525861 -0.947185824896642
-1.05576786126791 -1.58829022780494
1.61208897992135 -0.45624269508864
0.212375702006937 1.49626406684974
1.88861838957372 -0.162120477449412
1.53176686880408 -0.5952350875607
0.175611051013942 1.60067110924502
0.216165746556758 -0.370976642546026
-0.572428337209138 -0.398420676117426
-0.0190175489517496 1.69155188596933
0.403442086374965 1.94442122892745
-1.11394388960048 -0.328749198124284
-1.18790713509424 -0.11107107285966
-1.27928481183383 1.34091575388402
1.42081170027514 -0.574192587932637
1.50918308163331 -0.457264894535138
-0.598775780285499 -0.0584205871452388
-0.71195164467903 -0.454685660343099
0.361426307667132 1.29622088774886
0.123088492156529 0.398868667273172
0.338849742271531 0.526620607714772
0.198509175207646 1.0497079858967
0.372058103225975 0.141850275902466
0.939537094687078 -0.94235594440351
-0.834753302091619 0.0560169161441602
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-0.0316969955317014 1.20628636297068
1.31865899610251 -0.608941629448621
0.145850115540845 0.664762610158703
-0.874567041187382 -1.99045808660134
0.103245160342108 0.947237208375102
-1.31990220488434 -1.4213049819749
0.143799223979596 1.1773321315882
1.5167437247145 -0.777071193232019
1.62692718175579 -0.0438037851328646
-1.15477816737323 0.141781780453283
1.30729974557565 -0.524105037030218
-1.46372223711287 -1.45746043166993
0.523077921244384 0.781436363020525
1.15792264994112 -0.681781243942502
0.267064533246091 1.33811156287878
-0.96791589220077 -1.02191689682453
0.55104054211344 1.19198666951934
0.0073423470574356 2.03274833040974
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Appendix D

Multinomial Mixture Data

All tables are for 2p-way tables. Cell values are calculated by

Cell =
p∑
i=1

(i− 1)Xi
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D.1 First Simulation: (2 Groups, N=2500, p=5)

G 5 Star 5 ACF [012][34] [0][12][34] [01][02][34]

Cell Grp 1 Grp 2 Grp 1 Grp 2 Grp 1 Grp 2 Grp 1 Grp 2 Grp 1 Grp 2

0 533 74 587 78 542 65 435 27 497 61

1 43 3 101 27 92 15 113 46 60 7

2 68 42 41 18 45 15 75 22 60 22

3 22 7 53 47 35 7 30 27 34 25

4 82 48 42 27 1 17 58 17 75 28

5 26 8 6 11 30 24 15 25 46 22

6 12 19 21 13 19 23 54 48 7 18

7 17 17 20 52 53 141 24 71 29 94

8 68 48 52 18 114 26 77 16 102 21

9 28 9 7 12 18 7 34 21 18 4

10 12 25 7 5 10 5 17 7 18 20

11 15 17 3 10 5 2 4 10 8 14
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G 5 Star 5 ACF [123][45] [1][23][45] [12][12][45]

Cell Grp 1 Grp 2 Grp 1 Grp 2 Grp 1 Grp 2 Grp 1 Grp 2 Grp 1 Grp 2

12 15 18 25 16 1 13 8 4 13 17

13 15 19 6 10 7 8 4 11 9 14

14 3 25 11 32 7 19 20 29 4 9

15 29 72 19 80 9 73 10 40 15 67

16 82 40 80 27 66 29 59 12 70 21

17 20 5 10 19 14 20 17 24 5 6

18 13 31 8 12 7 11 16 10 8 17

19 9 17 9 33 3 3 5 15 3 22

20 9 23 5 12 0 12 8 17 9 17

21 12 19 2 5 5 14 4 30 7 25

22 2 25 4 17 4 14 13 32 2 14

23 15 70 10 38 12 81 5 51 11 95

24 11 19 41 51 80 105 43 38 54 80

25 10 17 7 27 16 26 20 83 3 18

26 4 19 1 12 6 39 13 27 16 45

27 21 86 8 38 8 3 8 50 13 50

28 1 21 17 65 2 27 9 33 20 48

29 22 65 7 29 11 43 6 82 11 63

30 0 28 12 97 6 58 24 103 4 48

31 31 314 28 312 22 305 22 222 19 238
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D.2 Second Simulation (2 Groups, N=2500, p=4)

G = [12][13]

Mixture 1 Mixture 2

Cell Grp 1 Grp 2 Grp 1 Grp 2

0 9 496 2 201

1 315 56 296 194

2 53 62 65 70

3 121 133 121 129

4 49 62 44 56

5 138 132 141 138

6 519 6 531 304

7 46 303 50 158

Total 1250 1250 2000 500
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D.3 Czech Autoworkers Data (N = 1841, p = 6)

Cell n Cell n Cell n Cell n

0 44 16 23 32 5 48 7

1 40 17 32 33 7 49 3

2 112 18 70 34 21 50 14

3 67 19 66 35 9 51 14

4 129 20 50 36 9 52 9

5 145 21 80 37 17 53 16

6 12 22 7 38 1 54 2

7 23 23 13 39 4 55 3

8 35 24 24 40 4 56 4

9 12 25 25 41 3 57 0

10 80 26 73 42 11 58 13

11 33 27 57 43 8 59 11

12 109 28 51 44 14 60 5

13 67 29 63 45 17 61 14

14 7 30 7 46 5 62 4

15 9 31 16 47 2 63 4

from Dobra and Massam (2009)
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