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Abstract

Near-field High Energy X-ray Diffraction Microscopy (HEDM) is a syn-
chrotron based imaging technique capable of resolving crystallographic orien-
tation in a bulk, polycrystalline material non-destructively. Recent advances
in data acquisition and analysis methods have led to micron-scale spatial
resolution and ≤ 0.1◦ angular resolution of the measured volumetric orienta-
tion maps across millimeter sized samples. This is a significant improvement
over the previous generation of three-dimensional X-ray techniques, which
provides us with the access of statistically significant microstructure vol-
umes. Combined with the use of state-of-the-art surface mesh generation
algorithms, this markedly improved resolution results in the capability to
directly measure geometrical evolution, such as grain boundary motion, and
material deformation in the form of lattice rotations.

In this thesis, the algorithms and analysis methods recently developed for
HEDM are discussed. This includes the descriptions of the robust geomet-
rical extraction methods used for microstructure feature characterization.
A set of validation tests for the Forward Modeling Method and the newly
developed orientation reconstruction algorithm, the Stratified Monte Carlo
Pruning method, is also detailed. By using HEDM to measure the annealing
of high purity nickel, grain boundary motion for different boundary types
are measured and presented. Moreover, the use of HEDM enabled us to ob-
serve the first ever spatially resolved lattice rotation in a high purity copper
wire under uni-axial tension, thus demonstrating HEDM’s applicability to
defected materials.
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Chapter 1

Introduction

1.1 Motivation

The interest to observe microstructure of materials with multiple internal interfaces is
widespread in solid states physics, and the demand from both the scientific and engineer-
ing communities are increasing. Because material properties are generally anisotropic
with respect to crystallographic orientations, orientation preferences, or texture in a
polycrystalline material typically dictates its bulk properties. Moreover, interfaces cre-
ated inside a material significantly affect the material both microscopically and macro-
scopically. As an example, the critical current density in a high Tc superconductor
sample (YBaCuO) depends on both the location and the types of its grain boundaries
[124]. A superconductor’s technological application hence depends on the control of its
microstructure [10, 12, 11].

As a more common example, three-dimensional measurements of deformation and
annealing processes in metals have been largely limited to statistical studies and two-
dimensional inferences up until recent years. Advances in synchrotron based X-ray
techniques such as 3D X-ray Diffraction Microscopy [88], High Energy X-ray Diffraction
Microscopy (HEDM) [116, 62, 83], and Differential Aperture X-ray Microscopy (DAXM)
[55] have demonstrated the possibility of using X-rays for non-destructive orientation
imaging in three-dimensions. The first set of results showed in situ observation of the
growth of a single grain [104], measurement of growth mode of superconducting thin-film
[10], and observation of subgrain structure formation [47], just to name a few.

More generally, the capability to characterize three-dimensional polycrystalline sys-
tems is of both scientific and technological importance. However, this often requires not
only the ability to non-destructively measure volumetric orientation maps for arbitrary
materials, but also the numerical and computational tools necessary to take advantage
of these data sets. For example, in the case of grain growth, robust and reliable grain
boundary extraction from the measured orientation map is a precondition to a suc-
cessful analysis. The ability to track thousands of features across a sample is required
if microstructure evolution is of any interest. While historically, geometrical features
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are extracted manually, the same can not be done for three-dimensional data sets with
anywhere between 100 to 10000 grains. Without the use of automation, the ability to an-
alyze measurements from these synchrotron based experiments is greatly diminished. In
fact, significant development and progress was made in automated geometric extraction
[59, 26, 27].

On the other hand, the increasing use of computation and automation leads to the
logistical problem of error magnification, commonly known as “garbage-in-garbage-out.”
The fact that roughly 2 TB (Terabytes) worth of data (typical of a HEDM experiment)
gets turned into around 1 GB (Gigabyte) of orientation maps semi-automatically means
that any small errors in the initial input gets propagated rapidly and thoroughly into
the final result. The origin of such error is difficult to find and is often random. Con-
sequently, any effort to produce reliable, usable data sets would require a significant
amount of validation, stability testing, and sensitivity a study of the analysis pipeline
and algorithm. The ability to characterize analysis failure is sometimes as important as
the analysis itself.

The simple goal of non-destructively characterizing polycrystalline material then only
requires synchrotron X-ray experimental techniques, algorithmic development, and error
analysis. Numerous types of progress in these areas have been made in the context of
HEDM and these form the basis for this thesis.

1.2 Overview

The scope of this dissertation is focused mainly in three areas: 1) Implementation and
analysis methods of HEDM, 2) statistical, geometrical, and topological analysis of vol-
umetric orientation maps, and 3) applications of HEDM. Understanding of the HEDM
implementation is crucial to its analysis, as the reconstruction methods requires numer-
ous experimental inputs. While an effective analysis method was already in existence
for HEDM [116], dramatic improvement in data acquisition speed (factor of 10-20) leads
to demands for faster and more robust reconstruction software. Taking advantage of a
recently maturing computational geometry library (CGAL) [1], various aspects of ge-
ometrical and topological extraction of volumetric orientation maps were developed.
These results are crucial for the analysis of grain growth in a high purity nickel sample
– an application of HEDM to well-ordered polycrystalline material. The culmination of
all of the reconstruction and data analysis is applied to the study of plastically deformed
copper.

1.3 Outline

The physical implementation and data acquisition methods in HEDM are presented in
Chapter 2. A brief survey of simple X-ray diffraction is provided, which forms the basis of
our experiment, and the rotation method is described in some detail. The experimental
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procedure, including sample alignment, data acquisition, and detector calibration is
included. Some discussion of methods used to improve system reliability of HEDM is
also presented.

Chapter 3 provides the basis for orientation reconstruction from HEDM diffraction
data. In this chapter, a review of existing algorithms used for analysis of 2D and 3D
diffraction data is presented. The Forward Modeling Method [116] is discussed at length
to provide a foundation for the analysis of orientation reconstruction in a polycrystalline
sample. Because the Forward Modeling Method reconstructs orientations based on an
auxiliary cost function, a great deal of time is devoted to discuss its properties. While
theoretical understanding of the orientation reconstruction problem at large is inade-
quate, Chapter 3 argues that the Forward Modeling Method is in fact stable based on a
number of numerical results. With this result in hand an augmentation of the Forward
Modeling Method is presented. Finally, real world validation results are presented.

Chapter 4 focuses on the geometrical analysis of reconstructed orientation maps.
Since many materials problems such as grain growth and grain boundary percolation
requires the measurement of grain boundaries and their evolution, surface and volumet-
ric meshes are sometimes required as part of the analysis. Consequently, a significant
amount of Chapter 4 is devoted to understanding boundary reconstruction, also know
as isocontouring. Theoretical development of surface reconstruction using Delaunay tri-
angulation is be presented as a summary to motivate and support the application and
implementation of a feature preserving boundary surface reconstruction method [3, 9].
Error analysis is performed and presented at the end of Chapter 4.

Application of HEDM to an annealing study of a high purity nickel sample is dis-
cussed in Chapter 5, and the result of the initial analysis is presented. By applying the
tools developed in Chapters 3 and 4, we are able to measure the evolution of microstruc-
ture statistics as the sample anneals. Grain boundary motion is measured from the
surface mesh generated from the orientation maps, and the relationship between bound-
ary type and its motion is examined. Finally, taking advantage of the grain tracking
capabilities developed in Chapter 4, we are able to demonstrate the anisotropic nature
of nickel annealing through the measurement of the parameters in the MacPherson-
Srolovitz relations.

Pushing the limits of HEDM, a deformed polycrystalline copper sample was imaged
before and after multiple in situ uni-axial tension tests; the results are discussed in Chap-
ter 6. Plastic deformation, manifested as lattice rotations and local misorientations are
observed in the measured orientation maps. Unlike results from previous experiments
[89, 47], measurements of lattice rotations are spatially resolved; thus for the first time,
grain neighbor information is measured and tracked in an in situ deformation experi-
ment. Because the use of the Forward Modeling method to analyze diffraction patterns
from a deformed material is largely a new endeavor, detailed validation tests are per-
formed and shown. The ability of the Forward Modeling method to track peak splitting
and broadening is also demonstrated.
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Chapter 2

High Energy X-ray Diffraction
Microscopy

2.1 Overview

High Energy X-ray Diffraction Microscopy (HEDM) is primarily enabled by the avail-
ability of third generation synchrotron sources, such as the Advanced Photon Source
(APS), European Synchrotron Radiation Facility (ESRF), and Spring-8 . A typical
HEDM experiment requires the use of a micro-focused beam, high energy (upwards of
50-100 keV), and high brilliance to ensure reasonable measurement time and signal-
to-noise ratio. This makes HEDM particularly difficult to implement in a bench-top
setting. As a reference, brilliance at the Argonne National Lab’s Advanced Photon
Source is around 12 orders of magnitude larger than the brightest X-ray tube. This
is due in part to the naturally small opening angle of synchrotron X-ray beams and
the small source size due to the small electron beam cross-section. The high brilliance
reduces the loss of efficiency due to focusing optics; this is something unavailable in any
of the bench top setups.

In this chapter, the implementation of HEDM at the Advanced Photon Source will
be described in detail. We will start with a brief review of synchrotron and scattering
physics and move to diffraction peak imaging using the rotating single crystal method.
Because of the diverse references already available for synchrotron physics, only parts rel-
evant to our experiment will be reviewed. Some time will be spent on X-ray diffraction,
with specific focus to kinematic scattering. This is important for understanding of fea-
tures such as peak broadening due to deformation in some of our experiments. Because
of the imperfect nature of the detection system, attention must be paid to background
subtraction. A discussion will be provided on the simplistic noise model used in our
analysis. Similarly, because of measurement uncertainty and the requirements of a high
precision description of the experimental geometry, methods were developed to improve
reliability of the overall measurement process. These methods, including rotation axis
alignment and focus optimization provide a basis for calibrations, and will be discussed
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in this document.

By applying HEDM to bulk samples, we are able to produce volumetric orientation
maps (≈ 1mm diameter, and ≈ 0.3mm height) at microns spatial resolution and 0.1◦

angular resolution. The origins of the resolution limits will be discussed in the context
of a discretized 2D detector and focusing optics. By examining the optical component
of HEDM, we will also see where and how spatial distortion in the detector affects the
resulting orientation images. Finally, we will conclude by examining the data reduction
process.

2.2 Review of Scattering Physics

Knowledge of scattering physics required for the application of HEDM is embarrassingly
rudimentary. In this section, we will develop the machinery required for Bragg scattering.
For the purpose of understanding intensity variation and peak shapes due to crystals
with defects, discussion of atomic and structure form factors will be included. Similarly,
a limited overview of perfect crystal scattering theory will be included for the purpose
of understanding the monochromator used in the HEDM setup. It should be noted
that as the development of analysis techniques of HEDM matures (Chapter 3), the
analysis of higher order effects become possible. For example, the most up-to-date
HEDM analysis code uses binarized intensity data. Even so, effects of deformation are
observable through the broadening of peaks in the detector space. Further analysis, for
example with intensity fitting, would require an explicit intensity model.

2.2.1 Kinematic Scattering

While X-ray scattering contains contributions from both elastic (Thomson) and inelas-
tic (Compton) components, only results from classical kinematic X-ray scattering are
discussed for the purpose of our application. This is because inelastic scattering is in-
coherent, and hence no diffraction “peaks” in the usual sense are produced. It should
be noted however that inelastic scattering can sometimes be a major contributor to
background noise in some of the HEDM experiments.

Given an electron at the origin and an incident plane wave, represented by the electric
field, ~E = E0e

iωtẑ, where ẑ is the polarization direction, the magnitude of the scattered
electric field at location ~R due to scattering from the origin is given by

Es =

(

q2e sin φE0

mec2|~R|

)

eiωt, (2.1)

where φ = cos−1(R̂ · ẑ), me and qe are mass and charge of the electron, respectively. In

the approximation of |~R| ≫ ℓ, where ℓ is the diffraction sample size, the distribution of
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x̂

ẑ

ŷ

~R

φ~ki

ρ(~r)

ℓ

~r

Figure 2.1: Scattering of an X-ray by a charge distribution at the origin.
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electrons ρ(~r) will produce an electric field with magnitude of

Es =
q2eEo sinφ

mc2|~R|
ei(ωt−2π

|~R|
λ

)

∫

e
i2π

(

k̂−k̂o
λ

)

·~r
ρ(~r) dV (2.2)

where k̂, k̂o are the directions of the incoming and outgoing wave vectors [126]. We
identify the summation here as a sum of phase factors associated with scattering from
position ~r. For an atomic electron density distribution of ρ(~r), the atomic form factor
is given by

f =

∫

ei
~Q·~rρ(~r)d3r. (2.3)

Here, we have switched to the usual convention of ~Q = 2π
λ
(k̂ − k̂o). Applying the same

ideas to a set of atoms at positions {~rj}, a structure factor for a crystal can be calculated,
namely

F =
∑

j

fj( ~Q)e
i ~Q·~rj , (2.4)

where ~rj identifies the location of the j-th atom. f is the Fourier transform of the atomic
electron density.

Two properties become apparent from this short summary. First, the electronic form
factor depends on ~Q and this dependence modulates the scattering associated with the
crystal structure. Moreover, f falls off rapidly (with a width of order the inverse atomic

radius) as a function of ~Q, which contributes to the decrease of observed intensity in

higher | ~Q| peaks. Because of the sharp drop off of intensities at high | ~Q| and the limited
dynamic range of detectors, effective integration times for an X-ray measurement are
bounded in both directions. With too low an integration time, most of the intensity
from high | ~Q| peaks will not be detectable. Saturation and “bleeding” (smearing of

high intensity peak across a wide detector region) of the low | ~Q| peaks occurs when the
integration time is set too high.

By summing the structure factor over the crystal lattice, we get

Ftot =
∑

j

fj( ~Q)e
i ~Q·~rj

Lattice sum
︷ ︸︸ ︷
∑

n

ei
~Q·~Rn, (2.5)

where the first sum is over the basis atoms associated with a single unit cell and ~Rn =
m1â1 +m2â2 +m3â3 runs over the entire crystal lattice, specifying unit cell locations.
This is the usual way to arrive at the Bragg condition from the Laue Equation of
~Q = ~Ghkl, where ~Ghkl is the reciprocal lattice vector representing the scattering plane.
An extension of equation 2.5 that allows deviations in either the atomic positions, ~ri
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2.2. REVIEW OF SCATTERING PHYSICS

or the unit cell positions ~Rn, leads to results such as the Debye-Waller factor and peak
broadening from stacking faults in a crystal. For example, ~Rn might be replaced by

~Rn = m1â1 +m2â2 +m3â3 + ~δn, (2.6)

where ~δn represents deviation of the n-th unit cell from its lattice location. The exact
form of ~δn depends on the underlying physics. For example, in the case of lattice vibra-
tions, ~δn has the property that 〈~δn〉 = 0. The resulting modified structure factor is given
by

F =
∑

n

f(Q)ei
~Q·(~rn+~δn). (2.7)

The integrated intensity from this form factor reads,

I = 〈FF ∗〉 =

〈(
∑

n

f(Q)ei
~Q·(~rn+~δn)

)(
∑

m

f ∗(Q)e−i ~Q·(~rm+~δm)

)〉

(2.8)

=
∑

m

∑

n

f(Q)f ∗(Q)ei
~Q·(~rm−~rn)

〈

ei
~Q·(~δm−~δn)

〉

. (2.9)

In this way, the “perturbation” to the ideal Bragg scattering is captured by the time

averaged term,
〈

ei
~Q·(~δm−~δn)

〉

, which becomes eQ
2|~δm−~δn|2 = eM in the case of lattice

vibrations.1. More detailed exposition can be found in references. [4, 126]
The relevance in mentioning the Debye-Waller term can be seen in the design of in situ

phase transition measurements using HEDM. In the standard notation, M = BT | ~Q|2,
where, for the isotropic case (〈u2〉 = 〈u2x + u2y + u2z〉 = 3〈u2Q〉),

BT = =
11492T

AΘ2
φ

(
Θ

T

)

+
2874

AΘ
,

φ(x) =
1

x

∫ x

0

x′

ex′ − 1
dx′ (2.10)

where BT is given by Å2, A is the atomic mass number, and Θ is the Debye temperature.
[4] All temperatures are given in Kelvins. Measured intensity falls off as e−BT |Q|2, which
implies that the signal to noise drops off rapidly for high Q peaks, and this problem
is exacerbated in high temperature experiments. This is particularly problematic, as
higher order peaks contribute significantly to the spatial and orientation resolution of
our measurements. Simply increasing integration time is possible since the diffracted
intensities for different Q span multiple decades, which exhausts the dynamic range of
the detector system. The use of attenuators may also produce undesirable results, as we
will describe in the later sections.

1This result is reached by assuming that the displacement is Gaussian, and by the application of
Baker-Housdorff theorem, we have 〈eix〉 = e

1

2
x
2
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2.2. REVIEW OF SCATTERING PHYSICS

2.2.2 Rotation Method

HEDM is, in principle, a simple extension of the rotation X-ray diffraction method to
a polycrystalline sample. The geometry of the standard rotation method is shown in
the figure 2.2. A single crystal sample is located at the origin of the coordinate system,
represented by a box in figure 2.2b. The plane wave incoming X-ray beam, represented by
the wave vector ~ki, is monochromatic and has an energy bandwidth that is negligible.
The diffracted beam is represented by ~ko. The sample rotated by ωẑ. By using the

~ki

z

x

−y

~Ghkl

φ

χ

(a)

Detector

~ki

z

ω

x

−y

~ko~g

(b)

Figure 2.2: Geometry of a rotating crystal method for X-ray diffraction in the analysis coordi-
nate system. (a) Coordinates used to solve for ω where ~Ghkl satisfies the Bragg condition. (b)
Rotating crystal method setup, with ~g as the reciprocal lattice vector, and ω is rotated about
the ẑ axis.

Bragg condition of ~ko − ~ki = ~G, we can solve for the rotations about ẑ, ωẑ, that bring
~G into compliance with Bragg condition [115, 116]. By considering ~G to point along the

direction of ~ki initially, and parameterizing the rotation from this position by the angle
φ, we can arrive at

~G = G
(

sinχ cosφî+ sinχ sinφĵ + cosχk̂
)

, (2.11)

where χ is the inclination angle of ~G from the z-axis [116], as shown in Fig. 2.2a. By

rewriting the Bragg condition as ~ki · ~G = −1
2
| ~G|2, we get the equation,

cosφ =
| ~G|

2|~ki| sinχ
. (2.12)
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In the case of any arbitrary ~G not in the z − x plane, we will define

φ0 = tan−1 Gx

Gy
and

sinχ =

√
√
√
√1−

(

Gz

| ~G|

)2

(2.13)

Then, Bragg condition is satisfied for ~G at two points,

ω = φ0 + φ

ω = π − φ+ φ0. (2.14)

This can be directly translated into the integration interval where ~G satisfies the Bragg
condition, and the detector coordinate where the diffraction spot is measured can be
computed by simple projection along ~ko. The integrated intensity measured at this
detector location is presented in the next Section.

2.3 HEDM Measurements

2.3.1 Overview

High Energy X-ray Diffraction Microscopy (HEDM) is implemented at the 1-ID beam
line of the Advanced Photon Source, Argonne National Lab. At its most basic level,
HEDM is an orientation and strain imaging technique using high energy X-rays. Roughly
speaking, there are two variants of HEDM, namely the near- versus far- field. Based
on the rotating crystal method mentioned in section 2.2.2, near-field HEDM is usually
limited to crystallographic orientation imaging for polycrystalline materials, although
recent advances intend on including limited strain mapping capabilities. Taking advan-
tage of the large detector-to-sample distance, the far-field method is used mostly for
strain mapping without high spatial resolution. Both HEDM techniques leverage heav-
ily on the high brilliance and high energy nature of the synchrotron radiation, unique to
1-ID and a handful of other beam lines in the world. With the combination of precision
monochromator and X-ray focusing optics, 1-ID can produce a planar, microfocused
wide beam (FWHM ≈ 6µm vertically, 1mm width) with better than 1% energy reso-
lution. In this section, a summary of the near-field HEDM experimental setup will be
provided. Limited discussion concerning monochromator, X-ray focusing, scintillators,
and optics will be provided to form a working understanding needed for HEDM. Experi-
mental calibration procedures developed to improve overall reliability and precision will
also be discussed in this section, while software, “bootstrap” methods are described in
Chapter 3.

11



2.3. HEDM MEASUREMENTS

Scintillator

Optical mirror

Optical lensesLegend Beam block

Stage Z

Stage X

SampY
SampZ
SampX

Det Y
Det X
Det Z

Focus X

Stage Y

IDB 6
JJs IDB 5 Foil wheel

Front view

X-ray focusing lenses

x̂

ŷ

ẑ

PreciH

Figure 2.3: Schematic of the HEDM setup at Sector 1-ID:B of the Advanced Photon Source.
Only the most relevant parts are shown. SampX, SampY, and SampZ are the sample trans-
lation motors. PreciH is the air-bearing rotation stage with ≤ 0.1µm eccentricity. The entire
sample column is placed on top of StageZ and StageX, two linear motors with 1µm preci-
sion. The detector column is mounted on the motors DetX, DetY, and DetZ, which are used
to adjust image plane location with respect to the sample (top of the sample column). The
scattered X-rays from the sample are imaged with a detector system: a scintillator converts
X-ray radiation to visible light, which is reflected by a 45◦ mirror (blue) and magnified by the
focusing optics (red) onto a CCD detector. The direct beam is stopped after the sample at
the beam block (green). IDB6 and IDB5 are ion chambers used to monitor the flux of the
incoming beam. The horizontal and vertical X-ray absorbing slits (JJs) can be used to reduce
the beam size for cases like the raster scan described below.
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2.3.2 Experimental Setup

The near-field HEDM setup is described in figure 2.3, with various parts labeled. The
planar X-ray beam is produced by a combination of monochromator and X-ray focusing
optics. The resulting microfocused beam illuminates a planar cross section of the sample,
which is mounted on a precision rotation stage (≤ 1µ shift in the rotation axis.) As with
the rotating crystal method mentioned in section 2.2.2, the sample is rotated about the
axis perpendicular to the X-ray beam (in APS coordinates, ŷ, Fig. 2.3). Integrated
intensities are recorded while the sample is rotating at constant angular velocity with
a CCD camera system, which digitizes images from the scintillator. While a small
fraction of the incoming X-ray beam is scattered, most of it ends up penetrating the
entire sample. With the direct beam being around 103 more intense than most diffracted
peaks, the presence of the direct beam in the recorded image leads significant saturation
of the detector system. The result is an unreasonably high background in the recorded
images. Consequently, a single crystal beam attenuator is placed along the beam after
the sample.

2.3.3 Experimental Procedure

The goal of HEDM is to measure the crystallographic orientation field for some sub-
volume of a polycrystalline sample. In most cases, such as aluminum and nickel, this
crystallographic field represents a set of grains, where grains are defined to be collections
of spatial points with orientations that are very close to each other. The set of grain
boundaries associated to these grains are also recovered in this process, and the local
variations of orientations within each grain (local misorientation) are also measured.

Orientation maps measured in HEDM are two-dimensional slices, as they are pro-
duced by the planar, micro-focused X-ray beam. The diffraction images for the predeter-
mined integration (ω-rotation) intervals at different detector-to-rotation axis distances
(L-distances) are used to reconstruct the spatially resolved orientation maps. This is
done with the reconstruction software, which associates each of the diffraction peaks in
the recorded image with a point in the sample space. In general, the crystallographic
orientation of a point in the sample space can be determined by indexing at least three
diffraction spots corresponding three non-collinear reciprocal lattice vectors. Because
peak shapes on the detector are projections of a grain, the microstructure geometry is
recovered by performing HEDM over large numbers of integration intervals so as to yield
many different projection geometries.

The ability to reconstruct orientation maps from a set of 2D detector images depends
on the precise knowledge of the experimental geometry. Namely, the location and per-
pendicularity of the rotation axis relative to the x-ray beam plane completely specifies
the coordinate system origin, which determines the spatial location of the reconstructed
orientations. The detector tilt (to within 0.5◦ from the nominal orientation) and focus
determine the exact projection geometry, and therefore contribute to the resolution of
grain boundary locations.
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Rotation Axis

The distance between the rotation axis and the detector (L-distance) has a large effect
on the HEDM measurement. Unfortunately, the location of the rotation axis cannot be
directly measured with the current set-up because the sample holder column is indepen-
dent from the detector housing (Fig. 2.3); i.e., the two sets of apparatus are not coupled
in a precise, known way. Instead of direct measurements, L-distances are recovered by
ray-tracing a set of indexed peaks to their diffraction origin. Unfortunately, this is par-
ticularly difficult for polycrystalline samples because the diffraction peaks can come from
any of the numerous grains in the sample. Finite grain size (of around 20µm to 100µm
also adds to the uncertainty in the extrapolated scattering origin. To obtain initial es-
timates of the L-distances, a small diameter ( 30µm) gold wire is used as a calibration
sample. By placing this wire on the rotation axis, we can assume that the diffraction
center is effectively at the origin for each of the diffraction spots recorded, which makes
the initial guess of the L-distances much simpler (accurate to around 50µm). The wire
is centered on the rotation axis before the L-distance calibration so that the position
of the sample does not depend on the integration interval; moreover, centering on the
rotation axis keeps the sample within the limits of the incoming X-ray beam.

Because it is generally difficult to determine the perpendicularity of the rotation
axis with respect to the X-ray beam by diffraction images, a calibration procedure was
developed and used for each HEDM measurement. We start by inserting the top of a
gold wire into the direct beam such that no more than 1µm of the tip is above the X-ray
beam. The wire is put into an “off-axis” position so that when the sample stage rotates,
and the tip of the sample traces a circle of radius R ≈ 300µm around the rotation
axis. The location and attenuation of the tip is observed by the intensity profile on the
detector. Because the sample is no more than 1µm above the beam, any deviation from
perpendicular of more than 1µm over 600µm can be observed. This corresponds to 0.1◦

accuracy in the perpendicularity of the rotation axis.

Direct Beam Block

Because the fraction of scattered X-rays is minuscule (≈ 10−3) compared to those trans-
mitted through the sample, a direct beam block must be used to prevent detector sat-
uration. The beam block is necessarily made out of a high Z material to obtain the
necessary attenuation of the high energy X-rays. In present case, a single crystal (moa-
sicity ≤ (10−2)◦) of Tungsten is used. The use of a single crystal allows us to position
the beam block such that none of its diffraction peaks are incident on the detector.
This is particularly important as the diffracted intensity from the single crystal beam
block tends to be several factors larger than sample signals. In the HEDM geometry,
suboptimal positioning can also result in sample diffraction signals striking the beam
block and being attenuated or removed. To minimize these effects, the location of the
beam block is typically only a few tens to a hundred microns above the direct beam.
An unintended side effect is the contribution of grazing angle reflection on the rough
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surface of the beam block. This effect could be minimized by applying the appropriate
polishing procedures to the beam block.

Monochromator

A monochromator is needed to produce a monochromatic X-ray beam from the poly-
chromatic synchrotron source. Although a detailed discussion of Darwin widths and
dynamical diffraction theory is not included in this chapter, some relevant key results
are relevant. Roughly speaking, a monochromator selects out a single energy from a
white beam by the means of Bragg diffraction,

nλ = 2d sin θ, (2.15)

where d is the lattice spacing and λ is the X-ray wavelength. With well defined d and

θ, the output energy is fixed by λ: E = hc
λ
= 12.4keV·Å

λ[Å]
. In fact, Bragg scattering is never

a true δ-function, so a finite range of wavelengths are included. This implies that varia-
tions in energy, ∆E

E
= ∆λ

λ
are obtained. The monochromator system [63] uses diffraction

from two separate Si crystals (also to obtain a horizontal output beam). With the bent
crystal Si (111) reflections used at 1-ID, we obtain ∆E

E
∼ 10−3. Because a significant

amount of energy is deposited onto the first monochromator crystal, temperature vari-
ation is inevitable. To maintain small ∆E and maintain a precise output energy, the
monochromator crystal must have minimal thermal expansion with temperature varia-
tions. As it turns out, single crystal silicon is perfect for this task, because of the near
zero coefficient of expansion around the boiling point of liquid nitrogen.

From Eq. (2.15), it can be seen that for a given d and θ, not only will photons with
wavelength λ be selected, but so will any nλ where n is an integer. This problem is
generally mitigated by using a multiple bounce (diffractions) monochromators tuned so
that I1

In
≫ 1 for any n ≥ 2, where In is the intensity of the n-th harmonic. Also, at high

energies, the spectrum of radiation from the undulator source falls with energy reducing
the intensity of the higher harmonics. However, as mentioned before, it is sometimes
convenient to perform measurements using a lower flux (e.g., when using two different
detectors of different sensitivity), and therefore an attenuator is placed upstream of the
sample. Because attenuation is energy dependent, it is possible to result to have an
attenuated beam where higher harmonics are not negligible. The resulting diffraction
patterns are not analyzable with the current methods.

Detector Calibration

As in the case of the rotation axis, the detector parameters are not known a priori in the
HEDM setup. The scintillator screen has to be translated to put it at the focal point
of the optical system and the orientation (relative to the x-ray beam plane) and the
effective pixel pitch, γ (pixel dimension), have to be measured. Data collection macros
have been written and associated analysis developed for these purposes using Matlab.
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APS

Detector

x̂

ŷ

Figure 2.4: An example of a raster scan for a tilted detector. The blue dots indicate the
locations of the direct beam as the detector is translated to four different locations. The
objective of detector calibration is to align so that the grid lines are parallel to the plane of the
X-ray beam (into the page). When the optical focus is set on the center of the detector, the
aberration will be most noticeable near the edges of the detector. This is problematic as the
high | ~Q| peaks contribute most to the spatial and orientation resolution of the reconstructed
orientation map. An ad hoc solution to this problem is to optimize focus on the annulus around
the center (shown in green) so that the center is still within the depth of focus (≈ 2µm). In
this configuration, almost no aberration is observed.
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Pixel pitch calibration is measured using the so-called “raster” scan. In this scan,
the detector is translated in front of a fixed x-ray beam to set vertical and horizontal
locations using the associated set of linear translations (Fig. 2.4). A small X-ray beam,
produced from the usual line focused beam by restricting the horizontal size with the JJ
slits to roughly 5µm, is imaged at each of these grid points. Because the linear motions
are precise (or are measured) to within ±1µm, the distance between the grid points
is well defined. The locations of the measured spots in the images is contrasted with
the expected grid locations to yield γ in microns per pixel. With an optimized focus
setting, the detector pixel size should be determined by the magnification of the optical
focusing component and physical CCD pixel size. Given that the physical pixel size is
ℓ = 7.4µm, and a 5× focusing optic is used, the effective pixel size should be 1.48mum.
Our measurements typically yield γ = 1.47 ± 0.01µm. For an L-distance of 5mm, the
angular resolution of a pixel is given by tan−1

(
1.48
5000

)
≈ 0.02◦.

To optimize the optical focus, the beam height is measured as a function of the
focus (scintillator) position, again at a set of beam positions on the detector (the “focus
raster” scan). The aberration in the optical system is manifested as a spatial variation
of the optimal focus position approximated by

zf (j, k) = A(j − jc)2 +B(k − kc)2 + z0, (2.16)

where zf is the focus position, (jc, kc) is the center of the focal axis, and z0 is the optimal
focus position for (jc, kc) on the detector coordinates. Therefore, zf (j, k) is measured by
running the raster scan at different focus positions around the z0. The resulting parabola
is used to optimize both the detector tilt and global focus position. See Fig. 2.4. When
optimized, the coefficients, A and B are around 10−5[µm−1], contributing to a 10µm
difference in focus location across the detector. This is negligible to the reconstruction
software because of the the ≈ 3µm depth of focus, but it is noticeable by direct beam
or knife-edge measurements.

2.4 Data Reduction

While in principle explicit peak segmentation and peak identification are not necessary
for the Forward Modeling reconstruction method (Chapter 3), the relatively large sizes
of the raw diffraction images makes them difficult to handle. Therefore, data reduction is
performed by a simple background (median) subtraction and rough peak identification.
This process reduces the input data size by a factor of roughly 100. Note that each of
the peaks identified could be composed of intensity contributions from multiple regions
of the sample, which is sometimes referred to as accidental peak overlap. In most
other analysis methods, peak overlaps are detrimental to reconstruction, as it results in
non-unique orientation solutions [56, 90, 105]. However, it is shown in Chapter 3 that
accidental peak overlaps have minimal effects on the Forward Modeling reconstruction
algorithm.
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In the data reduction, the intensity of each pixel as a function of the ω is analyzed,
and the background intensity is assumed to be additive; this is,

Iexp(j, k, ω) = Ibackground(j, k, ω) + Isignal(j, k, ω), (2.17)

where (j, k) are the usual detector coordinates. Here the background is simply taken
as the median of Iexp(j, k, ω) To remove random, single pixel noise (hot pixels), a 3× 3
median filter is applied to the background subtracted images. Peaks in the background
subtracted images are identified using a connected component algorithm, and “tails” of
the peaks are removed by applying intensity thresholding. In other words, given a set of
pixels, {pi}, forming a connected component, only the subset {pi : I(pi) ≥ fImax({pi})}
is accepted as diffraction signal, where f ∈ [0, 1], and Imax returns the maximum intensity
from a set of pixels. This thresholding method can be considered as an ad hoc way to
remove broadening effects of diffraction peaks due to the finite resolution of the detection
system including hallowing effects due to the scintillator being thicker that the depth
of focus of the optical system. As a reference, a typical value of f is between 0.05 - 0.1
based on visual inspection and trial orientation reconstructions.

2.5 Conclusion

In this chapter, we have described some of the experimental set-up and calibration
procedures of HEDM; in so doing, we have presented the foundation needed to discuss
the analysis methods and orientation reconstructions of Chapter 3. The components of
the HEDM set-up are sketched out, and the coordinate systems used in APS and the
analysis are also defined. A brief overview of kinematic scattering was presented, and
we have pointed out some of the results relevant to the experimental design.

The ability to spatially resolve orientation turns out to depend critically on the pre-
cision with which the experimental parameters are determined, and several calibration
methods are developed and presented in this chapter to help minimize parameter errors.
Further details of these effects and further minimization procedures can be found in
Chapters 3 and 6. The data reduction method is also presented as a brief description
of “peak” or “signal” extraction. While the Forward Modeling method (Chapter 3) has
no explicit dependence on the way diffraction peaks are identified, the data reduction
method serves as a means to control peak-dependent broadening in the detection system
(finite resolution effects).
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Chapter 3

Orientation Imaging Through
Digital Reconstruction

3.1 Overview

Similar to orientation imaging using electron backscatter diffraction microscopy (EBSD),
both high energy X-ray diffraction microscopy (HEDM) and three dimensional X-ray
diffraction (3DXRD) microscopy leverage heavily on recent advances in computational
techniques for orientation reconstruction based on digitally recorded diffraction pat-
terns.1 In the case of EBSD, diffraction (Kikuchi line) patterns produced by a point
focused electron beam are captured from one spatial location on the sample at a time.
In this way, spatial location is well defined. HEDM refers to a class of high energy X-ray
diffraction methods that measure orientation and strain states of individual crystalline
grains inside of bulk materials. Under standard terminology, “far-field” HEDM refers
to measurements having detector-to-rotation axis distance (L-distance) of at least 1m
(with a large area, large pixel size detector), whereas “near-field” refers to L-distances
of a few millimeters using a small but high resolution detector. Far-field measurements
concentrate on measuring crystallographic elastic strain states whereas near-field mea-
surements are used for orientation mapping. For orientation mapping, the so-called “ro-
tation method” is used with a line focused X-ray beam. The detector records diffraction
images from many grains simultaneously, as discussed in Chapter 2. Consequently, re-
construction of orientation maps requires simultaneous determination of crystallographic
orientation and diffraction origin from a set of superimposed diffraction patterns.

While X-ray orientation imaging is vastly more difficult than EBSD, a significant set
of advantages makes the X-ray approach attractive. First, with the use of high energy

1HEDM and 3DXRD are essentially equivalent measurement techniques and the acronyms are used
almost interchangeably. 3DXRD was coined by Poulsen et al [88] to refer to work primarily at the
European Synchrotron Radiation Facility (ESRF). HEDM was coined at and specifically refers to work
at the APS. While experimental parameters may be different, the real divergence in the context of this
thesis lies in the analysis methods (as discussed below).
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X-rays, the penetration depth provides access to bulk information (sample radius up to
1mm). Three dimensional structure can be accessed and re-measured after a variety of
treatments to the sample. In contrast, the penetration depth of elastically backscattered
∼ 20 keV electrons in EBSD is on the order of nanometers. Thus, EBSD is inherently
a surface technique. Three dimensional information can only be gathered by sectioning
off the previously measured surface layer. Moreover, the quality of orientation maps
from EBSD is heavily dependent on surface properties. For example, oxidation or poor
polishing lead to diffraction patterns that are not indexable, which significantly reduces
the reliability of the resulting orientation maps. Since high energy X-rays probe inside
bulk material, surface preparation and smoothness are not issues.

Not all 3D X-ray orientation imaging techniques use the rotation method. Differen-
tial aperture X-ray microscopy (DAXM) [55] is quite similar to EBSD. Grid points along
the sample surface are scanned, and orientations are measured using the Laue diffrac-
tion patterns generated by a polychromatic incident beam. Sub-micron focusing yields
excellent spatial resolution and careful analysis yields sensitivity to deviatoric strains.
On the other hand, DAXM suffers from some of the same drawbacks as EBSD. While
micron scale depth resolution is possible, penetration is limited by the lower energy of
the probing X-rays (≤ 20 keV). This leads to the inability to collect data from sample
volumes in excess of 500µm3. The fact that the technique requires at least a detector
image per measured volume element implies extremely large data volumes (and data col-
lection times) for measurements that resolve shapes of large numbers of crystals. Large
volume characterizations are crucial to statistically significant studies of phenomena such
as grain growth or so-called “rare-events” (e.g., crack formation).

Intrinsically three-dimensional problems are difficult to address using standard two-
dimensional imaging techniques. For example, measurement of residual strains on a frac-
ture surface is a problem of three-dimensional nature. Studies by Fields and company
[108] suggest that residual strains tend to relax at a free surface. Therefore, observation
of strain states in the depths sampled by EBSD may not reflect the pre-crack state.
X-ray techniques provide the possibility of measuring strains in bulk material prior to
crack formation. Another example is the problem of grain growth in 3D. While statisti-
cal analyses using stereology [54, 99] have helped advance the understanding of 3D grain
growth, numerous a priori assumptions are required [44, 99]. With the advent of auto-
mated serial sectioning by combining ion-beam milling with EBSD, three-dimensional
data structures have become more readily available. However, the destructive nature
of serial sectioning measurements makes direct observation of microstructure dynamics
difficult or impossible.

Due to the relatively complex nature of the orientation search problem in HEDM and
3DXDR, significant focus has been placed on reconstruction algorithms, and numerous
advances have been made in recent years. Various techniques have been developed
by Risoe/Danish Technical University [87, 105, 56, 91], for example GrainDex, Grain-
Sweeper, and algebraic reconstruction methods. A brief review of these techniques,
including some of their shortcomings will be presented in this Chapter. The application
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of the forward modeling method (FMM) [116] has led to advances in orientation recon-
struction of deformed microstructures. The forward modelling method also paved the
way for the development of Stratified Monte Carlo Pruning (SMCP) and several ongo-
ing importance-sampling based algorithms in orientation searches. Because the forward
modelling method and orientation searches form the foundation of the HEDM method,
we will devote the first half of this Chapter to their development and details. The
orientation reconstruction problem is inherently an inverse problem, so we will address
some of the questions regarding existence and uniqueness of an optimal solution. This
includes examination of some of the objective functions used in the forward modelling
orientation search. To provide a concrete characterization of errors, a set of parameter
studies is conducted. Results are reported in the second half of this Chapter. Finally,
some ongoing work which extends the most recent advances is summarized.

3.2 Methods of Orientation Reconstruction

3.2.1 Problem Statement

Single Grain Diffraction

Consider a perfect single crystal at the origin, and a collimated, monochromatic incident
X-ray beam along ẑ. In the kinematic (single scattering) approximation, diffracted X-ray
beams will be visible in discrete spots dictated by Bragg’s Law:

~ki − ~ko = ~Ghkl (3.1)

|~ki| = |~ko|, (3.2)

where ~ki is the incoming X-ray wavevector, and ~ko is the diffracted X-ray wavevector.
The reciprocal lattice vector for the sets of planes specified by (hkl) is denoted by ~Ghkl.
Due to the monochromatic nature of the X-rays in our experiments, diffraction spots are
only expected at discrete locations, which can be parametrized by (ω, η, 2θ), as shown
in (Fig. 3.1). The crystallographic orientation of a diffracting single crystal is defined to
be the rotation required to transform from the sample coordinate system to the crystal
coordinate system. To specify the crystal system relative to the sample system at least
three linearly independent vectors, or a set of basis vectors must be specified. This
information, which is obtainable by indexing of diffraction peaks measured from the
rotating crystal method, is in principle sufficient for the orientation determination of a
single crystal.

Ideal Peak Indexing

In general, peak indexing refers to identifying the hkl values of measured reciprocal
lattice vectors. Since the incoming wavevector in a measurement is well defined by the
synchrotron source and the monochromator, peak indexing solely relies on determining

21



3.3. REVIEW OF EXISTING RECONSTRUCTION TECHNIQUES

the geometry of a given diffraction pattern. Given a single crystal of negligible size and
assuming that the detector is perfectly efficient with zero noise and that the physical
setup exhibits no drift, the direction of the diffracted wavevector, K̂o, is defined by the
scattering origin and the location the diffraction spot. For convenience, let us define the
detector origin as the projection of the diffraction origin onto the 2D detector, which
is assumed to be perpendicular to the incident beam. Diffraction peaks must lie on
discrete 2θ rings (fixed radii) because of the Bragg condition. In principle, ambiguity
due to closeness of 2θ rings are resolved by indexing large numbers of diffraction peaks. In
reality, the use of the rotating crystal method with finite sample size results in ambiguous
diffraction origin, as any sample point not on the origin would necessarily circle about
the rotation axis. To resolve this problem, both peak index and diffraction origin must
be identified simultaneously.

3.3 Review of Existing Reconstruction Techniques

Extensive literature can be found on the existing reconstruction techniques [88, 87],
and therefore only a brief survey will be provided here to justify the need for the work
described in this section.

Reconstruction and indexing of diffraction spots are thoroughly studied by Poulsen et
al and an indexing algorithm has been written; the program is called GRAINDEX [56].
Roughly speaking, it works by identifying diffraction spots from a set of 2D images by
a combination of background subtraction and image segmentation [81, 84]. Diffraction
spot centers-of-intensity, also sometimes known as centers-of-mass, for multiple detector
locations and ω values are used to track the direction of the diffracted momentum vectors,
k̂o. Given the definition of η and θ in Fig. 3.1, the lab frame reciprocal lattice vectors
can be described by

~G

| ~G|
= cos θ





− sin η
cos η
− tan θ



 . (3.3)

Given the center-of-intensity position for each of the peaks, the values of η and θ can be
estimated (the algorithm works best in the far-field limit where sensitivity to the position
of origin is minimal). Consequently, a reciprocal lattice vector can be assigned for each of
the diffraction spots. By associating diffraction spots and reciprocal lattice vectors to a
grain, a coordinate system representing the crystal frame is defined. The crystallographic
orientation of a grain is found by determining the transformation required to go from
the sample frame to the crystal frame. In practice, center-of-intensity is determined
by identifying and raytracing the same diffraction spots measured at multiple detector-
to-rotation axis distances (L-distance) when the diffraction origin is resolvable by the
detector (near-field HEDM).

Unfortunately, GRAINDEX is very sensitive to peak shape, as center-of-intensity
positions can be significantly altered in imperfect grains. For example, when a peak
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I(j, k)

x 2θ

η

~ko

zω

y

(nX, nY )

(0, 0) L1

L2

v(~x)

Figure 3.1: Coordinate system for a rotating crystal experiment. This is the convention used at
the APS beamline. The line-focused incident beam propagates with ~ki ‖ ~z and, if not blocked,
would intersect the detector along the blue line. The red rectangle at the coordinate origin
represents the sample region being measured. The blue element, v(~x), is a particular volume
element in the sample space which, at rotation position ω, produces a diffracted wavevector
~ko intersecting pixel (j, k) of the CCD detector (with nX × nY pixels). The polycrystalline
nature of the sample suggests that intensity, I(j, k), can be a result of not only v(~x), but also
its neighboring volume elements. This is known as “accidental overlap.” The diffraction peak
due to ~ko is considered a qualified peak as it satisfies the geometrical constraints of the system
(it strikes the detector at both L1 and L2). Notice that the diffracted intensity originating
from v(~x) due to this ~Ghkl could lie on any point along the dotted arc (2θ-ring) if the crystal
lattice were rotated about the incident beam; this is true even for volume elements that are
off the rotation axis. On the other hand, rotations about this ~Ghkl leave this peak position
unaltered. All other rotations about axes with a component along y or z, will cause the Bragg
condition to be satisfied at a different ω; those not parallel to y will change both ω and η. For
off-axis volume elements, changes in ω change the location of the origin of the scattering, and
hence move the peak to a shifted 2θ-ring. The coupled, complex motion of the many diffraction
spots observed from each volume element (as a function of lattice orientation) is the key to
resolving both crystal orientations and corresponding positions.
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splits under deformation, the resulting center-of-intensity may not correspond to that of
the original peak. Accidental peak overlap from separate grains also presents a challenge
in this analysis. To alleviate these problems, multiple indexed reciprocal lattice vectors
can be used simultaneously to construct an orientation matrix. This forms the basis of
the program GrainSweeper.

Another way to understand the problem of orientation reconstruction is to gener-
alize it to solving the full inverse problem of diffraction in 6D [87]. This is known
as the Algebraic Reconstruction Technique (ART). Specifically, the spatial geometry
and crystallographic orientation of the sample can be represented in the 6D space of
H = R ⊗ SO(3). Intensities recorded by the X-ray detector are then produced by a
function, f : H → R3, where R3 is a scalar field describing intensity on a set of 2D
detector images. The objective of ART is to find f−1 : R3 → H such that the 6D con-
figuration from measured diffraction intensities is recovered. Unlike the case of a Radon
transform in transmission tomography, the explicit inverse of the transform f specified
in this case is unknown. There is a significant amount of freedom in both constructing
and parametrizing H. For example, one could use a product of direct space (R3) with
quaternions, Rodriguez-Frank vectors (RF), or even Euler matrices. It is even possible
to forgo the use of direct space altogether and use dual quaternions. When the direct
product space R⊗ RF is used, the optimization problem becomes

Aijklmnp xjklmnp = bi, (3.4)

where the indices are summed over the direct product space of spatial and angular
degrees of freedom. The matrix elements are defined to be

Aijklmnp = Tijlkmnp µjklmnp I(|F |,G), (3.5)

where T is the transfer function describing the fraction of the intensity from element,
xjklmnp, that is transfered to bi, µ is the measure in H associated with the 6D voxel
xjklmnp. The intensity normalization factor is given by I(|F |2,G) for a given scattering
form factor F and experimental geometry G. No summation is performed on repeated
indices in Eq. (3.5). The reconstruction is then performed by minimizing |Ax − b|.
The detector geometry is hidden inside the function I(|F |2,G), which also has implicit
dependencies on xjklmnp. Moreover, very little is known about A other than the fact that
it is sparse. In most realistic situations, output from GRAINDEX and GrainSweeper
are used as input for ART.

The Filtered Back Projection method [21] from computed transmission tomography
(CT), can also be used under the assumption of perfect grains. The use of this technique
is associated with the so-called “box-beam” setup [68], a favorable configuration when
speed is needed. This is because, while typical near-field HEDM and 3DXRD setups
use a micro-focused planar beam of a few microns in height, a box-beam is hundreds of
microns tall and may fully illuminate up to several grain volumes at a time. Here, 3D
grain shapes are projected non-perpendicularly onto the 2D detector. This amounts to
a modified version of the Radon transform [67, 88, 91].
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3.3.1 Shortcomings of Peak Center of Intensity Methods

The particular reliance on diffraction peak segmentation, peak identification, and center-
of-intensity estimate in orientation reconstruction leads to significant shortcomings in the
GRAINDEX-like reconstruction methods. The use of digital image processing techniques
such as image segmentation often depend heavily on a set of a priori assumptions on
the physical properties of the diffraction peaks. These assumptions sometimes lead to
highly undesirable results, some of which are discussed in this section.

The most obvious problem is that peak identification, more generally known as image
segmentation, is fairly difficult in the most general case [81, 84]. While advances in both
charge-coupled device CCD and scintillator technology have drastically improved signal-
to-noise ratios, there are still significant challenges in identifying diffraction peaks from
non trivial samples. For example, a single X-ray diffraction image (one integration
interval) for a piece of well annealed, high purity Nickel contains many peak overlaps,
especially in the low 2θ region. Peak overlap is due mostly to the large number of
crystals in the cross section, typically more than 1000 for an interesting sample 1mm in
diameter. Since measurement of polycrystalline samples with large numbers of grains is
important for statistical reasons, we are not likely to see any reduction in this number.

In the case of sharp diffraction peaks, center-of-intensity positions easily translate to
grain center positions through the use of ray-tracing (following the diffracted beam from
the sample to the recorded peak). Also, albeit sometimes challenging, the detection
system’s point-spread function maybe measured ahead of time. In this way, grain shape
may be recovered either from backward projection or algebraic reconstruction of the
deconvolved peak. However, peak overlaps make it difficult to attribute peaks to their
corresponding grain. A priori, it is difficult to know what the contributing peaks look
like given the composite peak. The problem gets further complicated in cases where
many overlapping peaks are present. This happens much more commonly than one
would hope in real materials, as orientation preference in samples (texture) is prevalent
in both naturally occurring and engineered materials. The result is that the combination
of multiple peaks in the same region pushes the response of the detection system into the
non-linear regime, or worse, saturation, making both deconvolution and peak separation
extremely difficult.

In considering more complicated experiments such as in situ observations of strain,
annealing, and phase transitions, both elastic and plastic deformation lead to peak broad-
ening. In these cases, plastically deformed regions contain networks of very low angle
boundaries. Here, even center-of-intensity may be misleading. This is analogous to peak
shifting and broadening due to a concentration of stacking faults in powder diffraction
experiments [126]. Because peak shifts due to deformation are usually asymmetric, the
original reciprocal lattice vector is not recoverable without fully fitting the intensity of
the entire peak.

Because center-of-intensity values of segmented peaks are used to estimate a set of
reciprocal lattice vectors for each of the expected grain centers, the choice of image
process implicitly dictates the possible orientations of the final microstructure. This
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is advantageous in the case of perfect image processing, where peaks are isolated cor-
rectly without error. Unfortunately, real-world subtraction significantly influences the
final outcome of the orientation reconstruction. This can be seen easily in cases where
diffraction peaks are removed through either background subtraction or segmentation.
In the most extreme case, with enough diffraction peaks removed, mis-indexing may
occur. Symmetrically related orientations may produce a significant number of overlaps
in a diffraction pattern. This problem is exacerbated in the case of deformed materials.
In addition, long tails in diffraction peaks can be mistakenly subtracted, resulting in
missing orientation variations inside a grain.

3.4 Forward Modeling

y

x

~xi

vi(~x)

Figure 3.2: Discretization of a microstructure. A microstructure can be represented by an
orientation field, O(~x), where ~x is a point in the sample space. A discretized sample space
(right) is used in the Forward Modeling method.

3.4.1 Overview

All of the methods mentioned so far are only able to address the orientation reconstruc-
tion problem in the case of little to no peak overlap in each recorded diffraction image.
An additional requirement of well ordered grains is also necessary if we desire reliable
reconstruction. This poses a problem, as most interesting polycrystalline systems are far
from being simply a collection of well ordered crystals. Defects are introduced during
many kinds of processing. Deformation can be present from a variety of sources, ranging
from mechanical loads to phase transitions. And, while in some cases complete and per-
fect orientation reconstructions may be impossible (for example, deformation of copper
under high shock rate), reliable partial reconstructions will still prove invaluable. The
Forward Modeling Method, coupled with orientation search, has the required robustness
to address these difficult cases. While the forward model method is extremely simple
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conceptually, it is extremely powerful in its demonstrated ability to recover crystallo-
graphic orientation states in deformed and highly polycrystalline microstructures. The
motivation for this alternate approach to orientation reconstruction will be discussed
in this section. Also some basic definitions will be provided to understand orientation
reconstruction in the context of the Forward Modeling Method.

3.4.2 Definitions

Forward Modeling Simulation

A microstructure can be represented by an orientation field O(~x), where regions with
similar orientations represent grains. In this light, grain boundaries are discontinuities in
the orientation field. The Forward Modeling method is simply the simulation of diffrac-
tion patterns given a discretized input orientation field. The sample space is discretized
into volumetric pixels (voxels), which represent a small volume element, v(~x) in the
sample space. The orientation field, O(~x), is then defined on this discretized sample
space as O(v(~x)). Forward Modeling then corresponds to a simulation of the rotating
crystal experiment. Note that the term “voxel” and volume elements are sometimes
used interchangeably to represent the discretization of the sample space.

Orientation Search

Similar to the Algebraic Reconstruction Technique (ART), reconstructing the orientation

field O(v(~x)) amounts to solving an inverse problem of the form A~x = ~b. To do this, a
search is performed on each element vi to find the best crystallographic orientation that
leads to simulated diffraction patterns that best match the measured ones. This is known
as the orientation search. In principle, the orientation search is done by exhaustively
checking every possible crystallographic orientation for sample point, vi. Because the
rotation group, SO(3), is continuous, a complete exhaustive search by enumerating all
of its elements is impossible. The orientation search must in practice be considered as an
optimization problem with respect to some objective function, C. Generally speaking,
this objective function measures the similarity between the simulated intensity, I(Ot)
and the experimentally measured diffraction patterns, I(O), where Ot and O are the
trial solution and the real orientation field, respectively. The reconstructed orientation
field is also referred to as the reconstructed orientation map.

Provided that the discretization of the sample space is sufficiently fine, and that an
optimum for the objective function, C over the orientation space exists and is unique,
the Forward Modeling method provides a way to reconstruct the crystallographic ori-
entation of an unknown microstructure. This method is powerful in that it allows for
approximations of the scattering physics and microstructure properties to be inserted
systematically. A priori, no assumptions of the features in the microstructure is made,
and the definition of a “grain” is not predetermined. This removes the somewhat ar-
bitrary nature in these geometrical feature definitions that could easily bias the re-
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construction results. In this section, we will detail an implementation of the Forward
Modeling method which uses only Bragg scattering and an ideal detector model. Fur-
thermore, we will see that a binary intensity model is sufficient for robust microstructure
reconstructions that proved challenging to the center-of-intensity methods.

Scattering Physics

The scattering physics calculation is based on elastic scattering. The location of a
diffraction peak on the detector is determined by the Bragg condition, as it specifies the
2θ, η, and ω Fig. 3.1 where the diffraction spot occurs. The intensity of each Bragg
peak is determined by the structure factor. For a given reciprocal lattice vector, ~Ghkl,
the diffracted intensity is given by

A =
∑

n

fn( ~G)e
−i ~G·~rn

I ∝ A∗A, (3.6)

where ~rn is location of the nth atom, and fn is its atomic form factor. To account for
the finite resolution effect in a rotation method (Chapter 1), an extra term of 1

sin 2θ sin η

(the Lorentz factor) is incorporated as the pre-factor in the intensity equation. Since
no explicit intensity fitting is done in the current implementation of the orientation
search, each diffraction peak is binarized based on some predetermined threshold value
to exclude weak or false peaks from the simulation. The comparison of simulated versus
measured diffraction peaks is done by looking at their pixel-to-pixel overlap.

Simulated Detector Model

Typically, a point spread function, σn(x) is associated with each point on a detector.
This point spread represents the imperfect spatial response of the detection system. For
example, in one dimension, suppose that an ideal intensity distribution is given by I(x)
(with units of energy or photons per unit length). A pixelated detector in which pixel
pn is centered at xn and extends over xn ± γ/2 will see an intensity

In =

∫ xn+γ/2

xn−γ/2

dx

∫

I(x′)σn(x− x′)dx′ (3.7)

The inner integral accounts for the point spread while the outer accounts for the finite
pixel size. If σn(x) is uniform over the detector and sharply peaked so that its width is
less than γ, the point spread can be approximated by a δ-function and ignored.

In our case, the detection system includes the scintillator, the CCD camera, and the
focusing optics. The pixel pitch is γ = 1.47µm. For present purposes, we make the δ
function approximation. This is justified by a number of optical tests in which we see
sharp feature edges with widths on the order of the pixel size. As a consequence of using
thresholded intensity values, the point spread function will only act to dilate diffraction
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patterns in a detector image. This amounts to adding a border of pixels around each
measured peak.

Additional effects are neglected as well. For example, the scintillator is finite in
thickness and this causes a characteristic smearing of intensity between pixels at non-
normal incidence. The scintillator that we currently use is 20µm thick, so at 30◦ off
normal incidence, this parallax effect can cause 10µm streaking and this can in fact be
seen around strong peaks. However, the depth of focus of the optical system is only
2µm (FWHM) and this results in the streaks being weak compared to the central peak.
In principle, such effects could be included in the forward model of the experiment, but
our observation is that thresholded peaks contain very little contamination.

3.4.3 Cost Function

Under ideal Bragg conditions, diffraction peaks collected from HEDM are perfectly sharp
spatially and in ω, and the peak shape on the detector is the projection of the shape of the
diffracting region in the sample. In the present geometry (Fig. 3.1), the observed angles

ω and η uniquely determine the orientation of a specific reciprocal lattice vector, ~Ghkl,
while 2θ gives | ~Ghkl|. The list of measured {ω, η, 2θ}, or equivalently { ~G(e)

hkl} completely
determines, up to crystallographic symmetry, the orientation O for a volume element
vi, provided that the list { ~G(e)

hkl} contains at least three linearly independent reciprocal
lattice vectors.

The purpose of the cost function is to measure the difference or distance between
the measured orientation Oe ↔ { ~G(e)

hkl} and trial orientations Ot ↔ { ~G(t)
hkl}. The cost

function should increase with increasing distance between the two orientations, d(Ot, Oe),
where this distance is known as the misorientation, which is simply the angle of fixed-
axis rotation required to get from Ot to Oe. In this spirit, a cost function can be defined
as

C(Ot) =
1

N

∑

h,k,l

| cos−1
(

Ĝ
(t)
hkl · Ĝ

(e)
hkl

)

|, (3.8)

where N is the total number of simulated peaks, and Ĝhkl is a unit vector in the ~Ghkl di-

rection. It should be emphasized here that the angular deviations cos−1
(

Ĝ
(t)
hkl · Ĝ

(e)
hkl

)

are

not generally equal to the misorientation between simulated and measured orientations.
We should note at this point that the reciprocal lattice vectors, ~G

(e)
hkl, are in fact not

explicitly measured. They are specified by the pixel locations of diffraction spots on
the detector. This can be denoted as (ω, η, 2θ) as defined in Fig. 3.1. For small angle

deviations between ~G
(e)
hkl and

~G
(t)
hkl outside the singular range of η → 0, the cost function

of Eq. (3.8) can be approximated by

C(Ot) =
1

N

∑

i

√

δω2
i + δη2i , (3.9)
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where δωi and δηi are the experimental deviations in ω and η from their simulated values.
Here we make the following observations:

1. If we produce the list {G(e)
hkl} from the center-of-intensity positions of each diffrac-

tion peak, and we take the sample voxel vi to be a grain, then we recover the
same optimization problem as in the case of center-of-intensity based orientation
reconstruction.

2. By not having explicit definition of peaks, we have effectively defined an opti-
mization problem that requires the fitting of the list, {G(e)

hkl} , for each lit pixel
in the binarized diffraction data against the set of discretized sample elements,
vi ≪ Vgrain, where Vgrain would be the volume element that encompasses the en-
tire grain. In other words, the result from the optimization of the cost function
in Eq. (3.9) is analogous to running the center-of-intensity optimization for every
pixel against many different sample points inside each of the grains of the sample.

3. The deviation between experimental and simulated diffraction, δωi → 0, δηi → 0
is equivalent to having experimental and simulated diffraction overlap.

In practice, the cost function of Eq. (3.9) is fairly expensive computationally. The
angular deviations defined must be calculated for each lit pixel. By drawing a simple
bounding box (axis-aligned bounding box, or AABB) around each isolated connected
region of lit pixels, we can speed up the angular deviation calculation by replacing δωi

and δηi by the upper bound of their values. Unfortunately, the fact that this computation
scales as the number of peaks observed on the detector makes it extremely costly. To
simplify matters, we can take advantage of observation (see Fig. 3, below) and create
a cost function with similar features to Eq. (3.9). This requires the definition of the
number of peak overlaps as

N =
∑

n,j,k

χ(Is(ωn, j, k, ), Ie(ωn, j, k)),

χ(Is, Ie) =

{

1 if Is > 0 ∧ Ie > 0

0 otherwise,
(3.10)

where Ie is the experimentally observed binarized intensity at pixel location (j, k), and
Is is the simulated intensity for all of the reciprocal lattice vectors, {Ghkl} selected.
Here the location of diffracted intensity is explicitly represented as a detector coordinate
instead of 2θ, ω and η. In this way, maximum peak overlap corresponds to minimum
angular deviation. To incorporate the data observed by multiple detectors and to ensure
that the measure is consistent with observation, we can enforce consistency requirements
to the peak overlaps. This amounts to modifying χ such that peak overlap must occur on
all detectors, satisfying a geometrical constraint: the coordinates of recorded intensities
on all detectors must lie on a straight line including the diffraction origin on the sample.
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We call a peak that satisfies this geometrical constraint a qualified peak (Fig. 3.1). In
practice, it is cumbersome to define a cost function over all detector pixels for each of
the voxels as prescribed by Eq. (3.10). Since diffraction spots amount to only a small
fraction of the pixels on a detector, it is convenient to define overlap for the reciprocal
lattice vectors generated as

N (Ghkl) = χ (Is(ωg, ig, kg), Ie(ωg, ig, kg)) ,

N =
∑

hkl

N (Ghkl), (3.11)

where ωg, ig and kg are the detector and pixel coordinates of intensity produced by ~Ghkl.
Because the number of qualified peaks depends on the orientation and location of the
sample voxel, we must normalize the cost function to form a useful “goodness-of-fit”
across all points in the sample space. This results in the confidence [116],

C = 1

Nqual

∑

hkl

N ( ~Ghkl). (3.12)

Up to this point, we have been assuming the sample voxel, vi to have a side length
that is less than the typical pixel size, γ. This implies that all peaks are weighted
equally regardless of the projected size of the grain. To generalize this cost function to
the case where the vi is larger than the pixel size, a weighting factor in front of χ in the
overlap function N can be added (

Npixel overlap

Npixel lit
). This weighted confidence is known as the

quality. In cases of small numbers of detectors (≤ 2), a secondary weighting factor is
added in front of χ to discriminate against accidental overlaps, which are prevalent in
polycrystalline samples.

3.4.4 Cost Function Landscape

By using the peak overlap function of Eq. (3.10), we have replaced
√

δω2
i + δη2i from Eq.

(3.9) by an indicator function, χ, which is binarized. As a consequence, the optimum of
the cost function C is sharply peaked in orientation space. Intuitively, this is because the
orientation deviation allowed while keeping total peak overlap is roughly ≈ γ

L
, where γ

is the pixel side length, and L is the detector-to-diffraction-origin distance. In practice,
because each grain inside a sample is of appreciable size, the cost function is broadened
by the spatial extent of the diffraction peaks (Fig. 3.3).

The polycrystalline and finite grain size nature of the sample lead to some unintended
effects. While orientations are uniquely determined by the degree of simulated overlap,
significant accidental overlap can occur for orientations that are crystallographically
similar. For example, two orientations off by a 60◦ rotation about [111] in FCC crystals
can share up to 1

3
of the diffraction peaks due to crystal symmetry.

While the contribution to the confidence function by each reciprocal lattice vector is
binarized, the cost and confidence functions themselves are smooth due to the spatial
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extent of each peak (an effect of finite grain size). Deviations of a trial orientation away
from the true orientation will result in a shift of diffracted peak positions. However, this
does not affect all peaks equally, leading to a smooth drop in the confidence. The width
of this drop off is roughly equal to the angular extent of the peak size, or approximately
tan−1

(
r
L

)
≈ r

L
, where r is the longest dimension of the peak and L is the detector-to-

sample-rotation-axis distance. This local peak width of the cost function is extremely
important in speeding up orientation reconstruction.

Somewhat surprisingly, the binarized cost function contains much more abrupt dis-
continuities across the ω direction than the other directions. This is a result of both
the explicit removal of the ω dependency from Eq. (3.9) (in the approximation) and
the large integration interval in this direction. To illustrate this problem, consider a set
of diffraction intensities I(A) generated by an element v at orientation A. If we rotate
this element by a small angle around the ŷ direction by ω to arrive at orientation A′,
we’d find the diffracted intensities shifted both in the η and ω directions. Because the
equivalent angular resolution of our area detector is given by the γ

L
, and L ≈ 1000γ, we

have an effective resolution of around 0.1◦. Therefore, any small shift can be captured
easily and continuously as the peaks move along η̂. On the other hand, the integra-
tion interval for ω suggests that there exists some cutoff positions, [ωn, ωn+1) where the
diffraction spot due to a δω shift will move from image k to k± 1. While the diffraction
spot sharpness is around ≈ 5◦ equivalent angular width in the η direction due to sample
size effects, the angular sharpness remains ≈ 0.1◦ for perfect crystals. Therefore, given
a peak generated from ~Ghkl at orientation A that lands on ωn+1 − δ and ωn+1 at A′,
the peak overlap count due to ~Ghkl will vanish for any sufficiently small δ. In contrast,
a shift δ in the η direction must be at least greater than γ

L
, if not

rgrain
L

before making
the contribution to χ vanish. This results in some interesting consequences in both the
orientation search algorithm and the resolution.

3.4.5 Existence and Uniqueness of A Global Optimum

The orientation reconstruction problem in HEDM and 3DXRD, viewed as an inverse
problem, is not well-posed. In developing the algebraic reconstruction technique (ART),
Poulsen et al. recast the orientation reconstruction problem as a linear system of the
form

Aijklmnpxjklmnp = bi, (3.13)

where Aijklmnp is defined by the detector geometry and crystallographic properties
(Chapter 2). One would hope that by formally defining the inverse problem, its study
would become easier. Unfortunately, the formal form of the linear optimization is not
entirely enlightening, as the detector geometry and scattering physics are buried deep
inside the matrix A, the exact nature of which determines the existence and uniqueness
of a solution. Regularization schemes involving removal of singular elements may be ap-
plied to specific reconstruction problems, but it is generally difficult to see if an inverse
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matrix exists.

There are practical reasons of mathematical interest to solve the orientation recon-
struction problem. At the very least, it gives a sense of confidence to reconstructed
orientation maps. We will only briefly describe our attempt to analyze the existence
and uniqueness of a forward modeling solution, and the discussion will focus on the
limiting cases of very small and very large grains.

Single Grain Samples

In the case of a single crystal, the maximum value of the overlap function, and there-
fore the confidence function, corresponds to complete overlap between simulated and
experimental diffraction peaks. This also simultaneously minimizes the angular devia-
tion between the simulated and measured reciprocal lattice vectors, { ~G(t)

hkl} and { ~G
(e)
hkl},

respectively. Since we have established that we only need three linearly independent
vectors to define the coordinate systems or the crystallographic orientation, the exis-
tence of a global optimum is guaranteed given { ~G(e)

hkl} spans the reciprocal lattice vector
space. Similarly, uniqueness, taking symmetry multiplicity into account, is guaranteed
by this condition.

Polycrystalline Samples

Determination of existence and uniqueness is much less transparent in the case of poly-
crystalline samples. Work by Schmidt et al.[106] has calculated peak overlap probabili-
ties for an untextured sample as a function of the number of grains. However, no explicit
consideration for spatial separation between diffraction origins of grains is made in their
treatment. Because our near-field HEDM technique has a field of view and detector-to-
rotation-axis distance of 4mm, the spatial separation of diffraction origins becomes a
very important consideration in peak overlap analysis. In this case, grains of identical
orientation will not necessarily yield overlapping peaks if they are sufficiently separated
in space. Nonetheless, the work by Schmidt et al. still proves useful as an upper-bound
for peak-overlap probability.

Large-Grain Limit

We define the large-grain limit to be r
γ
≫ 1, where γ is the pixel side length, and r is the

average grain radius. For a sample radius of 1mm, this approximation leads to roughly
10 − 100 grains per cross section, resulting in an overlap probability of 0.3 − 0.4% at
0.1◦ grain mosaicity [106]. Given that each sample point is fitted with more than 100
qualified peaks, the chances of all coming from overlapping peaks is very low. This
suggests that the cost function for large-grain polycrystalline samples will be similar to
that of a single grain.
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Small-Grain Limit

Analysis of the small-grain limit is much more difficult. We define the small-grain limit
as r

γ
≈ O(1). In this case, the number of grains in each planar cross section of the sample

is above 1000. If significant peak overlap is present, the single crystal analysis presented
above is no longer justified. Consequently, we rely on understanding the landscape of our
cost function. In particular, most of our knowledge comes from numerical simulations
of different polycrystalline structures, as shown in Fig. 3.3. From these, we can extract
the following:

1. Our binarized cost function contains multiple maxima (corresponding to minimum
angular error) in most polycrystalline samples. These maxima are a consequence
of rotations in the cubic lattice that leaves a significant fraction of the reciprocal
lattice vectors unchanged (i.e., 60◦ about [111]).

2. Given a sample element v, the cost function C(v) has a global maximum which
corresponds to a point in orientation space located within a radius d from the true
orientation. This d depends on the spatial extent and mosaicity of the diffracting
crystal.

3. While our binarized cost function is not strictly monotonic due to noise, given an
experimental orientation O, C(O′) for any O′ ∈ {O′|d(O′, O) ≤ r} is smaller than
in most other outside regions (Fig. 3.3(d)).

3.5 Orientation Search Algorithm

With the cost function defined in Eq. (3.12), and its features discussed in the previous
section, we proceed to define the search algorithm. To begin, we will briefly review
the original algorithm developed by Suter et al.[116] which recast the orientation recon-
struction problem as an exhaustive search over orientation space. Discretization and
interpolation schemes in SO(3) will be discussed, as they are an integral part of the
search algorithm. Then, the new method of Stratified Monte Carlo Pruning, an im-
provement built on the original algorithm, will be presented. The correctness of these
algorithms will be tested using simulated results and known pathological cases. Finally,
their runtime complexity will be examined.

3.5.1 Orientation Discretization

Consider a sample specified by the set of points, ~xi. The forward modeling method
finds the best orientation Oi such that the confidence function C = − 1

Nqual

∑

h,k,lNh,k,l

is maximized. Because the cost function chosen is mostly flat with very small, localized
maxima, a large sampling across the orientation space (SO(3)) is required. To ensure
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(c) Single pixel cost function (5 degrees angular
radius)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Misorientation (Degrees)

C
on

fid
en

ce

(d) Single pixel cost function, polycrystalline
diffraction pattern (full fundamental zone)

Figure 3.3: Representative landscape of the cost function for a single voxel. (a), (b), and (c) are
successively expanded scale representations of the same cost function C for the reconstruction
of a single simulated voxel in absence of any other diffraction spots, i.e., a single crystal
experiment. The misorientation angle (x-axis) indicates the distance away from the known
orientation solution, which goes up to ≈ 62◦ because of the fundamental zone restriction. The
sampling rate of the cost function is lowered in (a) to show the local minima structure typical to
C. The plot in (d) shows the features of a single-voxel cost function in a polycrystalline sample
(Qmax = 10). Features seen here are indicative of well ordered crystals (500 randomly oriented
grains). Multiple local minima occur across the fundamental zone plotted, with a significant
number showing up around 60◦, which is attributed to rotations about high symmetry axes.
General broadening of the cost function can also be observed when Qmax is reduced. This
restriction amounts to lowering the total number of peaks used for orientation reconstruction.
This feature is exploited in the adaptive search method (Algo. 3).
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uniformity and reduce sampling noise (dispersion), an incremental, approximately uni-
form (instead of random) sampling is used [132]. This method provides us with controls
of local resolution, which is crucial for the implementation of the Stratified Monte Carlo
Pruning (SMCP) algorithm. While detailed proofs of this sampling algorithm are beyond
the scope of this thesis, a brief summary of the results and some important properties
are discussed in the following section.

Sampling Algorithm

Both the original exhaustive orientation search and SMCP algorithm use an orientation
grid generated by the sampling method as the starting point. To construct an approx-
imately uniform grid in SO(3), we implement a modified version of the Deterministic
Sampling Methods for Spheres (DSMS) [132]. This method is designed to sample any
general Sd structure deterministically. To do so, DSMS takes advantage of the property
that any regular polytope in (d+ 1)-dimensions can be centered on a circumscribing Sd

sphere that intersects all its vertices. In so doing, the vertices vi of the (d+ 1)-polytope
partition Sd into f sections, where f is the number of faces of the polytope. For exam-
ple, S1, a circle, is sampled by a square. The vertices of the square partition the circle
into four sections, one for each of the faces (edges). A hyper-cube is used in the case of
SO(3) sampling. To obtain approximately uniform sampling on Sd, regularly sampled
points on each of the faces of the k-polytope are projected onto the d-sphere. In S1, this
is equivalent to uniformly sampling the sides of a circumscribed square and drawing a
line between the center of the circle and sample points on each face.

The fact that the set of unit quaternions, H, forms the surface of a 3-sphere, S3,
and that H is a double cover of SO(3), with H ≡ −H were exploited for the application
of DSMS to SO(3). Therefore, selecting sample points corresponding to one of the
“hemi-3-spheres” would result in a uniform sampling of SO(3). Furthermore, projecting
regular sample points from the faces of the hyper-cube circumscribed by the unit 3-
sphere amounts to applying trilinear spherical linear interpolation (SLERP) between
the vertices (eight quaternions) that specify each of the hyper-faces, where SLERP is
defined as

S(q1,q2, t) = q1
sin (tΩ)

sin(Ω)
+ q2

sin((1− t)Ω)
sin(Ω)

,

Ω = cos−1(q1 · q2),

for 0 ≤ t ≤ 1. (3.14)

The sampling of SO(3) thus corresponds to sample points {q|q3 ≥ 0}, were q3 is simply
the third component of the quaternion q. A trilinear-SLERP is simply applying SLERP
three times. In this way, a mapping of R3 → SO(3) that approximately preserves the
sampling structure of R3 is created. What is left is the sampling of R3. Any sampling,
regular or otherwise, could be used; however, the layered Sukharev grid is chosen because
it results in some very useful bounds on the sampled points.
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Sampling Properties

Intuitively speaking, the problem with random sampling in a space S is that the dis-
persion could be too low in some local regions. This could happen even with perfectly
random numbers without having a prohibitively large number of sample points. Specif-
ically, we would like to guarantee low dispersion and discrepancy, two measures used
to decide the uniformity of a sampling method. Roughly speaking, given a region R
sampled by the point set P , dispersion (δ(P )) is the maximum ball in R such that no
point p ∈ P lies inside. Suppose that a volume V of the region r ⊂ R is estimated using
the number of points in the point set P inside r, then, the discrepancy is the maximum
difference between the estimated and the real volume in the sampled region. Formally
speaking, let X = [0, 1]d ⊂ Rd be the region to be sampled, and R the set of possible
of subsets of X . For example, R could be a set of rectangles that lies within X . Then,
given that point set P samples R, and any r ∈ R, P ⋂ r, the point set P estimates the
volume (area) of r. Suppose that for any r, its volume can be measured by µ(r), then
[131] defines discrepancy as

D(P, r) = sup
r∈R

∣
∣
∣
∣

|P ⋂ r|
N

− µ(r)
∣
∣
∣
∣
, (3.15)

where N is the number of sample points in the point set P , and |P ⋂ r| is the “number
of elements” in the intersection of the sets. Discrepancy can thus be identified as the
volume of largest over- or under-sampling within the entire sample space. On the other
hand, dispersion is formally defined as

δ(P, ρ) = sup
q∈X

min
p∈P

ρ(p, q), (3.16)

where ρ is any metric. In the case that we are interested in, the natural metric for points
in SO(3) parameterized by quaternions is given by

ρ(p, q) = cos−1 (p · q) . (3.17)

It can be shown [132] that the sampling method by Yershova et al. is bound by

δ(P ) ≤ 2π
d
√

n((2d − 1) + 1)
, (3.18)

and for our case, d = 3 for the quaternion representation of SO(3), and n is the number
of sample points in the Sukharev grid. This gives us a direct way to control the sampling
resolution in SO(3) based on the number of points selected in R3.

Sampling in the Fundamental Zone

So far we have seen how an approximately uniform grid can be generated on SO(3).
Because of crystal symmetry, only a subsection of the entire SO(3) produces unique
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orientations for a sample point. This is referred to as the fundamental zone. For the
purpose of our orientation search, we would like to modify the orientation sampling
method so that only the fundamental zone is sampled given a specific crystal symmetry.
This amounts to finding the set of sample points in SO(3). However, the operation
of selecting sample points specifically for a fundamental zone sometimes destroys the
dispersion guarantee around the zone edges. Therefore, an additional “hole-patching”
operation via local SLERP is performed to restore the dispersion guarantee along the
edges of the fundamental zone. Unfortunately, the remaining sample points still violate
the discrepancy requirement in that the resulting point set oversamples the zone edges.
This problem is ignored, as it does not affect the correctness of the search algorithm.

3.5.2 Exhaustive Search

As the name suggests, the exhaustive search algorithm follows the original forward mod-
eling prescription, in that all discretized orientation sample points are searched. To im-
prove performance, several well known searching techniques are implemented. First, the
orientation space is searched sparsely in a global search. Taking advantage of the small
but finite width of the cost function, the sampling grid is set such that the discrepancy
δ ≤ r, where r is the radius of the cost function in orientation space. The set of grid
points near a local minimum are saved. In the context of our cost function, this is
indicated by

∑

h,k,lNh,k,l > 0. A local optimization, namely a zero temperature Monte
Carlo, is used to find the optimal solution (Algo. 1). The algorithm is more concretely
defined as follows.

Algorithm 1 ExhaustiveSearch for a given sample space element v(~x).

for all oi ∈ SO(3) do
χ← Overlap(oi, v)
if χ > 0 then
CandidateList ← (oi, χ)

end if
end for
Sort( CandidateList ) { Sort candidate list by χ in decreasing order}
for i = 1 to min( MaxCandidates, size( CandidateList ) ) do
(oi, χ)← CandidateList[i]
c← OrientationMonteCarlo(oi)
if c < BestCost then
BestCost ← c
BestSolution ← oi

end if
end for

The function “Cost” simply calculates the confidence function given in Eq. (3.12)
when the voxel, v, is below pixel size. The “quality” generalization is used when v spans
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Algorithm 2 OrientationMonteCarlo for a given orientation, o, maximum number of
steps, Nmax, and max accepted cost cmax

while N < Nmax ∧ c ≥ cmax do
ζ ← UniformRandomRotation(δ )
c′ ← Cost(ζo, v)
if c′ < c then
c← c′

o← ζo
end if
N ← N + 1

end while
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multiple pixels. The function “UniformRandomRotation,” not detailed here, produces a
uniform random rotation matrix centered at the identity with a radius of δ. In the case
of small rotation deviations of a few degrees around o, this is simply the infinitesimal
rotation matrices, namely

Θ(δ1, δ2, δ3) =





0 δ3 −δ2
−δ3 0 δ1
δ2 −δ1 0



 . (3.19)

In the current implementation, a specialization of the method that maps R3 → SO(3)
from Sec. 3.5.1 is used. The result is the ability to produce uniform random matrices
around the origin out to a larger angular radius.

The need for local optimization arises naturally from the fact that SO(3) is a con-
tinuous group. If the cost function is relatively smooth and continuous, a common
optimization scheme such as conjugate gradient could have been used. Unfortunately,
since the cost function is extremely sharp, usually ranging from 1◦ to 5◦ in width with
many sharp local minima of 0.1◦ to 0.5◦ in width (Fig. 3.3), most optimization routines
are unsuitable. As discussed in Sec. 3.4.4, this particular landscape of the cost function
is due mostly to peak overlaps in a polycrystalline material.

On the other hand, the use of purely uniform grid points is extremely expensive. For
a system with cubic symmetry, the volume of SO(3) that produces a unique orientation
is 8π2

24
radian3. To reach a resolution of 0.1◦ would require approximately 6× 109 sample

points. At conservatively 200 floating point operations (FLOP) per diffraction peak,
and roughly 150 diffraction peak computations per orientation, roughly 2× 1014 FLOP
would be required for a single point in the sample space. As a comparison, at the time of
this writing, a typical processor can perform roughly 1011 FLOP per second (FLOPS).
Neglecting the fact that most of this computation is not instructive to the final optimized
solution, it would take roughly three hours to optimize the solution of a sample point.
Considering that the typical spatial resolution would require roughly 106 sample elements
per layer, this method of orientation reconstruction becomes prohibitive. The use of local
orientation Monte Carlo optimization is a way of adaptive refinement of the orientation
space, which reduces the total number of sample points required.

3.5.3 Stratified Monte Carlo Pruning

Even with local orientation optimization, the exhaustive algorithm is still searching a
significantly large number of grid points (105). Furthermore, low order peaks are much
more likely to fit than higher order peaks due to the projection geometry and intensity
drop-off of diffraction spots at high Q. That is, the cost function contribution due to
lower Q peaks tends to be more spread out in orientation space (Fig. 3.3). Consequently,
the minima are wider due to the limited number of peaks.

A new, adaptive sampling method was developed for the purpose of orientation search
to replace the uniform grid search. It was developed based on the following observations:
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1. Most of the time spent in the uniform grid search does not produce any viable
orientation candidates.

2. While, globally, the cost function contains many very deep false minima, the region
around each minimum is relatively narrow and can be sampled explicitly. The
“integral” of the cost function around some local minimum can be estimated, and
thus the average value of the minimum can also estimated. This provides an
estimated local bound for the cost function.

3. Regions with bounds below some threshold can be safely ignored since they are
unlikely to produce any admissible solution. This is usually known as “bound and
search.”

4. The cost function, C(Qmax) can be approximated by C(Q′
max), for Q

′
max < Qmax,

which results in a lower angular resolution. This is because the number of peaks
used to evaluate the cost function decreases with decreasing Qmax. As a conse-
quence, the approximated cost function can be computed quickly.

By taking advantage of these observations, the algorithm “prunes” the orientation space,
and locally increases resolution in the regions of lower average cost. This process is
performed iteratively until the algorithm reaches some local threshold resolution. The
new algorithm is described below. We use a modified version of the exhaustive search
at each step to find the list of candidate orientations to be optimized.

Algorithm 3 AdaptiveSearch. Find the best orientation given volume element v, min-
imum and maximum angular radius, δ and r, and initial maximum Q and Q-step, δQ.

Input: v, δ, Qmax, δQ,MaxLocalCandidatesOutput: obest

SearchGrid← GetGlobalGrid(r)
CandidateList← ExhaustiveSearch(SearchGrid, v, Qmax)
while r > δ ∧ |CandiateList| > 0 do
r ← r/s {s is a tuning parameter for the search algorithm}
for all oi ∈ CandidateList do
(cj, oj) ← EstimateLocalCost( v, oi, Qmax, r) {Estimate local cost by locally
sample around oi}
NewCandidates← (cj , oj) { Insert the list into the set of possible candidates }

end for
Sort( NewCandidates ) {Sort by averaged cost, cj in decreasing order.}
Nmax ← ⌊|LocalCandidates|,MaxLocalCandidates⌋
Candidates← NewCandidates[i, Nmax]
Qmax ← Qmax + δQ

end while

A pictorial representation of this algorithm can be found in Fig. 3.4.
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(a) Rough uniform grid over
SO(3)

(b) Level 1 local refinement (c) Level 2 local refinement

Figure 3.4: Pictorial representation of the refinement process. The intersections of the black
lines represent the uniform grid used to sample globally. The blue circles indicate regions of
shallow, broad minima of the cost function. Green circles indicate sharp false minima, while
the solid red circle is the true global minimum for the specific Qmax used for this reconstruction.
At each iteration going from (a) to (c), the angular resolution of the cost function is increased
by increasing Qmax.
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The idea of applying an adaptive method to a problem with discrete cost functions
is fairly well established. If the trajectory of the orientation search is mapped out as a
graph, a search tree could be constructed. In this context, our search problem is closely
related to many of the search problems in artificial intelligence (AI) and robotics [57],
where a large, discrete solution space is to be searched. Similar to problems in AI, it is
in general very difficult to decide if a candidate solution is near the optimal solution in
the orientation search. The pruning method then allows us to estimate the final cost of
a candidate solution by sampling around it rapidly. In so doing, large neighborhoods of
orientations around a candidate solution can be eliminated quickly.

By the appropriate choice of δ and r in the adaptive reconstruction, we can see that
the algorithm converges rapidly by re-sampling regions with low cost.

3.5.4 Simple Spatial Resolution Model

L2

L1

~P

~R2

~R1

~a′

~b′

~O

ẑ

Figure 3.5: A simple error model used to estimate the error in determining the location of an
indexed diffraction origin ~O. Here, ~a = ~R1 + ~a′, and ~b = ~R2 +~b

′.

Assuming perfect orientation reconstruction, the error in the determination of geo-
metrical features can be prescribed using a simple ray-plane intersection. The sample
space can be described by the plane equation as

(

~P − ~O
)

· ẑ = 0, (3.20)

where we have taken the sample plane to be perpendicular to the z axis for convenience.
The point ~O is the origin of the sample plane, and ~P is any arbitrary sample point.
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Assuming that we are using only two detectors, then given two pixels measured at ~a,~b
of detector 1 and 2 whose intensities are due to diffraction at ~P , the points ~P ,~a,~b form
a line given by the equation,

~P = tl̂ +~b,

l̂ =
~a−~b
|~a−~b|

. (3.21)

To find ~P , the intersection equation can be solved by
(

tl̂ +~b− ~O
)

· ẑ = 0

t =
( ~O −~b) · ẑ

l̂ · ẑ
~P =

(

( ~O −~b) · ẑ
l̂ · ẑ

)(

~a−~b
|~a−~b|

)

+~b. (3.22)

The location ~P is estimated by the average value, 〈~P 〉 from many different diffraction

peaks. Given that different diffraction peaks contribute (~ai,~bi) with errors of δ~a = δ~b =

δ~x, we have the error of 〈~P 〉 to be estimated by error propagation in the usual way,
namely,

σi =

√
(
∂P

∂ai
δai

)2

+

(
∂P

∂bi
δbi

)2

+

(
∂P

∂Oi
δOi

)2

, (3.23)

σ〈Pi〉 =
σi√
N
.

Following the arithmetic, we find

∂Pi

∂aj
= (O3 − b3)

[

−δj3
|~a−~b|

(a3 − b3)2
− 1

a3 − b3
ai − bi
|~a−~b|

]

(ai − bi)
|~a−~b|

(3.24)

+

[

δij

|~a−~b|
+

(aj − bj)(ai − bi)
|~a−~b|3

]

( ~O −~b) · ẑ
l̂ · ẑ

(3.25)

∂Pi

∂bj
=

[

δj3

l̂3
+ (O3 − b3)

(

bj − aj
|~a−~b|(a3 − b3)

+
δj3|~a−~b|
(a3 − b3)2

)]

ai − bi
|~a−~b|

+
( ~O −~b) · ẑ

l̂ · ẑ

(

−δij
|~a−~b|

− (aj − bj)(ai − bi)
|~a−~b|3

)

+ 1 (3.26)

∂Pi

∂Oj
=

[(
δi3

l̂ · ẑ

)
ai − bi
|~a−~b|

]

(3.27)
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Here, δij is the usual Kronecker delta, and indicies i ∈ {1, 2, 3} correspond to the spatial
components.

General and somewhat unsurprising features are observed in this model. As expected,
the error contributions are non-isotropic. This is expected as our measurement has a
preferred direction. Secondly, all errors decrease with the increase of detector spacing.
It should be noted that the detector spacing is limited by the field of view of the CCD
camera. Ideally, micron-resolution area detector with field of view of 10’s of centimeters
would lead to much higher reciprocal (angular resolution around 1×10−6) and real space
resolution, but that is simply impractical at the time of this writing.

Of course, objections could be rightly raised here for the assumption of independence
between different measured quantities. For example, the measurement of diffraction
spots clearly depends on the origin, and the deviation between the two measurements
at different L-distances certainly be correlated if the origin of the error comes from
either the detector or the X-ray source. As such, the off diagonal elements of the error
matrix should also be computed. Similarly, error estimates using Monte Carlo studies
are also viable, but it is beyond the scope of this thesis. For these reasons, a number of
“numerical experiments” were conducted on many different synthetic and experimental
data sets in an effort to quantify the errors associated with experimental uncertainties,
as described in the next section.

3.5.5 Validations

A series of validation tests were performed on the reconstruction method. Simulated
scattering produced from a set of synthetic microstructures was used to test the re-
construction algorithm’s sensitivity. Because of the significantly large parameter space
on the potential experimental configurations, synthetic microstructure characteristics,
and detection noise, we have limited our studies to a selected few that directly affect
some of the on-going experiments. Namely, synthetic microstructures with the following
properties are used.

1. Random orientations.

2. Dense, symmetrically related orientations.

3. Plastic deformation reflected as orientation gradients.

The effects of random orientations is omitted in this thesis, as it has been thoroughly
described in [40]. As a validation of the correspondence between peak and grain shapes,
the reconstruction of segmented diffraction peaks in high purity Ni is also presented.
Because of the large number of three-dimensional orientation maps produced thus far
in this work, a representative selection of the reconstructed microstructures will be
presented in the appendix. Some results from the analysis of these orientation maps are
presented in Chapters 5 and 6.
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Dense Symmetrically Related Orientations

To test the robustness of our orientation reconstruction algorithm against a potentially
pathological case, a microstructure was created using only highly symmetric points in the
orientation space. Moreover, curved surfaces meeting at sharp points are deliberately
put into this microstructure to mimic boundary lines seen in nature. The synthetic
microstructure was created by assigning orientations to regions on aN×M gird. Starting
from the top left, orientations were assigned to regions centered at grid points (nx,my),
where n,m ∈ {1, 2, 3, ...} The traversal order is row major, in that n is incremented
faster than m. At grid point (0, 0), a random orientation, O(0, 0) was selected. At each
successive point, O(l) = ΣkO(l − 1), l = m ·N + n. The rotation matrix Σk belongs to
a set of specialized rotations such that for a large number of h, k, l, ΣnOGhkl = OGhkl.
These are typically rotations about some high symmetry axis of the crystal lattice, for
example, rotation about [111] direction by 60◦.

Diffraction patterns were generated using a grid that is incommensurate with the
reconstruction grid. In so doing, accidental suppression of reconstruction noise, espe-
cially in the recovered grain boundaries is avoided. The reconstructed orientations are
shown to agree with the test patterns from Fig. 3.6. A small number of regions were
not reconstructed, and they are indicated by areas of low confidence. This is expected,
as the convergence criteria were deliberately relaxed to demonstrate the failure mode of
this reconstruction algorithm. The fact that regions of low confidence coincide exactly
with regions of failed reconstruction suggests that confidence is in fact a good figure of
merit. As expected, the confidence of the reconstructed map drops off rapidly outside
of the synthetic microstructure. While this is true in general, deviation in geometrical
parameters, such as L-distance, or the introduction of noise into the measurement would
certainly lead to less dramatic drop-off.

Microstructure with Orientation Gradients

In most scientific and engineering applications, material defects and damage lead to
orientation gradients across grains. In fact, arguably some of the most interesting ap-
plications of HEDM involve measurement of the degree of deformation in a sample. For
example, the measurement of plastic deformation manifested as orientation gradients
and local misorientation in an in-situ uni-axial strain experiment performed on a high
purity (99.9999%) copper wire is expected to be an unprecedented input for modeling
calibrations (see Chapter 6). In situ observation of a structural phase transition of Ni-
Mn-Ga will hopefully provide insights into the effects of strain on the phase transition
temperature [103].

A microstructure produced from a simulation of a piece of deformed titanium was
used as an input for the test of orientation gradient reconstruction [63]. This data set,
obtained from the Dawson group at Cornell [18], indicates a likely mode of orientation
evolution in a typical uni-axial load experiment, similar to those that we have performed
on copper. As with other simulation tests, X-ray diffraction patterns were generated
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Figure 3.6: Reconstruction test using a synthetic microstructure (a) designed to be difficult
for the reconstruction code due to the successively neighboring twin structures that lead to
significant peak overlaps. The reconstructed map (b) with its confidence plot (d) indicates
that while most “grains” are reconstructed, about ten distinct points appear to have below
expected confidence. The blue ring around the reconstructed confidence map indicates that
the analysis code is unable to find suitable orientations for these points, which is in agreement
with the synthetic structure. (c) is a plot of the distribution of the confidence.
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based on locally sharp Bragg scattering. While in general, the deformation model, and
thus its effect on diffraction peaks should be input explicitly into the scattering model for
a correct simulation of intensity, we have stayed with the assumption that each volume
element (voxel) is a perfect crystal for the time being. This restricts the study to purely
the limits of geometrically based orientation reconstruction, as the detailed effects of
intensity variation is not considered. Moreover, intensity fitting requires optimization
of, at the very minimum, multiple voxels across a grain simultaneously. This leads to
extremely expensive reconstructions. Significant algorithmic development is required
before intensity fitting could become accessible even for the present simulation study.

The typical effect of orientation gradients is the smearing of diffraction peaks across
both ω and η direction. This can be seen in Fig. 3.7(b), where diffraction peaks are
smeared into arcs. In fact, these arcs will be identified as single peaks using most
typical image segmentation or peak identification algorithms. Consequently, estimated
center-of-intensities are no longer useful for orientation reconstructions. Because the
peak motion along the η and ω direction is a function of the sample rotation (different
ω-integration intervals) and depends on the diffraction origin Fig. 3.5, the Forward
Modeling method is still able to uniquely determine the orientation of each voxel (Fig.
3.7).

Convergence of Reconstructed Orientations

It is often difficult to determine the optimal value for the parameter, Qmax used for
orientation reconstruction a priori. While a large upper limit can be determined based
on the diffraction geometry, namely the field of view and the detector distance, other
factors, such as peak intensity variation as a function of |Q| are not so transparent. For
example, the finite dynamic range of a detector places an upper and lower bound on
|Q| due to both saturation (low |Q|) and weak signal (high |Q|). Because the diffracted
intensity drops off rapidly as a function of |Q|, higher order peaks have much lower
signal to noise ratio. On the other hand, effects of strain and deformation are much
more prominent for higher order peaks. For example, peak shift due to random stacking
faults in general increase with Q [126]. As seen in Fig. 3.3, the representative cost
function sharpens significantly upon increase of Qmax. The direct effect of Qmax on the
reconstructed microstructure is seen by comparing Fig. 3.8(a) with Fig. 3.8(b).

Intensity Decomposition

The analysis method of HEDM indicates that geometrical information of each grain is
encoded by the diffraction peak shape. Therefore, the outline of a grain at the obser-
vation geometry is considered to be represented by the outline of a diffraction pattern.
Similar to absorption tomography, given sufficient number of diffraction spots, the shape
of each grain could be recovered. In fact, there has been significant effort in applying
backward filtered projection algorithms to reconstruct grain shapes [88, 91]. Unfortu-
nately, as mentioned in Sec. 3.3.1, existing techniques such as those in referenced in
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(a) Simulated microstructure of plastically de-
formed Ti

(b) Example diffraction image

(c) Reconstructed microstructure. (d) Point to point misorientation

Figure 3.7: Orientation reconstruction test for plastically deformed Ti. (a) Plastic deformation,
manifested as orientation gradients across each grain (shown as variations of the false color)
on titanium was simulated using finite element methods [18]. (b) Diffraction signals of the
deformed Ti generated using the forward modeling method. It is shown that the diffraction
patterns are smeared across many images and pixels (both η and ω directions). (c) Recon-
structed orientation map from the deformed Ti diffraction patterns. This test shows the via-
bility of reconstructing materials with orientation gradients. (d) Point-to-point misorientation
comparison between the original and reconstructed orientation map. We see that the errors
in the orientation reconstruction are relatively low and that the grain boundary geometries
across the two maps are very similar. It should be emphasized that the reconstruction grid
and forward simulation grids are deliberately incommensurate so that reconstruction noise is
not artificially suppressed.
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(a) Qmax = 10, s = 0.6µm (b) Qmax = 12, s = 0.6µm

(c) Qmax = 12, s = 1.2µm (d) Qmax = 12, s = 2.4µm

Figure 3.8: Orientation noise variation with Qmax and reconstructed resolution. Noise is
measured by a locally, or kernel, averaged misorientation calculation (the strained copper wire
data and kernel averaging are discussed in detail in Chapter 6). (a-d) A comparison of the
effects of different spatial and reciprocal space resolutions on reconstructed orientation maps.
A progression of degradation of features can be seen as spatial resolution is decreased. Reduced
number of peaks used for orientation reconstruction leads to significant increase of orientation
noise, as seen in (a). Finally, while overall features of kernal averaged misorientation remain
relatively stable as spatial resolutions were varied, changes inQmax significantly alter the global
result.
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Figure 3.9: A histogram comparing the variation of the distribution of local average misori-
entation (Fig. 3.8 as a function of Qmax, sample spatial resolution, and L-distance. All fits
were performed at Qmax = 12 except for the case indicated otherwise. Broadening of the
local misorientation distribution can be seen in the Qmax = 10 case. Along with the spatially
resolved KAM map, this indicates that the use of lower Qmax results in a generally noisier
reconstructed orientation map.
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[87, 91] are limited to reconstruction of microstructures with low defect content.
To show that geometrical information is indeed reconstructed correctly using the

forward modeling method, reconstruction of high purity nickel is compared at different
intensity threshold levels. Using a method termed “intensity decomposition,” diffraction
peaks are split at different relative intensities before forward modeling reconstruction.
In so doing, only part of the diffraction peak is fitted at a time. Specifically, given
a set of diffraction intensities that are segmented into disjoint peaks after background
subtraction, the maximum intensity of each peak is identified as Imax(n), where n is the
ID for this peak. For a given threshold range [flImax, fuImax], where fl, fu ∈ [0, 1], the
set of connected pixels {pi} that forms this peak within this intensity range is accepted.

For grains with low defect content, as expected for well annealed high purity nickel,
diffracted peaks should have simple intensity contours corresponding to the shape of each
grain. As an example, taking [I0, I1] = [0.1Imax, 0.2Imax], only the “bottom” contour
corresponding to the grain edges is selected for each diffraction peak Fig. 3.10(b). While
intensity decomposition of overlapped peaks may lead to undesirable result (e.g, cases
where a strong peak and a weak peak overlap), it provides a good way to classify the
source of experimentally observed diffraction signal and the corresponding reconstructed
voxels.

The reconstruction results of the same measurement of high purity Ni at different de-
composition levels are shown in Fig. 3.10 and Fig. 3.11. For comparison, reconstruction
using data from standard background subtraction processing is also shown as a baseline.
Confidence values in Fig. 3.11 show that the removal of peak centers leads to signifi-
cantly lower confidence in the center of each grain. Moreover, a progression of regions
with higher confidence can be seen as we move across the different threshold ranges in
an expected manner. The reconstructed region moves toward the center as the both
[Il, Iu] increases, thus approaching the diffraction peak centroids. Finally, comparison
across all four of the orientation maps in Fig. 3.10 shows the marked consistency in
orientations reconstructed amongst the different intensity ranges.

3.5.6 Experimental Parameter Bootstrap Optimization

As mentioned in Chapter 2, deviations in experimental parameters lead to significant
differences in the quality of the reconstructed orientation maps. A numerical “bootstrap”
method is used to estimate the geometrical parameters, as they are difficult to measure
directly.

Taking advantage of the fact that the cost function in the Forward Modeling method
varies with different geometrical parameters, an objective function is constructed as the
sum of Eq. (3.12),

F(~g) = 1

n

n∑

i

C[~g](~xi), (3.28)

where ~xi is a point in the sample space, represented by a voxel, ~g is the list of ex-
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(a) I ≤ 0.1Imax (b) 0.1Imax ≤ I ≤ 0.2Imax

(c) 0.2Imax ≤ I ≤ 0.3Imax (d) Complete Peak Intensity

Figure 3.10: Orientation maps reconstructed using different intensity thresholds of the
diffracted peaks. Each map is thresholded at 0.6 confidence. Different intensity ranges of
the diffraction peaks correspond to different regions of the reconstructed grains.
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(a) I ≤ 0.1Imax (b) 0.1Imax ≤ I ≤ 0.2Imax

(c) 0.2Imax ≤ I ≤ 0.3Imax (d) Complete Peak Intensity

Figure 3.11: Confidence plots for reconstructed maps with different intensity thresholds. Only
regions around grain boundaries are reconstructed in cases where the high intensity portion of
the diffraction peaks, i.e., central regions, are removed.
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perimental parameters (i.e, L-distance, detector orientation, and pixel size), and n is
the number of sample point used. The list of experimental parameters is recovered by
maximizing F(~g) by a parallel optimization method. This amounts to performing an
orientation reconstruction on a set of voxels randomly sampled from the sample space
at different ~g until F(~g) is maximized. Because the experimental parameter space is
large (six most relevant dimensions due to detector orientation and diffraction origin),
the optimization can become very computationally consuming. Adaptive sampling in
the parameter space and a judicious choices of voxels helps to reduce the total run time
of the algorithm.

In the present case, the experimental parameter search space is sampled with low
resolution initially (large step size) and successively refined as the cost improves. This
is done using a finite temperature Monte Carlo method in the serial algorithm, but
because the cost evaluation dominates the total CPU time (and takes up to minutes
per evaluation), the serial optimization strategy is impractical. To reduce total run
time, a parallel optimization heuristic is constructed by subdividing the experimental
parameter space intoM regions, where M corresponds to the number of processors used
for optimization, and local optimization is performed in each subregion.

Since the basis of this optimization comes from maximizing the amount of the sam-
ple space with high reconstruction quality, a uniform random sampling is used for voxel
selection in the initial optimization. However, as F(~g) approaches its maximum, uni-
form random selection may not represent the optimal search asF(~g) varies slowly for
voxels selected from the interior of grains. In this case, selection of voxels along grain
boundaries proves to be much more effective, as they remain sensitive to small parameter
perturbations even when ~g is close to optimal.

Finally, from numerical experiments, it is found that the orientation reconstructions
are not equally sensitive to all of the geometrical parameters. Specifically, deviations
in L-distance and beam center typical dominate the reconstruction quality; detector
orientations are only relevant after the displacement parameters are optimized; X-ray
beam energy and detector pixel size (not counted above) are only relevant to the final
optimization. Based on this observation, we restrict the initial experimental parameter
space heuristically to a smaller subspace to save computational time.

3.6 Summary

3.6.1 Major Advances in Orientation Reconstruction

A plethora of three-dimensional orientation maps has been made available due to the
recent increase in both robustness and efficiency of the digital orientation reconstruction
method. Just as a scale, the total amount of data reconstructed with the first incarnation
of the exhaustive search algorithm was less than 100 layers. It amounted to approxi-
mately 1×108 total voxels. This is less than a single volumetric measurement consisting
of (≈ 2× 108 - ≈ 4× 108) at the time of writing. For the desired orientation resolution
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for highly deformed copper, we have determined that Monte Carlo pruning has reduced
fitting time from ≈ 2000 to ≈ 150 seconds. The number of different materials measured
and reconstructed is also increasing rapidly. For example, we have measured BaTiO,
Ni-Mn-Ga, Zr, and shock loaded Cu, just to name a few.

Increased reconstruction efficiency, combined with rapidly improving acquisition speed,
could lead to unprecedented access to real-time, high resolution, and statistically sig-
nificant measurements. However, to keep up with increasing demand and data rate,
continued improvement is necessary on both the computational optimization as well as
the theoretical understanding of the reconstruction. While the idea of spatially resolved
orientation reconstruction is straightforward, aside from very limited cases, very little
is known regarding its convergence criteria. At the time of this writing, the conditions
where an optimal solution exists and is uniqueness are not known. While numerical
studies and experimental validation with existing techniques are helpful guidelines, they
are anything but definitive. Practically speaking, the lack of theoretical understanding
of the reconstruction problem is the reason for the slow reconstruction code; aside from
empirical experience, it is simply difficult to decide if a reconstructed orientation map
is optimal under the metrics considered.

3.6.2 Future and Ongoing Work

Ongoing development efforts are focused mainly on two aspects: the ability to use peak
intensity profiles in the reconstructions, and optimization of the orientation search algo-
rithm. The need for intensity fitting arises from the interest in spatially resolved elastic
strain state measurements. Elastic strain in the crystal structure leads to changes in the
lattice spacing, and consequently leads to peak shifts. Since the strain state for a single
sample volume element is averaged across many unit cells, the resulting diffraction is a
peak shape that is broadened non-trivially across ω, η, and 2θ. By fitting to peak shapes
[90, 62, 83, 60], strain states can be recovered. However, thanks to the polycrystalline
nature of the samples, intensity from each peak may be contributed by multiple sample
points. While approaches such as ART [87] propose to use segmented and deconvolved
peaks for orientation and strain state reconstruction, difficulties involving large sparse
matrices stands in the way of practical applications.

While the development Stratified Monte Carlo Pruning method for orientation space
searching has yielded significant improvement over existing search techniques, serious
effort is still required for the algorithm to meet the ever increasing demand of spatial and
angular resolution. As shown in Fig. 3.8, it can be seen that both spatial and orientation
resolution are crucial for geometrical and differential feature extractions. Using 0.5µm
resolution for most 1mm diameter samples typically requires between 108 - 109 voxels per
layer. Even with the adaptive spatial resolution methods implemented thus far, each of
the 2D maps would still require approximately 20, 000 CPU hours for deformed materials.
Some shortcuts can be made by using only local optimization on neighboring points.
Based on this idea, orientations from random seed points in the sample are reconstructed
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using a global search, and the n-th neighbors of these seed points are selected in a breadth
first traversal and fitted using local optimization. This breadth first traversal stops
upon encountering sample points with confidences below some predetermined threshold.
However, this shortcut only accelerates reconstructions for well ordered materials. The
demand for high angular resolution also results in diminishing speedup, as the local
orientation search dominates the run time.

It should be noted that the theoretical aspect of the orientation search function
has been addressed inadequately thus far. In many ways, this has indirectly hindered
the development of further algorithmic optimization. At the most basic level, it is
not known if orientation reconstruction is a well-posed problem. Specifically, neither the
uniqueness nor existence of a solution is sufficiently addressed in the polycrystalline case.
While representative test cases have shown that when peaks are smeared across multiple
images, reconstructed orientations become significantly unreliable, there is very little
analytical understanding of the connection between peak broadening and reconstruction
quality. While we observe from experimental results that the cost function we use
seems disastrously sharp, it is not clear if a better behaving cost function exists. For
example, could the set of optimal solutions occupy a volume of essentially zero measure in
orientation space? The ability for intensity to resolve ambiguity is still mostly unknown,
and so is the upper and lower bound on reconstruction complexity. For example, less
effort should be spent on algorithmic optimization if any of our algorithms can be proven
to be asymptotically optimal. Unfortunately, at the time of this writing, many of these
questions are still left unanswered.
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Chapter 4

Robust Geometric Extraction

4.1 Overview

In order to obtain useful physical insight from microstructure measurements, one must
extract statistical, topological, and geometrical information. For example, grain bound-
ary information is captured in 2D micrographs or orientation images, and grain size dis-
tribution and volume fraction may be obtained through stereology [99, 54, 100]. Since
typical results of microstructure measurements are images, image processing becomes
a crucial step in the data extraction and reduction. For example, noisy images due to
instability in the data acquisition system could lead to uncertainty in orientation deter-
minations. This could lead to artifacts in grain reconstructions and ultimately in the
grain size and grain boundary character statistics. To mitigate these effects, a judicious
amount of image clean-up has to be performed to remove artifacts while minimizing
bias introduced to the measurement. With the widespread use of scanning orientation
measurements such as EBSD, HEDM, and DAXM, three-dimensional, spatially resolved
orientation and local differential properties such as orientation gradients are readily
available. Robust estimation of both geometric and differential properties are impor-
tant for materials characterization. For example, grain boundary character distribution
depends on the extraction of boundary normals through the use of volumetric and sur-
face mesh generation. Another example is to observe clusters of low dislocation content
regions within a single grain. To measure dynamics in a polycrystalline system, the abil-
ity to identify and quantify morphologies of interesting regions becomes crucial. Grain
boundary mobility in an annealing experiment is measured directly by the point-to-point
difference beteween reconstructed surface mesh of two different states; deformation evo-
lution is monitored by the development of low angle boundaries and grain mosaicity
identified by isocontouring and kernel average misorientations. These capabilities must
be automated, as tracking individual features by hand is simply impossible for a sample
with upwards of a few thousand grains.

In this chapter, we will discuss the process of data extraction from reconstructed
HEDM orientation maps. We will first introduce the data representation used in HEDM
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reconstructions. We then discuss some issues regarding 2D data extraction and image
processing. Some effort will be put into applications of simple graph theoretics to mi-
crostructure analysis. To extract geometry from a set of 2D orientation images, we
will need to look at three dimensional mesh generation. Finally, we will discuss feature
tracking in three dimensions as well as ways to generate non-manifold surface meshes to
represent generalized low angle grain boundaries. The applications and developments of
these techniques have been made in the context of 3D data sets obtained from focused ion
beam-orientation imaging microscopy (FIB-OIM) in the last several years [59, 26, 27],
and therefore a brief summary of prior work will also be provided as a reference.

4.2 Extraction of Geometries and Topologies

4.2.1 Data Representations

Reconstructed Data

In this chapter, reconstructed orientation points as opposed to diffraction spots or
Kikuchi patterns will be considered as raw data. This distinction will help keep the
discussion of data processing concise. We will implicitly assume that the uncertainty
of the reconstruction will be characterized faithfully by the goodness of fit parameter
associated with each of the data points. Of course, in a real measurement, we would
often look at the diffraction images to help interpret the reconstruction results as well
as the fit parameters. However, this is not easily quantifiable, especially in the context
of feature extraction.

With HEDM, EBSD, and DAXM, data values are assigned to each of the sample
points in the imaged volume. Some of the more typical data values are crystallographic
orientation, goodness of fit, and strain tensor. The nature of the “point-by-point” as-
signment suggests that the raw data should be stored in similar manner to images, with
values assigned to grid points that delineate the sample space. For the purpose of this
chapter, we will only consider rectilinear grids for our reconstructed data representation.
This results in n×m pixels for each layer of the orientation map. To represent multiple
layers of orientation maps, we simply have k layers of (n ×m) sized orientation maps,
which results in k ×m× n pixels.

Historical Comment on the MIC File Format

Representations in most computer generated images are typically in some type of grid
format. In the most common cases, an image is stored in a two-dimensional grid of
(n×m) square pixels. Each pixel contains a value (binary, gray-scale, vector, or tensor)
representing the imaged function at that sample point. To reduce image size, sometimes
hierarchically sized pixels are used to better approximate local features of different length
scale. Historically, the development of the MIC (microstructure file) file format for
HEDM had a similar intent. Started from the development of 3DXRD, grains were
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viewed as a single object with little or no resolvable internal structures. Therefore larger
grains are seen to be representable by larger pixels. To this end, a single MIC file may
contain pixels of different size, with boundaries containing significantly smaller “pixels,”
or triangles to accommodate for smaller local feature size. In many ways, a MIC file
format is closer to a 2D mesh than a typical pixelated image. The MIC format is a set
of equilateral triangles specified by the “left most” vertex (vertex with the minimum
x-coordinate) and “up” or “down” designation. Since grain sizes are usually several
orders of magnitude larger than boundary feature size, the potential saving using this
representation is significant. Furthermore, the use of triangles allows for more directions
representable in a typical boundary. However, with recent work in characterization of
local orientation spread, there has been renewed interest in extracting intra-granular
misorientation. Combined with the studies of angular resolution limits of HEDM to
around ≤ 0.25◦, it has become apparent that many interesting intraganular features can
be extracted from high spatial resolution orientation maps. This, combined with the
use of linear interpolation, representations of boundaries can become more fluid than
that given by grid discretization. Finally, some of the well established image processing
operations are not well defined on a triangular grid. For example, the application of
a median filter on a triangular grid does not guarantee convergence. All these reasons
significantly diminish the advantages from the MIC file format. As a part of the future
work, orientation field information will be compressed and stored in a high resolution
rectilinear grid format.

Grain Extraction

Given a grid representation, a nearest neighbor of a pixel (i, j) is defined to be pixels
immediately adjacent to it, i.e., (i ± 1, j), (i, j ± 1). When applying an n × n filter or
a majority filter to the data structure, centered at pixel (i, j), a region of n × n pixels
centered at (i, j) will be considered. In three-dimensions, a region of n × n × n will
be considered. For the purpose of this thesis, a grain is defined to be a set of nearest
neighbor connected pixels satisfying the equivalence relation,

pi,j ≡ pi′,j′ ⇐⇒ d(qi,j, qi′,j′) ≤ θt ∧ IsNearestNeighbor(pi,j, pi′,j′), (4.1)

where misorientation d(q, q′) is defined in the usual way with respect to the fundamental
zone of the measured sample. The use of this equivalence relation immediately allows
us access to several connected component algorithms, most notably union-find, which
is proven asymptotically optimal [117]. As a note, “burn algorithm” is the name used
for connected component identification associated with grain extraction in the material
science literature [97]. By defining the equivalence relationship with different proper-
ties, such as dislocation density and confidence, we can similarly define connected regions
representing dislocation cells and high confidence grains. In general, microstructure com-
ponent extraction belongs to the larger class of problems know as image segmentation
[84, 81].
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Figure 4.1: A graph G provides an abstract representation of the two-dimensional microstruc-
ture shown. Each grain is represented by a vertex v (numbered.) Each connection between a
pair of grains are represented by an edge e(v, v′). Two grains are limited to neighbor at most
once with each other (i.e., the graph G is undirected, and there exists at most one edge for
each pair of vertices.). Edges of G therefore provide an abstract representation of boundaries
between each pair of grains.

Grain Graphs

Grain extraction naturally leads to discussion of grain neighbor statistics and networks,
which allows us to easily compute grain-to-grain misorientation statistics. Naturally,
connectivity amongst grains can be represented as mathematical graphs, G, where edges
represent grain boundaries, and nodes represents grains (Fig. 4.1). By interchanging
edges for nodes in G, the dual graph, G∗ is obtained, which represents the grain bound-
ary network. Not only does a graph provide easy access to information within a mi-
crostructure and therefore their statistics, graphs can also be readily analyzed using
some of the standard methods. For example, finding the so-called “min-cuts” in G∗

identifies the minimum number of boundaries required to be removed in a microstruc-
ture to separate the grain boundary network into two disjoint sets. Application of graph
theoretics forms the basis of the present orientation map analysis code and could be po-
tentially applicable to analysis of microstructure data in the context of grain boundary
engineering and percolation theory [108, 31, 32].

4.2.2 Interpolations and Approximation

Even though the microstructure maps are measured on a fixed grid, it is sometimes nec-
essary to provide well defined data values between grid points and layers. An example
is the case of alignment of two different measured orientation maps. Since perfect align-
ment of different measurements is rarely possible, interpolation is often used to match
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values from the two grids being aligned. A potential drawback, though, is when kernel
averaged misorientation is applied to a grain boundary. Orientations from two distinct
grains would be averaged, and the result represents neither of the original values. To
circumvent this problem, a discrete, indicator function based interpolation is used in the
case of surface mesh generation. Details of each interpolation method will be reviewed
in this section.

Linear Interpolation

Given a function f(x) defined on the real line but only measured at discrete intervals
xi = {x0 + δx}, the function values f(x + δ) for all x + δ /∈ {xi} can be defined via a
linear interpolation,

x ∈ [a, b),

f(x) ≈ lin(x, f(a), f(b))

=
b− x
b− af(a) +

x− a
b− a f(b). (4.2)

This is also known as the lever-rule or convex combinations. A similar scheme can be
generalized to two-dimensions. For a function f(x, y), the linear interpolation for the
point, p(x, y) ∈ [a, b)× [c, d) is defined as

f(x, y) ≈ lin(p, f(a, c), f(b, d), f(a, d), f(b, c))

= lin(y, lin(x, f(a, c), f(b, c)), lin(x, f(a, d), f(b, d))). (4.3)

This is known as bilinear interpolation. Further generalization into any nD rectilinear
coordinate system is simply successive reapplication of the linear interpolation function.
The space over which the interpolation is defined needs not be rectilinear. For example,
interpolation within SO(3) between two orientations can be defined as

q(t) = q0
sin (ω(1− t))

sin(ω)
+ q1

sin (ωt)

sin(ω)
,

ω = cos−1 (q0 · q1) (4.4)

where q is a unit quaternion representing an orientation. This is known as the spherical
linear interpolation, or SLERP. It can be shown that the path traced out by q(t) is
in fact the geodesic in SO(3) at constant angular velocity, which mimics the constant
derivative in the interpolated function as seen in rectilinear spaces [111]. In general,
linear interpolation can be applied to any function f(q) : SO(3)→ R provided that it is
smooth and differentiable. As it turns out, this is equivalent to having f(q) satisfy the
generalized Cauchy-Riemann equations for quaternions [66].

Linear interpolation is exploited thoroughly in the literature for the use of multi-
domain surface mesh generation [136, 9, 82, 130]. While crystallographic orientation is
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3 2

1

P

α

β

x1

x2x0

x3

Figure 4.2: A schematic showing a common way to use linear interpolation functions to help
define boundaries in a multi-domained material. In this two-dimensional example, the three
different colors indicated correspond to three different domains with grain indices 1, 2, and
3. The interpolation scheme shifts the entire image by (∆x

2 ,
∆y
2 ), which does not affect the

outcome of the defined boundaries. Bilinear interpolation is applied to the indicator functions
χi to define χi(~p) everywhere in the domain. The interpolation parameters, α and β are defined
by the location of ~p with respect to the reference point (~x0 in this diagram) in the interpolating
domain Dn.
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useful for misorientation calculations, it is rather cumbersome to use in surface mesh
generation (i.e., calculation of isocontours in an orientation field). Instead, grains are
extracted, and their corresponding volumetric pixels (voxels) identified ahead of time
with a grain index using a connected-component algorithm (Eq. (4.1)). Grain indexes
are then assigned to a set of grid points. To help define grain boundaries, we will define
the indicator function,

χi(~xn) =

{

1 if ~xn ∈ Di

0 otherwise
(4.5)

We then define the linearly interpolated indicator function as θi. The two-dimensional
version of θi (Eq. (4.2)) is defined as

θi(~p) = lin(α, β, χi(~x0), χi(~x1), χi(~x2), χi(~x3)) (4.6)

(see Fig. 2). From this, the grain index of point p is defined everywhere by

I(p) = argmax
i

(θi(p)) . (4.7)

Grain boundaries are defined by the points where the index I(p) changes.

Kernel Average Approximation

A kernel average approximation, also known as kernel average smoother in the non-
parametric statistics literature, can be simply stated as

φ(x) =

∫

D

f(x′)ρ(x′ − x)dx′
∫

D

ρ(x)dx = 1. (4.8)

A discretized version can be found as

φ(x) =

∑

i f(xi)K(xi − x)
∑

iK(xi − x)
. (4.9)

It should be noted that this kernel average approximation, or more generally kernel
density estimate method is used widely ranging from astrophysics (Smooth Particle
Hydrodynamics) to machine learning. It is not too surprising to find that one can
generalize both the continuous and discrete kernel function from the form K(xi − x)
to K(xi, x). One such example is the n-nearest-neighbor averaging, where K(xi, x) is
defined as

K(xi, x) =

{
1
n

if |xi − x| < h and xi is the m−th nearest neighbor, m < n

0 otherwise.
(4.10)
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In fact, by using f(~x) = ~x, we get the n-nearest neighbor smoothing function for triple
lines and quadruple points used in the our implementation of feature preserving surface
mesh reconstruction. In general, the kernel average smoothing method can be applied
to relatively noisy data to produce a smooth, differentiable quantity. This step of noise
removal is especially crucial when looking at quantities like the Nye tensor [78] estimate
from an orientation map. Extra care must be taken when applying kernel smoothing to
microstructure orientation data. The kernel averaged smoothing method has the side
effect of averaging across discontinuities. Consequently, grain boundaries, representing
jump discontinuites in the microstructure, would be suppressed or removed. The result-
ing kernel averaged orientation would be far away from all its composite orientations. It
is therefore convenient to introduce a cutoff kernel [72],

K(xi, x) =

{
1
n

if |x− x′| < h, d(q(x), q(x′)) ≤ θt

0 otherwise
(4.11)

where d(q, q′) is the misorientation between the two orientations with respect to the
fundamental zone in the usual way. By setting the cutoff angle appropriately, only
misorientations that would not have been classified as a boundary would be added to
the kernel average contribution. One could certainly go on to cook up more complicated
versions of this kernel that would ignore boundary points explicitly in a grain identified
data structure.

4.2.3 Approximation vs. Interpolation in Surface Mesh Gen-
eration

The slight difference between approximation and interpolation should be clarified here
before proceeding to the description of mesh generation, as both techniques are used to
define the boundaries in a microstructure. Given a reconstructed surface represented by
S(~x), it interpolates the measurement point set {p0, p1, p2, · · · pi} if and only if S(~x)
passes through every point pi. The surface function S(~x) approximates the points {pi}
if S(~x) passes close to but not necessarily through the points {pi} [61]. The main choice
of interpolation versus approximation rests solely on the reliability of the raw data. If
the point set {pi} is faithfully representing the surface geometry, and the expected er-
rors are negligible, then we would prefer our reconstructed surface to pass through these
points. On the other hand, if the point set is known to be noisy, or if we know ahead of
time that there is significant measurement uncertainty globally, then an approximation
scheme may be better suited. In the context of surface mesh reconstruction used in
this thesis, we assume that triple (3-junction) and quadruple (4-junction) points iden-
tified in two-dimensions have significantly better resolution than boundary points and
triple lines estimated in three-dimensions. It will therefore be be sensible to interpolate
through these points and approximate through the rest of the point set. This is jus-
tified by the typical in-plane measurement resolution of around 1µm versus the out of
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plane resolution of ≥ 4µm. Furthermore, 3-junctions and 4-junctions identified within
the two-dimensional map are resampled in the orientation space multiple times by the
reconstruction algorithm. The chances of misidentifying triple and quadruple points
directly from the 2D reconstructed orientation map is significantly lower than incorrect
estimates of their location in 3D.

4.3 Mesh Generation

4.3.1 Overview

Our primary interest in mesh generation, or more specifically, surface mesh generation
is to identify grain boundaries, triple lines, and quadruple points. By identifying these
geometrical features, we can fully characterize grain boundary properties, such as nor-
mals and curvatures, which allows us to measure the mobility and energy for each of the
boundaries in a microstructure. The challenge is then to have a high fidelity representa-
tion of the measured grain boundaries. Unfortunately, simply estimating normals from
the exterior surfaces of a set of 3D voxelized grains is not sufficient for grain boundary
characterization. Cubic voxels will only provide six different orientations for each of the
normals, and all triple lines are necessarily “stair-cased” due to the voxel representation.

Surface and volume reconstruction is not a problem unique to material science. Sim-
ilar effort can be found in mesh generation for CT-scans (computed tomography), MRI
(magnetic resonance imaging), and even LIDAR (Light Detection and Ranging). Dif-
ferent data collection schemes have different set of advantages and uncertainties, and
the meshing procedures (algorithm and data preprocessing methods) designed for one
method may not necessarily be optimal to the other. An example is the application of
point-cloud reconstruction to LIDAR data. Point clouds designated by a set of points,
{pi} are recorded by a LIDAR. Because points measured by LIDAR do not typically lie
on a uniform grid, finding connectivity of points is not straightforward; therefore it is
sometimes difficult to determine the geometry of the surface mesh in areas with sharp
features [25, 43, 49, 73, 24]. Preprocessing is sometimes necessary to find connectedness
between points [43]. In the example of CT-scan, difficulty may lie in segmentation of
images with low resolution and contrast. CT image quality is sometimes lower than
computationally desired because of the limitations on radiation exposure for a human
patient. Similarities in electron density in different body parts (i.e., kidney and liver)
contributes to the lack of contrast and therefore difficulties in segmentation. However,
since most body parts are relatively smooth, CT-scan and MRI results usually do not
have to worry about sharp, sliver like geometrical features often seen in three-dimensional
microstructures. This indicates that curvature minimizing mesh smoothing techniques
can be applied as a means for noise removal. Preservation of sharp features (i.e., triple
line, quadruple point) is in fact crucial to microstructure analysis, as they often play a
dominant role in determination of microstructure dynamics. For example, MacPherson-
Srolovitz relations [70] indicate that isotropic grain growth is determined by the mean
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width and edge length of each grain. More generally, measurements of curvature for cap-
illarity driven grain growth requires that noisy features be minimized on each boundary.
This leads to a contradictory requirement of sharp features preservation and smoothing.
Applications of anisotropic smoothing using geometric flow [135, 112, 23] were exploited
to address these concerns. This still leaves the uncomfortable question of exactly when
smoothing would leads to bias in the resulting geometrical extraction, or worse, when
does discretization alter the topology or geometry of the original surface. Our approach
to geometrical extraction though mesh generation is in fact an application and extension
of the feature preserving methods developed by ref [9]. Moreover we insist on applying
explicit smoothing only as the last resort. We will view surface reconstruction in our
microstructure as surface approximation1 from predetermined, interpolated fixed triple
lines and quadruple points using piece-wise linear functions [2]. To facilitate this ap-
proach, we have implemented [9] using CGAL [3], an open source geometrical algorithm
library. By adaptively refining our three-dimensional Delaunay triangulation, we are
able to control the distance between reconstructed mesh boundaries and the defined
grain surface, leading to an alternative direction in data restricted smoothing.

4.3.2 Related Work

The problem of both two-dimensional and three-dimensional mesh generation has been
extensively explored. We will only review a very abridged list of existing work that is
relevant to this thesis. Roughly speaking, there are three classes of algorithms used
for mesh surface reconstruction from voxelized data: primal type algorithms, such as
Marching Cubes and its variants [64, 85], dual algorithms, such as Dual Contouring
[48, 101], and Delaunay triangulation [8, 6, 16]. The first two are better known and
extensively used in the imaging community [136], while Delaunay triangulation based
surface reconstructions are more commonly studied in the computational geometry com-
munity [16, 6]. For the purpose of this review, the terms “isocontouring” and “surface
reconstruction” will be used interchangeably. Furthermore, we will focus mostly on gray
level isocontouring and discuss the multi-indexed version as an extension.

Isocontouring

Given a scalar function f(~x), the problem of isocontouring is simply to find the surface
f(~x) = C, where C is constant. The isocontour of f(~x) = C, which is {~xi|f(~xi) = C}
is also known as the C-level set. Because experimental measurements are digitized,
the maximum resolution of the reconstructed isocontour depends on the density of the
sample grid, pi,j,k, where f(~x) is defined. By using suitable interpolation schemes on
a sufficiently dense sample grid, a number of guarantees can be made regarding the

1To be clear, the surfaces must go through all constrained points but not all unconstrained boundary
points.
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Figure 4.3: Interface between two regions with red being regions of f(pi,j,k) < 0 and white
being f(pi,j,k) > 0. The voxels (shown only as a two-dimensional projection) approximate the
plane indicated by the blue line. As we decrease the voxel size in the sample grid, the distance
between the approximate isocontour (grid steps) and the actual isocontour will converge to
zero. However, since each facet of the grid point is fixed, the local normal estimate will never
converge.
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Figure 4.4: The two-dimensional version of Marching Cubes for illustrative purposes. In the
pixelized region, red and blue indicate regions of two different gray levels. New vertices (white)
are placed on the edges of the cube based on the configuration of signs in each cube (green
square). Because the vertex placement is determined locally, some configurations (center and
right) do not produce unique isocontouring.

geometrical and topological properties of the approximated isocontour and the true
contour [6, 8].

To start, it is usually more convenient to work with f(pi,j,k) − C. The isocontour
in this case, also know as the 0-level set, is located between any grid points pi,j,k, pi′,j′,k′
with a sign change. However, a reconstructed isocontour obtained directly by apply-
ing this method to the discretized function, f(pi,j,k), is necessarily “stair-cased.” More
importantly, we should note that while the approximated isocontour will converge point-
wise to the true isocontour, the normals will not converge (see Fig. 4.3). This type of
catastrophic failure is a classical problem seen in computational geometry. To alleviate
the stair-casing problem, most applications of isocontour extraction involve interpola-
tion or smoothing of the discretized data. It should not be too surprising that boundary
reconstruction and isocontouring are the same problem. In this case, boundaries will be
identified as locations where grain indices changes.

Marching Cubes

Originally designed for gray level isocontouring in medical imaging, Marching Cubes is
well known for its easy look-up table based implementations. Since triangles and ver-
tices are inserted independently for each cube associated with eight voxels (Fig. 4.4 ),
the run time of Marching Cubes scales linearly as the number of voxels. In addition to
some minor preprocessing, there are essentially two steps to the Marching Cubes algo-
rithm. A sign function based on f(pi,j,k) − C is computed across the image volume to
determine the location of the isosurface. From this, sign crossing between two points
xi and xi′ indicates crossing of the isosurface. The edges of each voxel can then be
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Figure 4.5: An octree is used to decompose the domain of f(pi,j,k). A two-dimensional
schematic is shown here. Meshes produced from a spatially adaptive octree will exhibit the
same hierarchical features. This means large triangles will be used to represent regions with
large features, and small triangles will be used in sharp regions to ensure that the meshed
surface conforms to the true isosurface.

either sign-changing or sign-constant, and each cube will consequently have 28 possible
configurations. The union of all triangles from each of the voxels is identified as the
reconstructed surface. Because the Marching Cubes method restricts the insertion of
vertices to edges only, reconstructed features sometimes do not resemble the original ge-
ometry or topology, especially when sharp features are expected. Moreover, the output
mesh from Marching Cubes tends to be dense, as the number of triangles is at least
equal to the number of boundary voxels. Triangle quality also suffers from this vertex
insertion restriction. These shortcomings have led to a plethora of work on topologi-
cal and geometrical conforming Marching Cubes-like algorithms [76, 77, 52, 85, 20] In
general, algorithms that place vertices on the edges are called “primal” methods, while
algorithms that perform cell-interior vertex placement are called “dual” methods.

Dual Contouring

Using an octree to partition the domain of f(pi,j,k), the Dual Contouring method trian-
gulates by placing a vertex anywhere within each octree cell (Fig. 4.5). This significantly
helps improve the triangle quality and geometrical conformity of the output mesh com-
pared to constraining vertices to edges. The vertex placement is decided by minimizing
the quadratic error function

E(~x) =
∑

i

(n̂i · (~x− ~pi))2 . (4.12)

Conceptually, the quadratic error function minimizes the magnitude of the gradient of
the reconstructed isocontour, as shown in Fig. 4.6.

Given that the octree level is chosen appropriately, the reconstructed mesh is guar-
anteed to have the same topology and geometry as the isocontour represented by the
interpolated function, f(pi,j,k) [102]. The point-wise distance between the reconstructed
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p2

n̂1

n̂1
p1

Figure 4.6: A two-dimensional schematic of Dual Contouring. Red and blue pixels represent
two regions separated by an isocontour. The green box represents the octree (quadtree in 2D).
The cell with the dotted line is expanded to demonstrate the calculation of the minimizer point
(green dot). The normals n̂1 and n̂2 are estimated using the trilinear interpolation of f(pi,j,k).
The minimizer point, the intersection of the two tangent lines of the estimated isocontour at
the points p1 and p2, is obtained by minimizing the quadratic error function (Eq. (4.12)). The
levels of the quadtree are chosen for illustrative purposes only.
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mesh and the true isocontour decreases with higher leveled, or more refined octree (Fig.
4.5). Taking advantage of this convergence property, a function can be defined to quan-
tify the error for a mesh at octree level n,

ǫ =
|f i+1 − f i|
| ▽ f i| . (4.13)

Here, f i+1 and f i are the interpolated function values at octree levels i + 1 and i, and
▽ is the usual gradient operator [134, 118]. It can be seen from Eq. (4.13) that the
octree level necessary for a fixed value of ǫt increases with local surface gradient, which
translates to sharp features.

By refining only in local regions where the ǫ exceeds the predefined convergence er-
ror limit [133], it is possible to produce an adaptively sized mesh that preserves sharp
features. Finally, to extend to the multi-index case, vertex placement is determined by
calculating a minimizer point with the position and normal of all immediately neigh-
boring domains. This method circumvents the possibility of having more than one
minimizer point per dual contour cell, which results in not being able to have multiple
grain edges intersect at a common point. It should be emphasized again here that some
information loss during the discretization of f(x) may not be recoverable in the surface
reconstruction.

Delaunay Triangulation

Obtaining an isocontour with Delaunay triangulation is slightly more complicated than
the previous two methods and the correctness and mesh quality of the resulting isocon-
tour depends on several recent theoretical results on sampling and surface reconstruction.
To be concise, we will only summarize briefly several key properties. A large body of
literature ([16, 6, 109, 24, 25, 82, 15, 8], just to name a few) can be found on the details
and proofs for the results stated here.

1. Given a set of sample points P = {pi} on D, the domain where the scalar function
f(~x) is defined, a Delaunay triangulation, DT (P) is a triangulation where no point
pi lies inside the circumcircle (or circum-sphere in 3D) of any triangles (tetrahedron
in 3D). Note that we will not discuss the result of Delaunay triangulation in terms
of triangle qualities2, as they are not important to our current analysis.

2. A Voronoi diagram is the geometric dual of the Delaunay triangulation. This
means that every (d − n)-dimensional object in the Delaunay triangulation will
become a n dimensional object in the Voronoi diagram. For example, in 3D a
tetrahedron in a Delaunay triangulation becomes a point at its circumcenter in
the Voroni diagram, and a point becomes a Voronoi cell.

2Triangle and tetrahedron qualities refer to the shape property. Roughly speaking, a triangle is
“good” if it is close to an equilateral triangle [19, 110]. The origin of this measure comes from com-
putational geometry and finite element analysis. Acute triangles with angles ≤ 15◦ can easily lead to
singularities in a finite element calculation.
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3. A restricted Delaunay triangulation, DT (P)|B, is a triangulation of P restricted to
a subset, B ∈ D. For the purpose of our discussion, B is simply the boundary or
isocontour that we are interested in. Furthermore, given a Delaunay triangulation
of the domain, DT (D), the restricted Delaunay triangulation on B is a subset
of simplices in DT (D). Furthermore, this subset of simplices must also be the
dual of Voronoi objects (i.e., Voronoi edge) that intersect B. Therefore, finding
the “sign change Voronoi edges” is equivalent to finding triangles on DT (D) that
approximate the isocontour. Here, a “sign change Voronoi edge” is an edge with
two Voronoi (sample) points of different signs (Fig. 4.7).

4. Given that point set P samples B sufficiently densely [6, 8], the restricted Delau-
nay triangulation DT (P )|B approximates both the topology and geometry of the
boundary B. Furthermore, as the sample point density increases, the reconstructed
surfaces, curvatures, and normals converges point-wise to B. Roughly speaking,
because we have a Delaunay triangulation, the circumsphere of the tetrahedron
neighboring the boundary triangle bounds the distance, δ, between the boundary
triangle and the true isocontour (Fig. 4.7). Reducing the size of this tetrahedron
simultaneously reduces its circumsphere and its distance bound. Thus, given some
threshold value ǫ, one could locally refine the boundary tetrahedra until the de-
sired bound on δ is achieved. The full details of the proofs are beyond the scope
of this section and can be found in ref [15, 25, 8].

4.3.3 Implementation

Taking advantage of the theoretical machinery outlined above, surface mesh reconstruc-
tion using Delaunay triangulation is implemented and available as a package in CGAL
[3]. We will use this as a starting point. This package gives us the following tools which
are crucial in implementing feature preservation [9].

1. Three-dimensional Delaunay triangulation.

2. Adaptive Delaunay refinement based on generic criteria (specified as functions).

3. Ability to specify sampling points used for Delaunay triangulation.

4. Mesh quality improvement routines.

Surface Sampling with Delaunay Triangulation

We start with the surface reconstruction method implemented in CGAL, which uses
a restricted Delaunay triangulation to sample the isocontour to be reconstructed, as
outlined in Sec. 4.3.2. Roughly speaking, the accuracy of the reconstructed surface is
controlled by the facet distance parameter (δ) (see Fig. 4.7 for an illustration). The facet
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δ

(a)

δ

(b)

Figure 4.7: A 2D schematic of surface reconstruction using Delaunay refinement. The diagram
on the left shows the point set P (black dots) sampling the domain. The Delaunay triangulation
is shown by the black and green edges. The green edge (triangle in 2D) corresponds to the facet
that represents the isocontour B, indicated by the red curve. The purple lines are the Voronoi
edges. Note that the dual Voronoi edge of the boundary facet intersects the isocontour (green
dot). A Delaunay ball (black circle), a ball circumscribing the vertices of the initial facet (two
points in 2D, three points in 3D), is centered on the intersection point between the surface
Voronoi edge and the isocontour. To refine the triangulation, a vertex is inserted at the center
of the surface Delaunay ball. The original triangle (tetrahedron in 3D) is removed, and the
Delaunay triangulation is updated (right). As a consequence, the new facets (green and brown
edges) better approximate the isocontour, i.e., the distance δ will decrease for some number of
the new facets [8]. The algorithm will continue to refine any triangles containing facets with δ
larger than some predetermined threshold value (green dot contrasted with red dot in (b) ).
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Figure 4.8: An illustration of the sampling of a sharp feature. The black lines indicate the
isocontour, and the red line segments represent the reconstructed surface. Blue dots are used
to show the locations of the vertices of these 1-facets. The dashed circle indicates the prob-
lematic region. The refinement scheme shown in Fig. 4.7 will not be able to reproduce the
isocontour unless a vertex is placed at the sharp corner. The result is a reconstructed surface
with a large number of facets, many of which intersect the isocontour. This is undesirable
for microstructures, as it produces significant error in the mean width calculation (discussed
below).
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distance parameter acts as an L1 measure between the reconstructed surface and the
isocontour. The reconstruction adaptively refines the Delaunay triangulation around the
boundary surfaces where δ is calculated to be larger than some predetermined threshold,
δt (Fig. 4.7). As stated in Sec. 4.3.2, provided a sufficiently small δ is used, the
reconstructed surface should be faithful to the isocontour. As the sampling rate becomes
higher (via increasing number of Voronoi-objects used, or lowering of δ), the L1 distance
will be minimized. However, this is also assuming that the isocontour is C2 continuous
(a condition of the ǫ-sampling used for the surface reconstruction proved in [8, 5], which
is not the case in many microstructures. Simply put, the sampling rate around a sharp
object can increase substantially without resulting in L1 convergence (Fig. 4.8); the
resulting noise proves detrimental in some of the typical geometry estimates (mean
width, triple line length). This is the motivation for the sharp feature preserving surface
reconstruction method in [9].

As a side note, while ideally, δ = 0 results in perfect reconstructions for a C2 con-
tinuous surface, the number of sample points, and hence surface patches needed in the
reconstruction mesh would grow dramatically. Since the computational complexity of
point-insertion, or adding new points, in Delaunay triangulation is in the worst case
O(n2), where n is the number of existing points, the computational time would become
impractical. Moreover, when performing surface reconstruction from a voxelized data
set, the reconstructed surface is not expected to have an L1 norm error that is below
the voxel size. Consequently, one voxel side length is the usual lower bound for δ.

Sharp Feature Specification

The correctness, or conformity of the reconstructed surface to the isocontour, of the
Delaunay triangulation based surface reconstruction method outline above depends on
the ability to produce a dense sample of the isocontour [8, 5]. However, with the present
method, a dense sampling can only be produced if the isocontour C2-continuous; in the
presence of discontinuity and sharp features, the reconstructed surface may not conform
to the isocontour3. Unfortunately, microstrctures often contain sharp features and non-
trivial topologies (self-intersecting), and the preservation of both of these properties are
crucial for analysis. To circumvent some of these problems, a priori knowledge of sharp
features from the measured microstructure can be directly inputted into the surface
reconstruction. Points and edges in the material are identified as constrained points,

3The meshing method used in this thesis is based on ǫ-sampling. The condition of point-wise and
normal convergence is related to a quantity known as the medial axis. Concisely, the medial axis is the
locus of centers of maximal balls B such that B

⋂
Σ = ∅, where Σ is the surface to be reconstructed.

The isocontour to be constructed is further assumed to be C2 continuous in the surface reconstruction
methods [3]. Recent work aimed to address the theoretical aspects of the surface reconstruction problem
in the presence of sharp features can be found in [14, 15]. The topics of surface reconstruction errors
and ǫ-sampling is fairly broad, and much more extensive treatments than what we can present here
already exist in a large body of literature [5, 24, 25]. We refer the interested readers to these references
for more details.
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Figure 4.9: A pixelized boundary (left) is interpolated on the right, as indicated by pixels
with cut corners. The black line indicates the true boundary. Since the true boundary is
not faithfully represented by the pixelized, interpolated data, resolution of the reconstructed
boundary is limited by pixel size. Surface reconstruction methods can at best capture this
interpolated boundary from the discrete data (edges shared by both red and blue regions).
While reducing the parameter δ below the pixel side length to something arbitrarily small will
lead to the convergence of the reconstructed surface to the interpolated surface, it may not
necessarily converge to the true boundary. The resulting surface may also contain artifacts,
such as noisy surface normals (white), where a relaxed δ could lead to a smoother surface
(green).
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leaving the specification of boundary points to depend on the meshing algorithm [9].

In the present method, constrained points selected in our meshing algorithm are
kernel averaged 3- and 4-junctions (triple and quadrupole points). 3- and 4-junctions are
defined to be voxels whose neighboring voxels have two and three different unique IDs.
Because of measurement noise, multiple apparent 3- and 4-junctions may appear within
a small area of the order of measurement resolution. In many cases, insertion of these
constrained points leads to artifacts in the reconstructed surface that are identified to be
unphysical. A crude way to resolve this problem is to replace multiple constrained points
within a small neighborhood (identified by the expected resolution of small features in the
measurement) with a point at their center-of-mass location. The algorithm is explicitly
defined in Algo. 4.

Algorithm 4 SpecifyConstrainedPoints. For a given voxelized data set and the smooth-
ing length r, return a set of smoothed constrained points.

for all voxels vi(~x) do
NgbList ← GetNeighbors(vi)
IDList ← GetMaterialIDs( NgbList )
if NumberUnique( IDList ) == 3 ∧ NumberUnique( IDList ) == 4 then
ConstrainedPointList ← ~x

end if
end for
for all ~pi ∈ ConstrainedPointList do
NgbPointList ← GetNeighborPoints(~pi, r)
SmoothedNgbPointList ← Average(NgbPointList)

end for
return SmoothedNgbPointList

Note that the smoothing parameter also serves the second purpose of relaxing the
constraints on the triple lines. Triple lines formed by connecting measured triple points
necessarily are “stair-cased,” which is an aliasing problem due to the voxelized data
structure and is not reflective of the microstructure. By imposing a smoothing parame-
ter, triple points are inserted sparsely, and the interpolation is again left for the meshing
algorithm.

It should be mentioned that various groups have put significant effort into triple
line smoothing [20, 112]. However, to simplify the implementation, we have chosen a
simple kernel smoothing approach. Certainly, a more sophisticated moving finite element
or anisotropic smoothing method is also possible. Our approach is unique in that we
attempt to control the smoothing error by separately smoothing different components
of the microstructure before the meshing procedure, but a comprehensive comparison
amongst the different methods has not been done at present time.
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Weighted Delaunay Triangulation

Because the mesh refinement algorithm [3] will remove any tetrahedron neighboring a
“bad facet,” indicated by either poor geometrical conformity or bad element quality (di-
hedral angle, for example), we have to explicitly protect constrained edges and tetrahedra
from being removed. By placing a weight on constrained vertices, we have converted the
Delaunay triangulation into a weighted one. Practically speaking, weight w placed on
the vertices v specifies that no other vertex v′ can be placed within distance w from v.
By setting the appropriate weight for multiple vertices of boundary tetrahedra, T , we
can ensure that vertex insertion will not be possible within T . This consequently ensures
that T , along with its pre-specified boundary facets, will stay fixed, which preserves the
sharp features in the domain. Through experience, we observe that setting the weight
to be roughly 3

4
of the desired final edge length is a good compromise between relatively

smooth reconstructed triple lines and sharp features.

4.4 Geometric Extraction

Once a surface and volumetric mesh is produced, approximation of many typical geo-
metrical qualities (surface area and volume) becomes fairly straightforward. However,
the error associated with the approximation is another matter. To get a better sense
of reconstruction errors, resolution studies are performed on the meshing algorithm.
Scaling of error as a function of resolution is examined. In the interest of experimental
comparison with isotropic grain growth, a discussion of mean width and its approxi-
mation is provided. A discussion of microstructure evolution analysis with the use of
reconstructed meshes, relevant to grain growth studies, is presented at the end of this
chapter.

4.4.1 Mean Width

Mean width is a natural linear measure of an nD object. Most commonly, mean width
is defined as 1

π
times integral of mean curvature around an enclosed object4 where mean

curvature is defined as

K =
κ1 + κ2

2
, (4.14)

4Actually, mean width simply refers to the natural linear measure for a domain D in n-dimensions
that satisfies L(D1

⋃
D2) = L(D1)+L(D2)−L(D1

⋂
D2). However, Hadwiger’s Theorem (the original

proof is in German, and a proof in English is found in [51]. A very good summary can be found in [107] )
[70] states that for all linear measures L(D) in any nD satisfying the condition above may only differ by
an arbitrary multiplicative constant. In other words, the definition of mean width is L(D) = C

∫

∂D
KdS

for any arbitrary C. The choice of constant C may differ between authors.
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4.4. GEOMETRIC EXTRACTION

and κ1 and κ2 are the principal curvatures. Given a local patch of smooth, differentiable,
specifically C2 surface, S, in three-dimensions, the two principal curvatures can be de-
fined by the two eigenvalues of the Hessian of the local height function. We represent S
with the height function z(x, y) from the local tangent plane, then the Hessian is defined
as

Hij = ∂i∂jz, (4.15)

and the curvatures are simply the diagonal terms. For example, the local curvature of
a sphere is 1

R
everywhere, and therefore so is the mean curvature. The mean width of a

sphere is simply 4πR2
(
1
R

) (
1
π

)
= 4R. Given a polygon mesh representation of an object,

the most straightforward way to calculate the mean width is simply done by using the
equation,

L(D) =
1

2π

∑

i

|ei|αi, (4.16)

where αi is the turning angle across the edge i and |ei| is the length of the edge. For a
uniform polygonal mesh, the error converges as

|L(D)− L(P )|
L(D)

≈ α

(
∆x

L(D)2

)

, (4.17)

where P is the polygon approximation of the domain D, and ∆x is the side length of
the polygon [70]. The multiplicative constant α in front of the scaling is associated with
different reconstruction parameters and domain geometries. This error scaling becomes
more complicated when the mesh is adaptive. Furthermore, the required assumption
here is that the polygon mesh approximation converges both point-wise as well as via
normal and curvature. A counter example would be a voxelized representation of the
domain D. Since the normals and curvature estimation do not change as a function of
voxel edge length ∆x, the mean width will not converge.

4.4.2 Noise and Reconstructed Surfaces

Approximations and interpolations mentioned in the meshing section in terms of dis-
tance, δ, away from the isocontour or boundary surface are provided. However, the
isocontours are often extrapolated from voxelized raw data. The sampling rate of bound-
aries are in fact limited by the density of the grid in the voxelized measurements. There-
fore, no matter how densely we sample the voxelized data structure, any features missing
between the measured object and the discretized measurement is not recoverable through
surface reconstruction. In this context, we can specify a minimum feature size observable
based on the size of each voxel. While there is no analytic expression to propagate the
experimental error to the reconstructed surface, we would like to know if 1) the result
converges as we decrease voxel size and 2) if there is some minimum size below which
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Figure 4.10: Resolution parameters’ effect on unconstrained reconstructed meshes is shown
here for a rotated cube in a rectilinear grid. The facet-to-boundary parameter decreases from
δ = 2 to δ = 0.5 going from left to right. Moving down the columns, we can see the effect
of maximum edge length going from ec = 0.1 to ec = 1 in normalized units. Corners and
sharp edges tend to become noisy with lower δ, while larger δ results in meshes that poorly
approximate the original shape.

extracted geometries are no longer reliable. This is similar to the approach taken by
[112, 127].

The above considerations are especially crucial for looking at microstructure geome-
try (volume, mean width, triple lines) and topology evolution. Topological infidelity can
easily lead to miscounted numbers of neighbors, resulting in misidentification of critical
events. Increasing variance with the decrease of voxels per grain affects the quality of
extracted mean widths and volume, which are the main components in many of the grain
growth theories [70, 125, 74]. Attempts to quantify the effects of surface reconstruction
error will be performed with the help of numerical experiments. Specifically, the errors
of extracted geometrical quantities for a number of representative shapes will be studied
as a function of discretization resolution.

4.4.3 Resolution Studies of Extracted Geometry

Numerical Experiment Method

In this study, we have specifically looked at the error scaling behavior as a function
of object size (in number of voxels) for constrained and unconstrained surface recon-
struction using Delaunay triangulation. We have varied two parameters, the facet to
boundary approximation, δ, and normalized maximum edge length Fig. 4.12, ec. ec is
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(a) (b)

Figure 4.11: (a) A normal cube in 2D being approximated by sample points (black dots).
Because the sampling is performed randomly, the changes of any sample point, which act
as vertices of the boundary facet, to lie exactly on sharp corners is practically zero. Hence
the ability resolve sharp features improves very slowly with increasing sampling (and mesh)
resolution. Explicit protection of these sharp features can be performed if we know where
they are before meshing process. This results in (b), a constrained cube where sharp corners
are sampled explicitly. Vertices for boundary facets are inserted directly at the corner, thus
ensuring that the sharp features will be preserved in the output mesh.

generally used to reduce the total mesh size; however, the use of larger edge size and
larger δ can also provide an ad hoc smoothing on the reconstructed mesh, as illustrated
in Fig. 4.9. It can be seen, for example in Fig. 4.10, that the output mesh is adaptive.
Triangles of the surface mesh tend to be smaller towards the edges as the number of
sample points and refinements required to approximate the local feature increases. As
the parameter, δ is decreased, the reconstructed surface is required to become closer to
the boundary specified by the data. Thus, local surface refinement is initiated resulting
in smaller triangles and shorter edge lengths (e ≤ ec). Element quality of the output
mesh is ignored in this study, and therefore quality improvement methods such as sliver
exudation [13] are not performed. This removes the complexity of having mesh quality
improvement affect the errors of the reconstruction.

We chose to study the relative error as a function of voxel side length instead of
mean or median triangle side length, s, to capture the error induced by the discretization
and reconstruction altogether. Relative error, defined as |fp−f |

f
, where f is a geometrical

quantity and fp is its polygonal approximation, is computed for volume and mean width.
The interest in these two quantities comes from the need to use reconstructed surface
meshes for the analysis of curvature driven grain growth.

Convergence and variation behavior of the polygonal mean width and volume ap-
proximations were studied by reconstructed surfaces of the chosen shapes. We have
chosen to use a free sphere, a free cube, and a constrained cube (cube with edges and
corners defined by explicit sampling Fig. 4.11) for our resolution analysis. The choice is
by no means exhaustive, but they encompass the commonly encountered microstructure
features, i.e. smooth surfaces, sharp edges, and sharp corners. Furthermore, analytic
forms for both mean width and volume exist for spheres and cubes, which simplifies
the error calculation. Neither the free sphere nor free cube have constrained points. In
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other words, their surfaces are not subjected to the restrictions of sharp feature preserv-
ing (i.e., insertion of sharp feature constrained points which align directionally with the
voxelized grid); thus they provide a idealistic comparison between the errors from the
two different classes of objects. On the other hand, the resolution study on the con-
strained cube will lead to error estimates that are more representative of the observed
microstructures. Each object is produced from a voxelization of a region defined by an
implicit function at varying resolution. Because discretization in a rectilinear grid re-
sults in orientation dependencies of the reconstructed surfaces, each object is randomly
rotated before voxelization. Note that this is a study on L1 norm type errors; a com-
pletely separate analysis would be required to estimate errors found in reconstructed
curvatures and normals.

Results

Relative error scaling as a function of volume and mean width can be found in Fig. 4.13,
Fig. 4.14, Fig. 4.15, Fig. 4.16, Fig. 4.17, and Fig. 4.18. Each study is fitted against the
analytical form of the polygonal approximation error [70], i.e., ∆L ≈ O

(
s
L2

)
for mean

width and ∆V ≈ O
(

s
V 2/3

)
. A straight line indicates agreement with the error scaling re-

lationship. To better show the convergence behavior, a plot of ∆L vs. L and ∆V vs. V
is also shown, and each data point is a result of averaging the object in 40 randomly cho-
sen orientations. The variation of each error as a function of orientation is characterized
by its standard deviation. The edge length indicated by ec is measured in the normalized
unit of object radius in voxel side length (i.e., for a sphere, it is the radius

voxel side length
, and

for a cube, it is half cube side length
voxel side length

. Thus, ec characterizes the number of voxels used to
represent the object.

From the result of the mean width scaling, we can see that a range of reconstruction
parameters leads to significant differences in the scaling factor, α, of the approximation
error (Eq. (4.17)). For the case of a sphere, the error does not vary as a function of its
orientation, which is consistent with the fact that the standard deviations are smaller
than the symbol size. Furthermore, convergence behavior of the free sphere is markedly
better than both the free cube and the constrained cube. This is attributed to the lack of
sharp edges or corners, or more precisely, that the surface of a sphere is C2 continuous.
This also explains why the reconstructed surface using δ = 0.5 (voxel side length) results
in little or no increase in reconstructed noise, as evidenced by the mean width estimates.
This suggests that given a C2 surface, it is possible to approximate mean width with
discretized data at high precision. Even with fewer than 10 voxel radius (Lsphere(D) =
4r =⇒ r = 30

4
), the approximation error remains less than 0.01 for δ = 0.5. The

deviation in the scaling seen in Fig. 4.13(a) in the δ = 0.5 case can be attributed to the
fidelity of the reconstructed surface to the isocontour surface. Recall that given a scalar
function f defined on the voxelization grid, {~xi}, all points f(~x) such that ~x /∈ {~xi} are
defined by linear interpolation (f̃). Therefore, the isocontour representing the sphere is
faceted at low resolution. In the limit of one voxel diameter, the sphere is represented
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Figure 4.12: (a) and (b): A schematic describing the approximation parameter δ, which spec-
ifies the maximum distance between the facet (red) and the grain boundary (black curve).
Facets in two-dimensions (edge) and three-dimensions (triangle) are shown on the left side and
right side respectively. (c) Variation of the voxel side width used in the discretization of a
circle in 2D, starting from s down to s

4 . The edge length parameter, er is shown here in 2D for
clarity. In 3D, er controls the minimum starting edge length for a triangle facet representing
the grain boundary.
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by a single voxel, which is a cube.

On the other hand, the free and constrained cubes should be perfectly represented by
the linear interpolation at all orientations. However, their corresponding reconstruction
errors are not particularly better, as shown by Fig. 4.14 and Fig. 4.15. At around the
same resolution (Lcube(D) = 3ℓ =⇒ ℓ

2
= 60

6
), the relative error of the free and constrained

cubes are between a factor of 2-20 larger than the free sphere case. Moreover, while the
relative error of the free sphere converges below 0.01, the same cannot be said about
either of the cube cases. This is attributed to the surface reconstruction error due to
sharp corners, which is exacerbated significantly in the constrained case.

The marked error increase in the constrained cube case is due to the rudimentary
sharp edge (triple-line) smoothing algorithm. As indicated before, sharp edge identifica-
tion is done by simple averaging of neighbor positions, also known as nearest neighbor
point simplification. While this works nicely for some cases (smooth triple-lines), it is
particularly prone to errors in sharp corners, as those that are seen in a cube. This is
particularly apparent when looking at Fig. 4.10, where corners of cubes have turned
into the noisy surface illustrated in Fig. 4.8.

While the linearly interpolated scalar function f̃ retains the same shape under rota-
tion, the triple-lines are seen to be distorted. Consequently, random rotation leads to
different constrained points being placed at most s

√
3 (voxel diagonal) away from the

isocontour; thus incorrectly constraining the location of the reconstructed surface. This
is supported by the fact that the free cube has much lower error variations than the
constrained cube. Advances in triple-line smoothing [20, 112] can be combined with the
sharp feature preservation method outline here; however, this is still an on-going effort
at the time of this writing.

Maximum allowable edge length (ec), which characterizes the facet size is shown to
have some small effect on the relative error of the mean width and volume approxima-
tions. This is attributed to the fact that the reconstructed mesh is adaptive. Conse-
quently, in regions where higher resolution mesh is required, local adaptivity reduces the
edge length significantly below ec.

Since volume is a “bulk” measurement, the effect of surface reconstruction error
tends to affect its approximation much more timidly. Generally speaking, the relative
error in the volume estimate converges much more rapidly than those see in the mean
width. This is attributed to the fact that the error in a volume estimate is only due to
the surface tetrahedra. As the surface starts to dominate at low resolution, the relative
error of the volume approximation diverges to up to ≈ 0.30.

4.4.4 Multiple Microstructure Registration

Unless successive microstructures are measured in situ, alignment of multiple meshes is
particularly challenging. There are many ways to perform registration across multiple
objects assuming that a fiducial mark exists. However, in the absence of a reliable fidu-
cial mark, microstructure alignment depends on minimization of some distance between
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Figure 4.13: Relative mean width error of a free sphere. Parameters used for the study is
discribed in Fig. 4.12 (a) Relative error is plotted against s

L(D)2
, where s is the voxel side

length. Near linear scaling is attributed to a good convergence of the mean width as a function
of resolution. A line indicating y = x is supplied as a reference. Note that error bars shown are
smaller than symbol size, indicating minimal orientation variation in the relative reconstruction
error, which is expected for a sphere. (b) A plot of the relative error as a function of L(D)
better shows the convergent behavior.
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Figure 4.14: Relative mean width error of a free cube. (a) Significant variation is found in the
errors estimated, indicating directional dependence of the discretization, which is expected.
(b) A plot of the relative error as a function of L(D) to show an exception in the convergent
behavior (δ = 0.5). In both plots, δ = 0.5 produces an error that does not follow any scaling.
This is an indication that the mean width error is dominated by the noise in the reconstructed
surface mesh. The scale of the error seen here is not dramatically worse than the sphere case.
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Figure 4.15: Relative mean width error of a constrained cube Fig. 4.11. (a) Marked difference
in the error scaling behavior can be seen here. Notice here that the error from the case of δ = 0.5
is significantly higher. This is mostly attributed to noise in the triple line reconstruction.
Variation as a function of orientation is also dramatically larger than observed for the free
sphere or the free cube. (b) All cases except for δ = 0.5 converged rapidly with increasing
resolution.
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Figure 4.16: Relative volume error of a free sphere. (a) Relative volume error scaling with
s

V (D)
1
3
, where s is the voxel side length for a sphere. Note again that the error bars are below

symbol size. (b) Relative error plotted against volume to demonstrate convergence criteria.
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Figure 4.17: Relative volume error of a free cube. (a) Variation of volume approximation error
is significantly lower than that of the mean width calculation. (b) It can be seen that the
volume converges much more sharply than the mean width approximation. However, noting
the scale indicates here that the relative errors can become significantly higher (up to 0.25 in
the volume approximation in contrast to 0.15 in the mean width test).
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Figure 4.18: Relative volume error of a constrained cube. (a) It is seen that all four values
of δ result in very similar volume approximations. The non-convergent behavior seen in the
δ = 0.5 case of mean width is not present here. Error variation across different orientations is
also significantly lower. (b) Compared to the free sphere and the free cube, we see that the
volume approximation here converges much more slowly. Note again that δ seems to have no
effect on the reconstruction.
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landmark objects. In the case of orientation imaging, alignment is done through global
optimization of a point-to-point misorientation function across multiple maps. Specifi-
cally, given two orientation maps a and b, the mis-registration cost function is defined
as

C = 1

N

N∑

i=1

d (qa(~xi), qb(R~xi +∆~x)) , (4.18)

where q is the orientation at point ~x, R and ∆~x are the rotation and translation that are
adjusted to best align the two orientation maps, and d(q, q′) is the misorientation function
defined in the usual way. The number of points sampled, N helps determine the accuracy
of the registration. The two orientation maps are aligned at the global minimum of C.
This registration is relatively straightforward if microstructures of the two states being
registered are not too different, but it becomes problematic when dramatic changes
occurred between the two different states. Multiple minima of C may occur in that case.
Moreover, when the two orientation maps are grossly misaligned, the amount of time
required to find R, ∆~x such that C is minimized may take a significantly long time.
This alignment method is applied in the analysis of both Chapters 5 and 6.

4.4.5 Grain Tracking

Given grain Ga from state a, we would like to find grain Gb that corresponds to the same
grain as Ga in state b. To simplify this problem, we will make the following assumptions.

1. If Ga and Gb correspond to the same grain in two different measurements (denoted
by Ga ≡ Gb) and D(Ga) and D(Gb) correspond to the domain of the two grains,
then D(Ga)

⋂
D(Gb) 6= ∅ (finite overlap).

2. The volume of the intersection D(Ga)
⋂
D(Gb) is the maximum out of all of the

two grains’ respective neighbors, Ngb(Ga), Ngb(Gb).

3. Ga ≡ Gb implies that d(qa, qb) ≤ θt, where qa, qb are the crystallographic orienta-
tions of Ga, Gb.

The algorithm to perform the tracking is given in Algorithm. (5). Notice that this
algorithm is currently unable to keep track of grains with significant orientation evo-
lution, i.e., lattice rotation. Furthermore, this method is somewhat unreliable when
grain sizes change drastically or asymmetrically (Fig. 4.19) as the intersection volume
may not be all that telling. Also, no explicit attempt is made to identify disappearance
and appearance of grains. This is particularly problematic in the case of grain growth
studies. However, by imposing a strict threshold misorientation, θt, and insisting that
∆V = |Va−Vb|

Va
≤ 1, this method is sufficient to track a number of grains across four

anneal states. The result of this method is shown in Chapter 5.
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Algorithm 5 TrackGrain. Given a grain Ga with orientation qa from a microstructure
represented by a volumetric mesh, Ma, find the same grain in a second measured state
represented by the mesh Mb. The two meshes are assumed to be optimally aligned.

ClosestGrainInB ← Locate(Mb, Ga) {Locate Ga in Mb}
NgbGrainList ← GetNeighbors(Mb, ClosestGrainInB)
for all Grain gi ∈ NgbGrainList do
qa ← GetAverageOrientation(gi)
V⋂ ← IntersectionVolume(gi, Ga)
δθi ← d(qi, qa) {Calculation the misorientation between the grains}
if δθi ≤ θt then
GrainMatchList ← (gi, δθi, V

⋂)
end if

end for
return FindMaxIntersctionVolume( GrainMatchList ) { Return the grain with max-
imum overlap.}

Misidentified Grain

State 1 State 2

Figure 4.19: A schematic of how a maximum intersection grain tracking scheme may lead to
misleading results. Grains of the same color in the diagram are considered to have the same
orientation. As grain boundaries move, even with perfect registrations between two states, it is
possible that the same grain across two states cannot simply be identified by having maximum
intersection and minimum misorientation.
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4.4.6 Boundary Tracking

Given that a microstructure in two anneal states is represented by the two surface
meshes Sa and Sb, then boundary tracking determines the minimal distance traveled by
each of the triangles between the two states. Specifically, for each triangle Ta ∈ Sa, a
triangle Tb ∈ Sb is found such that d(Ta, Tb), the distance between the two triangles is
minimal. This is accomplished by point location in Sb using vertices of the triangle in
Ta. Roughly speaking, point location simply searches for the nearest region of triangle
in a mesh given a point. The resulting set of triangles can be used to estimate a point-
to-point shift between two meshes, which is applied to nickel grain growth analysis in
Chapter 5. Because no explicit tracking of boundary types is performed, the current
analysis is only valid for differential boundary movements.

4.5 Conclusion

A brief review of the surface reconstruction literature, although by no means exhaustive,
is presented in this chapter. We have summarized the theoretical results used in the
Delaunay triangulation based surface reconstruction method, and a rough description
of the implementation details of a sharp feature preserving extension is included. Most
of the analysis techniques developed in this chapter are used in analysis of the data
discussed in Chapters 5 and 6.

A method was developed to quantify the error associated with discretization and
surface reconstruction error for arbitrarily shaped objects defined by an implicit function.
This method of error analysis is general, and it can be applied to estimate errors in
experimentally measured materials. The result of our initial analysis shows reasonable
convergence behavior in the reconstructed meshes, although significant caution must
be used to avoid problems with constrained sharp features. Specifically, the directional
dependence of sharp edges in the voxelization leads to markedly higher mean width and
volume approximation errors. Attempting to address this problem is an on-going effort.

4.6 On-going and Future Directions

Clearly, much of the geometrical analysis is not in a completed state. For example, grain
and grain boundary tracking are currently at a rudimentary state. Significant on-going
effort is being put into a more robust grain tracking method based on minimum Haus-
dorff distance between grains. With the automated surface mesh generation and testing
methods developed in this chapter, we would like to estimate the reconstruction error
for general shapes that are representative of real objects inside a microstructure. The
purpose is to provide a foundation to estimate errors in experimentally measured quan-
tities, such as grain boundary mobility, energy, and curvature. Some of the preliminary
results from these techniques are shown in Chapter 5.
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Chapter 5

Non-destructive Observation of
Grain Coarsening in 3D, Initial
Report

5.1 Overview

Grain coarsening is an interesting phenomenon both from a scientific and an engineering
perspective. Since material properties are heavily influenced by grain size, the ability
to predict and control grain growth in a manufacturing process is critical. In the most
ideal and familiar case of curvature driven grain growth, movement of boundaries can
be attributed to local curvature as exemplified by soap bubble coarsening, which could
be described by

v = −Mγκ (5.1)

where grain boundary curvature, κ, interfacial energy γ, and mobility M dictate the
grain boundary velocity, v, the velocity perpendicular to the local tangent plane (κ > 0
for convex regions would lead to v < 0 or inward velocity). This way, velocity will be
minimized and the grain boundary position stabilized as the curvature is minimized;
intuitively, this is why grain boundaries become flatter as a microstructure is annealed.

In two dimensions, Eq. (5.1) leads to the famous n− 6 rule [125]. The rate of area
swept out by the movement of a boundary segment dl at velocity ~v is given by

δA

δt
= |~v × d~l| = v dl, (5.2)

where l̂ is the tangent direction of the boundary curve, and we have assumed the direction
of the velocity to be perpendicular to the local boundary tangent. Consequently, the
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total area change due to the motion of the boundary of the domain D, ∂D, is given by

dA

dt
= −

∮

∂D

v dl

= −Mγ

∮

∂D

κ dl. (5.3)

Taking advantage of the fact that curvature at any point on a 2D curve can be defined
as κ = dφ

dl
, where φ is measured from an arbitrarily chosen origin leads to

dA

dt
= −Mγ

∮

∂D

dφ. (5.4)

If the grain boundary is smooth and continuous, the growth rate dA
dt

would be constant,
as the closed contour integral is identically 2π for any shape. However, given that
discontinuities occur where more than two boundary lines meet, the contour integral is
given by

∮

dφ =
∑

i

∫ βi+1

βi

dφ+Θi

= 2π +
∑

i

Θi, (5.5)

where Θi is the turning angle associated with the i-th discontinuity along the boundary
[74]. By assuming triple lines mechanical equilibrium and isotropic boundary energy, all
turning angles of the domain are given by Θi =

π
3
, and we arrive at n− 6 rule.

dA

dt
= −Mγ

(

2π −
∑

i∈vertices

Θi

)

, (5.6)

= 2πMγ

(

1− 1

6
n

)

. (5.7)

Note that there are as many vertices as sides in a closed 2D loop. This states that grains
with seven or more sides grow, grains with five or fewer sides shrink, and grains with
six sides are stable. Equation 5.7 is left in this form to highlight the geometrical nature
of the grain growth law. The three dimensional version of Von Neumann’s n − 6 rule
proved elusive until work by MacPherson and Srolovitz [70] showed that

dV

dt
= −2πMγ

(

L(D)− 1

6

∑

e∈E

e

)

(5.8)

where D is now the three dimensional domain, L(D) is the mean width of D, and E is
the set of all edges of D, each of length e. In general, edges in 3D may be intersected
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by any n ≥ 3 domains; however, in the case of grain growth, triple lines are typically
observed, since n > 3 leads to mechanical instability.

Experimental observation of 2D grain growth is possible in some limited cases [113,
29] while studies of three dimensional grain growth are dominated by computer simu-
lations [37, 122, 137, 36, 46] and statistical analyses of 2D data via stereology [54, 99].
Until recently, microstructural measurements were limited to optical and scanning elec-
tron microscopy. The use of manual serial sectioning was done in an isolated heroic
effort to observe the growth rate of aluminum in 3D [93]. In most of these cases, the
study of grain boundaries was limited to geometry and topology. Recent advances in
orientation imaging using electron backscattering diffraction microscopy (EBSD) have
changed this significantly [129, 108]. The ability to measure crystallographic orienta-
tions for points on a 2D surface leads to significant advances in the understanding of
microstructures. Although coupling results from EBSD orientation measurements with
stereology enables statistical observations of 3D grain growth, restrictive assumptions,
such as equiaxed grains is required [44, 99].

Full three dimensional measurement had not been practical until the advent of EBSD
with dual-beam focused ion beam (FIB), which performs automated serial sectioning
[121, 27, 98, 59, 96, 26]. Even then it is still not possible to track the same population of
grains in 3D, as the measured part of the sample is destroyed during the measurement.
Non-destructive measurement attempts were made using both Differential Aperture X-
ray Microscopy (DAXM) [55] and 3DXRD [88] to observe recrystallization and grain
growth of high purity aluminum [104]. However, the sample size limitation of DAXM
precluded it from being able to conduct grain tracking through a statistically significant
population of grains, as many of the grains measured from the initial states disappeared
by the final anneal state. Attempts with 3DXRD have faltered due to limitations in
the reconstruction technique; the inability to resolve grain boundaries to high precision
inhibits any reliable resolution of grain boundary movement or curvature.

Finally, simply having the ability to produce grain maps or orientation maps proves
insufficient to the study of grain growth or, more generally, any annealing process in
real materials. For example, in Nickel, grain boundary mobility is highly anisotropic,
varying by as much as four orders of magnitude [44, 79, 22]. Since a typical grain is
bounded by a union of multiple boundaries, each of a different type, the variation of
mobility can lead to some very non-intuitive results for volumetric changes, even if the
growth mechanism is dominated by capillarity. Unfortunately, grain boundary mobility
measurements are difficult. In the few exceptional instances of bi-crystal measurements
[128], mobility measurements can only be carried out on a few select boundary types. A
much more comprehensive survey of grain boundary mobility is necessary to empirically
test grain growth theory.

High Energy X-ray Diffraction Microscopy (HEDM) helps circumvent several of the
obstacles mentioned above by providing a means to image large volumetric orientation
maps with statistically significant numbers of grains per cross section at micron-scale
boundary resolution. By measuring and following the crystallographic, geometrical, and
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topological evolution of thousands of grains simultaneously, HEDM affords us access
to anywhere from 103 − 106 unique points in the five dimensional macroscopic grain
boundary character space. The geometrical resolution indicates that grain boundary
curvature as well as motion can be tracked to within a micron.

In this chapter, we describe the non-destructive measurement of the evolution of a
statistically significant population of grains in three dimensions using HEDM. This set
of data provides an unprecedented view into grain growth and boundary motion. Due
to the unprecedented data volume, development and validation of both data processing
and analysis is still an ongoing effort. A subset of the initial results will be presented
in this chapter to demonstrate the current capabilities of HEDM and its accompanying
analysis tools. A set of common statistical distributions, such as normalized grain size
distribution and grain-to-grain misorientation distribution are shown to validate of our
measurements. Unlike most previous measurements, these statistical distributions fol-
low and characterize the same ensemble of grains throughout their evolution. An initial
characterization of grain boundary motion will be shown. Grain tracking and geometri-
cal feature extraction (introduced in chapter 4) will be demonstrated. As an application,
the evolution of 16 grains, tracked across four anneal states, is compared against predic-
tions from the MacPherson-Srolovitz relations. Grain boundary character distributions
(GBCD)[50] are compared between different anneal states to highlight changes in the
grain boundary population. We conclude with some remarks on current developments
and future directions.

5.2 Experimental Procedure

5.2.1 Sample Preparation

High purity, fully recrystallized nickel was prepared to have an initial grain size of
approximately 25-50 microns using the procedure described in [39]. Further screening
of the initial samples and calibration of the annealing procedures were done by optical
microscopy and EBSD. Because fully recrystallized grains are expected to have very
low dislocation content, boundary dynamics are expected to be largely dominated by
curvature-driven motions. A cylindrical sample was cut to be approximately 1mm in
diameter by 2cm in length using Electric Discharge Machining (EDM). To facilitate
alignment between different measured states, a fiducial mark was produced by EDM at
approximately 1mm above the measurement location. The sample was initially annealed
at 750◦C for two hours in a forming gas (3%H, 97%Ar hydrogen) ambient to achieve the
desired initial grain size. Successive anneals between measurements were done ex situ

using the same furnace setup for 23, 30, 25, 35, and 25 minutes, respectively, at 800◦C.
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5.2.2 Orientation Imaging Procedures

Volumetric orientation maps of this sample were measured using the HEDM setup at
sector the 1-ID of Advanced Photon Source at Argonne National Lab. Using a monochro-
matic X-ray beam of 64.5 keV (monochromacy of 10−3) micro-focused to 6µm FWHM
vertically, and an effective width of 1200µm horizontally). A LuAG, (Lutetium alu-
minum garnate, 25µm thick) scintillator was used in conjunction with 5x focusing optics
and a Photometric CoolSnap K4 CCD imaging system. The use of the 5x optical mag-
nification on the 7.4µm pixels of the CCD results in an effective pixel size of 1.47µm,
which is confirmed experimentally using optical and X-ray characterization.

The effects of optical distortion after calibration are negligible. For optimal diffrac-
tion spot imaging, we chose detector-to-rotation-axis distances (L-distance) of approxi-
mately 4.8, 6.8, 8.8mm. With this experimental geometry, typically 70 - 120 diffraction
peaks are imaged for a random crystal across the 180 integration intervals (δω = 1◦).
From our resolution studies [40] (presented in Chapter 2), this amounts to an angular
resolution of 0.1◦. As a validation, measurement of a “single crystal” ruby sample
showed two regions separated by a low angle boundary of around 0.5◦. This was found
to be consistent with a measurement done using a rotating anode X-ray source1, which
shows a peak splitting of ≈ 1.2◦. The latter measurement rotates about an arbitary
axis relative to the misorientation axis, so the splitting should be ≤ 0.5◦. The spatial
resolution of the orientation image map is limited by the effective size of the detector
system pixels.

To produce the volumetric orientation map, the sample was scanned one layer at a
time. Optimally, resolution in-plane should be identical to that out-of-plane. However,
limits of X-ray focusing as well as time constraints make this impractical. With a
focused beam of approximately 6µm FWHM, we decided to use 4µm spacing between
layers. This resulted in the ability to resolve grain boundaries for grains with radii of
around 25µm (feature size prevalent in the initial state) with 5-6 sample points. As
boundaries could be locally approximated as 2D quadratics on the tangent plane, the
ability to acquire more than 3 sample points per direction was crucial to local curvature
and normal estimation.

A total of six anneal states were observed for an imaging volume of 280µm×1mm for
the first two states (anneal 0, anneal 1), 336µm×1mm for the next three states (anneal
2, 3, and 4), and 400µm × 1mm for the final state. Successively larger volumes were
used in an attempt to capture any grains protruding outside of the imaging volume.

Taking advantage of the non-destructive nature of HEDM, all six anneal states were
imaged in approximately the same region of the sample. An unfocused X-ray beam
(1.3mm×0.3mm vertical) was used to produce transmission tomographic images of the
sample, and the fiducial mark was used as a reference point to identify the imaging
volume at each state. The resulting alignment is believed to be accurate within few
detector pixels, or about 5µm. Additionally, the orientation of the planar layer cutting

1 ∆E

E
≈ 10−5
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(a) Orientation Map (b) Confidence Map

Figure 5.1: (a) A representative orientation map from the nickel sample. The color is a mapping
of the orientation space to red, green, and blue (RGB). The confidence map (b) shows the fit
quality of the orientation map.

across this fiducial mark was measured at the beginning of each volume. This allowed
us to perform point-by-point matching of orientations between two different states to
get optimally aligned structures.

Measuring the orientation map for each of the anneal states took approximately 24
hours, which implies potential problems with sensitivity to cumulative drifts in both the
sample holding apparatus and the X-ray beam. These effects are observed and compen-
sated using a novel optimization method in the orientation reconstruction (presented in
Chapter 3).

5.3 Analysis

A total of six volumetric orientation maps were measured (one for each of the anneal
states, see Table 5.1). A representative two-dimensional cross section of the initial state
can be seen in (Fig. 5.1). Unlike in analysis methods used in 3DXRD and Diffrac-
tion Contrast Tomography [88, 68], orientation maps obtained from Forward Modeling
analysis completely fill the measured volume. This is particularly important for grain
boundary measurements. Mean grain volume was measured across the different states
and found to be monotonically increasing (Fig. 5.2). It should be noted that it would
be difficult to consider anneal states as time steps, as the annealing time varies for each
step. The small number of time steps also makes it difficult to produce a reliable fit
against the expected result of 〈V 〉 ∝ t

1
2 .

Since we would like to track small grain boundary movements to extract mobility
and curvature changes, differential annealing was performed on the sample. To ensure
that not too many grains had disappeared between successive states, we used partially
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Table 5.1: Grain size (interior only) and annealing time for each of the measured states.

States NLayers Volume measured N3◦ 〈V 〉 〈Req〉 Anneal Time

(mm3) (mm3) (mm) (minutes)

0 71 0.269 2142 0.992 × 10−4 0.0287

1 71 0.269 1848 1.223 × 10−4 0.0308 23

2 88 0.334 2295 1.310 × 10−4 0.0315 30

3 87 0.330 2168 1.382 × 10−4 0.0321 25

4 85 0.323 2036 1.429 × 10−4 0.0324 35

5 104 0.395 25
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Figure 5.2: Mean and median grain volume for each of the anneal states.

fitted orientation maps from subregions of the measurement as a guide. Annealing time
was adjusted at each step to help achieve the desired growth.

Consistent analysis of the final two anneal states is complicated by the development
of a bend in the sample during annealing. A bend developed unexpectedly and became
more pronounced in the specimen after the fourth and the fifth annealing steps. The
exact cause of the deformation is unknown, but grain rotation is suspected. In the last
two anneal states, several grains with radii between 1

16
and 1

8
of the sample’s cross section

radius were found. Rotations of these larger grains could easily affect the macroscopic
shape of the specimen, causing a bend. We do not expect this to be a result of sample
handling damage, as neither diffraction peak broadening nor increase in local orientation
variations were observed. Because sample alignment problems resulted from this, the

analysis for the final anneal state is incomplete and will not form part of the discussion.
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(a) (b)

Figure 5.3: (a) An example of a grain with non-trivial geometry found in the initial and the first
anneal state. The region that is “wrapped around” by the grain is identified as an in-growing
twin. (b) Evolution of a grain across four states going from initial to final (left to right).
Dramatic changes can be seen at the narrowest part of this grain throughout the annealing
process.

5.3.1 Orientation Reconstruction

Volumetric orientation information for all six anneal states were reconstructed using Ice-
Nine (chapter 3), an implementation of the Forward Modeling Reconstruction Method
(FRM) [116]. Each of the voxels were fitted independently with Qmax = 10A−1. With
our imaging geometry, this resulted in 70 - 120 fitted Bragg peaks per voxel. Fitted
two-dimensional cross sections of the sample were stacked together to produce the vol-
umetric orientation map. Drift between successive layers and throughout each volume
measurement was found to be minimal, as verified from parameter optimizations and
past comparisons with tomographic reconstructions. We found the orientation spread
across each grain to be below 0.1◦, which is our resolution limit. This figure remained
consistent throughout the five anneal states.

5.3.2 Grain Extraction

Grains are defined to be connected regions with similar crystallographic orientations. In
the case of our orientation maps, this is a set of connected voxels. Two voxels in an
orientation map are considered connected if and only if 1) they are first neighbors, and
2) the misorientation δθ between them is less than some threshold value θt, which was
set to 3◦ in this analysis. The choice of orientation threshold is somewhat arbitrary,
and depends on the expected orientation gradient in the sample. Since our specimen
exhibited extremely well annealed grains, we expect the number of grains extracted to
be quite stable with respect to orientation threshold variations.

Since reconstruction noise is expected at grain boundaries (i.e, orientations from
neighboring grains mis-assigned across the boundary), image artifacts are sometimes
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present in the grain identified maps. A “majority filter,” the discrete version of the
median filter, is used to remove these artifacts. Given a m×m majority filter centered
at (i, j), the voxel v(i, j) would be assigned the majority grain ID of its m × m − 1
neighbors. Note that no grain size restrictions are placed on the microstructure, and
grains are not guaranteed to be simply connected2, as indicated by Fig. 5.3.

5.3.3 Microstructure Geometry

Both volumetric and surface meshes are generated for all six of the anneal states. This
enables us to define boundary normals, curvature, and mean widths of grains. Further-
more, the reconstructed geometry was used to track grains between anneal states. Both
meshes were generated using feature-preserving mesh generation [9], which was imple-
mented with CGAL [1] (presented in Chapter 4). Because mesh quality (e.g., minimum
dihedral angle, aspect ratio, edge-length-to-circumcircle radius) is unimportant in our
calculations, most of our effort was directed at assuring that the surface mesh was a
faithful representation of the microstructure. This was achieved by restricting the re-
constructed surface mesh to be a maximum distance of two voxel side lengths from the
surface indicated by the data.

5.4 Results

5.4.1 Grain Statistics

Single Parameter Statistical Characterizations

Normalized grain size distribution, misorientation distribution, and grain boundary char-
acter distributions are extracted for the four different anneal states. Three-dimensional
grain size distributions are shown in Fig. 5.4. Unlike previous measurements, the evo-
lution of grain size distributions shown here contains the same population of grains in
3D, which is a first to the best of the author’s knowledge.

Grain volumes are calculated from the reconstructed volumetric meshes. A sphere

equivalent radius is calculated as Reqv =
(

3
4π
V
) 1

3 . It can be seen (Fig. 5.4) that the
grain size distribution remains invariant throughout the anneal, which suggests statis-
tical self similarity [75], a hallmark of curvature driven growth. It should be noted
however that explicit comparison with proposed grain size distribution functions, such
as Hillert [42], log-normal [30], and Rayleigh [65] may not be able to prove or disprove
any particular grain growth model, as variations in each distribution may be achieved
through adjustment and addition of parameters [33, 45].

A grain-to-grain misorientation distribution is computed using grain-averaged orien-
tations, and the usual features are present (Fig. 5.5). The expected peaks for a fully

2Simply connected is defined in the usual way, i.e. the region must not contain holes or self inter-
sections.
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Figure 5.4: Grain size distribution, plotted as normalized radius,
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the spherical equivalent radius. Annealing progresses from (a) to (d).
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Figure 5.5: Single parameter misorientation distribution for four (initial to third anneal state in
the order of (a) - (d)) out of six anneal states measured. The discrepancy in the second anneal
state is at this time believed to be an artifact due to errors in the experimental parameters,
pending results from the final error analysis.

recrystallized nickel sample, Σ3, Σ9, and Σ27b are clearly visible, with Σ3 (60◦, [111])
being the most prominent. We see that the misorientation distribution remains relatively
unchanged throughout the five states, with the exception of anneal state 2. This is due
to the combination of reconstruction and alignment problems that is currently being
addressed by on-going analysis. Aneal 2 was measured in two independent sessions due
to beam time scheduling constraints. The difference in calibration characteristics and
sample orientation resulted in some unexpected errors in the final, combined orientation
maps. The result is a significant reduction in orientation resolution, which is indicated
by the broadening of the 60◦ peak in Anneal 2.
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Five parameter Grain Boundary Character Distribution

While the grain-to-grain misorientation distribution remains stable during the microstruc-
ture evolution, the same cannot be said regarding its five-parameter counter-part (grain
boundary character distribution, or GBCD). The GBCD is measured from the com-
bination of reconstructed surface mesh and the volumetric orientation maps. On the
mesoscopic scale, grain boundaries can be described by the combination of misorienta-
tion and boundary normal. Given two grains a and b with orientations ga and gb, the
misorientation is given by ∆g = g−1

a gb. Because this misorientation is also a rotation
operator, it can be quantified by a set of Euler angles, quaternions, or Rodriguez vec-
tors. In any of these cases, three independent parameters are required. An additional
two parameters are needed to define the local surface normal, which, along with the mis-
orientation, results in a five parameter representation of grain boundaries. The GBCD
is the area weighted distribution of different types of grain boundaries characterized by
these five parameters.

By constructing a histogram in the five-parameter grain boundary character space
the evolution of specific boundary type populations can be observed. It has been sug-
gested that evolution of GBCD is intimately related to the boundary energy [27, 7]. For
example, the so-called Σ3 coherent twin boundaries, or grain boundaries with misori-
entations of ∆g = R(60◦, [111]) with normals that point along the [111] direction, are
found to have significantly lower energy than other high angle boundaries [86, 79, 80, 95].
Therefore, Σ3 coherent twin boundaries are expected to increase in population during
annealing process, as the total energy of the system is expected to be lowered. As ex-
pected, by plotting the evolution of the distributions for grain boundary normals of all
boundaries with misorientation of ∆g = R(60◦, [111]) (Fig. 5.6(a)-(c)), we observe an
increase in population for the first two anneal states. From the geometrical perspective,
Fig. 5.6 also shows the evolution of grain boundary normals. Alignment of the bound-
ary normal with the rotation axis (shown as sharpening of the [111] peak) in the case of
Σ3 is also seen as an indicator of boundary smoothing, suggesting curvature minimiza-
tion during the annealing. Similar behaviors are observed in the evolution of two other
boundary populations (Σ5 and Σ11, Fig. 5.6(d)-(f), and (g)-(i)), and a more exhaustive
search for features in the GBCD space is currently underway.

5.4.2 Direct Observations of Grain Geometry Evolution

Grain Boundary Movement

From Table 5.1, we expect subtle boundary motions to dominate the statistics: between
the initial and first anneal states (which are analyzed here), the average grain radius
changes from 29µm to 32µm. This is consistent with our intention to achieve “differ-
ential” annealing that would allow comparison to boundary motion predictions based
on curvature. It is shown here that our reconstructions and analysis procedures are
sensitive to the relevant length scales but that we have not yet achieved clear resolution
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Figure 5.6: Sub-spaces of the five parameter grain boundary character distribution selected
by the misorientation. Annealing proceeds from left to right. Each figure is a plot of the
boundary normal distribution, represented in the stereographic projection form and plotted
as multiples of random. (a)-(c) Σ3, (60◦, [111]) Note the strengthening of the [111] peak by a
factor of 100 across the annealing process, which indicates the alignment of boundary normals
with the rotation axis. (d)-(f) Σ5, (36.87◦, [100]) and (g)-(i) Σ11, (50.49◦, [110]) Signals from
both Σ5 and Σ11 are much weaker that those seen in Σ3. One reason is the significantly lower
statistics (count of 28007 boundary patches for Σ3 in contrast to 1185 and 804 for Σ5 and
Σ11). Secondly, the energy of the Σ3 coherent twin corresponds to a much deeper minimum
than Σ5 and Σ11.
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Figure 5.7: Distribution of apparent grain boundary motion between initial and first anneal
state. The horizontal axis is the number of microns shifted, and the vertical axis is the fraction
of boundary patches. The total number of boundary patches is also displayed to exhibit the
difference in the population sizes. A Gaussian (red) is fitted to the distributions in an attempt
to isolate random components of the shifts from potential signal. The raw data is shown in
blue, and the Gaussian subtracted signal is shown in black.
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Figure 5.8: An example of the global plot of the grain boundary motion distribution seen in
Fig. 5.7 for Σ3 (a) and Σ25a (b). A small number (less than 10) of boundary patches is found
to have noticeably large motion (upwards of 20 µm). However, these patches are more prone
to misidentification across the two anneal states.
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Figure 5.9: Apparent grain boundary movement, classified by misorientation type, plotted as
projections of the boundary normal weighted by multiples of the mean boundary shifted. For
each plot, the mean boundary shift is classified by the boundary normals and binned according
to the two angles, (φ,ψ), which represent the normal in the upper hemisphere. The average
shift in each bin is compared with the shift of all boundaries.

of such small motions. It appears that the current data sets may well be able to resolve
these by using finer scale reconstruction meshes and, of course, applying the current
methodology to later anneal states should certainly resolve larger boundary motions.

Boundary motions are extracted using reconstructed surface meshes. Surface and
volumetric meshes for two of the five anneal states are aligned visually and boundary
patches are associated across different anneal states. Specifically, grain boundary motion
for the anneal states n and n+1 is estimated by the distance between patches of the two
reconstructed surface meshes. Given a vertex v(~p) in state n, its motion is estimated
by δ~p = ~p − ~p′, where ~p′ is the point where the closest vertex to v is located in state
n + 1. The distance shifted for a given surface patch A(v1, v2, v3) is estimated as the
average distance shifted amongst its vertices. A final alignment is done by computing
the average boundary patch translation vector and subtracting this from all annealed
state mesh node positions. While for any specific grain, the boundary shift measured
may be directionally biased due to its physical motion and the voxel based surface re-
construction3, motions in the sample-aggregate distribution are expected to be random.
This is justified by the fact that large numbers of grains (2142) of different shapes are
measured, thus allowing for reliable averaging.

In spite of the above resolution discussion, it is clear from, for example, Fig. 5.8 that
there is boundary movement. This implies that small numbers of boundary patches
dominate the motion statistics. This is further illustrated by the evolution of the grain
seen in Fig. 5.3(b) where it is seen that only a small subset of the boundaries move
significantly. A comparison of the later anneal states reveal clear boundary motions.
Note for example the change Fig. 5.6(a) to Fig. 5.6(b) compared with Fig. 5.6(b) to
Fig. 5.6(c).

3Surface reconstruction errors are geometry dependent.
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MacPherson Srolovitz Comparison

To directly compare our experiment with the MacPherson-Srolovitz relations, grains
were tracked across five out of six of the measured states. Very strict selection criteria
led to only 16 of the total initial 2142 grains being selected. The criteria for this selection
are as follows:

• Each grain must be internal through the annealing process.

• The volume change between successive anneals must be less than 100%

• Given grains gn and gn+1 from states n and n + 1, the misorientations between
these two grains must be below some threshold value, which is set to 5◦.

• It must be possible to track forward and backwards through the five anneals.

These criteria were used to ensure that no grains are misidentified across the different
states, which turns out to be a relatively common error. Because most grains do not
grow isotropically, the center of mass tends to shift as the microstructure evolves. These
effects coupled with the occurrence of annealing twins, turns out to be make grain
tracking surprisingly difficult.

Mean width for a triangular mesh approximation of a closed surface S is defined by

L(D) =
1

2π

∑

i

eiαi (5.9)

where ei is the length of the edge shared by the two facets in the mesh [70]. The turning
angle, αi is positive when the surface is locally convex and negative otherwise. To obtain
the turning angle from a triangular surface mesh, one uses

αi = cos−1(n̂a · n̂b) (5.10)

where n̂a, n̂b are the normals of the two facets sharing the edge ei. Note that no mention
of topological properties of the region enclosed by the S is made. Specifically, the
region is not guaranteed to be simply connected, which tends to occur when the surface
represents a grain with an in-growing twin (Fig. 5.3).

From Fig. 5.4.2, we can see that little or no correlation can be found between
volume changes and the linear measure Eq. (5.8) for the 16 grains analyzed. This is not
particularly surprising, as it is well known that nickel has anisotropic grain boundary
mobilities and energies that range across four orders of magnitude [80].

5.4.3 Direct Observations of Grain Topology Evolution

Significant interest has been expressed in the topological evolution of 3D microstructures
during grain coarsening [34]. Specifically, while topological evolution of microstructures
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for the 16 grains tracked across four volumes. Aside from globally not following MacPherson-
Srolovitz’s relationship, deviation for each of the grain is markedly different from what is
expected for isotropic grain growth.
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Figure 5.11: Evolution of topological class and volume for 16 grains tracked across four of the
six anneal states. It is shown that the change of grain volume is correlated with the change in
topological classes.

in 2D is completely determined by the Von Neumann relation Eq. (5.7), grain coarsening
in 3D is significantly more complicated Eq. (5.8). As expected, this is yet another
quantity that is difficult to measure using 2D surface techniques. By using the extracted
geometry from the volumetric orientation maps produced by HEDM, we are able to
track the topological evolution of the same 16 grains examined above. As shown in
Fig. 5.11, the topological evolution is correlated with the volume changes for each of
the grains. While this result itself is not entirely surprising, it serves to improve one’s
confidence in the MacPherson-Srolovitz comparison, which appears to be completely
random (Fig. 5.4.2). It should be noted that while volume changes between successive
states are incremental, the topological evolution seems to vary significantly, indicating
multiple critical events, or disappearance of grains in the microstructure. This is further
attributed to the fact that a small number of boundaries and grains are responsible for
a large portion of the dynamics.

115



5.5. DISCUSSION

5.5 Discussion

We have seen in this chapter the application of HEDM to non-destructive grain growth
experiments, and a set of initial results are shown to both validate and demonstrate
Forward Modeling reconstruction’s capabilities. Grain boundary motions are analyzed,
and a majority of boundaries were found to have moved minimally. While this spells
inconclusive results that in qualitative comparisons with simulation and theoretical pre-
dictions are not possible, the results highlight the consistency and precision of the HEDM
method. The grain boundary motion distribution peaking at ≈ 2.5µm indicates that
the majority of the near idle boundaries were repeatedly measured to a great precision.
In fact, this measurement is currently limited by sample discretization resolution, i.e.,
the boundary noise is dominated by the voxel size. This problem will be addressed in
on-going analysis.

As seen in this chapter, the usual statistics, such as grain-to-grain misorientation
distribution can easily be measured by HEDM, with the advantage of the capability
to track the same populations of grains through the experiment. This is particularly
useful in the case of GBCD observations. Other work has found that population of grain
boundaries are inversely related with grain boundary energies [94, 7]. In principle, energy
measurements could be done with the current HEDM volumes. In addition, higher
resolution volumetric and surface meshes will produce much more reliable measurements
of mean width and local boundary curvatures. Combined with calculations of grain
boundary energy from triple lines, and mobility measurements from boundary shifts,
we can directly compare our results with some of the recent advances in simulation and
theory [70, 79, 80].

5.6 Future Work

Up to this point, the majority of the alignment and grain tracking work in the literature
has been mostly manually. This was not a particular concern in past measurements
[55, 88] where only a few grains are tracked, but it becomes nearly impossible for our
sample with well over 1000 grains throughout the six volumes. Current obstacles in
automated grain tracking are mostly due to the anisotropic nature of grain growth in
Ni. Oftentimes one side of a grain would be growing while the other side shrinks.
Consequently, the resulting orientation map would seem as if the grain has shifted. On-
going improvement in grain tracking will certainly help alleviate most of these problems.

Significant improvement in triple line reconstruction will also be needed to obtain
grain boundary energy estimates to fully test the anisotropic nature of grain growth.
Coupled with improvement in sample alignment, grain boundary mobilities could be es-
timated. This will be combined with local curvature measurement on the grain boundary
network mesh. A lot of this work is partially completed at the time of this writing, pend-
ing cross checks and simulation validation.

To fully take advantage of the six volumes of data we have, direct comparison with
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simulated models would be needed. For example, comparison with Potts and phase
field models would help elucidate the nature of anisotropy in the boundary movement.
Work by Hefferan and company [39] is in the process of producing a comparison of grain
boundary mobility with results from atomistic simulations [79, 80]. Direct validation
of this type is currently unavailable, as non-destructive volumetric orientation maps of
bulk materials have been elusive until the recent advances of X-ray techniques. Finally,
some small improvement of the current reconstruction software is necessary to achieve
the optimal resolution of our orientation maps, which will reduce some of the aliasing
effects of extracted grain boundaries.
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Chapter 6

In Situ Observation of Spatially
Resolved Orientation Evolution in
the Deformation of High Purity
Copper Wire

6.1 Preliminaries

The experiment described in this chapter was preceded by two prototype development
runs at Argonne National Laboratory, which led to improvements in various aspects
of the apparatus, calibration methods, data acquisition methods, and sample prepa-
ration. Useful feedback was obtained from the data sets measured in these prototype
experiments, which served to improve validation the application of Forward Modeling
reconstruction method to deformed microstructures. To limit the scope of this chapter,
those results have been omitted.

6.2 Introduction

It is well known that anisotropies in material properties play a prominent role in the
evolution of microstructures during deformation [53]. For example, elastic moduli for
most materials are directionally dependent; hence for a single crystal, the mode of de-
formation differs as stress is applied from different directions. Of particular relevance
to our experiment, the case of plastic deformation, the difference in the Taylor Factor
[53] for different slip systems results in the anisotropy in the crystal response. In the
case of polycrystalline materials, this anisotropy manifests itself as an intimate connec-
tion between the crystallographic orientation and strain state of each grain. Specifically,
grains with different orientations respond to external mechanical stimuli differently; con-
sequently, the stress states inside a material could vary significantly depending on local
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orientations. On the other hand, crystallographic orientation for each grain changes as
the bulk sample undergoes plastic deformation. This is commonly observed as lattice
rotation, low angle boundary formation, and increase of orientational mosaicity across
a grain. In general, the ability to produce spatially resolved orientation maps proves to
be an invaluable tool in studying deformed materials.

Until recently, spatially resolved orientation measurements have been considered
all but impossible. With the advent of electron backscattering diffraction microscopy
(EBSD), orientation maps become much more readily available. However, EBSD is lim-
ited to surface measurements, and therefore it is particularly difficult to apply EBSD to
the study of deformation. Deformation is an inherently three-dimensional problem, as
quantities such as dislocation densities are measured through 3D spatial derivatives of
the orientation field representing the microstructure. Many attempts were made to infer
and extract three-dimensional information from 2D orientation maps [114]. However,
strain measurements from EBSD tend not to be reliable, partly due to relaxation of the
free surface [92, 108]. Recent advances in synchrotron X-ray based techniques, such as
DAXM [55], 3DXRD [88, 90], and near- and far-field HEDM [116, 83, 71, 62] have led
to the possibility of measuring orientation and strain states inside a bulk polycrystalline
sample. Of these techniques, near-field HEDM is best suited to measure spatially re-
solved three-dimensional orientation maps for deformed bulk materials. In contrast to
the far-field HEDM [62, 71, 83], near-field HEDM has a much higher spatial resolution
at the cost of lower angular resolution (factor of 10-100). Analysis technique of 3DXRD
and Diffraction Contrast Tomography were not designed to handle deformed materi-
als, and DAXM has limited penetration depth and imaging volume size. Consequently,
neither of these techniques are suitable for measurement of deformed bulk samples.

In this chapter, application of near-field HEDM to measure in situ damage accumu-
lation of high purity copper wire under uniaxial strain will be discussed. The resulting
spatially resolved lattice rotation map is shown. We start by describing the experimental
method, imaging setup, and sample preparation. A total of five states (one initial and
four deformed) of the copper gauge section were measured. The effect of deformation to
the diffraction signal was studied; furthermore, spatially resolved volumetric orientation
maps were reconstructed and compared across three of the five states using the For-
ward Modeling Method [116]. Lattice rotation and low angle boundary formation were
observed along with formations of sub-grain structures. Because of the novel nature
of this experiment, in that a macroscopic sample is deformed and imaged in situ until
ductile failure, several concerns are raised regarding the reconstruction reliabilities of
the forward modeling method. To address these concerns, resolution, convergence, and
systematic error studies are performed to validate the correctness and stability of the
reconstructed orientation maps. Transmission X-ray tomography on the sample as is
reported as a cross check of the bulk sample geometry evolution.
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6.3 Methods

6.3.1 Adaptation of Near-field HEDM for in situ Study of De-

formed States
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Figure 6.1: (a) Side view schematic of the experiment, with the blue arrow indicating the
diffracted X-ray beam. The diffracted peaks are measured at distances L1 and L2. The dotted
green line indicates the location of the copper wire in tension, and the red region indicates
the gauge section being imaged. (b) An expanded side view of the sample holder in (a). The
1mm wire can be seen here to be fixed by set screws (red section at the top and bottom). The
sample housing around the wire is made out of Macor, an X-ray transparent ceramic. (c) A
photograph of the actual sample after electropolishing (the image was cleaned up to remove
some of the residual lacquer). The narrowest section of the necked wire is roughly 250µm in
diameter. (d) The load cell reading plotted as a function of displacement. Green dots indicate
states where HEDM imaging was performed.
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Three-dimensional, spatially resolved orientation maps of in situ deformed materials
have never been obtained from a bulk material, and there are good reasons why this is
the case. Leaving aside the immediate and potentially intractable problem of orientation
reconstruction with weak, overlapping diffraction signals from a deformed sample, there
is still the concern of sample geometry. In both HEDM and 3DXRD, the sample is re-
quired to rotate about a fixed axis. Simultaneously, the “load frame” must be compliant
with experimental geometry, i.e., it must be small (radius r ≤ 5mm), and cylindrically
symmetric. Furthermore, the material for the load frame used must be both stiff (high
elastic modulus) and X-ray transparent. Many of these problems were solved using a
specially designed load frame and Macor sample housing, Fig. 6.1(b), which will be
explained in more detail in the next two sections.

Since diffraction peaks from a deformed structure tend to broaden due to effects
such as subgrain formation, lattice rotation, and dislocation accumulation [126, 47, 89],
significant care must be taken in the experimental design. Specifically, peak broadening
in the η direction leads to intensity being spread out across a much larger area on the
detector, increasing from the typical width of δη ≤ 1◦ in the undeformed case to δη ≈ 10◦

in strained materials; this broadening also reduces the signal to noise ratio. To further
complicate matters, higher order diffraction peaks tend to be the most noise sensitive,
as they tend to have lower intensity. This could normally be compensated by increasing
integration time, but constant rate backgrounds (fluorescences and stray scattering) are
always present and are relatively strong in our case due to the strain apparatus (see
below). Specifically to our in situ experiment, texture development due to the applied
load resulted in orientations that diffract more heavily along the low η direction. Since
the integrated intensity for a diffraction peak scales with

Isim ∝
|F |2

| sin η| sin 2θ , (6.1)

a region of disproportionately high intensity is developed in the low 2θ high η area, which
saturates the dynamic range of the CCD detector. The best we can do is a judicious
choice of integration time.

While validation and characterization of HEDM and the Forward Modeling recon-
struction method is sufficiently addressed in the case of well-ordered polycrystalline
samples (chapter 3, 4), the same cannot be said about imaging of deformed materials.
Specifically, little study has been done on the effect of peak broadening in both the
η and ω directions on orientation reconstructions in the HEDM and 3DXRD geometry.
A validation and sensitivity study performed to fully characterize the effects is discussed
in Sec. 6.4.

6.3.2 Apparatus and Sample

The tensile sample was fashioned from a piece of copper wire and measured using near-
field HEDM while in uniaxial tension. The specimen was prepared from commercially
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Figure 6.2: Images corresponding to the same 1◦ integration interval in states S0, S1, S2, and
S3. These are background subtracted images for a layer at a sample location equivalent to z16,
the 16th layer of state S1. Since the sample is moved and deformed noticeably during strain
steps, layers measured do not have a direct correspondence between different states. Best
match layers are shown here instead. Significant deformation of the sample can be observed
as peak broadening in the η direction. Note that we do not expect any observation of elastic
strain since it is on the order of 10−4 for copper, which is below our resolution limit.
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available, 1mm diameter 99.9999% purity Cu wire from Alfa Aesar. To focus stress in
a small region where the measurement would be done, a narrowed region was created
by electropolishing a 1mm long section at the center down to a 500µm diameter (Fig.
6.1(c)). An acetone soluble lacquer (Midas 335-009) was used to protect the rest of the
wire. Then a 300µm long section within the gauge was necked further to an ≈ 250µm
diameter. The polishing was done at 20V in a 30% nitric acid/methanol solution kept
at −50 to −30◦C. The use of a two-step polishing process is necessary to reduce stress
concentration around sharp edges and corners outside of the imaging region.

The sample holder (Fig. 6.1(b)) forms part of the load frame (Fig. 6.1(a)) and
was constructed using the ceramic Macor, which is high energy X-ray transparent but
produces a diffuse background. A load cell (Transducer Techniques, GSO-1k, 0.1%
sensitivity) was used to provide direct readouts of the force on the wire. The load frame
is driven by an elevation stage (Micos ES-50), with a maximum load of 5N , minimum
step size of 1µm, and minimum traveling velocity of 1µm/s.

The sample was mounted on using set screws, penetrating into the surface of the
1mm diameter regions. After mounting in the Macor cylinder, the sample was annealed
at 400◦C for 30 minutes to allow for recrystallization and recovery from any damage
introduced during processing.

6.3.3 Volume Measurement Procedures

Five different strain states were measured with HEDM with macroscopic true strain of
0%, 0%, 6.2%, 15.3%, and 26.9% (henceforth referenced as S0, S1, S2, S3, and S4).
These strains values were determined by the length of the gauge section deduced by the
location of fiducial marks on transmission X-ray projection images. The two fiducial
marks are the sharp corners at the transition between the 500µm and 250µm necks
(Fig. 6.1(c)). The error associated with location of the fiducial marks is determined
by the sharpness of the X-ray images, which is estimated to be ±15µm. Note that
the macroscopic strain between S0 and S1 is undetectable by this estimation scheme.
Diffraction images and the load curve also imply that this first “load step” simply brought
the wire to a taught state.

The load curve, the force reading from the load cell plotted against macroscopic
displacement, is shown in Fig. 6.1(d). The stress state of the sample is not uniform, and
therefore not shown in the plot. The use of simulation would be needed to estimate the
stress state of the sample with consideration of the non-uniform geometry. Orientation
map of the gauge section indicate that the sample consists of roughly ten grains per cross
section. As suggested from the literature [69, 28, 35, 120], the deformation behavior in
this sample is expected deviate significantly from a continuum model.

To facilitate alignment and experimental parameter determination, orientation maps
were measured at the position of the two fiducial marks using three L-distances. Diffrac-
tion signals from the fiducial mark layers remain sharp throughout the experiment, as
both layers are well outside of the narrowest and most highly deformed part of the
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sample. Detector to rotation axis distances (L1, L2, L3) were set based on the physical
limitations of the Macor sample housing and the location of the direct beam stop (Fig.
6.1(a)) To ensure the ability to image a significant number (≥ 100) of the diffraction
peaks, L1 was set to 6.40mm, L2 = L1 + 2mm. and L2 = L1 + 3mm.

The measurement volumes for states S0, S1, and S2 are 200µm in height, centered
on the necked region. A larger volume of 252µm height was imaged for state S3, to
account for the elongated sample. Due to the large deformation seen in most of the
sample, only a small region near the fiducial mark was imaged in the state S4. To save
time, these measurements were made with two L-distances, with L1 and L2 given above.
The length of measurement time (approximately 18 hours per volume) requires that the
deformation be performed in “stop-action.” Load was applied in situ and the sample
was allowed to relax (approximately 30-60 minutes) before imaging began. The sample
was held at constant displacement for up to 24 hours, and the load reading was found to
have minimal drift. This indicates that effects of motor movement associated with the
HEDM setup is minimal. Load was applied to the sample by discrete displacement steps
with minimum step size and velocity of the Micos ES-50 elevator stage. During loading,
steps were taken once every few seconds, thus allowing the load frame to stabilize from
the motor motions.

6.3.4 Diffraction Signals

The deformation of the copper specimen can be seen from both the load cell reading (Fig.
6.1(d)) and the tomographic reconstructions, Fig. 6.3. By inspection of the tomographic
reconstruction, the region with the maximum deformation is located in the center of the
electropolished neck. This is further substantiated by the diffraction patterns shown
in Fig. 6.2. Reconstruction quality suffers as we approach the narrowest parts of the
sample.

We have specifically chosen layer 16 from state S1 (L16S1) as our reference point and
as the subject for development of detailed analysis methods. Layers corresponding to
L16S1 in states S0 and S2 are used as a basis for comparison. Layer 16 was specifically
chosen because it resides in a region that is noticeably deformed, yet orientation recon-
struction is still possible. Moreover, since sample alignment between strain states is not
perfect, having multiple neighboring layers lets us optimize the state-to-state alignment.

6.4 Analysis

Orientation reconstruction requires fitting of diffraction peaks, but it is not cleare a

priori that peak-broadening and splitting produced by a deformed sample is tracked
by the Forward Modeling algorithm. Specifically, we would need to assert that broad-
ened peaks do not lead to accidental overlaps, which are seen as orientation candidates
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(a) S1 (b) S2

(c) S3 (d) S4

Figure 6.3: Tomographic reconstruction of the four deformed states.
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by the reconstruction. This can be accomplished by tracking and comparing experi-
mental and simulated diffraction peaks across multiple integration intervals. This is
in contrast to well-ordered materials, where peak fitting seen in one integration in-
terval is sufficient to substantiate that the diffracted peaks are correctly fitted. To
further ensure the reliability of the reconstructed orientations with respect to exper-
imental uncertainties, a sensitivity study was performed on the reference layer (z16).
By varying the detector origin and reconstruction resolution, we have found the recon-
structed orientations to be stable under significant systematic parameter variation (i.e,
∆L
L1
≈ 3%, constrasted with ≈ 0.3% in the well-ordered case). The details of these

studies are presented in the next two sections.

6.4.1 Forward Modeling Validation

Because splitting and broadening of diffraction peaks are not explicitly input into the
diffraction model, it is not entirely clear that the measured diffraction spots would be
tracked by the simulation. We examine this peak tracking problem by focusing on a
subregion of the detector where an experimental diffraction peak is split and broadened
across 20 integration intervals (only nine are shown in Fig. 6.4). Specifically, diffraction
spots simulated from the reconstructed microstructure tend to stay close to, if not di-
rectly overlap the experimental peak. It should be noted here that the detector geometry
specifying the entire HEDM experiment is bootstrapped at the fiducial layer using the
procedures outlined in Chapter 2 and 3. These experimental geometry parameters may
therefore contain a certain amount of systematic error, as the detector or sample could
potentially drift throughout the experiment.

Simulated intensities plotted in gray scale can be found in Fig. 6.5, which contains
some qualitative similarity with the experimentally measured spots. As the diffraction
peaks are extended along the η̂ direction, integrated intensity along the vertical or hori-
zontal direction could provide additional insight in how well the experimental diffraction
spots are tracked by the reconstruction. Normalized integrated intensities along vertical
and horizontal directions are compared between the experimental and simulated diffrac-
tion spots in the region shown in Fig. 6.4 in Fig. 6.6(c) and Fig. 6.6(d). The simulated
pixel intensity is the sum of intensities produced by each voxel as described by Eq. (6.1).
The stacks of plots show a progression of integrated intensity across the vertical and hor-
izontal direction in successive ω integration intervals. It should be noted here that due
to the projection geometry of HEDM (Chapter 2 and 3), sample spatial resolution along
the direction of the X-ray beam is significantly compromised. Consequently, the peak
resolution along the vertical direction is typically worse than the horizontal direction.
This provides a basis for the generally smoother integrated peak intensities along the
vertical direction.

As expected from inspection of the 2D detector regions in Fig. 6.4, splitting, broad-
ening, and movement of diffracted peaks are tracked in the integrated intensities. It
should be emphasized here that the “intensity model” used in the orientation recon-
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Figure 6.4: (a) - (i) Observed evolution of a diffraction peak as the sample rotates about
the ẑ-axis. Experimental diffracted intensity is shown in grayscale, while simulated pixels are
plotted as green dots. The simulation overlap is typically concentrated in the higher intensity
area of the experimental peak, in spite of the fact that no explicit intensity fitting is used in
this reconstruction. (See Chapter 3).
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Figure 6.5: Diffraction spots generated from forward modeling reconstruction, with intensity
approximated by Eq. (6.1). Each image (a) - (i) shows a diffraction peak in one out of nine
consecutive integration intervals. It can be seen that the peak splitting in the simulated result
is similar to that in the measured images.
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struction is in fact binary. In other words, the intensities used in the reconstruction
are thresholded, and therefore they resemble more closely the figures 6.6(a) and 6.6(b).
Overlap between simulated versus experimental lit pixels then completely determines
the “goodness-of-fit” for a certain peak (Chapter 3). The fact that simulated inten-
sity tracks the experimental intensity so well indicates that intensity variations in each
diffraction peak are mostly due to geometrical configurations. In other words, Bragg
scattering is sufficient to describe the measured diffraction. This is compatible with the
fact that elastic deformation in copper is below the detection resolution of the current
HEDM setup. Orientation mosaic resulting from plastic deformation seems to be re-
solved accurately by the Forward Modeling method, thanks in part to its insensitivity
to diffraction signal overlap.
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Figure 6.6: Vertical and horizontal intensity profiles from Fig. 6.4 and Fig 6.5. The stacking
of profiles vertically indicates successive integration intervals. In all four figures, red indicates
simulated intensity profile, and black indicates experimental results. (a), (b) Binarized inte-
grated intensity profiles. (c), (d) Integrated intensity using Eq. (6.1) to estimate intensity
contributions from each diffracted peak. It is shown in all four cases that diffraction spots
and peak splitting are tracked across multiple integration intervals by the Forward Modeling
reconstruction method.
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6.4.2 Stability of Forward Modeling Reconstruction

The reliability of the reconstructed orientations is determined by their stability, i.e, small
perturbations of reconstruction parameters lead to small changes in the reconstructed
orientations. Specifically, the reconstruction is expected to converge reasonably smoothly
with increasing spatial and orientation resolution (i.e., changes in resolution should not
lead to wildly different reconstructed orientations). While errors in sample geometry
are expected to induce changes in grain boundary locations, there should be minimal
effect on the global reconstructed orientations. This assumption is justified by the fact
that orientation distributions can be measured without spatial sensitivity, as in the
case of traditional X-ray measurements. Therefore, Forward Modeling simply resolves
the orientation spatially. Sample geometry errors translate directly to sample location
uncertainties, which should not affect the set of possible reconstructed orientations.
Unfortunately, a theoretical framework to study the stability of the Forward Modeling
algorithm is not available, and a sensitivity study must be performed on each data set.
We have selected four areas of focus for our sensitivity study:

1. Detector-to-rotation axis distances (L-distance)

2. Diffraction Origin

3. Orientation Resolution

4. Sample Space Resolution

It should be noted here that the experimental parameters are typically coupled in
a non-trivial way as pointed out in Chapter 2. To account for parameter coupling,
constrained optimizations of experimental parameters are performed. In the case of L-
distance variations, all experimental parameters were allowed to optimize freely while
the L-distance is constrained to below motor movement precision. This procedure is
performed for the parameter studies. To be consistent with the rest of the chapter, all
sensitivity studies are performed using the reference layer, z16 of state S1. To better
quantify local orientation variations, a measure, the kernel averaged misorientation, is
introduced.

Kernel Averaged Misorientation

Because local orientation variation tends to be small and difficult to see from the orien-
tation maps, characterization of noise is done using a spatial orientation variation known
as kernal averaged misorientation (KAM). Two-dimensional KAM maps show both ge-
ometrical features (structure and location) and a relative magnitude of deviation. Lines
(in 2D) formed by orientation variations are indicative of low angle boundaries. The lo-
cation and magnitude of KAM features are important for studying plastic deformation
in that it serves to quantify deformation accumulation [72, 114]. Geometrical features
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extracted from KAM maps, such as low angle grain boundaries (LAGBs), delineate re-
gions of subgrain formation, which serves as a path to direct comparison with deforma-
tion models [119, 41, 58]. Here, the KAM maps are used to characterize reconstruction
sensitivity to experimental geometry.

In our case, kernel averaged misorientation, K(~x) is defined to be

K(~x) =

∑

i wi(~xi, ~x)d(q(~xi), q(~x))
∑

iwi(~xi, ~x)
, (6.2)

where q(~x) is the orientation at location ~x, d(q, q′) is misorientation defined in the usual
way, and the summation is performed over the N -nearest neighbor points of ~x. The
weighting factor, w(~x′~x), is defined as

w(~x′~x) =

{
1

|~x′−~x|
if d(q(~x), q(~x′)) ≤ θt

0 otherwise.
(6.3)

The resolution of the kernel averaged misorientation is controlled by selecting the number
of nearest neighbors to be consistent with the resolving power of the setup. In our case,
this is limited by 1.47µm pixel size of the detector system. It should be noted that
the traditional definition of KAM in the EBSD literature does not include the 1

|~x−~x′|

weighting factor. The point of using a weighting factor is to produce a metric that can
be used across voxels of different resolutions.

Variations in L-distance

Reduction in measurement spatial sensitivity is expected due to the broader peaks in
deformed samples. Two reconstructed orientation maps are produced from L-distances
that are approximately 20µm apart. Note that the constrained local optimization at L =
6.3948mm shifted the beam origin by approximately a pixel, or 1.47µm in the horizontal
direction. This is well within the expected error in the optimization. Deviation of 20µm
corresponds to a factor of 10 larger than the typical errors seen in measurements of well
ordered materials; consequently, noticeable but minute changes in the grain boundary
are expected and observed in Fig. 6.7 (a) and Fig. 6.7 (b). Meanwhile, orientation
reconstruction errors are not typical for ∆L = 20µm in well-ordered samples. Overall,
very little difference is seen in Fig. 6.7 (a) and Fig. 6.7 (b).

Kernel averaged misorientation maps are shown in Fig. 6.7 using θt = 5◦. The use
of relatively low threshold is to focus the feature extraction on low angle boundaries.
Because the KAM map gray scale is deliberately saturated at 2◦, we can see the con-
sistency in the locations of well-ordered regions (low KAM). Observe that some of the
low angle boundaries extend through multiple grains; such structures are referred to as
shear bands [53, 38].

Large scale features shown in both the orientation and kernel averaged misorien-
tation map were found to remain observable as the L-distance is varied (figures 6.7).
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(a) L = 6.3732 (b) L = 6.3948

(c) L = 6.3732 (d) L = 6.3948

Figure 6.7: (a), (b) Orientation reconstruction for the same layer at two different optimized
positions (L1 = 6.3732 and L1 = 6.3948). Orientations are represented by a mapping of
the Rodriguez vector to RGB (red, green blue) colors. We notice that while small features
(i.e., grain in green at the intersection of four other grains) and boundary locations differ
across the two maps, the two reconstructions are largely similar. (c), (d): Comparison of local
misorientation properties for the corresponding orientation maps. Notice again that qualitative
features are similar.
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However, the spatial location of individual features tend to shift even for high angle
grain boundaries. Thus, orientations in the sample are recovered, as evidenced by the
orientation maps (Fig. 6.7), but the assignment of these orientations in the sample space
vary noticeably when the L−distances changes. In other words, variations in L-distances
directly alters sharp feature resolution of the reconstructed orientation map. This is not
entirely surprising, as deviation of L-distances directly translates into spatial errors in
the sample.

Variations in Diffraction Origin

(a) Pixel k = 1991.38 (b) Pixel k = 1993.3

Figure 6.8: Kernel averaged misorientation computed for reconstructions with the beam origin
at different detector pixel k locations (≈ 3µm difference in the z direction). This is equivalent
to vertical sample position. Note that both reconstructions are done at Qmax = 12Å−1

In the HEDM setup, the planar cross section of the sample illuminated by the mi-
crofocused beam is responsible for the diffraction signal observed in the detector. Con-
sequently, the diffraction origin is parameterized by the location (z) of the illuminated
cross section. With a beam height of 6µm (FWHM of a Gaussian profile), the diffrac-
tion origin is not infinitely sharp; the measured diffraction signals comes from a region
z ∈ [z0− δz, z0+ δz]. This signal is “deconvolved” by the infinitely sharp origin at z = 0
used in the reconstruction. Consequently, variations in the scattering origin should lead
to small changes in the reconstructed microstructure. This change is expected to be
small due to two reasons. First, in the case of materials with large grain size, mi-
crostructures do change much over the length scale of a few microns. Secondly, small,
sharply contrasting features of sub-micron size tend not to generate a large amount of
diffraction signal, as diffracted intensity is proportional to the volume. A test result can
be seen by comparing the Fig. 6.8(a) and Fig. 6.8(b), where only very subtle differences
can be seen between the two KAM maps.
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Variations in Qmax

(a) Qmax = 10Å−1 (b) Qmax = 12Å−1

Figure 6.9: Kernel averaged misorientation computed for reconstructions at different Qmax

and diffraction origin. (a) Qmax = 10Å−1. (b) Qmax = 12Å−1.

Major differences can be seen in the KAM maps between the reconstruction using
Qmax = 10Å−1 and 12Å−1 (Fig. 6.9), but their corresponding orientation maps remain
very similar (not shown). For copper, with a lattice constant of a = 3.61Å, q100 ≡ 2π

a
=

1.74Å−1. Thus Qmax = 10Å−1 corresponds to
√
h2 + k2 + l2 = 5.74, whereas at Qmax =

12Å−1,
√
h2 + k2 + l2 = 6.89. The key feature seen here is the appearance of regions

with large local orientation variations. This suggests that the orientations in the higher
Qmax reconstruction may have converged. Because the number of peaks fitted increased
between Qmax = 10Å−1 and 12Å−1, significant reduction in orientation noise is expected.
Analysis similar to that seen in Sec. 6.4.1 suggests that simulated higher order peaks are
indeed consistent with the experiment. It should be noted that the maximum number
of peaks observed is highly dependent on the material, as scattered intensity tends to
drop off sharply as a function of Q. The difference in scattering intensity between the
[100] and [800] peak could easily be more than the dynamic range of the detector. Since
reconstruction time is proportional to the number of peaks fitted per voxel, judicious
choice of Qmax is necessary to optimize computation time and reconstruction accuracy.
In present case, we have found Qmax = 12Å−1 to be optimal.

Variations in spatial resolution.

A systematic study was performed on the reconstruction as a function of sample space
element, or voxel, size. In general, the minimum resolution of reconstructed features is
limited by voxel size. The practical lower bound on this size is typically considered to
be the effective pixel size on the detector. However, as pointed out in the last section,
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(a) s = 2.4µm (b) s = 1.2µm (c) s = 0.6µm

Figure 6.10: Aliasing effects are reduced as sampling rate is increased. As spatial resolution is
increased from (a) to (c), sharpening of boundaries is observed. More importantly, the KAM
features seem to be converging with the increase of spatial resolution, with no large (≥ 2.4µm)
feature in (b) that is missing in (a). These reconstructions all use Qmax = 12Å−1.
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sample space resolution is also limited by Qmax, so optimization of these two parameters
is coupled. With Qmax = 12Å−1, we see in Fig. 6.10 (a) and (b) that reducing the
voxel size from 2.4µm to 1.2µm (with detector pixels of 1.47µm) does indeed improve
definition of features.

Because in any kind of imaging system, pixelation distorts reconstructed features,
a so-called “super-resolution” study at half the detector pixel size was performed, as
seen in Fig. 6.10(c). Note that each diffraction signal is a projection of a region of the
microstructure onto the detector. Since each region generates 100 to 150 such peaks,
the measurement samples each region this many times. This is analogous to super-
sampling of a spatially continuous intensity signal. Because of the high sampling rate,
one can expect features to be resolved to better than the detector resolution. This
effect is seen rather clearly in comparing Fig. 6.10(a) to Fig. 6.10(c). The fact that
geometrical features converge with increasing resolution is important, as it indicates
the reconstruction algorithm is stable (i.e. orientations do not vary wildly around the
neighborhood of the solution).

6.5 Results

By comparing the reconstructed orientation maps of the reference layers (layer 16 of state
S1, Fig. 6.11) across the first three strain states, we have measured the microstructure
evolution of the copper sample under uni-axial tension. Texture evolution of the three
states is quantified by inverse pole figures (Fig. 6.12), and lattice rotations are detected
between strain states S1 and S2. This is confirmed by a point-to-point misorientation
calculation between layer z16 of S1 and its equivalent in S2 (Fig. 6.13). Finally, taking
advantage of the high fidelity orientation maps, a spatially resolved lattice rotation map
is produced. This is the first ever spatially resolved measurement of texture evolution
of an in situ deformed sample.

6.5.1 Lattice Rotations

Evolution of [001]sample Inverse Pole Figure

Lattice rotation is expected during plastic deformation. Traditionally, measurement
of lattice rotations is limited to statistical measurements, represented by inverse pole
figures of the [001] axis obtained from analyzing measured X-ray diffraction data from
a statistical distribution of grains. Since we have measured orientations of grains in the
z16 layer, we can generate pole distributions for each state. The crystal axis [001] in the
sample frame, is projected onto a 2D plane, and its distribution is plotted as densities for
states S0, S1, and S2, as shown in Fig. 6.12. Lattice rotations are deduced from changes
between the different inverse pole figures. Note that the relatively few sharp peaks are
due to the small number of grains in the cross section of the sample. As expected from
our load curve (Fig. 6.1(d)), little change occurred between the initial and first strain
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(a) S0 (b) S1 (c) S2

(d) S0 (e) S1 (f) S2

Figure 6.11: (a) - (c) Reconstructed orientation maps for the reference layer of states S0, S1,
and S2. Changes in the grain boundaries can be attributed to deformation induced microstruc-
ture evolution, but quantitative comparison of geometrical features is difficult due to alignment
issues. Texture evolution is observed by comparing the point-to-point misorientation of these
three reconstructed maps. (d) - (f) Confidence maps showing the goodness-of-fit for the re-
constructed orientations. Degradation of fit quality along the grain boundaries is expected,
but marked changes are seen between (e) and (f), resulting in a “hole” in the orientation
map. This hole indicates that the diffractions originating from this region have unusually low
signal-to-noise ratios.

(a) S0 (b) S1 (c) S2

Figure 6.12: Distribution of [001] crystal axis in the sample frame for the layers corresponding
to z16 S1 across all three states, plotted in the standard stereological triangle. Color represents
multiples of random, plotted in log10 scale.
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states. In contrast, the second strain state (S2) shows marked differences from S1. A
subtle decrease of density towards the [110] direction is noticeable, which is consistent
with the Bishop and Hill model[119, 41]. The drawback of this pole figure analysis is
that without directly tracking individual grains as in the case of ref [89], it is difficult to
see what specifically the lattice rotations are, which is crucial for model comparisons.

Spatially Resolved Lattice Rotation

With the use of near-field HEDM, spatially resolved lattice rotations can be measured
across different strain states. This is achieved by first aligning orientation maps from
different strain states with each other, then performing a point-to-point misorientation
calculation. As before, all analysis is referenced against layer 16 of state S1 (z16S1).

Because noticeable sample movement occurred between different strain steps, orien-
tation maps measured at different states do not align exactly. In some cases, measure-
ment planes may not even be parallel to within our measurement precision. Therefore
an alignment procedure is necessary before carrying out a point-to-point misorientation
calculation. Assuming that not all grains within the sample would rotate the same way,
the basis of the alignment is simply to minimize the total misorientation between two
different maps. To improve the reliability of the alignment, only voxels with confidence
above a threshold, in this case Ct = 0.4 are used for the alignment. A zero temperature
Monte Carlo method was used for the alignment optimization. To ensure an optimal
match, the alignment procedure was performed on neighboring layers as well, but only
the best matched layers are shown in this analysis.

The point-to-point misorientation maps are seen in Fig. 6.13. Only voxels with
C ≥ 0.4 are included, and misorientations above 15◦ are excluded in this plot, as they
indicate shifts in the grain boundaries. As expected, little or no change can be observed
between states S0 and S1, but significant change is seen between S1 and S2. We observe
that the amount of rotation is non uniform across the cross section and within each grain.
The variations are typically slowly varying within a gain, but discontinuous across grain
boundaries. This is, presently, the first in situ observation of such spatially resolved
rotations.

The misorientations seen between S1 and S2 are much larger than systematic errors of
the reconstruction. Moreover, the variations in the angle of lattice rotation seem to have
spatial structures. One way to compare the difference in the amount of lattice rotations
between steps of S0 to S1 and S1 to S2 is to look at the distribution of rotation angles.
Here, the misorientation is represented by the axis-angle parameterization (n̂, θ), and the
distribution of the angle θ is shown in Fig. 6.14. The point-to-point misorientation for
maps from S1 to S2 with only spatial alignment is also shown (unoptimized). Since no
minimization of total misorientation was done in the “unoptimized” case, the distribution
of rotation angle is shifted to the right from the optimized version as expected, and thus
can be considered as an upper bound. Even in the optimized case, the lattice rotation is
significant; its distribution of rotation angle shifted drastically from that of strain step
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(a) S0 - S1 (b) S1 - S2

(c) S0 - S1 (d) S1 - S2

Figure 6.13: (a), (b) Spatially resolved grain rotation across successive states (S0 to S1, and
S1 to S2). The false color represents the magnitude of rotation from one state to the other
on a 5◦ scale. Both images are created first by registering two layers across the two states
through minimization of total misorientation. Because the sample both stretched and moved
across different states, exact registration is impossible. Only lattice rotation below 5◦ is shown
here to remove misorientation due to boundary shifts between different states. (c), (d) A
distribution symmetrizing the projection of the rotation axis from (a) and (b) to the x − y
plane of the sample frame, measured in multiples of random. The number of rotation axes
along the [001] sample direction (the tensile axis, out of the page) is markedly less than along
any other directions.
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S0 to S1. Note that the majority of the lattice rotations between states S0 and S1 are
close to the limit of our detection resolution.

A small population of voxels were rotated by 60◦ between each pair of strain states.
This could correspond to twin formation during plastic deformation, which is known to
occur in copper [123, 53, 17]. The population is relatively small, and since a significant
amount of twin related grain boundaries already exist in the original microstructure, a
good portion of this signal may be due to boundary movement contamination.
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Figure 6.14: Distribution of the magnitude of lattice rotation between the different strain states
at different bin sizes. Marked difference can be observed in the angle distribution between
states. (a) and (b) show the same data sets on different horizontal scales. To demonstrate
the effects of registration by minimization of misorientation, the unoptimized lattice rotation
distribution is also plotted.

To better quantify the character of the lattice rotations, an inverse pole figure of the
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rotation axis that each voxel is rotated about is plotted in Fig. 6.13(c) and 6.13(d).
This is done by representing the misorientation measured in axis-angle pairs, (θ, n̂), and
rotating the axis into the initial sample frame. The distributions are plotted in log10 scale
of multiples of random to better visualize the structure. Because little has happened
between state S0 and S1, most of what is seen in the pole figure is likely to be noise
dominated artifacts. From states S1 to S2, the distribution of the rotation axis is clearly
shifted away from the [001], or the tensile axis direction (center of pole figure). This is
consistent with the fact that torque around the tensile direction should be close to zero.
Geometrical alignment between orientation maps of different states also supports this
observation.

The movement of the tensile axis (ẑ) in the crystal frame seen in Fig. 6.12 can be
quantified as the difference vector δẑ = O1(~x)ẑ −O0(~x)ẑ, where O1(~x) and O2(~x) are
the orientations of the states located at ~x in the crystal frame. Projection of this vector
into the x − y plane is shown in Fig. 6.15(a). The Taylor-Bishop-Hill model suggests
the migration of the tensile axis away from the [110] and towards the [001] and [111]
directions [119], as is seen in the figure. Some small number of grains deviating from
this trend are also observed. This is not entirely surprising, as the tensile load direction is
not uniform due to our sample shape (6.1(c)), and the applied stress is far from uni-axial
across the thin wire sample.

It should be noted here that in contrast to the studies done in [89], each point in
Fig. 6.15(a) is a separate voxel rather than averaged motion of a grain. In general, grain
neighborhood and location information are crucial to the understanding of deformation
evolution; hence measurements of statistical texture evolution will not suffice. However,
because of HEDM’s unique ability to spatially resolve orientation points, lattice rotations
can be spatially resolved on an intra-granular scale, as shown in Fig. 6.15(b). While
generally speaking, lattice rotations in the same grain (indicated by connected regions of
similar colors in Fig. 6.11) tend to follow the same direction, exceptions are observed in
at least one of the grains (green in Fig. 6.11). Here, it can be seen that lattice rotation
directions are almost perpendicular to each other. While there could still be systematic
errors in the sample alignment unaccounted for by the current optimization algorithm,
it would be difficult to produce a lattice rotation variation as seen in this grain.

6.6 Conclusions

We have demonstrated the capability of near-field HEDM to measure damage accu-
mulation in a high purity copper wire. We have shown that the forward modeling
reconstruction method is capable of tracking diffraction peaks even from grains with
significant moasicity. Even without the explicit use of intensity in the reconstruction,
reasonably good agreement between simulated and experimental diffraction patterns is
still obtained. From our systematic study, we have shown empirically that the forward
modeling method is stable, in that small variations in reconstruction parameters do not
lead to catastrophic failure in the resulting output. Moreover, fitted orientation maps
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Figure 6.15: (a) Lattice rotation of random points selected from the point-to-point misorien-
tation. Here, the lattice rotation is represented by the movement of the tensile axis in the
crystal frame, plotted in the usual stereological triangle. (b) Spatially resolved lattice rotation
showing the tensile axis movement at each point in the sample space.
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are shown to converge with increasing reconstruction spatial and orientation resolutions.
This convergence behavior is evidenced by reduced orientation noise and aliasing arti-
facts.

With the help of a sample alignment optimization procedure, we have been able to
measure microstructure evolution across three strain states. The microstructure evo-
lution is observed to be similar within most of the grains, as evidenced by the similar
lattice rotations. However, an exceptional grain has contrasting orientation evolution.
This is not entirely surprising considering the non-uniform load condition resulting from
the non-trivial sample shape. To the best of the author’s knowledge, this is the first non-
destructive, spatially resolved orientation evolution measurement done in a bulk sample.

6.7 On-going and future work

Analysis covered in this chapter currently does not take advantage of the three-dimensional
nature of the volumetric orientation maps. To address this problem, on-going effort is
placed on both analysis and alignment software development. While it is relatively easy
to produce volumetric orientation maps for the earlier strain states, the quality of re-
constructed maps deteriorates drastically as the sample approaches ductile failure, and
as layers close to the center of the neck are considered. This is due both to the rapidly
decreasing grain size, which leads to extremely low signal to noise ratio, as well as in-
creasingly long computation time for reconstructions. Current developments of intensity
and strain fitting capabilities will certainly help address some of the worries regarding
the uncertainties in the reconstructed orientations. Improvements in signal extraction
from raw diffraction images will help remove the ω varying diffuse background from the
Macor sample housing. At this point, sensitivity studies are tedious, and it will remain
so until more robust theoretical understanding of the reconstruction is achieved.

Coupled with tomographic reconstructions, it is in principle possible to track the
origin of void nucleation observed in the experiment (not shown). This would require
better alignment optimization to help pinpoint the subvolume of orientation image map
surrounding the void position from the earlier strain states. This turns out to be surpris-
ingly difficult, as the deformation rate for the specimen is not uniform. Computational
simulations, such as finite element models, may be necessary even for this alignment
exercise.

Because we have essentially the same volume of data across multiple strain states,
it would be extremely interesting to use this data for calibration and validation of com-
putational models. As the simplest case, the initial state (S0) may be applied as the
input to different computational models, which then could be evolved and compared
against the experimental results. Such comparisons have been historically difficult due
to the very limited access to spatially resolved orientation maps. On-going effort has
been focused on the application of a viscoplasticity model [58] on the current data set,
and interesting qualitative initial results are already being generated.
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Appendix A

Examples of Reconstructed
Orientation Maps

Some of examples of reconstructed orientation maps are presented here to demonstrate
a recent experiment in applying HEDM to the in situ measurement of the structural
phase transition in a magneto-caloric material (NiMnGa).

(a) (b)

Figure A.1: Reconstructed orientation maps for the same layer of NiMnGa before (a) and
after (b) thermal cycling. Distance is measured in unit of millimeters. False color indicates
orientations in the tetragonal fundamental zone. Very minute changes are detected between
the two maps. This is attributed to the disconnectedness of each grain as shown in Fig. A.4.
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(a) (b)

Figure A.2: Confidence map for the two layers shown in Fig. A.1. The region of low confidence
is confirmed to be void by the tomographic reconstruction seen in Fig. A.4. Hints of crack
formation after thermal-cycling is seen by comparing the bottom right of (a) and (b), but
confirmation requires a full three-dimensional map (not currently available).

(a) (b)

Figure A.3: Kernel averaged misorientation (KAM) for each of the maps in Fig. A.1. Deforma-
tion is expected to scale with local misorientation, thus resulting in higher KAM. The relatively
higher KAM and more concentrated KAM values seen here suggest that local deformations is
manifested as mosaicity in the orientation of each grain.
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Figure A.4: Reconstruction from X-ray transmission tomography. Scale is shown here as pixels
(1.48µm side length). Lighter color is used to indicate regions of high density. The black curves
indicate that the sample contains grains that are not in contact at the layers we have imaged.
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Appendix B

Reconstructed Surface Meshes

Some reconstructed grain boundary meshes are shown here, and they serve to demon-
strate the capabilities of the methods developed in Chapter 4. The orientation maps
used for these boundary reconstructions are the same as the ones in the analysis of
Chapter 5. Boundary motion analysis from these surface meshes is used for boundary
motion estimates.

Figure B.1: Grain boundary surface mesh for the initial state of the nickel sample described in
Chapter 5. Boundary colors correspond to misorientation in degrees. A corner of the surface
mesh is cut away to better show the smoothness of the boundaries.
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Figure B.2: Grain boundary surface mesh for the first anneal state. Little or no changes
is noticeable between the meshes shown here and Fig. B.1, as evidenced by the analysis in
Chapter 5.
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Appendix C

Volumetric Map Examples

The methods described in Chapter 4 and [3] simultaneously produce a surface and a
volumetric mesh, and some of the results are shown here. Recall that the volumes
shown are the measurements of the same region of the nickel sample at different anneal
states. Grain volume estimates are done by counting the number of tetrahedra in each
of the grain. The mean-width calculation also takes advantage of the volume mesh to
decide the sign of the surface patch normals. While the volumes shown ( Fig. C.1, Fig.
C.2, Fig. C.3, Fig. C.4 ) are not aligned, it is seen that the grain sizes are generally
increasing with the later anneals. Sharp “edges” can be found along some of the grains,
and these features extend vertically in the direction perpendicular to measurement slices
(z). This is a good indication of the consistency in the HEDM technique.

Figure C.1: Initial state of the high purity nickel volume. Each grain ID is associated with a
false color (RGB) value.
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Figure C.2: First anneal state. No noticeable changes can be seen. (Recall that the volumes
presented are not yet aligned.)

Figure C.3: Second anneal. Grains can be seen to be markedly smoother.
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Figure C.4: Third anneal state. Some number of annealing twins can be seen as thin, plate-like
grains in the volume (red on the left, blue near the middle inside a grain).

Figure C.5: Three-dimensional grain map of a piece of copper, used as an initial state for
an upcoming deformation experiment in collaboration with Los Alamos National Lab. The
imaged section of the specimen is ). 1.1mm in diameter and 0.760mm in height. A total of
11999 grains were identified.
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Figure C.6: Progression of a piece of copper wire under uni-axial tension (data from Chapter
6). Starting from left to right, the true strain reads 0%, 0% (to within sensitivity), 6.2%,
and 26.9%. False color again indicates identified grains (IDs are not related between different
states). We caution that this is result from the preliminary analysis, and it is presented here
to show some of the cutting-edge applications of HEDM.
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[107] P. Schröder. What can we measure? In A. I. Bobenko, J. M. Sullivan, P. Schrder,
and G. M. Ziegler, editors, Discrete Differential Geometry, volume 38 of Oberwolfach
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