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Abstract

Many optimization problems require the modelling of discrete and continuous variables,
giving rise to mixed-integer linear and mixed-integer nonlinear programming (MILP /
MINLP). An alternative representation of MINLP is Generalized Disjunctive Program-
ming (GDP)1. GDP models are represented through continuous and Boolean variables,
and involve algebraic equations, disjunctions, and logic propositions. This higher level
representation facilitates the modelling process while keeping the logic structure of the
problem. GDP models are typically reformulated as MINLP problems to exploit the de-
velopments in these solvers. The two traditional GDP-to-MINLP reformulations are the
Big-M (BM) and Hull-reformulation (HR). Alternatively to direct MINLP reformulations,
special techniques can help to improve the performance in solving GDP problems.

There are two main contributions in this thesis. The first contribution involves the devel-
opment of reformulations and methods that generate improved MINLP models form GDP
problems. This development is achieved by exploiting the logic-nature of GDP, as well as
alternative GDP-to-MINLP reformulations, to obtain relatively small MINLP models with
tight continuous relaxations. The second contribution of this thesis is the improvement of
existing GDP solution methods by the use of novel concepts. In particular, we improve
the linear disjunctive branch and bound through the use of a Lagrangean relaxation of the
HR. Also, we extend the logic-based outer-approximation to nonconvex problems, and
develop a novel method to obtain cutting planes that improves the linear relaxation of the
nonconvex problem.

In the thesis, we first present a new Big-M reformulation of GDPs. Unlike the traditional
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Big-M reformulation that uses one M-parameter for each constraint, the new approach
uses multiple M-parameters for each constraint. The multiple-parameter Big-M (MBM)
reformulation is at least as tight as the traditional BM. Furthermore, it does not require
additional variables or constraints. We present the new MBM and analyze the strength in
its continuous relaxation compared to that of the traditional Big-M.

We then present two algorithmic approaches to improve mixed-integer models that are
originally formulated as convex GDPs. The algorithms seek to obtain an improved contin-
uous relaxation of the MINLP reformulation of the GDP, while limiting the growth in the
problem size. Both algorithms make use of the logic operation called basic step. This op-
eration allows the derivation of formulations with continuous relaxations that are stronger
than the direct BM and HR reformulations. The two algorithms differ in the method to
exploit the advantages of the small problem size of the BM, and the tight continuous re-
laxation of the HR after the application of basic steps. The first algorithm uses a hybrid
reformulation of GDP that seeks to exploit both advantages of the BM and HR. The sec-
ond algorithm uses the strong formulation to derive cuts for the BM, generating a stronger
formulation with small growth in problem size.

In terms of GDP solution methods, we first present an enhancement to the disjunctive
branch and bound for linear GDPs. In particular, we present a Lagrangean relaxation of the
HR. The proposed Lagrangean relaxation can be applied to any linear GDP, and it always
assigns 0-1 values to the binary variables of the HR. Furthermore, this relaxation is much
simpler to solve than the continuous relaxation of the HR. The Lagrangean relaxation can
be used in different manners to improve GDP solution methods. In this thesis, we explore
the use of the Lagrangean relaxation as a primal heuristic to find feasible solutions in a
disjunctive branch and bound. We note that the proposed Lagrangean relaxation, and its
use in the disjunctive branch and bound, can be extended to nonlinear convex problems.

We then extend the logic-based outer-approximation to the global solution of non-convex
GDPs. The general idea of the algorithm is to have a linear master GDP that overesti-
mates the feasible region of the GDP. This master problem provides a valid lower bound
(in a minimization problem), and the selection of only one disjunctive term in each of
the disjunctions. With the alternative provided by the master problem, an NLP subprob-
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lem is solved to global optimality. This NLP subproblem is smaller and simpler than the
continuous relaxation of the MINLP reformulation of the original GDP. After solving the
subproblem, infeasibility or optimality integer cuts can be added to the master problem.
This basic algorithm has the advantage of solving only small NLP problems to global op-
timality, instead of solving a larger MINLP to global optimality from the beginning. Fur-
thermore, by using GDP as framework the NLP subproblem is smaller and simpler than
an equivalent method directly applied to the MINLP reformulation. In order to further
improve the performance of this logic-based outer approximation, two main features were
implemented: derivation of additional cuts and partition of the algorithm in two stages.

Finally, we apply a modified version of the global logic-based outer-approximation to the
multiperiod blending problem. In addition to the proposed solution method, we present
an improved problem formulation that makes use of redundant constraints. In order to
generate such constraints, an alternative formulation was derived. The main idea in the
new formulation is to track sources or commodities in the system, instead of tracking
compositions. The main advantage is that it is possible to create redundant constraints in
which the sum of individual source flows adds up to the total flow. Similarly, the sum of
individual source inventories adds up to the total inventory. These redundant constraints
considerably improve the relaxation of the model when linear approximations are used for
the bilinear terms. Furthermore, the additional constraints can be included in the original
model, strengthening its linear relaxation.

This thesis makes several important contributions. From an aggregated perspective, our
most significant contribution is the use of GDP and its logic structure to obtain improved
models and develop solution methods. In this thesis we show that GDP is not only an
intuitive and structured modeling framework, but it also opens a set of tools that are not
accessible when modeling problems using mixed-integer programming. The tools we have
developed can help to solve some problems in Process Systems Engineering (PSE). Fur-
thermore, we hope that the advantages of formulating some problems using GDP become
apparent. As the PSE community continues to increasingly use GDP as modeling frame-
work, we hope it brings greater attention to the OR community.
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Chapter 1

Introduction

1.1 Motivation

Many optimization problems require the modeling of discrete and continuous variables,
giving rise to mixed-integer linear and mixed-integer nonlinear programming (MILP /
MINLP). Models in which the objective function and the constraints are linear are MILP
problems. MINLP problems involve a nonlinear objective function and/or nonlinear con-
straints. Although MINLP problems are nonconvex, MINLP can be divided in two cat-
egories, convex MINLP and nonconvex MINLP. Convex MINLP involves minimizing a
convex objective function over a feasible region that is convex when the discrete variables
are relaxed as continuous variables. In nonconvex MINLP the objective function and/or
the continuous relaxation of the feasible region are not convex.

Many Process Systems Engineering (PSE) applications are modeled using MILP and
MINLP. Furthermore, many developments in MINLP and global optimization have been
motivated by applications in PSE2. Different types of models have been used for different
PSE applications. Table 1.1, adapted from Biegler and Grossmann3, provides an overview
of the different types of models used in the different PSE applications. The models in Table
1.1 are: linear programs (LP), mixed-integer linear programs (MILP), quadratic programs

1
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Table 1.1: Applications of mathematical programming in process systems engineering.

LP MILP QP, LCP NLP MINLP
Process synthesis

Process Flowsheet X X X
Reactor Networks X X X
Separations X X
Heat Exchange Networks X X X X
Water Networks X X X X

Operations
Planning X X X X
Scheduling X X X
Real-time optimization X X X

Process control
Linear MPC X X
Nonlinear MPC X
Hybrid X X X

Molecular computing X X

(QP), linear complimentary problems (LCP), nonlinear programs (NLP), mixed-integer
nonlinear programs (MINLP).

MILP theory has been considerably enriched in the past decades, which has been reflected
in the advances of methods to solve this type of problems4. MINLP methods greatly
benefit from advances in MILP and NLP methods, and have also improved considerably
in recent years5. Despite these advances, the performance of MILP and MINLP solvers
strongly depends on the problem formulation. Considering that optimization problems can
be formulated in different ways, two main questions still remain in this area: a) How to
create good MILP/MINLP models for a discrete-continuous optimization problem?, and
b) How to use the logic structure of a problem to improve its solution method?

Motivated by these questions, modeling frameworks such as Generalized Disjunctive Pro-
gramming have been developed. Generalized Disjunctive Programming (GDP)1 is a higher-
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level representation of MILP/MINLP models. GDP models are represented through con-
tinuous and Boolean variables, and involve algebraic equations, disjunctions, and logic
propositions. GDP representation facilitates the modeling process while keeping the logic
structure of the problem.

The general goal of this thesis is to develop new methods for improved MINLP formu-
lations of GDP problems, as well as for improving GDP solution methods. In particular,
for convex GDP problems we seek to obtain MINLP formulations that have strong con-
tinuous relaxation and small growth in problem size. We also focus on improving existing
GDP solution methods. First, in convex GDP problems by enhancing the primal heuristics
in the disjunctive branch and bound. And second, by extending the logic-based outer-
approximation to the global solution nonconvex GDP problems.

1.2 Generalized disjunctive programming

Generalized disjunctive programming is a higher-level representation of MINLP prob-
lems1. The general GDP formulation can be represented as follows:

min f(x)

s.t. g(x) ≤ 0

∨
i∈Dk

[
Yki

rki(x) ≤ 0

]
k ∈ K

Y
i∈Dk

Yki k ∈ K

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(GDP)

In (GDP), the objective is function of the continuous variables x ∈ Rn. g(x) <= 0,
where g : Rn 7→ Rm, are the global constraints of the problem (i.e. these constraints must
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be satisfied regardless of the discrete decisions). The formulation involves disjunctions
k ∈ K, each of which contains disjunctive terms i ∈ Dk. The disjunctive terms in each
disjunction are linked together by an ”or” operator (∨). A Boolean variable Yki and a set
of constraints rki(x) ≤ 0 are assigned to each disjunctive term. Exactly one disjunctive
term in each disjunction must be enforced ( Y

i∈Dk

Yki). A Boolean variable takes a value of

True (Yki = True) when a disjunctive term is active, and the corresponding constraints
(rki(x) ≤ 0) are enforced. When a term is not active (Yki = False), its corresponding con-
straints are ignored. The logic constraints Ω(Y ) = True represents the relations between
the Boolean variables in propositional logic. Note that this is a general representation of
any GDP. If there are equality constraints g(x) = 0, they can be represented by g(x) ≤ 0

and −g(x) ≤ 0.

1.2.1 MINLP reformulations of GDP

GDP problems are typically reformulated as MILP/MINLP by using either the Big-M
(BM) or Hull Reformulation (HR)6,7. The (BM) reformulation generates a smaller MINLP,
while the (HR) provides a tighter formulation8.

The (BM) reformulation is as follows:

min f(x)

s.t. g(x) ≤ 0

rki(x) ≤Mki(1− yki) k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xlo ≤ x ≤ xup

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(BM)

In (BM) the Boolean variables Yki are transformed into binary variables yki: Yki = True
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is equivalent to yki = 1 and Yki = False is equivalent to yki = 0. Constraint
∑
i∈Dk

yki = 1

enforces that exactly one disjunctive term is selected per disjunction. The transformation
of logic constraints Ω(Y ) = True to integer linear constraints (Hy ≥ h) is easily ob-
tained9,10. For an active term, the corresponding constraints rki(x) ≤ 0 are enforced. For
a term that is not active (yki = 0) and a large enough Mki, the corresponding constraints
rki(x) ≤Mki become redundant.

The (HR) formulation is given as follows:

min f(x)

s.t. g(x) ≤ 0

x =
∑
i∈Dk

νki k ∈ K

ykirki(ν
ki/yki) ≤ 0 k ∈ K, i ∈ Dk∑

i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

x ∈ Rn

νki ∈ Rn k ∈ K, i ∈ Dk

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(HR)

In (HR), similarly to (BM), the Boolean variables Yki are transformed into 0-1 variables
yki, Ω(Y ) = True is transformed into Hy ≥ h, and

∑
i∈Dk

yki = 1 enforces that only one

disjunctive term is selected per disjunction. In (HR), the continuous variables x are disag-
gregated into variables νki, for each disjunctive term i ∈ Dk in each disjunction k ∈ K.
The constraint xloyki ≤ νki ≤ xupyki enforces that when a term is active (yki = 1), the
corresponding disaggregated variables lie within their bounds. When it is not selected,
they take a value of zero. The constraint x =

∑
i∈Dk

νki enforces that the original variables

x have the same value as the disaggregated variables of the active terms. The functions
in the constraints of a disjunctive term (rki(x) ≤ 0) are represented by the perspective
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function ykirki(νki/yki)11. When a term is active (yki = 1) the constraint is enforced for
the disaggregated variable (rki(νki) ≤ 0). When it is not active (yki = 0), the constraint is
trivially satisfied (0 ≤ 0). When the constraints in the disjunction are linear (Akix ≤ aki),
the perspective function becomes Akiνki ≤ akiyki, which is a well-known representation
in disjunctive programming12. To avoid singularities in the perspective function, the fol-
lowing approximation can be used13:

ykirki(ν
ki/yki) ≈ ((1− ε)yki + ε)rki

(
νki

(1− ε)yki + ε

)
− εrki(0)(1− yki) (APP)

where ε is a small finite number (e.g. 10−5). This approximation yields an exact value at
yki = 0 and yki = 1 irrespective of the value of ε, and is convex if rki is convex.

Note that (HR) involves more variables and constraints than (BM). However, (HR) pro-
vides a stronger formulation8. The (HR) reformulation represents the intersection of the
convex hulls of each disjunction. This representation of convex hulls of disjunctions, using
the perspective function, has been previously presented for convex MINLP11,14.

Figure 1.1 illustrates, for both reformulations, the projection over x1 and x2 of the feasible
region defined by two disjunctions. The first disjunction represents the selection of rect-
angle A1 or rectangle A2, and the second one the selection of circle B1 or circle B2. The
dashed region defines the feasible region, and the shaded area represents the continuous
relaxation of the (BM) and (HR). It is clear that the (HR) has a tighter relaxation than the
(BM).

It is important to note that even though the (HR) is the intersection of the convex hulls of
the individual disjunctions, this in general does not mean that it is the convex hull of the
feasible region as can be seen in Figure 1.1. In order to further improve the tightness of
the (HR) it is possible to make use of the logic operation called basic step.
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Figure 1.1: Illustration of (BM) and (HR) reformulations

1.2.2 Convex GDP and basic steps

In the particular case in which f(x), g(x), and rki(x), i ∈ Dk, k ∈ K are convex, (GDP)
becomes a convex GDP. Any convex GDP is equivalent to a disjunctive convex program15.
Therefore, some of the rich theory behind disjunctive convex programming can be ex-
tended to GDP. Of particular interest for this thesis is the concept of a basic step.

Disjunctive convex programming can be defined as the optimization over a disjunctive
convex set. A disjunctive set can be described as the union (∪) and intersection (∩) of a
collection of inequalities. Consider the following definitions:

Convex inequality: C = {x ∈ Rn|Φ(x) ≤ 0}, where Φ(x) : Rn → R1 is a convex
function.

Convex set: P = ∩
m∈M

Cm

Elementary disjunctive set: H = ∪
m∈M

Cm

Disjunction: Sk = ∪
i∈Dk

Pi = ∪
i∈Dk

∩
m∈Mi

Cm

A disjunction such that Sk = Pi for some i ∈ DK is called improper disjunction, otherwise
it is called a proper disjunction. Note that if Dk is a singleton then Sk is improper.

There are alternative forms to represent disjunctive convex sets. In particular:

1.2. GENERALIZED DISJUNCTIVE PROGRAMMING 7
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Regular form: F = ∩
k∈K

Sk

Disjunctive normal form (DNF): F = S = ∪
i∈D

Pi

A basic step is the intersection between two disjunctions to form a new disjunction. Basic
steps bring a disjunctive set in regular form closer to its DNF. The definition of basic step
is as follows12,15:

Theorem 1.2.1 (Basic Step) Let F be a disjunctive set in regular form. Then F can

be brought to DNF by |K| − 1 recursive applications of the following basic step which

preserves regularity. For some k, l ∈ K, bring Sk ∩ Sl to DNF by replacing it with:

Skl = Sk ∩ Sl =
⋃

i∈Dk,j∈Dl

(Pi ∩ Pj)

It is possible to use the concept of a basic step to strengthen GDP formulations. In par-
ticular, there are two main consequences of the basic steps for GDP problems13,15: a) The
continuous relaxation of the (HR) of a disjunctive set after a basic step is at least as tight
as the one before the basic step; and b) The (HR) of the DNF describes the convex hull of
the problem.

The results indicate that we can improve the strength of the continuous relaxation of the
(HR) by applying basic steps. Furthermore, in the extreme case in which we intersect all
of the disjunctions and all of the global constraints into a single disjunction, we obtain the
convex hull of the problem. The drawback in the application of basic steps is the growth in
the number of disjunctive terms, which is exponential when applying proper basic steps.

The application of proper basic steps not only increases the problem size, but also results in
an exponential growth of disjunctive terms. As described in Section 1.2.1, each disjunctive
term is associated with a binary variable in any GDP reformulation. Therefore, the growth
of disjunctive terms implies an exponential increase in the number of binary variables.
However, it is possible to avoid the exponential growth in binary variables by using the
following theorem12:

Theorem 1.2.2 Consider MILP/MINLP representation of two disjunctions k, l ∈ K, whose

disjunctive terms are represented by the 0-1 variables yki, ylj, i ∈ Dk, j ∈ Dl. If a ba-

sic step is applied between disjunction k and disjunction l, the variables representing the

1.2. GENERALIZED DISJUNCTIVE PROGRAMMING 8
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disjunctive terms of the resulting disjunction ŷij ∈ {0, 1} can be equivalently represented

by:

yki =
∑
j∈Dl

ŷij i ∈ Dk

ylj =
∑
i∈Dk

ŷij j ∈ Dl∑
i∈Dk,j∈Dl

ŷij = 1∑
i∈Dk

yki = 1∑
j∈Dl

ylj = 1

0 ≤ ŷij ≤ 1

yki, ylj ∈ {0, 1} i ∈ Dk, j ∈ Dl

Proof. The proof follows from Theorem 4.4 of Balas12 �.

Theorem 1.2.2 relates the new terms after a basic step to those before the basic step. Only
the variables associated to the original disjunctive terms are required to be binary, while
the ones related to the new terms can be continuous between 0 and 1.

Figure 1.2 illustrates tightness of relaxation of the (HR) before and after the application of
a basic step. The illustration shows a feasible region described by two disjunctions with
two disjunctive terms each, that is ([A1] ∨ [A2]) ∧ ([B1] ∨ [B2]). Figure 1.2.b shows that,
after a basic step, the two disjunctions are intersected to form a new single disjunction
([A1] ∧ [B1]) ∨ ([A2] ∧ [B2]). Thus, the basic step not only improves the tightness of
the relaxation, but it brings the problem into DNF. The (HR) of the DNF, as expressed
earlier, describes the convex hull of the feasible region, as this can also be seen in 1.2.b.
Finally, it is important to note that some of the resulting terms after the application of a
basic step might become infeasible. In this example, since A1 and B2, and A2 and B1 do
not intersect, the corresponding new terms are not feasible.

1.2. GENERALIZED DISJUNCTIVE PROGRAMMING 9



CHAPTER 1. INTRODUCTION

Figure 1.2: Illustration of (HR) (a) before, and (b) after the application of a basic step

1.2.3 Logic-based solution methods for GDP

GDP problems can be reformulated as MINLP, or solved with specialized algorithms16.
In particular, the disjunctive branch and bound7,17 and logic-based outer-approximation18

have proven to be successful in some problems.

Disjunctive branch and bound

The idea behind the disjunctive branch and bound17,7 is to branch directly on the disjunc-
tions, while using the continuous relaxation of the BM or HR of the remaining disjunc-
tions. Let (R-BM) and (R-HR) be the continuous relaxation of (BM) and (HR), respec-
tively. The disjunctive branch and bound is as follows:

For a node Np, let zp denote the optimal value of (R-BM) or (R-HR) of the corresponding
GDPp, and (xp, yp) its solution. Let L be the set of nodes to be solved, and GDP0 be the
original GDP. Let zup be an upper bound for the optimal value of the objective function
z∗.

0. Initialize. Set L = N0, zup =∞, (x∗, y∗) = ∅.

1. Terminate. If L = ∅, then (x∗, y∗) is optimal and algorithm terminates.

1.2. GENERALIZED DISJUNCTIVE PROGRAMMING 10
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2. Node selection. Choose a node Np ∈ L, and delete it from L. Go either to 3a or to 3b.

3a. Bound. Solve the (R-HR) of GDPp corresponding to Np. If it is infeasible, go to step
1. Else, let zp be its objective function and (xp, yp) its solution.

3b. Bound. Solve the (R-BM) of GDPp corresponding to Np. If it is infeasible, go to step
1. Else, let zp be its objective function and (xp, yp) its solution.

4. Prune. If zp ≥ zup, go to step 1.

If yp ∈ Zq let zup = zp and (x∗, y∗) = (xp, yp). Delete all nodes Nr ∈ L in which
zr ≥ zup, and go to step 1. Else, go to step 5.

5. Branch. Select a disjunction k ∈ K such that yki /∈ {0, 1} for some i ∈ Dk. For every
i ∈ Dk, construct the corresponding GDP (GDP i

p) by setting the constraints correspond-
ing to the disjunctive term i as global, and removing the Boolean variables and constraints
corresponding to term i

′ 6= i; i
′ ∈ Dk. Add |Dk| new nodes, corresponding to GDP i

p, to
L. Go to step 1.

It is easy to see that this algorithm terminates finitely, in the worst case evaluating every
possible node. This algorithm can be trivially modified to consider a tolerance for termi-
nation ε > 0. The HR disjunctive branch and bound makes use of Step 3a at every node,
while the BM disjunctive branch and bound makes use of Step 3b at every node. It is also
possible to have a hybrid disjunctive branch and bound in which some nodes are solved us-
ing the BM and others using the HR. It is important to note that, as the disjunctive branch
and bound progresses, the GDP problems that correspond to each node become smaller.
In particular, the constraints that correspond to the disjunctive terms that were not selected
are removed from the problem formulation in the subsequent nodes.

Note that the worst case involves
∏

k∈Dk
|Dk| leaf nodes, which is fewer than the worst

case number of leaf nodes in a binary branch and bound algorithm (bounded by 2
∑

k∈K(|Dk|−1))
except when |Dk| = 2, ∀k ∈ K (in which case the maximum number of leave nodes for
both algorithms is 2|K|). The worst case for number of evaluated nodes in the disjunctive
branch and bound depends on the sequence in which the disjunctions were branched, but
it is smaller than the binary branch and bound except when |Dk| = 2,∀k (in which case it

1.2. GENERALIZED DISJUNCTIVE PROGRAMMING 11
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is the same: 2|K|+1 − 1).

It has been shown that the disjunctive branch and bound has advantages over the binary
branch and bound17. Also, the disjunctive branch and bound can be used for linear, convex
or nonconvex GDP problems. In the case of linear GDP problems, an LP is solved at every
node. In nonlinear GDP problems, and NLP is solved to global optimality at every node.

Logic-based outer-approximation for nonlinear convex GDP

The logic-based outer-approximation18 iteratively solves a master problem and a subprob-
lem. The master problem is a linear GDP relaxation of the original GDP that seeks to
find a lower bound and an alternative for the vector of Boolean variables (Y ). The master
problem in the first iteration is obtained by outer-approximating the nonlinear functions at
certain solutions (xp). The subproblem is an NLP in which the Boolean variables are fixed
(i.e. setting Yki = True for the terms selected by the master problem). The subproblem
provides an upper bound when a feasible solution is found. If the subproblem is infeasible,
then an alternative NLP subproblem is solved (the feasibility subproblem). The solution
of the subproblem (xp) is used to perform further linearizations of the constraints, which
are added to the master linear GDP. Note that for a given solution xP , the linearizations are
performed for the global constraints and for the constraints that correspond to the selected
active terms (Yki = True).

In the outer-approximation method, the linearization is performed by generating a first-
order Taylor series approximation of the constraints. For a vector of nonlinear constraint
(g(x) ≤ 0) and a given set of solutions (xp; p = 1, ..., P ), the linearization is: g(xp) +

∇g(xp)T (x − xp) ≤ 0. The main limitation of this linearization is that it provides a
valid linear relaxation only for convex functions. If the function g(x) is nonconvex, this
linearization can cut off regions that are feasible for g(x) ≤ 0. In such a case, the master
linear GDP is no longer a linear relaxation of the problem.

The convex logic-based outer-approximation guarantees convergence in finite iterations
because the master problem and subproblem are equivalent for the discrete solutions in
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which the subproblem has been evaluated Y p; p = 1, ..., P . This means that if the master
problem selects an alternative Y p that was already evaluated in the subproblem (i.e. the
linearization of this alternative is already included in the master problem), then the optimal
objective values of the master problem and subproblem are the same. Clearly, if all the
alternatives Y p; p = 1, ..., P that are feasible for the master problem are evaluated, then the
lower bound of the master problem and the upper bound of the subproblem are the same.
The proof of convergence can be found in the original work by Turkay and Grossmann18.

1.3 Outline of the thesis

The general goal of this thesis is to develop solution methods for GDP problems, as well as
computational strategies for obtaining improved MINLP formulations of GDP problems.
Figure 1.3 presents an overview for the outline the thesis. The figure shows that chapter
2 is a new direct MINLP reformulation for GDP problems. Chapters 3 and 4 seek to
obtain improved MINLP reformulations for convex GDP problems, using an algorithmic
approach. Chapter 5 is an improvement to the disjunctive branch and bound for linear GDP
problems (that can be generalized to nonlinear convex GDP). Chapter 6 is an extension
of the logic-based outer-approximation for the global optimization of nonconvex GDP
problems. Chapter 7 is an application of the logic-based outer-approximation for the global
optimization of the multiperiod blending problem.

Chapter 2 presents a new Big-M reformulation for Generalized Disjunctive Programs.
Unlike the traditional BM reformulation that uses one M-parameter for each constraint,
the new approach uses multiple M-parameters for each constraint. Each of these M-
parameters is associated with each alternative in the disjunction to which the constraint
belongs. In this way, the proposed MINLP reformulation is at least as tight as the tradi-
tional Big-M, and it does not require additional variables or constraints. We present in this
chapter the new Big-M, and analyze the strength in its continuous relaxation compared to
that of the traditional Big-M. The new formulation is tested by solving several instances
with an NLP-based branch and bound method. The results show that in most cases the
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Figure 1.3: Outline of the thesis
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new reformulation requires fewer nodes and less time to find the optimal solution.

In chapter 3, we propose an algorithmic approach to improve mixed-integer models that
are originally formulated as convex GDP problems. The algorithm seeks to obtain an im-
proved continuous relaxation of the MINLP reformulation of the GDP while limiting the
growth in the problem size. There are three main stages that form the basis of the algo-
rithm. The first one is a presolve, consequence of the logic nature of GDP, which allows us
to reduce the problem size, find good relaxation bounds, and identify properties that help
us determine where to apply a basic step. The second stage is the iterative application of
basic steps, selecting where to apply them and monitoring the improvement of the formu-
lation. Finally, we use a hybrid reformulation of GDP that seeks to exploit the advantages
of the BM and the HR. The results show the improvement in the problem formulations by
generating models with improved relaxed solutions and relatively small growth of contin-
uous variables and constraints. The algorithm generally leads to reduction in the solution
times.

Chapter 4 presents an alternative algorithm for improved MINLP reformulations through
the use of cutting planes. The algorithm presented in this chapter uses the strengthened
formulation of the HR after basic steps to derive cuts for the Big-M formulation. This
method generates a stronger formulation than the BM with small growth in problem size.
The results show that the algorithm improves GDP convex models, in the sense of provid-
ing formulations with stronger continuous relaxations than the (BM) with few additional
constraints. In most cases, the algorithm also leads to a reduction in the solution time of
the problems.

In chapter 5, we present a Lagrangean relaxation of the HR for linear GDP problems. The
proposed Lagrangean relaxation has three important properties. The first property is that
it can be applied to any linear GDP. The second property is that the solution to its continu-
ous relaxation always yields 0-1 values for the binary variables of the HR for linear GDP
problems. Finally, it is simpler to solve than the continuous relaxation of the HR. The
proposed Lagrangean relaxation can be used in different GDP solution methods. In this
chapter, we explore its use as primal heuristic to find feasible solutions in a disjunctive
branch and bound algorithm. The modified disjunctive branch and bound is tested with
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several instances. The results show that the modified disjunctive branch and bound per-
forms better than other versions of the algorithm that do not include this primal heuristic.
This work can be extended to nonlinear convex GDP problems, using the theory developed
by Ruiz and Grossmann15.

Chapter 6 presents a global logic-based outer-approximation method (GLBOA) for the
solution of nonconvex GDP problems. The GLBOA allows the solution of nonconvex
GDP models, and is particularly useful for optimizing the synthesis of process networks.
Two enhancements to the basic GLBOA are presented. The first enhancement seeks to
obtain feasible solutions faster by dividing the basic algorithm into two stages. The sec-
ond enhancement seeks to tighten the lower bound of the algorithm by the use of cutting
planes. The proposed method for obtaining cutting planes, the main contribution of this
chapter, is a separation problem based in the convex hull of the feasible region of a subset
of the constraints. Results show that the enhancements improve the performance of the
algorithm, and that the algorithm is more effective at finding better feasible solutions than
general purpose global solvers in the tested problems.

In chapter 7 we present an application for the GLBOA, namely the multiperiod blending
problem. The multiperiod blending problem involves bilinear terms, yielding a noncon-
vex GDP. In this chapter we present two major contributions for the global solution of
the problem. The first one is an alternative formulation of the problem. This formulation
makes use of redundant constraints that improve the linear relaxation of the GDP. The
second contribution is a modified version of the GLBOA that decomposes the GDP model
into two levels. The first level, or master problem, is a linear relaxation of the original
GDP. The second level, or subproblem, is a smaller nonconvex GDP in which some of the
Boolean variables of the original problem are fixed. The results show that the new formu-
lation can be solved faster than alternative models, and that the decomposition method can
solve the problems faster than state of the art general purpose solvers.

Finally, chapter 8 summarizes the main findings of the thesis and lists its novel contribu-
tions. We also discuss additional future work directions that are worth investigating.
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Chapter 2

Improved Big-M reformulation for GDP
problems

2.1 Introduction

In this chapter, we present an alternative reformulation to GDP problems which is an
improved version of the Big-M. The multiple-parameter Big-M (MBM) is as tight, and
usually tighter, than the traditional (BM). This is achieved by assigning more than one
big-M term in the constraints involved in each disjunction. The idea of using multiple
big-M parameters was previously presented by Vielma19 to formulate the union of poly-
hedra as MILPs. In this context, the multiple Big-M formulation is applied to a single
disjunction containing linear constraints. The formulation we present can be regarded as
an extension of the idea of Vielma (in the context of GDP), that is applied to formulations
involving multiple disjunctions containing nonlinear constraints, Boolean variables, and
logic relations among the Boolean variables.

This chapter is organized as follows. Section 2.2 provides an overview of the Big-M
reformulation. The section also provides a method for obtaining the tightest (BM) refor-
mulation of a GDP. Section 2.3 first presents the alternative reformulation (MBM), and a
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method for obtaining the tightest possible (MBM) for a GDP. Second, it shows that this
reformulation is at least as tight as the (BM). Finally, it provides a simple example to illus-
trate the (MBM) reformulation, comparing it to the traditional (BM). The new reformu-
lation is tested with design of process networks and multi-product batch plant problems,
and the results are presented in Section 2.4

2.2 Background: Big-M reformulation

The (BM) reformulation, presented in the introduction of the thesis, is as follows:

min f(x)

s.t. g(x) ≤ 0

rki(x) ≤Mki(1− yki) k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xlo ≤ x ≤ xup

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(BM)

Note that a formulation with smaller M-parameters (Mki) is at least as tight as a formu-
lation with larger M-parameters (the right hand side in the constraints is smaller, which
means that the feasible region of the continuous could be smaller). For this reason, the
ideal M-parameter of a constraint is the smallest number that makes such a constraint re-
dundant when required (i.e. when a disjunctive term that does not correspond to such con-
straint is selected). In many problems, the M-parameters can be obtained from knowledge
of the meaning of the constraints. An alternative method is to obtain the M-parameters by
solving optimization problems, although this approach may be impractical in many cases.
Two methods can be used to obtain the M-parameters through the solution of optimization
problems: one involves solving several GDP problems (2.1) and the other involves solving
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several NLPs (2.2).

Consider Eki to be the set of constraints corresponding to a disjunctive term ki. In order
to find the M-parameter, it is possible to solve the following GDP to obtain the maximum
value of the constraint rkie(x), k ∈ K, i ∈ Dk, e ∈ Eki such that constraints rki′ (x) ≤
0, i

′ 6= i, i
′ ∈ Dk and all other disjunctions are satisfied:

max rkie(x)

s.t. rki′ (x) ≤ 0

g(x) ≤ 0

∨
î∈Dk̂

[
Yk̂î

rk̂î(x) ≤ 0

]
k̂ ∈ K, k̂ 6= k

Y
î∈Dk̂

Yk̂î k̂ ∈ K, k̂ 6= k

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn

Yk̂î ∈ {True, False} k̂ ∈ K, k̂ 6= k, î ∈ Dk̂

(2.1)

Problem (2.1) seeks to maximize the value of a constraint (rkie(x)), over the feasible region
of the complete problem. It considers that a disjunctive term from the same disjunction
different from i (i′ ∈ Dk, i

′ 6= i) was selected (i.e. Yki′ = True, so rki′ (x) ≤ 0 is
enforced).

For a given k ∈ K, i ∈ Dk, e ∈ Eki, i
′ 6= i, i

′ ∈ Dk, let x∗ be the optimal solution of (2.1)
and let Mkiei

′
= rkie(x

∗). Then, the M-parameter of a constraint is Mkie = max
i
′∈Dk

i
′ 6=i

{Mkiei
′
}.

Note that solving (2.1) can be very challenging. Furthermore, it has to be solved several
times for every single constraint inside a disjunction. For this reason, a more practical ap-
proach is to find an M-parameter that is optimal for the feasible region of its corresponding
disjunction (instead of the feasible region of the complete problem). This can be achieved
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by solving the following NLP problem:

max rkie(x)

s.t. rki′ (x) ≤ 0

xlo ≤ x ≤ xup

(2.2)

For a given k ∈ K, i ∈ Dk, e ∈ Eki, i
′ 6= i, i

′ ∈ Dk, let x∗ be the optimal solution of (2.2)
and let Mkiei

′
= rkie(x

∗). In a similar manner as with (2.1), a valid M-parameter Mkie

for a constraint (rkie(x), k ∈ K, i ∈ Dk, e ∈ Eki) is Mkie = max
i
′∈Dk

i
′ 6=i

{Mkiei
′
}. Note that

the M-parameters obtained using (2.2) can be larger than the M-parameters obtained with
(2.1). There are a few things to note about problem (2.2):

1. If the problem is linear, then the M-parameters are obtained through the solution of LPs.

2. Even if the original problem has convex constraints, if rkie(x) is nonlinear then (2.2)
is non-convex. However, there is no need for a global optimal solution in order to obtain
a valid M-parameter. Any upper bound to problem (2.2) is a valid M-parameter. Since
problem (2.2) will normally be a small problem with few constraints, it is expected to
quickly provide a good upper bound.

3. It is important to include the bounds of the variables to avoid an unbounded problem.
However, (2.2) is not restricted to only include these constrains. It is possible to include
additional constraints that correspond to the continuous relaxation of (2.1). The addition
of these constraints to (2.2) will provide better M-parameters, but the NLP will become
larger. Considering that in general the NLP is non-convex, finding a good trade-off be-
tween good M-parameter and the speed to obtain it is an important consideration.

4. Some conclusions might be drawn from (2.2). At least two of them provide valuable
information. First, if for a given constraint rkie(x),Mkiei

′
≤ 0 for all i′ 6= i, then rkie(x) ≤

0 is satisfied by all of the disjunctive terms i′ 6= i in that disjunctions. Therefore, it can
be removed from the disjunctive term and be regarded as a global constraint. Note that
it cannot simply be removed, otherwise when Yki = True (i.e. disjunctive term i from
disjunction k is selected) there is no guarantee that rkie(x) ≤ 0. The second conclusion is
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that if (2.2) is infeasible, then Yki′ = True is infeasible. Therefore, the variable Yki′ and
the set of constraints rki′ (x) ≤ 0 can be removed from the problem.

2.3 New Big-M reformulation

In disjunctions that contain more than two disjunctive terms, it is possible to have tighter
(BM) formulations by assigning more than one big-M term in the constraints (i.e. one big-
M term for each other disjunctive term in the disjunction). This formulation is as follows:

min f(x)

s.t. g(x) ≤ 0

rki(x) ≤
∑
i
′∈Dk

i
′ 6=i

Mkii
′

yki′ k ∈ K, i ∈ Dk

∑
i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xlo ≤ x ≤ xup

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(MBM)

The idea behind (MBM) is similar to that of (BM). When a disjunctive term is selected
(yki = 1, i ∈ Dk), the other terms in the corresponding disjunction are not (yki′ =

0, ∀i′ ∈ Dk, i
′ 6= i). Therefore,

∑
i
′∈Dk

i
′ 6=i

Mkii
′
yki′ = 0, and the corresponding constraints

rki(x) ≤ 0 are enforced. If it is not selected (yki = 0, k ∈ Dk), then another term must be
selected (yki′ = 1, i

′ ∈ Dk, i
′ 6= i). IfMkii

′
is large enough, then rki(x) ≤Mkii

′
becomes

redundant.

The value of Mkii
′

can be directly obtained as with (BM). Mkii
′

is then the vector of M-
parameters directly obtained from (2.1) or (2.2), with the aforementioned advantages of
using either (2.1) or (2.2): Mkii

′
= [...,Mkiei

′
, ...]T , where e ∈ Eki are the constraints
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corresponding to a disjunctive term ki.

2.3.1 Tightness of continuous relaxation of (MBM)

In this section we show that (MBM) is at least as tight as (BM), and can be tighter.

Theorem 2.3.1 Let Mkii
′

be valid M-parameters for (MBM), and let Mki = max
i
′∈Dk

i
′ 6=i

{Mkii
′
}

be the M-parameters of (BM). Using such parameters in the reformulation, let (F-BM)

and (F-MBM) be the feasible region of the continuous relaxations of (BM) and (MBM),

respectively. Then (F-MBM) ⊆ (F-BM).

Proof. The only difference between (BM) and (MBM) are the two following constraints:

rki(x) ≤Mki(1− yki) k ∈ K, i ∈ Dk (2.3)

rki(x) ≤
∑
i
′∈Dk

i
′ 6=i

Mkii
′

yki′ k ∈ K, i ∈ Dk
(2.4)

In (2.3), (1 − yki) can be substituted by
∑
i
′∈Dk

i
′ 6=i

yki′ , since
∑
i∈Dk

yki = 1. (2.3) then becomes

the following constraint:

rki(x) ≤Mki
∑
i
′∈Dk

i
′ 6=i

yki′ k ∈ K, i ∈ Dk

(2.5)

Introducing Mki into the summation, we obtain:

rki(x) ≤
∑
i
′∈Dk

i
′ 6=i

Mkiyki′ k ∈ K, i ∈ Dk

(2.6)
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By definition Mki = max
i
′∈Dk

i
′ 6=i

{Mkii
′
}. Therefore, the right hand side of (2.4) dominates the

right hand side of (2.6).

Since the RHS of (2.4) is smaller than the RHS of (2.6), then any x that satisfies (2.4)
also satisfies (2.6). Therefore, (2.4) ⊆ (2.6). Since the only difference between (BM) and
(MBM) are (2.3) and (2.4), and since (2.6) represents the same feasible region than (2.3)
in (BM), then (F-MBM) ⊆ (F-BM). �.

Remark 2.3.2 (F-MBM) and (F-BM) represent the same feasible region when, for all

k ∈ K, i ∈ Dk:

Mkii
′

= Mkij ∀j ∈ Dk, j 6= i, j 6= i, j 6= i
′

Note that when a disjunction has only two disjunctive terms, there is only one M-parameter,
and (2.3) and (2.4) are equivalent for that disjunction. If all disjunctions have only two
terms, then (F-MBM) and (F-BM) represent the same feasible region.

Note that Theorem 2.3.1 holds true for any valid Mkii
′
. This includes the cases in which

Mkii
′

is obtained through (2.1) or (2.2).
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2.3.2 Illustration of (MBM) reformulation

The improved Big-M reformulation is illustrated with the following example:

min − 2x1 + x2

s.t.

[
Y1

(x1)2 + (x2)2 ≤ 1

]
∨

[
Y2

(x1 − 1)2 + (x2 − 5)2 ≤ 2

]

∨

[
Y3

(x1 − 4)2 + (x2 − 3)2 ≤ 4

]
Y1 Y Y2 Y Y3

− 1 ≤ x1 ≤ 6

− 1 ≤ x2 ≤ 7

Y1, Y2, Y3 ∈ {True, False}

(2.7)

The traditional Big-M reformulation of (2.7), using the M-parameters directly obtained
from (2.2) and selecting the largest corresponding values, is the following:

min − 2x1 + x2

s.t. (x1)2 + (x2)2 ≤ 1 + 48(1− y1)

(x1 − 1)2 + (x2 − 5)2 ≤ 2 + 35.1981(1− y2)

(x1 − 4)2 + (x2 − 3)2 ≤ 4 + 32(1− y3)

y1 + y2 + y3 = 1

− 1 ≤ x1 ≤ 6

− 1 ≤ x2 ≤ 7

y1, y2, y3 ∈ {0, 1}

(2.8)
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The (MBM) reformulation, using the M-parameters obtained from (2.2), is the following:

min − 2x1 + x2

s.t. (x1)2 + (x2)2 ≤ 1 + 41.42221y2 + 48y3

(x1 − 1)2 + (x2 − 5)2 ≤ 2 + 35.1981y1 + 29.4223y3

(x1 − 4)2 + (x2 − 3)2 ≤ 4 + 32y1 + 21.1981y2

y1 + y2 + y3 = 1

− 1 ≤ x1 ≤ 6

− 1 ≤ x2 ≤ 7

y1, y2, y3 ∈ {0, 1}

(2.9)

In the traditional Big-M reformulation (2.8), the M-parameter of the first constraint is
M1 = max{41.42221, 48} = 48. The RHS of the first constraint in (2.8) is 1+48(1−y1).
Therefore, the first constraint in (2.9) is tighter than its corresponding constraint in (2.8).
This can be easily seen if (1 − y1) is substituted by y2 + y3 in (2.9). This would yield
1 + 48y2 + 48y3 as RHS of the first constraint of (2.9). Clearly, the RHS of the constraint
in (2.9) dominates the RHS of the one in (2.9). The same holds true for the other two Big-
M constraints, which indicates that (2.9) is at least as tight than (2.8) as proved in Theorem
2.3.1. The tightness of the formulation can also be reflected in the optimal objective value
of the continuous relaxation. In this example, the optimal objective value of this problem
is −9.472. The optimal objective value of the continuous relaxation of (2.8) is −10.493,
and the optimal objective value of the continuous relaxation of (2.9) is −9.735. Clearly,
the optimal objective value of the continuous relaxation of (2.9) is better.

2.4 Examples and results

The new reformulation was tested with several instances of two problems: the process
network problem and the design of multi-product batch plant problem. Both of these
problems can be found in the Appendix B. For the case of the multi-product batch plant
problem, it is possible to obtain the M-parameters from the physical meaning of the prob-
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lem. For this reason, we present the formulation and M-parameters of this problem in this
section.

2.4.1 Design of multi-product batch plant problem formulation

The problem, presented in detail in Appendix B, is as follows:

min α1

∑
j

exp(nj +mj + β1vj) + α2

∑
Tj

exp(β2vTj)

s.t. vj ≥ ln(Sij) + bij − nj ∀i, j

ei ≥ ln(Tij)− bij −mj ∀i, j

H ≥
∑
i

(Qiexp(ei))
Y Sj

vTj ≥ ln(S∗j ) + bij+1 ∀i
vTj ≥ ln(S∗j ) + bij ∀i
bij − bij+1 ≤ ln(S∗ij) ∀i
bij − bij+1 ≥ − ln(S∗ij) ∀i

 ∨
 ¬Y Sj

vTj = 0

bij − bij+1 = 0 ∀i

 ∀j < |J |

[
YMj,1

mj = ln(1)

]
∨ ... ∨

[
YMj,maxp

mj = ln(maxp)

]
∀j[

Y Nj,1

nj = ln(1)

]
∨ ... ∨

[
Y Nj,maxp

nj = ln(maxp)

]
∀j

Y Mj,1 Y ... Y YMj,maxp ∀j

Y Nj,1 Y ... Y Y Nj,maxp ∀j

Y Sj, Y Mj,p, Y Nj,p ∈ {True, False} ∀j, p = 1, ...,maxp

(2.10)

M-parameters in the multiproduct batch reactor problem

Problem (2.10) contains three sets of disjunctions. The first set has only two terms, so the
M-parameters are the same for the (BM) and the (MBM). The other two sets of disjunc-
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tions have to be written as inequalities to perform the reformulation: YMj,1

mj ≤ ln(1)
mj ≥ ln(1)

 ∨ ... ∨
 YMj,maxp

mj ≤ ln(maxp)
mj ≥ ln(maxp)

 ∀j (2.11)

 Y Nj,1

nj ≤ ln(1)
nj ≥ ln(1)

 ∨ ... ∨
 Y Nj,maxp

nj ≤ ln(maxp)
nj ≥ ln(maxp)

 ∀j (2.12)

In disjunction (2.11) and (2.12) the M-parameters of the (BM) and (MBM) are different.

For p = 1, ...,maxp; q = 1, ...,maxp; q 6= p, the M-parameters of (MBM) are:

M jpq1 = ln(q)− ln(p)

M jpq2 = − ln(q) + ln(p)

The M-parameters of the (BM) are:

M jp1 = max
q=1,...,maxp

q 6=p

{ln(q)− ln(p)} = ln(maxp)− ln(p)

M jp1 = max
q=1,...,maxp

q 6=p

{− ln(q) + ln(p)} = − ln(1) + ln(p)

The (BM) of constraints (2.11) are:

mj ≤ ln(p) + (ln(maxp)− ln(p))(1− ymj,p) p = 1, ...,maxp

mj ≥ ln(p)− (ln(p)− ln(1))(1− ymj,p) p = 1, ...,maxp
(2.13)

The (MBM) of constraints (2.11) are:

mj ≤ ln(p) +
∑

q=1,...,maxp
q 6=p

(ln(q)− ln(p))ymj,q = 1 p = 1, ...,maxp

mj ≥ ln(p)−
∑

q=1,...,maxp
q 6=p

(− ln(q) + ln(p))ymj,q = 1 p = 1, ...,maxp
(2.14)
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Table 2.1: Solution of multi-product batch plant instances.

Instance Solutions Continuous relaxation Time (s) Nodes
(BM) (MBM) (BM) (MBM) (BM) (MBM)

Proc-1-21 17.2 1.7 10.0 8.4 4.0 906 404
Proc-1-31 12.2 5.9 7.9 6.5 1.2 639 86
Proc-1-36 12.1 5.6 7.8 14.2 1.5 1,408 112
Proc-1-48 12.1 5.5 7.4 63.7 5.7 6,102 405

BatchS101006 769,440 734,943 734,943 237 40 10,894 1,595
BatchS121208 1,241,125 1,202,365 1,202,365 657 365 23,890 10,587
BatchS141208 1,487,664 1,440,995 1,440,995 1,148 1,018 38,643 29,083
BatchS151208 1,543,472 1,499,913 1,499,913 121 1,872 3,729 47,958
BatchS181210 2,042,327 2,006,860 2,006,860 145 145 3,719 3,088
BatchS201210 2,295,349 2,255,304 2,255,304 525 502 13,774 10,158

2.4.2 Results

The new reformulation was tested with 10 instances. 4 of these benchmark examples for
the multi-product batch plant problem20. Two additional multi-product batch problems
were generated using data of the benchmark problems. The instances were solved with
SBB (NLP-based branch and bound) from GAMS 24.3.321, using an Intel(R) Core(TM) i7
CPU 2.93 GHz and 4 GB of RAM. SBB provides the optimal solution to MINLP problems
with convex continuous relaxations (such as (B.1) and (2.10)). In NLP-based branch and
bound methods, such as SBB, tighter relaxations will typically require the evaluation of
fewer nodes to find and prove optimality. The M-parameters for the multi-product batch
problems are presented in 2.4.1. The M-parameters for the process network problems were
obtained by solving (2.2).

Table 2.1 shows the relaxation, number of nodes and time required to solve each of the
instances. It is clear that for the process problems (MBM) provides a much better contin-
uous relaxation. The continuous relaxation of both the (BM) and (MBM) is the same for
the batch problems (although (MBM) is at least as tight than (BM) as can bee seen from
the constraints described in Section 2.4.1). Fewer number of nodes are required for the
(MBM) in 9 of the 10 instances, which generally yields reductions in the solution times.
There is only one instance in which the (BM) performs better than the (MBM).
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2.5 Conclusions

In this chapter we have presented an enhanced Big-M reformulation for GDP problems.
The new reformulation uses multiple M-parameters in each constraint, instead of the single
M-parameter the traditional big-M uses. In many cases, the new reformulation allows the
multiple M-parameters to be smaller than the single M-parameter of the traditional Big-M.
This translates into smaller RHS in the constraints, which can lead to tighter formulations.
We have proved that the proposed reformulation is at least as tight as the traditional Big-M,
and it does not require any additional variables or constraints. We reviewed two general
methods for obtaining M-parameters in the traditional Big-M, and adapted it for the new
proposed reformulation. The reformulation was tested with 10 instances, 4 of which are
the design of a process network and 6 are multiproduct batch reactor problems. Compared
to the traditional Big-M, the new reformulation requires fewer nodes to find the optimal
solution in 9 out of 10 instances. The solution time of the new reformulation is smaller in
8 out of 10 cases when compared to the traditional Big-M reformulation.
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Chapter 3

Algorithmic approach for improved
mixed-integer reformulations of convex
GDP problems

3.1 Introduction

In this chapter, we make use of the logic structure of a GDP. Instead of directly reformulat-
ing it as an MILP/MINLP, we apply a pre-analysis, a logic operation called basic step, and
a hybrid reformulation. This logic manipulation allows us to obtain an improved formula-
tion in comparison to the one obtained by a traditional reformulation. The resulting model
can be solved by a GDP or an MILP/MINLP algorithm. Figure 3.1 outlines the main idea
of this chapter. We should note that the proposed pre-analysis has some similarities to the
MILP ”fixing variables” pre-solve technique22,23,24,25, but applied in the GDP space for
convex nonlinear GDP models.

This chapter is organized as follows. Section 3.2 first presents the proposed algorithm, and
second describes in detail each step of the method. Section 3.3 provides an example of the
application of the algorithm. Section 3.4 presents the statistics, results and performance of
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Figure 3.1: Different modeling approaches.

different test examples.

3.2 Algorithm to improve GDP formulations

In order to improve GDP formulations, we iteratively apply basic steps. In this section we
first describe the algorithm, and afterwards we explain in detail each of its steps. Figure 3.2
provides an outline of the algorithm, where the main idea is to first perform a preanalysis
for pre-solving, then repeatedly apply basic steps over one single disjunction, and finally
use the (HR) in that disjunction and (BM) in all the remaining ones.

3.2.1 Algorithm

For the description of the algorithm, we will define the global constraints as individual
inequalities, such that g(x) ≤ 0 is represented with ge(x) ≤ 0, e ∈ E.

Step 1. Initialize z∗, GDP ∗ and zlo from pre-solve. Set iter = 1.

Goal. Use pre-solve to initialize the algorithm; improving (GDP), finding better bounds,
and providing a value that characterizes each disjunction.
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Figure 3.2: Outline of algorithm

Step 2. Select disjunction k∗ ∈ K. Set k̂1 = k∗; K̂ = {k̂1}; D̂k1 = Dk∗ .

Goal. Select the first disjunction to which basic steps will be applied, and set this disjunc-
tion as the “key disjunction”.

Step 3. Set iter = iter + 1. Select k∗ ∈ K\K̂. Set k̂iter = k∗; K̂ = {k̂1, ..., k̂iter};
D̂kiter = Dk∗; D̂ = {D̂k1 , ..., D̂kiter}.

Goal. Select the next disjunction, and apply a basic step between this disjunction and the
“key disjunction”. Set the resulting disjunction of this basic step as “key disjunction”.

Step 4 (Optional). For all î = (̂i1, ..., îiter) ∈ D̂, such that: (GDP ∗)
⋂

k̂s∈K̂
s=1,...,iter

(yk̂s îs = 1)

becomes infeasible, set î ∈ INEASiter.

Goal. Identify which terms in the “key disjunction” are infeasible.

Step 5. Select global equations to which apply a basic step Ê ∈ E.
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Step 6. Solve the continuous relaxation of (GDPH).

min z = f(x)

s.t. ge(x) ≤ 0 e ∈ E\Ê
rki(x) ≤Mki(1− yki) k ∈ K\K̂, i ∈ Dk

x =
∑
î∈D̂

ν î

ŷîge(ν
î/ŷî) ≤ 0 e ∈ Ê, î ∈ D̂

ŷĩsrk̂si(ν
ĩs/ŷĩs) ≤ 0 s = 1, ..., iter, i ∈ D̂ks , ĩs ∈ D̃si

yk̂si =
∑
î∈D̂
îs=i

ŷî s = 1, ..., iter, i ∈ D̂ks

xloŷî ≤ ν î ≤ xupŷî î ∈ D̂∑
i∈Dk

yki = 1 k ∈ K∑
î

ŷî = 1

Hy ≥ h

ŷî = 0 î ∈ INEASiter
zlo ≤ z

xlo ≤ x ≤ xup

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

0 ≤ ŷî ≤ 1 î /∈ INEASiter

(GDPH)

Step 7. If relaxed (GDPH) > z∗, set z∗ = relaxation(GDPH), GDP ∗ = GDPH .
If the relaxation has not improved after a specified maximum number of iterations, or the
GDPH problem size is greater than a specified limit, solve GDP ∗. Else, go back to step 3.

(GDPH) is a hybrid reformulation in which the objective function f(x) is the same as in
the original formulation. The global constraints that were not selected for the application
of a basic step (e ∈ E\Ê) remain unchanged. The disjunctions that were not selected to
apply basic steps are reformulated using (BM) (rki(x) ≤ Mki(1− yki)). The disjunctions
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that were intersected with basic steps now form a single disjunction, which we will denote
“key disjunction”, and that contains all terms î ∈ D̂. The corresponding variable to this
new terms is ŷî. Note that |D̂| = |D̂k1 | ∗ ... ∗ |D̂kiter |, which indicates an exponential
growth of the disjunction with the number of iterations. The “key disjunction” is refor-
mulated using (HR). The equation x =

∑̂
i∈D̂

ν î relates the continuous variables x, to the

disaggregated variables in all terms ν î. The constraint ŷîge(ν
î/ŷî) is the (HR) reformula-

tion of the global constraints that were intersected with the “key disjunction” e ∈ Ê. Note
that these constraints are present in all terms of the “key disjunction” (̂i ∈ D̂). Equation
ŷĩsrk̂si(ν

ĩs/ŷĩs) is the (HR) reformulation of all the constraints in the terms of the disjunc-
tions to which basic steps where applied. Each term of the “key disjunction” contains iter
sets of constraints, each one related to one of the disjunctions k̂s ∈ K̂. The original set of
constraints in a certain term i of a selected disjunction k̂s will be present in all terms î of
the “key disjunction”, as long as its corresponding element îs is equal to i (̃is ∈ D̃si, where
D̃si = {D̂k1 , ..., i, ..., D̂kiter} and i is the sth element of D̃si). D̃si is a map that assigns
the constraints in the original disjunctive terms rk̂si to the terms î in the “key disjunction”.
Equation yk̂si =

∑̂
i∈D̂
îs=i

ŷî relates the original binary variables yki to the new variables ŷî,

and it allows the new variables ŷî to be continuous while enforcing them to always take a
{0, 1} value12,15.

It should be noted that the algorithm applies basic steps, which are valid logic operations
for GDP. Also, the hybrid reformulation is a valid MILP/MINLP representation of the
problem, since the (BM) and (HR) are valid reformulations for individual disjunctions.
Therefore, the algorithm provides a valid MILP/MINLP representation of the original
GDP.

Section 3.3 provides an illustration of each of the steps in the algorithm. The remaining of
this section describes each of the steps of the algorithm with detail.
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3.2.2 Step 1: Pre-solve

The pre-solve has three purposes: eliminate infeasible terms, find better bounds, and pro-
vide a value that will characterize each disjunction. This pre-solve can be performed due to
the logic nature of GDP formulations. The pre-solve can be regarded as a strong branching
over every disjunction, and only in the root node.

The pre-solve procedure is as follows:

0. Set k = 1 and i = 1

1. Set Yki = True and, as consequence, Yki′ = False for all i′ 6= i, i′ ∈ Dk

2. Formulate MILP/MINLP by using the (HR) formulation of the remaining disjunctions
k′ 6= k, k′ ∈ K (note that, since Yki = True, the constraints associated with Yki will be
enforced as global constraints, while the ones associated with Yki′ , i′ 6= i, i′ ∈ Dk will be
removed from the formulation).

3. Solve the continuous relaxation of this problem to optimality, and define zki as the
solution of this problem.

4. Repeat this for every k ∈ K and i ∈ Dk.

Definition 3.2.1 For a minimization problem, we define the characteristic value of a dis-

junction k as follows:

charvk = min{zki},∀i ∈ Dk

It is possible to reduce the problem size and find better bounds of the problem considering
the following remarks:

Remark 3.2.2 charvk is a lower bound of z.

Proof. Solving the (HR) reformulation of the original GDP, and relaxing all integrality
constraints except the ones corresponding to the disjunction k also yields charvk (i.e.
charvk is the value of the solution of a relaxation of (GDP)) �.
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Remark 3.2.3 If zki is infeasible for a disjunctive term k ∈ K, i ∈ Dk, then Yki = False

in the original formulation.

Proof. From the definition, zki is a continuous relaxation of the problem with Yki = True.
If this relaxation is infeasible, then that particular disjunctive term can not be selected (i.e.
Yki = False) �.

As consequence of Remark 3.2.3, the terms and constraints associated to a k ∈ K, i ∈ Dk

term such that zki is infeasible can be removed from the original (GDP) formulation.

Remark 3.2.4 If zki is infeasible for all i ∈ Dk for any k ∈ K, then the problem is

infeasible.

Proof. If for any disjunction k ∈ K, all its disjunctive terms i ∈ Dk are infeasible, then
there is no alternative in that disjunction that will make the problem feasible, and therefore,
the problem is infeasible �.

Remark 3.2.5 A lower bound to the problem zlo that is at least as large as the continuous

relaxation of the original (GDP) can be obtained with as follows:

zlo = max
k∈K
{charvk}

Proof. Trivially follows from 3.2.2 �.

It is important to note that this process requires the evaluation of
∑
k∈K
|Dk| LP/NLP prob-

lems. Although this preprocessing might be expensive for only eliminating terms and
finding good bounds for the problem, the characteristic value of the disjunctions has a
major role in the algorithm as will be described in section 3.2.3. Additionally, since most
of the structure of the problem does not change while evaluating every term, it might be
possible to solve the many LP/NLP problems in a more efficient manner. This issue is not
addressed in this thesis. The resulting (GDP ) after eliminating infeasible terms is set as
(GDP ∗), and its continuous relaxation z∗.
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Illustration of pre-solve.

In order to illustrate the pre-solve procedure, consider the formulation shown in (3.1).

min z = x1 + x2

s.t. Y11

x2 ≥ 8 + x1

x2 = 12− x1

 ∨


Y12

x1 ≤ 5
x2 ≥ 6

x2 ≤ x1 + 5

 ∨


Y13

x1 ≥ 9
x2 ≤ 5

x2 ≥ x1 − 8


 Y21

4 ≤ x1 ≤ 7
7 ≤ x2 ≤ 8

 ∨
 Y22

7 ≤ x1 ≤ 11
2 ≤ x2 ≤ 4


Y11 Y Y12 Y Y13

Y21 Y Y22

x1, x2 ∈ R1

Y11, Y12, Y13, Y21, Y22 ∈ {True, False}

(3.1)

Problem (3.1) has an optimal solution of z = 11, in which Y12 = True and Y21 = True.
The (BM) provides a relaxation of zBM = 3, and the (HR) a relaxation of zHR = 9.16.
Following the pre-solve procedure described in 3.2.2, we first set Y11 = True, Y12 =

False, Y13 = False, and then perform the (HR) reformulation of the remaining of the
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problem. Relaxing the integrality constraints, this yields the LP shown in (3.2).

min z = x1 + x2

s.t. x2 ≥ 8 + x1

x2 = 12− x1

x1 = (x1)21 + (x1)22

x2 = (x2)21 + (x2)22

4 ∗ y21 ≤ (x1)21 ≤ 7 ∗ y21

7 ∗ y21 ≤ (x2)21 ≤ 8 ∗ y21

7 ∗ y22 ≤ (x1)22 ≤ 11 ∗ y22

2 ∗ y22 ≤ (x2)22 ≤ 4 ∗ y22

y21 + y22 = 1

x1, x2 ∈ R1

0 ≤ y21, y22 ≤ 1

(3.2)

Problem (3.2) is infeasible. Performing the same calculation for Y12 = True yields a
z12 = 10.6. Repeating this for the remaining disjunctive terms we obtain z13 = 11,
z21 = 11, z21 = 9.25. With these values, we assign the characteristic values for each
disjunction:

charv1 = min{z11, z12, z13} = min{infeas, 10.6, 11} = 10.6

charv2 = min{z21, z22} = min{11, 9.25} = 9.25

With these two characteristic values, it is possible to set the new lower bound: zlo =

max{charv1, charv2} = 10.6. Also, since z11 = infeas, the term associated with Y11

can be eliminated from the original (GDP) formulation. Therefore, problem (3.1) after the
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pre-solve becomes (3.3).

min z = x1 + x2

s.t.
Y12

x1 ≤ 5
x2 ≥ 6

x2 ≤ x1 + 5

 ∨


Y13

x1 ≥ 9
x2 ≤ 5

x2 ≥ x1 − 8


 Y21

4 ≤ x1 ≤ 7
7 ≤ x2 ≤ 8

 ∨
 Y22

7 ≤ x1 ≤ 11
2 ≤ x2 ≤ 4


Y11 Y Y12 Y Y13

Y21 Y Y22

x1, x2 ∈ R1

Y11, Y12, Y13, Y21, Y22 ∈ {True, False}

(3.3)

It is clear that (3.3) is a smaller problem than the original problem (3.1), and a new lower
bound of zlo = 10.6 has been found. Note that the solution to the problem is z = 11,
and the (HR) of (3.1) provides a lower bound of zHR = 9.16, so the new lower bound
zlo = 10.6 is stronger.

3.2.3 Step 2, 3: Selection of k∗

The algorithm selects over which disjunctions to apply basic steps (k∗). As described by
Balas12 there are heuristics to estimate which basic step will generate the best improve-
ment on a formulation. Furthermore, even if the best first basic step were selected, this
does not necessarily imply that after a sequence of basic steps this first one is the best
choice. Sawaya and Grossmann26 and Ruiz and Grossmann15 propose some heuristics as
to when to apply basic steps. For the algorithm proposed in this chapter, we consider three
main factors for the selection of these disjunctions:

1) A consequence of basic steps described in Balas’ work12: A basic step between two
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disjunctions that do not share variables in common will not improve the tightness of the
formulation.

2) The number of terms in the new disjunction increases exponentially with the number of
terms of the selected disjunctions (|D̂| = |D̂k1| ∗ ... ∗ |D̂kiter |). Since the algorithm applies
basic steps iteratively over the same disjunction, it is desired to keep the problem size as
small as possible.

3) The characteristic value of the disjunctions, obtained in the first step of the algorithm,
provides a heuristic on the “tightness” associated which each disjunction. Therefore, dis-
junctions with higher characteristic values are preferred.

There are several heuristics that can be used for the selection of k∗. In our experience, the
best performance was achieved by applying many basic steps with small growth in size.
Therefore, the heuristic we found to work the best was to select disjunctions with fewest
terms that share variables in common with many other disjunctions (preferably also small
ones). This evaluation is done as follows:

0. Initialize W k = 0,∀k ∈ K. Set m = 1, n = 2.

1. If disjunction m shares a variable in common with disjunction n, then Wm = Wm +
1

(|Dm|)∗(|Dn|) ; W n = W n + 1
(|Dm|)∗(|Dn|) .

2. Set n = n+ 1. If n ≤ |K| go back to 1, else go to 3.

3. Set m = m+ 1. If m ≤ |K| − 1 set n = m+ 1 and go back to 1, else go to 4.

4. Select the disjunction k∗ with largest W k value. If there is a tie, choose the disjunction
with the highest characteristic value.

Note that this algorithm gives priority to the number of basic steps that can be applied to a
certain disjunction, giving more weight to the basic steps with smaller increase in number
of disjunctive terms. If there is a tie with this parameter, it selects the one with highest
charvk.

The method for the selection of k∗ in step 3 is almost the same as the one for the selection
of k∗ in step 2. The difference is that a basic step will be applied between this disjunc-
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tion k∗ and “key disjunction”. Therefore, if a disjunction m does not share a variable in
common with any k̂s ∈ K̂ then Wm = 0.

3.2.4 Step 4: Analyze and eliminate resulting disjunctive terms

As shown in Section 3.2.1, the basic steps will be applied iteratively over the same disjunc-
tion. This means that the number of terms of such a disjunction will grow exponentially
after each basic step. Eliminating terms after each basic step helps to maintain small for-
mulations. However, there are two things to consider: first is that this step can become
computationally expensive as the algorithm iterates, and second is that eliminating terms
has less impact after each iteration. There are two methods that the algorithm uses to
eliminate infeasible terms.

First, the terms that result from intersecting a term that was infeasible in the previous
iteration, will be infeasible. Second, in order to eliminate resulting disjunctive terms, one
LP/NLP is solved for each term in the new disjunction, similarly to the pre-solve. In
the initial iterations, |D̂| is small, so the “key disjunction” has a small number of terms.
Furthermore, every term that is eliminated reduces the exponential growth of the problem
size in the subsequent iterations. As the algorithm iterates and |D̂| becomes larger, the
number of LP/NLP evaluation increases, each LP/NLP becomes more expensive, and there
will not be many more basic steps, so its impact is limited. For these reasons, step 4 is
only applied to the initial iterations, but dropped as the algorithm progresses.

In addition to this, a third method that identifies infeasibility implied by the logic ex-
pressions when two of the disjunctive terms are intersected can be used. Such cases are
computationally cheap, but there are not necessarily many terms that can be eliminated in
this way. Tools such as constraint programming can further improve the performance of
this method27. This third method is not addressed in this thesis.
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3.2.5 Step 5

In step 5 an improper basic step is applied between the “key disjunction” and the global
constraints. Using the same concepts described in 3.2.3, the improper basic step is only
applied with the global constraints that share at least one variable in common with any
k̂s ∈ K̂.

3.2.6 Step 6: Hybrid reformulation of (GDP)

As presented in the introduction, the MILP/MINLP reformulation of the (GDP) is typically
performed through either (BM) or (HR). The reformulation, however, needs not to be
strictly one of these; some disjunctions can be reformulated through (BM) while others
(HR). The advantage of doing this is that, if the correct disjunctions are selected for the
different reformulations, we can obtain a tight relaxation but with a smaller problem size
than (HR). Note that in the hybrid reformulation the smallest possible MILP/MINLP is
the complete (BM), while the tightest continuous relaxation is achieved through the (HR).
Any hybrid lies between the two formulations, both in size of problem and tightness of
continuous relaxation.

For the algorithm, we apply convex hull to the “key disjunction” (i.e. we formulate it using
(HR)) since the tightness improvement of the basic steps does not hold true for the (BM).
The rest of the disjunctions are formulated through (BM), considering that the tightness
improvement comes from the basic steps applied in disjunctions k̂s ∈ K̂.

Figure 3.3 illustrates the idea of the hybrid reformulation. In the (BM) reformulation the
problem size is small, but the continuous relaxation (represented by the shaded region)
provides a solution ZBM that is far from the optimal solution Z∗. The (HR) provides a
tighter continuous relaxation, and therefore the solution to the relaxation ZHR is closer
to the optimal solution. As expected, the problem size is considerably larger than (BM).
Lastly, in the hybrid reformulation the continuous relaxation is not as tight as the (HR).
However, its relaxation provides the same optimal solution as the relaxation of the (HR)
ZHY = ZHR. This hybrid reformulation is larger than the (BM), but not as large as (HR).
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Figure 3.3: Illustration of (BM), (HR) and Hybrid reformulation

3.2.7 Step 7: Rule for iterating

Many different rules can be applied to decide whether or not the algorithm keeps iterating.
The most intuitive rules are size of the problem and value of continuous relaxation, since
these are the two properties we are trying to improve. The last formulation that was con-
sidered to improve the GDP (GDP ∗), is the one that is then solved as an MILP/MINLP.

It is also important to note that, in order to identify if the relaxation is improving or not,
we check the relaxation of (GDPH) and (GDP ∗) without using the lower bound found in
the pre-solve zlo. This lower bound is added in the last iteration, when (GDP ∗) is solved
as an MILP/MINLP.
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3.3 Illustration of algorithm

In this section we provide an illustration of the algorithm with a simple example. Consider
the linear (GDP) in (3.4):

min lt

s.t. lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

lt ≥ x4 + 3[
Y11

x1 + 6 ≤ x2

]
∨
[

Y12

x2 + 5 ≤ x1

]
∨
[

Y13

h1 − 6 ≥ h2

]
∨
[

Y14

h2 − 7 ≥ h1

]
[

Y21

x1 + 6 ≤ x3

]
∨
[

Y22

x3 + 4 ≤ x1

]
∨
[

Y23

h1 − 6 ≥ h3

]
∨
[

Y24

h3 − 5 ≥ h1

]
[

Y31

x1 + 6 ≤ x4

]
∨
[

Y32

x4 + 3 ≤ x1

]
∨
[

Y33

h1 − 6 ≥ h4

]
∨
[

Y34

h4 − 3 ≥ h1

]
[

Y41

x2 + 5 ≤ x3

]
∨
[

Y42

x3 + 4 ≤ x2

]
∨
[

Y43

h2 − 7 ≥ h3

]
∨
[

Y44

h3 − 5 ≥ h2

]
[

Y51

x2 + 5 ≤ x4

]
∨
[

Y52

x4 + 3 ≤ x2

]
∨
[

Y53

h2 − 7 ≥ h4

]
∨
[

Y54

h4 − 3 ≥ h2

]
[

Y61

x3 + 4 ≤ x4

]
∨
[

Y62

x4 + 3 ≤ x3

]
∨
[

Y63

h3 − 5 ≥ h4

]
∨
[

Y64

h4 − 3 ≥ h3

]
Yk1 Y Yk2 Y Yk3 Y Yk4 k = 1, ..., 6

0 ≤ x1 ≤ 12; 0 ≤ x2 ≤ 13; 0 ≤ x3 ≤ 14; 0 ≤ x4 ≤ 15

6 ≤ h1 ≤ 10; 7 ≤ h2 ≤ 10; 5 ≤ h3 ≤ 10; 3 ≤ h4 ≤ 10

xj, hj ∈ R1 j = 1, 2, 3, 4

Yki ∈ {True, False} k = 1, ..., 6, i = 1, 2, 3, 4
(3.4)

This problem has an optimal solution of lt = 15, in which Y12, Y21, Y32, Y41, Y53, Y63 =

True. The continuous relaxation of its (BM) reformulation has a value of zBM = 6.0,
and the (HR) provides a relaxation of zHR = 8.3.

Step 1. After applying the pre-solve as described in 3.2.2, the terms {13, 14, 23, 24, 43, 44}
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Table 3.1: Weight parameter calculation for the disjunctions.

Accumulated weight
m n common vars? W 1 W 2 W 3 W 4 W 5 W 6

1 2 yes 0.25 0.25 0 0 0 0
1 3 yes 0.375 0.25 0.125 0 0 0
1 4 yes 0.625 0.25 0.125 0.25 0 0
1 5 yes 0.75 0.25 0.125 0.25 0.125 0
1 6 no 0.75 0.25 0.125 0.25 0.125 0
2 3 yes 0.75 0.375 0.125 0.25 0.125 0
2 4 yes 0.75 0.625 0.25 0.5 0.125 0
2 5 no 0.75 0.625 0.25 0.5 0.125 0
2 6 yes 0.75 0.75 0.25 0.5 0.125 0.125
3 4 no 0.75 0.75 0.25 0.5 0.125 0.125
3 5 yes 0.75 0.75 0.3125 0.5 0.1875 0.125
3 6 yes 0.75 0.75 0.375 0.5 0.1875 0.1875
4 5 yes 0.75 0.75 0.375 0.625 0.3125 0.1875
4 6 yes 0.75 0.75 0.375 0.75 0.3125 0.3125
5 6 yes 0.75 0.75 0.375 0.75 0.375 0.375

are found to be infeasible, so they are removed from the original (GDP) formulation.
GDP ∗ is then (3.4) without terms {13, 14, 23, 24, 43, 44}. Also, the characteristic values
of the disjunctions k = 1, ..., 6 are, respectively: charvk = (11, 10, 8.3, 9.6, 8.3, 8.3). A
new lower bound zlo is also found, since max(charvk) = 11, which is larger than the
relaxation of the (HR) z∗ = 8.3. Set iter = 1.

Step 2. The selection of k∗ is performed by assigning a weight to each disjunction as
described in 3.2.3. In this case W = (0.75, 0.75, 0.38, 0.75, 0.38, 0.38). Table 3.1 shows
the iterations to obtainW , following the procedure described in section 3.2.3. Disjunctions
1, 2 and 4 have the same weight, but the first disjunction has the highest charvk. Therefore,
disjunction 1 is chosen as k∗. k̂1 = 1; K̂ = {1}; D̂1 = {1, 2}.

Step 3. iter = 2. To find new k∗, weighting factors W k for k 6= 1 are also assigned W =

(1, 0.5, 1, 0.5, 0). Disjunction 2 and 4 have the same W k, but since charv2 > charv4,
disjunction 2 is selected as k∗. Also note that W 6 = 0 since disjunction 6 and disjunction
1 do not share variables in common.

Set k̂2 = 2; K̂ = {1, 2}; D̂2 = {1, 2}; D̂ = {(1, 1), (1, 2), (2, 1), (2, 2)}.
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For this step, it is possible to represent the “key disjunction” as follows: Ŷ1,1

x1 + 6 ≤ x2

x1 + 6 ≤ x3

 ∨
 Ŷ1,2

x1 + 6 ≤ x2

x3 + 4 ≤ x1

 ∨
 Ŷ2,1

x2 + 5 ≤ x1

x1 + 6 ≤ x3

 ∨
 Ŷ2,2

x2 + 5 ≤ x1

x3 + 4 ≤ x1

 (3.5)

The additional constraints that are added so that the new disjunctive variables ŷî can be
continuous are shown in (3.6):

y11 = ŷ1,1 + ŷ1,2

y12 = ŷ2,1 + ŷ2,2

y21 = ŷ1,1 + ŷ2,1

y22 = ŷ1,2 + ŷ2,2

y11, y12, y21, y22 ∈ {0, 1}
0 ≤ ŷ1,1, ŷ1,2, ŷ2,1, ŷ2,2 ≤ 1

(3.6)

Step 4. All the resulting terms in disjunction (3.5) are feasible, so INFEAS2 = ∅.

Step 5. Select global equations to which apply a basic step Ê ∈ E. In the example, the
first three global constraints share a variable in common with the “key disjunction”. It is
possible to represent the resulting disjunction after the application of the improper basic
step as shown in (3.7).

Ŷ1,1

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x1 + 6 ≤ x2

x1 + 6 ≤ x3

 ∨


Ŷ1,2

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x1 + 6 ≤ x2

x3 + 4 ≤ x1

 ∨


Ŷ2,1

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x2 + 5 ≤ x1

x1 + 6 ≤ x3

 ∨


Ŷ2,2

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x2 + 5 ≤ x1

x3 + 4 ≤ x1

 (3.7)

Step 6. The hybrid reformulation of this example is performed by applying (HR) to the
“key disjunction” and (BM) in the remaining disjunctions.

Step 7. The relaxed solution of (3.7) is 11. Since relaxed (3.7)> 8.3, set z∗ = 11,
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GDP ∗=(3.7). Note that, as explained in section 3.2.7, the lower bound found in the pre-
solve (zlo = 11) is not used to evaluate the improvement in the formulation. This lower
bound will be added only in the last iteration when (GDP ) is solved as MILP/MINLP.

Since it improved, the algorithm proceeds to the next iteration.

In the next iteration, a basic step between the “key disjunction” and disjunction 4 is ap-
plied. The resulting disjunction is illustrated in (3.8).

Ŷ1,1,1

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x1 + 6 ≤ x2

x1 + 6 ≤ x3

x2 + 5 ≤ x3


∨



Ŷ1,1,2

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x1 + 6 ≤ x2

x1 + 6 ≤ x3

x3 + 4 ≤ x2


∨



Ŷ1,2,1

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x1 + 6 ≤ x2

x3 + 4 ≤ x1

x2 + 5 ≤ x3


∨



Ŷ1,2,2

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x1 + 6 ≤ x2

x3 + 4 ≤ x1

x3 + 4 ≤ x2


∨

∨



Ŷ2,1,1

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x2 + 5 ≤ x1

x1 + 6 ≤ x3

x2 + 5 ≤ x3


∨



Ŷ2,1,2

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x2 + 5 ≤ x1

x1 + 6 ≤ x3

x3 + 4 ≤ x2


∨



Ŷ2,2,1

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x2 + 5 ≤ x1

x3 + 4 ≤ x1

x2 + 5 ≤ x3


∨



Ŷ2,2,2

lt ≥ x1 + 6
lt ≥ x2 + 5
lt ≥ x3 + 4
x2 + 5 ≤ x1

x3 + 4 ≤ x1

x3 + 4 ≤ x2


(3.8)

In this case, the term associated with Ŷ1,2,1 and Ŷ2,1,2 are infeasible, so INFEAS2 =

{(1, 2, 1), (2, 1, 2)}.

Also, additional constraints need to be added in the MILP reformulation to avoid the in-
crease in binary variables, as described in earlier. These constraints (after setting ŷ1,2,1 =
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ŷ2,1,2 = 0;) are shown in (3.9).

y11 = ŷ1,1,1 + ŷ1,1,2 + ŷ1,2,2

y12 = ŷ2,1,1 + ŷ2,2,1 + ŷ2,2,2

y21 = ŷ1,1,1 + ŷ1,1,2 + ŷ2,1,1

y22 = ŷ1,2,2 + ŷ2,2,1 + ŷ2,2,2

y41 = ŷ1,1,1 + ŷ2,1,1 + ŷ2,2,1

y42 = ŷ1,1,2 + ŷ1,2,2 + ŷ2,2,2

y11, y12, y21, y22, y41, y42 ∈ {0, 1}
0 ≤ ŷ1,1,1, ŷ1,1,2, ŷ1,2,2, ŷ2,1,1, ŷ2,2,1, ŷ2,2,2 ≤ 1

(3.9)

The continuous relaxation of the hybrid MILP reformulation of this iteration is ziter=2 = 15.
Since it improved, the algorithm proceeds to another iteration.

The third iteration involves a basic step between the “key disjunction” and disjunction 5.
This results in a disjunction with 32 terms, of which 8 of them are infeasible (the 8 terms
that result from intersecting terms {(1, 2, 1), (2, 1, 2)} with the 4 terms of disjunction 5).
This (GDPH) also has a relaxation of ziter=3 = 15. Since there is no improvement, the
formulation obtained in iteration 2 is selected as GDP ∗ and solved as MILP. Note that the
continuous relaxation of this formulation provides a lower bound that has the same value
as the optimal solution of the problem ziter=2 = z∗ = 15. However, the values for yki are
not integer, so the MILP solver requires to evaluate some nodes to find the integer solution.

3.4 Results

In this section we present the computational results of applying the algorithm described
in section 3.2 to different instances of the examples that can be found in Appendix A
and B. The algorithm uses the heuristics for selecting k∗ described in 3.2.3. There are
many rules that could be set for deciding if the algorithm moves to the next iteration or
not. In this study the rule that was used is as follows. If the continuous relaxation does
not improve after 3 iterations, or the number of constraints is more than double than the
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original, or the number of disjunctive terms in Dk is larger than half of the number of
original total disjunctive terms, then proceed to solve GDP ∗; else keep iterating. Note
that a formulation can in fact more than double its size, but that can occur only in the last
iteration. Afterwards the algorithm proceeds to the next step.

Thirty six instances were solved. The instances were generated by defining problem size
and randomly generating the parameters of the problems (e.g. in Stpck the number of
rectangles was set, but width and length of the rectangles was randomly generated). The ε
has a value of 10−4, and the Big M parameter was estimated using the most basic solution
for the given data (e.g. in the strip packing problem the most basic solution is to pack
one rectangle after the other, though is not the optimal). The only exception are Batch
instances, where the ”optimal” Big M parameter was used, and which can be found in the
CMU-IBM MINLP library20.

The instances are solved using branch and bound methods, Gurobi 5.5 for the linear GDP
problems and SBB for the convex GDP with CONOPT as the NLP solver. Cuts and
presolve were deactivated in Gurobi for all linear instances. The algorithm and models
were implemented in GAMS21 and solved in an Intel(R) Core(TM) i7 CPU 2.93 GHz and
4 GB of RAM.

We first present and discuss the general performance of the algorithm shown in Figures
3.4, 3.5 and 3.6. We then discuss some characteristics of the different instances presented
in Figures 3.7 and 3.8. Finally, we describe the behavior of the algorithm in Figure 3.9.

Figure 3.4 shows the percentage of problems solved vs. time for the (BM), (HR) and the
algorithm. The time for the algorithm includes the preprocessing, the steps for improving
the formulation, and the solution to the MINLP. The figure shows that the algorithm per-
forms in general better than the (BM) and (HR) reformulations. In the smaller instances
this is not true, and one of the main reasons for this is that the algorithm is programmed
with a high level language (GAMS). Thus, if the algorithm is implemented in a lower
level programming language its performance is expected to improve. Other improvements
to the algorithm, such as the ones mentioned earlier in the chapter (taking advantage of
problem structure to reduce presolving time, using constraint programming and logic con-
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Figure 3.4: Percentage of problems solved vs. time for the test instances

Figure 3.5: Number of nodes evaluated to achieve optimum, for the 17 instances where the
three formulations did so. Excludes S-Pck12 for comparison purposes, in order to avoid
plotting over 16 nodes

cepts to eliminate infeasible terms, and improving heuristics for iterating rule and selection
of basic steps) might further improve the algorithm’s performance.

Figure 3.5 shows the number of nodes that where evaluated to find and prove optimality
(within 0.1 % gap) for the 17 instances in which the three formulations did so. As expected
the (HR) requires fewer nodes than the (BM) to achieve optimality. The algorithm needs
fewer number of nodes than the (BM), but more than the (HR) in these 17 instances.

Figure 3.6 shows the percentage of problems vs. number of constraints. The figure shows
that the number of constraints in the (BM) is in general smaller than (HR) and the formu-
lation obtained through the algorithm. The MILP/MINLP obtained with the algorithm has
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Figure 3.6: Number of constraints for the different formulations

fewer constraints than the (HR). It is important to note that for most problems the contin-
uous relaxation improved after applying the algorithm, as shown in Figure 3.7. Therefore,
having not much larger or even smaller problem sizes represents an important improve-
ment in the problem formulation.

Figure 3.7 shows the continuous relaxation, the number of constraints, and the number of
variables for the different instances, comparing the (BM) and (HR) formulations of the
original problem with the formulation obtained with the proposed algorithm. It can be
seen that on 28 of the 36 instances the relaxation improves after applying the algorithm,
in the other 8 it has the same value as the (HR). In few cases, such as C-Lay-3-2 (where
the solution is 41,573, the (BM) and (HR) relaxations are 0, and the relaxation after the
algorithm is 2,200), the improvement in the relaxation is small. In most of the cases the
gap improves around 20%-40%, for example C-Lay-5-2 where the solution is 11,472, the
(BM) and (HR) relaxations are 0 and the relaxation after the algorithm is 4,203. In the
extreme case of Process-8, the algorithm provides a relaxation of 1,098, which is actually
the optimal value of the objective function, (HR) provides a good relaxation of 1,079, but
still with some gap, while (BM) provides a very poor relaxation of 0.

The algorithm produces the largest number of variables and constraints in 11 out of the
36 instances, and the size of these problems is not much larger than that of the (HR).
The (HR) produces the largest formulations in the rest of the instances. The number of
binary variables in (HR) and (BM) is the same as expected. However, there are fewer
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Figure 3.7: Relaxation, number of constraints and variables for the (BM), (HR) and algo-
rithm formulations

binary variables in some of the formulations derived from the algorithm. In these cases,
the algorithm is able to eliminate some disjunctive terms during the first pre-solving step,
so that the binary variables associated with these terms are removed from the formulation.

Figure 3.8 shows solution time, optimality gap and number of nodes evaluated in the
branch and bound tree. Note that the proposed algorithm requires fewest number of nodes
in 18 out of the 30 instances in which the number of nodes can be compared. The perfor-
mance is measured as solution time, or gap in the cases where the models did not find and
prove the optimal solution after two hours. The algorithm performs the best in 15 of the
36 instances, and worst in 12 instances. However, the algorithm performs relatively close
to the best performer in all instances, except in Batch151208. For the Batch problems the
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(HR) formulation performs the best. The (BM) and (HR) perform similarly in the first two
instances. The third one is the only instance in all test problems in which the algorithm
does much worse than the (BM) and (HR). In the last two instances of the Batch problems
the algorithm performs much better than the (BM). For the C-Lay problems the (BM) gen-
erally performs the best in the smaller instances (C-Lay-3-2 to C-Lay-5-4). In the larger
instances the algorithm performs better than the (BM) and (HR). In Dice and DiceH the al-
gorithm performs the best, while the (HR) performs the worst. For the F-Lay problem the
(BM) performs the best, while the (HR) performs the worst. For Process (HR) is the best
formulation, and the algorithm the worst, but note that the time to solve is very fast, so the
presolve and rest of the algorithm takes much more time than actually solving the MINLP.
For the S-Pck problems the (BM) performs the best, then the algorithm, and the (HR) the
worst. Note that in C-Lay-6-2, C-Lay-6-3, and the larger instances of Dice and DiceH
the (BM) and (HR) reformulations do not solve to optimality within two hours while the
algorithm does. It is also important to note that in the examples related to process design
(Process and Batch) the (HR) performs much better than the (BM), while in the packing
(C-Lay, F-Lay and S-Pck) and Dice the (BM) is much better than the (HR).

Figure 3.9 shows the behavior of the algorithm. The first three columns show the time
that the algorithm spends in applying the pre-solve, performing the iterative basic steps
over the “key disjunction”, and how much time the solver takes to solve the resulting
MILP/MINLP. The next two columns show how many iterations the algorithm performed,
and what was the criteria to stop iterating. From this column it can be seen that in most
of the instances the criteria to stop iterating is the resulting problem size, while only in
a few is the lack of improvement in the relaxation after three iterations. The last two
columns show the number of proper and improper basic steps. It is interesting to note
that, in general, few proper basic steps are applied, but many improper ones are. The
improvement in the relaxation with few proper basic steps, but many improper ones, is
consistent with the suggestions from previous work12,15.
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Figure 3.8: Solution time, optimality gap and B&B nodes for the (BM), (HR) and algo-
rithm formulations
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Figure 3.9: Behavior of the algorithm for each instance
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3.5 Conclusion

In this chapter, we have proposed an automated algorithm that improves the relaxation of
GDP formulations compared to the common BM and HR reformulations. We have devel-
oped a pre-solve procedure that reduces problem formulations, generates stronger bounds,
and provides a value that helps in the selection of disjunctions to which basic steps should
be applied. We have presented an iterative procedure in which basic steps are applied over
the same disjunction in order to improve the continuous relaxation of the problem. In this
step of the algorithm, we have also proposed some heuristics on the selection of these
disjunctions. We show that a hybrid reformulation can provide some of the advantages
of both BM and HR, and that the selection of disjunctions reformulated through BM or
HR is simple and clear for the proposed algorithm. Finally, we have applied the proposed
method to improve the formulation of different numerical examples of Generalized Dis-
junctive Programs. These results show that the algorithm provides better formulations, in
the sense that they yield strong lower bounds without an excessive increase in problem
size. Furthermore, solution times for large instances are reduced by using the algorithm.
Finally, even though the algorithm shows promising results, further research in the se-
lection of key and secondary disjunctions, as well as improvements in the presolve and
infeasible term detection, is needed to achieve faster performance. Furthermore, in prob-
lems with a large number of disjunctive terms the pre-solve may not be a good option. For
these cases different rules for the selection of disjunctions would have to be derived.
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Chapter 4

Cutting plane algorithm for convex GDP

4.1 Introduction

In this chapter, we follow a different approach to exploit the advantages of having small
but weak formulations (BM), and strong but larger formulations (HR after the application
of some basic steps). In order to do this, we propose a cutting plane algorithm for convex
GDP problems. The algorithm iteratively derives valid inequalities (or cutting planes) for
the BM reformulations. These inequalities cut-off sections of the feasible region of the
continuous relaxation of the BM, but they do not cut-off any valid region of the stronger
formulation. Once the cuts stop having a relevant impact in the improvement of the re-
laxation, the final MINLP is generated by using the BM of the GDP and including all the
generated cuts. This MINLP is then solved using traditional methods. In the proposed
algorithm, the cutting plane methodology is used before a branch and bound method is
applied. Therefore, it can be considered as a pre-processing of the problem in the GDP
space. It is important to note that, within the context of disjunctive branch and bound,
these cuts could be derived at any node. The addition of this cuts would in fact yield a
disjunctive branch and cut algorithm. However, the disjunctive branch and cut algorithm
is out of the scope of this chapter.
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This chapter is organized as follows. Section 4.2 presents the proposed algorithm, which
is illustrated in detailed with an example in Section 4.3. Section 4.4 presents the statistics,
results and performance of different test examples.

4.2 Cutting plane algorithm to improve GDP formula-
tions

A method for using the strong extended reformulation, obtained through the application
of basic steps, is to derive cutting planes for the BM reformulation14,28,29. The main idea
of the cutting plane method is to solve the continuous relaxation of the BM of the convex
GDP, and use the strong formulation of the HR after basic steps to derive cutting planes.
The cutting planes are determined by solving a separation problem (which is an NLP), in
which the feasible solution corresponds to the continuous relaxation of the HR formulation
after a sequence of basic steps.

Without loss of generality, any convex GDP can be formulated as follows:

min xn

s.t. g(x) ≤ 0

∨
i∈Dk

[
Yki

rki(x) ≤ 0

]
k ∈ K

Y
i∈Dk

Yki k ∈ K

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(4.1)

where, g(x) and rki(x) are convex functions.

Let (F-HR) be the feasible region of the continuous relaxation of the (HR) reformulation,
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and (P-HR) the projection of (F-HR) to the original space. Let (R-BM) be the continuous
relaxation of the (BM) reformulation of (4.1). Let (F-BM) be the feasible region and
zBM = (xBM , yBM) the optimal solution of (R-BM). Also, it is possible to define the
feasible region of the continuous relaxation (HR) of the GDP after application of basic
steps with the following constraints:

ge(x) ≤ 0 E\Ẽ (4.2a)

x =
∑
i∈Dk

νki k ∈ K\K̃ (4.2b)

ykirki(ν
ki/yki) ≤ 0 k ∈ K\K̃, i ∈ Dk (4.2c)∑

i∈Dk

yki = 1 k ∈ K (4.2d)

Hy ≥ h (4.2e)
xloyki ≤ νki ≤ xupyki k ∈ K\K̃, i ∈ Dk (4.2f)
0 ≤ yki ≤ 1 k ∈ K, i ∈ Dk (4.2g)

x =
∑
î∈Dk̂

ν k̂î k̂ ∈ K̂ (4.2h)

ŷk̂îge(ν
k̂î/ŷk̂î) ≤ 0 k̂ ∈ K̂, î ∈ Dk̂, e ∈ Êk̂ (4.2i)

ŷk̂îrki(ν
k̂î/ŷk̂î) ≤ 0 k̂ ∈ K̂, î ∈ Dk̂, ki ∈ K̂I k̂î (4.2j)∑

î∈Dk̂

ŷk̂î = 1 k̂ ∈ K̂ (4.2k)

xloŷk̂î ≤ ν k̂î ≤ xupŷk̂î k̂ ∈ K̂, î ∈ Dk̂ (4.2l)
0 ≤ ŷk̂î ≤ 1 k̂ ∈ K̂, î ∈ Dk̂ (4.2m)

yki =
∑

k̂∈K̂,̂i∈Dk̂

ki∈K̂I k̂î

ŷk̂î k ∈ K̃, i ∈ Dk (4.2n)

The feasible region (SEP) is defined by constraints (4.2a) - (4.2n). (4.2a) - (4.2g) is the
relaxed (HR) of the global constraints and disjunctions to which no basic steps where
applied (K\K̃ and E\Ẽ). (4.2h) - (4.2m) is the relaxed (HR) of the global constraints
and disjunctions in which basic steps were applied. In these constraints k̂ ∈ K̂ are the
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resulting disjunctions after applying basic steps (that we denote “key disjunctions”), and
î ∈ Dk̂ their corresponding disjunctive terms. The set Êk̂ maps the intersection of global
constraints e ∈ E with the new disjunctions k̂ ∈ K̂. Note that a global constraint, which
corresponds to an improper disjunction, can be intersected with more than one disjunction.
Intersecting a global constraint with multiple disjunctions might provide further tightening
of the relaxation in some cases. The set K̂I k̂î maps the original disjunctive terms ki, k ∈
K, i ∈ Dk to the resulting disjunctive terms after the application of basic steps k̂ ∈ K̂, î ∈
Dk̂. Finally, constraint (4.2n) relates the original binary variables yki to the resulting ones
ŷk̂î as described in Theorem 1.2.2.

Let (P-SEP) be the projection of (SEP) over the original space: (P-SEP)= Projx(SEP).
The following propositions allows us to derive valid cutting planes for the (BM) reformu-
lation:

Proposition 4.2.1 (P-SEP) ⊆ (F-BM)

Proof. For GDP (P-HR) ⊆ (F-BM)8. Also, after applying basic steps (P-SEP) ⊆ (P-
HR)12,15 �.

Proposition 4.2.2 (SEP) and (P-SEP) are convex regions.

Proof. 1) The original functions g(x) and rki(x) are convex. (SEP) contains either the
original functions or the perspective function of the original functions. The perspective
function is an operation that preserves convexity, therefore, (SEP) is convex. 2) (P-SEP)
is convex, since it is the projection of a convex region, and projection preserves convexity
�.

Let z = (x, y). In order to derive a separating hyperplane that cuts off a point zBM ,
consider the two following separation problems:

min φ(z) = ||z − zBM ||
s.t. (z, ν, ŷ) ∈ (SEP )

(4.3)
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Figure 4.1: Outline of Algorithm 2

and,
min φ(z) = ||z − zBM ||

s.t. z ∈ (P -SEP )
(4.4)

(SEP) is convex, and (P-SEP) ⊆ (F-BM). Therefore, following propositions hold true13:

Proposition 4.2.3 Let (zsep, νsep, ŷsep) be an optimal solution of (4.3). Then zsep is an

optimal solution of (4.4).

Proposition 4.2.4 Let zBM be the optimal solution of the continuous relaxation of the

(BM) reformulation of (4.1), and zsep an optimal solution of (4.3). If zBM /∈ (P -SEP ),

then ∃ ξ such that ξT (z − zsep) ≥ 0 is a valid linear inequality in zsep that cuts off zBM ,

and such ξ is a subgradient of φ(x) at zsep.

Proposition 4.2.5 Let (SEP) ⊂ S, where S is a convex set. If φ : S → R is differentiable

over its entire domain, then the collection of subgradients of φ at zsep is the singleton set

∂φ ≡ {ξsep|ξsep = ∇φ(zsep)}.

Proposition 4.2.6 Let (SEP) ⊂ S, where S is a convex set. If φ : S → R is defined as

φ(z) = ||z − zBM ||22, then the collection of subgradients of φ at zsep is the singleton set

∂φ ≡ {ξsep|ξsep = 2(zsep − zBM)}.

With these propositions, it is possible to derive cuts for (BM) using the (HR) reformulation
after basic steps. The outline of the algorithm is shown in Figure 4.1. Figure 4.2 illustrates
the algorithm in a simple example with three disjunctions, each one with two terms. There
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are several decisions and heuristics in the algorithm that have to be considered:

a) Number of cuts: A predetermined number of cuts can be established. The optimal value
of the objective function in (4.3) can also be used as an indicator of the performance of the
cuts.

b) The number of new resulting disjunctions, or “key disjunctions” has to be decided at
each iteration.

c) The number of basic steps to apply in each “key disjunction” at each iteration.

d) Heuristics to select which disjunctions to intersect in each “key disjunction” at each
iteration.

e) Selection of which global constraints to intersect with each disjunction. Includes gen-
eration of “redundant” constraints (i.e. intersecting a global constraint with more than one
disjunction) at each iteration.

f) Selection of the norm in (4.3). In particular, the norm-2 squared is convenient for non-
linear convex GDP, but norm-1 or the infinity-norm might be computationally more con-
venient for linear GDP, since (4.3) then becomes linear.

In particular for b) - e), only a few heuristics have been developed to select intersection
of disjunctions12,26,15,30. Important improvements in the algorithm could be achieved by
using better heuristics.

It is important to note that in the proposed algorithm, the derived cutting planes are
stronger than the ones proposed by Vecchietti et al28. These authors use the (HR) for-
mulation to derive cuts for the (BM). In this chapter, the cuts are generated using the (HR)
after the application of basic steps, so the separation problem (SEP) has a tighter feasible
region.
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Figure 4.2: (a) Solution of the relaxation of the (BM) formulation. (b) Solution of (4.3).
(c) Cutting plane ξ(z − zsep) ≥ 0. (d) Addition of cutting plane to (BM) formulation
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4.3 Illustration of algorithm

To illustrate the algorithm, consider the simple convex GDP analytical example (4.5):

min l

s.t. l ≥ x1

l ≥ x2

l ≥ x3

l ≥ x4[
Y11

x2
1/50− x2 + 2 ≤ 0

]
∨

[
Y12

−x1 + x2
2/80 + 4 ≤ 0

]
[

Y21

x2
1/60− x3 ≤ 0

]
∨

[
Y22

−x1 + x2
3/60 + 5 ≤ 0

]
[

Y31

x2
1/60− x4 ≤ 0

]
∨

[
Y32

−x1 + x2
4/70 + 6 ≤ 0

]
[

Y41

x2
2/60− x3 ≤ 0

]
∨

[
Y42

−x2 + x2
3/90 + 4 ≤ 0

]
[

Y51

x2
2/70− x4 + 9 ≤ 0

]
∨

[
Y52

−x2 + x2
4/50 + 7 ≤ 0

]
[

Y61

x2
3/90− x4 + 6 ≤ 0

]
∨

[
Y62

−x3 + x2
4/80 + 3 ≤ 0

]
Yi1 Y Yi2 i = 1, ..., 6

3 ≤ x1 ≤ 100; 0 ≤ x2 ≤ 100; 3 ≤ x3 ≤ 100; 0 ≤ x4 ≤ 100

Yi1, Yi2 ∈ {True, False} i = 1, ..., 6

x1, x2, x3, x4 ∈ R

(4.5)

The optimal solution of the continuous relaxation of the (BM) of this problem is 3, and of
the (HR) is 3.94. The optimal solution of this problem is 7. Note that if the (BM) of this
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problem is solved with SBB from GAMS21 it takes 18 nodes to find and prove the optimal
solution. Consider the feasible region described in (4.6): Y11

l ≥ x1

x2
1/50− x2 + 2 ≤ 0

 ∨
 Y12

l ≥ x1

−x1 + x2
2/80 + 4 ≤ 0


[

Y21

x2
1/60− x3 ≤ 0

]
∨

[
Y22

−x1 + x2
3/60 + 5 ≤ 0

]
[

Y31

x2
1/60− x4 ≤ 0

]
∨

[
Y32

−x1 + x2
4/70 + 6 ≤ 0

]
[

Y41

x2
2/60− x3 ≤ 0

]
∨

[
Y42

−x2 + x2
3/90 + 4 ≤ 0

]


Ŷ11

l ≥ x2

l ≥ x3

l ≥ x4

x2
2/70− x4 + 9 ≤ 0
x2

3/90− x4 + 6 ≤ 0


∨



Ŷ12

l ≥ x2

l ≥ x3

l ≥ x4

x2
2/70− x4 + 9 ≤ 0
−x3 + x2

4/80 + 3 ≤ 0



∨



Ŷ13

l ≥ x2

l ≥ x3

l ≥ x4

−x2 + x2
4/50 + 7 ≤ 0

x2
3/90− x4 + 6 ≤ 0


∨



Ŷ14

l ≥ x2

l ≥ x3

l ≥ x4

−x2 + x2
4/50 + 7 ≤ 0

−x3 + x2
4/80 + 3 ≤ 0


Yi1 Y Yi2i = 1, ..., 4

Ŷ12 Y Ŷ12 Y Ŷ13 Y Ŷ14

3 ≤ x1 ≤ 100; 0 ≤ x2 ≤ 100; 3 ≤ x3 ≤ 100; 0 ≤ x4 ≤ 100

Yi1, Yi2 ∈ {True, False}i = 1, ..., 4

Ŷ12, Ŷ12, Ŷ13, Ŷ14 ∈ {True, False}
x1, x2, x3, x4 ∈ R

(4.6)
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Note that (4.6) represents the feasible region of (4.5) after the following basic steps: the
first global constraint is intersected with the first disjunction, a basic step is performed with
disjunctions 5 and 6; the remaining global constraints are intersected with the disjunction
that resulted from the basic step between disjunction 5 and 6.

Also, the constraints that relate the original variables y to the new variables ŷ, described
in Theorem 1.2.2, are presented in (4.7).

y51 = ŷ11 + ŷ12

y52 = ŷ13 + ŷ14

y61 = ŷ11 + ŷ13

y62 = ŷ12 + ŷ14

(4.7)

Let z = [l, x1, x2, x3, x3, y11, y12, y21, y22, y31, y32, y41, y42, y51, y52, y61, y62]T

Step 1.

The relaxation of the (BM) reformulation of (4.5) is solved. The following solution is
obtained:

zBM = [3, 3, 0, 3, 0, 0.001, 0.999, 0.002, 0.998, 0.003, 0.997, 0.004, 0.996, 0.007, 0.993, 0, 1]T

Step 2.

The separation problem is solved by minimizing Φ(z) = ||z − zBM ||22:

Φ(z) = (l− 3)2 + (x1− 3)2 + (x2− 0)2 + (x3− 3)2 + (x4− 0)2 + (y11− 0.001)2 + (y21−
0.999)2 + (y21 − 0.002)2 + (y22 − 0.998)2 + (y31 − 0.003)2 + (y32 − 0.997)2 + (y41 −
0.004)2 + (y42 − 0.996)2 + (y51 − 0.007)2 + (y52 − 0.993)2 + (y61 − 0)2 + (y62 − 1)2

Subject to the continuous relaxation of the (HR) of (4.6) and to (4.7). The solution of this
separation problem is: zSEP = [7.5, 3, 5.2, 3, 2.3, 1, 0, 1, 0, 1, 0, 1, 0, 0.3, 0.7, 0.3, 0.7]T .

Cut generation.

Since Φ(z) = ||z − zBM ||22, then ξsep = 2(zsep − zBM)}:
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ξsep = [9, 0, 10.4, 0, 4.7, 2,−2, 2,−2, 2,−2, 2,−2, 0.5,−0.5, 0.5,−0.5].

The following cut is then added to (BM):

9(l− 7.5) + 0(x1− 3) + 10.4(x2− 5.2) + 0(x3− 3) + 4.7(x4− 2.3) + 2(y11− 1)− 2y21 +

2(y21 − 1)− 2y22 + 2(y31 − 1)− 2y32 + 2(y41 − 1)− 2y42 + 0.5(y51 − 0.3)− 0.5(y52 −
0.7) + 0.5(y61 − 0.3)− 0.5(y62 − 0.7) ≥ 0

The continuous relaxation of the (BM) with this additional cut is 6.01.

Iteration.

This procedure can be repeated with the solution of the (BM) relaxation after adding the
cut. With a second cut the continuous relaxation becomes 6.79, and with a third iteration
it becomes 6.96. Solving the MINLP by doing a (BM) reformulation and adding the three
cuts just described, takes SBB 5 nodes (in contrast to solving the (BM) reformulation
without the cuts, which requires 18 nodes).

4.4 Results

In this section we present the computational results of applying the algorithm described
in Section 4.2 to different problems. The GDP formulation of these problems is presented
in Appendix B . The algorithm applies basic steps in a “key disjunction” following the
heuristics presented in chapter 3, as long as the “key disjunction” contains less than 10
disjunctive terms (before the basic step). Four different strategies where tested for the
number of “key disjunctions”. In strategy K0 no proper basic steps where applied. In K1

there is only one “key disjunction”. In K5 five “key disjunctions” were generated. In KK
there are as many key disjunctions as the instance allows. Two strategies where tested
for the basic steps with the global constraints. Strategy I1, where all global constraints
are intersected once with a disjunction (as long as they share variables in common, “key
disjunctions” where preferred over regular ones). In strategy I2 all global constraints are
intersected with all of the disjunctions with which they share variables in common. For this
chapter, the selection of disjunctions and basic steps does not change after each iteration,
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Table 4.1: Number of constraints and variables for the test problems.

(BM) (HR)
Instance Solution Binary Cont. vars. # constraints Cont. vars. # constraints
Clay42 8,469 32 22 93 134 349
Clay43 9,746 36 22 109 142 381
Clay44 7,923 40 22 125 150 413
Clay45 8,781 0 66 141 202 445
Clay52 11,472 50 32 138 212 548
Clay53 20,799 55 32 158 222 569
Clay54 10,876 60 32 178 232 608
Clay55 9,223 65 32 198 242 668
Flay04 20 24 20 45 212 381
Flay05a 68 40 24 68 349 633
Flay05b 63 40 24 68 349 633
Flay05c 57.5 40 24 68 349 633
Prc1-21 17.2 21 21 56 84 137
Prc1-31 12.2 41 36 102 159 255
Prc1-36 12.1 46 36 112 174 280
Prc1-48 12.1 61 45 149 228 371
Prc2-21 17 42 27 125 169 341
Prc2-31 12.3 82 46 235 336 675
Prc2-36 12.1 92 46 260 376 760

but in general it is possible to do so. Finally, the algorithm was tested by generating 1, 2,
3, 5, 7 and 10 cuts.

Nineteen nonlinear convex instances were solved for the problems presented in the Ap-
pendix. The instances were generated by defining problem size and structure, and ran-
domly generating the parameters of the problems. The ε has a value of 10−4, and the Big
M parameter was determined using by estimating a basic feasible solution of the problem.
The problem size and solution of this instances is presented in Table 4.1. The instances
are solved using SBB. The algorithm and models were implemented in GAMS 24.221 and
solved in an Intel(R) Core(TM) i7 CPU 2.93 GHz and 4 GB of RAM.

This section first presents three plots on the general performance of the algorithm. It
then provides in-depth tables with the statistics and computational results of the different
problems and strategies.

Figure 4.3 shows the percentage of problems solved vs. time for the (BM), (HR) and
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Figure 4.3: Percentage of problems solved vs. time

the algorithm, using the strategy K5 − I1, and using 3 cuts. The time for the algorithm
includes the time to generate the cuts and time to solve the MINLP. The figure shows that
the algorithm, using strategy K5 − I1 and 3 cuts, performs considerably better than the
direct (BM) and (HR) reformulations.

Figure 4.4 shows the relaxation gap for the (BM), (HR) and the algorithm for the different
strategies and different numbers of cuts. It is important to note that after one single cut,
the formulation presents a stronger relaxation than the (HR). This is an important result,
considering that the new formulation has the same number of variables than the (BM), and
just an additional constraint. It can also be seen that after the first cut, there is a small
improvement in the relaxation. In terms of strategies, intersecting global constraints with
every disjunction with which they share variables provides the best continuous relaxation.
Note that this strategy involves generating redundant constraints. With this strategy I2, and
using the proposed heuristics, the number and strategy for proper basic steps has small
impact in the continuous relaxation(strategies K0 − I2,K1 − I2,K5 − I2,KK − I2).
However, when the global constraints are intersected only once, the use of proper basic
steps helps to improve the continuous relaxation (e.g. strategy K0 − I1 has a weaker
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Figure 4.4: Average relaxation gap vs. number of cuts for different strategies in the algo-
rithm

continuous relaxation than strategyK1−I1). It is important to note that different heuristics
in the application of basic steps will impact this behavior.

Figure 4.5 shows the accumulated solution time to solve all instances, using different
strategies, with different number of cuts. The maximum time allowed was 7,200 seconds.
The figure shows that the solution time decreases with the first 3 cuts or so, but it starts
increasing after that. This behaviour is expected, since the first cuts reduce the solution
time of the MINLP considerably. However, as the number of cuts increases, the solution
time of the MINLP does not improve much, and the time to generate the cuts becomes
relatively more expensive. It is interesting to note that, even though the relaxation after
the first cut does not change much, generating around 3 cuts seems to be the best strategy
for the tested problems. As expected, in the strategies that generate large problem sizes
(K5− I2 and KK − I2) the time to generate cuts is expensive, so the solution times after
3 cuts increases considerably.
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Figure 4.5: Accumulated solution time vs. number of cuts for different strategies in the
algorithm

Table 4.2 summarizes the performance of the (BM), (HR), and of the algorithm for strategy
K5 − I1 with three cuts. It is easy to see that the relaxation of the MINLP after adding
the cutting planes is stronger than the (HR) in most cases. The algorithm has the strongest
continuous relaxation in 13 of the 19 instances, while the (HR) is the strongest in 2. Note
that in the 2 instances in which (HR) is stronger, the value relaxation of the problem after
the cutting planes is very close to that of the (HR). On the C-lay problems, the algorithm
provides a value of the continuous relaxation much stronger than either the (BM) or the
(HR). In terms of solution times, the algorithm is the fastest in 14 of the 19 instances, the
(HR) in 4, and the (BM) in 1. Except in Proc-1-21, in all other instances in which the
algorithm is not the fastest it is the second fastest. It is also important to notice that the
algorithm solves all of the problems in less than 1, 325 seconds, while the (BM) and (HR)
cannot solve all of the problems within the two-hour limit.

Table 4.3 presents the separation problem size for the different strategies, compared to the
(BM) reformulation. It is easy to see that, in general, strategy I2 generates a much larger
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Table 4.2: Performance of the algorithm for strategy K5− I1 and 3 cuts.

Continuous relaxation Solution time (s)
Algorithm

Instance Solution (BM) (HR) Algo. (BM) (HR) cut-gen MINLP Total
Clay42 8,469 0 0 2,877 24 34 8.3 9.6 18
Clay43 9,746 0 0 2,774 74 31 16.8 7.2 24
Clay44 7,923 0 0 2,788 312 548 25.6 36.7 62
Clay45 8,781 0 0 3,384 318 727 35.6 39.9 76
Clay52 11,472 0 0 5,187 383 574 20.8 48.3 69
Clay53 20,799 0 0 4,826 2,696 2,498 27.4 27 54
Clay54 10,876 0 0 4,417 2,075 5,175 34.2 306 340
Clay55 9,223 0 0 3,680 6,477 > 7,200 59.5 429 488
Flay04 20 11.3 11.9 15.2 27 48 22.6 21.8 44
Flay05a 68 39.8 39.8 51.7 2,019 6,617 70.1 1,255 1,325
Flay05b 63 35.3 35.3 45.3 1,247 5,660 53.7 1,138 1,192
Flay05c 57.5 31.2 31.6 42.5 1,642 6,000 73.4 1,156 1,229
Prc1-21 17.2 0 15.7 15.6 24 4.7 20.9 20.3 41
Prc1-31 12.2 0 12.2 12.2 840 1 31.6 1.3 33
Prc1-36 12.1 0 12.1 12.1 2,414 5 62.2 1.1 63
Prc1-48 12.1 0 12.1 12 > 7,200 10 44.9 13.4 58
Prc2-21 17 0 0.3 0.3 76 71 3.9 48.3 52
Prc2-31 12.3 0 0.2 0.2 1,030 616 5.4 240.4 246
Prc2-36 12.1 0 0.1 0.2 2,770 3,791 5.2 369.1 374
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Table 4.3: Ratios of problem size of (SEP) compared to (BM).

Ratio of number of constraints Ratio of number of variables
Strategy I1 Strategy I2 Strategy I1 Strategy I2

Instance K0 K1 K5 KK K0 K1 K5 KK K0 K1 K5 KK K0 K1 K5 KK
Clay42 6.1 12 18 18 18 23 34 34 12 23 33 33 29 37 55 55
Clay43 5.5 11 17 17 16 21 34 34 13 23 35 35 32 40 64 64
Clay44 5.1 9.9 16 16 16 19 36 36 14 24 39 39 35 43 76 76
Clay45 4.8 9 17 17 15 18 39 39 4.7 8.2 14 14 12 15 31 31
Clay52 6.7 13 18 19 25 30 46 49 14 24 32 34 40 49 73 78
Clay53 6 12 16 18 23 28 44 51 14 25 35 38 43 52 83 95
Clay54 5.6 11 15 17 22 26 44 53 15 25 37 42 46 55 92 110
Clay55 5.4 9.9 15 17 21 25 44 55 16 26 39 46 49 58 101 125
Flay04 12 21 33 33 17 26 43 43 15 25 40 40 18 27 46 46
Flay05a 12 18 33 33 18 24 48 48 20 28 52 52 25 32 63 63
Flay05b 12 18 33 33 18 24 48 48 20 28 52 52 25 32 63 63
Flay05c 12 18 33 33 18 24 48 48 20 28 52 52 25 32 63 63
Prc1-21 5.4 10 13 13 12 15 19 19 11 20 25 25 22 29 37 37
Prc1-31 5.7 9.6 17 17 20 23 39 39 12 22 35 35 42 49 88 88
Prc1-36 5.6 9.1 19 19 20 22 48 48 13 23 43 43 47 54 119 119
Prc1-48 5.6 9 13 18 25 27 36 51 14 23 33 42 62 69 94 135
Prc2-21 4.3 4.6 10 11 13 13 19 19 12 14 27 29 35 35 53 55
Prc2-31 3.8 4.1 6.5 10 20 20 23 28 13 14 21 30 66 66 81 103
Prc2-36 3.8 4.1 6.2 9.4 21 21 23 27 14 15 22 31 74 74 89 112

problems than strategy I1. The difference in size lies in the generation of the redundant
global constraints that are intersected with every single disjunction. In most cases, K1

is twice the size of K0, while k5 is thrice its size. It is important to note that in some
instances strategy K5 and KK provide the same separation problem. This happens when
strategy K5 applies all of the possible basic steps.

4.5 Conclusions

In this chapter, we have proposed a cutting plane algorithm that improves the relaxation
of the (BM) reformulation of convex GDP formulation. The cutting planes for the (BM)
are derived through a separation problem. The separation problem minimizes the distance
between the optimal solution of the continuous relaxation of the (BM), and a point that
lies within a tighter continuous region. The tighter continuous region is still valid for
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the original GDP. We have proposed the use of basic steps in order to obtain the tighter
region of the separation problem. This region is obtained by performing basic steps on
the original GDP, and then applying the (HR) reformulation. The continuous relaxation
of this region is as tight, and generally much tighter, that the continuous relaxation of the
(BM). We have presented the results of applying this algorithm to several test problems,
using different suggested strategies. The algorithm improves the relaxation of the (BM)
in all cases. Also, the algorithm solves the test problems faster than the (HR) and (BM)
direct reformulations in most cases.
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Chapter 5

Lagrangean relaxation of the HR of
linear GDP problems and its use in the
disjunctive branch and bound

5.1 Introduction

Lagrangean relaxation of an optimization program is a widely-used and powerful tool for
solving constrained optimization problems. The review work by Guignard31 discusses
how Lagrangean relaxation can be used in different solution methods and applications.
Fisher32 provides a theoretical background for Lagrangean relaxation of mixed-integer
linear programs (MILP). The general idea in the Lagrangean relaxation is to “dualize”
some of the constraints in the optimization problem (i.e. remove some constraints from
the feasible region of the problem, and penalize the violation of such constraints in the
objective function). This approach is particularly useful in problems with complicating
constraints. Some of these problems appear in planning33, scheduling34, facility loca-
tion35, and stochastic programming problems36. In this type of problem, a Lagrangean
relaxation is simpler to solve than the original problems.
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A particular method that uses Lagrangean relaxation to solve MILPs is the Lagrangean
relaxation based branch and bound37. This method follows the same general idea as the
LP based branch and bound, but it solves a Lagrangean relaxation at every node instead of
an LP relaxation. This method can be useful in problems in which, by dualizing the com-
plicating constraints, the Lagrangean relaxation is simpler to solve than the LP relaxation.
One of the main difficulties in automating this strategy, or any other method that uses La-
grangean relaxation, is identifying the complicating constraints, which can be non trivial
and problem specific. Typically, the modeller needs to identify the problem structure and
select the constraints to dualize, or needs to modify the model to allow such a structure31.

In this chapter, we first present a Lagrangean relaxation of the HR for linear GDP prob-
lems. The proposed Lagrangean relaxation is an MILP, and it has three important char-
acteristics. First, the solution to the continuous relaxation of the proposed Lagrangean
relaxation always yields 0-1 values for the binary variables of the HR. Second, it is easier
to solve than the original problem (i.e. the HR). Furthermore, it is easier to solve than
the continuous relaxation of the HR. Third, this relaxation can be applied to any linear
GDP. This means that there is no need to specify which are the complicating constraints
in different problems, so automating a method that uses this Lagrangean relaxation can
be achieved. We use the proposed Lagrangean relaxation to improve the performance of
the disjunctive branch and bound algorithm. In particular, we evaluate the Lagrangean
relaxation at every node and use its solution as heuristic for finding feasible solutions to
the problem. The continuous relaxation of the Lagrangean relaxation always provides 0-1
values to the binary variables, so the value of the 0-1 variables is fixed and a small LP is
solved in search of feasible solutions.

This chapter is organized as follows. Section 5.2 presents a brief background on La-
grangean relaxation of MILPs and on linear GDP problems. Section 5.3 presents the
proposed Lagrangean relaxation of the HR, including the formulation and main proper-
ties. The proposed Lagrangean relaxation is then incorporated into a disjunctive branch
and bound, which is presented in Section 5.4. Section 5.5 demonstrates the performance
of the proposed disjunctive branch and bound in an illustrative example. The performance
of the disjunctive branch and bound with the Lagrangean relaxation is evaluated against
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other versions of the disjunctive branch and bound with several instances. The results of
these instances are presented in Section 5.6.

5.2 Background

5.2.1 Linear generalized disjunctive programming

This chapter is concerned with linear GDP problems. The general linear GDP formulation
can be represented as follows:

min cTx

s.t. Gx ≤ g

∨
i∈Dk

[
Yki

Akix ≤ aki

]
k ∈ K

Y
i∈Dk

Yki k ∈ K

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(LGDP)
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The (HR) formulation of the linear GDP is as follows:

min cTx

s.t. Gx ≤ g

x =
∑
i∈Dk

νki k ∈ K

Akiνki ≤ akiyki k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

x ∈ Rn

νki ∈ Rn k ∈ K, i ∈ Dk

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(HR)

Note that this reformulation for linear GDP problems is equivalent to the convex hull
representation in disjunctive programming38.

5.2.2 Lagrangean relaxation of mixed-integer linear programs

In this section we present a brief review of the Lagrangean relaxation of mixed-integer
linear programs. In this chapter, we consider the complicating constraints to be equality
constraints. We refer the reader to the work by Guignard31 for a comprehensive review
and for proofs of the Theorems and relations presented in this section. Throughout the
chapter, for any given optimization problem (Q) we let v(Q) denote its optimal value and
F (Q) its feasible region.
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Without loss of generality, consider the following general mixed-integer linear program:

min cTx

Ax = b

Cx ≤ d

x ∈ X

(P)

where X contains the integrality and sign restrictions on x (e.g. X = Rn−q
+ × {0, 1}q).

Suppose that Ax = b are the complicating constraints (i.e. the problem becomes much
simpler to solve without them). Let λ be a vector of weights, namely the Lagrange multi-
pliers.

The Lagrangean relaxation of (P) is:

min cTx+ λ(Ax− b)
Cx ≤ d

x ∈ X
(LR1λ)

In (LR1λ), the complicating constraints (Ax = b) have been “dualized” (i.e. the slacks
of the complicating constraints have been added to the objective function, and the com-
plicating constraints dropped from the formulation). Note that if these constraints are
inequalities (Ax ≤ b), then the corresponding Lagrange multipliers are non-negative.

It is easy to see that (LR1λ) is a relaxation of (P), since F (P) ⊆ F (LR1λ). Therefore,
v(LR1λ) ≤ v(P) in general. When x ∈ F (P) then v(LR1λ) = v(P) (when the complicat-
ing constraints are equalities).

Property 5.2.1
1. If x(λ) is an optimal solution of (LR1λ) for some λ, then cTx(λ) + λ(Ax− b) ≤ v(P).

2. If in addition x(λ) is feasible for (P), then x(λ) is an optimal solution of (P), and

cTx(λ) = v(P)

Theorem 5.2.1 states that Lagrangean relaxation always provides a lower bound for the
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MILP problem. The best possible lower bound that the Lagrangean relaxation provides
can be obtained with the following optimization problem:

max
λ

v(LR1λ) (LD)

Problem (LD) is called the Lagrangean dual of (P) with respect to the complicating con-
straints Ax = b.

Let (RP ) be the continuous relaxation of (P). In general, v(RP ) ≤ v(LD). In the particu-
lar case in which the Lagrangean dual has the integrality property (i.e. the extreme points
of {x|Cx ≤ d} are in X), v(RP ) = v(LD).

5.3 Lagrangean relaxation of the hull-reformulation

In this section we present a Lagrangean relaxation of the HR of any linear GDP. This
relaxation is easier to solve than the continuous relaxation of the HR. The continuous
relaxation of the proposed Lagrangean relaxation can be proved to always yield 0-1 values
to the binary variables of the reformulation. We first present the Lagrangean relaxation for
the case in which GDP does not involve logic relations, and we then discuss its extension to
the case in which it does. We note that these properties can be extended to nonlinear convex
GDP. This is achieved by using the theory for convex GDP by Ruiz and Grossmann15,
which extends part of the rich theory of disjunctive programming38 to GDP problems with
convex constraints.
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5.3.1 Lagrangean relaxation of the HR without logic relations

For given Lagrange multipliers (λkj), the following Lagrangean relaxation can be applied
to the hull-reformulation of any linear GDP:

min cTx+
∑
k∈K

∑
j∈Jk

λkj(xj −
∑
i∈Dk

νki)

s.t. Gx ≤ g

Akiνki ≤ akiyki k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(LHRλ)

where Jk is the set of variables that appear in disjunction k.

Property 5.3.1 The Lagrangean relaxation (LHRλ) can be applied to any linear GDP.

Property 5.3.1 is trivial, since the decomposition is applied to the MILP reformulation of
the general form of linear GDP.

Note that in problem (LHRλ) the variables xj and νki do not appear together in any con-
straint. Furthermore, variables νki and νk

′
i
′

for k′ 6= k; i ∈ Dk; i
′ ∈ Dk′ do not appear

together in any constraint either. Therefore, (LHRλ) can be decomposed into |K| + 1

simpler problems.

The first problem, which involves only the continuous variables and global constraints, is
as follows:

min cTx+
∑
k∈K

∑
j∈Jk

λkjxj

s.t. Gx ≤ g

x ∈ Rn

(LHR0)

The remaining k ∈ K problems, each one containing the νki variables corresponding to
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disjunction k, are as follows:

min −
∑
j∈Jk

λkj(
∑
i∈Dk

νki)

s.t. Akiνki ≤ akiyki k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(LHRk)

Property 5.3.2 The optimal solution of (LHRλ) can be obtained by the summation of the

optimal values of |K|+ 1 problems: v(LHRλ) = v(LHR0) +
∑

k∈K v(LHRk).

Property 5.3.2 indicates that it is possible to solve |K|+1 smaller MILPs to solve (LHRλ).
Furthermore, (LHRλ) and each of these subproblems can be solved as an LP, as is shown
in Property 5.3.3.

Property 5.3.3 Let (x̂, ŷ, ν̂) be a vertex of the continuous relaxation of (LHRλ). Then,

for every k ∈ K there exists an i ∈ Dk such that ŷki = 1, and ŷki′ = 0,∀i′ ∈ Dk, i
′ 6= i.

Proof. The proof is presented by analyzing the decomposed problem. Problem (LHR0)
does not involve any binary variable or disaggregated as decision variable. In problems
(LHRk), only the binary variables yki and the disaggregated variables νki, that correspond
to the disjunction (k ∈ Dk) are optimization variables. From Corollary 2.1.2 of Balas38,
for any vertex (ν̄, ȳ) of the feasible region of the continuous relaxation of (LHRk) there
exists an i ∈ Dk such that ȳki = 1, and ȳki′ = 0, ∀i′ ∈ Dk, i

′ 6= i. Therefore, for
every k ∈ K the vertices of their corresponding problem have {0, 1} values for yki. Since
there are no constraints linking the variables of the feasible region of each of the |K| + 1

problems, all of the vertices of the feasible region of the continuous relaxation of (LHRλ)
have {0, 1} values for yki. �

Note that Property 5.3.3 indicates that every solution of (LHRλ) yields 0-1 values for the
binary variables. One of the main advantages of this property, together with 5.3.2, is that
(LHRλ) can be solved by solving |K| + 1 small LPs. The solution of (LHRλ) can be
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used as a heuristic for finding “good” feasible solutions for (LGDP). On the downside,
this property indicates that the best possible bound that can be obtained from (LHRλ) is
the same as the optimal value of the continuous relaxation of (HR)31.

5.3.2 Including logic relations in (LHRλ)

In cases in which there are logic relations between the Boolean variables of the GDP,
(LHRλ) needs to be modified to preserve Properties 5.3.3 and 5.3.2. This can be achieved
by either introducing additional variables or including the propositional logic in the solu-
tion method39. Using the propositional logic in the solution method enables a large set
of tools that combine logic-based methods with optimization. The work by Hooker27 has
established important theories and results in this field. However, the scope of this chapter
is to establish the properties of a general Lagrangean relaxation of (HR), as well as the
basis for using this relaxation as a primal heuristic. For this reason, we will present in this
section a modified version of (LHRλ) by introducing additional variables, and leave the
integration of (LHRλ) with logic-based methods for future work.
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Consider the following problem, that is equivalent to (LGDP):

min cTx

s.t. Gx ≤ g

∨
i∈Dk

 Yki

ȳki = 1

Akix ≤ aki

 k ∈ K

Y
i∈Dk

Yki k ∈ K∑
i∈Dk

ȳki = 1 k ∈ K

Hȳ ≥ h

xlo ≤ x ≤ xup

0 ≤ ȳki ≤ 1 k ∈ k, i ∈ Dk

x ∈ Rn

ȳki ∈ R k ∈ K, i ∈ Dk

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(5.1)

Note that in (5.1), a continuous variable (0 ≤ ȳki ≤ 1) is introduced. The linear constraints
that represent the logic relations are expressed for ȳ. It is easy to see that (5.1) is equivalent
to (LGDP), in the sense that Yki = True implies ȳki = 1, and Yki = False implies
ȳki = 0. Note that (5.1) also has the structure required: there are no logic relations
between Boolean variables, and the global constraints and disjunctive terms involve only
continuous variables. It is possible to perform the (HR) reformulation of (5.1). After few
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algebraic substitutions, the HR of (5.1) is as follows:

min cTx

s.t. Gx ≤ g

y = ȳ

x =
∑
i∈Dk

νki k ∈ K

Akiνki ≤ akiyki k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hȳ ≥ h

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

x ∈ Rn

ȳki ∈ R k ∈ K, i ∈ Dk

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(5.2)

For Lagrange multipliers λ1, λ2, the following Lagrangean relaxation of (5.2) is obtained:

min cTx+
∑
k∈K

(∑
j∈Jk

λ1
kj(xj −

∑
i∈Dk

νki) +
∑
i∈Dk

λ2
ki(yki − ȳki)

)
s.t. Gx ≤ g

Akiνki ≤ akiyki k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hȳ ≥ h

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

x ∈ Rn

ȳki ∈ R k ∈ K, i ∈ Dk

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(5.3)

which decomposes into |K| + 1 subproblems (where Hȳ ≥ h is a global constraint and
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appears in (LHR0)).

In some cases, the solution of (LHRλ) including the logic constraints for the original
variables might still yield 0-1 values to the binary variables (e.g. it can still be solved as an
LP). However, it might not be possible to decompose (LHRλ) in smaller LPs (depending
on the structure of the logic relations). Different methods could make use of problem
(LHRλ) to solve (LGDP). For example, it can be used as heuristic in the search of feasible
solutions.

5.4 Lagrangean relaxation as a primal heuristic in the
disjunctive branch and bound

The disjunctive branch and bound presented in Section 1.2.3 can be adapted to incorporate
(LHRλ) as a primal heuristic. Before presenting the algorithm, consider the LP subprob-
lem (SP) that results when the value of the Boolean variables (or binary variables in the
MILP reformulation) are fixed. Given ŷ such that, for every k ∈ K there is only one
i ∈ Dk for which ŷki = 1 and ŷki′ = 0, ∀i′ ∈ Dk, i

′ 6= i, the following (SP) is obtained:

min cTx

s.t. Gx ≤ g

Akix ≤ aki ∀ŷki = 1

xlo ≤ x ≤ xup

x ∈ Rn

(SP)

In (SP), the constraints corresponding to active disjunctive terms ŷki = 1 are enforced
while constraints corresponding to non-active terms ŷki′ = 0 are removed.

The modified algorithm is as follows:

0. Initialize. Set L = N0, zup =∞, (x∗, y∗) = ∅. Initialize λ0
kj = 0.

1. Terminate. If L = ∅, then (x∗, y∗) is optimal and algorithm terminates.
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2. Node selection. Choose a node Np ∈ L, and delete it from L. Go either to 3a or to 3b.

3a. Bound. Solve the (R-HR) of GDPp corresponding to Np. If it is infeasible, go to step
1. Else, let zp be its objective function and (xp, yp) its solution. Set λpkj to be the Lagrange
multipliers corresponding to the constraints xj =

∑
i∈Dk

νki; k ∈ K; j ∈ Jk.

3b. Bound. Solve the (R-BM) of GDPp corresponding to Np. If it is infeasible, go to step
1. Else, let zp be its objective function and (xp, yp) its solution.

4. Prune. If zp ≥ zup, go to step 1.

If yp ∈ Zq let zup = zp and (x∗, y∗) = (xp, yp). Delete all nodes Nr ∈ L in which
zr ≥ zup, and go to step 1. Else, go to step 5 or 6.

5. Primal heuristic (optional). Solve (LHRλ) of GDPp with λpkj . Let ẑp be its objective
function and ŷ the value of the integer variables. Let zp = max{zp, ẑp}.

Solve (SP) with fixed ŷ and, if it is feasible, let z̄p be its objective function and (x̄p) its
solution. If z̄p ≤ zup let zup = z̄p and (x∗, y∗) = (x̄p, ŷp). Delete all nodes Nr ∈ L in
which zr ≥ zup. If zp = z̄p, go to step 1. Else, fo to step 6.

6. Branch. Select a disjunction k ∈ K such that yki /∈ {0, 1} for some i ∈ Dk. For every
i ∈ Dk, construct the corresponding GDP (GDP i

p) by setting the constraints correspond-
ing to the disjunctive term i as global, and removing the Boolean variables and constraints
corresponding to term i

′ 6= i; i
′ ∈ Dk. Add |Dk| new nodes, corresponding to GDP i

p, to
L. For every one of the new nodes, let the corresponding Lagrange multipliers (λp,ikj ) be
λpkj . Go to step 1.

There are two main differences in the proposed disjunctive branch and bound with respect
to the one presented in Section 1.2.3. The first in Step 3a and the second is the inclusion
of the new Step 5.

The first difference is that when Step 3a is selected, the Lagrange multipliers are updated.
Note that this implies that for the particular node in which the (R-HR) was solved, (LHRλ)
is in fact the Lagrangean dual of the HR of GDPp. It is important (while not required)
to perform Step 3a at the root node, so the Lagrange multipliers are initialized with the
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Lagrangean dual of the HR of the original GDP. In subsequent nodes, it may or may not
be useful to solve the larger HR reformulation in order to obtain better lower bounds and
updated Lagrange multipliers.

The second difference is Step 5, which is optional. In step 5, (LHRλ) is solved to obtain
integer solutions. The discrete solution is fixed and a small LP is solved (which corre-
sponds to the original GDP with fixed decisions). If the LP is feasible, it provides a valid
upper bound and feasible solution. Note that if Step 3a was selected (LHRλ) is in fact the
Lagrangean dual. Otherwise, it is a Lagrangean relaxation that uses the Lagrange multi-
pliers inherited from the parent node. Also note that if step 3b was selected, it is possible
that ẑp ≥ zp (e.g. the Lagrangean relaxation of the HR provides better bound than the
continuous relaxation of the BM). For this reason, Step 5 sets zp = max{zp, ẑp}.

Same as the disjunctive branch and bound presented in Section 1.2.3, this algorithm con-
verges in a finite number of iterations. In the worst case, evaluating every single resulting
node of the search tree.

5.5 Illustrative example

In this section, we present a simple example and the application of the proposed disjunctive
branch and bound to solve it.
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Consider the following analytical example:

min 7x1 − 2x2

s.t.
Y11

0.9487x1 + 0.3162x2 ≤ 11.3842
−0.5145x1 − 0.8575x2 ≤ −10.2899

x2 ≤ 9

 ∨


Y12

0.9615x1 − 0.2747x2 ≤ 5.7691
−0.6247x1 + 0.7809x2 ≤ 0.4685
−0.7071x1 − 0.7071x2 ≤ −4.2426



∨


Y13

0.8944x1 + 0.4472x2 ≤ 6.2610
−0.9864x1 + 0.1644x2 ≤ −0.3288
0.5547x1 − 0.8321x2 ≤ −2.7735




Y21

0.9806x1 − 0.1961x2 ≤ 2.1573
−0.6x1 + 0.8x2 ≤ 4.8

−0.5547x1 − 0.8321x2 ≤ −4.9923

 ∨


Y22

0.9806x1 + 0.1961x2 ≤ 7.2563
−0.9487x1 + 0.3162x2 ≤ −3.4785

0.3162x1 − 0.9487x2 ≤ 0.3162



∨


Y23

x1 ≤ 10
−0.3162x1 + 0.9487x2 ≤ 6.3246
−0.5547x1 − 0.8321x2 ≤ −11.3714




Y31

x1 ≤ 6
−0.3714x1 − 0.9285x2 ≤ −3.1568

−x1 ≤ −1
x2 ≤ 6

 ∨


Y32

0.7071x1 + 0.7071x2 ≤ 10.6066
−0.3162x1 − 0.9487x2 ≤ −7.9057
−0.4472x1 + 0.8944x2 ≤ 6.7082


Y

i∈Dk

Yki; k ∈ {1, 2, 3}

0 ≤ x1, x2 ≤ 10

Yki ∈ {True, False}; k ∈ {1, 2, 3}, i ∈ Dk

(5.4)

The feasible region of problem (5.4) is shown in Figure 5.1. Figure 5.1a shows the feasible
region of each disjunction, projected onto the space of the continuous variables. Figure
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Figure 5.1: Illustration of the feasible region of: a) the feasible region projected onto x1

and x2, and b) the optimal solution.

5.1b shows the optimal solution to problem (5.4) in the projection onto the continuous
variables.

The application of the proposed disjunctive branch and bound to (5.4) is as follows:

0. Initialize. Set L = N0, zup =∞, (x∗, y∗) = ∅. Initialize λ0
kj = 0.

1. Terminate. L = N0, go to Step 2.

2. Node selection. Choose node N0 and delete it from L. Go to 3a.

3a. Bound. The solution of the (R-HR) of GDP0 (which corresponds to N0) yields the
following values:

Continuous variables and objective function (x0
1, x

0
2, z

0) = (1.5, 7.1,−3.6) (point A in
figure 5.1b).

Binary variables y0
13 = y0

21 = 1, y0
11 = y0

12 = y0
22 = y0

23 = 0, and y0
31 = 0.43, y0

32 = 0.57

Lagrange multipliers λ0
kj = (−6.286, 1.048,−0.714, 0.952, 0, 0) (i.e. Lagrange multipli-

ers corresponding to the constraints xj =
∑
i∈Dk

νki; k ∈ K; j ∈ Jk in (R-HR)).

4. Prune. Since z0 < zup and y0 /∈ Zq, go to step 5.

5. Primal heuristic (optional). The solution of (LHRλ) of GDP0 with λ0
kj yields: ẑ0 =
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−3.6, ŷ0
13 = ŷ0

21 = ŷ0
32 = 1.

The solution (SP) with fixed ŷ0 is feasible and it yields the following values:

Continuous variables and objective function (x̄0
1, x̄

0
2, z̄

0) = (2.15, 7.62,−0.154) (point B
in Figure 5.1b).

Note that this solution indicates that even at the root node, it is possible to obtain a feasible
solution. In this case, we update the best known solution: zup = −0.154, (x∗, y∗) =

(x̄0, ŷ0)

6. Branch. Select k = 3 for branching. Since |D3| = 2, two new nodes are created:
LDGP 1

0 , LDGP
2
0 .
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LDGP 1
0 is as follows:

min 7x1 − 2x2

s.t. x1 ≤ 6

− 0.3714x1 − 0.9285x2 ≤ −3.1568

− x1 ≤ −1

x2 ≤ 6
Y11

0.9487x1 + 0.3162x2 ≤ 11.3842

−0.5145x1 − 0.8575x2 ≤ −10.2899

x2 ≤ 9

 ∨


Y12

0.9615x1 − 0.2747x2 ≤ 5.7691

−0.6247x1 + 0.7809x2 ≤ 0.4685

−0.7071x1 − 0.7071x2 ≤ −4.2426



∨


Y13

0.8944x1 + 0.4472x2 ≤ 6.2610

−0.9864x1 + 0.1644x2 ≤ −0.3288

0.5547x1 − 0.8321x2 ≤ −2.7735




Y21

0.9806x1 − 0.1961x2 ≤ 2.1573

−0.6x1 + 0.8x2 ≤ 4.8

−0.5547x1 − 0.8321x2 ≤ −4.9923

 ∨


Y22

0.9806x1 + 0.1961x2 ≤ 7.2563

−0.9487x1 + 0.3162x2 ≤ −3.4785

0.3162x1 − 0.9487x2 ≤ 0.3162



∨


Y23

x1 ≤ 10

−0.3162x1 + 0.9487x2 ≤ 6.3246

−0.5547x1 − 0.8321x2 ≤ −11.3714


Y

i∈Dk

Yki; k ∈ {1, 2, 3}

0 ≤ x1, x2 ≤ 10

Yki ∈ {True, False}; k ∈ {1, 2, 3}, i ∈ Dk

(5.5)

Note that in (5.5), the constraints corresponding to Y31 = True are included as global
constraints, while constraints corresponding to Y32 = True are removed from the formu-
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lation. LDGP 2
0 can be constructed in the same manner, but including as global con-

straints the ones corresponding to Y32 = True while removing the constraints corre-
sponding to Y31 = True. For simplicity, p = 1 is assigned to LDGP 1

0 , and p = 2

to LDGP 2
0 . Two new nodes are added L: L = {N1, N2} (corresponding to p = 1, 2).

The Lagrange multipliers of the new nodes are initialized using λ0
kj from the parent node:

λ1
kj = λ2

kj = (−6.286, 1.048,−0.714, 0.952, 0, 0).

In the second iteration, the following results are obtained for the node N1 using step 3a:

(R-HR): (z1, x1
1, x

1
2, y

1
11, y

1
12, y

1
13, y

1
21, y

1
22, y

1
23) = (−2.67, 1.33, 6, 0, 0, 1, 0.852, 0.025, 0.123)

(LHRλ): (ẑ1, ŷ1
11, ŷ

1
12, ŷ

1
13, ŷ

1
21, ŷ

1
22, ŷ

1
23) = (−2.67, 1.33, 6.0, 0, 0, 1, 1, 0, 0)

(SP): (z̄1, x̄1
1, x̄

1
2) = (−2.67, 1.33, 6) (point C in figure 5.1b).

Note that the solution obtained by (R-HR) is optimal in the continuous variables. However,
it did not yield 0-1 values to (y1

21, y
1
22, y

1
23). After solving (LHRλ), the best known solution

is updated: zup = −2.67, (x∗, y∗) = (x̄0, ŷ0). The node can be pruned since z1 = zup.

Node N2 yields an integer solution with z2 = −0.154 and it can be pruned. After evaluat-
ing N1, N2, all the nodes are pruned (L = ∅) and the algorithm terminates.

Figure 5.2 shows the disjunctive branch and bound tree for different versions of the al-
gorithm for problem (5.4). Figure 5.2a shows the tree for the proposed algorithm, as
described earlier (using step 3a in each of the nodes). Figure 5.2b presents the tree of the
HR disjunctive branch and bound (i.e. the algorithm presented in Section 1.2.3 using Step
3a at every node). Finally, Figure 5.2b presents the tree of the BM disjunctive branch and
bound (i.e. using Step 3b at every node).

It is easy to see from Figure 5.2 that the proposed algorithm requires fewer number of
nodes than the other two algorithms (3 in the proposed algorithm, 6 in the HR, and 12
in the BM). Nevertheless, it requires the evaluation of 3 LPs in N0 and in N1, while the
BM and HR disjunctive branch and bound require the evaluation of one LP at every node.
In this simple example, the solution of every LP takes a fraction of a second. However,
in larger problems the difference in solution time among (R-HR), (LHRλ), (R-BM), and
(SP) can be very significant. For example, in instance 11 of Section 5.6.1 the solution
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Figure 5.2: Disjunctive branch and bound tree for: a) the proposed algorithm, b) HR, and
c) BM.

times (using CPLEX 12.6.140) of (R-HR), (LHRλ), (R-BM), and (SP) at the root node
are 21.5s, 0.7s, 0.2s, 0.1s, respectively. Note that the solution time of (LHRλ) is about 30
times faster than the solution of (R-HR) ((LHRλ) is the Lagrangean dual of (R-HR), so
they provide the same lower bound). Also, (LHRλ) was evaluated as a single LP and a
single core, so the difference in solution time comes from CPLEX exploiting the structure
of (LHRλ). If (LHRλ) is solved by solving the smaller LPs in parallel (Property 5.3.2),
the solution time can be further reduced.

5.6 Results

In this section, we present the performance of the proposed disjunctive branch and bound
against the simple BM and HR disjunctive branch and bound. We also compare against
a fourth disjunctive branch and bound with a “random heuristic”. This algorithm is ex-
actly the same as the proposed algorithm, but the primal heuristic is random (i.e. instead
of solving (LHRλ) and fixing ŷ at its solution, ŷ is fixed randomly). This comparison is
important to show that (LHRλ) provides a good heuristic for finding feasible solutions,
and it is not only the additional work at each node what drives the improvement in the
disjunctive branch and bound. The M-parameters of the Big-M reformulation were ob-
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tained by using the variable bounds (i.e. for a constraint of the type ax ≤ b the parameter
M =

∑
j:aj≥0 x

up −
∑

j:aj<0 x
lo − b).

The results were obtained using an Intel(R) Core(TM) i7 CPU 2.93 GHz and 4 GB of
RAM. The algorithm was implemented in GAMS 24.4.541 using CPLEX 12.6.140. The
proposed algorithm uses step 3b at every node, except for the root node (i.e. it solves
(R-HR) at the root node, initializes the Lagrange multipliers, then solves (R-BM) at ev-
ery other node without modifying the multipliers). (LHRλ) is solved as a single LP by
CPLEX, but computational experience shows that CPLEX can exploit the decomposable
structure of (LHRλ) (as described in Section 5.5). The algorithms use a breadth first
branching strategy, and at every node selects the disjunction with fewest disjunctive terms
that yielded non integer variables for branching.

The solution times presented in this section refer to the solve time (i.e. it includes the time
to generate the model at every node, but ignores the time to create each node and to decide
on branching and pruning). While in most cases the wall time is very close to the solve
time, in some instances it is not. The reason for comparing the solve time (vs. wall time)
is to consider only the time spent in solving the problem, and ignore inefficiencies in the
code (that could be reduced in a lower level programming language or improvements in
the branch and bound code).

Note that this implementation of the disjunctive branch and bound algorithm is a prototype,
and its purpose is to show the improvement of the basic algorithm when using (LHRλ)
as a primal heuristic. The algorithm is implemented in GAMS, and it has to generate an
MILP model at every node of the search tree. Also, it does not include presolve, heuristics
or cuts, so it is much slower than CPLEX. Future work includes improvements in the
implementation of the algorithm.

The algorithms were tested with 100 instances of 3 problems (i.e. a total of 300 instances).
The solution time performance curve over all instances is presented in Figure 5.3. Figure
5.3 shows the percentage of instance solved vs. time. The figure shows four algorithms:
“HR” refers to the HR disjunctive branch and bound, “BM” to the BM one, “ALG” to
the proposed modified algorithm, and “RAN” to the algorithm with a random heuristic.
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Figure 5.3: Solution time performance curve for the 300 tested instances.

It can be observed from the figure that the proposed algorithm is considerably better than
the rest. The HR branch and bound performs second, but the random heuristic algorithm
performs similarly in larger instances. The worst performer is the BM disjunctive branch
and bound. Out of the 300 instances, the BM, HR, ALG, and RAN solve 253, 266, 296,
and 269 instances, respectively.

While Figure 5.3 presents the performance over all instances, the performance varies in the
different examples. In the remaining of this section, we present more details and results
for each example. We first present random instances for the unstructured linear GDP
problems. We then present results of two particular GDP problems: the strip packing and
the contracts problem. The strip packing problem does not include logic constraints, while
the contracts problem does. 100 instances are tested for each of these problems.

5.6.1 Unstructured GDP problems

For this example, 100 random instance are generated for the unstructured GDP problems
without logic relations or global constraints (note that any GDP with global constraints
can always be reformulated as a GDP without global constraints by using improper basic
steps10). The coefficients of aki range between −1.00 and 1.00. The coefficient range
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of c is [−10.0, 10.0]; of xlo is [−100,−10]; and of xup is []10, 100]. In order to avoid
very high density in the matrices Aki, and to give the problem structure (e.g. to relate
more some variables to some disjunctions), the following formula was used to calculate
Aki; k ∈ K, i ∈ Dk (where e ∈ Eki are the constraints in ki and j ∈ Jk are the variables
in k ∈ K):

Akiej = A0kiejα
ki
ejβ

ki
ej

where,

A0kiej is a random parameter between −1.00 and 1.00.

αkiej is the probability of a variable appearing in an equation. (in all tested instances αkiej =

0.5).

βkiej = round(rand-between(0, 1− |(j − k ∗ |J |/|K|)/|J ||)).

To illustrate the idea behind the generation of Aki, consider a problem with 40 variables,
10 disjunctions, 20 disjunctive terms per disjunction, and a maximum of 30 constraints
per disjunctive term. In disjunction k = 1, the probability of variable j = 1 appear-
ing in any constraint of any disjunctive term is α1,i

e,1β
1,i
e,1. Since β1,i

e,1 = round(rand-
between(0, 0.925)), the probability is α1,i

e,1β
1,i
e,1 = (0.5)(0.46) = 23%. Note that, since

there are up to 30 constraints in each of the 20 disjunctive terms of disjunction k = 1,
there is a very high probability that this variable appears in a constraint of k = 1. For
k = 1 and j = 20, β1,i

e,20 = round(rand-between(0, 0.6)) so the probability of variable
j = 20 appearing in any constraint of any disjunctive term of k = 1 is 8%. The probability
of variable j > 25 appearing in any constraint of any disjunctive term of k = 1 is 0%. The
probability of variable j = 20 appearing in any constraint of any disjunctive term of k = 5

is 25%.

Table 5.1 presents the statistics for the instances that were generated randomly. All infea-
sible instances were removed from the test set, and all infeasible disjunctive terms were
removed from the feasible instances. The number of constraints in a disjunctive term
(|Eki|) is random between Emax/5 and Emax. The problem identifier indicates the number
of disjunctions |K|, disjunctive terms Dk, and number of continuous variables in the GDP.
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Table 5.1: Average statistics for the different random problems

Problem # instances Emax 0-1 vars. Variables Constraints
BM HR BM HR

k5-i40-v40 10 50 106 147 3,511 3,064 9,948
k5-i40-v50 10 50 113 164 4,650 3,344 12,515
k6-i25-v40 10 50 82 123 2,723 2,361 7,750
k6-i25-v50 10 50 86 137 3,523 2,523 9,533
k7-i15-v40 10 40 61 102 2,032 1,442 5,524
k7-i15-v50 10 40 63 114 2,567 1,490 6,674
k8-i5-v40 10 30 28 69 942 470 2,466
k8-i5-v50 10 30 29 80 1,202 500 3,061
k10-i3-v50 10 20 25 76 1,053 304 2,648
k10-i3-v80 10 20 25 106 1,655 304 4,022

The table shows the average number of binary variables, as well as the average problem
size for the BM and HR. It can be observed from Table 5.1 that in some of these instances
the difference in problem size between the BM and HR is considerable, particularly in the
number of variables.

Figure 5.4 shows the performance of the different algorithms for the 100 random instances.
Figure 5.4a shows that the solution time performance of the proposed and the random
algorithms is much better than the traditional BM and HR disjunctive branch and bound
for this example. The figure shows that the proposed and random algorithms solve 98 of
the instances, while the BM and HR versions can only solve 81 and 72, respectively. Note
that in this example, the BM disjunctive branch and bound performs better than the HR.
This is because the number of nodes required in the BM and HR disjunctive branch and
bound is very similar as can be observed in Figure 5.4b. Figure 5.4b shows the required
number of nodes to solve the 72 instances that all algorithms solved. The figure shows that
the proposed algorithm requires the fewest number of nodes. The BM and HR, however,
require very similar number of nodes. Considering that the HR generates a much larger
MILP (as shown in Table 5.1), it is expected that the solution time of the BM disjunctive
branch and bound is faster than that of the HR.

Figure 5.5 shows the number of nodes required to find the optimal solution and the first
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Figure 5.4: Performance curves for the different algorithm for: a) solution time, and b)
number of nodes for the 72 instances that all algorithms solve.

feasible solution for the 72 instances that all algorithms solve. While the figure does not
show the time to prove optimality, finding a feasible and the optimal solution is an im-
portant consideration in practice. It can be observed from the figure that the proposed
algorithm is better at finding the optimal solution (Figure 5.5a) and the first feasible solu-
tion (Figure 5.5b). The random heuristic algorithm is very good in this example, requiring
a similar number of nodes to find the first and optimal solution as the proposed method.
However, the BM and HR versions require many more nodes to find a feasible solution
and the optimal solution. The figure shows that there is small difference in the HR and
BM disjunctive branch and bound with respect to the number of nodes required to find first
and optimal solutions. The small difference seems to indicate that the HR requires fewer
nodes to find the optimal solution, while the BM requires fewer to find the first feasible
solution.

Note that the proposed algorithm performs better than the other versions of the disjunctive
branch and bound for unstructured GDP instances. In the remaining of this section, we
present results for two particular GDP problems: strip packing and contracts.
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Figure 5.5: Number of nodes required to find: a) the optimal solution, and b) the first
feasible solution for the 72 instances that all algorithms solve.

5.6.2 Strip packing problem

Given set of N rectangles, the strip packing problem consists on placing them on a strip
while minimizing the its length. The rectangles cannot overlap or be rotated. The height
and length of each rectangle is known (Hi, Li; i ∈ N ), and the strip has widthW 29. Figure
A.1 illustrates the strip packing problem.

The GDP formulation of this problem is as follows29,42:

min lt

s.t. lt ≥ xi + Li i ∈ N[
Z1
ij

xi + Li ≤ xj

]
∨

[
Z1
ji

xj + Lj ≤ xi

]

∨

[
Z2
ij

yi −Hi ≥ yj

]
∨

[
Z2
ji

yj −Hj ≥ yi

]
i, j ∈ N, i < j

Z1
ij Y Z

1
ji Y Z

2
ij Y Z

2
ji i, j ∈ N, i < j

0 ≤ xi ≤ UB − Li i ∈ N
Hi ≤ yi ≤ W i ∈ N
Z1
ij, Z

2
ij ∈ {True, False} i, j ∈ N, i 6= j

(5.6)
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Figure 5.6: Illustration of the strip packing problem.

In (5.6), the objective is to minimize the length lt. The coordinates of the upper-left
corner of rectangle i are represented with the variables (xi, yi). The global constraints
(lt ≥ xi + Li) enforce length of the strip corresponds to the largest xi + Li (i.e. the
coordinate of the top-left corner plus the length of the rectangle). There is a disjunction
for every pair of rectangles i, j ∈ N, i < j. Each of the terms of the disjunction represents
the relative position of rectangle iwith respect to rectangle j. The first term, corresponding
to Z1

ij = True, represents rectangle i to the left of rectangle j. Z1
ji = True represents

rectangle i to the right of rectangle j. Z2
ij = True represents rectangle i on top of rectangle

j. Finally, Z2
ji = True represents rectangle i below rectangle j. The parameter UB is an

upper bound for the strip (e.g. UB =
∑

i Li).

The different algorithms were tested on 100 random instances of the strip packing problem.
The range of values of the random parameters is as follows: N = 4, 5;W = 5-7;Li = 1-
10;Hi = 2-5.

Figure 5.7a shows that the HR disjunctive branch and bound performs better than the other
three for this problem. The BM, random heuristic, and the proposed branch and bound
perform similarly in terms of solution time. It is interesting to note that the proposed al-
gorithm performs the third in terms of solution time. However, Figure 5.7b shows that the
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Figure 5.7: Performance curves for the different algorithm for: a) solution time, and b)
number of nodes.

proposed algorithm requires the fewest number of nodes. Because some of the nodes re-
quire the evaluation of more than one LP, the fewer number of nodes is not reflected in the
solution time for this problem. As expected, the random heuristic and the HR disjunctive
branch and bound require fewer nodes than the BM disjunctive branch and bound. The
random heuristic algorithm requires similar number of nodes as the HR. However, it re-
quires the evaluation of two LPs in many of the nodes, so the performance in terms of the
solution time is worse (as shown in Figure 5.7a). The heuristic that uses the Lagrangean
relaxation requires fewer nodes than the random heuristic, which shows that the former is
a better heuristic than randomly fixing variables. However, the improvement is small in
this example, and hence the time spent in solving the Lagrangean relaxation at every node
increases the total solution time. Note that for this problem the performance curves of all
algorithms are not very different.

Figure 5.8 shows the performance curve of the number of nodes required to find the opti-
mal solution and to find a feasible solution. Figure 5.8a shows that the number of nodes
required to find an optimal solution is smaller for the proposed algorithm than for the oth-
ers. Figure 5.8b shows that the first feasible solution can be almost always be found at the
root node in the proposed and random algorithms. In particular, the proposed algorithm
finds the first feasible solution at the root node in 94 instances; and in 4 instances it finds it
at the first node. The improvement in finding optimal and feasible solutions can be better
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Figure 5.8: Number of nodes required to find: a) the optimal solution, and b) the first
feasible solution.

Table 5.2: Average of performance metrics for the different algorithms

Average of metric BM HR LAG RAN
Solution time (s) 172.6 93.0 167.4 143.9
Total number of nodes 1,546 859 763 843
Number of nodes to find optimal 1,258 447 229 364
Number of nodes to find feasible 493 214 2 66.5

appreciated in Table 5.2. Table 5.2 shows an average of the metrics presented in Figures
5.7 and 5.8. Note that both algorithms with primal heuristic find the optimal and feasible
solutions faster than the BM and HR disjunctive branch and bound. Out of the two algo-
rithms with primal heuristic, the one that uses the Lagrangean relaxation finds the optimal
and first feasible solution in fewer nodes.

5.6.3 Contracts problem

Given feedstock requirements of a raw material at every time period Dt; t ∈ T , the prob-
lems consists on finding the best purchasing contracts to minimize costs. The inventory
of the feedstock it allows to carry material from a time period to the next ones, but there
is a cost associated with inventory αIt . In general, there are three types of contracts. The
“standard contract” which allows buying any amount of material at a given price γt. The
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“bulk contract” which provides a discount βBt of the material, but there is a minimum pur-
chase requirement FB,lo

t . The last type of contract requires purchasing materials for the
following q ≥ 1 time periods, all of which include the same discount βLtq over the same
price γt and the same minimum purchase requirement FL,lo

tq .

The GDP of the contracts problem is as follows:

min
∑
t∈T

(αSt st + ct)

s.t. ft ≥ Dt t ∈ T

st = st−1 + xt − ft t ∈ T[
Y S
t

ct = γtxt

]
∨

 Y B
t

ct = (1− βBt )γtxt
xt ≥ FB,lo

t

∨
∨

[
Y 0
t

0 ≤ ct

]
∨

q=1,...,|T |−t

 Y L
tq

ct′ = (1− βLtq)γtxt′ t′ = t, ..., t+ q
xt′ ≥ FL,lo

tq t′ = t, ..., t+ q

 t ∈ T

Y S
t Y Y

B
t Y Y

0
t Y
q=1,...,|T |−t

Y L
tq t ∈ T

Y 0
t ⇔ ∨

t′<t
q≥t−t′

Y L
t′q t ∈ T

Y 0
1 = False

0 ≤ xt ≤ xup t ∈ T
0 ≤ ct ≤ cup t ∈ T
0 ≤ st ≤ sup t ∈ T
Y S
t , Y

B
t , Y

0
t ∈ {True, False} t ∈ T

Y L
tq ∈ {True, False} 1 ≤ q ≤ |T | − t; t ∈ T

(5.7)

The global constraints in (5.7) enforce the demand satisfaction (ft ≥ Dt) and the material
balance at the inventory (st = st−1 + xt − ft). At each time period t ∈ T there is a
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disjunction. The term that corresponds to the Boolean variable Y S
t represents the “standard

contract”, where any amount xt can be purchased at price γt. Y B
t represents the “bulk

contract”, where xt ≥ FB,lo
t can be purchased with a discount in the price βBt . Y 0

t is active
when a long term contract from a previous time period is selected, and such a contract
involves time period t (Y 0

t ⇔ ∨ t′<t
q≥t−t′

Y L
t′q). For example, if Y L

1,3 is selected (e.g. in the

time period t = 1, a contract with a length of q = 3 time periods was selected), then Y 0
2 =

Y 0
3 = Y 0

4 = True. The term associated with Y 0
t does not constrain the variables, since

the corresponding cost and purchase bound are determined at the time period in which the
long term contract is active (ct′ = (1−βLtq)γtxt′ ;xt′ ≥ FL,lo

tq ; t′ = t, ..., t+ q). For the first
time period, Y 0

1 cannot be selected. When performing the BM or HR reformulation, the
logic constraint (Y 0

t ⇔ ∨ t′<t
q≥t−t′

Y L
t′q) can be reformulated as (y0

t =
∑

t′<t
q≥t−t′

yLt′q).

Note that (5.7) involves logic constraints. Therefore, in order to preserve Properties 5.3.2
and 5.3.3, it would be necessary to use (5.3). However, the continuous relaxation of the HR
and BM reformulations of (5.7) (as well as (LHRλ) with the logic constraints reformu-
lated for the original binary variables) can be solved in a fraction of a second. Therefore,
Property 5.3.2 (which established that (LHRλ) can be solved by solving small LPs) does
not have an important impact in the solution time of the problem. Furthermore, out of the
over 2.2 million nodes solved for the instances of this example, there was not a case in
which the continuous relaxation of (LHRλ) with the logic constraints reformulated for the
original variables gave a non-integer solution. While this is no proof that Property 5.3.3
holds, it indicates that (LHRλ) with the logic constraints reformulated for the original
variables can be used as a primal heuristic for the tested instances.

The different algorithms were tested with 100 random instances of the contracts prob-
lem. The range of values of the random parameters is as follows: |T | = 9-11;Dt =

50-100;αIt = 5-20; γt = 10-30; βBt = 0.050-0.500; βLtq = 0.010-0.999;FB,lo
t = 50-

100;FL,lo
tq = 50-100. The algorithm uses (LHRλ) with the logic constraints reformulated

for the original variables as the primal heuristic.

Figure 5.9 presents the performance plots of the algorithms for solving the contracts prob-
lem instances. Figure 5.9a shows the performance of the solution times. It can be observed
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Figure 5.9: Performance curves for the different algorithm for: a) solution time, and b)
number of nodes for the 71 instances that all algorithms solve.

that the HR disjunctive branch and bound performs the best for the smaller problems.
However, the proposed algorithms outperforms the HR after about 4,000 seconds. Of the
100 instances, the proposed algorithm solves 98, the HR 94, the BM 72, and the random
heuristic 71. It is clear from Figure 5.9a that the BM and heuristic algorithms perform
much worse than the other two for this problem. Figure 5.9b shows the number of nodes
required to solve the 71 instances that all algorithms solve. Similar to the solution time,
the HR and the proposed algorithm are the best performers. Their performance is close,
the HR being better at first and the proposed algorithm taking over in the more difficult
problems. In this example, the heuristic algorithms performs exactly the same as the BM
branch and bound, in terms of number of nodes. This indicates that the random heuristic is
poor, since it requires additional work and it does not reduce the number of nodes required
for the BM disjunctive branch and bound.

Figure 5.10 presents the number of nodes required to find the optimal solution and the first
solution. Figure 5.10a shows that the proposed algorithm is faster in finding the optimal
solution. Furthermore, Figure 5.10b shows that the algorithm finds a feasible solution in
every instance at the root node. Again, these two figures show that the heuristic algorithms
performs exactly the same as the BM branch and bound in terms of number of nodes. For
this example, the BM and random heuristic branch and bound perform much worse than
the HR and the proposed algorithm.
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Figure 5.10: Number of nodes required to find: a) the optimal solution, and b) the first
feasible solution for the 71 instances that all algorithms solve.

5.7 Conclusions

In this chapter, we have presented a Lagrangean relaxation of the hull-reformulation of
linear GDP problems. This Lagrangean relaxation can be applied to any linear GDP. We
proved two important properties of this relaxation. The first one is that any vertex of the
continuous relaxation of the Lagrangean relaxation yields 0-1 values for the binary vari-
ables of the hull reformulation. The second one is that it can be solved by solving several
small LPs (potentially in parallel). This relaxation was incorporated into a disjunctive
branch and bound as a primal heuristic, and the proposed algorithm was tested with 300
instances on 3 problems: unstructured GDPs, strip packing and contracts.

For every problem, the number of nodes required by the proposed algorithm is smaller than
the number of nodes required by the HR, BM, and “random heuristic” disjunctive branch
and bound. Furthermore, the number of nodes to find a feasible and optimal solution
to problems is drastically improved when using the Lagrangean relaxation as a primal
heuristic. Over all the instances, the solution time performance of the proposed algorithm
is better than alternative disjunctive branch and bound methods. Over all the instances, the
BM, HR, ALG, and RAN solve 253, 266, 296, and 269, respectively.

In terms of solution time, the proposed algorithm and the heuristic one are the best for
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the unstructured GDP instances. Not only is their solution time performance curve better,
but they solve considerably more instances than the rest within the time limit (98% for
the proposed and heuristic algorithms vs. 81% for the BM, and 72% HR). For the two
examples of structured GDP problems, the performance of the solution time is different
for each of the problems. For the strip packing problem, the HR disjunctive branch and
bound performs the best, while de proposed algorithm performs third (and very close to
the last performer: the BM disjunctive branch and bound). For the contracts problem,
the proposed algorithm performs the best, solving 98% of the instances (while the BM,
HR, and random heuristic algorithm solve 72%, 94%, and 71%). The performance curve
is similar to that of the HR disjunctive branch and bound, but it is able to solve more
instances.

The proposed Lagrangean relaxation can be extended to nonlinear convex GDP problems.
Future work will address these problems through the Lagrangean relaxation described in
this chapter, as well as improvements in the implementation.
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Chapter 6

Cutting planes for improved global
logic-based outer-approximation of
nonconvex GDP problems

6.1 Introduction

This chapter is motivated by the synthesis of process networks, which is an area of active
research in Process Systems Engineering (PSE). The objective is to synthesize the opti-
mal process flowsheet contained in a process superstructure43, which contains alternative
units (with their corresponding models) and interconnections. The synthesis process net-
works can be modeled as a mixed-integer nonlinear problem (MINLP)44. In the MINLP
approach, the selection of units and interconnections are modeled using binary variables.
The process unknowns (flow, concentration, temperature, etc.) are modeled using con-
tinuous variables. Alternative superstructure representations of processes have also been
proposed45,46,47,48.

The synthesis of process networks yields MINLP models that can be highly nonconvex.
In particular, the nonconvexities arise in two forms. The first form involves the modelling
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of each individual process unit. This models can range from linear input/output equations
to large differential algebraic models. The second form of nonconvexities arise in the
modeling of flow and properties that result when mixing streams, in the simplest case as
bilinear terms. It is important to note that when the units and interconnections are fixed
in a superstructure, the resulting problem is a nonlinear program (NLP). Not only is this
NLP continuous, it does not include nonconvexities related to the units or interconnections
that were not selected. Because of these two reasons, it is common that the resulting NLP
after fixing the discrete decisions is much simpler to solve than the full problem, provided
that the constraints of the non-selected units and interconnections are removed from the
NLP model. This property is not general for MINLPs, but very common in the synthesis
process networks. General methods for solving MINLPs to global optimality do not take
advantage of this particular property.

The most common deterministic method for solving nonconvex MINLP problems is the
spatial branch and bound algorithm49. This algorithm is used by several general pur-
pose MINLP global solvers, such as: αBB50, ANTIGONE51, BARON52,53, Couenne54,
LINDO55, and SCIP24. We refer the reader to the work by Bussieck and Vigerske56 for
details of the different MINLP solvers. In addition to the spatial branch and bound, Kesa-
van et al.57 present an outer-approximation method for global optimization. This method
builds on the traditional outer-approximation method for convex optimization58,59.

Other methods have been developed to exploit the simplification of problems when dis-
crete decisions are fixed, typically in the form of logic-based Benders decomposition60

(and Generalized Benders decomposition61,62). In particular for nonconvex MINLP, Li
et al.63 present a nonconvex generalized Benders decomposition method for stochastic
MINLPs.

Synthesis of process networks is one of the areas where GDP has been most successful.
Raman and Grossmann64 propose a GDP model for the synthesis of process networks.
The logic-based outer-approximation is of particular interest in the synthesis of process
networks. This method exploits the fact that the NLP that is generated when fixing the
discrete alternatives is much simpler to solve than the original problem. This method
iteratively solves a linear GDP approximation of the original GDP (master problem) and
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an NLP in which the discrete decisions are fixed (subproblem). The original logic-based
outer-approximation is valid only for convex GDP problems. However, a valid logic-based
outer-approximation for the global optimization of nonconvex GDP problems is presented
by Bergamini et al.65.

It is important to note that all of the global methods discussed so far require a convex
MINLP/MILP relaxation of the original problem. This relaxation is obtained by refor-
mulating the problem in univariate and some specific multivariate functions66 and then
overestimating the feasible region of each constraint with convex inequalities67,68,69.

In this chapter, we improve the global logic-based outer-approximation with two enhance-
ments: one for finding feasible solutions faster, and a new strategy for improving the
linear GDP approximation using cutting planes. The first enhancement is the partition of
the algorithm into two phases. The first phase allows the evaluation of many discrete al-
ternatives for a short period of time, but does not guarantee termination in a finite number
of iterations. The second phase is the rigorous global logic-based outer-approximation
that terminates in a finite number of iterations. In order to diversify the search in the first
phase, a penalty term in the objective function is also included. The second enhancement,
and main contribution of this chapter, is a cutting plane method for improving the linear
approximation of the nonconvex GDP. This method derives cuts based on the complete
feasible region of the processing units, not based on individual constraints.

This chapter is organized as follows. Section 6.2 provides an overview of the basic form of
the global logic-based outer-approximation. Section 6.3 presents the two enhancements to
the global logic-based outer-approximation. First, the partition of the algorithm into two
phases. Second, the new method for deriving cutting planes that improve the lower bound
of the master problem. A simple illustrative example is also presented in this section. The
algorithm is tested with several instances of the layout-optimization of screening systems
in recovered paper production, several instances of a simplified generic superstructure that
involves reactors and separation units, and a more realistic test case for the design of a
distillation column for the separation of benzene and toluene with ideal equilibrium. The
examples and results are presented in Section 6.4.
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6.2 Global logic-based outer-approximation

In this chapter, we represent the general GDP formulation as follows:

min cTx

s.t. g(x) ≤ 0

∨
i∈Dk

[
Yki

rki(x) ≤ 0

]
k ∈ K

Y
i∈Dk

Yki k ∈ K

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(GDP2)

In (GDP2), the objective function is linear in the continuous variables x ∈ Rn. Note that
this is a general representation of any GDP. If the objective function is nonlinear f(x), a
new variable xn+1 is introduced and the objective function is min xn+1 with xn+1 ≥ f(x)

as a constraint.

The idea behind the basic global logic-based outer-approximation (GLBOA) is similar to
the convex logic-based outer-approximation. GLBOA iteratively solves a master problem
and a subproblem. The master problem is a linear GDP relaxation of the nonconvex GDP,
and the subproblem is an NLP in which the discrete decisions are fixed. The main differ-
ence in the algorithms is the method for obtaining the master problem and the method for
solving the NLP subproblem (which needs to be solved to ε-global optimality).
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The NLP subproblem of GLBOA, for a given alternative Y P in (GDP2) is as follows:

min cTx

s.t. g(x) ≤ 0

rki(x) ≤ 0 ∀Y P
ki = True

xlo ≤ x ≤ xup

x ∈ Rn

(SP)

(SP) is an NLP in which the constraints rki(x) ≤ 0 that correspond to Y P
ki = True are

enforced, while the constraints that correspond to Y P
ki = False are ignored. Note that (SP)

can be nonconvex and it needs to be solved to global ε-global optimality for the GLBOA
method to be valid. If (SP) is solved with a global optimization method, the method will
provide and upper bound (Z∗) and lower bound (ZP ) for the objective function (i.e. Z∗

corresponds to the feasible solution; hence, if (SP) is solved to ε-global optimality, then
(Z∗ − ZP )/Z∗ ≤ ε).

For a given Y P , let P ∈ FS if (SP) is feasible and let ZP be a lower bound for the
objective function in (SP). Let P ∈ IS if (SP) is infeasible. Let yP be the corresponding
binary representation of fixed alternative Y P . Consider the following integer “no-good-
cuts”70,71 for a set of alternatives Y p; p = 1, ..., P in which the subproblem was evaluated:

Z ≥ (Zp − LB)

1−
∑
ypki=0

(yki)−
∑
ypki=1

(1− yki)

+ LB p ∈ FS (6.1a)

∑
ypki=0

(yki) +
∑
ypki=1

(1− yki) ≥ 0 p ∈ IS (6.1b)

where Z is the objective function and LB is a global lower bound of the objective function.
(6.1a) indicates that Z ≥ Zp if y = yp and p ∈ FS. It indicates Z ≥ LB for any other
alternative. (6.1b) indicates that alternative y is infeasible for y = yp and p ∈ IS.
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The master problem (linear GDP) can be formulated using (6.1):

min Z

s.t. Z ≥ cTx

Ax̂ ≤ a

∨
i∈Dk

 Yki

yki = 1

Bkix̂ ≤ bki

 k ∈ K

Y
i∈Dk

Yki k ∈ K∑
i∈Dk

yki = 1 k ∈ K

Ω(Y ) = True

Z ≥ (Zp − LB)

1−
∑
ypki=0

(yki)−
∑
ypki=1

(1− yki)

+ LB p ∈ FS

∑
ypki=0

(yki) +
∑
ypki=1

(1− yki) ≥ 0 p ∈ IS

x̂lo ≤ x̂ ≤ x̂up

x̂ ∈ Rn+s

0 ≤ yki ≤ 1 k ∈ K, i ∈ Dk

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(MP)

The master problem (MP) is a linear GDP relaxation of the original GDP. The variables
y are included inside the disjunctive terms of (MP) only to simplify the representation of
the no-good-cuts and the description of the algorithm. These variables are not required
in the GDP representation, and in the MILP reformulation of the GDP this variables are
the same as y presented in (HR) and (BM). Some linear relaxations require the use of
additional variables (e.g. when separating large constraints into univariate terms). For
this reason, (MP) optimizes x̂ = (x, xaux), which involves the original variables x ∈ Rn
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Figure 6.1: Illustration of the feasible region of a) the original (GDP), b) the linear GDP
relaxation (MP) and c) the subproblem (SP).

and possibly auxiliary variables xaux ∈ Rs. Ax̂ ≤ a is a linear relaxation of g(x) ≤ 0,
and Bki(x̂) ≤ bki is a linear relaxation of rki(x) ≤ 0. There are different methods for
obtaining the linear relaxations of the nonlinear constraints. Two of these methods include
dropping the constraints that include nonlinear terms and using polyhedral envelopes for
the nonlinear constraints67,68. The former yields a weaker master problem than the latter
(i.e. it provides a worse lower bound). Stronger approximations can be achieved by using
piecewise linear relaxations6 and nonlinear convex approximations68. These two types of
relaxations will not be addressed in this thesis.

Figure 6.1 illustrates the feasible region of the original of (GDP), the master problem (MP)
and the subproblem (SP). Figure 6.1.a) illustrates the feasible region of a GDP. Note that
the disjunctive terms involve linear, convex and nonconvex feasible regions. Figure 6.1.b)
illustrates a linear GDP relaxation of the original GDP. Finally, the intersection of the
feasible regions presented in Figure 6.1.c) represents the resulting NLP subproblem for
Y12 = Y21 = Y33 = True.
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The basic global logic-based outer-approximation is as follows:

0. Initialize. Let LS = IS = ∅. Set ε1 ≥ ε2 > 0. Set P = 1 and UB =∞.

1. Solve master problem. Solve (MP). Let (Z∗, x̂∗, Y ∗, y∗) be the optimal solution of (MP).
Set yP = y∗, Y P = Y ∗ and LB = Z∗.

2. Solve subproblem. Solve (SP), with fixed Y P , to ε2-global optimality.

If (SP) is feasible, let (Z∗, x∗) be the optimal solution of (SP). Let ZP be a lower bound
for the objective function, provided by the NLP global solution method, and set P ∈ FS.
If Z∗ < UB, let UB = Z∗ and (Z̄, x̄, Ȳ ) = (Z∗, x∗, Y P ).

If (SP) is infeasible, set P ∈ IS.

3. Terminate. If (UB − LB)/UB ≤ ε1, terminate with optimal solution (Z̄, x̄, Ȳ ). Else,
set P = P + 1 and go to step 1.

Theorem 6.2.1 The basic global logic-based outer-approximation terminates in a finite

number of iterations.

Proof. The cuts (6.1) are included in the master problem. This cuts enforce that: a) for
Y p, p ∈ IS the master problem will be infeasible; b) for Y p, p ∈ FS the optimal solution
of the master problem will be Z∗ ≥ Zp. This means that if all the Y p solutions that are
feasible for (MP) are evaluated, then LB ≥ min

p∈FS
Zp. (SP) is solved to ε2-global optimality,

so (UB −min
p∈FS

Zp)/UB ≤ ε2. Since ε1 ≥ ε2, then (UB − LB)/UB ≤ ε1 �.

6.3 Improved global logic-based outer-approximation

The basic global logic-based outer-approximation terminates in a finite number of itera-
tions, but the convergence can be slow. In this section we present two enhancements: one
is to find feasible solutions faster, and another one is to improve the lower bound provided
by the master problem.
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6.3.1 Two-phase algorithm to improve Upper Bound

The basic global logic-based outer-approximation requires the solution of the NLP sub-
problem to global optimality. Therefore, it is possible that the algorithm takes a very long
time even in the first iteration. In order to evaluate many iterations, it is possible to modify
the algorithm and consider a relatively short time limit for the solution of the subproblem
(τsub−limit). The step 2 of the algorithm can be modified as follows:

2. Solve subproblem. Solve (SP), with fixed Y P and time limit τsub−limit, using a global
optimization method.

If (SP) is proven infeasible, set P ∈ IS.

If at least one feasible solution for (SP) is found, let (Z∗, x∗) be the best feasible solution
found for (MP). Let ZP be a lower bound for the objective function, provided by the NLP
global solution method, and set P ∈ FS. If Z∗ < UB, let UB = Z∗ and (Z̄, x̄, Ȳ ) =

(Z∗, x∗, Y P ).

If no feasible solution is found, but (SP) is not proven infeasible, let ZP be a lower bound
for the objective function provided by the NLP global solution method. Set P ∈ FS.

This modification of the algorithm allows to evaluate several different alternatives in a
short period of time, assuming that the lower bound of the subproblems is still higher
than the lower bound of the master problem. The downside of this modified algorithm as
that it does not necessarily terminate in a finite number of iterations. In order to ensure
that the algorithm terminates, the global logic-based outer-approximation can be divided
into two phases. The first phase is the modified version with a time limit for solving
the subproblem. The second phase is the basic global logic-based outer-approximation
described in the previous section.

Note that this enhancement is useful when the solution to global optimality of the subprob-
lem is the most time consuming step. It considers that the solution of the master problem
(linear GDP) is “easy” in comparison. Considering that the master problem can be solved
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as an MILP, and that MILP solvers have become considerably efficient, this is usually
true. Furthermore, in the synthesis of process networks the nonlinear terms associated to
the operation can be highly nonconvex. Therefore, solving an NLP with few units can be
difficult to be handled by NLP global solvers. On the other hand, a linear GDP with a few
hundred alternative units (e.g. a few hundred binary variables in the MILP reformulation)
can typically be easily handled by MILP solvers.

An additional enhancement to the two-phase algorithm is to diversify the search of feasible
solutions in the first phase. The reason for this is that the no-good-cuts (6.1) avoid the
evaluation of the exact same alternative, but the cuts have no effect if there is just one
difference in an alternative (vs. the alternatives previously evaluated). In order to search
for more diverse solutions, the objective function in the first phase can be modified as
follows:

min Z −W
∑

p=1,...,P−1

∑
ypki=0

(yki) +
∑
ypki=1

(1− yki)

 (6.2)

where W is a positive weighting parameter.

The modification of the objective function in (6.2) promotes the search for solutions
that are “very different” from previously evaluated alternatives. This penalty term is
only included in the first phase. Note that the algorithm has to be slightly modified
in step 1 to ensure a valid lower bound, so the lower bound becomes LB = Z∗ −
W
∑

p=1,...,P

(∑
ypki=0(y∗ki) +

∑
ypki=1(1− y∗ki)

)
instead of LB = Z∗.

6.3.2 Cutting planes to improve Lower Bound

The no-good-cuts (6.1) ensure the termination of the algorithm in a finite number of itera-
tions. However, these cuts are useful only in avoiding the evaluation of previous solutions,
and they normally do not have much impact in improving the lower bound. For this reason,
we propose a new method to derive valid cuts that help to improve the lower bound.

The main objective of the proposed method is to derive linear inequalities that help to
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represent better the individual feasible region of the selected disjunctive terms. In the
synthesis of process networks these linear inequalities will try to improve the linear repre-
sentation of the nonconvex operating region of each unit. These linear inequalities will be
obtained through a separation problem, extending the approach of Stubbs and Mehrotra14

to nonconvex feasible regions. The cuts will be based on the strongest possible convex
envelope (i.e. the convex hull) of the complete feasible region of the disjunctive term.

For clarity purposes, we first present the case in which the cut by Stubbs and Mehrotra14

can be directly applied. Consider that, for a disjunctive term that was selected by the
master problem (Y P ), a nonlinear convex relaxation is available (r̂ki(x̂) ≤ 0). Consider
that this convex relaxation is stronger than the linear relaxation, so it is possible to establish
the following relations on the feasible region of the selected term:

(rki(x) ≤ 0) ⊆ (r̂ki(x̂) ≤ 0) ⊆ (Bkix̂ ≤ bki), where x̂lo ≤ x̂ ≤ x̂up, x̂ = (x, xaux),
x̂lo = (xlo, xloaux), and x̂up = (xup, xupaux). Figure 6.2.a) illustrates these three feasible
regions, projected into the original space x.

Let x∗ be the solution of the master problem at iteration P . Let Y P
ki = True be a selected

disjunctive term at iteration P , and assume that a nonlinear convex relaxation, that is
stronger than the linear relaxation, is available for that term (r̂ki(x̂) ≤ 0). It is then possible
to obtain cuts in the original space x, that separate a point in x∗ from the feasible region
r̂ki(x̂) ≤ 0, using the following separation problem14:

min ||x− x∗||22
s.t. r̂ki(x̂) ≤ 0

x̂lo ≤ x̂ ≤ x̂up

x̂ ∈ Rn+s

(6.3)

where x̂ = (x, xaux).

Note that (6.3) is a convex NLP. Let x̃Pki be the value of x at the optimal solution of (6.3).
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Figure 6.2: Illustration of the feasible region and cuts generated for rki(x) ≤ 0, r̂ki(x̂) ≤ 0,
and Bkix̂ ≤ bki; projected into the original space.

Then the following inequality is a valid cut for r̂ki(x̂) ≤ 0.

(
ξPki
)T

(x− x̃Pki) ≥ 0 (6.4)

where ξPki = 2(x̃Pki − x∗).

Inequality (6.4) lies in the original space of the variables x, and it is valid for any convex
region r̂ki(x̂) ≤ 014. Because (rki(x) ≤ 0) ⊆ (r̂ki(x̂) ≤ 0), it is also valid for rki(x) ≤ 0.
Note that the objective function in (6.3) evaluates the distance using the square of the Eu-
clidean norm, which provides a good cut and an analytical expression for the subgradient
ξPki. Any other norm also provides a valid cut, but the subgradient ξPki has to be adjusted ac-
cordingly. The separation problem (6.3), and the cut generated from it (6.4) are illustrated
in Figure 6.2.b) (projected into the original space x).

In order to obtain the cut, it is necessary to solve (6.3), which requires the knowledge of a
convex relaxation of the problem. However, we present an alternative separation problem
that not only allows to obtain a cut without r̂ki(x̂) ≤ 0, but it also derives the cut using the
strongest possible convex envelope of rki(x) ≤ 0 (i.e. its convex hull). The new separation
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problem is as follows:

min ||x− x∗||22
s.t. x =

∑
j=1,...,n̂

λjx̂j

rki(x̂j) ≤ 0 j = 1, ..., n̂

xlo ≤ x̂j ≤ xup j = 1, ..., n̂∑
j=1,...,n̂

λj = 1

0 ≤ λj ≤ 1/n̂ j = 1, ..., n̂

(6.5)

In (6.5), n̂ is the number of variables present in the disjunctive term. It is easy to see that
x is the convex combination of n̂ points that satisfy the constraints rki(x̂j) ≤ 0.

Theorem 6.3.1 The projection of the feasible region of (6.5) into the original space of x

is the convex hull of the feasible region described by rki(x) ≤ 0 and xlo ≤ x ≤ xup.

The proof of Theorem 6.3.1 is trivial. The feasible region of (6.5) describes x as a convex
combination of n̂ points, each of which satisfy rki(x) ≤ 0 and xlo ≤ x ≤ xup. The feasible
region of (6.5), projected into the original space, is illustrated in Figure 6.3.a).

Note that in general, (6.5) requires n̂ copies of the nonconvex constraints, as well as n̂
additional bilinear terms. However, it is possible to use only a subset of the variables in
some cases. Furthermore, in some cases it is possible to use an explicit description of the
convex hull through generating sets. For such cases, (6.5) can be reformulated as a convex
NLP. The theory behind such descriptions is out of the scope of this thesis. We refer the
reader to the work by Khajavirad and Sahinidis72 for details. Also note that the constraint
λ1 ≥ λ2 ≥ ... can be included in (6.5) to eliminate symmetric solutions.

Since the projection of the feasible region of (6.5) into the original space is convex, the
inequality (6.4) is also a valid cut if x̃Pki is set as the value of x at the optimal solution of
(6.5). The cut generated using separation problem (6.5) is illustrated in Figure 6.3.b).

Separation problem (6.5) provides a tool for generating linear cuts that separate a point x∗
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Figure 6.3: Illustration of the feasible region and cuts generated for rki(x) ≤ 0, Bkix̂ ≤
bki, and the feasible region of (6.5); projected into the original space.

from the convex hull of the feasible region of a selected disjunctive term (Yki = True).
The main downside of (6.5) is that it is nonconvex since it involves rki(x̂j) that can be
nonconvex, and the bilinear terms in x =

∑
j=1,...,n̂ λjx̂j . Furthermore, in order to obtain

a valid cut it is necessary to solve (6.5) to global optimality. Even though (6.5) can be
difficult to solve, it is important to consider that: a) (6.5) is solved for an individual dis-
junctive term, which normally involves a small fraction of the total number of constraints
and variables of the original problem; and b) the cut is not necessary for the convergence
algorithm, it only helps to provide better lower bounds (so it is possible to try to obtain the
cuts only for a short period of time).

In order to improve the global logic-based outer-approximation using (6.5), the master
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problem of the basic global logic-based outer-approximation is modified as follows:

min Z

s.t. Z ≥ cTx

Ax̂ ≤ a

∨
i∈Dk


Yki

yki = 1

Bkix̂ ≤ bki(
ξPki
)T

(x− x̃Pki) ≥ 0 ∀p ∈ CCki

 k ∈ K

Y
i∈Dk

Yki k ∈ K∑
i∈Dk

yki = 1 k ∈ K

Ω(Y ) = True

Z ≥ (Zp − LB)

1−
∑
ypki=1

(yki)−
∑
ypki=0

(1− yki)

+ LB p ∈ FS

∑
ypki=0

(yki) +
∑
ypki=1

(1− yki) ≥ 0 p ∈ IS

x̂lo ≤ x̂ ≤ x̂up

x̂ ∈ Rn+s

0 ≤ yki ≤ 1 k ∈ K, i ∈ Dk

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(MP2)

where
(
ξPki
)T

(x− x̃Pki) ≥ 0 are the cuts that were generated for that disjunctive term using
(6.5). The feasible region of (MP2) is illustrated in Figure 6.4.

Considering that (6.5) may be difficult to solve but that the cuts are not necessary for the
convergence of the algorithm, the basic global logic-based outer-approximation can be
modified as follows:
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Figure 6.4: Illustration of the feasible region of (MP2).

0. Initialize. Let LS = IS = CCki = ∅. Set ε1 ≥ ε2 > 0. Set P = 1 and UB = ∞. Set
τsep−limit.

1. Solve master problem. Solve (MP2). Let (Z∗, x̂∗, Y ∗, y∗) be the optimal solution of
(MP) where x̂∗ = (x∗, x∗aux). Set yP = y∗, Y P = Y ∗ and LB = Z∗.

2. Find cuts. For every Y P
ki = True that involves nonconvex terms, solve (6.5) with time

limit τsep−limit.

If (6.5) solves to proven global optimality and |x − x∗|2 > 0, let x̃Pki be the value of x at
the optimal solution of (6.3), and ξPki = 2(x̃Pki − x∗). Set P ∈ CCki.

3. Solve subproblem. Solve (SP), with fixed Y P , to ε2-global optimality.

If (SP) is feasible, let (Z∗, x∗) be the optimal solution of (SP). Let ZP be a lower bound
for the objective function, provided by the NLP global solution method, and set P ∈ FS.
If Z∗ < UB, let UB = Z∗ and (Z̄, x̄, Ȳ ) = (Z∗, x∗, Y P ).

If (SP) is infeasible, set P ∈ IS.

4. Terminate. If (UB − LB)/UB ≤ ε1, terminate with optimal solution (Z̄, x̄, Ȳ ). Else,
set P = P + 1 and go to step 1.

Note that both phases in the two-phase algorithm can include the cuts in the same manner.
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Also note that the cuts could be included in the NLP subproblem to help the global solvers
find the optimal solutions faster. From computational experiments we observed that the
cuts do not help in reducing the solution time of the subproblem. Finally, note that no cut-
ting planes are included in the global constraints in the described algorithm. If needed, the
global constraints (or a subset of the global constraints) can be considered as disjunction
with a single term, and the described algorithm would generate the corresponding valid
cutting planes.

6.3.3 Illustrative example

We illustrate the algorithm with the following simple analytical example:

min 5 + 0.2x1 − x2

s.t.
Y11

x2 ≤ 0.4exp(x1/2)

x2 ≤ 0.5(x1 − 2.5)2 + 0.3

x2 ≤ 6.5/(x1/0.3 + 2) + 1

∨


Y12

x2 ≤ 0.3exp(x1/1.8)

x2 ≤ 0.7(x1/1.2− 2.1)2 + 0.3

x2 ≤ 6.5/(x1/0.8 + 1.1)




Y21

x2 ≤ 0.9exp(x1/2.1)

x2 ≤ 1.3(x1/1.5− 1.8)2 + 0.3

x2 ≤ 6.5/(x1/0.8 + 1.1)

∨


Y22

x2 ≤ 0.4exp(x1/1.5)

x2 ≤ 1.2(x1/− 2.5)2 + 0.3

x2 ≤ 6/(x1/0.6 + 1) + 0.5


Y11YY12

Y21YY22

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

Y11, Y12, Y21, Y22 ∈ {True, False}

(6.6)

The feasible region of the example is presented in Figure 6.5. The figure shows: (a) the
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Figure 6.5: Illustration of the feasible region of example (6.6): (a) original GDP; (b) linear
relaxation using polyhedral envelopes; (c) linear relaxation dropping nonlinear constraints.

feasible region of the original GDP; (b) the feasible region of the linear relaxation using
polyhedral envelopes; and (c) the feasible region of the linear relaxation if the nonlinear
constraints are dropped (i.e. only the variable bounds are considered).

The optimal objective value is 4.46 with Y11 = Y22 = True and (x1, x2) = (1.47, 0.83).

The two-phase algorithm is a basic modification of the algorithm. Furthermore, for a very
small problem such as (6.6), limiting the solution time of the NLP subproblem makes no
difference. For this reason, we illustrate the algorithm and derivation of cutting planes
with a one-phase algorithm.

0. Initialize. Let LS = IS = CCki = ∅. ε1 = 0.1; ε2 = 0.005. Set P = 1 and UB = ∞.
Set τsep−limit.

1. Solve master problem. For the master problem, we consider the most basic type of
linear relaxation (i.e. dropping all the constraints that involve nonlinear terms). Since the
bound of the variables are still part of the problem, consider the following master problem:
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min Z

s.t. Z ≥ 5 + 0.2x1 − x2 Y11

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

∨
 Y12

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3


 Y21

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

∨
 Y22

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3


Y11YY12

Y21YY22

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

Y11, Y12, Y21, Y22 ∈ {True, False}

(6.7)

The optimal solution of (6.7) is (Z∗, x∗1, x
∗
2) = (2, 0, 3) with y1

11 = y1
22 = 1; y1

12 = y1
21 = 0.

Y 1
11 = Y 1

22 = True and LB = 2.
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2. Find cuts. For Y P
11 = True the following separation problem is obtained:

min (x1 − 0)2 + (x2 − 3)2

s.t.

x1 = λx11 + (1− λ)x12

x2 = λx21 + (1− λ)x22

x21 ≤ 0.4exp(x11/2)

x21 ≤ 0.5(x11 − 2.5)2 + 0.3

x21 ≤ 6.5/(x11/0.3 + 2) + 1

x22 ≤ 0.4exp(x12/2)

x22 ≤ 0.5(x12 − 2.5)2 + 0.3

x22 ≤ 6.5/(x12/0.3 + 2) + 1

0 ≤ x11, x12 ≤ 5; 0 ≤ x21, x22 ≤ 3; 0 ≤ λ ≤ 1

(6.8)

The global optimal solution of (6.8) is (x̃1
1
11, x̃2

1
11) = (0.670, 0.587) with value of objective

function 6.27. With these values: ξ1
11 = [1.34,−4.825]T . Set CC11 = {1}.

The following valid cut for the term corresponding to Y11 is obtained: 1.34(x1 − 0.670)−
4.83(x2 − 0.587) ≥ 0. Figure 6.6 shows the cut obtained by solving 6.8. Figure 6.6.a)
shows the cut and the nonconvex region of the disjunctive term. Note that the cut is
generated based on the feasible region of the disjunctive term, and not based on individual
constraints. Figure 6.6.b) shows the linear relaxation before the cutting plane (only the
variable bounds). Figure 6.6.c) shows the relaxation after applying the cutting plane. Note
that the feasible region after including this cut is different from the feasible region of the
linear relaxation using polyhedral envelopes, presented in Figure 6.5.

For Y P
22 = True the separation problem is also solved and the following cut is obtained:

1.99(x1 − 0.994)− 4.28(x2 − 0.862) ≥ 0.
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Figure 6.6: Illustration of the feasible region of the term corresponding to Y11, before and
after the cut obtained by solving (6.8).

3. Solve subproblem. The following NLP is solved to global optimality:

min 5 + 0.2x1 − x2

s.t.

x2 ≤ 0.4exp(x1/2)

x2 ≤ 0.5(x1 − 2.5)2 + 0.3

x2 ≤ 6.5/(x1/0.3 + 2) + 1

x2 ≤ 0.4exp(x1/1.5)

x2 ≤ 1.2(x1/− 2.5)2 + 0.3

x2 ≤ 6/(x1/0.6 + 1) + 0.5 0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

(6.9)

(6.9) is feasible with (Z∗, x∗1, x
∗
2) = (4.46, 1.467, 0.833). The lower bound provided

by the global solver is ZP = 4.44. Set 1 ∈ FS, UB = 4.46 and (Z̄, x̄1, x̄2) =

(4.46, 1.467, 0.833), with Ȳ11 = Ȳ22 = True.
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4. Terminate?. (UB − LB)/UB = (4.46 − 2)/4.46 = 0.55 ≥ ε1. Set P = 2 and go to
step 1.

1. Solve master problem. The new master problem (including the variables y to simplify
the presentation of the no-good-cut) is as follows:

min Z

s.t. Z ≥ 5 + 0.2x1 − x2
Y11

y11 = 1

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

1.34(x1 − 0.670)− 4.83(x2 − 0.587) ≥ 0

∨


Y12

y12 = 1

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3




Y21

y21 = 1

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

∨


Y22

y22 = 1

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

1.99(x1 − 0.994)− 4.28(x2 − 0.862) ≥ 0


Z ≥ (4.44− 2)(1− y12 − y21 − (1− y11)− (1− y22)) + 2

Y11YY12

Y21YY22

y11 + y12 = 1

y21 + y22 = 1

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

Y11, Y12, Y21, Y22 ∈ {True, False}

0 ≤ y11, y12, y21, y22 ≤ 1

(6.10)
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Table 6.1: Performance of the algorithm with and without cutting planes for the illustrative
example.

Algorithm with cutting planes Algorithm without cutting planes
Iteration LB UB LB UB

1 2 4.46 2 4.46
2 2 4.46 2 4.46
3 4.21 4.46 2 4.46
4 - - 2 4.46
5 - - 4.44 4.46

The optimal solution is (Z∗, x∗1, x
∗
2) = (2, 0, 3) with y2

12 = y2
21 = 1; y2

11 = y2
22 = 0.

Y 2
12 = Y 2

21 = True and LB = 2.

2. Find cuts.

For Y P
12 = True (6.5) is solved and the following cut is obtained: 1.27(x1 − 0.635) −

5.08(x2 − 0.459) ≥ 0.

For Y P
21 = True (6.5) is solved and the following cut is obtained: 1.79(x1 − 0.896) −

5.19(x2 − 1.402) ≥ 0.

3. Solve subproblem. The subproblem is fixed for Y 2
12 = Y 2

21 = True. The problem is
feasible with (Z∗, x∗1, x

∗
2) = (4.59, 1.586, 0.724). The lower bound provided by the global

solver is ZP = 4.57. Set 2 ∈ FS.

4. Terminate? (UB − LB)/UB = (4.46 − 2)/4.46 = 0.55 ≥ ε1. Set P = 3 and go to
step 1.

In the next iteration the master problem yields a lower bound of 4.21 and Y 2
12 = Y 2

21 =

True. Since (UB−LB)/UB = (4.46−4.21)/4.46 = 0.06 ≤ ε1 the algorithm terminates
in the third iteration. Note that the algorithm, without the cutting planes, would require two
more iterations to finish (i.e. it requires to evaluate all of the alternatives of the problem).
Table 6.1 summarizes the performance of the algorithm, with and without cutting planes,
for the illustrative example.
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6.4 Numerical examples and results

In this section we present three examples: layout-optimization of screening systems, su-
perstructures involving reactors and separation units, and design of a distillation column
for the separation of benzene and toluene with ideal equilibrium. The first two exam-
ples are tested with 20 instances each. The parameters in these instances were created
randomly. However, the structure of the problem and constraints represent the actual op-
eration of ideal units. The last example uses thermodynamic data, equilibrium relations,
etc. All of the instances were solved using GAMS 24.3.321, using an Intel(R) Core(TM)
i7 CPU 2.93 GHz and 4 GB of RAM. For comparison, all instances were formulated as
MINLP using the BM reformulation and solved with BARON 14.0.353. It was not possible
to accurately compare with ANTIGONE 1.151 and SCIP 3.124. The former returned “in-
feasible” in instances to which known solutions existed, and with the latter the computer
ran out of memory in several instances. All of the variable bounds in these problems are
defined.

The algorithm stays in the first phase for 20% of the time limit (which is 7,200 seconds in
all instances or if there is no improvement in the best known solution after 50 iterations.
The weight parameter (W ) in the first phase is calculated as follows: W = LB/((P −
1)(
∑

k∈K Dk)). The idea behind this weight value is that the penalty for diversifying
solutions will never be greater than the value of the lower bound. In the extreme in which
every single binary variable is different from all previously evaluated solutions (which can
only happen in a very specific situation), then the penalty function has exactly the same
value as LB. The time limit for generating cuts in each selected term is 10 seconds in
the first phase and 120 seconds in the second phase. The time limit for the subproblem in
the second phase is 10 seconds for the first two examples and 60 seconds for the design
of the distillation column. All of the master problems were solved by reformulating the
linear GDP as MILP using the BM reformulation and using CPLEX 12.6.0.140. Note that,
because in these instances the master problem is much simpler than the subproblems, using
BM or HR reformulation in the master problem has little impact on the performance of the
algorithm. The subproblem and separation problem were solved with BARON 14.0.3.
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Figure 6.7: Two alternative configurations for a three stage screening system.

6.4.1 Layout-optimization of screening systems in recovered paper
production

This problem is a GDP representation of the MINLP presented by Fügenschuh et al.73. The
problem seeks to optimize the layout of multi-stage-screening systems, in order to separate
the impurities (stickies) from the paper pulp. In addition to optimizing the configuration,
the problem presented in this section also among alternative units with different rejection
and cost coefficients. Figure 6.7 illustrate two alternative configurations for a screening
system with three units. The GDP formulation of this problem is presented in C. The non-
convexities arise in the cost constraints and in the relationship of the separation efficiency
and the rejection rate.

Figure 6.8 presents the performance of BARON and the algorithm. The plot shows the
average relative bound (upper and lower) for 20 instances vs. time. The relative upper
(lower) bound is obtained by dividing the upper (lower) bound by the best known solution
to that instance. If there is no solution found for an instance, the relative upper bound was
set to 5. In this figure, the linearization in master problem of the algorithm is performed by
using polyhedral envelopes of the nonconvex functions. Figure 6.8 shows that, on average,
the algorithm finds slightly better solutions. However, BARON is better at finding good
solutions faster and provides a slightly better lower bound in average for this problem.

Figure 6.9 presents the performance of the basic logic-based outer-approximation, and
how it improves with the different enhancements. In this analysis, the linear GDP in the
master problem is obtained through polyhedral envelopes. Similar to Figure 6.8, the plot
shows the average relative bound (upper and lower) for 20 instances vs. time. Figure
6.9.a) shows the improvements when the algorithm is divided into two phases, and it does

6.4. NUMERICAL EXAMPLES AND RESULTS 133



CHAPTER 6. CUTTING PLANES FOR IMPROVED GLOBAL LOGIC-BASED
OUTER-APPROXIMATION OF NONCONVEX GDP PROBLEMS

Figure 6.8: Performance of BARON and the complete algorithm, for layout-optimization
of screening systems, using polyhedral envelopes for the linear relaxation in the master
problem.

not include the cuts. The plot shows that dividing the algorithm into two phases helps to
find feasible solutions faster. Furthermore, by including the penalty term in the objective
function the algorithm finds good solutions slightly faster than without it. As expected,
the two-phase algorithm and penalty function (6.2) have no significant impact in the lower
bound. Figure 6.9.b) presents the performance of the algorithm with and without the cuts.
The plot shows that the cuts slightly improve the lower bound. It also shows a very small
improvement in the upper bound. Although the cuts are not intended to improve the upper
bound, by having a better linear GDP representation in the master problem the algorithm
selects better alternatives to evaluate in the subproblem.

Figure 6.10 also presents the performance of the algorithm with and without cuts. How-
ever, in this case the linear GDP in the master problem was obtained by dropping the
nonlinear constraints (instead of using polyhedral envelopes). The lower bound of the
problem is zero and does not change when using the algorithm without cutting planes.
If the cutting planes are used in the algorithm, then the average lower bound increases
considerably, up to 0.6 relative to the best known solution. It can also be observed from
the figure that the upper bound improves as well. The reason for this is that by having a
more accurate linear representation, the master problem selects better alternatives to eval-
uate in the subproblem. Note that the lower bound improves considerably at around 1,400
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Figure 6.9: Performance of the algorithm, for layout-optimization of screening systems
with, a) two-phase enhancement, and b) cutting planes.

seconds. The main reason is that at around this time the algorithm moves from the first
phase to the second phase. This means that: a) the penalty function for diversification in
the first phase does not allow much improvement in the lower bound; and b) the time limit
for generating cuts is 10 seconds in the first phase (vs. 120 seconds in the second one) so
several additional cuts are generated in the second phase.

6.4.2 Reactor-separator process superstructure

In this problem a set of reactors and separation units are given, as well as different mate-
rial sources and product demands. The problem seeks to minimize the cost of satisfying
that demand. Any equipment can be selected, and any interconnections between potential
equipment is allowed. In this example, the product is component C and the raw materials
are component A and B. Each source has a different concentration of A and B. A is the
most volatile component, then B, and then C. The reactors follow second order kinetics
(A + B → C), and the kinetic and cost parameters are random variables. The separa-
tion is assumed to be sharp (e.g. it separates A from B and C). It is assumed that the
two outer streams of the separation units have the same total molar concentration as the
inlet stream. An illustration of a process superstructure with three potential sources, two
reactors and two separating units is presented in Figure 6.11.a). For illustration purposes,
the figure does not show the interconnection of units from and to the separation units.
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Figure 6.10: Performance of the algorithm,, for layout-optimization of screening systems,
with and without cutting planes when dropping the nonlinear constraints in the master
problem.

Figure 6.11: Illustration of process superstructure with two reactors and two separators.

The interconnections are in fact allowed in the general formulation. This simple example
contains several process networks embedded as presented in Figure 6.11.b). The problem
formulation is presented in Appendix C.

Figure 6.12 presents the performance of BARON and the algorithm for the process su-
perstructure. 20 instances of this problem were tested. If there is no solution found for
an instance it was averaged as a relative upper bound of 5. In this figure, the lineariza-
tion in master problem of the algorithm is performed by using polyhedral envelopes of
the nonconvex functions. Figure 6.12 shows that the proposed algorithm performs much
better than BARON. In particular, the average relative lower bound is very similar for both

6.4. NUMERICAL EXAMPLES AND RESULTS 136



CHAPTER 6. CUTTING PLANES FOR IMPROVED GLOBAL LOGIC-BASED
OUTER-APPROXIMATION OF NONCONVEX GDP PROBLEMS

Figure 6.12: Performance of BARON and the complete algorithm, for reactor-separator
process superstructure, using polyhedral envelopes for the linear relaxation in the master
problem.

methods, but the upper bound (i.e. the finding of feasible solutions) is much better for the
enhanced GLBOA. The reason for this is that BARON is able to find a feasible solution
in only 2 of the 20 instances; therefore the average relative upper bound is almost 5. The
algorithm finds feasible solutions in every problem, and very close to the lower bound in
most cases.

Figure 6.13 presents the performance of the different versions of the logic-based outer-
approximation for the 20 instances of this problem. In this analysis, the linear GDP in
the master problem is obtained through polyhedral envelopes. Figure 6.13.a) shows the
improvements when the algorithm is divided into two phases, and it does not include the
cuts. In this example, the two-phase algorithm does not show much improvement when
compared to the basic GLBOA. However, by including the penalty in the objective func-
tion the two-phase algorithms improves drastically. The main reason for this is that the
discrete solutions provided by the master problem are not good when the subproblem is
evaluated. By including the penalty function, the solutions are diversified and the algo-
rithm is able to find much better solutions. Figure 6.13.b) shows the impact of using the
cutting planes. In this example, the cutting planes do not help to improve the lower bound
since the polyhedral envelopes already provide a very good linear approximation (as can
be observed from the lower bounds in Figures 6.12 and 6.13).
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Figure 6.13: Performance of the algorithm, for reactor-separator process superstructure
with, a) two-phase enhancement, and b) cutting planes.

Figure 6.14 presents the performance of the algorithm with and without cuts, dropping
the nonlinear constraints to generate the master problem (instead of using polyhedral en-
velopes). It can be observed that the average relative lower bound improves considerably
by including the cutting planes. Without the cutting planes, the average relative lower
bound is about 0.6. With the cutting planes, the algorithm improves and provides a lower
bound of 0.9. It can be seen in this plot that the major improvement happens at around
1,400 seconds, which is about the time limit for the first phase.

6.4.3 Design of distillation column for the separation of benzene and
toluene with ideal equilibrium

This problem is presented by Yeomans and Grossmann74. The objective is to design a
distillation column for the separation of Benzene and Toluene, assuming ideal equilib-
rium. The feed to the column has a composition of 100 kmol/h of benzene and 50 kmol/h
of toluene. The required purity for the product is 99% benzene in the overhead and a
minimum recovery of 50%. The GDP model uses a tray by tray representation of the dis-
tillation column. The separation is carried out at 1.01 bar. Figure 6.15 illustrates the idea
of the GDP formulation. In the model, there are three trays that are fixed, so the MESH
(Mass-Equilibrium-Summation-Heat) constraints for this plates are enforced (i.e. they are
global constraints). The MESH constraints corresponding to the plates in the rectification
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Figure 6.14: Performance of the algorithm, for reactor-separator process superstructure,
with and without cutting planes when dropping the nonlinear constraints in the master
problem.

and stripping sections are conditional: if a tray is installed then MESH constraints are
enforced; if it is not selected then the trays are simply a bypass. For details on the MESH
equations, we refer the reader to the original model74. The MINLP reformulation of this
problem using the BM has 3,257 constraints, 1,758 variables and 64 discrete variables.

For this problem, BARON 14.0 is not able to find a feasible solution and provides a lower
bound of -119. For the algorithm, the master problem was obtained by using polyhedral
envelopes for the linearizations. Figure 6.16 shows the performance of the algorithm with
the different enhancements. This figure shows the progress of the upper and lower bounds
with time (not relative upper and lower bounds as presented in the previous figures). From
the figure, it can be observed that the lower bound is quite weak in all cases, and Figure
6.16.b) shows that the cutting planes do not help to obtain better bounds. The main reason
for this is that the separation problems in this example take a long time, so only 5 cuts
were generated by the algorithm. These cuts did not have any effect on improving the
relaxation. On the other hand, it is clear that the upper bound improves considerably with
the enhancements. In particular, neither BARON nor the basic LBOA can find a feasible
solution within two hours. In contrast, the two-stage algorithm finds a feasible solution of
268 after 244 seconds; a good solution (within 10% of the best known solution) of 80.6
after 2,200 seconds; and the best solution it finds is 73.9 after 5,640 seconds. The two-

6.4. NUMERICAL EXAMPLES AND RESULTS 139



CHAPTER 6. CUTTING PLANES FOR IMPROVED GLOBAL LOGIC-BASED
OUTER-APPROXIMATION OF NONCONVEX GDP PROBLEMS

Figure 6.15: Illustration of the GDP model representation for tray by tray design of distil-
lation columns.

stage algorithm with a penalty function for diversification finds a feasible solution of 85
after 122 seconds; a good solution of 77 after 980 seconds; and the best solution it finds is
74.3 after 5,815 seconds. With cutting planes, the algorithm finds a feasible solution of 85
after 130 seconds; a good solution of 77 after 830 seconds; and the best solution it finds is
74.0 after 5,680 seconds.

6.5 Conclusions

In this chapter, we have presented a basic global logic-based outer-approximation method
for nonconvex GDP problems and improved it with two enhancements. The algorithm was
tested with three examples, 20 random instances of each of the first two and one instance
of the last one. The first enhancement improves finding feasible solutions by partitioning
the algorithm into two phases and diversifying the search of feasible solutions in the first
phase. The partition of the algorithm considerably improves finding good solutions in the
layout-optimization of screening systems and in the design of a distillation column. In the
former, the basic algorithm finds an average relative upper bound of 1.3 and it improves to
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Figure 6.16: Performance of the algorithm, for reactor-separator process superstructure,
with a) Two-phase enhancement and b) cutting planes.

1.1 with the two phases. In the latter, the algorithm improves from not finding a feasible
solution to finding the best known solution. The search of feasible solutions is further
enhanced with the use of a penalty in the objective function that diversifies search. This
strategy is useful in the three problems, and the results show a speed up in the finding
of good feasible solutions. Furthermore, in the first example the best found solution also
improves from 1.1 average relative upper bound to 1.

The second enhancement is a cutting plane method to improve the lower bounding of the
algorithm. If polyhedral envelopes are used in the master problem, considering the tight
variable bounds used in the examples, this method is useful only slightly in the second
example. However, when the linear relaxation is obtained by dropping the nonlinear terms
the method is useful in all instances of the first two examples. This result indicates that
for problems in which the linear relaxation is poor the method can derive strong cutting
planes that considerably improve the linear approximation. Note that if the bounds of
the variables are poor, the polyhedral envelopes will tend to be poor as well. However, the
cutting planes obtained through the proposed method depend only on the feasible region of
the disjunctive term. This means that, as long as the feasible region is the same, the cutting
planes obtained through the method are the same regardless of the variable bounds.
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Chapter 7

GLBOA for the global optimization of a
source based model of the multiperiod
blending problem

7.1 Introduction

Many processes in the petrochemical industry involve the blending of intermediate and
final products. Large cost savings can be achieved by efficient blending schemes that
satisfy the technical and regulatory specifications of products. For example, the economic
and operability benefits from optimal crude-oil blend scheduling can reach multimillion
dollars per year75.

One of the first mathematical programming models to represent the scheduling of blending
operations is the pooling problem76. The pooling problem seeks to find the optimal blend
of materials available from a set of supply streams, while satisfying the demand of a set of
products. The model enforces that the end products satisfy a specified minimum and max-
imum level for each specification. The objective is to minimize the total cost (or maximize
the profit) of the operation. Several optimization models for the pooling problem have
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been reported in the literature. The p-formulation76, based on total flows and component
compositions, is commonly used in chemical process industries. The q-formulation77 uses
variables based on the fraction that each input stream contributes to the total input to each
pool, and does not explicitly use the pool specifications as variables. The pq-formulation68

is obtained by including valid redundant inequalities in the q-formulation. Tawarmalani
and Sahinidis68 prove that the redundant constraints help to obtain a stronger polyhedral
relaxation of the pooling problem. Lastly, Audet et al.78 propose a hybrid formulation by
combining the p and q models to avoid additional bilinear terms that arise when general-
ized pooling problems are modeled using the q-formulation.

The multiperiod blending problem can be regarded as an extension of the pooling prob-
lem. In addition to the pooling problem restrictions, it considers inventory and time vari-
ations of supply and demand. The multiperiod blending problem can be formulated as a
mixed-integer nonlinear programming (MINLP) problem79. Binary variables are required
to model the movements of materials in and out of the tanks and to account for fixed costs.
Even in the absence of binary variables, bilinear terms (which are necessary to model the
mixing of various streams) make the problem nonconvex. Due to this highly combinatorial
and nonconvex nature, the blend scheduling problem is very challenging. General purpose
global optimization solvers fail to solve even small instances.

Foulds et al.80 were the first to propose a global optimization algorithm to solve a single-
component pooling problem. They use McCormick envelopes67 to relax the bilinear terms.
Androulakis et al.81 propose a convex quadratic NLP relaxation, known as αBB underesti-
mator. However, due to its generality, the NLP relaxation is weaker than its LP counterpart.
Ben-Tal et al.77 and Adhya et al.82 present different Lagrangean relaxation approaches for
developing lower bounds for the pooling problem. These bounds are tighter than standard
LP relaxations used in global optimization algorithms.

In the context of processing network problems, Quesada and Grossmann83 apply the
reformulation-linearization technique (RLT)84, together with McCormick envelopes, to
improve the relaxation of a bilinear program by creating redundant constraints. These
authors combine concentration and flow based models in order to obtain a relaxed LP
formulation that provides a valid and strong lower bound to the global optimum. Simi-
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lar results are obtained by Tawarmalani and Sahinidis68 for the multicomponent pooling
problem. The idea of using redundant constraints to strengthen the relaxation of the orig-
inal problem is also used by Karuppiah et al.85 in the context of water networks. These
constraints correspond to total mass balance of contaminants and serve as deep cuts in the
McCormick relaxation.

Piecewise MILP relaxations are an alternative relaxation of MINLPs that provide stronger
bounds than traditional MILP relaxations. The first references to the use of piecewise
MILP relaxation are by Bergamini et al.65 and Karuppiah et al.85. Following this idea,
Wicaksono and Karimi86 propose several novel formulations for piecewise MILP under
and overestimators for bilinear programs. Gounaris et al.87 present a comprehensive com-
putational comparison study of a collection of fifteen piecewise linear relaxations over a
collection of benchmark pooling problems. Misener et al.88, building on the ideas from
Vielma and Nemhauser89, introduce a formulation for the piecewise linear relaxation of
bilinear functions with a logarithmic number of binary variables. Another alternative to
piecewise relaxations are discretization techniques, such as multiparametric disaggrega-
tion90,91. The number of additional binary variables increases linearly with each increment
in the precision of the discretization.

As an alternative to branch-and-bound solution procedures, Kolodziej et al.90 propose a
heuristic as well as a rigorous two-stage MILP-NLP and MILP-MILP global optimization
algorithms. Approximate and relaxed MILPs are obtained through the multiparametric
disaggregation technique. Kesavan et al.92 propose two approaches to generalize the outer
approximation algorithm to separable nonconvex MINLP. Similarly, Bergamini et al.65,
based on the work from Turkay and Grossmann18, present a deterministic algorithm based
on logic-based outer approximation that can guarantee global optimality in the solution
of an optimal the synthesis of process network problem. The global logic-based outer-
approximation is presented in chapter 6.

Although the multiperiod blending problem arises in several applications, crude-oil blend-
ing is of great importance due to the potential increase in profit derived from optimal
operation. In fact, crude-oil costs account for about 80% of the refinery turnover93. As a
scheduling extension of the blending problem, crude-oil scheduling involves the unloading
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of crude marine vessels into storage tanks, followed by the transfer of crude from storage
to charging tanks and finally, to the crude-oil distillation units (CDUs)94,95. Lately, crude-
oil scheduling models incorporate more quantity, quality, and logistics decisions related
to real-life refinery operations, such as minimum run-length requirements, one-flow out of
blender or sequence-dependent switchovers96.

Several authors have proposed different algorithms relying on mixed-integer linear for-
mulations to avoid solving the full nonconvex MINLP. These models can be seen as re-
laxations of the original MINLP. Mendez et al.97 present a novel MILP-based method
where a very complex MINLP formulation is replaced by a sequential MILP approxima-
tion that can deal with non-linear gasoline properties and variable recipes for different
product grades. Similarly, a two-stage MILP-NLP solution procedure is employed by Jia
et al.98 and Mouret et al.99, featuring in the first stage a relaxed MILP model without the
bilinear blending constraints followed by the solution of the original MINLP after fixing
all binary variables. The same two-stage algorithm is studied by Castro and Grossmann100

together with several global optimization methods. However, instead of dropping the bi-
linear constraints in the two-stage algorithm, they use multiparametric disaggregation to
relax the bilinear terms. Moro and Pinto101 and Karuppiah et al.85 tackle the problem
with the augmented penalty version and a specialized version of the outer-approximation
method, respectively. Reddy et al.102 propose an MILP relaxation combined with a rolling-
horizon algorithm to eliminate the composition discrepancy. Finally, Li et al.93 use a
spatial branch-and-bound global optimization algorithm, that at each node uses the MILP-
NLP two-stage strategy previously mentioned, to solve the MINLP problems.

Even though, continuous-time models seem to be preferred for crude-oil scheduling, the
demand-driven nature of the multiperiod blending problem makes a simple discrete-time
framework a better choice for our problem. Despite the latest modeling and algorithmic
advances for this class of problems, large instances are still intractable. Improvements or
even new problem formulations and solution approaches must be proposed.

In this chapter, we make two primary contributions for solving multiperiod blending prob-
lems. The first is an alternative formulation of the problem, in terms of GDP, that makes
use of redundant constraints. These constraints considerably improve the linear GDP re-
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laxation of the nonlinear GDP. Based on the observation that one can reduce the complex-
ity of a problem by fixing values of certain variables, a decomposition method is proposed
next. The algorithm decomposes the GDP model into two levels. The first level, or mas-
ter problem, is a linear GDP relaxation of the original GDP that provides rigorous upper
bounds. The second level, or subproblem, is a smaller GDP in which some of the Boolean
variables of the original problem are fixed. The subproblem, when a feasible solution
is found, provides a feasible solution to the original GDP and a rigorous lower bound.
These problems are solved successively until the gap between the upper and lower bound
is closed. We illustrate the new formulation and decomposition method with several test
problems. The results show that the new formulation can be solved faster than the alterna-
tives, and that the decomposition method can solve the problems faster than state-of-the-art
general purpose solvers.
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Table 7.1: Nomenclature of sets and variables.

Sets Symbols Element

Total number of tanks N n

Blending tanks B ⊂ N b

Supply tanks S ⊂ N s

Demand tanks D ⊂ N d

Specifications Q q

Sources R r

Time periods T t

Variables Symbols Sets

Continuous Variables
Flow between tanks n and n′ at time t Fnn′t (n, n′) ∈ A, t ∈ T
Demand flow from tanks d at time t FDdt d ∈ D, t ∈ T

Inventory in tank n at time t Int n ∈ N , t ∈ T
Specification q in tank b at time t Cqbt q ∈ Q, b ∈ B, t ∈ T

Flow of spec. q between tanks n and n′ at time t F̄qnn′t q ∈ Q, (n, n′) ∈ A, t ∈ T
Inventory of spec. q in blending tank b at time t Īqbt q ∈ Q, n ∈ N , t ∈ T

Flow of source r between tanks n and n′ at time t F̃rnn′t r ∈ R, (n, n′) ∈ A, t ∈ T
Inventory of source r in blending tank b at time t Ĩrbt r ∈ R, n ∈ N , t ∈ T
Fraction of inventory in blending tank b sent to

ξbnt (b, n) ∈ A, t ∈ T
tank n at the end of time t

Boolean Variables
Variable that indicates the existence of flow

Xnn′t (n, n′) ∈ A, t ∈ T
between tanks n and n′ at the end of time t

For blending tank b at time t:
Y Bbt b ∈ B, t ∈ TY Bbt = True if tank is charging.

Y Bbt = False if tank is discharging.

Binary Variables
0-1 variable corresponding to Ybt.

ybbt b ∈ B, t ∈ Tybbt = 1 indicates the tank is charging.

ybbt = 0 indicates the tank is discharging
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Table 7.2: Nomenclature of parameters.

Parameters Symbols Sets

Initial inventory for tank n I0n n ∈ N
Initial values for the specifications q in tank b C0

qb q ∈ Q, b ∈ B
Incoming supply flows enter tank s at time t F IN

st s ∈ S, t ∈ T
Specification q in supply flow to tank s CIN

qs q ∈ Q, s ∈ S
Specification q in source r Ĉ0

qr q ∈ Q, r ∈ R
Bounds on demand flow from tanks d at time t [FDL

dt, FD
U
dt] d ∈ D, t ∈ T

Bound on specification q in demand tank d [CL
qd, C

U
qd] q ∈ Q, d ∈ D

Bounds on inventory for tank n [ILn , I
U
n ] n ∈ N

Bounds on flow between tank n and n′ [FL
nn′ , FU

nn′ ] (n, n′) ∈ A
Costs for the supply flow for tank s βT

s s ∈ S
Prices for demand flow for tank d βT

d d ∈ D
Fixed costs for flow from tank n to tank n′ αN

nn′ (n, n′) ∈ A
Variable costs for flow from tank n to tank n′ βN

nn′ (n, n′) ∈ A

Table 7.3: GDP models.

Model Description

(C)
Concentration of individual specifications is a variable.

Bilinear terms appear when blending tank is in “charging” mode.

(SF)
Flow and inventory of specifications and split fraction are variables.

Bilinear terms appear when blending tank is in “discharging” mode.

(SB)
Flow and inventory of sources and split fraction are variables.

Bilinear terms appear when blending tank is in “discharging” mode.

(CSB) Same as (C), but including redundant constraints from (SB).

(MP) Master problem. Linear relaxation of (CSB), including enumeration cuts.

(SP) Subproblem using (CSB) model with Ybt fixed.
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7.2 The Multiperiod Blending Problem

The multiperiod blending problem is defined on a network (N ,A), where N is the set of
nodes and A ⊆ N × N is the set of arcs connecting these nodes. The set of nodes is
partitioned into three subsets corresponding to the types of tanks: supply nodes s ∈ S,
blending nodes b ∈ B, and demand nodes d ∈ D. Directed arcs (n, n′) ∈ A between
nodes correspond to streams from tank n to tank n′. In general, interconnections between
the supply and demand tanks, as well as between blending tanks, are allowed by the model.
The streams and inventories in the system possess different specifications q ∈ Q, such as
concentration of chemical compounds or physical properties. The network operates over a
time horizon composed of multiple time periods, T = {0, 1, . . . , T}, over which demand
within concentration specifications has to be satisfied at the end of each time period. Figure
7.1 shows a schematic representation of the blending system.

Figure 7.1: Sketch of the multiperiod blending problem

Given fixed feed compositions CIN
qs and incoming flows F IN

st to the supply tanks, as well as
initial conditions in each tank, the problem consists of determining the flows Fnn′t, FDdt,
inventories Int and compositions Cqbt in the network in each time period so as to maximize
the profit (or minimize the total cost) of the blending schedule, while meeting the demand
limits [FDL

dt, FD
U
dt] within specified limits of composition [CL

qd, C
U
qd].

Note that each time period t ∈ T is not independent of the others due to the coupling
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created by the inventories79. For instance, the composition and flow of an outgoing stream
from a blending tank at time t depends on the inventory in that tank at the end of the
previous time period, t− 1. As a consequence, the optimization must be performed simul-
taneously over all time periods.

For simplicity, the composition of the incoming flow to the supply tanks CIN
qs and the

bounds on the concentration of flows leaving the demand tanks [CL
qd, C

U
qd] are assumed to

be constant over the time horizon. As a result, the compositions Cqbt in the blending tanks
in each time period are the only ones that are unknown in the system (hence the subscript b
instead of n in Cqbt). On the other hand, the supply and demand flows can vary in amount
over time (hence the subscript t in F IN

st and [FDL
dt, FD

U
dt]).

The system operates within bounds on the inventories [IL
n , I

U
n ], and on the flows [F L

nn′ , F
U
nn′ ]

between each pair of tanks (n, n′) ∈ A.

In order to quantify the profit of the blending process, costs for the supply flows βTs , prices
for the demand flows βTd , and fixed and variable costs [αNnn′ , β

N
nn′] for the flows within the

network are taken into account.

An important assumption is that, due to operational and safety considerations, simultane-
ous input/output streams to blending tanks is not allowed, i.e. flow cannot enter and exit a
blending tank in the same time period. Boolean variables Xnn′t, which represent existence
(Xnn′t = True) or absence (Xnn′t = False) of flow between tanks n and n′, are required
to model this assumption, as well as to represent fixed costs for using the pipelines in the
objective function. Additional Boolean variables (Y Bbt) are used to represent the operat-
ing mode of a blending tank (Y Bbt = True if a tank is “charging” and Y Bbt = False if
a tank is “discharging”). Finally, the multiple liquid streams that enter the blending tanks
are assumed to be perfectly mixed at the end of the time period.

Tables 7.1 and 7.2 contain a detailed explanation of the nomenclature used for sets, vari-
ables and data in the problem. It can be noted from these tables that parameters contain a
superscript and variables do not. Table 7.3 contains the different models presented in this
chapter, as well as a brief description with the main difference among them.
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7.2.1 Motivating Example

In this section we present a small illustrative example to provide some insight on the
complexity of multiperiod blending problems. It should be noted that the instance is sig-
nificantly simple so that the solution can in fact be obtained by inspection. The instance
consists of 2 supply tanks, 8 blending tanks, 2 demand tanks, 6 time periods and 1 speci-
fication. The topology of the network is shown in Figure 7.2.

Figure 7.2: Topology of the motivating example

Tables 7.4 and 7.5 contain the parameters of the supply and demand streams. The initial
inventory and concentration are zero for all blending tanks, I0

b = C0
qn = 0 b ∈ B, q ∈ Q.

There is no inventory capacity in supply and demand tanks (IU
s = IU

d = 0 s ∈ S, d ∈ D).
The maximum inventory in the blending tanks is 30 for the first row of tanks (IU

b = 30 b ∈
{1, 2, 3, 4}) and 20 for the second row of tanks (IU

b = 20 b ∈ {5, 6, 7, 8}). The maximum
flow between tanks is 30 (FU

nn′ = 30 (n, n′) ∈ A). The fixed cost for using the pipelines
of 0.1 (αNnn′ = 0.1 (n, n′) ∈ A).

Note the rigid structure of the instance. The sum of the supply flow over the time horizon
equals the demand. Since the initial inventory is zero, all the supply should be used to
satisfy the demand, thus all blending tanks will be empty at the end of the time horizon.
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Table 7.4: Supply tank specifications.

CIN
s F IN

st

Supply tank Qual.A t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 βT
s

s1 0.06 10 10 10 0 0 0 0
s2 0.26 30 30 30 0 0 0 0

Table 7.5: Demand tank specifications.

[CL
qd, C

U
qd] FDL

dt

Demand tank Qual.A t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 βT
d

d1 [0, 0.16] 0 0 15 15 15 15 2
d2 [0, 1] 0 0 15 15 15 15 1

Besides, the supply with low concentration of specification A should be equally mixed
with flow from supply s2 in order to satisfy the specifications of demand tank d1. The rest
of supply s2 can be sent directly to demand tank d2 because there is no upper limit for
specification A. The uneven inventory upper bounds on the tanks and the high symmetry
derived from an empty initial inventory, increases the complexity of a seemingly simple
instance. The maximum profit of this problem is 177.5 and an optimal flow schedule is
shown in Figure 7.3. Table 7.6 contains the dimensions of the problem in terms of number
of variables, constraints and bilinear terms.

Even though it is a relative trivial instance, global optimization solvers, such as BARON
14.052, ANTIGONE 1.151 or SCIP 3.1103, have difficulty even finding a feasible solution
to this problem when using the original MINLP formulation of Kolodziej et al.79. In
fact, after 30 minutes of computational time, none of them reported a feasible solution.
As mentioned before, this example motivates the need for alternative formulations and
customized techniques that can handle even larger instances.

Table 7.6: Size of the (C) formulation (explained below) for the motivating example.

Continuous Variables Binary variables Constraints Bilinear terms
584 240 1178 128
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Figure 7.3: An optimal flow schedule for the motivating example

7.2.2 Generalized Disjunctive Programming (GDP) Formulations

In this section we present two alternative formulations for the multiperiod blending prob-
lem: a concentration model (C) and a split fraction model (SF). The concentration model
(C) includes the concentration of individual specifications as variables. As such, the bilin-
ear terms of this formulation appear when a tank is “blending”. The split fraction model
(SF) includes as variables the flow and inventory of individual specifications, and the split
fraction of discharge. As such, the bilinear terms appear when a tank is “discharging”.
Both formulations are presented as Generalized Disjunctive Programming (GDP) models.

Kolodziej et al.79 presented an MINLP model for the multiperiod blending problem, in
terms of total flow and concentration. The GDP formulation of this concentration model
(C) is as follows:
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(C):

max
∑
t∈T

[ ∑
(n,d)∈A

βTd Fndt −
∑

(s,n)∈A

βTs Fsnt −
∑

(n,n′)∈A

(αNnn′xnn′t + βNnn′Fnn′t)
]

(7.1)

s.t.

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt s ∈ S, t ∈ T (7.2a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt d ∈ D, t ∈ T (7.2b)

 Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

 ∨
 ¬Xnbt

Fnbt = 0

 (n, b) ∈ A, t ∈ T (7.3)


Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

CL
qd ≤ CIN

qs ≤ CU
qd q ∈ Q

 ∨
 ¬Xsdt

Fsdt = 0

 (s, d) ∈ A, t ∈ T (7.4)


Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

CL
qd ≤ Cqbt−1 ≤ CU

qd q ∈ Q

 ∨
 ¬Xbdt

Fbdt = 0

 (b, d) ∈ A, t ∈ T (7.5)
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Y Bbt

Ibt = Ibt−1 +
∑

(n,b)∈A
Fnbt

IbtCqbt = Ibt−1Cqbt−1 +
∑

(s,b)∈A
FsbtC

IN
qs

+
∑

(b′,b)∈A
Fb′btCqb′t−1 q ∈ Q


∨


¬Y Bbt

Ibt = Ibt−1 −
∑

(b,n)∈A
Fbnt

Cqbt = Cqbt−1 q ∈ Q

 b ∈ B, t ∈ T

(7.6)

Xnbt ⇒ Y Bbt (n, b) ∈ A, t ∈ T (7.7a)

Xbnt ⇒ ¬Y Bbt (b, n) ∈ A, t ∈ T (7.7b)

IL
n ≤ Int ≤ IU

n n ∈ N , t ∈ T (7.8a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ (n, n′) ∈ A, t ∈ T (7.8b)

FDL
dt ≤ FDdt ≤ FDU

dt d ∈ D, t ∈ T (7.8c)

CL
q ≤ Cqbt ≤ CU

q q ∈ Q, b ∈ B, t ∈ T (7.8d)

Xnn′t ∈ {True, False} (n, n′) ∈ A, t ∈ T (7.9a)

Y Bbt ∈ {True, False} b ∈ B, t ∈ T (7.9b)

In (C), the objective function (7.1) maximizes the profit that results from delivering prod-
ucts to the demand tanks, minus the costs associated with supply flows as well as fixed and
variable costs of transferring the liquids between tanks. Note that costs and revenues are
accounted through flows leaving the supply tanks and entering the demand tanks. Equa-
tions (7.2) are total mass balances over the supply and demand tanks.

Disjunctions (7.3) to (7.5) represent the set of constraints regarding the existence of flow
between nodes. If the flow between nodes exists (Xnn′t = True), then upper and lower
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bounds on flow and concentration are enforced. If the flow does not exist (Xnn′t = False),
then the flow is zero and no concentration constraints are enforced. Note that in disjunction
(7.4) CIN

qs is a parameter. However, this disjunction enforces that there can only exist flow
between supply and demand when the supply specifications lie within the demand bounds
(CL

qd ≤ CIN
qs ≤ CU

qd).

Disjunction (7.6) models the operation of the blending tanks. Since there cannot be simul-
taneous input/output streams to blending tanks, they can be either charging or discharging
but not both. The total mass balance of the inventory is calculated if a tank is either charg-
ing or discharging. However, the individual specification inventory balance is only calcu-
lated when a tank is charging (Y Bbt = True). When it is discharging (Y Bbt = False), the
required constraint specifies that there is no change in the concentration from the previous
time period. Figure 7.4 illustrates the disjunction used to model the blending tanks.

Figure 7.4: Illustration of no simultaneous input/output streams in a blending tank

Constraints (7.7) state the logic relationship between the binary variables. If there is flow
coming into a blending tank (Xnbt = True), then Y Bbt must be active (Y Bbt = True) to
indicate that it is in charging mode; the opposite if flow is leaving the tank. The last set of
constraints (7.8) impose upper and lower bounds on the variables.

It is important to note that the original MINLP formulation of Kolodziej et al.79 does
not make use of disjunction (7.6). Instead, the mass balance of the blending tanks is de-
scribed through global constraints. Introducing (7.6) in the formulation not only makes
the “no simultaneous charge/discharge” condition more explicit, but it also reduces the
number of bilinear terms. The reason for this reduction is that the mass balance indi-
vidual specifications is defined as a global constraint in the model by Kolodziej et al.
(IbtCqbt = Ibt−1Cqbt−1 +

∑
(s,b)∈A

FsbtC
IN
qs +

∑
(b′,b)∈A

Fb′btCqb′t−1 −
∑

(b,n)∈A
FbntCqbt−1). As
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such, bilinear terms appear in the constraint regardless if the tank is charging or discharg-
ing. Furthermore, the bilinear terms not only involve flow and concentration of blending
tanks as in (C), but also flow and concentration of the nodes connected to the blending
tanks (FbntCqbt−1; (b, n) ∈ A). When compared with the original MINLP formulation of
Kolodziej et al. for the motivating example presented before, the number of bilinear terms
decreases 50%, from 248 to 128 . This formulation requires more binary variables but,
due to the logic implications (7.7), it does not increase the combinatorial complexity of
the problem.

Model (C) uses total flows, inventories and concentration of specifications as variables
(Fnn′t, Int and Cqbt). In this sense, formulation (C) is akin to the p-formulation of the
pooling problem. An alternative formulation for the multiperiod blending problem is the
split fraction model (SF). (SF) includes as variables the flow and inventory of individ-
ual specifications, and the split fraction of discharge (F̄qnn′t, Īqbt and ξbnt). This type of
model was first proposed by Quesada and Grossmann83 in their work on general process
networks.

The split fraction model (SF) is as follows:

(SF):

max
∑
t∈T

[ ∑
(n,d)∈A

βTd Fndt −
∑

(s,n)∈A

βTs Fsnt −
∑

(n,n′)∈A

(αNnn′ynn′t + βNnn′Fnn′t)
]

(7.10)

s.t.

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt s ∈ S, t ∈ T (7.11a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt d ∈ D, t ∈ T (7.11b)
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[
Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

]
∨

 ¬Xnbt

Fnbt = 0

F̄qnbt = 0 q ∈ Q

 (n, b) ∈ A, t ∈ T (7.12)

 Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

CL
qd ≤ CIN

qs ≤ CU
qd q ∈ Q

 ∨

¬Xsdt

Fsdt = 0

F̄qbdt = 0 q ∈ Q

 (s, d) ∈ A, t ∈ T (7.13)


Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

FbdtC
L
qd ≤ F̄qbdt ≤ FbdtC

U
qd q ∈ Q

 ∨

¬Xbdt

Fbdt = 0

F̄qbdt = 0 q ∈ Q

 (b, d) ∈ A, t ∈ T

(7.14)



Y Bbt

Ibt = Ibt−1 +
∑
n∈Ňb

Fnbt

Īqbt = Īqbt−1 +
∑

(s,b)∈A
FsbtC

IN
qs

+
∑

(b′,b)∈A
F̄qb′bt q ∈ Q


∨



¬Y Bbt

Ibt = Ibt−1 −
∑

(b,n)∈A
Fbnt

Īqbt = Īqbt−1

−
∑

(b,n)∈A
F̄qbnt q ∈ Q

Fbnt = ξbntIbt−1 (b, n) ∈ A

F̄qbnt = ξbntĪqbt−1 q ∈ Q,

(b, n) ∈ A



b ∈ B, t ∈ T

(7.15)
Xnbt ⇒ Y Bbt (n, b) ∈ A, t ∈ T (7.16a)

Xbnt ⇒ ¬Y Bbt (b, n) ∈ A, t ∈ T (7.16b)
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IL
n ≤ Int ≤ IU

n n ∈ N , t ∈ T (7.17a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ (n, n′) ∈ A, t ∈ T (7.17b)

FDL
dt ≤ FDdt ≤ FDU

dt d ∈ D, t ∈ T (7.17c)

IL
b C

L
q ≤ Īqbt ≤ IU

b C
U
q q ∈ Q, b ∈ B, t ∈ T (7.17d)

F L
nn′C

L
q ≤ F̄qnn′t ≤ FU

nn′C
U
q q ∈ Q, (n, n′) ∈ A, t ∈ T (7.17e)

0 ≤ ξbnt ≤ 1 (b, n) ∈ A, t ∈ T (7.17f)

Xnn′t ∈ {True, False} (n, n′) ∈ A, t ∈ T (7.18a)

Y Bbt ∈ {True, False} b ∈ B, t ∈ T (7.18b)

The main difference between (C) and (SF) is that in the former the concentration of in-
dividual specifications is a variable (Cqbt), while in the latter the flow and inventory of
individual specifications, and the split fraction of discharge are the variables (F̄qnn′t, Īqbt
and ξbnt). In (SF), constraints (7.10) and (7.11) are the same as constraints (7.1) and
(7.2) in (C). Constraints (7.12), (7.13) and (7.14) enforce flow and concentration bounds
when there exists flow between two nodes. Disjunction (7.15) models the charging and
discharging constraints of blending tanks. In order to enforce the same specification con-
centrations in the outflows and inventory of a tank, it is necessary to introduce a new
variable ξbnt. When discharging, ξbnt represents the proportion of the inventory that flows
to a tank (Fbnt = ξbntIbt−1). This proportion needs to be the same for the total flow and the
flow of the individual specifications (F̄qbnt = ξbntĪqbt−1). Note that in formulation (SF) the
bilinear terms appear in the formulation every time a blending tank operates in discharge
mode (Y Bbt = False). Constraints (7.16) state the logic relationship between the binary
variables. Finally, (7.17) impose the bounds on the variables.

Note that model (SF) is not equivalent to the q-formulation of the generalized pooling
problem77. The proportion variables in the q-formulation denote the fraction of incoming
flow to the blending tank that is contributed by input n, which implies that the sum over
all n add to 1. In other words, the variables model the incoming streams to the tank and
not what is being withdrawn, which does not have to sum up to one if the tank is not being
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Table 7.7: Number of bilinear terms of GDP formulations. B̂ = (b, b′) ∈ A, N̂b = (b, n) ∈
A.

Model Bilinear terms Motivating Example
|Q| = 5, |T | = 6

(C) |Q|
[
|B||T |+ |B̂|(|T | − 1)

]
640

(SF) |N̂b|(T − 1)(1 + |Q|) 720

emptied completely. In addition, the variables in the q-formulation represent the fraction
of raw materials that are supplied to the system, whereas the split fraction model tracks
the specifications just as the concentration model. In other words, instead of fractions of
raw materials, the variables of the split fraction model represent the actual amount of flow
of each specification q in each and every stream. The q-formulation is discussed in more
detail in Section 7.3.1. Nevertheless, Alfaki and Haugland104 use proportions for flows
transported from pools to demand tanks for the standard pooling problem and named it the
TP formulation.

Table 7.7 compares the number of bilinear terms of the two GDP models. Table 7.7 also
shows that, for the motivating example, (C) has fewer bilinear terms than (SF) (640 vs.
720). However, depending on the structure of the network, number of tanks, time periods
and specifications, one formulation can have more bilinear terms than the other. Note that
the number of continuous variables is larger when the system is modeled using individual
flows and inventories (SF).

The proposed formulations imply that a decomposition approach can be used to exploit
the operational constraint on the blending tanks. By deciding whether the tank is in charge
or discharge mode, the number of binary variables representing the connection between
blending tanks and the rest of the network is reduced. Moreover, if the operating mode
of the tanks is fixed at each period of time, the number of bilinear terms can be further
reduced, thus yielding smaller and easier problems to solve. Before presenting the details
of the decomposition algorithm, an alternative formulation is proposed.
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7.3 Improving Formulation with Redundant Constraints

A crucial feature for solving a nonconvex MINLP is the tightness of the formulation when
the non-convex constraints are relaxed (i.e. the MILP relaxation of a nonconvex MINLP).
Note that performing the linear relaxation on the GDP and then using the (BM) reformula-
tion yields the exact same MILP as first using the (BM) reformulation and then performing
the linear relaxation (assuming the same big-M parameters are used). Therefore, the MILP
relaxation of the (BM) reformulation of a GDP is the same as the (BM) reformulation of
the linear GDP (LGDP) relaxation of the original GDP. A tighter LGDP relaxation of a
GDP means a tighter MILP relaxation of the MINLP reformulation of the GDP. Therefore,
tighter LGDP relaxations of a GDP typically translate into improved solution times in the
MINLP reformulation of the GDP.

In this section we present two new models for the multiperiod blending problem: a source
based model (SB) and a hybrid model between the concentration and source based models
(CSB). We first describe the new source based model (SB). We prove that the LGDP
relaxation of the source based model (SB) is tighter than the LGDP relaxation of the split
fraction model (SF). We present computational experiments that show that it is also tighter
than the LGDP relaxation of the concentration model (C) in all tested cases. Using the
key idea behind the source based model (SB), we then present an improvement to the
concentration model (C) using redundant constraints. The resulting model (CSB) is a
hybrid between the source based model (SB) and the concentration model (C). We prove
that the model (CSB) has the tightest LGDP relaxation of all the models presented in this
chapter.

7.3.1 Alternative Problem Formulation

If the blending network is modeled using concentrations, as in the (C) model, or using
individual flows and inventories, as in the (SF) model, the physical insight behind the
equations is to track the specifications from supply to demand. The disadvantage of these
models is that, when the non-convex constraints are dropped entirely, the composition
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limits of the demand can be violated. For instance, if model (C) is relaxed, total mass
balances are the only equations that restrict flows and inventories. As a consequence, the
streams entering the demand tanks can have any composition. Similarly, when the bilinear
terms are dropped from model (SF), the individual flows and inventories are allowed to
take any value between the bounds. The drawback is that any configuration that satisfies
the total mass balance in the tanks is a feasible solution for the relaxed problem, whereas
most of them will be infeasible to the original problem.

Alternatively, there is the option of tracking the “sources” or “commodities” in the system,
which is the insight behind the q-formulation of the pooling problem. This type of model
has also been used in crude-oil scheduling problems. The idea of “following” the crudes
along the network seems reasonable at the front-end of a refinery due to the specifications
in the feed to the distillation columns94,99.

Each supply and initial inventory in the blending tanks can be considered as a different
“source”. For instance, if crudes A and B are being unloaded and supplied to the system,
in which tanks 1 and 3 contain an initial inventory of crude C and D respectively, the
blending network has a total of four different types of crudes (or sources). Following with
the crude-oil scheduling example, once the crudes are mixed and right before the mixture
is discharged to the distillation columns, it is possible to calculate the relative amount of
each specification in the blend since the composition of the sources is known. It is not
until the final mixture of crudes is fed to the distillation columns that the composition
specifications are checked.

Sources are defined as the supply and the blending tanks that have initial inventory greater
than zero. The new index r ∈ R denotes the set of sources in the blending network. It
is defined as R = S ∪ B̆ where B̆ = {b ∈ B : I0

b > 0}. The variables in the model
resemble the ones in the (SF) model, but note that now F̃rnn′t and Ĩrbt are individual flows
and inventories per source r instead of per specification q. Also, the model involves new
parameters Ĉ0

qr that represent the amount of specification q in source r and are defined as
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follows:

Ĉ0
qs = CIN

qs s ∈ S (7.19a)

Ĉ0
qb = C0

qb b ∈ B̆ (7.19b)

The source based model (SB) is similar to the split fraction model (SF), but the sources are
tracked instead of the specifications. In the (SF) model, the fraction of specification q in a
stream is defined as the amount of flow of specification q in the stream, divided by the total
flow between tanks, see (7.20a). In model (SB), the composition of a stream is determined
from the compositions of each of the sources present in the stream. The sum of the amount
of specification q in each source corresponds to the total amount of specification q in the
stream, i.e. F̄qbdt =

∑
r∈R

F̃rbdtĈ
0
qr. If divided by the total flow, the composition can be

calculated as in equation (7.20b).

Cqbt =
F̄qbdt
Fbdt

q ∈ Q, (b, d) ∈ A, t ∈ T (7.20a)

Cqbt =

∑
r∈R

F̃rbdtĈ
0
qr

Fbdt
q ∈ Q, (b, d) ∈ A, t ∈ T (7.20b)

The source based model (SB), where sources r ∈ R correspond to the supply and blending
tanks with initial inventory, is as follows:

(SB):

max
∑
t∈T

[ ∑
(n,d)∈A

βTd Fndt −
∑

(s,n)∈A

βTs Fsnt −
∑

(n,n′)∈N

(αNnn′ynn′t + βNnn′Fnn′t)
]

(7.21)
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s.t.

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt s ∈ S, t ∈ T (7.22a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt d ∈ D, t ∈ T (7.22b)

Fnn′t =
∑
r∈R

F̃rnn′t n ∈ N , n′ ∈ N̂n, t ∈ T (7.23a)

Ibt =
∑
r∈R

Ĩrbt b ∈ B, t ∈ T (7.23b)

 Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

 ∨
 ¬Xnbt

Fnbt = 0

 (n, b) ∈ A, t ∈ T (7.24)

 Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

 ∨


¬Xsdt

Fsdt = 0

F̃rsdt = 0 r ∈ R

 (s, d) ∈ A, t ∈ T (7.25)



Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

CL
qdFbdt ≤

∑
r∈R

F̃rbdtĈ
0
qr ≤ CU

qdFbdt q ∈ Q

CL
qdIbt−1 ≤

∑
r∈R

Ĩrbt−1Ĉ
0
qr ≤ CU

qdIbt−1 q ∈ Q


∨

 ¬Xbdt

Fbdt = 0

 (b, d) ∈ A, t ∈ T

(7.26)
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Y Bbt

Ibt = Ibt−1 +
∑

(n,b)∈A
Fnbt

Ĩrbt = Ĩrbt−1

+
∑

(n,b)∈A
F̃rnbt r ∈ R


∨



¬Y Bbt

Ibt = Ibt−1 −
∑

(b,n)∈A
Fbnt

Ĩrbt = Ĩrbt−1

−
∑

(b,n)∈A
F̃rbnt r ∈ R

Fbnt = ξbntIbt−1

F̃rbnt = ξbntĨrbt−1 r ∈ R



b ∈ B, t ∈ T (7.27)

Xnbt ⇒ Y Bbt (n, b) ∈ A, t ∈ T (7.28a)

Xbnt ⇒ ¬Y Bbt (b, n) ∈ A, t ∈ T (7.28b)

IL
n ≤ Int ≤ IU

n n ∈ N , t ∈ T (7.29a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ (n, n′) ∈ A, t ∈ T (7.29b)

FDL
dt ≤ FDdt ≤ FDU

dt d ∈ D, t ∈ T (7.29c)

IL
b ≤ Ĩrbt ≤ IU

b r ∈ R, b ∈ B, t ∈ T (7.29d)

F L
nn′ ≤ F̃rnn′t ≤ FU

nn′ r ∈ R, (n, n′) ∈ A, t ∈ T (7.29e)

0 ≤ ξbnt ≤ 1 (b, n) ∈ A, t ∈ T (7.29f)

F̃rsnt|r=s = Fsnt (s, n) ∈ A, t ∈ T (7.30a)

F̃rbnt|r=b = Fbnt (b, n) ∈ A, t = 1 (7.30b)

Xnn′t ∈ {True, False} (n, n′) ∈ A, t ∈ T (7.31a)

Y Bbt ∈ {True, False} b ∈ B, t ∈ T (7.31b)

The source based model (SB) follows the same general idea as the split fraction model
(SF). However, there are four main differences. The first one is that the individual flows
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and inventories are based on sources r ∈ R instead of specifications q ∈ Q. The second
difference are the constraints (7.23). These constraints relate the source flows and inven-
tories to the total flows and inventories, and they assume linear blending. Note that (7.23)
is redundant for the GDP, however, it is not redundant for its LGDP relaxation. Also note
that similar constraints cannot be included in the split fraction model (SF), since the spec-
ifications can represent completely different properties (e.g. density and concentration of
sulfur). The third difference is disjunction (7.26). In this disjunction, the bounds on the
different specifications q ∈ Q for the demand, are transformed into restrictions for the
sources r ∈ R. This transformation is easily performed using the equations presented in
(7.20). The last difference lies in equations (7.30). These equations link the supply and
initial inventories with the corresponding individual flow per source. For instance, supply
tank 1 holds source 1 and nothing else.

The LGDP relaxation of the source based model (SB) is tighter than the LGDP relaxation
of the split fraction model (SF), as shown in the following theorem:

Theorem 7.3.1 Let (R−SF) and (R−SB) be, respectively, an LGDP relaxation of (SF)

and (SB) in which the nonlinear constraints are removed from the problem formulation.

Then (R−SB) ⊆ (R−SF).

Proof. Let (Int, Fnn′t, FDdt, Ĩrbt, F̃rnn′t, Xnn′t, Y Bbt) be a feasible point in (R−SB). Let
Īqbt =

∑
r∈R

ĨrbtĈ
0
qr and F̄qnn′t =

∑
r∈R

F̃rnn′tĈ
0
qr.

If Xnbt = False, then F̃rnbt = 0 r ∈ R. Then, for every q ∈ Q it is possible to multiply
both sides of the equation by Ĉ0

qr:

Ĉ0
qrF̃rnbt = 0 r ∈ R, q ∈ Q (7.32)

By summing over all sources: ∑
r∈R

Ĉ0
qrF̃rnbt = 0 q ∈ Q (7.33)
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F̄qnbt = 0 q ∈ Q (7.34)

The same scheme can be used when Xsdt = False, Xbdt = False to obtain F̄qndt =

0 q ∈ Q. For the source inventory balance constraint (associated with the Boolean
variable Y Bbt) the same two steps can be applied.

If Y Bbt = True, then Ĩrbt = Ĩrbt−1 +
∑

(n,b)∈A
F̃rnbt r ∈ R, which implies:

Īqbt = Īqbt−1 +
∑

(n,b)∈A

F̄qnbt q ∈ Q (7.35)

where F̄qsbt = FsbtC
IN
qs (s, b) ∈ A

If Y Bbt = False, then Ĩrbt = Ĩrbt−1 −
∑

(b,n)∈A
F̃rbnt r ∈ R, and then:

Īqbt = Īqbt−1 −
∑

(b,n)∈A

F̄qbnt q ∈ Q (7.36)

When Xbdt = True, then CL
qdFbdt ≤

∑
r∈R

F̃rbdtĈ
0
qr ≤ CU

qdFbdt q ∈ Q, so:

CL
qdFbdt ≤ F̄qbdt ≤ CU

qdFbdt q ∈ Q (7.37)

The same procedure can be applied to obtain valid upper and lower bounds for the vari-
ables.

It is clear then, considering constraints (7.34), (7.35), (7.36) and (7.37), that for a feasible
point

(Int, Fnn′t, FDdt, Ĩrbt, F̃rnn′t, Xnn′t, Y Bbt) in (R−SB) it is possible to set Īqbt =
∑
r∈R

ĨrbtĈ
0
qr

and F̄qnn′t =
∑
r∈R

F̃rnn′tĈ
0
qr and obtain the point (Int, Fnn′t, FDdt, Īrbt, F̄rnn′t, Xnn′t, Y Bbt)
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that is feasible for (R−SF). This means that any (Int, Fnn′t, FDdt, Xnn′t, Y Bbt) that is fea-
sible for (R−SB) is also feasible for (R−SF) �.

Note that Theorem 7.3.1 considers the linear relaxations (R−SB) and (R−SF) without the
McCormick envelopes. The relaxations using the McCormick envelopes depend on the
bounds of Ĩrbt and Îrbt.

Table 7.8 compares the value of the objective function of the LGDP relaxation of (C),
(SF) and (SB) for 9 instances. The LGDP relaxation was obtained using McCormick
envelopes. All instances have 240 binary variables. The solutions were obtained using
CPLEX 12.6. All values reported were below 1% gap after 1800 seconds of computational
time. Values are normalized to the best known feasible solution. An asterisk ∗ marks the
instances in which the value of the Boolean variables in the LGDP relaxation is the same
as their value in the optimal solution to the GDP. i indicates those relaxed solution that
will lead to an infeasible subproblem when the set of Boolean variables Y Bbt is fixed
accordingly. Instances with 1, 5 and 10 specifications and 1, 5 and 10 sources are used for
the comparison. All the instances have 6 time periods and same network topology as the
motivating example. Three conclusions can be inferred from the results:

1. For the examples tested, (SB) is stronger than (C) and (SF) when the bilinear terms
in the source based model are relaxed using McCormick envelopes.

2. The difference between relaxations is larger when the number of specifications is
high and the number of sources is low.

3. In general, the size of the relaxed (C) formulation strongly depends on the number
of specifications, whereas the size of the relaxed (SB) model depends on the number
of sources.

The difference between the values of the normalized relaxations may not seem that signif-
icant at first. However, the feasibility of the subproblem when the set of discrete variables
Y Bbt is fixed according to the solution of the relaxed LGDP is crucial for the decomposi-
tion algorithm. In 6 of the 9 examples, the upper bound provided by the relaxation of the
source based model (SB) is the same as the best known solution. Furthermore, when fixing
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Table 7.8: Comparison between the LGDP relaxation of different formulations.

# Variables # Constraints Normalized relaxation
Ex. |R| |Q| (C) (SF) (SB) (C) (SF) (SB) (C) (SF) (SB)
1 2 1 681 889 793 1558 2582 2054 1.007 1.020i 1.000∗

2 2 5 1385 1849 793 4342 7158 2822 1.012 1.026i 1.000∗

3 2 10 2265 3049 793 7846 12902 3782 1.012i 1.026i 1.000∗

4 5 1 681 889 2713 1558 2582 5894 1.006i 1.006 1.000∗

5 5 5 1385 1849 2713 4342 7158 6662 1.022 1.022 1.011
6 5 10 2265 3049 2713 7846 12902 7622 1.022i 1.022i 1.006
7 10 1 681 889 1513 1558 2582 3494 1.000∗ 1.000∗ 1.000∗

8 10 5 1385 1849 1513 4342 7158 4262 1.005 1.005 1.005
9 10 10 2265 3049 1513 7846 12902 5222 1.005 1.005 1.005

the Boolean variables Y Bbt form the LGDP relaxation of (SB), all solutions are feasible
to the original problem. In the concentration (C) and split fraction (SF) models 3 and 4
instances become infeasible, when fixing the value of Y Bbt from the LGDP relaxation.

Note that the q and pq-formulations are also exploiting the idea of sources or commodi-
ties to model the blending process. Even though the ideas are similar, these formulation
have clear differences with the source based model. The proportion variables in the q-
formulation denote the fraction that each source contributes to the total incoming flow to
the blending tank, which implies that the sum of the fractions over all sources add to 1. In-
stead of following the fraction of the total flow that corresponds to each source, the source
based model tracks the actual amount of source in each and every stream in the system.
Also, the source based model uses splits fractions in order to ensure consistency in the dis-
charge. This is not necessary in the traditional q-formulation, since the pooling problem
does not consider inventories. Gupte et al.105 proposed an extension of the q-formulation
to handle inventories and semi-continuous flows. However, their model requires the in-
troduction of more bilinear terms with up to five indexes per term. This implies that the
number of bilinear terms will increase drastically even with small instances. Finally, the
classical Haverly pooling problem is used to illustrate the difference between the tradi-
tional formulations in the pooling community and the new formulation presented in this
report. See Appendix D for details.
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7.3.2 Using redundant constraints in the (C) model

The linear constraints of the source based model (SB) can be used as redundant constraints
in the concentration model (C). This allows to obtain stronger LGDP relaxations. The
new model (CSB) (hybrid of the (C) and (SB) models) will increase in size but will have
a stronger LGDP relaxation. The model is as follows:

(CSB):

max
∑
t∈T

[ ∑
(n,d)∈A

βTd Fndt −
∑

(s,n)∈A

βTs Fsnt −
∑

(n,n′)∈A

(αNnn′xnn′t + βNnn′Fnn′t)
]

(7.38)

s.t.

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt s ∈ S, t ∈ T (7.39a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt d ∈ D, t ∈ T (7.39b)

Fnn′t =
∑
r∈R

F̃rnn′t (n, n′) ∈ A, t ∈ T (7.40a)

Ibt =
∑
r∈R

Ĩrbt b ∈ B, t ∈ T (7.40b)

 Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

 ∨
 ¬Xnbt

Fnbt = 0

 (n, b) ∈ A, t ∈ T (7.41)


Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

CL
qd ≤ CIN

qs ≤ CU
qd q ∈ Q

 ∨
 ¬Xsdt

Fsdt = 0

 (s, d) ∈ A, t ∈ T (7.42)
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Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

CL
qd ≤ Cqbt−1 ≤ CU

qd q ∈ Q

CL
qdFbdt ≤

∑
r∈R

F̃rbdtĈ
0
qr ≤ CU

qdFbdt q ∈ Q

CL
qdIbt−1 ≤

∑
r∈R

Ĩrbt−1Ĉ
0
qr ≤ CU

qdIbt−1 q ∈ Q


∨

[
¬Xbdt

Fbdt = 0

]
(b, d) ∈ A, t ∈ T

(7.43)



Y Bbt

Ibt = Ibt−1 +
∑

(n,b)∈A
Fnbt

IbtCqbt = Ibt−1Cqbt−1 +
∑

(s,b)∈A
FsbtC

IN
qs

+
∑

(b′,b)∈A
Fb′btCqb′t−1 q ∈ Q

Ĩrbt = Ĩrbt−1 +
∑

(n,b)∈A
F̃rnbt r ∈ R


∨



¬Y Bbt

Ibt = Ibt−1 −
∑

(b,n)∈A
Fbnt

Cqbt = Cqbt−1 q ∈ Q
Ĩrbt = Ĩrbt−1

−
∑

(b,n)∈A
F̃rbnt r ∈ R


b ∈ B, t ∈ T

(7.44)

Xnbt ⇒ Y Bbt b ∈ B, n ∈ Ňb, t ∈ T (7.45a)

Xbnt ⇒ ¬Y Bbt b ∈ B, n ∈ N̂b, t ∈ T (7.45b)

IL
n ≤ Int ≤ IU

n n ∈ N , t ∈ T (7.46a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ (n, n′) ∈ A, t ∈ T (7.46b)

FDL
dt ≤ FDdt ≤ FDU

dt d ∈ D, t ∈ T (7.46c)

CL
q ≤ Cqbt ≤ CU

q q ∈ Q, b ∈ B, t ∈ T (7.46d)

IL
b ≤ Ĩrbt ≤ IU

b r ∈ R, b ∈ B, t ∈ T (7.46e)

F L
nn′ ≤ F̃rnn′t ≤ FU

nn′ r ∈ R, (n, n′) ∈ A, t ∈ T (7.46f)
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F̃rsnt|r=s = Fsnt (s, n) ∈ A, t ∈ T (7.47a)

F̃rbnt|r=b = Fbnt (b, n) ∈ A, t = 1 (7.47b)

Xnn′t ∈ {True, False} (n, n′) ∈ A, t ∈ T (7.48a)

Y Bbt ∈ {True, False} b ∈ B, t ∈ T (7.48b)

In addition to the constraints in the concentration model (C), (CSB) includes the last two
inequalities in the first term of the disjunction (7.43), the last equations in disjunction
(7.44), and equalities (7.40) and (7.47). Note that all of these inequalities are linear.

Consider the concentration model (C), the source based model (SB), and the hybrid model
(CSB). The LGDP relaxation of (CSB) is tighter than the LGDP relaxation of the other
two, as stated in the following theorem:

Theorem 7.3.2 Let (R−C), (R−SB) and (R−CSB) be, respectively, a linear relaxation

of (C), (SB) and (CSB) in which the nonlinear constraints are removed from the problem

formulation. Then (R−CSB) ⊆ (R−SB) and (R−CSB) ⊆ (R−C).

The proof of Theorem 7.3.2 is trivial, since (R−CSB) includes all of the constraints of
(R−C) and (R−SB).

In summary, we have presented four formulations in this chapter: the concentration model
(C), the split fraction model (SF), the source based model (SB), and the hybrid model
(CSB). We can stablish the following relations between the LGDP relaxation of these
models: (R−CSB) ⊆ (R−SB) ⊆ (R−SF), and (R−CSB) ⊆ (R−C). Therefore, when
removing the nonlinear constraints from the formulations, (CSB) is stronger than the other
formulations. Note that a linear relaxation of the different formulations can be achieved
by using McCormick67 envelopes of the bilinear terms. In such a case, the strength of the
linear relaxation also depends on the bounds of the variables involved in the bilinear terms.
In real applications, it is likely that the bounds for total flow and concentration are stronger
than the bounds for individual specification inventories and split fractions. In such cases,
the advantage of (CSB) over (R−SB), and (R−SF) is further increased.
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Table 7.9: Bilinear terms in GDP formulations. B̂ = (b, b′) ∈ A, N̂b = (b, n) ∈ A.

Model Bilinear terms Motivating Example
|Q| = 5, |T | = 6 |Q| = 5, |T | = 6
I0b = 0, |R| = 2 I0b > 0, |R| = 10

(CSB) |Q|
[
|B||T |+ |B̂|(|T | − 1)

]
640 640

(SB) |N̂b|(T − 1)(1 + |R|) 480 1760

Table 7.10: Fraction of instances for which a feasible solution was found in less than 30
minutes.

Solver (CSB) (C)
SCIP 0.42 0.31

BARON 0.29 0.21
ANTIGONE 0.31 0.29

The number of bilinear terms in (CSB) is the same as in (C). The number of bilinear
terms in (SB) depends not only on Q, T and B, but also on S and the number of blending
tanks with I0

b > 0. Table 7.9 presents the number of bilinear terms for (CSB) and for
(SB) for two instances. Both instances have the same topology and |Q| = 5 and |T | = 6.
However, the initial inventory of all the blending tanks in the first instance is zero. The
initial inventory of all blending tanks in the second instance is greater than zero. It is clear
from Table 7.9 that the number of bilinear terms for the (SB) can change drastically for
“similar” instances (480 vs.1760).

The MINLP reformulation of the concentration model, with and without redundant con-
straints ((C), (CSB)) was tested in 48 instances. Half of these instances include initial
inventory and the other half do not (See Section 7.5 for more details on the instances).
Table 7.10 shows the fraction of the instances for which the solver could find at least one
feasible solution. The global solvers BARON 14.0, ANTIGONE 1.1, and SCIP 3.1 were
used.

In general, a feasible solution is obtained for a larger number of instances if the problem is
modeled using the redundant constraints. For instance, in the case of SCIP, the number of
instances for which SCIP can find a solution increase from 15 to 20 out of 48 instances. In
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addition, SCIP performs better than its competitors, since it can find a feasible solution in
42% of the instances against the 29% and 31% of BARON and ANTIGONE, respectively.
Due to this superior performance, SCIP 3.1 is used as a reference for comparison in the
computational results.

It can be seen that the performance of the solver is better when the redundant constraints
are added to the concentration model. Nevertheless, the number of instances for which a
feasible solution was found is still small. This motivates the need to develop a specialized
algorithm that can better exploit the structure of the problem.

7.4 Iterative Two-Stage Decomposition Algorithm

Considering the performance of commercial solvers and the potential advantages of the
(CSB) formulation, a decomposition algorithm is proposed next. As mentioned before,
if the operating mode of the blending tanks is fixed, the resulting GDP becomes easier to
solve, due to a reduction in size and complexity. In fact, all variables related to incoming
arcs to a blending tank (i.e. Fnbt and xnbt) will be removed from the model when the tank
is discharging. Similarly, if the tank is being charged, all outgoing flows from the blending
tank (i.e. Fbnt and xbnt) will be set to zero. Furthermore, the number of bilinear terms will
decrease compared to the original GDP in the following circumstances:

1. If the blending tank is discharging at time t, the equations that describe the operation
are linear for that period (i.e., the second disjunct of disjunction (7.44) is True).
Thus, all bilinearities related to that blending tank and time period are eliminated
from the model. In addition, if a blending tank is in idle mode, it can be set to
discharge mode in order to avoid considering unnecessary bilinear terms.

2. The bilinear term Fb′btCqb′t−1 has to be included if and only if tank b′ is discharging
(¬Y Bb′t) and tank b is charging (Y Bbt) at time t. Therefore, if blending tank b has an
incoming stream from a supply tank, i.e. it is in charge mode, but there is no other
blending tank (b′), connected to tank b, that is discharging at that time t, bilinear
terms of the form Fb′btCqb′t−1 are unnecessary and can be eliminated.

7.4. ITERATIVE TWO-STAGE DECOMPOSITION ALGORITHM 174



CHAPTER 7. GLBOA FOR THE GLOBAL OPTIMIZATION OF A SOURCE BASED
MODEL OF THE MULTIPERIOD BLENDING PROBLEM

To exploit these ideas, the proposed algorithm decomposes the GDP model into two levels.
The first level, or master problem, is a linear relaxation of the original GDP that provides
rigorous upper bounds for the profit. The second level, or subproblem, is a smaller GDP
in which the set of discrete variables Y Bbt is fixed. The subproblem, when a feasible
solution is found, provides a feasible solution to the original GDP and a rigorous lower
bound. These problems are solved successively until the gap between the upper and lower
bounds is within a tolerance. Figure 7.5 presents the flow diagram of the algorithm.

Figure 7.5: Decomposition Algorithm

The solution of the master problem is used to define the subproblem, which is more
tractable than the original problem. A master problem with a tight relaxation is crucial
for the success of the algorithm, since its solution will be used to fixed the operating mode
of the tanks. The feasibility of the subproblem will strictly depend on the solution of the
master problem.

As mentioned in the introduction, there are many relaxation techniques that can be used to
construct the master problem. In the algorithm, the master problem is a linear relaxation of
(CSB) in which the non-convex constraints are dropped. Optimality and/or feasibility cuts
are added in the form of integer cuts, eliminating regions already evaluated in previous
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iterations. Note that McCormick envelopes could be used for linearly relaxing (CSB).
However, from computational experiments we observed that dropping the nonlinearities
improved the performance of the algorithm. In particular, the master problem solves faster,
and we did not observe a significant difference in the number of iterations of the algorithm.
We acknowledge that for other instances the use of McCormick envelopes could help the
algorithm to perform better.

The subproblem can be solved using a global optimization solver or through a specialized
technique that ensures global optimality. The concentration model plus the source based
redundant constraints (CSB) is used in the subproblem.

7.4.1 Description of the algorithm

The following master problem is a linear relaxation of the (CSB) in which the nonlinear
constraints were dropped. Also, optimality and/or feasibility cuts are added in the form of
integer cuts:

(MP):

max Z (7.49)

s.t.

Z ≤
∑
t∈T

[ ∑
(n,d)∈A

βTd Fndt −
∑

(s,n)∈A

βTs Fsnt −
∑

(n,n′)∈N

(αNnn′ynn′t + βNnn′Fnn′t)
]

(7.50)

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt s ∈ S, t ∈ T (7.51a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt d ∈ D, t ∈ T (7.51b)
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Fnn′t =
∑
r∈R

F̃rnn′t n ∈ N , n′ ∈ N̂n, t ∈ T (7.52a)

Ibt =
∑
r∈R

Ĩrbt b ∈ B, t ∈ T (7.52b)

 Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

 ∨
 ¬Xnbt

Fnbt = 0

 (n, b) ∈ A, t ∈ T (7.53)


Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

CL
qd ≤ CIN

qs ≤ CU
qd

 ∨
 ¬Xsdt

Fsdt = 0

 (s, d) ∈ A, t ∈ T (7.54)



Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

CL
qd ≤ Cqbt−1 ≤ CU

qd q ∈ Q

CL
qdFbdt ≤

∑
r∈R

F̃rbdtĈ
0
qr ≤ CU

qdFbdt q ∈ Q

CL
qdIbt−1 ≤

∑
r∈R

Ĩrbt−1Ĉ
0
qr ≤ CU

qdIbt−1 q ∈ Q


∨

 ¬Xbdt

Fbdt = 0

 (b, d) ∈ A, t ∈ T

(7.55)

Y Bbt

ybbt = 1

Ibt = Ibt−1 +
∑

(n,b)∈A
Fnbt

Ĩrbt = Ĩrbt−1

+
∑

(n,b)∈A
F̃rnbt r ∈ R


∨



¬Y Bbt

ybbt = 0

Ibt = Ibt−1 −
∑

(b,n)∈A
Fbnt

Cqbt = Cqbt−1 q ∈ Q

Ĩrbt = Ĩrbt−1 −
∑

(b,n)∈A
F̃rbnt r ∈ R


b ∈ B, t ∈ T (7.56)
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Z ≤ −(UB − Zi)
( ∑
b∈B, t∈T :

ŷb
i
bt=1

ybbt −
∑

b∈B, t∈T :

ŷb
i
bt=0

ybbt

)

+(UB − Zi)
( ∑
b∈B, t∈T

(ŷb
i

bt)− 1
)

+ UB i ∈ IO

(7.57)

∑
b∈B, t∈T :

ŷb
i
bt=1

(1− ybbt) +
∑

b∈B, t∈T :

ŷb
i
bt=0

ybbt ≥ 1 i ∈ IF
(7.58)

Xnbt ⇒ Y Bbt (n, b) ∈ A, t ∈ T (7.59a)

Xbnt ⇒ ¬Y Bbt (b, n) ∈ A, t ∈ T (7.59b)

IL
n ≤ Int ≤ IU

n n ∈ N , t ∈ T (7.60a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ (n, n′) ∈ A, t ∈ T (7.60b)

FDL
dt ≤ FDdt ≤ FDU

dt d ∈ D, t ∈ T (7.60c)

IL
b ≤ Ĩrbt ≤ IU

b r ∈ R, b ∈ B, t ∈ T (7.60d)

F L
nn′ ≤ F̃rnn′t ≤ FU

nn′ r ∈ R, (n, n′) ∈ A, t ∈ T (7.60e)

0 ≤ ξbnt ≤ 1 (b, n) ∈ A, t ∈ T (7.60f)

F̃rsnt|r=s = Fsnt (s, n) ∈ A, t ∈ T (7.61a)

F̃rbnt|r=b = Fbnt (b, n) ∈ A, t = 1 (7.61b)

Xnn′t ∈ {True, False} (n, n′) ∈ A, t ∈ T (7.62a)

Y Bbt ∈ {True, False} b ∈ B, t ∈ T (7.62b)

Note that variable ybbt is introduced in the formulation. This variable takes the value
of the binary variable that corresponds to Y Bbt in the (BM) reformulation of the GDP
(i.e. ybbt = 1, when Y Bbt = True). It is necessary to introduce the variable to add
the enumeration cuts (7.57) and (7.58), which are added in the form of integer cuts that
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eliminate regions already evaluated in previous iterations. IF is the set of enumeration
cuts that are added when a subproblem is infeasible70. IO is the set of enumeration cuts
that are added otherwise71. Z is the value of the objective function, UB a global upper
bound for the GDP, and Zi an upper bound for the objective function corresponding to the
solution ŷb

i

bt. (7.58) will eliminate from the feasible space those solutions for the master
problem that resulted in infeasible subproblems. When ybbt is different from ŷb

i

bt, then∑
b∈B, t∈T :

ŷb
i
bt=1

ybbt−
∑

b∈B, t∈T :

ŷb
i
bt=0

ybbt is smaller than
∑

b∈B, t∈T (ŷb
i

bt) and (7.57) becomes Z ≤

UB (or an even weaker cut). When ybbt = ŷb
i

bt, then
∑

b∈B, t∈T :

ŷb
i
bt=1

ybbt −
∑

b∈B, t∈T :

ŷb
i
bt=0

ybbt =∑
b∈B, t∈T (ŷb

i

bt). In such a case, (7.57) becomes Z ≤ Zi and the cut is valid (since Zi is

an upper bound of the objective function in the solution ŷb
i

bt).

For a given ˜Y B
fix

bt ∈ {True, False}, b ∈ B, t ∈ T , consider the following subproblem
(which is the (CSB) model with tanks fixed in “charge” or “discharge” mode):

(SP):

max
∑
t∈T

[ ∑
(n,d)∈A

βTd Fndt −
∑

(s,n)∈A

βTs Fsnt −
∑

(n,n′)∈A

(αNnn′xnn′t + βNnn′Fnn′t)
]

(7.63)

s.t.

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt s ∈ S, t ∈ T (7.64a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt d ∈ D, t ∈ T (7.64b)

Fnn′t =
∑
r∈R

F̃rnn′t (n, n′) ∈ A, t ∈ T (7.65a)

Ibt =
∑
r∈R

Ĩrbt b ∈ B, t ∈ T (7.65b)
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F L
nb ≤ Fnbt ≤ FU

nb

 ∨
 ¬Xnbt

Fnbt = 0

 (n, b) ∈ A, t ∈ T , ˜Y B
fix

bt = True (7.66)


Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

CL
qd ≤ CIN

qs ≤ CU
qd q ∈ Q

 ∨
 ¬Xsdt

Fsdt = 0

 (s, d) ∈ A, t ∈ T (7.67)



Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

CL
qd ≤ Cqbt−1 ≤ CU

qd q ∈ Q
CL
qdFbdt ≤

∑
r∈R

F̃rbdtĈ
0
qr ≤ CU

qdFbdt q ∈ Q

CL
qdIbt−1 ≤

∑
r∈R

Ĩrbt−1Ĉ
0
qr ≤ CU

qdIbt−1 q ∈ Q


∨

[
¬Xbdt

Fbdt = 0

]
(b, d) ∈ A, t ∈ T ,

˜Y B
fix

bt = False

(7.68)

Ibt = Ibt−1 +
∑

(n,b)∈A

Fnbt b ∈ B, t ∈ T , ˜Y B
fix

bt = True (7.69)

IbtCqbt = Ibt−1Cqbt−1 +
∑

(s,b)∈A
FsbtC

IN
qs

+
∑

(b′,b)∈A
˜Y B

fix
b′t=False

Fb′btCqb′t−1
q ∈ Q, r ∈ R, b ∈ B, t ∈ T , ˜Y B

fix

bt = True

(7.70)

Ĩrbt = Ĩrbt−1 +
∑

(n,b)∈A

F̃rnbt r ∈ R, b ∈ B, t ∈ T , ˜Y B
fix

bt = True (7.71)
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Ibt = Ibt−1 −
∑

(b,n)∈A

Fbnt b ∈ B, t ∈ T , ˜Y B
fix

bt = False (7.72a)

Cqbt = Cqbt−1 q ∈ Q, b ∈ B, t ∈ T , ˜Y B
fix

bt = False (7.72b)

Ĩrbt = Ĩrbt−1 −
∑

(b,n)∈A

F̃rbnt r ∈ R, b ∈ B, t ∈ T , ˜Y B
fix

bt = False (7.72c)

Fbdt = 0 (b, d) ∈ A, t ∈ T , ˜Y B
fix

bt = True (7.73a)

Fnbt = 0 (n, b) ∈ A, t ∈ T , ˜Y B
fix

bt = False (7.73b)

IL
n ≤ Int ≤ IU

n n ∈ N , t ∈ T (7.74a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ (n, n′) ∈ A, t ∈ T (7.74b)

FDL
dt ≤ FDdt ≤ FDU

dt d ∈ D, t ∈ T (7.74c)

CL
q ≤ Cqbt ≤ CU

q q ∈ Q, b ∈ B, t ∈ T (7.74d)

IL
b ≤ Ĩrbt ≤ IU

b r ∈ R, b ∈ B, t ∈ T (7.74e)

F L
nn′ ≤ F̃rnn′t ≤ FU

nn′ r ∈ R, (n, n′) ∈ A, t ∈ T (7.74f)

F̃rsnt|r=s = Fsnt (s, n) ∈ A, t ∈ T (7.75a)

F̃rbnt|r=b = Fbnt (b, n) ∈ A, t = 1 (7.75b)

Xnn′t ∈ {True, False} (n, n′) ∈ A, t ∈ T (7.76a)

Y Bbt ∈ {True, False} b ∈ B, t ∈ T (7.76b)

Note that the summation of streams that contains the bilinear terms in (7.70) only involves
the blending tanks that are operating as “discharge” ( ˜Y B

fix

b′t = False) at a given time
period.

The decomposition algorithm is as follows:

0. Specify gap ε > 0. Set UB = inf, LB = − inf, i = 1, IO = {∅}, and IF = {∅};
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1. Solve (MP). Let ˜Y B
fix

bt be the value of Y Bbt at the optimal solution. Let ŷb
i

bt be
the binary representation of the Boolean parameter ˜Y B

fix

bt (i.e. if ˜Y B
fix

bt = True then
ŷb

i

bt = 1, and if ˜Y B
fix

bt = False then ŷb
i

bt = 0). Let UB be the value of the optimal
objective function.

2. Solve (SP) using ˜Y B
fix

bt with optimality gap εSP ≤ ε.

If (SP) is infeasible, let i ∈ IF , and go to 3.

If (SP) is feasible, let i ∈ IO. Let Zi∗ be the value of the optimal objective function,
and Zi be the upper bound of the objective function. If Zi∗ > LB then set LB = Zi∗,
let (I∗nt, F

∗
nn′t, C

∗
qbt, Ĩ

∗
rbt, F̃

∗
rnn′t, X

∗
nn′t, Y B

∗
bt) be the optimal values of the variables in (SP)

and go to 3. If Zi∗ ≤ LB go to 3.

3. If (UB − LB)/LB ≤ ε, stop with optimal solution (I∗nt, F
∗
nn′t, C

∗
qbt, Ĩ

∗
rbt, F̃

∗
rnn′t, X

∗
nn′t,

Y B∗bt). Else, set i = i+ 1 and go to 1.

Theorem 7.4.1 The decomposition algorithm converges to the global optimal solution,

within ε optimality gap, after a finite number of iterations.

Proof. Enumeration cut (7.58) guarantees that infeasible solutions are not revisited again
by the master problem. Cut (7.57) ensures that if a feasible solution is revisited, then the
UB from (MP) equals the upper bound of (SP) for that solution (Zi). Since εSP ≤ ε, then
(UB − LB)/LB ≤ ε. �.

Two phases were implemented for the algorithm. Both phases follow the same steps, but
different stopping criteria. In the first phase, the stopping criteria of the master and the
subproblem are the maximum execution time and the optimality gap. In the second phase,
the optimality gap is the only criterion. The objective of the first phase is to quickly find
feasible solutions by limiting the time limit for solving the master and subproblem. Instead
of focusing on a region, the algorithm is allowed to move to the next iteration and try a
different configuration of tanks after a small amount of time. In the second phase, the
objective is to find the optimal solution for the problem within a tolerance. In order to
guarantee global optimality, the master and the subproblem have to be solved, at least, to
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the specified optimality gap of the algorithm.

7.4.2 Illustration of the algorithm

In order to illustrate the decomposition algorithm, consider the motivating example pre-
sented in section 7.2.1. It has an optimal solution of 177.5. The iterations of the algorithm
for this example are explained below.

Step 0. The iteration counter is set to i = 1. The maximum execution time of the algorithm
is set to 30 minutes and the optimality gap is set to 0.01%

Phase 1. The maximum execution time of the master problem is set to 30 seconds and the
optimality gap is set to 0.5%. For the subproblem, the maximum execution time is 100
seconds and the optimality gap is 0.5%. The maximum duration of the first phase is 15
minutes and the optimality gap is set to 0.5%

Iteration 1.

Step 1.1: Master problem. The MILP reformulation of the LGDP relaxation of the hybrid
formulation (CSB) is solved using CPLEX 12.6. The optimality gap after 4 seconds
is below 0.5%. The best possible objective value provided by the solver is an upper
bound for the original GDP. The optimal solution is not a true upper bound because
the MILP is not solved to the tolerance of the algorithm. The upper bound is set to
UB = 177.8 and the solution of the master problem is stored for later use.

Step 1.2: Subproblem. The MINLP reformulation of (CSB), in which the operating
mode of blending tanks has been fixed according to the solution of the master problem
shown in Table 7.11, is solved using SCIP 3.1. The subproblem is feasible with a
solution of 177.3. SCIP is able to close the gap to less than 0.5% in a second. The
lower bound is set to LB = 177.3.

Step 1.3: Stopping criteria. Since the gap between the lower and upper bounds is less
than the tolerance of the first phase, gap= 0.3% ≤ 0.5%, the algorithm proceeds to
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Table 7.11: Value of Boolean variables Y Bbt at the relaxed solution.

Y B∗1bt
Blending tank t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

1 True True
2 True True
3 True
4 True
5 True True
6 True True
7 True True
8 True True

the second phase. The iteration counter is set to i = 2.

The gap between the upper bound 177.8 and the lower bound 177.3 is very small. However,
for illustration purposes, the phase 2 of the algorithm is presented for the example.

Note that the algorithm only needs one iteration and less than 5 seconds to find a good
feasible solution. Neither BARON 14.0, SCIP 3.1 or ANTIGONE 1.1 are able to find a
solution in 30 minutes when solving the original MINLP formulation by Kolodziej et al.79.

Phase 2. The optimality gap for the master and the subproblem is set equal to the tolerance
of the algorithm, 0.01%. Time restrictions do not apply in the second phase. Since no cuts
are added, the master and the subproblem in the first iteration of the second phase are the
same as in the previous iteration, but the optimization has a different stopping criteria.

Iteration 2.

Step 2.1: Master problem. The optimal solution is found after 50 seconds. The new
upper bound is UB = 177.5. At the solution, the operating modes of the blending
tanks are the same as in step 1.2., which means that in the previous iteration CPLEX
12.6 found the optimal solution to the relaxed problem but it did not have time to prove
global optimality.

Step 1.2: Subproblem. The GDP is the same as in the previous iteration, which means

7.4. ITERATIVE TWO-STAGE DECOMPOSITION ALGORITHM 184



CHAPTER 7. GLBOA FOR THE GLOBAL OPTIMIZATION OF A SOURCE BASED
MODEL OF THE MULTIPERIOD BLENDING PROBLEM

that, after finding the same solution of 177.3, SCIP continues the search until the gap
is less than 0.01% and the new lower bound increases to LB = 177.5.

Step 1.3: Stopping criteria. Since the gap between the lower and upper bounds is less
than the tolerance, gap = 0%, the algorithm stops.

In summary, the decomposition algorithm only requires two iterations and less than two
minutes to find the global optimum. In fact, a good feasible solution is found in only a
few seconds. The correct combination of blending tanks obtained from a tight LGDP re-
laxation in the master problem and the critical reduction in the number of binary variables
and bilinear terms leads to a feasible and more tractable GDP in the subproblem, as will
be shown in the next section.

7.5 Computational Results

In this section, we present the computational results of applying the algorithm described in
the previous section to several instances. The MINLP reformulation of the GDP problems
were also solved with the global optimization solver SCIP 3.1 for comparison. There are
rules that could be used for deciding if the algorithm moves from one phase to another
or from one iteration to the next. In this study, the stopping criteria used in the master
problem, in the subproblem and in the first and second phases, are the same as the stopping
criteria used to illustrate the algorithm in section 7.4.2.

48 instances were tested. All instances have eight blending tanks and the same topology.
They can be divided in two groups: instances with initial inventory and instances without
initial inventory. In each group, all combinations of instances with 1, 2, 5 and 10 spec-
ifications and 6 and 8 periods of time were generated. Table 7.12 shows the size of the
instances in terms of the number of variables, constraints and bilinear terms. The values
of the parameters were generated randomly.

The algorithm and models were implemented in GAMS21. All computations were per-
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Table 7.12: Size of the instances for the (C) formulation. The number in parenthesis
indicates the number of instances in each group.

Instances |T | |Q| Binary var. Bilinear terms Variables Constraints
A(6) 6 1 240 128 552 984

B(6) 6 2 240 256 600 1176

C(6) 6 5 240 640 772 1752

D(6) 6 10 240 1280 984 2712

E(6) 8 1 320 176 736 1312

F(6) 8 2 320 352 800 1568

G(6) 8 5 320 889 992 2336

H(6) 8 10 320 1760 1312 3616

formed on a Dell PowerEdge T410 computer with twelve Intel Xeon processors at 2.67
GHz each, 16 GB of RAM, and running Ubuntu Server 14.04 LTS (64-bit).

The decomposition algorithm is able to find at least a feasible solution for 45 out of the
48 instances generated. The three instances that were unsolved had 8 periods and 10
specifications. SCIP 3.1 can only find solutions for 20 instances as was shown earlier in
Table 7.10. Figure 7.6 shows the performance of the decomposition algorithm and the
MINLP reformulation of (CSB) using SCIP 3.1. The figure shows the average normalized
upper and lower bounds. The average normalized lower bound provides the average best
objective function value (ANBOFV)

The figure shows that the decomposition algorithm performs better than SCIP. After ap-
proximately two minutes, the ANBOFV of the instances solved with the algorithm is close
to 0.5, whereas SCIP is below 0.3. As the execution continues, the normalized lower
bound keeps increasing. After 600 seconds, the average solution is within 0.1 from the
best known objective function value. After 1200 seconds, the average normalized lower
and upper bounds are within 0.03 for the decomposition algorithm, while the solutions
provided by SCIP are far from the best known solutions. Another important result is the
value of the upper bound provided by the master problem, which is practically equal to the
best known solution since the first iteration. This shows the tightness of (CSB) when the
nonconvex constrains are relaxed.
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Figure 7.6: Evolution of the average normalized upper and lower bounds, for the decom-
position algorithm (solid line) and SCIP 3.1 (dashed line) when tested in 48 instances. The
graph contains the 45 instances for which a solution could be found.

Table 7.13 shows the problem size, fraction of blending tanks in charge mode at the so-
lution, the normalized upper bound and the time to get it, of the master problem for the
first iteration, all averaged for the 48 instances. Notice that the average time to get a good
upper bound for the original GDP problem is less than a minute, only few seconds in some
cases. Also, the fraction of tanks that are doing blending is low compared with those that
are discharging or in idle mode.

In the subproblem, the decomposition algorithm can find at least a feasible solution to 26
of the instances in the first iteration with a relative lower bound of 0.99. This implies that
the values of the Boolean variables representing the mode of operation of the tanks given
by the master problem is very close to the optimal solution for half of the instances. Table
7.14 shows the problem size and normalized lower bound and time for the first iteration of
the subproblem.

The reduction in the number of binary variables and bilinear terms is essential to the suc-
cess of the algorithm. On average, the number of binary variables drops 70% when com-
pared to the original MINLP reformulation of the GDP. Similarly, the number of bilinear
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Table 7.13: Average values for the Master Problem at the first iteration (MILP reformula-
tion of LGDP relaxation).

Instances Variables Const. Binary Var. Fraction Normalized UB Time (s)
Y Bbt = True

A(6) 1584 1896 240 0.30 1.001 5.2
B(6) 1584 2088 240 0.30 1.007 14.9
C(6) 1584 2664 240 0.29 1.007 22.5
D(6) 1584 3624 240 0.31 1.037 22.8
E(6) 2072 2528 320 0.34 1.001 15.6
F(6) 2072 2784 320 0.34 1.007 11.0
G(6) 2072 3552 320 0.34 1.004 24.3
H(6) 2072 4832 320 0.34 1.011 41.3

Table 7.14: Average values for the Subproblem at the first iteration.

Instance Variables Const. Binary Var Bilinear Terms Normalized LB Time (s)
A(6) 857 1776 56 40 0.83 7.2
B(6) 951 2302 59 83 0.66 67.4
C(6) 1058 3880 57 200 0.83 68.3
D(6) 1301 6510 58 405 0.33 68.8
E(6) 1094 2408 69 45 1.00 38.3
F(6) 1186 3130 72 91 0.33 157.2
G(6) 1400 5296 75 235 0.32 207.8
H(6) 1729 8906 76 470 0.00 177.3
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terms decreases by 70%. These reductions are the main reasons why the MINLP global
solver used in the subproblem can find feasible solutions. Note that the lower bound is
very close to the best known objective function value for those instances with 6 time peri-
ods and 1, 2 and 5 specifications. However, the value of the feasible solution for instances
with 10 specifications is not as good. When dealing with 8 time periods, only those with a
single specification have good lower bounds. Nevertheless, the solution for those instances
with 2 and 5 specifications is still good considering that it is the first iteration.

In conclusion, the decomposition algorithm performs better than SCIP 3.1 for the 48 in-
stances generated. The algorithm is able to find a good feasible solution for 45 of the
instances in less than two minutes. The tightness of the relaxation of the master problem
and the reduction in the number of binary variables and bilinear terms in the subproblem
are key to the success of the algorithm.

7.6 Conclusions

In this chapter, we have addressed the multiperiod blending problem, which frequently
arises in the petroleum and petrochemical industry. Our main goal has been to develop new
formulations and new algorithms for obtaining good feasible solutions in few minutes. We
have presented two principal contributions towards solving multiperiod blending problems
more effectively.

First, we have presented a source based formulation. The sources in a system are the sup-
plies and initial inventories. They can be interpreted as raw materials of known composi-
tion. The model uses flow and inventory variables to track down each one of the sources
along the network. The notion of split fraction is used to guarantee that the outflows from a
tank have the same composition. These are the only nonlinearities in the model. The com-
position of a stream is determined from the compositions of each of the sources present in
the stream. Since the latter are parameters in the model, the specification requirement con-
straints are linear. Lastly, we found redundant linear constraints that can be added to this
model in order to improve its relaxation. In the context of a branch-and-bound search, this
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speeds up the convergence by reducing the number of open nodes. It was shown that the
number of instances for which a feasible solution can be found using a global optimization
solver increases when adding the redundant constraints (from 31 % to 41 % using SCIP
3.1)

Second, we have proposed a solution procedure that takes advantage of the operational
assumption of non-simultaneous inlet/outlet streams in the blending tanks. Under this as-
sumption, we can think of two non-coincident modes of operation for each blending tank
at any time period: charge mode or discharge mode. This restriction can be modeled using
disjunctions. The GDP formulation leads to a reduction in the number of bilinear terms and
generates a favorable structure that can be exploited in a decomposition algorithm. Thus,
an iterative two-stage MILP-MINLP decomposition method for the global optimization
of the multiperiod blending problem is proposed. The first stage, or master problem, is
a linear GDP relaxation of the original GDP and provides rigorous upper bounds. The
second stage, or subproblem, is a smaller GDP in which the set of the binary variables
representing the modes of operation for the blending tanks is fixed accordingly to the so-
lution of the master problem. The subproblem, when a feasible solution is found, provides
a feasible solution to the original GDP and a rigorous lower bound. These problems are
solved successively until the gap between the upper and lower bound is closed.

The decomposition algorithm was tested in 48 instances and compared against the global
optimization solver SCIP 3.1. The results show that the algorithm performs better than
SCIP 3.1. In fact, the algorithm is able to find feasible solutions for 45 out of the 48
instances, whereas SCIP could only find solutions for 20 instances. Feasible solutions are
obtained in less than two minutes. After less than 15 minutes, the solutions obtained with
the algorithm are within 3% of the best known solutions, whereas the solutions provided
by SCIP are at around 60% from the optimal values. The tightness of the relaxation of the
source based formulation when the nonconvex constraints are relaxed is reinforced by the
values of the upper bound given by the master problem. They are practically equal to the
best known objective function value since the first iteration. The better performance of the
algorithm when compared with SCIP can be explained by the reduction in the number of
binary variables and bilinear terms in the subproblem.
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Conclusions

8.1 Summary of thesis

In this section we summarize the major findings and accomplishments in each chapter.

8.1.1 Improved Big-M reformulation for GDP problems

In chapter 2 we have proposed a new MILP/MINLP reformulation for GDP problems,
namely the multiple-parameter Big-M (MBM). This new reformulation is similar to the
BM but, instead of using one M-parameter for each constraint, it uses several. This refor-
mulation can provide stronger continuous relaxations than the traditional BM in disjunc-
tions with more than 2 disjunctive terms. In the traditional BM, the M-parameter must
be large enough to be valid, but as small as possible to be tight. In addition to using the
physical meaning of the constraints, optimal and good M-parameters of a constraint can
be obtained by solving optimization problems. In section 2.2 we present two optimization
problems to obtain such parameters: (2.1) which is a GDP, and (2.2) which is an LP or
NLP depending on the original GDP.

In MBM, instead of having one M-parameter when a disjunctive term is not active, there
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is a different M-parameter if a different disjunctive term is active. The new formulation
(MBM) involves the same number of variables and constraints as (BM). Also, as proven in
Theorem 2.3.1, (MBM) is at least as tight as (BM). For example, in the illustrative mini-
mization example (2.7) the optimal objective function is−9.472, the continuous relaxation
of (BM) gives a value of−10.493, and the continuous relaxation of (MBM) gives−9.735.
Clearly, the optimal objective value of the continuous relaxation of (MBM) is much better.
The new reformulation was tested with instances of the process network problem and the
design of multi-product batch plant problem.

For the four instances of the process network problems, the lower bound of the continu-
ous relaxation is improved considerably. For example, in instance Proc-1-21 the optimal
objective function is 17.2, the continuous relaxation of (BM) gives a value of 1.7, and the
continuous relaxation of (MBM) gives 10.0. The time to solve process network problems
is reduced by 50% to 90% when using (MBM) instead of (BM). For example, instance
Proc-1-31 is solved in 1.2 seconds, instead of 6.5; and instance Proc-1-48 is solved in 5.7

seconds instead of 63.7. The number of nodes is also reduced by 50% to 90% when using
(MBM) instead of (BM).

In the 6 instances of the multi-product batch plant problem, the continuous relaxation is
the same. However, the (MBM) formulation requires fewer nodes than the (BM) in 5 of the
6 instances. In instance BatchS101006 the difference is drastic, since the (BM) requires
10, 894 nodes and the (MBM) only 1, 595. In other instances the difference is smaller.
For example, in the largest instance (BatchS201210), the (BM) requires 13, 774 nodes and
the (MBM) 10, 158. There is only one instance in which the (BM) requires fewer nodes:
instance BatchS151208. For this example, (MBM) solves faster in 4 instances, ties in 1
instance, and is slower in 1 instance.

It is clear that the MBM can be better than the BM in disjunctions with more than two dis-
junctive terms. However, one of the main limitations of this reformulation is that in order
to be better than the BM it requires good M-parameters. Simply using valid M-parameters
that are bad (i.e. very large) will typically yield reformulations in which the BM and MBM
have the same continuous relaxation. While problem knowledge is a good alternative for
obtaining good M-parameters, it requires input from the modeler into the reformulation.
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Solving (2.2) provides an automated method for obtaining good M-parameters. However,
this method can be expensive and, in some cases, it may require more time to obtain good
M-parameters than to solve the original problem.

8.1.2 Algorithmic approach for improved mixed-integer reformula-
tions of convex GDP problems

In chapter 3 we have proposed an algorithmic approach to exploit the advantages of the
BM and HR reformulations for convex GDP problems. In particular, the algorithms obtain
formulations that have tight continuous relaxations with a small increase in the number of
variables and constraints. There are three main stages in this method: (a) Feasibility check
in individual disjunctions through the solution of continuous programs; (b) application of
basic steps in specific disjunctions; (c) hybrid BM/HR reformulation of the GDP.

The algorithm was tested with 36 instances. The results show that the algorithm generates
formulations with better continuous relaxations, while having a small increase in problem
size. In 28 of the 36 the relaxation after applying the algorithm provides better bounds than
the relaxation of the HR, and in the remaining 8 both provide the same bounds. In some
cases, the algorithm provides a relaxation that is actually the optimal value of the objective
function. For example, the solution to the continuous relaxation of instance Process-8 is
1, 098, which is the value of the optimal solution to the problem. In most cases, the gap
improves around 20%-40% compared to the HR. For example, in C-Lay-5-2 the solution
is 11, 472, the (BM) and (HR) relaxations are 0, and the relaxation after the algorithm
is 4, 203. The HR generates larger MILP/MINLP reformulations than the algorithm in
25 of the 36 instances. In most of the instances in which the algorithm generates larger
instances, they are not much larger. For example, in instance C-Lay-5-4 the MINLP after
the algorithm has 392 variables and 952 constraints, while the HR of the original GDP
generates an MINLP with 292 variables and 608 constraints. Note that for this instance
the lower bound of the HR is 0, and the MINLP after the algorithm is 2, 695 (the optimal
solution is 10, 876). Over all instances, the algorithm leads to a reduction in solution times
as presented in Figure 3.4.
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The results in chapter 3 show that the proposed algorithm can provide improved MINLP
reformulations for convex GDP problems. However, there is a downside to this algo-
rithm. The algorithm iteratively applies basic steps in the “key disjunction”. Therefore,
the selected disjunction grows exponentially with the iterations. Also, if a basic step that
generates no improvement is applied, the disjunction grows exponentially without provid-
ing any improvement. Furthermore, the final formulation will also increase in size without
providing improvement in the relaxation. In chapter 3 we have proposed heuristics for the
selection of basic steps, but different problems will perform better with different heuristics.
The downside of the algorithm is that its performance strongly depends on the selected dis-
junctions to which the basic step is applied (i.e. it strongly depends on the heuristics in the
application of basic steps).

8.1.3 Cutting plane algorithm for convex GDP

In chapter 4 we have presented an alternative method for exploiting the advantages of the
BM and the HR after basic steps. The algorithm generates the cuts by solving a separation
problem (NLP problem (4.3)). The NLP finds a point in the continuous relaxation of the
tight formulation that minimizes the distance to the optimal solution of the continuous
relaxation of the BM. If the point obtained by the separation problem is different from the
optimal solution of the continuous relaxation of the BM, it is possible to obtain a valid
inequality that cuts-off the optimal solution of the continuous relaxation of the BM. The
derivation of this cut has been presented in Propositions 4.2.4 and 4.2.5 (Proposition 4.2.6
when the norm-2 is used in (4.3)). The resulting MINLP after deriving cuts has the same
number of variables than the BM, and the number of constraints is the same as the BM
plus the number of cuts. In chapter 4 the cuts have been derived only at the root node, but
it is possible to apply this method at different nodes in a disjunctive branch and bound.

The algorithm was tested with 19 nonlinear convex GDP problems, using different strate-
gies for the selection of basic steps and number of cuts. The resulting MINLP after 3 cuts,
with the strategy K5-I1 described in chapter 4, was shown to be better than the BM and
HR for the tested instances. In particular, its continuous relaxation provides better bounds
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than the HR in 12 of the instances and the same bound in 7, and it generates smaller
MINLP models than the HR in every instance. Furthermore, its continuous relaxation is
better than that of the BM in every instance, while having the same number of variables
and only 3 more constraints. An example of the improved MINLP is instance Clay54. The
optimal solution is 10, 876, the solution to continuous relaxation of the BM and HR is 0,
while the continuous relaxation of the BM after the cuts yields a value of 4, 417. The num-
ber of variables for the BM, HR, and BM after cuts are 32, 232, and 32, respectively. The
number of constraints for the BM, HR, and BM after cuts are 178, 608, 181, respectively.

The improved formulations typically result in improved solution times. For example, in
the same instance (Clay54), the solution times for solving the MINLP that results from the
BM, HR, and BM after cuts are 2, 075 s, 5, 175 s, and 306 s. The time to generate the cuts
in this instance is 34 s, so the improvement in total solution time is considerable.

8.1.4 Lagrangean relaxation of the HR of linear GDP problems and
its use in the disjunctive branch and bound

In chapter 5 we have proposed a Lagrangean relaxation that can be applied to any linear
GDP. The Lagrangean relaxation is an MILP that can be solved as an LP, as was proven
in Property 5.3.3. Furthermore, we had proven in Property 5.3.2 that it can be solved by
solving several small LP problems in parallel. While the proposed Lagrangean relaxation
can be used in different ways to improve GDP solution methods, in chapter 5 we have
explored its use as primal heuristic in a disjunctive branch and bound.

We have tested the proposed modified disjunctive branch and bound with 300 instances,
100 of each of the 3 test problems. Over all instances, the proposed algorithm (ALG)
solves more instances in 2 hours than three alternative disjunctive branch and bound meth-
ods: BM, HR, and BM with random primal heuristic (RAN). Of the 300 instances, the
BM, HR, RAN, and ALG solve 253, 266, 269, and 296, respectively. For the 3 test prob-
lems, the performance in terms of number of nodes is better for the proposed algorithm
than for the rest.
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In terms of solution time, the performance varies by problem. The proposed algorithm
and the heuristic one are the best for the unstructured GDP instances. They solve more
instances than the rest within the two hour time limit; 98% for the proposed and heuristic
algorithms vs. 81% for the BM, and 72% HR. For the strip packing problem, the HR dis-
junctive branch and bound performs the best, while the proposed algorithm performs third
in terms of solution time. For the contracts problem, the proposed algorithm performs the
best by solving 98% of the instances, while the BM, HR, and random heuristic algorithm
solve 72%, 94%, and 71%.

The proposed Lagrangean relaxation has important properties and can be useful in im-
proving GDP solution methods. However, the current implementation proposed disjunc-
tive branch and bound is still a prototype. Its performance in considerably worse than
commercial LP-based branch and bound methods. In order for the disjunctive branch and
bound to be competitive, it is necessary to improve the algorithmic implementation as well
as to extend the algorithm to nonlinear convex problems.

8.1.5 Cutting planes for improved global logic-based outer- approxi-
mation of nonconvex GDP problems

In chapter 6 we have presented a global logic-based outer-approximation (GLBOA), which
terminates in a finite number of iterations, as was shown in Theorem 6.2.1. The general
idea of the algorithm is to have a linear master GDP that overestimates the feasible region
of the GDP. This master problem provides a valid lower bound (in a minimization prob-
lem), and the selection of only one disjunctive term in each of the disjunctions. With the
alternative provided by the master problem, an NLP subproblem is solved to global op-
timality. After solving this subproblem, infeasibility or optimality integer cuts are added
to the master problem. In addition to the basic GLBOA, we have proposed two enhance-
ments to the algorithm. The first enhancement is to partition the method into two phases.
This partition allows finding feasible solutions faster. We further improve the first phase
by including a penalty cost in the objective function that drives diversity in the finding
of feasible solutions. The second enhancement is a cutting plane method to improve the
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lower bounding of the algorithm. The cuts are obtained by solving problem (6.5), which
is an NLP, to global optimality. The cuts are valid for the original GDP, as presented in
Theorem 6.3.1.

The algorithm was tested with 20 instances of layout-optimization of screening systems in
recovered paper production, 20 of reactor-separator process superstructure, and a more re-
alistic problem of designing a distillation column for the separation of benzene and toluene
with ideal equilibrium. The results show that the algorithm with the different enhance-
ments perform better than commercial general purpose global optimization solvers. They
also show that the different enhancements are important in the overall performance of the
algorithm.

The GLBOA without any enhancement can be useful in some problems. For example,
in the reactor-separator process superstructure BARON 14.0.3 can find a feasible solution
in only 2 of the 20 instances, while the basic algorithm finds a feasible solutions in 12
of the instances. In some cases, the basic GLBOA is not useful. For example, in the
layout-optimization of screening systems in recovered paper production problem BARON
performs better than the basic GLBOA.

The two phases can considerably improve the performance of the GLBOA in some prob-
lems. For example, in the design of a distillation column for the separation of benzene and
toluene the basic algorithm does not find a solution while the two-phase modified versions
finds the best-known solution. The additional enhancement of favoring diverse solutions
by a penalty in the objective function is also beneficial in some problems. For example,
in the reactor-separator process superstructure the two-stage algorithm without a penalty
finds a feasible solutions in 12 of the instances, but the two-stage version with the penalty
finds a feasible solution in the 20 instances.

The cutting plane enhancement can considerably improve the lower bound of the master
problem when the linear relaxation is obtained by dropping the nonlinear constraints. For
example, in the reactor-separator process superstructure the average relative lower bound
of the master problem without nonlinear constraints is 0.6. However, by including the cuts
the algorithm improves and provides a relative lower bound of 0.9. In the tested examples,

8.1. SUMMARY OF THESIS 197



CHAPTER 8. CONCLUSIONS

the cuts do not improve much the lower bound of the algorithm when linear overestimators
are used to relax the nonlinear constraints.

8.1.6 GLBOA for the global optimization of a source based model of
the multiperiod blending problem

In chapter 7, we have addressed the multiperiod blending problem, which frequently arises
in the petroleum and petrochemical industry. We have presented two principal contribu-
tions towards solving multiperiod blending problems more effectively: a source based
model and the application of the GLBOA in its solution.

In Theorem 7.3.1, the source based GDP was proven to be tighter than the split fraction
GDP. Furthermore, Theorem 7.3.2 shows that linear constraints from the source based
model can be added to the total flow and composition model in order to improve its re-
laxation. For the MINLP reformulation of the GDP, the number of instances for which a
feasible solution can be found using a global optimization solver increases when adding
the redundant constraints. BARON 14.0 finds feasible solution in 29% of the instances
when including these redundant constraints, and only in 21% when they are not included.
ANTIGONE 1.1 improves to 31% from 29%. Finally, SCIP 3.1 finds feasible solutions in
42% of the instances when including the redundant constraints, and only in 31% without
them.

For the second contribution, we have applied a modified version of the GLBOA from chap-
ter 6 to solve the GDP with the source based redundant constraints. The results show that
the algorithm performs better than solving the MINLP reformulation of the original GDP.
The comparisons are presented against SCIP 3.1, which performs better than the other
general purpose global solvers for this problem. The algorithm finds feasible solutions for
45 of the 48 instances, whereas SCIP only finds solutions for 20 instances. The algorithm
finds a feasible solution in 26 of the 48 instances in the first iteration, which takes less than
4 minutes.

The developments in this chapter allow to solve problems with up to 4 blending tanks,
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10 qualities and 8 time periods. These parameters are a considerable improvement to
previous work in which the largest solvable instances involved 4 blending tanks, 2 qualities
and 4 time periods79. However, the numbers still fall short for real-operation problem
sizes. Gasoline blending involves 4 blending tanks and around 10 qualities, which is close
to the instances solved in this chapter. However, it typically requires the solution of 20
time periods. The difference is even larger in crude oil blending problems, which involve
instances with over 40 tanks and 20 time periods.

8.2 Research contributions

The major contributions of this thesis can be summarized as follows:

1. Proposed a new Big-M reformulation for GDP problems, that is at least as tight as
the traditional Big-M and requires the same number of variables and constraints.

2. Proposed a heuristic for the application of basic steps, which includes the number
of terms in the disjunction and its characteristic value (Definition 3.2.1).

3. Developed an algorithm to improve the MILP/MINLP reformulation of convex GDP
problems. This algorithm makes use of basic steps and a hybrid BM/HR reformula-
tion of GDP problems.

4. Proposed a separation problem to obtain valid inequalities for the Big-M reformula-
tion of convex GDP problems. The inequalities cut off points that are valid for the
continuous relaxation of the BM, but not for the continuous relaxation of the HR
after the application of basic steps.

5. Proved that the cutting planes are valid, and applied them to improve the BM refor-
mulation of convex GDP problems.

6. Proposed a Lagrangean relaxation of the HR of linear GDP problems. Proved that
such a relaxation, which is an MILP, can be solved by solving several small LP
problems in parallel.
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7. Implemented a prototype disjunctive branch and bound, in which the proposed La-
grangean relaxation is used as a primal heuristic.

8. Proposed the use of a global logic-based outer-approximation for the solution of
nonconvex process design problems. Showed through several instances that the par-
tition of the algorithm into two phases helps to find feasible solutions faster.

9. Developed a novel separation problem to obtain cutting planes that improve the
linear relaxation of nonconvex GDP problems. The cutting planes cut off points that
are outside of the convex hull of the feasible region of disjunctive terms.

10. Presented a new GDP model for the multiperiod blending problem using redundant
constraints from a source-based model that provides stronger linear relaxations than
other models.

11. Applied a modified version of the GLBOA that finds feasible solutions for the mul-
tiperiod blending problem faster than using general purpose global algorithms in the
MINLP reformulation of the GDP model.

8.3 Future research directions

8.3.1 Improve heuristics for the application of basic steps

While there are some rules on when not to apply basic steps, heuristics to decide which
disjunction to intersect are needed in practical implementations. One such heuristic is
presented in Section 3.2.3. This heuristic is good for packing problems (strip packing,
constraint layout, and farm layout). In particular, the original disjunctions in these types
of problems establish the relative position between two rectangles. By using the heuristic
in Section 3.2.3, the basic steps are applied first over all of the disjunctions that establish
the relative position among 3 or more rectangles. For example, if the first selected disjunc-
tion was the one corresponding relative position of rectangle A and B, then the second
disjunction selected will involve either A or B. In this example, consider that the second
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selected disjunction corresponds to the relative position ofB and F , then the third selected
disjunction will be the one that establishes the relative position of A and F . Thus, in this
example, the resulting disjunction completely establishes the relative positions among A,
B, and F . The rule in Section 3.2.3 also selects the “bigger rectangles”.

While this rule is useful for packing problems, it is not necessarily so for other problems.
The heuristics for the application of basic steps have to be based on problem structure.
Developing good heuristics for different types of problems would be beneficial for the
different methods that make use of basic steps.

8.3.2 Include cutting planes in a disjunctive branch and bound

The application of the cutting planes presented in chapter 4 to a convex GDP considerably
helped the MINLP reformulation in many cases. This method can be considered as the
application of cutting planes at the root note. However, these cutting planes can be further
applied in subsequent nodes in a disjunctive branch and bound. The use of these cuts in
different nodes of the disjunctive branch and bound can help to prune nodes by improving
the relaxation. This direction is a natural extension to the work presented in this thesis,
that combines the work of chapters 4 and 5.

8.3.3 Extend the Lagrangean relaxation to nonlinear convex GDP

The Lagrangean relaxation presented in chapter 5 can be extended to nonlinear convex
GDP. The first two properties still hold: it can be applied to any convex GDP problem, and
it can be separated into several smaller problems. However, the solution to the Lagrangean
relaxation will not necessarily yield 0-1 values to the binary variables. To prove that there
exists an optimal solution to the Lagrangean relaxation that assigns 0-1 values to the binary
variables, it is necessary to extend Corollary 2.7 from Ruiz and Grossmann15. If Corollary
2.7 is extended for this problem, then an integer solution to the Lagrangean relaxation
can be obtained by applying simple algebra to any non-integer solution of the Lagrangean
relaxation.
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Extending the Lagrangean dual to nonlinear convex GDP problems will allow its use as
a primal heuristic in a nonlinear disjunctive branch and bound. Considering the positive
results obtained for the linear case, it seems like an important research direction.

8.3.4 Embed logic constraints in the branching decisions of the dis-
junctive branch and bound

Using the logic propositions in GDP for the branching strategy can lead to significant
reductions in solution times. Specifically, it can allow the pruning of nodes without re-
quiring to solve LP/NLP problems. Integrating logic propositions with optimization can
be achieved through resolution techniques64. Extensive work in this area has been done
by Hooker27.

GDP provides a modeling framework that is compatible with the integrated methods de-
veloped by Hooker27. Furthermore, the disjunctive branch and bound as solution method
for GDP problems can greatly benefit form these integrated methods. Current GDP for-
mulations accept Boolean logic in the logic propositions. Extending GDP form to include
even more general type of constraints can also be fruitful.

8.3.5 Improve the implementation of the prototype disjunctive branch
and bound

The current implementation of the branch and bound presented in chapter 5 is a prototype.
The algorithm is coded in GAMS, and it requires the generation of an LP/NLP at every
single node. It also requires the generation of many nodes, with their corresponding in-
formation, that are pruned because the parent node has a value that is worse than the best
known integer solution. In addition, the inclusion of the logic propositions in the branching
strategy is inefficient and complicated using GAMS. For these reasons, another program-
ming language, as well as improvements in the code, are required to obtain a competitive
algorithm.
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8.3.6 Test the GLBOA with more realistic design problems

In chapter 6, the GLBOA is tested with several instances of two toy problems and with
one instance of a more realistic one. In the realistic instance, the two-phase version of the
algorithm performs well in terms of finding good feasible solutions. However, the cutting
planes derived in this chapter show no effect in this example. Testing the GLBOA and its
corresponding enhancement in more instances of realistic problems will help to prove the
value of this approach.

8.3.7 Extend the cutting plane method in GLBOA to nonconvex NLPs

In chapter 6, separation problem (6.5) allows the derivation of valid cutting planes in
nonconvex feasible regions (that correspond to a disjunctive term). This method can be
applied in general to any nonconvex NLP problem. Performing the separation problem
to the full NLP is not practical, since the separation problem would become harder to
solve than the original NLP. However, it is possible to select a subset of the nonconvex
constraints and use a convex relaxation of the remaining ones.

In some cases, generating valid cutting planes for a nonconvex NLP can help to solve the
problem to global optimality faster. In particular, when the convex relaxation of the NLP
is performed, these valid cutting planes may provide tighter relaxations. Therefore, some
regions in the spatial branch and bound are likely to be pruned at earlier stages of the algo-
rithm. The theory for this extension needs to be developed an proved, and computational
results are required to show that the strategy can be useful in some instances.

8.3.8 Extend the implementation of GDP models and tools in opti-
mization modeling software

In recent years, GDP as a modeling framework has been increasingly used in process
systems engineering16. However, GDP has not been as successful in other areas of opera-
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tions research. The adequate implementation of GDP as a modeling language in existing
software would greatly increase the exposure of GDP in different areas.

Modeling languages such as GAMS21 and PYOMO106 have already provided useful progress
in this regard. The extended mathematical programming framework (EMP) in GAMS re-
formulates GDPs as MILP/ MINLPs, allowing the user to directly model GDPs and to
specify the use of either the BM or the HR reformulation. Furthermore, LOGMIP107 is a
code in C that not only reformulates GDPs to MILP/ MINLPs, but also allows the logic-
based outer-approximation as solution method (as an alternative to direct reformulation).
LOGMIP can be used as an stand-alone code or through GAMS. Similarly, PYOMO al-
lows the modeling of problems as GDPs. The algorithms presented in chapters 3 and 4 are
available in PYOMO. Therefore, the user can obtain the BM, HR, or the improved formu-
lations (presented in chapters 3 and 4) by changing a single line of the code in PYOMO.

The advantages of having multiple models by simple changes in a code are clear. Further-
more, the additional tools and advantages of solving GDP problems can be exploited using
these frameworks. These implementations are incomplete in terms of solution methods,
and they are still not very intuitive. Improving these implementations will help to boost the
use of GDP as modeling framework, generating more interest in GDP. As a result, GDP
will benefit from theoretical developments and improvements in existing algorithms.

8.3.9 Extend the GDP framework to include different types of vari-
ables and constraints

Although the GDP framework allows the representation of a wide-range of discrete - con-
tinuous problems, in some cases it is convenient to represent constraints using other frame-
works. For example, the modeling of assignment constraints or of knapsack constraints
can be easily achieved with MILP. Furthermore, these types of constraints can be solved
efficiently as MILPs. Representing them through the current GDP framework would in-
volve additional effort and perhaps result in inefficient models.

The use of different types of constraints and variables will result in more efficient methods
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and algorithms. While a first natural step is to involve discrete variables in the current
GDP framework, other types of constraints can also be explored.
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Appendix A

GDP formulations for the strip packing
problem

A.1 Introduction

The two-dimensional strip packing is a special case of “Cutting and Packing” problems
that arises in many applications. The problem seeks to pack a given set of rectangles into
a strip of given width in order to minimize its length. Some applications in which the
strip packing problem arises are: Cutting pieces from wooden boards, cutting pieces from
glass or steel sheets, optimal layout of industrial facilities, etc. Lodi et al.108 present a
comprehensive survey of applications and methods. Following the typology proposed by
Wascher et al.109 for cutting and packing problems, the two-dimensional strip packing is
classified as two-dimensional open dimension problem (2-ODP).

Although there exist several heuristic and meta heuristic algorithms for solving the prob-
lem110, exact algorithms have been proposed for the solution of the two-dimensional strip
packing. Martello et al.111 present a branch and bound algorithm. The lower bound of the
nodes in this method is obtained considering the geometry of the problem. Alvarez-Valdes
et al.112 improve the branch and bound method of Martello et al. by obtaining stronger
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lower bounds and deriving new dominance conditions.

In addition to specialized algorithms, the two-dimensional strip packing problem has been
formulated as a mixed-integer linear program (MILP). Westerlund et al.113 present an
MILP model for the N-dimensional allocation, which includes the strip packing problem.
Castro and Oliveira114 present two different MILP formulations for the problem, based on
scheduling models. One formulation follows a discrete-space approach, and it is based on
the Resource-Task Network process representation. The other formulation uses a hybrid
continuous/discrete representation, in which the width of the strip is discrete and the height
is treated as continuous.

In this section, we present a GDP model for the strip packing problem. This model, which
is a modification of the model by Sawaya and Grossmann29, uses additional constraints
within the disjunctions in order to break symmetry in the solutions. The model is further
improved for the case in which the heights and lengths of the rectangles are integer (which
is true in general with a simple transformation, as long as the lengths and heights of the
rectangles are rational numbers). The model is reformulated with the three GDP-to-MILP
schemes (BM, MBM, and HR) and solved as an MILP. The new formulations with the al-
ternative GDP-to-MILP reformulations are tested with 100 random instances. The results
show that the new symmetry-breaking formulation is solved faster than the formulation by
Sawaya and Grossmann. The results also show that the BM reformulation solves faster
than the other GDP-to-MILP reformulations (MBM and HR).

A.2 GDP formulation of the two-dimensional strip pack-
ing problem

The two-dimensional strip packing problem consists on placing a given set ofN rectangles
in a strip. The height and length of each rectangle is known (Hi, Li; i ∈ N ), and the strip
has width W . The rectangles cannot be rotated. The objective is to minimize the total
length of the strip. Figure A.1 illustrates the strip packing problem.

A.2. GDP FORMULATION OF THE TWO-DIMENSIONAL STRIP PACKING
PROBLEM
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Figure A.1: Illustration of the two-dimensional strip packing problem.

The GDP formulation of this problem, presented by Sawaya and Grossmann29, is as fol-
lows:

min lt

s.t. lt ≥ xi + Li i ∈ N[
Z1
ij

xi + Li ≤ xj

]
∨

[
Z1
ji

xj + Lj ≤ xi

]

∨

[
Z2
ij

yi −Hi ≥ yj

]
∨

[
Z2
ji

yj −Hj ≥ yi

]
i, j ∈ N, i < j

Z1
ij Y Z

1
ji Y Z

2
ij Y Z

2
ji i, j ∈ N, i < j

0 ≤ xi ≤ UB − Li i ∈ N
Hi ≤ yi ≤ W i ∈ N
Z1
ij, Z

2
ij ∈ {True, False} i, j ∈ N, i 6= j

(SG)

In (SG), the continuous variables (xi, yi) represent the coordinates of the upper-left corner

A.2. GDP FORMULATION OF THE TWO-DIMENSIONAL STRIP PACKING
PROBLEM
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Figure A.2: Illustration of the relative position of j with respect to rectangle i.

of rectangle i. The objective is to minimize the distance lt. The global constraints (lt ≥
xi + Li) enforce that the total distance is greater than the x coordinate of the right edge of
each rectangle. The logic variables indicate the relative position between two rectangles:
Z1
ij = True if rectangle i is to the left of rectangle j, Z1

ji = True vice versa; Z2
ij = True

if rectangle i is on top of rectangle j, Z2
ji = True vice versa. The disjunction establishes

the four possible relative positions between each pair of rectangles (i.e. rectangle i is to
the left, right, top or bottom of rectangle j). Exactly one alternative must be selected
(Z1

ij Y Z
1
ji Y Z

2
ij Y Z

2
ji). For the selected alternative the corresponding constraints are

enforced (e.g. if Z1
ij = True then xi + Li ≤ xj is enforced). For the terms not selected

(e.g. Z1
ji = False) the corresponding constraints are ignored. The continuous variables

have upper and lower bounds, where UB is an upper bound for the length of the strip (a
simple upper bound can be obtained with UB =

∑
i Li).

Figure A.2 represents the disjunction in the formulation. The figure shows the possible
positions for a rectangle j with respect to a rectangle i. Note that there are two alternative
decisions that are feasible for the darker regions of the figure. For example, if j is both
above and to the right of i it is possible to set Z1

ij = True;Z1
ji = Z2

ij = Z2
ji = False or

Z2
ji = True;Z1

ji = Z1
ji = Z2

ij = False. If Z1
ij = True the constraints corresponding to

Z2
ji are ignored (which means that they may or may not be satisfied).

A.2. GDP FORMULATION OF THE TWO-DIMENSIONAL STRIP PACKING
PROBLEM
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For this problem, the BM reformulation is as follows:

min lt

s.t. lt ≥ xi + Li i ∈ N

xi + Li ≤ xj + UB(1− z1
ij) i, j ∈ N, i < j

xj + Lj ≤ xi + UB(1− z1
ji) i, j ∈ N, i < j

yi −Hi ≥ yj −W (1− z2
ij) i, j ∈ N, i < j

yj −Hj ≥ yi −W (1− z2
ji) i, j ∈ N, i < j

z1
ij + z1

ji + z2
ij + z2

ji = 1 i, j ∈ N, i < j

0 ≤ xi ≤ UB − Li i ∈ N
Hi ≤ yi ≤ W i ∈ N
z1
ij, z

2
ij ∈ {0, 1} i, j ∈ N, i 6= j

(SG-BM)

In (SG-BM), the Boolean variables (Z1
ij, Z

2
ij) are transformed to binary variables with a

one-to-one correspondence (i.e. z1
ij = 1 is equivalent to z1

ij = True, while z1
ij = 0 is

equivalent to z1
ij = False). Exactly one disjunctive term must be selected (z1

ij + z1
ji +

z2
ij + z2

ji = 1). When a disjunctive term is selected, the corresponding constraints are
enforced (e.g. If z1

ij = 1, then xi + Li ≤ xj). When it is not selected, the corresponding
constraints become redundant (e.g. If z1

ji = 0, then xj + Lj ≤ xi + UB).

A.2. GDP FORMULATION OF THE TWO-DIMENSIONAL STRIP PACKING
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The MBM reformulation is as follows:

min lt

s.t. lt ≥ xi + Li i ∈ N

xi + Li ≤ xj + UB(z1
ji + z2

ij + z2
ji) i, j ∈ N, i < j

xj + Lj ≤ xi + UB(z1
ij + z2

ij + z2
ji) i, j ∈ N, i < j

yi −Hi ≥ yj −W (z1
ij + z1

ji + z2
ji) i, j ∈ N, i < j

yj −Hj ≥ yi −W (z1
ij + z1

ji + z2
ij) i, j ∈ N, i < j

z1
ij + z1

ji + z2
ij + z2

ji = 1 i, j ∈ N, i < j

0 ≤ xi ≤ UB − Li i ∈ N
Hi ≤ yi ≤ W i ∈ N
z1
ij, z

2
ij ∈ {0, 1} i, j ∈ N, i 6= j

(SG-MBM)

Problem (SG-MBM) follows the same rationale as (SG-BM). Note that when a disjunctive
term is selected (e.g. z1

ij = 1) the other disjunctive terms in that disjunction are zero (e.g.
z1
ji = z2

ij = z2
ji = 0). Therefore, when a disjunctive term is selected the constraints are

enforced (e.g. xi+Li ≤ xj). When it is not selected, the corresponding constraints become
redundant. Note that in (SG-MBM), the constraints have the same M-parameter for any
disjunctive term that is selected (UB in the first two and W in the last two). Because of
this, the continuous relaxation of (SG-BM) and (SG-MBM) represent exactly the same
feasible region. This is not true in general, as will be presented in the next section.

A.2. GDP FORMULATION OF THE TWO-DIMENSIONAL STRIP PACKING
PROBLEM
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The HR reformulation of this problem is as follows:

min lt

s.t. lt ≥ xi + Li i ∈ N

xi = νiji + νjii i, j ∈ N, i 6= j

yi = µiji + µjii i, j ∈ N, i 6= j

νiji + Liz
1
ij ≤ νijj i, j ∈ N, i < j

νjij + Ljz
1
ji ≤ νjii i, j ∈ N, i < j

µiji −Hiz
2
ij ≥ µijj i, j ∈ N, i < j

µjij −Hjz
2
ji ≥ µjii i, j ∈ N, i < j

z1
ij + z1

ji + z2
ij + z2

ji = 1 i, j ∈ N, i < j

0 ≤ νiji ≤ (UB − Li)z1
ij i, j ∈ N, i 6= j

0 ≤ νjii ≤ (UB − Li)z1
ji i, j ∈ N, i 6= j

Hiz
2
ij ≤ µiji ≤ (W )z2

ij i ∈ N, i 6= j

Hiz
2
ji ≤ µjii ≤ (W )z2

ji i ∈ N, i 6= j

0 ≤ xi ≤ UB − Li i ∈ N
Hi ≤ yi ≤ W i ∈ N
z1
ij, z

2
ij ∈ {0, 1} i, j ∈ N, i 6= j

(SG-HR)

In (SG-HR), the Boolean variables (Z1
ij, Z

2
ij) are transformed to binary variables as before,

and exactly one disjunctive term must be selected (z1
ij + z1

ji + z2
ij + z2

ji = 1). The variables
are disaggregated so that one variable is included for every disjunctive term in which it
appears. When a disjunctive term is selected, the disaggregated variable must lie within
the variable bounds (e.g. If z1

ij = 1, then 0 ≤ νiji ≤ (UB−Li) and 0 ≤ νijj ≤ (UB−Lj)).
When a term is not selected, its corresponding disaggregated variable becomes zero (e.g.
If z1

ji = 0, then 0 ≤ νjii ≤ 0 and 0 ≤ νjij ≤ 0). The constraints of the selected disjunctions
are enforced to the disaggregated variables (e.g. If z1

ij = 1, then νiji + Li ≤ νijj ). The
constraints corresponding to not selected terms are trivially satisfied (0 ≤ 0).

A.2. GDP FORMULATION OF THE TWO-DIMENSIONAL STRIP PACKING
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It is easy to see that HR is a larger formulation than BM. However, it provides a formula-
tion that is as strong, or stronger, than the BM.

A.3 Symmetry-breaking GDP formulation

It is clear from Figure A.2 that some regions can be represented with the selection of two
different disjunctive terms. Because of that, problem (SG-BM) has several symmetric
solutions.

An alternative formulation to break some of the symmetry in the problem is as follows:

min lt

s.t. lt ≥ xi + Li i ∈ N[
Z1
ij

xi + Li ≤ xj

]
∨
[

Z1
ji

xj + Lj ≤ xi

]

∨


Z2
ij

yi −Hi ≥ yj
xi + Li ≥ xj
xj + Lj ≥ xi

 ∨


Z2
ji

yj −Hj ≥ yi
xi + Li ≥ xj
xj + Lj ≥ xi

 i, j ∈ N, i < j

Z1
ij Y Z

1
ji Y Z

2
ij Y Z

2
ji i, j ∈ N, i < j

0 ≤ xi ≤ UB − Li i ∈ N
Hi ≤ yi ≤ W i ∈ N
Z1
ij, Z

2
ij ∈ {True, False} i, j ∈ N, i 6= j

(S1)

The modified disjunction in (S1) separates the feasible region that corresponds to Z2
ij =

True (and Z2
ji = True) from the feasible region that corresponds to Z1

ij = True and
to Z1

ji = True. The disjunction is illustrated in Figure A.3. In the Figure A.3.a), the
pattern to represent the feasible region of Z1

ij = True is different from the pattern used to
represent Z2

ij = True. The reason for this is to illustrate that for Z1
ij = True the complete

rectangle i needs to be positioned in the grey region. In contrast, it is possible to have
Z2
ij = True a as long as a part of the rectangle is in the striped region. The feasible region
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Figure A.3: Illustration of the relative position of j with respect to rectangle i for the
symmetry breaking formulation (S1).

that corresponds to Z2
ij = True represents not only i above j, but also i is not to the right

nor to the left of j. Figure A.3.b) illustrates a case in which Z1
ij = True (i.e. i is to the

right of j) and two cases in which Z2
ij = True (i.e. i is above j, and i it is not to the right

nor to the left of j). Note that this strategy could be applied to an alternative formulation in
which Z2

ij = True represents only that i is above j, and Z1
ij = True represents i left j and

also i is not above or below j. Both of these formulations serve the purpose of breaking
symmetric solutions, and in this work we will focus problem (S1).

Problem (S1) breaks some of the symmetry. However, if a rectangle j is on one side of
rectangle i, but the edge of rectangle j is aligned to i, there is still symmetry. Figure A.3.c)
illustrates such a case. In the Figure, j is above i and not to the right nor to the left or i (it
satisfies the constraints corresponding to Y 2

ji = True). The figure shows that j is also to
the right of i (it satisfies the constraints associated to Y 1

ji = True).

If Hi and Li are integer, it is possible to break this symmetry with the following formu-
lation (note that if Hi and Li are rational numbers they can be transformed into integer
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Figure A.4: Illustration of the relative position of j with respect to rectangle i for the
symmetry breaking formulation (S2).

values):

min lt

s.t. lt ≥ xi + Li i ∈ N[
Z1
ij

xi + Li ≤ xj

]
∨
[

Z1
ji

xj + Lj ≤ xi

]

∨


Z2
ij

yi −Hi ≥ yj
xi + Li ≥ xj + 1
xj + Lj ≥ xi + 1

 ∨


Z2
ji

yj −Hj ≥ yi
xi + Li ≥ xj + 1
xj + Lj ≥ xi + 1

 i, j ∈ N, i < j

Z1
ij Y Z

1
ji Y Z

2
ij Y Z

2
ji i, j ∈ N, i < j

0 ≤ xi ≤ UB − Li i ∈ N
Hi ≤ yi ≤ W i ∈ N
Z1
ij, Z

2
ij ∈ {True, False} i, j ∈ N, i 6= j

(S2)

Problem (S2) includes a “+1” in the right hand side of the constraints corresponding to
Z2
ij . The feasible region of the disjunction in this formulation is presented in Figure A.4.

The BM and HR reformulations (S1) and (S2) are obtained in the same manner as (SG-
BM) and (SG-HR) were obtained. We refer to the BM and HR formulation of (S1) as
(S1-BM) and (S1-HR), and the BM and HR of (S2) as (S2-BM) and (S2-HR). However,
in this case the MBM of (S1) and (S2) is not the same as the BM. The MBM of (S1) is as
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follows:

min lt

s.t. lt ≥ xi + Li i ∈ N

xi + Li ≤ xj + UBz1
ji + (Li + Lj)(z

2
ij + z2

ji) i, j ∈ N, i < j

xj + Lj ≤ xi + UBz1
ij + (Li + Lj)(z

2
ij + z2

ji) i, j ∈ N, i < j

yi −Hi ≥ yj −W (z1
ij + z1

ji + z2
ji) i, j ∈ N, i < j

xi + Li ≥ xj − (UB − Li − Lj)z1
ij − (Lj − Li)z1

ji i, j ∈ N, i < j

xj + Lj ≥ xi − (UB − Li − Lj)z1
ji − (Li − Lj)z1

ij i, j ∈ N, i < j

yj −Hj ≥ yi −W (z1
ij + z1

ji + z2
ij) i, j ∈ N, i < j

z1
ij + z1

ji + z2
ij + z2

ji = 1 i, j ∈ N, i < j

0 ≤ xi ≤ UB − Li i ∈ N
Hi ≤ yi ≤ W i ∈ N
z1
ij, z

2
ij ∈ {0, 1} i, j ∈ N, i 6= j

(S1-MBM)

In (S1-MBM), multiple M-parameters are used for the formulation. When a term is se-
lected, all other binary variables in that disjunction become zero (e.g. If z2

ij = 1, then
z1
ij = z1

ji = z2
ji = 0). Because of this, when a disjunctive term is selected the correspond-

ing constraints are enforced. For example, if z2
ij = 1 then xi+Li ≥ xj−(UB−Li−Lj)0−

(Lj − Li)0, so xi + Li ≥ xj . When a term is not selected its corresponding constraints
become redundant, but the M-parameter of the constraint depends on the disjunctive term
that is selected. For example, if z2

ij = 1 then the constraint that corresponds to Z1
ij becomes

redundant as follows: xi + Li ≤ xj + (0)UB + (Li + Lj)(1), so xi ≤ xj + Lj . How-
ever, if z1

ji = 1 then the constraint that corresponds to Z1
ij becomes redundant as follows:

xi +Li ≤ xj +UB. Also note that the constraints representing “j is not to the right nor to
the left of i” are the same in Z2

ij = True and Z2
ji = True. Because of this, the constraints

in the MBM reformulation only appear once. Finally, note that any solution that is feasible
for the continuous relaxation of (S1-MBM) is also feasible for the continuous relaxation
of (S1-BM). However, not every solution that is feasible for the continuous relaxation of
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(S1-BM) is feasible for the continuous relaxation of (S1-MBM).

The MBM of (S2) can be obtained in a similar manner, and we refer to it as (S2-MBM).

A.4 Numerical results

The different formulations were tested 100 random instances of the strip packing problem.
The range of values of the random parameters is as follows: N = 5-14;W = 10-20;Li =

1-5;Hi = 2-5. All of the instances were solved using GAMS 24.3.321, using an Intel(R)
Core(TM) i7 CPU 2.93 GHz and 4 GB of RAM. Gurobi 5.6.3115 was used for the solution
of the MILPs.

Figure A.5 compares the performance curves of the three GDP formulations ((SG), (S1)
and (S2)). Figure A.5.a) compares these three formulations using the BM reformulation,
Figure A.5.b) using MBM, and Figure A.5.c) using HR. The plots present the perfor-
mance of the formulations for the 100 instances, showing the percentage of problems that
are solved vs. time. It is clear from the three plots that (S2) is the best formulation, inde-
pendently of which reformulation is used. It can also be observed that (S1) is better than
(SG) in all cases.

Figure A.6 presents the performance of the different GDP-to-MILP reformulations (BM,
MBM, and HR) for the three GDP problems. It is clear from the three figures that the
BM reformulation is solved faster than the MBM and the HR, and that the MBM is solved
faster than the HR. The HR yields a larger formulation than the BM, so its performance
can be worse than the BM in some problems (such as this one). However, it is unexpected
that the BM performs better than the MBM. Both of the reformulations provide an MILP
with the same number of variables and constraints. For (SG), the continuous relaxation
both formulations represent the exact same feasible region. However, for (S1) and (S2)
the constraints of the continuous relaxation of MBM dominate the constraints of the con-
tinuous relaxation of BM (i.e. any solution that satisfies the constraints in the continuous
relaxation MBM also satisfies the constraints in the continuous relaxation of BM). The op-
posite is not true (it is easy to find solutions that are feasible for the continuous relaxation
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Figure A.5: Performance curve for solving (SG), (S1), and (S2) using reformulations: a)
BM, b) MBM, and c) HR.
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Figure A.6: Performance curve for the different GDP-to-MILP reformulations, for: a)
(SG), b) (S1), and c) (S2).

BM and not for the continuous relaxation of the MBM). Because of this, it is expected
that the MBM performs better than the BM. One possible explanation of why the BM is
performing better than the MBM is how the solver handles both formulations. In particular
the pre-solve, heuristics, and branching strategies may be better equipped to handle tra-
ditional Big-M type of formulations. Another possibility is that the BM provides integer
solutions more often than the MBM in the nodes of the branch and bound.

A.5 Conclusions

This paper has presented an alternative generalized disjunctive (S1) programming formu-
lation, which has the property of partially breaking the symmetry in the straightforward
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formulation (SG). Furthermore, a sharper reformulation (S2) has been presented for the
case of integer lengths of the rectangles. Numerical results have shown that for each of
these three models, the big-M reformulation as mixed-integer linear program performs
faster than the hull reformulation and than a modified big-M reformulation. Furthermore,
for each of these reformulations (S2) outperforms (S1), which in turn outperforms (SG).

A.5. CONCLUSIONS 221



Appendix B

Convex GDP examples

B.1 Process network

The process network problem is a classic optimization problem in process design. The
model seeks to maximize the profit of selling a set of products taking into account the cost
of raw materials and equipment. Figure B.1 illustrates the superstructure for a process with
potentially 8 units. The model that describes the performance of each unit is normally
large and quite complex. In this example, however, the process is simplified to single
input-output relations that give rise to a convex GDP15. The GDP problem formulation is
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as follows:

min Z =
∑
i∈I

ci +
∑
j∈J

pjxj + α

s.t.
∑
j∈J

rjnxj ≤ 0 ∀n ∈ N


Yi∑

j∈Ji

dij(e
xj/tij − 1)−

∑
j∈Ji

sijxj ≤ 0

ci = γi

 ∨
 ¬Yi
xj = 0 ∀j ∈ J i

ci = 0

 i ∈ I

Ω(Y ) = True

ci, xj ≥ 0

Yi ∈ {True, False}
(B.1)

In (B.1) ci is the cost associated to each equipment i ∈ I . xj represents each of the flows
j ∈ J , and pj the profit or cost associated to each one. The global constraints represent
the mass balance in each of the n ∈ N nodes, where rjn is the coefficient of the mass
balance for flow j. There is a disjunction for each unit i. If a unit is selected (Yi = True)
then the corresponding mass balance has to be satisfied, and the cost of the unit ci takes
the value associated to that equipment γi. If it is not selected (Yi = False or, equivalently,
¬Yi = True), then all the flows j ∈ J i in and out that equipment become 0, and the cost
ci also becomes 0. Finally Ω(Y ) = True represents the topology of the superstructure.

B.2 Farm layout (Flay)

In the farm layout problem the objective is to determine the width and length of a number
of rectangles with fixed area in order to minimize the total perimeter. Figure B.2 illustrates
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Figure B.1: Superstructure illustration of an 8-equipment process network

this problem, which can be formulated as the following convex GDP13:

min Z = 2(Length+Width)

s.t. Length ≥ xi + Li i ∈ N

Width ≥ yi +Wi i ∈ N

Ai/Wi − Li ≤ 0 i ∈ N[
Y 1
ij

xi + Li ≤ xj

]
∨

[
Y 2
ij

xj + Lj ≤ xi

]

∨

[
Y 3
ij

yi +Wi ≤ yj

]
∨

[
Y 4
ij

yj +Wj ≤ yi

]
i, j ∈ N, i < j

Y 1
ij Y Y

2
ij Y Y

3
ij Y Y

4
ij i, j ∈ N, i < j

0 ≤ Length ≤ Lengthup; 0 ≤ Width ≤ Widthup

Lloi ≤ Li ≤ Lupi ; W lo
i ≤ Wi ≤ Lupi i ∈ N

0 ≤ xi ≤ Lengthup − Lloi ; 0 ≤ yi ≤ Widthup − Lloi i ∈ N

Y 1
ij , Y

2
ij , Y

3
ij , Y

4
ij ∈ {True, False} i, j ∈ N, i < j

(B.2)

In formulation (B.2) the variables xi and yi represent the coordinates of lower-left corner
of each rectangle i ∈ N , while Li and Wi represent their corresponding length and width.
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Figure B.2: Illustration of farm layout problem

Length and Width represent the length and width of the total area. Ai is the given area
for each rectangle. Similarly to the strip packing problem (SG), there is one disjunction
for each pair of rectangles. Each term in the disjunction represents the possible relative
position between the two rectangles: rectangle i is either to the left, or to the right, or
below, or above rectangle j, respectively.

B.3 Constrained layout (Clay)

The constrained layout problem is similar to the strip packing problem, but the rectangles
in this case have to be packed inside a set of fixed circles. The objective function is to
minimize the distance in x and y axis, with a cost associated to every pair of rectangles.
Figure B.3 illustrates the constrained layout problem. It can be formulated as the following
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convex GDP13:

min Z =
∑
i

∑
j

cij(delxij + delyij)

s.t. delxij ≥ xi − xj i, j ∈ N, i < j

delxij ≥ xj − xi i, j ∈ N, i < j

delyij ≥ yi − yj i, j ∈ N, i < j

delyij ≥ yj − yi i, j ∈ N, i < j[
Y 1
ij

xi + Li/2 ≤ xj − Lj/2

]
∨

[
Y 2
ij

xj + Lj/2 ≤ xi − Li/2

]

∨

[
Y 3
ij

yi +Hi/2 ≤ yj −Hj/2

]
∨

[
Y 4
ij

yj +Hj/2 ≤ yi −Hi/2

]
i, j ∈ N, i < j

∨
t∈T


Wit

(xi + Li/2− xct)2 + (yi +Hi/2− yct)2 ≤ r2
t

(xi + Li/2− xct)2 + (yi −Hi/2− yct)2 ≤ r2
t

(xi − Li/2− xct)2 + (yi +Hi/2− yct)2 ≤ r2
t

(xi − Li/2− xct)2 + (yi −Hi/2− yct)2 ≤ r2
t

 i ∈ N

Y 1
ij Y Y

2
ij Y Y

3
ij Y Y

4
ij i, j ∈ N, i < j

Y
t∈T

Wit i ∈ N

0 ≤ xi ≤ xupi i ∈ N

0 ≤ yi ≤ yupi i ∈ N

Y 1
ij , Y

2
ij , Y

3
ij , Y

4
ij ∈ {True, False} i, j ∈ N, i < j

Wit ∈ {True, False} i ∈ N, t ∈ T
(B.3)

In formulation (B.3) xi and yi represent the coordinates of the centre of the rectangles
i ∈ N . delxij and delyij represent the distance between two rectangles i, j ∈ N, i < j,
and cij is the cost associated with these. The first disjunctions, similarly to strip packing
and farm layout problems, ensures that there is no overlap by expressing the possible
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Figure B.3: Illustration of constrained layout problem

relative position between rectangles i and j. The second set of disjunctions ensure that
every rectangle i is inside one of the t ∈ T circles. For a circle t, its coordinates (xct,yct)
and its radius rt are given.

B.4 Design of multi-product batch plant (Batch)

This problem seeks to minimize the investment cost in the design of a plant with multiple
units in parallel and intermediate storage tanks116. The design involves selecting the num-
ber of parallel units, volume of the equipment, and volume and location of the intermediate
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storage tanks. This problem can be convexified107, and the formulation is as follows:

min Z = α1

∑
j

exp(nj +mj + β1vj) + α2

∑
Tj

exp(β2vTj)

s.t. vj ≥ ln(Sij) + bij − nj ∀i, j

ei ≥ ln(Tij)− bij −mj ∀i, j

H ≥
∑
i

(Qiei)
Y Sj

vTj ≥ ln(S∗j ) + bij+1 ∀i
vTj ≥ ln(S∗j ) + bij ∀i
bij − bij+1 ≤ ln(S∗ij) ∀i
bij − bij+1 ≥ − ln(S∗ij) ∀i

 ∨
 ¬Y Sj

vTj = 0

bij − bij+1 = 0 ∀i

 ∀j < |J |

[
YMj,1

mj = ln(1)

]
∨ ... ∨

[
YMj,maxp

mj = ln(maxp)

]
∀j[

Y Nj,1

nj = ln(1)

]
∨ ... ∨

[
Y Nj,maxp

nj = ln(maxp)

]
∀j

Y Mj,1 Y ... Y YMj,maxp ∀j

Y Nj,1 Y ... Y Y Nj,maxp ∀j

Y Sj, Y Mj,p, Y Nj,p ∈ {True, False} ∀j, p = 1, ...,maxp
(B.4)

Nomenclature for design of a multi-product batch plant example.

Given:

α1, α2, β1, β2: Coefficients for the capital cost of the units and intermediate storage tanks.

i ∈ I: products.

j ∈ J : stages.

H: horizon time.
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Qi: production rate of product i.

Tij: processing time of product i at stage j.

Sij: size factor of product i at stage j.

S∗j : size factor for intermediate storage tank.

S∗ij: size factor for stages.

Determine:

Bij: batch size product i at stage j.

Ei: production cycle time / batch size i.

Mj: number of units in parallel out-of-phase at stage j.

Nj: number of units in parallel in phase at stage j.

Vj: Unit size of stage j.

VTj: size of intermediate storage tank between stage j and j + 1.

In order to convexify the problem, the following variables are introduced:

bij = ln(Bij)

ei = ln(Ei)

mj = ln(Mj)

nj = ln(Nj)

vj = ln(Vj)

vTj = ln(VTj)
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Nonconvex GDP examples

C.1 Layout optimization of screening systems in recov-
ered paper production.

Nomenclature:

SETS:

J = {fib, st} Components (fibre is the “good component” and stickies is the “bad com-
ponent”).

N = S ∪ {ta, tr}: Total nodes in the system (possible screens, total accept, and total
reject).

S: Possible screens.

PARAMETERS (all parameters are greek letters or capital letters):

αs: Exponent coefficient for cost in screen s

βs,j: Acceptance factor beta for screen s and component j.

C1
s : Cost coefficient 1 for screen s.
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C2
s : Cost coefficient 2 for screen s.

Cup
st : Maximum percentage of inlet stickies accepted in the total accepted flow.

F 0
j : Source flow of component j.

[F in,lo
s , F in,up

s ]: Lower and upper bound of flow into screen s.

W 1,W 2,W 3: Weighting factors in objective function for lost fire, accepted stickies, and
capital cost respectively.

CONTINUOUS (POSITIVE) VARIABLES:

cs: Cost of screen s.

fs: Total inlet flow into screen s.

f In,j: Inlet flow of component j into node n.

fAs,j: Accepted flow of component j from screen s.

fRs,j: Rejected flow of component j form screen s.

mA
s,n,j: Accepted flow of component j from screen s to node n.

mR
s,n,j: Rejected flow of component j from screen s to node n.

m0
n,j: Flow of component j from source to node n.

rs: Reject rate of screen s.

BOOLEAN VARIABLES:

Ys: Selection of screen s.

Y As,n: Existence of accepted flow from screen s to node n.

Y Rs,n: Existence of rejected flow from screen s to node n.

Y 0n: Existence of flow from source to node n.

C.1. LAYOUT OPTIMIZATION OF SCREENING SYSTEMS IN RECOVERED
PAPER PRODUCTION.
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GDP model:

min W 1f Itr,fib +W 2f Ita,st +W 3
∑
s∈S

cs

s.t. f Ita,st ≤ Cup
st F

0
st

f Is,j = fAs,j + fRs,j s ∈ S, j ∈ J

fs =
∑
j∈J

f Is,j s ∈ S

f In,j = m0
n,j +

∑
s∈S
s 6=n

(
mA
s,n,j +mR

s,n,j

)
n ∈ N, j ∈ J

F 0
j =

∑
n∈N

m0
n,j j ∈ J

Ys

F in,lo
s ≤ f Is ≤ F in,up

s

fRs,j = f Is,j(rs)
βs,j j ∈ J

cs = C1
s (f Is )αs + C2

s (1− rs)

 ∨
 ¬Ys
f Is = 0

cs = 0

 s ∈ S

[
Y As,n

mA
s,n,j = fAs,j j ∈ J

]
∨

[
¬Y As,n

mA
s,n,j = 0 j ∈ J

]
s ∈ S, n ∈ N, n 6= s[

Y Rs,n

mR
s,n,j = fRs,j j ∈ J

]
∨

[
¬Y Rs,n

mR
s,n,j = 0 j ∈ J

]
s ∈ S, n ∈ N, n 6= s

∨
n∈N

 Y 0n

m0
n,j = F 0

j j ∈ J
m0
n′,j = 0 n′ 6= n, j ∈ J


Y
n∈N

Y 0n

Y As,n ∨ Y Rs,n ⇒ Ys s ∈ S, n ∈ N, n 6= s

Y As′,s ∨ Y Rs′,s ⇒ Ys (s, s′) ∈ S, s′ 6= s

Y As′,s Y Y As,s′ (s, s′) ∈ S, s′ 6= s

Y Rs′,s Y Y Rs,s′ (s, s′) ∈ S, s′ 6= s

Y As,n Y Y Rs,n s ∈ S, n ∈ N, n 6= s

Y As,n Y Y Rs,n s ∈ S, n ∈ N, n 6= s
(C.1)C.1. LAYOUT OPTIMIZATION OF SCREENING SYSTEMS IN RECOVERED

PAPER PRODUCTION.
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C.2 Reactor-separator process superstructure.

Nomenclature:

SETS:

I: Components (a, b, c).

K = R ∪ S: Total processing units.

R: Reactors.

S: Separation units.

P : Sources of raw materials.

PARAMETERS:

Raw materials.

C0
p,i: Molar concentration of component i in raw material p.

PR0
p: Cost of raw material p.

F 0,up
p : Maximum availability of raw material p.

Demand.

MD
c : Minimum mol fraction of component c in demand stream.

FD: Minimum demand (total flow).

Separation:

ξs,i ∈ {0, 1}: ξs,i = 1 of component i exits outlet stream out1 in separation process s.
ξs,i = 0 of component i exits outlet stream out2.

Reactors:

γr: Minimum concentration ratio between component a and b.

kr: Reaction rate constant for reactor r.
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rr: Design residence time for reactor r.

All units:

αk: Cost coefficient for unit k.

βk: Cost exponent for unit k.

PP 0
k,k′: Cost of installing a pipeline between unit k and unit k′.

Variable bounds:

[F lo
k , F

up
k ]: Lower and upper bound of total flow into unit k.

[C lo
k,i, C

up
k,i]: Lower and upper bound of molar concentration of i into unit k.

[µlok,k′ , µ
up
k,k′ ]: Lower and upper bound of total flow from unit k into unit k′.

[νlok,k′,i, ν
up
k,k′,i]: Lower and upper bound of molar concentration of component i in stream

from unit k into unit k′.

CONTINUOUS (POSITIVE) VARIABLES:

F in
k : Inlet stream for unit k.

F out
r : Outlet stream of reactor r.

F out1
s , F out2

s : Outlet streams 1 and 2 of separation unit s.

Cin
k,i: Molar concentration of i in the inlet stream for unit k.

Cout
r,i : Molar concentration of i in the outlet stream of reactor r.

Cout1
s,i , Cout2

s,i : Molar concentration of i in the outlet streams (out1, out2) of unit s.

µr,k: Total flow from reactor r to unit k.

νr,k,i: Molar concentration of component i in stream from reactor r into unit k.

µout1s,k , µ
out2
s,k : Total flow from outlet streams (out1, out2) of unit s to unit k.

νout1s,k,i , ν
out2
s,k,i : Molar concentration of component i in stream from outlet streams (out1, out2)

of unit s to unit k.
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µrawp,k : Flow of raw material from source p ro unit k.

µDr : Flow of outlet stream from reactor r to demand.

µout1,Ds , µout2,Ds : Flow of outlet streams (out1, out2) from separation unit s to demand.

νDr,i: Molar concentration of component i in flow of outlet stream from reactor r to demand.

νout1,Ds,i , µout2,Ds,i : Molar concentration of component i in flow of outlet streams (out1, out2)

from separation unit s to demand.

PUk: Cost of unit k.

PPk,k′: Cost of pipeline from unit k to unit k′.

PUT , PP T , PRT : Total cost of units, pipelines and raw materials.

BOOLEAN VARIABLES:

Yk: selection of unit k.

Y Fr,k: Existence of flow between reactor r and unit k.

Y F out1
s,k , Y F out2

s,k : Existence of flow between outlet streams from separation unit s and unit
k.
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For clarity in the GDP model, we partition the model in several sections. The first section
includes constraints related to total costs and demand satisfaction:

min PUT + PP T + PRT

s.t. PUT =
∑
k∈K

PUk

PP T =
∑
k∈K

∑
k′∈K
k 6=k′

PPk,k′

PRT =
∑
p∈P

PR0
p

∑
k∈K

µrawp,k∑
r∈R

µDr +
∑
s∈S

(µout1,Ds + µout2,Ds ) ≥ FD

MD
c

(∑
r∈R

µDr
∑
i∈I

νDr,i +
∑
s∈S

(µout1,Ds

∑
i∈I

νout1,Ds,i + µout2,Ds

∑
i∈I

νout2,Ds,i )

)
≤
∑
r∈R

µDr ν
D
r,c +

∑
s∈S

(µout1,Ds νout1,Ds,c + µout2,Ds νout2,Ds,c )∑
k∈K

µrawp,k ≤ F 0,up
p p ∈ P

(C.2)
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The next constraints represent the mixing and splitting before and after unit k:

F in
k =

∑
r∈R
r 6=k

µr,k +
∑
s∈S
s 6=k

(µout1s,k + µout2s,k ) +
∑
p∈P

µrawp,k k ∈ K

F in
k C

in
k,i =

∑
r∈R
r 6=k

µr,kνr,k,i

+
∑
s∈S
s 6=k

(µout1s,k ν
out1
s,k,i + µout2s,k ν

out2
s,k,i ) +

∑
p∈P

µrawp,k C
0
p,i k ∈ K, i ∈ I

F out
r =

∑
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The following constraints represent the selection or not of processing units:
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The last set of equations represents the existence or not of flow between units.
Y F out1

s,k
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Appendix D

Haverly pooling problem

A well-known benchmark problem is a small problem proposed by Haverly 76 . The prob-
lem is defined as follows: There is a single pool that receives supplies from two different
sources A and B, with different specification content. A third supply C is not fed into
the pool but is directly mixed with the two outflows from the pool. The specification pa-
rameters for the streams going into the pool are 3% for A, 1% for B, and 2% for C. The
blending of flows from the pool and from the supply stream C produces products X and Y,
which have to adhere to the specifications of maximum 2.5% and 1.5%, respectively. The
maximum demands for products X and Y are 100 and 200, respectively. The objective is
to minimize the cost of the blending operation while meeting the demand requirements.
As opposed to the multiperiod blending problem, supply and demand flows do not de-
pend on time and they are the decision variables. Figure D.1 illustrates the topology and
parameters of the network.

The problem was modeled using p, q, pq and (SB) formulations. Total flows, denoted
by the variable Fnn′ , are present in all models. The rest of the variables are different.
Analyzing each formulation: (i) the p-formulation is based on the concentration value of
the specification, Cq, in the pool and its outputs, (ii) the q and pq-formulations are based
on the fraction of incoming flow to the pool that is contributed by each supply, qs, and (iii)
the source-based model is based on individual flows per source, F̃snn′ , and split fractions,
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Figure D.1: Sketch of Haverly Problem

Table D.1: Optimal solution of the relaxed LP for the Haverly problem with different
formulations.

# Variables # Constrains Normalized relaxation
Linear relaxation p q pq SB p q pq SB p q pq SB

McCormick 14 15 15 27 19 26 30 49 1.25 6.125 1.25 1.25
w/o McCormick 12 11 11 21 8 6 6 19 5.25 9.75 9.75 1.25

ξ1n, that represent the fraction of the total outgoing flow from the pool that is being sent to
each of the mixers.
Another important difference is the number of variables, constraints and bilinear terms.
The size of the problem and the number of bilinear terms increase from left to right in the
table. Therefore, the only reason to choose the source-based model over, for example, the
concentration model, is if the former had a tighter LP relaxation than the latter. Table D.1
shows the size and the optimal solution of the relaxed LP for the four formulations. Two
solutions are displayed. The first row corresponds to the optimal solution when the bilinear
terms are replaced by their McCormick envelopes. The second row has the solutions when
the nonlinear constraints are dropped entirely. Note that, for the McCormick envelopes,
the bounds on the variables are, Cq = {1, 3}, qs = {0, 1}, ξ1n = {0, 1}, Fnn′ = F̃snn′ =

{0, 300}.

Two conclusion can be drawn. First, the optimum of the relaxed LP is the same for the
p, pq and (SB) formulations when the bilinear terms are replaced by their McCormick
envelopes. However, the number of variables and constraints is larger for the latter. Sec-
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ondly, when the non-convex equations are eliminated from the formulations, the source-
based model is tighter than the rest of the formulations. In the traditional pooling formu-
lations, the nonconvexities appear in the specification requirements constraints, whereas
in the source-based model they are only present in the “split fractions equations”. This
difference explains the significant improvement in the tightness of the relaxation when the
non-linear terms are dropped.

The following table presents the p-formulation, q-formulation, pq-formulation and (SB)
formulation for the Haverly pooling problem.
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