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Abstract

Many problems considered in optimization and artificial intelligence research are static: informa-
tion about the problem is known a priori, and little to no uncertainty about this information is
presumed to exist. Most real problems, however, are dynamic: information about the problem is
released over time, uncertain events may occur, or the requirements of the problem may change
as time passes. One technique for improving optimization and learning in dynamic environments
is by using information from the past. By using solutions from previous environments, it is often
easier to find promising solutions in a new environment. A common way to maintain and exploit
information from the past is the use of memory, where solutions are stored periodically and can
be retrieved and refined when the environment changes. Memory can help search respond quickly
and efficiently to changes in a dynamic problem. Despite their strengths, standard memories have
many weaknesses which limit their effectiveness. This thesis explores ways to improve memory
for optimization and learning in dynamic environments. The techniques presented in this thesis im-
prove memories by incorporating probabilistic models of previous solutions into memory, storing
many previous solutions in memory while keeping overhead low, building long-term models of the
dynamic search space over time, allowing easy refinement of memory entries, and mapping previ-
ous solutions to the current environment for problems where solutions may become obsolete over
time. To address the weaknesses and limitations of standard memory, two novel classes of memory
are introduced: density-estimate memory and classifier-based memory. Density-estimate memory
builds and maintains probabilistic models within memory to create density estimations of promising
areas of the search space over time. Density-estimate memory allows many solutions to be stored
in memory, builds long-term models of the dynamic search space, and allows memory entries to be
easily refined while keeping overhead low. Density-estimate memory is applied to three dynamic
problems: factory coordination, the Moving Peaks benchmark problem, and adaptive traffic signal
control. For all three problems, density-estimate memory improves performance over a baseline
learning or optimization algorithm as well as state-of-the-art algorithms. Classifier-based memory
allows dynamic problems with shifting feasible regions to capture solutions in memory and then
map these memory entries to feasible solutions in the future. By storing abstractions of solutions
in the memory, information about previous solutions can be used to create solutions in a new envi-
ronment, even when the old solutions are now completely obsolete or infeasible. Classifier-based
memory is applied to a dynamic job shop scheduling problem with sequence-dependent setup times
and machine breakdowns and repairs. Classifier-based memory improves the quality of schedules
and reduces the amount of search necessary to find good schedules. The techniques presented in this
this thesis improve the ability of memories to guide search quickly and efficiently to good solutions
as the environment changes.
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Chapter 1

Introduction

When confronted with a changing world, humans are apt to look not just to the future, but to the past.

Drawing on knowledge from similar situations we have encountered helps us to decide what to do

next. The more experience we’ve had with a particular situation, the better we can expect to perform

when we encounter it again. When solving dynamic problems using search, it may be enough

to solve the problem completely from scratch, but incorporating information from the past into

optimization and learning can lead to a more adaptive search process. Like human experience, the

richer the information from past events, the better we can expect dynamic optimization to perform.

By creating memories capable of building rich models of past experiences, this thesis attempts to

develop more effective memories for learning and optimization in dynamic environments.

Many problems considered in optimization and artificial intelligence research are static: information

about the problem is known a priori, and little to no uncertainty about this information is presumed

to exist. Most real problems, however, are dynamic: information about the problem is released over

time, uncertain events may occur, or the requirements of the problem may change as time passes. A

common approach to dynamic problems is to consider each change as the beginning of a new static

problem, and solve the problem from scratch given the new information. If time is not an issue,

this is a fine solution, but in many cases, finding a good solution quickly is more important than

finding an optimal solution. Approaches to dynamic optimization problems must balance the speed

of arriving at a solution with the fitness of the solutions produced.

There are many approaches to solving dynamic problems, most originally designed for static prob-

lems. Many techniques have been shown to help approaches designed for static problems work well

on dynamic problems. One of the most common techniques is the use of information from the past

to improve current performance. In a purely stochastic domain, information about the past might not

be meaningful, but in many dynamic problems, the current state of the environment is often similar

to previously seen states. By using information from the past, it may be easier to find promising
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solutions in the new environment. The system may be more adaptive to change and perform better

over time. A common way to maintain and exploit information from the past is the use of mem-

ory, where solutions are stored periodically and can be retrieved and refined when the environment

changes.

Memory aids dynamic optimization in several ways. By maintaining good solutions from the past,

memory may speed up search for similar solutions after a dynamic event. Memory entries provide

additional points to search from after a change, and once search has converged may help inject

diversity into the search process. Memory also helps to build a model of the dynamic problem over

time. Memory has been used extensively for dynamic learning and optimization, and while there are

many types of memory, a standard memory system for dynamic optimization has emerged. In this

standard memory system, a finite number of solutions are stored and then incorporated into search

as the problem changes to direct the search process toward good solutions.

For many problems, this type of memory has helped to improve the performance of dynamic op-

timization. However, because the memory size is finite, and typically small, it may be difficult to

store enough solutions to accurately model the search space over time. It may also be difficult to

refine the memory over time, as the only way to change an entry is to completely replace it. Parts of

the memory system that could benefit from a good model of the dynamic fitness landscape, like re-

trieving from the memory and maintaining diversity in the search, are typically done in uninformed

ways.

Most memory systems are limited to problems where all solutions in the search space are feasible

throughout the course of optimization or learning. In some problems, the feasible solutions at a

particular time are only a subset of the total search space, and the set of feasible solutions changes

over the course of the dynamic problem. For example, in a dynamic rescheduling problem, jobs

are completed and new jobs arrive. An old schedule containing only jobs that have been completed

is not a feasible schedule for the jobs that are currently available. When the feasible region of the

search space shifts over time, the typical memory system is either not applicable or not very useful.

This thesis improves optimization and learning in dynamic environments through enhanced memory

systems. The improved memories presented in this thesis address and overcome the weaknesses and

limitations of a standard memory system and enable memory to construct long-term probabilistic

models of the dynamic search space, aggregate information from many previous solutions, easily

refine the models in the memory, and extend memory to new types of dynamic problems. The

enhanced memory systems presented in this thesis improve the performance of optimization and

learning algorithms on dynamic problems by allowing search to respond more quickly to change

and helping to locate better solutions.
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1.1 Overview

This thesis explores the use of memory for improving optimization and learning in dynamic envi-

ronments. Memory helps learning and optimization algorithms respond quickly and efficiently to

changes in dynamic environments. Despite their many strengths, standard memories also have many

weaknesses which limit their effectiveness. This thesis presents improved memories which over-

come many weaknesses and limitations of previous memory systems, enhancing the performance

of optimization and learning algorithms in dynamic environments.

Many prior works have investigated dynamic problems where changes are small and algorithms

must track those changes quickly. However, many real problems are discontinuous, with changes

that revisit previous solution areas as the problem progresses. These types of problems include

dynamic scheduling and adaptive traffic signal control. By using information from previous envi-

ronments, it may be easier to find promising solutions in new environments. A common way to use

information from the past is memory, where good solutions are stored over time and can be retrieved

when the environment changes.

Standard memory systems have been shown to help improve search algorithms on dynamic prob-

lems, but memories typically only build simple models of promising regions of the search space and

store a small number of solutions located in areas where the underlying optimization or learning al-

gorithm may find more good solutions. These memories do not capture much information about

the structure of the search space over time, and memory entries cannot usually be refined without

completely replacing them with a better solution. Memories are also not applicable to all types of

dynamic problems, particularly those problems where solutions stored in the memory can become

irrelevant or infeasible.

To address the weaknesses and limitations of standard memory, two novel classes of memory are in-

troduced: density-estimate memory and classifier-based memory. Density-estimate memory builds

and maintains probabilistic models within a memory to create rich density estimations of promis-

ing areas of the search space as it changes over time. Classifier-based memory allows dynamic

problems with shifting feasible regions to capture solutions in memory and then map these memory

entries to feasible solutions in the future.

Density-estimate memory solves the problem of limited storage of previous solutions, weak models

of the dynamic search space, and difficulty in refining the contents of memory, all while keeping

memory overhead low. Density-estimate memory maintains a similar structure to a standard mem-

ory, but instead of storing only one solution in a memory entry, density-estimate memory clusters

many solutions into an entry, then uses probabilistic models to estimate the density of points in the

cluster. It builds rich models of the dynamic search space efficiently and then uses that information

to improve the quality of solutions returned to the search process. These models allow the memory
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to capture much more information about the structure of the search space over time. By building

models within the memory, the search process can continue to interact with a finite number of en-

tries, except now these memory entries aggregate many individual solutions. The models stored

in memory can be continuously refined as new solutions are stored to the memory. These models

can be used to help keep search diverse in a more informed way and help retrieve the most useful

solutions from the memory.

In this thesis, density-estimate memory is applied to three dynamic problems: factory coordina-

tion, the Moving Peaks benchmark problem, and adaptive traffic signal control. Though all three

of these problems have dynamic environments, these problems are very different from one another.

In the factory coordination problem, incoming jobs must be distributed among several machines to

maintain the flow of jobs through a simulated factory. Density-estimate memory is used to boost

the performance of a reinforcement learning algorithm. The Moving Peaks problem is a common

benchmark from the literature that allows the nature of the search space to be highly configured.

For this problem, density-estimate memory is combined with an evolutionary algorithm to improve

performance on the problem. Traffic signal control is another highly dynamic problem. Traffic

demands at an intersection constantly change due to the time of day, the types of vehicles, and the

control of surrounding traffic signals. Experiments apply density-estimate memory to an adaptive

learning algorithm on two road networks based on intersections in downtown Pittsburgh, Pennsylva-

nia. For all three of these problems, density-estimate memory improves performance over a baseline

learning or optimization algorithm. Density-estimate memory also outperforms state-of-the-art al-

gorithms for each problem.

Classifier-based memory allows the use of memory for dynamic problems where the feasible region

of the search space shifts over time. For most dynamic problems, the use of memory by an opti-

mization or learning algorithm is straightforward. Though a solution may have been stored in the

memory long ago, that solution is typically feasible no matter when it is retrieved from the memory.

For some types of problems such as dynamic scheduling, the feasible region of the search space

shifts over time as the problem changes. In dynamic scheduling problems, the current jobs change

over time. If a solution to the problem is represented by a prioritized list of jobs to be fed to a sched-

ule builder, any memory that stores a solution directly will quickly become irrelevant. Some jobs

in the solution will be completed, other jobs will become more or less important, and new jobs that

have arrived since the solution was stored will not be included at all. In classifier-based memory,

solutions are classified based on the attributes of available jobs at the time the solution is stored in

memory. When a memory entry is retrieved, this classification is mapped onto the currently avail-

able jobs to create a new feasible solution. This mapping allows classifier-based memory to help

transfer information from previous schedules to the current environment.

Classifier-based memory is applied to a dynamic job shop scheduling problem with sequence-
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dependent setup times and machine breakdowns and repairs. An evolutionary algorithm sched-

uler is used to build schedules. Classifier-based memory is compared to the standard evolution-

ary algorithm as well as several other evolutionary algorithm approaches to dynamic optimization.

Classifier-based memory improves the quality of the schedules and reduces the amount of search

necessary to find good schedules.

1.2 Contributions

The major goal of this thesis is to improve optimization and learning in dynamic environments using

memory. Novel enhanced memory systems are presented to address the weaknesses and overcome

the limitations of standard memory systems. This thesis contributes specifically to the improvement

of memories for optimization and learning in dynamic environments by:

Incorporating probabilistic models of previous solutions into memory Instead of storing indi-

vidual solutions separately, previous solutions are aggregated using probabilistic models.

Storing many previous solutions in memory while keeping overhead low While the use of

probabilistic models allows many more solutions to be stored in memory, using a limited number of

probabilistic models allows the underlying learning or optimization algorithm to interact only with

the models, not with the solutions that create those models. By clustering the solutions stored in

memory, only some of the probabilistic models in memory need to be rebuilt when new solutions

are stored.

Building rich, long-term models of the dynamic search space over time By storing solutions

across many different environments, probabilistic models provide density estimation for the search

space over time. This density estimation gives a long-term model of promising areas of the search

space.

Allowing easy refinement of memory entries By allowing memory entries to be updated by

adding new solutions to the memory, rather having to replace previous memory entries, the memory

can be refined incrementally, producing richer models of where good solutions may exist in the

dynamic search space.

Mapping previous solutions to the current environment for problems where solutions may
become obsolete By storing abstractions of solutions in the memory, information about previous
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solutions can be used to create solutions in a new environment, even when the old solutions would

be completely obsolete and infeasible.

Memories

This thesis contributes two new classes of memory for dynamic problems that make the improve-

ments outlined above:

Density-estimate memory Density-estimate memory is introduced to allow memories to effec-

tively store many previous solutions without substantially increasing the overhead associated with

maintaining and using the memory. Density-estimate memories build and maintain probabilistic

models of past solutions to improve the performance of learning and optimization in dynamic envi-

ronments. While building much richer models of the dynamic search space than a standard memory,

density-estimate memories can be constructed efficiently and maintained with a low amount of over-

head. Density-estimate memory also builds better long-term models of the dynamic search space

and makes it easier to refine memory entries.

Classifier-based memory Classifier-based memory is introduced to extend the use of memory to

dynamic problems where solutions may become obsolete as the environment changes. Classifier-

based memory creates an abstraction layer between feasible solutions and memory entries so that old

solutions stored in memory may be mapped to solutions that are feasible in the current environment.

Classifier-based memory allows dynamic problems with shifting feasible regions to use memory to

improve search.

Algorithms

This thesis contributes several algorithms that implement these novel classes of memory and one

algorithm for reinforcement learning of traffic signal control:

Incremental Euclidean clustering density-estimate memory This algorithm uses simple, in-

cremental clustering to separate solutions into memory entries. The cluster centers are used as the

models in the memory. This is the simplest density-estimate memory implementation.

Incremental Gaussian clustering density-estimate memory This algorithm uses incremental

clustering to form memory entries, then creates Gaussian models for each memory entry. This

implementation provides good density estimation of previous solutions.
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Gaussian mixture model density-estimate memory For problems that have more time to build

models, a Gaussian mixture model implementation of density-estimate memory is presented. This

implementation requires building a model over all solutions in the memory, which is more expensive

than the incremental clustering implementations.

Classifier-based memory for job-shop scheduling An implementation of classifier-based mem-

ory is presented for job-shop scheduling. This algorithm uses attributes of jobs and operations in

the problem to classify schedules and allow them to stored in memory and then retrieved later.

Balanced phase utilization algorithm This thesis also contributes a traffic-responsive learning

algorithm for traffic signal control, the balanced phase utilization algorithm (Chapter 8). This algo-

rithm requires only the use of exit detectors in order to balance the splits and coordinate the offset

for traffic signals.

Benchmark problems

This thesis defines several problems that may be used as benchmarks to evaluate the performance

of optimization and learning algorithms in dynamic environments:

Factory coordination A distributed, dynamic factory coordination problem with long time hori-

zons is defined in Chapter 6.

Traffic signal control An adaptive traffic control problem that models 32 intersections in the city

of Pittsburgh, PA is defined in Chapter 8.

Long-term job-shop scheduling A dynamic scheduling problem with sequence-based setups and

machine breakdowns is defined in Chapter 9.

1.3 Outline

This thesis is divided into three parts. Part I discusses optimization and learning in dynamic envi-

ronments and how remembering information from the past can help to find new solutions. Part II

introduces a new type of memory that builds density-estimate models of information from the past.

Part III introduces a new abstraction layer that allows memory to be used on problems with shifting

feasible regions.
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Part I focuses on defining the problem of optimization and learning in dynamic environments. Chap-

ter 2 classifies the different types of dynamic environments and discusses several dynamic bench-

mark problems. Chapter 3 surveys prior work that has been done in the area of dynamic optimization

and learning, particularly the use of memory for dynamic optimization. Chapter 4 defines a stan-

dard memory that has been widely used in the literature for dynamic optimization and discusses the

strengths and weaknesses of this approach.

Part II investigates extending the standard memory by building and storing probabilistic models

within memory. Chapter 5 introduces a new class of memory called density-estimate memory.

Density-estimate memory is a new memory technique that builds density estimation models to ag-

gregate information from many solutions stored in memory. In the next three chapters, density-

estimate memory is applied to optimization and learning algorithms for three dynamic problems.

Chapter 6 applies density-estimate memory to a reinforcement learning algorithm on a distributed,

dynamic factory coordination problem and compared to standard memory. Chapter 7 compares

density-estimate memory to a variety of other techniques for improving evolutionary algorithms on

dynamic problems using the Moving Peaks benchmark problem. In Chapter 8, density-estimate

memory is applied to an adaptive, traffic-responsive algorithm for traffic signal control. The adap-

tive traffic signal controllers are compared to the real signal timing plans for a 32 intersection traffic

network modeled on downtown Pittsburgh, Pennsylvania.

Part III considers the use of memory for dynamic problems with shifting feasible regions. Chapter 9

introduces a new memory technique called classifier-based memory for problems where the feasible

region of the search space shifts over time. Classifier-based memory creates an abstraction layer

allowing old solutions to be mapped to current feasible solutions.

The dissertation concludes in Chapter 10 with a summary of this thesis and an outlook on potential

directions for future work on extending and improving memory for dynamic optimization.
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Part I

Optimization and learning in dynamic
environments
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Chapter 2

Dynamic environments

Many of the problems considered in optimization and learning assume that solutions exist in a static,

unchanging environment. If the environment does change, one may simply treat the new environ-

ment as a completely new version of the problem that can be solved as before. When a problem

changes infrequently or only in small amounts, this can be a reasonable approach. However, this

assumption tends to break down when the environment undergoes frequent, discontinuous changes.

When this occurs, a search process may be slow to react, hurting performance in the time it takes

to find a new solution. Instead of focusing only on finding the best solution to a dynamic problem,

one must often balance the quality of solutions with the speed required to find good solutions.

This chapter will describe the nature of dynamic environments: those environments that change

over time regardless of the actions of optimization or learning algorithms. The chapter will begin

by providing a basic definition of dynamic problems, discussing the challenges of dynamic problems

that separate them from static problems, and defining the terminology that will be used throughout

this thesis. A classification system for dynamic environments will be presented along with a brief

discussion of common types of dynamic problems and how to construct optimization and learning

algorithms to respond to particular types of dynamic environments.

2.1 Dynamic problems

In a problem with a dynamic environment, the objective function, problem formulation, constraints,

or some other part of the problem changes over time independent of the actions of an optimization

or learning algorithm. A change in the dynamic environment produces a change in the objective

value of a given solution relative to other solutions. In many cases, this means that the optimum

of the problem changes as well, so effective approaches to dynamic problems must be capable of

tracking the optima over time across changes to the environment. Dynamic problems may also be
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known as time-varying or changing. When changes are completely random, a dynamic problem

may be known as a stochastic problem. Another term used in the literature, non-stationary, may

imply more than dynamics [52] and will not be used in this thesis.

Dynamic optimization and learning lends itself to problems existing within a narrow range of prob-

lem dynamics, requiring a balance between solution fitness and search speed. If a problem changes

too quickly, search may be too slow to keep up with the changing problem, and reactive techniques

will outperform optimization or learning approaches. If a problem changes very slowly, a balance

between optimization and diversity is often no longer necessary: one may search from scratch,

treating each change as a completely new static problem. Many real problems lie in this region

where learning and optimization must respond quickly to changes while still finding solutions of

high fitness.

When discussing problems with dynamic environments in this thesis, a certain vocabulary will be

employed. The search space is the space of all possible solutions to a problem. The feasible region

of the search space is a subset of the search space that contains all solutions that meet the current

constraints of the problem. The term fitness will be used for the objective function value of a

solution at a given time. The term fitness landscape, common in some areas of optimization, will

be used to mean the landscape of objective function values for solutions in the search space at a

particular time. When a dynamic event occurs, the fitness landscape changes. The term change will

typically be used to mean a change in the fitness landscape. The term environment will be used to

refer to the problem formulation and constraints at a given time. For example, the environment of

a dynamic scheduling problem would describe the jobs to be scheduled, the machines available to

schedule them on, and any constraints. Typically, a change in the environment leads to a change in

the fitness landscape.

2.2 Classifying dynamic environments

Though all dynamic problems involve repeated changes to the fitness landscape, dynamic problems

may differ in many ways. Some problems may have random, continuous changes that happen very

frequently, while another might have severe, infrequent changes that can be partially predicted. This

section will list some of the ways that a problem with dynamic environments may be classified. This

classification is similar to [14].

Frequency In some problems, changes may be rare, while in others, changes may happen con-

stantly. Problems are also not limited to one frequency of changes. Some problems may have small,

frequent changes, while other have large, infrequent changes. For example, in a dynamic scheduling

problem, jobs may be drawn from some distribution. The actual distribution of the jobs currently
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being scheduled might change constantly as new jobs arrive, but it may differ only slightly from the

underlying distribution. Less frequently, this underlying distribution might change drastically. The

most important aspect of change frequency is how long a learning or optimization algorithm has to

find a solution both before it has an effect on performance and before another change occurs.

Severity As mentioned, the severity of changes also defines a dynamic problem. Some problems

may have changes that are small enough to be easily tracked, while others have large, discontinuous

changes. Small changes may not have a large effect on the fitness landscape, while large changes

may completely change the landscape.

Predictability In some problems, changes follow a specific pattern. In others, changes are com-

pletely random. A problem with small, predictable changes will require a very different algorithm

than one with severe, unpredictable changes.

Detectability In some problems, changes to the fitness landscape are easy to detect; one knows

exactly when a change has occurred. In others, it may take some time before it is clear that the

environment has changed. This can have a large effect on how an algorithm solves a problem.

Repeatability and structure of change Some problems may be purely stochastic, with com-

pletely random changes to the environment. For some problems, the dynamic environment may

cycle through a finite number of distinct configurations. For most interesting dynamic problems,

the current environment will be similar to previously seen environments. This may allow informa-

tion from the past to be useful when finding solutions in the current environment.

Changes to the feasible region of the search space For some problems, the structure of the envi-

ronment may be similar from one moment to the next, but the region of the search space containing

feasible solutions may shift with time. For example, in a dynamic scheduling problem jobs arrive

in the system, are processed, and are completed. Though a similar job may arrive later, the jobs

currently being scheduled change over time. A schedule containing only completed jobs is not a

feasible schedule for the jobs now available.

Influence of search on the environment Though all problems with dynamic environments un-

dergo changes independent of the results of search, search can create additional changes in the

environment. For some problems, solutions have no effect on the environment. For many others,

however, the specific solution will change the environment. In traffic control, both the arrival of
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new vehicles into the road network and the settings of a traffic signal determine changes to the flow

of traffic. In scheduling problems, completing one job may change which of the remaining jobs are

allowed to be scheduled.

2.3 Responding to change

Many prior works on optimization and learning in dynamic environments have investigated prob-

lems where changes are small and algorithms must track those changes quickly. Many real problems

are much more discontinuous, with changes that are not random, but revisit previous solution areas

as the problem progresses. These types of problems may include scheduling and adaptive traffic

control, which are investigated in this thesis.

Problems with small, frequent, continuous changes require constant refinement to the solution, but

typically do not require algorithms that allow for large, rapid changes to the solution. If the opti-

mum moves in a continuous manner, rather than jumping between areas of the search space, search

algorithms must only make incremental changes to solutions in order to follow the optimum. Many

algorithms, including reinforcement learning, are well suited to these types of problems.

When changes to the environment are much more severe, a very different approach is necessary.

After a change in the environment occurs, the location of the global optimum may change drasti-

cally. For discontinuous problems, search must be able to find areas containing good solutions in

addition to refining those solutions to find the best solutions possible. Search algorithms that are

able to explore widely across the search space after a change will have an advantage over those that

search only locally. If search is population-based, introducing diversity into the search may help

explore the search space after a change. For many problems, changes in the search space, though

discontinuous, are not completely random. Instead, the current environment is similar to previous

environments. By using information from those previous environments, it may be easier to find

promising solutions in the new environment. A common way to use information from the past is

memory, where good solutions are stored over time and can be retrieved when the environment

changes.

Chapter 3 reviews some of the previous work in responding to change in problems with dynamic

environments. Many of the interesting real-world problems with dynamic environments have se-

vere, discontinuous changes as well as repeatable changes to their environments. Memory is one

of the most effective ways to improve search on these types of problems. Chapter 4 introduces a

standard memory system for aiding search in dynamic environments. While this type of memory

helps search, it has several weaknesses. The remainder of this thesis explores how to improve mem-

ory systems for optimization and learning in dynamic environments and then applies the improved

memories to dynamic real-world problems.
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2.4 Summary

Many problems in optimization and learning have dynamic environments, where changes occur

over time independent of the search process. Changes in the environment lead to changes in the

objective values for solutions in the search space. Optimization and learning algorithms for dynamic

environments must be able to respond to change, finding good solutions after a change has occurred.

Dynamic optimization and learning is useful for problems where enough time is available that search

can outperform reactive approaches but not enough time is available to treat optimize from scratch.

This chapter presented a classification of dynamic environments. A dynamic environment may be

classified by how frequently the problem changes, how severe or discontinuous those changes are,

how easy it is to predict when changes will occur or what those changes will look like, how easy it is

to detect when changes happen, whether the changing environment revisits previous environments,

whether the feasible region of the problem changes over time, and whether the results of search can

produce changes to the environment. Many different types of dynamic problems may be explored,

but this thesis will focus on those with discontinuous, repeatable changes.
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Chapter 3

Background

There are many approaches to optimization and learning in dynamic environments, and it is outside

the scope of this thesis to provide a complete accounting of all the ways one may approach problems

that change over time. However, a general overview of these approaches may help place the research

detailed later in the context of other work on dynamic problems.

The chapter will begin by describing some of the many algorithmic approaches to dynamic prob-

lems in the literature. Then, some of the more common dynamic benchmark problems will be

discussed. The remainder of the chapter will discuss approaches to improving the performance of

meta-heuristics on problems with dynamic environments, particularly diversity techniques, memory,

multi-population search, and anticipation.

3.1 Algorithms for dynamic problems

Like static optimization problems, dynamic optimization problems may be solved in many ways.

For some problems, algorithms may be able to find globally optimal solutions for all possible envi-

ronments. For other problems, an algorithm might have to adapt quickly to changes in the environ-

ment based on very little information about the problem.

If one actually knows the function to be optimized, classical methods like calculus of variations or

optimal control may be applied [23]. Optimal control may allow for the construction of a control

law such that optimality may be achieved across changes in the environment. Another way to find

policies for optimization problems with uncertainty a priori is the use of stochastic programming

[54], which uses probability distributions about the data to find policies that are always feasible

and maximize the expected value of fitness. For some dynamic problems, particularly scheduling,

priority-dispatch rules may be used to handle dynamic events [50]. These rules may be learned
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ahead of time. Other reactive approaches may also be learned a priori to be robust in varying

environments [1, 39, 74]. Approaches like reinforcement learning can move the process of learning

from dynamic events into the control process [25].

One large class of algorithms commonly used for dynamic problems are meta-heuristics, includ-

ing local search [94], simulated annealing, tabu search, evolutionary algorithms [52], ant colony

optimization, and particle swarm optimization. Many of these algorithms were inspired by real

dynamic processes like evolution, swarm behavior, or the annealing of metals. Unlike classical

methods, meta-heuristics typically do not require extensive knowledge of the function to be opti-

mized, such as the locations of good solutions or derivatives of the function to be optimized. This is

particularly advantageous, since most dynamic problems are difficult specifically because of a lack

of information about the function to be optimized. Though the applications of many meta-heuristics

to dynamic problems have been studied in the literature, some of the most extensive work has been

done on dynamic optimization with evolutionary algorithms. Though most of the results in the

remainder of this section will discuss dynamic optimization with evolutionary algorithms, meta-

heuristic approaches tend to encounter the same types of difficulties with dynamic problems, and

many of the approaches used for evolutionary algorithms could be applied to other meta-heuristics.

3.2 Common benchmark problems with dynamic environments

Many dynamic problems have been studied in the literature. Many of these experimental problems

are related to real-world dynamic problems like scheduling and routing. Others have been designed

purely as benchmark problems for investigating optimization and learning in dynamic environments.

One of the more common dynamic benchmark problems used in evaluating evolutionary algorithms

for dynamic optimization is the Moving Peaks problem, developed simultaneously by Branke [13]

and by Morrison and DeJong [72]. This is a dynamic, multi-modal problem with a fixed number of

peaks. Depending on the parameters used, the fitness landscape may change in many different ways

over time. Peaks may move within the search space, as well as change in height or shape.

Another common benchmark problem is dynamic scheduling. A single benchmark scheduling prob-

lem does not exist, though most results seem to be for dynamic job shop scheduling problems

[6, 7, 16, 63, 98]. While many problems consider primarily the arrival of jobs over time, some

problems also include machine breakdowns and other dynamic events [3, 24]. Ouelhadj and Petro-

vic [76] give a survey of approaches to dynamic scheduling which includes some explanation of

dynamic scheduling problems.

Other common benchmark problems include dynamic knapsack problems [18, 94] and dynamic bit-

matching [91]. Farina et al. created several multi-objective dynamic benchmark problems [35]. Van
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Hentenryck and Bent consider dynamic routing in addition to scheduling and knapsack problems

[94]. Several dynamic problem generators have been proposed in addition to the Moving Peaks

problem. Yang created a problem generator based on decomposable trap functions [105], and Jin

and Sendhoff created a benchmark generator for both single objective and multi-objective problems

[53].

In addition to these benchmark problems, many real-world dynamic problems have been investi-

gated. Morley considered an example of the factory coordination problem from a General Motors

plant where trucks are allocated to reconfigurable paint booths [70, 71]. Trucks arrive off the as-

sembly line to be painted, and then wait to be assigned to a paint booth’s queue. Kokai et al. [57]

considered the use of particle swarm optimization to dynamically optimize adaptive array antennas.

A great deal of work has been done on adaptive traffic signal control, which is a highly dynamic

problem [59, 67, 79, 89]. Prior work has considered dynamic learning and optimization for single

intersections, corridors, and large networks of traffic signals.

3.3 Improving performance on dynamic problems

Many meta-heuristics, including evolutionary algorithms, ant colony optimization, and particle

swarm optimization, were inspired by naturally occurring responses to dynamic problems. It fol-

lows then, that many of these algorithms would be suitable for dynamic optimization [46]. These

meta-heuristics are not only adaptive, but the use of population-based search allows transfer of

information from the past which is often helpful in dynamic optimization. However, when meta-

heuristics converge during a run, some of this adaptability is lost, which may lead to poor results

after the next change. Also, while population-based search may help transfer information from the

recent past, standard versions of most meta-heuristics do not use information from the more distant

past, which may be helpful when the current environment is similar to one previously encountered.

Last, standard meta-heuristics typically do not seek to produce solutions that are robust or flexible

to changes in the environment, something that may be useful during dynamic optimization.

Prior work has shown many techniques for improving the performance of meta-heuristics on dy-

namic problems. [14, 52]. These techniques fall into three broad categories based on what the ap-

proach is attempting to address: keeping the population diverse in order to avoid population conver-

gence and maintain adaptability, storing information from the past in order to improve performance

after future changes, and anticipating changes in order to produce flexible solutions. Directly or

indirectly, each category of approach is concerned with avoiding the loss of adaptability that comes

with over-convergence of search.
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3.4 Diversity

Perhaps the most straightforward approach to countering the problem of population convergence

is by explicitly introducing diversity into the search process. Jin and Branke [52] group diver-

sity approaches into two categories: generating diversity after a change and maintaining diversity

throughout the run. Diversity techniques may alter the mutation rate, insert randomly initialized

individuals into the population, or use a sharing or crowding mechanism.

Since the greatest need for diversity occurs immediately after a change, some of the early diversity

techniques focused on generating diversity after a change. Hypermutation [26] drastically increases

the mutation rate for several generations immediately after a change in the environment. Though

this increases diversity, it also may replace information about previously successful individuals

with random information. Variable local search [95, 96, 97] gradually increases the mutation rate to

attempt to reduce some of these effects. However, since it is unclear how much diversity is useful,

techniques that introduce diversity all at once may too ofter err in how much diversity is introduced.

Subsequent approaches have tended to attempt to maintain diversity throughout the run. If a popula-

tion always remains diverse, then convergence may be avoided at all times, and optimization may be

more adaptive to changes. The random immigrants approach [43, 42] maintains the diversity of the

population by inserting randomly initialized individuals (immigrants) into the population at every

generation. Instead of changing possibly useful solutions in the population via mutation, these ran-

dom immigrants provide diverse genetic material that can be used in crossover to increase diversity.

The thermodynamical genetic algorithm [69] uses an explicit diversity measure in combination with

fitness to choose the new population. Sharing and crowding mechanisms [21] are another way to

encourage diversity. A more recent approach to maintaining diversity is elitism-based immigrants

[108]. Rather than generating completely random immigrants, some or all immigrants are mutated

versions of the best individuals from the previous generation. This is less disruptive than random

immigrants, but it keeps diversity high.

3.5 Memory

In many dynamic problems, the current state of the environment is often similar to previously seen

states. Using information from the past may help to make the system more adaptive to large changes

in the environment and to perform better over time. One way to maintain and exploit information

from the past is the use of memory, where solutions are stored periodically and can be retrieved and

refined when the environment changes.

Memory-based approaches for dynamic optimization may be divided into implicit memory and

explicit memory, based on how memory is stored. Implicit memory stores information from the past
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as part of an individual, whereas explicit memory stores information separate from the population,

typically as a set of previously good solutions. Explicit memory has been much more widely studied

and has produced much better performance on dynamic problems than implicit memory.

3.5.1 Implicit memory

Implicit memory for evolutionary algorithms stores memories in the chromosomes of individuals

in the population. There are several types of implicit memory, but probably the most common is

the use of multiploidy evolutionary algorithms [40, 62, 73, 86, 87]. Inspired by the large number

of biological organisms with recessive genes, the creation of a multiploid chromosome with some

dominance mechanism allows retention of information in the recessive portion of the chromosome.

Most results have used diploid chromosomes, though polyploid chromosomes are possible.

Several other forms of implicit memory have also been created. Collard et al. created the dual

genetic algorithm [27], which adds a single meta bit to a bitstring chromosome. When the meta bit

is turned off, the bitstring is read as normal, but when the meta bit is turned on, the complement of

the bitstring is read instead. Other implicit memories that use this concept of the dual include those

by Gaspar and Collard [37] and Yang [104]. Dasgupta and McGregor created the structured genetic

algorithm [31], which uses a more complex structure of meta genes.

3.5.2 Explicit memory

Explicit memory for evolutionary algorithms stores memories separate from the population in a

memory bank. Explicit memories have been very popular and widely used for dynamic optimiza-

tion. Specific strategies for storing and retrieving information from the memory vary between tech-

niques, but the general structure of the memory tends to be similar. In the remainder of this thesis, a

memory is defined as an explicit memory bank and a memory entry is defined as a part of a memory.

In an early use of memory, Ramsey and Grefenstette [81] created a case-based memory that stored

both previous good solutions and information about the environments those solutions were created

in. When a change was detected, entries with closely matching environments were found and the

solutions from those entries were used to reinitialize part of the population. The dynamic problem

was episodic, so memory entries were stored once per period. The memory was allowed to grow

without bound and was never reduced in size.

Branke [13, 14] introduced a more general model of memory which did not require storing infor-

mation about the environment. Periodically, the memory tries to store the best individual in the

population. The memory has a finite size; when the memory is full a replacement strategy is used

decide whether the best individual in the population should replace one of the memory entries. A
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variety of replacement strategies for maintaining a diverse memory are presented in [14]. Rather

than selectively retrieving some of the memory entries, the whole memory is reinserted into the

population either after a change or throughout the run. Branke [13] also noted that memory is very

dependent on diversity and examined several extensions to the basic memory which augment the

basic memory with diversity techniques. A thorough analysis of all these approaches is given in

[14].

Eggermont et al. [34] presented a memory similar to the memory in [13] with a least recently

used replacement strategy. This work was extended by Eggermont and Lenaerts [33] by adding a

predictor to the memory. However, this predictor was very simple and highly problem dependent.

Bendtsen and Krink [5] presented a memory that moved entries in response to the location of the

best individual in the population rather than replacing entries outright. This helped track optima that

move slightly. This approach outperformed Branke’s memory and a standard evolutionary algorithm

on an example problem.

Chang et al. [22] used case-based reasoning for scheduling with a GA. Dynamic scheduling is a dif-

ficult problem for using memory, as the available jobs change. Comparisons between job attributes

were used to transition between periods. This was a periodic problem rather than a continuous

dynamic problem.

Kraman et al. [55] presented a memory indexing evolutionary algorithm which stores environmental

information and a distribution array of the population in each memory entry. A problem dependent

measure of the environment is used to index the environment. After a change, the new environment

is compared to the memory entries, and the distribution array of the closest memory entry is used to

reinitialize some part of the population. This approach is similar to [81], except instead of storing

the best solution, an estimate of the population distribution is stored and then sampled to create new

solutions.

In a similar use of population distribution estimates, Yang [106, 107, 109] presented associative

memory, which stores both a solution and a distribution estimate together in a memory entry. After

a change, the solutions in all memory entries are evaluated. The distribution from the memory entry

with the best solution is sampled to reinitialize part of the population. Associative memory was

compared to direct memory—equivalent to Branke’s memory system—and a hybrid of direct and

associative memory. The use of associative memory tended to be significantly better than direct

memory alone, with the hybrid version tending to perform the best of all.

Richter and Yang [82, 83, 84] presented a memory that rather than directly storing solutions, stores

abstractions of the solutions by maintaining a matrix dividing the search space into cells. When a

solution is added to the memory, the counter in the corresponding cell of the matrix is incremented.

This allows the matrix to function as an abstract model of good solutions. After a change, solutions

are retrieved from the memory by sampling from the matrix and reinitializing part of the population.
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3.6 Multi-population approaches

Memory attempts to create a model of the good areas of the search space, but after an entry is

created, little refinement occurs. An alternative approach has been to divide the population into

several subpopulations, each of which can track a peak within the search space. This allows the

evolutionary algorithm to constantly refine information about several good areas of the search space,

while also trying to locate new promising areas. One of the best examples of this is self-organizing

scouts [15, 14], which has been rigorously compared with other diversity and memory techniques,

and shown to perform extremely well. Other multi-population models include the multi-national

genetic algorithm [92, 93] and the shifting balance genetic algorithm [101].

Multi-population approaches have been very successful when compared to diversity and memory

techniques, especially for problems where a peak, though moving locally and changing height,

always exists in the fitness landscape. In these cases, these approaches are able to actively refine

the high fitness areas of the search space and keep track of any changes, making it very simple to

find the optimum after a change. However, if peaks instead disappear and reappear across time,

self-organizing scouts may spend a lot of search looking for the peak after it disappears, and before

it reappears, the scout population may be lost when it no longer finds that area of the search space

interesting. Also, multi-population approaches spend much fewer resources on a broad search, so if

the optimum is outside one of the known peaks, it may take a long time to find. Finally, like most

memories, multi-population approaches are limited in the number of subpopulations.

3.7 Anticipation

While diversity techniques and memory generally attempt to respond to changes in the environ-

ment after the changes occur, anticipation attempts to create solutions that are either robust to these

changes or flexible enough to allow adaptation. This makes anticipation, in many ways, a com-

plementary approach that can be used with these other techniques. Several existing approaches to

anticipation are described here, and it is assumed that anticipation could be used alongside memory

and diversity techniques to create more robust and flexible solutions.

In a dynamic job shop scheduling domain with an objective of minimizing mean tardiness, Branke

and Mattfeld [16, 17] framed the original problem as a multi-objective dynamic problem, where the

first objective was still to minimize tardiness, but a second objective was added that measured the

flexibility of a solution. The flexibility objective penalized early idle times, since schedules which

push idle times toward the end of the problem are more flexible if a change occurs. This approach

led to more efficient schedules and better performance than using the tardiness objective alone.
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Van Hentenryck and Bent [94] have done extensive work on the use of anticipation for local search

in dynamic problems. In a different approach to anticipation, distributions of future events are

sampled and used to evaluate solutions. These distributions are typically available, but may be

learned. Several classes of problems were investigated and the techniques described in [94] provided

substantial performance benefits.

Bosman [11] has presented work on predicting dynamic problems based on past events, particularly

for problems with time-linkage, where actions taken now influence future events. Bosman and La

Poutre [12] have presented work on anticipation for stochastic dynamic problems.

3.8 Other approaches

Other meta-heuristic algorithms have been used for dynamic problems. Ant colony optimization

has been used for the dynamic traveling salesman problem [45, 44] with several methods to repair

and reinitialize the pheromone matrix after a change occurs. Particle swarm optimization has been

widely used for dynamic optimization [9, 8, 10, 20, 49, 51, 78]. This meta-heuristic has similar

problems with convergence to those seen in evolutionary algorithms, but these problems are ap-

proached in different ways due to the nature of particle swarm optimization. Some approaches to

using particle swarm optimization include reinitializing particles after a change [49] or introducing

charged particles [9]. These approaches tend to be focused on maintaining diversity. Since par-

ticle swarms already have some concept of memory, this may be helpful [20], though it does not

seem to be as rich as the explicit memory described above. Multi-swarm approaches have also been

proposed [10, 78] as parallels of multi-population approaches.

Another meta-heuristic which has seen some recent use for dynamic problems is estimation of dis-

tribution algorithms [36, 56, 109, 110]. Estimation of distribution algorithms are an outgrowth of

evolutionary algorithms where instead of operations like crossover or mutation, the algorithm func-

tions by learning and sampling the probability distribution of the best individuals in the population

at each iteration [60]. The work to date on using estimation of distribution algorithms for dynamic

problems seems focused on how to respond to a change, essentially the same diversity problem

that has been encountered before. Yang and Yao [109] have also considered the use of associative

memory with an estimation of distribution algorithm for dynamic problems.
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Chapter 4

A standard memory for optimization
and learning in dynamic environments

Prior work has shown that retaining information from the past often helps dynamic optimization

adapt more quickly to changing environments. Though memories developed in the literature differ

widely, most memories can be considered as variants of a standard memory system. In the first part

of this chapter, a standard memory system will be defined to provide an established system that has

been tested on many problems, and whose strengths and weaknesses we can analyze in order to

determine how memory could perform better.

Incorporating memory into algorithms for solving dynamic problems requires a balancing act.

While some types of memory may be capable of drastically improving the quality of solutions,

improvements may come at the expense of how quickly these solutions can be found. Memories

may bias algorithms toward good solutions for commonly seen environments, but this may be at

the expense of maintaining a diverse memory that performs well in all environments. Previously

investigated memories have many strengths on dynamic problems, but also have many weaknesses.

The remainder of this chapter will attempt to examine the strengths and weaknesses of memory.

4.1 Overview of the standard memory

Many variants of memory for optimization and learning in dynamic environments exist in the lit-

erature. While implementations differ, most can be considered as variants of an explicit memory

described in [14] and [107]. In this chapter, a standard memory system for learning and optimization

algorithms is defined.
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Figure 4.1: A diagram showing a basic learning algorithm with memory. The algorithm executes
a policy, senses data from the environment, and then uses those data to choose either to adapt the
policy or to retrieve a policy from the memory. After the learning process adapts a policy, it may be
stored in the memory for future use.

The standard memory stores a finite number of solutions or policies generated by the search algo-

rithm separately from the main optimization or learning process. These memory entries may then

be retrieved from the memory and reinserted into the search process at a later time. The standard

memory system can be altered to suit particular dynamic problems. For this reason, the standard

memory may be seen as a building block for more complex memories and as a first step toward

memories that build rich models of the dynamic fitness landscape.

Figure 4.1 shows a simplified diagram of a learning algorithm with memory. Given the current

policy generated by the learning algorithm, the algorithm senses the current state of the environment.

If the conditions for retrieving from the memory are met, the current policy is replaced by a policy

from the memory. If conditions for retrieving from the memory are not met, the learning algorithm

adapts the current policy based on the state of the environment. If conditions for storing to the

memory are met, this new policy is stored in the memory. The new policy then replaces the old

policy.

Figure 4.2 shows a simplified diagram of a population-based search (such as evolutionary algo-

rithms, particle swarm optimization, or beam search) with memory. Search operations transform a

parent population into a new child population. If the best individual in the child population meets

some criteria, this individual is stored in the memory. Then individuals in the memory are retrieved

and combined with the child population to form the parent population for the next generation.
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Figure 4.2: A diagram showing a population-based search algorithm with memory. The algorithm
begins with a parent population of solutions. These solutions are transformed using search opera-
tions into a child population. The child population is combined with individuals retrieved from the
memory to form the parent population for the next iteration of the search algorithm. Individuals
from the child population may be selected to be stored in the memory.

4.2 Structure of the standard memory

A memory stores a finite number of entries containing information produced by the search process

that may be used to aid search after changes in the environment. Memory functions as a sophisti-

cated version of elitism—where good solutions are maintained in the population regardless of the

results of search. The memory has a fixed size. When used with population-based search the size

is generally small relative to the total size of the population. In a dynamic problem, all individuals

must be evaluated at every step of the search process, including those individuals stored in the mem-

ory. By keeping the memory small, most evaluations are reserved for the main search process. The

most common practice in the literature is to reserve 1
10 of the allowed population size for memory.

If the total population size is set as p, the memory size would be set as m = p
10 . The memory is

stored separately from the population.

Figure 4.3 shows the structure of the memory. Information stored in a memory entry can be divided

into two categories: environmental information and control information. Environmental informa-

tion helps capture the current state of the problem. As the problem changes, the environmental

information may be used to determine similarities between the current environment and the envi-

ronments when memory entries were stored. Environmental information is used to maintain the

memory, deciding which entries should be stored in the memory when new entries become avail-

able. Typically, environmental information is used to calculate the distance between memory entries

so a diverse memory may be maintained. The control information includes information that might

be used by the search process. For example, the control information might just be a solution stored
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Figure 4.3: A standard memory is made up of a finite number of entries |M|. Each entry contains
environmental and control data from the time the entry was stored.

at a previous time which can then be reinserted into the population, or it might contain a proba-

bilistic model of the population of an evolutionary algorithm that could be used to reinitialize the

population after a change.

In its simplest form, each memory entry is only an individual from the population—a solution to the

problem. This solution is used for both environmental and control information in a memory entry.

The location of the solution in the search space as well as the current fitness of the solution are used

as environmental information to decide whether a memory entry should remain in memory. The

solution itself is the control information for a memory entry, and may simply be reinserted into the

population. Unless otherwise noted, this is the default structure of a memory.

In many examples from the literature, additional information is stored in an entry for improving

performance. For example, in associative memory [106], an individual from the population is stored

as environmental information and an estimate of the population distribution is stored as control

information. When a change occurs, the fitness of the individuals stored in each entry are calculated.

The individual stored in an entry—the state information—provides information about how well the

entry might perform in the current environment. The entry whose individual has the highest fitness

is chosen to reinitialize part of the population. The estimate of the population distribution—the

control information—is then sampled to create new solutions to insert into the population.
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4.3 Storing solutions in the standard memory

Storing and maintaining the entries in the memory has been one of the largest problems examined

in prior work. First, it must be decided how often to update the memory. Second, what should

continue to be stored in the memory as one tries to add new entries.

Storage can happen either prior to a change or periodically throughout a run; the latter is by far

the most common. To avoid the possibility of always trying to store a good individual right after a

change—a time when individuals tend to be quite poor—the tendency is to update the memory in

a stochastic time pattern; after each update, the time until the next update would be set randomly

within some range.

Given that a memory has a finite size, if one wishes to store new information in the memory, one of

the existing entries must be discarded. The mechanism used to decide whether the candidate entry

should be included in the memory, and if so, which of the old entries should it replace, is called the

replacement strategy. A variety of replacement strategies have been proposed [13, 34, 14]. Many are

designed to maintain the most diverse memory: for example, one replacement strategy might find

the two closest entries out of the existing memory and the candidate memory, compare the fitness

of the two entries, and discard the entry with the lower fitness. No single replacement strategy can

be seen as a default, though mindist2 and similar from [14] are probably most common.

4.4 Retrieving solutions from the standard memory

Memory can be retrieved in one of two ways during population-based search: after a change or

throughout the run. If memory is retrieved after a change, then typically the worst m individuals in

the population are replaced by copies of the m memory entries for population-based search. When

memory is retrieved throughout the run, memory entries are often retrieved from the memory every

generation. In this case, the working population size is r = p−m, where p is the total allowed

population size and m is the size of the memory. At every generation, the population of r solutions

produced by the last generation is combined with copies of the m solutions from the memory to form

a population of p solutions available to the search operators. The search operators—in the case of

an evolutionary algorithm, crossover and mutation—then produce a new population of r solutions.

For learning algorithms that are not population-based, a solution is retrieved from the memory when

a problem-specific event is triggered. This may happen when a change is detected or when the

current environment is very similar to one of the memory entries. Unlike population-based search,

a single-point search or learning algorithm cannot retrieve from the memory at every step, as this

would not allow the underlying search algorithm to make progress in refining the solution retrieved

from memory.
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Memory remains separate from the search process. While search or learning operators may alter

copies of memory entries reinserted into the population, the stored entries in the memory are not

changed. In most memory implementations, the individuals retrieved from the memory are exactly

the same individuals that were stored there. However, there are several examples of memory where

new solutions are generated based on the solutions stored in the memory entries—often by sampling

a stored distribution of solutions—and then inserted into the population [55, 106]. For population-

based search, it is also feasible to only retrieve some of the individuals from the memory at a given

time rather than all memory entries.

4.5 Strengths of the standard memory

Memory has proved to be useful for dynamic optimization, giving improved performance over stock

evolutionary algorithms on dynamic optimization problems. This success can be attributed to sev-

eral aspects of memory. The standard memory helps search adapt to changes in the environment,

maintain diversity in the population, build a simple model of where good areas exist in the search

space, and limit the overhead of building and maintaining the memory.

Adapting to change Since finding a good solution quickly in a dynamic problem is often more

important than finding the absolute best solution, leading search toward promising areas soon af-

ter a change may be very helpful. Since many problems are not completely stochastic, but often

encounter similar states to those seen previously, memories have proved to be very useful. Since

memory is typically limited to storing a finite number of good solutions which may be relatively

small compared to the number of contexts, maintaining a diverse memory may allow the search

process to quickly move toward the general area of the new optimum.

Maintaining diversity Population convergence can limit the adaptability of an algorithm for a

dynamic problem, but memory helps inject diversity into the population whenever the memory

is accessed. Since a memory is typically maintained to be as diverse as possible, even a highly

converged population should be able to diversify after a change given a good memory. The use

of memory does not provide as much diversity as dedicated techniques like random immigrants.

However, such diversity techniques often produce useless individuals, where diversity produced by

memory may more often have the potential to be useful, since the solutions were once good.

Building a model of the dynamic search space On a similar note, standard memory provides

a model of where good solutions exist over time. Though this model is immediately useful for

adapting to recent changes in the environment, a model of the dynamic landscape over time can also
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help with anticipating future environments, developing better diversity mechanisms, or improving

other areas of the search process. Given a small memory size, this model is very crude, but it does

provide an idea of where solutions have been best over time.

Limiting overhead of the memory The standard memory accomplishes all this with limited over-

head. Memory is an investment in search: if some amount of computation time is taken from search

and given to memory, then it should provide at least as much improvement as increasing the amount

of search would. For the standard memory, the main overhead is evaluating the fitness of the entries

in the memory, which may be done when the memory is updated if we only retrieve after a change

or at every generation if we retrieve throughout the run. Storing and retrieving from the memory

also requires some amount of computation, but this is generally small compared to the time required

to evaluate solutions. The use of memory also requires very little physical memory; this is not a

limiting factor.

4.6 Weaknesses of the standard memory

While memory has many strengths, the standard memory model also has many weaknesses. Some

of those weaknesses have been addressed in prior work, but usually only in a piecemeal way. The

next section will discuss how this thesis will improve memory for optimization and learning in

dynamic environments by addressing the weaknesses of the standard memory.

Limited model of the dynamic search space The standard memory builds a simple model of the

good areas of the dynamic fitness problem over time. While this is true, this model is very limited.

Since the memory size must be small in comparison to the population, a multi-modal landscape that

reoccurs often in a dynamic problem may be modeled in the memory using only a single memory

entry. Richter and Yang [83, 82, 84] have developed an abstract memory that constructs a much

better model of the dynamic problem over time by creating a grid over the space solutions. Storing

to the memory means incrementing the counter at the corresponding grid point. This enables the

estimation of the distribution of good solutions. The system is not based on the standard memory,

and so loses some of the advantages that go with it, including storing actual solutions, rather than

just their abstractions. The model that is constructed in this abstract memory is also limited by the

grid-based structure of the memory. A logical next step would be a memory capable of building a

model of the dynamic problem over time within the structure of the standard memory.

Small memory size While the standard memory accomplishes a great deal with a very small

memory size, this limits the number of areas a memory can cover. When the number of peaks in a
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dynamic problem increases beyond the size of the memory, the good areas may no longer be well

covered by the memory. It is also possible for the memory to become more volatile; as the number

of good areas increases, an individual that is being stored is less likely to be similar to an entry

already in the memory.

Difficult to refine memory entries Though memory often leads search toward promising areas,

there may be times where memory actually hinders search. In many of these cases, memory leads

search to several suboptimal areas, taking time away from the search that ends up leading to the

best solutions. This may be due to several factors, but one cause may be that standard memory

typically cannot refine memory entries after storing them: the only way to change a memory entry

is by replacing it. Multi-population techniques like self-organizing scouts [15, 14] help to counter

this problem, though these approaches typically draw resources away from search in other ways.

Limited diversity Though memory does help inject diversity into the population after a change,

this diversity is limited to those areas that have been searched in the past. Thus, memory relies

heavily on the underlying optimization algorithm to find diverse solutions, something that is not

always possible. For this reason, memory must often be accompanied by diversity techniques to

be useful [14]. However, diversity techniques are typically not designed specifically to work well

alongside memory. Diversity techniques can be disruptive to search, and memory can often provide

a great deal of diversity. In an ideal situation, when the memory is not sufficiently diverse, a diversity

technique should inject a great deal of new genetic material into the population. However, once the

memory has become more diverse, the diversity technique should respond by decreasing its role.

Limited applicability Finally, at present, memory is limited to certain types of problems. In

problems where the feasible region of the search space never changes—where peaks move within

the search space, but may return to exactly the same location—memory has been widely tested.

However, problems like dynamic scheduling, where the tasks to be scheduled change over time, the

feasible region of the search space also changes with time. Other problems like this include dynamic

routing and some dynamic knapsack problems where the number of items available to place in the

knapsacks change over time. Memories might be helpful for these types of problems, but little work

has been done on extensions that would allow memory to be used.
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4.7 Improving memory

The goal of this thesis is to improve memory for optimization and learning in dynamic environments.

The remainder of this thesis will describe improvements to the standard memory that address many

of the weaknesses described above while maintaining the strengths of this memory system.

Part II introduces a new class of memories called density-estimate memory. Density-estimate mem-

ory builds probabilistic models of past solutions within the memory in order to build a much richer

model of the dynamic search space over time. Though many more solutions may be stored in a

density-estimate memory than in the standard memory, the overhead of using the memory remains

low because the search process can interact with the probabilistic models, rather than with every

solution stored in the memory. Since many more solutions can be stored in the memory, refining

memory entries becomes much easier. Also, with the richer models of the search space created by

a density-estimate memory, diversity techniques can be more sophisticated.

Part III introduces another new class of memories called classifier-based memory. Classifier-based

memory extends memory to problems where the feasible region of the search space changes over

time, such as dynamic rescheduling. Instead of storing an exact solution to a dynamic problem,

classifier-based memory stores a abstraction of a solution which can be mapped to a feasible solution

at any time. This allows memory to be applied to many new problems without compromising the

strengths of the standard memory.

4.8 Summary

This chapter defined a standard memory similar to many memory systems that have been used

to improve the performance of optimization processes like evolutionary algorithms on problems

with dynamic environments. This standard memory is composed of a finite number of memory

entries that provide a simple model of the search space over time. As the search process discovers

good solutions, the memory considers whether a new solution will improve the quality of solutions

currently stored in the memory and if so, the new solution replaces one of the current memory

entries. Solutions from the memory may be retrieved in a variety of ways, though population-

based search like evolutionary algorithms typically retrieve all solutions from the memory at every

iteration of the search process.

Memory has been shown to help lead optimization to promising areas of the search space in dynamic

environments. Memory also helps to inject diversity into the search process, helping optimization

avoid over-convergence. The standard memory does all of this with little overhead required to build

or maintain the memory.
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The standard memory has a number of weaknesses. While the standard memory builds a model

of the search space over time, this model is usually very simple since the memory typically has a

small number of entries. This standard memory cannot refine memory entries without completely

replacing them, so outdated entries may lead search astray. While memory helps to inject diversity,

that diversity only comes from areas the algorithm has searched before, so memory relies heavily

on the underlying algorithm to search widely. The standard memory is also not applicable to all

dynamic problems. In particular, the standard memory is not useful for problems where the feasible

region of the search space changes over time.
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Part II

Building probabilistic models in memory
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Chapter 5

Density-estimate memory

This chapter introduces density-estimate memory, a new class of memory for optimization and

learning in dynamic environments. Density-estimate memory is designed to address many of the

weaknesses of standard memory while keeping the overhead associated with memory low. Density-

estimate memory helps to guide search algorithms on dynamic problems by using probabilistic mod-

els of previous good solutions. Instead of storing single solutions separately in memory, density-

estimate memory uses these probabilistic models to create density estimations of the search space

over time. These models can reveal more about the landscape of the search space than the individual

points stored in a standard memory. Even though density-estimate memory aggregates information

from many more solutions than standard memory, the overhead of using memory remains low.

Instead of having to interact with every solution stored in the memory, density-estimate memory

allows a search algorithm to interact only with the models stored in the memory. Density-estimate

memory also allows memory entries to be more easily refined than the memory entries in standard

memory. The richer, long-term model of the dynamic search space also allows diversity techniques

to be more informed and sophisticated.

5.1 Improving memory by building probabilistic models

The standard memory described in Chapter 4 builds a very simple model of the location of good

solutions over time by storing individual previous solutions. These solutions may be retrieved by

an optimization or learning algorithm to lead search back toward those areas that have help good

solutions in the past. For simple search spaces, this approach can be quite successful at improving

the ability of an evolutionary algorithm to find better solutions. As the fitness landscape becomes

more complex, the model of the search space built by standard memory becomes weaker. When

only a small number of memory entries are allowed, entire areas containing good solutions may not
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be represented in the memory. Even increasing the number of memory entries may have little effect,

since the standard memory does not aggregate information from multiple solutions.

Instead of storing individual solutions, density-estimate memory aggregates information from many

solutions by building and storing probabilistic models. By storing many more of the good solutions

discovered by the search process, density-estimate memory creates a long-term model of good so-

lutions in the search space. Density-estimate memories are inspired in part by estimation of dis-

tribution algorithms [60]. Estimation of distribution algorithms search by learning and sampling

the probability distribution of the best individuals in the population at each iteration. Repeating

the learning and sampling process allows estimation of distribution algorithms to refine models of

good solutions. Unlike standard memory, which can only change a memory entry by completely

replacing it, density-estimate memory allows the model of a peak in the fitness landscape to be re-

fined. The addition of new points to a memory refines the probabilistic model and creates a feedback

loop between the memory and the underlying learning or optimization algorithm. As the quality of

solutions retrieved from the memory improves, the underlying algorithm can spend more time in

finding the best solutions rather than finding areas containing good solutions. This leads to better

solutions being stored in the memory. Since density-estimate memory can store many more of the

good solutions produced by the underlying search algorithm, it is less likely to discard solutions

from rare environments which reoccur less frequently in the problem. Density-estimate memory is

less dependent on the new optimum having recently been in a high fitness area, so it is able to guide

search more effectively for problems where changes in the environment are very discontinuous.

The structure of a density-estimate memory is similar to standard memory. The memory is divided

into a fixed number of memory entries. In density-estimate memory, each of these entries may

contain many points; each point is a solution stored in the memory at some time. Periodically, a

solution produced by the underlying learning or optimization algorithm is stored in the memory.

When a new point is stored, models in the memory are updated. Solutions may be retrieved from

the memory and used by the underlying algorithm at any time. Since density-estimate memory

maintains the same interface as standard memory—a relatively small number of memory entries—

the overhead of the memory remains low. The underlying algorithm only needs to interact with the

models stored in a density-estimate memory, not all of the points used to create those models.

Density-estimate memory is a class of related memories. Many different density-estimation tech-

niques may be used to build the models used by a density-estimate memory. Though many memories

from the literature have been designed specifically for use with evolutionary algorithms, density-

estimate memory may be easily adapted for a variety of underlying optimization and learning al-

gorithms on many different problems. This chapter will describe a general implementation of a

density-estimate memory, but some of the experiments described in later chapters will test variants

of this implementation.
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5.2 Other methods for improving memory

Some methods from the literature discussed in Chapter 3 have addressed some of the same weak-

nesses in the standard memory as density-estimate memory. While many methods have improved

performance over the standard memory, most introduce limitations on the applicability of the stan-

dard memory. This section discusses two of these techniques that build richer models of the dynamic

search space and allow the memory to be more easily refined.

Self-organizing scouts [14] creates a constantly adapting memory by devoting most of an evolution-

ary algorithm population to scout populations which search limited areas of the search space. This

allows solutions in good areas of the search space to be quickly refined as the dynamic environment

changes. By dividing the search space, exploration can ignore areas covered by the scout popu-

lations. Self-organizing scouts is particularly useful for problems with continuous changes where

several areas of the search space contain good solutions and the global optimum is almost always in

these areas.

Self-organizing scouts requires a population-based search such as an evolutionary algorithm, so it

is not suitable for many types of dynamic problems. Self-organizing scouts also limits the amount

of exploratory search, since many of the individuals in the population are dedicated to refining good

solutions in the scout populations. For discontinuous problems with many areas of good solutions,

scout populations may not contain sufficiently good solutions to lead to the global optimum.

Richter and Yang [83, 82, 84] developed an abstract memory that aggregates the locations of good

solutions over time. The search space is divided discretely and counts are kept to measure how often

good solutions occur in each segment. This abstract memory is not limited by any particular model

for the distribution of good solutions in the search space. This memory can also better represent

complex search spaces than the standard memory.

This abstract memory does require choices about the grid used within the memory. The choice of

how to divide the search space is very important; large segments may not accurately capture the

structure of the space, while small segments may not aggregate solutions enough to be useful. Also,

this abstract memory may be difficult to adapt to solutions representations that are not real-valued.

While density-estimate memory will not outperform these methods for every problem, it is expected

to do better for many problems, particularly those with very discontinuous changes and complex

search spaces. Density-estimate memory also has many fewer limitations. Density-estimate mem-

ory may be used with a wide variety of optimization and learning algorithms, can use a wide variety

of probabilistic models, can adjust its models based on the structure of good solutions in the search

space, and can be adapted to problems where the representation is not real-valued.
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5.3 Structure of a density-estimate memory

A density-estimate memory stores points in a finite number of memory entries. Each point is com-

posed of environmental information and control information. The control information captures a

solution to the problem while the environmental information captures the state of the dynamic en-

vironment at the time the point was stored. In the standard memory, each memory entry could store

a single point; in density-estimate memory, each entry may store many points.

A memory may have up to |M| entries. Each entry contains a collection of points, a model of the

environmental information in those points, and a model of the control information in those points.

Figure 5.1 shows the structure of a density-estimate memory. The models in a density-estimate

memory may be as simple as the average of all points or may use complex probabilistic models. In

this thesis, the most common models used to represent an entry are a multi-variate Gaussian model

and a simple clustering model. In the Gaussian version, the mean and sample covariance of all the

points in the memory entry are used to describe the model. When entries are first created, there may

not be enough points to calculate a valid covariance. In this case, random points around the mean

are temporarily added to fill out the model. In the simple clustering version, only the mean is used.

In Chapter 8, a density-estimate memory using Gaussian mixture models will also be considered.

Though a memory entry contains many points, only the environmental model and control model

are necessary when interacting with the entry. Since entries might contain thousands of points, this

keeps the overhead of a density-estimate memory low while still allowing these many entries to

contribute the density-estimation captured in the models. The only time the individual points are

used is when the models must be recomputed after a new point is added to the entry.

Figure 5.2 shows an example of how density-estimate memory differs from standard memory. In this

example, the one-dimensional search space has four peaks of varying shape and fitness. Suppose

that the underlying search algorithm has tried to store the points marked with a solid line to the

memory over time. The standard memory will choose the point with the best fitness; for these

simple peaks, this point will always be the closest point to the true center that the memory has seen.

The density-estimate memory will cluster these points by peak and then build a model for each

cluster. A Gaussian model for each peak is shown at the top of the figure. For this example, the

mean calculated by each cluster has higher fitness and is closer to the true peak maximum than the

corresponding memory entry in the standard memory. Rather than using only Euclidean distance,

the Gaussian models provide more information when adding a new point to the memory. The peak

at the far left is quite wide, and much more likely to accept points far from the mean than the peak

at the far right, which is quite narrow. For the clusters that do not yet have an accurate model of the

true peak, the model may be refined by adding more points to the memory. As the models become

more accurate, the solutions retrieved from the memory will be better. As long as the underlying
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|M| = Maximum number of entries
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Entry

Entry

Control model

Model parameters

Environmental model

Model parameters

Point

Point

Point

Environmental data

Control data

Figure 5.1: A density-estimate memory is made up of a finite number of entries |M|. Each entry
contains a collection of points where each point contains environmental and control data from when
the point was stored. These points are used to construct an environmental model and a control model
for the memory entry.
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True peak center

Standard memory

Density-estimate memory mean

Point seen by memory

Figure 5.2: Density-estimate memory example of a search space with four different peaks. Both
standard and density-estimate memory have seen the same points; the memory entries for the
standard memory are shown as dots, while the Gaussian models calculated for each cluster in the
density-estimate memory are shown above the search space.

search algorithm can continue to improve on the solutions retrieved from the memory, this feedback

loop will continue to improve the models stored in the memory.

5.4 Storing solutions in a density-estimate memory

In a standard memory, a point is stored in the memory using a replacement strategy that decides

whether the new point should replace one of the existing memory entries. Most replacement strate-

gies are designed to maintain the most diverse memory possible. For example, a replacement strat-

egy typically adds the new point to the memory, finds the two memory entries closest to one another,

and discards the one with the lower fitness.

Rather than discarding entries, a density-estimate memory merges memory entries together. First,

the new point being added to the memory is used to create a new memory entry. After the models

are built for this new entry, the two most similar entries in the whole memory are found and merged

together. Similarity is measured using the environmental models of each entry. After clusters are

merged, the models for the new cluster are rebuilt using the combined set of points in the new

memory entry. In most cases, the new point will end up being merged into an existing memory

entry. When a new area of the search space is included for the first time, the new point will then be

used to begin modeling this area within the memory.

By incrementally clustering points, new areas of the search space can be modeled as the dynamic
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environment changes. As clusters merge together, clusters contain more points. As the density of

those points increases, an appropriate model will be able to provide increasingly good estimates of

the location of good solutions in the area.

It should be noted that density-estimate memory, like standard memory, depends heavily on the

underlying learning or optimization algorithm. Density-estimate memory builds models based on

the points stored in the memory, but if the underlying algorithm stores poorly performing solutions,

then the models within the memory will not represent good solutions. If good solutions are found

by the underlying algorithm, density-estimate memory will help the underlying algorithm to explore

the promising area, but the algorithm must be able to perform the search in the area.

When to store new points in the memory depends largely on the underlying learning or optimization

algorithm and the type of problem. When used with an evolutionary algorithm, a new point may

be stored every few generations. When used with a reinforcement learning algorithm, it may be

best to store new points once good solutions have been learned. For some problems where changes

can be easily detected, it may be best to store solutions right before a change. For other problems

where changes are more gradual, it may be best to store periodically rather than storing when certain

conditions occur. It is rarely desirable to store a solution right after a change since solutions have

not had time to adapt and tend to be quite poor. When updating periodically, storing in a stochastic

time pattern can help avoid repeatedly storing right after a change. After a new point is stored in the

memory, the time of the next update may be set randomly within some range.

The computational overhead of using a density-estimate memory depends on the problem as well

as the probabilistic models used by the memory. When incrementally clustering points, choosing

the two entries to merge can be done in O
(
m2
)
, where m is the number of memory entries. This

computation time is similar to that required for a replacement strategy with the standard memory.

When using Gaussian models within a density-estimate memory, the sample covariance may be

computed in O
(
nd2
)
, where n is the number of points in the memory entry, and d is the number

of dimensions in the environmental or control data. Since the memory is divided into clusters,

n is typically much smaller than the total number of points in the memory. Though the use of

memory does have some computational overhead, the time necessary to evaluate solutions typically

dominates the time needed to maintain the memory. Since density-estimate memory does not require

additional solution evaluations, the computational overhead of a density-estimate memory comes

only from the construction and maintenance of the probabilistic models in memory.

For some problems where either the environmental or control data have a large number of dimen-

sions, it may take a long time to build up the memory before retrieving from memory can be effective

at improving performance. The larger the dimensionality of the data, the more points are required in

order to give a good density estimation. For these types of problems, it is advantageous to pre-build

a memory rather than starting with an empty one. Results from other domains have shown that
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biasing a solution in this way is helpful, even if the training data are only similar to the testing data

[2, 39].

5.5 Retrieving solutions from a density-estimate memory

Solutions are retrieved from a density-estimate memory in much the same way as solutions are

retrieved from a standard memory. For population-based search algorithms, solutions may be re-

trieved from the memory either throughout a run or just after a change is detected. Most commonly,

solutions are retrieved from the memory at every generation of an evolutionary algorithm. Though

the memory entries only change when new points are stored to the memory, the solutions produced

by retrieving from the memory can then be used at each generation by the underlying search algo-

rithm. For learning algorithms that search from a single point, solutions must be retrieved from the

memory less frequently and more selectively. Since retrieving from the memory at every step would

make it impossible for the underlying algorithm to refine the solution retrieved from the memory,

solutions are retrieved either at a problem-specific trigger or periodically. In this thesis, a solution is

typically retrieved from the memory when the current solution is poor and the current environment

closely matches one of the memory entries.

Unlike standard memory, the solutions retrieved from the memory may not be the same as any of

the individuals stored in the memory. By aggregating many points into a single memory entry, a

solution retrieved from memory is influenced by many previous solutions that performed well in

similar environments in the past. For problems with a real-valued encoding, the easiest way to

retrieve a solution from a density-estimate memory entry is to average the control information for

all the points in the entry. For problems with other encodings that do not allow this—such as binary

strings or feature vectors—solutions could be generated by sampling from a model of the control

information in the memory entry, by finding the most commonly occurring control information

among the points in the entry, or by other methods that use the models generated by the density-

estimate memory.

Even if it is possible to simply average the points in the entry to find a solution to retrieve, density-

estimate memory could be used in other ways to generate new solutions based on the models stored

in memory. There are several examples from the literature where memory stores not just solutions

but a distribution that can be used to regenerate the population after a change [55, 106]. Density-

estimate memory could be used in a similar way in cases where changes could easily be detected.

After a change, the probabilistic model of control information in a memory entry could be sampled

to generate many solutions to be introduced into the search population.

44 DENSITY-ESTIMATE MEMORY



5.6 Summary

This chapter introduced a new type of memory for learning and optimization in dynamic environ-

ments called density-estimate memory. Density-estimate memories are an extension of the standard

memory that use probabilistic models to aggregate information from many solutions produced by a

search algorithm. Rather than just storing and comparing single points, density-estimate memories

build a rich model of the search space over time. As the search process discovers good solutions, the

models stored in the memory are constantly refined. As the model develops, the solutions that can

be retrieved from the memory become more useful to the search process. Density-estimate memory

is especially well suited to discontinuous problems with large changes in the location of optimal

solutions.

Though many more points are stored in the memory, the overhead associated with building, main-

taining, and interacting with the memory remains low. Density-estimate memories cluster points

into a finite number of memory entries. Each entry maintains separate models that only need to

be rebuilt when new points are added to the entry. An incremental clustering process allows the

memory to adapt as promising areas of the search space are discovered by the search process.

Density-estimate memories may use a variety of probabilistic models within the memory. Simple

clustering models may be sufficient for some problems, while more complex mixture models might

be better for others. Since each type of probabilistic model has a different amount of overhead

required to build and maintain the models in memory, density-estimate memories offer a great deal

of flexibility in choosing model types depending on the requirements of the dynamic problem.

Density-estimate memory stores good solutions produced by optimization and learning algorithms

and allows these solutions to be reinserted into the search process, improving the ability of search

to quickly adapt to changing environments. Density-estimate memory addresses many of the weak-

nesses of standard memory by allowing many more good solutions to be stored, building long-term

models of the dynamic search space, and constantly refining and improving memory entries as new

points are added to the memory, all while keeping the overhead of memory low.

5.7 Outline

The remainder of Part II considers the application of density-estimate memory to three dynamic

problems: factory coordination, dynamic optimization with evolutionary algorithms, and adaptive

traffic control. Though all three have dynamic environments, these problems are very different

from one another. For all three of these problems, density-estimate memory improved performance

over a baseline learning or optimization algorithm. Density-estimate memory also outperformed

state-of-the-art algorithms for each problem.
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Chapter 6 examines the problem of dynamic, distributed factory coordination. In the factory coordi-

nation problem, incoming jobs must be distributed among several machines to maintain the flow of

jobs through a simulated factory. Machines may be configured to perform any job, but changing the

configuration of a machine requires a setup time. Density-estimate memory allows a reinforcement

learning algorithm to adapt more quickly to changing jobs distributions.

Chapter 7 considers dynamic optimization with evolutionary algorithms on the Moving Peaks bench-

mark problem. The Moving Peaks problem is a common benchmark from the literature that allows

the nature of the search space to be highly configured. Density-estimate memories are compared

to a wide variety of approaches to improving a standard evolutionary algorithm on dynamic prob-

lems. On a highly discontinuous variant of the Moving Peaks problem, density-estimate memory

outperforms the state-of-the-art self-organizing scouts technique.

Chapter 8 applies density-estimate memory to an adaptive algorithm for controlling traffic signals

in a urban road network. Traffic signal control is a highly dynamic problem. Traffic demands

at an intersection constantly change due to the time of day, the types of vehicles, and the control

of surrounding traffic signals. Experiments consider two road networks based on intersections in

downtown Pittsburgh, Pennsylvania. The second experiment uses thirty-two intersections and re-

alistic traffic flows based on traffic counts for different times of day. Density-estimate memory

improves the performance of an adaptive traffic signal controller enough to be competitive with the

actual fixed timing plan used on these intersections.
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Chapter 6

Factory coordination

Many real-world problems involve the coordination of multiple agents in dynamic environments.

Machines in a factory may need to coordinate the scheduling and execution of jobs to ensure smooth

operation as customer demands shift. Teams of robots may need to coordinate exploration and task

allocation in order to operate in new and changing environments. Web-based agents may need

to coordinate services like information gathering as types of input or demand change. One may

approach dynamic problems in many ways, depending on the nature of the problem. Change may

be dealt with through completely resolving the problem from scratch each time a change occurs,

using centralized optimization to maintain a good solution over time, learning a fixed distributed

model that can adapt to changes, creating a model that can learn and adapt as changes occur, or a

combination of approaches.

In the domain of factory operations, adaptive, self-organizing agent-based approaches have been

shown to provide very robust solutions. A factory is a complex dynamic environment with constant

changes in product demand and resource availability. These types of changes often conflict with

attempts to build schedules in advance. By using adaptive approaches, a scheduler can be sensitive

to unexpected events and can avoid invalid schedules. However, these adaptive approaches may

require non-trivial amounts of time to respond to large environmental shifts.

Techniques exist that have been shown to help many different approaches perform better when

problems are dynamic. One common technique is the use of information from the past to improve

current performance. In many dynamic problems, the current state of the environment is often

similar to previously seen states. Using information from the past may help to make the system more

adaptive to large changes in the environment and to perform better over time. One way to maintain

and exploit information from the past is the use of memory, where solutions are stored periodically

and can be retrieved and refined when the environment changes. For more dynamic problems, one

well studied approach is explicit memory—directly storing a finite number of previous solutions to

47



be retrieved later.

As the number of possible environmental states increases in a dynamic problem, a memory of fixed

size has a more difficult time modeling the dynamic landscape of solutions. While the memory size

can be increased, the overhead associated with maintaining and using the memory limits how large

the memory can be. This chapter introduces several density-estimate memory systems inspired by

estimation of distribution algorithms that improve upon standard memory systems while avoiding

large increases in overhead.

The performance of these density-estimate memories is evaluated on a dynamic, distributed factory

coordination problem [25]. This problem requires the dynamic assignment of jobs to machines in

a simulated factory. Products of several different types arrive over time and must be allocated to a

machine for processing. When a machine switches from processing one type of product to another,

a setup time is incurred.

This chapter will explain the distributed factory coordination problem and several agent-based ap-

proaches to the problem. It will then describe a new dynamic variant of this problem, a baseline

agent-based approach to the problem, and the weaknesses of the baseline approach. It will introduce

the use of memory to improve the performance of on the new dynamic distributed factory coordina-

tion problem and present several novel density-estimate memory systems. Finally, the performance

of the baseline system will be compared with the memory-augmented systems.

6.1 Background

Manufacturing processes provide many interesting examples of dynamic problems. For example,

the factory coordination problem, also known as the dynamic task allocation problem, involves

assigning jobs to machines for processing. Jobs are released over time and the scheduler has little

prior information about the jobs. Given the lack of a priori information, there has been success in

designing adaptive scheduling systems for these types of problems instead of using a centralized

scheduler for computing optimal schedules.

Morley presented an example of the factory coordination problem from a General Motors plant:

allocating trucks to paint booths [71, 70]. Trucks arrive off the assembly line to be painted, and then

wait to be assigned to a paint booth’s queue. The color of each truck is determined probabilistically

based on a distribution of colors. Booths each have a queue of trucks waiting to be painted. All

booths can paint a truck any of the available colors, but when a booth switches between colors it

must flush out the previous paint color, causing a setup time delay as well as incurring the cost of

the wasted paint. Booths that specialize in painting a single color, at least for a few trucks in a row,

incur fewer setups.
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Morley demonstrated that a market-based approach, where the paint booths bid against each other

for trucks coming off the assembly line, could outperform the centralized scheduler previously used

by the real paint shop [71]. This system saved almost a million dollars in the first nine months of

use [70]. In this approach, a paint booth bids on a truck based on the current length of the booth’s

queue and the whether a setup delay would be required to process this truck.

Campos et al. [19] and Cicirello and Smith [25] independently developed distributed, agent-based

approaches for the factory coordination problem inspired by the self-organized task allocation of

social insects like ants and wasps. Like Morley’s approach, booths still bid against one another for

trucks, but instead of a fixed policy, agents representing each booth use reinforcement learning to

develop policies. Agents use the concept of response thresholds to determine a bid for each truck.

Though similar in inspiration, there are several major differences in these approaches. Nouyan et

al. [75] and others examine these and similar approaches.

Cicirello and Smith [25] compared their system, R-Wasps, to Morley’s system and Campos et al.’s

system on six problems: the original problem, a version with more significant setup times, ver-

sions with two different probabilities of machine breakdown, a version with an alternate truck color

distribution, and a version where the truck color distribution changes in the middle of a scenario.

R-Wasps was shown to be superior to the other approaches, particularly in minimizing the number

of setups required.

Cicirello and Smith [25] also presented a variant of the paint shop problem to allow for better

analysis of algorithm behavior. In this problem, jobs of N types are processed by M multi-purpose

machines operating in parallel. Jobs arrive probabilistically over time based on a distribution of job

types, and each job has a length of 15+N(0,1) time units. Each machine is allowed an infinite

queue. Setups for a machine to switch between jobs require 30 time units. Cicirello and Smith

examined problems with 2 job types and both 2 and 4 machines. They examined scenarios with

both a single job type distribution and a switch between two job type distributions. One of the

findings was that this approach may be slow to adapt to changes in the job type distribution.

6.2 A dynamic, distributed factory coordination problem

In this chapter, we examine a dynamic extension of the distributed factory coordination problem

similar to the variant from Cicirello and Smith [25] described above. In previous versions of this

problem, algorithms were evaluated over relatively short time horizons with very few changes in the

distribution of jobs. In the dynamic factory coordination problem described here, performance is

evaluated over a much longer time horizon and the underlying distribution of the job types changes

many times [4].
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In this problem, factories produce N products (N job types) which are processed by M parallel

multi-purpose machines which can process any job type. The length of a machine’s job queue is

unlimited. The setup time to reconfigure a machine for a different job type is 30 time units. The

process time of each job is 15+N(0,1) time units. Process times greater than 15 time units are

rounded up to the nearest integer, while process times less than 15 are rounded down. The process

time is also bounded in the interval [10,20].

Jobs are released to the factory floor according to a distribution of job types; this distribution changes

over time. For example, given two job types with a 60/40 mix and a 10% chance of any new job

arriving at each time unit, the distribution would be D=
[

0.06 0.04
]
. Only one job may arrive at

each time unit. From [25], we chose a mean arrival rate per machine of 0.05 to represent a medium

to heavily loaded factory. For convenience, we define the term ` as the loading on the system,

where ` = 1.00 indicates the normal amount of load, and larger values may place the system into

an overloaded state. The mean arrival time for a given scenario is λ = 0.05M`. A scenario lasts for

150000 time units and is divided into 50 periods of 3000 time units; at the beginning of each period

the job type distribution changes.

6.3 R-Wasps agent-based learning algorithm

We use R-Wasps as described in [25] as a baseline approach on this problem. In R-Wasps, each

machine is associated with a routing wasp agent in charge of bidding on jobs for possible assignment

to the machine’s queue. Each agent has a set of response thresholds:

Θw = {θw,0, . . . ,θw,N−1} (6.1)

where θw, j is the threshold of wasp w to jobs of type j. Unassigned jobs broadcast a stimulus S j

proportional to the length of time the job has waited for assignment that indicates the job type. An

agent will bid on a job emitting stimulus S j with probability

P(bid|θw, j,S j) =
S2

j

S2
j +θ 2

w, j
(6.2)

Otherwise, the agent will not bid on the job. The lower the threshold value for a particular job

type, the more likely an agent is to bid for a job of that type. Threshold values may vary in the

interval [θmin,θmax]. Each routing wasp agent is completely aware of the state of the machine, but

not the states of other machines in the factory. The knowledge of machine state is used to adjust the

thresholds at each time step according to several rules. If the machine is processing or setting up to
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process a job of type j, then

θw, j = θw, j−δ1 (6.3)

If the machine is processing or setting up to process a job other than type j, then

θw, j = θw, j +δ2 (6.4)

If the machine has been idle for t time units and has an empty queue, then for all job types j

θw, j = θw, j−δ
t
3

The values of the system parameters used here are θmin = 1, θmax = 1000, δ1 = 2, δ2 = 1, and

δ3 = 1.001.

When more than one agent bids on a job, a dominance contest is held. Define the force Fw of an

agent as

Fw = 1.0+Tp +Ts (6.5)

where Tp and Ts are the sum of the process times and setup times respectively of all jobs in the

machine’s queue. Let F1 and F2 be the forces of agents 1 and 2. Then, agent 1 will win the

dominance contest with probability

P(Agent 1wins|F1,F2) =
F2

2

F2
1 +F2

2
(6.6)

If more than two agents bid on a job, a single elimination tournament of dominance contests is used

to determine the winning bid. Seeding is done by force variable, and when the number of bidders

is not a power of 2, the top 2dlog2 Ce−C seeds receive a first round bye. Further explanation of the

R-Wasps algorithm may be found in [25].

6.4 Weaknesses of the R-Wasps algorithm

R-Wasps performs well on the distributed factory coordination problem, but since it takes time to

learn the thresholds, it may be slow to adapt to changes in the job type distribution. If the underlying

job type distribution remains the same for a long period of time, the system will generally correct

any problems that this slow adaptation creates. However, in the short term, this may have a large

negative impact on performance.

As an example, take a problem with four machines, two job types, and three time periods, each 4000

time units long. In the first time period, 85% of jobs arriving are of type 1 and 15% are of type 2.

At the beginning, each machine adapts its thresholds to accept jobs efficiently. In the second period,
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when the underlying distribution of arriving jobs changes to 15% of type 1 and 85% of type 2, each

machine adapts to the new distribution. In the third period, the distribution returns to 85% of type

1 and 15% of type 2. As Figure 6.1 shows, this may take longer from the change in distributions

than the initial adaptation took from the beginning of the scenario. This behavior occurs for several

reasons. First, the visible distribution changes more slowly than the underlying distribution, since

jobs produced by the distribution in the first time period are still unprocessed at the beginning of the

second time period. Second, distribution changes may lead to queue explosions. This can be seen

in Figure 6.2, where the queue for machine 2 grows very large after the first distribution change

and the queue for machine 3 grows large after the second distribution change. This often occurs

when a machine has specialized in processing one job type while few others have. If this job type

becomes common, the machine will win bids on those jobs until the other machines have had a

chance to exhaust their queues and become idle. At that point, other machines will specialize and

the machine with the queue explosion will stop accepting jobs and finish off the jobs already in the

queue. This may lead to idleness in the system, but the real problem is that cycle times may become

large and the system will thus be less adaptive. One of the major reasons for this is that when the

job type distribution changes, all machines have jobs in their queue. In the example shown, three

machines specialize on job type 1 during the first interval. When the distribution changes, job type

2 becomes much more prevalent, and machine 2, which had previously specialized on this type, has

the advantage when bidding on jobs of this type, because the threshold for bidding is low compared

to the other machines. By the time the other machines have exhausted their queues, machine 2’s

queue has exploded, leading to high cycle times for jobs it has queued. The same thing happens to

machine 3 during the third period. This behavior stems from some of the mechanisms of R-Wasps

that make it so successful during the majority of the time when the distribution is not changing.

Improving performance over the baseline version of R-Wasps will probably involve reducing this

adaptation time associated with these changes in the underlying distribution of job types. While

it might be possible to change the mechanisms of R-Wasps directly, an approach that augments

R-Wasps instead of changing it would keep performance the same for the majority of the run.

6.5 Memory-enhanced R-Wasps

As noted above, systems like R-Wasps may have trouble adapting quickly when the underlying

distribution of job types changes. Finding a way to improve factory performance around these major

changes could potentially improve throughput, reduce the number of setups, and in the end make

the system more responsive. Fortunately, the possible states of the underlying distribution are not

completely random. In cases where a new distribution of job types resembles a previous distribution,

a repository of past states could be leveraged to provide a shortcut for learning thresholds for the

new distribution. This section proposes adding a memory to R-Wasps for use in the dynamic factory
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Figure 6.1: Sample run with four machines shows how long it can take to adapt the thresholds for a
machine after a change occurs.
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Figure 6.2: Sample run with four machines shows that if thresholds on one machine take a long
time to adapt, queues can become very large on other machines.
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coordination problem described in Section 6.2. It also proposes several density-estimate memory

systems inspired by EDAs that allow the use of many past states while keeping overhead low. By

sampling each machine’s state as R-Wasps learns response thresholds, we can build a model of the

solution space over time which can be used when a new distribution is detected.

One of the weaknesses of the general memory systems that have been studied is the typical small

size of the memory. This is because the memory must be reinserted into the population, so it must be

much smaller than the population size. In addition, as memory grows, the computational overhead

of the memory can become quite large and detract from the resources devoted to optimization.

For the distributed factory coordination problem, only one solution can be retrieved at a time, so the

memory can be of any size. Though the length of a time step is not strictly defined for this problem,

one can assume it to be on the order of seconds. An infinitely large memory might require enough

computation time to detract from the learning process, but even very large memories do not require

enough computational overhead to test the limits of a problem changing at this speed. The overhead

required of any memory described here is not significant with respect to the length of a time step

since the probabilistic models used by the density-estimate memories do not require any search to

build the models, as would be necessary for more complex options like mixture models.

6.5.1 Standard memory

We begin by defining a standard memory system, which the other memories will be based upon.

This memory system will be denoted as Memory throughout the experiments. In this system, each

machine has a memory with a finite number of memory entries β . Each memory entry stores a

machine’s state at a point in time: the response thresholds Θw and the job type distribution Dt .

The job type distribution is used as environmental information, while the response thresholds are

used as control information. Machines have no knowledge of the true job type distribution, so the

distribution must be estimated over some window of time. The current distribution Dt is estimated

over the interval [t−ω1, t] where t is the current time and ω1 is the number of time steps to estimate

the distribution over. The throughput rate since the last distribution change—the number of jobs

completed divided by the time since the last change—is also stored for this standard memory system.

Every 1000+N(0,250) time units, a machine’s memory takes a snapshot of the machine’s state and

tries to store it in the memory. If the memory is full, a replacement strategy determines whether the

new point should replace one of the memory entries. The replacement strategy maintains diversity

in the memory [14]. The new point is added to the memory, and the two entries which have the

most similar job type distributions are found. The entry with the lower throughput rate is removed

from the memory. Each machine has its own memory, and there is no communication between the

memories. Machines do not update their memories simultaneously, so memories are not the same

for each machine (though the distributed memories tend to be similar).
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Since the goal is to retrieve entries from memory after changes in the underlying job type distribu-

tion, the memory contains a system for detecting those changes. We can detect changes by compar-

ing the current distribution to one in the past—Dt−w2 , computed over the interval [t−ω1−ω2, t−ω2]

where ω2 is the number of time steps in the past the distribution was calculated. Both the current

and past distributions can be easily maintained by the agent as new jobs arrive. If the difference be-

tween Dt and Dt−w2 is large enough, we know the job type distribution has changed. The threshold

for a change is φ times the mean value of |Dt −Dt−ω2 |. If a change is detected, the current job type

distribution is compared to the distributions of each memory entry. If the closest entry is less than a

distance ε from the current distribution, the machine’s thresholds are changed to those of the closest

entry.

6.5.2 Density-estimate memory

Instead of storing only single points in memory, we propose to store clusters of points in each

memory entry and to create a model of the points in each cluster. Though we will be able to store

many more points, the computation overhead required for the memory will remain low. Unless

stated otherwise, all of these density-estimate memories use the same mechanisms as the standard

memory model described above.

The first density-estimate memory system, DEMc, uses incremental Euclidean clustering to store

points in memory. Each machine’s memory contains a finite number of memory entries β . Each

memory entry is a cluster of stored points—machine states at a particular time. These points are

equivalent to the stored points for the standard memory: the response thresholds Θw and the job

type distribution Dt . Each memory entry averages these values over all the points in its cluster to

create a simple cluster model composed of a distribution center cd and a threshold center cθ . These

values are used when interacting with the memory entry. The memory is updated with the same

frequency as for the standard memory. When saving a new point, we create a new memory entry

containing only that point and add it to the memory. Then we find the two entries in the memory

whose distribution centers are closest together and merge their clusters into a single memory entry,

recalculating cd and cθ . An entry is retrieved in the same way as in the standard memory model, but

instead of using the thresholds from a single point, we change the machine’s thresholds to cθ .

The second density-estimate memory, DEMg, uses incremental Gaussian clustering to store points

in memory. Using a Gaussian model in place of Euclidean clustering improves the retrieval of

memory entries after a distribution change. In addition to cd and cθ , a Gaussian model of the job

type distributions in the cluster, md , is created. For clusters with fewer than 10 points, the model is

padded by adding random points around cd (uniformly distributed in each dimension in the interval

[−0.125,0.125]). Instead of computing the distance between the current job type distribution and

the distribution in each memory entry, the Gaussian model in each entry is used to calculate the
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probability that the memory entry belongs to the Gaussian (and hence, to the cluster in the memory

entry). The entry with the highest probability is selected and the machine’s thresholds are changed

to cθ . All the other parts of the memory system are the same as in DEMc.

The third density-estimate memory, DEMgw, extends DEMg by using the Gaussian model of the

job type distribution throughout the memory system. In addition to using this environmental model

when retrieving an entry from the memory, the model is used to calculate probability when adding

new points to the memory. Instead of measuring distance between entries when deciding which to

merge, a mean probability is computed. The mean probability of each point in entry 1 being in the

model for entry 2 is added to the mean probability of each point in entry 2 being in the model for

entry 1. The two entries with the highest probability are merged. Like DEMg, the Gaussian model

in DEMgw is also used to retrieve an entry after a change in the underlying distribution is detected.

Instead of changing the machine’s thresholds to cθ , a new weighted center is calculated. For each

point in the memory entry, a weight w j is calculated by finding the probability that the job type

distribution for point j is part of md . The weights are then normalized by dividing them by the sum

of all weights. A set of weighted thresholds is formed by multiplying the weight for each point by

its thresholds Θw. The weighted center wcθ is the mean of all of these weighted thresholds.

6.6 Experiments

We compared standard R-Wasps to the memory-enhanced versions of R-Wasps described in Sec-

tion 6.5: Memory, Memory-∞, DEMc, DEMg, and DEMgw. Memory-∞ is exactly the same as

the standard memory system, but with no limit on the number of memory entries. Each of the

other memories were allowed to store a maximum of 5 entries (5 clusters for the density-estimate

memories).

We examined problems with four machines and four job types. Each scenario lasted 150000 time

units split into 50 periods of 3000 time units. At the beginning of every period, the job type distri-

bution used to generate new job arrivals changes to a new distribution. This distribution is chosen at

random from ten distributions generated at the beginning of the scenario. The distribution for this

period is then randomly perturbed, so distributions are not repeated exactly.

For detecting distribution changes, we used φ = 2.5, ε = 0.25, and ω1 = ω2 = 100N, where N is

the number of job types. The parameter values for R-Wasps are as described in Section 6.2. We ran

scenarios with three values of `∈ {1.00,1.25,1.50} to test performance over a variety of loads from

normal to overloaded.

To evaluate scenarios, we measure four statistics: throughput, setups, cycle time, and queue length.

The throughput statistic measures the percentage of all jobs in the scenario that have been processed
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by a machine. The setups statistic is the total number of setups performed by all machines in the

system. The cycle time is the average time a job spends in the system from when it arrives until it

is finished being processed. The queue length is the average number of jobs in a machine’s queue

over the entire scenario.

6.7 Results

Tables 6.1, 6.3, and 6.5 show average results from 20 scenarios with loading values `= {1.00,1.25,1.50}.
Tables 6.2, 6.4, and 6.6 compare the approaches, showing the percent improvement of memory

approaches. When results are statistically significant, the result is marked accordingly. For all

experiments in this chapter, the statistical significance of the results has been evaluated using the

Kruskal-Wallis test, considering a confidence of 95% (p = 0.05). The Kruskal-Wallis test, a one-

way analysis of variance by ranks, is a nonparametric equivalent to the classical one-way analysis

of variance (ANOVA) that does not assume data are drawn from a normal distribution [29].

When ` = 1.00, the system has a medium to high load, and all six approaches had throughputs

above 98%. Incomplete jobs remaining at the end of the scenario existed mostly because of jobs

that arrived too late to be processed, since jobs could potentially arrive one time unit prior to the

end of the scenario. Since the standard version of R-Wasps completed over 99% of jobs, there was

not much room for improvement in throughput. The density-estimate memories greatly reduced

the number of setups as well as the cycle time and queue length for these scenarios. The standard

memory actually hurt performance in all areas.

When ` = 1.25, the system has a high load. The results for the six approaches varied quite a bit

more for the more highly loaded system than they did when ` = 1.00. The standard R-Wasps

approach only completed 89.84% of jobs on average, while the addition of memory raised this

average above 93% for every type of memory. Once again, the density-estimate memories gave the

best performance, with large reductions in number of setups, average cycle time, and average queue

length.

When `= 1.50, the system is overloaded. Compared to scenarios with lighter loads, the throughput

decreased for all approaches, with an average throughput of under 80% for standard R-Wasps. The

addition of memory still resulted in significant improvement over standard R-Wasps, particularly

for the two more complex density-estimate memories, DEMg and DEMgw. DEMg had the best

throughput and cycle time, while DEMgw had the fewest setups and smallest average queue size,

but the differences in performance between these two approaches was small. The largest area of

improvement in these scenarios over standard R-Wasps was in reducing the number of setups.
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Approach throughput setups cycle time queue length
R-Wasps 99.05 2029.25 20.02 59.04
Memory 98.64 2478.20 22.96 68.94

Memory-∞ 99.27 1913.45 16.20 48.03
DEMc 99.43 1371.45 11.31 33.76
DEMg 99.65 1213.10 10.10 29.80

DEMgw 99.36 1550.30 13.93 41.71

Table 6.1: Average results for scenarios with `= 1.00

Approach 1 Approach 2 throughput setups cycle time queue length
Memory R-Wasps -0.41 -22.12 (-) -14.66 -16.76
Memory-∞ R-Wasps 0.22 5.71 19.10 18.66
Memory-∞ Memory 0.64 22.79 (+) 29.44 (+) 30.33 (+)
DEMc R-Wasps 0.38 32.42 (+) 43.53 (+) 42.83 (+)
DEMc Memory 0.80 (+) 44.66 (+) 50.75 (+) 51.03 (+)
DEMc Memory-∞ 0.16 28.33 (+) 30.19 (+) 29.71
DEMg R-Wasps 0.60 (+) 40.22 (+) 49.58 (+) 49.52 (+)
DEMg Memory 1.02 (+) 51.05 (+) 56.02 (+) 56.77 (+)
DEMg Memory-∞ 0.38 (+) 36.60 (+) 37.67 (+) 37.95 (+)
DEMg DEMc 0.22 11.55 10.71 11.72
DEMgw R-Wasps 0.32 23.60 (+) 30.45 (+) 29.36
DEMgw Memory 0.74 (+) 37.44 (+) 39.34 (+) 39.50 (+)
DEMgw Memory-∞ 0.09 18.98 14.03 13.16
DEMgw DEMc -0.07 -13.04 -23.16 -23.55
DEMgw DEMg -0.28 -27.80 -37.93 -39.95

Table 6.2: Percent improvement of approach 1 over approach 2 for each metric with `= 1.00
(results that are statistically significant to 95% confidence are noted with a + or -)
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Approach throughput setups cycle time queue length
R-Wasps 89.84 2514.05 137.70 538.06
Memory 93.16 1821.00 106.79 403.87

Memory-∞ 93.10 1841.45 110.37 419.28
DEMc 95.29 1208.10 85.84 323.91
DEMg 94.86 1299.05 90.79 344.41

DEMgw 96.50 820.95 61.17 234.51

Table 6.3: Average results for scenarios with `= 1.25

Approach 1 Approach 2 throughput setups cycle time queue length
Memory R-Wasps 3.70 (+) 27.57 (+) 22.44 (+) 24.34 (+)
Memory-∞ R-Wasps 3.63 (+) 26.75 19.85 22.98
Memory-∞ Memory -0.07 -1.12 -3.35 -1.79
DEMc R-Wasps 6.07 (+) 51.95 (+) 37.66 (+) 38.63 (+)
DEMc Memory 2.29 (+) 33.66 (+) 19.62 18.89
DEMc Memory-∞ 2.36 (+) 34.39 (+) 22.22 20.32 (+)
DEMg R-Wasps 5.59 (+) 48.33 (+) 34.06 (+) 35.60 (+)
DEMg Memory 1.82 (+) 28.66 (+) 14.98 14.88
DEMg Memory-∞ 1.89 (+) 29.46 (+) 17.74 16.38
DEMg DEMc -0.45 -7.53 -5.77 -4.94
DEMgw R-Wasps 7.41 (+) 67.35 (+) 55.58 (+) 49.64 (+)
DEMgw Memory 3.58 (+) 54.92 (+) 42.72 (+) 33.45 (+)
DEMgw Memory-∞ 3.65 (+) 55.42 (+) 44.58 (+) 34.62 (+)
DEMgw DEMc 1.26 32.05 (+) 28.75 (+) 17.95 (+)
DEMgw DEMg 1.73 36.80 32.63 (+) 21.81 (+)

Table 6.4: Percent improvement of approach 1 over approach 2 for each metric with `= 1.25
(results that are statistically significant to 95% confidence are noted with a + or -)
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Approach throughput setups cycle time queue length
R-Wasps 79.33 1935.15 262.83 1229.65
Memory 82.71 1169.85 233.78 1073.85

Memory-∞ 81.10 1489.70 244.26 1148.97
DEMc 81.71 1374.00 241.27 1114.86
DEMg 83.08 1057.15 225.57 1051.82

DEMgw 83.06 1046.00 226.87 1041.66

Table 6.5: Average results for scenarios with `= 1.50

Approach 1 Approach 2 throughput setups cycle time queue length
Memory R-Wasps 4.27 (+) 39.55 (+) 11.05 12.67
Memory-∞ R-Wasps 2.23 23.02 7.06 6.56
Memory-∞ Memory -1.95 -27.34 -4.49 -7.00
DEMc R-Wasps 3.00 29.00 8.20 9.34
DEMc Memory -1.21 -17.45 -3.20 -3.82
DEMc Memory-∞ 0.75 7.77 1.23 2.97
DEMg R-Wasps 4.73 (+) 45.37 (+) 14.18 (+) 14.46 (+)
DEMg Memory 0.44 9.63 3.51 2.05
DEMg Memory-∞ 2.44 29.04 7.65 8.45
DEMg DEMc 1.67 23.06 6.51 5.65
DEMgw R-Wasps 4.71 (+) 45.95 (+) 13.68 (+) 15.29 (+)
DEMgw Memory 0.42 10.59 2.95 3.00
DEMgw Memory-∞ 2.42 29.78 7.12 9.34
DEMgw DEMc 1.66 23.87 5.97 6.57
DEMgw DEMg -0.02 1.05 -0.58 0.97

Table 6.6: Percent improvement of approach 1 over approach 2 for each metric with `= 1.50
(results that are statistically significant to 95% confidence are noted with a + or -)
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6.8 Discussion

Based upon these results, the memory-enhanced versions of R-Wasps exhibit better performance

than the standard version of R-Wasps for the dynamic distributed factory coordination problem.

Though all of the memories performed well, the density-estimate memories introduced here consis-

tently outperformed both the standard memory and the infinite-sized standard memory.

The standard memory system, Memory, improved performance over R-Wasps for higher loads, but

that improvement was only significant at the highest load tested. In fact, at the lowest load levels,

Memory actually hurt performance when compared to R-Wasps, with a significant increase in the

number of setups required. Given the limitations of the fixed-size memory explained earlier, this is

not surprising. The infinite-sized memory, Memory-∞, also improved performance over R-Wasps

for higher loads, though without the drop in performance that Memory showed at lower loads.

However, the increase in overhead did not allow Memory-∞ to outperform the density-estimate

memories.

DEMc improved significantly on the standard memory models under the two lower loads. Despite

using only a very simply model—clustering points and using the centers of each cluster to interact

with the memory entry—enhancing R-Wasps with this type of memory significantly improved per-

formance. By aggregating many solutions, the memory was able to overcome the noise inherent in

detecting the current job type distribution.

When compared with standard R-Wasps, DEMg was the only one of the five memory approaches

that showed statistically significant improvement for all four statistics on all three load scenarios. In

addition to being the most consistent, DEMg was the best memory for `= 1.00. Though it did not

always outperform DEMc, the addition of the Gaussian model used to choose which memory entry

to retrieve seems to have made this approach more consistent.

DEMgw, the most complex model, showed statistically significant improvement for all four statis-

tics on the two higher loads. It was the best approach when ` = 1.25, with improvement over all

other approaches on all statistics—the majority of improvements were statistically significant. How-

ever, it was outperformed by the other two density-estimate memories when `= 1.00. Under lighter

loads, the estimation of the current job type distribution is noisier, since fewer jobs arrive during

the time window used to estimate the distribution. Since DEMgw tries to exploit more information

from the points in memory than DEMc or DEMg, it is more susceptible to this noise. As estimates

of the distribution get better, performance improves.
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6.9 Summary

For dynamic problems, using information from the past can help improve performance when the

current state of the environment is similar to a previous state. One way to exploit past information

is through the use of memory. Standard memory models exist, but have a limited ability to model

dynamic solution landscapes. In this chapter, we have introduced three density-estimate memory

systems that improve upon standard memory without large increases in the overhead required to

maintain and use the memory.

By enhancing R-Wasps with memory, performance improves on the dynamic distributed factory

coordination problem. Each agent has a separate memory, so the distributed agent-based solution is

preserved, which improving adaptability when changes in the underlying job type distribution occur.

R-Wasps also maintains control of the system except immediately after changes in the distribution,

so the system remains flexible.

The density-estimate memories outperformed both the standard R-Wasps algorithm as well as R-

Wasps enhanced with a standard memory. In particular, the density-estimate memories significantly

reduced the number of setups required. These density-estimate approaches produce more robust

memories with very little increase in overhead.
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Chapter 7

Dynamic optimization with evolutionary
algorithms

While the use of historical data is common in learning and optimization, building and maintaining

an explicit memory of past solutions has not been common for use by most dynamic learning or

optimization processes. In the area of dynamic optimization with evolutionary algorithms, the use

of explicitly constructed memories has been widely explored in recent literature. Evolutionary algo-

rithms encompass a variety of stochastic optimization techniques inspired by natural selection and

biological evolution. Typically, evolutionary algorithms perform a population-based search using

operators like recombination (crossover) and mutation. Population-based search is well suited to

use with a memory, as multiple elements from the memory can be reintroduced into the search pro-

cess without interrupting search on promising areas of the landscape. Thus, when considering a new

type of memory like density-estimate memory, dynamic optimization with evolutionary algorithms

offers multiple state-of-the-art techniques for comparison.

One of the most commonly used benchmark problems for dynamic optimization with evolutionary

algorithms is the Moving Peaks problem, designed by Jürgen Branke [13, 14]. The Moving Peaks

problem has a multimodal, multidimensional fitness landscape. Each time a change in the problem

environment occurs, the height, width, and position of each peak changes. The problem is highly

configurable and allows a great deal of control over the search space; because of this, Moving Peaks

is a very suitable benchmark problem despite not being analogous to any dynamic environment in

the real world. Due to its use in experiments in the literature, the Moving Peaks problem also allows

comparison to existing techniques.

In this chapter, evolutionary algorithm density-estimate memory techniques are compared with

state-of-the-art methods from the literature, including a variety of memory techniques. In particu-

lar, density-estimate memory is compared to self-organizing scouts [14], a state-of-the-art technique
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that uses the population-based search of evolutionary algorithms as a de facto memory capable of

constant refinement. All methods are applied to the dynamic optimization of the Moving Peaks

benchmark problem.

7.1 Moving Peaks benchmark problem

The Moving Peaks benchmark1 is a multimodal, multidimensional dynamic problem. Proposed

by Branke [13] in 1999, it is very similar to another benchmark problem proposed independently

by Morrison and DeJong [72]. In Moving Peaks, the landscape is composed of m peaks in an n-

dimensional real-valued space. At each point, the fitness is defined as the maximum over all m peak

functions. This fitness can be formulated as

F (~x, t) = max
i=1...m

P(~x,hi(t),wi(t),~pi(t))

where P(. . .) is a function2 describing the fitness of a given point (~x) for a peak described by height

(h), width (w), and peak position (~p).

Every ∆e evaluations, the height, width, and position are changed for each peak, changing the state

of the environment. The height and width of each peak are changed by the addition of Gaussian

random variables scaled by height severity (hs) and width severity (ws) parameters. The position is

shifted using a shift length s and a correlation factor λ . The shift length controls how far the peak

moves, while the correlation factor determines how random a peak’s motion will be. If λ = 0.0,

the motion of a peak will be completely random, but if λ = 1.0, the peak will always move in the

same direction until it reaches a boundary of the coordinate space where its path reflects like a ray

of light. At the time of a change in the environment, the changes in a single peak can be described

as
σ ∈ N (0,1)

hi(t) = hi(t−1)+hsev ·σ
wi(t) = wi(t−1)+wsev ·σ
~pi(t) = ~pi(t−1)+~υi(t)

The shift vector ~υi(t) combines a random vector ~r with the previous shift vector ~υi(t − 1). The

random vector is created by drawing uniformly from [0,1] for each dimension and then scaling the

vector to have length s.

~υi(t) =
s

|~r+~υi(t−1)|
((1−λ )~r+λ~υi(t−1))

1The C code for this benchmark is currently available at http://people.aifb.kit.edu/jbr/MovPeaks/
2The definition of F (~x, t) in [14] includes an optional time-invariant basis function, B(~x). No basis function is used

for these experiments so it has been removed for clarity.
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The height, width, and position of each peak are randomly initialized within constrained ranges. A

number of peak functions are available, but in this chapter, only the cone function is used. This peak

function is defined as

P(~x,h(t),w(t),~p(t)) = h(t)−w(t) ·
√

∑
j=1...n

(x j− p j)
2

It should be noted that the width of a peak in this benchmark is defined in what may be a confusing

manner. The
√
·· · portion of the peak function is the distance between the given point and the

position of the peak. As the width increases, the peak becomes narrower, and when ~x 6= ~p, the

value of the peak function decreases. As w→ ∞, the peak function converges to a delta function.

Likewise, as w→ 0, the peak function converges to a constant basis function. While this confusion

could be removed by inverting the width parameter, then comparison with other results using this

benchmark problem would be more difficult.

7.2 Evolutionary algorithms

Evolutionary algorithms encompass a large class of biologically-inspired, stochastic search meth-

ods based on principles of natural evolution [48]. Though implementations of evolutionary algo-

rithms vary widely, in general an evolutionary algorithm applies search operations like recombina-

tion (crossover) and mutation to a population of candidate solutions. Selective pressure is applied

through the use of an objective function (fitness function). As better performing solutions are more

likely to be chosen for genetic operations and contribute to future generations of the population, the

population “evolves” and the average performance of an individual in the population increases. Evo-

lutionary algorithms are well suited for optimization of dynamic problems for a variety of reasons,

in particular because the population functions as a short term memory, potentially keeping individ-

uals in many areas that can be searched after a change occurs in the environment. However, the

population of an evolutionary algorithm may sometimes converge into one area of the search space,

leaving the algorithm ineffective after a change. For this reason, many evolutionary algorithm vari-

ants specifically designed for dynamic problems have been investigated (e.g. hypermutation [42]

and memory [81, 13]).

Comparing different evolutionary algorithm variants on dynamic problems is challenging for a num-

ber of reasons. Some benchmark problems may be better suited for one approach over another, and

the stochastic nature of evolutionary algorithm search may mask true performance differences if

enough evaluations are not performed. Evolutionary algorithms also have a large number of tunable

parameters, and the same set of parameters may not be optimal for different evolutionary algorithm

variants. Optimal parameter settings cannot typically be derived theoretically, but must often be
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Algorithm 7.1 Basic operations of the evolutionary algorithm

init(Pop(0)) initialize the population
eval(Pop(0))
t = 1
WHILE (termination criteria not fulfilled)

Pop(t) = /0
Parents(t) =
Pop(t−1)∪Memory combine old population with memory
WHILE |Pop(t)|< popsize

M(t) =
select(Parents(t)) select individuals and copy to mating pool
M′(t) = crossover(M(t)) perform crossover
M′′(t) = mutation(M′(t)) perform mutation
Pop(t) = Pop(t)∪M′′(t) update population

eval(Pop(t)) evaluate individuals in the population
t = t +1

tuned through experimentation. This tuning may also make an evolutionary algorithm variant more

brittle as the type of dynamic problem changes. Probably the most common approach is to use

the same parameter settings for all algorithms being compared and not to fine tune those parame-

ters for any particular variant, instead choosing reasonable parameters that generally perform well

on the problem. This approach has been adopted in most previous work in the area of dynamic

optimization with evolutionary algorithms.

The parameter settings used here are adopted from those used in [14]. The basic outline of the

evolutionary algorithm is shown in Algorithm 7.1 and the parameters are shown in Table 7.1. The

evolutionary algorithm uses a real-valued encoding and generational replacement with one elite (the

best individual in a generation is copied to the next generation unchanged). Two-point crossover

is used with probability 0.6. Then, mutation takes place with probability 1
n where n is the length

of the solution vector (chromosome). In these experiments, the Moving Peaks problem has five

dimensions, so the mutation probability is 0.2. Mutation takes place by adding a Gaussian random

variable to each vector entry (allele), i.e. xi← xi+δ with δ ∈N(0,3.3). The evolutionary algorithm

uses a population size of 100 individuals, which includes the number of memory entries if a memory

is used. Since all individuals in the population are evaluated every generation, including those in

memory, each generation requires 100 evaluations of the objective function. If a memory is used, a

new point may be stored every 10 generations and individuals are retrieved from the memory every

generation.

The experiments in this chapter compare several evolutionary algorithm variants from the literature,
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Parameter Value
Population size 100

Crossover probability 0.6
Mutation probability 1

n = 0.2
Mutation distribution δ ∈ N(0,3.3)

Memory size 10
Number of random immigrants 25

Table 7.1: Evolutionary algorithm parameter settings

all based on the standard evolutionary algorithm (SEA) described above. Results for these variants

on several dynamic problems, including the Moving Peaks problem, can be found in [14]. While

many other specialized evolutionary algorithms have been designed for use on dynamic problems,

the variants considered here provide a good basis of comparison for density-estimate memory.

Standard evolutionary algorithm with memory The standard evolutionary algorithm is supple-

mented with a standard memory as described in Chapter 4 for the standard evolutionary algorithm

with memory (SEAm) approach. The mindist2 replacement strategy is used to maintain the memory.

Random immigrants The random immigrants technique [43, 42] was designed to increase the

diversity of a population to avoid over-convergence. Random immigrants are randomly generated

solutions that are inserted into the population. In these experiments, random immigrants replace the

worst 1
4 of the individuals in the population. In addition to a SEA with random immigrants (RI), a

variant that also uses a standard memory (RIm) is considered.

Memory/search Sometimes, using memory alone can inhibit exploration of the search space by

finding good, but suboptimal areas of the search space quickly. While a random restart or hyper-

mutation after a change in the environment can lead to more thorough exploration of the search

space, these approaches may increase the amount of time necessary to find good solutions. In mem-

ory/search techniques (memsearch), the total population size is divided into multiple populations,

some of which are devoted to search, some to the use of memory [14]. In these experiments, an

approach with two populations is considered as shown in Figure 7.1. The search population can

store solutions to the memory and is randomly initialized whenever a change in the environment

is detected. The memory population can both store and retrieve solutions from the memory. The

memory population maintains and refines good solutions and ensures that the quality of the best

solution in the entire population remains high after a change has occurred. The search population

searches widely through the environment and introduces diversity into the memory.
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Memory
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storeretrievestore

Figure 7.1: Memory/search multi-population technique. The population is divided into a memory
population and a search population. The memory population can store solutions to and retrieve
solutions from the memory. The search population can only store solutions to the memory and is
randomly reinitialized when a change to the environments is detected.

Self-organizing scouts While a standard memory stores solutions that have been good in the

past, improving the quality of these memory entries can be difficult. To refine an entry, it must

be replaced completely by another solution. Often, information in the memory becomes obsolete

over time, reducing the effective size of the memory and making it less useful. Self-organizing

scouts (SOS) is a state-of-the-art multi-population evolutionary algorithm approach designed to

overcome this limitation of a standard memory [15, 14]. SOS begins with some number of base

subpopulations searching for good solutions. When a peak (region with good solutions) has been

found, the population splits. A scout population is formed to keep track of the peak, while the base

population resumes searching for other peaks. If a peak is being followed by a scout population, the

population can refine itself as the peak moves and changes. Since the total population size is limited,

individuals in a scout population may be reassigned to other subpopulations if new areas of interest

are found, or another peak being followed by a scout population looks more promising. If a peak

becomes very unpromising, the scout population following that peak may be abandoned. SOS can

be considered an evolutionary algorithm with memory allowing constant refinement of the memory

entries. SOS only allows one subpopulation to search a particular area at a time, effectively dividing

the search space and avoiding overlapping search. The area covered by a particular subpopulation

changes depending on the individuals in the subpopulation. By partitioning the search space, the

base populations can avoid duplicating the search of the scout populations and can maintain search

diversity. The default parameters for SOS in these experiments are the same as in [14]. Selected

parameters are shown in Table 7.2. Unlike the other memory methods in these experiments, which

are only allowed a maximum of 10 memory entries, SOS may form up to 20 scout populations.
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Parameter Value
Total population size 100

Number of base populations 2
Minimum size of a base population 8

Maximum number of scout populations 20
Minimum size of a scout population 4

Minimum radius of a scout population 6.0
Maximum radius of a scout population 12.0

Table 7.2: Selected parameters for self-organizing scouts

7.3 Density-estimate memory

Density-estimate memory (DEM), described in Chapter 5, is designed to overcome many of the

weaknesses of the standard memory, particularly a limited model of the dynamic search space, dif-

ficulty in refining memory entries, and ability to store information about a few good solutions. This

is accomplished by aggregating information from many good solutions by building probabilistic

models within the memory. Density-estimate memories may be implemented in many ways. In

this chapter, some basic density-estimate memory methods are compared to the evolutionary algo-

rithm variants described above. Like all of the evolutionary algorithm variants described above, the

density-estimate memory algorithms use the standard evolutionary algorithm as a basis. Since the

Moving Peaks problem has no available environmental information, the solution vector itself is used

both as environmental and control information for a density-estimate memory.

Euclidean clustering Two types of clustering were considered for density-estimate memories.

The first, Euclidean clustering, computes only cluster centers and measures the Euclidean distance

between clusters. This clustering method requires very little overhead, as the only part of the model

that must be computed is the mean of the points in a memory entry. However, this approach does not

provide a true density-estimate for use by the memory, since no information about the distribution

of points is available when accessing the memory. Euclidean clustering is indicated with a c (e.g.

SEA with a Euclidean clustering density-estimate memory would be denoted as DEMc).

Gaussian clustering The second type of clustering for density-estimate memories, Gaussian clus-

tering, provides richer density-estimate models for use by the memory. In this approach, each mem-

ory entry computes a Gaussian model of the points in the entry. The mean and covariance matrix

may then be used to calculate the probability that a new point belongs to an existing cluster or the

probability that two clusters should merge. Gaussian clustering is indicated with a g.
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Single population Though single population evolutionary algorithms have not typically performed

as well on the Moving Peaks problem as multi-population techniques, single population density-

estimate memory methods are tested as a baseline. These methods augment SEA with a density-

estimate memory and are indicated with an s.

Memory/search In [14], memory/search outperformed the single population approach (SEAm)

for the standard memory system. Memory/search improves the quality of the memory by adding

diversity to the search, something that is also necessary for density-estimate memory. For the ex-

periments in this chapter, density-estimate memories use the memory/search approach unless the

single population approach is indicated.

Random immigrants Since memory techniques often benefit from increased diversity, random

immigrants in combination with density-estimate memories are tested. Since memory/search tech-

niques already include diversity via the search population, random immigrants are only used for

single population evolutionary algorithms. Random immigrants are indicated by i.

Informed diversity While diversity is often useful to a memory, diversity techniques like the

search population in memory/search can sometimes add redundancy to the search process by ini-

tializing new individuals in areas well covered by the memory. A standard memory only provides

information about the location of single points, while a density-estimate memory can provide infor-

mation about the density of good solutions in a particular area. This informed diversity technique

replaces the random initialization of the search population in a memory/search method with initial-

ization that tries to create random points in areas not well covered by the memory. In each memory

entry, the maximum distance between the mean of the entry and all the points contained in the entry

is saved as part of the model. When reinitializing the search population after a change, each new

individual is checked to see that it is further from the mean of each memory entry than that entry’s

maximum distance. The use of informed diversity is indicated with d.

Reclustering With the incremental clustering used for density-estimate memory, sometimes one

or two very large entries come to dominate the memory, since entries can only merge, not split.

Splitting a large entry into multiple entries or combining several smaller entries into a single entry

may improve the quality of the density-estimate stored in the memory. One way of making this pos-

sible is through periodic reclustering. A periodic k-means reclustering was used to investigate the

effects of reclustering on the performance of the memory. K-means is a simple clustering algorithm

with low overhead. Reclustering is indicated by r.
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Including fitness in environmental model Since the Moving Peaks problem has no environmen-

tal information aside from the location of a point, including any additional information available

might enrich the models built in memory. Since solution fitness is the only other available piece of

data, including the fitness of a solution at the time it is stored in memory might be beneficial. In

these experiments, the control data remain the same, but the environmental data of a point include

both the location of that point and the fitness at storage time. This fitness is not updated, as the

number of evaluations would be prohibitive. When fitness is included in the environmental model,

the experiment is indicated by f.

7.4 Experiments

Many prior works have investigated problems where changes are small and algorithms must track

those changes quickly. However, many real problems are much more discontinuous, with changes

that are not random, but revisit previous solution areas as the problem progresses. These types of

problems may include scheduling and adaptive traffic control, which are investigated elsewhere in

this thesis. This benchmark allows fine control over the parameters to investigate what problem

types density-estimate memory is especially suited for.

The search space of an instance of the Moving Peaks benchmark problem is described by a large

number of parameters. The main set of experiments in this chapter uses a single set of parameters to

generate search spaces with a high density of good solutions and very severe changes. The effects

of varying one or more parameters are also considered. Four parameters were considered: the fre-

quency of changes, the severity of changes in height, the number of peaks, and the maximum value

for peak width (as mentioned in Section 7.1, the width parameter is actually inversely proportional

to the width of a peak, so this should really be considered the minimum peak width). Table 7.3

shows the default settings for the Moving Peaks benchmark problem in these experiments. These

values are very similar to the default values of Branke in [14], though peaks move less and have a

larger range of heights. The values for the four parameters that vary are shown in Table 7.4. Change

frequency is the number of evaluations performed before the environment changes. Height severity

is the maximum change in height of a peak during one change in the environment. Peak width is

the minimum width of a peak, where larger values produce narrower peaks. The final parameter

that is varied is the number of peaks in the search space. The default parameter values here are

different than those used by Branke. The search spaces produced by these default parameters have

very severe, discontinuous changes and numerous wide peaks.

The importance of each of these four parameters on the performance of density-estimate memory

was evaluated by varying one parameter at a time in the ranges shown in Table 7.4. While changes

in height severity and change frequency are mostly independent of the other parameters, the peak
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Parameter Value
Number of dimensions (n) 5

Coordinate range [0,100]
Shift length (s) 0.5

Correlation factor (λ ) 0.5
Change frequency (∆e) varies

Number of peaks (m) varies
Peak height range [10,90]

Height change severity (hsev) varies
Peak width range [0.5, varies]

Width change severity (wsev) 1.0

Table 7.3: Default settings for the Moving Peaks benchmark problem

Parameter Default Branke Parameter ranges
Change frequency 5000 5000

{
1000 3000 5000

}
Height severity 21.0 7.0

{
7.0 14.0 21.0 28.0

}
Peak width 4.0 12.0

{
2.0 3.0 4.0 6.0 8.0 12.0

}
Number of peaks 60 10

{
10 30 60 90

}
Table 7.4: Parameter values for a dense, discontinuous version of the Moving Peaks benchmark

width and number of peaks together describe the density of the search space. To investigate the

effects of search space density, these parameters were also varied simultaneously with the peak

width in {4, 8, 12} and the number of peaks in {30, 60, 90}.

As mentioned, all methods used the same underlying evolutionary algorithm. A variety of tech-

niques from the literature were evaluated along with many variants of density-estimate memory.

Table 7.5 explains the abbreviations used for evolutionary algorithm variants. Offline error is used

to evaluate the performance of algorithm variants. At each generation, the fitness of the best indi-

vidual in the population is subtracted from the current global optimum (the height of the highest

peak, a value not available to the optimization process). The average over all generations is the

offline error for a particular run. Each run lasts 20,000 generations; with a change frequency of

5000 and a population size of 100, the environment changes every 50 generations for a total of 399

changes. Memory techniques build memories over the course of a single run, beginning with an

empty memory. Error values for a given technique are averaged over 100 independent runs.

7.5 Results

Table 7.6 shows the average offline error values (over 100 runs) of a selection of evolutionary al-

gorithm methods on the default Moving Peaks problem defined by the parameters in Tables 7.3
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Abbreviation Description
SEA standard evolutionary algorithm
RI random immigrants (25% of population)

memsearch two population memory/search
SOS self-organizing scouts
DEM density-estimate memory (two population)

m standard memory
g Gaussian clustering density-estimate memory
c Euclidean clustering density-estimate memory
s single population
i random immigrants (25% of population)
r reclustering
d informed diversity
f include fitness in model

Table 7.5: Abbreviations for evolutionary algorithm methods

and 7.4. As expected, the standard algorithm (SEA) performed worst. The addition of memory

(SEAm) and diversity (RI) improved performance. The single population density-estimate mem-

ories (DEMgs and DEMcs) were better than the standard memory, but due to a lack of diversity,

these density-estimate memory methods were outperformed by the combination of random immi-

grants and memory (RIm). The two density-estimate memory methods using the memory/search

approach (DEMg and DEMc) had better average error values than self-organizing scouts and mem-

ory/search with a standard memory. The differences in error between the methods shown here were

all statistically significant. For all experiments in this chapter, the statistical significance of the re-

sults has been evaluated using the Kruskal-Wallis test, considering a confidence of 95% (p = 0.05).

The Kruskal-Wallis test, a one-way analysis of variance by ranks, is a nonparametric equivalent to

the classical one-way analysis of variance (ANOVA) that does not assume data are drawn from a

normal distribution [29].

One of the reasons that memory is useful here is due to the specific dynamics of the problem. For

this version of the Moving Peaks benchmark problem, peaks move slowly in the search space, but

the height of a peak may change drastically. When a change occurs in the environment, the global

optimum often jumps between peaks, rather than following the peak with the previously optimal

solution. The factory coordination problem in Chapter 6 has similar dynamics. A memory can help

search move quickly to a new area of the search space, so when the global optimum jumps, memory

lets search follow.

Many approaches to maintaining the diversity of solutions in the population were also considered.

Table 7.7 shows the average error values for density-estimate memories with and without diver-

sity measures. The combination of density-estimate memory with any of the diversity techniques
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Method Average error
SEA 18.3717
RI 11.1810

SEAm 10.3838
DEMgs 9.9276
DEMcs 9.6100

RIm 9.2397
memsearch 7.7636

SOS 7.6966
DEMc 5.9584
DEMg 5.6768

Table 7.6: Average offline error values on the default Moving Peaks problem

Method Average error
DEMgs 9.9276
DEMcs 9.6100
DEMcsi 8.4909
DEMgsi 8.3516
DEMcd 5.9670
DEMc 5.9584
DEMg 5.6768

DEMgd 5.6628

Table 7.7: Average offline error values for diversity methods with density-estimate memories on the
default Moving Peaks problem

outperformed the single population density-estimate memory evolutionary algorithms (DEMcs and

DEMgs). When both were combined with density-estimate memory, the memory/search approach

outperformed random immigrants. All differences in error are significant except between DEMg

and DEMgd and between DEMc and DEMcd. Though the informed diversity technique slightly

improved average error values, this improvement was not significant, at least for this problem.

Though the incremental method of building density-estimate memories described here may some-

times lead to poor clustering, introducing periodic reclustering with a simple clustering algorithm

like k-means did not improve performance. Table 7.8 shows the average offline error values for

density-estimate memories that use reclustering. These results show that the more frequently a

density-estimate memory is reclustered, the poorer the performance for both Gaussian and Eu-

clidean clustered density-estimate memories. Though density-estimate memories with recluster-

ing still performed better than self-organizing scouts, it seems strange that reclustering based on

all available data would perform worse than the incremental clustering normally used in density-

estimate memory. The methods without reclustering were significantly better than those with reclus-

76 DYNAMIC OPTIMIZATION WITH EVOLUTIONARY ALGORITHMS



Method Frequency Average error
DEMg 500 6.2087
DEMg 1000 6.1965
DEMc 500 6.1566
DEMc 1000 6.1439
DEMg 2000 6.0932
DEMc 2000 6.0637
DEMc 5000 5.9897
DEMg 5000 5.9800
DEMc never 5.9584
DEMg never 5.6768

Table 7.8: Average offline error values for density-estimate memories with reclustering on the de-
fault Moving Peaks problem

tering. In these density-estimate memories, once a point is added to memory, it is never removed.

In some cases, poorly performing solutions and other outliers may be added to the memory. With

incremental clustering, these outliers have less of an effect on how clusters are divided than dur-

ing a k-means reclustering. Reclustering by distance alone also does not fit well with the models

in DEMg. The probabilistic models used for these density-estimate memories may also affect the

performance of reclustering as much as the type of clustering. Both the Euclidean and Gaussian

incremental clustering density-estimate memories use sample means, and the Gaussian density-

estimate memory uses sample covariance. Though these are common and easy to compute, they are

sensitive to outliers. Using different probabilistic models might make reclustering worthwhile for

this problem.

Table 7.9 shows the average offline error values for density-estimate memories that include fitness

in the environmental model. In comparing the difference in error between a particular method

with and without fitness in the environmental model, the only statistically significant differences are

between DEMg and DEMgf and DEMgd and DEMgdf. Including fitness did not give any consistent

benefit, though it did help slightly for Euclidean clustering density-estimate memories as long as

reclustering was not also used.

7.5.1 Examining the effects of varying a single parameter at a time

The results using the default parameters show that density-estimate memory using Gaussian clus-

tering performed better than the state-of-the-art self-organizing scout method for a version of the

Moving Peaks problem with many wide peaks that may move severely. To examine the effects of

the fitness landscape on the relative performance of these two algorithms (DEMg and SOS) param-

eters controlling the fitness landscape were varied. Results for the standard evolutionary algorithm
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Method Average error
DEMgrdf 6.2825
DEMgrd 6.2194
DEMgr 6.2087
DEMgrf 6.1914
DEMgdf 5.9171
DEMgf 5.8312
DEMg 5.6768
DEMgd 5.6628

Method Average error
DEMcrdf 6.2707
DEMcrd 6.2355
DEMcrf 6.2056
DEMcr 6.1566
DEMcd 5.9670
DEMcdf 5.9650
DEMc 5.9584
DEMcf 5.9160

Table 7.9: Average offline error values for density-estimate memories including fitness in the envi-
ronmental models on the default Moving Peaks problem

Height severity SEA DEMg SOS DEMg–SOS
7.0 13.4419 4.0079 3.2568 (-)

14.0 16.4488 5.0198 5.8330 (+)
21.0 18.3717 5.6768 7.6966 (+)
28.0 19.6253 6.0021 8.6015 (+)

Table 7.10: Average offline error values when varying height severity

(SEA) are also included as a reference. As mentioned, four parameters were considered: the fre-

quency of changes, the severity of changes in height, the number of peaks, and the maximum value

for peak width. In each table of results, the default value of the parameter is shown in bold. If the

comparison between DEMg and SOS is significant, it is marked with (+) if DEMg is better or (-) if

SOS is better.

In Table 7.10, the height severity was varied. Though all methods performed best with less dis-

continuous changes (lower height severity), the performance of density-estimate memory degrades

more gradually than the other methods as changes become more severe. Density-estimate memory

creates a long-term model of good solutions in the search space, and is less dependent on the new

optimum having been in a high fitness area immediately before the change occurred. In cases where

changes are more gradual, self-organizing scouts outperformed density-estimate memory, as the

scout populations can refine good solutions for peaks that may potentially become the new global

optimum.

In Table 7.11, the peak width was varied. The peak width, along with the number of peaks, de-

fines the density of good solutions in the search space. The smaller the peak width parameter, the

wider the peak can become. Density-estimate memory performed best on wider peaks compared

to self-organizing scouts. As peaks become narrow, the performance of density-estimate memory

degrades, and self-organizing scouts performs best. This makes sense, as self-organizing scouts is

well designed for sparser spaces, sacrificing some search ability to maintain scout populations on
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wide
↑
↓

narrow

Peak width SEA DEMg SOS DEMg–SOS
2.0 15.1876 4.1358 6.4885 (+)
3.0 16.9322 4.9558 7.1249 (+)
4.0 18.3717 5.6768 7.6966 (+)
6.0 20.5322 6.7438 7.8582 (+)
8.0 22.5249 7.6800 7.7212

12.0 25.0266 9.1744 7.8629 (-)

Table 7.11: Average offline error values when varying peak width

Frequency SEA DEMg SOS DEMg–SOS
1000 24.1577 13.7914 12.0930 (-)
3000 19.6700 7.0613 8.6617 (+)
5000 18.3717 5.6768 7.6966 (+)

Table 7.12: Average offline error values when varying change frequency

more sparsely distributed peaks.

In Table 7.12, the change frequency was varied. The more frequently changes occur, the more

difficult the problem, leading to higher offline error. Density-estimate memory was comparable

to self-organizing scouts for all frequencies, though at lower frequencies, self-organizing scouts

began to dominate. Density-estimate memory relies on the underlying evolutionary algorithm to

produce good solutions, and the quality of solutions degrades as frequency of changes increases.

Self-organizing scouts, on the other hand, is designed to refine solutions within scout populations,

so it may be able to improve on solutions that density-estimate memory cannot. For most change

frequencies, density-estimate memory performs better.

In Table 7.13, the number of peaks in the search space were varied. For a small number of peaks,

self-organizing scouts performed best, but as the number of peaks increases, both the standard evo-

lutionary algorithm and density-estimate memory improved while self-organizing scouts got worse.

Self-organizing scouts is designed to track a smaller number of peaks through scout populations.

When the interesting peaks are small in number, this is a good strategy. However, when many

peaks can produce interesting solutions, the models in density-estimate memory are designed to

Peaks SEA DEMg SOS DEMg–SOS
10 23.1275 5.1124 2.6900 (-)
30 20.5928 6.0417 5.7060 (-)
60 18.3717 5.6768 7.6966 (+)
90 17.0958 5.3890 7.9876 (+)

Table 7.13: Average offline error values when varying the number of peaks
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Peaks Width SEA DEMg SOS DEMg-SOS
30 4.0 20.4133 6.0337 5.8371 (-)
60 4.0 18.3717 5.6768 7.6966 (+)
90 4.0 17.0587 5.3815 8.0069 (+)
30 8.0 25.9858 8.7797 6.4518 (-)
60 8.0 22.3916 7.7148 7.7330
90 8.0 20.3070 7.0485 8.9135 (+)
30 12.0 28.2473 10.8441 7.2463 (-)
60 12.0 25.0725 9.1747 7.7781 (-)
90 12.0 22.5908 8.3026 8.5474

Table 7.14: Average offline error values when varying both peak width and number of peaks

Peak width
Peaks 4.0 8.0 12.0

30 -0.1966 -2.3279 -3.5978
60 2.0198 0.0182 -1.3966
90 2.6254 1.8650 0.2448

Table 7.15: Offline error value difference between self-organizing scouts and Gaussian density-
estimate memory when varying peak width and number of peaks

include as many peaks as are in the search space without adding the overhead of tracking each peak

individually.

7.5.2 Examining the effects of varying multiple parameters

In Table 7.14, the peak width and number of peaks were both varied to examine the effects of

changing the density of solutions in the search space. A sparser search space would have fewer,

narrower peaks (the minimum width parameter is inversely proportional to the width of a peak),

while a denser space would have many wide peaks. Table 7.15 shows a direct comparison between

self-organizing scouts and density-estimate memory. Positive values indicate parameter settings of

the problem where density-estimate memory was better; negative values indicate areas where self-

organizing scouts was better. The results show that the denser the space (the lower left corner is the

densest), the better density-estimate memory performed relative to self-organizing scouts. Along the

diagonal of Table 7.15, the difference between self-organizing scouts and density-estimate memory

is low, and the confidence values are also low. Of the results on the diagonal, only the case with

30 peaks and a peak width of 4.0 produced a statistically significant result, and the confidence was

much lower than the results off the diagonal.
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7.6 Summary

Density-estimate memory was compared to a variety of evolutionary algorithm techniques on a ver-

sion of the Moving Peaks problem with very severe changes in the search space and a large number

of wide peaks. In this setting, density-estimate memory outperformed all other methods, including

the state-of-the-art self-organizing scouts method. Density-estimate memories with Gaussian clus-

tering outperformed those using the simpler Euclidean clustering. While density-estimate memories

perform well on this problem, they do require diversity measures such as a multi-population mem-

ory/search model.

While it showed a slight improvement in average offline error, the informed diversity measure is

not significantly better than the normal uninformed diversity included in the memory/search model.

Periodic reclustering using a k-means algorithm made density-estimate memory performance worse

on this problem. Including the fitness of a solution in the environmental model within the memory

also did not help performance.

When parameters controlling the search space were varied, density-estimate memory continued to

outperform self-organizing scouts as long as changes continued to be severe and the search space

was composed of many wide peaks. By varying the peak width and number of peaks, both of

which control the density of good solutions in the search space, a clear crossover point was shown

between areas where density-estimate memory performs best and areas where self-organizing scouts

performs best. Based on these results, density-estimate memory seems best suited for problems with

a high density of good solutions and severe changes in the environment.

Considering the weak environmental information available in this problem, density-estimate mem-

ory performed very well. In a problem where the environmental information available was both

stronger and decoupled from the solution, it is reasonable to assume that fitness differences between

methods might be quite different. In particular, one would expect density-estimate memory methods

to be even stronger, particularly those using informed diversity.
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Chapter 8

Adaptive traffic signal control

One real-world problem with dynamic environments is traffic signal control. Controlling traffic

congestion is not a new problem. In ancient Rome, congestion was bad enough that wagons were

banned from the roads at certain times of day [47]. A recent study on 439 urban areas in the United

States [88] concluded that in 2009, urban drivers in the United States traveled 4.8 billion more hours

and purchased an additional 3.9 billion gallons of fuel due to congestion, for a total congestion cost

of 115 billion dollars. The study also suggests that the problem is getting better, not worse. Many

solutions, including increased public transportation and newer, wider roads, may help alleviate the

problem. Improving the flow of vehicles through intersections offers enormous opportunities to

reduce congestion, as poorly performing intersections may propagate delays into other areas of a

traffic network.

There are many approaches to managing the movement of vehicles with conflicting paths through

an intersection. Traffic signals, stop signs, roundabouts (also known as traffic circles or rotaries),

and grade-separated interchanges all exist in many traffic networks. Most urban intersections use

traffic signals to manage conflicting traffic flows. Typically, traffic signals operate on schedules that

have been determined using historical data about the vehicle flows. Since vehicle flows change,

traffic lights are typically reprogrammed every few years. One solution for reducing congestion that

has become increasingly feasible with faster and cheaper computing power is the adaptive control

of traffic signals so that traffic signals can constantly respond to changing vehicle flows.

This chapter investigates the potential for memory to improve the performance of traffic signal con-

trol methods. An adaptive traffic signal control algorithm is presented, as well as a density-estimate

memory system to help improve the responsiveness of the adaptive algorithm. These methods are

evaluated on several different road networks, including a traffic model of 32 intersections in down-

town Pittsburgh, Pennsylvania. The results show that density-estimate memory improves the adap-

tive algorithm enough to outperform the fixed timing plans actually in use on these 32 intersections.
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Figure 8.1: Simple intersection connecting four road segments with one lane on each input and
output edge

8.1 Traffic signal control for urban road networks

The basic design of road networks is almost certainly familiar to the reader. Roads travel from one

place to another, and where roads cross at-grade, intersections are created. Though highways may

separate roads, only allowing vehicles to move between them via ramps, for most intersections the

roads are at-grade and share the same space. In urban networks, an intersection is an area of a road

network where vehicles with conflicting paths cross. Vehicles enter an intersection via entry and

exit edges. Edges are made up of lanes, where a lane is wide enough for one vehicle to pass at a

time. A two-way road segment connecting two intersections is a combination of two edges, one in

each direction. Figure 8.1 shows a simple intersection connecting four road segments, each with

an input and an output edge, with each edge containing a single lane. Figure 8.2 shows a larger

intersection where many of the edges have multiple lanes.
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Figure 8.2: Complex intersection showing turning movements for each lane

TRAFFIC SIGNAL CONTROL FOR URBAN ROAD NETWORKS 85



North/South G RY R R R

Phases 1 4 63

East/West G RYR R R

Cycle length (C)

2 5

Figure 8.3: Example traffic signal phase diagram showing a cycle with six phases. The green phases
(1 and 4) may have variable lengths, while the yellow phases (2 and 5) and all-red phases (3 and 6)
have fixed lengths.

At an intersection, each lane has a set of allowed turning movements. In Figure 8.2, the southbound

edge entering the intersection has three lanes. The leftmost lane may only turn left, the middle lane

may only go straight, and the right lane may either go straight or turn right. The figure shows the

allowed turning movements for each lane as well as the possible connections between lanes.

Since the paths allowed by different turning movements may conflict, priority rules must exist to

prevent accidents. In this chapter, typical priority rules are in effect, e.g. turning cars must yield to

those going straight. For many ways of managing intersections, such as stop signs and roundabouts,

it is necessary for a vehicle to slow down or even stop every time it reaches an intersection in order

to follow priority rules. Traffic signals, which are also known as traffic lights or stop lights, can

potentially reduce or remove this need to stop by alternating between different groups of allowed

turning movements. For example, in Figure 8.1, the green light allows traffic to move north and

south. When the light changes, traffic flowing east and west will be allowed to proceed. Each

period of time that allows one group of turning movements is called a phase. All the phases of a

traffic signal combined together constitute the cycle of the signal. Figure 8.3 shows a traffic signal

with six phases. In the first phase, traffic is allowed to flow north and south. In the second phase,

traffic is warned, using a yellow light, to slow down since the direction of traffic is about to change.

The third phase, called the all-red phase, is optional. In this phase, no traffic is allowed to flow. This

allows time to clear the intersection of remaining vehicles. In the fourth phase, traffic may flow

from the east and west. The fifth phase is a yellow phase, and the sixth phase is an all-red phase.

Each phase i runs for a length of time Pi. The sum of all the phase times is the cycle time C, as

shown in Equation 8.1.

C =
|P|

∑
i=1

Pi (8.1)

Once the last phase is complete, the first phase begins again. This sequence of phases can be seen

as a schedule for the operation of a traffic signal.

While the sequence of phases is sufficient to control a single light, additional information is nec-
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essary to properly coordinate one intersection with another. A car may leave one intersection, but

arrive at another during the middle of a phase with a red light, delaying the car until the light turns

green. By offsetting the start of the cycle of the first signal from the start of the second light’s sig-

nal, this car might be able to drive through both intersections without stopping. In this chapter, the

combination of a sequence of phases with an offset will be called a timing plan.

Timing plans for traffic signals may be set in many ways. Most commonly, traffic signals have

prebuilt timing plans. A traffic signal might always have the same timing plan no matter the time

of day, or a signal might instead have specific plans for different times of day, particularly morning

and evening commuting times. These plans may be optimized using computer modeling software

such as Synchro1. The United States Federal Highway Administration divides traffic signal systems

into six categories in the Traffic Control Systems Handbook [41]: isolated intersection control, time

base coordination, interconnected control, traffic adjusted control, traffic responsive control, and

traffic adaptive control.

In isolated intersection control, signals are assumed to be sufficiently isolated from other signals

such that coordination is not necessary, though the traffic signal may have different time-of-day

plans. Time base coordinated signals use a common synchronized time to allow many intersections

to coordinate switching between predefined time-of-day timing plans. Interconnected control adds

networking to time base coordination to allow operators to switch between timing plans based on

events or traffic conditions in addition to the normal time-of-day plans.

The last three signal control categories use information from traffic detectors to change the signal

timing plan. A wide range of sensors can be used as detectors in traffic networks including inductive

loops, cameras, magnetometers, infrared, and radar. The most common type of detector—the type

assumed in this chapter—is the inductive loop: one or more turns of insulated wire embedded

in the pavement of a road. When vehicles pass over the loop, the induction changes, allowing

these detectors to sense a wide variety of information including the number of vehicles that pass the

detector, the amount of time the detector is occupied by vehicles, and the estimated speed of vehicles

passing the detectors. Inductive loops may be located on various parts of an edge as seen in Figure

8.4. Advance detectors are located ahead of the intersection on an edge to detect traffic flowing

toward the intersection. Stop-line detectors are located where vehicles stop at the intersection to

measure traffic flowing into the intersection. Exit detectors are located at the exits of an intersection

to measure traffic flowing out of an intersection.

Traffic adjusted control senses current traffic conditions and switches between a set of predefined

timing plans. This allows the signal to respond to traffic conditions as the conditions change, rather

than switching between timing plans at the same times every day. Traffic adjusted control requires

1Synchro is commercial software for optimizing traffic signal timing plans (http://www.trafficware.com)

TRAFFIC SIGNAL CONTROL FOR URBAN ROAD NETWORKS 87



Advance detector Stop-line detector Exit detectors

Figure 8.4: Detector locations relative to an intersection. Exit detectors are located near the intersec-
tion on exit lanes. Advance detectors are located on entry lanes far from the intersection. Stop-line
detectors are located on entry lanes right before the intersection begins.

timing plans to be precomputed. If new traffic patterns occur, it is possible that none of the prebuilt

timing plans will be suitable.

Unlike controllers in the first four categories of traffic signal control, traffic responsive controllers

are able to generate new timing plans using detector data. Traffic responsive control continues to

use a fixed cycle length, changing the offset and phase durations to respond to traffic conditions.

The Split Cycle Offset Optimization Technique (SCOOT) [85] is an urban traffic control system

developed in the United Kingdom in the 1980s. SCOOT incrementally optimizes timing plans

based on an on-line model of vehicle queues. With installations in over 200 cities, SCOOT is used

worldwide, though many installations are in the United Kingdom where the system was developed.

The United States Federal Highway Administration initiated the development of ACS Lite [89] as an

affordable traffic responsive system that did not require extensive infrastructure for its installation.

ACS Lite is designed for arterial networks of 30 or fewer traffic signals. Traffic responsive control

has also been a continuing research direction. Recently, Prothmann et al. [79] have developed an

organic traffic control architecture that combines off-line optimization and on-line adaptation.

Traffic adaptive control dispenses with a fixed cycle length. Instead, detector data is used to forecast

the arrival of individual vehicles at an intersection and then phase lengths are adapted proactively.

Since traffic adaptive controllers do not have set cycle lengths, coordination using offsets is usually

not possible. Instead, coordination is self-organizing based on the arrival of individual vehicles.

The Sydney Coordinated Adaptive Traffic System [90] was one of the first traffic adaptive control
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systems. As of March 2011, SCATS was in use in 146 cities in 24 countries. In the 1990s, the

United States Federal Highway Administration funded the development of several traffic adaptive

controllers [30] including the RHODES hierarchical control system [67]. These systems performed

well in field trials, but could be expensive and complex to deploy. More recently, Lammer and

Helbing [59] developed a self-organizing system that anticipates queues based on future arrivals of

vehicles. Xie et al. [103, 102] developed an extension to Lammer and Helbing’s work that accounts

for vehicles not part of anticipated queues when controlling traffic signals.

Despite the nomenclature, both traffic responsive control and traffic adaptive control are often re-

ferred to as being adaptive. The key distinction between the two types of control is how coordination

between signals is achieved. Traffic responsive systems adapt the split between phases while con-

tinuing to use set cycle lengths that are offset from other traffic signals. Traffic adaptive systems

formulate the problem differently, dispensing with the notion of timing plans and instead adapting

phases individually based on the predicted arrival of vehicles. In this chapter, the use of the term

adaptive does not imply traffic adaptive control, only that the control system adapts in real-time

based on detector data.

8.2 A traffic-responsive learning algorithm for traffic signal control

Density-estimate memory requires a learning algorithm to produce good solutions that can be aggre-

gated in memory. While density-estimate memory is capable of making large jumps in the solution

space of a problem, the underlying algorithm must be capable of refining the solution drawn from

the memory. As the work in Chapter 6 shows, combining density-estimate memory with a reinforce-

ment learning algorithm can improve solution quality. In this section, a traffic-responsive learning

algorithm for controlling traffic signals is proposed as a baseline for exploring this hypothesis.

As mentioned above, traffic responsive systems change the timing plan of a traffic signal based on

current traffic conditions. The balanced phase utilization (BPU) algorithm is a distributed learning

algorithm that changes the timing plan for a traffic signal in small increments over time. The algo-

rithm can be divided into several steps: phase balancing, coordination between traffic signals, offset

calculation, and calculation of the new timing plan.

The cycle for each intersection begins with a green phase and ends with an all-red phase. During

the last phase of a cycle, the BPU algorithm runs to determine the parameters of the timing plan for

the next cycle. The offset of the signal is adjusted by slight changes in the cycle time as necessary.
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8.2.1 Definitions

The signal timing plan is composed of the cycle time, phase lengths, and offset time. The BPU

algorithm assumes a common cycle length C so that a traffic signal may coordinate with any of its

neighboring signals. Each phase n has a minimum duration Pn and a variable split Vn. There are two

types of phases: controllable and fixed. Controllable phases may vary in length as long as Pn ≥ Pn.

Fixed phases may not vary, so Pn = Pn and Vn = 0. For a typical traffic signal, the green phases are

controllable, while yellow, all-red, and pedestrian phases are fixed in length. The free cycle time is

defined as

C f ree =C−
|P|

∑
n=1

Pn (8.2)

This time is allocated to controllable phases with

Pn = Pn +Vn ·C f ree · controllable(n) (8.3)

where

controllable(n) =

1 if phase n is controllable

0 otherwise
(8.4)

0≤Vn ≤ 1 (8.5)

|P|

∑
n=1

Vn = 1.0 (8.6)

For example, a traffic signal with a timing plan like the one in Figure 8.3 might have V= [0.5, 0, 0, 0.5, 0, 0],

giving half the green time to north-south traffic (phase 1) and half the green time to east-west traffic

(phase 4).

8.2.2 Phase utilization

A metric called phase utilization is used throughout the BPU algorithm. This metric estimates

how efficiently each phase is being used. If a phase is much longer than is necessary to serve

all the vehicles that pass the intersection during that phase, its utilization will be low. If a phase

is over-saturated and a queue begins to build, the utilization will be high. The concept of phase

utilization, defined in a similar way, is used by ACS Lite [89] for phase balancing. ACS Lite

assumes the existence of stop-line detectors, allowing the utilization to be measured for each edge

during each phase. Based on the location of inductive loop detectors in downtown Pittsburgh, these

experiments assume stop-line detectors are not available, only exit detectors. This forces utilization

to be measured for all edges during a phase.
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To calculate the phase utilization, data from the exit detectors at the intersection i are collected in a

rolling window of length ω . The phase utilization ρn for phase n is defined as

ρn =
On

Gn− tloss
(8.7)

where On is the occupancy time during the time window, Gn is the elapsed time of phase n during

the time window, and tloss is a constant loss time allowed for the beginning of each phase. The

occupancy time is calculated as

On =
ω

∑
τ=0

occi (t− τ) · ctrli (t− τ,n) (8.8)

where occi(t) and ctrli(t,n) are defined as

occi (t) =

1 if any exit sensor at intersection i is occupied by a vehicle at time t

0 otherwise
(8.9)

ctrli (t,n) =

1 if phase n controls the signal at intersection i at time t

0 otherwise
(8.10)

The elapsed time of phase n during the time window is

Gn =
ω

∑
τ=0

ctrli (t− τ,n) (8.11)

While traffic may flow in several directions during a given phase, as long as one direction is flowing

efficiently the phase utilization is high. This prevents bias toward edges with more lanes, temporary

delays when turning traffic blocks a lane while waiting for cross traffic to pass, and other events that

don’t detract from the efficiency of the phase.

8.2.3 Phase balancing

In the first step of the BPU algorithm, the phase times are balanced so that vehicles are properly

served. The goal of the algorithm is to allocate green time such that all phases of the light are equally

efficient. The vector of phase utilizations ρ is used to calculate the phase change vector Θ, which is

used to update the variable split vector V. The phase change vector has a sum of zero, since if any

phase is lengthened, another must be shortened. First, the utilization difference vector—measuring

the difference from the mean utilization for each phase—is calculated in Equation 8.12.
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∆ρn =

(
ρn−

∑
|ρ|
k=1 ρk

∑
|ρ|
k=1 controllable(k)

)
controllable(n) (8.12)

where controllable(n) is defined in Equation 8.4. The utilization difference for a controllable phase

is the difference between ρn—the utilization of phase n—and the average utilization of the control-

lable phases. Fixed phases, such as yellow and all-red phases, are not controllable, and will always

have ρn = 0 and ∆ρn = 0. The utilization difference vector is used to calculate the phase change

vector

Θn =
∆ρn

|max∆p|
(8.13)

where |max∆p|, the size of the largest difference in phase utilization, is used to normalize each

value in the phase utilization vector. The phase change vector Θ is used to update the values for the

variable splits. The phase change vector is scaled by a discount factor γ to regulate how much the

timing plan may change from one cycle to the next.

V← V+ γΘ (8.14)

If necessary, the variable split vector V is normalized to satisfy the requirements of Equations 8.5

and 8.6.

8.2.4 Coordination between traffic signals

The first step in calculating the offsets between traffic lights is to determine how signals should be

coordinated. The BPU algorithm performs a simple calculation at each intersection to determine

which of its neighbors an intersection should coordinate with. The coordination method does not

require cooperation or negotiation; an intersection simply chooses another intersection to follow

and asks for the necessary information to be communicated.

The first step is to find the edge with the highest input flow during the time window ω

edge = argmax
e∈inputsi

(
ω

∑
τ=0

f low(t− τ,e)

)
(8.15)

where inputsi is the set of input edges to intersection i, t is the current time, and

f low(t,e) = number of vehicles passing all detectors on edge e during time step t (8.16)

The second step is to find the neighboring intersection connected to intersection i via edge.

j = neighbori (edge) (8.17)
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The third step is to find the synchronized phase of intersection i with the highest output flow during

the time window

spi = argmax
p∈phases

(
ω

∑
τ=0

∑
e∈out putsi(edge)

f low(t− τ,e) · ctrli (t− τ, p)

)
(8.18)

where out puts j (edge) is the set of output edges from edge.

Finally, the fourth step is to find the synchronized phase of the neighboring intersection j with the

highest output flow during the time window

sp j = argmax
p∈phases

(
ω

∑
τ=0

∑
e∈out puts j(edge)

f low(t− τ,e) · ctrl j (t− τ, p)

)
(8.19)

8.2.5 Offset calculation

The offset oi of an intersection i when coordinated with an intersection j depends on:

• The phase delay pdi (spi) for the synchronized phase spi of intersection i

• The queue clearing time qi (spi) for the synchronized phase spi of intersection i

• The offset o j of coordinated intersection j

• The phase delay pd j (sp j) for the synchronized phase sp j of the coordinated intersection j

• The travel time d j,i between coordinated intersection j and intersection i at the speed limit

The phase delay of the synchronized phase of intersection i is the time between the start of the cycle

and the start of the phase: the sum of all phases preceding the synchronized phase.

pd (sp) =
sp−1

∑
k=1

Pk (8.20)

A very simple queue clearing time calculation can be made by estimating the number of cars in the

queue during phase spi and applying the following formula

qi (s) =
lv
νv

nqueue (spi)

nlanes (i)
(8.21)

where lv is an estimated vehicle length, νv is an estimated vehicle velocity, nqueue (spi) is the es-

timated number of cars in the queue for phase spi, and nlanes(spi) is the number of lanes that are

active during phase spi.
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The desired offset o∗i is calculated as

o∗i = (o j + pd j (sp j)+d j,i− pdi (spi)−qi (spi)) mod C (8.22)

similar to the offset calculation in [79]. The actual offset at time t is

oi (t) = tcycle mod C (8.23)

where tcycle is the time the current cycle began.

8.2.6 Calculation of the new timing plan

Given the desired offset o∗i , the actual offset oi (t), the ideal cycle time C∗, and the variable splits

V, the timing plan for the next cycle can be calculated. The offset difference ∆oi is the difference

between the desired and current offsets.

∆oi = o∗i −oi (t) (8.24)

This offset difference along with the ideal cycle time is used to determine the cycle time for the next

phase.

C =C∗+∆oi (8.25)

This new cycle time is used to determine the free cycle time; the amount of time allowed for splits

between controllable phases.

C f ree =C−∑
i

Pi (8.26)

Then, this free cycle time is divided up using the variable splits.

Pi = Pi +Vi ·C f ree (8.27)

These phase times are used to control the traffic signal until the final phase of the cycle is reached.

Once the final phase is reached, the BPU algorithm uses the new windowed detector data to compute

the timing plan for the next cycle.

8.3 Density-estimate memory

The previous chapters have described several implementations of density-estimate memory. Adding

density-estimate memory to an algorithm for controlling traffic signals is similar to the problem
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described in Chapter 6. The memory is distributed since each intersection is controlled separately;

each intersection builds and maintains its own memory. Since the BPU algorithm searches from

a single point, rather than using a population, solutions can only be retrieved from the memory

periodically to avoid disrupting the learning algorithm too often. A version of the incremental

clustering density-estimate memory used in other chapters was tested on the traffic control problem,

along with a density-estimate memory using Gaussian mixture models. Gaussian mixture models

are one of many possible probabilistic models that can be used in density-estimate memories.

8.3.1 Structure

For the experiments in this chapter, the environmental information for an intersection is a vector of

input traffic flows to that intersection and to all of its neighbors. Each flow is a windowed count

over the previous ω seconds of the number of cars passing over advance detectors on an input

edge to an intersection. An intersection with four input edges connected to four neighbors—where

all neighbors also have four input edges each—has an environmental information vector with 20

traffic flows. The length of this vector varies for intersections with different geometries, particularly

those on the outside of the modeled road network that do not have a neighboring intersection for

every input edge. The control information is composed of a variable split vector, V, and the tuple

containing all information describing the offset coordination for the intersection i: the neighboring

intersection j to be coordinated with and the synchronized phases for both intersections ( j, spi, sp j).

Incremental Gaussian clustering

In the incremental clustering version of density-estimate memory, points are added to clusters as

those points are stored in memory. When a point is different enough from existing clusters that a

new cluster should be created, two existing clusters are merged together so the number of clusters

remains the same. Each cluster contains a Gaussian model of the environmental information, an

aggregated variable split vector V, and an aggregated offset tuple. The aggregated split vector is

created by averaging the values of V for all points in the cluster and then scaling to satisfy Equations

8.5 and 8.6. The aggregated offset tuple is created by choosing the distinct offset tuple that occurs

most frequently among points within the cluster.

Gaussian mixture model

The incremental clustering approach used by density-estimate memories throughout this thesis pro-

vides a strong model within the memory while keeping the overhead of maintaining the memory

low. Since clusters are built incrementally, the complexity of adding a new point to the memory
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depends on the number of clusters, not the total number of points. While incremental clustering

performs very well for a variety of dynamic environments, sometimes this approach can lead to

a large imbalance in the size of clusters. If most good solutions are concentrated in one area of

the search space, that area may only be represented by one or two clusters, even if the real fitness

landscape in the area is very complex. As the results from Chapter 7 show, reclustering doesn’t

necessarily help improve performance. Rather than using the same model of completely separate

clusters, another option is the use a mixture model.

Mixture models are a common class of probabilistic techniques for representing unlabeled data

that fall into different classes [66]. The applications of mixture models are widespread, but when

used in density-estimate memory, a mixture model helps separate points stored in the memory by

environmental information. Information from the model can then be used to aggregate control infor-

mation. To create a mixture model, the model parameters are learned from the known points. The

most common method for learning the model parameters is the expectation maximization algorithm

[32]. In this chapter, expectation maximization is used to build a Gaussian mixture model within a

density-estimate memory.

For the dynamic environments in Chapters 6 and 7, maintaining a low overhead for density-estimate

memory kept the memory from slowing down the optimization or learning algorithm. For the traffic

control problem, as defined in this chapter, the control information is only updated once per cycle,

leaving plenty of computation time to build more complex models that might not be suitable for

problems when building density-estimate models within the memory would reduce the amount of

computation time available to the search process.

While a Gaussian mixture model of the environmental information for all points is built within the

density-estimate memory, control information is still collected in clusters. Using the mixture model,

each point is assigned to a best fitting cluster. Then, the control information is aggregated in the

same way as for the incremental clustering density-estimate memory.

8.3.2 Storage

The memory is populated by periodically storing the current state of the traffic signal controller.

Density-estimate memory relies on the underlying learning algorithm to produce good solutions that

can be stored in the memory. In a good solution, the phase utilizations are well balanced. Algorithm

8.1 describes the computation of a relative efficiency vector for measuring the performance of the

current state of the underlying BPU algorithm. First, the phase utilization vector ρ is computed as

in Section 8.2.2. Each entry in ρ describes the phase utilization of a single phase of the intersection.

Next, phases with utilizations higher than a threshold φe f f are added to the efficiency vector. For

some intersections, phases exist that see very little traffic and require only the minimum phase
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Algorithm 8.1 Calculation of the relative efficiency vector for traffic signal control

ρ = phase utilization vector
eff = []
FOR n IN ρ

IF ρn > φe f f

e f fc = ρn

FOR i IN eff

e f f iciencyi =
length(eff)

∑eff · e f fi

duration. The efficiency of the current phase balancing depends only on those phases with enough

traffic to require some of the free cycle time. After removing low traffic phases, the efficiency vector

is normalized by the sum of the vector and then scaled by the length of the vector so that the average

value is 1. Each entry in the vector measures how far the phase utilization varies from the mean. A

perfectly balanced signal would result in all entries being equal to 1.

Algorithm 8.2 describes the memory insertion procedure for use by the density-estimate memory.

The criteria for inserting a solution into the memory changes with time. As the time since the last

storage to memory increases, the threshold required to store a new point becomes less constraining.

To avoid storing too frequently to the memory, insertions must occur at least tA apart. From tA
to tB, variations in the relative efficiency vector must be less than the threshold φA. From tB to

tC, variations in the relative efficiency vector must be less than the threshold φB, where φA < φB.

From tC to tD, the largest variation in the relative efficiency vector must be smaller than the largest

variation at the last storage time. Finally, if the time since the last storage exceeds tD, a new point

is stored regardless of the quality of the solution. Based on this algorithm, the memory may be

updated as frequently as every tA seconds, but no more infrequently than every tD seconds.

8.3.3 Retrieval

A solution should be retrieved from the memory when the current state of the controller is far from

the optimal solution and a sufficiently good match within the memory can be found. Solutions

should not be retrieved from the memory too frequently, so a sigmoid function is used to create a

probability of retrieving from the memory dependent on the time since the last retrieval

pt =
1

1+ e−
1
S (t−T )

(8.28)
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Algorithm 8.2 Memory insertion for traffic signal control

t = time since last memory storage
eff0 = efficiency at last storage time
ρ = current phase utilization vector
eff = e f f iciency(ρ) using Algorithm 8.1
IF t > tA THEN

IF maxeff < (1+φA) AND mineff > (1−φA) THEN

STORE TO MEMORY

ELSE IF t > tB THEN

IF maxeff < (1+φB) AND mineff > (1−φB) THEN

STORE TO MEMORY

ELSE IF t > tC THEN

IF |eff−1|< |eff0−1| THEN
STORE TO MEMORY

ELSE IF t > tD
STORE TO MEMORY

where t is the time since a solution was last retrieved from the memory and S and T are scaling

factors for the sigmoid function.

The probability that the current environment is a good fit for a cluster in the memory is measured

by pe. For the incremental clustering density-estimate memory, pe is the probability that the current

environment fits the model in the chosen entry. For the Gaussian mixture model density-estimate

memory, pe is the probability that the current environment fits the model multiplied by the posterior

probability that the chosen entry is the best fit for the current environment. The cluster with the

highest pe value is always chosen.

When a change in demand occurs in a traffic network, it may take a long time for the demand

to propagate throughout the network. Since memory is distributed by intersection, including the

behavior of neighboring intersections can help encourage retrieval from the memory to propagate

faster, allowing quicker reactions to changes in traffic demand. The probability of retrieving from

the memory is computed as

pr =


√

pe · pt if any neighbors have retrieved within N seconds

pe · pt otherwise
(8.29)

where intersections with neighbors that have retrieved recently have higher probabilities of retrieval.

Algorithm 8.3 describes the memory retrieval decision process. If a random number prandom is less
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Algorithm 8.3 Memory retrieval for traffic signal control

IF prandom < pr THEN

eff = e f f iciency(ρ) using Algorithm 8.1
IF maxeff > (1+φR) OR mineff < (1−φR) THEN

RETRIEVE FROM MEMORY

than pr and the relative efficiency vector varies within φR of the mean efficiency, then the control

information from the cluster that best matches the current state is used to set V and the offset tuple

for the intersection.

8.4 Experiments

All experiments were conducted using the SUMO (Simulation of Urban MObility)2 traffic simula-

tor. SUMO is a microscopic road traffic simulator designed to accurately model vehicle traffic on

large road networks [58]. SUMO is open source software and is mainly developed at the Institute of

Transportation Systems at the German Aerospace Center. SUMO has been used to create accurate

models of traffic in several German cities, including Cologne and Nuremberg. SUMO includes a

traffic control interface (TraCI) that allows the simulator to be controlled by an external program

[100]. TraCI allows interaction with many areas of the simulation including interaction at the level

of individual vehicles. For these experiments, only a few parts of TraCI are necessary: traffic signals

within the simulation may be controlled and detector values may be read at each time step. All con-

trollers were implemented using the Python Adaptive Traffic Signal Control Interface (PATSCI)3

which was designed for these experiments. PATSCI implements the general controller model for

traffic signals described in this chapter as well as all control algorithms to be compared.

Two metrics were used to evaluate the performance of a traffic signal control algorithm on a sce-

nario: average speed and average wait time for all vehicles. For each vehicle, the average speed can

be calculated as the total length of the route divided by the time necessary to traverse the route. The

wait time is the number of seconds the vehicle had a speed less than 0.1 meters per second. Though

less waiting tends to lead to higher speeds, these two metrics are not perfectly correlated. For ex-

ample, poorly coordinated signals may require vehicles to stop at every intersection, increasing wait

time. If congestion is low, the speed may still be higher than a situation with well coordinated sig-

nals but a lot of congestion. The goal is to maximize speed while minimizing wait time. While both

metrics are important, speed is more important than wait time as a measure of performance.

2More information about SUMO, as well as the source code, are available from http://sumo.sourceforge.net
3The source code for PATSCI is available from http://www.ozone.ri.cmu.edu/projects/traffic/patsci/
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For these experiments, a single set of parameters was chosen for the BPU algorithm. The discount

factor used by BPU was γ = 0.05, the ideal cycle length was C∗ = 100 seconds, the time window

for data collection was ω = 300 seconds (5 minutes), and the loss time was tloss = 5 seconds.

For density-estimate memory, 10 clusters were allowed and φe f f = 0.1. For Algorithm 8.2, tA = 15

minutes, tB = 30 minutes, tC = 45 minutes, tD = 60 minutes, φA = 0.1, and φB = 0.25. For Algorithm

8.3, S = 300 (5 minutes), T = 1200 (20 minutes), N = 300 (5 minutes), and φR = 0.1.

Based on the location of inductive loop detectors in downtown Pittsburgh, these experiments assume

the existence of exit detectors only. An exit detector for one intersection is used as an advance

detector for the neighboring intersection. No stop-line detectors are used for these experiments,

though including stop-line detectors can improve the accuracy of computing phase utilization. For

intersections that border the edge of the network, the input edges have advance detectors that are

assumed to be exit detectors for intersections not modeled in the network.

Two experiments were performed to examine the performance of the BPU algorithm with and with-

out memory. The first experiment simulates five hours of traffic on a simple grid traffic network

with six intersections. The BPU algorithm was compared to the combination of BPU and density-

estimate memory. The second experiment simulates entire days of traffic with realistic traffic de-

mands and turning ratios on a 32 intersection network modeled on downtown Pittsburgh, Pennsyl-

vania. The real fixed timing plan used to control these traffic signals in Pittsburgh is compared to

BPU as well as density-estimate memory combined with BPU.

8.4.1 Six intersection grid

The first experiment considers a simple traffic network of six intersections arranged in a grid. The

topography of this network, shown in Figure 8.5, is modeled on six intersections in downtown

Pittsburgh, Pennsylvania. Unlike the real network, each road in the simulation has only a single

lane running in each direction. Fort Duquesne Boulevard and Penn Avenue run east and west, while

Sixth Street, Seventh Street, and Ninth Street run north and south.

The vehicle routes for this experiment are not based on real traffic patterns. Instead, traffic flows

are constructed artificially using turn probabilities and input flows to examine the performance of

density-estimate memory as traffic changes over time. On average a vehicle at an intersection turns

left 10% of the time, goes straight 70% of the time, and turns right 20% of the time. Each turning

proportion is allowed to vary slightly, and the underlying turning distribution changes every 30

minutes; random noise is added to each default turning probability with N (0,0.05) to produce the

turning proportions used for that period. The sum of turning probabilities for each edge always sums

to one. Different traffic demands are modeled by changing the input flows for each of the 10 edges

that lead into the grid network. Table 8.1 shows a variety of traffic flow patterns for the network
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Figure 8.5: Six intersection grid traffic network in the SUMO simulator based on six intersections
in downtown Pittsburgh, Pennsylvania. Fort Duquesne Boulevard and Penn Avenue run east and
west, while Sixth Street, Seventh Street, and Ninth Street run north and south.
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Traffic flow by input (each unit is 1/36 of the total flow)
Street Dir. east west north south duqE duqW ninthN ninthS

Ft. Duquesne East 9 3 3 3 12 3 3 3
Ft. Duquesne West 3 9 3 3 3 12 3 3

Penn East 9 3 3 3 6 3 3 3
Penn West 3 9 3 3 3 6 3 3
Sixth North 2 2 6 2 2 2 4 2
Sixth South 2 2 2 6 2 2 2 4

Seventh North 2 2 6 2 2 2 4 2
Seventh South 2 2 2 6 2 2 2 4
Ninth North 2 2 6 2 2 2 10 2
Ninth South 2 2 2 6 2 2 2 10

Table 8.1: Input flows for traffic patterns on the grid network

where an individual flow n produces nF/36 vehicles where F is the total number of vehicles in

the scenario. The traffic patterns in Figure 8.1 include patterns where particular directions dominate

traffic flow (east, west, north, south) and patterns where particular roads dominate traffic flow (duqE,

duqW, ninthN, ninthS). SUMO uses the turning proportions and vehicle flows to produce routes for

all vehicles that will be part of the simulation.

To evaluate the performance of the BPU algorithm with and without memory, a five hour scenario

was constructed to simulate the effects of an accident that requires the temporary closure of a lane

of traffic as well as changing traffic flows over the course of time. Figure 8.6 shows the changing

traffic patterns in the scenario. The scenario is divided into five hour long periods: an initial hour to

populate the network, three periods to model the effects of the lane closure, and a final hour to see

the effects of congestion created by the lane closure. The scenario begins with an hour of traffic to

populate the network with vehicles using the east traffic pattern. In Period 1, the dominant flow is

east on Fort Duquesne Boulevard. Period 2 simulates the closure of Fort Duquesne Boulevard east

of Ninth Street; all traffic intended for that lane is diverted to Penn Avenue. The input traffic flows

remain the same, but the turning proportions at the two intersections on Ninth Street are changed. In

Period 3, the dominant traffic flow changes to be south on Ninth Street, the closed lane is reopened,

and the default turning proportions are used at all intersections. Finally, the last hour uses the south

traffic pattern. The traffic demand is constant with 2480 vehicles arriving every hour.

The experiments for this scenario are run over 20 different instances for each control algorithm;

each algorithm is tested over the same 20 instances. Vehicle routes for each instance are generated

by SUMO using a different random seed. Since building an effective memory can take a long time,

a memory was prebuilt for this experiment by alternating between different traffic patterns shown

in Table 8.1. The turning proportions vary as in the experiment. The traffic flows seen in Period 2,

when Fort Duquesne Boulevard is closed, are never shown to the memory as it is being built.
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Period 1 Period 2 Period 3

Figure 8.6: Varying demands for the six intersection grid traffic network. During the first period,
the dominant traffic flow follows Fort Duquesne Boulevard eastbound. During the second period,
the dominant traffic flow of traffic begins on Fort Duquesne Boulevard eastbound, turns right onto
Ninth Street and then turns left onto Penn Avenue. During the third period, the dominant traffic flow
follows Ninth Street southbound.
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8.4.2 Downtown Pittsburgh

The second experiment simulates traffic on thirty-two intersections in downtown Pittsburgh, Penn-

sylvania using realistic traffic patterns. Traffic in and out of six parking garages is also included.

Each simulation lasts for an entire day, and the traffic flows change to simulate differences in traffic

at different times of day. The real traffic signal timing plans used at these intersections are compared

to the BPU algorithm with and without memory.

The road network in SUMO for this experiment, shown in Figure 8.7, is bounded by Grant Street,

Penn Avenue, and Fifth Avenue. The topology of the road network was adapted from Open-

StreetMap4. This area of downtown Pittsburgh contains both grid traffic and high density corridors,

such as Grant Street and Liberty Avenue. The traffic flows change both volume and direction over

the course of the day. When measuring traffic volume for the purpose of creating the real fixed tim-

ing plans for these traffic signals, the city of Pittsburgh divides a day into several demand profiles:

morning (AM), midday (MD), afternoon (PM), and off-peak. The off-peak traffic is further divided

into profiles for before and after sporting events at the hockey arena, football stadium, or baseball

stadium adjacent to downtown and off-peak traffic when no event occurs. For this experiment, only

the non-event (NE) off-peak traffic is considered. Figures 8.8, 8.9, 8.10, and 8.11 show the traffic

flows for the four time-of-day profiles used in this experiment. A scenario simulating an entire day

combines these demand profiles as shown in Figure 8.12. The scenario begins with a non-event

period to populate the network with vehicles. The next hour transitions from non-event to morn-

ing traffic demands. This allows the transition between traffic flows and turning proportions to be

gradual, rather than very sudden. For the next two hours, the morning traffic profile generates vehi-

cles. After an hour of transition from morning to midday traffic, the midday traffic profile generates

traffic for five hours, with increased traffic flow during lunch. After the midday period, the demand

profile transitions to the afternoon rush period for an hour. The afternoon rush lasts for two hours,

and then transitions to the evening non-event period.

The traffic flows and turning proportions for each route profile are based on counts of real traffic

in Pittsburgh. These counts, shown in Figures 8.8, 8.9, 8.10, and 8.11, are then converted to input

flows and turning proportions. Like the smaller experiment, the underlying turning proportions also

vary slightly within a period using a single route profile; every 30 minutes, random noise is added

to each default turning probability with N (0,0.05) to produce the turning proportions used for that

period. The sum of turning probabilities for each edge always sums to one. Due to limitations in

the current version of SUMO that cause gridlock under very high traffic flows such as those that

occur during the afternoon rush, all traffic flows for this experiment were reduced to 70% of the

4OpenStreetMap is a free editable street map of the world available at www.openstreetmap.org. The data from Open-
StreetMap was adapted to correct connections between lanes, the number of lanes on each road, and to include parking
garages.
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Figure 8.7: Downtown Pittsburgh road network in the SUMO simulator. The network models 32
intersections and 6 parking garages.
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Figure 8.8: Traffic flows and turning movements for the downtown Pittsburgh road network during
the morning rush time period
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Figure 8.9: Traffic flows and turning movements for the downtown Pittsburgh road network during
the midday time period
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Figure 8.10: Traffic flows and turning movements for the downtown Pittsburgh road network during
the afternoon rush time period
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Figure 8.11: Traffic flows and turning movements for the downtown Pittsburgh road network during
the non-event off-peak time period

EXPERIMENTS 109



Route profile Non-event Non-eventAM Midday PM

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

Timing plan Non-event AM Midday PM Non-event

Demand

Figure 8.12: Traffic demand profile for a day-long scenario on the downtown Pittsburgh road net-
work. Traffic begins using the non-event profile then transitions to the AM profile, the midday
profile, the PM profile, and then back to the non-event profile. When a fixed timing plan is used, the
time-of-day plan changes along with the demand profile.

true values. For demand profiles that do not lead to gridlock, such as the midday profile, relative

performance of the algorithms were similar at 70% and 100% of true traffic flows.

The fixed timing plan used on the real intersections has four time-of-day plans corresponding to

different demand profiles. The controller is time based: intersections switch between timing plans

simultaneously using a synchronized clock. The non-event plan is used before 6 AM, the AM plan

is used from 6 AM to 9 PM, the Midday plan is used from 9 AM to 3 PM, the PM plan is used

from 3 PM to 6 PM, and the non-event plan is used after 6 PM. Since real traffic conditions don’t

always line up exactly with these times, the length of the first non-event period is used to vary how

late or early the fixed plan changes. The length of the first non-event period for a particular day is

uniformly random in [30,120] minutes. On average, the AM timing plan begins at the start of the

transition from the non-event traffic profile to the morning traffic profile. At the earliest, the timing

plan switches an hour before the transition begins. At the latest, the timing plan switches at the end

of the transition to the AM profile.

The experiments for this scenario are repeated for 30 days of traffic for each control algorithm. Each

day of traffic is different, and the same 30 days are used for all control algorithms. Since building

an effective memory can take a long time, a memory was prebuilt for this experiment using DEM-

GMM over 20 days of traffic. This memory was used by both DEM and DEM-GMM algorithms

for the experiment.
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Method Speed Wait time
BPU 3.6994 174.0090
DEM 3.7470 252.1891
DEM-GMM 3.7873 91.3353

Table 8.2: Average speed in meters per second and wait time in seconds for the six intersection grid
scenario

Method 1 Method 2 Speed Wait time
DEM BPU 1.29 + -44.93 -
DEM-GMM BPU 2.38 + 47.51 +
DEM-GMM DEM 1.08 63.78 +

Table 8.3: Percent improvement of method 1 over method 2 on the six intersection grid scenario
(results that are statistically significant to 95% confidence are noted with a + or -)

8.5 Results

On both experiments, the use of density-estimate memory improved the performance of the BPU

algorithm. The Gaussian mixture model variant of density-estimate memory performed as well

or better than the incremental Gaussian clustering method for both problems. For the downtown

Pittsburgh experiment, the use of memory allowed adaptive traffic signal control to outperform the

fixed timing plan used by the city of Pittsburgh.

8.5.1 Six intersection grid

Table 8.2 shows the average speed and average wait time for the six intersection grid scenario over

20 instances. The use of density-estimate memory improved average vehicle speed. The Gaussian

mixture model density-estimate memory improved speeds by 2.38% over the BPU algorithm alone.

Using incremental clusters to retrieve from the memory led to higher average wait times, while

using the Gaussian mixture model of the points in the memory improved average wait time over

BPU by almost 50%. Table 8.3 shows the percent improvement of the memory methods as well

as whether the differences are statistically significant. As for other experiments in this thesis, the

statistical significance of these results has been evaluated using the Kruskal-Wallis test, considering

a confidence of 95% (p = 0.05). For both density-estimate memory methods, the difference in

results from plain BPU are significant. When comparing the two density-estimate memory methods,

only the difference in wait time is significant, though the Gaussian mixture model method performs

better on average than the method that uses clusters. The incremental clustering density-estimate

memory (DEM) leads to very high waiting times for this problem, significantly worse than BPU.

This suggests that the aggregate offset information retrieved from the memory is poor in quality.
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Figure 8.13: Average speed in meters per second over time for the six intersection grid scenario

Figures 8.13 and 8.14 show hourly plots of average speed and average wait time respectively for

this scenario. Each data point at a particular time is the average value of the metric for cars that

arrive in the simulation during the ten minute period beginning at that time. While BPU and DEM-

GMM have similar performance during the early portion of the scenario, once the simulated accident

occurs (at 2:00 hours into the simulation) the density-estimate memory shows a quicker response,

with higher speeds and less waiting time. Congestion is also reduced, as can be seen by the rapidly

growing wait times for BPU further into the scenario.

Based on these results, augmenting the BPU algorithm with a density-estimate memory increases

average speed. When the Gaussian mixture model density-estimate memory is used, average wait

time also decreases. The use of the Gaussian mixture model density-estimate memory reduces

congestion and allows the traffic signals to continue to be responsive to changing demands.
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Figure 8.14: Average wait time in seconds over time for the six intersection grid scenario
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Figure 8.15: Average speed in meters per second by period for the downtown Pittsburgh scenario

8.5.2 Downtown Pittsburgh

The second experiment models 32 intersections in downtown Pittsburgh and uses much longer sce-

narios than the first experiment on the six intersection grid. Tables 8.4 and 8.5 show the average

speed and average wait time by period for the four traffic signal control algorithms. Tables 8.6 and

8.7 compare these algorithms, showing percent improvement and statistical significance if it exists.

Again, the Kruskal-Wallis test is used to test significance with 95% confidence. Figures 8.15 and

8.16 show the performance of each method overall and on the five periods of the day: NE1, the

morning off-peak period; AM, the morning rush; MD, the midday period; PM, afternoon rush; and

NE2, the evening off-peak period.

The results show that while the fixed timing plan outperforms BPU over the entire day, the intro-

duction of memory produces higher average speeds than either BPU or the fixed timing plan. The

wait time is improved over BPU but is still worse than for the fixed timing plan. During the five

periods of the day—morning non-event, morning rush, midday, afternoon rush, and evening non-
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Method Entire Day NE1 AM MD PM NE2
fixed 4.5890 4.8788 4.3969 4.6666 4.3885 4.7883
BPU 4.5697 5.1909 4.3144 4.6954 4.2585 4.7583
DEM 4.6918 5.2734 4.4173 4.8546 4.3512 4.8834
DEM-GMM 4.7128 5.2858 4.4396 4.8620 4.3739 4.9240

Table 8.4: Average speed in meters per second by period for the downtown Pittsburgh scenario

Method Entire Day NE1 AM MD PM NE2
fixed 97.4584 83.6390 108.6159 92.0562 108.8533 86.8457
BPU 118.5739 73.3603 134.9804 100.4871 159.3537 103.9774
DEM 107.2045 67.3089 119.5445 87.7726 149.1963 96.2740
DEM-GMM 104.4146 67.2763 116.5712 87.5253 145.6777 89.5775

Table 8.5: Average wait time in seconds by period for the downtown Pittsburgh scenario

Methods Day NE1 AM MD PM NE2
BPU fixed -0.42 6.40 + -1.88 - 0.62 -2.96 - -0.63
DEM fixed 2.24 + 8.09 + 0.46 4.03 + -0.85 1.99 +
DEM-GMM fixed 2.70 + 8.34 + 0.97 4.19 + -0.33 2.83 +
DEM BPU 2.67 + 1.59 + 2.39 + 3.39 + 2.18 + 2.63 +
DEM-GMM BPU 3.13 + 1.83 + 2.90 + 3.55 + 2.71 + 3.48 +
DEM-GMM DEM 0.45 0.23 0.50 0.15 0.52 0.83

Table 8.6: Percent speed improvement of method 1 over method 2 on the downtown Pittsburgh
scenario (results that are statistically significant to 95% confidence are noted with a + or -)

Methods Day NE1 AM MD PM NE2
BPU fixed -21.7 - 12.29 + -24.3 - -9.16 - -46.4 - -19.7 -
DEM fixed -10.0 - 19.52 + -10.1 - 4.65 + -37.1 - -10.9 -
DEM-GMM fixed -7.14 - 19.56 + -7.32 - 4.92 + -33.8 - -3.15
DEM BPU 9.59 + 8.25 + 11.44 + 12.65 + 6.37 7.41 +
DEM-GMM BPU 11.94 + 8.29 + 13.64 + 12.90 + 8.58 + 13.85 +
DEM-GMM DEM 2.60 0.048 2.49 0.28 2.36 6.96 +

Table 8.7: Percent wait time improvement of method 1 over method 2 on the downtown Pittsburgh
scenario (results that are statistically significant to 95% confidence are noted with a + or -)
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Figure 8.16: Average wait time by period for the downtown Pittsburgh scenario
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event—the use of memory improves both speed and wait time significantly over BPU used alone.

While BPU is only significantly better than the fixed timing plan during the morning non-event pe-

riod, the density-estimate memory methods have significantly higher speeds than the fixed timing

plan during the midday period and both morning and afternoon non-event periods. The memory

methods also have significantly better wait times than the fixed timing plan during the morning non-

event and midday periods. In the cases where the density-estimate memory methods are not able

to outperform the fixed timing plan, the BPU algorithm is significantly worse than the fixed timing

plan. Though density-estimate memory is able to improve performance of a learning algorithm,

the memory relies on the underlying algorithm to find and then refine good solutions. When the

algorithm exhibits very poor performance, memory may not very beneficial.

For the rush periods, AM and PM, BPU has lower speeds than the fixed timing plan. One likely

explanation for this is that the offset time calculation is not properly designed for very congested

periods where it takes cars longer to traverse a given edge. This is suggested by the very high

wait times produced by BPU. Though the memory methods have higher average speeds than the

fixed timing plan for the AM period, the improvement is not significant. For the PM period, the

BPU algorithm is never able to find good enough solutions that the memory can improve enough to

compete with the fixed timing plan.

Figures 8.17 and 8.18 show the hourly speed and wait times. Each point at a given time averages

the values for all vehicles that arrived in the simulation during the half-hour period beginning at that

time. These figures show dips in performance for all four algorithms during the peaks of demand,

particularly at 8:00 AM and 5:00 PM during the morning and afternoon rushes, but also at 12:30

PM during the midday peak. The performance of DEM and DEM-GMM are very similar, though

DEM-GMM is slightly quicker to adapt in periods of transition. Both memory methods respond

quicker than BPU during transitions and have higher speeds and lower wait times. Though BPU

produces higher average speeds for much of the simulation, the fixed timing plan is better during

the morning and afternoon rush periods. Since the memory methods can only build on the BPU

algorithm, the memory methods are outperformed by the fixed timing plan during the peak rush

periods.
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Figure 8.17: Average speed in meters per second over time for the downtown Pittsburgh scenario
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Figure 8.18: Average wait time in seconds over time for the downtown Pittsburgh scenario
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8.6 Discussion

Based on these results, the addition of density-estimate memory improves the performance of an

adaptive algorithm for traffic signal control. For most traffic demands, density-estimate memory

increases the speed of vehicles over the BPU algorithm and decreases the wait time. Though the

results are not as significant, the Gaussian mixture model density-estimate memory outperformed

the incremental Gaussian clustering memory. When compared to a real fixed timing plan, the BPU

algorithm is competitive for many types of traffic demands. The combination of density-estimate

memory with the BPU algorithm often outperforms the fixed timing plan, though the limitations of

the BPU algorithm prevent density-estimate memory from always producing the best performance.

One of the biggest limitations on the performance of a density-estimate memory is the quality of

the underlying search or learning algorithm. While the BPU algorithm performs well under many

conditions, it follows a very simple model. BPU only accounts for the departure of vehicles from the

intersection, so it is susceptible to conditions where the phases are balanced, but where the growth

of queues is uneven. For example, if traffic is saturated in several directions, all phases may be

very efficient, but traffic from one direction may be backing up much faster than in other directions.

In this case, it may be advantageous to have an unbalanced signal to avoid creating large queues.

A more sophisticated algorithm might take into account queue lengths, arrival of new vehicles,

occupancy on sensors, or other data that are available.

Another limitation of this version of BPU is the placement of detectors. Most phases allow at least

one turning movement on multiple edges. With only exit detectors available, the traffic from each

edge cannot be distinguished easily from one another. Since each edge has its own queue, the queues

being served by a particular phase are likely to be unbalanced. The use of stop-line detectors would

allow each edge to be separated from the other edges being served during a phase. This would allow

phase utilization to be calculated for each edge, as is done in ACS Lite [89].

Finally, the offset calculation used by BPU is very simple, not taking into account the actual speed

of vehicles, a sophisticated estimate of queue clearing time, or knowledge of specific vehicles. The

coordination used to choose offsets is also very simple. The results suggest that these poor offset

time calculations lead to higher waiting times. While density-estimate memory produced better

vehicle speeds for most traffic demands, wait times were often worse. Many techniques exist to

choose offsets that could potentially improve the performance of BPU.

A wide variety of adaptive algorithms can be implemented within the framework outlined in this

chapter and many could benefit from the addition of density-estimate memory. The BPU algorithm,

though simple, was competitive with the real fixed timing plan used in downtown Pittsburgh. BPU

provides a good baseline for this problem, and with a better adaptive algorithm, one would expect

density-estimate memories to produce even better results.
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8.7 Summary

In this chapter, the dynamic problem of traffic signal control was presented as a possible applica-

tion of density-estimate memory. Like other dynamic problems considered in this thesis, the traffic

signal control problem includes both large, drastic changes (changes in the underlying traffic de-

mand) and small, continuous changes (normal variability in traffic). An adaptive, traffic-responsive

algorithm called balanced phase utilization (BPU) was introduced. Two implementations of density-

estimate memory—incremental clustering and Gaussian mixture model—were described and used

to augment the BPU algorithm. Two experiments were used to compare the performance of these

algorithms. The first used a six intersection grid network with one lane in each direction for each

road. The second used a realistic network modeled on 32 intersections in downtown Pittsburgh,

Pennsylvania. This network used realistic traffic patterns and the adaptive methods were compared

to the real fixed timing plan used on these intersections.

By augmenting the BPU algorithm with density-estimate memory, average vehicle speed increased

and average wait time decreased. Each traffic signal maintained its own control system and memory;

very little information needs to be communicated between intersections for this approach. Memory

improved performance both during transitions and overall.

Though the BPU algorithm was slightly worse than the fixed timing plan over an entire day on

average, the use of density-estimate memory allowed the adaptive system to outperform the fixed

timing plan. For some periods, such as the afternoon rush, the fixed timing plan was so much

better than BPU that memory could not improve performance enough to be competitive. When the

underlying BPU algorithm was competitive, the use of density-estimate memory produced higher

speeds than the fixed timing plan. These results suggest that adding memory to a better-performing

adaptive algorithm would make it possible to outperform the fixed timing plan during these periods.
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Part III

Memory for problems with shifting
feasible regions
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Chapter 9

Classifier-based memory

A variety of dynamic benchmark problems for evolutionary algorithms have been considered, in-

cluding the moving peaks problem [13, 72], the dynamic knapsack problem, dynamic bit-matching,

dynamic scheduling, and others [14, 52]. The commonality between most benchmark problems is

that while the fitness landscape changes, the search space does not. For example, in the moving

peaks problem, any point in the landscape—represented by a vector of real numbers—is always a

feasible solution. One exception to this among common benchmark problems is dynamic schedul-

ing, where the pending jobs change over time as jobs are completed and new jobs arrive. Given a

feasible schedule at a particular time, the same schedule will not be feasible at some future time

when the pending jobs are completely different. Previous work on evolutionary algorithms for

dynamic scheduling problems have focused primarily on extending schedulers designed for static

problems to dynamic problems [63, 6], problems with machine breakdowns and redundant resources

[24], improved genetic operators [98], heuristic reduction of the search space [65], and anticipation

to create robust schedules [16, 17]. Louis and McDonnell [64] have shown that case-based memory

is useful given similar static scheduling problems. Chapter 6 described the application of mem-

ory to a factory coordination problem, but instead of storing actual schedules, the memory stored

control parameters for the scheduler. Miyashita and Sycara [68] used case-based reasoning to im-

prove schedule quality for a dynamic job-shop rescheduling problem, though each case represented

a schedule repair action for a single operation of a job rather than an entire schedule. Little work has

been done on using a memory to capture whole schedules for use in dynamic rescheduling. Since

the addition of memory has been successful in improving the performance of evolutionary algo-

rithms on other dynamic problems, there is a strong case for using memory for dynamic scheduling

problems as well.

In most dynamic optimization problems, the use of an explicit memory is relatively straightforward.

Stored points in the landscape remain viable as solutions even though the landscape is changing, so

125



a memory may store individuals directly from the population [13]. In dynamic scheduling problems,

the jobs available for scheduling change over time, as do the attributes of any given job relative to

the other pending jobs. If an individual in the population represents a prioritized list of pending jobs

to be fed to a schedule builder, any memory that stores an individual directly will quickly become

irrelevant. Some or all jobs in the memory may be complete, the jobs that remain may be more

or less important than in the past, and the ordering of jobs that have arrived since the memory was

created will not be addressed by the memory at all. For these types of problems that have both

a dynamic fitness landscape and a shifting search space, a memory should provide some indirect

representation of jobs in terms of their properties to allow mapping to similar solutions in future

scheduling states.

This chapter presents one such memory for dynamic scheduling called classifier-based memory.

Instead of storing a list of specific jobs, a memory entry stores a list of classifications which can

be mapped to the pending jobs at any time. The remainder of this chapter describes classifier-

based memory for dynamic scheduling problems and compares it to both a standard evolutionary

algorithm and to other approaches from the literature.

9.1 Dynamic job shop scheduling

The dynamic job shop scheduling problem used for these experiments is an extension of the standard

job shop problem. In this problem, n jobs must be scheduled on m machines of mt machine types

with m > mt. Processing a job on a particular machine is referred to as an operation. There are

a limited number of distinct operations ot which will be referred to as operation types. Operation

types are defined by processing times p j and setup times si j. If operation j follows operation i on

a given machine, a setup time si j is incurred. Setup times are sequence dependent—so si j is not

necessarily equal to sik or sk j (i 6= j 6= k)—and are not symmetric—so si j is not necessarily equal

to s ji. Each job is composed of k ordered operations; a job’s total processing time is simply the

sum of all setup times and processing times of a job’s operations. Jobs have prescribed due-dates

d j, weights w j, and release times r j. The release of jobs is a non-stationary Poisson process, so the

job inter-arrival times are exponentially distributed with mean λ . The mean inter-arrival time λ is

determined by dividing the mean job processing time P̄ by the number of machines m and a desired

utilization rate U , i.e.

λ =
P̄

mU

The mean job processing time is

P̄ = (ς + p̄) k̄
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where ς is an expected setup time, p̄ is the mean operation processing time, and k̄ is the mean

number of operations per job. There are ρ jobs with release times of 0, and new jobs arrive non-

deterministically over time. The scheduler is completely unaware of a job prior to the job’s release

time. Job routing is random and operations are uniformly distributed over machine types; if an

operation requires a specific machine type, the operation can be processed on any machine of that

type in the shop. The completion time of the last operation in the job is the job completion time

c j. A single objective, weighted tardiness, is considered. The tardiness is the positive difference

between the completion time and the due-date of a job,

Tj = max(c j−d j,0)

The weighted tardiness is

WTj = w jTj

As an additional dynamic event, the experiments model machine failure and repair. A machine

fails at a specific time—the breakdown time—and remains unavailable for some length of time—

the repair time. The frequency of machine failures is determined by the percentage downtime of

a machine—the breakdown rate γ . Repair times are determined using the mean repair time ε .

Breakdown times and repair times are not known a priori by the scheduler.

9.2 Evolutionary algorithms for dynamic scheduling

At a given point in time, the scheduler is aware of the set of jobs that have been released but not yet

completed. The uncompleted operations of these jobs will be called the set of pending operations

P =
{

o j,k
∣∣r j ≤ t,¬complete(o j,k)

}
where o j,k is operation k of job j. Operations have precedence constraints, and operation o j,k cannot

start until operation o j,k−1 is complete (operation o j,−1 is complete ∀ j, since operation o j,0 has no

predecessors). When the immediate predecessor of an operation is complete, one can say that the

operation is schedulable. The set of schedulable operations is defined as

S =
{

o j,k
∣∣o j,k ∈ P,complete(o j,k−1)

}
Like most evolutionary algorithm approaches to scheduling problems, solutions are encoded as

prioritized lists of operations. Since this is a dynamic problem where jobs arrive over time, a solution

is a prioritized list of only the pending operations at a particular time. Since the pending operations

change over time, each individual in the population is updated at every time step of the simulator.
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When operations are completed, they are removed from every individual in the population, and

when new jobs arrive, the operations in the job are randomly inserted into each individual in the

population.

The well known Giffler and Thompson algorithm [38] is used to build active schedules from a

prioritized list. First, from the set of pending operations P create the set of schedulable operations

S. From S, find the operation o′ with the earliest completion time tc. Select the first operation from

the prioritized list which is schedulable, can run on the same machine as o′, and can start before tc.

Update S and continue until all jobs are scheduled.

1. Build the set of schedulable operations S

2. (a) Find o′ on machine M′ with the earliest completion time tc

(b) Select the operation o∗i,k from S which occurs earliest in the prioritized list, can run on

M′, and can start before tc

3. Add o∗i,k to the schedule and calculate its starting time

4. Remove o∗i,k from S and if o∗i,k+1 ∈ E , add o∗i,k+1it to S

5. While S is not empty, go to step 2

The evolutionary algorithm is generational with a population of 100 individuals. The PPX crossover

operator [7] is used with probability 0.6, a swap mutation operator with probability 0.2, elitism of

size 1, and linear rank-based selection. Rescheduling is event driven; whenever a new job arrives,

a machine fails, or a machine is repaired, the evolutionary algorithm runs until the best individual

in the population remains the same for 10 generations. Figure 9.1 shows the evolutionary algorithm

scheduling system.

9.3 Classifier-based memory for scheduling problems

The use of a population-based search algorithm allows us to carry over good solutions from the

immediate past, but how can one use information from good solutions developed in the more distant

past? Some or all of the jobs that were available in the past may be complete, there may be many

new jobs, or a job that was a low priority may now be urgent. Unlike many dynamic optimization

problems, this shifting search space means one cannot store individuals directly for later recall.

Instead, a memory should allow us to map the qualities of good solutions in the past to solutions

in the new environment. This chapter presents one such memory for dynamic scheduling called

classifier-based memory. Instead of storing prioritized lists of operations, an indirect representation
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Figure 9.1: Evolutionary algorithm scheduling system in simulation. The simulator executes a
schedule until a change in the environment is detected. Then the evolutionary algorithm scheduler
evolves a new schedule to return to the simulation.

is used, storing a prioritized list of classifications of operations. To access a memory entry at a

future time, the pending jobs are classified and matched to the classifications in the memory entry,

producing a prioritized list of operations.

A memory entry is created directly from a prioritized list of pending operations. First, operations are

ranked according to a set of attributes and then quantiles are determined for each ranking in order to

classify each operation with respect to each attribute. The number of attributes a and the number of

subsets q determine the total number of possible classifications qa. For example, operations might

be ranked by the due-date of the job and the operation processing time (a = 2) and then classified

using quartiles (q = 4). This produces qa = 42 = 16 possible classifications. A sample operation

might be part of a job very near its due-date, such that it was in the first quartile of the due-date

ranking. That operation might take very long to process, such that it was in the fourth quartile of

the operation processing time ranking. This would produce a classification of {0,3}.

Through this process, the prioritized list of operations is converted to a prioritized list of classifica-

tions. This list of classifications may then be stored as a memory entry. To retrieve a valid schedule

from a memory entry, the pending operations are mapped to the prioritized list of classifications

stored in that entry. Each operation is ranked according to the same attributes, then quantiles are

determined to classify each operation. Then, for each of these new classifications, the best match

is found among the classifications in the memory entry. Each pending operation is assigned a sort
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[X, V, Z, Y, ...]
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Figure 9.2: Overview of storage and retrieval operations of the classifier-based memory. Individuals
to be stored in the memory are classified and their classification lists are stored in the memory. To
retrieve a memory entry, the entry is mapped to an individual using currently pending jobs and their
attributes. This individual can then be inserted into the population.

key based on the position of its classification’s best match within the prioritized list in memory. The

sort key for classification x in memory entry Y is j such that

min
j=0, j<|Y |

a

∑
i=0
|xi−Y ( j)i|

where Y ( j) is classification j in list Y . If there is more than one best match, the average of the

positions is used as the sort key. Then, the pending operations are sorted by these sort keys to create

a prioritized list of operations which can be used as an individual for the evolutionary algorithm.

The basic mechanisms for interacting with the memory are the same as those for other explicit mem-

ories used for dynamic optimization with evolutionary algorithms. Figure 9.2 shows an overview

of how individuals from the population are classified and stored in the memory and how memory

entries are mapped to valid individuals and inserted in the population. At every generation, an indi-
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vidual is created from each memory entry and the individuals are inserted into the population. Every

ϕ generations and at the end of every rescheduling cycle, a replacement strategy chooses whether to

insert the best individual in the population into memory. If the memory is full, the classification list

of this best individual replaces a current memory entry using the mindist2 replacement strategy [14].

To maintain diversity in the memory, the replacement strategy determines the two classification lists

i and j that are closest together among the classification of the best individual in the population and

all of the memory entries. The less fit list j is then chosen as a candidate for replacement. The dis-

tance between two classification lists S and T is the sum of the differences between a classification’s

position in one list and the position of its best match in the other list. As before, if there is more

than one best match, the mean of the positions is used. Since this is not symmetric, it is done for

both lists. If S has length s and T has length t, then

d =
s

∑
i=0
|i−bestmatch(S(i),T )|+

t

∑
i=0
|i−bestmatch(T (i),S)|

As long as the classification of the best individual in the population is not the candidate for replace-

ment, classification list j is replaced with the new classification list when

f j
di j

dmax
≤ fbest

where fx is the fitness of the prioritized list produced by the classification list x, di j is the distance

between classification lists i and j, and dmax is the maximum possible distance.

Figure 9.3 shows a simplified example. Suppose we have a memory with q = 2 and a = 3 and the

following attributes: job due-date (dd), operation processing time (pt), and job weight (w). At time

400, we have a prioritized list of four operations that we’d like to store in the memory. With q = 2

and four operations, the lower two values for each attribute receive a classification of 0 and the

higher two values a classification of 1. So job A has a due-date classification of 1, a process time

classification of 0, and a weight classification of 1, for an overall classification of class(A)→ 101.

After classification, the prioritized list [C,B,A,D], becomes [011,000,101,110]. This classification

list is stored in memory. Suppose that at time 10000, we would like to retrieve this memory entry to

create a prioritized list from the four pending operations W , X , Y , and Z. These new operations are

classified and then given a score based on their best match within the memory entry. The pending

operations are sorted by these scores in order to create a new prioritized list that may be inserted

into the population as a new individual.

This classifier-based memory also allows new jobs to be ordered alongside older jobs that may have

been available when the memory entry was created; the classifier-based memory does not store

specific information about operations, only how a particular operation compares to other pending

operations at a specific point in time. A memory entry may place a particular operation at different
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At t = 400, store [C,B,A,D] Due-date Process time Weight
A = {dd: 800, pt: 100, w: 7}→ 101 ↑ 450 100 3
B = {dd: 450, pt: 110, w: 5}→ 000 0 500 110 5
C = {dd: 500, pt: 130, w: 9}→ 011 1 800 130 7
D = {dd: 900, pt: 150, w: 3}→ 110 ↓ 900 150 9

[C,B,A,D]→ [011,000,101,110]→ memory

At t = 10000, retrieve [011,000,101,110] Due-date Process time Weight
W = {dd: 10400, pt: 80, w: 1}→ 110→ (3) ↑ 10070 50 1
X = {dd: 10100, pt: 70, w: 5}→ 011→ (0) 0 10100 60 2
Y = {dd: 10500, pt: 50, w: 6}→ 101→ (2) 1 10400 70 5
Z = {dd: 10070, pt: 60, w: 2}→ 000→ (1) ↓ 10500 80 6

[011,000,101,110]→ [X ,Z,Y,W ]→ population

Figure 9.3: An example of classifier-based memory. Given a memory with q = 2, a = 3, and the
following attributes: job due-date (dd), operation processing time (pt), and job weight (w). At
t = 400, an individual is stored in the memory. A prioritized list of operations is classified based on
the attributes of all pending operations at t = 400. The classification list is then stored in memory. If
that memory entry is retrieved at t = 10000, the entry needs to be mapped to the currently pending
jobs. Each of the pending jobs is classified and then matched to a position in the memory entry.
This mapping can then be inserted into the population as a new individual.

positions in the prioritized list as its due-date becomes more imminent or as the mix of pending

operations changes the operation’s relative importance.

Introducing this abstraction layer into memory requires additional computational overhead. Storing

a solution to memory requires sorting n pending operations by a attributes, which can be done in

O(a ·n logn). Retrieving a solution from the memory requires classifying n pending operations by

a attributes, but also matching each operation to a position in a memory entry of length e, which

can be done in O(a · e ·n logn). Though the use of classifier-based memory requires additional

computation over the standard EA, this computation is not significant in comparison to the time

necessary to evaluate a solution.

In this chapter, classifier-based memory uses four attributes (a = 4): job due-date, job weight,

operation processing time, and operation order within the job. Rankings are divided into quartiles

(q = 4) for a total of 256 possible classifications. Many other attributes exist that could easily be

included, as this approach does not depend on a particular set of attributes.
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9.4 Experiments

To examine the effects of classifier-based memory on schedule fitness and search time, several com-

mon approaches are compared. A standard evolutionary algorithm (SEA) is used as a baseline, since

the optimal schedules are not known for any of the problem instances. The standard evolutionary

algorithm with classifier-based memory (SEAm) is also considered. Prior results on benchmarks

like the moving peaks problem suggest that memory-based approaches work better when combined

with a diversity strategy [14]. Hence, a standard evolutionary algorithm with 25 random immigrants

[42] per generation (RI) and the same approach with classifier-based memory (RIm) are also con-

sidered. Finally, the memory/search approach of [14], also using the classifier-based memory, is

included in the comparison. In memory/search, the population is divided into a memory subpopula-

tion and a search subpopulation. The memory population can both store individuals to the memory

and retrieve memory entries. The search population can only store items to the memory, and the

population is re-initialized randomly every time the problem changes.

When creating problem instances, the utilization rate was selected so that jobs arrive at approxi-

mately replacement rate. The number of jobs available at time 0, ρ , is then the expected schedule

size. By changing the due-date tightness, the difficulty of the problem may vary. The due-date

tightness parameter τ is the percentage of jobs expected to meet their due-dates. The expected wait-

ing time before job completion is the expected number of jobs in the schedule times the mean job

completion time ρP̄. Due-dates are generated by

d j = r j + P̄+[0,2ρP̄τ]

The setup time severity is given by

η =
s̄
p̄

where s̄ is the mean setup time and p̄ is the mean operation processing time. The number of break-

downs per machine is uniformly distributed with the mean number of breakdowns per machine

equal to nP̄
m

γ

ε
. Breakdown times for each machine are uniformly distributed over

[
0, nP̄

m

]
. Repair

times are uniformly distributed over
[1

2 ε, 3
2 ε
]
.

For the experiments in this chapter, the following settings were used to create problem instances.

The job shop contains 2 machines each of mt = 3 machine types, for a total of m = 6 machines.

There are 50 operation types, with mean operation processing time p̄ = 100 and processing times

uniformly distributed over [50,150]. The setup time severity is η = 0.5, so the mean setup time

is s̄ = 50. The setup times are uniformly distributed over [0,2s̄]. The estimated setup time is

ς = 35. A problem instance consists of 500 jobs, each with k = 3 operations. There are ρ = 25

jobs with release times of 0. Job weights are uniformly distributed over [1,10]. The utilization rate
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is U = 0.7, and the breakdown rate is γ = 0.1, for a total utilization of 0.8. The mean repair time

is ε = 10p̄ = 1000. To control the problem difficulty, the due-date tightness of the jobs varied.

As the due-date tightness changes, the types of situations the scheduler faces also change. These

experiments tested with due-date tightnesses τ ∈ {0.5,0.8,1.1}, from very tight due-dates where

many jobs will be late, to loose due-dates where most jobs are expected to be on time. For each

value of τ , 10 problem instances were created, for a total of 30 problem instances.

Rather than rebuild the memory from scratch on every problem instance during these experiments,

several seed memories were prebuilt using SEAm over a larger number of jobs, varying the due-date

tightnesses of the jobs. Though these experiments test over a limited number of jobs, if actually im-

plemented in a scheduling system, the evolutionary algorithm would work over a long time horizon,

and so the steady state performance of the evolutionary algorithm is of interest. By prebuilding the

memory, this state of the algorithm may be better simulated. The memory may still change with the

same replacement strategy, but after seeing a large number of jobs, the stability of the memory is

much higher than if the memory was built from scratch for every problem instance. For each run of

an evolutionary algorithm with memory, one of the prebuilt memories was chosen at random as a

seed memory. Updating of the memory occurred as normal: memory replacement took place every

ϕ = 10 generations and at the end of each rescheduling cycle.

Simulation runs for each evolutionary algorithm variant were performed on each of the 30 problem

instances. Since this is a dynamic problem, one is interested not just in fitness improvements but in

improvements in the speed of search. As in [6, 16, 17], the steady state performance is measured

by discarding the first 100 and last 100 jobs. The summed weighted tardiness of the middle 300

jobs is used as the fitness. Search is measured in a similar way, by only including optional search

generations that occur while the middle 300 jobs are among the pending jobs in the system. At

the end of every rescheduling event, the scheduler is required to search for 10 generations where

the best individual does not improve. Any generations per rescheduling event aside from these 10

constitute the optional search. Also, the number of rescheduling events is made up both of new

job arrivals and machine breakdowns. Since the scheduler performance determines how long this

period lasts, the number of machine breakdowns during this period is not fixed, so neither is the

total number of rescheduling events. The search required for each algorithm can be compared more

fairly by comparing only the number of optional generations per event.

The standard evolutionary algorithm was also compared to a suite of priority-dispatch rules to evalu-

ate the benefits of search for this problem. Six rules were evaluated on the same scenarios as the evo-

lutionary algorithm scheduler: earliest due-date (EDD) [28], earliest weighted due-date (EWDD),

shortest processing time (SPT), apparent tardiness cost (ATC) [99, 77], Raman’s rule [80], and ap-

parent tardiness cost with setups (ATCS) [61]. The priority-dispatch rules were evaluated as a suite,

always using the best performing rule for each scenario.
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τ = 0.5 τ = 0.8 τ = 1.1
54.66% (+) 68,57% (+) 50.94% (+)

Table 9.1: Fitness improvement of the standard evolutionary algorithm scheduler over a suite of
priority-dispatch rules (statistically significant results are noted with a + or -)

τ = 0.5 τ = 0.8 τ = 1.1
Standard EA with memory 0.9% (+) 1.5% 15.7% (+)

Random immigrants -5.7% (-) -49.6% -30.3% (-)
Random immigrants with memory -8.3% -51.2% (-) 13.1% (+)

Memory/Search 0.2% (+) -18.0% 2.1% (+)

Table 9.2: Fitness improvement over the standard evolutionary algorithm (statistically significant
results are noted with a + or -)

9.5 Results

Table shows the percentage of improvement in average fitness of the evolutionary algorithm sched-

uler over a suite of priority-dispatch rules. As for other experiments in this thesis, the statistical

significance of these results has been evaluated using the Kruskal-Wallis test, considering a confi-

dence of 95%. The evolutionary algorithm scheduler significantly improved schedule quality over

priority-dispatch rules for all due-date tightnesses.

Table 9.2 shows the percentage of improvement in average fitness over the standard evolutionary

algorithm. SEAm performs slightly better than SEA with tight and medium due-dates. When the

due-dates are loose, SEAm performs significantly better than SEA. When diversity measures are

introduced, performance actually drops. With just random immigrants, fitness worsens for all τ ,

but especially for medium due-dates. With RIm, performance on loose due-dates actually improves

over SEA, though not over SEAm. With memory/search, performance gains are very slight for tight

and loose due-dates, but performance worsens for medium tightness. The improvement (or lack

thereof) for each of the approaches is worst with τ = 0.8, except for SEAm where the improvement

for medium due-dates is slightly better than that for tight due-dates.

Table 9.3 shows the percentage improvement in average optional generations per event over the

standard evolutionary algorithm. SEAm shows good search reduction for tight and loose due-dates,

with very slight improvement for medium due-dates. RIm actually improves search speed over

SEAm for medium due-dates, but if one considers how much worse fitness was in this case, this

improvement is not really meaningful. Of all the approaches, memory/search is the only one that

fails to improve search speed for any due-date tightness. Again, medium due-dates show the worst

performance in three of the four approaches, with RI as the only exception.

For both fitness and search, the addition of classifier-based memory improved performance over
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τ = 0.5 τ = 0.8 τ = 1.1
Standard EA with memory 10.0% (+) 2.9% (+) 22.8% (+)

Random immigrants 9.4% -5.3% (-) -13.5% (-)
Random immigrants with memory 9.5% (+) 8.5% (+) 23.4% (+)

Memory/Search -18.5% (-) -35.6% -16.8% (-)

Table 9.3: Search improvement over the standard evolutionary algorithm (statistically significant
results are noted with a + or -)

the standard evolutionary algorithm. While significant improvement in fitness was only evident for

loose due-dates, search improved for most problem instances. SEAm showed improvement for all

three values of τ but the least improvement for τ = 0.8. Based on these results, of the three types of

due-dates, medium due-dates present search landscapes that are larger and more difficult to search

than those for the other due-date tightnesses.

While the combination of memory and diversity techniques has yielded good results for most dy-

namic benchmark problems, for this dynamic scheduling problem none of the diversity approaches

performed well. Perhaps due to the shape of the search landscape, diversity techniques are simply

disruptive, rather than helpful in finding areas of high fitness. Memory/search, which devotes half

of its population to searching for new individuals to include in the memory, is at a disadvantage in

the steady state environment considered here. This approach might still be useful for prebuilding

memories, where search time is not an issue.

9.6 Summary

This chapter described a memory enhanced evolutionary algorithm approach to the dynamic job

shop scheduling problem. Memory enhanced evolutionary algorithms have been widely investigated

for other dynamic optimization problems, but not for problems like dynamic scheduling where

changes in the fitness landscape are accompanied by shifts in the search space. A classifier-based

memory was described that enables the mapping of information about jobs at one point in time to

the creation of valid schedules at another point in time. Several evolutionary algorithm variants

were compared, with and without memory, on problem instances of varied difficulty. These results

show that classifier-based memory can improve both schedule fitness and the speed of search over

a standard evolutionary algorithm. These results also show that diversity techniques, which have

had success on other dynamic benchmark problems, show decreased fitness and search speed for

the dynamic scheduling problem investigated here.

Areas not considered in this chapter include anticipation of robust or flexible schedules, heuristic

reduction of the search space, or other approaches from previous work for improving performance
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on dynamic scheduling problems, because these approaches are complementary to the use of mem-

ory. Unlike more complementary techniques, density-estimate memory would be more difficult to

combine with classifier-based memory. When aggregating multiple points, the different lengths of

each point would have to be considered. One possible approach would be to extend all memory

points to the length of the longest point. The discrete classifier used in this chapter also would not

be ideal for use by a density-estimate memory when aggregating multiple points. A real-valued

classifier would be more suitable, though the performance of this type of classifier-based memory

is unclear.

Given the lack of prior work on storing information about complete schedules in memory for dy-

namic rescheduling, these experiments were an attempt to determine the potential of classifier-based

memory. Comparing the performance of classifier-based memory using different attributes, a variety

of quantile sizes, larger memories, or other changes in the memory structure would shed more light

on the potential of classifier-based memories for dynamic scheduling. Also, other memory types

could be constructed to include ways to retain information about setup times, periodic changes in

the mix of operation types over time, or other types of information that this memory cannot easily

capture.
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Chapter 10

Conclusions

Many real-world problems are dynamic, undergoing changes that affect the quality of solutions. As

changes occur, optimization and learning algorithms must adapt quickly to maintain high solution

quality. Balancing the speed of arriving at good solutions with the time necessary to find the best

solutions often requires quite different approaches than might be taken for static problems.

Most dynamic problems do not experience completely random changes. Instead, the current envi-

ronment is often similar to previous environments. By using information from the past in the form

of a memory, a search algorithm can often exploit these similarities to adapt more quickly after

changes occur in the environment.

Memory has been used extensively to help the performance of optimization and learning algo-

rithms on problems with dynamic environments. Many memories are quite simple, storing only a

small number of solutions. This thesis has explored the improvement of memory systems to make

memory more powerful and useful for more problems. Two new classes of memories—density-

estimate memory and classifier-based memory—were introduced. Density-estimate memory builds

and stores probabilistic models of many good solutions in memory, creating richer models of the dy-

namic search space. Classifier-based memory extends the use of memory to problems with shifting

feasible regions.

10.1 Summary

Part I discussed optimization and learning for dynamic problems. Chapter 2 began by defining the

concept of a dynamic environment. Since problems may be dynamic in many ways, a classification

system for dynamic environments was defined. A variety of benchmark problems with dynamic

environments were also discussed. Chapter 3 surveyed prior work in the area of dynamic optimiza-

tion and learning, particularly the use of memory for dynamic optimization. Chapter 4 defined a
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standard memory that has been widely used in the literature for dynamic optimization and discussed

the strengths and weaknesses of this approach.

The remainder of this thesis focused on two new classes of memory that address many of the weak-

nesses in the standard memory. Density-estimate memories build and store probabilistic models

of good solutions within memory. Density-estimate memory builds rich models of the dynamic

search space that can be more easily refined over time than can those in the standard memory.

Density-estimate memory typically stores many more previous solutions than a standard memory

while keeping overhead low. Classifier-based memories allow memory to be used on problems with

shifting feasible regions. Classifier-based memory adds an abstraction layer to memory that allows

old solutions to be mapped to current feasible solutions.

Part II described the general class of density-estimate memories and specific implementations of

density-estimate memory on three dynamic problems. Chapter 5 introduced density-estimate mem-

ories. Density-estimate memory is a new memory technique that builds density estimation models

to aggregate information from many solutions stored in memory. As the search process discovers

good solutions, the models stored in the memory are constantly refined. Though many more points

are stored in the memory, the overhead associated with building, maintaining, and interacting with

the memory remains low. Density-estimate memories may use a variety of probabilistic models

within the memory. Since each type of probabilistic model has a different amount of overhead re-

quired to build and maintain the models in memory, density-estimate memories offer a great deal

of flexibility in choosing model types depending the the requirements of the dynamic problem. The

remainder of Part II considered the application of density-estimate memory to three dynamic prob-

lems: factory coordination, dynamic optimization with evolutionary algorithms, and adaptive traffic

control.

Chapter 6 applied density-estimate memory to a reinforcement learning algorithm on a distributed,

dynamic factory coordination problem. Three density-estimate memory implementations were com-

pared to a standard memory, an infinite-sized standard memory, and the learning algorithm alone.

All memory-enhanced algorithms improved performance over the baseline learning algorithm by

enabling the learning algorithm to adapt more quickly to large, drastic changes in the underlying

distribution of jobs in the factory. Though all of the memories performed well, the density-estimate

memories consistently outperformed all the other methods. Among the density-estimate memories,

the two using Gaussian models tended to outperform the memory using a simpler clustering model.

Chapter 7 compared density-estimate memory to a variety of other techniques for improving evo-

lutionary algorithms on dynamic problems using a version of the Moving Peaks benchmark prob-

lem with very severe changes in the search space and a large number of wide peaks. Density-

estimate memory outperformed all other methods, including the state-of-the-art self-organizing

scouts method. Density-estimate memories with Gaussian clustering outperformed those using the
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simpler Euclidean clustering.

Several variations of the default density-estimate memory were tested to explore other ways the

density-estimate models stored in the memory might improve performance. An informed diversity

measure used these models to replace the normal generation of the search population in the mem-

ory/search multi-population algorithm. While it showed a slight improvement in average fitness,

the improvement of the informed diversity measure over the normal uninformed diversity technique

was not significant. A simple reclustering algorithm and the introduction of fitness values both had

negative effects on performance.

When parameters controlling the search space were varied, density-estimate memory continued

to outperform self-organizing scouts while changes continued to be severe and the search space

was composed of many wide peaks. By varying the peak width and number of peaks, both of

which control the density of good solutions in the search space, a clear crossover point was shown

between areas where density-estimate memory performs best and areas where self-organizing scouts

performs best. Based on these results, density-estimate memory seems best suited for problems with

a high density of good solutions and severe changes in the environment.

Chapter 8 applied density-estimate memory to an adaptive, traffic-responsive algorithm for traffic

signal control. Two density-estimate memory implementations—incremental Gaussian clustering

and a Gaussian mixture model—were described. Adaptive traffic signal controllers were compared

to the real signal timing plans for a 32 intersection traffic network modeled on downtown Pittsburgh,

Pennsylvania. By augmenting the adaptive algorithm with density-estimate memory, average vehi-

cle speed increased and average wait time decreased. Each traffic signal maintained its own control

system and memory; very little information needs to be communicated between intersections for

this approach. Memory improved performance both during transitions and overall.

Though the adaptive algorithm was slightly worse than the fixed timing plan over an entire day on

average, the use of density-estimate memory allowed the adaptive system to outperform the fixed

timing plan. For some periods, such as the afternoon rush, the fixed timing plan was so much better

than the adaptive algorithm that memory could not improve performance enough to be competi-

tive. When the underlying adaptive algorithm was competitive, the use of density-estimate memory

produced higher speeds than the fixed timing plan. These results suggest that adding memory to

a better-performing adaptive algorithm would make it possible to outperform the fixed timing plan

during these periods.

The experiments in Part II show that density-estimate memory can improve both optimization and

learning algorithms on problems with dynamic environments. Density-estimate memories outper-

form standard memories as well as other state-of-the-art techniques for dynamic problems by pro-

viding rich models of the dynamic search space. These density-estimate models are refined over

time as new solutions are added to the memory. Though density-estimate memories incorporate
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many previous solutions, the overhead required to store to and retrieve from the memory remains

consistently low. Only the computation required to rebuild models increases, and for incremental

clustering density-estimate memories, this computation is not expensive.

Dynamic problems are often composed of several types of changes. Both the factory coordination

problem and the adaptive traffic control problem have both small, continuous changes—changes

in the distribution of jobs currently waiting to be processed or traffic flows of the cars currently

at an intersection—and severe, discontinuous changes—large shifts in underlying distribution of

job types or large time-of-day shifts in traffic flows. Optimization and learning algorithms tend

to be well suited to adapting solutions for smaller changes, but may take a long time to adapt to

more severe changes. Memory may help considerably in speeding up the adaptation to severe,

discontinuous changes. The results in Part II suggest that density-estimate memories are best suited

for problems with a high density of good solutions and severe, discontinuous changes in the dynamic

environment.

Part III considered the use of memory for dynamic problems with shifting feasible regions. Chapter

9 introduced classifier-based memory for problems where the feasible region of the search space

shifts over time. This chapter described a memory enhanced evolutionary algorithm approach to the

dynamic job shop scheduling problem. Classifier-based memory enables the mapping of informa-

tion about jobs at one point in time to the creation of valid schedules at another point in time. The

results from this chapter show that classifier-based memory can improve both the quality of sched-

ules and the speed of search over a standard evolutionary algorithm. These results also show that

diversity techniques, which have had success on many other dynamic problems, show decreased

fitness and search speed for the dynamic scheduling problem investigated here.

10.2 Contributions

The major contributions of this thesis are methods for enhancing memory for improving optimiza-

tion and learning in dynamic environments. Novel enhanced memory systems were presented to

address the weaknesses and overcome the limitations of standard memory systems. The techniques

presented in this thesis improve memories by incorporating probabilistic models of previous solu-

tions into memory, storing many previous solutions in memory while keeping overhead low, build-

ing long-term models of the dynamic search space over time, allowing easy refinement of memory

entries, and mapping previous solutions to the current environment for problems where solutions

may become obsolete. This thesis contributes two new classes of memory that enable these im-

provements: density-estimate memory and classifier-based memory.

Density-estimate memory was introduced to allow memories to effectively store many previous

solutions without substantially increasing the overhead associated with maintaining and using the
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memory. Density-estimate memories build and maintain probabilistic models of past solutions to

improve the performance of learning and optimization in dynamic environments. While building

much richer models of the dynamic search space than a standard memory, density-estimate memo-

ries can be constructed efficiently and maintained with a low amount of overhead. Density-estimate

memory also builds better long-term models of the dynamic search space and makes it easier to

refine memory entries.

Classifier-based memory was introduced to extend the use of memory to dynamic problems where

solutions may become obsolete as the environment changes. Classifier-based memory creates an ab-

straction layer between feasible solutions and memory entries so that old solutions stored in memory

may be mapped to solutions that are feasible in the current environment. Classifier-based memory

allows dynamic problems with shifting feasible regions to use memory to improve search.

This thesis contributes several implementations of density-estimate memory: incremental Euclidean

clustering density-estimate memory, incremental Gaussian clustering density-estimate memory, and

Gaussian mixture model density-estimate memory. An implementation of classifier-based memory

for job-shop scheduling is presented. This thesis also contributes a traffic-responsive learning algo-

rithm for traffic signal control, the balanced phase utilization algorithm.

Finally, this thesis defines several problems that may be used as benchmarks to evaluate the perfor-

mance of optimization and learning algorithms in dynamic environments. A distributed, dynamic

factory coordination problem with long time horizons is defined in Chapter 6. An adaptive traffic

control problem that models 32 intersections in the city of Pittsburgh, PA is defined in Chapter 8.

A dynamic scheduling problem with sequence-based setups and machine breakdowns is defined in

Chapter 9.

10.3 Outlook

This thesis presented two novel classes of memory that improve optimization and learning algo-

rithms in dynamic environments. Though the memories implemented in this thesis outperformed

state-of-the-art techniques, there is room for improvement in both density-estimate memory and

classifier-based memory. This final section discusses several avenues for future work using the

techniques introduced in this thesis.

Most density-estimate memory experiments in this thesis used relatively simple Euclidean and

Gaussian clustering models to perform density-estimation. More sophisticated probabilistic models

from the estimation of distribution algorithm literature—such as Gaussian mixture models, hier-

archical Bayes networks, and dependency trees—could be used to improve the quality of density-

estimate memory. For the experiments in Chapter 8, a Gaussian mixture model density-estimate
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memory improved performance over an incremental Gaussian clustering density-estimate memory.

Using more complex models does have the potential to increase the overhead required to maintain

the memory, but for problems that allow sufficient time to rebuild more complex density-estimate

models, these models could provide further improvements in the performance of density-estimate

memory.

One of the strengths of density-estimate memory is the long-term model of the dynamic search

space that it creates over time. By retrieving solutions from this model, density-estimate memory

is able to improve the performance of an underlying search algorithm. However, this model could

be used in many other ways. More informed diversity methods than the one developed in Chapter 7

could help population-based search, as could sampling from the models in memory.

Since density-estimate memory can store so many solutions, the effect of adding a new solution

to memory decreases the more points have previously been stored. In addition to adding points to

memory, it might be beneficial to remove points that become outliers to the model or are very old.

Thinning out the memory by removing points very close to one another might also be beneficial for

some problems.

For the adaptive traffic control experiments in Chapter 8, the underlying balanced phase utilization

algorithm was one of the largest limitations on the performance of density-estimate memory. This

algorithm performed well, but a better learning algorithm would probably lead to better performance

of the density-estimate memory.

This thesis presented one possible implementation of classifier-based memory, other approaches to

classifying jobs and mapping those classifications back to valid schedule might improve the quality

of the information stored in memory. Finally, future work might combine classifier-based memory

with other techniques like anticipation or density-estimate memory.
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