
Carnegie Mellon University

CARNEGIE INSTITUTE OF TECHNOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF Doctor of Philosophy

TITLE Improving the Dependability of Distributed Systems

 through AIR Software Upgrades

PRESENTED BY Tudor A. Dumitra!

ACCEPTED BY THE DEPARTMENT OF

 Electrical & Computer Engineering

 __ ________________________
 ADVISOR, MAJOR PROFESSOR DATE

 __ ________________________
 DEPARTMENT HEAD DATE

APPROVED BY THE COLLEGE COUNCIL

 __ ________________________
 DEAN DATE

Improving the Dependability of Distributed Systems
through AIR Software Upgrades

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

 in

Electrical & Computer Engineering

Tudor A. Dumitra!

B.S., Computer Science, “Politehnica” University, Bucharest, Romania
Diplôme d’Ingénieur, Ecole Polytechnique, Paris, France

M.S., Electrical & Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

December, 2010

To my parents and my teachers, who showed me the way. To my friends,

who gave me a place to stand on. Pentru Tanti Lola.

Abstract

Traditional fault-tolerance mechanisms concentrate almost entirely on responding to,

avoiding, or tolerating unexpected faults or security violations. However, scheduled events,

such as software upgrades, account for most of the system unavailability and often introduce

data corruption or latent errors. Through two empirical studies, this dissertation identifies

the leading causes of upgrade failurebreaking hidden dependenciesand of planned down-

timecomplex data conversionsin distributed enterprise systems. These findings repre-

sent the foundation of a new benchmark for software-upgrade dependability.

This dissertation further introduces the AIR propertiesAtomicity, Isolation and

Runtime-testingrequired for improving the dependability of distributed systems that

undergo major software upgrades. The AIR properties are realized in Imago, a system de-

signed to reduce both planned and unplanned downtime by upgrading distributed systems

end-to-end. Imago builds upon the idea of isolating the production system from the up-

grade operations, in order to avoid breaking hidden dependencies and to decouple the data

conversions from the normal system operation. Imago includes novel mechanisms, such

as providing a parallel universe for the new version, performing data conversions oppor-

tunistically, intercepting the live workload at the ingress and egress points or executing an

atomic switchover to the new version, which allow it to deliver the AIR properties.

Imago harnesses opportunities provided by the emerging cloud-computing technolo-

gies, by trading resource overhead (needed by the parallel universe) for an improved de-

pendability of the software upgrades. This approach separates the functional aspects of the

upgrade from the mechanisms for online upgrade, enabling an upgrade-as-a-service model.

This dissertation also describes techniques for assessing the impact of software upgrades,

in order to reason about the implications of relaxing the AIR guarantees.

iv

This is for the one that I ate, 32 years ago.

Acknowledgments

Since I started to learn about Computer Science, I have been fascinated by our ability to

write computer programs that can protect themselves from various adverse conditions in

their environments. I equally enjoy building dependable systems firsthand and studying

empirically the behavior of systems large and small. This is the result of my interactions

with a few great mentors, who helped me discover the secrets of Computer Science and

who showed me the ways of scientific research.

At age 13, I received a great gift from my uncle, Florin Covaciu. It was an HC-85 com-

puter, a Romanian replica of the Sinclair ZX Spectrum (one of the world’s first personal

computers). I learned to program on this machine, and, since then, I was not able to stay

away from programming for too long. This path took me to the Computer-Science High

School in Bucharest (Liceul de Informatică, now Colegiul Nat, ional Tudor Vianu), where teach-

ers Mihai Budiu and Raluca Vasilescu opened my eyes to many computing concepts and to

their power to transform human society. These teachers shared their great knowledge and

passion for computing, and this inspired me to continue my studies in this field. I was not

too surprised when I met Mihai and Raluca again, years later, in the graduate program at

Carnegie Mellon University.

Among my professors at the “Politehnica” University in Bucharest were Mircea Pe-

trescu, who had supervised my father’s Honors thesis (diploma de licent, ă) twenty-five years

previously, Adrian Petrescu and Francisc Iacob, the creators of the HC-85, and Nicolae

T, ăpus, , who supervised my own Honors thesis on Argo, a search engine with a distributed

Web crawler. Most of all, I am grateful to Zoea Racovit, ă for encouraging me to continue

my graduate studies and to apply to the Ph.D. program at Carnegie Mellon University.

My education at the Ecole Polytechnique in Paris taught me to be responsible, confi-

dent, determined and to keep my commitments. I have to thank Jean-Marc Steyaert for

guiding me through those years. Atom, a final-year project supervised by Sam Toueg, fo-

v

ACKNOWLEDGMENTS vi

cused on implementing a practical group-communication system based on unreliable fail-

ure detectors (an exclusively theoretical technique, at the time) and seeded my curiosity

about distributed systems.

When I arrived at Carnegie Mellon, Radu Mărculescu taught me the paramount im-

portance of originality in all academic endeavors and the value of anticipating future tech-

nology trends for systems-oriented research. Our first paper together, which identified the

need for system-level fault tolerance in the emerging networks-on-chip (NoC) and reeval-

uated fundamental trade-offs made by classical networking protocols, remains my most

cited publication. Phil Koopman taught me everything I know about dependability, and

he always gave me good advice throughout my graduate studies.

Many people contributed to the approach described in this dissertation. The members

of my thesis committee, Greg Ganger, Bruce Maggs and Asit Dan, encouraged me to pursue

the topic of online software upgrades and provided invaluable feedback in all the stages of

this research. Dan Siewiorek taught me how to create a rigorous taxonomy. Jiaqi Tan and

Zhengheng Gho helped me design some of the core algorithms of Imago. At my request,

Lorenzo Keller wrote a user manual for ConfErr, his fault-injection tool for mutating con-

figuration files. A dinner-time discussion with Eli Tilevich turned into a publication about

the risks of software upgrades across multiple administrative domains. Douglas Schmidt

showed me how to present my research in an effective way. Jean-Charles Fabre has always

been a great mentor and a true friend. Je n’oublierai jamais que je dois mon premier emploi à ton

soutien sans réserve, Jean-Charles.

Daniela Ros, u, Bich Le and Alan Downingmy internship supervisors at IBM Research,

VMware and Oracle, respectivelyprovided me with a wealth of information about the

practical challenges of performing software upgrades. My approach also incorporates ex-

tensive feedback from the industry members of the Parallel Data Lab consortium. During

my dissertation research, I received financial support from the NSF CAREER Award CCR-

0238381, the DARPA PCES contract F33615-03-C-4110, as well as Carnegie Mellon’s CyLab

and Parallel Data Lab.

While not directly involved in this research, my collaborators Danny Dig and Iulian

Neamtiu helped me establish the series of workshops on Hot Topics in Software Upgrades

(HotSWUp). The first two editions of the workshop provided a venue for insightful discus-

sions about how upgrades are performed at various levelsin the front-end of cloud com-

ACKNOWLEDGMENTS vii

puting infrastructures, in EJB-based enterprise applications, in databases, in long-running

servers, in middleware frameworks or in satellites orbiting the Earth. Most importantly,

HotSWUp emphasized that the challenge of upgrading distributed systems end-to-end

calls for an inter-disciplinary approach, combining ideas and techniques from several areas

of Computer Science.

Above all, I would like to thank my dissertation advisor, Prof. Priya Narasimhan, for all

her guidance. She taught me the secrets of fault-tolerant middleware, and she showed me

how to enhance legacy applications with replication and recovery mechanisms by transpar-

ently intercepting the application’s system calls. She shared with me her great gift for writ-

ing and presenting technical material, she taught me the scientific method and she showed

me how to ask the questions that matter. She passed down the teachings of Gottfried Wil-

helm Leibniz, our academic ancestor, about how to turn an abundance of experimental

data into rigorous scientific findings. She also passed down her aversion of adjectives and

hyperbolae. She transformed a student into a researcher.

Outside of Computer Science, my good friendstoo many to list herehave always been

a source of inspiration and vitality. My aunt, S, tefania Dumitras, , taught me about the prac-

tical things in life, and she also taught me French. My cousin, Ioana Căprar, has been close

as a sister. My parents, Dan Dumitras, and Monica Dumitras, , are my ultimate role models.

Working at the Institute of Atomic Physics (where the first Romanian computer, CIFA, was

built in 1955), their group of friends consisted of many other researchers, recognized inter-

nationally. I grew up among idealistic and passionate people, who were pushing the limits

of science and engineering, and this has influenced who I am today. I am grateful for all the

intellectual gifts you gave me. I also thank Corina, with all my heart, for her support and

encouragement during the final stages of my dissertation writing. Es, ti un pes, tis, or de aur.

This dissertation is the fruit of your labor, as much as mine’s. For my part, this experi-

ence helped me to grow up, professionally, and to understand the difference between good

research and great research. I continue to marvel at the beauty of Computer Science and at

all the things that are out there, for us to discover.

Contents

1 Introduction 1

1.1 The dependability of software upgrades . 3

1.2 The next step forward . 9

1.3 AIR software upgrades . 9

1.4 Contributions . 12

2 Related Work 17

2.1 Causes of upgrade-induced downtime . 17

2.2 Properties of software upgrades . 19

2.3 Approaches for dependable upgrade . 20

2.4 Dependability benchmarking for software upgrades 29

2.5 Impact assessment for online upgrades . 30

3 Why Do Software Upgrades Fail? 32

3.1 Classification method . 35

3.2 Upgrade-centric fault model . 40

3.3 Tolerating upgrade faults . 47

3.4 Summary of findings . 49

4 Why Do Upgrades Need Planned Downtime? 50

4.1 Experimental method . 52

4.2 Leading causes of planned downtime . 57

4.3 Existing techniques for avoiding planned downtime 61

4.4 Summary of findings . 63

5 The AIR Properties 65

viii

CONTENTS ix

6 Design and Implementation of Imago 67

6.1 AIR upgrades with Imago . 72

6.2 Implementation details . 77

6.3 Upgrade-as-a-service . 83

6.4 Summary of findings . 85

7 Dependability Benchmarking for Software Upgrades 88

7.1 A benchmark for upgrade dependability . 92

7.2 Availability and overhead without faults . 98

7.3 Availability under upgrade-faults . 100

7.4 Upgrade reliability . 103

7.5 Summary of findings . 105

8 Relaxing the Isolation Property 108

8.1 Isolation level provided by SOA . 112

8.2 Distributed framework for upgrade-impact assessment 114

8.3 Design and implementation of Ecotopia . 117

8.4 Case study: Software upgrades a service-oriented enterprise system 121

8.5 Summary of findings . 125

9 Relaxing the Atomicity Property 127

9.1 Mixed-version races . 131

9.2 Upgrade risk model . 134

9.3 Qualitative validation of the analytical risk model 142

9.4 Summary of findings . 146

10 Conclusion 148

10.1 Summary . 148

10.2 Open questions and future work . 150

Appendices

A NP-Completeness of the Package-Upgrade Problem 156

B List of Upgrade Faults 160

CONTENTS x

C Upgrade Risk Model: Implementation 163

Bibliography 168

Index 186

List of Figures

1.1 Example of dependencies in a single-host system 6

1.2 Conceptual overview of AIR upgrades . 11

3.1 Four ways of violating an upgrade procedure 37

3.2 Statistical cluster analysis of upgrade faults 43

3.3 Upgrade-centric fault model . 44

3.4 Impact of upgrade faults . 46

4.1 Wikipedia architecture . 54

4.2 Example of schema change that requires planned downtime 55

4.3 Implementation of schema changes during offline and online upgrades . . . 56

4.4 Major schema reorganization at Wikipedia 57

4.5 Planned downtime imposed by MediaWiki upgrades 60

6.1 Dependable software upgrades with Imago 68

6.2 Imago’s upgrade procedure . 72

6.3 Imago’s upgrade procedure (details) . 73

6.4 Performing database-schema changes with Imago 75

6.5 The atomic switchover protocol . 76

6.6 Implementation of the egress interceptor . 79

6.7 Implementation of the ingress interceptor . 80

6.8 Communication protocol used during the testing phase 82

6.9 Inputs required by the upgrade mechanism 84

7.1 Current approaches for online upgrade in distributed enterprise systems . . 95

7.2 Faults and failures during software upgrades 97

xi

LIST OF FIGURES xii

7.3 Planned downtime imposed by Imago . 99

7.4 Breakdown of Imago’s overhead . 100

7.5 Runtime overhead imposed by online-upgrade mechanisms 101

7.6 Impact of upgrade faults . 103

8.1 Planning software upgrades and other system changes 110

8.2 Distributed framework for upgrade-impact assessment 114

8.3 Representation of a key performance indicator 117

8.4 Scheduling algorithm in Ecotopia . 120

8.5 The scheduling loop of Ecotopia . 121

8.6 Sample system managed by Ecotopia . 122

8.7 Database upgrade scenario. 123

8.8 Comparison of the Ecotopia scheduling algorithms 124

9.1 Anatomy of a mixed-version race . 132

9.2 Analytical risk model . 138

9.3 Events leading to a mixed-version inconsistency 139

9.4 Discrete risk values . 140

List of Tables

1.1 Comparison of several studies of distributed-system availability 2

3.1 Classification features for upgrade faults . 39

3.2 Examples of hidden dependencies . 42

4.1 Database schema changes in Wikipedia . 59

6.1 Structure of Imago’s code . 83

7.1 Description of the upgrade faults injected. 102

7.2 Trade-offs for implementing online upgrades 106

8.1 “What-if” API for distributed impact assessment 116

9.1 Notations from the upgrade risk model . 137

9.2 To upgrade or not to upgrade? . 144

xiii

We hear desperate cries for a silver bulletsomething to make

software costs drop as rapidly as computer hardware costs do.

F. Brooks, No silver bullet, 1987

Chapter 1

Introduction

MODERN distributed systems are perhaps the most intricate structures ever engi-

neered, and their benefits for society are impaired by our inability to make end-to-

end dependability guarantees. Software dependability remains challenging despite recent

advances in preventing and finding software bugs, or improvements in unit and integration

testing. While these techniques reduce the complexity of an accidental taskthe need to ex-

press conceptual specifications in a programming languagemanaging change in software

systems represents one of the essential obstacles for their dependability [Brooks, 1987].

Even after their deployment in the field, successful distributed systems are expected to

change frequently, in order to add new features, to improve performance and scalability, to

conform with government regulations or to reduce operating costs by switching software

vendors. Unlike hardware or mechanical systems, computer programs can be modified

with relative ease. However, when deploying these changes in an actively-used system,

through software upgrades, we must preserve the ecosystem of dependencies from the

operational environment. For this reason, the question How to perform software upgrades

dependably? represents a grand challenge for distributed-systems research [Kaashoek et al.,

2005].

Traditional approaches for ensuring dependability [Avižienis et al., 2004] concentrate

almost entirely on responding to, avoiding, or tolerating unexpected faults or security viola-

tions. However, intentional software changes, such as software upgrades, account for 66%–

86% of the time when the service is not available, reportedly (see Table 1.1). The need for

such planned downtime stems from the current limitations of upgrade mechanisms, which

are unable to upgrade distributed systems atomically, end-to-end. Furthermore, software

1

CHAPTER 1. INTRODUCTION 2

Table 1.1. Comparison of studies of distributed-system availability. Software changes account for most of the
planned downtime. The contribution of change-management errors (e.g. software upgrades) to unplanned
downtime has increased during the past two decades.

Unplanned Downtime

[Gray, 1990]
27.3% of unplanned downtime due to errors in operations procedures

or in system configurations, in Tandem systems.

[Oppenheimer et al., 2003]
75% of unplanned downtime due to operations errors during change-

management procedures, in Internet services.

Planned Downtime

[Lowell et al., 2004]
86% of total downtime due to planned software maintenance, in high-

availability applications.

[Malik and Scott, 2008]
66%–76% of total downtime due to planned software maintenance,

in enterprise systems.

upgrades cause system failures, such as unplanned downtime, partial outages, latent errors or

data corruption. Recent studies suggest that up to half of software upgrades fail [Crameri

et al., 2007], and that these failures account for 75% of the unplanned downtime [Oppen-

heimer et al., 2003].

As the instruments of economic activity turn to the Internet, enterprises can no longer

afford to incur such planned and unplanned downtime and must perform software up-

grades online, without stopping their systems. Historically, mechanisms for online upgrade

were developed for the telecommunications industry [for example, in AT&T’s 5ESS switch:

Toy, 1992]. These mechanisms focus on updating single-node systems on the fly, without

stopping the running program. Industry trends suggest, however, that online upgrades

are currently needed in large-scale distributed systems, such as electrical utilities, assembly-

line manufacturing, customer support, e-commerce or online banking [Choi, 2009]. The

characteristics of distributed systems simplify some aspects of the upgrade problem, while

complicating others. Specifically, while distributed systems include redundancy and fault-

tolerance mechanisms (allowing components to be temporarily inaccessible), they also de-

pend on more complex interactions among the heterogeneous system components (e.g.,

asynchronous messaging, long-running transactions, reads/writes to shared storage). In

distributed systems spanning multiple administrative domains, it may be difficult to coor-

CHAPTER 1. INTRODUCTION 3

dinate the operations performed during an online upgrade. Moreover, in some distributed

architectures most of the system functionality depends on a single, shared component (e.g.,

the database), which cannot be upgraded without changing the rest of the system as well,

effectively preventing partial or gradual upgrades.

This dissertation identifies the leading causes of upgrade failurebreaking hidden

dependenciesand of upgrade-induced planned downtimedatabase schema evolution.

Building on these empirically-derived insights, this dissertation explores the idea of isolat-

ing a live production system from the upgrade operations, with the aim of preventing the

upgrade-specific faults from breaking hidden dependencies.

I take a holistic approach and focus on upgrading distributed systems end-to-end. The

full distributed-system upgrade is an atomic operation, executed online even when per-

forming complex schema and data conversions. I present Imago1, an upgrading system

that harnesses the opportunities provided by the emerging cloud computing technologies

to simplify large-scale upgrades, to allow upgrades to be executed efficiently online, and to

improve their dependability. This approach separates the functional aspects of the upgrade

(e.g. persistent-data conversion) from the mechanisms for upgrading online (e.g. atomic

switchover) and enables an upgrade-as-a-service model.

1.1 The dependability of software upgrades

System dependability has several attributes, such as availability and reliability [Avižienis

et al., 2004]. Availability is the fraction of time that a system is ready to provide correct

service and does not experience planned or unplanned downtime. Reliability is a time-

dependent function expressing the probability that the system will provide correct service.

A large body of anecdotal evidence suggests that, in practice, software upgrades are unreli-

able and often cause downtime, latent errors or data corruption. For example, in November

2003, the upgrade of a customer-relationship management system at AT&T Wireless back-

fired, causing chronic downtime in several key systems and affecting 50,000 customers per

week [Koch, 2004]. The complexity of dependencies on 15 legacy back-end systems was

unmanageable, and the integration could not be tested in a realistic environment. The up-
1The imago is the final stage of an insect or animal that undergoes a metamorphosis, e.g., a butterfly after

emerging from the chrysalis [Oxford English Dictionary, 1989].

CHAPTER 1. INTRODUCTION 4

grade caused repeated crashes and a ripple effect that disabled other AT&T systems as well.

Rollback was impossible because not enough of the old system had been preserved. The

negative effects lasted for 3 months, and the company lost $100 million in revenue.

Some dependencies, such as the ways that persistent data objects or observed per-

formance levels can affect system behavior, are particularly hard to detect. In February

and September 2009, Google’s web-based email service, Gmail, experienced two outages,

each causing around 2 hours of downtime, following routine software upgrades [Cruz,

2009; Treynor, 2009]. The new functionalitywhich had been designed to improve service

availabilityresulted in additional load that overwhelmed the servers in other data cen-

ters. Moreover, breaking such non-functional dependencies during an upgrade can cause

failures that persist even after rolling back the changes. For example, in August 1996, an

upgrade in the main data center of America Online (AOL)the world’s largest Internet

Service Provider at the timewas followed by a 19-hour outage [Neumann et al., 1996].

The system behavior did not improve even after the upgrade was rolled back because the

routing tables had been corrupted during the upgrade. These examples illustrate that the

impact of changes is often difficult to predict before performing a software upgrade.

Upgrade failures affect safety-critical systems as well. In March 2008, the upgrade of an

enterprise system used for business analytics forced a nuclear power plant into a 48-hour

emergency shutdown [Krebs, 2008]. The system administrator who installed the upgrade

was not aware that the software was designed to synchronize data with the plant’s pri-

mary control system. The upgrade re-initialized the chemical and diagnostic data on both

systems, and this caused a perceived drop in the nuclear coolant levels that automatically

triggered an emergency shutdown. In 2006, following a network upgrade, an automated

drug dispenser went offline in the emergency room of a hospital [Wears et al., 2006]. While

the system upgraded was not time sensitive, the failure prevented a patient in critical con-

dition from receiving the appropriate medication.

The upgrade failures described above had different root causes and affected different

system components. In all these examples, however, the failure of an upgrade in one system

affected other, apparently unrelated, systems of the enterprise.

CHAPTER 1. INTRODUCTION 5

1.1.1 Upgrading inter-dependent systems

Existing upgrade techniques rely on tracking the complex dependencies among the dis-

tributed system components. When the old and new versions of the system-under-upgrade

share dependencies (e.g., they rely on the same third-party component but require differ-

ent versions of its API), the upgrade procedure must avoid breaking these dependencies in

order to prevent unplanned downtime or data-loss.

For single-host systems, the effects of broken dependencies are known, colloquially, as

“DLL Hell”: when installing or upgrading an application together with all of the libraries

that it depends upon, other unrelated applications might be inadvertently disrupted or

rendered inoperable because a shared library (the dependency) was removed or replaced

with an incompatible version [Anderson, 2000]. In some cases, applications might depend

on a specific version of a shared library, because an older version might not be able to

provide the required functionality and newer versions can introduce breaking API changes

[Dig and Johnson, 2006].

To prevent breaking these dependencies during an upgrade, modern operating systems

provide package managers that determine automatically how to install a new package, or

upgrade an existing one, along with all of its dependencies. These tools include APT [Silva,

2005] for Debian Linux, YUM [Brown and Pickard, 2003] for RedHat Linux, Portage [Ver-

meulen et al., 2007] for Gentoo Linux and the Windows Update Agent [Leyden, 2003] for

Microsoft Windows. Package-management systems rely on dependency-tracking by main-

taining repositories of packaged software components, along with metadata that describes

the dependency and conflict relationships among all the packages that an instance of the

corresponding operating system may need. Figure 1.1 shows the dependencies, obtained

from the APT package manager, among the software components from a single host of a

typical enterprise system. This host includes an Apache web server that loads the PHP in-

terpreter and a client library for the MySQL database server, which depend on a complex

graph of third-party components.

In practice, dependencies are often poorly documented [Dig and Johnson, 2006; Egyed,

2003], and they cannot always be detected automatically. Dependency-discovery tech-

niques, such as static analysis of object code [Sun and Couch, 2001], of source code [Dig

et al., 2006] or of configuration files [Magoutis et al., 2008], semantic analysis [Dig et al.,

CHAPTER 1. INTRODUCTION 6

apache2php5

php5-common

mysql-client-5.0

debianutils

libdbi-perl

libdbd-mysql-perl

mysql-common

libmysqlclient15off

perl

libc6

libgcc1

libncurses5

libreadline5

libstdc++6libwrap0

zlib1g

...

apache2-mpm-worker

apache2-mpm-prefork

apache2-mpm-event

libapache2-mod-php5

libapache-mod-php5

php5-cgi

sed

coreutils

mktemp

manpages-fr

...libplrpc-perl

libdbd-csv-perl

...

...

libmysqlclient15

libdb4.4

perl-base

perl-modules

libgdbm3

perl-5.004

perl-5.005

perl-5.6

perl-doc

...

tzdata

strace libnss-db

timezone timezones

gconv-modules

libtricks libc6-doc

libc5 libpthread0

libc6-bin

libwcsmbsapt libglib1.2

netkit-rpc wine

cyrus-imapd

e2fsprogs initrd-tools

libterm-readline-gnu-perl

gcc-4.1-base

readline-common

scimnetbase

zlib1

zlib1g-udeb

libbz2-1.0 libcomerr2

libkrb53

libpcre3

libssl0.9.8

libxml2

mime-support

apache2.2-common

libmagic1

ucf

libapache2-mod-php4

apache-commonphp3

php4 libapache-mod-php4

libdb2

openafs-krb5

ssh-krb5

libauthen-krb5-perl

libapache-mod-auth-kerb

libapache2-mod-auth-kerb

libpcre3-dev

ssleay

libssl

openssl

libssl096-dev

libxslt1.1

a2ps

metamail

apache2-mpm-itk

apache2-common

apache2-utils

net-tools

lsb-base

procps

libapache2-mod-mime-xattr

libapache2-mod-mono

libapache2-mod-proxy-html

libapache2-mod-scgi

libapache2-mod-speedycgi

libapache2-modxslt

libapache2-redirtoservername

libapache2-webauth

libapache2-webkdc

file libexpat1

libzzip-0-12php4-common

apache

...

...

...

...

libacl1 libselinux1stat...

libnet-daemon-perl

...

perl-5.004-base

perl-5.005-base perl-5.6-base

autoconf2.13 ...

libtest-harness-perl libtest-simple-perl

...

...

...

... ...

...

libreadline-common

......

libapr1

libaprutil1

libldap2libpq4 libsqlite3-0

libuuid1

apache2-mpm-perchild

libapr1.0

libaprutil1.0

libgnutls13

libsasl2-2 ...

ldap-utils

libattr1acl

libacl1-kerberos4kth

libsepol1

...

...

...

...

...

...

debconf...

...

...

...

...

lynx

libgcrypt11

libgpg-error0

liblzo1libopencdk8 libtasn1-3gnutls0

gnutls0.4

libdb4.2 postfix

libsasl2-gssapi-mit

libsasl2-krb4-mit

...

ncurses-bin lsb-core

lsb

...

libproc-dev

w-bassman

procps-nonfree

pgrep

...

...

...

...

...

...

...

cdebconf

debconf-tiny

menu

dialog

whiptail

...

debconf-utils

debconf-i18n

debconf-english

...

...

...

...

...liblocale-gettext-perl libtext-iconv-perl

libtext-wrapi18n-perl

libtext-charwidth-perl

...

...

libcap1

lzoplibopencdk4

libopencdk8.11

libtasn1-2

...

...

libncursesw5

...

...

...

attr...

ncurses

...

...

...

...

...

...

oval = existing package −→ = dependency • = alternative dependencies
hexagon = missing package ��� = conflict … = dependency-resolution stopped

Figure 1.1. Example of dependencies in a single host. The functionality of a typical node from an enterprise
system depends on a complex graph of third-party libraries.

2006], runtime monitoring [Dunagan et al., 2004] or active perturbation [Brown et al., 2001]

cannot provide a complete coverage of all the factors that might influence the behavior

of a distributed system. For example, the complete set of shared libraries that might be

loaded by an application cannot be discovered using static analysis (e.g., if the libraries are

specified through dependency injection techniques [Fowler, 2004]), and monitoring the li-

brary loading operations at runtime is a best-effort approach that might not cover all of the

possible application behaviors. Dependency tracking ultimately relies on metadata that

is manually maintained by teams of developers and quality-assurance engineers through a

time-intensive and error-prone process.

Moreover, determining the correct configuration of an upgraded system by resolving

the dependencies of the installed components is an NP-complete problem (see Appendix A

for the proof). Existing approaches for tracking dependencies use heuristics [for example:

CHAPTER 1. INTRODUCTION 7

Silva, 2005; Brown and Pickard, 2003] to ensure that the search for a correct configuration

terminates in a timely fashion, or they rely on SAT solvers [Tucker et al., 2007; Di Cosmo,

2005] to guarantee that a solution will be found for all installable packages. Heuristics-

based approaches might fail to find a solution where one exists, while, for certain corner

cases, the run time of SAT solvers is exponential in the size of the repository [Tucker et al.,

2007].

This suggests that the size of dependency repositories will determine the point where

ensuring the correctness of upgrades through dependency tracking becomes computation-

ally infeasible. Current repositories contain approximately 25,000 packages [Di Cosmo

et al., 2008]. If dependencies on configuration settings are included, the size of these repos-

itories would increase by an order of magnitude (a typical instance of the Windows XP

operating system has 200,000 configuration settings that may be shared by several applica-

tions [Wang et al., 2003]). Moreover, the behavior of a distributed system depends on het-

erogeneous third-party components, APIs, data objects, communication protocols, Internet

routes or performance levels. The graph from Figure 1.1 represents but a small fraction of

the complex dependency relationships among the components of a real-world distributed-

system.

Because dependencies in distributed systems are increasingly complex and because

runtime dependencies cannot always be discovered automatically, the benefits of depen-

dency tracking are reaching their limit. The current effect of these fundamental limita-

tions is that sometimes dependencies remain hidden from the administrators who coordinate

system-wide software upgrades. This can cause upgrade failures. A recent study [Crameri

et al., 2007] identified broken dependencies and altered system-behavior as the leading

causes of upgrade failure, followed by bugs in the new version and incompatibility with legacy

configurations.

1.1.2 End-to-end upgrades in distributed systems

Prior work on software upgrades has been conducted independently, in separate research

communities, and has focused on individual components of distributed systems. For in-

stance, dynamic software updating (DSU) techniques [Segal and Frieder, 1993; Boyapati

et al., 2003; Neamtiu et al., 2006] were developed by the programming-language commu-

nity for modifying a program on-the-fly, without stopping it. DSU performs a single-host

CHAPTER 1. INTRODUCTION 8

online upgrade, where the entire system state is loaded in memory. In contrast, research

on database-schema mapping and evolution [Ferrandina et al., 1995; Bernstein and Haas,

2008; Curino et al., 2008a] concentrates on migrating persistent data stored in a database

and provides mechanisms commonly used for planning offline upgrades. The techniques

proposed for upgrading distributed systems [Bloom, 1983; Kramer and Magee, 1990; Moser

et al., 2000; Ajmani et al., 2006; Rellermeyer et al., 2008] focus on applications built on top

of distributed-object middleware or component frameworks, where online upgrade is one

of the mechanisms provided by the framework.

However, real-world distributed systems are not based on a single, homogeneous

framework. Instead, they utilize three-tier architectures, with front-end servers that man-

age the client connections, middle-tier servers that implement the business logic and back-

end servers that store the persistent data. An end-to-end upgrade replaces the old ver-

sions of the business logic and of the data schema with newer versions and requires coor-

dinating the upgrade of multiple system components with the conversion of the persistent

data objects. Industry best-practice recommendations [for example: Office of Government

Commerce, 2007], advocate deploying the new version gradually, through rolling upgrades

[Brewer, 2001; Microsoft Corporation, 2005; Oracle Corporation, 2008] that upgrade-and-

reboot each host in the distributed system, one at a time, in a wave rolling through the data

center.

During a rolling upgrade, the system’s clients can interact with either the old version

or the new version of the software. This requires the two versions to interact with each

other in a compatible manner; for instance, if the upgraded components maintain persistent

states, the old and new versions must undergo state synchronization during the upgrade.

Current commercial tools that target rolling upgrades [for example: Microsoft Corporation,

2005; Oracle Corporation, 2008] provide no way for determining if the interactions between

mixed versions are safe and leave these concerns to the application developers. In general,

the behavior of a system with mixed versions is not guaranteed to conform to the specifi-

cation of either version of the software and is hard to test and validate in advance [Segal,

2002]. Moreover, the failures that arise from such component-wise upgrades are not well

understood, as the evaluations of previous upgrade mechanisms focus on performance and

overhead rather than on the upgrade dependability.

CHAPTER 1. INTRODUCTION 9

1.2 The next step forward

This dissertation explores the following hypothesis:

The availability and reliability of distributed systems can be improved by performing

software upgrades atomically, end-to-end, and by providing mechanisms for isolating

faults that are specific to software upgrades.

Specifically, a dependable online-upgrade mechanism should provide the AIR properties:

• Atomicity: At any time, the clients of the system-under-upgrade must access the

full functionality of either the old version or the new versionbut not both. The

end-to-end upgrade must be an atomic operation.

• Isolation: The upgrade mechanism must not change, remove, or affect in any way

the dependencies of the production system (including its performance, configuration

settings and ability to access the data objects).

• Runtime-testing: The upgrade mechanism must allow testing the upgraded system

under operational conditions.

I test this hypothesis by analyzing the necessity, the practicality and the generality of AIR

upgrades. The AIR properties derive from empirical evidence of planned and unplanned

downtime and from practical experience with system failures caused by the current up-

grade mechanisms. I describe the design of Imago, a system that guarantees the AIR prop-

erties, and I discuss how the novel upgrade mechanisms incorporated in Imago can be

applied to software upgrades in large-scale distributed systems. To assess whether Imago

reaches its goal of improving the dependability of distributed systems, I develop an ap-

proach for benchmarking the availability and the reliability of systems that undergo online

software upgrades. Finally, I investigate when these techniques are necessary by analyzing

the consequences of relaxing the AIR properties.

1.3 AIR software upgrades

Improving the dependability of software upgrades requires connecting principles from

several disciplines of computer science: distributed systems, databases, programming lan-

guages and software engineering. The main challenge in this endeavor is building a bridge

CHAPTER 1. INTRODUCTION 10

between the various experimental methods, techniques and practical considerations of

these fields and distilling this knowledge into three abstract properties of dependable soft-

ware upgrades. This dissertation traces the road to the AIR properties and describes the

technical obstacles faced at each step.

The first hurdle is understanding the current causes of upgrade failure in distributed

systems. While prior research, summarized in Chapter 2, suggests that most upgrade fail-

ures are due to problems in the operating procedure, rather than to software defects, the

mechanisms of failure and their effects on the system are not sufficiently well understood

to create a failure or simulation model for software upgrades [Liskov, 2001]. Chapter 3

presents an empirical study, which combines data from three independent sources, sug-

gesting that upgrades fail primarily because of unavoidable human errors in the upgrade

procedure. These errors break hidden dependencies in the system under upgrade, e.g.,

by incorrectly specifying the location of certain services, by creating database-schema mis-

matches, or by introducing conflicts among shared libraries. Through statistical cluster

analysis, I also identify what these failures have in common and I propose a novel, upgrade-

centric, fault model.

The lack of insight into upgrade failures raises a subtler challenge. We currently do not

know how to evaluate the dependability of distributed systems that undergo software up-

grades. The existing information on upgrade failures is largely anecdotal, and real-world

data is difficult to obtain due to the sensitivity of the topic. The known examples of failed

upgrades (e.g. the ones described in Section 1.1) cannot be replicated because there is not

enough data on the system configurations, network topologies, errors encountered, etc. As

a result, the evaluations of previous upgrade mechanisms focus on their performance and

overhead, rather than on the upgrade dependability. This challenge is addressed in Chap-

ter 7, which introduces a dependability-benchmarking approach for upgrade mechanisms.

The benchmark is based on fault-injection experiments driven by the upgrade-centric fault

model from Chapter 3.

However, even successful upgrades often require planned downtime for changing the

data schema or for migrating to a different data store. Because some conversions are dif-

ficult to perform on the fly, in the face of live workloads, and owing to concerns about

overloading the production system, complex data conversions currently impose downtime

on upgrade. Chapter 4 investigates the leading causes of such planned downtime.

CHAPTER 1. INTRODUCTION 11

   


  


  








 





 
 

Figure 1.2. Conceptual overview of AIR upgrades.

Understanding the leading causes of planned and unplanned downtime leads to the for-

malization of the AIR properties, in Chapter 5. These properties are necessary for compen-

sating shortcomings in the existing mechanisms for software upgrade. However, enforcing

the AIR properties requires a new approach for performing software upgrades. Chap-

ter 6 describes the practical trade-offs involved in the implementation of an AIR-compliant

system, called Imago, and the mechanisms that allow extending this system to provide

upgrades-as-a-service for a wide class of applications. Chapter 7 shows that, through the

AIR properties, Imago is able to reduce both the planned and the unplanned downtime

due to software upgrades.

The final challenge is determining whether the AIR properties are not only sufficient,

but necessary as well. The lessons learned from the design and implementation of Imago

suggest that the AIR properties might be too strong or too expensive to provide in some

cases. Chapters 8 and 9 analyze the consequences of relaxing the Isolation and Atomicity

properties, respectively, during upgrades of large-scale distributed systems.

Figure 1.2 presents a conceptual overview of AIR upgrades. The key idea is to iso-

late the production system from the upgrade operations in order to avoid breaking hidden

dependencies. This is achieved by installing the new version in a parallel universe, which

uses resources leased, temporarily, from a cloud-computing infrastructure. The persistent

data is transferred to the new version, and the necessary schema and data conversions are

performed opportunistically. Instead of modifying the components of the system-under-

upgrade in place, along with all their dependencies, a few key points are instrumented to

monitor the live workload: the ingress points, where the clients direct their requests (e.g.

the Web proxies in the front-end), and the egress points, where the system stores its per-

sistent data (e.g. the database in the back end). This approach targets distributed-system

CHAPTER 1. INTRODUCTION 12

upgrades that implement major changes and that require long-running data migrations.

The end-to-end upgrade is an atomic operation, executed online even when performing

complex schema and data conversions. AIR upgrades also enable testing system states

that emerge only at runtime, under operational conditions, and that cannot be adequately

examined offline, during development or the other stages of the software life cycle.

1.4 Contributions

This dissertation explores the opportunities for improving the dependability of distributed

systems by focusing on dependability’s weakest link: software upgrades. An important

goal of this research is the development of basic principles and of reusable upgrade mech-

anisms that tolerate the most common upgrade-related faults. I present here several key

findings that I believe are applicable, in practice, to the design and maintenance of various

distributed systems and that should guide future research on software upgrades in this

setting.

Following an incorrect upgrade procedure accounts for less than half of the

upgrade faults recorded. The most frequent procedure violations are omis-

sions, where upgrade administrators skip a required step in the upgrade pro-

cedure and which account for 22% of all procedural errors. In 56% of cases,

however, the administrators introduce upgrade faults despite correctly follow-

ing the mandated procedure. Procedure violations alone cannot explain the

occurrences of failed upgrades, which suggests that software upgrades do not

fail, predominantly, because of avoidable human errors.

Breaking hidden dependencies is the leading cause of upgrade failure. Dis-

tributed systems often include hidden dependencies, e.g. service locations spec-

ified incorrectly, shared-library conflicts, database-schema mismatches between

the middle tier and the back-end. These dependencies remain hidden because

they cannot be detected automatically or they are overlooked owing to their

complexity. 85% of all the upgrade faults recorded break hidden dependencies.

Procedure violations often occur because upgrade administrators are not aware

of certain hidden dependencies.

CHAPTER 1. INTRODUCTION 13

There are four types of faults the commonly occur during software upgrades:

(1) simple configuration errors (e.g. typos); (2) semantic configuration errors

(e.g. misunderstood effects of parameters); (3) broken environmental depen-

dencies (e.g. library or port conflicts); and (4) data-access errors, which render

the persistent data partially unavailable. Faults of types 1 and 4 occur in up to

45% of software upgrades. This classification defines an upgrade-centric fault

model.

Changes in data formats or schemata represent the leading cause of planned

downtime. When an upgrade implements major changes to the data schema,

the old version of the application logic, in the middle tier, can no longer query

the new version of the schema, in the back-end. In consequence, the data store

and the application logic must be upgraded together, atomically. This prevents

upgrade mechanisms that gradually replace the old version, such as rolling up-

grades. Because the schema conversion is a long-running process, the upgrade

requires planned downtime that typically ranges from tens of hours to several

days.

The AIR properties address the leading causes of both planned and un-

planned downtime. The Isolation property prevents failures that result

from breaking hidden dependencies during the upgrade, because the upgrade

operations access the production system in a non-intrusive, read-only manner.

The Atomicity and Runtime-testing properties imply that the system must

not include mixed, interacting versions. The lack of mixed versions enables

long-running data conversions during an online upgrade; a degraded function-

ality is necessary only during the atomic switchover to the new version.

The dependability of software upgrades can be improved by trading resource

overhead. Imago requires additional hardware and storage resources for

building a parallel universe, in order to perform the upgrade. This allows Imago

to eliminate the internal single-points-of-failure for upgrade faults and to avoid

creating states with mixed, interacting versions. This trade-off is based on the

observation that the potential cost of downtime in modern distributed systems

CHAPTER 1. INTRODUCTION 14

offsets the costs of new hardware or of leasing resources from a public cloud-

computing infrastructure.

Performing upgrades in a manner that is agnostic to dependencies and to

mixed-version interactions enables the creation of generic upgrade mecha-

nisms. This approach introduces a separation of concerns between the func-

tional aspects of the upgradee.g. data conversions, which require domain-

specific codeand the mechanisms for implementing an online upgradee.g.

performing an atomic switchover. Most of Imago’s code is reusable for other up-

grade scenarios. This enables an upgrade-as-a-service approach, where most of

the hardware and software resources needed for a distributed-system upgrade

are provided by a third party.

It is possible to benchmark the dependability of software-upgrade mecha-

nisms. Unlike for performance benchmarks, generating representative input

workloads is not sufficient because software upgrades alter the behavior of the

systems being evaluated. A benchmark focusing on dependability should spec-

ify upgrade workflows that commonly cause unavailability and failures during

software upgrades in real-world systems. Understanding the leading causes

of upgrade failures and the leading causes of planned downtime allows con-

ducting fault-injection experiments that produce representative results for the

dependability of the upgrade mechanisms evaluated.

Upgrades in a Service-Oriented Architecture (SOA), provide a relaxed ver-

sion of the Isolation property. SOA is widely used for isolating services in

real-world distributed systems, but it does not eliminate all the possible hidden

dependencies. For instance, service-level objectives managed by independent,

third-party managers cannot always be reconciled, and the lack of coordination

among managers can cause oscillatory instability. Guaranteeing Isolation in

SOA requires a distributed framework for impact assessment, where the impact

of software upgrades and other planned changes is estimated by the domain-

specific managers, while a centralized component seeks the most opportune

time to execute these operations.

CHAPTER 1. INTRODUCTION 15

The lack of upgrade Atomicity can lead to race conditions involving multi-

ple versions of the software. Such mixed-version races can occur, during

rolling upgrades, in systems that communicate across administrative domains

using asynchronous messaging. While this race condition has not been charac-

terized before, two real-world examples of upgrade failure can be traced back to

mixed-version races. In the near future, many distributed systems that rely on

cloud-based resources and span multiple administrative domains are likely to

be affected by mixed-version races. However, the likelihood of occurrence and

the expected impact of mixed-version races can be easily estimated through an

analytical risk model, which allows system administrators to decide whether to

upgrade or not to upgrade.

This dissertation includes both empirical studies of upgrades in existing systems and first-

hand observations from the design and evaluation of a novel system for dependable, online

upgrades. The main contributions are two-fold: (i) I identify the leading causes of upgrade

failurebreaking hidden dependenciesand of planned downtimechanging database

schemasin distributed enterprise systems; and (ii) I describe the design principles of de-

pendable upgrade mechanisms. The AIR properties provide a framework for reasoning

about the impact of online software upgrades: Atomicity implies that the system-under-

upgrade does not enter states with mixed versions that synchronize their states on-the-fly,

which reduces the need for planned downtime, and Isolation prevents breaking hidden

dependencies, which reduces the upgrade failures that lead to unplanned downtime. I

show that relaxing these properties can introduce unexpected runtime behaviors, such as

oscillatory instability or mixed-version races. However, in some cases, technical solutions

to these unexpected behaviors can be developed, in order to avoid the overhead of strong

AIR properties and to make dependable upgrades more practical. Additionally, Runtime-

testing will become important in the near future for testing system states that emerge in

the deployment environment and that may be unpredictable at design-time.

The mechanisms for performing software upgrades and the method for benchmarking

such mechanisms described in this dissertation also represent useful, although secondary,

contributions.

CHAPTER 1. INTRODUCTION 16

1.4.1 Limitations of scope

This dissertation does not focus on disseminating fine-grained updates, such as bug fixes

or security patches. Instead, it targets major system upgrades, which involve behavioral

changes and persistent-data conversions. While the goal of this dissertation is to improve

the dependability of distributed systems that undergo such complex software upgrades, I

do not claim to eliminate all the possible sources of downtime or upgrade failures; in par-

ticular, I do not focus on upgrade failures that result from software defects that are intro-

duced either during the development or the requirement-elicitation phases of the software

life cycle. This dissertation analyzes faults that occur when a complex software system is

modified in its deployment environment. To explore the various trade-offs required for

enforcing the AIR properties in a real deployment, I do not concentrate on performing up-

grades in place, without the need for additional resources, or on implementing upgrades

that are fully transparent to the clients. Moreover, while the AIR properties are generic and

accommodate implementations targeting other kinds of distributed systems, the upgrade

mechanisms and the evaluations described in this dissertation focus on three-tier enterprise

architectures.

It is possible to replace an object with another object, without stopping the

system and without requiring great programming skills from the developer.

P. Narasimhan, Ph.D. Dissertation, 1999, §9.1 Outstanding challenges

Chapter 2

Related Work

Actively used software must be modified continuously to ensure its utility and safety. Fix-

ing bugs, adding new features, removing obsolete featuresall involve upgrading existing

software. Sometimes the goal of the upgrade is to migrate to a new platform (e.g., a cloud-

computing infrastructure), because the previous platform has reached its end-of-life or for

efficiency reasons. In enterprise systems, business reasons sometimes mandate switching

vendors, while responding to customer expectations and conforming with government reg-

ulations can require new functionality.

Some of these software upgrades focus on individual components, such as the appli-

cation code, the middleware framework or the persistent-data formats. In distributed sys-

tems, upgrades typically require coordinating the changes applied to several components.

Because distributed systems typically include hardware redundancy and fault-tolerance

mechanisms, which allow individual components to be temporarily unavailable (while they

are being upgraded), previous research has dedicated considerable attention to perform-

ing online upgrades in single-host systems. However, distributed systems include more

complex dependencies and exhibit different failure modes during and after software up-

grades. In this chapter, I review the research and the common practices that are related to

the contributions of this dissertation.

2.1 Causes of upgrade-induced downtime

While some upgrades fail because the new version includes software defects, Crameri et al.

[2007] present the results of a survey suggesting that broken dependencies and altered system-

behavior as the leading causes of upgrade failures and unplanned downtime. Similarly,

17

CHAPTER 2. RELATED WORK 18

Curino et al. [2008b] present the largest study of database schema evolution in information

systems, and they suggest that many of these schema changes impose planned downtime on

upgrade.

Anderson [2000] describes three mechanisms that are commonly responsible for break-

ing dependencies on dynamically-linked libraries (DLLs) in the Windows NT operating

systema phenomenon colloquially known as “DLL Hell”. More recently, Dig and Johnson

[2006] examine how the evolution of APIs can impact upgrades by breaking dependencies

on third-party Java frameworks and libraries. They conclude that between 81%–100% of

the breaking API changes are code refactorings (reorganizations of the program structure)

and that less than 30% are intended behavioral changes (modified application semantics).

API compatibility is not the only class of dependencies that can be broken during an

upgrade. Upgrades in distributed systems usually require a complex process that involves

hardware and software additions, reconfigurations, and data migrations. Oppenheimer

et al. [2003] study 100+ post-mortem reports of user visible failures from three Internet ser-

vices. They classify failures by location (front-end, back-end and network) and by the root

cause of the failure (operator error, software fault, hardware fault). Most failures reported

occurred during change-management tasks, such as scaling or replacing nodes and de-

ploying or upgrading software. Nagaraja et al. [2004] report the results of a user study

with 21 system administrators, who are asked to perform various change-management

tasks, and observe seven classes of faults: global misconfiguration, local misconfigura-

tion, start of wrong software version, unnecessary restart of software component, incor-

rect restart, unnecessary hardware replacement, wrong choice of hardware component.

Oliveira et al. [2006] present a survey of 51 database administrators, who report eight

classes of faults: deployment, performance, general-structure, DBMS, access-privilege,

space, general-maintenance, and hardware. While the database administrators who re-

sponded to the survey spend only 46% of their time performing change-management tasks,

all the faults reported can occur during an upgrade. Keller et al. [2008] study configuration

errors and classify them according to their relationship with the format of the configura-

tion file (typographical, structural or semantic) and to the cognitive level where they occur

(skill, rule or knowledge).

These models do not constitute a rigorous taxonomy of upgrade faults. Some classifica-

tions are too coarse-grained (e.g., the fault location [Oppenheimer et al., 2003]) and do not

CHAPTER 2. RELATED WORK 19

provide sufficient information about the fault. Other classifications (e.g., the breaking API

changes [Dig and Johnson, 2006] and the typographical/structural/semantic configuration

errors [Keller et al., 2008]) are relevant for only a subset of the upgrade faults (broken de-

pendencies on third-party frameworks and configuration-file modifications, respectively).

In many cases, the fault categories are not disjoint and the criteria for establishing these cat-

egories are not clearly stated. Moreover, the previous studies of database schema evolution

[for example: Curino et al., 2008b] do not identify which schema changes require planned

downtime because they are difficult to integrate in an online upgrade.

2.2 Properties of software upgrades

Fabry [1976] identifies the possibility of online upgades, which are needed in systems with

high-availability requirements, such as the early computer programs for processing airline

reservations. This need is increasingly important for the computer systems that we build

today. Fabry also remarks that, aside from ensuring that upgrades can be executed online,

we must also provide guarantees that the program will operated correctly after the upgrade

is deployed.

Kramer and Magee [1990] argue that software upgrades should be specified as struc-

tural changes, such as component connections and disconnections, and that this declara-

tive, high-level specification should be separate from functional concerns, such as trans-

ferring the state to the new version. This separation of concerns allows the authors to

define general rules for software upgrades, such as the minimal control API that a com-

ponent should provide to enable upgrades: passivate, assert(active/passive),

activate, link, unlink. Moreover, each component should be prepared to handle

state transfers if necessary.

Boyapati et al. [2003] introduce a modularity property for software upgrades, which en-

ables reasoning locally about the correctness of online upgrades, assuming only the in-

terfaces and invariants of the old version. This is similar to the way programmers rea-

son about modular code in object-oriented programming languages. While an upgrading

mechanism might delay the execution of upgrades, to avoid downtime, modularity is guar-

anteed if the upgrades appear to run in the order in which they are deployed, with respect

to other application transactions and to subsequent upgrades. Neamtiu et al. [2006] further

CHAPTER 2. RELATED WORK 20

show that, when updating programs written in procedural languages that are not object-

oriented, such as C, the upgrade mechanism must ensure that old code does not access new

data, a property called representation consistency. Focusing on distributed-system upgrades,

Ajmani et al. [2006] define a correctness requirement for systems operating with mixed ver-

sions: each invocation of a version must reflect the effects of all earlier events processed

by the other versions, in the order in which they occurred. Effectively, this requirement

implies that the states of all versions are synchronized and that some invocations must be

disallowed temporarily, where invariants tying two versions together cannot be established.

A common theme of programming-language research on dynamic software updates is

identifying the points in the program’s execution where the update can safely take place.

For example, activeness safety ensures that active code, which remains on the program

stacke.g., long-running loops or the main() functionor which might invoke other ac-

tive functions, must not be updated [Segal and Frieder, 1993]. Stoyle et al. [2007] show that

dynamic updates can change the program’s structure and remain type-safe by guarantee-

ing con-freeness safety: an update can be applied to a type if none of the type’s instances

are in the continuation of the current update point. However, Gupta [1994] proves that, in

general, finding such safe update points is undecidable.

Database research on schema evolution focuses on the transformations applied to per-

sistent data, rather than on the implications of online upgrades. For example, Fagin [2007]

identifies the schema mappings that are uniquely invertible, allowing the effects of an up-

grade to be reversed. Similarly, Curino et al. [2008a] demonstrate a system that checks

automatically which mappings are information preserving and which would result in a loss

of data.

2.3 Approaches for dependable upgrade

To avoid degrading the system availability during software upgrades, mechanisms for

online-upgrade1 have been introduced, targeting both single-host and distributed sys-

tems. Various techniques aim to improve the reliability of software upgrades, ranging from

dependency-tracking to sandbox-testing.
1In some references, online upgrades are referred to as zero-downtime upgrades or live upgrades.

CHAPTER 2. RELATED WORK 21

2.3.1 Dependability through dependency tracking

To prevent breaking dependencies during an upgrade, modern operating systems maintain

repositories of packaged software components. In addition to the software, a package con-

tains executable configuration scripts and metadata describing the dependency and con-

flict relationships with other packages. For example, in Debian Linux there are approxi-

mately 25,000 packages, 50,000 scripts and 85,000 inter-package dependencies [LaBelle and

Wallingford, 2006; Di Cosmo et al., 2008], which define intricate dependency graphs (see

Figure 1.1 for a sample subset of such a graph). To ensure that the system retains a correct

configuration after the upgrade, the package-management tools traverse the dependency

graph to determine which new packages have to be installed, in order to satisfy all the de-

pendencies, and which existing packages must be removed, in order to avoid any conflicts.

The Windows Update Agent [Microsoft Developer Network, 2001], for instance, deter-

mines the updates that are already installed by querying a local data store and the host’s

configuration registry. The agent then sends this information to the Windows Update

server, which resolves the dependencies and determines which updates can be installed

on the client host [Leyden, 2003]. In the Linux world, RedHat’s YUM [Brown and Pickard,

2003], Debian’s APT [Silva, 2005] and Gentoo’s Portage [Vermeulen et al., 2007] download

the list of available packages from the remote repository perform dependency resolution

on the local host. After determining which packages to install, Portage downloads the

source code and compiles it locally, while YUM and APT download the binary software

components. Appupdater [McNab and Bryan, 2009] extends the scope of this approach

beyond updating core components of operating systems by providing a general purpose

mechanism for automatically updating Windows-based application software.

Some package-management systems (e.g. Windows Update, Portage) try to minimize

the risk of conflicts in the deployment environment by allowing multiple versions a shared

library to operate side-by-side in the deployment environment. To further improve the de-

pendability of software upgrades, Dolstra and Löh [2008] propose Nix, a purely functional

package-management system where software installations do not have side-effects and sys-

tem configurations never change after they have been built. Nix packages are built from

mathematical expressions, which capture the package’s complete dependencies, and they

are installed in a local data store, which can accommodate multiple versions of the same

CHAPTER 2. RELATED WORK 22

package. Nix upgrades are guaranteed to be atomic because they are committed through a

symbolic-link replacement (an atomic operation in Unix). Di Cosmo et al. [2008], however,

point out that installation side-effects cannot be eliminated in practice because the config-

uration scripts modify the system state and execute operations that cannot be rolled back

easily.

Furthermore, resolving dependencies is an NP-complete problem (see Appendix A). Ex-

isting package management tools use heuristic algorithms [Silva, 2005; Brown and Pickard,

2003] to ensure that the search for a correct configuration terminates in a timely fashion,

or they rely on SAT solvers [Tucker et al., 2007; Di Cosmo, 2005] to guarantee that a solu-

tion will be found for all installable packages. Heuristics-based approaches might fail to

find a solution where one exists, while, for certain corner cases, the run time of SAT solvers

is exponential in the size of the repository [Tucker et al., 2007]. These approaches seem

adequate for the current sizes and structures of software repositories: APT fails to find a

solution for 0.61% of installable packages while the approaches based on SAT solvers run

for less than a minute [Mancinelli et al., 2006; Tucker et al., 2007]). However, as the amount

of dependency metadata increases, these techniques for resolving dependencies will soon

reach the limits imposed by NP-completeness. For instance, taking into account the depen-

dencies on configuration settings would increase the amount of metadata by an order of

magnitude. Distributed systems include additional dependencies on APIs, persistent data

objects, communication protocols, Internet routes or performance levels.

Ultimately, package-management tools perform software upgrades dependably only

when they have the complete dependency information about the system they are manag-

ing. However, package repositories are known to include references to nonexistent pack-

ages (see Figure 1.1), libraries that declare to have the same version but differ at binary

level [Hart and D’Amelia, 2002], or packages that cannot be installed due to unresolvable

dependency-and-conflict cycles [Mancinelli et al., 2006]. In practice, dependencies cannot

always be detected automatically. For example, many applications rely on the APIs ex-

ported by third-party libraries. Dig and Johnson [2006] find that over 80% of breaking

changes introduced during the API evolution of Java libraries are due to refactorigs (mod-

ifications of the program structure) and that some refactorings could be detected automat-

ically, through a combination of syntactic and semantic analyses [Dig et al., 2006]. How-

ever, this approach does not handle the API evolution resulting from intended behavioral

CHAPTER 2. RELATED WORK 23

changes, which modify the semantics of the application. In Windows, some libraries have

embedded version information, and other programs store this information in the host’s

configuration registry. Appupdater maintains a local database with the hash values of in-

stalled software and maps hash values to particular versions of all the applications it man-

ages [McNab and Bryan, 2009]. Galapagos [Magoutis et al., 2008] parses configuration files

to discover the relationships among storage objects from different tiers and abstraction lay-

ers of a distributed system. These approaches perform a static analysis of the system do not

guarantee the discovery of all the dependencies. Similarly, runtime monitoring [Dunagan

et al., 2004] or active perturbation [Brown et al., 2001] cannot provide a complete coverage

of all the factors that might influence the behavior of a distributed system. Approaches

for tracking dependencies rely on the correctness of metadata that is partially maintained,

manually, by teams of developers and quality-assurance engineers through a time-intensive

and error-prone process.

Dependency-tracking approaches aim to prevent system failures that result from bro-

ken dependencies. However, dependable software upgrades must also avoid planned

downtime. This can be achieved by performing an upgrade online, without powering off

the system.

2.3.2 Online upgrade in single-host systems

Dynamic software updates (DSU) aim to modify a running program on-the-fly, without

affecting the system’s availability. DSU techniques typically focus on updating systems

spanning a single host, where the entire state of the system is loaded in the host’s mem-

ory. This approach has been studied extensively during the past 35 years [from Fabry, 1976

to Bhattacharya and Neamtiu, 2010] and has been applied successfully in practice to up-

grade special-purpose components (e.g. the modules of a telephone switch [Toy, 1992]),

system libraries [Buban et al., 2004], OS kernel modules [Baumann et al., 2007] and even

the kernel itself [Arnold and Kaashoek, 2009]. Typically, these approaches support changes

to the implementations, but not the signatures of the functions that they update. Perhaps

the most advanced DSU techniques are implemented in the Ginseng system, of Neamtiu

et al. [2006], which uses static analysis to ensure the safety and timeliness of updates (e.g.,

establishing constraints to prevent old code from accessing new data) and supports all the

changes required for updating server programs (three years’ worth of releases for the Very

CHAPTER 2. RELATED WORK 24

Secure FTP daemon, the OpenSSH sshd daemon and the GNU Zebra routing software),

without dropping the client connections.

The PODUS system [Segal and Frieder, 1989a, 1993] introduced generic DSU techniques

for applying updates at the procedure granularitye.g., replacing C functions in a running

program, even when the function prototype has changed in the new versionand identi-

fied two fundamental challenges for DSU: performing state transformations and updating

active code. In object-oriented languages, some updates can be performed at the class level,

without converting the object instances from the heap memory. For example, the Java-like

UpgradeJ language [Bierman et al., 2008] supports three forms of updates: (i) adding new

classes, (ii) changing the implementation of existing classes, and (iii) adding new fields and

extending the signatures of existing methods with additional parameters. Tempero et al.

[2008] show that these mechanisms would enable performing between 10% and 65% of the

changes occurring in real-world Java applications. Most DSU techniques employ transfer

functions [Boyapati et al., 2003; Neamtiu et al., 2006] to convert the program state into the for-

mat required by the new version. UpStare [Makris and Bazzi, 2009] introduces techniques

for stack reconstruction, which allow changing active code by manipulating the program

stack at the time of the update. In general, DSU techniques require additional develop-

ment effort, e.g., source-code annotations for specifying update points or transfer-function

implementations. Some of these challenges can be avoided when updating programs writ-

ten in a functional programming language, such as Erlang [Armstrong et al., 1996].

Because DSU can introduce new sources of software defects (e.g., if the update is applied

at the wrong time), Hayden et al. [2009] propose verifying the upgrade through testing.

This approach instruments the application to trace possible update points, groups them

into equivalence classes and tries to apply the update at a point in each class to determine

whether a conflict would be created. Conflicts are detected if the program-trace changes

when an update is applied. Reflecting on the lessons learned from the PODUS system,

Segal [2002] remarks that it is difficult to reason about the behavior of systems undergoing

dynamic updates. During the update, the system behavior is not guaranteed to conform

to the specification of either the old or the new version of the software, which prevents the

adoption of DSU in systems with strict certification requirements.

Unlike DSU, approaches based on virtualization aim to isolate the new version from the

old one, in order to avoid breaking dependencies. These approaches focus on upgrading

CHAPTER 2. RELATED WORK 25

operating systems, and they provide mechanisms for encapsulating the state of running

applications and for migrating them to a different virtual machine during the upgrade.

For example, Lowell et al. [2004] propose upgrading operating systems using lightweight

virtual machines. They describe the Microvisor virtual machine monitor, which allows a

full, devirtualized access to the physical hardware during normal operation. During a soft-

ware upgrade, the running applications are migrated to a separate virtual machine. To

reduce the overhead, Microvisor virtualizes only the CPU and relies on additional hard-

ware peripherals (e.g. I/O devices) for launching the upgrading virtual machine. The ap-

plications must either be stateless or they must checkpointing mechanism for saving their

state and restoring it in the virtual machine. To facilitate this migration process, Potter and

Nieh [2005] propose AutoPod, which virtualizes the OS’s system calls, allowing applica-

tions to move among location-independent pods. This functionality is used for upgrading the

OS without stopping the running applications. However, AutoPod assumes that the new

version of the OS doesn’t introduce breaking API changes for the system calls, which limits

the upgrades to minor versions of the kernel (e.g., the Linux 2.4 series) that are not allowed

to break application compatibility.

2.3.3 Online upgrades in distributed systems

The earliest work on distributed-system upgrades [Bloom, 1983] relies on the crash recovery

and state transfer mechanisms from the Argus system [Liskov, 1988], which were originally

developed for coping with crash faults and network partitions. Similarly, the Eternal sys-

tem [Moser et al., 1998; Narasimhan, 1999], which provides fault tolerance to legacy CORBA

applications by redirecting the message exchanges to a group-communication protocol, can

leverage this mechanism to coordinate the distributed upgrade [Tewksbury et al., 2001].

Eternal creates intermediate versions, supporting both the old and the new interfaces of the

object being upgraded. An intermediate version acts as a staging area, where the old and

the new versions can coexist and where state can be transferred between them, in the pres-

ence of a live workload. If X corresponds to the old version, Y to the new version and XY

to the intermediate version, the upgrade process consists of four steps: (i) migrate each

replica of X to a replica of XY, one a time; (ii) perform state transfer within each replica of

XY, in the presence of live requests; (iii) migrate each replica of XY to a replica of Y, one

a time; and (iv) orchestrate a system-wide atomic switchover that causes replicas of X and

CHAPTER 2. RELATED WORK 26

replicas of XY to become defunct. Only replicas of Y still exist after the switchover point.

Tewksbury et al. observe, however, that certain communication patterns used in practice,

such as one-way or asynchronous messages, prevent Eternal from enforcing the quiescence

needed for upgrading the CORBA objects that receive these messages.

The Conic system [Kramer and Magee, 1985] upgrades component-based systems

through architectural reconfigurations, i.e. changing components and connectors. When

upgrading a component, Conic enforces quiescence by invoking a control API [Kramer and

Magee, 1990; see also Section 2.2] that allows passivating all of the component’s inbound

nodes. Conic automatically determines the correct sequence of control-API invocations

required when upgrading several components. These principles are reflected in modern

component frameworks such as R-OSGi [Rellermeyer et al., 2007], which upgrade a com-

ponent along with the transitive closure of its inbound dependencies [Rellermeyer et al., 2008].

In the absence of fault-tolerance mechanisms or control APIs, the PODUS system [Se-

gal and Frieder, 1989a, 1993] establishes simple rules for coordinating a distributed-system

upgrade, such as upgrading servers before their clients [Segal and Frieder, 1989b]. This

approach can be extended to systems that communicate across multiple administrative do-

mains using remote procedure calls (RPC), which consist of synchronous request-and-reply

message exchanges. Instead of strictly enforcing the order of local upgrades, the Upstart

system [Ajmani et al., 2006] enables a mixed-version operating mode by providing sim-

ulation objects, which implement the interfaces of past and future versions. This approach

requires disallowing some incompatible invocations during the distributed upgrade. Bhat-

tacharya and Neamtiu [2010] propose avoiding mixed-version states by keeping track of the

safe update points on the hosts of the distributed systemincluding the application servers

and the databaseand executing an atomic switchover when all the hosts are ready to de-

ploy the upgrade simultaneously.

Crameri et al. [2007] suggest that the risk of upgrade failure can be reduced by testing

new or updated packages in a wide variety of user environments and by staging the deploy-

ment of upgrades to increasingly dissimilar environments. This approach, implemented in

a system called Mirage, accelerates the deployment by clustering similar user environments

and uses automated tools to discover the characteristics of each environment: each file is

represented by a fingerprint, which is determined using semantic parsers that capture the

significant information (e.g., configuration settings, versions of shared libraries). Mirage

CHAPTER 2. RELATED WORK 27

requires accurate semantic parsers for each file type in order to produce meaningful clus-

terings. Tucek et al. [2009] propose to expedite the testing of multiple software versions

through a technique called delta execution. This technique merges the redundant executions

of nearly identical versions, splitting the execution when the control flow reaches different

code segments or processes different data.

These testing approaches focus on finding software defects. To prevent upgrade failures

due to misconfigurations or operator errors, other testing approaches focus on executing

multiple versions side-by-side, in a sandboxed environment, and on comparing their out-

puts. Nagaraja et al. [2004] propose a technique for detecting operator errors by performing

upgrades or configuration changes in a validation slice, isolated from the production system.

The upgraded components are tested using the live workload or pre-recorded traces. This

approach requires component specific inbound- and outbound-proxies for recording and re-

playing the requests and replies received by each component-under-upgrade. If changes

span more than one node, multiple components (excluding the database) can be validated

at the same time. Oliveira et al. [2006] extend this approach by performing change oper-

ations on an up-to-date replica of the production database. The tests employed in these

approaches compare the performance (e.g. latency and throughput) of the two versions

and compute the edit distance between their outputs. Because they operate at component

granularity, these approaches require a detailed knowledge of the system’s architecture

and queuing paths. For example, implementing the inbound/outbound proxies requires

understanding the, often proprietary, protocols employed by the front-end servers and by

the database to communicate with the application servers in the middle tier. Splitter [Ding

et al., 2010] is an approach for validating the behavior of enterprise systems after their

migration to a virtualized infrastructure, in order to ensure that the system continues to

function correctly in the new environment. While Splitter does not focus on upgrading the

system software, it introduces ranking heuristics and statistical techniques for comparing the

outputs of identical software versions running in two different infrastructuresone physi-

cal and one virtualized. Splitter’s proxies rely only on the semantics of HTTP requests and

replies (e.g., for mapping cookies, URL parameters and AJAX callback arguments between

the two systems). Similarly, Tan et al. [2005] describe a “server Tee” that duplicates the

client requests in order to compare the outputs of a file server using the stateless NSFv3

protocol against a reference implementation. A common challenge in these approaches is

CHAPTER 2. RELATED WORK 28

to account for the non-deterministic behavior of the systems being compared, such as rout-

ing requests to different middle-tier servers or executing concurrent requests in different

orders. To reduce the rate of false-positive warnings from the testing harness, the exist-

ing approaches prevent transaction concurrency by enforcing a common serialization of

database queries for both systems [Oliveira et al., 2006; Ding et al., 2010] or do not take into

account the the non-comparable responses of concurrent writes to the same data block [Tan

et al., 2005].

Other validation techniques have been proposed for reducing the risk of online up-

grades in spite of unknown software defects in the new version. The Simplex architec-

ture [Sha et al., 1996] for upgrading real-time control systems executes the new version in

parallel with a simple, and known to be correct, control algorithm, which cross-checks its

outputs for validating the upgrade. The two versions need not produce identical results,

but they must satisfy a behavioral model. For upgrading spacecraft software during long

deep-space missions, the Guarded Software Upgrades framework [Tai et al., 2002] assesses

the confidence in the correctness of each upgraded component. The components communicate

exclusively through message-passing and the framework uses distributed checkpointing

and rollback algorithms to prevent, or recover from, state contamination due to messages

exchanged with low-confidence components. More recently, a similar idea was proposed

for generating fault-tolerant compositions of Web Services that undergo online upgrades,

by invoking multiple versions of a service in parallel and by using the confidence in cor-

rectness to reason about future failure rates [Gorbenko et al., 2005].

2.3.4 Industry best-practices for software upgrades

Industry best-practices, such as the Information Technology Infrastructure Library

(ITIL) [Office of Government Commerce, 2007], recommend a phased deployment of soft-

ware upgrades. This is usually realized through rolling upgrades, which upgrade-and-then-

reboot each host in a wave rolling through the distributed system [Brewer, 2001]. A rolling

upgrade avoids downtime and imposes very little capacity loss, but it requires the old and

new versions to interact with each other in a compatible manner. Moreover, new features

introduced by an upgrade sometimes require the system operators to undergo a lengthy

re-training process, which mandates a gradual deployment of the new version at different

sites [Downing, 2008]. In such cases, the enterprise application will include a mix of ver-

CHAPTER 2. RELATED WORK 29

sions that operate concurrently at different installation sites, in order to avoid placing any

site in a read-only mode or introducing state divergence.

These requirements have motivated the introduction of several commercial products

performing rolling upgrades [Microsoft Corporation, 2005; Oracle Corporation, 2008] and

for synchronizing the persistent state of two versions [Choi, 2009]. These commercial prod-

ucts provide no way for determining if the interactions between mixed versions are safe and

leave these concerns to the application developers.

2.4 Dependability benchmarking for software upgrades

Existing evaluations of software upgrade mechanisms typically focus on the range of up-

dates (i.e., the types of changes supported) and on the overhead imposed, rather than on the

upgrade dependability. Field studies [Beattie et al., 2002; Oppenheimer et al., 2003], sur-

veys [Oliveira et al., 2006; Crameri et al., 2007], fault injection [Nagaraja et al., 2004; Oliveira

et al., 2006] and direct experimentation [Crameri et al., 2007; Zheng et al., 2009], have been

proposed for assessing the effectiveness of previous upgrade mechanisms in reducing the

number of upgrade failures.

Beattie et al. [2002] analyze the security patches released between 1999–2001 and

recorded in a vendor-independent database, and they find that software defects were dis-

covered in 18% of these patches. Oppenheimer et al. [2003] study the failures recorded by

three large-scale Internet services, and they report that 4.6–10 component failures and 0.7–6

system-wide failures occur each month, mostly during regular maintenance activities. Na-

garaja et al. [2004] propose injecting operator mistakes observed during their user study of

21 system administrators. In contrast, Oliveira et al. [2006] propose injecting synthetically-

generated mistakes, designed based on the results of a survey of 51 database administra-

tors. The survey also suggests that 84% of schema and data conversions are tested and

deployed in different environments, which increases the risk of upgrade failure. Crameri

et al. [2007] present a similar survey, of 50 system administrators, who report that the av-

erage and maximum failure rates for upgrades, in their infrastructures, are 8.6% and 50%,

respectively. The authors also propose reducing the risk of failures by testing the upgrades

in their deployment environments. Zheng et al. [2009] propose running experiments with

CHAPTER 2. RELATED WORK 30

different configurations, in a virtualized data center, in order to reduce the cost of answer-

ing “what-if” questions about the configuration changes.

2.5 Impact assessment for online upgrades

Autonomic computing [Kephart and Chess, 2003; IBM Corporation, 2006] attempts to re-

duce the impact of operator mistakes by automatic many system-management tasks in dis-

tributed enterprise systems. This approach relies on autonomic managers that incorporate

the domain knowledge to answer “what-if” questions about the impact of various change

operations, such as software upgrades. For example, CHAMPS [Keller et al., 2004] features

a complex dependency-tracking framework and focuses on minimizing the planned down-

time required for completing a complex upgrade. Keller et al. formulate this problem as

the optimization of a generic cost function given a set of constraints, which represent the

upgrade impact (e.g. system unavailability). CHAMPS provides a centralized approach for

both scheduling and impact analysis, and it relies on detailed, explicit representations of

the complex dependencies between the components of the distributed system.

Decentralized mechanisms for impact assessment have also been proposed, in the con-

text of autonomic management of storage systems. Hippodrome [Anderson et al., 2002] re-

fines the initial configuration of a storage system through an iterative process, using a model

of the system’s performance model to estimate the throughput and capacity of a particular con-

figuration. The K2 middleware [Golding and Wong, 2006] goes further in distributing the

autonomic management functionality by eliminating the centralized decision- maker and

allowing individual allocation pools to manage their own objectives. In K2, distributed deci-

sion algorithms determine the goal configuration and the allocation pools start moving in

that direction; if conditions change part-way through reconfiguration, the system changes

its direction without having to invalidate the previous plan.

Thereska et al. [2006] describe a resource advisor for predicting the impact of data place-

ment and encoding choices on performance. The advisor has a hierarchical design, based

on several “what-if” modules (e.g., for predicting the CPU, network and disk delays and

cache hit rates) that can be combined together for end-to-end latency and throughput pre-

dictions. The resource advisor continuously monitors the infrastructure and uses historical

CHAPTER 2. RELATED WORK 31

data to over-provision the system based on the peak loads observed. The authors report

fewer than 15% prediction errors, in most cases.

Quand une regle est fort composée, ce qui luy est conforme

passe pour irrégulier.

G. W. Leibniz, Discours de métaphysique, 1686.

Chapter 3

Why Do Software Upgrades Fail?

WWHILE fault-tolerance mechanisms focus almost entirely on responding to,

avoiding, or tolerating unexpected faults or security violations, system unavail-

ability is usually the result of planned events, such as upgrades. A 2007 survey of 50 system

administrators from multiple countries (82% of whom had more than five years of experi-

ence) concluded that, on average, 8.6% of upgrades fail, with some administrators reporting

failure rates up to 50% [Crameri et al., 2007]. The survey identified broken dependencies and

altered system-behavior as the leading causes of upgrade failure, followed by bugs in the new

version and incompatibility with legacy configurations. This suggests that most upgrade

failures are not due to software defects, but to faults that affect the upgrade procedure.

A system failure prevents the system from providing correct service, while a fault af-

fects a single component and might be masked or tolerated by the distributed system. The

current severity of broken-dependency faults may come as a surprise because dependen-

cies on third-party components have been studied extensively. For example, it has long

been known that dependencies among program modules can cause a ripple effect during

software maintenance, because a few minor-bug fixes require an exponential number of

changes in other parts of the code [Yau and Collofello, 1980]. Recent advances in under-

standing the impact of software defects [Sullivan and Chillarege, 1991; Li et al., 2006] and

their relation to source-code changes [Dig and Johnson, 2006; Nagappan et al., 2010] have

allowed us to create automated tools for software development and to build software sys-

tems that approach 1 billion lines of code [Northrop et al., 2006].

Development-time techniques, as well as tools for package management, focus exclu-

sively on functional dependencies among software components. However, the behavior of

32

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 33

a distributed system is also influenced by non-functional and runtime dependencies on per-

formance levels, timing properties, data objects, communication protocols, Internet routes

or configuration settings, which cannot always be detected or handled automatically (see

Section 1.1.1). In consequence, sometimes dependencies in the deployment environment remain

hidden from the system administrators and can be broken during a software upgrade.

This chapter presents an empirical study showing that current approaches for upgrad-

ing distributed systems, which rely on tracking dependencies for preserving system in-

tegrity before and after the upgrade, are vulnerable to common faults that occur during

software upgrades. These upgrade-specific faults persist in modern distributed systems

because dependency tracking is often incomplete and upgrades are not atomic operations,

which introduces the risk of breaking hidden dependencies.

I propose a novel upgrade-centric fault model, based on data from three independent

sources: a field study of the Apache bug reports, a user study of system administrators en-

gaged in change-management tasks, and a survey of database administrators (DBA). This

fault model focuses on the impact of procedural errors rather than software defects. There

are four distinct types of faults: (1) simple configuration errors (e.g., typos); (2) semantic

configuration errors (e.g., misunderstood effects of parameters); (3) broken environmen-

tal dependencies (e.g., library or port conflicts); and (4) data-access errors, which render

the persistent data partially unavailable. I also estimate that, on average, Type 1 faults oc-

cur in 14.6% of upgrades, and Type 4 faults occur in 18.7% of upgrades. Understanding

deployment-time dependencies in distributed systems and the impact of operator errors

during software upgrades is the first step toward an approach for masking the common

upgrade faults and improving the system dependability.

Challenge and Contributions

While Crameri et al. [2007] suggest that most upgrades fail by breaking dependencies, the

failure mechanisms and their effects are not well understood. Our current knowledge of

upgrade faults is largely anecdotal, stemming from known examples of failed upgrades (see

Section 1.1), which do not provide sufficient data for replicating the failure. Real-world data

on upgrade-faults is scarce and hard to obtain due to the sensitivity of this subject.

To improve the dependability of software upgrades, we must understand what upgrade

failures have in common and how to avoid these hazards. Addressing this challenge will

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 34

require answering several open questions: How many distinct types of upgrade faults are

there? How often do upgrade faults occur in practice? What type of fault is most likely

to cause upgrade failures? How effective are the existing mechanisms in detecting and

tolerating upgrade faults? The goal of this chapter is to establish an upgrade-centric fault

model that can serve as the basis for dependable upgrade mechanisms (Chapter 6) and for

benchmarking the dependability of software upgrades (Chapter 7).

Previous attempts at classifying upgrade faults [for example: Oppenheimer et al., 2003;

Nagaraja et al., 2004; Oliveira et al., 2006; Keller et al., 2008] did not produce rigorous fault

models because the fault categories are not disjoint, the criteria for establishing these cat-

egories remain unclear, and the classifications are relevant only for subsets of the upgrade

faults. I analyze 55 upgrade faults from the best available sources, and, through statistical

cluster-analysis, I establish four categories of upgrade faults.

Assumptions. I combine data from three independent studies on operator errors, col-

lected using different experimental methods. While the operators targeted by these studies

focus on different problems and handle different workloads, I start from the premise that

they use similar mental models during change-management tasks, which yield compara-

ble faults. This hypothesis is supported by the observation that several faults have been

reported in more than one study. Furthermore, as each of the three studies is likely to em-

phasize certain kinds of faults over others, I provide a better coverage of upgrade faults

than previous studies.

Non-goals. The upgrade-centric fault model focuses on procedural errors rather than

software defects. I exclude software defects from the classification because they have been

rigorously classified before [Sullivan and Chillarege, 1991; Lu et al., 2005] and because most

upgrade failures are not due to software defects.

This chapter makes four contributions:

• I identify the presence of hidden dependencies in distributed systems and I show that

breaking such hidden dependencies currently represents leading cause of upgrade

failures.

• I establish a rigorous classification of upgrade faults, with four distinct categories. This

classification represents an upgrade-centric fault model.

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 35

• I estimate the range of the fault frequencies for two of the four types of upgrade faults,

with high statistical confidence.

• I show that two of the four types of upgrade faults are not adequately addressed by

existing techniques.

Section 3.1 describes the criteria used for classifying upgrade faults and the three data

sources. Section 3.2 presents the upgrade-centric fault model. Section 3.3 discusses the

applicability of existing techniques for tolerating the upgrade-specific faults.

3.1 Classification method

I classify upgrade faults recorded in three independent sources. I conduct a field study

of bug reports filed in 2007 for the Apache web server [Dumitraș et al., 2008]. I combine

these reports with data collected by other researchers: a user study of system-administration

tasks in an e-commerce system [Nagaraja et al., 2004] and a survey of database administra-

tors [Oliveira et al., 2006]. Because each of the three methods is likely to emphasize different

kinds of faults, combining these dissimilar data sets allows me to provide a better cover-

age of upgrade faults than previous studies. I classify these upgrade faults using statistical

cluster analysis, which is widely used in the natural sciences for establishing taxonomies of

living organisms.

I select the data points and classification features to include in the fault model according

to the following three criteria:

C1 Hardware and software defects are orthogonal to the upgrading concerns. While some

upgrades fail because of software defects [Crameri et al., 2007], these defects occur

for reasons that are not related to the upgrade and they might be exposed in other

situations as well. The programmers who introduce the software defects are not

usually involved in upgrade procedures, and they have different mindsets from

the system administrators who execute the upgrades. Similarly, hardware defects

occur for reasons unrelated to the upgrade and, therefore, I exclude them from the

fault model.

C2 I classify upgrade faults, not their impacts. The fault impact depends not only on the

upgrade fault, but also on the system architecture. For instance, if the system em-

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 36

ploys replicated servers, a fault that disables one server may be masked owing to

this redundancy. I do not include the fault impact among the classification features

in order to avoid establishing a connection among distinct faults, which occur in

different ways, but which have similar outcomes.

C3 I classify upgrade faults, not upgrade tasks. Similarly, an upgrade fault can occur dur-

ing different upgrade tasks. To avoid establishing a connection among multiple

faults for the sole reason that they were recorded during the same task, I exclude

the task from among the classification features.

3.1.1 Sources of fault data

Field study. I analyze bug reports for the Apache 2.2 web server, filed between 1 January

2007 and 21 December 2007 [Dumitraș et al., 2008]. I focus on closed reports that have been

marked INVALID or WONTFIX, which usually indicate configuration or procedural errors.

These errors have serious impacts, which prompted the opening of a bug report, but they

have been excluded from the previous studies of the Apache bug database [for example:

Li et al., 2006; Kim et al., 2007], which focus on classifying software defects. I determine a

preliminary classification of these faults, which yields seven categories: build, paths and

permissions, environmental conflicts, third-party error, parameter tuning, syntax error, se-

mantic error. I try to determine which faults occur during upgrade-related tasks by search-

ing for keywords such as “upgrade,” ”update” or “install.”

User study. Nagaraja et al. [2004] conduct a user study with 21 system adminis-

trators, with varying degrees of experience, who are asked to perform several system-

administration tasks. The authors of the study observe 32 instances of 16 unique faults

and 10 misdiagnoses; 25 instances of 13 unique faults occur during upgrade-related tasks.

The study identifies seven classes of faults; the most frequent faults are “global miscon-

figurations,” which compromise the communication between different components of the

system.

Survey. Oliveira et al. [2006] conduct a survey of 51 database administrators. The DBAs

report that their regular-maintenance tasks are related to change management (e.g., tun-

ing the performance, changing the database structure, modifying the data, coding and up-

grading the software), to runtime monitoring (e.g., space monitoring/management, system

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 37

Correct procedure

× Omitted action

× Incorrect action

× Spurious action

× Order inversion

1 2 3

1 3

1 ! 3

1 2 3a

1 3 2

Figure 3.1. Four ways of violating an upgrade procedure. From top to bottom, the procedure violations are
ordered by how frequently they are recorded in the upgrade-fault data.

monitoring, integrity checks, performance monitoring), and to recovery preparations (e.g.,

making/testing backups, conducting recovery drills). The survey identifies nine categories

of problems faced by DBAs and provides details for 23 distinct problems.

3.1.2 Classification features

I conduct a post-mortem analysis of each fault from the three studies in order to determine

its root cause [Oppenheimer et al., 2003]configuration error, procedural error, software de-

fect, hardware defectand whether the fault has broken a hidden dependency, with reper-

cussions for several components of the system-under-upgrade. Errors introduced while

editing configuration files can can be further subdivided in three categories [Keller et al.,

2008]: typographical errors (typos), structural errors (e.g. misplacing configuration directives),

and semantic errors (e.g. ignoring constraints among configuration parameters). Addition-

ally, a small number of configuration errors do not occur while editing configuration files

(e.g., setting incorrect access privileges). Operators can make procedural errors by perform-

ing an incorrect action or by violating the sequence of actions in the procedure through an

omission, an order inversion, or the addition of a spurious action [Dumitraș and Narasimhan,

2009a]. These procedure violations are illustrated in Figure 3.1.

Because the upgrade faults correspond to human errors, I also take into consideration

the cognitive level involved in the error, While I do not classify the faults based on the tasks

where they occur (according to Criterion C3), the corresponding cognitive levels allow me

to distinguish between faults that occur during simple and complex procedures. There are

three cognitive levels at which humans solve problems and make mistakes [Reason, 1990]:

the skill-based level, used for simple, repetitive tasks, the rule-based level, where problems

are solved by pattern-matching, and the knowledge-based level, where tasks are approached

by reasoning from first principles. For example, I consider that all path-related faults occur

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 38

on the rule-based cognitive level and that all the faults related to database schemata occur

on the knowledge-based level. I consider that faults related to file-system and database

access-privileges are configuration errors, even if they don’t involve editing configuration

files, and they occur on the rule-based cognitive level.

3.1.3 Statistical cluster analysis

I compare the upgrade faults using the Gower distance [Gower, 1971], based on the categori-

cal values of five classification features: (i) the root cause of each fault; (ii) the hidden depen-

dency that the fault breaks (where applicable); (iii) the fault locationfront-end, middle-tier,

or back-end; (iv) the original classification, from the three studies, which encodes the do-

main knowledge relevant to the fault; and (v) the cognitive level involved in the reported

operator error (see also Table 3.1). The high-level fault descriptions from the three studies

are sufficient for determining the values of the five classification variables. I perform ag-

glomerative, hierarchical clustering with average linkage [Kaufman and Rousseeuw, 1990].

I include in the classification all the faults reported in the three studies, except for soft-

ware defects, faults that do not occur during upgrades and client-side faults. I exclude

hardware and software defects1 from the taxonomy, according to criterion C1.

It is interesting to note that some faults are reported in more than one source. For ex-

ample, a configuration error (apache_config_staticpath) where Apache is instructed

to serve static HTML files from an existing, but incorrect, location is reported in both the

user and field studies. A configuration error (wrong_privileges_insufficient) where

the application is granted insufficient access privileges to database tables is reported in

both the user study and the survey. A procedural error (wrong_apache) where the wrong

version of the Apache web server is started in the front-end is reported during three dif-

ferent tasks, executed by different operators, in the user study. Another procedural er-

ror (db_schema_mismatch), where the application queries an incorrect database schema,

is reported in conjunction with two different tasks in the survey. A configuration error

(apache_largefile) which prevents Apache from sending files larger than 64K, is the

source of three bug reports in the field study.
1The fault descriptions provided in the three studies allow me to distinguish the operator errors from the

manifestations of software defects.

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 39

Table 3.1. Classification features for upgrade faults

Variable Categories Description

Location
[Oppenheimer et al., 2003]

Front-end Fault in the front-end of the infrastructure, which
handles the client connections.

Middle tier Fault in the middle tier of the infrastructure,
which processes client requests.

Back-end Fault in the back-end of the infrastructure, where
persistent data is stored (typically, in a database).

Root cause
[Oppenheimer et al., 2003;
Keller et al., 2008]

Software
Software defect.

Hardware Failure of a hardware component.
Configuration Operator error while configuring the system. Er-

rors in configuration files can be categorized as
typographical, structural or semantic.

Procedure Procedural error. Can be a incorrect action, an
omission, an order inversion or a spurious action.

Hidden dependency
see Table 3.2 Hidden-dependency broken (where applicable).

Original classification: Global misconfiguration Configuration inconsistencies compromising the
communication between system components.

from user study
[Nagaraja et al., 2004]

Local misconfiguration Configuration error affecting a single node.
Start of wrong version Configuring one version and starting a different

version of a software component.
Unnecessary restart Unnecessarily restarting a software component.
Incorrect restart Starting a software component incorrectly (e.g.,

without the necessary access privileges).
Unnecessary replacement Misdiagnosing the problem as a hardware fault.
Wrong hardware Installing the database on a slow disk.

from survey
[Oliveira et al., 2006]

Deployment Changes to the online system (previously tested
offline) cause the database to misbehave.

Performance The DBMS delivers poor performance.
General structure Incorrect database design or unsuitable schema.
DBMS Software defects in the DBMS.
Access privileges Insufficient or excessive access privileges granted

to users or applications.
Space Disk space or tablespace exhaustion.
General maintenance Other problems (e.g. incompatible upgrades, in-

correct restarts).
Hardware Hardware failure and potential data loss.

from field study
[Dumitraș et al., 2008]

Build Missing shared libraries prevent compilation.
Paths and permissions Incorrect paths or insufficient access permissions.
Environmental conflicts Wrong library versions, byte orders, etc.
Third-party error Software defects or misconfigurations in third-

party components.
Parameter tuning Incorrect setting for a parameter.
Other error Other errors in the application’s configuration

file (e.g., missing or incorrect commands, wrong
order of commands, typos, syntax errors).

Cognitive level
[Reason, 1990]

Skill-based Slips and lapses during common, repetitive
tasks.

Rule-based Mistakes when reasoning and solving problems
through pattern matching.

Knowledge-based Mistakes when reasoning from first principles.

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 40

In the cluster analysis the distance between faults reported multiple times is 0. To avoid

placing identical faults in different clusters, I merge their original classifications, coming

from different studies. This pre-processing step merges the “access-privilege problems”

from the survey with the “global misconfigurations” from the user study, and the “path and

permissions” classification from the field study with the “local misconfigurations” from the

user study.

I consider that faults occurring in the same way (e.g., by configuring the wrong port

for a server), but which are located on different tiers, do not represent instances of the

same fault, because they are likely to be introduced by different kinds of operators (e.g.,

system administrators, database administrators, application maintainers) who use different

mental models for the tasks they perform. The annotated faults used in the classification

are listed in Appendix B, and they can also be downloaded from http://www.ece.cmu.

edu/˜tdumitra/upgrade_faults/.

3.2 Upgrade-centric fault model

The most frequent procedure violations (see Figure 3.1) are omissions, which account for

22% of all procedural errors, followed by incorrect actions, which account for 15% of all

procedural errors. In 56% of these cases, however, the operators introduce upgrade faults

despite correctly following the mandated procedure.2 This suggests that procedure viola-

tions alone cannot explain the occurrence of upgrade faults.

Distributed systems often include hidden dependenciesdependencies that cannot be de-

tected automatically (e.g. because they only manifest transiently, at runtime) or that are

overlooked because of their complexity (e.g. dependencies on configuration settings). 85%

of all the configuration and procedural errors in the data break hidden dependencies. Ta-

ble 3.2 lists the observed hidden dependencies. For example, the location of a service (e.g.,

the path to a local file or the network address of a server) is often specified incorrectly

during an upgrade. Conflicts between dynamically-linked libraries usually occur in spite

of following the correct upgrading procedure. In some cases, when the upgrade effects
2The remaining procedural errors are caused by avoidable human mistakes, e.g. forgetting to modify a

configuration file altogether.

http://www.ece.cmu.edu/~tdumitra/upgrade_faults/
http://www.ece.cmu.edu/~tdumitra/upgrade_faults/

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 41

changes to the database schema, the schema queried by middle-tier servers does not match

the schema materialized in the back-end database.

Incorrect or omitted actions sometimes occur because the operators ignore, or are not

aware of, certain dependencies among the system components Conversely, some proce-

dure violations introduce hidden dependencies, e.g. when the value of a parameter must

be specified twice during an upgrade procedure (and one of these actions is omitted or

performed incorrectly) or when an order inversion causes the replication degree of a tier

(e.g. the database in the back-end) to drop to 0, rendering the service unavailable.

This illustrates the fact that even well-planned upgrades can fail because the complete

set of dependencies is not always known in advance. I emphasize that the list of hidden

dependencies from Table 3.2, obtained through a post-mortem analysis of upgrade faults,

is not exhaustive and that other hidden dependencies might exist in distributed systems,

posing a significant risk of failure for distributed-system upgrades.

3.2.1 The four types of upgrade faults

Cluster analysis (Figure 3.2) suggests that there are four natural types of faults:

• Type 1 corresponds to simple configuration errors (typos or structural) and to proce-

dural errors that occur on the skill-based cognitive level. These faults break depen-

dencies on network addresses, file paths, or the replication degree.

• Type 2 corresponds to semantic configuration errors, which occur on the knowledge-

based cognitive level and which indicate a misunderstanding of the configuration

directives used. These faults break dependencies on the request scheduling, cached

data, or parameter constraints.

• Type 3 corresponds to broken environmental dependencies, which are procedural

errors that occur on the rule-based cognitive level. These faults break dependencies

on shared libraries, listening ports, communication protocols, or access privileges.

• Type 4 corresponds to data-access errors, which are complex procedural or config-

uration errors that occur mostly on the rule- and knowledge-based cognitive levels.

These faults prevent the access to the system’s persistent data, breaking dependen-

cies on database schemata, access privileges, the replication degree, or the storage

availability.

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 42

Table 3.2. Examples of hidden dependencies that affect distributed-system upgrades (sorted by their frequency
of occurrence).

Hidden dependency Procedure violation Impact

Service location:
• File path
• Network address Omission

Components unavailable,
latent errors

Dynamic linking:
• Library conflicts
• Defective 3rd party components

Components unavailable

Database schema:
• Application/database mismatch Omission Data unavailable
• Missing indexes Omission Performance degradation

Access privileges to file system, database
objects, or URLs:

• Excessive Wrong action Vulnerability
• Insufficient Omission
• Unavailable (from directory ser-

vice)
Omission

Components/data
unavailable

Constraints among configuration
parameters

Outage, degraded perfor-
mance, vulnerability

Replication degree (e.g., number of front-
end servers online)

Omission, inversion,
spurious action

Outage, degraded
performance

Amount of storage space available Omission Transactions aborted

Client access to system-under-upgrade Wrong action Incorrect functionality

Cached data (e.g., SSL certificates, DNS
lookups, kernel buffer-cache)

Incorrect functionality

Listening ports Omission Components unavailable

Communication-protocol mismatch (e.g.,
middle-tier not HTTP-compliant)

Components unavailable

Entropy for random-number generation Deadlock

Request scheduling Access denied unexpectedly

Disk speed Wrong action Performance degradation

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 43

apache_41751 (f)
apache_largefile (f)
apache_largefile (f)
apache_largefile (f)

apache_41979 (f)
apache_servername (f)

apache_satisfy (f)
apache_41920 (f)

apache_config_samename (u)
apache_43395 (f)

apache_config_staticpath (u)
apache_config_staticpath (f)

apache_config_nochange (u)
apache_config_noapp (u)

apache_config_nomount (u)
apache_42627 (f)

apache_config_typo (u)
apache_config_typo (f)

wrong_shutdown_frontend (u)
apache_config_wrongpath (u)

wrong_apache (u)
wrong_apache (u)

incorrect_tomcat_noroot (u)
apache_43518 (f)
apache_42975 (f)
apache_43945 (f)
apache_43986 (f)
apache_41617 (f)
apache_43328 (f)

apache_libconflict (f)
apache_libconflict (f)

apache_41358 (f)
apache_42332 (f)
apache_43523 (f)

db_deployment_script (s)
deploy_index_nochange (s)

db_schema_mismatch (s)
db_schema_mismatch (s)

dbms_misconfiguration (s)
db_performance_tuning (s)

wrong_index (s)
db_schema_design (s)
db_schema_design (s)

wrong_shutdown_db (s)
no_replication (s)

no_space_backup (s)
no_space (s)

tablespace_full (s)
mysql_nopass_root (u)

wrong_privileges_excessive (s)
wrong_privileges_insufficient (u)
wrong_privileges_insufficient (s)

wrong_db_disk (u)
deploy_accidental_changes (s)

deploy_wrong_changes (s)

0.0 0.2 0.4 0.6 0.8 1.0

Distance

1

2

3

4

Figure 3.2. Statistical cluster analysis of upgrade faults. In this clustering dendrogram the leaves correspond
to the 55 faults reported in the field study (f), the user study (u) and the survey (s). Each vertical line links two
clusters into a larger cluster, and their position on the X-axis indicates the mean inter-fault distance. A link with
a significantly larger distance than the links below suggests the presence of a natural cluster (highlighted by
a blue rectangle). The cophenetic correlation coefficient, which shows the correlation between the inter-fault
distance and the distance in the dendrogram, is 0.85.

Faults that occur while editing configuration files are of type 1 or 2. Types 1–3 are located

in the front-end and in the middle tier, and, except for a few faults due to omitted actions,

they usually do not involve violating the mandated sequence of actions. Type 4 faults occur

in the back-end, and they typically consist of omissions or incorrect actions.

I use principal component analysis [Kaufman and Rousseeuw, 1990] to determine if the

four clusters overlap. This statistical technique reduces the dimensionality of the upgrade-

fault data from the five classification features (described in Section 3.1.2) to two principal

components, which are plotted in Figure 3.3a. Principal-component analysis suggests that

the four types of faults correspond to disjoint and compact clusters. The values of the first

principal component, which corresponds to the x-axis in Figure 3.3a, indicate if the faults

are procedural errors or if they that occur while editing configuration files. The second

principal component (the y-axis) corresponds, approximately, to the hidden dependencies

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 44

User study (u) Survey (s) Field study (f)

Probability density

Frequency estimate

Confidence interval []
x

Fault clusters

3

4 x[]

y y Confidence interval []

uu

s

s

ss
s

ss

ss
s

ss
s

s s

s

sf

Type 4
pe

nd
en

cy
Database schemas

Storage-space availability

Access privileges

R t h d li

Fa
ul

t T
yp

e

2

3

u u

u
uu ss s

f
ff
f

f

f
ff

f
f f

f f

f f

ff

Type 1

Type 2 Type 3

ro
ke

n
hi

dd
en

-d
ep Request scheduling

Cached data
Parameter constraints

Shared libraries
Listening ports

Communication protocols

Fault Frequency

1

0% 10% 20% 30% 40% 50% 60%

x[]

Configuration faults

u

u
uu

u

u
u

uu
fff f

f

f fType 1

Procedural faults

B
r Communication protocols

Network addresses
File paths

Replication degrees

(a) (b)

Figure 3.3. Upgrade-centric fault model. Principal-component analysis (a) creates a two-dimensional shadow
of the five classification variables. The survey and the user study also provide information about the distribution
of fault-occurrence rates (b).

broken by the upgrade faults.

3.2.2 Frequency of upgrade faults

I also estimate how frequently these fault types occur during an upgrade (see Figure 3.3b),

by considering the percentage of operators who induced the fault (during the user study) or

the percentage of database administrators who consider the specific fault among the three

most frequent problems that they have to address in their respective organizations (in the

survey). I cannot derive frequency information from the field-study data. The individual

estimations are imprecise, because the rate of upgrades is likely to vary among organiza-

tions and administrators, and because of the small sample sizes (5–51 subjects) used in these

studies. I improve the precision of our estimations by combining the individual estimations

for each fault type.3

I estimate that Type 1 faults occur in 14.6% of upgrades (with a confidence inter-

val of [0%, 38.0%] significant at the p = 0.05 level). Most Type 1 faults (recorded
3The precision of a measurement indicates if the results are repeatable, with small variations, and the accuracy

indicates if the measurement is free of bias. While in general it is not possible to improve the accuracy of the

estimation without knowing the systematic bias introduced in an experiment, minimizing the sum of squared

errors from dissimilar measurements improves the precision of the estimation [Chatfield, 1983].

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 45

in the user study) occur in fewer than 21% of upgrades, with one exception: fault

apache_config_staticpath, which has an occurrence frequency of 60%. However,

this fault was recorded in an experiment using a sample of only 5 subjects, and

such a small sample leads to an imprecise estimation, reflected in the fact that the

apache_config_staticpath fault does not lie within the confidence interval computed

for Type 1 faults.

Similarly, I estimate that Type 4 faults occur in 18.7% of upgrades (with a confidence

interval of [0%, 45.1%] significant at the p = 0.05 level). Because faults of types 2 and 4

are predominantly reported in the field study, we lack sufficient information to compute a

statistically-significant fault frequency for these clusters.

It is interesting to compare these numbers with the failure rates previously reported in

the literature. Unlike the previous studies, I focus on characterizing upgrade faults, which

correspond to the common root causes of upgrade problems and which might not lead to

system failure because they are masked or tolerated. Crameri et al. [2007] report that, on

average, 8.6% of upgrades fail, with a maximum failure rate of 50%. This is consistent with

upgrade-fault rates of up to 45% estimated in this section.

3.2.3 Impact of upgrade faults

An upgrade has failed if its outcome is unacceptable, e.g. it rendered the system unavailable

or it caused data corruption. In these cases, the upgrade must be rolled back or further

changes must be implemented to bring the system into a correct operating mode. How-

ever, it is difficult to determine with certainty when an upgrade has failed from the fault

descriptions provided in the three studies. For the field study, in particular, the fault im-

pacts cannot always be inferred from the terse bug reports. Moreover, because upgrades

are sometimes executed during maintenance windows, when the system is offline or when

it operates in a mode with degraded functionality (e.g., some services are not available or

the system’s throughput is reduced), we must distinguish between such expected degra-

dations and upgrade failures. I therefore make a conservative estimation of the upgrade-

failure rates by considering only the fault impacts that affect the system’s clients and that

cannot constitute acceptable outcomes for an upgrade. I include software defects in this

comparison, but I consider only bugs that reportedly affect upgrade-related tasks. A fault

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 46

U
pg

ra
de

 F
au

lts

0%

20%

40%

60%

80%

Soft
ware

 de
fec

t

Typ
e 1

Typ
e 2

Typ
e 3

Typ
e 4

User study

Soft
ware

 de
fec

t

Typ
e 1

Typ
e 2

Typ
e 3

Typ
e 4

Survey

Soft
ware

 de
fec

t

Typ
e 1

Typ
e 2

Typ
e 3

Typ
e 4

Field study

Soft
ware

 de
fec

t

Typ
e 1

Typ
e 2

Typ
e 3

Typ
e 4

Combined

Upgrade failure
Degraded functionality
Transparent to clients

Figure 3.4. Impact of upgrade faults.

may have more than one impact; for example wrong_apache causes an outage if it affects

all the front-end servers and a throughput degradation if it affects only a few.

I consider that the upgrade has failed when faults cause unplanned downtime or incor-

rect functionality, or when they introduce security vulnerabilities or latent errors. These

faults cannot be masked by enhancing the system’s architecture, e.g. by increasing the

component redundancy. Fault impacts such as increased end-to-end latency or reduced

throughput constitute degraded functionality, which could be acceptable during an up-

grade. Other faults affect only server-side functions (e.g. logging), but have no client-visible

impact; we consider that these faults do not induce upgrade failures. The actual number

of upgrade failures is therefore higher than the number of certain failures and lower than

the number of faults that are not transparent to the clients.

In the three studies, latent errors are introduced only by Type 1 faults. Types 2 (in the

field study) and 4 (in the survey) lead to incorrect functionality or security vulnerabilities.

All four fault types, as well as software defects, may cause outages, throughput degrada-

tion or increased latencies. Type 3 faults can also produce compilation errors, due to bro-

ken environmental dependencies such as missing libraries (we consider that this impact is

transparent to the clients because it occurs during the preparation phase of the upgrade).

The software defects and upgrade faults reported in the three studies do not cause loss of

data. The most common impact of upgrade faults is throughput degradation.

Figure 3.4 compares the outcomes of upgrades affected by software defects and upgrade

faults. Type 1 and 2 faults and software defects have similar impacts, each causing 20% of

the recorded upgrade failures. The leading cause of upgrade failures seem to be Type 4

faults, which are responsible for 40% of failures.4

4This cannot be verified in the field study, where the succinctness of the bug reports leads to fewer indis-

putable failures.

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 47

3.2.4 Threats to validity

Each of the three studies has certain characteristics that might skew the results of the cluster

analysis. For example, because the user study is concerned with the behavior of the oper-

ators, it does not report any software defects or hardware failures. Configuration errors

submitted as bugs tend to be due to significant misunderstandings of the program seman-

tics, and, as a result, our field study contains an unusually-high number of faults occurring

on the knowledge cognitive level. Moreover, the results of bug searches are not repeatable

because the status of bugs changes over time; in particular, more open bugs are likely to be

marked as INVALID or WONTFIX in the future. Finally, Crameri et al. [2007], who identify

broken dependencies as the leading cause of upgrade failures, caution that their survey is

not statistically rigorous.

3.3 Tolerating upgrade faults

Industrial best-practice recommendations [for example: Office of Government Commerce,

2007] place a significant focus on the upgrade procedure and the ordering of mandated

actions. However, the empirical data presented here shows that procedure violations ac-

count for less than half of the upgrade faults recorded. This suggests that most upgrade

faults are due to unavoidable human errors that break hidden dependencies in the system-

under-upgrade.

Several automated dependency-mining techniques have been proposed [for example

combining static and semantic analysis: Dig et al., 2006; see also Section 1.1.1], but these

approaches cannot provide a complete coverage of dependencies that only manifest dy-

namically, at runtime. The upgrade-centric fault model introduced in this chapter empha-

sizes the fact that different techniques are required for tolerating each of the four types of

faults. For example, modern software components check the syntax of their configuration

files, and they are able to detect many Type 1 faults at startup (e.g., syntax checkers catch

38%–83% of typos [Keller et al., 2008]).

Type 2 faults are harder to detect automatically. Keller et al. [2008] argue that tracking

the dependencies among the values of configuration parameters can improve the robust-

ness against such semantic faults, while Zheng et al. [2007] show how to generate config-

urations that tune a specific metric (e.g. server-side throughput) by solving a constrained-

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 48

optimization problem. To prevent the faults that fall under Type 3, modern operating sys-

tems include package management tools that use dependency-tracking to upgrade a soft-

ware component along with all of its dependencies [Tucker et al., 2007; Di Cosmo et al.,

2008]. Best practices in distributed-system administration recommend extending this ap-

proach to maintain all the dependency information in the system [Office of Government

Commerce, 2001] in a centralized Configuration Management Database (CMDB). However,

this would require existing package-management frameworks to handle additional infor-

mation (e.g. configuration dependencies), which would increase the size of their databases

by at least one order of magnitude. The size of a complete CMDB would likely expose the

fundamental limitations of dependency tracking (see Section1.1.1).

We currently lack automated techniques for handling Type 4 faults. Oliveira et al. [2006]

propose validating the actions of database administrators using real workloads, which pre-

vents some Type 4 faults, but they also remark that this is difficult to implement when the

administrator’s goal is to change the database schema or the system’s observable behavior.

For these reasons, practitioners often prefer to deploy the new version gradually, in

successive stages [Office of Government Commerce, 2007; Downing, 2008]. This is com-

monly implemented through a rolling upgrade [Brewer, 2001; see also Section 2.3.4] ,

which upgrades and then reboots each node, in a wave rolling through the distributed

system. Rolling upgrades require old and new versions of the system to interact with the

data store and with each other in a compatible manner. However, current commercial prod-

ucts for rolling upgrades [for example: Microsoft Corporation, 2005; Oracle Corporation,

2008] provide no way of determining if the interactions between mixed versions are safe

and introduce the risk of breaking hidden dependencies.

Existing techniques aim to detect or prevent upgrade faults (e.g., through dependency

tracking), rather than masking them from the clients. While most Type 1 faults can be de-

tected in this manner, and there is anecdotal evidence that the severity of Type 3 faults is

declining due recent improvements in package management tools, we currently lack effi-

cient mechanisms for tolerating upgrade faults of Types 2 and 4. Of all the upgrade faults

analyzed in this chapter, 85% break dependencies that remain hidden from the operators

performing the upgrade (see Table 3.2), and many upgrade faults occur despite correctly

following the upgrading procedure. This suggests that a novel approach is needed for im-

proving the dependability of enterprise-system upgrades.

CHAPTER 3. WHY DO SOFTWARE UPGRADES FAIL? 49

3.4 Summary of findings

I establish an upgrade-centric fault model, by analyzing data from three independent

sources [Dumitraș and Narasimhan, 2009a]: (i) a user study of system administration tasks

in an e-commerce system, (ii) a survey of database administrators and (iii) a field study of

bug reports for the Apache web server. As each of the three studies is likely to emphasize

certain kinds of faults over others, combining these dissimilar data sets allows me to pro-

vide a better coverage of upgrade faults than previous studies. My fault model emphasizes

unavoidable human errors in the upgrade procedure that break hidden dependencies

e.g., service locations specified incorrectly, shared-library conflicts, database-schema mis-

matches between the middle tier and the back-end, conflictsin the system-under-upgrade.

There are four types of faults the commonly occur during software upgrades: (1) simple

configuration errors (e.g., typos); (2) semantic configuration errors (e.g., misunderstood ef-

fects of parameters); (3) broken environmental dependencies (e.g., library or port conflicts);

and (4) data-access errors, which render the persistent data partially unavailable. Faults of

types 1 and 4 occur in up to 45% of upgrades.

Existing upgrade mechanisms rely on tracking the dependencies among system compo-

nents, but they are reaching their limit owing to the increasing complexity of configuration

dependencies and to the presence of dynamic dependencies that cannot always be dis-

covered automatically. In order to improve the reliability of distributed systems, we must

develop upgrade mechanisms that function correctly despite hidden dependencies or that

are able to tolerate Types 1–4 of upgrade faults.

This will require downtime on upgrade, so we’re not

going to do it until we have a better idea of the cost.

MediaWiki revision-control log, 2004

Chapter 4

Why Do Upgrades Need Planned Downtime?

UNAVAILABILITY in distributed enterprise systems is usually the result of planned

events, such as software upgrades, rather than component failures. Chapter 3 has

shown that upgrades are unreliable and often result in unplanned downtime. Moreover,

even successful upgrades may require downtime, and as a result they are performed offline,

during windows of planned maintenance. A survey of 426 sites with high-availability ap-

plications, using servers from IBM, Sun, Compaq, HP, DEC, and Tandem, showed that 75%

of nearly 6,000 outages were due to planned hardware and software maintenance and that

such planned outages typically lasted twice as long as unplanned ones [Lowell et al., 2004].

This chapter focuses on the common causes of such planned downtime.

Many enterprises can no longer afford to incur the high cost of downtime [Patterson,

2002] and must perform such upgrades online, without stopping their systems. For exam-

ple, upgrading enterprise resource planning (ERP) systems can cost up to 30% of the price

of the original implementation ($40M – $240M) [Beatty and Williams, 2006]. Experience

with AT&T network upgrades suggests that there are no good time windows for schedul-

ing planned maintenance; for instance, performing network maintenance at night is likely

to disrupt online gaming [Rexford, 2007].

Enterprise-system upgrades often require complex data conversions for changing the

data schema or migrating to a different data store. Synchronizing the states of two system

versions during an in-place upgrade requires developers and administrators to define state-

transfer functions and to ensure the correctness of mixed-version interactions [Ajmani et al.,

2006; Oracle Corporation, 2008]. Administrators working on complex systems, which have

dependencies that are not fully understood, also fear that online upgrades could loose or

50

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 51

corrupt persistent data [Williams, 2009].

Moreover, because some data conversions are difficult to perform on the fly, in the face of

live workloads, and owing to concerns about overloading the production system, upgrades

that involve computationally-intensive data conversions currently necessitate planned downtime,

ranging from tens of hours to several days [Downing, 2008]. Conversely, system adminis-

trators sometimes avoid complex upgrades, which might impose an unacceptable down-

time, and preserve database schemas that provide sub-optimal performance and that can-

not support new, user-requested features.

Challenge and Contributions

Research on software upgrades has been conducted independently, in separate research

communities, and has focused on upgrading individual components of distributed sys-

tems, such as the application code, the middleware framework or the database schema.

The prior work on database schema evolution [for example: Ferrandina et al., 1995; Bern-

stein and Haas, 2008; Curino et al., 2008a] focused on automating the process of defining

the mapping between the old version and the new version of the schema. However, which

schema changes are difficult to integrate in an online end-to-end upgrade and, in general,

what are the leading causes of planned downtime remains an open question.

Assumptions. In my study, I focus on real-world distributed systems, and I assume that

upgrades are performed in-place, replacing the existing system. These systems are not

based on a homogeneous middleware framework. Instead, they utilize three-tier architec-

tures, with front-end servers that manage the client connections, middle-tier servers that

implement the application logic and back-end servers that store the persistent data. Fur-

thermore, the results presented in this chapter derive from a single case studywhich fo-

cuses on an Internet service that is representative for three-tier enterprise systems and that

accommodates reproducible research, but they are correlated with observations about

planned downtime in several commercial systems.

Non-goals. In this study, I do not focus on upgrades that cause unexpected downtime,

which is the subject of Chapter 3. Moreover, I focus on the technical challenges that impose

planned downtime when upgrading. I do not consider downgrades or other activities per-

formed during planned-maintenance windows.

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 52

This chapter makes two contributions:

• By analyzing the upgrade history of Wikipedia, one of the ten most popular websites

to date (Section 4.1), I identify the common causes of planned downtime (Section 4.2).

• I show that the existing mechanisms for online upgrade do not handle these causes

of downtime effectively (Section 4.3).

4.1 Experimental method

I determine the common reasons for planned downtime by studying in depth the upgrade

history of Wikipedia, which is currently is one of the ten most popular Internet services.1

Wikipedia uses open-source software, the system architecture and the individual host con-

figurations are known, the workload has been analyzed rigorously and the content of the

database is available for download. Because of these characteristics, Wikipedia represents a

testbed well suited for conducting repeatable research on distributed-system management.

Moreover, because Wikipedia is used widely, it relies of a typical three-tier enterprise archi-

tecture and its software is employed by other systems as well, the causes of upgrade-related

downtime at Wikipedia are representative of the root causes of planned downtime in dis-

tributed enterprise systems.

I study the upgrade history of Wikipedia by combining data from a rigorous study

of Wikipedia’s schema evolution with information from design documents and archived

discussions [Dumitraș and Narasimhan, 2009b]. I also correlate the findings from this study

with anecdotal and private information about downtime in three commercial systems.

Wikipedia. The site http://www.wikipedia.org provides a multi-language, free

encyclopedia, handling peak loads of 70,000 HTTP requests/s.2 The English-language

Wikipedia has 2.9 million articles, with content stored in a 1 TB database and 250,000 files

(e.g. images). The web site is supported by an infrastructure (Figure 4.1) running on 352

servers in 3 data centers distributed worldwide. The front-end has 120 caching proxies,

accessed using round-robin DNS load-balancing. The proxies forward the cache-misses

to a load-balanced cluster of 206 Apache web servers, which query 23 MySQL database
1Statistics on the popularity and workloads of different web sites are available at http://www.alexa.

com. Wikipedia has been on the top ten list since 2007.
2The information on Wikipedia dates from April 2009.

http://www.wikipedia.org
http://www.alexa.com
http://www.alexa.com

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 53

servers, configured for master/slave replication. The master database receives the write

queries and propagates the updates to the slave, which handle read-only queries. A wiki

engine called MediaWiki, implemented as a set of PHP scripts, accesses the database and

generates the content of the articles.

All the data needed to reproduce Wikipedia’s infrastructure is publicly available:

• Wikipedia uses only open-source software, which is employed by other systems as

well. For example, MediaWiki drives over 15,000 other wikis (statistics on the usage

of wiki engines are maintained at http://s23.org/wikistats/).

• Wikipedia relies on a standard three-tier architecture, and its hardware and software

configurations are described at https://wikitech.leuksman.com.

• The database schema employed by Wikipedia can be recreated using the installation

scripts of MediaWiki, and the database content can be downloaded from http://

download.wikimedia.org/.

• The workload characteristics are recoded at http://en.wikipedia.org/wiki/

Wikipedia:Statistics, and they have been rigorously characterized by Ur-

daneta et al. [2009].

Between 2003 and 2008, MediaWiki’s database schema has gone through 171 evolution

steps [Curino et al., 2008b] in the main development branch. During this time, the project

has released eleven versions (1.1 – 1.11) of the wiki engine. Minor versions (e.g., the 1.4.x se-

ries) do not introduce schema changes; upgrading to a new version within the same release

series requires only replacing the PHP code on the application servers. However, upgrad-

ing to a different major version (e.g. from 1.4 to 1.5) can require changes in the database.

The remainder of this section describes the techniques employed by Wikipedia for upgrad-

ing online and provides examples of database changes that are not handled adequately by

these techniques and that impose planned downtime.

4.1.1 Current approaches for online upgrade at Wikipedia

In the early days of the site, when Wikipedia relied on a single database server in the back-

end, downtime was hard to avoid during an upgrade. In some situations, it is possible to

allow read-only access concurrently with the upgrade procedure. MediaWiki provides a

configuration parameter ($wgReadOnly) that places the site in read-only mode for such

planned-maintenance activities.

http://s23.org/wikistats/
https://wikitech.leuksman.com
http://download.wikimedia.org/
http://download.wikimedia.org/
http://en.wikipedia.org/wiki/Wikipedia:Statistics
http://en.wikipedia.org/wiki/Wikipedia:Statistics

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 54

Internet frontend Backend

C
o

re
 s

e
rv

ic
e

s
M

is
c

e
lla

n
e
o

u
s

s
e
rv

ic
e
s

WAP SSL

Apple Search

Nagios

Subversion

Ganglia

IRC

Scratch hostsBatch jobs

LoggingLDAP/NIS

Network tools

DNS

NTP, SSH

APT repositories

HTML

Media files

W
iki

te
xt

Image
files

files

Image files

D
a
ta

b
a
se

 d
um

p
s

Static dumps

Media Upload

Media files

Database dumps

S
e
a
rch ta

sksHTML Media files

Search tasks

Toolserver DBs

Index updates

DB replication

SQL queries

Master DB Slave DB Apache Text squid Upload squid Load Balancer Search host Search indexer File server Image scaler Web service Mail/IRC service Network sevice

PDF

Toolserver

Source: http://meta.wikimedia.org/wiki/Wikimedia_servers

Figure 4.1. Wikipedia architecture.

If the database is replicated on multiple hosts, it is possible to employ a rolling upgrade

[Brewer, 2001; see also Section 2.3.4] in order to avoid planned downtime. At Wikipedia,

a rolling upgrade removes slave nodes one by one from the replication group, applies the

schema changes, and then restarts the replication. The rolling upgrade swaps database

masters before completing the schema upgrade, to avoid re-applying the changes through

the replication mechanism.

To support rolling upgrades, the database replication mechanism must allow source

and target tables that do not have identical definitions. For example, in MySQL, a table on

the master node can have more or fewer columns than the slave’s copy, or a column on the

http://meta.wikimedia.org/wiki/Wikimedia_servers

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 55

Table old

old_title

Table cur

cur_id cur_title

old_id

old_title=cur_title

cur_id

1

2

3

Figure 4.2. Example of schema change that can impose planned downtime: a column 1� must be replaced
with another one 2� and initialized with data from a different table 3�.

slave node can use a larger storage size than the corresponding column on the master (the

two columns must have the same data type, e.g. INT(storage size)). In general, rolling up-

grades require the new version to be backward-compatible [Brewer, 2001], which excludes

complex schema changes that would prevent the old version of the business logic to query

the new version of the database schema.

4.1.2 Examples of planned downtime

Figure 4.2 illustrates a simple schema upgrade proposed for MediaWiki 1.4 that was ulti-

mately rejected because it would have imposed downtime on upgrade. This schema change

attempted to improve the performance of the site by replacing the text-based lookups of old

article revisions with index queries. After dropping column old_title from table old

1�, some queries issued by the old MediaWiki version would produce SQL errors. Sim-

ilarly, because the schema upgrade also adds a column old_id 2�, the new MediaWiki

version would be unable to operate on the old schema. To prevent exposing the clients to

these errors, the upgrade could be performed in two steps: (i) add column old_id and

upgrade the wiki engine, in an atomic operation; (ii) drop column old_title. During

the first step, the clients must not access the system to avoid producing errors.

Moreover, because the values in the new column are copied from another database

table 3�, this data transfer must mirror the updates enacted by live workload. The new

column old_id is initialized with the contents of column cur_id from a different table,

cur, selected by joining tables old and cur on the title column. The offline schema up-

grade, proposed for inclusion in MediaWiki, uses three SQL commands (see Figure 4.3a).

However, during an online upgrade, the clients can access the system while these queries

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 56

ALTER TABLE old
ADD COLUMN old_id

INT (8) UNSIGNED NOT NULL ;

UPDATE old , cur
SET old_id=cur_id
WHERE o l d _ t i t l e = c u r _ t i t l e ;

ALTER TABLE old
DROP COLUMN o l d _ t i t l e ;

INSERT row :
Into old : row . old_id ← row ✶ cur
Into cur : old . old_id ← old ✶ row

UPDATE row . ∗ _ t i t l e :
From old : row . old_id ← row ✶ cur
From cur : old . old_id ← old ✶ row

UPDATE row . ∗ _id :
From cur : old . old_id ← old ✶ row

DELETE row :
From old : do nothing
From cur : old . old_id ← default

WHERE old ✶ row

(a) Offline upgrade. (b) Online upgrade.

Figure 4.3. Two implementations of the schema upgrade from Figure 4.2.

are executed. The online-upgrade procedure must take into account the effect of the

INSERT/UPDATE/DELETE queries issued by the live workload and must synchronize the

data in the new column, old.old_id. This requires reevaluating the join condition

old_title=cur_title for each live query to determine if the value of old_id must

be updatedin the row changed by the query or in some other row of table old (see Fig-

ure 4.3b). Successful INSERT queries, in either one of tables old and cur, change the set of

tuples that join and require scanning the other table as well. UPDATEs of column *_title

change the tuples that join, while UPDATEs of cur.cur_id change data that might need

to be copied into old. These operations also require scanning the other table, which was

not involved in the UPDATE query. DELETEs of cur rows change the tuples that join and

require changing some old_id instances to the default value because the corresponding

rows do not join with cur anymore. In general, the stream of queries issued by the live re-

quest is not sufficient for synchronizing schema changes that compute the JOIN of several

tables [Gupta and Mumick, 1995].

Figure 4.4 illustrates the most complex schema change in the upgrade history of

Wikipedia, introduced with the MediaWiki version 1.5. Prior to this version, the cur table

stored the content and metadata of the current revisions of Wikipedia articles, and table

old stored the previous revisions. The upgrade moved the article-specific metadata into

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 57

title
namespace

cur_id=rev_page
rev_id>MAX(old.id)

Drop old_title, old_namespace, !

Figure 4.4. Major database-schema reorganization at Wikipedia.

the page table, the revision-specific metadata into the revision table and the content of

the revisions into the text table. The goals of this major restructuring were to improve

performance (e.g., by separating metadata from content to allow faster aggregation) and to

support new features (e.g. renaming articles without having to modify all their past revi-

sions). This change was implemented by five developers over a period of one year. During

the upgrade, Wikipedia was locked for editing, and the schema was converted to the new

version in about 22 hours [Wikimedia Foundation, 2005].

These examples illustrate that synchronizing multiple versions of the database schema

during an online upgrade would require a significant development effort. Such online up-

grades are error-prone due to their complexity and they can impose a high run-time over-

head on the production system.

4.2 Leading causes of planned downtime

The study of Wikipedia provides insight into the causes of planned downtime. The poten-

tial or recorded cases of upgrade-induced downtime, such as the ones described in Sec-

tion 4.1.2, point to modifications of on-disk data structures (e.g., the historical evolution of

database schemata) as the main reason for performing upgrades offline, during windows

of planned downtime.

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 58

4.2.1 Changes to database schemata and data formats

Curino et al. [2008b] show that the 171 evolution steps of MediaWiki’s database schema

can be modeled using 11 schema-modification operators (SMOs). These operators specify

how the upgrade converts the database to a new schema. The first column in Table 4.1

summarizes the fraction of MediaWiki’s schema changes that correspond to each SMO.

Four SMOs, DROP TABLE, RENAME TABLE, MERGE TABLE, RENAME COLUMN, create

new schemas that prevent restarting the MySQL replication during a rolling upgrade, and,

therefore, impose downtime. Five additional SMOs cannot be supported during a rolling

upgrade because (i) the old application would be unable to query the new schema (DROP

COLUMN, MOVE COLUMN); (ii) UPDATE queries would attempt to access rows that do not ex-

ist anymore (DISTRIBUTE TABLE); or (iii) data dependencies would be broken because

changes would be applied only to the source column (COPY COLUMN, MOVE COLUMN). The

most common operator, ADD COLUMN, is usually compatible with rolling upgrades because

it inserts constant values into the new column. However, in a few cases, ADD COLUMN adds

data dependencies, by inserting values based on other columns from the same table, or cre-

ates columns with values incremented automatically, which might not produce the same

ordering on the master and the slave.

In a sequence of schema modifications (e.g., to describe a MediaWiki upgrade from

V1.4 to V1.5), a SMO can cancel the effects of a previous one; for instance, if CREATE TABLE

X precedes DROP TABLE X, these changes do not impose downtime during the upgrade.

This suggests that individual evolution steps are not sufficient for determining whether

downtime will be required. For instance, while Wikipedia always uses the most recent

MediaWiki version and has deployed all the past versions of the wiki engine sequentially,

in practice software upgrades often skip versions. I consider the SMO sequences that define

all the possible upgrades among MediaWiki versions V1.1 – V1.11 (in this chapter, I do not

consider downgrades, which would require the inverse operations).

Figure 4.5 shows the likely outcome of these upgrades. 38 out of the 55 upgrades

would introduce changes that prevent restarting the MySQL replication, and in 12 addi-

tional cases the changes would prevent a rolling upgrade. These upgrades require planned

downtime. Only 5 MediaWiki upgrades can be performed online, through a rolling up-

grade. These upgrades typically require upgrading the site to the subsequent version of

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 59

Table 4.1. Database schema changes in Wikipedia.

Schema change (%) Description Rep RU

CREATE TABLE (4.9%) Creates new, empty table. Y Y

DROP TABLE (1.8%) Remove existing table. N N

RENAME TABLE (0.6%) Rename table, without affecting the data. N N

DISTRIBUTE TABLE (0%)
Distribute rows of a source table into two new tables, according

to a condition.
Y N

MERGE TABLE (0.8%)
Create a new table as the union of two tables with the same

schema.
N N

COPY TABLE (1.2%) Duplicate existing table. Y Y

ADD COLUMN (21.2%)
Add column and populate it with values generated by a constant

or a function.
Y Y/N

DROP COLUMN (14.5%) Remove existing column. Y N

RENAME COLUMN (8.8%) Change column name, without affecting the data. N N

COPY COLUMN (0.8%) Copy column into another table, according to a join condition. Y N

MOVE COLUMN (0.2%) COPY COLUMN, then drop the original. Y N

Rep = Supported by MySQL replication (Yes/No).

RU = Supported during a rolling upgrade (Yes/No).

MediaWiki. However, the major changes introduced in versions 1.5 and 1.7 are incom-

patible with the database replication. Additionally, versions 1.4 and 1.10 introduced auto-

incremented columns, version 1.3 dropped a column, and version 1.6 added a column with

dependencies on other columns.

Upgrading commercial systems can require even more complex schema changes. Ex-

amples of changes from Oracle’s enterprise systems include accessing multiple rows in the

source table (through a self-join), creating a primary key from a column that allows re-

peated values, and initializing new columns with aggregate values, which are difficult to

maintain incrementally (e.g. computing MAX(column) when values from column may be

deleted by the live workload) [Downing, 2008]. Moreover, the aggregates sometimes rep-

resent only placeholder values, rather than invariants of the new schema, which suggests

that the upgrade semantics can not be determined, in all the cases, from the specification

of the schema evolution.

These challenges are not limited to databases, but they also affect upgrades that modify

other persistent data-structures, such as the metadata used by distributed file systems. For

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 60

Upgrade from version

U
pg

ra
de

 to
 v

er
si

on

V1.1

V1.2

V1.3

V1.4

V1.5

V1.6

V1.7

V1.8

V1.9

V1.10

V1.11

V1.1 V1.2 V1.3 V1.4 V1.5 V1.6 V1.7 V1.8 V1.9 V1.10V1.11

Rolling upgrade possibleDB replication possibleDowntime required

Figure 4.5. Planned downtime imposed by MediaWiki upgrades.

example, new versions of the GPFS parallel file system [Schmuck and Haskin, 2002] are

usually deployed without downtime, through rolling upgrades. However, when GPFS’s

inode structure was updated to allow disk-sector numbers represented on 64 bits (instead of

32 bits only), the upgrade required unmounting the file system for changing the metadata

on disk [Schmuck, 2010].

4.2.2 Data conversions

While schema changes represent the leading cause of planned downtime, they are not the

only cause. In some cases, the data instances must be converted as well. In MediaWiki’s

version history, one upgrade has required converting the text from all the current and past

article revisions recorded in the database. Starting from version 1.5, MediaWiki supports

only the UTF-8 character set, and older wikis using Latin-1 were required to convert their

data to the new encoding. This is a long-running operation, which competes with the live

workload for querying and modifying the database and which can impose a significant per-

formance overhead. Because of uncertainty about the overhead introduced in the produc-

tion system, system administrators often prefer to perform such data conversions during

offline upgrades [Williams, 2009].

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 61

4.2.3 Competitive upgrades

Sometimes, instead of switching to a newer version, the upgrade aims to replace the existing

system with a completely different one, which provides similar or equivalent functionality.

These upgrades occur when an enterprise changes vendors, and they usually impose down-

time because of incompatibilities between the two systems. Wikipedia has performed two

such competitive upgrades: (i) when it switched from UseModWiki to a custom-built wiki

engine, now remembered only as “Phase II,” and (ii) when this code base was rewritten

and became MediaWiki.

4.2.4 Changes that do not require downtime

Modifications to database indices, implemented for performance-tuning purposes, are the

most frequent type of schema evolution in MediaWiki, accounting for 40.3% of such schema

changes [Curino et al., 2008b]. In MySQL, index changes are inefficient and require lock-

ing a table in order to rebuild its index. These common schema modifications can impose

downtime for systems relying on a single database node.

Past research has dedicated considerable attention to updating indices incrementally,

and some commercial database servers support online index-definition [for example: Ora-

cle Corporation, 2009; Microsoft Corporation, 2010]. However, even without this technol-

ogy, index changes do not impose planned downtime in distributed systems, which employ

database replication or clustering. In Wikipedia, for example, such changes are performed

online, through a rolling-upgrade, because they do not require application modifications.

Similarly, rolling upgrades enable schema changes that implement simple data-type con-

versions (12.8% of schema changes, in Wikipedia), such as increasing the size of a numeric

type (e.g., INT(8) �→ INT(16)).

4.3 Existing techniques for avoiding planned downtime

Distributed enterprise systems often employ rolling upgrades, as described in Section 4.1.1,

to avoid planned downtime. However, rolling upgrades create mixed database versions,

which must interact with the live workload in a consistent manner. For this reason, rolling

upgrades are feasible only in the presence of simple schema changes, which are tolerated

by the database replication mechanism and which do not introduce data dependencies that

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 62

must be synchronized on-the-fly, in response to the live workload (see Section 4.1.2). In gen-

eral, rolling upgrades rely on the fundamental assumption that the changes implemented

are backward-compatible [Brewer, 2001].

Asynchronous database replication [for example: Wong et al., 2009; Quest Software, Inc.,

2010] is sometimes used for minimizing downtime during complex upgrades [for exam-

ple, at Priceline.com: Baltazar, 2005]. Unlike master/slave replication, this mechanism cap-

tures the stream of transactions committed in the production database, applies data trans-

formations and replays the changes at another database replica. Because asynchronous

replication does not aim to provide strong consistency [Narasimhan, 1999] among repli-

cas, it enables more complex schema and data conversions during the upgrade. However,

this approach cannot handle many of the schema changes that have caused downtime for

Wikipedia. For example, because the transformations use only the stream of live-workload

transactions as input, they cannot implement schema changes that join multiple tables, such

as the examples from Section 4.1.2.

Oracle 11g Release 2 [Oracle Corporation, 2009] provides database support for mixed

versions, by introducing edition-based redefinition [Choi, 2009]. This technique creates two

separate views (called editions) over the base tables in the database. The old version of the

business logic uses the old edition and the new version uses the new edition, which can

have a different schema. When data changes in either edition, cross-edition triggers (back-

ward and forward) ensure that changes are propagated between the two views. Eventually,

the old edition is retired. Edition-based redefinition is a technique for on-the-fly data syn-

chronization, but it does not provide support for defining correct data transformations. For

example, the invertibility and the correctness of cross-edition triggers are concerns left en-

tirely up to the application programmers. This technique is currently targeted at allowing

system administrators to test a new version before deploying it widely [Choi, 2009].

The limitations of data transformations that can be performed online have been stud-

ied in the context of materialized views, which are defined in terms of one or several base

tables and which store the derived tuples in the database. A materialized view must be

maintained at runtime, in response to updates to the base tables [Gupta and Mumick,

1995]. While this technique has been used primarily for caching or for data warehousing,

the throughly-studied problem of materialized-view maintenance provides insight into the

schema changes that can be implemented during an online upgrade. There are many sit-

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 63

uations where materialized views cannot be updated on-the-fly, using only the stream of

queries from the live workload: when the view definition joins two or more base tables and

the workload includes INSERT queries, when the view does not have a primary key, when

the view or the base tables include triggers (which could cause deadlocks through recur-

sion) or in the presence of integrity constraints. Such practical considerations impose a re-

scan of the base tables (in database terminology, these views are not self-maintainable), and,

similarly, they can prevent online upgrades in the presence of complex schema changes.

Interestingly, some Internet systems can rely on the characteristics of their workload

and on the structure of their persistent data to avoid these problems. At Facebook changes

to database schemas are usually limited to adding columns and tables, and schema incon-

sistencies between the application and the database do not constitute a significant chal-

lenge3 [Reiss, 2009]. This is the result of the site’s highly-connected user base. Because the

friendship connections evolve continuously and do not produce stable clusters, the Face-

book system scales better through horizontal partitioning (e.g., by splitting users across

several databases) than vertical partitioning (e.g., by splitting the names and addresses of

users in different database tables). This allows Facebook to avoid the planned downtime

required to implement major schema changes.

4.4 Summary of findings

The causes of planned downtime cannot be understood by focusing exclusively on the

database or on the business logic. When upgrading a distributed system end-to-end, de-

velopers and administrators must carefully consider the interplay of database schema evo-

lution with the code modifications required and with the workload of the system-under-

upgrade.

To determine the common reasons for planned downtime, I study the upgrade history

of Wikipedia—currently one of the ten most popular websites. I combine data from a rig-

orous study of Wikipedia’s back-end evolution with information from design documents

and archived discussions, and I correlate these findings with examples drawn from three

commercial systems (Facebook, GPFS and Oracle’s enterprise software). The leading cause

of planned downtime are changes to database schemata: when the schema undergoes a
3In Chapter 9 I describe a different problem that occurs frequently during Facebook upgrades.

CHAPTER 4. WHY DO UPGRADES NEED PLANNED DOWNTIME? 64

major restructuring, the old version of the business logic can no longer query the new ver-

sion of the schema. This requires upgrading the business logic in the middle tier and the

database in the back-end together, in an atomic operation. Such upgrades impose down-

time because the schema conversion is a long-running operation. The need to implement

schema changes imposes downtime for 50 out of the 55 possible upgrades among the first

eleven versions of MediaWiki (the business logic of Wikipedia). Similar problems occur

when changing the format of other persistent structures, such ash the on-disk inodes of a

distributed file system.

Other causes of downtime include computationally-intensive data conversions and

competitive upgrades. Some upgrades do not stop at changing the database schema, but

modify the data itself (e.g. by converting the entire content of Wikipedia to the UTF-8 char-

acter set). These long-running data conversions compete with the live workload and might

overload the database. Competitive upgrades (i.e., replacing the business logic with al-

ternative software that provides similar, but not equivalent functionality) require complex

conversions and typically impose downtime.

Our revels now are ended. These our actors, [...]

Are melted into air, into thin air:

And like the baseless fabric of this vision, [...]

We are such stuff as dreams are made on;

And our little life is rounded with a sleep.

William Shakespeare, The Tempest, 1611

Chapter 5

The AIR Properties

THE upgrade properties that have been proposed in the prior work primarily focus on

facilitating the development of program updates, on avoiding some of the common

runtime errors that could be caused by an upgrade, or on reasoning about the consistency

of the persistent data in the system-under-upgrade. I submit that a dependable, online-

upgrade mechanism for distributed systems should provide three properties:

• Atomicity: At any time, the clients of the system-under-upgrade must access the

full functionality of either the old or the new versions, but not both. The end-to-end

upgrade must be an atomic operation.

• Isolation: The upgrade operations must not change, remove, or affect in any way the

dependencies of the old version (including its performance, configuration settings

and ability to access the data objects).

• Runtime-testing: The upgrade mechanism must allow testing the upgraded system

under operational conditions.

The Isolation property provides an alternative to tracking dependencies. By accessing the

old version in a non-intrusive, read-only manner, this approach prevents breaking hidden

dependencies during the upgrade. The Atomicity and Runtime-testing properties imply

that the system must not include mixed, interacting versions, which synchronize their states

in the back-end and that exhibit runtime-emerging behaviors that are difficult to validate

through offline testing. The lack of mixed versions enables long-running data conversions

in the background, during an online upgrade; a degraded functionality is necessary only

during the atomic switchover to the new version. Moreover, because it does not require

correctness constraints for the inter-version interactions or knowledge of the old version’s

65

CHAPTER 5. THE AIR PROPERTIES 66

dependencies, this approach reduces the manual interventions needed for preparing the

upgrade and is easier to use than the current techniques.

These benefits come at a cost. For instance, in many cases, guaranteeing the Isola-

tion property would require additional hardware and storage resources. While this de-

sign choice might be inadequate for many resource-constrained systems, the potential cost

of downtime in current distributed systems offsets the costs of new hardware or of leas-

ing resources from a public cloud-computing infrastructure [Patterson, 2002; Zolti, 2006;

Reiss, 2009; Choi, 2009; Google Inc., 2010]. The next chapter describes the design of a sys-

tem, called Imago, that provides the AIR properties, and Chapter 7 discusses the impact of

these properties on upgrade dependability.

The insect then casts off the spoils of it’s former state,

and appears in it’s imago or perfect form.

George Adams, Jr., Essays on the Microscope, 1787

Chapter 6

Design and Implementation of Imago

THE AIR properties, defined in Chapter 5, represent the blueprint for addressing the

leading causes of planned and unplanned downtime that results from software up-

grades. This chapter presents a system called Imago,1 which executes end-to-end upgrades

in distributed systems and which realizes the Atomicity, Isolation and Runtime-testing

properties in practice. Imago reduces planned downtime, by performing an online upgrade

even in the presence of complex data and schema changes, and avoids upgrade failures due

to broken dependencies, by presenting an alternative to dependency-tracking techniques.

The key idea behind Imago is to install the new version in a parallel universea logically

distinct collection of resources, including CPUs, disks, network links, etc.that isolates the

production system from the upgrade operations. The new version may be a more recent

version of the old production system, or it may be a completely different system that pro-

vides similar or equivalent functionality. Imago updates the persistent data of the new

version through an opportunistic data-transfer mechanism. The logical isolation between

the universe of the old version, Uold, and the universe of the new version, Unew, ensures

that the two parallel universes do not share resources and reduces the impact of procedural

errors, which represent the leading cause of upgrade failures (see Chapter 3).

The proof-of-concept implementation described in this chapter provides Isolation

by using separate hardware resources, but similar isolation properties could be achieved

through virtualization. The upgrade process, operating on Unew, can not alter the func-

tional dependencies encapsulated in Uold. Imago also accommodates mechanisms for min-
1The imago is the final stage of an insect or animal that undergoes a metamorphosis, e.g., a butterfly after

emerging from the chrysalis [Oxford English Dictionary, 1989].

67

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 68

Parallel Universe (Unew)

HTTP

Universe of the Original System (Uold)

Differences:
• Data-formats
• APIs
• Behaviors

Application flow

Upgrade flow

I

E

Ingress interceptor

Egress interceptor

Legend
Data

Conversion
Driver

Persistent
Data

- Performance
metrics

- Updates

Compare
engine

Replies

Requests

S
hu

nt

Data
storeI E

Front-end

Figure 6.1. Dependable software upgrades with Imago. The old and new versions of a distributed system are
installed in parallel universes Uold and Unew. Imago intercepts the flow of live requests at the ingress points (I)
and the egress points (E) of the old version and treats the rest of Uold as a black box. The end-to-end upgrade
is an atomic operation.

imizing the impact of the upgrade on the live workload, which reduces the risk of breaking

non-functional dependencies in Uold.

Figure 6.1 illustrates the high-level architecture of Imago. Distributed enterprise-

systems typically have one or more ingress points (I), where clients direct their requests,

and one or more egress points (E), where the persistent data is stored (see Fig. 6.1). The

remainder of the infrastructure (i.e., the request paths between I and E) implements the

business-logic and maintains volatile data, such as user sessions or cached data objects.

Imago uses an upgrade procedure with five phases: bootstrapping, data-transfer, termi-

nation, testing, and switchover [Dumitraș et al., 2007a]. Imago opportunistically transfers

the persistent data from the system in Uold to the system in Unew, converts it into the new

format, monitors the data-updates reaching Uold’s egress points and identifies the data

objects that need to be re-transferred in order to prevent data staleness. The live work-

load of the system-under-upgrade, which accesses Uold’s data store concurrently with the

data-transfer process, can continue to update the persistent data. The egress interceptor, E,

monitors Uold’s data-store activity to ensure that all of the updated or new data objects are

eventually (re)-transferred to Unew.

Because Imago always performs read-only accesses on Uold, the dependencies of the

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 69

old version cannot be broken and need not be known in advance. Moreover, E monitors the

load and the performance of Uold’s data store, allowing Imago to regulate its data-transfer

rate in order to avoid interfering with the live workload. These mechanisms represent the

two keys for providing upgrade Isolation.

Imago implements a distributed coordination protocol that ensures the atomic

switchover to the new version when the data transfer is complete. Until this switchover, the

progress of the ongoing upgrade is transparent to the clients; after the switchover, only the

new version is available, which allows Imago to provide upgrade Atomicity. Imago also

enables the live testing of the new version, thus satisfying the Runtime-testing property.

Imago takes a holistic approach and focuses on upgrading distributed systems end-to-end,

in the presence of major changes in the business logic and of database schema evolution.

Challenge and Contributions

Imago is designed with the goal of improving the dependability of software upgrades in

distributed systems by (i) removing the leading cause of upgrade failuresbreaking hidden

dependencies (see Chapter 3)and (ii) providing a solution for the leading cause of planned

downtimeperforming schema and data conversions in the database (see Chapter 4).

Prior work on upgrading distributed systems online [for example: Bloom, 1983; Kramer

and Magee, 1990; Ajmani et al., 2006; see also Section 2.3.3] focuses on applications built on

top of distributed-object middleware or component frameworks, which allows the frame-

work to provide an online-upgrade mechanisms to all the components of the system. How-

ever, real-world enterprise systems are not based on a single, homogeneous framework.

Instead, they typically utilize three-tier architectures, with front-end servers that repre-

sent the ingress points for client requests, middle-tier servers that implement the system’s

business logic and back-end data stores that represent the egress points for persistent data.

An end-to-end upgrade replaces the old version of the business logic and data schema,

used in the production system, with a new version. Such an upgrade requires the coor-

dinated replacement of multiple system components and the conversion of the persistent

data to the new format. Volatile data must be converted as well in order to ensure the

client-transparency of the upgrade; however, transparency is not always possible for major

upgrades that change the interfaces or the semantics of the system. While transparency is

not always a goal for such upgrades, in most cases it is desirable to reduce the downtime

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 70

by ensuring that either the old or the new version is online, or by providing a gracefully-

degraded functionality.

The AIR properties of dependable software upgrades, defined in Chapter 5, are de-

rived from empirical observations and focus on the leading causes of planned and un-

planned downtime resulting from distributed-system upgrades. However, the AIR proper-

ties are difficult to provide in a practical system. For example, current approaches for online

upgrade in distributed systems [e.g., rolling upgrades (see Section2.3.4); Bloom, 1983; Aj-

mani et al., 2006] focus either on performing upgrades in-place by replacing an existing

systemwhich violates Isolationor on supporting mixed, interacting versions during

the upgradewhich violates Atomicity.

I make a fundamental trade-off: in order to implement the AIR properties, Imago imposes

a higher resource overhead than previous techniques. This trade-off is based on the obser-

vation that, for current distributed systems, the cost of downtime is usually higher than

the cost of purchasing or leasing hardware resources [Dumitraș and Narasimhan, 2009a].

Recently, Bhattacharya and Neamtiu [2010] proposed a different trade-off, which involves

temporal, rather than spatial, overhead for providing upgrade Atomicity: keeping track

of the safe update points on the hosts of the distributed system, and delaying the upgrade

until all the hosts are ready to apply it simultaneously.

Assumptions. The design of Imago makes three assumptions. I assume that (1) the

system-under-upgrade has well-defined, static ingress and egress points; this assump-

tion simplifies the task of monitoring the request-flow through Uold and the switchover

to Unew. I further assume that (2) the workload is dominated by read-only requests; this

assumption is needed for guaranteeing the eventual termination of the opportunistic data-

transfer. Finally, I assume that the system-under-upgrade provides hooks for: (3a) flushing

in-progress updates to the persistent data store (needed before switchover); and (3b) read-

ing from Uold’s data-store without locking objects or obstructing the live requests in any

other way (to avoid interfering with the live workload). I do not assume any knowledge of

the internal communication paths between the ingress and egress points.

These assumptions define the class of distributed systems that can be upgraded using

Imago. For example, enterprise systems with three-tier architectures satisfy these assump-

tions. An ingress point typically corresponds to a front-end proxy or a load balancer, and

an egress point corresponds to a master database in the back-end. E-commerce web sites

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 71

usually have read-mostly workloads [Menascé, 2002], satisfying the second assumption.

The two Uold hooks required in the third assumption are also common in enterprise sys-

tems: most application servers flush the in-progress updates to their associated persistent

storage before shutdown, and most modern databases support snapshot isolation2 as an

alternative to locking.

Non-goals. Imago does not focus on disseminating minor updates, such as fine-grained

bug fixes or security patches. Furthermore, Imago does aim to eliminate upgrade failures

due to software defects or to upgrade distributed systems in a fully-transparent manner.

Imago takes a holistic approach, focusing on dependable, end-to-end upgrades of dis-

tributed systems. The novel characteristics that facilitate this goal are:

• Imago avoids breaking hidden dependenciesthe leading cause of upgrade

failuresby presenting an alternative to the current approaches based on depen-

dency tracking (see Section 2.3.1). While relying on the knowledge of the planned

changes in data-formats and observable system behavior, Imago treats the system-

under-upgrade as a black box. Imago provides Isolation by installing the new ver-

sion in a parallel universe and by transferring the persistent data, opportunistically,

into the new version. Imago accesses the universe of the old version in a read-only

manner, isolating the production system from the upgrade operations.

• Imago also enables the integration of database schema changes and of long-running

data conversions in an online upgrade. This mechanism provides a solution for the

leading causes of planned downtime related to software upgrades.

• When the data transfer is complete, Imago performs the switchover to the new ver-

sion, completing the end-to-end upgrade as an atomic operation. This mechanism

allows Imago to provide Atomicity.

• In addition to the traditional testing approaches, Imago provides an opportunity for

testing the new version under operational conditions, using the live workload, with-

out exposing the systems’s clients to the potential errors that restult from failed tests.

This allows Imago to provide Runtime-testing.
2This mechanism relies on the multi-versioning of database tables to query a snapshot of the database that

only reflects committed transactions and is not involved in subsequent updates [Berenson et al., 1995].

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 72

Bootstrapping Data Transfer Termination Switchover

Testing

Figure 6.2. Imago’s upgrade procedure.

• Through the AIR properties, Imago enables an upgrade-as-a-service approach,

which reduces the effort required for implementing software upgrade on a large

scale.

Section 6.1 describes the upgrade procedure and the high-level design of Imago. Section 6.2

presents the implementation details. Section 6.3 discusses how the end-to-end mechanisms

incorporated in Imago can be used to provide upgrade-as-a-service.

6.1 AIR upgrades with Imago

Imago upgrades distributed systems using a procedure with five phases: bootstrapping,

data-transfer, termination, testing, and switchover. Figure 6.2 illustrates the sequence of

these upgrade phases.

Bootstrapping. The upgrade starts by installing and configuring the new version in the

parallel universe Unew. Interceptors I and E are attached to the ingress and egress points of

the production system, which continues to utilize the old version in Uold. The data-transfer

is initialized by retrieving, from the data store of Uold, the list of persistent data-objects to be

transferred to Unew (see Figure 6.3). At the end of this phase, the new version is functional

but has an empty data-store. The ingress and egress interceptors (I and E) monitor the flow

of live requests through the system from Uold.

Data Transfer. Imago transfers persistent data from Uold opportunistically, when the

data store has the spare capacity needed to process the data-transfer requests. All the fea-

tures of the old version are available to the clients during the transfer. The live workload,

which accesses the data store in Uold concurrently with the data-transfer process, is allowed

to modify the persistent data during the upgrade. The egress interceptor, E, monitors Uold’s

data-store activity to ensure that all of the updated or new data objects are eventually (re)-

transferred to Unew. E detects a competing live workload by examining the rate of queries

that do not originate from Imago.

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 73

P���� I: B������������

1 Retrieve the ids of the persistent data-items to be transferred from Uold

2 ∀ id ∈ Uold, UT[id] ←< �����, ¬����������� > ✄ Initialize the upgrade tracker UT

3 Initialize the interceptors I and E ✄ The interceptors continue to
✄ operate until the switchover

4 if E detects that data item identified by id
� is updated

then UT [id�] ←< �������, · >

P���� II: D��� T�������

1 while ∃ id ∈ UT such that UT[id] �=< �����, ����������� >

2 do id ← top(UT)

3 Query id from the data-store of Uold

4 Convert id to the data schema of Unew

5 Insert id into the data store of Unew

6 UT[id] ←< �����, ����������� >

P���� III: D���-T������� T����������

if I detects write request req ✄ Enforce quiescence
then reject req

1 Flush all caches from Uold

2 Finish data transfer (phase II)
3 if testing required
4 then goto phase IV
5 else goto phase V

P���� IV: T������

1 Checkpoint Unew

2 while testing required
3 do ∀ req detected by I ✄ Shunt live requests to Unew

4 send req to Uold and to Unew

5 receive reply1 from Uold and reply2 from Unew

6 send < req, reply1, reply2 > to compare engine ✄ See Figure 6.1
7 Rollback Unew to checkpoint taken in step 1
8 goto phase II

P���� V: S���������

1 Discard volatile state
2 Send all requests to Unew

3 Stop interceptors I and E

Figure 6.3. Pseudocode of the upgrade procedure used by Imago for enforcing the AIR properties.

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 74

During the data-transfer phase, Imago also executes the schema and data conversions

required by the upgrade. The schema changes are specified using the SMO operators intro-

duced in Section 4.2.1 and are executed outside of the Uold universe, to avoid overloading

the production system. Unlike the existing approaches for upgrading distributed systems,

Imago does not upgrade the system in-place. Because the application never interacts with

a database schema belonging to a different version, Imago trivially supports the DROP TA-

BLE, RENAME TABLE, DROP COLUMN, and RENAME COLUMN schema changes. During the

data transfer, the live workload accesses only the schema from Uold, which simplifies the

implementation of the more complex schema changes.

Figure 6.4 describes how Imago handles the other schema changes that commonly im-

pose planned downtime. For the DISTRIBUTE TABLE SMO, Imago evaluates the condition

during the data transfer and determines whether to apply a change to S or T, while for MERGE

TABLE, all changes to S or T will be applied to R. For new auto-incremented columns, Imago

assigns the new value during the data transfer. For new columns initialized with a function

based on other columns from the same table, Imago monitors the updates to the table and

applies the updates correctly, to both the source and the destination columns.

COPY COLUMN is a more complex transformation because it joins two tables to determine

which values are copied into the new column. If the transfer of tables R and S from Uold is

ongoing, Imago saves the stream of updates for applying it later; otherwise, Imago applies

the update and re-evaluates the set of values that must be copied into the new column. With

Imago, the schema changes are not required the table join can be evaluated repeatedly in the

parallel universe Unew, without the risk of overloading the production system. Imago could

also use more sophisticated techniques for deferring the maintenance of join expressions

[for example: Salem et al., 2000]. Unlike in the classical materialized-views maintenance

problem (see Section 4.3), the Unew data store is not required to be in a consistent state

during the upgrade, which allows Imago to defer updates until the end of the data transfer.

Similarly, Imago can perform computationally-intensive data conversions during the

online upgrade. The conversions are executed outside of Uold, and they do not interfere

with the production data store. Imago’s mechanisms for incorporating schema and data

conversions in an online upgrade can also be extended to provide support for performing

competitive upgrades without planned downtime.

Termination. The data transfer will eventually terminate if the transfer rate exceeds

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 75

DISTRIBUTE TABLE R INTO S with condition, T

1 if condition

2 then Apply change to S
3 else Apply change to T

MERGE TABLE S,T INTO R

1 Apply update to new table R

ADD COLUMN C auto-increment INTO R

1 Assign auto-incremented value during data transfer

ADD COLUMN C ����(A) INTO R

1 if A is updated
2 then C ← ����(A)

COPY COLUMN C FROM R INTO S WHERE join-cond

1 if transfer of R and S is complete
2 then Compute R ✶join-cond S at the destination
3 else Save the update and apply it later

Figure 6.4. Performing database-schema changes, without planned downtime, using Imago. The schema
changes are specified using the schema modification operators (SMOs) introduced by Curino et al. [2008b].

the rate at which Uold’s data is updated (this is easily achieved for read-mostly workloads).

To complete the transfer of the remaining in-progress updates, Imago must enforce a brief

period of quiescence for Uold. This is required before advancing to either the switchover

or the testing phases.

Switchover. Switching atomically to the new version is often the most challenging

requirement for an online-upgrade mechanism. Imago can enforce quiescence either using

the E interceptor, by marking all the database tables read-only and and by mounting the

filesystems with the ro option, or using the I interceptors, by blocking all the incoming

write requests. The first option is straightforward: the database and the filesystems prevent

the live workload from updating the persistent state of Uold, allowing the data-transfer to

terminate. This approach is commonly used in the industry due to its simplicity [Oracle

Corporation, 2008].

If the system-under-upgrade can not tolerate the sudden loss of write-access to the

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 76

The upgrade driver executes:

✄ Join the group of ingress interceptors
1 J��� (IGrp)
2 Wait until the data-transfer is nearly completed
3 B���� (flush)
4 while ∃I ∈ IGrp : I has not delivered flush-done

5 do D������ (msg)
6 if msg = self -disconnect

7 then J��� (IGrp)
8 elseif msg ∈ {self -join, interceptor-join}
9 then B���� (flush)

✄ Received flush-done from all live interceptors
10 Complete data-transfer
11 Send all requests to Unew

12 B���� (shutdown)

Each ingress interceptor I executes:

✄ Join the group of ingress interceptors
1 J��� (IGrp)
2 D������ (msg)
3 if msg = flush

4 then Block incoming write requests
5 for ∀ host ∈ {middle-tier connections}
6 do

✄ Flush in-progress requests
7 F���� (host)
8 B���� (flush-done)
9 while (����)

10 do D������ (msg)
11 if msg = self -disconnect

12 then J��� (IGrp)
13 elseif msg ∈ {flush, driver-join}
14 then B���� (flush-done)
15 elseif msg = shutdown

16 then Shut down I

Figure 6.5. Pseudocode of the atomic switchover protocol, which allows the ingress interceptors to determine
when all the in-progress updates have been flushed to the persistent data store of Uold.

database, Imago can instruct the I interceptors to block all the requests that might update

Uold’s persistent data (read-only requests are allowed to proceed). In this case, Imago must

flush the in-progress requests to Uold’s data store in order to complete the transfer to Unew.

Imago does not monitor the business logic of Uold, but the I interceptors record the active

connections of the corresponding ingress servers to application servers in the middle tier

and invoke the flush-hooks of these application servers. When all the interceptors report

the completion of the flush operations, the states of the old and new systems are synchro-

nized, and Imago can complete the switchover by redirecting all the traffic to Unew (this

protocol is described in Fig. 6.5). The volatile data (e.g., the user sessions) is not transferred

to Unew and is reinitialized after switching to the new version. Until this phase the progress

of the ongoing upgrade is transparent to the clients, but after the switchover only the new

version will be available.

Testing. Imago can also perform a series of iterative testing phases before switching

to the new version. Imago checkpoints the state of the system in Unew and then performs

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 77

offline testingusing pre-recorded or synthetically-generated traces that check the coverage

of all of the expected features and behaviorsand online testingusing the live requests

recorded at I. In the second case, the testing environment is nearly identical to the envi-

ronment that becomes the production system after the switchover,3 which ensures that the

testing results are representative for the behavior of the upgraded system. Quiescence is

not enforced during the testing phase, and the system in Uold resumes normal operation

while E continues to monitor the persistent-state updates. At the end of this phase, Imago

rolls the state of the system in Unew back to the previous checkpoint, and the data transfer

resumes in order to account for any updates that might have been missed while testing.

After adequate testing, the upgrade can be rolled back, by simply discarding the Unew uni-

verse, or committed, by making Unew the production system. Because Imago does not rely

on any knowledge of the internal communication paths between the ingress and egress

points of Uold and because all of the changes required by the upgrade are made into Unew,

the Isolation property is guaranteed and the upgrade does not break any hidden depen-

dencies in Uold. Similarly, the atomic switchover protocol allows Imago to provide Atom-

icity, and the testing phases enable Runtime-testing.

6.2 Implementation details

Imago has four components (see Fig. 6.1): the upgrade driver, which transfers data items

from the data store of Uold to that of Unew and coordinates the upgrade procedure, the

compare-engine, which checks the outputs of Uold and Unew during the testing phase, and

the I and E interceptors. The upgrade driver and the compare engine are processes that

execute on hardware located outside of the Uold and Unew universes, while I and E are

associated with the ingress and egress points of Uold.

6.2.1 Upgrade driver

Imago uses a data structure, called the upgrade tracker (UT), to remember the persistent

data objects from Uold that have already been transferred to Unew. In addition to the infor-

mation required to identify each data object, the upgrade tracker also stores the status of
3There are two exceptions: Unew receives the live client requests through a shunt at I, and the new version’s

replies are not propagated to the clients.

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 78

the item during the data-transfer phase: ����������� (the item has been transferred and is

identical in both Uold and Unew), ¬����������� (the item has not yet been transferred from

Uold) or ������� (the item was updated in Uold since its last transfer). When Imago, using

information received from E, detects that a data item has been updated or inserted in the

Uold database, it updates the status of the the corresponding entry in the upgrade tracker

and then it (re)-schedules the item for a fresh transfer to Unew (see Figure 6.3, line 4). The

upgrade tracker also maintains the order in which data items are scheduled for transfer.

This feature can be used to prioritize the transfer of certain data items. Extracting the item

with the highest transfer-priority from the upgrade tracker has a constant complexity, O(1).

Adaptation mechanisms. The E interceptor also reports system-level statistics, such as

the CPU load, the memory usage and the number of page faults, using the /proc interface.

To avoid overloading the database server, E passively records these statistics and forwards

them to the upgrade driver without performing any processing. The upgrade driver as-

sesses the load of the database machine and the query-arrival rate, by filtering its own

queries out of the information provided by E in order to focus on the live workload. Imago

evaluates the load of Uold every 30 seconds which enables autonomic management tech-

niques that reduce the data-transfer rate when Imago risks overloading Uold’s data store. To

avoid competing for resources with the live workload, Imago currently uses a simple adap-

tation policy, which pauses the data transfer when the transfer rate exceeds 5 queries/s.

6.2.2 Egress interceptor (E)

The E interceptor performs two functions: (i) recording the live updates to Uold’s persistent

data objects and (ii) monitoring the database server’s performance indicators. I implement

the E interceptor by transferring the query log of the database to the upgrade driver and by

employing a zero-copy optimization, which relies on direct memory access (DMA) to avoid

copying the content of the file into user space.4 The log records the queries observed at the

egress point of Uold (see Figure 6.6). By parsing the log file entries on-the-fly, the upgrade

driver extracts the INSERT/UPDATE/DELETE queries from the log and determines which

data objects must be re-transferred. This information is sufficient for updating the upgrade
4In Imago, this is achieved using the UNIX system call sendfile(), which is widely used for optimizing

the performance of web servers. In Windows, the analogous system call is TransmitFile().

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 79

Updates

Upgrade Driver

Data

E

INSERT …

INSERT …

UPDATE …

DELETE …

INSERT …

E

Figure 6.6. Implementation of the egress interceptor.

tracker; Imago does not need to know the timing or the content of the replies to the live

queries.

This represents a passive interception technique, which does not block queries for Uold’s

database server and which imposes no measurable performance penalty on the live work-

load. However, this implementation suffers from shortcomings that limit its applicability to

simple applications that do not use advanced database features. For example, when using

database transactions, encountering COMMIT in the query log is not sufficient for determin-

ing whether the database will commit or abort the transaction and when the new values

will become available for transfer. Similarly, the query log does not indicate the values that

the database assigns to auto-incremented sequences or which data objects are updated by

multi-row queries, which use a range condition in the WHERE clause of the UPDATE query.

These shortcomings stem from the fact that the workload is currently intercepted before

the queries are scheduled and executed by the database management system. Instead, the

E interceptor could be implemented using the GORDA API [Carvalho et al., 2007], which

provides a uniform reflective interface for database processing.5 The GORDA API allows

monitoring the data updates performed by the live workload by retrieving the object-sets

from the executor stage of Uold’s database, but only after the database considers that the

transaction has committed.
5As a proof of concept, this reflective API has been implemented, in different ways, for three database

servers: PostgreSQL (using a special-purpose trigger library), MySQL (through the C-JDBC clustering middle-

ware [Cecchet et al., 2004]) and Apache Derby (by leveraging the reflexion mechanisms of the Java program-

ming language).

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 80

Upgrade Driver

Flush

I

OS

Interceptor

Web server r
e
a
d
(
)

I

flush
flush

flush
flush

flush

Figure 6.7. Implementation of the ingress interceptor.

Both the implementation based on query-log analysis and the one based on database

reflection allow the upgrade driver to determine the current rate of queries received by

the database. This information contributes to the second purpose of the E interceptor and

enables the implementation of autonomic management techniques (see Section 6.2.1).

6.2.3 Ingress interceptor (I)

The I interceptor also performs two functions: (i) recording the content of client requests

during the testing phase, for copying them into the parallel universe; and (ii) ensuring the

atomic switchover to the new version. Unlike for the E interceptor, Imago requires an ac-

tive interception technique at the ingress points, in order to impose quiescence before the

switchover. I implement the I interceptor using library interposition [Levine, 2000] to re-

define system calls used by the front-end web servers. By relying on the dynamic linking

capabilities of the linker-loader, these redefined calls are interposed between the applica-

tion and the system’s shared libraries, so that, at runtime, the application transparently

calls the interceptor’s redefined functions instead of the default ones (see Figure 6.7).

I intercept five system calls: accept() and close(), which mark the life span of a

client connection, connect(), which opens a connection to the middle tier, and read()

and writev(), which reveal the content of the requests and replies, respectively. Con-

trolling the behavior of these five system calls is sufficient for implementing the function-

ality of the I interceptor. I maintain a memory pool inside the interceptor, and the rede-

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 81

fined read() and writev() system-calls copy the content of the requests and replies into

buffers from this memory pool. The buffers are subsequently processed by separate threads

in order to minimize the performance overhead.

In order to complete the data transfer, the upgrade driver invokes the atomic switchover

protocol from Figure 6.5. While Imago treats the system-under-upgrade as a black box and

does not keep track of the request queuing paths between the I and E interceptors, the

switchover protocol must ensure that no updates to the persistent data in Uold are pending.

Imago exploits the fact that the I interceptors knowfrom the observed invocations of the

five intercepted system callsall the active connections to the middle-tier servers. Imago

uses this knowledge to flush the in-progress requests before completing the switchover.

The implementation relies on a F���� operation, which flushes the in-progress requests

from a middle-tier server. Each I interceptor invokes the F���� operation on the application

servers that it has communicated with (see Figure 6.5, line 7). I implement the F���� oper-

ation for the Apache and JBoss servers. For Apache, I restart the server with the graceful

switch, allowing the current connections to complete. For JBoss, I change the timestamp

of the web-application archive (the application.war file), which triggers a redeployment

of the application. Both these mechanisms cause the application servers to evict all the

relevant data from their caches and to send the in-progress requests to the back-end.

Imago determines the time when all the I interceptors are ready to switch through a

distributed agreement protocol (see Figure 6.5). I implement this protocol using reliable

group-communication primitives: J��� allows a process to join the group of interceptors

and to receive notifications when processes join or disconnect from the group; B���� reli-

ably sends a message to the entire group; and D������ delivers messages in the same order

at all the processes in the group. These primitives are provided by the Spread package

[Amir et al., 2000]. Imago’s switchover protocol provides strong consistency, and it toler-

ates crashes and restarts of the driver or the interceptors.

6.2.4 Compare engine

The compare engine performs all the computationally-intensive operations required during

the testing phase. Each live HTTP session is handled by a separate compare worker, which

records the input/output traces of Uold and Unew. During the testing phase, clients interact

only with the system in Uold; the system in Unew processes the same requests but without

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 82

Uold front-end
server

Client surrogate Unew front-end
server

Compare worker

accept()

clients[fd] = cli

connect()

cli

read(fd, buffer)

write(cli, copy(buffer))

writev(fd, buffer)

close(fd)

clients.remove(fd)

read(cli, local_buffer)

write(REPLY2, fd, local_buffer)

start (fd, cli)

Signal writev()

close(cli)

stop

accept()
connect()

accept()
connect()

request reply1 reply2

accept()
connect()

Signal
done

write(NEWCLIENT, fd, addr)

write(REQUEST, fd, copy(buffer))

write(REPLY1, fd, copy(buffer))

write(ENDCLIENT, fd)

Signal read()

Figure 6.8. Communication protocol used during Imago’s testing phase.

sending replies to the clients. The data transfer between Uold and Unew is not active in this

phase.

Because Unew, does not interact with the live workload, Imago provides client surrogates

that act as clients for the new version. A client surrogate uses the memory-pool copies of

the client requests to forward the same requests to Unew, and it receives the corresponding

replies (see Figure 6.8). To minimize the overhead, the client surrogates also perform all

the blocking I/O operations required for communicating with the compare workers.

Each compare worker maintains a communication channel with an ingress intercep-

tor. The interceptor uses this channel to signal when the corresponding front-end server

receives a new client connection. The compare worker records the content of (i) the live

requests received from the clients (communicated using ������� messages), (ii) the replies

generated by the old version, in Uold (communicated using ������ messages) and (iii) the

replies generated by the new version, in Unew (communicated using ������ messages).

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 83

Table 6.1. Structure of Imago’s code.

Lines of code Size in memory

Upgrade driver 2,038
216 kB

Egress interceptor 290

�

Ingress interceptor 2,056
228 kB

Switchover library 1,464

�

Compare engine 571 48 kB

Common libraries 591 44 kB

Application bindings 1,113 108 kB

Total 8,123 

These three streams of messages enable reasoning about the differences in behavior be-

tween the old version and the new version and indicate the performance gains that can be

expected from the upgrade.

6.2.5 Structure of Imago’s code

All the components of Imago are implemented in C++. Table 6.1 shows the size of the

code base and the memory footprints for these components (not including the heap or the

stack sizes). The upgrade driver and the egress interceptor are statically linked into a single

executable program. The common libraries contain utility algorithms and data structures

used by several other components. The application bindings contain all the application-

specific routines (e.g., for performing data conversions) and, depending on the system-

under-upgrade, constitute between 14%–22% of Imago’s code. Some of these application-

specific routines would also be necessary for upgrading the system offline, during a win-

dow of planned downtime.

6.3 Upgrade-as-a-service

The main disadvantage of Imago is that it requires additional resources, for installing the

new version in a parallel universe and for performing the computationally-intensive com-

parisons and data conversions. However, these additional resources are needed only during

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 84

Dependencies

Old new interactions

Differences in:

• Data-formats

• APIs

• Behaviors

g

C
ur

re
nt

 A
pp

ro
ac

he
s

U
aa

S

Figure 6.9. Inputs required by the upgrade mechanism.

the upgrade, and they could be leased, temporarily, from an existing cloud-computing in-

frastructure (e.g., the Amazon Web Services or a distributed system running VMware’s

vCloud infrastructure). This suggests that Imago enables an upgrade-as-a-service (UaaS)

model [Dumitraș and Narasimhan, 2009c].

Figure 6.9 illustrates the inputs that developers and system administrators must provide

to the upgrade mechanism. Both upgrade-as-a-service and the current approaches for up-

grading distributed systems online (see Section 2.3.3) require understanding the differences

between the behaviors, interfaces and data formats of the old and new versions. Addition-

ally, the current upgrade mechanisms rely on an in-depth knowledge of the old version’s

dependencies and require establishing correctness constraints for the interactions between

the two versions during the upgrade. In contrast, UaaS cannot break hidden dependen-

cies and does not create states with mixed-interacting versions. This simplicity enables the

development of generic upgrade mechanisms, which are applicable to multiple systems

and upgrade scenarios. The experience with Imago suggests that at least three quarters

of the code required for implementing a complex upgrade can be refactored into reusable

upgrade mechanisms, and a much smaller fraction is application specific (see Section 6.2.5).

This illustrates the separation of concerns introduced by Imago and UaaS. The func-

tional aspects of the upgrade (e.g., how to convert persistent data to a new format) require

application-specific code, and they must be addressed regardless of the upgrade mecha-

nism employed. In contrast, the mechanisms for performing an online upgrade (e.g., live-

workload interception, atomic switchover) are applicable to multiple distributed-system

upgrades. UaaS allows enterprises to lease all of the hardware resources and most of the

software components needed to implement a dependable software upgrade.

Moreover, the current online-upgrade mechanisms limited opportunities for testing the

new version and the intermediate steps of the upgrade. By implementing the Runtime-

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 85

testing property, UaaS enables a representative assessment of the new version’s behavior.

Imago does not force the old and new versions to execute in lock step during the testing

phase, which allows it to avoid bypassing the database scheduler in order to control the seri-

alization of concurrent transactionsa technique frequently used in systems for validating

data-migrations or for clustering databases [for example: Cecchet et al., 2004; Oliveira et al.,

2006; Ding et al., 2010]). Aside from reducing the performance penalty during the upgrade,

UaaS allows testing the new version in a realistic environment, where the concurrency-

control mechanisms of the database are not disabled. This testing strategy can reveal bugs

and misconfigurations in the new version or incompatibilities with the deployment envi-

ronment.

Upgrade-as-a-service mechanisms harness the opportunities provided by the emerging

cloud-computing technologies to simplify large-scale upgrades, to allow upgrades to be

executed efficiently online, and to improve their dependability. Upgrades-as-a-service are

likely to be more practically usable, less error-prone and better suited to fast upgrade cycles

than the current upgrade approaches.

6.4 Summary of findings

Software upgrades performed offline provide the opportunity for conducting extensive

tests in order to accepti or reject the outcome of the upgrade. Online upgrades do not have

this opportunity; in the presence of mixed versions, system states are often short-lived and

cannot be tested adequately, while the system-under-upgrade must recover quickly from

any upgrade faults. Unlike the existing strategies for online upgrade, which rely on track-

ing dependencies, Imago trades off spatial overhead (i.e., additional hardware and storage

space) for an increased dependability of the online upgrade.

Imago enforces the AIR properties. A distributed agreement protocol, for atomically

switching to the new version, ensures Atomicity. A parallel universe, where the upgrade

procedure operates without altering the dependencies of the production system, and an op-

portunistic data-transfer protocol, which ensures that the new version receives all the per-

sistent data converted into the appropriate format, guarantee Isolation. An operational-

testing mechanism, which allows Imago to use the live workload for testing the new version

before the switchover, provides Runtime-testing.

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 86

The focus on upgrading distributed systems from end to end allowed me to rely on cer-

tain system properties in order to achieve other goals of the design. For example, Imago is

designed to catch up with the live workload eventually, which requires implementing an

egress interceptor that monitors the live updates to the persistent data objects. This infor-

mation also allows Imago to derive the current rate of queries for the production database,

which indicates whether the system is under high load, and to regulate its data transfer ac-

cordingly. Imago upgrades distributed systems atomically, which requires implementing

an ingress interceptor able to enforce quiescence before the final switchover, while the sys-

tem flushes in-progress requests to the data store in the back-end. This ingress interceptor

also enables the operational testing of the new version, using the live workload. Moreover,

this testing approach requires recording the content of the user interactions and calls for

the use of an active interception technique, such as library interposition. This intercep-

tion technique also allows Imago to determine, dynamically, which middle-tier servers are

actively processing user requests that must be flushed before switching to the new version.

Imago is designed for upgrading enterprise systems with traditional three-tier architec-

tures. The current prototype cannot be readily applied to certain kinds of distributed sys-

tems, such as peer-to-peer systems (e.g. Chord [Stoica et al., 2001]), which violate Imago’s

first assumption by accommodating large numbers of dynamically added ingress-points,

or data-intensive computing (e.g. MapReduce [Dean and Ghemawat, 2004]), which dis-

tribute their persistent data throughout the infrastructure and do not have a well-defined

egress point. Imago is a proof-of-concept implementation of the AIR properties, which are

generic and could be provided, through different mechanisms, to other distributed-system

architectures as well.

Imago builds upon the lessons learned from a previous online-upgrade approach, Eter-

nal [Narasimhan, 1999]. Eternal was a fault-tolerant middleware system that orchestrated

an atomic upgrade of the old version’s replicas, along with all their dependencies. How-

ever, some of these dependencies only manifested dynamically, at runtime. In such cases,

Eternal required manual assistance (e.g. an in-depth pointer analysis), for understanding

the nature and depth of the dependency chain. Recent commercial products for rolling

upgrades continue to exhibit a similar problem, by requiring the application developers to

determine if the interactions among mixed versions are safe [Microsoft Corporation, 2005;

Oracle Corporation, 2008].

CHAPTER 6. DESIGN AND IMPLEMENTATION OF IMAGO 87

In contrast, Imago is designed to treat the system-under-upgrade as a black box, and

it does not rely on any knowledge of the internal dependencies within the old version.

While borrowing a few ingredients (e.g. atomic switchover) from Eternal, Imago focuses

on implementing dependency-agnostic upgrades and employs additional hardware and stor-

age resources. These design choices are based on the intuitionfrom the past experiences

with Eternal from and the current industry trendsthat the new hardware needed for im-

plementing the AIR properties costs less than the process of planning an in-place, online

upgrade. Enterprises sometimes take advantage of a software upgrade to renew their hard-

ware6 as well [Zolti, 2006; Downing, 2008]. Moreover, Imago requires additional resources

only for implementing and testing the online upgrade. The additional storage and com-

pute cycles can be leased, for the duration of the upgrade, from existing cloud-computing

infrastructures (e.g. the Amazon Web Services). This suggests that Imago is the first step

toward an upgrade-as-a-service model. Because it does not require developers and admin-

istrators to reason about the potential interactions between the old version and the new

version during the upgrade, Imago will likely be easier to use correctly than the current

approaches for upgrading distributed systems in-place.

6This practice is supported by the fact that the new functionality included in software upgrades usually

imposes higher demands on the infrastructure. For example, a Gartner study has found that upgrading SAP

R/3 (an enterprise resource planning system) from version 3 to version 4 requires 87% more CPU cycles, 72%

more memory and 33% more storage space [Beatty and Williams, 2006].

How one convinces oneself that a change will operate correctly if it is installed [...] is

nontrivial and may be very critical for some applications.

R. Fabry, How to design a system in which modules can be changed on the fly, 1976

Chapter 7

Dependability Benchmarking for Software Upgrades

CHAPTERS 5 and 6 introduced three abstract properties aiming to improve the de-

pendability of software upgrades and described the mechanisms required for imple-

menting these properties in a practical system, but they did not establish the dependability

improvements that can be expected from this approach or its limitations. Similarly, the

prior evaluations of upgrade mechanisms focus on assessing performance or the range of

updates supported, rather than on dependability. This chapter introduces a benchmark for

the dependability of distributed-system upgrades, allowing direct comparisons between

the downtime and the risk of upgrade failure presented by Imago and by other upgrade

approaches.

For example, industry best-practices recommend rolling upgrades, which upgrade-

and-reboot one node at a time, in a wave rolling through the cluster. Rolling upgrades

cannot perform incompatible upgrades (e.g., changing a component’s API). However, this

approach is believed to reduce the risks of upgrading because failures are localized and

might not affect the entire distributed system [Office of Government Commerce, 2007; Or-

acle Corporation, 2008].

In this chapter, I challenge this conventional wisdom by showing that AIR upgrades

provide more dependability and flexibility. Piecewise, gradual upgrades can cause global

system failures by breaking hidden dependenciesdependencies that cannot be detected

automatically or that are overlooked because of their complexity. Moreover, completely

eliminating software defects would not guarantee the reliability of enterprise upgrades be-

cause faults in the upgrade procedure can lead to broken dependencies.

These findings are the result of a novel approach for benchmarking the dependability of

88

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 89

upgrade mechanisms by reproducing the upgrade workflows that are commonly observed

to induce downtime. The benchmark focuses on the leading causes of upgrade failures

breaking hidden dependenciesand of planned downtimechanging database schemata

and it enables direct comparisons between the behavior of various upgrade mechanisms in

the presence of upgrade faults and of complex schema changes. I use this benchmark to

evaluate the dependability of Imago (see Chapter 6) and of two online-upgrade mecha-

nisms frequently used in practice, big flip and rolling upgrades [Brewer, 2001].

Compared with the existing strategies for online upgrades, Imago trades off the need

for additional resources for an improved dependability of the online upgrade. While it

cannot prevent latent configuration errors, Imago eliminates the internal single-points-of-

failure for upgrade faults and the risk of breaking hidden dependencies by overwriting an

existing system. Additionally, Imago avoids creating system states with mixed versions,

which are difficult to test and to validate. The benchmark results suggest that an atomic,

dependency-agnostic approach, such as Imago, can improve the dependability of online

software-upgrades in spite of hidden dependencies.

Challenge and Contributions

A large body of anecdotal information suggests that software upgrades are unreliable and

often result in downtime or system failures, but this information is incomplete and does

not allow a rigorous assessment of the dependability of systems that undergo software

upgrades. The known cases of failed upgrades cannot be replicated because we lack infor-

mation on the system configurations and network topologies used, the detailed upgrade

workflows, the errors encountered, etc. In consequence, the previous evaluations of up-

grade mechanisms focus on performance and runtime overhead, rather than on depend-

ability.

Online software upgrades alter the behavior of distributed systems and interact with

their workloads. To enable meaningful comparisons among several upgrade mechanisms,

an upgrade-centric benchmark must specify (i) the workflows for the transition from the

old version to the new version and (ii) the classes of observable system behavior that cor-

respond to failures. Dependability benchmarking is challenging because, unlike system

performance, the dependability attributes (e.g., availability, reliability) cannot be measured

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 90

directly. A benchmark that provides quantitative assessments must be based on a large

sample of empirical observations, in order to ensure statistical relevance.

The key idea behind the benchmark introduced in this chapter is to rely on the upgrade-

centric fault model (Chapter 3) to assess whether an upgrade mechanism is prone to fail-

ures and on the types of schema changes that are difficult to integrate in an online upgrade

(Chapter 4) to assess whether the same mechanism requires planned downtime. Under-

standing the leading causes of upgrade failures and the leading causes of planned down-

time allows me to conduct fault-injection experiments that produce representative results for

the dependability of the mechanisms evaluated. Because upgrade mechanisms can make

different trade-offs, which might be appropriate for different systems and settings, I avoid

reporting a single number indicating which mechanism is the best [DeWitt, 1993]. Instead,

the goal of the fault-injection experiments is to determine the qualitative reasons for un-

availability during online upgrades in distributed systems, as a first step toward a compre-

hensive approach for dependability benchmarking.

Assumptions. The outcome of some upgrade faults is difficult to quantify because they

have no measurable impact on the system’s throughput or response time. For example, a

latent error is, by definition, a condition that is benign in the current state of the system but

that might be exposed by future changes in the workload or the system configuration. In

this chapter, I assume that the effect of a latent error is the same as the effect of a full outage

(i.e., the system becomes unavailable). I also assume that an upgrade can be stopped as

soon as a problem is identified, instead of allowing the procedure to continue to disable

other components of the system-under-upgrade. Moreover, while throughput degrada-

tions, response-time increases or failures of database queries can point to infrastructure

failures, protocol- and application-level errors are hard to determine through such black-

box metrics.1 Because the semantic of application errors is domain-specific, the upgrade

administrator must ultimately rely on the system’s error reporting mechanisms to deter-

mine whether the upgrade has failed. In this chapter I assume that all errors are detected,

so that, even if completing a failed upgrade would have induced a total loss of throughput
1For example, when an Internet system starts producing HTTP errors for all the incoming requests, the

throughput usually increases because the replies are generated by the front-end servers without involving the

rest of the system.

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 91

(e.g., by disabling all the servers in the front-end), the outcome is considered to be a partial

loss of availability rather than a full outage.

Non-goals. The benchmark does not cover the secondary causes of planned and un-

planned downtime, such as competitive upgrades or software defects. The benchmark is

also not definitive; like the TPC and SPEC benchmarks, which focus on performance eval-

uation, the upgrade-dependability benchmark should be updated periodically by reevalu-

ating the leading causes of downtime.

This chapter makes three contributions:

• I propose benchmarking the dependability of distributed systems through a system-

atic fault-injection approach, using the upgrade-centric fault model introduced in

this dissertation. Unlike the prior approaches for dependability benchmarking [Ka-

noun and Spainhower, 2008], the benchmark introduced in this chapter focuses on

failures and downtime that result from software upgrades, rather than from hard-

ware or software defects.

• I propose assessing the planned-downtime requirements expected from an upgrade

mechanism through an analysis of the database-schema changes that the mechanism

supports without causing unavailability. Unlike the prior approaches for automat-

ing database-schema evolution [for example: Curino et al., 2008a], this assessment

focuses on the schema changes that prevent online upgrades and impose planned

downtime.

• I evaluate the benefits of AIR software upgrades using this benchmarking approach.

Imago provides a better availability in the presence of upgrade faults than two al-

ternative approaches, rolling upgrade and big flip (result significant at the p = 0.01

level).

Section 7.1 describes the new dependability benchmark. I use this benchmark to assess the

availability of systems undergoing software upgrades, in the fault-free case (Section 7.2)

and in the presence of upgrade faults (Section 7.3). Section 7.4 focuses on benchmarking

the system reliability.

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 92

7.1 A benchmark for upgrade dependability

While the upgrade-dependability benchmark is able to produce statistically-significant re-

sults indicating which upgrade mechanism provides better availability, the quantitative im-

provements depend on the system architecture and on the specific faults injected, and they

might not be reproducible for a different system-under-upgrade. The primary goal of this

benchmark is to exhibit the qualitative reasons for unavailability during online upgrades,

and to emphasize the opportunities for improving the current state of the art in software

upgrades.

7.1.1 Upgrade mechanisms and their trade-offs

Dynamic software update (DSU) mechanisms [for example: Segal and Frieder, 1993;

Neamtiu et al., 2006; Arnold and Kaashoek, 2009] enable online upgrades for systems that

lack hardware redundancy. These mechanisms require programmers to annotate (e.g., by

indicating suitable update points in the source code) or to modify the source code of the

old and new versions. DSU can introduce new sources of errors (e.g., if the update is ap-

plied at the wrong time [Hayden et al., 2009]) and the behavior of a system undergoing

dynamic updates is not guaranteed to conform to the specification of either the old or the

new version and is difficult to validate in advance [Segal, 2002]. Moreover, active code (i.e.,

functions on the call stack of the running program) cannot be replaced easily, and updating

multi-threaded programs remains a challenging task [Neamtiu and Hicks, 2009].

Industry best-practices recommend carefully planning the upgrades and minimizing

their risks by deploying the new version gradually, in successive stages [Office of Gov-

ernment Commerce, 2007]. For example, two widely used upgrading approaches are the

rolling upgrades and the big flip [Brewer, 2001]. The first approach upgrades and then re-

boots each node, in a wave rolling through the cluster. The second approach upgrades half

of the nodes while the other half continues to process requests, and then the two halves

are switched. Both these approaches attempt to minimize the downtime by performing an

online upgrade. A big flip upgrade trades resources for dependability, by reducing the sys-

tem’s capacity to 50% during the online upgrade in order to isolate the production system

from the upgrade operations. However, most systems cannot be divided cleanly in two

equivalent halves and some of the resources must be shared by the two halves during the

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 93

upgrade. For instance, the persistent data is read and written to by both halves, and an up-

grade that modifies the structure or the content of the persistent data might induce a failure

in the online half. A rolling upgrade imposes very little capacity loss, but it requires the old

and new versions to interact with the data store and with each other in a compatible man-

ner. Ajmani et al. [2006] address some of the limitations of rolling upgrades by enabling

arbitrary code modifications, by synchronizing the states of multiple versions and by in-

troducing techniques for ensuring safety at runtime (e.g., temporarily disallowing certain

requests).

However, distributed-system upgrades remain vulnerable to upgrade faults of Types

1–4, which break hidden dependencies (see Chapter 3). Existing systems mitigate these

problems through two approaches: discovering dependencies automatically and testing

the old version and the new version side-by-side, using a sandboxed environment. For

example, Galapagos [Magoutis et al., 2008] analyzes the content of configuration files to

discover the relationships among storage objects, while Dig et al. [2006] propose detecting

source-code refactorings through a combination of syntactic and semantic analyses. These

approaches are unable to detect the complete set of dependencies that might be broken

during a software upgrade.

Sandbox-testing approaches [for example: Nagaraja et al., 2004; Oliveira et al., 2006;

Ding et al., 2010] require knowledge of the systems’s behavior, e.g., the communication

protocols used and the forms of non-determinism that are allowed. For instance, rout-

ing requests to a different application server in the sandbox environment would produce

equivalent results, but processing database transactions in a different order would cause

the test to fail. To enforce a common order of execution, database requests must be seri-

alized in order to prevent transaction concurrency, for both the production and sandbox

databases [Oliveira et al., 2006; Ding et al., 2010]. Aside from inducing a performance

penalty during the upgrade, this intrusive technique prevents testing the upgrade’s im-

pact on the concurrency-control mechanisms of the database, which limits the usefulness

of the validation results. Moreover, some errors remain latent if the components are tested

in isolation [Nagaraja et al., 2004].

Compared with these approaches, Imago does not change the way requests are

processed in the production system and only requires knowledge of the ingress and

egress points. Imago aims to avoid planned downtime by enabling long-running,

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 94

computationally-intensive conversions to a new data format. However, unlike DSU, rolling

upgrades and other techniques for in-place upgrade, Imago never produces mixed versions

and does not have to establish correctness conditions for the interactions among these ver-

sions. Imago is similar to a big flip in that it trades resource overhead for improving de-

pendability and it performs the end-to-end upgrade as an atomic action.

7.1.2 Downtime workflows

Benchmarks that focus on performance evaluations [for example: DeWitt, 1993; Amza et al.,

2002; Cooper et al., 2010] specify rules for generating input workloads that are representa-

tive for real-world systems. However, software upgrades alter the behavior of the systems

being evaluated. A benchmark for upgrade mechanisms should concentrate on the pro-

cedure used during the upgrade. A benchmark focusing on dependability should specify

upgrade workflows that are representative for the causes of unavailability and failures re-

sulting from software upgrades in real-world systems.

Upgrade scenario. The dependability benchmark uses the Rice University Bidding

System (RUBiS) [Amza et al., 2002], an open-source online bidding system modeled after

eBay, as the system-under-upgrade. RUBiS has been studied extensively, and several of its

misconfiguration- and failure-modes have been previously reported [Nagaraja et al., 2004;

Candea et al., 2004; Oliveira et al., 2006; Zheng et al., 2007]. RUBiS has multiple implemen-

tations (e.g., using PHP, EJB, Java Servlets) that provide the same functionality and that use

the same database schema. I study an upgrade scenario whose goal is to upgrade RUBiS

from the version using Enterprise Java Beans (EJB) to the version implemented in PHP. RU-

BiS is deployed in a three-tier infrastructure, comprising a front-end with two Apache web

servers (acting as proxies), a middle tier with four Apache servers that execute the business

logic of RUBiS, and a MySQL database in the back-end. More specifically, the upgrade aims

to replace the JBoss servers in the middle tier with four Apache servers where we deploy

the PHP scripts that implement RUBiS’s functionality. The RUBiS database contains 8.5 mil-

lion data objects, including 1 million items for sale and 5 million bids. I use RUBiS’s two

standard workloads, based on the TPC-W specification [Menascé, 2002], which are typical

for e-commerce web sites.

I conduct experiments in a cluster with 10 machines (Pentium 4 at 2.4 GHz, 512 MB

RAM), connected by a 100 Mbps LAN. The performance bottleneck in this system is the

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 95

StopStart

Middle tier2

Middle tier1 Stop
JBoss

Start
Apache

Stop
JBossApache

Front-end1

Middle tier2

Reconfigure Reconfigure
Database

TestTest

Front-end2

Reconfigure Reconfigure
Database

TestTest

Middle tier4

Middle tier3 Stop
JBoss

Start
Apache

Stop
JB

Start
JBossApache

(a) Rolling upgrade.

Old version

Middle tier2

Middle tier1

Upgrade

Upgrade

New version

Front-end1

Middle tier2

Reconfigure Reconfigure
D t b

Test

Front-end2

Reconfigure Reconfigure
Test

Database

Middle tier4

Middle tier3 Upgrade

UpgradeUpgrade

(b) Big-flip upgrade.

Mixed versions

U

Unavailability
Mixed versions

Uold

Unew

(c) Imago.

Figure 7.1. Current approaches for online upgrade in distributed enterprise systems. A rolling upgrade modifies,
and then reboots, each node at a time, in a wave rolling through the distributed system. A big-flip upgrades
one half of the nodes while the other half continue servicing requests. Imago duplicates the entire architecture,
transferring all the persistent data to Unew.

amount of physical memory in the front-end web servers, which limits the system’s capac-

ity to 100 simultaneous clients.

Upgrade procedures. I compare three online-upgrade mechanisms: Imago, rolling up-

grades and big flip. These procedures are illustrated in Figure 7.1. For the rolling upgrade

and the big flip, the front-end and back-end remain shared between the old and new ver-

sions. Rolling upgrades execute for a while in a mode with mixed versions in the middle

tier, while the big flip avoids this situation but uses only half of the middle-tier servers.

With the former approach an upgraded node is tested online while the latter approach

performs offline tests on the upgraded nodes and re-integrates them in the online system

only after the flip has occurred. In contrast, Imago duplicates the entire architecture, trans-

ferring all the data objects items to Unew, in order to avoid breaking dependencies during

the upgrade.

Fault injection. The upgrade-centric fault model presented in Chapter 3 includes four

distinct types of faults: (1) simple configuration errors (e.g., typos); (2) semantic configura-

tion errors (e.g., misunderstood effects of parameters); (3) broken environmental dependen-

cies (e.g., library or port conflicts); and (4) data-access errors, which render the persistent

data partially-unavailable. This fault model was created by analyzing data from three in-

dependent sources, which describes 55 individual faults (listed in Appendix B). I select 12

faults from this list (three for each fault type):

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 96

Type 1

Type 2

Type 3

Type 4

wrong_apache config_nochange config_staticpath

config_samename apache_satisfy apache_largefile

apache_lib apache_port_f apache_port_m

wrong_privileges wrong_shutdown db_schema

This selection prioritizes faults that have been confirmed independently, in different

sources or in separate experiments from the same source. I inject these faults manually,

during the three upgrade procedures compared in this chapter (Figure 7.1). I repeat each

fault-injection procedure three times and I report the average impact, in terms of response

time and yield-loss, on the system. Because this manual procedure does not accommodate

injecting a large number of faults, the results must be validated using statistical-significance

tests that compensate for the small sample sizes. I complement these experiments with an

automated injection of randomly generated Type 1 faults.

7.1.3 Evaluation metrics

I estimate the effectiveness in performing an online upgrade, in the absence of upgrade-

faults, by comparing the client-side latency of RUBiS before, and during, the upgrade for

each upgrade mechanism. I assess the impact of breaking hidden dependencies by injecting

upgrade faults and by measuring the effect of these faults on the system’s expected avail-

ability. Specifically, I estimate the system’s yield [Brewer, 2001], which is a fine-grained

measure of availability with a consistent significance for windows of peak and off-peak

load:

Yield(f ault) =
Requests

completed
(f ault)

Requests
issued

7.1.4 Upgrade faults and failures

An upgrade fault affects a single component and might be masked by the distributed sys-

tem or by the upgrade mechanism. An upgrade failure prevents the system from correctly

providing an essential functionality [Avižienis et al., 2004]. From a client’s perspective, up-

grade faults might cause a full outage, a partial outage (characterized by a higher response

time or a reduced throughput) or a delayed outage (potentially triggered, in the future,

by latent errors or security vulnerabilities). Upgrade faults might also cause the system to

function incorrectly or they might have no effect at all. For example, Figure 7.2 illustrates

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 97























 

Figure 7.2. Upgrade failures and the faults that may induce them. The line thickness indicates the proportion
of failures caused by a certain type of upgrade fault, according to the data sources described in Chapter 3.

the root causes for each of these failures, as reported in the three studies that provided data

for the upgrade-centric fault model (see Section 3.2.3). This mapping is not universal and

depends on the systems examined in the three studies. While the studies included reports

of software defects, I focus on Types 1–4 of upgrade faults, which correspond to the leading

cause of upgrade failuresbreaking hidden dependencies.

A full outage (Yield = 0) is recorded when the upgrade-fault immediately causes the

throughput of RUBiS to drop to zero. Latent errors remain undetected until they are even-

tually exposed by workload changes (e.g., a peak load) or by system reconfigurations. In

contrast, security vulnerabilities open up the system to external attacks but do not manifest

themselves with benign system workloads. Incorrect functionality corresponds to behav-

ior that violates the system’s specification and that is not exposed by the error-reporting

mechanisms of the application or of the infrastructure. Increased latency and decreased

throughput are two forms of degraded functionality, which may or may not be acceptable

for an upgrade mechanism. For example, during a big flip the system typically experi-

ences a 50% drop in throughput, while one half of the system is upgraded. This outcome

is expected and cannot be considered a failure.

An upgrading mechanism is able to mask a dependency-fault when the fault is detected

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 98

before reintegrating the affected node in the online system. To avoid additional approxima-

tions, I do not attempt to estimate the durations of outages caused by the broken dependen-

cies. As the yield calculations do not include the time needed to mitigate the failures, the

values reported estimate the initial impact of a fault but not the effects of extended outages.

To assess the planned-downtime requirements of each upgrade mechanism, I rely on an

established benchmark for schema evolution in enterprise systems. The PRISM workbench

[Curino et al., 2008a] uses the evolution of Wikipedia’s database schema to evaluate auto-

mated mechanisms for performing data transformations. Additionally, Chapter 4 identifies

the schema changes that commonly impose downtime for software upgrades. For the pur-

pose of dependability benchmarking, I examine whether an upgrade mechanism supports

these schema changes, in the absence of upgrade faults. I also measure the planned down-

time that each mechanism imposes on its own.

7.2 Availability and overhead without faults

This section seeks to answer the question: How much planned downtime do upgrade mecha-

nisms impose? A successful software upgrade may still require planned downtime (for an

offline upgrade) or it may impose a high runtime overhead (for an online upgrade). As

discussed in Section 4.3, complex database-schema changes, such as the ones that occurred

during the upgrade history of Wikipedia, prevent rolling upgrades and impose downtime.

This problem affects the big flip as well, because in this approach the database is shared

between the two halves of the system. With these approaches, the system-under-upgrade

is unavailable for 12 h, while the persistent data is converted to the new schema and loaded

into the database of the new version.

Imago does not require planned downtime for performing the schema changes (see

Section 6.1). However, Imago imposes a period of quiescence before switching to Unew, by

rejecting write requests at the I interceptors and flushing the in-progress updates to the

persistent storage. Figure 7.3 shows how the duration of the flush operation varies with

the system’s incoming load at the time when the atomic switchover is initiated. When the

middle-tier hosts are running Apache/PHP servers, the flush operation requires up to 140

s (110 s, on average, when the front-end is overloaded), including the synchronization re-

quired by the protocol from Figure 6.5. Flushing JBoss application servers requires up to

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 99





























   





Figure 7.3. The planned downtime imposed by Imago corresponds to the time needed to complete the atomic
switchover.

107 s (100 s, on average, when the front-end is overloaded). The Apache version does not

accept more than 62 concurrent requests and becomes saturated faster than the JBoss ver-

sion because, for Apache, the entire server is restarted in order to flush the requests to the

database. For JBoss, I trigger a selective reload of the EJB application (see Section 6.2.3)

involved in the upgrade. In both cases, the duration of Imago’s atomic switchover does not

increase indefinitely with the incoming load of client requests (note that the x-axis in Fig-

ure 7.3 is plotted on a logarithmic scale), because the front-end servers enforce admission

control and do not allow a large number of in-progress requests in the system.

The switchover protocol does not cause a full outage, as the clients can invoke the read-

only functionality of RUBiS (e.g., searching for items on sale) while Imago is flushing the

in-progress requests. Moreover, assuming that the inter-arrival times follow an exponential

distribution and the workload mix includes 15% write requests [as specified by TPC-W:

Menascé, 2002], I can estimate the maximum request rate that the clients may issue without

being denied access. If the switchover is performed during a time window when the live

request rate does not exceed 0.5 requests/min, the clients are unlikely (p=0.05) to be affected

by the flush operations.

The latency of querying the content of a data item from Uold and inserting it in Unew

dominates the performance of the data-transfer; less than 0.4% out of the 5 ms needed,

on average, to transfer one item are spent executing Imago’s code. Under a flash-crowd

scenario with 1000 concurrent clients, when the site is severely overloaded, Imago must

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 100

0

20

40

60

80

100

L
at

en
cy

 [
µ

s]
Baselin

e

Data tra
nsfer

Ingress interceptor
Im

ago

Figure 7.4. Breakdown of Imago’s overhead.

make progress, opportunistically, for 2 minutes per hour in order to catch up eventually

and complete the data transfer.

Figure 7.4 compares the latency overhead introduced by different Imago components

(the error bars indicate the 90% confidence intervals for the RUBiS response time). The I

interceptors impose a fixed overhead of 4 ms per request; this additional processing time

does not depend on the requests received by the RUBiS front-ends.

The rolling upgrade does not impose any overhead, because sequentially rebooting all

the middle-tier nodes does not affect the system’s latency or throughput. The big flip im-

poses a similar run-time overhead as Imago because half of the system is unavailable during

the upgrade (see Figure 7.5). With Imago, the upgrade completes after 13 h which is the

time needed for transferring all the persistent data plus the time when access to Uold was

yielded to the live workload. This duration is comparable to the time required to perform

an offline upgrade: in practice, typical Oracle and SAP migrations require planned down-

times of tens of hours to several days [Downing, 2008].

7.3 Availability under upgrade-faults

This section seeks to answer the question: How much unplanned downtime are upgrade mecha-

nisms likely to introduce? Table 7.1 describes the upgrade faults injected and their immediate,

local manifestation. I was not able to replicate the effects of one fault (apache_largefile,

which was reported as bugs 42751 and 43232 in the field study from Chapter 3) in the ex-

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 101

Rolling Upgrade Big Flip Imago

M
ed

ia
n

R
U

Bi
S

La
te

nc
y

[m
s]

0.00

0.01

0.02

0.03

0.04

Figure 7.5. Runtime overhead imposed by online-upgrade mechanisms.

perimental test-bed. I inject the remaining 11 faults in the front-end (5 faults), middle tier (4

faults) and the back-end (3 faults) during the online upgrade of RUBiS. In a rolling upgrade,

a node is reintegrated after the local upgrade, and resulting errors might be propagated to

the client. The big flip can mask the upgrade faults in the offline half but not in the shared

database. Imago masks all the faults that can be detected (i.e., those that do not cause latent

errors).

Figure 7.6 shows the impacts that Types 1–4 of upgrade faults have on the system-under-

upgrade. Certain dependency-faults lead to an increase in the system’s response time. For

instance, the apache_port_f fault doubles the connection load on the remaining front-end

server, which leads to an increased queuing time for the client requests and a 8.3% increase

in response-time when the fault occurs. This outcome is expected during a big-flip, but not

during a rolling upgrade (see Figure 7.1). This fault does not affect the system’s throughput

or yield because all of the requests are eventually processed and no errors are reported to

the clients.

The config_nochange and wrong_apache faults prevent one front-end server from

connecting to the new application servers in the middle tier. The front-end server affected

continues to run and to receive half of the client requests, but it generates HTTP errors

(Yield = 0.5). Application errors do not manifest themselves as noticeable degradations of

the throughput, in terms of the rate of valid HTTP replies, measured at either the client-

side or the server-side. These application errors can be detected only by examining the

actual payload of the front-end’s replies to the client’s requests. For instance, db_schema

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 102

Table 7.1. Description of the upgrade faults injected.

Name (Instances)
[source]

Location Fault-Injection Procedure Local Manifestation

wrong_apache (2)
[Nagaraja et al., 2004]

Front-end Restarted wrong version of
Apache on one front-end.

Server does not forward re-
quests to the middle tier.

config_nochange (1)
[Nagaraja et al., 2004]

Front-end Did not reconfigure front-end
after middle-tier upgrade.

Server does not forward re-
quests to the middle tier.

Ty
pe

1

config_staticpath (2)
[Nagaraja et al., 2004;
Dumitraș et al., 2008]

Front-end Misconfigured path to static
web pages on one front-end.

Server does not forward re-
quests to the middle tier.

config_samename (1)
[Nagaraja et al., 2004]

Front-end Configured identical names
for the application servers.

Server communicates with
a single middle-tier node.

apache_satisfy (1)
[Dumitraș et al., 2008]

Middle tier Used Satisfy directive incor-
rectly.

Clients gain access to re-
stricted location.

Ty
pe

2

apache_largefile (2)
[Dumitraș et al., 2008]

Middle tier Used mmap() and sendfile()

with network file-system.
No negative effect (could
not replicate the bug).

apache_lib (1)
[Dumitraș et al., 2008]

Middle tier Shared-library conflict.
Cannot start application
server.

Ty
pe

3

apache_port_f (1)
[Dumitraș et al., 2008]

Front-end Listening port already in use
by another application.

Cannot start front-end web
server.

apache_port_m (1)
[Dumitraș et al., 2008]

Middle tier Listening port already in use
by another application.

Cannot start application
sever.

wrong_privileges (2)
[Nagaraja et al., 2004;
Oliveira et al., 2006]

Back-end Wrong privileges for RUBiS
database user.

Database inaccessible to
the application servers.

Ty
pe

4 wrong_shutdown (2)
[Nagaraja et al., 2004;
Oliveira et al., 2006]

Back-end Unnecessarily shut down the
database.

Database inaccessible to
the application servers.

db_schema (4)
[Oliveira et al., 2006]

Back-end Changed DB schema (re-
named bids table).

Database partially inacces-
sible to application servers.

causes intermittent application errors that come from all four middle-tier nodes. As this

fault occurs in the back-end, both the rolling upgrade and the big flip are affected. Imago

masks this fault because it does not perform any configuration actions on Uold. Similarly,

Imago is the only mechanism that masks the remaining Type 4, wrong_privileges and

wrong_shutdown. The apache_satisfy fault leads to a potential security vulnerability,

but does not affect the yield or the response time. This fault can be detected, by issuing

requests for the restricted location, unlike the config_staticpath fault, which causes the

front-end to serve static web pages from a location that might be removed in the future.

Because this fault does not have any observable impact during the rolling upgrade or the

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 103

Type 1 Type 2 Type 3 Type 4

N
um

be
r o

f f
au

lts

0

1

2

3

(a) Rolling Upgrade.

Type 1 Type 2 Type 3 Type 4

0

1

2

3

(b) Big Flip.

Type 1 Type 2 Type 3 Type 4

Latent error
Security vulnerability
Increased latency
Degraded throughput
Full outage

0

1

2

3

(c) Imago.

Figure 7.6. Impact of upgrade faults.

big flip, I consider that it produces a latent error. Imago masks config_staticpath be-

cause the obsolete location does not exist in Unew, and the fault becomes detectable. The

config_samename fault prevents one front-end server from forwarding requests to one

middle-tier node, but the three application servers remaining can successfully handle the

RUBiS workload, which is not computationally-intensive. This fault produces a latent error

that might be exposed by future changes in the workload or the system architecture and is

the only fault that Imago is not able to mask.

The rolling upgrade masks 2 faults, which occur in the middle tier and do not degrade

the response time or the yield, but have a visible manifestation (the application server fails

to start). The big flip masks 6 faults that are detected before the switch of the halves. Imago

masks 10 out of the 11 injected faults, including the ones masked by the big flip, and ex-

cluding the latent error. A paired, one-tailed t-test2 indicates that, under upgrade faults,

Imago provides a better yield than the rolling upgrade (significant at the p = 0.01 level)

and than the big flip (significant at the p = 0.05 level).

7.4 Upgrade reliability

This section seeks to answer the question: How do upgrade faults affect the reliability of the

system-under-upgrade? Figure 7.6 suggests that broken environmental dependencies (Type

3) have little impact on enterprise-system upgrades. The manifestations of Type 3 faults

(e.g., a server’s failure to start) are easy to detect and compensate for in any upgrading
2The t-test takes into account the pairwise differences between the yield of two upgrading approaches and

computes the probability p that the null hypothesisthat Imago doesn’t improve the yieldis true [Chatfield,

1983].

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 104

mechanism. Furthermore, the fault-injection results show that rolling upgrades are vulner-

able to upgrade faults because the upgrade is not an atomic operation and it risks break-

ing hidden dependencies among the components of the distributed system. Contrary to

the conventional wisdom, upgrade faults can have a global impact on the system-under-

upgrade, inducing outages, throughput- or latency-degradations, security vulnerabilities

or latent errors.

Compared with a big flip, Imago improves the availability because (i) it removes the

single points of failure for upgrade faults and (ii) it performs a clean installation of the new

system. For instance, the config_staticpath fault induces a latent error during the big

flip because the upgrade overwrites an existing system. The database represents a single

point of failure for the big flip, and any Type 4 fault leads to an upgrade failure for this

approach. Such faults do not always cause a full outage; for instance, the dbschema fault

introduces a throughput degradation (with application errors). However, although in this

case the application error-rate is relatively low (9% of all replies), the real impact is much

more severe: while clients can browse the entire site, they cannot bid on any items. In

contrast, Imago eliminates the single-points-of-failure for upgrade faults by avoiding an

in-place upgrade and by isolating the system version in Uold from the upgrade operations.

Imago is vulnerable to latent configuration errors such as config_samename, which

escapes detection. This failure is not the result of breaking a shared dependency, but cor-

responds to an incorrect invariant of the new system, established during a fresh install.

This emphasizes the fact that any upgrading approach, even Imago, will succeed only if an

effective mechanism for testing the upgraded system is available.

Because this qualitative evaluation does not suggest how often the upgrade faults pro-

duce latent errors, I inject Type 1 faults automatically, using ConfErr [Keller et al., 2008].

ConfErr explores the space of likely configuration errors by injecting one-letter omissions,

insertions, substitutions, case alterations and transpositions that can be created by an op-

erator who mistakenly presses keys in close proximity to the mutated character. I ran-

domly inject 10 typographical and structural faults into the configuration files of Apache

web servers from the front-end and the middle tier, focusing on faults that are likely to

occur during the upgrade (i.e., faults affecting the configuration directives of mod_proxy

and mod_proxy_balancer on the front-end and of mod_php on the middle tier). Apache’s

syntactic analyzer prevents the server from starting for 5 front-end and 9 middle-tier faults.

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 105

Apache starts with a corrupted address or port of the application server after 2 front-end

faults and with mis-configured access privileges to the RUBiS URLs after 1 middle-tier

fault. The remaining three faults, injected in the front-end, are benign because they change

a parameter (the route from a BalancerMember directive) that must be unique but that has

no constraints on other configuration settings. These faults might have introduced latent

errors if the random mutation had produced identical routes for two application servers;

however, the automated fault-injection did not produce any latent errors. This suggests that

latent errors are uncommon and that broken dependencies, which are tolerated by Imago,

represent the predominant impact of Type 1 faults.

7.5 Summary of findings

This chapter introduces a benchmark for the dependability of software upgrades, which

focuses on the leading causes of planned and unplanned downtime. The impact of Type 3

faults (broken environmental dependencies) seems to be easy to detect using known tech-

niques. Faults of Type 1, 2, and 4 frequently break hidden dependencies in the system-

under-upgrade. Existing mechanisms for online upgrade are vulnerable to these faults

because even localized failures might have a global impact on the system. Manual and au-

tomated fault-injection experiments suggest that Imago improves the dependability of the

system-under-upgrade by eliminating the single points of failure for upgrade faults. The

upgrade duration is comparable to that of an offline upgrade, and Imago can switch over

to the new version without data loss and, during off-peak windows, without disallowing

any client requests.

The upgrade-dependability benchmark emphasizes the availability improvements that

derive from the AIR properties provided by Imago. Specifically, Isolation reduces the

risk of breaking hidden dependencies, which is the leading cause of upgrade failures (see

Chapter3), while Atomicity increases the upgrade reliability by avoiding system states

with mixed versions. Moreover, because it does not need to maintain the synchronize the

state of multiple version on-the-fly, Imago is able to perform complex schema changes that

commonly require planned downtime (see Chapter 4). While not covered by this depend-

ability benchmark, Runtime-testing allows testing states that emerge at runtime and will

become important, in the future, for systems that incorporate untested components or that

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 106

Table 7.2. Trade-offs among the design choices for online upgrades in distributed systems.

In-place Off-site
M

ix
ed

ve
rs

io
ns

• Risk propagating corrupted data

• Need indirection layer, with:

– Potential run-time overhead
– Installation downtime

• Incur run-time overhead due to data conversions

• Risk breaking hidden dependencies

• Risk propagating corrupted data

• Need indirection layer, with:

– Potential run-time overhead
– Installation downtime

• Incur spatial overhead

A
to

m
ic

• Incur run-time overhead due to data conversions

• Risk breaking hidden dependencies

• Incur spatial overhead

• Incur spatial overhead

are provisioned by third parties. Imago improves the dependability of software upgrades

because it implements dependency-agnostic upgrades.

There are two major design choices for software-upgrade mechanisms: (i) whether the

upgrade will be performed in-place, replacing the existing system, and (ii) whether the up-

grade mechanisms will allow mixed versions, which interact and synchronize their states

until the old version is retired. Table 7.2 compares these choices. Mixed versions save stor-

age space because the upgrade is concerned with only the parts of the data schema that

change between versions. However, mixed versions present the risk of breaking hidden

dependencies; e.g., if the new version includes a software defect that corrupts the persis-

tent data, this corruption will be propagated back into the old version, replacing the master

copy. Mixed, interacting versions also require an indirection layer, for dispatching requests

to the appropriate version [Ajmani et al., 2006], which might introduce run-time overhead

and will likely impose downtime when it is first installed. A system without mixed ver-

sions performs the upgrade in a single direction, from the old version to the new one.

However, for in-place upgrades, the overhead due to data conversions can have a nega-

tive impact on the live workload. When, instead, an upgrade uses separate resources for

the new version, the computationally-intensive processing can be performed downstream,

on the target nodes (as in the case of Imago). Dependability benchmarking shows that in-

CHAPTER 7. DEPENDABILITY BENCHMARKING FOR SOFTWARE UPGRADES 107

place upgrades introduce a high risk of breaking hidden dependencies, which degrades

the expected availability.

Upgrade faults may cause several types of failures, such as full outages, throughput

degradations, latency increases, etc. Distributed enterprise systems monitor these perfor-

mance and dependability metrics using different autonomic managers, which take correc-

tive actions when the target levels are not met. These independent actions lead to reduced

Isolation levels, which are further explored in the next chapter.

The meadow sustains itself on a steady-state

basisunless men come along and mess it up.

Ernest Callenbach, Ecotopia, 1975

Chapter 8

Relaxing the Isolation Property:

Impact Assessment for Software Upgrades

THE benchmark described in Chapter 7 suggests that the AIR properties improve the

dependability of distributed systems undergoing major software upgrades. Relax-

ing these properties opens the door to runtime behaviors that are poorly understood and

difficult to ascertain. Modern distributed systems are typically assembled from third-party

components, which are optimized for the common case among many workloads, and often

span multiple administrative domains. In such systems, online upgrades might disrupt

the performance expectations of the critical services delivered by the infrastructure, and

the interactions among multiple versions of the software expose the system to race con-

ditions that can introduce latent errors or data corruption. In this chapter, I examine the

implications of relaxed AIR properties for systems contained within a single administrative

domain (e.g., a private data center). Chapter 9 broadens the scope of this analysis to sys-

tems relying on components that are provisioned and administered by third parties, such

as public cloud-computing infrastructures.

The Isolation property prevents a software upgrade from breaking hidden dependen-

cies. While Imago enforces Isolation by relying on additional hardware resources (see

Chapter 6), this approach might be too expensive for some systems. In these cases, where

the upgrade mechanism weakens the Isolation guarantees, the impact of the upgrade on

the system behavior must be assessed in advance. The scope of impact assessment extends

beyond tracking functional dependencies among heterogeneous components, because the

system performance and reliability also depend on the workload and vary over time. More-

over, the software upgrades might have their own deadlines for completing all the planned

108

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 109

changes, which must also be included in the impact assessment.

In practice, distributed enterprise systems often employ a service-oriented architecture

(SOA) to isolate multiple services provided by the system. SOA aims to lower the develop-

ment costs of distributed applications by allowing complex services to be composed rapidly,

starting from several basic services [Papazoglou and Georgakopoulos, 2003]. Service de-

scriptions are used to advertise the capabilities, interface, behavior, and quality of each ser-

vice. An orchestrator implements the business logic of the distributed application, starting

from a high-level specification, by coordinating the asynchronous invocation of both inter-

nal and external services [Peltz, 2003]. The expected quality of service is defined in a service-

level agreement (SLA), which specifies several service-level objectives (SLOs). An SLO defines

bounds and targets for a key performance indicator (KPI), such as response time, recovery

time, availability, etc. An SLO also has a specific business value metric (e.g., the penalties

associated with a missed upgrade deadline or with a degraded performance) for gauging

the utility of fulfilling the objective. For example, Google Inc. [2010] warrants that Gmail,

and Google’s other enterprise-grade services, are available at least 99.9% of the time in any

calendar month. The SLA also specifies that customers will receive three days of extra ser-

vice for each month when the availability drops to 99%, seven days when it drops to 95%

and fifteen days when it drops below 95%.

This chapter investigates the mechanisms needed for executing dependable software

upgrades in SOA. I present the design and implementation of Ecotopia, an upgrade-

planning framework that takes into account the impact that such changes might have on

the SOA environment. Ecotopia decouples the impact assessment (handled by multiple ob-

jective advisors, e.g., performance and fault-tolerance advisors) from the change-operation

scheduling (handled by an orchestrator). The orchestrator builds the upgrade schedule

and estimates its impact on the business value based on the service KPIs predicted by the

objective advisors.

The advisors are software components that incorporate the domain knowledge to

answer “what-if” questions about service KPIssuch as performance and availability

forecastsgiven a description of the change operations and the timing properties associ-

ated with their execution. The orchestrator uses the advisors’ predictions to compute the

per-objective and aggregate business values, and converges toward an optimal upgrade

schedule through an iterative refinement process. The objective advisors themselves can

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 110

Generate
List of

Change
Operations

Generate
Change

Schedule

External: Requests for
Software Upgrades

Internal: System-Management
Events (e.g. faults expected

workload changes)

Timed Change
Schedule

Enterprise SLOs

Change Planner

(e.g. response time
availability
recovery time)

Figure 8.1. Online software upgrades, and other system changes, are likely to disrupt the critical services
provided by a distributed system. Ecotopia handles changes based on both external requests (e.g., software
upgrades) and events detected internally by the autonomic management infrastructure (e.g., faults), while tak-
ing into account their impact of the service-level objectives. The output is a timed schedule that seeks to wait
for the most opportune time to apply each change operation and to maximize the enterprise business value.

be composite, third-party services.

Challenge and Contributions

While the previous chapters have shown the effectiveness of AIR upgrades in improving the

dependability of distributed enterprise systems, I further explore the necessity of strong AIR

guarantees. I start by focusing on the service-oriented architecturean approach widely

used for providing isolation in real-world distributed systems. The first goal of the chapter

is to understand how the guarantees provided by SOA differ from the Isolation property intro-

duced in this dissertation and the undesirable runtime behaviors that might ensue (the

implications of relaxing the Atomicity property are the subject of Chapter 9).

Figure 8.1 illustrates the problem of executing software upgrades and other system

changes in SOA. Some changes are planned in advance (e.g., deploying new applications,

upgrading obsolete software, increasing the system capacity), and are derived from an ex-

ternal request. In other cases, changes are triggered by internal system management events,

e.g., faults or load surges. Change requests include a set of partially-ordered operations

and the corresponding objectives, such as the deadline for completing the change. Con-

trolling the schedule of upgrades, to guarantee application-level correctness and to meet

performance goals, remains a challenging problem [Liskov, 2001].

The scheduler must consider both the impact of the changes on all the relevant service-

level objectives, as well as the objectives of each change operation. The impact assessment

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 111

should take into account the dependencies among various system components, the avail-

able prior knowledge of workload fluctuations or anticipated load surges during prime-

time, as well as the degree of resource sharing across the heterogeneous, off-the-shelf com-

ponents of the distributed system. This analysis should produce a timed schedule for ex-

ecuting the external and internal changes that are required. Therefore, the second goal of

this chapter is to identify the novel mechanisms needed for providing dependable software upgrades

in SOA, in order to illustrate the implications of relaxing the Isolation property.

Assumptions. I assume that KPI predictions can be derived from some knowledge

of future incoming loads, either because the workloads exhibit clear trends [Arlitt and

Williamson, 1996; Arlitt and Jin, 2000], or because fluctuations are preceded by recognizable

patterns of warnings and notifications [Pertet and Narasimhan, 2004; Zhang et al., 2005].

Ecotopia uses the ability to predict when the system is under high and low load for optimiz-

ing across multiple service-level objectives. Furthermore, I assume that the execution times

of all the change operations submitted to the planner can be estimated and that services do

not have hard real-time constraints (a typical characteristic of enterprise systems).

Non-goals. This chapter does not introduce new techniques for workload prediction. In-

stead, I show that exploiting irregular, but predictable workloadssuch as the 1998 World

Cup1 trace [Arlitt and Jin, 2000]allows Ecotopia to improve the scheduling of change oper-

ations when pursuing multiple objectives. Moreover, Ecotopia is not designed for predict-

ing or tolerating flash-crowd events (sudden load surges due to an unexpected increase

in the site’s popularity). Ecotopia’s orchestrator can also cooperate with third-party advi-

sors that answer “what-if” questions without providing workload predictions [for example:

Thereska et al., 2006].

The novel characteristics of Ecotopia are:

• Rich “what-if” interaction protocol that enables the use of domain specific knowledge

for an effective change scheduling decision. Unlike the previous proposals for “what-

if” interactions (see Section 2.5), Ecotopia takes into account:
1The logs of a website dedicated to the 1998 soccer World Cup in France, containing 1.4 billion requests. The

trace shows that the incoming load increases suddenly around game times, with lower peaks for the games

played during weekends. This trend is typical for sites dedicated to sporting events.

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 112

– Timeline of prediction points: the advisors inform the orchestrator of the expected

workload changes during the scheduling timeline. The orchestrator uses these

guidelines to bootstrap the scheduling algorithms.

– Proactive actions: the advisors can inform the orchestrator about specific actions

that may improve the impact on KPIs during related change operations. The

orchestrator can include these operations in the final schedule if they result in

an improved overall business-value.

• Integrated management of both internal (e.g., faults, workload changes) and external

(e.g. software upgrades) changes. This approach is necessary because both types of

changes affect a common pool of resources and services. Prior approaches [for ex-

ample: Chess et al., 2005; IBM Corporation, 2007] assume different decision makers

for the two types of changes.

• Optimization based on the long-term impact of change on performance and de-

pendability objectives, accounting for both the time during and after execution of the

change. Existing solutions consider only one of the two impact components, e.g.,

Keller et al. [2004] consider the impact during change execution, while Anderson

et al. [2002] and the Tivoli Intelligent Orchestrator [IBM Corporation, 2007] consider

the impact after the change.

Section 8.1 discusses the Isolation level provided by SOA. Section 8.2 describes the prin-

ciples of my distributed impact-assessment approach, and Section 8.3 presents the design

and implementation of Ecotopia. In Section 8.4, I evaluate Ecotopia through the case study

of a database upgrade in a service-oriented distributed system.

8.1 Isolation level provided by SOA

Structuring a distributed system as several loosely coupled services facilitates software up-

grades, because most changes in the business logic translate into orchestration changes

and do not require upgrading the implementation of the basic services. In these envi-

ronments, the high-level service objectives are mapped into objectives for the individual

system components, which are provisioned and monitored by component-specific auto-

nomic managers [Kephart and Chess, 2003]. These managers use extensiveand some-

times proprietarydomain knowledge (e.g., workload characteristics, resource utilization

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 113

models), and perform sophisticated request classification, prioritization, monitoring and

request routing. As a result, the SLOs managed by independent, third-party managers cannot

always be reconciled. For example, a workload manager prioritizes and routes the service re-

quests by monitoring the response-time objectives, while a fault-tolerance manager primes

backup nodes in anticipation of hardware faults and performs recovery by monitoring the

availability objectives [Chess et al., 2005].

Moreover, current managers tend to execute a change request as soon as possible (e.g., as soon

as an upgrade is requested or a fault is detected), rather than looking for the best time to

do so. For example, in a virtualized data center employing both platform management

(e.g., power and thermal management) and virtualization management (e.g., virtual ma-

chine provisioning, SLO monitoring), the lack of coordination among managers can cause

oscillatory instability between violations of the power budget and violations of the service-

level objective [Kumar et al., 2009]. The platform manager reduces the CPU frequency in

response to power violations, which causes SLO violations that trigger the virtualization

manager to increase the CPU frequency, leading to a cycle of correlated power and SLO

violations. Similarly, software upgrades performed at the wrong time can cause SLO viola-

tions because of such non-functional dependencies in distributed systems with third-party

components [Dumitraș et al., 2007b; Bhattacharya and Neamtiu, 2010].

This suggests that SOA provides a relaxed version of the Isolation property. The com-

plexity and the distributed nature of autonomic objective management in real-world sys-

tems makes it unfeasible for a fully centralized manager to directly assess the impact of

upgrades and other change operations on each service-level objective.

Rather, the impact on service KPIs should be estimated by the component-specific managers

that control these services. Moreover, the managers must seek the most opportune time to ex-

ecute the change operations, based on their impact on the combined service-level objectives.

Such an impact-sensitive strategy aims to respect the overall performance and dependabil-

ity guarantees of the running services, yet allowing the system to incorporate upgrades

and changes of various kinds.

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 114

Orchestrator
Maximize Overall Business Value

P
re

d
ic

te
d

 K
P

Is

R
e
s
o

u
rc

e
 A

rb
itra

tio
n

R

e
q

u
e
s
ts

T
e

n
ta

ti
v
e

 S
c

h
e

d
u

le

C
h

a
n

g
e
 O

p
e
a
rtio

n
s

A
d

v
is

o
rs

Change
Manager

Schedule Executor

Final
Schedule

R
e
s
o

u
rc

e
s

Dependability
Advisor

Performance
Advisor

<schedule>

<time/>

<action/>

</schedule>

<change>

<action/>

</change>

<deadline/>

System

Configuration

RFC

Initiate Resource
Actions

Analyze Impact
on KPIs

Objective Advisors

SLAs
System
Management
Events

P
ro

a
c

tiv
e

 A
c

tio
n

s

Figure 8.2. A distributed framework for impact assessment separates the tasks of impact analysis (performed
by the objective advisors) and change scheduling (performed by the orchestrator). The orchestrator receives
requests for change, queries the objective advisors with “what-if” questions about the tentative change sched-
ule and uses the answers to refine the schedule with the goal of maximizing business value. The “what-if”
interactions are based on an open protocol that allows the integration of third-party objective advisors.

8.2 Distributed framework for upgrade-impact assessment

The most important requirement for impact assessment in heterogeneous distributed sys-

tems, relying on third-party components, is to make minimal assumptions about the kinds

of knobs that the various software components are prepared to expose to the management

infrastructure. The key to achieving this goal is the separation of scheduling and impact

analysis. These tasks can be performed by different components, which are provided by

different vendors.

8.2.1 Framework components

Figure 8.2 illustrates the main components and interactions in our framework. The Change

Manager receives high-level requests for change (RFCs), decomposes them into finer-

grained change operations and related dependencies and forwards them to a centralized

component, called orchestrator. The orchestrator receives the list of change operations

and their execution constraints and generates a change schedule through an iterative pro-

cess. Distributed components, called objective advisors, analyze the impact of change plans.

The orchestrator identifies the relevant advisors by querying the System Configuration

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 115

Database. The objective advisors correspond to the autonomic component managers in

the distributed system and can use domain-specific knowledge to estimate the impact of a

plan on the service KPIs. The orchestrator consumes these estimations and schedules the

change operations with the goal of maximizing the overall business value.

The predictions are based on detailed domain knowledge of each system component,

but this knowledge is not exposed outside the objective advisors. Instead, the advisors

answer simple “what-if” questions (see Section 2.5) about the impact of concrete change

operations on the service KPIs, considering the workload and the tentative schedules of

these operations. The orchestration is driven by the enterprise SLAs, which define meth-

ods for computing the business value [Global Grid Forum, 2004] that corresponds to the

predicted KPI values. The business value reflects the utility of a given change schedule,

allowing the orchestrator to compare schedules and to make impact-sensitive scheduling

choices. The orchestrator sends the final schedule to the Schedule Executor, which triggers

the change operations at the indicated times. The Change Manager is analogous to the Task

Graph Builder from [Keller et al., 2004], and the Schedule Executor is similar to the Provi-

sioning Manager of the Tivoli Intelligent Orchestrator [IBM Corporation, 2007]. For the rest

of the chapter, I focus on the orchestrator and the objective advisors, which are novel to the

distributed impact-assessment approach.

8.2.2 “What-if” interaction protocol

The interaction protocol, summarized in Table 8.1, is at the heart of this approach. As

shown in Figure 8.2, a change sequence is initiated by the ChangeManager with the Initi-

ateChange() function, or by an advisor with InitiateResourceBrokering(). The

orchestrator initiates the “what-if” interaction by calling the GetCurrentKPIs() func-

tions of each of the advisors to establish a baseline state for assessing the impact of the

proposed schedules. Then the orchestrator creates and refines schedules through an incre-

mental process. After arriving at a preliminary schedule of change operations, the orches-

trator invokes the GetImpactKPIs() functions on each of the advisors to acquire the KPI

predictions necessary for assessing the impact of each of the partial or complete schedules

under consideration.

The advisors provide KPI estimations as time-varying functions KPI(t). I consider that

a KPI value holds for a period of time, until some event causes the KPI to take another

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 116

Table 8.1. “What-if” API for distributed impact assessment.

Orchestrator

InitiateChange() Request for scheduling a group of change operations de-
rived from a request for change.

InitiateResourceBrokering() Request for reallocation of resources (e.g. nodes) to miti-
gate the impact of an event detected by the system man-
agement infrastructure (e.g. a hardware fault).

ChangeSLA() Request for integration of SLA updates.

Objective Advisors

GetCurrentKPIs() Request for current KPI predictions for a given time in-
terval, assuming that only infrastructure eventsfor in-
stance, workload variation, node failures, but not soft-
ware upgradeswill occur.

GetImpactKPIs() Request for KPI predictions over a given time interval for
a schedule of change operations. The reply can suggest
a set of proactive actions expected to improve the KPIs
in conjunction with the change operations (e.g. “take a
database checkpoint”). Proactive actions are included in
the final schedule only if they improve the overall busi-
ness value.

value. This means that KPI(t) is a step function, as shown in Figure 8.3. When reply-

ing to the invocation of GetCurrentKPIs(), the objective advisor provides a list of pairs

< Ppk, KPI(Ppk) >, indicating the times (prediction points) Ppk when the KPI is expected

to change and the corresponding KPI values. GetImpactKPIs() returns a similar list,

indicating the effect of the suggested change schedule on the KPIs.

The orchestrator uses the current KPI predictions as scheduling guidelines. The initial

invocation of GetCurrentKPIs() allows the orchestrator to learn about the prediction

points, due to system-management events (e.g. workload surges), during the scheduling

time horizon. The orchestrator then computes the business value of the current state of

the system, by associating a dollar value with the various levels of service provided by the

system. A service-level objective defines a target for a particular KPI. A service may have

multiple SLOs (some of these objectives may track a common KPI, e.g. the target bounds

for average latency and maximum latency), and each SLO has a business-value function.

As the KPIs can change over time, the business values are also time-variable functions.

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 117

time
t
0

t
1

t
2

t
3

t
n

R
es

po
ns

e
T

im
e

≈

Figure 8.3. A KPI (e.g. average latency) varies in time, depending on the workload and the system configura-
tion. I represent this variation by a vector of < t, KPI(t) > pairs indicating the time when a KPI changes and
the new value. This corresponds to a step function as shown in the figure.

If, at time t, the value of a key performance indicator is KPI(t), the corresponding business

value is BVSLO(KPI(t)). For each KPI that changes at times t0, t1, . . . tn, the business value

for the time interval [t0, tn] is computed using a weighted average:

BVSLO([t0, tn]) =

n−1
∑

i=0
(KPI(ti)) · (ti+1 − ti)

tn − t0
(8.1)

The business-value functions of different SLOs are designed to be additive. In general,

the business value concept is used for reasoning about the multiple impacts of various

change operations and for selecting the best trade-offs. I add the business values of all

the SLOs to compute the overall business value, which reflects the utility of the proposed

schedule of operations:

BVAll([t0, tn]) = ∑
∀SLO

BVSLO([t0, tn]) (8.2)

To minimize the communication costs, the orchestrator might cache the computed busi-

ness value information for partial schedules. Each schedule receives a unique identifier,

known to both the orchestrator and the advisors, and its related KPI predictions are saved.

The orchestrator retrieves these predictions whenever it modifies the partial schedule by

adding one or more change-operations, and thereby avoids repeating most of the computa-

tions. After the scheduling of a request for change is completed, the advisors add its impact

on the infrastructure to the current KPI predictions.

8.3 Design and implementation of Ecotopia

Ecotopia is a concrete realization of the distributed framework for upgrade-impact assess-

ment described in Section 8.2. Ecotopia schedules change operations with the goal of mini-

mizing the service-delivery disruptions by accounting for their impact on the SOA environ-

ment. Ecotopia’s objective advisors rely on functionality provided by component-specific

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 118

autonomic managers [Chess et al., 2005; Thereska et al., 2006; IBM Corporation, 2004, 2007;

Oracle Corporation, 2005] These managers encapsulate the extensive, and sometimes pro-

prietary, domain knowledge (e.g., workload characteristics, resource-utilization models),

needed for assessing the impact of change operations on the service KPIs. The implemen-

tation of Ecotopia’s orchestrator is based on the Web Services standard. The orchestrator

can interact with any third-party advisors that support the “what-if” interaction protocol

from Table 8.1.

8.3.1 Objective-advisor implementation

The objective advisors manage separate service-level objectives (e.g., performance and

fault-tolerance). The advisors can be hierarchical and may span multiple administrative

domains in order to manage end-to-end KPIs, in a similar manner to the resource advisor

described in [Thereska et al., 2006]. The Ecotopia advisors estimate the impact of observed,

predicted, or scheduled events on a few service KPIs; for instance, a performance advisor

predicts violations of the response-time objectives. The predictions do not depend on the

actual enterprise business-value models, which are handled by the orchestrator.

The API of the advisors contains two functions, shown in see Table 8.1. GetCurren-

tKPIs() queries the KPI predictions if changes are not applied and it is used to assess the

baseline for the change impact. GetImpactKPIs() retrieves the KPI predictions given a

tentative change-operation schedule and is used to assess the impact the change schedule.

These function invocations are synchronous (i.e., the orchestrator waits to receive the KPI

predictions before proceeding). The reply includes the KPI predictions for the entire time

horizon of the decision. This might span multiple prediction points, where the service KPIs

change due to specific events such as expected workload changes or failures. The advisor

reply includes one set of KPI predictions for each prediction point on the decision horizon.

The replies can also suggest a set of proactive actions that are expected to improve the KPIs

in conjunction with the change operations (e.g., a “checkpoint database” action might re-

duce the expected recovery time after a fault). Proactive actions are included in the final

change-operation schedule only if they improve the overall business value.

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 119

8.3.2 Orchestrator implementation

The orchestrator is a resource broker and a change–operation planner. The orchestrator

starts scheduling a group of change operations in two situations (see Table 8.1): (i) Ini-

tiateChange() indicates that a change sequence has been initiated, following a RFC; (ii)

InitiateResourceBrokering() indicates that a predicted or observed infrastructure

event (e.g. a fault, a workload change) mandates a resource reassignment. All of these

invocations on the orchestrator are asynchronous, i.e. a response containing the schedule

is not provided immediately. During the scheduling process, the orchestrator communi-

cates with the objective advisors, asking “what-if” questions in order to assess the impact

of tentative change-operation schedules on the future service KPI values. The orchestrator

is also invoked when an SLA has changed through ChangeSLA(), which indicates a mod-

ification in the overall business-value calculations. The orchestrator retrieves the new SLOs

and the corresponding business-value expressions and automatically updates its schedul-

ing engine; more comprehensive mechanisms for managing SLAs updates are described in

[Roșu and Dan, 2005].

The orchestrator does not know the closed-form equation that yields the overall busi-

ness value because part of this computation is performed inside the objective advisors,

which act as black boxes for the orchestrator. Using the terminology of scheduling the-

ory, the scheduling problem has an unknown objective function [Pinedo, 2002]. Given that the

complexity of scheduling algorithms depends on their objective functions, I cannot rea-

son about the complexity of our problem. Moreover, the closed-form expression for the

business value would most likely be a non-regular objective function (a regular objective

function is non-decreasing in the completion times of the change operations). There are few

theoretical results for scheduling problems with non-regular objective functions. I there-

fore focus on approximate scheduling algorithms that make the best effort to compute a

solution close to the optimal schedule.

Scheduling algorithms. The algorithms implemented in Ecotopia are based on the fol-

lowing pattern. Each operation ek has a feasible scheduling interval, defined by the earliest

and latest times when ek can be scheduled, given the deadline D of the RFC and the dura-

tions dk of the change operations:
k−1

∑
i=1

di ≤ tk ≤ D −
n

∑
i=k

di

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 120

time

Pp1 Pp2 Ppm

D

≈

ek

dk{e1,!ek-1} {ek+1,!en}
tk

Figure 8.4. Ecotopia’s greedy algorithm for scheduling change operations first chooses the change operation
ek and the time tk that yield the best business value. This placement splits the timeline in two, and the same
algorithm is applied recursively to the two halves of the problem.

Using these bounds, I try to schedule each change operation at the earliest possible

time, the latest possible time and at all the m prediction points that fall within this feasible

interval. The baseline scheduler uses a backtracking algorithm that generates and evaluates

all of the possible placements for the change operations in an RFC. This algorithm generates

the optimal schedule and has the worst-case complexity O(mn).

A more realistic scheduler uses a polynomial best-effort algorithm that is not guaran-

teed to provide an optimal solution. Ecotopia achieves this with a greedy algorithm: I place

each operation at each possible position and we compute the resulting business value (Fig-

ure 8.4). Then, I can select either the operation and the placement that yield the best possi-

ble business value (algorithm Greedy1), or the operation that displays the largest overall

business-value variation depending on the scheduling time, in order to avoid giving pri-

ority to the short operations that have a small negative impact (algorithm Greedy2). This

placement splits the timeline and the change-operation group in two, and the same algo-

rithm is applied to the two segments of the problem. These two algorithms have the com-

plexity O(n2
m) because, for scheduling each of the n operations, they evaluate nm place-

ment options.

Schedule stability. The schedules generated by the Ecotopia remain constant in the ab-

sence of any additional change requests, SLA updates or system management events such

as faults or workload changes. Figure 8.5 shows that all the changes that might affect the

final schedules are always initiated outside the scheduling loop involving the orchestra-

tor and the advisors, which ensures the stability of the schedule. The advisors generate

deterministic KPI predictions for a given RFC (i.e., the same tentative schedule will yield

the same predictions). The predictions returned by GetCurrentKPIs() will be adjusted

in between change groups because the effects of the change that has just been scheduled

are factored into the KPI predictions; however, no such adjustment is performed inside

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 121

Schedule
Execution

Orchestrator

OrchestratorOrchestratorObjective AdvisorsChange
Manager

System
Management

RFC

Change
Group

Tentative
Schedule

Final
Schedule

KPI
Predictions

SLAs

Fault
Notifications

Workload
Predictions

Monitoring
Data

Figure 8.5. The scheduling loop of Ecotopia is designed so that all the change requests originate from outside
of the iterative interaction between the orchestrator and the objective advisors. This ensures that the scheduling
process does not oscillate between borderline decisions.

the scheduling loop. The algorithms presented above are guaranteed to converge if the

KPI predictions are deterministic for a given change group. Other autonomic management

systems based on iterative optimization loops [Anderson et al., 2002; Golding and Wong,

2006] may oscillate between borderline decisions because a resource reconfiguration will

affect the performance metrics which may subsequently trigger another reconfiguration.

Ecotopia, where all of the changes are initiated outside the scheduling loop and the “what-

if” analysis considers a long time-horizon, guarantees that such infinite cyclic dependencies

are broken and that oscillations cannot occur.

8.4 Case study: Software upgrades a service-oriented enter-

prise system

I consider a two-tiered system, where the physical hosts are organized in independently

managed node-groups. The first tier is a node group of application servers managed by

application server middleware [for example: IBM Corporation, 2004] and the second tier

is a node group of database servers, managed by a clustering infrastructure [for example:

Oracle Corporation, 2005]. The two node-group managers perform various middleware-

specific management tasks (e.g., load balancing, request routing, fault recovery). This in-

frastructure provides two services, each mapped onto corresponding application-server

and database services. The two services processing Web transactions are load-balanced

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 122

Srv2

Srv1

Srv3

App. Server
Group DB Group

Database

Service 1 Primary
Service 2 Backup

Service 2
Primary

Service 2 Primary
Service 1 Backup

Service 1

Service 2
DB1

DB2 DB3

Front-end

Figure 8.6. Sample two-tier system managed by Ecotopia.

across three application servers, W1 to W3. These front-end services query two database

services that connect to separate database partitions. The database group comprises three

nodes:

• DB1 acts as primary server for Service1 and as backup for Service2;

• DB2 is part of the logical primary server for Service2, which is distributed on two

database nodes;

• DB3 is also part of the logical primary for Service2 and it is a backup for Service1 as

well.

Each of the two enterprise services has response time, recovery time and availability

objectives. The business value associated with these SLOs depends on the related KPIs,

such as the total number of transactions or the number of transactions with response time

below target.

A performance advisor evaluates the impact of change operations on the end-to-end re-

sponse time for each service by exploiting the knowledge provided by the node-group man-

agers (e.g., expected workload variations, service overheads). Similarly, a fault-tolerance

advisor evaluates the impact on the recovery time and the availability SLOs. I discuss a

realistic scenario of upgrading the database software (Section 8.4.1), and I complement this

analysis with measurements illustrating the trade-off between the cost and the loss of op-

timality of different scheduling algorithms (Section 8.4.2).

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 123

WAS1

WAS2

WAS3

DB3

Workload
Service 2

B
u
si

n
e
ss

 V
a
lu

e

t

t

DB2

Workload
Service 1

Resp. Time
(Service 1)

Resp. Time
(Service 2)

Recov. Time
(Service 1)

Recov. Time
(Service 2)

Availability
(Service 1)

Availability
(Service 2)

t

t

t

t

t

t

Upgrade

Upgrade

H off

H offUpgradeH off

H off

DB1

Figure 8.7. Database upgrade scenario.

8.4.1 Qualitative evaluation

Ecotopia decomposes the RFC requesting a database upgrade into finer-grained change

operations: each database node is upgraded separately and, for upgrading DB1, Service1 is

handed off to DB3 (its backup) before the upgrade and restored at the end. The analysis

must consider the impact of these operations on service objectives and their corresponding

business values. For instance, if the load on Service1 is high (see Figure 8.7), Ecotopia can

reorder the change operations to perform the upgrades on nodes DB2 and DB3, which are

used by Service2. In fact, the upgrade of DB1 must be delayed until both services register

low incoming request rates because a high request rate during the upgrade may overload

DB3, which also handles both Service1 and Service2. By delaying the upgrade, the penal-

ties incurred for violating the response time objectives are minimal, thus maximizing the

aggregate business value for the duration of the upgrade. The reordering must take into

account the functional dependencies between change operations; thus, the hand-offs of

Service1 should precede and follow the upgrade of DB1.

Scenarios such as this one are typical of change management in distributed enterprise

systems. Similar operations occur at a much larger scale in many real-world deployments.

This scenario shows that delaying the change operations may sometimes improve the over-

all business value. This illustrates the complexity of predicting the impact of change due

to the strong dependencies on the actual implementations of objective managers. Ecotopia

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 124

0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

10
5

Optimality

B
V

 E
va

lu
a

tio
n

s

Greedy1
Greedy2
Backtracking

(a) Number of business-value evaluations.

0.5 0.6 0.7 0.8 0.9 1
10
1

10
2

10
3

10
4

10
5

10
6

Optimality

C
o
m
p
a
ri
so
n
s

Greedy1
Greedy2
Backtracking

(b) Number of business-value comparisons.

Figure 8.8. The scheduling algorithms implemented in Ecotopia choose different trade-offs between the cost
of scheduling and the loss of optimality. The greedy algorithms are polynomial and yield schedules with a
business value within 95% of the optimal achievable business value, which is computed using the exponential
backtracking algorithm.

addresses these issues by delegating the impact assessment to component-specific advisors

that encapsulate all the relevant domain knowledge.

8.4.2 Quantitative evaluation

Using a traditional scheduler, which does not optimize for long-term impact [for example:

IBM Corporation, 2007; Keller et al., 2004; Anderson et al., 2002; Golding and Wong, 2006]

would result in executing all of the change operations as soon as possible, instead of waiting

for the most opportune time when the incoming load is low. The outcome of such impact-

insensitive scheduling is a missed opportunity for optimizing the overall business value.

Instead, the scheduling algorithms presented in Section 8.3.2 find the optimal schedule

for these two scenarios, and the run-times of all the algorithmsincluding the exponen-

tial backtracking schedulerare comparable (less than 1 s). I also test the scheduler using

several randomly-generated input sets, and I explore the trade-off between complexity and

the loss of optimality. The most appropriate complexity measure is the number of times

the business value needs to be evaluated, since these evaluations require communication

between the orchestrator and the advisors. The loss of optimality shows how close the busi-

ness value of the resulting schedule was to the BV of the optimal schedule, as generated

by the backtracking algorithm. Figure 8.8 shows that, for small problems (e.g., 5 change

operations and 10 KPI prediction points), the two (polynomial) greedy algorithms obtain

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 125

near-optimal results and they need one or two orders of magnitude fewer BV evaluations

than the exponential, optimal backtracking algorithm.

For larger problems, we cannot use the backtracking algorithm and, therefore, we can-

not measure the loss of optimality of the greedy schedulers. For 100 change events and 100

prediction points, the greedy algorithms requires up to 36673 business-value evaluations

and 67342 comparisons, sometimes with significant differences between the two algorithms

(between 3% and 68%). Greedy1 also exhibits a higher variance of the number of business-

value evaluations than Greedy2. While a scenario where Greedy2 performs better than

Greedy1 could easily be constructed, the two algorithms produced identical schedules for

all but one of the randomly-generated input traces.

8.5 Summary of findings

This chapter shows that the service-oriented architecture provides a relaxed version of the

Isolation property. While SOA is widely used for isolating different services in real-world

distributed systems, it is unable to guarantee some non-functional dependencies, such as

performance levels that can be affected by several autonomic managers. The interplay of

change management (e.g. software upgrades) and workload variability requires additional

mechanisms for ensuring the dependability of distributed systems using SOA. Ecotopia

tackles the complexity and the distributed nature of SLO management in real-world sys-

tems by separating the impact assessment (performed by the objective advisors) from the

scheduling and business-value computation and aggregation (performed by the orchestra-

tor).

By focusing on the “what-if” interaction protocol rather than on building a monolithic

change-management system, Ecotopia facilitates changes that might span target heteroge-

neous software infrastructures. The orchestrator can communicate with third-party advi-

sors, which are built with specific, proprietary domain knowledge about a service/sys-

tem/vendor, and construct schedules using only the information available from such ad-

visors. This approach mirrors the philosophy of SOA, which is to focus on interaction pro-

tocols rather than on implementation bindings.

The separation between scheduling and impact assessment may limit Ecotopia’s opti-

mization capabilities when the advisors cannot provide a comprehensive impact analysis

CHAPTER 8. RELAXING THE ISOLATION PROPERTY 126

(e.g., some third-party managers do not provide latency estimations, which are required

for end-to-end response-time management). Moreover, KPI predictions typically have a

degree of inaccuracy, especially when the time frame of the predictions is far ahead in the

future. If the advisors provide incorrect information, the orchestrator might take the sys-

tem to a state with unacceptable service levels; in this case, a downgrade or the rollback of

the changes can be scheduled using the same process described above.

Cine fuge după doi iepuri, nu prinde niciunul.

A man who chases two rabbits catches none.

Romanian Proverb

Chapter 9

Relaxing the Atomicity Property:

Mixed-Version Race Conditions

CHAPTER 8 has shown that the service-oriented architecture provides a relaxed ver-

sion of the Isolation property and requires additional mechanisms for ensuring

the dependability of software upgrades. Additionally, in systems spanning multiple admin-

istrative domainse.g., Web applications that rely on client-side code or enterprise systems

that lease cloud-computing resourcesthe Atomicity property cannot always be enforced.

When the enterprise does not control all the tiers of the system and cannot plan and coor-

dinate the upgrade process, the system is exposed to race conditions that can introduce

latent errors or data corruption.

Online upgrades that do not enforce Atomicity place the system in a state with mixed

versions, where requests might be processed by either the old or the new version during the

upgrade. Supporting multiple versions that operate concurrently and that keep their states

synchronized requires a careful coordination of the upgrade process, as illustrated in the

industrial best-practice recommendations for performing rolling upgrades [Microsoft Cor-

poration, 2005; Oracle Corporation, 2008; see also Section 2.3.4] . In general, however, the

behavior of a system with mixed versions is not guaranteed to conform to the specification

of either version of the software and is hard to validate in advance [Segal, 2002].

This chapter introduces a new kind of race condition, involving multiple versions of the

software, that has not been described before in the research literature. Such mixed-version

races1 can occur, during rolling upgrades, in systems that communicate across administra-
1Mixed-version races were first reported in [Dumitraș et al., 2010], which includes a preliminary discussion

of the results from this chapter.

127

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 128

tive domains using asynchronous messaging. Mixed-version races might be benign (they

occur frequently during Facebook upgrades [Reiss, 2009]), but they might also have a crit-

ical impact (in 1994, a similar condition in a banking system caused a $15M loss for the

bank’s customers in a single day [Hansell, 1994]).

This prior anecdotal evidence suggests that some real-world upgrade failures can be

traced back to mixed-version races. Conversely, delaying the upgrade of a system with

known software defects (e.g., bugs or missing features) might also have a negative impact.

The trade-offs between upgrading and not upgrading are not easy to ascertain.

Software upgrades that provide the Atomicity property or that are performed offline

are not affected by mixed-version races. When these, or other techniques for preventing

mixed-version races, are too expensive or infeasible, the system administrators must take

a different approach to prevent system failures. This chapter describes a comprehensive

model that takes into consideration all the parameters that influence the risks of bugs and

mixed-version races. These parameters include the time needed to upgrade a single host,

the number of hosts to upgrade in a certain tier of the system, and the number of messages

exchanged between tiers. By assessing the impact of bugs and mixed-version races on the

system, this analytical model allows system administrators to quantify and compare the

risk of following an online-upgrade plan with the risk of delaying or canceling the upgrade.

I believe that, for a risk-assessment method to be useful, it must not require testing

the entire mixed-version state space, which exhibits combinatorial explosion. Therefore,

by understanding the sequence of events that exposes the race conditions, I assess their

impact in a limited number of system configurations and I derive the overall risk of up-

grading analytically. While it is challenging to determine what humans would find useful

for carrying out system administration tasks, I point out that the risk model commonly rec-

ommends counter-intuitive, but correct, decisions. Risk assessment represents a method of

last resort, for the situations where mixed-version races cannot be avoided through other

technical means.

Challenge and Contributions

While Chapter 8 has discussed the implications of relaxing the Isolation property during

an online upgrade, this chapter further explores the necessity of strong AIR properties by

focusing on distributed systems that span multiple administrative domains, where upgrade

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 129

Atomicity is difficult to enforce. Specifically, the goal of this chapter is to assess the worst-

case impact of performing software upgrades with relaxed levels of Atomicity.

The Atomicity property ensures that clients can access only one versioneither the new

one or the old oneduring the software upgrade. However, large Internet systems, such

as Google, Facebook or Wikipedia, often employ rolling upgrades, which do not guaran-

tee Atomicity and create system states with mixed versions (see Section 2.3.4). While the

new version can be backward-compatible, the old version can not handle invocations that

require the new version’s semantics. Prior approaches for upgrading in the presence of

mixed versions advocate upgrading the servers before their clients [Kramer and Magee,

1985; Segal and Frieder, 1989b; Tewksbury et al., 2001], to prevent the new version from

calling into the old version, or simulating the interfaces of past and future versions during

the upgrade [Ajmani et al., 2006].

These approaches are infeasible in distributed systems that communicate across mul-

tiple administrative domains, where an online upgrade’s administrator does not control

all the tiers and cannot coordinate their upgrades. For example, Tewksbury et al. [2001]

observe that certain communication patterns used in practicesuch as one-way or asyn-

chronous messagesprevent enforcing the quiescence needed for upgrading the compo-

nents that receive these messages.

Instead of preventing race conditions, or other undesirable behaviors that can result

from an online upgrade lacking Atomicity, I propose assessing the risk they pose to the

system. This means asking the following question: Is it worth suffering a potential incon-

sistency during an online upgrade in order to introduce a change that addresses a known issue in

the running system? Addressing an issue encompasses corrective and perfective mainte-

nance [Swanson, 1976], i.e., fixing software defects and adding new features, respectively.

While bugs and upgrade inconsistencies are both undesirable, answering this question al-

lows developers and administrators to choose the lesser evil.

Assumptions. The risk assessment approach described in this chapter assumes that

the software developers and system administrators use a uniform labeling system, which

covers the severity of known defects, the criticality of feature addition/change/removal

requests, as well as the severity of the inconsistencies that might result from mixed-version

races. Secondly, I assume that a thorough integration-testing procedure is in place, and

that it can be extended to the system states with mixed versions. Thirdly, I assume that the

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 130

atomic unit of upgrade is the host, i.e. that all the collocated components that are upgraded

concurrently are exposed to the users after the host reboots. Finally, I assume that the pro-

cessing time of a user request is negligible compared to the time needed to upgrade a host

within the distributed system. These assumptions guide the derivation of the analytical

risk model, described in Section 9.2.

Non-goals. This chapter does not propose novel techniques for preventing or mask-

ing the effects of mixed-version races. Imago, for example, enforces upgrade Atomicity

(see Chapter 6), which prevents mixed-version races. However, because similar techniques

might be infeasible under the realistic assumptions of the systems targeted in this chapter,

I present the best possible alternative: risk assessment. The risk assessment focuses on the

impact of mixed-version races and does not consider the possibility that the new version

might also include known software defects. A comparison between the risks introduced

by bugs in the old and new versions can be achieved through known testing methods and

is outside the scope of this chapter. Moreover, this chapter does not seek to assess the accu-

racy of the information produced by the risk assessment. While the upgrade-centric fault

model from Chapter 3 provides a window into the reasons why software upgrades fail,

the lack of data on upgrades across multiple administrative domains currently prevents a

quantitative validation of the upgrade-risk model.

This chapter makes two original contributions:

• I identify mixed-version races, which can occur during rolling upgrades in distributed

systems spanning multiple administrative domains, and I describe the system inter-

actions that lead to such race conditions (Section 9.1). While mixed-version races

have not been characterized before, two real-world examples of upgrade failure

[Hansell, 1994; Reiss, 2009] can be traced back to this type of race condition. Mixed-

version races are enabled by the absence of upgrade Atomicity.

• I develop an analytical model for reasoning about the trade-off between upgrading in

the presence of mixed-version races and delaying an upgrade that corrects known

software defects (Section 9.2). Unlike the previous approaches for evaluating the

dependability of online upgrades [for example: Oppenheimer et al., 2003; Oliveira

et al., 2006; Crameri et al., 2007; Zheng et al., 2009; see also Chapter 7], this analytical

model does not rely on field or experimental data. Instead, the risks of software

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 131

upgrades are estimated from system parameters and testing results that are readily

available to the developers and administrators. I also demonstrate, on three case

studies, how this model can be used to make informed decisions regarding whether

to upgrade or not to upgrade (Section 9.3). The goal of this qualitative evaluation is to

determine whether the risk model provides the upgrade administrators with useful

information, which cannot be obtained through other means.

9.1 Mixed-version races

In practice, rolling upgrades are widely believed to reduce the risks of upgrading because

failures are localized and might not affect the entire distributed system [Oracle Corpora-

tion, 2008; Downing, 2008]. However, rolling upgrades also introduce the risk of race con-

ditions between the old and the new versions of the software. Mixed-version races occur in

systems that span multiple administrative domains, where a consistent upgrade schedule

cannot be enforced. Asynchronous message exchanges across domain boundaries poten-

tially lead to a situation where an invocation from the new version is processed by the old

version on a different tier of the application.

I illustrate mixed-version races with an online banking example. Banks are starting to

employ online upgrades [Choi, 2009], in spite of the inherent risks of data inconsistency as-

sociated with current upgrading approaches. I consider an online banking application that

uses the AJAX style of web programming, where part of the application code is executed

at client-side, in multiple web browsers.

The following sequence of events leads to a mixed-version race (see also Figure 9.1):

1. The bank initiates a rolling upgrade of its infrastructure. The rolling upgrade places

the system in a state where two versions (old and new) co-exist in the front-end.

Both versions handle client requests, during the upgrade.

2. The bank customer starts an online banking session. Her browser sends an initial

request to load the front page of the banking application.

3. The request arrives at a front-end server that was already upgraded and that runs

the new version. The user’s browser loads the new version of the web page, which

includes both static HTML markup and Javascript code. This code implements the

client side functionality of the application.

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 132

1

2

3

4

56

Start rolling upgrade

Old version

Error
Exception /

Inconsistency

Client (browser) Web 2.0 front-end

Initial request
HTTP reply

AJAX callback

??

New version

Figure 9.1. Anatomy of a mixed-version race.

4. The user initiates an operation that requires additional communication with the

server. Rather than reloading an entire page, the client-side code issues an

XMLHttpRequest callback into the server, to reload part of the banking page that

is currently displayed.

5. The asynchronous callback, which was issued by the new version of the client-side

code, arrives at a server that was not yet upgraded.The old version of the server-side

code does not know how to handle the request and throws an exception (in the best

case) or handles the request incorrectly (in the worst case).

6. When the user receives the reply, she may or may not notice that an error has oc-

curred.

If the web front-end includes only a few servers, which can be upgraded quickly, the

window of vulnerability to mixed-version races is small. However, these race conditions

occur frequently during rolling upgrades of large Internet systems, such as Facebook [Reiss,

2009].

For banking applications, the inconsistencies that may result can have severe conse-

quences, including financial losses. For example, if the code that checks whether to allow

a cash transfer is moved from the server-side to the client-side (e.g., in order to push some

computational load to the clients), a mixed-version race can lead to this code executing

twice. In this situation, a request to debit $1 from a bank account would subtract $2 from

the user’s account balance because of the double invocation of the debit operation: once

from the browser and once from the server.

In 1994, a similar upgrade of Chemical Bank’s data center affected more than 100,000

customers over the course of a single day. Each ATM withdrawal was deducted twice from

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 133

the customer’s account, adding up to a $15M loss. Moreover, some checks bounced, which

made Chemical Bank customers incur additional fees at other financial institutions. The

upgrade changed a single line of code in the server-side software [Hansell, 1994].

9.1.1 Key technical challenges

The mixed-version race described above could have been prevented by extending the load

balancer, which dispatches client requests to the front-end servers, to track the progress of

the rolling upgrade and to determine the appropriate server-side version for each request.

This approach would require adding significant complexity and processing delays to a key

component of the enterprise infrastructure, which is essential for avoiding performance

bottlenecks. Alternatively, the servers could wait until the end of the rolling upgrade before

starting to send the new version of the client-side Javascript code. However, in a large enter-

prise infrastructure some servers are likely to become unresponsive during the upgrade

either because they have failed or because they are slow to upgradewhich makes it dif-

ficult to determine reliably when the rolling upgrade has completed [Hume, 2010]. Prior

anecdotal evidence, from the recorded occurrences of mixed-version races [Hansell, 1994;

Reiss, 2009], confirms that these race conditions cannot be avoided easily.

There are three technical challenges that render mixed-version races hard to address

using existing techniques:

• Upgrades lacking Atomicity. A rolling upgrade is not an atomic operation, and it

places the system in a state with mixed versions. In large-scale infrastructures, some

nodes crash during the upgrade and other nodes need a long time to complete the

upgrade. Moreover, some upgrades fail silently. In such an environment, the end

of the rolling upgrade is not always easy to detect because it is hard to distinguish

a node that has crashed from a node that is slow. Because the upgrade is a long-

running procedure, often enterprises cannot delay exposing the new functionality to

the other tiers of the application.

• Asynchronous messaging. Asynchronous communication is used, for performance

reasons, in all the tiers of modern enterprise systems. For instance, in the front-

end AJAX applications receive asynchronous callbacks from the client-side code, in

the middle tier application servers use message-oriented middleware (e.g., Ama-

zon’s Simple Queue Service, XMPP), and in the back-end storage systems use asyn-

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 134

chronous I/O. Asynchronous communication is considered by some experts a better

paradigm for building distributed systems than synchronous RPC [Vinoski, 2008].

• Versions determined dynamically. When asynchronous message exchanges oc-

cur concurrently with long-running rolling upgrades, the code versions involved in

the exchange are determined dynamically (e.g. at the time of the first invocation).

Upgrades performed in the middle of the message exchange expose the system to

mixed-version races.

As online-upgrade techniques are increasingly adopted by distributed enterprise sys-

tems, similar problems will become widespread. Distributed systems have been using het-

erogeneous, off-the-shelf components for a long time (see Chapter 8). With the advent of

cloud computing, these third-party components are also provisioned and managed by third

parties, such as public cloud infrastructures (e.g. the Amazon Web Services). These enter-

prise systems span multiple administrative domains and no longer control the upgrading

schedule for all their tiers. Cloud-based resources (e.g., storage objects, message queues)

are upgraded on schedules set by the service providers, and upgrades may occur during an

asynchronous message exchange between tiers. In other words, third-party provisioning,

despite all its benefits, will likely introduce the risk of mixed-version races for a wide range

of applications.

9.2 Upgrade risk model

The risk model answers the question: Is it riskier to upgrade or not to upgrade? By com-

bining the likelihood of mixed-version races with the severity of the resulting errors and

inconsistencieswhich characterizes the impact of potential upgrade failuresI estimate

the risk of upgrading. I then compare this result with the risk of not upgrading, obtained from

the severity of the original bugs or feature requests that are addressed by the upgrade. In

other words, I estimate the expected impacts of the two alternative decisionsto upgrade

or not to upgradeover the typical time frame of a rolling upgrade. The key idea is to treat

mixed-version races as software defects, by incorporating them in the regular software test-

ing activities.

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 135

9.2.1 Integration in the software-development life cycle

Actively used software must be modified continuously to ensure its utility and safety. Fix-

ing bugs, adding new features, removing obsolete features, optimizing performanceall

involve upgrading existing software systems. Software engineering textbooks [for exam-

ple: Sommerville, 2007] recommend thoroughly planning the changes offline, taking into

account the characteristics of the whole system. After the changes have been implemented,

they are typically integrated in a copy of the running system and tested, e.g. by running a

regression test suite, before deploying them in the production system.

Similarly, mixed-version testing can be done using only two hosts, one running the new

version and the other running the old version, by triggering the worst-case scenario leading

to a mixed-version race: a callback from the new version that arrives at the old version, as

described in Section 9.1. The inconsistencies discovered in this manner are assigned their

own severity levels, and the uniform labeling system ensures that they are comparable with

the impact of known bugs.

The complexity and duration of this testing procedure depends on the differences be-

tween the old and new versions, but not on the number of potential mixed-version states

created at runtime. For example, out of the 352 servers supporting Wikipedia, one of the

ten most popular sites on the Internet, 120 hosts are located on the front end and can be

accessed by the users (see also Section 4.1). This could lead to 2120 ≈ 1E36 (one undecil-

lion) possible version combinations during a rolling upgrade similar to the one described

in Section 9.1. Instead, I test only one combination.

This testing approach can be extended to upgrade scenarios where n mixed versions

must coexist (with n > 2) or where m tiers of the distributed system are affected by the

upgrade. In the first case, all the potential interactions where a version invokes an older

version must be considered, i.e. (n

2) =
1
2 n(n− 1)mixed-version combinations. In the second

case, all the interactions where the new version invokes the old version in the next tier must

be considered, i.e. (m − 1)2m−2 combinations.

In practice, however, integration testing is not likely to be affected by combinatorial ex-

plosion because it is uncommon to support a large number of mixed versions and because

distributed systems have only a few tiers that span multiple administrative domains (e.g.,

for m = 4 we have to test only 12 combinations). Moreover, because during a rolling up-

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 136

grade each individual host is upgraded in an atomic fashionby disconnecting, upgrading,

rebooting and reintegrating the host into the distributed systemthe number of collocated

components that must be upgraded does not affect the complexity of the testing procedure.

In this chapter, I focus on the most common situation, where the system spans two adminis-

trative domains and includes only two versions during the rolling upgrade: the old version

and the new version.

In most cases, developers and administrators cannot estimate accurately the likelihood

of exposing known software defects or the variability of upgrade durations for each host.

To enhance the usability of the analytical risk model, I use a discrete probability measure,

with three possible values: low, medium, and high. Similarly, the risk model requires sys-

tem administrators to specify the duration of single-host upgrades in the form of a trian-

gular distribution, with an expected value and lower/upper bounds. In consequence, the

outputs from our model are discrete values as well, which simplifies the comparison be-

tween the impacts of upgrading and of not upgrading. Working with discrete values allows

administrators to capture the partial information available about the system and to use it

for deciding when and how to execute an upgrade.

9.2.2 Analytical risk model

Table 9.1 describes the input and output parameters of the risk model. Ncall , Nbug, c, S(Ik)

and S(Bk), are determined through integration testing. Pcall(k) and Pbug(k) are workload-

dependent metrics, which are estimated from testing results and from system monitoring

logs. U, τ, τlo and τhi are provided by the system administrators. I assess:

Riskno upgrade =

Nbug

∑
k=1

Pr[Bk] · S(Bk)

Nbug · max S

Riskupgrade =

Ncall

∑
k=1

Pr[Ik] · S(Ik)

Ncall · max S
,

which combine the likelihoods of inconsistencies and bug manifestations with the corre-

sponding severity levels. I normalize the risk values with respect to max S in order to keep

them comparable across different severity scales.

The inputs Pcall(k) and Pbug(k) can take one of the values plo, pmed or phi, which corre-

spond to low, medium and high probabilities. These discrete levels are easier to specify

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 137

Table 9.1. Summary of notations from the upgrade risk model.

Model inputs

U Number of servers upgraded.
τ Mean upgrade duration for a single host.
τlo, τhi Lower and upper bounds for the upgrade duration.

c
Average number of callbacks per request issued by the new version of the
client-side code.

Ncall

Number of callbacks that can trigger a mixed-version race, because they do
not exist in the old version or because they have different semantics.

Nbug Number of bugs addressed by the upgrade.

S(E)
Severity of event E (e.g., manifestation of bugs B1, B2 . . . BNbug

or of mixed-
version inconsistencies I1, I2 . . . INcall

).

Pcall(k)
Probability of issuing the callback that leads to mixed-version inconsis-
tency Ik.

Pbug(k) Probability that a request will expose bug Bk.

Model outputs

RiskD The risk associated with decision D ∈ {upgrade, no upgrade}.
Because the risk of inconsistency varies during the upgrade, I estimate the average risk,
Riskupgrade, and the maximum risk, max(Riskupgrade).

Other notations

Pr[E] Probability of event E.
plo/med/hi Discrete probability values: plo < pmed < phi.
τi Time needed to upgrade server i.
ti Time when the first i servers have been upgraded.
Prace(i) Probability of mixed-version races at ti.

than precise probability values. In this analysis, I do not attempt to assign placeholder val-

ues to these probability levels, and instead I derive the risk symbolically. To avoid counter-

intuitive artifacts in the computation, I consider that plo, pmed or phi correspond to a linear

scale, i.e. pmed = 2plo and phi = 3plo.

The probability of exposing a bug during normal operation is unaffected by the upgrade

process and remains constant: Pr[Bk] = Pbug(k) ∈ {plo, pmed, phi}. The severity levels S(Bk)

and S(Ik) also remain constant during the rolling upgrade.

The probability of exposing an inconsistency depends on both the workload and the

progress of the rolling upgrade. An inconsistency will occur only if the client issues a new

callback, which does not exist or has different semantics in the old version (event E1) and

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 138

0 20 40 60 80 100

Time

N
um

be
r o

f f
ro

nt
en

ds
 u

pg
ra

de
d

0

10

20

30

40

(a) Progression of the rolling upgrade.

0 20 40 60 80 100

Time

Pr
ob
ab
ilit
y

plo

pmed

phi

Pbug

Prace(i) Pcall

(b) The likelihood of triggering an inconsis-

tency, Prace(i) · Pcall , varies during the rolling

upgrade. The likelihood of exposing a known

bug, Pbug, remains constant.

Figure 9.2. Analytical risk model, comparing the expected impacts of upgrading and of not upgrading.

if this callback arrives at a server that has not yet been upgraded and continues to run the

old version (event E2, which corresponds to a mixed-version race). After upgrading the i
th

server:

Pr[Ik] = Pr[Ik|E1] · Pr[E1] =

= Pr[E2] · Pr[E1] =

= Prace(i) · Pcall(k)

The probability of mixed-version races Prace varies during the upgrade. I note

τ1, τ2 . . . τU the upgrade durations for servers 1, 2 . . . U. The upgrade of the i
th server will

then be completed at time ti = ∑i

k=1 τk, as shown in Figure 9.2a. I do not assume that dura-

tions τi are known precisely when planning the upgrade. However, I consider that system

administrators are able to estimate empirically the expected value of the time needed to up-

grade a single host (τ), as well as the upper and lower limits (τhi and τlo). I use a triangular

distribution, characterized by these parameters, to estimate the upgrade timings.

Prace depends on two events: sending the initial request to a server running the new

version (event E2.1, analogous to step 2 in Figure 9.1), and sending any of the subsequent

callbacks to the old version (event E2.2, analogous to step 4 in Figure 9.1):

Prace(i) = Pr[E2.1 at ti] · Pr[E2.2 at ti]

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 139

Request to
new version

Callback to
old version

Inconsistency

Correct
operation

E2.1:

E1:
E2.2:

New callback

¬ E2.1

¬ E2.2

¬ E1

Figure 9.3. Events leading to a mixed-version inconsistency.

Pr[E2.1 at ti] =
i

U

Pr[E2.2 at ti] = 1 − Pr[¬E2.2 at ti]

Event ¬E2.2 corresponds to the scenario where all c callbacks are handled by the new ver-

sion:

Pr[E2.2 at ti] = 1 −
�

i

U

�c

Prace(i) =
i

U
·
�

1 −
�

i

U

�c�
(9.1)

Prace = 0 at times t0 and tU , because the first and second terms of the equation are null, re-

spectively. In other words, before and after the rolling upgrade the probability of exposing

an inconsistency is 0, because all servers are executing the same version of the software. Fig-

ure 9.2b illustrates the evolution of Prace and Pbug during the rolling upgrade. The shaded

area under the bell curve corresponds to the likelihood of mixed-version races during the

upgrade, and the dashed rectangle corresponds to the expected occurrence of bugs during

normal operation.

I compute the likelihood of exposing bugs or mixed-version inconsistencies by combin-

ing the probabilities of the independent events that lead to these circumstances, as shown in

Figure 9.3. After the upgrade of the i
th server, the risks of upgrading and of not upgrading

are:

Riskno upgrade =

Nbug

∑
k=1

Pbug(k) · S(Bk)

Nbug · max S
(9.2)

Riskupgrade(i) =
i

U
·
�

1 −
�

i

U

�c�
·

Ncall

∑
k=1

Pcall(k) · S(Ik)

Ncall · max S
(9.3)

The risks of upgrading and of not upgrading are functions of the discrete probability

values plo, pmed, and phi. The range of possible risk values is RiskD ∈ [0, 3plo]. I consider

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 140

Low risk Medium risk High risk

0 plo 2plo 3plo

Risk

Figure 9.4. Discrete risk values.

that the risk is high when RiskD > 2plo, medium when RiskD ∈ (plo, 2plo], and low when

RiskD ≤ plo (see Figure 9.4).

The average risk of upgrading is:

Riskupgrade =

U

∑
i=1

τi · Riskupgrade(i)

tU

(9.4)

This formula does not have a closed-form expression in terms of τ, τlo and τhi. Instead,

this risk can be estimated through a Monte Carlo simulation, by randomly generating mul-

tiple sets of τi input terms and by computing the mean of the resulting risks. Using this

approach, I also compute the 95% confidence interval for the average risk of upgrading,

which indicates the precision of the estimation.

The maximum risk of upgrading, however, can be computed using a simple, closed-

form expression. I compute this maximum by approximating the probability of sending a

new callback to the old version, from Equation 9.1, with a continuous function P̃race(x) and

by differentiating this function:

P̃race(x) =
x

U
·
�

1 −
�

x

U

�c�

dP̃race(x)
dx

= 0 ⇒

1
U

− (c + 1) · x
c

0
Uc+1 = 0 ⇒

x0 = U
c

�
1

c + 1

The maximum probability of sending new callbacks to the old version is:2

max(Prace) = c

�
1

c + 1
·
�

1 − 1
c + 1

�
(9.5)

2This formula computes an upper bound, because the Prace(x) is a stair function and Prace(x) ≤ P̃race(x).

However, the exact maximum could be computed by determining the time interval when the risk is maximized,

i = �x0�, and introducing it in Equation 9.1.

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 141

The maximum value max(Prace) depends only on c, and its asymptotic bound is 1. However,

for typical values of c, this value is much lower. If the new version issues up to 12 callbacks

into the server, the maximum values of this probability are:

c 1 2 3 4 5 6 7 8 9 10

max(Prace) 0.25 0.38 0.47 0.53 0.58 0.62 0.65 0.68 0.70 0.72

The maximum risk of upgrading is:

max(Riskupgrade) = max(Prace) ·

Ncall

∑
k=1

Pcall(k) · S(Ik)

Ncall · max S
(9.6)

A computer program that automates these calculations is included in Appendix C.

9.2.3 Interpretation

The risk model compares the expected impacts of executing an upgrade and of putting it

on hold. This assessment takes into account the impacts of known bugs in the old version

and of mixed-version inconsistencies that can arise during the upgrade. I do not consider

the impact of potential bugs in the new version, which cannot be accurately estimated.

The conditional probability of producing an inconsistency, Prace, varies as the rolling

upgrade progresses. Intuitively, a request that arrives after half of the servers have been

upgraded incurs a higher risk of inconsistency than requests arriving at the beginning or

at the end of the upgrade. Therefore, the decision whether to upgrade or not can take into

account either the maximum or the average risk over the duration of the rolling upgrade.

Most system administrators will base this decision on the average risk, which corresponds

to the intuitive notion of expected impact of the upgrade. However, mission-critical sys-

tems, where each request can have a severe impact (e.g. physical injury or financial loss),

will consider the maximum risk of upgrading.

While I consider that Pbug and Pcall remain constant for the duration of the upgrade,

these parameters are likely to be dependent on the system’s workload. For example, on

different days of the week the load might shift between different services provided by the

system, exercising different code paths in the old and new software versions. This will

change the probabilities of exposing bugs and inconsistencies. If the system administrators

can estimate the values for Pbug and Pcall during different time windows, based on testing

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 142

results and knowledge of past workloads, our model will help them determine the best

time for performing the upgrade. Alternatively, the risk assessment may suggest that an

offline upgrade, executed during a planned maintenance window, is more appropriate for

the system.

9.3 Qualitative validation of the analytical risk model

Complete data on real-world upgrade failures is scarce and hard to obtain, due to the sensi-

tivity of this subject. Two real-world examples of upgrade failures can be traced to mixed-

version races [Hansell, 1994; Reiss, 2009]. Because, to the best of my knowledge, this race

condition has not been characterized before, the anecdotal information available does not

provide sufficient data to design statistically significant experiments for evaluating the risk

of upgrading in the presence of mixed-version races. Moreover, the analytical model as-

sesses the perceived impact of upgrades, which cannot be measured directly. In particular,

the severity of a bug or of a mixed-version inconsistency is a qualitative measure that re-

flects the developers’ or administrators’ perception of the impact resulting from the man-

ifestation of these bugs/inconsistencies. This a priori perception of impact is difficult to

correlate with a measurable quantity.

I conduct a qualitative evaluation of our risk model, seeking to answer the question:

Is this risk model useful? By walking through three hypotheticalbut realisticscenarios of

online upgrades, I focus on the time when a system administrator must decide whether to

upgrade or not and on the information available for making this decision. Two scenarios

focus on mission-critical systems (online banking, in Section 9.3.1, and foreign exchange,

in Section 9.3.3) and one focuses on a large-scale system that is not mission critical (a social

networking site, in Section 9.3.2). I show that using the analytical model leads to better

decisions than those suggested by intuition alone. These scenarios demonstrate that the

model provides additional information, not available through other means, for making the

upgrade-or-not decision. The risk model can systematically inform an upgrade adminis-

trator, or any other stakeholders in these applications, whether an online upgrade is appro-

priate in their environment.

In this chapter, I do not ask the question: How accurate is the additional information provided

by the risk model? This question could be answered by using the model in a production

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 143

system, for an extended period of time, and by reporting on this experience after observing

real upgrade failures. I believe that such practical experience is essential for providing a

complete validation of the risk-assessment approach.

9.3.1 Upgrade #1: Online banking

Imagine that a bug in the Web interface of an online banking application (such as the one

described in Section 9.1) was reported and corrected. Specifically, in the old version, an

edit box for entering fund transfer information accepts all alpha-numeric characters rather

than restricting user input to numbers only. The alphanumeric characters are needed in

order to enter a currency specification. However, this can expose the site to a SQL injection

attack, which is one of the top 25 programming errors that lead to security vulnerabili-

ties [CWE/SANS, 2010]. The new version of the Web interface uses a radio box to specify

the currency and a numbers-only text box. Because this bug afflicts those users that use

online brokerage services, who tend to constitute an important segment of the customers,

the bug is assigned the severity level 5 (highest).

Through integration testing, it has been determined that replacing the upgrade can

lead to an inconsistency resulting from a mixed-version race. Because the old version of

the server-side code expects a single parameter, it will disregard the currency specification

and will assume that the sum is specified in US dollars. This can cause significant problems

when the site is used by customers with accounts in foreign currencies. This potential

inconsistency is assigned severity level 3.

Because the impact of SQL injection attacks outweighs the severity of mixed-version

inconsistencies, intuition suggests that the upgrade should be deployed as soon as possible.

However, the most likely impacts of these two events depend on other parameters as well.

Imagine that the probability of being the target of an attack is Pbug = plo, while most of the

callbacks issued by the new version use the new radio box parameter (Pcall = phi), because

the majority of the bank’s customers have accounts in a foreign currency (the remaining

parameters are summarized in Table 9.2).

The analytical model allows me to compute that the risk of not upgrading is low, while

the maximum risk of upgrading is medium. Because online banking is a mission-critical

application, we do not take the mean risk of upgrading into consideration. Contrary to

intuition, the analytical model predicts that it is better to upgrade during a planned main-

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 144

Table 9.2. To upgrade or not to upgrade? Comparison of risk predictions in three realistic scenarios of online
upgrades. The sparklines in the bottom row illustrate the time-variable risk of upgrading and the constant risk
of not upgrading.

Online banking Social networking Foreign exchange
§9.3.1 §9.3.2 §9.3.3

U 10 100 100
τ 1 min 1 min 2 min
τlo 0 min 0 min 0 min
τhi 6 min 2 min 7 min
c 6 2 1
max S 5 5 5
Ncall 1 1 1
Pcall(1) phi phi pmed

S(I1) 3 5 3
Nbug 1 1 1
Pbug(1) plo pmed phi

S(B1) 5 5 2

Riskno upgrade Low Medium Medium

max(Riskupgrade) Medium Medium Low

Riskupgrade – Low Low

medium risk

low risk

tenance window than online. Alternatively, an online upgrade may be appropriate during

a time window when most of the customers who access the system have accounts in dollars.

9.3.2 Upgrade #2: Social networking site

The Web interface of a social-networking site is not rendered correctly when accessed using

an old version of some Web browser. Specifically, a push button that allows users to log in

appears disabled. This happens because the browser in question uses an obsolete version of

the DOM tree. The usage monitoring service in place indicates that a user will try to access

the Web site using this particular version of the browser with probability Pbug = pmed.

However, the bug is assigned severity level 5 because it causes the site to be unavailable

whenever it occurs, and high availability is a top priority for the social networking site.

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 145

After log-in, the old version of the server sends (via AJAX callbacks) more information

than the user needs. The client-side code, running in the user’s browser, filters this informa-

tion. The new version, which fixes the DOM bug, changes the way elements are displayed

and moves the filtering to the server side. Whenever a new-version callback is processed

by an old-version server, some other user’s private information is leaked and displayed in

the browser (Pcall = phi). This potential privacy breach is also assigned severity level 5.

Our intuition suggests that an online upgrade should be avoided, because, while the

bug and the mixed-version inconsistency are equally severe, the bug does not manifest fre-

quently. However, as social networking is not a mission critical application, we compare the

risk of not upgrading (medium) with the average risk of upgrading (low). In this case, the

analytical risk model predicts that an online upgrade represents the best course of action.

9.3.3 Upgrade #3: Foreign exchange system

Multiple online banking applications rely on a cloud-based service that provides foreign-

currency exchange rates. This cloud-based service is provisioned and upgraded by a third

party. The cloud service can support multiple versions of the communication protocol,

and the version in use is established at the start of the message exchange. The service uses

a publish-subscribe infrastructure. When banking applications subscribe to the service,

they receive asynchronous messages that encapsulate Java objects. The new version of the

service is provided as an extension of the old service; the corresponding objects instantiate

a subclass of the old version’s data type.

A certain bank requires the new version of the service in order to provide a new feature.

Specifically, in addition to the current exchange rate, the new version also specifies the time

when this rate was valid. This information is useful for customers who engage in money

market speculation. This missing feature is assigned severity level 2. A sizable subsegment

of the system’s users, are estimated to wish the feature added (Pbug = phi).

However, an online upgrade can expose a mixed-version race. If the bank starts a rolling

upgrade, to add the new feature in its application code, the service publisher will begin

broadcasting messages belonging to the new version. Some messages will be received by

servers still running the old version (Pcall = pmed). When these servers unmarshall the

message and determine that the object’s class definition is unknown, they will throw an

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 146

exception. This renders the service unavailable for servers that have not yet been upgraded.

This partial outage is assigned severity level 3.

The missing feature and the partial outage have different likelihoods and different sever-

ity levels. It is, therefore, difficult to make a decision based only on intuition. The analytical

model shows that the risk of upgrading is always lower than the risk of not upgrading, and

recommends an online upgrade. The analytical model provides a systematic approach for

deciding whether to upgrade or not to upgrade.

9.4 Summary of findings

This chapter describes a new type of race condition that may occur during online up-

grades in systems spanning multiple administrative domains and communicating via asyn-

chronous messaging across domain boundaries. The recorded occurrences of such mixed-

version races suggest that they can produce severe effects, including financial loss. Mixed-

version races will become widespread in systems relying on cloud-computing resources,

which are provisioned and operated by third-party service providers. I also introduce an

analytical model for comparing the risks of upgrading and of not upgrading. This model

compares the expected impact of mixed version races with the effects of known bugs in the

deployed software.

The risk model can determine, analytically, the best time window for performing an

upgrade. Anecdotal evidence, and recent empirical studies, indeed suggest that some days

might be better than others for implementing changes and upgrades. For example, Sliw-

erski et al. [2005] study the version history of several open-source systems and discover a

temporal correlation between the code changes that require subsequent fixes and the week-

day when these changes are implemented. According to this study, the best days for fixing

software bugs are Tuesdays (with Fridays and Saturdays being the riskiest days). Inter-

estingly, Windows [Microsoft Developer Network, 2001] and Facebook [Reiss, 2009] also

deploy their upgrades on Tuesdays.

Recent advances in low-overhead dynamic analysis [for example: Liblit et al., 2003; Bond

et al., 2010] have made it possible to monitor systems in their deployment environments in

order to assess the probability that certain bugs will be exposed. These techniques provide

CHAPTER 9. RELAXING THE ATOMICITY PROPERTY 147

the tools for evaluating the risk of not upgrading a system that includes known software

defects (Riskno upgrade).

However, the leading cause of failure for distributed-system upgrades are errors in the

upgrade procedure, rather than software defects (see Chapter 3). Moreover, these failures

are often hard to replicate outside of the deployment environment, because they corre-

spond to broken dependencies, they affect systems spanning multiple administrative do-

mains and their manifestations are workload-dependent. The current lack of standard

benchmarks for dependable software upgrades makes it challenging to assess the terms

of Equation 9.3, such as the severity of mixed-version inconsistencies or the number of

hosts involved in the upgrade in order to compute the risk of upgrading (Riskupgrade).

Chapter 7 discusses the first results in dependability benchmarking for software upgrades,

but further investigation is needed, in particular regarding upgrades that span multiple

administrative domains.

Mixed-version races are an example of behavior that emerges at runtime and that cannot

be tested, exhaustively, before the system is deployed. Online software upgrades interact

with the workload in ways that may be unpredictable at design-time. Reasoning about such

emerging behavior is difficult, and this chapter represents a first step toward a systematic

approach for validating such runtime-emerging behaviors.

Chapter 10

Conclusion

THIS dissertation identifies and addresses the leading causes of both unplanned fail-

ures and planned downtime resulting from software upgrades in distributed sys-

tems. This dissertation defines three abstract properties required for improving the de-

pendability of software upgrades. Building on empirically derived insights on current

upgrade practices and problems, this approach harnesses the opportunities provided by

emerging technologies such as cloud computing to simplify large-scale upgrades, to allow

upgrades to be executed efficiently online, and to improve their dependability.

10.1 Summary

Traditional fault-tolerance approaches concentrate almost entirely on responding to, avoid-

ing, or tolerating unexpected faults or security violations. However, scheduled events, such

as software upgrades, account for most of the system unavailability and often introduce

data loss, latent errors or race conditions. I take a holistic approach and focus on upgrad-

ing distributed systems end-to-end.

Industry trends suggest that online upgrades are currently needed in large-scale

systems, such as electrical utilities, assembly-line manufacturing, customer support, e-

commerce, banking, etc. However, previous research has focused on upgrading individ-

ual system components of distributed systems (e.g., the application code, the middleware

framework or the database schema). Similarly, industrial best practices recommend a grad-

ual deployment of upgrades, which place the system in a state with mixed, interacting ver-

sions.

148

CHAPTER 10. CONCLUSION 149

Through two empirical studies, I identify the leading causes of upgrade failure

breaking hidden dependenciesand of planned downtimechanging the format of per-

sistent data. I establish an upgrade-centric fault model, by analyzing multiple sources

of fault data through statistical clustering techniques that are widely used in the natural

sciences for creating taxonomies of living organisms. Most upgrades fail because of un-

avoidable human errors in the upgrade procedure, which break dependencies in the system

under upgrade (e.g., by specifying wrong service locations, creating database-schema mis-

matches, introducing shared-library conflicts). I also identify incompatible schema changes

and computationally intensive data conversions as the leading causes of planned downtime

for Wikipedia, a popular Internet system.

This dissertation introduces the AIR propertiesAtomicity, Isolation and Runtime-

testingwhich improve the dependability of software upgrades by removing the leading

causes of planned and unplanned downtime. The Isolation property provides an alter-

native to tracking dependencies. By accessing the old version in a non-intrusive, read-only

manner, I avoid breaking hidden dependencies during the upgrade. The Atomicity prop-

erty implies that the system must not include mixed versions, and the Runtime-testing

property ensures that the upgrade does not fail because of differences between the testing

and deployment environments. These properties enable long-running data conversions in

the background, during an online upgrade, as the new version is inactive, and does not

need to be in a consistent state, until the atomic switchover.

The AIR properties are realized in Imago, a system for dependable, online upgrades in

distributed systems. By installing the new version in a parallel universe (a distinct collec-

tion of resources), Imago isolates the production system from the upgrade operations and

avoids breaking hidden dependencies. Imago relies on additional hardware and storage

resources, which can be temporarily leased from an existing cloud-computing infrastruc-

ture. The end-to-end upgrade is an atomic operation, executed online even when perform-

ing complex schema and data con-versions, which commonly impose planned downtime.

Moreover, I show that Imago reduces unplanned downtime, by conducting fault-injection

experiments driven by my upgrade-centric fault model. These experiments outline a sys-

tematic approach for evaluating the dependability of online upgrades.

Relaxing the AIR properties opens the door to runtime behaviors that are poorly un-

derstood and difficult to ascertain. For example, the service-oriented architecture provides

CHAPTER 10. CONCLUSION 150

weaker guarantees than the Isolation property because it does not address the interplay

of change management (e.g. software upgrades) and distributed, autonomic management

of service-level objectives. Similarly, in cases where the Atomicity property is difficult to

enforcefor example, when upgrading distributed systems that span multiple administra-

tive domainsthe system is exposed to race conditions that involve multiple versions of

the software. Such mixed-version races can induce critical inconsistencies, and they might

be difficult to prevent using existing techniques. In consequence, performing software up-

grades with relaxed AIR properties requires assessing the impact that the upgrade will

have on the system.

One contribution of Imago is the separation of concerns between the functional aspects

of an upgrade (e.g. converting persistent data) and the mechanisms for upgrading dis-

tributed systems online (e.g. switching atomically to the new version). This enables an

upgrades-as-a-service model. In the future, upgrades-as-a-service will allow large-scale

upgrades to be performed dependably and with fewer interventions from human opera-

tors.

10.2 Open questions and future work

The work presented in this dissertation raises a number of questions about the scientific

foundations and the engineering choices that are required for providing dependable soft-

ware upgrades. In general, systems that undergo runtime evolution (e.g., online software-

upgrades, architectural reconfigurations) must cope with changes implemented during the

system’s execution. These changes interact with the workload in ways that may be unpre-

dictable at design-time. For example, dynamic software updates require programming

techniques that may introduce new bugs [Hayden et al., 2009], transformations performed

on persistent data may not be information-preserving [Curino et al., 2008a], distributed-

system upgrades may break hidden dependencies [Dumitraș and Narasimhan, 2009a], and

loading third-party components, at runtime, into plugin-based architectures can lead to

unexpected behavior [Dumitraș et al., 2009].

Reasoning about such emerging behavior is difficult because previously-established

system invariants do not hold, changes are implemented by both human and software

agents, and externally-imposed deadlines might affect the outcome. Online-upgrade mech-

CHAPTER 10. CONCLUSION 151

anisms are not acceptable for systems with strict certification requirements because, during

the upgrade, the system behavior is not guaranteed to conform to the specification of either

the old or the new version of the software [Segal, 2002].

This dissertation describes mechanisms that enable software-testing activities under

operational conditions, in the deployment environment. Because online upgrades have

unique failure modes, which cannot be fully analyzed before deployment, and because

online upgrades provide few opportunities for testing the upgraded system, Runtime-

testing will become an important property of future upgrading approaches. Moreover,

this property can be implemented in a practical manner. While modern distributed sys-

tems can incorporate hundreds of thousands of nodes and can span multiple data centers,

distributed worldwide, only a few of the environments in a production system are unique

[Crameri et al., 2007]. In the parallel universe, Imago performs runtime testing in the en-

vironments and the scale at which the new version will operate; however, these future

operating environments could be reproduced faithfully, but at a reduced scale, for testing

purposes. In this case, the ingress interceptors would have to sample the live workload

recorded because the system-under-test does not have the same capacity as the production

system. Past research [for example: Oliveira et al., 2006; Crameri et al., 2007] has explored

the failures that result from differences between the environments in which a system is

tested and deployed. In the future, we should also investigate the impact of testing systems

in environments that mirror faithfully all the attributes of the deployment environment

except for the scale targetedin order to understand the limitations of Runtime-testing

approaches.

In general, however, the presence of non-determinism or of behavioral changes prevents

a direct comparison of the outputs of the old and new versions from producing meaningful

results. While the question of what can be learned from the tests conducted at runtime

remains open, this dissertation represents a first step toward a systematic approach for

validating runtime-emerging behaviors.

For the next steps, we should turn our attention to robust mechanisms for incorporat-

ing online evolution into the design of distributed systems. While for the first 35 years of

research on online software upgrades the focus has been on transparent upgrade mecha-

nisms, which require limited or no cooperation from the system-under-upgrade, this proof

of concept has largely been successful. We can execute complex changes that occur during

CHAPTER 10. CONCLUSION 152

the evolution of real-world systems, with increased automation and with minimal down-

time. This dissertation further discusses the principles of dependable software upgrades.

In the future, we should focus on designing systems for upgrades, by trading transparency

for an improved system dependability [Giuffrida and Tanenbaum, 2009].

Toward this goal, a promising topic for investigation is the design of programming lan-

guages with extensions for software upgrades. For example, the program changes that

evolve into a new version of the software are usually buried in the revision-control sys-

tem, across multiple branches and working copies. Language extensions could allow the

programmer to check if various feature combinations are enabled in the current version

of the code and to reason locally about the changes between versions. Currently, this can

be achieved in practice with tangled if-ladders which allow an organization to decouple

the deployment of new features from their activation, but which also render the code dif-

ficult to understand [Reiss, 2009]. Similarly, many recurring causes of planned downtime

could be avoided by desiging a high-level language for specifying data transformations,

from which the implementations of both the offline upgrade and the online upgrade of

the database schema can be derived automatically [Downing, 2008]. Many of the ideas

explored, in the programming-language community, for performing program refactorings

and for providing refactoring support for software upgrades might apply for automating

database-schema changes.

However, in order to assess whether such mechanisms are successful in improving the

dependability of software upgradesor to understand the reasons why they failwe must

be able to make quantitative comparisons of the availability and reliability of various up-

grade mechanisms. The failures of software upgrades represent a sensitive subject, which

prevents organizations from sharing the information required for replicating these failures

outside of the deployment environments. To make progress in this direction, we must

establish a comprehensive corpus of realistic faults that commonly occur during online up-

grades, collected from multiple industry sources. Similar repositories, such as the top 25

programming errors that lead to security vulnerabilities [CWE/SANS, 2010], have had a

significant impact on the practice of programming, and the qualitative benchmarking re-

sults presented in this dissertation emphasize the utility of an upgrade-centric fault repos-

itory.

CHAPTER 10. CONCLUSION 153

Another topic that remains challenging is upgrading communication protocols. Be-

cause such upgrades usually require knowledge of the protocol semantics [Patel et al., 2003;

Rütti et al., 2006; Anderson and Rathke, 2009], and generic protocol-upgrade mechanisms

have not yet been developed. An alternative approach is to allow servers to submit the pro-

tocol stubs to the clients and to render the clients protocol-agnosticas pioneered by the

Jini middleware [Waldo, 2000]. In the past, this enabled Orbitz, an airline ticketing system

and one of the early adopters of Jini technology, to perform seven major upgrades without

failure and without downtime [Waldo, 2010].

This approach is currently being revisited, with the advent of cloud computing. Cloud-

based distributed systems are able to send the appropriate client-side code to the users

whenever they connect to the service (e.g., through AJAX-style programming, but other

forms of code migration might emerge in the future). This reduces the need for dynamic

software updates on the client side (because the system is designed from the start to be able

to load new code whenever needed) and for a large-scale dissemination of software updates

(because the application logic is implemented on the server side and executes inside the

service provider’s data center). Moreover, thin clients are compelling for the providers

because of the need to support resource-constrained mobile devices and because adding

too much logic on the client side would lead to longer release cycles [Petrou, 2010]. This

shift will bring into forefront a concern for correctly handling the dependencies among the

components that might be loaded dynamically at the client-side and will emphasize the

importance of the Isolation property.

The upgrade-as-a-service model represents another way of harnessing the opportuni-

ties provided by could computing for making online software upgrades easier to implement

in practice. By separating the functional aspects of the upgrade (e.g. data conversions) from

the non-functional mechanisms for online upgrade (e.g. atomic switchover), this model al-

lows third-party providers to provide most of the infrastructure required for performing

complex upgrades and renders online upgrades accessible to both large and small orga-

nizations. For example, the recent data-intensive applications, which mine large datasets

in real time, use programming abstractions that continue to evolve. These applications

will mandate competitive upgradesreplacing software components with alternative sys-

tems and converting the legacy data into a new formatthat degrade the application’s re-

sponsiveness by introducing planned downtime. In the future, upgrade-as-a-service could

CHAPTER 10. CONCLUSION 154

minimize the downtime imposed by competitive upgrades. This approach could also assist

companies in the migration to a virtualized or cloud-based infrastructure.

Appendices

155

Appendix A

NP-Completeness of the Package-Upgrade Problem

For Linux, the most common package formats are DEB [Silva, 2005], used by Debian and

Ubuntu, and RPM [Bailey, 1997], used by Red Hat and Mandriva. Figure 1.1 shows the

dependencies and conflicts among the DEB packages from a host running the Apache web

server, with the PHP interpreter and the MySQL client library. For instance, the mysql-

client-5.0 package depends on 13 packages and it conflicts, owing to mutual incompat-

ibilities, with one other package from the Debian repository. A package may also have al-

ternative dependencies, e.g., apache2 has a dependency that can be satisfied by either one

of three different packages. Dependency specifications often contain version constraints

(e.g., >=4.1) as well, and different versions of a package are mutually conflicting.1

The problem of upgrading2 from a package pold to a package pnew, which may or may

not be a more recent version of pold, entails finding a set of packages, including pnew but

not pold, such that all dependencies of the packages from this set are satisfied. Formally,

a repository R = (P, �→) contains a set P of packages, each package p ∈ P having multiple

versions pv1 , pv2 , . . . pvk
, and defines a dependency relation �→ between packages from P and

combinations (conjunctions, disjunctions and negations) of packages:

• Package p
� depends on another package p, which means that any version of p satisfies

this dependency:

p
� �→ p ≡ p

� �→ pv1 ∨ . . . ∨ pvk
;

1Certain package management systems allow different versions of a package to be installed and to run

side-by-side as long as they not not share configuration files or runtime state and they are isolated from each

other [Leyden, 2003; Vermeulen et al., 2007].
2The proof follows the steps outlined by Di Cosmo [2005], while solving a different problem.

156

APPENDIX A. NP-COMPLETENESS OF THE PACKAGE-UPGRADE PROBLEM 157

• Package p
� depends on version vi or greater of package p: p

� �→ pvi
∨ . . .∨ pvk

(version

constraints using other operators than ≥ vi, while uncommon, are valid; they are

handled similarly, by expanding all the available versions that satisfy the constraint);

• Package p
� depends on either one of packages p

a1 , p
a2 , . . . p

am (alternative dependen-

cies):3 p
� �→ p

a1 ∨ p
a2 ∨ . . . ∨ p

am

• Package p
� conflicts with package p: p

� �→ ¬p

A package may have several such dependencies, which have to be satisfied together. The

general form of a dependency specification for a package p
� is therefore an expression in

the conjunctive normal form (CNF),4 for example:

p
� �→ p

a

� �� �
one package

∧ (p
b
v1
∨ p

b
v2
)

� �� �
version constraint

∧ (p
c ∨ p

d ∨ p
e)� �� �

alternative packages

∧ ¬p
f

� �� �
conflict

∧ . . .

A configuration α is a function α : R �→ {0, 1}, which assigns to each package in R a boolean

value indicating whether the package is installed or not. A correct configuration is a configu-

ration α such that ∀p, α(p) = 1 (all installed packages), the dependencies of p are satisfied

in α. Given two packages pold and pnew from a repository R and a correct configuration αold,

with αold(pold) = 1 and αold(pnew) = 0, the upgrade problem is formally defined as follows:

Upgrade(αold, pold, pnew, R) = {∃ correct configuration αnew : αnew(pold) =

0 and αnew(pnew) = 1}

Theorem 1 Upgrade(αold, pold, pnew, R) is NP-complete.

Proof. Firstly, I show that a solution αnew can be verified to be correct through an algo-

rithm that is polynomial in the size of R (i.e., Upgrade(αold, pold, pnew, R) is NP). Checking

that αnew(pold) = 0 and αnew(pnew) = 1 has a constant complexity O(1). Then, ∀p ∈ R such

that αnew(p) = 1 : check whether their CNF dependency specification of p is also satisfied

in αnew. This step requires evaluating a subset of all the clauses stored in R and is therefore

linear in the size of R.
3Alternative dependencies may be expressed either directly, using the “|” operator (in DEB packages), or

through “virtual packages,” which are names corresponding to functionality that may provided by several

regular packages (for both DEB and RPM packages).
4The dependency specifications of both DEB and RPM package formats can be formulated as a CNF boolean

expression [Mancinelli et al., 2006].

APPENDIX A. NP-COMPLETENESS OF THE PACKAGE-UPGRADE PROBLEM 158

Secondly, I present a polynomial reduction from an instance of a known NP-

complete problem, 3SAT [Garey and Johnson, 1979], to the package-upgrade problem (i.e.,

Upgrade(αold, pold, pnew, R) is NP-hard). Let S = C1 ∧ . . . ∧ Cn be an instance of 3SAT, with

each Ci a disjunction of three literals Ci = li,1 ∨ li,2 ∨ li,3. Each literal li,j is a boolean variable

x or its negation ¬x. Let X = {x1, . . . xk} be the set of boolean variables occurring in S.

The reduction algorithm defines a configuration αold and a repository RS containing:

two packages pold and pnew, such that αold(pold) = 1 and ∀p ∈ RS, p �= pold : αold(p) =

0; one package pCi
for each clause Ci; and packages p

a
x, px and p¬x for each variable x.

These packages have the following dependencies (the complexity of each transformation is

specified on the right side):

1. pold does not have any dependencies and can be installed without any further checks

2. pnew, which corresponds to S, depends on pC1 , . . . pCn
, p

a
x1

, . . . p
a
xk

:

pnew �→ pC1 ∧ . . . ∧ pCn
∧ p

a
x1
∧ . . . ∧ p

a
xk

O(n + k)

3. For each clause Ci, pCi
has alternative dependencies pli,1 , pli,2 and pli,3 :

pCi
�→ pli,1 ∨ pli,2 ∨ pli,3 O(n)

4. For each variable x, p
a
x has alternative dependencies pa and p¬a:

p
a
x �→ px ∨ p¬x O(k)

5. For each variable x, px conflicts p¬x and p¬x conflicts px:

px �→ ¬p¬x, p¬x �→ ¬px O(k)

This transformation algorithm is linear in the size of the problem S; its complexity is the

complexity of the second step, O(n + k), where n is the number of clauses from S and k is

the number of boolean variables occurring in S.

If there is a solution f to the problem S, then define a configuration αnew as follows:

αnew(pnew) = α(pC1) = . . . = α(pCn
) = 1, αnew(pold) = 0 and, for each variable x,

αnew(Px) = f (x) and αnew(p¬x) = f (¬x). Because configuration αnew contains pnew but

not pold and because constraints 1–5 are satisfied for all the installed packages in αnew, pold

can be upgraded to pnew and αnew is a solution to the problem Upgrade(αold, pold, pnew, RS).

Conversely, if αnew is a solution to the problem Upgrade(αold, pold, pnew, RS), then con-

straint 2 is satisfied and ∀i, 1 ≤ i ≤ n : αnew(pCi
) = 1 and ∀x ∈ X, αnew(p

a
x) = 1. Con-

straint 5 implies that, for each variable x, either px or p¬x is installed. Constraint 3 im-

plies that, for each clause Ci, at least one of pli,1 , pli,2 and pli,3 is installed. Define a val-

uation f as f (x) = 1 if αnew(px) = 1 and f (a) = 0 otherwise. f satisfies S because

APPENDIX A. NP-COMPLETENESS OF THE PACKAGE-UPGRADE PROBLEM 159

all the disjunctive clauses C1, . . . Cn are true. This proves that the transformation from

S to Upgrade(αold, pold, pnew, RS) is a polynomial reduction and, hence, that the package-

upgrade problem is NP-hard.

As it is both NP and NP-hard, the package-upgrade problem is NP-complete. In fact,

the problem of installing a package in an empty system (i.e., which does not contain any

installed packages) is also NP-complete [Di Cosmo, 2005].

Appendix B

List of Upgrade Faults

160

APPENDIX B. LIST OF UPGRADE FAULTS 161





































































































































































































































































































































































































































































APPENDIX B. LIST OF UPGRADE FAULTS 162



























































































































































































































































































































































































































































































































































































































Appendix C

Upgrade Risk Model: Implementation

To ensure the reproducibility of the results reported in Chapter 9, I include here the Java

program that implements the upgrade risk model. This program was used for determining

whether to upgrade or not to upgrade in the case sudies from Section 9.3.

/∗ ∗∗∗
∗ UpgradeRiskModel . j a v a −−
∗
∗ A n a l y t i c a l methods f o r e v a l u a t i n g t h e r i s k o f a r o l l i n g upgrade .
∗
∗ (c) Tudor Dumitras , 2010
∗
∗ $Id : UpgradeRiskModel . j a v a 71 2010−10−21 2 3 : 4 3 : 1 2Z tudor $
∗∗ ∗ /

import j ava . u t i l . Random ;
import j ava . u t i l . Arrays ;

public c l a s s UpgradeRiskModel
{

/ / Pa r ame t e r s o f t h e upgrade r i s k
private long U; / / Number o f f r o n t e n d s t o upgrade
private double tau_mean ; / / Mean time−to−upgrade f o r 1 h o s t
private double tau_ lo ; / / Lower bound o f t h e t ime−to−upgrade
private double tau_hi ; / / Upper bound o f t h e t ime−to−upgrade
private long C_new ; / / # c a l l b a c k s i nvo k ed by t h e new v e r s i o n
private in t S_max ; / / Maximum s e v e r i t y l e v e l
private in t N_cal l ; / / Number o f p o t e n t i a l i n c o n s i s t e n c i e s
private in t p_ca l l [] ; / / C o n d i t i o n a l p r o b a b i l i t y o f

/ / t r i g g e r i n g an i n c o n s i s t e n c y , g i v en
/ / t h a t a new c a l l b a c k a r r i v e s a t t h e
/ / o l d v e r s i o n (N_ca l l e l e m e n t s) .
/ / Th i s i s a d i s c r e t e p r o b a b i l i t y s p e c :
/ / p _ l o = 1 , p_med = 2 , p_h i = 3 .

163

APPENDIX C. UPGRADE RISK MODEL: IMPLEMENTATION 164

private in t S_inc [] ; / / S e v e r i t y o f t h e i n c o n s i s t e n c y
/ / (N_ca l l e l e m e n t s) .

/ / Pa r ame t e r s o f t h e ”no upgrade ” r i s k
private in t N_bug ; / / Number o f bugs f i x e d by t h e upgrade
private in t p_bug [] ; / / P r o b a b i l i t y o f h i t t i n g a bug

/ / (N_bug e l e m e n t s) . Th i s i s a d i s c r e t e
/ / p r o b a b i l i t y s p e c :
/ / p _ l o = 1 , p_med = 2 , p_h i = 3 .

private in t S_bug [] ; / / S e v e r i t y o f t h e bug (N_bug e l e m e n t s)

/ / Other l o c a l f i e l d s
private Random rnd_gen ; / / random number g e n e r a t o r
private double cdf_mode ; / / CDF o f tau_mean
private s t a t i c in t s i m _ i t e r a t i o n s = 10000 ; / / # o f Monte Car l o i t e r a t i o n s
private s t a t i c double z = 1 . 9 6 ; / / z−s c o r e f o r Monte Car l o c o n f i d . i n t e r v .

/ / − f o r 90% z = 1 .645
/ / − f o r 95% z = 1 .96
/ / − f o r 99% z = 2 .575

/ / C o n s t r u c t o r
public UpgradeRiskModel (long U,

double tau_mean ,
double tau_lo ,
double tau_hi ,
long C_new ,
in t S_max ,
in t N_call ,
in t p_ca l l [] ,
in t S_inc [] ,
in t N_bug ,
in t p_bug [] ,
in t S_bug [])

{
th i s .U = U;
th i s . tau_mean = tau_mean ;
th i s . t au_ lo = tau_lo ;
th i s . tau_hi = tau_hi ;
th i s . C_new = C_new ;
th i s . S_max = S_max ;
th i s . N_cal l = N_cal l ;
th i s . p _ ca l l = Arrays . copyOf (p_ca l l , N_cal l) ;
th i s . S_inc = Arrays . copyOf (S_inc , N_cal l) ;

th i s . N_bug = N_bug ;
th i s . p_bug = Arrays . copyOf (p_bug , N_bug) ;
th i s . S_bug = Arrays . copyOf (S_bug , N_bug) ;

/ / Seed t h e random number g e n e r a t o r us ing t h e c u r r e n t t ime
rnd_gen = new Random () ;

APPENDIX C. UPGRADE RISK MODEL: IMPLEMENTATION 165

/ / Compute t h e CDF a t t h e mode o f t h e t r i a n g l e d i s t r i b u t i o n
cdf_mode = (double) (tau_mean − tau_ lo) / (tau_hi − tau_ lo) ;

}

/ / Returns t h e r i s k o f not upgrad ing
public double getRiskNoUpgrade ()
{

double r e s u l t = 0 . 0 ;

for (in t i =0 ; i <N_bug ; i ++)
r e s u l t += (p_bug [i] ∗ S_bug [i]) ;

return r e s u l t / N_bug / S_max ;
}

/ / Computes t h e r i s k o f not upgrading , w i thou t t a k i n g i n t o a c c oun t t h e
/ / t ime−v a r i a b l e p r o b a b i l i t y component
private double getFixedRiskUpgrade ()
{

double r e s u l t = 0 . 0 ;

for (in t i =0 ; i <N_cal l ; i ++)
r e s u l t += (p_ca l l [i] ∗ S_inc [i]) ;

return r e s u l t / N_cal l / S_max ;
}

/ / Returns t h e maximum r i s k o f upgrad ing dur ing an upgrade
public double maxRiskUpgrade ()
{

double c lbk = C_new ;
double max_P_bad_callback = Math .pow(1/(c lbk + 1) ,

1/ clbk) ∗ c lbk / (c lbk + 1) ;

return max_P_bad_callback ∗ getFixedRiskUpgrade () ;
}

/ / E s t i m a t e s t h e mean p r o b a b i l i t y o f i n c o n s i s t e n c y through a Monte Car l o
/ / s i m u l a t i o n with a f i x e d number o f i t e r a t i o n s . Returns an a r r ay with
/ / t h r e e v a l u e s :
/ / − t h e p r o b a b i l i t y e s t i m a t e (i . e . t h e mean o f t h e s i m u l a t i o n runs)
/ / − t h e low bound o f t h e 95% c o n f i d e n c e i n t e r v a l
/ / − t h e h igh bound o f t h e 95% c o n f i d e n c e i n t e r v a l
public double [] meanRiskUpgradeMonteCarlo ()
{

double r e s u l t s [] = new double [3] ;
double s imula t ionResu l t s [] = new double [s i m _ i t e r a t i o n s] ;
double sum, sum_err , sd ;

APPENDIX C. UPGRADE RISK MODEL: IMPLEMENTATION 166

/ / Run s i m u l a t i o n
in t i =0 , a c t u a l _ i t e r a t i o n s = 0 ; ;
for (/ / t h i s l o o p c ou l d be p a r a l l e l i z e d , f o r b e t t e r p e r f o rmanc e

in t i t e r =0; i t e r < s i m _ i t e r a t i o n s ; i t e r ++) {

double r e s u l t = meanSimulat ionI terat ion () ;

i f (r e s u l t > 0) / / Avoid NaNs
s imula t ionResu l t s [i ++] = r e s u l t ;

}

/ / Record t h e number o f s u c c e s s f u l s i m u l a t i o n runs
a c t u a l _ i t e r a t i o n s = i ;

/ / Compute t h e mean o f t h e s i m u l a t i o n runs
sum = 0 . 0 ;
for (in t i t e r =0; i t e r < a c t u a l _ i t e r a t i o n s ; i t e r ++) {

sum += s imula t ionResu l t s [i t e r] ;
}

r e s u l t s [0] = sum / (double) a c t u a l _ i t e r a t i o n s ;

/ / Compute t h e sample s t anda rd d e v i a t i o n
sum_err = 0 . 0 ;
for (in t i t e r =0; i t e r < a c t u a l _ i t e r a t i o n s ; i t e r ++) {

double e r r = s imula t ionResu l t s [i t e r] − r e s u l t s [0] ;
sum_err += er r ∗ e r r ;

}

sd = Math . sq r t (sum_err / (double) (a c t u a l _ i t e r a t i o n s − 1)) ;

/ / Compute t h e c o n f i d e n c e i n t e r v a l
r e s u l t s [1] = r e s u l t s [0] /∗ mean ∗ / −

z /∗ z−s c o r e ∗ / ∗ sd / Math . sq r t ((double)U) /∗ s t d . e r r o r ∗ / ;
r e s u l t s [2] = r e s u l t s [0] /∗ mean ∗ / +

z /∗ z−s c o r e ∗ / ∗ sd / Math . sq r t ((double)U) /∗ s t d . e r r o r ∗ / ;

/ / I n c o r p o r a t e t h e c o n d i t i o n a l p r o b a b i l i t y o f c a l l b a c k e r r o r s and
/ / t h e s e v e r i t y o f t h e i n c o m p a t i b i l i t y
r e s u l t s [0] ∗= getFixedRiskUpgrade () ;
r e s u l t s [1] ∗= getFixedRiskUpgrade () ;
r e s u l t s [2] ∗= getFixedRiskUpgrade () ;

return r e s u l t s ;
}

private double meanSimulat ionI terat ion ()
{

double sum_ptime = 0 ;
double sum_time = 0 ;

APPENDIX C. UPGRADE RISK MODEL: IMPLEMENTATION 167

for (in t j =0 ; j <U; j ++) {
double time , p r o b a b i l i t y ;

/ / Gene r a t e t h e t ime needed t o upgrade s e r v e r j
time = nextTr iangle () ;

/ / Compute t h e p r o b a b i l i t y o f i n c o n s i s t e n c y
p r o b a b i l i t y = (double) j / U ∗ (1 − Math .pow((double) j / U,

C_new)) ;

/ / Update a c cumu l a t o r s
sum_time += time ;
sum_ptime += (time ∗ p r o b a b i l i t y) ;

}

/ / Compute t h e mean p r o b a b i l i t y o f i n c o n s i s t e n c y
return sum_ptime / sum_time ;

}

/ / Returns a random number drawn from a t r i a n g l e d i s t r i b u t i o n , wi th mean
/ / mean_tau and bounds [t au_ l o , t a u _ h i] . Ensures t h a t t h e d i s t r i b u t i o n
/ / has a p o s i t i v e suppo r t (i . e . , no n e g a t i v e numbers) .
private double nextTr iangle ()
{

double r e s u l t ;
double uniform = rnd_gen . nextDouble () ;

r e s u l t = uniform < cdf_mode ?
tau_lo + Math . sq r t (uniform ∗

(tau_hi − tau_ lo) ∗ (tau_mean − tau_ lo)) :
tau_hi − Math . sq r t ((1 − uniform) ∗

(tau_hi − tau_ lo) ∗ (tau_hi − tau_mean)) ;

return r e s u l t > 0 ? r e s u l t : 0 ;
}

/ / Returns a s t r i n g (low , medium or h igh) t h a t c o r r e s p o n d s t o t h e
/ / d i s c r e t e r i s k l e v e l .
public S t r ing r i skLeve l (double r i s k)
{

i f (r i s k > 2 . 0) return ”high” ;
i f (r i s k > 1 . 0) return ”medium” ;
return ”low” ;

}
}

Bibliography

S. A�����, B. L�����, and L. S�����, “Modular software upgrades for distributed systems,”

in European Conference on Object-Oriented Programming, Nantes, France, Jul 2006, pp. 452–

476. 8, 20, 26, 50, 69, 70, 93, 106, 129

Y. A���, C. D������, and J. S������, “A low latency, loss tolerant architecture and protocol

for wide area group communication,” in International Conference on Dependable Systems

and Networks, New York, NY, Jun 2000, pp. 327–336. 81

C. A��� et al., “Specification and implementation of dynamic web site benchmarks,” in

IEEE Workshop on Workload Characterization, Austin, TX, Nov 2002, pp. 3–13, http://rubis.

objectweb.org/. 94

A. A������� and J. R�����, “Migrating protocols in multi-threaded message-passing sys-

tems,” in ACM Workshop on Hot Topics in Software Upgrades, Orlando, FL, Oct 2009. 153

E. A�������, M. H����, K. K�����, S. S�����, M. U����, and A. V�����, “Hippodrome:

Running circles around storage administration,” in USENIX Conference on File and Storage

Technologies (FAST ’02), Monterey, CA, January 2002, p. 13. 30, 112, 121, 124

R. A�������, “The end of DLL Hell,” MSDN Magazine, Jan 2000. [Online]. Available:

http://msdn2.microsoft.com/en-us/library/ms811694.aspx 5, 18

M. A����� and T. J��, “A workload characterization study of the 1998 World Cup Web site,”

IEEE Network, vol. 14, no. 3, pp. 30–37, May 2000. 111

M. F. A����� and C. L. W���������, “Web server workload characterization: the search for

invariants,” SIGMETRICS Performance Evaluation Review, vol. 24, no. 1, pp. 126–137, 1996.

111

168

http://rubis.objectweb.org/
http://rubis.objectweb.org/
http://msdn2.microsoft.com/en-us/library/ms811694.aspx

BIBLIOGRAPHY 169

J. A��������, R. V������, C. W�������, and M. W�������, Concurrent programming in Erlang,

2nd ed. Prentice Hall, 1996. 24

J. A����� and F. K�������, “Ksplice: automatic rebootless kernel updates,” in ACM Euro-

pean Conference on Computer Systems, 2009, pp. 187–198. 23, 92

A. A��������, J.-C. L�����, B. R������, and C. L�������, “Basic concepts and taxonomy of

dependable and secure computing,” IEEE Transactions on Dependable and Secure Comput-

ing, vol. 1, no. 1, pp. 11 – 33, Jan 2004. 1, 3, 96

E. B�����, Maximum RPM. RedHat Press, Indianapolis, IN, 1997. 156

H. B�������, “Database database replication is the ticket,” eWEEK,

Feb 2005. [Online]. Available: http://www.eweek.com/c/a/Database/

Database-Replication-Is-the-Ticket/ 62

A. B������, J. A������, R. W. W���������, D. D� S����, O. K������, and G. H�����, “Reboots

are for hardware: challenges and solutions to updating an operating system on the fly,”

in USENIX Annual Technical Conference, 2007, pp. 1–14. 23

S. B������, S. A�����, C. C����, P. W����, and C. W�����, “Timing the application of se-

curity patches for optimal uptime,” in Large Installation System Administration Conference,

Philadelphia, PA, Nov 2002, pp. 233–242. 29

R. C. B����� and C. D. W�������, “ERP II: best practices for successfully implementing an

ERP upgrade,” Communication of the ACM, vol. 49, no. 3, pp. 105–109, Mar 2006. 50, 87

H. B�������, P. B��������, J. G���, J. M�����, E. O’N���, and P. O’N���, “A critique of ANSI

SQL isolation levels,” in ACM SIGMOD International Conference on Management of Data,

San Jose, CA, May 1995, pp. 1–10. 71

P. A. B�������� and L. M. H���, “Information integration in the enterprise,” Communications

of the ACM, vol. 51, no. 9, pp. 72–79, Sep 2008. 8, 51

P. B����������� and I. N������, “Dynamic updates for Web and cloud applications,” in

Workshop on Analysis and Programming Languages for Web Applications and Cloud Applica-

tions, Toronto, Canada, 2010, pp. 21–25. 23, 26, 70, 113

http://www.eweek.com/c/a/Database/Database-Replication-Is-the-Ticket/
http://www.eweek.com/c/a/Database/Database-Replication-Is-the-Ticket/

BIBLIOGRAPHY 170

G. B������, M. P��������, and J. N����, “UpgradeJ: Incremental typechecking for class

upgrades,” in European Conference on Object-Oriented Programming, Paphos, Cypress, Jul

2008, pp. 235–259. 24

T. B����, “Dynamic module replacement in a distributed programming system,” Ph.D.

dissertation, MIT, 1983. 8, 25, 69, 70

M. B���, K. C����, and K. M�K�����, “Pacer: Proportional detection of data races,” in

ACM Conference on Programming Language Design and Implementation, Toronto, CA, Jun

2010. 146

C. B�������, B. L�����, L. S�����, C.-H. M��, and S. R������, “Lazy modular upgrades

in persistent object stores,” in Object-Oriented Programing, Systems, Languages and Applica-

tions, Anaheim, CA, Oct 2003, pp. 403–417. 7, 19, 24

E. A. B�����, “Lessons from giant-scale services,” IEEE Internet Computing, vol. 5, no. 4, pp.

46–55, Jul/Aug 2001. 8, 28, 48, 54, 55, 62, 89, 92, 96

F. P. B�����, J�., “No silver bullet: Essence and accidents of software engineering,” Com-

puter, vol. 20, no. 4, pp. 10–19, 1987. 1

A. B����, G. K��, and A. K�����, “An active approach to characterizing dynamic depen-

dencies for problem determination in a distributed environment,” in Integrated Network

Management, Seattle, WA, May 2001, pp. 377–390. 6, 23

R. B���� and J. P������, Yum (Yellowdog Updater, Modified) HOWTO, Sep 2003. [Online].

Available: http://www.phy.duke.edu/˜rgb/General/yum˙HOWTO/yum˙HOWTO 5,

7, 21, 22

G. J. B����, P. V. D�����, A. M��������, T. D. M�G����, D. B. P������, H. H. V�, and

Z. W���, “Patching of in-use functions on a running computer system,” Mar 2004, US

Patent Application 20040107416, assigned to Microsoft Corporation. 23

G. C�����, S. K�������, Y. F�����, G. F�������, and A. F��, “Microreboot – a technique for

cheap recovery,” in USENIX Symposium on Operating Systems Design and Implementation,

San Francisco, CA, Dec 2004, pp. 31–44. 94

http://www.phy.duke.edu/~rgb/General/yum_HOWTO/yum_HOWTO

BIBLIOGRAPHY 171

N. C�������, A. C. J�., J. P������, L. R��������, R. O�������, and S. G�����, “On the

use of a reflective architecture to augment database management systems,” Journal

of Universal Computer Science, vol. 13, no. 8, pp. 1110–1135, 2007. [Online]. Available:

http://www.jucs.org/jucs˙13˙8/on˙the˙use˙of 79

E. C������, J. M���������, and W. Z���������, “C-JDBC: Flexible database clustering mid-

dleware,” in USENIX Annual Technical Conference, 2004. 79, 85

C. C��������, Statistics for Technology: A Course in Applied Statistics, 3rd ed. Chapman &

Hall/CRC, 1983. 45, 103

D. C����, G. P�������, and A. T������, “Experience with collaborating managers: Node

group manager and provisioning manager,” in International Conference on Automatic Com-

puting, Seattle, WA, Jun 2005, pp. 39–50. 112, 113, 118

A. C���, “Online application upgrade using edition-based redefinition,” in ACM Workshop

on Hot Topics in Software Upgrades, Orlando, FL, Oct 2009. 2, 29, 62, 66, 131

B. F. C�����, A. S����������, E. T��, R. R�����������, and R. S����, “Benchmarking cloud

serving systems with YCSB,” in ACM Symposium on Cloud Computing, Indianapolis, IN,

2010, pp. 143–154. 94

O. C������, N. K�������, D. K�����, R. B��������, and W. Z���������, “Staged deployment

in Mirage, an integrated software upgrade testing and distribution system,” in Sympo-

sium on Operating Systems Principles, Stevenson, WA, Oct 2007, pp. 221–236. 2, 7, 17, 26,

29, 32, 33, 35, 45, 47, 130, 151

A. C���, “Update on today’s Gmail outage,” The Official Gmail Blog, Feb 2009. [Online].

Available: http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.

html 4

C. A. C�����, H. J. M���, L. T����, and C. Z������, “Schema evolution in Wikipedia:

toward a Web information system benchmark,” in International Conference on Enterprise

Information Systems, Barcelona, Spain, Jun 2008b. 18, 19, 53, 58, 61, 75

C. A. C�����, H. J. M���, and C. Z������, “Graceful database schema evolution: the

PRISM workbench,” in International Conference on Very Large Data Bases (VLDB), Auck-

land, New Zealand, Aug 2008a. 8, 20, 51, 91, 98, 150

http://www.jucs.org/jucs_13_8/on_the_use_of
http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.html
http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.html

BIBLIOGRAPHY 172

CWE/SANS, “Top 25 most dangerous programming errors,” Feb 2010. [Online]. Available:

http://cwe.mitre.org/top25/ 143, 152

J. D��� and S. G�������, “MapReduce: Simplified data processing on large clusters,” in

USENIX Symposium on Operating Systems Design and Implementation, San Francisco, CA,

Dec 2004, pp. 137–150. 86

D. J. D�W���, “The Wisconsin benchmark: Past, present, and future,” in The Benchmark

Handbook for Database and Transaction Systems, J. G���, Ed. Morgan Kaufmann, 1993.

90, 94

R. D� C����, “Report on formal management of software dependencies,” INRIA, Tech.

Rep., Sep 2005, (EDOS Project Deliverable WP2-D2.1). 7, 22, 156, 159

R. D� C����, S. Z���������, and P. T��������, “Package upgrades in FOSS distributions:

details and challenges,” in ACM Workshop on Hot Topics in Software Upgrades, Oct 2008. 7,

21, 22, 48

D. D�� and R. J������, “How do APIs evolve? A story of refactoring,” Journal of Software

Maintenance and Evolution (JSME), vol. 18, no. 2, pp. 83–107, Mar/Apr 2006. [Online].

Available: http://dx.doi.org/10.1002/smr.328 5, 18, 19, 22, 32

D. D��, C. C���������, D. M������, and R. J������, “Automated detection of

refactorings in evolving components,” in European Conference on Object-Oriented

Programming, Nantes, France, Jul 2006, pp. 404–428. [Online]. Available: http:

//netfiles.uiuc.edu/dig/papers/DetectRefactoringsECOOP.pdf 5, 22, 47, 93

X. D���, H. H����, Y. R���, A. S�����, B. P�������, and X. Z����, “Splitter: A proxy-

based approach for post-migration testing of Web applications,” in European Conference

on Computer Systems, Paris, France, Apr 2010, pp. 97–110. 27, 28, 85, 93

E. D������ and A. L��, “NixOS: A purely functional Linux distribution,” in ACM SIGPLAN

International Conference on Functional programming, Victoria, BC, Canada, 2008, pp. 367–

378. 21

A. D������ (O����� C����������), Personal communication, 2008. 28, 48, 51, 59, 87, 100,

131, 152

http://cwe.mitre.org/top25/
http://dx.doi.org/10.1002/smr.328
http://netfiles.uiuc.edu/dig/papers/DetectRefactoringsECOOP.pdf
http://netfiles.uiuc.edu/dig/papers/DetectRefactoringsECOOP.pdf

BIBLIOGRAPHY 173

T. D������� and P. N���������, “No downtime for data conversions: Rethinking hot up-

grades,” Carnegie Mellon University, Tech. Rep. CMU-PDL-09-106, 2009b. 52

T. D������� and P. N���������, “Toward upgrades-as-a-service in distributed systems,” in

ACM/IEEE/IFIP Middleware Conference, Urbana-Champaign, IL, Nov/Dec 2009c, poster.

84

T. D������� and P. N���������, “Why do upgrades fail and what can we do about it? To-

ward dependable, online upgrades in enterprise systems,” in ACM/IEEE/IFIP Middleware

Conference, Urbana-Champaign, IL, Nov/Dec 2009a, pp. 349–372. 37, 49, 70, 150

T. D�������, D. R���, A. D��, and P. N���������, “Ecotopia: An ecological framework

for change management in distributed systems,” in Architecting Dependable Systems IV,

C. G����, A. R���������, and R. �� L����, Eds. Springer-Verlag, LNCS 4615, 2007b,

pp. 262–286. 113

T. D�������, J. T��, Z. G��, and P. N���������, “No more HotDependencies: Toward

dependency-agnostic upgrades in distributed systems,” in Workshop on Hot Topics in Sys-

tem Dependability, Edinburgh, Scotland, Jun 2007a. 68

T. D�������, S. K������, and P. N���������, “A fault model for upgrades in distributed

systems,” Carnegie Mellon University, Tech. Rep. CMU-PDL-08-115, 2008. 35, 36, 39, 102

T. D�������, F. E�������, K. G����, H. M������, A. P�����, and T. U������, “Testing run-

time evolving systems,” in Self-Healing and Self-Adaptive Systems, ser. Dagstuhl Seminar

Proceedings, Dagstuhl, Germany, 2009. 150

T. D�������, E. T�������, and P. N���������, “To upgrade or not to upgrade: Impact of

online upgrades across multiple administrative domains,” in ACM SPLASH Onward!,

Reno/Tahoe, NV, Oct 2010. 127

J. D������, R. R������, B. D������, A. J�����, C. V��������, and Y.-M. W���, “Towards a

self-managing software patching process using black-box persistent-state manifests,” in

International Conference on Autonomic Computing, New York, NY, May 2004, pp. 106–113.

6, 23

A. E����, “A scenario-driven approach to trace dependency analysis,” IEEE Transactions on

Software Engineering, vol. 29, no. 2, pp. 116–132, 2003. 5

BIBLIOGRAPHY 174

R. F����, “How to design a system in which modules can be changed on the fly,” in Inter-

national Conference on Software Engineering, San Francisco, CA, 1976, pp. 470–476. 19, 23,

88

R. F����, “Inverting schema mappings,” ACM Transactions on Database Systems, vol. 32, no. 4,

2007. 20

F. F���������, T. M����, R. Z�����, G. F�����, and J. M����, “Schema and database evolu-

tion in the O2 object database system,” in International Conference on Very Large Data Bases,

Zürich, Switzerland, Sep 1995, pp. 170–181. 8, 51

M. F�����, “Inversion of Control Containers and the Dependency Injection pattern,” Jan

2004. [Online]. Available: http://martinfowler.com/articles/injection.html 6

M. G���� and D. J������, Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979. 158

C. G�������� and A. S. T��������, “Cooperative update: a new model for dependable live

update,” in ACM Workshop on Hot Topics in Software Upgrades, Orlando, FL, Oct 2009. 152

G����� G��� F����, “Web services agreement specification (WS-Agreement),” Aug 2004,

draft, version 11. 115

R. A. G������ and T. M. W���, “Walking toward moving goalposts: agile management

for evolving systems,” in Hot topics in autonomic computing (HotAC), Dublin, Ireland, May

2006. 30, 121, 124

G����� I��., “Google Apps service level agreement,” 2010. [Online]. Available: http:

//www.google.com/apps/intl/en/terms/sla.html 66, 109

A. G�������, V. K���������, P. P����, and A. R���������, “Dependable composite

web services with components upgraded online,” in Architecting Dependable Systems III,

R. �� L����, C. G����, and A. R���������, Eds. Springer-Verlag, LNCS 3549, 2005, pp.

92–121. 28

J. C. G����, “A general coefficient of similarity and some of its properties,” Biometrics,

vol. 27, no. 4, pp. 857–871, Dec 1971. 38

http://martinfowler.com/articles/injection.html
http://www.google.com/apps/intl/en/terms/sla.html
http://www.google.com/apps/intl/en/terms/sla.html

BIBLIOGRAPHY 175

J. G���, “A census of Tandem system availability between 1985 and 1990,” IEEE Transactions

on Reliability, vol. 39, no. 4, pp. 409–418, Oct 1990. 2

A. G���� and I. S. M�����, “Maintenance of materialized views: Problems, techniques, and

applications,” IEEE Data Engineering Bulletin, vol. 18, no. 2, pp. 3–18, 1995. 56, 62

D. G����, “On-line software version change,” Ph.D. dissertation, Indian Institute of Tech-

nology, Kanpur, 1994. 20

S. H������, “Glitch makes teller machines take twice what they give,” The New York Times,

18 Feb 1994. 128, 130, 133, 142

J. H��� and J. D’A�����, “An analysis of RPM validation drift,” in USENIX Large Installation

System Administration Conference, Philadelphia, PA, Nov 2002, pp. 155–166. 22

C. M. H�����, E. A. H�������, M. H����, and J. S. F�����, “Efficient systematic testing for

dynamically updatable software,” in ACM Workshop on Hot Topics in Software Upgrades,

Orlando, FL, Oct 2009. 24, 92, 150

A. H��� (AT&T L���), Personal communication, 2010. 133

IBM C����������, “An architectural blueprint for autonomic computing,” White Paper,

Jun 2006, 4th edition. [Online]. Available: http://www-01.ibm.com/software/tivoli/

autonomic/pdfs/AC˙Blueprint˙White˙Paper˙4th.pdf 30

IBM C����������, WebSphere Extended Deployment Version 5.1 Information Center, 2004.

[Online]. Available: http://publib.boulder.ibm.com/infocenter/wxddoc51/index.jsp

118, 121

IBM C����������, “Tivoli intelligent orchestrator,” http://www-947.ibm.com/support/

entry/portal/Overview/Software/Tivoli/Tivoli˙Intelligent˙Orchestrator, 2007. 112, 115,

118, 124

F. K�������, B. L�����, D. A�������, M. D�����, C. E����, S. G������, A. J�����, H. L���,

A. M����, J. M����, I. S�����, and A. V�����, “Report of the NSF workshop on research

challenges in distributed computer systems,” Dec 2005. 1

K. K����� and L. S���������, Eds., Dependability Benchmarking for Computer System. John

Wiley & Sons, 2008. 91

http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://publib.boulder.ibm.com/infocenter/wxddoc51/index.jsp
http://www-947.ibm.com/support/entry/portal/Overview/Software/Tivoli/Tivoli_Intelligent_Orchestrator
http://www-947.ibm.com/support/entry/portal/Overview/Software/Tivoli/Tivoli_Intelligent_Orchestrator

BIBLIOGRAPHY 176

L. K������ and P. J. R��������, Finding Groups in Data: an Introduction to Cluster Analysis,

ser. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, 1990.

38, 43

A. K�����, J. H����������, L. W���, K. W�, and V. K�������, “The CHAMPS system: Change

management with planning and scheduling,” in Network Operations and Management Sym-

posium, Seoul, Korea, Apr 2004, pp. 395–408. 30, 112, 115, 124

L. K�����, P. U��������, and G. C�����, “ConfErr: A tool for assessing resilience to hu-

man configuration errors,” in International Conference on Dependable Systems and Networks,

Anchorage, AK, Jun 2008. 18, 19, 34, 37, 39, 47, 48, 104

J. K������ and D. C����, “The vision of autonomic computing,” IEEE Computer, vol. 36,

no. 1, pp. 41–50, Jan 2003. 30, 112

S. K��, T. Z���������, J. E. J���� W��������, and A. Z�����, “Predicting faults from

cached history,” in International Conference on Software Engineering, Minneapolis, MN,

May 2007, pp. 489–498. 36

C. K���, “AT&T Wireless self-destructs,” CIO Magazine, Apr 2004. [Online]. Available:

http://www.cio.com/archive/041504/wireless.html 3

J. K����� and J. M����, “The evolving philosophers problem: Dynamic change manage-

ment,” IEEE Transactions on Software Engineering, vol. 16, no. 11, pp. 1293–1306, 1990. 8,

19, 26, 69

J. K����� and J. M����, “Dynamic configuration for distributed systems,” IEEE Transactions

on Software Engineering, vol. 11, no. 4, pp. 424–436, 1985. 26, 129

B. K����, “Cyber incident blamed for nuclear power plant shutdown,” The Washington Post,

5 Jun 2008. [Online]. Available: http://www.washingtonpost.com/wp-dyn/content/

article/2008/06/05/AR2008060501958.html 4

S. K����, V. T�����, V. K����, P. R����������, and K. S�����, “vManage: Loosely cou-

pled platform and virtualization management in data centers,” in International Conference

on Autonomic computing, Barcelona, Spain, Jun 2009, pp. 127–136. 113

http://www.cio.com/archive/041504/wireless.html
http://www.washingtonpost.com/wp-dyn/content/article/2008/06/05/AR2008060501958.html
http://www.washingtonpost.com/wp-dyn/content/article/2008/06/05/AR2008060501958.html

BIBLIOGRAPHY 177

N. L�B���� and E. W����������, “Inter-package dependency networks in open-source soft-

ware,” in International Conference on Complex Systems, Boston, MA, Jun 2006. 21

J. R. L�����, Linkers and Loaders. Morgan Kaufmann Publishers, 2000. 80

J. L�����, “Windows Update keeps tabs on all system software,” The Register, 28

Feb 2003. [Online]. Available: http://www.theregister.co.uk/2003/02/28/windows˙

update˙keeps˙tabs 5, 21, 156

Z. L�, L. T��, X. W���, S. L�, Y. Z���, and C. Z���, “Have things changed now?: an empir-

ical study of bug characteristics in modern open source software,” in ASPLOS Workshop

on Architectural and System Support for Improving Software Dependability, 2006, pp. 25–33.

32, 36

B. L�����, A. A����, A. X. Z����, and M. I. J�����, “Bug isolation via remote program sam-

pling,” in ACM Conference on Programming Language Design and Implementation, San Diego,

CA, Jun 2003, pp. 141–154. 146

B. L�����, “Software upgrades in distributed systems,” Keynote address at the ACM Sym-

posium on Operating Systems Principles, Oct 2001. 10, 110

B. L�����, “Distributed programming in Argus,” Communications of the ACM, vol. 31, no. 3,

pp. 300–312, 1988. 25

D. L�����, Y. S����, and E. S������, “Devirtualizable virtual machines enabling general,

single-node, online maintenance,” in International Conference on Architectural Support for

Programming Languages and Operating Systems, Boston, MA, Oct 2004, pp. 211–223. 2, 25,

50

S. L�, Z. L�, F. Q��, L. T��, P. Z���, and Y. Z���, “BugBench: A benchmark for evaluating

bug detection tools,” in PLDI Workshop on the Evaluation of Software Defect Detection Tools,

Chicago, IL, Jun 2005. 34

K. M�������, M. D����������, N. J�����, and N. G. V���, “Galapagos: Model-driven

discovery of end-to-end application-storage relationships in distributed systems,” IBM

Journal of Research & Development, vol. 52, no. 4/5, p. 367, 2008. 5, 23, 93

http://www.theregister.co.uk/2003/02/28/windows_update_keeps_tabs
http://www.theregister.co.uk/2003/02/28/windows_update_keeps_tabs

BIBLIOGRAPHY 178

K. M����� and R. A. B����, “Immediate Multi-Threaded Dynamic Software Updates Using

Stack Reconstruction,” in Proceedings of the USENIX ’09 Annual Technical Conference, June

2009. 24

B. M���� and D. S����, “Best practices for continuous application availability,” in Gartner

Data Center Conference, Las Vegas, NV, Dec 2008. 2

F. M���������, J. B������, R. D� C����, J. V�������, B. D����, X. L����, and R. T������,

“Managing the complexity of large free and open source package-based software distri-

butions,” in International Conference on Automated Software Engineering, Tokyo, Japan, Sep

2006, pp. 199–208. 22, 157

N. M�N�� and A. B����, “An implementation of the Linux software repository model for

other operating systems,” in ACM Workshop on Hot Topics in Software Upgrades, Orlando,

FL, Oct 2009. 21, 23

D. M������, “TPC-W: A benchmark for e-commerce,” IEEE Internet Computing, vol. 6, no. 3,

pp. 83–87, May/Jun 2002. 71, 94, 99

M�������� C����������, “Perform a rolling upgrade from Windows 2000,” TechNet

Library, Jan 2005. [Online]. Available: http://technet.microsoft.com/en-us/library/

cc738005(WS.10).aspx 8, 29, 48, 86, 127

M�������� C����������, “Microsoft SQL Server 2008 R2,” http://www.microsoft.com/

sqlserver/en/us/default.aspx, 2010. 61

M�������� D�������� N������, Windows Update Agent, 2001, http://msdn2.microsoft.

com/en-us/library/aa387099.aspx. 21, 146

L. E. M����, P. M. M������-S����, and P. N���������, “Consistent object replication in the

Eternal system,” Theory and Practice of Object Systems, vol. 4, no. 2, pp. 81–92, 1998. 25

L. M����, P. M������-S����, P. N���������, L. T��������, and V. K���������, “Eternal:

fault tolerance and live upgrades for distributed object systems,” in Information Surviv-

ability Conference and Exposition, Hilton Head, SC, Jan 2000, pp. 184 – 196. 8

http://technet.microsoft.com/en-us/library/cc738005(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc738005(WS.10).aspx
http://www.microsoft.com/sqlserver/en/us/default.aspx
http://www.microsoft.com/sqlserver/en/us/default.aspx
http://msdn2.microsoft.com/en-us/library/aa387099.aspx
http://msdn2.microsoft.com/en-us/library/aa387099.aspx

BIBLIOGRAPHY 179

N. N�������, A. Z������, T. Z����������, K. H������, and B. M�����, “Change bursts as

defect predictors,” in International Symposium on Software Reliability Engineering, San Jose,

CA, Nov 2010. 32

K. N�������, F. O�������, R. B��������, R. P. M�����, and T. D. N�����, “Understanding and

dealing with operator mistakes in Internet services,” in USENIX Symposium on Operating

Systems Design and Implementation, San Francisco, CA, Dec 2004, pp. 61–76. 18, 27, 29, 34,

35, 36, 39, 93, 94, 102

P. N���������, “Transparent fault-tolerance for CORBA,” Ph.D. dissertation, University of

California, Santa Barbara, 1999. 17, 25, 62, 86

I. N������ and M. H����, “Safe and timely dynamic updates for multi-threaded programs,”

in ACM Conference on Programming Language Design and Implementation, Dublin, Ireland,

Jun 2009. 92

I. N������, M. H����, G. S�����, and M. O����, “Practical dynamic software updating

for C,” in ACM Conference on Programming Language Design and Implementation, Ottawa,

Canada, Jun 2006, pp. 72–83. 7, 19, 23, 24, 92

P. N������ et al., “America Offline,” The Risks Digest, vol. 18, no. 30–31, 8–9 Aug 1996,

http://catless.ncl.ac.uk/Risks/18.30.html. 4

L. N������� et al., Ultra-Large-Scale Systems: The Software Challenge of the Future. SEI

Carnegie Mellon University, Jun 2006. 32

Oxford English Dictionary, 2nd ed. Oxford University Press, 1989, http://www.oed.com.

3, 67

O����� �� G��������� C�������, “Information technology infrastructure library (ITIL),”

2001. 48

O����� �� G��������� C�������, Service Transition, ser. Information Technology Infras-

tructure Library (ITIL), 2007. 8, 28, 47, 48, 88, 92

F. O�������, K. N�������, R. B�������, R. B��������, R. P. M�����, and T. D. N�����, “Un-

derstanding and validating database system administration,” USENIX Annual Technical

Conference, Jun 2006. 18, 27, 28, 29, 34, 35, 36, 39, 48, 85, 93, 94, 102, 130, 151

http://catless.ncl.ac.uk/Risks/18.30.html
http://www.oed.com

BIBLIOGRAPHY 180

D. O����������, A. G��������, and D. A. P��������, “Why do Internet services fail, and

what can be done about it?” in USENIX Symposium on Internet Technologies and Systems,

Seattle, WA, Mar 2003. 2, 18, 29, 34, 37, 39, 130

O����� C����������, “Database rolling upgrade using Data Guard SQL Apply,”

Maximum Availability Architecture White Paper, Dec 2008. [Online]. Avail-

able: http://www.oracle.com/technology/deploy/availability/pdf/maa˙wp˙10gr2˙

rollingupgradebestpractices.pdf 8, 29, 48, 50, 75, 86, 88, 127, 131

O����� C����������, “Oracle Database 11g Release 2,” http://www.oracle.com/

technetwork/database/enterprise-edition/overview/index.html, 2009. 61, 62

O����� C����������, Oracle Real Application Cluster 10g, 2005. 118, 121

M. P. P��������� and D. G�������������, “Service-oriented computing,” Communications

of the ACM, vol. 46, no. 10, pp. 24–28, 2003. 109

P. P����, A. W�������, D. W��������, J. L������, and T. S����, “Upgrading transport proto-

cols using untrusted mobile code,” in Symposium on Operating Systems Principles, Bolton

Landing, NY, Oct 2003, pp. 1–14. 153

D. P��������, “A simple way to estimate the cost of downtime,” in USENIX Large Installation

System Administration Conference, Philadelphia, PA, Nov 2002, pp. 185–188. 50, 66

C. P����, “Web services orchestration and choreography,” IEEE Computer, vol. 36, pp. 46–52,

2003. 109

S. P����� and P. N���������, “Proactive recovery in distributed CORBA applications,” in

International Conference on Dependable Systems and Networks, Florence, Italy, Jun 2004. 111

D. P����� (G�����), Personal communication, 2010. 153

M. P�����, Scheduling: Theory, Algorithms and Systems, 2nd ed. Prentice Hall, 2002. 119

S. P����� and J. N���, “Reducing downtime due to system maintenance and upgrades,” in

USENIX Large Installation System Administration Conference, San Diego, CA, Dec 2005, pp.

47–62. 25

http://www.oracle.com/technology/deploy/availability/pdf/maa_wp_10gr2_rollingupgradebestpractices.pdf
http://www.oracle.com/technology/deploy/availability/pdf/maa_wp_10gr2_rollingupgradebestpractices.pdf
http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html

BIBLIOGRAPHY 181

Q���� S�������, I��., “Shareplex for Oracle,” http://www.quest.com/Quest˙Site˙Assets/

PDF/SPO˙752˙ReleaseNotes.htm, 2010. 62

J. R�����, Human Error. Cambridge University Press, 1990. 37, 39

D. R����, “Release management and software deployment at Facebook,” Keynote adress at

the ACM Workshop on Hot Topics in Software Upgrades, Oct 2009. 63, 66, 128, 130, 132,

133, 142, 146, 152

J. R����������, G. A�����, and T. R�����, “R-OSGi: Distributed applications through soft-

ware modularization,” in ACM/IEEE/IFIP Middleware Conference, Newport Beach, CA,

Dec 2007. 26

J. S. R����������, M. D�����, and G. A�����, “Consistently applying updates to composi-

tions of distributed OSGi modules,” in ACM Workshop on Hot Topics in Software Upgrades,

Nashville, Tennessee, Oct 2008. 8, 26

J. R������, Personal communication, 2007. 50

D. R��� and A. D��, “Managing end-to-end lifecycle of global service policies,” in Interna-

tional Conference on Service-Oriented Computing. Amsterdam, The Netherlands: Springer-

Verlag, LNCS 3826, Dec 2005, pp. 570–575. 119

O. R����, P. T. W������������, and A. S������, “Structural and algorithmic issues of dy-

namic protocol update,” in International Symposium on Parallel and Distributed Processing,

Rhodes Island, Greece, Apr 2006. 153

K. S����, K. B����, B. L������, and R. C�������, “How to roll a join: Asynchronous incre-

mental view maintenance,” SIGMOD Record, vol. 29, no. 2, pp. 129–140, Jun 2000. 74

F. S������ and R. H�����, “GPFS: A shared-disk file system for large computing clusters,”

in USENIX Conference on File and Storage Technologies, Monterey, CA, Jan 2002, pp. 231–244.

60

F. S������ (IBM R�������), Personal communication, 2010. 60

M. S����, “Online software upgrading: new research directions and practical considera-

tions,” in Computer Software and Applications Conference, Oxford, England, Aug 2002, pp.

977–981. 8, 24, 92, 127, 151

http://www.quest.com/Quest_Site_Assets/PDF/SPO_752_ReleaseNotes.htm
http://www.quest.com/Quest_Site_Assets/PDF/SPO_752_ReleaseNotes.htm

BIBLIOGRAPHY 182

M. S���� and O. F������, “On-the-fly program modification: Systems for dynamic updat-

ing,” IEEE Software, vol. 10, no. 2, pp. 53–65, Mar 1993. 7, 20, 24, 26, 92

M. E. S���� and O. F������, “Dynamic program updating: A software maintenance tech-

nique for minimizing software downtime,” Journal of Software Maintenance: Research and

Practice, vol. 1, no. 1, pp. 59–79, 1989a. 24, 26

M. E. S���� and O. F������, “Dynamically updating distributed software: supporting

change in uncertain and mistrustful environments,” in IEEE Conference on Software Main-

tenance, Oct 1989b, pp. 254–261. 26, 129

L. S��, R. R�������, and M. G��������, “Evolving dependable real-time systems,” in IEEE

Aerospace Applications Conference, Aspen, CO, 3–10 1996, pp. 335–46. 28

G. N. S����, APT HOWTO, Aug 2005. [Online]. Available: http://www.debian.org/doc/

manuals/apt-howto/index.en.html 5, 7, 21, 22, 156

J. S��������, T. Z���������, and A. Z�����, “When do changes induce fixes? on fridays,” in

International Workshop on Mining Software Repositories (MSR), Saint Louis, Missouri, May

2005. 146

I. S����������, Software Engineering, 8th ed. Addison-Wesley, 2007. 135

I. S�����, R. M�����, D. K�����, M. F. K�������, and H. B�����������, “Chord: A scalable

peer-to-peer lookup service for internet applications,” in ACM Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, San Diego, CA, Aug

2001, pp. 149–160. 86

G. S�����, M. H����, G. B������, P. S�����, and I. N������, “Mutatis Mutandis: Safe and

predictable dynamic software updating,” ACM Transactions on Programmin Languages and

Systems, vol. 29, no. 4, 2007. 20

M. S������� and R. C���������, “Software defects and their impact on system availability-

a study of field failures in operating systems,” in Fault-Tolerant Computing Symposium,

Montreal, Canada, Jun 1991, pp. 2–9. 32, 34

http://www.debian.org/doc/manuals/apt-howto/index.en.html
http://www.debian.org/doc/manuals/apt-howto/index.en.html

BIBLIOGRAPHY 183

Y. S�� and A. C����, “Global impact analysis of dynamic library dependencies,” in

USENIX Large Installation System Administration Conference, San Diego, California, Dec

2001, pp. 145–150. 5

E. B. S������, “The dimensions of maintenance,” in International Conference on Software

Engineering, San Francisco, CA, 1976, pp. 492–497. 129

A. T��, K. T��, L. A������, S. C���, and W. S������, “Low-cost error containment and

recovery for onboard guarded software upgrading and beyond,” IEEE Transactions on

Computers, vol. 51, no. 2, pp. 121–137, Feb 2002. 28

Y.-L. T��, T. W���, J. D. S�����, and G. R. G�����, “Comparison-based file server veri-

fication,” in Proceedings of the annual conference on USENIX Annual Technical Conference,

Anaheim, CA, 2005, pp. 121–133. 27, 28

E. T������, G. B������, J. N����, and M. P��������, “From Java to UpgradeJ: an empirical

study,” in ACM Workshop on Hot Topics in Software Upgrades, Nashville, TN, Oct 2008. 24

L. T��������, L. M����, and M. M������-S����, “Live upgrades of CORBA applications

using object replication,” in International Conference on Software Maintenance, Florence,

Italy, Nov 2001, pp. 488–497. 25, 26, 129

E. T�������, M. A��-E�-M����, J. J. W����, D. N��������, and G. R. G�����, “Informed

data distribution selection in a self-predicting storage system,” in International Conference

on Autonomic Computing, Dublin, Ireland, Jun 2006. 30, 111, 118

L. C. T��, “Large-scale real-time program retrofit methodology in AT&T 5ESS switch,” in

Reliable computer systems: design and evaluation, 2nd ed., D. P. S�������� and R. S. S����,

Eds. Digital Press, 1992, pp. 574–586. 2, 23

B. T������, “More on today’s Gmail issue,” The Official Gmail Blog, Sep 2009. [Online].

Available: http://gmailblog.blogspot.com/2009/09/more-on-todays-gmail-issue.html

4

J. T����, W. X����, and Y. Z���, “Efficient online validation with delta execution,” in Inter-

national Conference on Architectural Support for Programming Languages and Operating Sys-

tems. New York, NY, USA: ACM, 2009, pp. 193–204. 27

http://gmailblog.blogspot.com/2009/09/more-on-todays-gmail-issue.html

BIBLIOGRAPHY 184

C. T�����, D. S���������, R. J����, and S. L�����, “OPIUM: Optimal package install/unin-

stall manager,” in International Conference on Software Engineering, Minneapolis, MN, May

2007, pp. 178–188. 7, 22, 48

G. U�������, G. P�����, and M. ��� S����, “Wikipedia workload analysis for decentralized

hosting,” Computer Networks, vol. 53, no. 11, pp. 1830–1845, July 2009. 53

S. V��������, G. G�������, R. M������, D. R������, C. H�����, and J. A�����������,

Gentoo Handbook, May 2007. [Online]. Available: http://www.gentoo.org/doc/en/

handbook/handbook-x86.xml 5, 21, 156

S. V������, “Convenience over correctness,” IEEE Internet Computing, vol. 12, no. 4, pp. 89–

92, 2008. 134

J. W����, “The end of protocols,” Sun Microsystems Java Developer Connection, June 2000.

[Online]. Available: http://java.sun.com/developer/technicalArticles/jini/protocols.

html 153

J. W���� (VM����), Personal communication, 2010. 153

Y.-M. W���, C. V��������, J. D������, Y. C���, Y. C���, H. J. W���, and Z. Z����,

“STRIDER: A black-box, state-based approach to change and configuration management

and support,” in USENIX Large Installation System Administration Conference, San Diego,

CA, Oct 2003, pp. 159–172. 7

R. L. W����, R. I. C���, and S. J. P����, “Automation, interaction, complexity, and failure :

A case study,” Reliability Engineering and System Safety, vol. 91, no. 12, pp. 1494–1501, Dec

2006. 4

W�������� F���������, “MediaWiki 1.5 upgrade,” 2005. [Online]. Available: http:

//meta.wikimedia.org/wiki/MediaWiki˙1.5˙upgrade 57

A. W������� (A.T. K������), Personal communication, 2009. 51, 60

L. W���, N. S. A����, L. G��, T. H����, and J. W�, “Oracle Streams: A high performance

implementation for near real time asynchronous replication,” in ICDE, Shanghai, China,

Apr 2009, pp. 1363–1374. 62

http://www.gentoo.org/doc/en/handbook/handbook-x86.xml
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml
http://java.sun.com/developer/technicalArticles/jini/protocols.html
http://java.sun.com/developer/technicalArticles/jini/protocols.html
http://meta.wikimedia.org/wiki/MediaWiki_1.5_upgrade
http://meta.wikimedia.org/wiki/MediaWiki_1.5_upgrade

BIBLIOGRAPHY 185

S. Y�� and J. C���������, “Some stability measures for software maintenance,” IEEE Trans-

actions on Software Engineering, vol. 6, no. 6, pp. 545–552, Nov 1980. 32

Q. Z����, A. R����, W. S��, E. S�����, and G. C�����, “Workload-aware load balancing

for clustered Web servers,” International Symposium on Parallel and Distributed Processing,

vol. 16, no. 3, pp. 219–233, Mar 2005. 111

W. Z����, R. B��������, and T. D. N�����, “Automatic configuration of Internet services,”

in European Conference in Computer Systems (EuroSys), Lisbon, Portugal, Mar 2007, pp.

219–229. 48, 94

W. Z����, R. B��������, G. J. J����������, J. R. S�����, and Y. T�����, “JustRunIt:

Experiment-based management of virtualized data centers,” in USENIX Annual Technical

Conference, San Diego, CA, Jun 2009. 29, 130

I. Z���� (A��������), Personal communication, 2006. 66, 87

Index

AIR properties, 9–13, 15, 16, 65–67, 70, 72, 73,

85–87, 91, 105, 108, 110, 128, 149, 150

Atomicity, 9, 11, 13, 15, 65, 67, 69–71,

77, 85, 105, 110, 127–130, 133, 149,

150

Isolation, 9, 11, 13–15, 65, 67, 69–71, 77,

85, 105, 107, 108, 110–113, 125, 127,

128, 149, 150, 153

Runtime-testing, 9, 13, 15, 65, 67, 69,

71, 77, 84, 85, 105, 149, 151

AJAX, 27, 131, 133, 145, 153

XMLHttpRequest, 132

Apache, 5, 33, 35, 36, 38, 49, 52, 81, 94, 98, 99,

102, 104, 105

Autonomic management, 30, 78, 107, 112,

113, 115, 125

Bugs, see Software defects

Cloud computing, vi, 3, 11, 15, 17, 66, 84, 108,

127, 134, 146, 148, 153

Cluster analysis, 10, 34, 35, 38

cophenetic correlation, 43

dendrogram, 43

CMDB, see Configuration Management

Database

Competitive upgrade, 61, 64, 74, 91, 153

Configuration Management Database, 48

Cross-edition triggers, see Edition-based re-

definition

Data corruption, 2, 4, 45, 51, 106, 127

Database schema evolution, 3, 8, 18–20, 38,

41, 48, 51, 52, 58, 59, 61, 63, 98

schema modification operators, 58, 72–

74

Dependability

availability, 2, 3, 9, 13, 19, 20, 23, 32, 33,

41, 49, 89, 91, 92, 96, 98–105, 107,

113, 122, 144, 152, see also Planned

downtime, Unplanned downtime

reliability, 3, 9, 20, 49, 88, 89, 91, 103–105,

152, see also Upgrade failures

Dependencies

automated discovery of, 5, 22

conflicts, 5, 21, 156–158

dependency injection, 6

functional, 32, 67, 108, 123

hidden, see Hidden dependencies

in distributed systems, 7, 33

in single-host systems, 5

non-functional, 4, 68, 113, 125

ripple effect of, 4, 32

tracking of, 5, 33, 48, 108, 114

NP-completeness, 6, 157

186

INDEX 187

Distributed systems

asynchronous messaging, 2, 26, 109,

119, 128, 129, 131, 133

cloud based, see Cloud computing

multiple administrative domains, 2, 108,

118, 127–147

need for online upgrades, 2

third-party components, 5, 6, 8, 22, 32,

39, 108, 113, 114

third-party provisioning, 134, 146

three-tier architecture, 8, 51–53, 69, 70

Dynamic software update, 7, 92, 153

update points, 20, 24, 26, 70

Ecotopia, 108–126

objective advisors, 109, 111, 114, 118

orchestrator, 109, 111, 114, 119

prediction points, 116

proactive actions, 112, 116, 118

upgrade schedule, 109, 119

“what-if” API, 111, 115, see also “What-

if” questions

Edition-based redefinition, 62

Field study, 32–49, 100

Flash crowds, 99, 111

GORDA API, 79

Hidden dependencies, 3, 7, 10–15, 33, 34, 37–

39, 40, 41, 44, 47, 49, 65, 69, 71, 77, 88,

89, 93, 96, 97, 104–108, 149, 150

examples, 40, 42

Imago, 3, 66–87, 95, 98–105, 130

E, see egress interceptor

I, see ingress interceptor

Uold, Unew, see parallel universe

bootstrapping phase, 72, 73

compare engine, 73, 77, 81

data-transfer phase, 72, 73, 78

egress interceptor, 68, 69, 72, 73, 75, 77,

78, 81

end-to-end design, 86

ingress interceptor, 72, 73, 75–77, 80, 81

parallel universe, 11, 67, 68, 71, 72, 74,

80, 85

performing schema changes, 72–74

switchover phase, 73, 75, 80, 81

termination phase, 73, 74

testing phase, 73, 76, 80, 81, 85

upgrade driver, 76, 77, 81

Information Technology Infrastructure Li-

brary, 28

ITIL, see Information Technology Infrastruc-

ture Library

JBoss, 81, 94, 98, 99

Latent error, 2, 3, 46, 90, 93, 96, 97, 101, 103–

105, 127

Library interposition, 80

Materialized views, 62, 74

MediaWiki, 53, 55, 56, 58–61, 64

Mixed-version races, 15, 127–130, 131, 134,

146, 147

examples, 130, 132, 142–146

preventing, 128, 133

INDEX 188

technical challenges, 133

MySQL, 5, 52, 54, 58, 59, 61, 79, 94

Online upgrade, 2, 3, 8, 13, 14, 19, 23, 52, 55,

57, 62, 65, 70, 71, 74, 85, 87, 89, 90,

92, 95, 96, 98, 101, 105, 128, 129, 134,

144–147, 149, 152, 153

at AT&T, 2, 3, 50

at Facebook, 63, 129, 132

at Google, 4, 129

in IBM’s GPFS, 60

at Orbitz, 153

at Priceline, 62

at Wikipedia, 53, 61, 129

big flip, 92, 95, 98–105

historical trends, 2

in distributed systems, 8, 20, 25

in single-host systems, 7, 23, see also Dy-

namic software update

industrial best practices, 8, 28, 47, 48,

127, 131

mixed versions, 8, 13, 20, 26, 48, 61, 62,

65, 127, 129, 135

quiescence, 26, 129

race conditions, see Mixed-version races

rolling upgrade, 8, 48, 54, 61, 92, 95, 98–

105, 127, 129, 131

Package management, 5, 21, 156–159

in Unix, 5, 21, 156

in Windows, 5, 21, 23, 156

Planned downtime, 1–3, 9–11, 13–15, 18, 19,

23, 30, 50–55, 57, 58, 60, 61, 63, 67,

69–71, 74, 83, 89–91, 93, 98, 99, 105,

148, 149, 152, 153

Power management, 113

Principal component analysis, 43

Security vulnerability, 102, 152

Service-oriented architecture, 14, 109, 110–

113, 117, 125, 127, 149

business value, 109

key performance indicator, 109, 113

KPI, see key performance indicator

management, see Autonomic manage-

ment

orchestration engine, see orchestrator

orchestrator, 109

service description, 109

service-level objective, 109, 110

SLA, see service-level agreement

SLO, see service-level objective

Snapshot isolation, 71

SOA, see Service-oriented architecture

Software defect, 39, 106

Software defects, 1, 24, 32, 35, 46, 128, 129,

134

Survey, 17, 18, 29, 32–50

Testing, 8, 26–28, 65, 93, 95, 130, 134, 135, 147

integration, 1, 129, 135, 136, 143

Unplanned downtime, 2–5, 9, 11, 13, 15, 17,

46, 50, 67, 70, 91, 100, 105, 149

Upgrade failures, 2, 3, 7, 10, 12, 15, 29, 32–34,

45, 88, 96, 104, 130, 147, 149

examples, 3–4

INDEX 189

failure rate, 2, 32, 33, 44, 45

fault model, see Upgrade-centric fault

model

Upgrade impact assessment, 4, 14, 30, 108–

110, 114–116, 124, 125, 128, 134

Upgrade risk model, 134–142

Upgrade-as-a-service, 3, 14, 72, 83–85, 87,

153

Upgrade-centric fault model, 10, 13, 33–35,

40, 41, 44, 47, 49, 90, 91, 95, 97, 130,

149

broken environmental dependencies,

see type 3

data sources, 36, 37

data-access errors, see type 4

prior taxonomies, 18

semantic configuration errors, see type 2

simple configuration or procedural er-

rors, see type 1

threats to validity, 47

type 1, 13, 33, 41, 47, 49, 104, 105

type 2, 13, 33, 41, 47, 49

type 3, 13, 33, 41, 48, 49, 103

type 4, 13, 33, 41, 48, 49, 102, 104

User study, 18, 29, 32–49

Virtualization, 24, 27, 67, 113

“What-if” questions, 30, 109, 111, 114, 115

Wikipedia, 52–54, 56–59, 61–64, 98, 135, 149

Workload prediction, 111

	Title
	1 Introduction
	1.1 The dependability of software upgrades
	1.2 The next step forward
	1.3 AIR software upgrades
	1.4 Contributions

	2 Related Work
	2.1 Causes of upgrade-induced downtime
	2.2 Properties of software upgrades
	2.3 Approaches for dependable upgrade
	2.4 Dependability benchmarking for software upgrades
	2.5 Impact assessment for online upgrades

	3 Why Do Software Upgrades Fail?
	3.1 Classification method
	3.2 Upgrade-centric fault model
	3.3 Tolerating upgrade faults
	3.4 Summary of findings

	4 Why Do Upgrades Need Planned Downtime?
	4.1 Experimental method
	4.2 Leading causes of planned downtime
	4.3 Existing techniques for avoiding planned downtime
	4.4 Summary of findings

	5 The AIR Properties
	6 Design and Implementation of Imago
	6.1 AIR upgrades with Imago
	6.2 Implementation details
	6.3 Upgrade-as-a-service
	6.4 Summary of findings

	7 Dependability Benchmarking for Software Upgrades
	7.1 A benchmark for upgrade dependability
	7.2 Availability and overhead without faults
	7.3 Availability under upgrade-faults
	7.4 Upgrade reliability
	7.5 Summary of findings

	8 Relaxing the Isolation Property
	8.1 Isolation level provided by SOA
	8.2 Distributed framework for upgrade-impact assessment
	8.3 Design and implementation of Ecotopia
	8.4 Case study: Software upgrades a service-oriented enterprise system
	8.5 Summary of findings

	9 Relaxing the Atomicity Property
	9.1 Mixed-version races
	9.2 Upgrade risk model
	9.3 Qualitative validation of the analytical risk model
	9.4 Summary of findings

	10 Conclusion
	10.1 Summary
	10.2 Open questions and future work

	A NP-Completeness of the Package-Upgrade Problem
	B List of Upgrade Faults
	C Upgrade Risk Model: Implementation
	Bibliography
	Index

