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Abstract

The volume of video data collected will only increase as the prevalence of automated systems

continues to grow and those systems start to rely more on vision sensors to make decisions.

Visual tracking is the process of automatically estimating the location of an object through

the course of a video. The ability to track objects in video is useful in applications such

as autonomous driving, surveillance, and robotics. The ability to track objects allows

for more effective decision making processes for tasks such as predictive driving, anomaly

detection, and face recognition. With the amount of data to parse and the benefits of doing

so accurately, the need for fast and reliable visual tracking is clear.

Correlation filters, previously used in detection and recognition tasks within single

images, have become a popular approach to visual tracking because of their ability to

efficiently match and align two images. Correlation filters have been adapted for visual

tracking by developing incremental learning techniques, allowing efficient updating of

correlation filters. Tracker elements such as more powerful feature representations and

improved scale tolerance have led to state-of-the-art tracking performance.

Still, despite the recent improvements in correlation filter trackers, there remain unex-

plored aspects of the union of correlation filters and visual tracking. This work explores

alternative correlation filter designs that have not previously been adapted to visual tracking.

We also introduce an occlusion detection system to address situations where the targets are

temporarily not visible; one of the most challenging aspects of tracking. We validate our

approaches on widely used benchmarks while also introducing a new evaluation metric that

reflects the amount of activity that occurs within a given video.
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Chapter 1

Introduction

Visual tracking is an important capability for applications including robotics, surveillance,

and sports video analysis. Visual tracking – the task of following an object during the course

of a video – is often a critical intermediate step scene analysis, e.g., identifying anomalous

behavior in surveillance videos or processing images sequences from robots operating

autonomously in dynamic environments. Tracking arbitrary objects in unconstrained

environments can be a challenging task that requires tolerance to a range of factors including

rotations, deformations, and scale changes of the target object as well as occlusions, clutter,

and lighting changes caused by the object’s surroundings. When there is minimal information

about the target object, these factors can occur individually or together at unpredictable

times.

In this thesis, we focus primarily on single-camera, single-target, model-free, short-term,

causal tracking. Single-target, single-camera tracking means there is only one object of

interest being tracked at a time, and only one sensor capturing the object during the

duration of the test period. Model-free tracking indicates that at no point during tracking

is the object classified (e.g., car, person, ball) in order to leverage a pre-trained model

specifically to detect and track that particular type of object. The threshold for what

constitutes short-term tracking may not be precise, but the length of the videos considered
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in this work are on the order of seconds or a couple of minutes, and the disappearance

and reappearance (and redetection) of objects is not a concern, nor is there a concern

that objects will fundamentally change their appearance (e.g., a person changing outfits).

Finally, causal tracking indicates that the estimated target location at time tk will depend

solely on information from earlier video information where time t ≤ tk, rather than refining

track estimates using information from parts of the video where time t > tk. Additionally,

the trackers will only have a single initialization frame to learn the appearance of the target

object. This condition, along with the model-free restriction, makes this a very difficult

setting for successful tracking, and is reasonably a lower bound for well-defined tracking

scenarios where the target object – possibly in terms of the object’s classification, amount

of prior appearance data, or knowledge of the environment – is much better understood. A

tracking system that performs well under the restrictions we will work under can either

indicate a good starting point to building a more specialized tracker, or can itself be a

desirable tracker choice to be deployed in varied or unknown operating conditions.

In recent years, the focus of visual tracking research has shifted more to tracking-

by-detection. Tracking-by-detection methods typically rely heavily on an object detector

similar to what may be found in single-image object detection problems in other computer

vision applications. The strong discriminative power of newer object detectors and feature

representations diminishes the need for applying more sophisticated motion models to

tracking objects. Instead, a robust object detector is often just applied in the local region

of the previous target location, and then the object detector may be subsequently updated

with data from the changing target; the motion of the object in recent frames is often not

used when finding the target location in the next video frame.

The increased use of object detectors, along with the desire to process videos efficiently

(and, in some applications, in real time), make the use of correlation filters (CFs) appealing

in a system that performs tracking-by-detection. CFs have previously been effectively used
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in applications such as automatic target recognition (ATR), object alignment, and biometric

recognition, and their efficient computation in the frequency domain lends itself naturally to

the visual tracking problem. Accordingly, the number of correlation filter trackers (CFTs)

has consistently grown in recent years and ways to improve both the accuracy and speed of

CFTs is an active area of research.

In the remainder of this chapter we provide overviews of the visual tracking problem

and CFs, and outline the main contributions of this thesis. We also introduce notation

used in this thesis and outline the structure of the rest of the thesis.

1.1 Technical Background

1.1.1 Visual Tracking

This thesis focuses on improving performance in visual tracking. In online visual tracking, we

are given a tracker, denoted T , and a video1 denoted I, comprised of n+1 frames2 such that

I = {I0, I1, . . . , In}. For the kth image Ik, there is a rectangular region bk = [xk, yk, wk, hk]

marked by a human reader, where [xk, yk] represents the center location of the target and

[wk, hk] represents the width and height of the target. The use of a rectangular bounding box

means that there is often a small number of pixels inside the box that actually correspond

to the background or surroundings. The tracker is only provided the initial bounding box

b0 = [x0, y0, w0, h0] to learn the appearance of the target, although many tracker systems

use data from subsequent frames using their own target location estimates, given the

considerable difficulties of building a robust target model from a single image.

The tracking system outputs estimates b′k = [x′k, y
′
k, w

′
k, h

′
k] for the n frames remaining

in the sequence. There are a number of different ways to quantify the performance of a

tracker, and the approaches used in this thesis are outlined in Sec. 3.1.2.

1The terms “video,” “sequence,” and “image sequence” are used interchangeably.
2The terms “frames” and “images” are used interchangeably.
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1.1.2 Correlation Filters

CFs have been used in computer vision applications including vehicle recognition, object

alignment, and biometric localization and recognition. Different designs of CFs can be

used to be tolerant to target noise and distortions. Additionally, most CFs exhibit graceful

degradation and have built-in shift invariance. All together, these properties make CFs

suitable for simultaneous localization and recognition, which is what successful visual

tracking demands.

In CFTs, a template h(m,n)3 is cross-correlated with a new video frame (or subregion

of a frame) x(m,n) of a tracking video, producing a correlation output g(m,n). This

cross-correlation is computed efficiently via the frequency domain:

(1.1)G(u, v) = X(u, v)H∗(u, v)

where H∗ is the complex conjugate of H and G(u, v), X(u, v), and H(u, v) are the 2D

discrete Fourier transforms (DFTs) of g(m,n), x(m,n), and h(m,n), respectively. To

analyze the correlation output, we compute the inverse discrete Fourier transform (IDFT)

of the output G(u, v). All the required 2D DFTs are usually computed using the efficient

fast Fourier transform (FFT) algorithms. In ideal circumstances, there will be a sharp

peak or high correlation in the correlation plane at the location of the detected object and

low correlation elsewhere in the output, as shown in Fig. 1.1.4 In most visual tracking

applications, the target’s location is estimated as the location of the highest correlation

value in the plane.

3“Templates” refer to space domain representations while “filters” refer to their frequency domain
counterparts.

4In a recognition setting with a centered query image, we may expect a sharp centered peak for a
true-class image and no such sharp peak for other images.
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Figure 1.1: Correlation filters will ideally produce a sharp peak at the center location of
the target it is designed to locate, with low correlation elsewhere in the correlation plane.

1.2 Thesis Contributions

This thesis’ primary focus is on improving our understanding of and the performance of

CFTs. This thesis presents the following contributions.

1.2.1 An Evaluation Tracking Metric to Reflect Qualitative Ob-

servation

There are a number of measures to quantify the performance of a tracker within a single

frame, a full track, and an entire dataset. While all measures are precisely defined from

a mathematical perspective, they often do not entirely align with how a human observer

would evaluate a single tracker or compare different trackers. This is challenging due to the

fact that consecutive frames are often highly related and due to the fact that the challenging

elements within a video or within multiple videos occur at irregular intervals. We propose

a new accuracy metric designed to address these elements by segmenting videos according

to the amount of activity that occurs within it, and then computing a metric according

to those segments. A statistical test between different trackers can also be performed to

provide further insight beyond just the raw difference between trackers, which is often the

only option with other measures.
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1.2.2 Correlation Filter Design for Tracking

There has been a dramatic increase in the number of CFTs introduced in recent years, and

there is a wealth of research leading to different CF designs. Despite this, there appears to

be very little intersection between these two topics of research, with most CFTs being based

on one core CF design. We evaluate the use of alternative CF designs in a fundamental

CFT framework. We substitute different CFs in a tracker, and then further introduce

modified training schemes that are tailored to the introduced CF designs for the tracking

problem. We also discuss the fusion of multiple CFs for improved tracking accuracy.

1.2.3 Occlusion Detection for Model-Free Tracking in Color Video

The challenge of model-free tracking is the inability to leverage any external training data

that may give the tracker knowledge about how a target object may appear during the

course of tracking. Instead, the tracker must adapt to previously unseen changes in the

target appearance. These changes can be small and gradual, or very sudden and more

dramatic. Trackers are thus required to consistently update their detection model, but

this also makes trackers susceptible to confusing occlusions for large appearance changes.

While most trackers simply balance their adaptability with their robustness to occlusions,

we introduce a method based on color information that allows a tracker to automatically

change its adaptation rate depending on if the target is estimated to be occluded or not. By

reducing the rate at which a tracker updates its target model when the target is occluded,

we prevent the tracker from learning the appearance of the occluding object and retain the

appearance information of the true target. We show that this approach works effectively

and improves the performance of a number of CFTs.
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1.3 Notation

� lower case bold letters indicate column vectors, e.g., x

� upper case bold letters indicate matrices, e.g., X = [x1, ...,xn]

� some matrices are diagonal matrix representations of vectors, e.g., Xi = diag(xi)

� hat symbol indicates frequency-domain variables, e.g., x̂

� the superscript T symbol denotes the transpose, e.g., xT

� the superscript asterisk symbol denotes the complex conjugate, e.g., x̂∗

� the superscript dagger symbol denotes the complex conjugate transpose, e.g., x̂†

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 gives an overview of CFs, early

CFTs, and discusses advances in a number of specific tracking system elements. Chapter

3 discusses how these trackers are evaluated, and proposes a new accuracy metric to

characterize performance. Chapter 4 discusses further the CF design decisions in various

CFTs and explores the use of CFs not previously applied to visual trackers. Chapter 5

discusses a technique for detecting occlusion in videos to improve the performance of CFTs,

independent of many various tracker design decisions. Finally, Chapter 6 summarizes the

contributions of this thesis and proposes future avenues of continued research.
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Chapter 2

Correlation Filter Trackers

2.1 Introduction

We review advances in CFs and CFTs in this chapter. We start by discussing CFs, beginning

with the most fundamental designs and showing the progression to the most commonly

used and recent CF designs. While most early CFs were not designed for visual tracking

applications, their design principles influenced the subsequent CF designs that were tailored

for visual tracking. Additionally, we believe some CF designs deserve a deeper exploration

for their application in visual tracking; for those filters, the material in this chapter is an

introduction to work discussed in Ch. 4.

Following a discussion of CF design in Sec. 2.2, we introduce the minimum output

sum of squared error (MOSSE) filter, which was one of the first CFs designed for the task

of visual tracking, and the core of the most influential early CFT (generally referred to

as the “MOSSE tracker”) [1]. Following our discussion of the MOSSE filter, which was

introduced in 2010, we discuss the Kernelized Correlation Filter (KCF) tracker [2], which

was originally introduced in 2012 as the Circulant Structure Kernel (CSK) tracker [3].

These two formulations showed greatly improved results compared to the original MOSSE

filter, as well as other non-CF trackers at the time. The fundamental CF design in most
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subsequent CFTs are heavily adopted from either the MOSSE or KCF trackers, which

primarily introduced novel CF designs in otherwise simple trackers.

Since the introduction of the KCF tracker, a number of CFTs have been introduced.

Although some CFTs introduce small changes to the filter design, most focus on particular

aspects of the visual tracking problems posed in benchmark datasets and in real-world

situations. These particular elements include introducing methods to handle occlusion,

adapting CFs to estimating a target’s scale, and incorporating redetection schemes. Other

CFTs have proposed using different feature extractors; different features do not address a

particular problem, but are expected to improve tracking across a range of challenges. We

will discuss this variety of improvements while highlighting only the novel parts of different

CFTs.

We conclude the chapter with a discussion of non-CF trackers. There are trackers that

predate the MOSSE or KCF trackers as well as non-CF trackers that have been introduced

since their publication. We discuss these other trackers to provide additional context to the

body of work in CFTs, and to contrast the strengths and weaknesses of eschewing the CF

approach to tracking.

2.2 Introduction to Correlation Filters

This section will introduce CFs beyond the MOSSE filter introduced in Sec. 2.3.1. Along

with differences in filter design, it is important to emphasize that the filters introduced

within this section were not designed with the goal of visual tracking. Instead, single-image

localization and recognition tasks were generally the objective of these filters.

Once any CF is computed, the application of it to process a test image almost always

follows the same procedure. Given the learned or designed correlation template h and a

test image xtest, we can efficiently compute the correlation via the Fourier domain
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(2.1)
g = xtest ⊗ h

= F−1 {F{xtest} � F∗{h}} ,

where g is the correlation output, ⊗ represents the cross-correlation operation, F and

F−1 represent the DFT and IDFT operators, respectively, the ∗ superscript represents the

conjugate, and � represents the Hadamard product. To avoid circular convolution, x and

h are zero-padded prior to the DFT operation. When analyzing g, the straightforward

approach is to estimate a target location as the location of the highest value in g. This is

a viable option when localizing a target instead of detecting it, i.e., estimating a target’s

location instead of determining if a target is present or not. Detecting a target requires

setting a threshold on the correlation value above which the presence of a target is declared.

Setting a threshold on the correlation values is possible, or the correlation plane can be

processed to find the peak-sidelobe ratio (PSR) values instead. PSR is computed as

(2.2)PSR ,
peak− µ

σ
,

where µ and σ are the mean and standard deviations of the correlation values in the sidelobe

region of a correlation peak. The sidelobe region is defined as a toroidal region surrounding

the peak that excludes the peak itself and possibly a small region closest to the peak. PSR

can normalize the quality of a match in settings where the total energy in the correlation

plane may vary among different images or between different regions of the same image due

to illumination variation. The PSR can be calculated selectively at specific peak locations,

or for the entire correlation output using two correlations (or four DFTs) [4].

The simplest CF is the matched filter (MF). The MF maximizes the signal-to-noise

ratio (SNR) in the presence of additive white noise [5]. In general, the MF does not perform

well in scenarios where the test image has a different appearance compared to the training

images. Despite this, the MF illustrates and leads into the application of CFs more broadly.

The objective of the MF is to find a filter ĥ that will match well with signal x̂. Recall
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that ĥ and x̂1 are the DFTs 2 of h and x, respectively. We aim to minimize the mean

squared error (MSE), denoted as ε, between ĥ and x̂,

(2.3)

ε = |ĥ− x̂|2

= (ĥ− x̂)†(ĥ− x̂)

= ĥ†ĥ + x̂†x̂− 2ĥ†x̂,

where † represents the conjugate transpose. If we normalize the energy h and x to 1, then

ĥ†ĥ = 1 and x̂†x̂ = 1, and minimizing the error ε is equivalent to maximizing ĥ†x̂, which is

accomplished by setting ĥ = x̂.

While the MF is designed to match the training image effectively, in practice the MF

performs poorly in recognition scenarios where the target will have appearance differences

(loosely called distortions) not seen in training. Effective recognition with CFs requires

designing filters with more tolerance to unseen distortions. Additionally, the MF is not

designed to produce a sharp peak to detect the target. A sharp correlation peak will localize

the target with more precision, and test images that differ from the single training image

will not produce strong correlation or a distinct peak in the output correlation plane.

The Equal Correlation Peak Synthetic Discriminant Function (ECPSDF) filter, intro-

duced in 1980 by Hester and Casasent [6], extends the MF by building a composite filter

from a larger set of training images. While the MF is built from a single training image,

the ECPSDF is built with training signals that reflect a range of possible distortions.

The ECPSDF filter introduces the notion of peak constraints which require the learned

filter ĥ to produce certain correlation output values at the origin when correlated with

the training images. Assuming we have a training set X̂ = [x̂1, x̂2, . . . , x̂n], we require

that ĥ†x̂i = ui, where ĥ is the filter, x̂i represents the ith training image and ui is the

corresponding peak value constraint for the ith image. Typically ui = 1 when xi is a

1In general, ẑ will denote the frequency-domain representation of z.
2The DFTs require that h and x be zero-padded; if h and x are 1D signals of length Nh and Nx,

respectively, then both must be zero-padded to at least size Nh + Nx − 1. For multidimensional signals,
each dimension must each be zero-padded in a similar manner.
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true-class image. The other constraint is that the filter ĥ be a linear combination of the

training images, i.e., ĥ =
∑n

i=1 aix̂i. These constraints can be written concisely as

(2.4)X̂†ĥ = u

and

(2.5)ĥ = X̂a

where u = [u1, u2, . . . , un]T and a = [a1, a2, . . . , an]T. Substitution Eq. 2.5 for ĥ in Eq. 2.4

produces

(2.6)X̂†X̂a = u

and, assuming that X̂†X̂ is nonsingular, we can then solve for a to obtain

(2.7)a = (X̂†X̂)−1u.

Eq. 2.7 gives us the weights to solve for the filter ĥ, where by substituting Eq. 2.7 into Eq.

2.5 we get the following expression for the filter vector,

(2.8)ĥ = X̂(X̂†X̂)−1u.

While the ECPSDF filter allows for a single filter to be trained on multiple distortions,

it has limitations. While the composite filter can incorporate multiple distortions in its

design, it is not robust to unseen distortions, and will not produce sharp correlation output

peaks. Just as with the MF, these issues make distinguishing a true-class target from its

background very challenging. Subsequent filter designs addressed these concerns.

2.2.1 Minimum Variance Synthetic Discriminant Function Filter

The Minimum Variance Synthetic Discriminant Function (MVSDF) filter was introduced

in 1986 by Kumar [7]. The MVSDF filter minimizes the correlation output noise variance

(ONV) of a given training set of images in the presence of zero-mean, additive, stationary

noise. When the noise is assumed to be white noise, then the MVSDF filter is equal to the

ECPSDF filter [6].
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In the space domain, we can represent a training sample as xi + n, where xi is the

noiseless training sample and n is the additive noise. In this scenario, the correlation peak

(at the origin) will be hT(xi + n) = ci + cn, where ci is the desired correlation peak and cn

is the contribution to the peak due to the noise. The ONV is then defined as

(2.9)

var(cn) = E{(hTn)2}

= hTE{nnT}h

= hTCh

where C = E{nnT} is the d× d covariance matrix of the noise, where d is the dimension of

the training sample.

We can produce a similar solution in the frequency domain as well. When the noise is

stationary, we can express var(cn) by summing over all the frequencies of the the power

spectral density (PSD) of var(cn), denoted Sc. Sc can be expressed as the PSD of n times

the square of the magnitude of the CF’s frequency response. This allows us to represent

the var(cn) as

(2.10)

var(cn) =
d−1∑
i=0

Sc[i]

=
d−1∑
i=0

p̂[i]|ĥ[i]|2

= ĥTP̂ĥ

where d is the dimension of ĥ, p̂ represents the PSD of noise n, and P̂ is a diagonal matrix

containing the elements of p̂ along its diagonal. Using Parseval’s theorem [8], we can

transform the original peak constraint hTxi = ci into the frequency domain

(2.11)

ci = hTxi

=
1

d
ĥ†x̂i

=
1

d
ui
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and therefore ui = dci. Minimizing the ONV from Eq. 2.10 subject to the peak constraint

X̂†ĥ = u results in a quadratic optimization with linear constraints, i.e.,

min
ĥ

ĥTP̂ĥ

s.t. X̂†ĥ = u. (2.12)

Eq. 2.12 can be solved using Lagrangian multipliers (discussed in Appendix A), which

produces

(2.13)ĥ = P̂−1X̂(X̂†P̂−1X̂)−1u.

As noted earlier, when the noise is white, P̂ = αI and (assuming α 6= 0) the solution in Eq.

2.13 simplifies to the ECPSDF filter shown in Eq. 2.8.

While the MVSDF filter is explicitly designed to handle noise, it still is not designed

to produce sharp peaks. In order to design a filter that produces sharp peaks, we must

attempt to control the entire correlation output plane. Both the ECPSDF and MVSDF

filters constrain only the correlation value at the origin, thus there is no guarantee it will

be easily distinguishable from the sidelobes. The Minimum Average Correlation Energy

(MACE) filter addresses this directly.

2.2.2 Minimum Average Correlation Energy Filter

The MACE filter was introduced in 1987 by Mahalanobis et al. [9]. The MACE filter,

unlike previous CFs, aims to control the entire correlation plane output ĝi, and not just

the correlation peak value ĥ†x̂i. This is done by minimizing the average correlation

energy (ACE). For a given correlation output plane gi, the correlation energy is defined as

Ei = gT
i gi = 1

d
ĝ†i ĝi (per Parseval’s theorem). The ACE across all correlation output planes

g1,g2, . . . ,gn is defined as
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(2.14)

ACE =
1

n

n∑
i=1

Ei

=
1

nd

n∑
i=1

ĝ†i ĝi

=
1

nd

n∑
i=1

ĥ†X̂iX̂
∗
i ĥ

=
1

nd

n∑
i=1

ĥ†D̂iĥ

= ĥ†

(
1

nd

n∑
i=1

D̂i

)
ĥ

= ĥ†D̂ĥ

where D̂i = X̂iX̂
∗
i is a diagonal matrix containing the power spectrum of x̂i along its

diagonal, and D̂ = 1
n

∑n
i=1 D̂i is a diagonal matrix with the average power spectral density

of the training images along its diagonal, and 1
d

is a scaling factor accounting for the fact

that an inner product in the space domain is scaled in the frequency domain by a factor of

1
d
, where d is the dimension of xi .

Minimizing the ACE while constraining the peak will lead to the following optimization:

min
ĥ

ĥTD̂ĥ

s.t. X̂†ĥ = u. (2.15)

We can observe that this is the same optimization problem as the MVSDF filter problem in

Eq. 2.12 and can be solved in the same manner using Lagrangian multipliers (discussed in

Appendix A), which produces

(2.16)ĥ = D̂−1X̂(X̂†D̂−1X̂)−1u.

In practice, the filter ĥ can be computed efficiently by taking advantage of D̂’s diagonal

structure.
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In contrast to the previous ECPSDF and MVSDF filters, the MACE filter is much more

likely to produce sharp peaks. Minimizing the ACE effectively suppresses the sidelobes of

the correlation peak to be as small as possible; an optimal correlation output would be a

delta-like function at the location of the target. The peak sharpness, relative to previous

filter designs, makes precise localization more likely. However, there are drawbacks to the

MACE filter design. The MACE filter generally emphasizes the high frequency components

of the training samples, but in many cases (such as natural images), the test samples will

have less energy in the higher frequencies. This in turn makes the filter more sensitive

to distortions and high frequency noise. These properties are contrary to those seen in

the MVSDF filter, which is designed to be more tolerant to noise but does not produce

sharp peaks. Ideally, a filter could leverage the positive properties of both the MVSDF

and MACE filters in a balanced manner. The Optimal Tradeoff Synthetic Discriminant

Function (OTSDF) filter [10, 11] aims to do that.

2.2.3 Optimal Tradeoff Synthetic Discriminant Function Filter

The OTSDF filter was first introduced by Réfrégier and Figue in 1990 [10, 11]. The

OTSDF filter balances the criteria optimized in two previous CF designs: the ACE criterion

minimized when building a MACE filter [9], and the ONV criterion previously addressed by

the MVSDF filter. The OTSDF filter minimizes the ACE for a given ONV, or vice versa.

As shown previously in Eqs. 2.10 and 2.14, ONV and ACE are given by EONV = ĥTP̂ĥ

and EACE = ĥTD̂ĥ. It has been previously shown that the optimal tradeoff between these

two criteria can be found simply by minimizing the weighted sum of EONV and EACE [12],

i.e.,

min
ĥ

ĥTD̂ĥ + βĥTP̂ĥ
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s.t. X̂†ĥ = u (2.17)

where 0 ≤ β ≤ ∞ represents the tradeoff parameter between EONV and EACE. When

β = 0, the result is the MACE filter, and as β →∞, the result becomes the MVSDF filter.

We can define T̂ = D̂ + βP̂ and simplify Eq. 2.17 to

min
ĥ

ĥTT̂ĥ

s.t. X̂†ĥ = u, (2.18)

and we see this has the same form as Eqs. 2.12 and 2.15. Again, by solving with Lagrangian

multipliers (see Appendix A), we can obtain the closed-form expression for the filter,

(2.19)ĥ = T̂−1X̂(X̂†T̂−1X̂)−1u.

We can replace β with a bounded variable by setting β = 1
λ
(1− λ), where 0 ≤ λ ≤ 1,

i.e.,

(2.20)

T̂ = D̂ + βP̂

= D̂ +
1

λ
(1− λ)P̂

=
1

λ
(λD̂ + (1− λ)P̂)

∝ λD̂ + (1− λ)P̂,

where the 1
λ

term can be ignored, as it can be shown that it does not affect the optimal filter.

When we perform this variable substitution, choosing λ = 0 results in the MVSDF filter and

λ = 1 results in the MACE filter. In many cases, choosing λ close to 1 is desirable. Such

OTSDF filters will emphasize producing a sharp peak while also introducing robustness to

noise that is not present in the MACE. These properties make the OTSDF filter effective

for localization and detection tasks compared to filters previously introduced.
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2.2.4 Maximum Margin Correlation Filters

The Maxmimum Margin Correlation Filter (MMCF) was introduced by Rodriguez et al.

in 2012 [13], and combines the max-margin or generalization capability of support vector

machines (SVMs) and the localization ability of CFs.

The SVM approach involves maximizing the margin between a hyperplane and training

data samples by solving

min
w,b

wTw + C

N∑
i=1

ξi

s.t. ti(w
Txi + b) ≥ ci − ξi (2.21)

where we assume that we have N training samples xi from two classes, each of length d× 1.

The vector w represents the hyperplane that SVM produces, and b represents the bias term.

C represents the soft-margin penalty parameter, and ξi represents the slack variables of

the SVM to account for the fact that training data may not be linearly separable. The

variables ti ∈ {1,−1} and ci ∈ {1, 0} are defined according to whether xi is a positive-class

or negative-class training example, respectively. We can also express the formulation in the

frequency domain as

min
ŵ,b′

ŵ†ŵ + C
N∑
i=1

ξi

s.t. ti(ŵ
†x̂i + b′) ≥ ci − ξi (2.22)

where b′ = b · d.

The CF/localization criterion minimizes the mean squared error (MSE) between a

desired correlation plane and the correlation output of the learned filter w and a training
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sample xi according to

(2.23)w = arg min
w

N∑
i=1

‖w ⊗ xi − gi‖2
2

where the ⊗ symbol represents the correlation operation, and gi represents the desired

correlation output of the ith training image. Note that we are representing images and

their 2D Fourier transforms by column vectors, through a lexicographic mapping from 2D

to 1D. Eq. 2.23 can be expressed in the frequency domain as

ŵ = arg min
ŵ

1

d

N∑
i=1

‖X̂∗i ŵ − ĝi‖2
2

∝ arg min
ŵ

N∑
i=1

‖X̂∗i ŵ − ĝi‖2
2 (2.24)

where X̂i is a diagonal matrix whose entries are the elements of x̂i. For the correlation filter w

to provide good localization performance, we want the correlation output at the center of the

target to be large and small elsewhere. Therefore, we define gi = [0, . . . , 0,wTxi, 0, . . . , 0]T,

where the value of wTxi is the desired output when the object is centered. The choice of

wTxi is for convenience. Accordingly, the frequency representation ĝi can be expressed as

(2.25)
ĝi = 1xTi w

=
1

d
1x̂†iŵ

where 1 is a d× 1 vector of ones. We can expand Eq. 2.24 to get the following:

ŵ = arg min
ŵ

N∑
i=1

‖X̂∗i ŵ − ĝi‖2
2

= arg min
ŵ

N∑
i=1

(
ŵ†X̂iX̂

†
iŵ − 2ŵ†X̂iĝi + ĝ†i ĝi

)
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= arg min
ŵ

N∑
i=1

(
ŵ†X̂iX̂

†
iŵ −

2

d
ŵ†X̂i1x̂†iŵ +

1

d2
ŵ†x̂i1

†1x̂†iŵ

)

= arg min
ŵ

N∑
i=1

(
ŵ†X̂iX̂

†
iŵ −

2

d
ŵ†x̂ix̂

†
iŵ +

1

d
ŵ†x̂ix̂

†
iŵ

)

= arg min
ŵ

ŵ†

(
N∑
i=1

X̂iX̂
†
i −

1

d

N∑
i=1

x̂ix̂
†
i

)
ŵ = arg min

ŵ

ŵ†Ẑŵ (2.26)

where

(2.27)Ẑ =
n∑
i=1

X̂iX̂
∗
i −

1

d

n∑
i=1

x̂ix̂
†
i

= D̂− ŶŶ†

where D̂ =
∑n

i=1 X̂iX̂
∗
i is a diagonal matrix, and Ŷ = 1√

d
[x̂1, . . . , x̂N ].

The goal of MMCF is to combine the criteria from Eqs. 2.22 and 2.26. The MMCF

multi-criteria optimization problem is as follows:

min
ŵ,b′

(
ŵ†ŵ + C

N∑
i=1

ξi, ŵ
†Ẑŵ

)

s.t. ti(ŵ
†x̂i + b′) ≥ ci − ξi (2.28)

which can be written as a weighted sum of the two terms as

min
ŵ,b′

(
λŵ†ŵ + C ′

N∑
i=1

ξi + (1− λ)ŵ†Ẑŵ

)

s.t. ti(ŵ
†x̂i + b′) ≥ ci − ξi (2.29)

where 0 < λ ≤ 1 and C ′ = λC. The two quadratic terms can be combined to simplify Eq.

2.29 as
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min
ŵ,b′

(
ŵ†Ŝŵ + C ′

N∑
i=1

ξi

)

s.t. ti(ŵ
†x̂i + b′) ≥ ci − ξi (2.30)

where Ŝ = λI + (1− λ)Ẑ.

The solution to the MMCF problem can be obtained in the same manner as standard

SVM by transforming the data. We note that the expression in Eq. 2.23, and thus ŵ†Ẑŵ

(Eq. 2.26) are non-negative, and therefore Ẑ is positive semidefinite. It follows that Ŝ is

positive definite. Therefore, we can transform the data as w̄ = Ŝ
1
2 ŵ and x̄i = Ŝ−

1
2 x̂i. We

can rewrite the MMCF formulation as

min
w̄,b′

(
w̄†w̄ + C ′

N∑
i=1

ξi

)

s.t. ti(w̄
†x̄i + b′) ≥ ci − ξi (2.31)

which has the same form as the original SVM formulation.

2.3 Introduction to Correlation Filter Trackers

2.3.1 Minimum Output Sum of Squared Error Filter

The MOSSE filter was introduced by Bolme et al. [1] as a CF tailored for visual tracking

tasks. As the name suggests, the MOSSE filter is designed to minimize the MSE of the

actual correlation output and the desired correlation output.

The MOSSE filter can be expressed as follows:

22



(2.32)w = arg min
w

1

N

N∑
i=1

‖w ⊗ xi − gi‖2
2 + λ‖w‖2

2

where w is the CF, xi is the d × 1 vector version of the training example, and gi is the

d× 1 desired correlation output for that training example. Typically, gi is chosen to be a

Gaussian function centered at the origin with a small σ for positive training examples, and

all zeroes for negative training examples. The parameter λ is for regularization. Note that

the original formulation in [1] does not include the regularization term; this is equivalent to

λ = 0, but we include it for generalization of the following derivation.

We can express Eq. 2.32 in the frequency domain as

ŵ = arg min
ŵ

1

Nd

N∑
i=1

‖X̂∗i ŵ − ĝi‖2
2+
λ

d
ŵ†ŵ

= arg min
ŵ

1

Nd

N∑
i=1

(
ŵ†X̂iX̂

†
iŵ − 2ŵ†X̂iĝi + ĝ†i ĝi

)
+
λ

d
ŵ†ŵ

= arg min
ŵ

ŵ†

(
1

Nd

N∑
i=1

X̂iX̂
†
i

)
ŵ − 2ŵ†

(
1

Nd

N∑
i=1

X̂iĝi

)
+

1

Nd

N∑
i=1

ĝ†i ĝi +
λ

d
ŵ†ŵ

(2.33)

and we can find the minimum by solving grad(ŵ) = 0 as follows

grad(ŵ) = 0 =⇒ 2

(
1

Nd

N∑
i=1

X̂iX̂
†
i

)
ŵ − 2

(
1

Nd

N∑
i=1

X̂iĝi

)
+

2λ

d
ŵ = 0

=⇒

(
1

N

N∑
i=1

X̂iX̂
†
i

)
ŵ −

(
1

N

N∑
i=1

X̂iĝi

)
+ λŵ = 0

=⇒

(
1

N

N∑
i=1

X̂iX̂
†
i

)
ŵ + λŵ =

(
1

N

N∑
i=1

X̂iĝi

)

=⇒

(
1

N

N∑
i=1

X̂iX̂
†
i + λI

)
ŵ =

(
1

N

N∑
i=1

X̂iĝi

)
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ŵ =

(
1

N

N∑
i=1

X̂iX̂
†
i + λI

)−1(
1

N

N∑
i=1

X̂iĝi

)
(2.34)

which we can see involves only element-wise operations (because X̂i is a diagonal matrix).

The canonical form is written as

(2.35)ŵ =

∑N
i=1 x̂∗i � ĝi∑N

i=1 x̂∗i � x̂i + λ

where the � operator represents the Hadamard product. Also note that the parameter λ

has subsumed a factor of N .

When used in scenarios that require incremental learning, such as visual tracking tasks,

the MOSSE filter can be updated as a linear combination of the previously learned filter

and a filter built on the new training examples. Given a filter ŵN learned on the first N

training examples, we can simply add an element to the summations required in Eq. 2.35.

Assume that

(2.36)ŵN =

∑N
i=1 x̂∗i � ĝi∑N

i=1 x̂∗i � x̂i + λ
=

âN

b̂N + λ
.

When a new input x̂N+1 becomes available, we can update âN and b̂N with the following

updates

âN+1 = (1− η)âN + η(x̂∗N+1 � ĝN+1)

b̂N+1 = (1− η)b̂N + η(x̂∗N+1 � x̂N+1) (2.37)

where 0 ≤ η ≤ 1 is a parameter controlling the learning rate. Smaller values of η correspond

to slow adaptation, whereas larger values of η correspond to more aggressive adaptation.

The MOSSE filter is used in visual tracking because the update scheme in Eq. 2.37

allows a tracking system to quickly update the target model. Bolme et al. provide a

qualitative comparison of the MOSSE tracker’s accuracy compared to other trackers at that
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time, while boasting an impressive 669 FPS. At such fast speeds, the MOSSE filter became

a viable starting point for subsequent trackers that could be developed to be more robust

and accurate at the expense of speed while still remaining faster than real-time (30 FPS).

2.3.2 Kernelized Correlation Filter

Henriques et al. [2] build on the concept of the MOSSE filter [1] by extending the filter

to non-linear correlation. Linear correlation between a CF template and a test image is

the inner product of the template w with a test sample z for every possible shift of the

test sample z. Instead of computing the linear kernel function wTz at every shift of z,

KCF computes some non-linear kernel κ(w, z) = ϕT(w)ϕ(z) where κ represents a kernel

function that is equivalent to mapping w and z into a non-linear space with the lifting

function ϕ(·).

In one sense, KCF can be viewed as a change away from linear correlation filters, but it

can also be seen as an efficient way of solving and testing with kernel ridge regression when

the training and testing data is structured in a particular way (i.e., a circulant matrix).

Henriques et al. derive KCF from the standard solution of kernelized ridge regression.

For learning w, we assume the training data X = [x0,x1, . . . ,xd−1] is a d× d matrix where

xk contains the same elements as x0 shifted by k elements. The solution to kernelized ridge

regression is given by [14]:

(2.38)α = (K + λI)−1g

where K is the kernel matrix such that Kij = κ(xi,xj), I is the identity matrix, λ is the

regularization parameter, g is the desired correlation output, and α are the dual-space

coefficients. The dual-space coefficients allow us to rewrite the original template w as

(2.39)w =
N∑
i=1

αiϕ(xi).

When the kernel function κ(w,x) treats all data elements equally, and kernel K and

the coefficients α can be computed efficiently in the Fourier domain as follows:
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(2.40)α̂∗ =
ĝ

k̂xx′ + λ

where k̂xx′
represents the first row of the kernel matrix K which contains the kernel function

computation of x0 with all possible shifts of another data sample denoted x′; either x0 in

the training phase, or some test sample z in the testing phase. This idea is getting closer

to the use of the Fourier domain to efficiently compute linear correlation. With non-linear

kernels, Henriques et al. show that all elements of k̂xx′
can be computed efficiently. As an

example, the Gaussian kernel κ(x,x′) = exp(− 1
σ2‖x− x′‖2) can be computed as

(2.41)kxx′
= exp

(
− 1

σ2

(
‖x‖2 + ‖x′‖2 − 2F−1(x̂� x̂

′∗)

))
.

where F−1 represents the IDFT. Just as in the case of the linear kernel, computing the

Gaussian kernel in the Fourier domain reduces the computational complexity, although

there are additional DFT/IDFT operations called compared to the linear kernel. During

training, this kernel is computed for learning the coefficients α̂∗ as shown above in Eq. 2.40,

and when testing, the correlation is computed as

(2.42)ĝ′ = α̂� k̂xz

where the IDFT of ĝ′ will produce the non-linear correlation in the space domain.

The KCF tracker utilizes these non-linear kernels to achieve performance improvements

over the MOSSE filter. It operates in a similar fashion, with an update scheme in the same

spirit as Eq. 2.37. One important distinction between the MOSSE tracker and the KCF

tracker comes from the fact that the MOSSE tracker derives and stores a correlation filter,

while the KCF tracker computes and stores the dual space coefficients as well as, necessarily,

the training examples. As a tracker continues through a video sequence, the tracker could

retain multiple training images, but this would result in tracking becoming progressively

slower as the computational demands in solving for the kernel matrix K̂, and subsequently

α̂ as shown in Eq. 2.40, grow with the number of images stored. Rather than attempt to

store multiple distinct training images or to discard data from old frames entirely, the KCF
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tracker stores a single training image x̃ that is a linear combination of previous images, so

that

(2.43)x̃k = (1− η)x̃k−1 + ηxk.

where xk is the image patch in the kth frame.

When the KCF tracker was first introduced, it exhibited better accuracy than other

trackers at that time, while reporting speeds greater than 150 FPS [2]. This combination

of accuracy and speed made it a popular tracker to improve upon in a number of ways .

Finally, it is important to note that the KCF is largely a reformulation of the CSK tracker

introduced earlier by Henriques et al. [3]. One of the biggest changes between the CSK and

KCF trackers is the addition of multi-channel features, which were previously introduced for

CFs [15, 16]. Henriques et al. incorporate multi-channel features as a straightforward way

to improve performance, where each channel is treated independently, and the correlation

planes of each channel at test time are summed.

2.3.3 A Simple Correlation Filter Tracker

Secs. 2.3.1 and 2.3.2 discussed the design principles of the two CFs that appear in almost all

CFTs. In this section, we outline how either the MOSSE filter or KCF can be implemented

within a simple tracker. The simple tracker explained in this section can be considered

a baseline tracker that other CFTs modify, but many details are first seen in the KCF

tracker. Modifications often include simply swapping out particular components of this

generic tracker, but other trackers may modify larger portions of the tracking workflow;

these changes are discussed at length in Sec. 2.4.

Recall from the problem statement in Sec. 1.1.1 that the input to a tracker, along with

I = {I0, I1, . . . , In}, is only the first frame of a video with a rectangular bounding box

b0 = [x0, y0, w0, h0] denoting the target region, and the output of the tracker is rectangular

bounding boxes b′k = [x′k, y
′
k, w

′
k, h

′
k] denoting the target location estimates in the rest of
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the frames of the video.

In the first frame, we extract features from the given bounding box. It is important

to detail how this training is done. Typically in CF applications, the template and the

test image are zero-padded when performing the FFT [5]. The zero-padding is assumed to

remove the circular convolution effects introduced by the DFT [17]. However, most CFTs

do not perform zero-padding before computing the FFT of any space domain templates

or image patches. Instead, the CF is computed from a region larger than the actual

target; in some trackers this padding results in a CF with a width and height 2× larger

than the original target scale [w0, h0].
3 This extra padding is done in combination with

applying windowing – usually a cosine window – to both reduce the impact of the circular

convolution and to emphasize the features that are within the original target region (and

within the target region, the windowing emphasizes the center of the target even more).

This design decision has tradeoffs: the larger CF allows the tracker to implicitly learn

against some background information, and the windowing does reduce aliasing affects, but

they are not removed entirely (and zero-padding this larger CF would likely reduce the

speed significantly). It’s important to note that incorporating the background into the

CF training makes more sense in the tracking application; unlike tasks like ATR or other

single-image object detection tasks, we know we will have to distinguish the target from a

similar background in subsequent frames; this is not the case in other detection tasks.

From the first frame, we have an initial CF to detect the target throughout the video.

In subsequent frames, the tracking process can still remain relatively simple. An image

patch centered on the previous estimated target location is extracted from the new frame.

This patch is usually the same size as the padded CF. The same feature extraction and

windowing is performed. We take the DFT of the feature representation of the target,

and perform the correlation between the image patch and the CF. We take the IDFT of

correlation output, and the center position of the target is determined by the maximum

3Some trackers will resize targets to a fixed size, regardless of original scale and/or aspect ratio.
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correlation value in the correlation output plane. If the target’s scale is estimated, it may

be done at this stage, or it may be done jointly with the translation estimation of the target.

More details regarding scale estimation can be seen in Sec. 2.4.2 (the KCF tracker does

not perform any scale estimation). For trackers that perform redetection and/or failure

detection, this is usually when that tracking element is exercised (the KCF tracker does

not perform any redetection).

Following the estimated target position (and scale), the CF must be adapted to the new

target information. At the new target location (and appropriate scale), a final image patch

is extracted4 and features are again extracted and windowed. This image information is

incorporated into the filter design. The MOSSE and KCF filters are designed so that this

can be done with a simple linear combination of the previous CF and a CF designed solely

on the new detection, i.e., Ti = (1− λ)Ti−1 + λTnew, where T denotes whatever filter design

is used, and λ denotes the adaptation rate that balances the previously learned model Ti

and the information from the new detection, denoted Tnew. The details of the update as

well as the value of λ will vary from tracker to tracker as CF designs vary, but nearly all

newer CFTs will update their filter model. The two-step process of detect-update will

continue through the duration of the video. An overview of this entire system framework is

shown in Fig. 2.1.

We note that there are certain design decisions that are precluded in the Online

Tracking Benchmark (OTB) and Visual Object Tracking (VOT) benchmark challenges.

Both benchmarks prohibit revising old detection outputs based on more recent frames.

Additionally, specific pretrained models are not allowed on a per-video basis. However,

there is no prohibition on tailoring certain tracker parameters (e.g., amount of padding,

adaptation rate λ, or CF specific parameters) for the entire dataset.

4While there is likely a large amount of redundancy between the image patches extracted for the target
location estimation and then the filter update, most trackers repeat the entire feature extraction process.
This is a case that illustrates that most trackers submitted to the benchmark challenges are not optimized
for speed.
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Figure 2.1: Flowchart of a basic CFT. I 0 and b0 refer to the first video frame and the
ground truth bounding box for the target, I k refers to a new frame in the video, and
b′k is the estimated bounding box of the target. The original MOSSE and KCF trackers
follow this process, and can be considered a starting point for a more sophisticated tracking
system.

2.4 Improvements for Correlation Filter Trackers

2.4.1 Feature Representations for Correlation Filter Trackers

Traditionally, CFs assumed scalar or single-channel features, e.g., grayscale intensities

when operating on images. This was the case for much of the period prior to CFTs being

introduced. In more recent years, CFs that accommodated other features, called vector CFs

[15] or multi-channel CFs [16], have been developed. These CF designs were similar to the

MOSSE formulation, in terms of minimizing the MSE of the correlation output plane. The

work presented by both Boddeti et al. [15] and Galoogahi et al. [16] use the cross-spectral

energy between different feature channels, and both choose histogram of oriented gradients

(HOG) features to illustrate the new CF designs. As was discussed in Sec. 2.3.2, the KCF

tracker uses multi-channel HOG features, but treats them independently. While treating

each feature channel independently reduces the computation time, it ignores the possible

interactions between feature channels and effectively assumes that all feature channels are

independent. We note that the choice to treat each feature channel independently is the
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prevailing choice in CFT designs.

Histograms of Oriented Gradients

From the original MOSSE and CSK trackers that used only scalar features, a number of

feature descriptors have been explored in CFTs. As discussed above, the KCF tracker was

the first to introduce HOG features to CFTs. HOG features were originally introduced for

pedestrian detection but have become a popular feature descriptor in a range of object

detection tasks [18]. HOG descriptors aim to capture edge features of a given target. Since

the first use of HOG in CFTs, a number of subsequent CFTs use HOG, either as the only

feature descriptor or in conjunction with other feature descriptors [2, 19–30].

The KCF tracker used a HOG cell size of 4 × 4 and retained all 31 feature channels,

meaning that a HOG descriptor for a image patch of size w× h would be w
4
× h

4
× 31. Most

trackers use the 4× 4 cell size from the KCF tracker, but some trackers change this; there

are CFTs that use a 1× 1 cell size [19], a 6× 6 cell size [20], and another that uses 2× 2

cell size for small targets and the 4× 4 cell size for larger targets [21]. Most trackers retain

all 31 feature channels. The decision regarding cell size becomes a familiar tradeoff; smaller

cell sizes produce denser feature descriptors, but reduce the speed of the tracker; using

31 HOG feature channels requires 31 FFTs. Larger cell sizes will keep the tracking speed

much faster, but may not characterize the target well, particularly smaller targets. Overall

though, HOG features can be computed quickly (independent of subsequent FFTs), perform

much better than grayscale intensity features [2], and do not appear to slow tracking down

at all when done at a cell size of 4× 4 [2]. One final note regarding HOG features is that

using a cell size of c× c means that the smallest detected target translations will be c pixels

by default. The original KCF tracker does not address this, and therefore all estimated

target translations are multiples of 4 pixels. A modified version of the KCF tracker uses

sub-cell peak estimation to estimate target translations that are smaller than the HOG cell
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size [31].

Color Features

While HOG descriptors capture the edge characteristics of a target, other features attempt

to capture the color information of the target object. In many videos the target object has a

distinctive color, e.g., a track and field athlete wearing a distinct jersey. If the target is the

only yellow object in the video, it certainly seems straightforward to simply find the yellow

blob in each frame. The Adaptive Color Tracker (ACT) was the first CFT to use color

information for feature descriptors of the filter and target image patches [32]. The authors

explore the effectiveness of a number of color spaces, e.g., RGB, LAB, HSV, and others.

Their investigation shows that color name attributes [33] perform best. Color names are a

higher dimensional representation of colors based on human perception. Unlike other color

spaces which have a mathematical formula to convert from RGB color space, small ranges

of RGB values are mapped to a probabilistic 11-dimensional vector that sums to 1, where

each value corresponds to human perception of black, blue, brown, grey, green, orange,

pink, purple, red, yellow, and white. Color names, like HOG descriptors, had previously

been used in other computer vision tasks [34]. Since the publication of the ACT tracker, a

number of CFTs have used color names jointly with HOG descriptors [23, 25, 28, 29]. The

ACT tracker also proposes dimensionality reduction for the color names; this results in a

25% increase in the frames per second (FPS) while only slightly reducing accuracy.

While the color name features are a pixel-wise descriptor, other trackers use color

information in a different manner. The Sum of Template And Pixel-wise LEarners (Staple)

tracker [22] uses the first frame to learn which RGB values are representative of the target.

In subsequent frames, per-pixel scores based on RGB values are smoothed out over a region

equal to the target size to produce a color response plane. The amount of smoothing

precludes a sharp peak from appearing within the color response, but it is used as a
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complement to a CF built with HOG features. The HOG result will often produce a much

sharper correlation peak, while the color information serves to reinforce or alter less sharp

peaks that would correspond to less confident detections from the HOG features. The

two output responses have different shape characteristics and are derived from different

information (color vs. texture), and the overall result is stronger.

Much like HOG descriptors, color features are very quick to compute. Most color

spaces have 3 channels, while the color names has 11 channels, which does result in slower

performance (while HOG features often make up for 31 feature channels by reducing the

spatial resolution, color features are typically of the same spatial resolution as the original

target).

Deep-Learned Features

In recent years, deep convolutional neural networks (CNNs) have come to supplant “hand-

crafted” features like HOG in computer vision tasks [35–37]. While hand-crafted features

like HOG are computed based on what researchers expect to be salient feature outputs for

discrimination, deep neural networks (NNs) are expected to learn discriminative features

on their own, given sufficient training data. Just as deep features followed the introduction

of a range of hand-crafted features in domains such as object classification and localization,

CNNs are being introduced to visual tracking shortly after hand-crafted features.

The visual tracking problem is characterized by the lack of target data prior to the

beginning of tracking. This immediately rules out training a CNN from scratch; instead,

most CFTs that employ CNNs depend on a pretrained model, typically either AlexNet [35]

or VGGNet [38].5 At a high level, CNNs take an input image and, over successive layers of

convolutions with filter banks and spatial pooling, learn feature representations that capture

elements ranging from low-level textures to image classifications. For the simplest use in

5Although tracker parameters have often been optimized for a particular benchmark dataset, training
an entire CNN model on the full dataset is explicitly disallowed from submissions to VOT.
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visual tracking, the CNN can be considered a static feature extractor, similar to HOG or

color features. This most basic approach is shown in work by Danelljan et al. [39], simply

called the DeepCFT. The authors build a CF using the output from each convolutional

network in VGGNet, which takes an input image patch of 224× 224× 3 (all targets are

resized to fit the pretrained network) and outputs a 109 × 109 × 96 descriptor from the

1st convolutional layer, a 26× 26× 256 descriptor from the 2nd convolutional layer, and

13× 13× 512 descriptors from the 3rd, 4th, and 5th convolutional layers. The authors show

that the best performance is obtained when building the CF using the 1st output layer, and

in fact the performance drops off each successive layer until the 5th layer, which performs

only 3rd best. The assumption is that the deeper layers do not provide enough spatial

resolution; there is roughly a 17× reduction in the spatial resolution from the original patch

to the 3rd layer. Most importantly, the authors show that the CFs built from the CNN’s

output outperforms comparable CFs built jointly from HOG and color name features.

From this simple approach to building a deep CFT, more advancements have been made.

Rather than just using the output from one layer, other works have combined the outputs

from different layers [40–44]. The Multi-Level Deep Feature Tracker (MLDF) goes beyond

just using a pretrained network and actually uses the current track information to train the

CNN to adapt to the target appearance and its surroundings, rather than just keeping the

starting VGGNet.

A look at recent benchmark performance shows that deep features are used in many of

the most accurate trackers [45]. However, the use of deep features does come at the cost

of speed; CFTs using CNNs are typically much slower than trackers using hand-crafted

features. Despite this, visual tracking may follow a similar trend as other computer vision

tasks that have become more and more dominated by deep networks.
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2.4.2 Target Scale Estimation

In their simplest construction, CFTs simply estimate the translation of a target; the 2D

correlation output plane provides no insight into the changing scale of a target. Accurately

estimating target scale has multiple benefits; it directly affects how tracker performance

is quantified in benchmark evaluations, and beyond benchmarks it can provide important

information in real-world applications. Along with being valuable in and of itself, accurately

estimating scale allows a tracker to adjust its own tracking procedure to adapt to the

changing target, thus reducing the possibility of drifting off of or losing the target entirely.

With the possible intrinsic and extrinsic benefits of accurate scale estimation, there has

been a good deal of work in adapting CFTs to scale variation.

Exhaustive Scale Search

Perhaps the earliest CFT to address scale estimation was the Discriminative Scale Space

Tracker (DSST), introduced by Danelljan et al. in 2014 [19]. DSST shares many similarities

with the KCF tracker, but adds a scale estimation component following the translation

estimation of the target. Following the translation estimation to determine [x′k, y
′
k], the

tracker extracts image patches at S scales. For each scale n ∈
{
b−S−1

2
c, . . . , bS−1

2
c
}

, DSST

extracts an image patch of size anw′k−1 × anh′k−1, where a is the scaling factor between

adjacent scales and [w′k−1, h
′
k−1] is the previously estimated target size. Similar to the

process for estimating the target translation, a separate CF designed for estimating scale is

correlated with the feature descriptors extracted at each of the S scales (DSST chooses

S = 33). Because the target centering is roughly accomplished, the correlation output

is limited to a S × 1 output.6 Just as the CF for translation estimation is built in a

way to favor smaller translations, a 1D Gaussian windowing is applied to the S × 1 scale

6Producing a 1D correlation output for scale estimation in the image domain would be much less
intensive than producing the prior 2D correlation output for translation estimation would be, but DSST
still uses FFTs to produce the scale correlation output.
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correlation output to favor smaller scale changes. This, along with a conservative scale

factor of a = 1.02 result in small estimated scale changes from frame to frame, which is

consistent with target behavior in most applications when the video’s frame rate is 24-30

FPS (as is the case of nearly all benchmark videos). When the target scale is estimated, the

scale filter is updated. In subsequent frames, the input image is resized according to the

current scale for the estimation of the target translation. Finally, we note that while the

translation filter in DSST uses 1× 1 cell size HOG features, the scale filter uses PCA-HOG

features [46] with 4× 4 cells. The justification for using a larger cell size is that pixel-wise

estimation is only a concern for the target translation.

DSST estimates the target bounding box in two steps, first by estimating the translation

[∆x,∆y] via a 2D correlation, and then jointly estimating [∆w,∆h] by estimating the

change in scale via a 1D correlation. The authors of DSST also explore estimating the

translation and scale together by learning a 3D scale-space CF. They find that this 3D CF

is much slower, as would be expected, and also actually performs slightly worse than the

sequential translation and scale estimation. Following the findings during the development

of DSST, a number of trackers have followed the approach of sequential translation and

scale estimation [20, 22–26, 39]. Still, another CFT does jointly estimate translation and

scale [47].

Efficient Scale Search

DSST and trackers that adopted the same approach look exhaustively over a range of

possible scales, which may not be the most efficient approach possible. The Multi-Kernelized

Correlation Filter (MKCF) tracker [28] seeks to estimate the scale by finding the scale that

produces a corrrelation output peak with the highest PSR in a more efficient manner by

performing a line search within a range of scales ±10% of the current scale. The assumption

this approach makes is that the PSRs across different scales within the search range will
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only have a single local maximum; with multiple local maxima, a suboptimal scale could be

chosen. The authors of [28] do not report how often this assumption is accurate. In addition

to a line search, MKCF chooses to rescale the features rather than extract features multiple

times from different scales. The authors do compare this approach to the “traditional”

approach of extracting features from image patches of different scale, and show a small gain

in the accuracy when doing the faster rescaling of features, though this effect is quite small.

The above mentioned trackers estimate the scale either exhaustively or with a more

efficient line search. The Multi-view Correlation Filter Tracker (MvCFT) [29] reduces the

scale estimation to a discrete decision to decide if the target is getting smaller, remaining

the same size, or getting larger. Once the target translation is estimated, image patches at

the current scale and ±5% are tested against the same CF used in translation estimation.

The maximum value from the correlation output plane for each of the 3 scales is taken, and,

after the unchanged scale is given a small amount of extra weight, the maximum value of

all 3 planes is used to determine if the target is getting smaller, larger, or remaining the

same size. If the scale is changing, it is changed by 5%. It can be assumed that very small

scale changes will not be detected, but CFTs without any scale estimation are robust to

small changes, so effectively ignoring the smallest changes should not be a large concern,

and the authors claim experimental results support this.

2.4.3 Parts-Based Correlation Filter Trackers

Parts-based models seek to perform vision tasks often by decomposing a large object into

smaller pieces that can be operated on independently and then joining the results of the

subproblems to provide a coherent result for the entire object. Parts-based models have

been used previously in object alignment [48] and object detection [49]. More closely

related to CFTs, recent work on object alignment used CFs to detect individual car

parts before fusing the result with a deformation model [15]. Parts-based approaches are
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designed to handle object deformations, e.g., a pedestrian’s changing stride, whereas a

single rectangular detection window may struggle to characterize all such possible poses of

the target. Additionally, parts-models are inherently tolerant to partial occlusion; if some

object parts are occluded, a detector can still work well based on the strength of the visible

parts.

Visual trackers stand to benefit from some of the intrinsic characteristics of parts-

models, but their application and benefits are not the same as those in single-image object

detection. Parts-based object detectors can benefit from target knowledge and possible

deformations, e.g., a pedestrian detector can be designed to have a part for each limb. With

no prior knowledge of the target, parts cannot be defined so precisely for trackers; instead

a generic parts configuration is necessary. Still, visual trackers will benefit from robustness

to occlusion (for more discussion regarding occlusion handling in visual trackers, see Ch.

5). Additionally, parts-models can easily be tailored to estimate scale; if parts are drifting

farther apart, that alone can be enough to indicate that the scale is increasing.

A tracker proposed by Liu et al. [27] uses KCF filters to localize 5 object parts, each

approximately 20% the total target height and width, configured in a cross pattern (see Fig.

2.2). The individual part detections are given weights according to two factors: a higher

PSR for a part’s detector will result in higher weight, and a smaller shift from the previous

location will result in a higher weight. The use of PSR is mostly self-explanatory, but

emphasizing smaller shifts does require justification. The authors argue that detectors for

parts that become occluded can possibly detect another unoccluded part of the object; this

is part of the risk of defining a generic parts-model for all possible targets. More generally,

the justification is that if all part detectors shift equally between frames, it is likely the

entire object did, and there will be no net effect of this shifting penalty on the relative

weights between parts. If 1 of the 5 part detectors shifts much more than the other parts,

it is more likely an error and should be given less weight (although, under this design, an
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Figure 2.2: Configuration of parts used in [27] (top) and [21] (bottom). Liu et al. use 5
smaller parts that do not collectively cover the entire target, while Akin et al. use 2 parts,
configured according to the target’s aspect ratio, that cover the entire target. Figures are
adapted from [27] (top) and [21] (bottom).

outlier part could possibly shift less ; this is not addressed). Once the individual correlation

planes are weighted, they are combined to provide a full confidence map, and the final

target translation and scale estimation is determined by Bayesian inference similar to a

previous tracker [50].

The tracker proposed by Akin et al. [21] subdivides targets into only 2 parts: either

top and bottom parts for tall and narrow targets or left and right parts for short and wide

targets (see Fig. 2.2). The two parts use KCFs filters to localize their half of the target.The

reliability of the 2 part detectors is indicated by the correlation peak value for each part.

Based on these weights, an additional full-target KCF is built as well and performs a

full-target target detection centered at the location suggested by the two part detectors.
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The target’s scale is estimated by measuring the changing distance between the two parts.

When updating the CF models, the correlation peaks are tested against a threshold; if

a part detection falls below some threshold, the part model will not update, and if all

parts fall below the threshold, the full-target detector will not update. This is meant to

avoid updating the models when the target or target part is occluded. Additionally, scale

estimation is only performed when all part detections are considered reliable.

2.5 Other Visual Trackers

In Sec. 2.4, we discussed a wide range of CFTs and the various improvements they make

to the MOSSE and KCF trackers that first used CFs for visual tracking. However, both

prior to the introduction of the MOSSE tracker and during the continued growth of CFTs

in recent years, many other visual trackers that do not use CFs have been developed.

One of the most well-known trackers is the Tracking-Learning-Detection (TLD) tracker

introduced in 2012 [51]. As its name suggests, the tracker has three components. A Median-

Flow tracker [52] locates the target from frame to frame based on the current trajectory.

The detector treats new frames independently of previous frames and can correct failed

track. The learner observes both the tracker and detector, and estimates when the detector

is making errors. Based on when the learner believes the detector is making errors, it can

generate more training data for the detector to improve its performance. The TLD tracker

was the third most accurate tracker when the OTB50 benchmark was published in 2013

with 29 trackers included [53]. The TLD tracker is not evaluated on the most recent VOT

benchmarks, but a more recent proposed tracker that fuses the principles of both the TLD

and KCF trackers has been proposed [54].

The best performing tracker in the OTB50 benchmark’s collection of trackers was

the Sparsity-based Collaborative Model (SCM) tracker [55]. Zhong et al. introduce a

discriminative and a generative model which learn sparse grayscale features and sparsity-
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based histograms, respectively, within a particle filter framework. The SCM combined

the two approaches while stating that the generative model plays a more significant role

in the tracking. The second best tracker reported in the original OTB50 benchmark was

Struck [56]. Struck trains a structured output kernel SVM that continuously adds previous

detections as well as hard negatives from the region around each detection, while also

pruning the number of possible support vectors over time to avoid progressively slower

processing times.

Despite the success of the above trackers, a large number of new trackers have been

introduced since the OTB and VOT benchmarks essentially regulated the ways trackers

operate and are evaluated; nearly all of the most effective trackers on these benchmarks

have been developed since the introduction of these benchmarks (and perhaps developed

explicitly for the challenges present in the datasets). This is true for CFTs and other

trackers.

The best performing tracker on the VOT2015 dataset was the Multi-Domain Network

(MDNet) tracker [57]. MDNet pretrained a CNN on an outside set of videos, then combines

this pretrained network with a binary classification layer for a test video. Candidate regions

are sampled with varying translations and scale changes relative to the previous target

detection. The significance of MDNet is that its success, coupled with being one of the

first trackers to use CNNs, likely inspired a growing number of newer trackers that use

deep networks. Other CNN trackers include an extended version of the MDNet tracker,

with occlusion inference and a scale regression model to refine the output bounding boxes,

submitted to the VOT2016 benchmark [45], and the Tree-Structured Convolutional Neural

Network (TCNN) tracker [58] that uses a CNN along with a tree structure to capture the

multi-modal appearance of certain targets. Another recent tracker exchanges the CNN for

a Siamese NN [59].

While deep networks are growing in popularity, there are other trackers which also
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performed very well in recent benchmarks. The Edge Box Tracker (EBT) [60] uses an

objectness measure to find region proposals within an entire frame, which can then be

processed by any object detector. The tracker focuses on finding hard false-positives and

re-ranking proposal regions, which can be processed separately. The Salient Region Based

Tracker (SRBT) uses color information to segment a target more precisely than a rectangular

bounding box; this more precise segmentation determines which regions of the rectangular

bounding box contribute to the model update [45]. The Geometric Hypergraph Tracker

(GGT) [61] uses a graph structure to capture the relationships between different parts

of the target as correspondences between frames are found and used to find a subset of

reliable parts. An extended version of GGT appears in VOT2016 that incorporates the

Scale Adaptive with Multiple Features (SAMF) CFT.

Along with original tracking systems, the outputs from multiple trackers can be combined

to produce one composite output. The Median Absolute Deviations (MAD) fusion strategy

[62] is able to detect outliers, or trackers which have likely failed. The amount that each

individual tracker output deviates from the median determines the weight given to that

tracker for the final estimate, and outliers are ignored and also reinitialized on the new

estimated target location. In the VOT2016 benchmark contest, it uses a swarm of KCF

trackers and a DSST scale estimation scheme, and outperforms both KCF and DSST [45].

2.6 Chapter Summary

This chapter introduced fundamental CFs that are both still used and preceded the first

CFs designed for visual tracking applications. We then introduced fundamental CFTs, and

discussed a wide range of improvements to trackers that still use CFs at their core. Along

with an extensive discussion of CFTs, we briefly discussed other non-CF trackers.

While the discussion of CFs is sufficient for giving context to CFTs as well as the

subsequent chapters in this thesis, other sources are recommended for a more in-depth
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treatment of CF theory and a wider range of CF designs [5, 63]. Additionally, visual tracking

is a very active research field; we recommend referencing the latest versions of the VOT

Challenge [64], which continues to be run on an annual cycle at the time of this publication.

The VOT Challenge also includes a number of unpublished trackers which often include

small modifications of previous trackers or borrows ideas from multiple existing trackers.

Additionally, we reserve the discussion of some particular trackers that most closely relate

to different CF design choices for trackers and handling occlusion for Chapters 4 and 5,

respectively.
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Chapter 3

Tracking Benchmarks and Evaluation

3.1 Testing Protocols

The visual trackers discussed in this work can be applied and evaluated on a vast amount

of data. To avoid bias in evaluating the quality of different trackers, widely adopted

datasets and statistical evaluations are reported throughout this work. In addition, we also

propose a new approach to evaluating tracker outputs in an effort to measure the statistical

significance of different tracker outputs.

3.1.1 Tracking Datasets

The trackers evaluated in this work are tested on two series of widely adopted benchmark

datasets: the OTB and the VOT benchmark [45, 65]. Both datasets have had multiple

iterations published, and their statistics are shown in Table 3.1. The original OTB dataset,

denoted OTB50, contains 51 targets across 50 videos [53], while the extended version,

denoted OTB100, contains 100 targets across 98 videos [65]. Three annual iterations

of VOT, denoted VOT2013, VOT2014, and VOT2015, contain 16, 25, and 60 targets,
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Dataset OTB50 OTB100 VOT2013 VOT2014 VOT2015

Tracks 51 100 16 25 60
Segments 2175 4181 643 957 1722

Frames 29486 59016 6094 10209 20931

Table 3.1: Number of full-color videos, segments, and frames in the benchmark datasets.
See Sec. 3.2 for details regarding the definition of segments.

respectively, in separate videos [31, 66, 67].1

Both series of benchmark datasets have a diverse collection of videos in terms of the

targets, the environments, and the challenges in tracking the objects. There are a number of

cars, persons, and faces in the datasets, along with other assorted objects and animals. The

videos include scenes that could be captured by surveillance cameras, television broadcasts,

and videos taken in lab settings to explicitly pose challenges to trackers following the

object of interest. The OTB datasets include 11 tags2 if a video has particular challenging

attributes. These particular tags will be referenced when appropriate during analysis.

The VOT benchmarks do not have explicit tags, but the VOT datasets contain similar

challenges.

3.1.2 Tracking Benchmark Performance Measures

There are a number of statistical approaches to quantifying the performance of a tracker

following a given target [68]. In general, there are two ways to qualitatively evaluate a

tracker: the tracker can drift off the center of the target but still generally follow the

movement of the target, or the tracker can fail or lose the location of the target entirely, at

which point any overlap of the tracker and the target could be considered a chance event

and the movement of the target is not expected to be reflected at all by corresponding

1A fourth iteration of the VOT benchmark in 2016 contained the same videos as the previous iteration
with new ground truth annotations that included rotated bounding boxes. Because most of the trackers
evaluated in this work do not produce rotated bounding boxes by design, we evaluated against the VOT2015
ground truth annotations.

2These tags are: illumination variation, scale variation, occlusion, deformation, motion blur, fast motion,
in-plane rotation, out-of-plane rotation, out-of-view, background clutters, and low resolution.
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movement of the tracker. For nearly any application, we would expect a failed tracker to

be a more severe issue than a tracker that has only drifted partially off the target, but

drifting can severely reduce the efficacy of post-tracking processing (e.g., face recognition

on a tracked face) as well as likely making the tracker more vulnerable to failing later in

the video (or beyond the stopping point of the video as included in the dataset).

In this work we will report results consistent with the OTB evaluations. The OTB

reports statistics based on two measures: central location error (CLE) and region overlap

(often referred to simply as overlap). CLE is simply the Euclidean distance between the

marked (i.e., ground truth) center point and the estimated center point:

(3.1)CLE(bk,b
′
k) =

√
(xk − x′k)2 + (yk − y′k)2

Note that the CLE does not account for any estimated size of the target, and additionally

that it is not normalized for the scale of the target. Overlap is defined as the intersection

of the ground truth region and the estimated target region:

(3.2)overlap(bk,b
′
k) =

|Rk ∩R′k|
|Rk ∪R′k|

where Rk and R′k represent the set of pixels enclosed within the rectangular region defined

by bk and b′k, respectively, and |·| represents the number of pixels in the region. Unlike

CLE, overlap does account for both the center location estimate as well as the estimated

scale of the target, as shown in the examples in Fig. 3.1.

Another important distinction between CLE and overlap is that overlap has a useful

lower bound of 0, representing zero overlap and a complete failure to locate the target,

while the upper bound CLE is roughly determined by the dimensions of the frames for a

given video. It is easily possible that two trackers, both with detections with no overlap

with the true target and both completely failed, could have very different CLEs. Because

of this, it is not informative to average the CLEs of all frames in a video to provide a

summary performance statistic of a tracker, whereas averaging the overlap of a tracker with

the ground truth can provide a valid comparison of two trackers’ relative performance.
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(a) overlap = 1 (b) overlap = 0.65 (c) overlap = 0.42

(d) overlap = 0.33 (e) overlap = 0.33 (f) overlap = 0

Figure 3.1: Example overlap calculations when the region estimate includes different scale
and translation errors. These examples do not distinguish which box represents ground
truth because this does not affect the calculation.

The OTB calculates statistics from the CLE and overlap measures. From the CLEs for

a tracker on a single video, a precision plot reports for what percentage of frames the CLE

is less than thresholds ranging from 0 to 50 pixels. As noted above, statistics for higher

CLEs can be unreliable. In addition to precision plots, a single threshold value of 20 pixel

error is often used to compare trackers. For overlap, a similar success plot is presented

showing how often the tracker has overlap greater than thresholds spanning from 0% to

100%. A single value, the average overlap across all frames, is also reported. When these

statistics are reported for results across multiple videos, all videos are given equal weight,

regardless of differences in the video length.

48



Both CLE and overlap capture and reflect errors of drift and failure; they are sensitive

to smaller changes and will be sharply affected by complete failures (and in the case of CLE,

the effects will be unpredictable). The VOT benchmark evaluation scheme is different in a

critical aspect: the trackers are run in a supervised manner. In this context, the supervision

refers to the tracker being reinitialized when the tracker produces an estimate that has zero

overlap with the ground truth. When this happens, the tracker is reinitialized 5 frames later

in the video, and additionally the accuracy of the subsequent 10 frames after reinitialization

are not used in evaluating the tracker. VOT uses two measures to quantify performance.

The first is average overlap (referred to as “accuracy” in VOT), which is computed in the

same way as in OTB, although because of reinitialization, this statistic more closely reflects

the drift errors of the tracker. The second measure used by VOT is simply the number of

times the tracker needs to be reinitialized, and corresponds to tracking failures (referred to

as “robustness” in VOT).

We feel that both the OTB and VOT benchmarks, along with most works proposing new

trackers, do not sufficiently address the issue of the statistical significance of performance

measures between different trackers. While the VOT benchmark attempts to “test for

practical difference” between trackers by measuring the variance of human annotators for

different tracks [31], the reinitialization of trackers, even when discarding the first reinitialized

outputs, makes any such measure difficult to interpret. More generally, measuring the

statistical significance of tracking results is a challenge due to the significant dependence of

consecutive frames and the difficulty of computing a fair measure of tracking accuracy at

all. With those caveats, we do report the CLE and overlap statistics used by VOT (we do

not run trackers in a supervised manner), but we do introduce a new measure that we feel

is both intuitive and can allow for the ability to measure statistical significance of different

tracking results.
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3.2 A New Evaluation Metric: Average Segment Over-

lap

As noted above, the difficulty of quantifying tracking performance comes both from the

different ways to measure accuracy, but also from the fact that each tracker output is not

an independent decision, but rather a decision that is highly dependent on the decisions

made on all previous frames. The OTB and VOT benchmarks try to capture both drift and

failure errors, but in all cases, trying to determine statistical significance between results is

challenging.

We propose a new measure, average segment overlap (ASO), for quantifying performance,

as well as a statistical test to measure its statistical significance. The ASO depends on

defining video segments (or simply “segments”), which can be considered as a part of the

video where a single event (or multiple simultaneous events) happens to the target object,

e.g., object(s) occlude the target, the illumination of the target changes, or the target

significantly deforms and changes appearance. What constitutes a segment could be left to

human annotators, but we discuss in Sec. 3.3 a proposed method to automatically segment

a video based on the object we are tracking. The justification for using overlap per video

segment, rather than overlap per frame, is that we feel that the length of a video is not

as important as trying to quantify how many different events occur within the video. At

an extreme case, a video can be decoded in such a way that two consecutive frames are

identical; intuitively, these two frames are not collectively twice as important as any other

given frame, and should not be given twice as much weight when evaluating trackers. A

less extreme example, but one that occurs in the benchmarks datasets more frequently, is a

case where the entire scene is relatively static, and the only difference between consecutive

frames is due to video compression and decoding. This can easily happen when videos are

created by researchers, as it can be perceived that the person that perturbs the tracked
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object and its surroundings first turns on the video recorder, then takes some time to

actually start moving objects and producing a challenging tracking problem. Whether this

period lasts for 10 frames or 100 frames does not materially change the video, but the

length of the segment will change the quantitative performance measures, which is not an

appropriate reflection of the tracker’s performance. In the instances where this occurs at the

beginning of the video, there is at least an expectation that all trackers will be performing

equally well; but for long stretches of no activity later in the video where some trackers

have already failed, the difference in tracking performance is amplified by longer stretches

of minimal activity.

To calculate the ASO for a given tracker T on video I, let us assume that the video has

p video segments S1, S2, . . . , Sp. The ASO is defined as

(3.3)ASO(I, T ) =

∑p
i=1

∑
j∈Si

overlap(bj ,b
′
j)

|Si|

p

where |Si| represents the number of frames within Si. Note that ASO is identical to average

overlap as defined by the OTB and VOT benchmarks when the video is considered to have

a single segment.

When computing the ASO across multiple videos, we make the decision to not give

equal weight to different videos with different numbers of segments. While giving every

video equal weight is sensible when using average frame overlap, because of the tendency

for longer videos to be less challenging per frame (some videos may actually be longer

to include enough challenges for the tracker), segmenting the videos and using ASO is a

direct attempt to quantify how many events happen within a video. When considering this

underlying idea, it seems more reasonable to give more weight to videos that have more

events happening within them.

To further motivate ASO as an alternative to average frame overlap, as used in tracking

benchmarks, consider a contrived 100 frame video of a dark, stationary object against a

textureless white background. During the video, only one thing happens: a distinct object
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appears from off-camera, passes in front of the target object and briefly occludes it, and

continues to move across the field of view until it passes off-camera opposite from where it

entered the scene. After the object leaves the scene, the video continues for some period of

time. We will assume that two trackers, denoted Tracker A and Tracker B, achieve perfect

overlap prior to the occlusion occurring, and that once the occlusion occurs, Tracker A

continues to track the target perfectly for the remainder of the video, while Tracker B

actually begins to follow the occluding object, and shortly after the occlusion has zero

overlap with the target object for the remainder of the video (for simplicity, we will assume

that the performance degrades from perfect overlap to zero overlap in a single frame). When

qualitatively evaluating the two trackers, an observer is likely more interested in discovering

“how well did the trackers perform when the new object occluded the target object?” The

evaluation is intuitively looking to see how a tracker handled an event, not how well the

tracker performed on frame 1, 2, 3, . . . , 100. In this toy example, the trackers are really

just being given a single “test,” which trackers will either pass or fail (or pass with some

additional drift being introduced). What is not particularly relevant is how long the video

is before or after this “test.” In the case of the successful tracker, the ASO would equal

1, because it was accurate before and after the occlusion. The failed tracker would have

a ASO of 0.5, because it was tracking the target before the occlusion but not after.3 In

contrast, the average frame overlap for the failed tracker will be significantly impacted by

the timing of the occlusion. The successful tracker will still have average frame overlap

of 1 regardless of the timing of the occlusion, but the failed tracker could have a average

frame overlap of 0.1, 0.5, or 0.9, depending if the occlusion occurs at frame 10, 50, or 90,

respectively. In the case where the occlusion occurs very late in the video, this number is

misleading and could make the performance between the trackers hard to distinguish. For

3There is a case to be made that results in the first video segment should be discarded. In the case
of the example, it does not make sense that the failed tracker be rewarded for “tracking” a stationary,
static object. However, in actual videos there are usually many more segments, thus reducing the impact of
the initial segment, and additionally there is no guarantee a tracker will not fail before a significant event
happens within the scene.
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the issue illustrated in this example, we believe ASO to be more reflective of a tracker’s

performance.

In summary, we feel the balancing of accounting for both drift and failed track errors, as

well as emphasizing a measure that reflects the tracker’s ability to handle challenging events,

via the pooling of frames into video segments, makes the ASO measure and associated test

a fair and robust evaluation method for trackers.

While we introduce the ASO measure, we will still report results using the previously

discussed CLE and average overlap measures. Because of the equal weighting given to

each video (i.e., every video is considered a single segment) in the previously introduced

benchmarks and to reduce ambiguity, we will henceforth refer to the existing overlap

measure as average video overlap (AVO). In general, when there is a very large gap between

the accuracy of different trackers, the rank-ordering of the trackers will be the same when

computing any commonly used tracking accuracy metric. However, just as the rank-ordering

of trackers may differ when CLE or AVO is used, the rank-ordering of trackers will change

between that of the ASO and AVO (and CLE) metrics. Within this work, we can see

examples of this and provide further discussion in Sec. 5.4.2.

3.2.1 Statistical Testing for Average Segment Overlap

One of the problems with other measures is that there was no suggested method for

determining if new tracker results were better; it is instead just generally accepted that

higher accuracy is better, with no attention given to the statistical significance of the results.

While the ASO over an entire dataset is an informative measure, the aggregate statistic

is not the optimal way to compare different trackers. In choosing a statistical test for

two trackers, we should aim to maintain the dependence between the segment overlaps of

different trackers, and so we will use paired t-tests. Using a paired test will favor a tracker

that fixes the mistakes of the tracker it is being compared to without introducing new
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errors; the relatvie accuracy of a test tracker that beats another baseline tracker on 10% of

segments would have a lower variance than another test tracker that improves accuracy on

30% of segments while performing worse on a different 20% of segments compared to the

same baseline tracker. This aligns with how a human choosing between two trackers might

evaluate the choices: one tracker being an improved version of a baseline, with very little

concern that certain use cases might become less reliable, and another tracker that may

perform much better or may perform worse, depending on how well it is adapted to the

particular application of interest.

3.3 Segmenting Videos

If ASO is the measure chosen, then a way of segmenting the videos must be decided. As

stated above, human annotators could mark the beginning/end of segments in the video,

but this process is difficult to reproduce with different annotators (and possibly with the

same annotator over repeated annotations), and additionally, human annotators may not

accurately perceive what will challenge tracking algorithms. None of the tracking videos

in the OTB and VOT benchmarks are challenging for adults; it is perhaps unreasonable

for a human to then suggest what a computer system will find challenging. Instead, we

try to statistically determine when a video has changed sufficiently to warrant being a

new segment (admittedly, the threshold corresponding to a “sufficient change” is chosen

manually).

Based on our knowledge of trackers, we aim to define segments when the target object

has changed in appearance and/or moved significantly. We begin by holding the first frame

in the video as our reference frame, denoted Iref . Additionally, we keep track of the defined

ground truth region, denoted Rref , for that frame. For each subsequent frame Inew with

ground truth region Rnew, we mask out the regions of Iref and Inew that do not correspond

to either Rref or Rnew and then compute the normalized cross-correlation between the

54



images:

(3.4)

〈
Iref (Rref ∪Rnew)

‖Iref‖
,
Inew(Rref ∪Rnew)

‖Inew‖

〉
≷ ξ

where 〈·, ·〉 represents the correlation operation, and ξ is a decision threshold to determine

if the ground truth regions are sufficiently different to end the current video segment and

begin a new one. The regions used in this correlation operation are illustrated in Fig. 3.2.

When performing the cross-correlation, we simply use gray-scale pixel intensities rather

than the RGB values. This allows for consistent calculations between RGB videos and

videos that are already gray-scale. Finally, when we do reach a new frame that is sufficiently

different, we actually include the next 5 frames in the current video segment. The reason

for this is that in many cases, the challenging factor that triggers the end of the video

segment quickly leaves the ground truth region (e.g., an occluding object briefly passing in

front of the target object). Without the 5 frame buffer, the video can be split into 3 parts:

before, during, and after the occlusion. However, the occlusion is understood to be a single

event, and thus it makes more sense that the video be only split into segments that more

closely correspond to only before and after the occlusion.

3.3.1 Selecting a Threshold for Video Segmentation

The proposed automated video segmentation calculation presented in Eq. 3.4 still requires

us to pick a threshold ξ. Just as there are different valid ways to segment an image, e.g.,

segmenting an entire person as one segment or separating body parts and/or articles or

clothing, different human observers may have a different interpretations of when a video

segment ends and a new one begins. No single segmentation threshold will capture these

different conflicting notions of what constitutes a segment, but we can be certain that

both an extremely aggressive or an extremely conservative segmentation threshold would

be undesirable. An aggressive threshold (ξ → 1) would segment nearly every video into

segments of short lengths without capturing longer periods of limited activity within videos.
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Figure 3.2: Two frames from the ‘lemming’ video (left) with the ground truth boxes shown
in green, and the portions of the frames where pixels within the union of the two ground
truth regions are not masked out (right). The partially masked frames on the right-hand
side are used in Eq. 3.4
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A very conservative threshold (ξ → 0) results in a majority of videos being treated as

a single segment; this does not capture the amount of activity in different videos than

uniformly short segments. When deciding a threshold, we should expect some videos to

have a single segment, while others will have consistently short segments.

We considered thresholds from 0.5 to 0.99, in increments of 0.01. We observed that each

change to ξ resulted in approximately a 10% change in the total number of segments; a

change of 0.01 in the chosen threshold would probably not be qualitatively noticeable, but

as the difference approaches 0.05 and certainly 0.10 there would be a noticeable difference.

Ultimately, we choose a threshold of ξ = 0.9, after observing video segmentations.

Fig. 3.3 shows frames from videos with a single segment, and videos with among the

shortest segments. In particular, we notice that the single segment videos involve very little

activity, and very little motion from the original position within the frame. In one video, a

gymnast’s body is shown deforming in a number of ways, but her motion across the floor is

already tracked by a moving camera; overall she does not move within the frame, while

staying mostly upright. A tracker would have to actively move off of her, and in this sense,

a single segment seems suitable. On the other hand, videos with very short segments tend

to have very shaky cameras, or fast moving objects; things that naturally give trackers

the most difficulty. We see these trends across the entire set of videos in the benchmarks

highlighted in Sec. 3.1.1. While there are some instances where some videos appear to have

more or fewer segments than is warranted, we believe there is no easy way to completely

prevent such unsatisfactory results. The proposed segmentation is applied equally and

without bias across all currently used videos, can be applied to future videos in an identical

manner, and produces coherent results that fit both a human’s intuition and what trackers

find challenging.

.
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(a) ‘birds1’ sequence - 1 segment, 339 frames

(b) ‘polarbear’ sequence - 1 segment, 371 frames

(c) ‘gym’ sequence - 1 segment, 767 frames

(d) ‘matrix’ sequence - 20 segments, 100 frames

(e) ‘jump’ sequence - 17 segments, 122 frames

(f) ‘human9’ sequence - 60 segments, 305 frames

Figure 3.3: Examples of videos with both a single long segment (a-c) and very short
segments (d-f). The ‘human9’ sequence contains considerable camera motion, which may
be difficult to observe.
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3.4 Tracker Speed

All the discussion above relates to measuring the tracking accuracy for a given tracker.

However, because of certain applications that desire real-time tracking or simply require

a lot of video processing, tracker speed is often reported more prominently than with

other computer vision systems, e.g., single-image object detectors or single-image object

recognition systems. With that said, tracker speed is given less significance than the tracker’s

accuracy. Tracking speed is important in some applications, but accuracy is important in

all applications. Beyond that, it is often the case that trackers are not optimized for speed;

instead they are often built in a manner more closely resembling prototypes in MATLAB.

With those caveats in mind, we will still be reporting the FPS for trackers; while the

absolute values may not be significant, large relative differences between tracker speeds run

in a similar manner are worth highlighting. When computing the FPS, each video in a

dataset is given weight. The speeds reported are all for tests run on an Intel(R) Core(TM)

i5-4210U CPU using a single core at 1.70 GHz with 8GB RAM.

3.5 Chapter Summary

In this chapter, we reviewed the most commonly used benchmark datasets, which we will

also use to experimentally validate our approaches in future chapters. We then discussed

how performances on these benchmarks are quantified, and the limittations of those methods.

In response to these shortcomings, we propose to measure accuracy and weight portions

of videos according to the amount of activity that occurs within them, rather than the

sometimes arbitrary length of time before something occurs. In concert with this, we

suggest a way to segment videos automatically according to the target being tracked.
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Chapter 4

Correlation Filter Design for Visual

Tracking

4.1 Introduction

In this chapter, we explore the use of popular CF designs that have been mostly untested

for visual tracking applications. As we previously discussed in Ch. 2, there is a wealth of

CF work as well as a large number of CFTs, but mostly consisting of trackers built upon

the same MOSSE filter or KCF design. The success of different CFs in other localization

and detection applications indicates that exploring their application in visual tracking is

merited.

We discuss different changes that CFTs have introduced to the basic MOSSE filter

design to further meet the challenges of visual tracking, but again emphasize that the

fundamental design remains rooted in the ridge regression solution provided by the MOSSE

filter.

Based on prior discussion of CF designs in Ch. 2, we explore the use of different CF

designs for visual trackers. We compare our methods to the MOSSE and KCF trackers in

tests that keep the other tracker components the same. We show that while other CFs may
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not fit in the visual trackers as naturally as the CFs explicitly designed for tracking, we can

adapt them to the problem setting and even fuse them with native tracking CFs to achieve

performance gains, which we validate on the benchmark datasets previously introduced in

Ch. 3.

4.2 Prior Correlation Filter Designs for Visual Track-

ers

Ch. 2 discussed the MOSSE filter and tracker [1] and the KCF tracker, which extended the

design of the MOSSE filter to non-linear correlation [2]. Both trackers introduced a new

CF design as part of a simple tracker using simple features, no scale estimation, and overall

no techniques for specifically addressing any particular challenge in visual tracking data. In

that sense, they perfectly represent what tracking-by-detection means; the CF detector is

nearly the entire tracking system. Of course, as discussed in Sec. 2.4, a number of CFTs

have since been designed that address some of the challenges. Just as new trackers have

extended the earliest CFTs to incorporate more powerful features, address scale changes,

etc., some trackers have looked to further develop the core MOSSE and/or KCF designs to

improve tracking.

When KCF was discussed in Sec. 2.3.2, the Gaussian kernel (Eq. 2.41) was provided as

an example of the type of non-linear correlation that may be implemented within the CF.

However, choosing how to define the kernel K is an open-ended problem; the KCF tracker

explored the use of Gaussian, polynomial, and linear1 kernels before choosing the Gaussian

kernel. Rather than choose a single kernel beforehand, the MKCF tracker [28] proposes

using multiple kernels while learning the appropriate weights for them during tracking, i.e.,

1The use of a linear kernel in the KCF tracker makes the tracker nearly equivalent to the MOSSE
tracker, except for some small differences in the broader tracker system.
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(4.1)K =
M∑
m=1

d2
mKm,

where Km is the mth kernel matrix and d2
m is the weight 2 given to Km, such that∑M

m=1 dm = 1. Each individual value of the kernel matrix k(xi,xj) = dTk(xi,xj), where

d = (d1, d2, . . . , dM) and k(xi,xj) = (k1(xi,xj), k2(xi,xj), . . . , kM(xi,xj))
T . Because the

weights of each kernel Km must be learned, learning the filter requires the joint optimization

of the weights d as well as the dual-space coefficients α, where

(4.2)α =

(
M∑
m=1

d2
mKm + λI

)2

g,

where g is the desired correlation output. d and α can be computed analytically when the

other is held constant, and alternately solving for d and α provides close to convergence

after a few iterations. Once d and α are computed, a correlation output for a new image

can be computed in a similar manner as KCF (Eq. 2.42).

While MKCF is a general formulation using an arbitrary number of kernels, in practice

the authors only implement two separate Gaussian kernels (see Eq. 2.41) for color feature

attributes and HOG features. The two kernels have slightly different kernels, but the

multi-kernel approach mainly serves as a way for the tracker to learn the weighting between

different types of features over the course of tracking. A newer version of the MKCF tracker

using CNN features was introduced for the VOT2016 benchmark [45], but details of the

exact modifications are sparse.

As previously discussed, computing correlation via the frequency domain will produce

aliasing effects caused by circular correlation, unless the signals are sufficiently zero-padded.

This procedure is typically not performed in CFTs; instead the support of the CF template is

usually larger than the target size, and the training images are windowed to both emphasize

the target region and reduce the affects of aliasing. However, nothing in the design of the

CF itself addresses the larger filter size that includes background clutter. The Spatially

2The weights dm are squared to ensure negative weights are not computed in the subsequent optimization.
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Figure 4.1: Illustration of the spatial regularization weights introduced in SRDCF. The
target is the region within the green box, and the entire image shows the full size of the
training sample and subsequent CF, which is typical of many trackers. The increased
weights on the background portions of the region result in a greater emphasis on the region
corresponding to the target. Image taken from [26].

Regularized Discriminative Correlation Filters (SRDCF) [26] adds weights to the MOSSE

filter design that emphasize learning from the center of the training image, i.e.,

(4.3)w = arg min
w

1

N

N∑
i=1

‖w ⊗ xi − gi‖2
2 + λ‖s ·w‖2

2

where w is the space-domain filter to be learned, xi is the ith training image, g is the desired

correlation output, and s are the new spatial regularization weights. Fig. 4.1 illustrates

how the weights increase at the edges of the filter. The addition of s makes it hard to

solve for the filter in Eq. 4.3 analytically like MOSSE, but it can be efficiently solved in

the frequency domain using an iterative method when s has sparse DFT coefficients. In

practice, the authors of SRDCF compute ŝ = F{s} and retain only approximately 10 DFT

coefficients which have significant magnitudes.

The spatial weights emphasize the target region more, and the tracking performance

improves with their introduction. The work has similarities to earlier work in zero-aliasing

CFs [69], which introduced hard constraints on CF regions that corresponded to the zero-

padded regions in the more traditional CF training scheme. The reduced energy in the

SRDCF corresponding to background portions of the training images can be observed in

Fig. 4.2.
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Figure 4.2: Illustration of the effect spatial regularization has on the learned CF. The
conventional CF, left, contains a lot of energy in the regions corresponding to the background
clutter around the target, while the SRDCF, right, has significantly less energy in the filter
corresponding to those regions. Image taken from [26].

MKCF and SRDCF aim to improve the CF by focusing on the kernelized correlation

and the training strategy for the filter, respectively, but both are derived from the MOSSE

filter’s basic design. Liu et al. [70] propose one of the few trackers that use non-MOSSE

CFs, though not in the same manner that most CFs are employed. Liu et al. use OTSDF

filters to perform visual tracking via what they refer to as correlation filter coding (CFC).

Rather than build a single CF and locate the target based on a single correlation output,

the CFC builds an ensemble of filters to match either the target or background clutter.

Once the filter bank (h1,h2, . . . ,hN) is trained, the filters are applied to the region of

interest in the next frame and produce correlation outputs (g1,g2, . . . ,gN ). The correlation

outputs at a given location become an N dimensional feature vector, and a Naive Bayes

classifier is used to determine the final estimate of the target location, based on the N

correlation outputs at each possible location in the region of interest. With each new frame,

the new target detection replaces the oldest instance of the target in a image bank used to

train the OTSDF filters, and the background clutter images in the training set are updated

periodically, though not every frame. While the training images are constantly refreshed,

the OTSDF filters are still updated according to a linear combination of the previously

computed filter and a new filter built from the most recent training set. Because there is
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an ensemble of OTSDF filters, each filter is trained from only a subset of the full training

image set. Based on numerical experiments, the authors report better performance than

the KCF tracker on the OTB50 benchmark.

4.3 Alternative Filters for Visual Tracking

Despite the improvements to CFTs discussed in Sec. 2.4 and specifically to the filter design,

as discussed in Sec. 4.2, there appears to be no effort to use a non-MOSSE CF in the

same manner that most CFTs employ the filter. Despite other filter designs outperforming

MOSSE in other localization tasks [63], their use in visual tracking is unexplored, even as

some trackers become more complex and seem to emphasize speed less.

We examine the possible use of three different filters in visual tracking, chosen based on

their strong performance in other vision tasks:

1. OTSDF [10, 11]: The OTSDF filter, discussed in Sec. 2.2.3, jointly minimizes the

average correlation energy and the output noise variance. The tradeoff between the

two criteria results in output correlation planes with sharp peaks while still being

tolerant to unseen distortions in test images.

2. UOTSDF [71]: The Unconstrained Optimal Tradeoff Synthetic Discriminant Function

(UOTSDF) filter eliminates the hard peak constraints of the OTSDF filter. Instead,

the filter maximizes the average peak height among its training images and minimizes

the dissimilarity between correlation outputs from different training images. The

UOTSDF filter optimizes these two criteria along with the ACE and ONV criteria

that the OTSDF filter already optimizes.

3. MMCF [13]: MMCF, discussed in Sec. 2.2.4, combines the localization criterion of

CFs like MOSSE with the maximum margin capabilities of SVMs.

The three CFs have not been used in visual trackers, with the exception of the use of
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OTSDF filters in CFC [70], as discussed in Sec. 4.2. As we incorporate them into visual

trackers, we will compare them to the KCF tracker and the MOSSE tracker3. We will

primarily use HOG features in our trackers, as KCF previously used.

4.3.1 A Simple Approach to Adapting New Correlation Filters

to Tracking

The first approach we take is to simply change the CF used in the CFT. We must point

out that the adaptation scheme used by the MOSSE and KCF filters are not directly

transferable to the 3 new filters being examined. Recall that the MOSSE and KCF filters

adapt to the video over time with a linear interpolation, i.e., Ti = (1 − λ)Ti−1 + λTnew

where λ represents the adaptation rate. The MOSSE filter can use this adaptation scheme

because it is designed such that each training image contributes to the computed filter

independent of other training images; the λ term only assigns different weights to training

images. The KCF filter uses a similar approach, but a OTSDF, UOTSDF, or MMCF filter

in a tracking system cannot simply be the linear combination of the previously learned

filter and a new filter trained on a single image (from the new frame).

Rather than update an existing filter, we retain the most recent N images to retrain the

new CFs. For frames 1 to N , we train our filter on each of the previous target detections,

while for frames N + 1 to the last frame, we train our filter on the N most recent target

detections while discarding the older frames. Each of the images are given equal weight.

These filters are inserted into the KCF tracker and replace the original KCF filter. The

OTSDF and UOTSDF filters also use negative training images; following each detection,

background patches adjacent to the target are used to train the filters along with the true

class detections. The MMCF filter is not trained with background patches; we found that

this method actually performed worse than using a zero-vector as a negative class example,

3In practice, the MOSSE tracker is the KCF tracker with linear kernel. This ensures that the other
elements of the tracking system are same and optimized for benchmark performance.
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Tracker OTB50 OTB100 VOT2013 VOT2014 VOT2015
MOSSE 0.546 0.472 0.590 0.489 0.342

KCF 0.553 0.475 0.596 0.492 0.340

OTSDF 0.330 0.300 0.412 0.339 0.232
UOTSDF 0.431 0.386 0.490 0.401 0.292
MMCF 0.379 0.353 0.447 0.370 0.249

Table 4.1: ASO on visual tracking benchmarks when using a single CF design for tracking.
See Sec. 4.3.1 for details.

which is the choice we make instead of using background clutter.

Table 4.1 shows the ASO when N = 50, along with the MOSSE and KCF benchmarks.

We can immediately see that all 3 filters perform much worse than the MOSSE and KCF

trackers. One contributing factor is that a number of tracks perform poorly from the initial

frame; this could be because there is insufficient data to effectively train the filters on the

initial frame. We address this in Sec. 4.3.2.

We also tested the different filters with different amounts of training images being

retained. Plots showing the tradeoff between accuracy and speed can be seen in Fig. 4.3.

We observe that most performance gains are made as the number of training images is

increased to 20, with some additional gains as the training size increases to about 50

previous detections in some cases. It is likely that older images are no longer helpful in

characterizing the current appearance of the target. In Secs. 4.3.2-5, we use no more than

50 previous frames. We also point out that, as would be expected, the tracking speed drops

as more images are retained for training. By comparison, the MOSSE tracker and KCF

tracker are much faster, with speeds of roughly 60 and 50 FPS, respectively. While the

slower speeds are not optimal, the more important issue to address was the poor accuracy

of the newly introduced filters.
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Figure 4.3: ASO (in blue) and FPS (in red) of OTSDF, UOTSDF, and MMCF trackers
on OTB100 (left) and VOT2016 (right) when varying amounts of previous detections are
retained for training the filter. See Sec. 4.3.1 for details.

69



Tracker OTB50 OTB100 VOT2013 VOT2014 VOT2015
MOSSE 0.546 0.472 0.590 0.489 0.342

KCF 0.553 0.475 0.596 0.492 0.340

OTSDF 0.377 0.338 0.506 0.386 0.260
UOTSDF 0.453 0.397 0.524 0.413 0.292
MMCF 0.432 0.395 0.526 0.405 0.262

Table 4.2: ASO on visual tracking benchmarks; trackers using the OTSDF, UOTSDF, and
MMCF filters initially use the KCF filter until enough training images are acquired, at
which point the KCF filter is not used. See Sec. 4.3.2 for details.

4.3.2 Filter Handoff Approach

We adjust the trackers using the newly introduced factors, based on the performance shown

in Sec. 4.3.1. Observing the new trackers fail immediately on certain tracks, it appears

that the filters require more training data to learn a robust filter. This is in contrast to the

MOSSE and KCF filters, which generally handle early motion just as effectively as motion

later in the tracks.

To address this problem, we run our new trackers in two parts. For the first N frames,

we employ the KCF filter while retaining the detections. Beginning at frame N + 1, we

immediately transfer over to using one of the new filters (OTSDF, UOTSDF, MMCF). At

this point, the amount of training data should not be an issue. However, examining the

results in Table 4.2 show that while there is an improvement, it is marginal, and it is not

sufficient to approach the performance of the baseline trackers.

4.3.3 Filter Fusion Approach

Based on the results of using the new filters independently, both with and without an

initial run of the KCF filter, a new approach is required. Rather than run the new filters

independently, we investigate if they can effectively support the existing KCF filter tracker.

Rather than only using the new filters, or running a KCF filter before switching to the new

filter, we run both KCF and a new filter and combine the correlation outputs from each.
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Fusion of multiple CFs can be performed at a number of levels of the detection stage. We

could choose to fuse the filters themselves, the output correlation planes, or the estimated

detections. Fusing the filters runs into an immediate problem; the KCF filter is never directly

computed, only the dual-space coefficients for the filter (see. Eq. 2.40). Beyond the issue

of feasibility, combining disparate filters may just dull the benefits of each independently

learned filters. At the other extreme, fusing estimated detections may make sense if the

different detectors are entirely different from each other, or if a large number of trackers are

used, i.e., enough to determine a dominant mode. With just two CF detectors, there is no

compelling reason to allow one bad detection to poison the final result, and no compelling

reason to discard all the information from each output correlation plane before fusing the

results.

Indeed, the most sensible option appears to be to fuse the output correlation planes.

Given two CFs h1 and h2, we might normalize the energy in each to control the contribution

of each to the final output. However, this is complicated by the fact that the KCF filter is

not directly computed. Instead, we normalize the energy in the output correlation planes

gKCF and gnew, where gnew is the output correlation plane from one of the 3 new filters

being tested. Normalizing the energy of the output correlation planes is akin to computing

the peak to correlation energy (PCE) planes of each output. PCE is a measure that scales a

peak value according to the total energy in the correlation plane and can help normalize high

(or low) peak values in instances where the entire correlation output is high (or low) due

to image characteristics such as the illumination. In the case of normalizing two different

output correlation planes, normalizing the energy will implicitly give more weight to a single

sharp peak in a correlation plane compared to much broader peaks or correlation outputs

that produce many peaks. This is a desirable result; a single peak should indicate a higher

confidence as to the target’s location than a broader peak or an output with multiple peaks.

Beyond normalizing the output correlation planes gKCF and gnew, we do test the fusion
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Tracker OTB50 OTB100 VOT2013 VOT2014 VOT2015
MOSSE 0.728 0.689 0.710 0.617 0.425

KCF 0.740 0.695 0.710 0.617 0.420

OTSDF 0.709 0.655 0.677 0.606 0.402
UOTSDF 0.718 0.690 0.716 0.655 0.460
MMCF 0.721 0.691 0.710 0.616 0.421

Table 4.3: CLE on visual tracking benchmarks; trackers using the OTSDF, UOTSDF, and
MMCF filters initially use the KCF filter until enough training images are acquired, at
which point the correlation outputs from both filters are used together. See Sec. 4.3.3 for
details.

Tracker OTB50 OTB100 VOT2013 VOT2014 VOT2015
MOSSE 0.513 0.478 0.503 0.416 0.300

KCF 0.519 0.479 0.506 0.418 0.296

OTSDF 0.510 0.463 0.501 0.412 0.297
UOTSDF 0.511 0.479 0.510 0.445 0.316
MMCF 0.518 0.481 0.506 0.419 0.307

Table 4.4: AVO on visual tracking benchmarks; trackers using the OTSDF, UOTSDF, and
MMCF filters initially use the KCF filter until enough training images are acquired, at
which point the correlation outputs from both filters are used together. See Sec. 4.3.3 for
details.

with different weights assigned to each output. Accordingly, our final output plane is a

weighted linear combination, i.e.,

(4.4)gfused = (1− η)gKCF + ηgnew

where 0 ≤ η ≤ 1 is the weight between the two filters. When running the filter fusion

trackers, we still run the tracker with an initial period of using only the KCF, in accordance

with the improved results shown in Sec. 4.3.2.

The performance of this fusion approach are shown in Tables 4.3, 4.4, and 4.5. The

results show mixed evidence that the approach is effective, particularly with the UOTSDF

and MMCF filters. Notably, the largest performance gains are on the VOT2015 dataset

(and with the UOTSDF filter, the smaller VOT2014 dataset as well). The VOT2015 dataset

is the most challenging benchmark; it has the lowest benchmark accuracies and the fusion

filters improve these results the most. This is supported by examining the performance
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Tracker OTB50 OTB100 VOT2013 VOT2014 VOT2015
MOSSE 0.546 0.472 0.590 0.489 0.342

KCF 0.553 0.475 0.596 0.492 0.340

OTSDF 0.540 0.464 0.588 0.485 0.343

p-values
– – – – > 0.05
– – – – > 0.05

UOTSDF 0.547 0.477 0.594 0.501 0.361

p-values
> 0.05 < 0.001 > 0.05 0.001 0.001

– 0.027 – 0.011 < 0.001

MMCF 0.551 0.477 0.595 0.493 0.351

p-values
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001

– 0.015 – > 0.05 < 0.001

Table 4.5: ASO on visual tracking benchmarks; trackers using the OTSDF, UOTSDF, and
MMCF filters initially use the KCF filter until enough training images are acquired, at
which point the correlation outputs from both filters are used together. See Sec. 4.3.3 for
details.

on a per-track basis, illustrated in Fig. 4.4. The performance on both the OTB100 and

VOT2015 datasets are shown, and the contrast between them, as well as the contrast

of the improvements from using the fusion filter approach, are noticeable. The OTB100

benchmark is easier overall, there are more tracks (100 in OTB100 vs. 60 in VOT2015),

yet fewer tracks that KCF has an ASO < 0.2, indicating complete (or nearly complete)

track failure. These tracks where ASOKCF < 0.2 are the tracks that the fusion filters

have the most success with. When the KCF filter performs better, the fusion filter more

often produces the same result, with some sporadic successes and failures. Because the

fusion filters most often improve the worst KCF tracks, it is not surprising that the biggest

improvements are seen on the VOT2015 dataset. Examples of improved tracks are shown

in Fig 4.5, but there is no single characteristic that consistently appears in the tracks that

have the biggest improvements with the fusion filters.

To examine the trend of fusion filters improving the worst KCF tracks, we can examine

the fusion weighting parameter η and the actual fusion of the output correlation planes

gKCF and gnew. A fusion weight η = 0.5 would correspond to equal weight given to KCF
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Figure 4.4: ASOs for individual tracks for both the KCF tracker and the fusion trackers
on the OTB100 (left) and VOT2015 (right) datasets. We can observe that the new filters,
particularly UOTSDF, are most effective at improving the tracks that KCF performs worst
on. See Sec. 4.3.3 for details.

74



(a) ‘blurbody’ sequence, KCF-OTSDF fusion tracker

(b) ‘graduate’ sequence, KCF-OTSDF fusion tracker

(c) ‘gymnastics4’ sequence, KCF-UOTSDF fusion tracker

(d) ‘iceskater1’ sequence, KCF-UOTSDF fusion tracker

(e) ‘couple’ example, KCF-MMCF fusion tracker

(f) ‘mmcf’ sequence, KCF-MMCF fusion tracker

Figure 4.5: Examples of new filters fused with the KCF filter improving the performance
of a single KCF filter. Green bounding boxes indicate the fusion trackers, while the red
bounding boxes indicate the KCF tracker. See Sec. 4.3.3 for details.
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and the new filter, however the best results shown in Table 4.5 use a weight 0.01 ≤ η ≤ 0.1,

indicating that KCF is given much more weight than the newly introduced filter. Within the

range of 0.01 ≤ η ≤ 0.1, there are small fluctuations in performance, but as η approaches

0.5, the performance typically drops noticeably. Consider that the results discussed in Sec.

4.3.2 are equivalent to η = 1, and it is not surprising that the best performance is when

the KCF filter is given more emphasis. Still, allowing the new filter to have a small weight

allows the new filter to influence the tracker when the KCF filter outputs the least confident

results. A strong KCF output correlation peak will dominate the fusion when (1− η) >> η,

but when no strong peak is present, e.g., in a track the KCF tracker struggles with, the

new filter will have an opportunity to correct the output from the KCF filter. Based on our

results, it is the MMCF and particularly the UOTSDF filter that performs this task well,

while the OTSDF filter does not appreciably help in this regard.

4.3.4 Time-Dependent Image Weighting in Correlation Filter Train-

ing Sets

The previously discussed approaches to using new filter designs in trackers all use the most

recent N frames to compute the filter. However, this does not align well with the preferred

adaptation scheme used by MOSSE and KCF, and it does not fit our intuition that the most

recent instances of the target should carry more weight than older appearance information

that may be outdated.

The MOSSE and KCF filters use an update scheme Ti = (1− λ)Ti−1 + λTnew, and thus

the weight given to a new target detection decays exponentially at a rate of (1−λ) per frame,

while never being entirely discarded. Completely retraining the OTSDF, UOTSDF, and

MMCF filters would mean that retaining all images will cause the tracker to progressively

slow down over the course of a video as the training set increases, so we keep only the most

recent N images. For the N most recent training images, we introduce weights that decay
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linearly, i.e., m = [ 1
N
, 2
N
, . . . , N

N
].

Depending on the filter design being used, the integration of the weights are slightly

different. For the OTSDF and UOTSDF filters, the weights determine the normalized

energy of a given training sample; when computing these filters, the energy of each sample

is normally fixed to 1 (or some constant value); instead we normalize the energy of training

sample xk to equal the weight mk. This weighting is then implicitly carried through the

entire computing of the filter, e.g., we compute a weighted PSD. For the MMCF filter, the

weights modify the class labels ck, shown in Eq. 2.21, such that ckweighted
= mkck. The

class labels ck impose the margin inequality constraints, and reducing this value over time

relaxes the margin constraint required for older training images. An existing solver for this

modified SVM formulation is available [72].

We apply these changes to the new CF designs and incorporate them into the fusion

filter trackers, discussed in Sec. 4.3.3. The quantitative results from this approach can

be seen in Table 4.6. Despite the intuition motivating the added training sample weights,

their introduction does not significantly impact the performance. In some cases, such as

the OTSDF and MMCF filters on the VOT2015 benchmark, there are improvements, while

most often the results are very similar or in some cases, slightly worse, such as the UOTSDF

filter on the VOT2014 dataset. Qualitative observation also does not illustrate any clear

situations that one approach is regularly more effective than the other. Without any clear

advantage, either overall or in the presence of particular challenges, it is unclear whether a

recommendation to construct weighted fusion filters, rather than unweighted fusion filters,

is warranted.

4.3.5 The Impact of Feature Descriptors on Filter Design

The preceding discussion of filter design for tracking in Secs. 4.3.1-4 all use HOG feature

descriptors to characterize training samples. The choice of HOG features is in some sense
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Tracker OTB50 OTB100 VOT2013 VOT2014 VOT2015
MOSSE 0.546 0.472 0.590 0.489 0.342

KCF 0.553 0.475 0.596 0.492 0.340

OTSDF 0.545 0.466 0.588 0.485 0.353

p-values
– – – – < 0.001
– – – – < 0.001

UOTSDF 0.548 0.477 0.594 0.485 0.361

p-values
0.003 < 0.001 0.047 – < 0.001

– 0.026 – – < 0.001

MMCF 0.552 0.477 0.596 0.493 0.356

p-values
< 0.001 < 0.001 < 0.001 < 0.001 0.004

– 0.015 – > 0.05 0.001

Table 4.6: ASO on visual tracking benchmarks; trackers using the OTSDF, UOTSDF,
and MMCF filters initially use the KCF filter until enough training images are acquired,
at which point the correlation outputs from both filters are used together. The training
images for the OTSDF, UOTSDF, and MMCF filters are weighted such that the most
recent frames are given more weight. See Sec. 4.3.4 for details.

Kernel Features CLE

Linear
Raw pixels

0.451
Gaussian 0.560

Linear
HOG

0.728
Gaussian 0.732

Table 4.7: Performance of KCF on OTB50, as reported in [2]. The use of a linear kernel is
equivalent to using the MOSSE filter.

a simple one; previous works have shown its effective combination of being both fast and

effective in tracking (see Sec. 2.4.1). However, the use of one feature descriptor instead

of an alternative does not simply have an additive effect on the accuracy of the tracker;

previous results have shown this without highlighting this fact.

Prior to the publication of the KCF tracker [2], the authors published the preceding CSK

tracker [3]. The CSK tracker introduced the kernelized version of the MOSSE filter, albeit

in a different form. The experimental results were limited to using raw pixel as feature

descriptors on a small number of tracks, and the CSK tracker outperformed the MOSSE

tracker (and 2 other trackers) significantly. The following work reformulated the CSK
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tracker into what is widely referred to as the KCF (or sometimes DCF, for Discriminative

Correlation Filter) tracker. The KCF tracker was formulated in a manner that was more

clearly derived from the MOSSE filter, detailed different possible kernelizations for the

filter, and additionally introduced the use of multi-channel, i.e., HOG, features. The results

on the OTB50 benchmark showed an improvement when introducing the HOG features,

and even further improvement over the use of a linear kernel, an equivalent to the MOSSE

filter. However, the results also showed that using a linear kernel was almost as effective

as the Gaussian kernel once the HOG features were introduced. The results from [2] are

shown in Table 4.7.

The results reported in [2] are reflected in our experiments on a wider set of benchmarks,

which includes results from Sec. 4.3.3 as well as results when using just raw pixels, i.e.,

grayscale intensities, as our feature descriptors. The results of the MOSSE tracker, KCF

tracker, and OTSDF, UOTSDF, and MMCF fusion filters are shown in Table 4.8. These

results reflect the trend originally shown in [2]; the MOSSE tracker performs significantly

worse when pixel intensity features are used, but benefits the most from using HOG features.

The other 4 filters all show roughly an equal performance gain with the introduction of

HOG features.

While the results in Table 4.8 affirm what was previously shown when KCF was

introduced (but not discussed at length); the introduction of a more powerful image

descriptor, in this case HOG, appears to nullify the benefits of kernelization, as with KCF,

and perhaps the filter design itself. While the introduction of new filter designs to tracking

in Secs. 4.3.1-2 could be attributed to a mismatch in the filter design and the problem

setting (the filters requiring more training data, the tracking problem being a data starved

scenario), even the fusion filters provide a benefit on the most challenging tracks for KCF,

but do not provide much benefit above what the KCF or MOSSE trackers are able to achieve

when they do not fail entirely, provided they are using HOG features. This is contrary to
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Tracker OTB50 OTB100 VOT2013 VOT2014 VOT2015

MOSSE
Grayscale 0.295 0.288 0.367 0.265 0.185

HOG 0.546 0.472 0.590 0.489 0.342
Diff. +0.251 +0.184 +0.224 +0.224 +0.157

KCF
Grayscale 0.417 0.389 0.440 0.328 0.271

HOG 0.553 0.475 0.596 0.492 0.340
Diff. +0.135 +0.086 +0.156 +0.164 +0.069

OTSDF
Grayscale 0.409 0.380 0.497 0.326 0.275

HOG 0.545 0.466 0.588 0.485 0.353
Diff. +0.136 +0.086 +0.091 +0.159 +0.078

UOTSDF
Grayscale 0.431 0.394 0.446 0.344 0.308

HOG 0.548 0.477 0.594 0.485 0.361
Diff. +0.117 +0.083 +0.149 +0.140 +0.053

MMCF
Grayscale 0.414 0.373 0.481 0.375 0.278

Hog 0.552 0.477 0.596 0.493 0.356
Diff. +0.138 +0.104 +0.115 +0.118 +0.078

Table 4.8: Tracker performance using either grayscale pixel intensity features or HOG
features. “OTSDF,” “UOTSDF,” and “MMCF” refer to the fusion filters introduced in
Sec. 4.3.3.

earlier comparisons of different CF designs in ATR [63], but those results largely precede

the introduction of multi-channel CFs. It is possible that the richer feature descriptors

that HOG provides negates the difference between MOSSE and more powerful filters, while

the difference between filters is more distinguishable when they are designed with weaker

features, e.g., raw pixel intensities. However, without revisiting localization and recognition

tasks akin to ATR, it is difficult to generalize the trends that appear in visual tracking.

4.4 Chapter Summary

In this chapter we discussed different approaches to improving the CF design that is at the

core of CFTs. We drew attention to the fact that there was almost no evidence that CF

designs outside of the MOSSE filter and improved versions of the MOSSE filter appeared

to have been adapted to the task of visual tracking. We explored the use of three filters

80



– the OTSDF, UOTSDF, and MMCF filters – in visual tracking, based on their strong

performance in other localization and recognition tasks. Tracking performance using only

these new filters proved to be worse than the performance of the MOSSE tracker and its

kernelized variant, the KCF tracker. However, fusing these three filters with the KCF

tracker showed that there was utility in incorporating these alternative CF designs into

CFTs; the new filters were able to improve performance on some of the most challenging

tracks for the KCF tracker. This trend was most clear on the VOT2015 dataset, the most

recent and most challenging benchmark dataset included in our tests.

We also examined the shared and sometimes redundant role that more powerful CF

designs and more powerful feature descriptors have in tracking. We examined the results

previously published that indicated that while a more sophisticated CF design brings a

big performance gain in visual tracking, the introduction of HOG features largely negates

the previously observed improvement in performance (while doing better than raw pixel

intensity features in both cases). We showed these trends carry over to larger datasets and

can be observed with the newly tested OTSDF, UOTSDF, and MMCF filters when applied

to visual tracking.
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Chapter 5

Occlusion Detection and Estimation

for Improved Visual Tracking

5.1 Introduction

In this chapter, we discuss one of the most challenging factors in visual tracking – occlusion

– and introduce a technique for handling occlusion that can be inserted into a broad range

of existing trackers. When a target being tracked is occluded by another object in the

scene, two bad things can happen. The first is that the tracker may immediately follow an

occluding object and lose the target as the occluding object pulls the tracker away from

the target. The second problem is that during a period of occlusion the tracker may learn

the appearance of the occluding object such that when the target reappears, the tracker

has adapted to follow the occlusion instead of the target. This can occur if the target

moves behind a stationary object for a period of time. The challenge posed by occlusion for

model-free visual trackers stems from the fact that successful tracking requires a constant

adaptation to a target’s changing appearance. The lack of prior target knowledge makes it

challenging to distinguish between a new target appearance and an obscured target.

We introduce Hue-Based Occlusion Estimation (HuBOE), a lightweight occlusion es-
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timator that uses color information to determine if the target is occluded or not. When

the target is determined to be occluded, we are able to intervene and halt the normal

model updates that occur in most CFTs. We demonstrate HuBOE’s broad applicability

to improve the performance of CFTs with experimental results on the OTB and VOT

datasets.

5.2 Tracking Approaches for Handling Occlusion

The simplest trackers do not explicitly address occlusion. Trackers can benefit significantly

from having an awareness that the target is likely hidden from view, both for estimating

the current target state, and also for maintaining the best possible target models for

the remainder of the video. Most CFTs have a simple method for updating the target

model in each new frame; recall from Sec. 2.3.3 the general update scheme many CFTs

[1–3, 19, 22, 23, 26, 32] employ:

(5.1)Ti = (1− λ)Ti−1 + λTnew,

where Ti−1 contains the previously used CF (or the data necessary to compute the CF),

Tnew incorporates the information from the new frame, and 0 ≤ λ ≤ 1 is the adaptation

rate. Examples of this model update for specific CFTs have been previously shown in Eqs.

2.37 and 2.43. When λ = 1 the CFT has no memory of previous frames, and when λ = 0,

the CF will use only information from the initial frame for the entire track. Both extremes

have clear problems in a range of scenarios; memory is required for robustness to noise

or frames where the target is not visible, and adaptation is required for robustness to the

changing appearance of the visible target. Instead of either extreme, trackers are set to

a λ (usually closer to 0) that balances these factors. Still, leaving λ at a constant value

for all frames of all videos is not optimal; when the target is occluded, there is no useful

data to update the CF with, and clearly we want λ = 0 for that individual frame. To be

able to turn off the adaptation rate, the tracker must accurately determine if the target is
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occluded. This is a significant challenge and one of the fundamental problems of model-free

tracking, because the nature of model-free tracking makes distinguishing occluding objects

from unseen target appearances difficult.

The earliest CFT, the MOSSE tracker, used PSR (Eq. 2.2) to measure peak quality.

Bolme et al. report that “ranges between 20.0 and 60.0 . . . indicate very strong peaks

. . . when PSR drops to around 7.0 it is an indication that the object is occluded or tracking

has failed [1].” However, the test dataset includes only 7 fairly simple videos. The

introduction of the KCF tracker does not include any peak quality measure, possibly

because the larger, more challenging OTB50 dataset made using a simple PSR threshold

less feasible [2, 3]. Still, the approach used by MOSSE highlights two themes: in some

manner the quality of the match much be discerned, and detecting occlusions and detecting

tracking failures are often indistinguishable. Other approaches discussed below support

these trends.

The MUlti-Store Tracker (MUSTer) [25] tracks targets through a combination of a

short-term CF tracker and long-term keypoint matching with Scale-Invariant Feature

Transform (SIFT) descriptors [73]. During the course of tracking, MUSTer tracks and

stores keypoints from both the target and the background. Once the target region for a

given frame is estimated, the target region is analyzed according to the number of matched

target and background keypoints within the region. Empirically, it was determined that if

more background keypoints than target keypoints are present within the estimated region,

then the object is likely occluded. When occlusion is detected, the keypoint sets and CF

are not updated.

The Collaborative Correlation Tracker (CCT) [24] also uses long- and short-term

components. The short-term KCF tracker searches for the target in a local region based on

the previous detection, while a long-term detector searches the entire new frame and finds

10 candidate locations without using the prior location. Ideally, one of the 10 regions will
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overlap with the KCF estimate, in which case the KCF estimate is accepted. When there is

no agreement (less than 5% overlap) between the tracker and all 10 candidates regions, one

of two actions are performed. They propose simply reducing the learning rate of the KCF

by a factor of 10, or they propose running the KCF in the 10 candidate regions, and then

choosing the high correlation value out of all 10 regions as the new estimated location. The

first option of reducing the learning rate aligns more closely with handling occluded targets,

while the second option is more of a pure redetection approach, which may be applicable

to general cases of the tracker losing or drifting from the target. This may actually be a

problem during occlusion (when redetection is likely to pull the tracker off the target), but

it is addressed by biasing redetections to favor windows closer to the previous location. The

authors of [24] show experimental results for both the approaches of reducing the learning

rate and redetecting the target, and show that the redetection approach is slightly better.

Walsh and Medeiros [74] developed a failure detection system to augment an existing

CFT. Following the application of the CF in the region of interest to localize the target, the

average correlation and the entropy of the correlation plane are computed and compared

to a weighted average of the average correlations and correlation plane entropies in the

last N frames. When average correlation and/or the entropy are below certain thresholds,

the CF model update may be stopped, or the tracker may be prevented from estimating a

new bounding box altogether. Additionally, as the uncertainty of the target localization

increases, the search window in future frames becomes larger. This approach is used to

augment an existing CFT [40] and shows a small improvement, particularly on small targets

or targets that leave the field of view, but very little improvement on videos with target

occlusions.

Other non-CF trackers have also attempted to address the challenges of occlusion, but

the mechanisms for detecting and handling occlusion are often similar. Nguyen et al. [75, 76]

employ a Kalman filter tracker, and additionally monitors which pixels in the target region
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are outliers that have significant appearance changes. The tracker assumes that the target

is occluded when too many pixels within the target region become outliers, and stops model

updates when this is the case. The model updates resume when the number of outliers

drops below the threshold or the length of the occlusion reaches 20 frames. Pernici and

Del Bimbo proposed a tracker that detects the target based on distinctive SIFT features

relative to the part’s surroundings [77]. Similar to MUSTer, when the target is detected,

the number of SIFT keypoints within the target region that belong to the surroundings are

counted, and if too many keypoints belonging to the surroundings are within the target

bounding box, the model for both the target and the surroundings are not updated.

Finally, we recall the parts-based CFTs previously discussed in Sec. 2.4.3. As mentioned,

parts-based approaches naturally lend themselves to handling partial occlusions, in which

the unoccluded parts provide a reliable detection, and the occluded parts can be identified

by anomalous outputs relative to the other parts.

5.3 Hue-Based Occlusion Estimation

Our proposed occlusion detection augments existing trackers by characterizing the color of

a target and its surroundings in the first frame [78]. Unlike other methods for detecting

occlusion, the proposed approach works independent of the tracking model used, and can

augment many existing trackers. Based on the colors visible in the first frame, HuBOE

makes inferences about possible occlusions that help control the tracker’s adaptation rate

and also help estimate the target’s movements.

The work is derived from one main assumption: over a short period of time, the

color of a target will not change much. When a target’s colors are distinct from the

target’s surroundings, color features can be a useful tool for tracking. While some trackers

[22, 23, 25, 32] successfully use color information to find the target, HuBOE identifies

regions in a frame that are likely not the target. This can indicate when the target is
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(a) Tracking-by-detection with full-target HuBOE

(b) Tracking-by-detection with parts-based HuBOE

Figure 5.1: Outline of visual tracking and how full-target and parts-based HuBOE are
incorporated into a tracking system. Gray boxes represent processing the current frame,
red boxes indicate use of the tracking algorithm, and blue boxes represent when HuBOE is
used in tracking. In the parts-based HuBOE, “CA” refers to controlling the adaptation
rate (Sec. 5.3.2), and “TW” refers to feature weighting (Sec. 5.3.3).

occluded and thus allow us to change the filter adaptation rate or the new frame’s feature

representation accordingly. In this section we discuss how we measure the color of the

target and how it can be applied to detecting occlusion on either the full target region or

in a parts-based approach. An overview of how both full-target and parts-based HuBOE

fits into an existing tracker can be seen in Fig. 5.1.
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Figure 5.2: 2-D representations of HSV color space at different saturation levels. We can
observe the that value and saturation help define the brightness of a pixel and would be
affected by illumination changes, while the hue is closely tied to human perception of
different colors from red, yellow, green, blue, and then red again as the hue values wrap
circularly, and would be less affected by changes in lighting intensity.

5.3.1 Characterizing a Target’s Color

One of the many challenges present in visual tracking is illumination variation. Illumination

changes can dramatically affect RGB values in color images. Our goal is to capture the color

of a scene regardless of the illumination in the first frame. Since RGB values can be affected

by lighting, we choose to both reduce the dimensionality and increase the illumination

invariance of our color representation by converting RGB values to hue values, according to

the standard conversion from RGB color space to the HSV (hue, saturation, and value)

color space, which is illustrated in Fig. 5.2. The saturation and value of each pixel are

discarded.
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Figure 5.3: Portion of initial frame of ‘lemming’ track with target shown (left), and
distribution of the hues found in the initial frame (right). The two largest peaks correspond
to brown and blue hues.

After converting the initial RGB image to hues, we examine the hues both inside the

initial bounding box and the surrounding area. Instead of defining the size of the surrounding

area of interest, we use the same surrounding area that the CFT being used defines it;

it is the region centered at the central point of the target (but not including the target),

with a width and height usually between 2x and 3x larger than the estimated target size,

depending on the particular CFT implementation. We perform kernel density estimation

to estimate P (H|target) and P (H|surr), where H represents a particular hue, from these

regions in the first frame. With these distributions, we can compute the log-likelihood of a

hue belonging to the background as

(5.2)L(surr|H) = log

(
P (H|surr) + ε

P (H|target) + ε

)
where ε = 10−4 and is included to address cases when the estimated P (H|target) or

P (H|surr) equals zero, which can happen due to the small sample from which both

distributions are estimated. An example of these estimated distributions on the first frame

of a video is shown in Fig. 5.3.

Two assumptions are made at this point. First, we assume that P (H|target) will not
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change over time. Second, we assume that P (H|occlusion) ≈ P (H|surroundings). In other

words, if we observe that L(surroundings|H) is large within the estimated target area,

HuBOE assumes that the target has not changed, but rather that some object from the

surroundings is now occluding the object where the likelihood value is large.

5.3.2 Full-Target Hue-Based Occlusion Estimation

As discussed in Sec. 5.2, an important challenge of online visual tracking is controlling and

accurately tuning the adaptation rate λ. Following the tracker producing a target location

estimate b′k = [x′k, y
′
k, w

′
k, h

′
k], we decide if the target is occluded or not by first averaging

the hue likelihoods within the target:

(5.3)OSraw(n) =

∑
p∈R′

k
L (surr|H(p))

|R′k|

where H(p) is the hue of pixel p from within the region R′k defined by b′k, and |R′k| represents

the number of pixels within the bounding box. We denote this average the raw occlusion

score. We recognize that different video sequences and targets will have different color

characteristics, so the same raw occlusion score may have different meanings across different

videos. From this, we recognize that decisions based on a single score threshold across

different sequences using the raw scores may not perform well. Instead, we approximately

normalize the scores by treating the initial (ground truth) frame’s occlusion score as a bias

term, such that

(5.4)OS(n) = OSraw(n)−OSraw(1)

This normalized occlusion score has a more consistent interpretation across different videos,

and approximately measures how much the nth frame differs from the initial (unoccluded)

frame in the sequence, as OS(0) ≡ 0. An example of occlusion scores changing in the

presence of occlusion is shown in Fig. 5.4 (with initial frame shown in Fig. 5.3).

Once we have computed OS(n), we have to make the decision to actually change the
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Figure 5.4: Target regions based on ground truth labels in three ‘lemming’ track frames.
Frame 296 (left) has OS = 0.55, while the occluded target in frame 338 (middle) has
OS = 2.46. Frame 971 (right) has OS = −0.60.

tracker’s learning rate or not. Given a preexisting learning rate λ0, the learning rate for the

nth frame is

λn =



λ0 if OS(n) < α

λ0 −
(
OS(n)−α
β−α

)
λ0 if α < OS(n) < β

0 if OS(n) > β

(5.5)

where α and β are occlusion score thresholds, and β ≥ α. When OS(n) < α, we are

declaring that the target is visible and the tracker T should be updated with the target

patch from this frame. When OS(n) > β, we are very confident that the target is occluded

and that retraining the tracker T will be detrimental to performance. When α < OS(n) < β,

we are not certain if the target is occluded or not. Setting α = β produces a hard threshold

and a binary decision to update the tracking model or not. We compare the use of hard
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Figure 5.5: Example of how the region of interest is divided into parts for feature weighting.
In this initial frame, starting from the top left and moving clockwise, the four interior
regions (the target) have raw occlusion scores of −0.87, −0.82, −1.24, and −1.74, while
the four exterior regions have raw occlusion scores of 1.76, 2.04, 1.00, and 0.88.

and soft thresholds in Sec. 5.4.

5.3.3 Parts-Based Hue-Based Occlusion Estimation

Computing occlusion scores can help reduce the harmful effects of updating a tracker model

when the target is occluded, but there are many cases where the target is only partially

occluded. In such instances, it may be more helpful to identify separate regions of the

detected target that are occluded and unoccluded, rather than treating the target as a

whole. If a target is partially exposed, it may be best to update the parts of the model

corresponding to visible regions of the target while not updating the occluded portions.

Additionally, looking at the hues of smaller regions can allow us apply the HuBOE concepts

to the target detection phase of tracking to mask or reduce the weight given to regions

that are likely occluded the actual target. This additional step to target detection is not

possible if the region of interest is treated as a whole, as in the full-target HuBOE. We refer

to the two uses of parts-based HuBOE as controlling model adaptation (CA) and target

feature weighting (TW).
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Without specific knowledge of the target being tracked, it is difficult to define a parts

model that is customized to that object. Rather than attempt to segment the target region

automatically into object-specific parts, we simply divide the target region into a 2× 2 grid.

For consistency, we also divide the surrounding region into four quadrants, as shown in Fig.

5.5. We do not experiment with further subdivision of the target region or surroundings in

this work. While further subdivision and smaller target parts is possible, the possibility of

small sample sizes within each part becomes more likely, particularly with low resolution

targets that could lead to unstable occlusion estimates. It is also important to note that

the log-likelihood for a given hue, as shown in Eq. 5.2, is still computed by considering the

target and surrounding regions as a whole. This approach is chosen to allow for in-plane

rotations of the target without the increased possibility of being confused as occlusion, in

the case that different target parts consist of different hues.

For full-target HuBOE, we use the first frame’s occlusion score to normalize subsequent

scores (Eq. 5.4). For the part-based approach, it is still important to adjust scores based

on the initial target hues while also considering that certain model parts may have less

distinctive hues than others. Accordingly, we compute the correcting factor for occlusion

scores by accounting for all the target parts and surrounding regions as:

(5.6)OSoffset = mean (OSsurrraw (1))−mean
(
OStargetraw (1)

)
where OSsurrraw (1) and OStargetraw (1) denote the raw occlusion scores of the four surrounding

regions and four target regions, respectively, in the first frame. Just as with full-target

HuBOE, this value is used to normalize scores in subsequent frames as follows:

(5.7)OSregion(n) = OSregionraw (n)−OSoffset

where OSregionraw (n) is the raw occlusion score for an individual region. Similar to full-target

HuBOE, this normalized score is used to either let the tracker run as usual or remove

the impact of occlusion. Rather than directly reduce the learning rate, we learn a weight

ηregion(n) between 0 and 1 for the features within the region:
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ηregion(n) =



1 if OSregion(n) < γ

1− OSregion(n)−γ
ψ−γ if γ < OSregion(n) < ψ

0 if OSregion(n) > ψ

(5.8)

where γ and ψ are score thresholds and ψ ≥ γ. The subsequent feature representation is

weighted as

(5.9)f̂(Iregion) = ηregion · f(Iregion)

where f(Iregion) is the feature representation for a given region. Thus, a higher OSregion(n)

will lower the weight ηregion(n) given to regions of the image which likely contain non-target

objects and occlusions. As stated earlier, these weights can be computed prior to learning

the update for the target model, or they can be learned and applied to a region of interest

in a new frame, which can possibly reduce the effect of clutter or occlusions when detecting

the target. These two uses are neither dependent nor exclusive of each other, and the

different uses are compared in Sec. 5.4.

5.4 Experiments

5.4.1 Experimental Setup

We test HuBOE on color video sequences used in the five OTB and VOT benchmarks. We

include all color video sequences, and additionally show results on OTB sequences tagged

with occlusion (see Table 5.1 for detailed statistics of each dataset). We augment five

publicly available CFTs that follow the basic retraining step outlined in Eq. 5.1. The five

trackers are:
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Dataset OTB50
OTB50

OTB100
OTB100 VOT VOT VOT

(Occ.) (Occ.) 2013 2014 2015

Tracks 36 21 77 42 16 25 60
Segments 1342 807 3090 1866 643 957 1722

Frames 18276 13931 44361 28429 6094 10209 20931

Table 5.1: Number of full-color videos, segments, and frames in the benchmark datasets.
Videos in the OTB datasets tagged with occlusion are noted separately.

1. CSK [3]: The CSK tracker uses pixel intensity features and does not account for a

target’s scale changes.

2. KCF [2]: The KCF tracker uses HOG descriptors and does not account for a target’s

scale changes.

3. DSST [19]: The DSST tracker uses HOG descriptors and does estimate a target’s

scale changes with the use of a second CF.

4. SAMF [23]: The SAMF tracker uses HOG and color name feature descriptors and

does estimate a target’s scale changes with the use of a second CF.

5. Staple [22]: The Staple tracker uses HOG and histograms of RGB color features and

does estimate a target’s scale changes with the use of a second CF.

In all five cases, the trackers use the provided parameters and are unmodified except for

the points where we insert HuBOE into the tracker as shown in Fig. 5.1; first, in changing

the adaptation rate λ, as described in Eq. 5.5, and in changing the feature representation

of the new frame, as detailed in Eqs. 5.8 and 5.9. The default adaptation rate is unchanged

from the original trackers, except when it is reduced to 0 when occlusion is detected.

Additionally, we note that the feature representations used for the scale estimators in the

DSST, SAMF, and Staple trackers are not modified according to Eqs. 5.8 and 5.9; in all five

cases, only the translation estimation is altered. Additionally, when modifying the Staple

tracker, which is comprised of a combination of a correlation filter using HOG features and

color histograms, we only modify the learning rates of the HOG CF during the course of
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Tracker
Frames per Second

Baseline Full HuBOE Parts HuBOE

CSK [3] 204 183 109
KCF [2] 144 115 92.9

DSST [19] 21.6 21.5 20.8
SAMF [23] 8.93 8.87 8.52
Staple [22] 35.9 35.0 27.2

Table 5.2: Speed of each CFT without HuBOE and with full-target and parts-based HuBOE
added.

tracking. With each tracker, we report the baseline performance, the performance when we

use full-target HuBOE and the performance of parts-based HuBOE.

Timing results are for trackers run on an Intel(R) Core(TM) i5-4210U CPU using a

single core at 1.70 GHz with 8G RAM. The average tracking speeds of the five CFTs with

and without HuBOE on the 77 OTB100 tracks can be seen in Table 5.2, and shows that

the added computation is minimal.

5.4.2 Results

Quantitative results can be seen in Tables 5.3, 5.4, and 5.5. The values reported in Tables

5.3 and 5.4 are summary statistics showing how often a tracker has a CLE of less than 20

pixels and the AVO, respectively, and Table 5.5 shows the average ASO and reports the

statistical significance of introducing HuBOE to the trackers. Plots showing full results

on the two largest datasets, OTB100 and VOT2016, can be seen in Figs. 5.6 and 5.7.

These results show a consistent improvement to all five trackers with both full-target and

parts-based HuBOE. As would be expected, the improvement is most noticeable when

considering only videos with occlusion present, as demonstrated on the occlusion subsets of

OTB datasets. This trend appears when observing the trackers; examples of each baseline

tracker being corrected are shown in Figs. 5.8 and 5.9, and we see that most of the failures

that are corrected are at points where the target is occluded. We also note that in most
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cases, the quantitative improvement is more pronounced when considering the 20 pixel

CLE threshold rather than other measures. This reflects the stated purpose of HuBOE to

handle occlusions, which often cause complete tracking failures when not handled. HuBOE

is less likely to prevent a tracker from drifting off the target in other conditions.

While HuBOE overall improves all of the trackers, some trends within the results are

worth noting. While the five trackers have varying baseline performance levels, the amount

of improvement from HuBOE is not limited to just the lowest performing trackers. It would

be fair to expect HuBOE gives the biggest gains on the lesser performing trackers simply

because there is more room to improve, but this does not seem to be the case in our results.

Rather, the KCF tracker generally shows the smallest improvement while the Staple tracker

still does not appear to be hitting any limit in performance. It is also notable that SAMF

and Staple include color features in their tracker, but still benefit from the addition of

HuBOE. These can be easily explained by the separation of the target detection and model

updates for each frame. While the SAMF and Staple trackers demonstrate benefits of

using color features in their models, they are both still prone to learning the appearance of

occluding objects because there is no information from the tracker detection that is fed

into a decision to update their model.

Finally, it is worth comparing the results from full-target HuBOE and parts-based

HuBOE. Overall, the parts-based approach works better than the full-target approach, but

the individual results are dependent on the algorithm and the dataset. In particular, the

DSST and SAMF trackers show that the parts-based HuBOE consistently outperforms the

full-target HuBOE approach for those algorithms. Additionally, the full-target approach

tends to work better on OTB datasets, whereas the parts-based approach works better

more often on the VOT datasets. This may indicate that some underlying trends in the

data are better handled by one approach or the other, or perhaps that the parts-based

approach is more effective on challenging data (such as the VOT2015 dataset), but such
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Tracker OTB50
OTB50

OTB100
OTB100 VOT VOT VOT

(Occ.) (Occ.) 2013 2014 2015

CSK
None 0.516 0.473 0.484 0.395 0.524 0.497 0.345
Full 0.562 0.570 0.533 0.473 0.577 0.513 0.369

Parts 0.583 0.551 0.513 0.469 0.603 0.534 0.382

KCF
None 0.713 0.703 0.654 0.601 0.710 0.617 0.420
Full 0.730 0.725 0.675 0.633 0.718 0.628 0.450

Parts 0.740 0.744 0.676 0.632 0.761 0.644 0.440

DSST
None 0.675 0.588 0.625 0.526 0.734 0.622 0.437
Full 0.718 0.654 0.660 0.586 0.776 0.649 0.477

Parts 0.755 0.727 0.701 0.642 0.842 0.705 0.489

SAMF
None 0.739 0.767 0.714 0.685 0.772 0.665 0.483
Full 0.795 0.859 0.742 0.730 0.804 0.714 0.504

Parts 0.797 0.866 0.747 0.750 0.808 0.732 0.502

Staple
None 0.762 0.739 0.755 0.704 0.798 0.703 0.511
Full 0.811 0.821 0.795 0.776 0.826 0.715 0.544

Parts 0.833 0.808 0.798 0.742 0.830 0.723 0.558

Table 5.3: 20 pixel accuracy of 5 CFTs. Includes results with baseline without using
HuBOE (None), results using full-target HuBOE (Full), and results using parts-based
HuBOE (Parts).

observations are speculative given the uncertainty in these results.

While Tables 5.3 and 5.4 show the overall tracking improvements gained with HuBOE,

we also show the performance of specific components of HuBOE discussed in Sec. 5.3.

Comparing ASO and AVO

The ASO metric was introduced in Ch. 3, but generally large discrepancies between the

different trackers in Ch. 4 often made the choice of accuracy metric an afterthought;

as previously noted, any reasonable metric will produce the same rank-ordering between

trackers with a large different in performance. In contrast, trackers with both full-target and

the parts-based HuBOE often show much smaller differences in performance. Comparing

the results when using AVO in Table 5.4 and AVO in Table 5.5, we can see a number of

instances where the rank-ordering of the two HuBOE approaches can change, e.g., the

VOT2013 results for both KCF and Staple. In a few instances, the rank-ordering of the
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Tracker OTB50
OTB50

OTB100
OTB100 VOT VOT VOT

(Occ.) (Occ.) 2013 2014 2015

CSK
None 0.367 0.341 0.359 0.303 0.385 0.349 0.254
Full 0.400 0.410 0.386 0.346 0.423 0.352 0.266

Parts 0.404 0.395 0.376 0.342 0.426 0.376 0.286

KCF
None 0.495 0.493 0.456 0.419 0.506 0.418 0.296
Full 0.509 0.515 0.477 0.451 0.518 0.438 0.310

Parts 0.510 0.514 0.473 0.441 0.526 0.440 0.312

DSST
None 0.520 0.453 0.484 0.413 0.551 0.489 0.343
Full 0.541 0.495 0.501 0.447 0.584 0.505 0.374

Parts 0.570 0.537 0.528 0.491 0.606 0.537 0.376

SAMF
None 0.550 0.577 0.517 0.507 0.574 0.493 0.355
Full 0.581 0.634 0.535 0.537 0.581 0.531 0.362

Parts 0.587 0.639 0.536 0.546 0.583 0.546 0.364

Staple
None 0.588 0.558 0.571 0.537 0.616 0.558 0.402
Full 0.629 0.625 0.596 0.590 0.631 0.556 0.417

Parts 0.629 0.602 0.602 0.567 0.628 0.572 0.431

Table 5.4: AVO of 5 CFTs. Includes results with baseline without using HuBOE (None),
results using full-target HuBOE (Full), and results using parts-based HuBOE (Parts).

HuBOE appraoches and the baseline change as well, although this is less frequent and can

be attributed the magnitude of the benefits that HuBOE often provides. Beyond complete

changes in the rank-ordering, some small differences become much more pronounced when

using ASO, e.g., the OTB50 HuBOE results with the CSK tracker. While the motivation

for introducing ASO as an alternative to AVO was explained in Ch. 3, these experimental

results indicate that the ASO metric has a real impact on how trackers are compared

beyond its intuitive meaning.

Along with the rank-ordering differences between AVO and ASO, we also highlight the

p-values that are computed to compare each HuBOE tracker with its respective baseline

tracker. Some trackers produce the same ASO but different p-values, e.g., the two HuBOE

SAMF trackers on the VOT2013 and VOT2015 benchmarks. This provides insight as to

how much variance a proposed change may produce, even with the same overall accuracy.

The trackers with the smaller p-value is less likely to degrade the performance, relative
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Tracker OTB50
OTB50

OTB100
OTB100 VOT VOT VOT

(Occ.) (Occ.) 2013 2014 2015

CSK

None 0.412 0.416 0.355 0.306 0.441 0.389 0.274
Full 0.436 0.473 0.411 0.362 0.509 0.413 0.284

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Parts 0.473 0.510 0.429 0.383 0.503 0.421 0.336

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

KCF

None 0.549 0.539 0.451 0.410 0.596 0.492 0.340
Full 0.554 0.536 0.484 0.462 0.600 0.506 0.381

p-value > 0.05 – < 0.001 < 0.001 > 0.05 0.003 < 0.001
Parts 0.555 0.549 0.477 0.446 0.606 0.506 0.366

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

DSST

None 0.572 0.476 0.490 0.399 0.641 0.577 0.383
Full 0.588 0.501 0.556 0.476 0.647 0.576 0.384

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 – > 0.05
Parts 0.607 0.546 0.564 0.490 0.670 0.622 0.450

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

SAMF

None 0.603 0.626 0.539 0.530 0.669 0.592 0.401
Full 0.628 0.668 0.549 0.549 0.675 0.612 0.413

p-value < 0.001 < 0.001 < 0.001 < 0.001 0.027 < 0.001 0.016
Parts 0.630 0.671 0.566 0.551 0.675 0.633 0.413

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Staple

None 0.624 0.578 0.573 0.505 0.704 0.663 0.425
Full 0.672 0.654 0.608 0.598 0.716 0.668 0.468

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 > 0.05 < 0.001
Parts 0.676 0.615 0.621 0.557 0.719 0.659 0.512

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 – < 0.001

Table 5.5: Average ASO of 5 CFTs. Includes results with baseline without using HuBOE
(None), results using full-target HuBOE (Full), and results using parts-based HuBOE
(Parts), and computed p-values for paired t-tests when adding HuBOE with respect to the
baseline trackers.
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to the baseline, on a given segment than the tracker with the higher p-value, which likely

improved the performance on more segments but also reduced the accuracy on more other

segments. As discussed in Ch. 3, the statistical testing to produce the p-values depends

on the independence of each trial. While segments within a single video are not truly

independent, they approach independence much more so than when each individual frame

is considered a trial with its own overlap value. In this manner, the ASO provides another

insight and another benefit over the use of AVO.

Selecting Occlusion Score Thresholds

Figs. 5.10 and 5.11 show results for full-target HuBOE when using a range of different

values for α and β on OTB100 and VOT2015 datasets. We tested ranges 0 ≤ α ≤ 1 and

α ≤ β ≤ α + 1. In our observation, setting α = 1 is a conservative choice, and such a high

threshold will result in HuBOE changing the adaptation rate very infrequently; for this

reason, we limit our testing to α ≤ 1.

The results in Tables 5.3 and 5.4 highlight the best results when using HuBOE, while

Figs. 5.10 and 5.11 show the overall sensitivity of these parameters. In most cases, the

choice of α and β is not very sensitive, but there are some irregular peaks and valleys with

different trackers. Such an outcome should be expected to some degree with any tracking

parameter, when small changes in the model can create large changes in performance

metrics if such a change is the difference between failing early in a video or not.

Beyond the overall sensitivity of α and β, we observe a trend that lower thresholds,

i.e., more aggressive use of the HuBOE system does in fact harm the performance in most

cases. This is not surprising; as α → 0, we are suggesting that any occlusion score that

is higher than the occlusion score from the first frame, i.e., the unoccluded ground truth

frame, indicates some amount of occlusion. This is a very aggressive interpretation of the

occlusion scores, and accordingly the performance is harmed by it.
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Tracker OTB50
OTB50

OTB100
OTB100 VOT VOT VOT

(Occ.) (Occ.) 2013 2014 2015

CSK
Hard 0.532 0.505 0.522 0.449 0.534 0.494 0.355
Soft 0.562 0.570 0.533 0.473 0.577 0.513 0.369

KCF
Hard 0.727 0.705 0.664 0.609 0.709 0.621 0.443
Soft 0.730 0.725 0.675 0.633 0.718 0.628 0.450

DSST
Hard 0.715 0.649 0.657 0.581 0.776 0.644 0.466
Soft 0.718 0.654 0.660 0.586 0.776 0.649 0.477

SAMF
Hard 0.772 0.824 0.728 0.720 0.787 0.689 0.503
Soft 0.795 0.859 0.742 0.730 0.804 0.714 0.504

Staple
Hard 0.797 0.802 0.782 0.750 0.821 0.715 0.531
Soft 0.811 0.821 0.795 0.776 0.826 0.715 0.544

Table 5.6: Comparison of 20 pixel accuracies when using hard and soft thresholds for
full-target HuBOE.

Hard vs. Soft Threshold

Table 5.6 shows results with full-target HuBOE approach outlined by Eq. 5.5 using both a

soft threshold for reducing the learning rate of a CFT and a hard threshold (α = β). While

the full-target HuBOE outlined in Eq. 5.5 does not require that β > α, the results show

that it is beneficial across all trackers and all datasets to have a soft threshold that allows

for uncertainty when the occlusion score is within a certain range. Though not shown,

similar benefits when using a soft threshold hold when using the parts-based HuBOE.

Parts-Based Approaches

In Sec. 5.3, we discussed two ways to apply HuBOE to a parts-based approach: by weighting

the features that are fed into the model adaptation (denoted as CA, controlling adaptation)

and by weighting the features extracted from the new frame where the model will detect

the target (denoted as TW, target weighting). Table 5.7 shows the results of each approach,

as well as using both together. Overall, using the HuBOE only for weighting the model

adaptation works best for the most cases. When using both applications of parts-based

HuBOE together, the same score thresholds ψ and γ are used for both the CA and TW
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components, though that may not be ideal, which can explain why using both together

sometimes performs worse than both the CA and TW components individually. Although

not shown side-by-side, it is important to note that nearly all approaches are better than

the baseline trackers, with the exception of some KCF results and the Staple+TW approach

on VOT2014. The CA parts-based HuBOE approach outperforms the baseline tracker in

all cases.

An explanation why the CA application is more effective compared to the TW application

of HuBOE can be tied back to the strengths and weaknesses of the baseline trackers. The

tracking models are designed to distinguish between target features and non-target features,

whether they are pixel intensities (CSK), texture features (all), or color features (SAMF,

Staple). The TW application reduces the weight of features in regions with non-target

hues, but these hues are already explicitly identified as non-target by the SAMF and Staple

trackers, and the texture features of occluding objects are, if not guaranteed, at least likely

to be different from the original target. The weakness of these trackers is not that they

confused occluding objects with the original target, it is that the trackers are forced to

learn the appearance of the occluding objects if the target is obscured for too long. This

weakness is more directly addressed by the CA application of parts-based HuBOE (and also

by full-target HuBOE) and therefore the CA application should be expected to perform

better. At the same time, the TW application may still provide a lesser benefit and not

actually harm the tracking performance, which is what is observed.

5.5 Chapter Summary

We introduced HuBOE, which makes inferences about portions of video sequences that

likely belong to occlusion in visual tracking tasks. It can be added to existing trackers,

including but not limited to the CFTs demonstrated in this work, that have a retraining

model that uses a simple linear combination of a current tracking model and an update
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Tracker OTB50
OTB50

OTB100
OTB100 VOT VOT VOT

(Occ.) (Occ.) 2013 2014 2015

CSK
CA 0.583 0.546 0.513 0.460 0.603 0.521 0.378
TW 0.537 0.535 0.496 0.446 0.587 0.534 0.382
Both 0.554 0.551 0.503 0.469 0.584 0.526 0.376

KCF
CA 0.740 0.744 0.669 0.627 0.761 0.644 0.425
TW 0.732 0.725 0.676 0.632 0.755 0.622 0.440
Both 0.717 0.688 0.653 0.598 0.722 0.615 0.403

DSST
CA 0.755 0.715 0.701 0.630 0.842 0.705 0.489
TW 0.701 0.644 0.650 0.566 0.752 0.650 0.462
Both 0.749 0.727 0.694 0.642 0.818 0.695 0.488

SAMF
CA 0.795 0.866 0.747 0.750 0.808 0.732 0.494
TW 0.797 0.865 0.741 0.736 0.797 0.729 0.502
Both 0.782 0.862 0.734 0.736 0.798 0.730 0.493

Staple
CA 0.814 0.768 0.798 0.742 0.830 0.723 0.558
TW 0.784 0.777 0.761 0.727 0.811 0.702 0.536
Both 0.833 0.808 0.785 0.730 0.828 0.723 0.541

Table 5.7: 20 pixel accuracy of 5 CFTs using parts-based HuBOE. Includes results when
using the parts-based feature weighting to control the model adaptation (CA), when
performing parts-based target weighting (TW), and both.

built on a new detection.

Using five CFTs, we showed the effectiveness of HuBOE on the popular benchmark

tracking datasets. HuBOE is able to identify occlusions and prevent critical tracking

errors from occurring without adding much computational time. Although the tracking

datasets show the broad utility of HuBOE, specific applications could modify the framework

presented in this work. In particular, the parts-based approach could be tailored to the

specific structure of a known target. Additionally, one change to trackers not explored is to

increase the base learning rate. If frames containing occlusion can be avoided in the model

adaptation phase of tracking, then the learning rates can possibly be more aggressive to

keep up with fast changes in a target’s appearance.
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Figure 5.6: Results for CSK, KCF, and DSST trackers on OTB100 and VOT2016 datasets.
“Baseline” refers to the original tracker with no HuBOE used, “full target HuBOE” refers to
using HuBOE to the entire target region, and “parts HuBOE” refers to using the parts
based approach to occlusion detection. Plots for each dataset show the average distance
precision.
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Figure 5.7: Results for SAMF, and Staple trackers on OTB100 and VOT2016 datasets.
“Baseline” refers to the original tracker with no HuBOE used, “full target HuBOE” refers to
using HuBOE to the entire target region, and “parts HuBOE” refers to using the parts
based approach to occlusion detection. Plots for each dataset show the average distance
precision.

107



(a) ‘road’ sequence, CSK tracker

(b) ‘woman’ sequence, CSK tracker

(c) ‘coke’ sequence, KCF tracker

(d) ‘lemming’ sequence, KCF tracker

(e) ‘girl’ sequence, DSST tracker

Figure 5.8: Examples of CSK, KCF, and DSST trackers failing due to occlusion and being
corrected with HuBOE. Each image sequence shows the target immediately before being
occluded, during occlusion, and shortly after reappearing. The red box denotes the original
tracker and green box denotes that HuBOE is included.
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(a) ‘subway’ sequence, DSST tracker

(b) ‘jogging’ sequence, SAMF tracker

(c) ‘tiger1’ sequence, SAMF tracker

(d) ‘skiing’ sequence, Staple tracker

(e) ‘soccer’ sequence, Staple tracker

Figure 5.9: Examples of DSST, SAMF, and Staple trackers failing due to occlusion and
being corrected with HuBOE. Each image sequence shows the target immediately before
being occluded, during occlusion, and shortly after reappearing. The red box denotes the
original tracker and green box denotes that HuBOE is included.
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Figure 5.10: AVO on OTB100 and VOT2015 for CSK, KCF, and DSST trackers when
adjusting the occlusion score thresholds α and β for full-target HuBOE. Results in the
left-hand corner of each plot represent more aggressive thresholds that will result in more
changes in the adaptation rate, while results in the right-hand side of each plot represent
less aggressive thresholds that will trigger less changes in the adaptation rate for a given
tracker.
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Figure 5.11: AVO on OTB100 and VOT2015 for SAMF and Staple trackers when adjusting
the occlusion score thresholds α and β for full-target HuBOE.
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Chapter 6

Conclusion

In this chapter, we review the work presented in the previous chapters, and highlight the

main contributions of the work. We finish with a discussion of future directions of research.

6.1 Thesis Summary

Chapter 1 introduced the problem of model-free visual tracking, and Chapter 2 discussed

advances in CFTs, which have become one of the prevailing approaches in visual tracking.

Chapter 2 also discussed the progression from very fundamental CFs to designs that have

been effective for a range of localization tasks, which have been only partially adapted to

visual tracking.

Chapter 3 discussed some of the most common benchmarks used to evaluate visual

trackers. Benchmark datasets have contributed greatly to the shared knowledge of new visual

trackers; large aggregations of tracking videos with standardized performance measures have

made comparisons between different algorithms easier while mitigating dataset selection

biases. However, we feel that the performance measures – based on per frame accuracies –

do not exactly capture and measure the challenge trackers face. Rather than treat each

successive frame as a new trial to measure trackers on, we proposed ASO, which aggregates
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the frame overlap within homogenous temporal segments of the video. ASO follows the

intuition that the tracker performance is determined when the targets undergo some change

that would be expected to challenge the tracker, e.g., an occlusion or a lighting change.

Each single value of ASO starts and stops at a point human observers naturally watch for

with the most anticipation – the next test in the video that the tracker must pass. We also

proposed a way to automatically segment videos to be able to compute the ASO without

human annotation.

Chapter 4 explored the use of CF designs not previously explored at any depth for

visual tracking. While the MOSSE filter and its kernelized version, KCF, have been used in

a number of trackers, other powerful filters designs, including the OTSDF, UOTSDF, and

MMCF filters, had apparently not been adapted to visual tracking. We showed that while

these filters do not perform well on their own in a tracking system, they can complement

the more commonly used KCF filter, particularly on the videos that are most challenging

for the KCF tracker. While overall performance measures were not tremendously improved,

the specific use case suggests that the fusion of multiple CF designs may have increased

effectiveness as tracking data becomes more challenging, either in continually more difficult

benchmarks or in challenging real-world conditions. We also discussed the interactions

between chosen feature descriptors and filter design.

Chapter 5 addressed the problem of occlusion in visual tracking; one of the most

challenging elements in a setting where a vision model is attempting to both continuously

locate a target and learn its appearance from almost no training data. We introduce

HuBOE, a color-based system for inferring occlusion that is both lightweight and portable

to a number of trackers. By only operating on the tracker’s bounding box output and by

only preventing (or not preventing) a tracker from updating its detection model, HuBOE is

versatile enough to improve a number of trackers. We validate HuBOE by incorporating

it into a variety of CFTs, including CFTs that already use color features in their target
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detection, and show improvements when added to each tracker. We propose two versions of

HuBOE that are modeled to find either full or partial occlusion of targets.

6.2 Contributions

The main contributions of the thesis are as follows:

� Propose a temporal track segmentation method and propose ASO, which closely

aligns with humans’ qualitative evaluation of trackers and captures the amount of

activity that occurs within a video.

� Explored the application of CF designs (OTSDF, UOTSDF, MMCF) that had not

been used prior in visual tracking. In particular, we found that these trackers worked

well as an addition to the existing KCF tracker for the tracks it struggles with most.

The UOTSDF filter showed the most promise in this regard.

� Illustrated the overlapping and perhaps redundant effect that more powerful CF

designs and more powerful feature representations have on visual trackers.

� Introduced HuBOE, a lightweight occlusion estimator that helps model-free trackers

avoid bad model updates when targets are obscured.

� Introduced a parts-based HuBOE for managing partial occlusion appropriately during

tracking.

6.3 Future Work

Visual tracking and CFTs are rapidly changing fields, and there are many possible directions

for future research:

� As the impact and prevalence of deep learning and CNNs grows in model-free visual

tracking, it is increasingly necessary to understand the role and importance CFs may
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or may not have within them. Already a number of deep network CFTs exist and

perform very well. While the MOSSE filter design is usually used to produce the final

outputs of these trackers, it may be still worth exploring if it is the optimal choice.

As trackers become more and more sophisticated, there is less and less emphasis on

the speed of the tracker. In deep network CFTs, a different CF design may not be a

bottleneck for speed.

� Learning-based methods in computer vision broadly have three components: the

data for training (and testing), the features chosen to represent images, and the

classifier that is learned and ultimately makes decisions. In Chapter 4, we note that

the MOSSE filter (i.e., the classifier) performs much more poorly than other CF

designs with raw pixel intensity features, but has roughly equal performance when

HOG features are used to track objects. This is contradictory to previous results, but

previous results were in other applications such as ATR, and had different, larger,

training sets. While prior work with different data and features was a motivation

for adapting certain filters to visual tracking, the mixed results on visual tracking

with more powerful multi-channel features may indicate that it is worth revisiting

prior assumptions about filter design and selection in those original problem settings.

As multi-channel CFs and richer feature descriptors including deep networks become

more and more prevalent, it may be that the recommendations for CF designs will

have shifted from prior research.

� HuBOE was shown to be effective on a range of different CFTs that use a linear

interpolation update scheme. Other trackers, including some deep network CFTs,

store a bank of prior samples to aid in model updates; the effectiveness of HuBOE to

prune this set could determine its applicability and effectiveness on some of the best

performing trackers.

� As was discussed in Chapter 3, just as there is no single correct way to segment an
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image, there is no single correct way to temporally segment a video. We proposed

a segmentation that was binary, as it fit with our needs in computing the ASO of

a video. While it is a step in the right direction, there may be ways to characterize

subtler changes in a target’s track in a way that is both more significant than a

completely homogeneous video segment, but less than the most dramatic changes

seen throughout some tracking videos.
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Appendix A

Optimizing a Quadratic Subject to

Linear Constraints

Our goal is to minimize a quadratic with linear constraints, which takes the following form:

min
ĥ

ĥ†T̂ĥ

s.t. X̂†ĥ = u, (A.1)

where T̂ is assumed to be Hermitian. Using Lagrangian multipliers, we can combine the

quadratic term with the constraints as a single equation, i.e.,

(A.2)L(h,Λ) = ĥ†T̂ĥ− 2Λ†(X̂†ĥ− u)

where Λ are the Lagrangian multipliers. To find the minimum with respect to ĥ, we take

the gradient of L(h,Λ) with respect to ĥ and set it to 0, i.e.,

(A.3)
dL(h,Λ)

dĥ
= 2T̂ĥ− 2X̂Λ = 0,

and solving for ĥ gives

(A.4)ĥ = T̂−1X̂Λ,
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at which point we must determine Λ. Substituting ĥ into the linear constraints from Eq.

A.1 gives

X̂†ĥ = u

X̂†(T̂−1X̂Λ) = u (A.5)

and solving for Λ gives

(A.6)Λ = (X̂†T̂−1X̂)−1u.

Finally, we substitute from Eq. A.6 into Eq. A.4 which gives the solution,

ĥ = T̂−1X̂Λ

= T̂−1X̂(X̂†T̂−1X̂)−1u. (A.7)
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