
Improving the Performance and Understanding of the Expectation
Maximization Algorithm: Evolutionary and Visualization Methods 

Submitted in partial fulfillment of the requirements for 

the degree of 

Doctor of Philosophy

 in

Electrical and Computer Engineering

Priya Krishnan Sundararajan

B.Tech., Information Technology, Anna University
M.S., Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

August, 2016



ii



Abstract
The Expectation Maximization (EM) algorithm is a method for learning the pa-

rameters of probabilistic graphical models when there is hidden or missing data. The

goal of an EM algorithm is to estimate a set of parameters that maximizes the like-

lihood of the data. In spite of its success in practice, the EM algorithm has several

limitations, including slow convergence, computational complexity, and inability to

escape local maxima. Using multiple random starting points is a popular approach

to mitigate the local maxima problem, but this method is time consuming. This work

seeks to improve the understanding and performance of the EM algorithm.

We combine evolutionary algorithms, which make use of stochastic search, with

the multiple random starting points strategy for the EM algorithm. First, we propose

a genetic algorithm for expectation maximization (GAEM), where we combine the

global search property of genetic algorithms (GAs) and the local search property of

EM. We investigate how different choices of population sizes, crossover and muta-

tion probabilities, and selection techniques affect the solution quality. We found that

small population sizes are sufficient to produce high solution quality and consider-

able speed-up compared to the traditional EM algorithm.

Second, we develop an age-layered EM algorithm (ALEM), where we incor-

porate an age-layered population structure heuristic in which age is the number of

iterations of an EM run. We focus on speeding up the EM algorithm for Bayesian

networks. ALEM enables comparisons between similarly aged EM runs and dis-

cards less promising EM runs well before their convergence. Experimentally, we

find that ALEM can significantly reduce the average number of iterations with no or

minimal degradation in solution quality.

Finally, we introduce an intuitive graphical user interface (GUI) to visualize and

analyze graphs including Bayesian networks. In particular, the user can perform

multi-focus zooming wherein he or she can compare multiple nodes in an overview

graphical window and study their parameters in detail windows. For EM learning,

this GUI helps to understand the progress of the estimated probability parameters.



iv



Acknowledgments
I would like to express my sincere gratitude to my advisor Professor Ole Meng-

shoel, who worked hard with me throughout my PhD giving his inspiration and

guidance, without which this thesis can never be possible. During our weekly meet-

ings, he would patiently listen, motivate and come up with new ideas whenever I

was at stuck. I have always felt more confident after every weekly meeting. I have

learnt and benefited from his perfection in writing research papers. I am grateful for

the research freedom he gave me on developing my expertise.

I would also like to thank Dr. Ted Selker for his support and motivation. I am

very grateful to my thesis committee members - Professor Ole J. Mengshoel (ad-

visor and chair of the committee), Professor Jason Lohn and Professor Joy Zhang

for introducing me to the field machine learning and evolutionary computing tech-

niques, and Dr. Nimish Radia for giving me the industry exposure to understand the

application of these techniques in various projects.

I would like to thank my colleagues and friends - Lu Zheng, Brian Ricks, Zheng

Sun, Aniruddha Basak, Dongzhen Piao, and Bing Liu for the warm and friendly lab

atmosphere. Special thanks to Irina Brinster who has always been there to willing to

offer help. I would also like to thank Briana Johnson and Lydian Lee with whom I

have enjoyed working on different projects.

This work would not have been possible without the support of my family. My

parents have been very supportive and continuously inspired me in my research.

They took care of my kid so that I can spare more time for research. I also like to

thank my brother for his insightful comments during our discussions. And most of

all, I would like to thank my husband for supporting me, putting up with me during

the weekends when I had work, patiently listening to my work and for giving me the

motivation to finish the thesis.

Finally, this work was supported by National Science Foundation grants CCF-

0937044, ECCS-0931978, National Aeronautics and Space Administration grants

NNX15AR29A, and Ericsson. I greatly appreciate the financial support.



vi



Contents

1 Introduction 1

1.1 Probabilistic Graphical Models and Machine Learning . . . . . . . . . . . . . . 1

1.2 Expectation Maximization (EM) . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Challenges Associated with EM . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Summary of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Technical Preliminaries 6

2.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Inference in Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Parameter Estimation for Bayesian Networks . . . . . . . . . . . . . . . . . . . 9

2.3.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Expectation Maximization Algorithm . . . . . . . . . . . . . . . . . . . 12

2.4 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 The Simple Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Genetic Algorithm with Local Search . . . . . . . . . . . . . . . . . . . 18

3 GAEM: Genetic Algorithm for Expectation Maximization 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Discussion of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Comparison of GAEM to Related Work . . . . . . . . . . . . . . . . . . 24

3.3 Genetic Algorithm for Expectation Maximization (GAEM) . . . . . . . . . . . . 24

vii



3.3.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 GAEM: The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Replacement Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Datasets and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2 Search Space Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.3 Role of Population Size . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.4 Role of Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.5 Role of Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.6 Role of Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.7 Processor Time Comparison . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 ALEM: Age Layered Expectation Maximization 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Expectation Maximization Approach . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 The ALEM Algorithm: Age-Layered EM . . . . . . . . . . . . . . . . . 56

4.3.2 Analysis using Poisson Processes . . . . . . . . . . . . . . . . . . . . . 58

4.4 Experiments with Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Datasets and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Slow Convergence in Traditional EM . . . . . . . . . . . . . . . . . . . 62

4.4.3 ALEM: Mitigating Slow Convergence . . . . . . . . . . . . . . . . . . . 63

4.4.4 Parameter Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.5 Wall Clock Time Comparison . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 NetEyes: Multi-Focus Visualization Techniques 70

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Design Goals of NetEyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



5.3 NetEyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 Network Based Fisheye Techniques . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Tree Based Fisheye Techniques . . . . . . . . . . . . . . . . . . . . . . 77

5.4.3 Image Based Fisheye Techniques . . . . . . . . . . . . . . . . . . . . . 78

5.5 Multi-focus Zooming and Multi-window Techniques . . . . . . . . . . . . . . . 78

5.5.1 NetEyes Step 1: Selection of Focus Nodes . . . . . . . . . . . . . . . . . 81

5.5.2 NetEyes Step 2: Partition Generation . . . . . . . . . . . . . . . . . . . 84

5.5.3 NetEyes Step 3: Fisheye Zooming . . . . . . . . . . . . . . . . . . . . . 84

5.6 Applications of NetEyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6.1 Network View for Bayesian Networks . . . . . . . . . . . . . . . . . . . 89

5.6.2 Analytical Tasks for Bayesian Networks . . . . . . . . . . . . . . . . . . 90

5.6.3 EM Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusion and Future Work 102

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Genetic Algorithm for Expectation Maximization (GAEM) . . . . . . . . 102

6.1.2 Age-Layered Expectation Maximization (ALEM) . . . . . . . . . . . . . 103

6.1.3 Network Visualization with Multi-focus Technique (NetEyes) . . . . . . 104

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 105

ix



x



List of Figures

2.1 Sprinkler Bayesian Network; inspired by Stuart J. Russell and Peter Norvig [92] . 8

2.2 PlayTennis Bayesian network; inspired by Tom Mitchell [70] . . . . . . . . . . . 10

2.3 PlayTennis BN: There are two local optima, one is around LL = −13.52 when

the independent parameters are set near 0.5. Other local optima is stuck at LL =

−16.3 when the independent parameters are set to a same value 0.1. . . . . . . . 16

2.4 A simple genetic algorithm is shown in Algorithm 2.4.1 [35]. A genetic algo-

rithm with local search is shown in Algorithm 2.4.2 [52]. . . . . . . . . . . . . . 19

3.1 The GAEM algorithm, with inputs: initial bag of EM runs (ρ0), number of generations

(ng), population size (np), crossover probability (pc), mutation probability (pm), itera-

tions after which comparison is performed in the GAEM-ALEM method (n), the name

of the replacement method (α), iteration threshold (ω), and LL tolerance (ε). We in-

clude pseudocode for GAEM-ALEM. Other replacement methods are discussed in Sec-

tion 3.3.3. The procedure PopEM runs EM on a population until convergence; StartEM

starts EM on a population; StopEM stops an EM run; and ResumeEM resumes an EM

run. The procedure κ checks convergence of an EM individual. The output of GAEM is

the EM run with the highest LL found. . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Box plots (or box and whisker diagrams) reflecting the spread of log-likelihoods

for different BNs. For each BN, the plot is for np = 200 runs on the left side

and np = 20 runs on the right side, at convergence, of the traditional EM algo-

rithm. We can see that the spread of log-likelihoods is similar for the BNs in both

figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xi



3.3 Effect of populations size on different BNs when GAEM is run for fixed number

of generations, ng ∈ {2, 4, 6, 8, 10}, shown on the x-axis. On the y-axis, in the

left column we show the cumulative number of EM iterations, in the right column

we show the maximum log likelihood. . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Effect of populations size on different BNs when GAEM is run for fixed number

of EM iterations, nGAEM ∈ {250, 500, 750, 900, 1250}, shown on the x-axis.

On the y-axis, in the left column we show the cumulative number of generations,

in the right column we show the maximum log likelihood. . . . . . . . . . . . . 37

3.5 Role of mutation on alarm BN (hard search space) when GAEM is run for

nGAEM = {250, 500, 750, 900, 1250} EM iterations, shown on the x-axis. On

the y-axis, in the left column we show the cumulative number of generations, in

the right column we show the maximum log likelihood. . . . . . . . . . . . . . . 40

3.6 Role of mutation on carstarts BN (easy search space) when GAEM is run for

nGAEM = {250, 500, 750, 900, 1250} EM iterations, shown on the x-axis. On

the y-axis, in the left column we show the cumulative number of generations, in

the right column we show the maximum log likelihood. . . . . . . . . . . . . . . 41

3.7 Role of crossover on alarm BN (hard search space) when GAEM is run for

nGAEM = {250, 500, 750, 900, 1250} EM iterations, shown on the x-axis. On

the y-axis, in the left column we show the cumulative number of generations, in

the right column we show the maximum log likelihood. . . . . . . . . . . . . . . 44

3.8 Role of crossover on carstarts BN (easy search space) when GAEM is run for

nGAEM = {250, 500, 750, 900, 1250} EM iterations, shown on the x-axis. On

the y-axis, in the left column we show the cumulative number of generations, in

the right column we show the maximum log likelihood. . . . . . . . . . . . . . . 45

3.9 Role of replacement techniques on alarm BN (hard search space) when GAEM

is run for ng = {20, 40, 60, 80, 100} generations, shown on the x-axis. On the

y-axis, in the left column we show the cumulative number of iterations, in the

right column we show the maximum log likelihood. . . . . . . . . . . . . . . . . 48

xii



3.10 Role of replacement techniques on carstarts BN (easy search space) when GAEM

is run for ng = {20, 40, 60, 80, 100, 120, 140, 160, 180, 200} generations, shown

on the x-axis. On the y-axis, in the left column we show the cumulative number

of iterations, in the right column we show the maximum log likelihood. . . . . . 49

3.11 Processor time comparison for EM and GAEM on Alarm (left) and Carstarts

(right) for 200 EM runs. The corresponding max LL for these configurations are

shown in Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Pseudocode for ALEM algorithm. The values for βi, Mi and a can be set depending on

the nature of the Bayesian network. In our experiments, we have set a = 5, ω = 1000,

N = 200, M1 = 5 for the bottom layer, ML = N for the top layer, Mi = 2 for i < 2 to

L− 1 and ε = 0.00001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Carstarts network: average number of iterations for 200 EM runs, across all

hidden variable and sample size configurations. Notice the peaks at particular

hidden variable configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Alarm network: average number of iterations for 200 EM runs, across all hidden

variable and sample size configurations. Notice the peaks at particular hidden

variable configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Variation in the number of iterations ALEM runs undergo, on average, as a func-

tion of the minimum runs parameter Mi for both networks. The lower Mi is, the

fewer iterations undergone. Darker shades of gray denote lower values of Mi. . . 67

4.5 Wall clock time comparison between traditional EM and ALEM. ALEM is, for

larger sample sizes, significantly faster and the variation amongst runs tends to

be much smaller. Traditional EM is in dark gray, ALEM is in light gray. . . . . . 68

5.1 Visualization of multi-variate probability distributions of ADAPT electrical Bayesian

network. Side panel in Figure 5.1(b) shows the multiple detail windows. The

bubbles help the user to trace a detail window to its corresponding node in the

network view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xiii



5.2 The diagram depicts the visulaization pipeline flow in our multi-focus algorithm.

(a) The source data is loaded into Prefuse data tables and converted to visualiz-

able attributes in the visual abstraction. View transformation takes place in three

main steps: (b) before fisheye zooming; (c) partition generation; and (d) after

fisheye zooming, also showing bubble anchors. . . . . . . . . . . . . . . . . . . 79

5.3 Pseudocode for the multi-focus algorithm. The DrawVoronoi function takes the

focus nodes (Y ) as inputs and outputs the endpoints of the polygons (ρ) for each

focus node. The FisheyeZooming function takes the ρ and the Y as inputs and

renders the distorted nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 (a) A hard to read baseline network; (b) Voronoi partition lines have been drawn;

(c) Viewing one zoomed-in partition; (d) Showing, in principle, how the max-

imum distance for each node label positions are computed (so that they do not

move out of the polygon). Blue and red lines show the start and end distance

of each node label rectangle from the focus; (e) arcTan distortion is applied for

some node label rectangles based on the start(upper-left) and end(lower-right)

coordinates; (f) Polygon shows focus nodes after distortion. . . . . . . . . . . . 83

5.5 The time-series graphs of all the nodes inside the rectangular selections are

aligned and shown in the side pane of NetEyes. Analysts can hover over a node

to display its time-series data as a tooltip. The time series data for the voltage

sensors E140, E240 and E340, shown as floating windows, have been anchored

in the network view by clicking on the network nodes. . . . . . . . . . . . . . . 85

5.6 Arctan curve for different values of the distortion factor, b and its effect on the

node sizes: (a) b = 2.5 (b) b = 5.0. The original undistorted nodes are shown

along the x-axis, while the nodes after distortion are shown along the y-axis. It

is hard for an analyst to read the small labels along the x-axis, while the labels

along the y-axis close to (0, 0) have become easier to read. . . . . . . . . . . . . 86

xiv



5.7 A zoomed-in visualization of nine focus nodes (Health it281, Health it340, Health it261,

..) using the distortion factor b = 18. The health node labels are all clearly read-

able. The focus node Health it281 has a green color border; the bubbles con-

necting the node and the title bar of the detail window in the side panel are also

represented in green color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.8 The zoomed parent nodes of the Orl wire nodes and their CPTs in the ADAPT

electrical Bayesian network. These zoomed node labels are readable on the com-

puter screen even though they are difficult to read in this screenshot. . . . . . . . 91

5.9 Time-series graphs of the zoomed sensor nodes in the ADAPT electrical power

network. The node labels and their time-series graphs are readable for further

analysis. The time-series graphs around the node CB180 (light blue) show a

drop in their reading, suggesting that the component CB180 is faulty. . . . . . . . 94

5.10 The large Munin2 Bayesian network and application of multi-focus on the chil-

dren nodes (L LNLE ULN DIFLOW, L LNLW MED2 DISP WO etc.) for a neu-

ral disorder disease node called Proximal Myopathy (the left most focus node).

After the application of multi-focus zooming, the children and the disease nodes

are clearly readable on the computer screen even though they are difficult to read

in this screenshot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.11 Alarm BN is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.12 In alarm BN, 3 nodes are selected and zoomed. Progress of CPT values for 65

iterations during traditional EM learning are shown as time-series graphs on the

right. Bubbles connect the nodes in the network view to the CPTs on the right. . . 97

5.13 Results of traditional EM learning for 10 EM runs is shown. Progress of log

likelihood (LL) values for each iteration is shown on the left. Changes in CPT

values for each iteration is shown on the right. For EM run 3 (alarm 3), traceline

is used to compare LL values (window on the left) and CPT values (window on

the right) at EM iteration 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xv



5.14 Results of GAEM learning for 5 EM runs is shown. Change in log likelihood

(LL) values and iterations for each generation is shown on the left. Changes in

CPT values for each generation is shown on the right. For EM run 3 (alarm 3),

there is an increase in LL from generation 4 to 5. Traceline at generation 5 is used

to compare the change in LL values (window on the left) and the change in CPT

values (window on the right) for EM run 3. The mutation probability is pm = 0.9

and crossover probability is pc = 0.5. Due to a high mutation probability, more

iterations are needed for EM to converge. . . . . . . . . . . . . . . . . . . . . . 99

5.15 Results of GAEM learning for 5 EM runs is shown. Change in log likelihood

(LL) values and iterations for each generation is shown on the left. Changes in

CPT values for each generation is shown on the right.The mutation probability

is pm = 0.05 and crossover probability is pc = 0.5. Due to a low mutation

probability, only few iterations are needed for EM to converge. . . . . . . . . . . 100

xvi



List of Tables

2.1 Joint probability distribution table over binary random variables C, R, S and W . 7

2.2 Sample Data For PlayTennis network . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Sample incomplete data for PlayTennis network; PlayTennis is a hidden variable. 13

2.4 PlayTennis BN: Posterior distribution for the first 7 iterations . . . . . . . . . . 15

2.5 PlayTennis BN: Learned parameters for the first 7 iterations . . . . . . . . . . . 16

3.1 Comparing max LL for the GAEM-TRAD, GAEM-PC, and GAEM-ALEM meth-

ods with the traditional EM method for Carstarts and Alarm. The highest max LL

are in bold. The total number of iterations taken to reach the max LL is shown

in Table 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Comparing total iterations for GAEM-TRAD, GAEM-PC and GAEM-ALEM

methods with traditional EM method. Speedups are shown in parentheses, with

the highest speedups in bold. These results corroborate the CPU-time experi-

ments in Figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Average number of iterations for chosen hidden variable configurations for the

ALEM approach, with speedup = traditional iterations
ALEM iterations in parentheses, for Carstarts &

Alarm networks. Highest speedups are in bold. These results corroborate with

the wall-clock time experiments shown in Figure 4.5. . . . . . . . . . . . . . . . 65

4.2 Average number of iterations for chosen hidden variable configurations for the

ALEM approach, with speedup = traditional iterations
ALEM iterations in parentheses,for Win95pts &

Hepar2 networks. Highest speedups are in bold. . . . . . . . . . . . . . . . . . 65

xvii



4.3 Minimum runs variation and solution quality: ‘Failures’ is a count of the number

of hidden variable-sample size configurations (out of a total of 24 for each entry

for Carstarts, 30 for each entry for Alarm, and 18 for each entry of Win95pts

and Hepar2) where we fail to achieve the global maximum as we vary the mini-

mum runs, and RLSavg of only those experiments that did not achieve the global

maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xviii



Chapter 1

Introduction

1.1 Probabilistic Graphical Models and Machine Learning

Many real world systems have uncertain behavior. A prediction model typically will be more

accurate if it takes into account the uncertain behavior of these systems. Probabilistic graphical

models (PGMs) are used for this purpose. PGMs combines probability theory and graph theory.

Probability theory studies the uncertain events and their effects on each other. For example, a

set of random variables can be used to model a weather prediction system. Let us consider two

random variables, E represent a weather-related event and W represent the weather. We wish to

reason about the probability of occurrence of rain (E = rain) given the cloudy weather (W =

cloudy). Probabilistic theory helps to answer such questions: P = P (E = rain | W = cloudy).

This relation shows the posterior probability of event random variable E conditioned on weather

random variable W . However, a real weather prediction system may be a complicated system

with thousands or millions of random variables. Each random variable can have many states and

associated probability values, which makes it difficult to store them efficiently and compactly.

For example, if we have a system with 1000 binary random variables, we need to store 21000

probability values to do reasoning in a naive way. Thus, we need an efficient way to represent

these probability distributions compactly.

Graph theory, which induces conditional dependence and independence assumptions, is used

to represent the random variables and their relationships compactly. PGMs are a graph-based

representation of complex probabilistic distribution over a set of random variables. The nodes

1



of the graph represent the random variables, the edges represent the probabilistic interactions

between them and the probabilities associated with each node are stored. The number of proba-

bility values stored based on a graph structure is modest compared to the size of the represented

probability distribution. A Bayesian network (BN) is a commonly used PGM in uncertainty

reasoning of many real world problems such as electrical power system diagnosis [69], medical

diagnosis [80] and image recognition [71].

A BN is a directed acyclic graph, whose nodes are random variables and whose edges often

represent causal-effect relationships between the variables. Associated with each node is a set of

conditional probability values that quantify the strength of causal relationship between the node

and its parents. Estimation of parameters can be challenging. Fortunately, using complete data,

learning parameters is reduced to finding maximum likelihood or Bayesian estimates, which are

the estimates that maximize the probability of observing the data. These parameters will be

similar to the true values when the amount of available data is large [28].

1.2 Expectation Maximization (EM)

In real world scenarios, the data can be incomplete i.e., can have missing or hidden values. For

example, hidden variables can arise due to privacy or security constraints and missing values can

arise due to a system fault. Hidden variables can also arise when the training data is large and

unlabeled. Labeling a training data is usually done by a person and this is a time consuming

task. A combination of the naive Bayes classifier and the EM algorithm is used to incorporate

the unlabeled trained data where the EM algorithm probabilistically labels unlabeled documents

and estimates the parameters of a naive Bayes classifier [79]. When the dataset is incomplete,

either with some hidden variables or missing values, expectation maximization (EM) [18] is

widely used to estimate the parameters. EM alternates between an expectation step (E-step), in

which it calculates an expectation of the likelihood by including the missing variables as if they

were observed and a maximization (M-step), in which the maximum likelihood estimates of the

parameters are found by maximizing the expected log likelihood found in the E-step .

2



1.3 Challenges Associated with EM

Despite its popularity, the EM algorithm has several severe limitations: the local optima problem;

the computational complexity of the E-step and the M-step; the slow convergence problem and

lack of understanding of EM progress. The EM algorithm can easily converge to a locally (but not

globally) optimal solution, depending on the initialization of the algorithm. The most prevalent

way to mitigate the local optima problem is the multiple starting point strategy [43, 68], wherein

we initialize the EM algorithm from multiple random starting points. After these EM runs have

completed, we choose the run that resulted in the highest data log likelihood and use that as a

conservative estimate of the global maximum. The multiple starting points strategy allows us

to search the parameter space extensively for globally optimal solutions, but can be extremely

expensive, considering that we expend a significant amount of processing power on runs that are

in no way guaranteed to be the global optimum or even close to it.

Stochastic algorithms have been combined with the EM algorithm to alleviate the local op-

tima problem. The Genetic Algorithm (GA) was first introduced by Holland (1975), based on

the principle of natural selection in the evolution of species. A GA framework was proposed for

solving the local maxima problem in EM [46, 85], where the focus is on learning Gaussian mix-

ture models from multivariate data. It is found that the genetic-based EM algorithm outperforms

the baseline EM, as it achieves the same fitness scores while identifying the correct number of

Gaussian components more often than the baseline EM.

A second problem with EM is the computational complexity in the E-step and the M-step.

This issue has been addressed by many variants of the EM algorithm [17, 65]. The E-step can-

not be performed in closed form in some cases, so stochastic approximation EM (SAEM) [17]

is introduced. SAEM replaces the E-step of the EM algorithm by one iteration of a stochastic

approximation procedure. The M-step can also become computationally unattractive. The Ex-

pectation Conditional Maximization (ECM) algorithm [65] is introduced to deal with this issue.

ECM replaces each complex M-step with a sequence of simple conditional maximization (CM)

steps in which each parameter is maximized individually, conditionally on the other parameters

remaining fixed.

A third problem with EM is that it can take an excessive number of iterations for convergence,

i.e., slow convergence. A number of methods have been proposed to counter-act this slow con-

3



vergence such as those utilizing conjugate gradient methods [45, 81, 93]. Most of these methods

require a modification to the original EM algorithm thus making it more complex, very difficult

to analyze and hence not popular in practice.

Finally, there is a lack of understanding of how the probability values of different random

variables change during the progress of EM learning. In a multiple random starting point setup,

we also may not be sure which EM runs are progressing well and which are not.

1.4 Summary of Thesis Contributions

In this thesis, we try to solve the local optima and the slow convergence problems of EM by

the application of evolutionary techniques. We attempt to speed up the EM algorithm and also

produce a higher quality solution. To tackle the lack of understanding problem, we provide an

user interface integrated with a multi-focus zooming technique to analyze the change in proba-

bility values during EM learning. We focus on the problem of learning parameters for Bayesian

networks in the presence of incomplete data.

• A Genetic Algorithm for Expectation Maximization (GAEM) that combines the monotonic

property of EM with the stochastic property of genetic algorithms is developed. Powerful

replacement mechanisms are investigated to counter-act the local maxima problem of EM.

Replacement happens among a group of random candidate solutions, those which perform

better, to form the parents for the next generation. The exploration of the search space

is done using genetic operators such as mutation and crossover. We investigated the ef-

fects of genetic operators for different mutation and crossover probabilities. We studied

the varying effects of population size on the local optima for different configurations of

crossover, mutation and replacement techniques. We found that small population size al-

ways performs better than large population sizes thus saving heavy computations. Using

finite Markov chain theory, we prove that GAEM converges to a global optimum. Our

experiments show that GAEM significantly reduces the average number of iterations and

speeds up EM on two Bayesian networks.

• We performed extensive experiments on Alarm and Carstarts Bayesian networks for vary-

ing degree of hidden variables and sample set configurations. We found that the average

4



number of iterations taken by all EM runs is significantly larger than the average num-

ber of iterations taken by successful EM runs. So, an age-layered EM algorithm (ALEM)

[94] is developed to speed up EM. The key idea is to identify a poorly progressing EM

run during an EM iteration and discard it from the population. The age-layered strategy

is influenced by the age-layered population structure (ALPS) paradigm, originally imple-

mented for genetic algorithms [40]. From our experiments, we found that ALEM manages

to significantly decrease the average number of iterations required on four Bayesian net-

works, but at the same time still achieves the global optimum, or gets very close, in all

instances.

• An intuitive user interface, used to visualize BNs is developed. The user interface consists

of a network window and a detail window. The network window shows the graphical view

of the BN and the detail window shows the probabilities associated with the nodes in the

BN. A multi-focus technique [100, 101] is developed, which allows analysts to zoom in

on multiple nodes and analyze them simultaneously. The visualization tool is used for

problem solving tasks with a BN. It also provided useful analysis regarding the behavior

of the EM algorithm and the progress of GAEM for one generation.

1.5 Outline of Thesis

In this thesis, we discuss some of the technical background in Chapter 2. We describe a novel

GA-based speed-up technique (GAEM) and describe experimental results in Chapter 3. Another

novel speed-up technique, ALEM, based on an age-layered strategy, is discussed in Chapter

4. Both these techniques are used to speed-up the EM algorithm for parameter estimation in

Bayesian networks. In Chapter 5, we present a user interface for visualizing BNs. It is integrated

with a multi-focus zooming technique that allows a user to zoom in on multiple nodes simulta-

neously study them in detail. The technique is useful in various diagnostic and analysis tasks. It

is also useful for understanding EM learning. We present conclusion and future work in Chapter

6.

5



Chapter 2

Technical Preliminaries

Speeding up EM algorithm for Bayesian network machine learning using stochastic methods

require an understanding of Bayesian networks, the EM algorithm and stochastic methods. In

this chapter, we give an introduction to Bayesian networks. We discuss the problem of learning

the parameters from data using maximum likelihood estimation and the EM algorithm. Finally,

we give an overview of a stochastic optimization technique, genetic algorithms, and describe

hybrid genetic algorithms.

Consider an example scenario [92], where one day we walk in the lawn and find the grass is

wet. It may be because it rained as the weather is cloudy. But the grass can also be wet when

the sprinkler is on. Usually the gardener turn on the lawn sprinklers when it is not cloudy. Given

that the grass is wet, we want to know what caused it, whether the rain or lawn sprinklers.

To answer such queries, we first need to specify the random variables of interest in this

problem. Random variables are Cloudy (C), Rain (R), Sprinklers (S) and GrassWet (W ). Each

variable can take one of the two values: 1 or 0. Secondly, we need to come up with the probability

values for each assignment of the random variables. For example, one such assignment can be

C = 1, R = 1, S = 0,W = 1. If we are living in a rainy place, it is most likely that the

grass gets wet due to rain. Then the probability of the above assignment will be close to 1.

The probabilities of all such assignments is called the joint probability distribution. The joint

probability distribution assigns probabilities to all possible events, as shown in the Table 2.1

below:

Suppose we want to know the probability that the grass is wet because of rain, P (R = 1|W =

6



C R S W Probability C R S W Probability

1 1 1 1 0.3 0 1 1 1 0.02

1 1 1 0 0.1 0 1 1 0 0.01

1 1 0 1 0.08 0 1 0 1 0.04

1 1 0 0 0.02 0 1 0 0 0.05

1 0 1 1 0.04 0 0 1 1 0.02

1 0 1 0 0.16 0 0 1 0 0.04

1 0 0 1 0.07 0 0 0 1 0.01

1 0 0 0 0.01 0 0 0 0 0.03

Table 2.1: Joint probability distribution table over binary random variables C, R, S and W .

1). Using the probability theory, we can compute the probability of P (R = 1|W = 1) as shown

below:

P (R = 1|W = 1) =

∑
C,S P (R = 1,W = 1, C, S)∑
C,S,R P (W = 1, C, S,R)

(2.1)

The values for the numerator and denominator can be obtained from the joint distribution table

by marginalization over the remaining variables.

The size of the joint probability distribution table is exponential in the number of random

variables involved in the problem. For our problem, we have 4 variables each of which can

take two values, so we have 16 entries as shown in the above Table 2.1. It is also difficult to

come up with the probability values for all such assignments in the table. We need a compact

representation of the joint distribution.

2.1 Bayesian Networks

Bayesian networks often provide compact representations of the joint distributions. Formally, a

BN is a directed acyclic graph whose vertices are random variables and the directed edges denote

the dependency relationship among the random variables. Bayesian networks are well suited for

systems where we need to make predictions under uncertainty [84]. We use upper case letters

(X) to denote the random variables and lower case letters (x) denote the specific state of the

random variable. Let θ denote the probability values (also called parameters). Let bold face

7



Figure 2.1: Sprinkler Bayesian Network; inspired by Stuart J. Russell and Peter Norvig [92]

upper case letters X denote the variable sets and bold face lower case letters x denote their set

instantiations. We use Pa to denote the parent set of the random variable X .

Formally, a BN is defined as B = (G, P ), where G is a directed acyclic graph and P is the set

of probability distributions. The graph is denoted by G = (X,E) where X = {X1, X2 . . . Xn}

is the node set and E is the edge set. Each node Xi represents a random variable that can be

discrete having a countable number of states or continuous. If there is an edge from Xi to Xj ,

then (Xi, Xj) ∈ E. We call Xi as the parent of Xj . Pa(Xj) denotes the set of all parents of

Xj . The key property of BNs is the conditional independence of the variables from any of their

non-descendants, given the value of their parent variables, i.e., given the value of Pa(Xj), Xj is

conditionally independent of all its non-descendants. A BN factorizes a joint distribution P (X)

as shown below:

P (X) =
n∏
i=1

P (Xi | Pa(Xi)) (2.2)

Figure 2.1 shows sprinkler Bayesian network [47] in which the Cloudy variable (whether it

is cloudy) has two casual links, one causal link to whether it rains, and another causal link to

whether the lawn sprinklers are turned on (because a gardener who observes clouds is less likely

to turn the sprinklers on). Both rain and sprinklers have an effect on whether the grass gets wet.

Once we have specified the structure of the Bayesian network, we need to know the probability

of every state for those variables. From the conditional independence assumption, it makes sense

8



to specify probabilities in a Bayesian network by specifying the conditional probability of a node

given its parents.

A conditional probability table (CPT) of a variable Xi is a probability distribution of Xi for

each combination its of parents values. CPTs can be shown in tabular format next to each node

in Figure 2.1. Such CPTs can be created by domain experts or machine learning techniques. The

size of the CPT is only exponential in the number of parents, this makes inference (Section 2.2)

and machine learning (Section 2.3) computationally feasible in Bayesian networks.

2.2 Inference in Bayesian Networks

Let E ⊂ X be the variables which are under observation (we call them evidence variables),

and e denote their observed values (evidence). A Bayesian network can help to solve different

probabilistic queries. The process of solving the probabilistic queries is called inference. The

inference algorithms assume that the nodes in E are clamped to values e. Computation of most

probable explanation (MPE) amounts to finding a most likely assignment (y) to all of the non-

evidence variables Y = X − E, or MPE(Y). Computation of marginals (or beliefs) amounts to

inferring the most likely value (MLV) over one query variable Q ∈ Y. Computation of the max-

imum a posteriori probability (MAP) generalizes MPE computation and finds a most probable

instantiation over some variables Q ⊆ Y, MAP(Q, e). Different BN inference algorithms can be

used to perform the above computations. Different BN inference algorithms [51], can be used to

perform the above computations.

2.3 Parameter Estimation for Bayesian Networks

In order to be able to answer different queries, it is necessary that the conditional distribution of

each random variable is fully specified. Often these conditional distributions include parameters

which are unknown and need to be learned from data. Parameter estimation can be thought of

as the process of estimating these distributions for the random variables. If the data is complete,

maximum likelihood estimation is used. If the data is incomplete, expectation maximization

algorithm (EM) [19] is widely used.

9



Figure 2.2: PlayTennis Bayesian network; inspired by Tom Mitchell [70]

2.3.1 Maximum Likelihood Estimation

In Maximum Likelihood Estimation(MLE), we assume that we know the structure of the Bayesian

network and have complete data with no missing values. Consider a simple Bayesian network

(shown in Figure 2.2), where the random variables are X1 = PlayTennis, X2 = Outlook, and

X3 = Wind. We denote the sample space as Ω. All the variables are binary, Ω(X1) = {yes, no},

Ω(X2) = {sunny, rain} and Ω(X3) = {weak, strong}. The sample data is shown in Table 2.2.

We denote the whole dataset as D and each data sample as di. Let M be the total number of

samples in the dataset D.

Example PlayTennis(X1) Outlook(X2) Wind(X3)

1 no sunny weak

2 yes rain weak

3 yes sunny strong

4 no rain strong
...

...
...

...

Table 2.2: Sample Data For PlayTennis network

Our goal is to estimate the “best” set of parameters (θbest) that fits the given data. θbest is

called the MLE estimate. We use likelihood function (L(θ : D)) to measure the likelihood of

data given the parameters. X[m] denote the observed variable. For computational convenience,

the MLE estimate is obtained by maximizing the log-likelihood function (LL(θ|D)).

The likelihood function is given by:

L(θ : D) =
M∏
m=1

P (X[m]|θ) (2.3)

10



The log-likelihood function is given by:

LL(θ : D) =
M∑
m=1

logP (X[m]|θ) (2.4)

MLE estimate is given by:

θML = arg max
θ

M∑
m=1

logP (X[m]|θ) (2.5)

In the case of PlayTennis BN, the likelihood function is given by:

P (D|θ) =
M∏
m=1

P (X1[m])P (X2[m]|X1[m])P (X3[m]|X1[m]) (2.6)

The log-likelihood function is given by:

logP (D | θ) =
M∑
m=1

(logP (X1[m]) + logP (X2[m]|X1[m]) + logP (X3[m]|X1[m]) (2.7)

Suppose we are interested in finding θX3=weak|X1=no. Differentiating the log-likelihood func-

tion (LL) and solving for θx3|x1 gives the maximum likelihood estimate.

δlogP (D | θ)

δθX3|X1

=
δ
∑M

m=1 logP (X3[m]|X1[m])

δθX3|X1

= log(θkX3|X1
) + log(θtX3|X1

)

= k log(θX3|X1) + t log(θX3|X1)

where k and t are the times X1 = yes and X1 = no are seen in D

= k log((θX3|X1)) + t log(1− θX3|X1)

where X3 is binary (X3=weak or X3=strong) in our example.

(2.8)

θX3|X1 =
k

k + t
(2.9)

From the above data, we can estimate the conditional probability distributions by counting

the number of times a given combination of values are observed in the dataset. Eg. θX1=yes =

#(X1=yes)
#(X1=yes)+#(X1=no)

and θX3=weak|X1=no = #(X3=weak)
#(X1=no)

. In general, θx|u = #(x,u)
#(u)

, where #(x, u)

is the number of times x and u appear in the dataset, and #(u) is the number of times u appears

in the dataset.

11



When the data is incomplete, the problem of estimating the conditional distribution becomes

harder. The data is incomplete in three different ways. First, missing at random (MAR), where

the probability that a value is missing depends on observed values. For example, a medical

test result is missing because a doctor was fairly sure of a diagnosis given earlier test results.

Second, missing completely at random (MCAR), where the probability that a value is missing is

independent of the observed values. For example, a sensor fails to record a value due to a power

blip. We will be focussing on the second case (MCAR), we call it the hidden variables case. In

this case, we assume the variable is never observed. Expectation Maximization algorithm [18]

is typically used for estimating parameters with incomplete data. EM starts with some initial

parameters θ0, called a random starting point, and successively improves on them via iteration.

2.3.2 Expectation Maximization Algorithm

The Expectation Maximization (EM)[18] family of algorithms is one of the most popular meth-

ods for learning the parameters of probabilistic models. It is widely used for maximum like-

lihood estimation in incomplete data models. Let Y be the set of observed variables and Z

be the set of unobserved variables. We cannot use MLE to calculate θML, where θML ←

arg maxθ log(P (Y,Z|θ)) . We lost its unimodality and its closed form representation because of

the hidden variables Z. EM is used to estimate the parameters using the expected log likelihood

EP (Z|Y,θ)[log(P (Y,Z|θ))].

The likelihood function is given by:

L(θ :< D,Z >) =
M∏
m=1

∑
Z[m]∈z

P (Y [m], Z[m] = z|θ) (2.10)

The log-likelihood function is given by:

LL(θ :< D,Z >) =
M∑
m=1

log
∑
Z[m]∈z

P (Y [m], Z[m] = z|θ) (2.11)

We use expected log likelihood due to the presence of hidden variables Z. Expected log

likelihood function is given by:

EP (Z[m]|Y [m],θ)[LL(θ :< D,Z,θt >)] =
M∑
m=1

∑
Z[m]∈z

P (Z[m]|Y [m],θt) logP (Y [m], Z[m] = z|θ)

(2.12)

12



where θt are the parameters at iteration t and θ are the new estimated parameters.

MLE estimate can be computed using the expected log likelihood function.

θt+1
ML = arg max

θ

M∑
m=1

∑
Z[m]∈z

P (Z[m]|Y [m],θt) logP (Y [m], Z[m] = z|θ) (2.13)

In the case of PlayTennis BN, suppose we are interested to know whether it is good to play

tennis given the outlook and wind. But lets say that, we have collected data about outlook and

wind for the past few days. There is no data about the playTennis random variable. The collected

sample data is shown in Table 2.3. The column ”Count” represents the number of times the data

is seen in the dataset. The Bayesian network is shown in Figure 2.2.

PlayTennis(Z1) Outlook(Y2) Wind (Y3) Count

? sunny weak 6

? rain strong 4

? sunny strong 1

? rain weak 1

Table 2.3: Sample incomplete data for PlayTennis network; PlayTennis is a hidden variable.

In the E-step, the EM algorithm assigns a probability distribution for the hidden variables

given the observed data and the current model (P (Y [m], Z[m] = z|θ)). This step involves

a call to the inference algorithms. For a smaller BN (eg. PlayTennis BN), we can compute

the joint distribution by hand. So the posterior distribution over the hidden variable involves

a simple calculation as shown below for P (Z1 = yes|Y2 = sunny, Y3 = weak). Similarly,

we find P (Z1 = yes|Y2 = rain, Y3 = weak),P (Z1 = yes|Y2 = sunny, Y3 = strong) and

P (Z1 = yes|Y2 = rain, Y3 = strong).

P (Z1 = yes|Y2 = sunny, Y3 = weak) =
P (Z1 = yes, Y2 = sunny, Y3 = weak)

P (Y2 = sunny, Y3 = weak)

=
0.4 ∗ 0.55 ∗ 0.53

(0.4 ∗ 0.55 ∗ 0.53) + (0.6 ∗ 0.41 ∗ 0.42)
= 0.53.

In the M-step, the parameter estimation is done using the distribution over the hidden vari-

ables to generate expected counts for the different sample cases. The expected sufficient statistics

13



is calculated as the sum of the probabilities over all the sample cases for a given value of the hid-

den variable. The expected sufficient statistics for the playTennis BN is shown below:

ESS(Zi : D, θ) =
M∑
m=1

P (Zi[m]|Y [m], θ)

ESSθt(Z1 = yes) =
M∑
m=1

(P (Z1 = yes) = 4.68

ESSθt(Y2 = sunny, Z1 = yes) =
M∑
m=1

(P (Z1 = yes|Y2 = sunny) = 2.54

ESSθt(Y3 = weak, Z1 = yes) =
M∑
m=1

(P (Z1 = yes|Y3 = weak) = 2.51

ESSθt(Z1 = no) =
M∑
m=1

(P (Z1 = no) = 7.31

The new set of parameters are estimated using the MLE as shown below, where X denotes

all the variables in the BN, x denotes its values and u denotes the values of parent variable.

θt+1
xi|u =

ESSθt(xi,u)

ESSθt(u)

P (Z1 = yes) =
ESS(Z1 = yes)

ESS(Z1 = yes) + ESS(Z1 = no)
= 0.39

P (Y2 = sunny|Z1 = yes) =
ESS(Y2 = sunny, Z1 = yes)

ESS(Z1 = yes)
= 0.54

P (Y2 = sunny|Z1 = no) =
ESS(Y2 = sunny, Z1 = no)

ESS(Z1 = no)
= 0.34

P (Y3 = weak|Z1 = yes) =
ESS(Y2 = weak, Z1 = yes)

ESS(Z1 = yes)
= 0.54

P (Y3 = weak|Z1 = no) =
ESS(Y2 = weak, Z1 = no)

ESS(Z1 = no)
= 0.34

14



The expected log likelihood is calculated using the below equation:

M∑
m=1

EP (Z|(Y,θ))[LL(θ|D)] =
N∑
i=1

∑
(yi,ui)

M∑
m=1

P (Z = z|d[m], θ)logθ(yi|ui)

=
N∑
i=1

∑
(yi,ui)

ESSθt(yi, ui)logθ(yi|ui)

LL = 4× log((0.39 ∗ 0.46 ∗ 0.46) + (0.61 ∗ 0.66 ∗ 0.66))+

× log((0.39 ∗ 0.54 ∗ 0.46) + (0.61 ∗ 0.34 ∗ 0.66))+

× log((0.39 ∗ 0.46 ∗ 0.54) + (0.61 ∗ 0.66 ∗ 0.34)+

6× log((0.39 ∗ 0.54 ∗ 0.54) + (0.61 ∗ 0.34 ∗ 0.34))

= −15.99

Table 2.4: PlayTennis BN: Posterior distribution for the first 7 iterations
Iteration 1 2 3 4 5 6 7

P (Z1 = yes|Y2 = sunny, Y3 = weak) 0.53 0.74 0.87 0.95 0.98 0.99 0.99

P (Z1 = yes|Y2 = rain, Y3 = strong) 0.29 0.16 0.09 0.04 0.02 0.01 0.01

P (Z1 = yes|Y2 = sunny, Y3 = strong) 0.42 0.43 0.45 0.46 0.47 0.47 0.47

P (Z1 = yes|Y2 = rain, Y3 = weak) 0.39 0.43 0.44 0.46 0.47 0.47 0.47

EM alternates between performing an E-step, which computes an expectation of the likeli-

hood by including the incomplete data as if they were observed, and a M-step, which computes

the maximum likelihood estimates of the parameters by maximizing the expected likelihood

found in the E step. The parameters found in the M step are then used to begin another E step

and the process is repeated until convergence. In our PlayTennis BN, the EM algorithm converges

around 7 iterations. Table 2.4 shows the posterior probability distribution of the PlayTennis (Z1)

hidden variable. The learned parameters for the first 7 EM iterations of the PlayTennis BN are

shown in Table 2.5. The CPTs for Y2 and Y3 are the same (Table 2.5), which also makes sense,

since the data is completely symmetric for Y2 and Y3. When z1 = yes, y2 and y3 are almost

certainly sunny and weak respectively. When z1 = no, y2 and y3 have a moderately high proba-

bility of being rain and strong respectively. The graph shown in Figure 2.3 shows the progress

15



Figure 2.3: PlayTennis BN: There are two local optima, one is around LL = −13.52 when the

independent parameters are set near 0.5. Other local optima is stuck at LL = −16.3 when the

independent parameters are set to a same value 0.1.

of log likelihood of the observed data given the model as a function of the iteration, we can see

that it increases monotonically. The EM algorithm takes larger increments in the log likelihood

value , especially during the initial EM iterations [66].

Table 2.5: PlayTennis BN: Learned parameters for the first 7 iterations
Iteration 1 2 3 4 5 6 7

P (Z1 = yes) 0.39 0.39 0.42 0.41 0.41 0.41 0.41

P (Y2 = sunny|Z1 = yes) 0.54 0.61 0.24 0.80 0.86 0.89 0.89

P (Y2 = sunny|Z1 = no) 0.34 0.29 0.55 0.15 0.10 0.09 0.08

P (Y3 = weak|Z1 = yes) 0.54 0.61 0.24 0.80 0.86 0.89 0.89

P (Y3 = weak|Z1 = no) 0.34 0.29 0.55 0.15 0.10 0.09 0.08

The EM algorithm has been widely used in many engineering fields, from estimating transi-

tion and emission probabilities in hidden Markov models in speech recognition (the Baum-Welch

algorithm [87]) to microarray gene expression clustering in computational biology [20]. Despite

its successful and widespread use, the EM algorithm has several limitations. It has a strong ten-

dency to gravitate towards the locally optimal solution. Depending on how our training algorithm

16



is initialized, one can settle on a set of parameters that are locally but not globally optimal. This

phenomenon can in turn lead to other issues, for example poor generalization to unseen test data.

Several techniques have been proposed to allay this problem, for example initializing EM

from multiple random starting points and selecting the highest likelihood out of all runs. The

multiple starting point strategy is a single-point deterministic search. Though it can improve the

performance of search but still are adversely affected by the existence of multiple local optima.

So many EM runs have to be started which can be very expensive computationally. Consequently,

many speed-up techniques have been proposed. These speed-up techniques might involve mod-

ification of the original algorithm, require tuning of a number of parameters, thus making the

original algorithm more complex.

In this work, we focus on the application evolutionary techniques for speeding-up EM al-

gorithm. In particular, we apply genetic algorithms for speeding up EM algorithm at the same

achieving a better log likelihood. Genetic algorithm is chosen as it is a population based search

in contrast to other stochastic methods such as tabu search or simulated annealing.

2.4 Genetic Algorithms

Genetic Algorithm (GA) was first introduced by Holland (1975) based on the principle of natural

selection in the evolution of species. GAs are mainly used as function optimizers. It is based

on a stochastic and population based search. The stochasticity is introduced by mutation and

crossover operator. These operators are applied on each individual in the population. GAs are

widely used as they are robust, simple to implement, and generic in nature which contributes its

success in many applications.

In this section, first we present a simple genetic algorithm. We extend it to hybrid genetic

algorithm and discuss its implementation in more detail.

2.4.1 The Simple Genetic Algorithm

A simple genetic algorithm is shown in Algorithm 2.4.1. In GA, a set of individuals which con-

stitute a population are evolved toward better solutions. Each individual, denoted by ρti, is called

as a chromosome or a solution. Traditionally, chromosomes have alphabet {0, 1}. The evolution

17



usually starts with the set of randomly generated solutions, denoted by ρt = {ρt1, ρt2, . . . , ρtn}

where t = 0 representing the initial population and n is the total number of individuals. After

creating the initial population, each individual is evaluated and assigned a fitness value. The eval-

uation or objective function provide a measure of performance of the individual with respect to

a particular set of parameters. Each individual is selected with selection probability proportional

to it’s fitness. Selected individuals (ρt′) undergo mutation and crossover. Crossover happens be-

tween two individuals with crossover probability pc and constitute population ρt′′ . For example,

c1 = (000111) and c2 = (111000) are two individuals. In a single point crossover, with the

crossover point =3, the new set of offspring individuals after crossover are c3 = (111111) and

c4 = (000000). These offspring individuals c3 and c4, then undergo mutation with mutation

probability pm and form population ρt′′′ . For example, if mutation on c3 happens at the first po-

sition, then the mutated individual will look like, c3 = (011111). After crossover and mutation,

the offspring individuals in the current population compete with the parents to be selected for the

next generation. These selected set of individuals (ρt′′′′) become parents for the next generation.

The above steps, selection, crossover and mutation happen iteratively. The population in each it-

eration is called a generation. Such a GA is called a generational GA where the entire population

is replaced in every generation.

When genetic algorithms are used for optimization, they are often not used as simple ge-

netic algorithm. But they are viewed as a framework for population based search. The genetic

algorithms used for optimization are mostly modified to improve their solutions in terms of solu-

tion quality and computational efficiency. A hybrid genetic algorithm is developed in which the

ability of the standard genetic operators is augmented with a local search algorithm [23].

2.4.2 Genetic Algorithm with Local Search

Global search, for example as found in GAs, aims to ensure that every part of a search space is

searched enough to provide a reliable estimate of the global optimum. A specific local search

method, often tailored to a given problem, provides a refinement of the current solution which

will often produce a better solution. A combination (GALS) of the two often produces better so-

lutions than either of them alone. That is the reason why many optimization algorithms combine

a domain specific local search strategy with a global search method to produce better solutions.

18



Algorithm 2.4.1: GA(maxgen)

procedure MAIN(ρ0,maxgen)
t← 1
comment:
Randomly generate individuals; evaluate
ρt ← RANDOMIZE(ρ0)
F (ρt)← DOEVALUATION(ρt)
repeat

ρt
′ ← SELECTION(ρt)

ρt
′′ ← DOCROSSOVER(ρt

′
, pc)

ρt
′′′ ← DOMUTATION(ρt

′′
, pm)

F (ρt
′′′

)← DOEVALUATION(ρt
′′′

)
ρt+1′ ← REPLACEMENT(F (ρt), F (ρt

′′′
))

t← t+ 1
until t ≤ maxgen

Algorithm 2.4.2: GALS(maxgen)

procedure MAIN(ρ0,maxgen)
t← 1
comment:
Randomly generate individuals; evaluate
ρt ← RANDOMIZE(ρ0)
comment:
Do local search; evaluate
ρt

′ ← APPLY LOCAL SEARCH(ρt)
F (ρt

′
)← DOEVALUATION(ρt

′
)

repeat

ρt
′′ ← SELECTION()ρt

′

ρt
′′′ ← DOCROSSOVER(ρt

′′
, pc)

ρt
′′′′ ← DOMUTATION(ρt

′′′
, pm)

F (ρt
′′′′

)← DOEVALUATION(ρt
′′′

)
ρt+1 ← REPLACEMENT(F (ρt

′
), F (ρt

′′′′
))

ρt+1′ ← APPLY LOCAL SEARCH(ρt+1)
t← t+ 1

until t ≤ maxgen

Figure 2.4: A simple genetic algorithm is shown in Algorithm 2.4.1 [35]. A genetic algorithm
with local search is shown in Algorithm 2.4.2 [52].

Hybrid genetic algorithms, which integrates GAs and local search are used in cloud computing

[109], genetic engineering [42] and machine learning [53, 82].

Hybrid genetic algorithms are used in two different ways. The first approach is to use the local

search after one complete run of a GA. Here the local search is used to fine tune the solutions

produced from GA. For example, a reward based decision making procedure of when to use the

GA and when to use the local search is discussed [62]. The other approach is to use the local

search within every GA iteration. In this type of GALS hybrids, the local and global search can

influence each other’s behavior. A simple GALS framework is shown in Algorithm 2.4.2.

It can be seen from Algorithm 2.4.2 that the genetic operators are applied on the new set of

individuals ρt′ , produced by the local search. This type of learning where learned individuals of

local search replaces the parent individuals is called Lamarckian evolution. The alternative to

Lamarackian evolution is Baldwinian evolution where the learned individual of local search is

discarded and only its fitness influences the search. We consider Lamarckian evolution as we are

interested not only in the fitness of the individual but also on the genes (learned parameters) of

19



the individual.

Hybrid genetic algorithms are not only seen as variants of GAs that have the local search

component. The use of elitism for keeping the best solution seen so far in the replacement

procedure is a departure from the traditional genetic algorithm. Hybrid GA acts as a steepest

ascent algorithm by guiding the genetic algorithm in the direction of the best solution seen so far.

This bias in the direction of exploration will help to arrive at a good solution quickly even with

small populations.

In this thesis, we are focused on combining the monotonicity of EM algorithm along with

the stochasticity of the GA algorithm based on Lamarckian evolution, to speed up the EM at the

same time producing better optimal solutions.

20



Chapter 3

GAEM: Genetic Algorithm for Expectation
Maximization

We develop a method called Genetic Algorithm for Expectation Maximization (GAEM) for

learning parameters in Bayesian networks. The method is based on using the Expectation Maxi-

mization (EM) algorithm. This method aims to combine the global search property of a GA with

the local search property of EM. We introduce GAEM, compare it with other related works in

the area, study some of its properties both analytically and empirically. Experimentally, GAEM

provides a significant speed-up since it tends to select more fit individuals, which converge faster,

as parents for the next generation.

3.1 Introduction

In this chapter, we aim to address the local optima and the slow convergence problems of Ex-

pectation Maximization algorithm (EM) by combining it with a Genetic Algorithm (GA). GAs

belong to the larger class of evolutionary algorithms (EA), which generate solutions to opti-

mization problems using techniques inspired by natural evolution, such as inheritance, mutation,

selection, and crossover. A GA selects among a group of random candidate solutions, those

which perform better, as the parents for the next generation. We focus on the problem of using

the EM algorithm for parameter estimation in Bayesian networks (BNs). Our contributions are

the following:

• We present and analyze our Genetic Algorithm for EM (GAEM) where we introduce a

Genetic Algorithm framework for EM. The goal of GAEM is to reduce the number of

iterations in a multiple random starting point EM setup by selecting more fit individuals as

21



parents for the next generation.

• We classify BNs based on the hardness of their search landscapes. We perform experiments

to study the role of varying population sizes, crossover and mutation probabilities, and

different replacement techniques for different BN search landscapes.

• We propose a new replacement mechanism called the GAEM-ALEM replacement mecha-

nism. In this mechanism, the child EM run is compared with its parent EM run during the

EM local search. The fitness of an EM run is measured by the log likelihood value. If the

child EM run has lesser log likelihood than its parent, then it is discarded and replaced by

the parent EM run.

• We perform experiments to compare the impact of GAEM in terms of log likelihood, total

number of iterations and CPU time on varying sample sizes and replacement mechanisms.

We find that the GAEM’s solution quality is always higher than the traditional EM and

GAEM-ALEM replacement mechanism provides a speed up of 2 to 7 times resulting in a

significant reduction in the CPU time.

We discuss related work in Section 3.2. We present our approach, Genetic EM algorithm

(GAEM), in Section 3.3, where we combine the Genetic algorithm with EM in an attempt to

speed up EM and overcome the local maxima problem. In Section 3.4, we derive the conditions

on the parameters of GAEM which ensure its convergence to the global optimum. We perform

experiments in Section 3.5 to demonstrate GAEM’s ability to reduce the number of iterations

while at the same time achieving better solution quality. We conclude with a summary of contri-

butions and future work in Section 3.6.

3.2 Discussion of Related Work

The EM algorithm has three problems: local optima, computational cost of the E-step and the

M-step, and slow convergence. Several variants of the EM algorithm have been proposed to

address these problems, as discussed in Section 3.2.1 below before comparing with GAEM in

Section 3.2.2.

22



3.2.1 Related Work

The most prevalent way to mitigate the local optima problem is the multiple restart strategy, in

which the EM algorithm is initialized from n random starting points [13]. After these n EM runs

have completed, the run that results in the highest log-likelihood is used as an estimate of the

global optimum.

The GA was introduced by based on Darwin’s principle of natural selection in the evolution

of species [39]. Some of the challenges of stochastic EM implementation are reviewed and a GA

method for solving the local maxima problem in EM is proposed [46]. GA and EM are combined

for learning Gaussian mixture models [85]. Their algorithm escapes from local optima and iden-

tifies the number of Gaussian components more accurately than traditional EM. A random swap

EM algorithm is proposed for learning Gaussian mixture models, where a randomly selected

component is swapped to a new location in the feature space [108]. In summary, learning Gaus-

sian mixture models from multivariate data was the main focus in the above works [46], [85] and

[108]. They show that a GA-based EM algorithm outperforms traditional EM, as it achieves the

same fitness score while identifying the correct number of Gaussian components more often.

The problem of the computational cost of the E-step and M-step has been addressed by

many EM variants [17] [65]. For clustering of large datasets, there are incremental EM and

lazy EM speed-up methods [102]. Both these methods are based on a partial E-step and provide

encouraging results for Gaussian mixtures. In incremental EM, the EM algorithm cycles through

the samples in blocks and updates the parameters incrementally. A method to determine the

optimal block size is proposed. In lazy EM, at scheduled EM iterations, only samples that cause

significant changes in the parameters are used by EM.

Several methods have been developed to address the problem of slow convergence of the EM

algorithm. These methods use conjugate gradient, modified Newton Raphson techniques [44],

or age-layered methods [94]. Most of these methods require a modification to the original EM

algorithm. This makes the overall method more complex, more difficult to analyze, and hence

not popular in practice. Age-layered EM has been extended to the MapReduce framework [88],

[6] [5].

Other research, even though it does not study the EM algorithm directly, is also relevant to

this work. A review of the application of evolutionary algorithms for solving NP-hard prob-

23



lems in BN inference and learning is done [56]. A GA for learning BN structures is developed

[57]. This GA searches for the best ordering of the BN variables, where the score of an order

is the score of a single high-scoring BN structure [15]. An evolutionary Markov chain Monte

Carlo (EMCMC) method is proposed [75], which combines an evolutionary algorithm with a

Markov chain Monte Carlo algorithm for learning BN structures from incomplete data. A hy-

brid algorithm called Population Markov Chain Monte Carlo (PopMCMC) is introduced [58].

Their experimental results show that incorporating information exchange increases the rate of

improvement in solutions and the diversity in the population.

3.2.2 Comparison of GAEM to Related Work

We now compare GAEM to related methods. GAEM uses converged EM runs as parents for

the next generation unlike other related works [46], [85]. This allows GAEM to explore close-

to-optimal regions of the search space and helps the algorithm escape local optima. GAEM

does not modify the EM algorithm ([44], [17], [102], [65]) or the training data ([24]). Instead,

GAEM is as a wrapper around the EM algorithm and uses the full set of training data to learn the

parameters. Certain related works deal with learning Gaussian mixture models using EM [46],

[85], and [108]). Others are focused on Bayesian network structure learning [57], [58] and [75] .

GAEM is focused on parameter learning in discrete Bayesian networks using the EM algorithm.

3.3 Genetic Algorithm for Expectation Maximization (GAEM)

The GAEM algorithm combines the monotonic improvement property of the EM algorithm with

the stochastic property of a GA. A GA starts from a random set of individuals or parents. Two of

the parents are selected to undergo crossover and mutation to create two offspring. The fitness of

parents and offspring are evaluated through a fitness function. The individuals with the highest

fitness will be chosen as parents for the next iteration. Each iteration of this process is called a

generation. The entire set of generations is called a GA run.

The EM algorithm is a deterministic method, in that a particular starting point for an EM

run will always converge to the same answer. The fitness of an EM run is measured in terms of

its log-likelihood (LL), a measure of how well the parameters fit the training data. An EM run

can escape from a local but non-global optimum with the help of GA stochasticity introduced

by the crossover and mutation mechanisms of GAEM, see Figure 3.1. The input to the GAEM

24



algorithm is a set of EM runs and the output is a converged EM run with the maximum LL among

all EM runs seen in the GA run.

3.3.1 Notation and Definitions

Let X = {X1, X2, ..., XR} denote the set of random variables in a Bayesian network (BN).

Each random variable Xk is associated with a conditional probability table (CPT). An individual

ρt consists of a vector of CPTs of random variables in a BN.

Definition 3.3.1. The CPT estimate of an individual i at generation t is denoted by Θt
i. An

individual is defined as vector consisting of CPTs: ρti = (Θt
1,Θ

t
2, ..,Θ

t
R).

A CPT is generated based on the constraint that the sum of probabilities for different states

of the random variable should be equal to 1 for a parent instantiation. A CPT is given by:

Θt
j = (θt1, θ

t
2, ..) where θtl ∈ [0, 1] denotes a probability value for a particular state given a parent

instantiation.

3.3.2 GAEM: The Algorithm

We now discuss GAEM, see pseudocode in Figure 3.1. An individual ρ is created by initializing

its random variables with randomly generated initial probabilities for the CPT, observing the

sum constraint. Let np denote the population size, and ρt denote the bag of np individuals at the

t-th generation: ρt = (ρt1, ρ
t
2, .., ρ

t
np

). Let ng denote the number of generations. The number of

iterations reached by the i-th EM run is given by η(ρti). An EM run is converged when it has the

reached the maximum number of iterations ω or when the relative difference in log-likelihood

between successive iterations is less than ε. A learned individual ρt′i is produced when the EM

algorithm (line 24 in Figure 3.1) is run on an individual ρti until convergence. For each GA

generation, the learned individuals form a bag ρt′ = (ρt
′
1 , ρ

t′
2 , .., ρ

t′
np

). Crossover and mutation

(lines 31, 32 and 34 in Figure 3.1) are applied to ρt′ to create offspring ρt′′′ .

Consider an example BN with R = 5 random variables. We now describe the crossover,

mutation, and replacement mechanisms of GAEM for this BN.

Crossover The GA selects two learned individuals randomly from the learned individual set

ρt
′ as parents. Let ρt′a and ρt′b be two individuals from the parent population: ρt′a = (Θt′

a1,Θ
t′
a2,Θ

t′
a3,

Θt′
a4,Θ

t′
a5) and ρt′b = (Θt′

b1,Θ
t′

b2,Θ
t′

b3,Θ
t′

b4,Θ
t′

b5) We apply a single point crossover. Let c ∈ {1, 2, 3, 4}

be a random crossover point. Crossover happens with probability pc. The resulting individuals

25



1: procedure GAEM(ρ0, ng, np, pc, pm, α, ω, ε)
2: t← 1 . Initialize population
3: for i← 1, np do
4: ρt ← ρt ∪ ρti
5: end for
6: ρt

′ ← POPEM(ρt) . Compute learned
individuals

7: repeat
8: ρt

′′′ ← GA(ρt
′
)

9: if α = GAEM-ALEM & t ≥ 2 then
10: ρt+1′ ← GAEM-ALEM(ρt

′′′
)

11: else
12: ρt

′′′′ ← POPEM(ρt
′′′

)
13: end if
14: if t ≥ 2 then
15: ρt+1′ ← REPLACE(ρt

′
,ρt

′′′′
, α)

16: end if
17: ρ∗ ← SELECTBEST(ρt+1′

, ρ∗)
18: t← t+ 1
19: until t > ng
20: return ρ∗
21: end procedure
22: procedure POPEM(ρt)
23: for i← 1, np do
24: ρt

′

i ← EM(ρti, ω, ε) . EM till convergence
25: ρt

′ ← ρt
′ ∪ ρt′i

26: end for
27: return ρt

′

28: end procedure
29: procedure GA(ρt)
30: for ρt

′

i , ρ
t′

j ← ρt
′

do
31: (ρt

′′

i , ρ
t′′

j )← CROSSOVER(ρt
′

i , ρ
t′

j , pc)

32: ρt
′′′

i ←MUTATION(ρt
′′

i , pm)
33: ρt

′′′ ← ρt
′′′ ∪ ρt′′′i

34: ρt
′′′

j ← MUTATION(ρt
′′

j , pm)
35: ρt

′′′ ← ρt
′′′ ∪ ρt′′′j

36: end for
37: return ρt

′′′

38: end procedure
39: procedure GAEM-ALEM(ρt

′′′
)

40: ρt
′′′′ ← STARTEM(ρt

′′′
)

41: while |ρt′′′′ | 6= 0 do
42: for ρt

′′′′

i ← ρt
′′′′

do
43: if η(ρt

′′′′

i ) > n) then
44: STOPEM(ρt

′′′′

i )
45: if ( f(ρt

′′′′

i ) < f(ρt
′

i ) ) then
46: ρt+1′ ← ρt+1′ ∪ ρt′i
47: ρt

′′′′ ← ρt
′′′′ − ρt′′′′i

48: else
49: RESUMEEM(ρt

′′′′

i ))
50: end if
51: else
52: if (κ(ρt

′′′′

i , ω, ε)) then
53: ρt+1′ ← ρt+1′ ∪ ρt′′′′i

54: ρt
′′′′ ← ρt

′′′′ − ρt′′′′i
55: end if
56: end if
57: end for
58: end while
59: return ρt+1′

60: end procedure

Figure 3.1: The GAEM algorithm, with inputs: initial bag of EM runs (ρ0), number of generations (ng),
population size (np), crossover probability (pc), mutation probability (pm), iterations after which compar-
ison is performed in the GAEM-ALEM method (n), the name of the replacement method (α), iteration
threshold (ω), and LL tolerance (ε). We include pseudocode for GAEM-ALEM. Other replacement meth-
ods are discussed in Section 3.3.3. The procedure PopEM runs EM on a population until convergence;
StartEM starts EM on a population; StopEM stops an EM run; and ResumeEM resumes an EM run. The
procedure κ checks convergence of an EM individual. The output of GAEM is the EM run with the highest
LL found.

(ρt′′i and ρt′′j ) are the children (line 31 in Figure 3.1). For instance, if c = 2, then the children of

ρt
′
a and ρt′b are: ρt′′a = (Θt′′

a1,Θ
t′′
a2, Θt′′

b3,Θ
t′′

b4,Θ
t′′

b5) and ρt′′b = (Θt′′

b1,Θ
t′′

b2,Θ
t′′
a3,Θ

t′′
a4,Θ

t′′
a5)

Mutation The purpose of mutation is to introduce diversity. Mutation helps to avoid prema-

ture convergence and gives a broader exploration of the search space. Mutation alters the values

of one or more CPTs in an individual (lines 32 and 34 in Figure 3.1). For example, mutation in

individual ρt′′b happens with probability pm at the CPT Θt′′
i level. Mutation replaces the random

variable’s CPT Θt′′
i = (θt

′′
1 , θ

t′′
2 , ..) with randomly chosen values. Specifically, Θt′′′

a4 is mutated

by choosing random values satisfying the probability constraint that the state probabilities sum

to 1 for a given parent instantiation. The mutated individual ρt′′′b = (Θt′′

b1,Θ
t′′

b2,Θ
t′′
a3,Θ

t′′′
a4 ,Θ

t′′
a5). If

26



mutation is applied on all random variables, then the resulting EM individual will be similar to a

new random starting point and the EM algorithm will take more number of iterations to converge.

Hence, it is useful to apply mutation on only a few random variables.

Replacement The replacement mechanism picks individuals from two sets of learned indi-

viduals (ρt′ and ρt′′′′) to form parents for the next generation. The comparison is done using the

fitness f of learned individuals (line 45 in Figure 3.1). We define fitness as f(ρi) = LL(ρi). The

learned individuals of the first generation (t = 1) are ρ1′ = (ρ1
′

1 , ρ
1′
2 , .., ρ

1′
np

). The set of learned

individuals in ρ1′ undergo crossover and mutation as explained above and generate offspring

ρ1′′′ = (ρ1
′′′

1 , ρ1
′′′

2 , .., ρ1
′′′
np

). The EM algorithm is run on each individual in ρ1′′′ to generate a set

of learned individuals ρ1′′′′ . Now, the two sets of learned individuals (ρ1′ and ρ1′′′′) will undergo

replacement and the parents for the third generation are selected (lines 9 and 14 in Figure 3.1).

3.3.3 Replacement Mechanisms

We studied four different replacement mechanisms: traditional replacement, deterministic re-

placement, probabilistic replacement and ALEM-based replacement. We now explain each of

them.

Traditional Replacement (GAEM-TRAD) Using this method, we compare the fitness of

each parent ρt′i with its child ρt′′′′i and select the individual that has higher fitness (during crossover,

a child is tied to the parent from which it gets the first part). Using the above example, we first

compare the fitness of ρ1′1 with ρ1′′′′1 , then compare the fitness of ρ1′2 with ρ1′′′′2 , and so on. If the

parent ρ1′i is best, then it replaces its corresponding child ρ1′′′′i , otherwise we pick the child. This

method illustrates a competition within the family, where one parent competes with only one

child.

Deterministic Replacement (GAEM-DETER) This method is based on deterministic crowd-

ing [63], where an offspring competes against its most similar parent. The distanceKL(ρt
′
a , ρ

t′′′′
a )

is computed using KL divergence [54]. Under this replacement scheme, each offspring competes

for survival with its most similar parent. The winner is the individual with the highest fitness.

This crowding scheme can be used to efficiently preserve diversity in the population.

Probabilistic Replacement (GAEM-PC) Probabilistic crowding uses a non-deterministic

rule to establish the winner of a competition between parent and child [67]. The probability that

27



a parent (ρt′a ) replaces a child (ρt′′′′a ) is: Pρt′a = f(ρt
′
a )

f(ρt′a )+f(ρt′′′′a )
. In this replacement mechanism,

the fitter individuals do not always win over the weaker individuals, they win proportionally

according to their fitness. This strategy helps to preserve diversity in the population.

ALEM based Replacement (GAEM-ALEM) This technique is inspired by the age-layered

EM (ALEM) technique, where EM runs compete within age brackets [94]. Age is interpreted

as the number of EM iterations. The assumption is that the probability of a “young” and poorly

performing EM run (relative to its age bracket) turning into an “old” but strongly performing run

(relative to its age bracket) is low. Such a “young” and poorly performing EM run can thus be

discarded early to save CPU cycles for other, better performing EM runs.1 The EM algorithm

shows a rapid progress during the initial EM iterations, so traditional accelerating methods start

the optimization with EM and then move to accelerating methods when we are close to a solution

[103], [73]. We incorporated these ideas in the GAEM-ALEM() Pseudocode in Figure 3.1. After

an initial n iterations in GAEM, the fitness of a child EM run is compared with the fitness of

its parent EM run at each iteration (lines 43 and 45 in Figure 3.1) . If the parent has a higher

fitness than the child, then parent replaces child. If the child has a higher fitness, then the child

is allowed to iterate but the comparison check takes place at each EM iteration of the child. The

final set of individuals (ρt+1′) form the parents for the next generation (line 59 in Figure 3.1).

3.4 Analysis

Using finite Markov chain theory, it has been shown that the canonical GA converges to the

global optimum when the best solution is maintained in the population [91]. We will prove the

convergence of GAEM along similar lines as an earlier proof [53], namely by deriving conditions

for the parameters so that the convergence to global optimum is feasible. Some definitions from

matrix theory are given below:

Definition 3.4.1. A square matrix A is positive if its elements aij > 0 ∀ i, j ∈ {1, 2, ...,m}. A
square matrix A is primitive if there exists a k ∈ N such that Ak is positive. A square matrix is
column allowable if there exists at least one positive entry in each column. If the elements of a

1In ALEM, EM runs with similar age ( i.e., the number of iterations) are grouped together in layers. When
an EM run’s age exceeds upper limit of its current layer, it is moved up to the next layer if it can replace a poor
performing individual in the target layer, otherwise it is discarded. The introduction of age and layer ensures a fair
competition among similar EM runs. In GAEM-ALEM, a special case of age layering is used where the size of first
layer is set to n iterations. The size of all other layers are small with 1 iteration. The number of layers is not a fixed
value as in ALEM, but it is equal to the number of iterations taken by an EM run. Each child EM run is compared
with it’s parent EM run only and not with other EM runs as in the case of ALEM.

28



square matrix A, aij ∈ [0, 1] and
∑m

j=1 aij = 1, then it is a stochastic matrix.

In GAEM, the population of individuals at generation t is denoted by ρt (see Section 3.3.1).

A CPT is generated based on the constraint that the sum of probabilities of the states of a random

variable should be equal to 1 for a given parent instantiation. We define the state space S of this

problem as the space of all possible random starting points satisfying the CPT constraint. The

state space can be numbered from 1 to |S|. In GAEM, the process of generating a population can

be denoted by a random variable Y , Y (t) = ρtt≥0 is dependent only on the previous population

Y (t− 1) at generation (t− 1). Hence Y (t) = ρtt≥0 is a Markov chain and is denoted by:

Pr(Y (t) = ρt|Y (t− 1) = ρt−1, . . . , Y (0) = ρ0) = Pr(Y (t) = ρt|Y (t− 1) = ρt−1).

The transition probabilities pij are defined as the probability of generating population ρi from

ρj: pij(t) = Pr(Y (t) = ρi|Y (t − 1) = ρj). These transition probabilities are independent

of the time instant, i.e., pij(s) = pij(t) for all ρi,ρj ∈ S and for all s, t ≥ 1. Therefore,

Y (t) = ρtt≥0 is a time-homogeneous finite Markov chain. Let P = {pij} be the transition matrix

of the process Y (t) = ρtt≥0. The entries of the matrix P satisfy pij ∈ [0, 1] and
∑|S|

j=1 pij =

1 ∀i ∈ S. So P is a stochastic matrix. For GAEM to converge to a global maximum, it is required

that P be a primitive matrix. We investigate the operators that make the matrix P primitive. The

probabilistic changes of the individuals during GAEM operation can be captured by the transition

matrix P , which can be decomposed into a product of stochastic matrices, P = C ∗M ∗ R ∗ L,

where C, M , R, and L describe the intermediate transitions caused by crossover, mutation,

replacement, and local search (EM learning) respectively. Each element of the matrices C, M ,

R and L represent the transition probability of generating a new individual ρt+1′

i from a parent

individual ρt′i on the application of crossover, mutation, replacement, and local search (EM)

mechanisms respectively. Since every positive matrix is primitive, it is therefore enough to find

the conditions which make C and M positive, and R and L column-allowable.

Proposition: Let C, M , R and L be stochastic matrices, where C and M are positive2 and R

and L are column allowable. Then the product P = C ∗M ∗R ∗ L is positive.

Crossover: An individual ρt′′i can be obtained from the individual ρt′i on application of the

crossover operator. Each state of S is mapped probabilistically to another state, soC is stochastic.

Mutation: The matrix M is positive if any individual ρt′′′i can be obtained from an individual

2The crossover and mutation probabilities are assumed to be greater than zero (pc > 0 and pm > 0).

29



ρt
′′
i on application of the mutation operator. The mutation is done by taking into account the

constraint on CPT as discussed in Section 3.3.

Replacement: The matrix R is column allowable, i.e., there is at least one positive entry in

each column of the matrix. The replacement process does not alter the CPTs of the individ-

ual. This matrix takes into account the probability of survival of each individual in the current

population, which depends on the fitness (log likelihood) value of the individual. So there is

only one positive entry, rij when i = j. The survival probability can be bounded as shown:

rii ≥ f(ρti)∑N
i=1 f(ρ

t
i)
≥ 0, ∀i ∈ S. Even though this bound changes with the generations, it is always

strictly positive. Hence, R is column allowable.

Local search: The matrix L is column allowable, i.e., there is at least one positive entry in

the matrix. The local search is done by applying the EM algorithm, which is a deterministic

procedure. When an individual ρti undergoes EM learning, it will always converge to the same

new individual ρt′i . So there is only one positive entry per column, lij = 1.

Theorem: Let X(t) = max{f(ρti)|i = 1, . . . , np} be a sequence of random variables rep-

resenting the best fitness within a population ρt at generation t. Let the matrices C and M be

positive and R and L be column allowable as described above. Then,

limt→∞ Pr({X(t) = f ∗}) = 1,

where f ∗ = max{f(ρti) |ρti ∈ S} is the global optimum.

Proof Sketch: It is proved that a canonical genetic algorithm, which maintains the best solu-

tion found so far, converges to the global optimum [91]. Under the hypothesis of the theorem,

the transition matrix P of GAEM is primitive as discussed above. From the pseudocode in Fig-

ure 3.1, it can be seen that the best solution found in the generation is maintained.3 Thus, the

theorem follows from [91, Theorem 6]. �

3.5 Experiments

Local search helps to fine tune the solution whereas global search is more exploratory. We start

GA on a population of already converged EM individuals. The randomness in GA is introduced

by its operators. This randomness helps to move an already converged EM individual to a new

position in the search space. GA’s helps in finding a better starting point for the local search

3The best solution is different for different replacement mechanisms.

30



(EM) in the converged region of the search space. We investigate the role of GA’s operators such

as mutation, crossover and replacement mechanisms.

We have done experiments to understand the role of GA’s stochastic operators such as mu-

tation, crossover and replacement mechanisms. We also study the role of population size in

GAEM. Before we start with the experiments on GAEM, we do a search space analysis of four

different BNs and classify them into hard and easy search spaces. All the experiments were

performed for hard and easy search spaces.

In all sets of experiments, we set the maximum number of iterations that the EM algorithm

can undergo a maximum of 1000 iterations, and the log likelihood difference tolerance (i.e. if

the difference in log likelihood between two iterations is less than this tolerance, than we deem

the EM run to have converged or terminated) to 0.00001.

3.5.1 Datasets and Evaluation

We performed experiments on four Bayesian Networks (BN) of different sizes and structures,

the Carstarts with 18 nodes, Alarm with 37 nodes, Hepar2 with 70 nodes and Win95pts with 76

nodes. The Carstarts BN [36] is based on the various operations in a car. The more complex

Alarm BN [9] represents a real life situation for monitoring a patient in intensive care unit.

Hepar2 BN [83] is used for diagnosing liver disorders. The win95pts BN [41] is created for

printer troubleshooting in Windows 95. We collected these BNs from the bnlearn repository. 4

Through Gibbs sampling, we generated ns = 500 samples with the 19, 7, 35 and 38 hidden

variables for the alarm, carstarts, hepar2 and win95pts BNs respectively. For the alarm and

carstarts BN, we chose these hidden variables based on our previous experiments where we

found that with these hidden variables, EM took more number of average iterations to converge

[94]. For win95pts and hepar2, we hid 50% of the random variables. If m represents the number

of hidden variables in a hidden variable configuration, then for each configuration we randomly

chose m variables to hide. We implemented GAEM by interfacing with the libDAI graphical

models C++ library [72], which contains an EM implementation oriented towards parameter

estimation in Bayesian networks, and the Boost multithreading library to process the EM runs in

parallel.

4http://www.bnlearn.com/bnrepository/

31



For the GAEM experiments, we generated EM runs by randomly choosing starting points in

the search space for each Bayesian network, in this case starting conditional probability distri-

bution values, for each of the random variables in the network obeying the CPT constraint as

described in Section 3.3. These EM runs are the initial individuals in the population. The num-

ber of EM runs varies based on the experiments. The GAEM experiment determines the parent

individuals for the next generation based on crossover, mutation and replacement mechanisms

described in Section 3.3.

3.5.2 Search Space Analysis

To better understand the structure of the BN parameter search spaces, we first study the spread

of LL values for the traditional EM algorithm at convergence. In this experiment, we used eight

BNs: Carstarts, Child, Sprinkler, Insurance, Win95pts, Alarm, Hepar2, and Hailfinder. For each

BN, we executed np = 200 traditional EM runs and used a sample size of 500. Distances are

calculated using di = LL∗ - LLi, where LL∗ is the maximum LL (max LL) seen among the 200

EM runs and LLi is the LL of the i-th EM run. On the left side of Figure 3.2 shows the spread of

distances for the experimental BNs when np = 200.

Figure 3.2: Box plots (or box and whisker diagrams) reflecting the spread of log-likelihoods for
different BNs. For each BN, the plot is for np = 200 runs on the left side and np = 20 runs
on the right side, at convergence, of the traditional EM algorithm. We can see that the spread of
log-likelihoods is similar for the BNs in both figures.

The red line in Figure 3.2 denotes the median; everything above or below it represents the

distance of 50% of the EM runs. The size of the box denotes the spread of the LL distances

around the median. For Carstarts, Child, Sprinkler, and Insurance, the median is close to the

32



max LL. In Win95pts, the spread above the median is low, implying that 50% of EM runs are

closer to the max LL. Thus, we consider Carstarts, Child, Sprinkler, Insurance, and Win95pts as

easy search spaces. For Alarm, Hepar2, and Hailfinder, the spread above the median is high and

50% of the EM runs are away from the max LL. Thus, we consider these BNs as hard search

spaces. We ran the same experiment for each BN for np = 20 traditional EM runs. The results

are shown on the right side of Figure 3.2, where the spread of log likelihoods is similar to the left

side plot when np = 200 EM runs. From these results, we conclude that for classifying a new

BN as hard or easy search spaces, the user can run a few (such as np = 20) set of traditional EM

runs and draw box plots as shown in Figure 3.2 to compare the spread of log likelihoods with the

existing BNs.

3.5.3 Role of Population Size

With the above understanding of search spaces for each BN, we investigate the role of varying

population sizes. Our goal is to understand the effect of global search (GA) and local search (EM)

under varying population sizes. We did two experiments, one to study the GA’s performance

when EM (the number of EM iterations) is kept constant and another in which EM’s performance

is studied with GA (the number of generations) kept as constant.

In the first experiment, we investigate the GA’s role. The efficiency of GA depends on differ-

ent parameters such as number of generations, population size, mutation probability, crossover

probability and replacement mechanism. We vary the population size for a constant number of

generations. All other parameters are kept as constant.

For the second experiment, we study the role of EM. The efficiency of EM algorithm is

measured by the number of iterations taken by an EM individual when the EM algorithm is

allowed to iterate until convergence. So the number of generations is allowed to increase till

we reach a constant number of EM iterations,for example, ng ∈ N and nGAEM = 250. We

vary the population size for constant set of EM iterations. In both the experiments, mutation

probability and crossover probability is set as pm = 0.05 and pc = 0.5 respectively. GAEM-

TRAD replacement mechanism is used. We investigate the effect of varying population sizes on

the maximum log likelihood value seen so far in the generations.

33



Effect of Population Size with Fixed Number of Generations

In this experiment, we study the effect of EM on varying population sizes. We run the GAEM

algorithm for generations, ng ∈ {2, 4, 6, 8, 10} for the population sizes np ∈ {2, 4, 8, 16, 32} on

four different BNs. Within each generation, EM is run on each individual until convergence. So

the effect of EM is more on larger population sizes. The BNs used are alarm, carstarts, hepar2

and win95pts. The results are shown in Figure 3.3. On the left side of Figure 3.3, we show four

graphs, one for each BN, where the number of iterations is shown as a function of generations.

The number of iterations is cumulative, that is it is the total number of iterations that the GAEM

took till that generation. We can see a trend for all the four BNs, where the number of iterations

increases with population size. This result is expected, as we know that larger population sizes

undergo more number of EM iterations per generation compared to smaller population sizes.

On the right side of Figure 3.3, we show four graphs, one for each BN, where maximum

log likelihood is shown as a function of number of generations. For alarm BN, we can see that

smaller population sizes, np = 2 or np = 4, reach a poorer solution quality compared to larger

population sizes, np = 32 or np = 16. Similarly for hepar2 BN, a smaller population size of

np = 2 reached a poor solution quality compared to other population sizes. These results shows

that for harder search spaces, a larger population size is needed to reach higher solution quality.

Larger population tends to push GA to explore new regions, thus helping the individuals to get out

the local maxima. But a larger population undergoes more EM iterations, so it is recommended

to use an optimum population size such as np = 4 or np = 8 for hard search spaces. For carstarts

and win95pts BN, we see that all population sizes converge to approximately the same solution

quality. We presume that this behavior is due to the easier search space structure compared to

alarm and hepar2 BN. It is recommended to use a small population size when the BN search

space structure is easier, since a small population size undergoes fewer EM iterations as shown

on the left side of Figure 3.3.

Effect of Population size with Fixed Number of Iterations

The goal of this experiment is to understand the impact of GA on varying population sizes for

constant computational resource. We run the GAEM algorithm for a fixed number of EM itera-

tions, nGAEM ∈ {250, 500, 750, 900, 1250} on different population sizes np ∈ {2, 4, 8, 16, 32}.

34



Figure 3.3: Effect of populations size on different BNs when GAEM is run for fixed number
of generations, ng ∈ {2, 4, 6, 8, 10}, shown on the x-axis. On the y-axis, in the left column we
show the cumulative number of EM iterations, in the right column we show the maximum log
likelihood.

35



Each GAEM run is allowed to undergo any number of generations till it reaches a fixed number

of EM iterations. So the effect of the GA is greater on small population sizes, since the indi-

viduals have to undergo many generations to reach the constant EM iterations. For the larger

population sizes, the effect of GA gradually decreases as we increase the population size. We

tried four different BNs, alarm, carstarts, hepar2 and win95pts. The results are shown in Figure

3.4.

On the left side of Figure 3.4, we show the results of number of generations as a function

of the number of iterations, for four different BNs. As expected, we can see a trend where the

small population sizes undergo more number of generations to reach the fixed EM iterations. On

the right side of Figure 3.3, we show maximum log likelihood (max LL) as a function of the

number of iterations. For each iteration in the x-axis, we show the corresponding maximum log

likelihood seen so far in the population. During one GAEM run, the total number of iterations

taken by a small initial population size of np = 2 is lesser compared to the total number of

iterations for a large population size of np = 32. We see that for a smaller initial population

size (for eg. np = 2), it takes more number of generations (GA search) to reach a target number

of iterations (for eg. nGAEM = 1000). This shows that GA search is doing more exploration

compared to EM search. For harder search spaces such as alarm and hepar2 BN, the solution

quality for small population sizes is poor compared to the best solution quality (untill iteration

nGAEM = 1250 for alarm BN and at all iterations for hepar2 BN). For easier search spaces such

as win95pts and carstarts BN, the solution quality for small population sizes is the best at all

iterations. Thus, small population sizes are more suitable for easier search spaces.

For a larger initial population size (for eg. np = 32), we see that it takes fewer of generations

to reach a target iteration (for example, nGAEM = 1000). In this case, the EM search is applied

for a longer time compared to the GA search. For all BNs, the solution quality is poor compared

to the best solution quality. For harder search spaces, it is interesting to notice that the best

solution quality is obtained for population sizes of np = 8 and np = 4 for alarm and hepar2 BN

respectively. For hard search spaces, both GA and EM seem to contribute to the exploration of

search space. Hence we need to chose a population size where there is a balance between the

global and local search. Hence we suggest to use an optimal population for hard search spaces

to get high solution quality.

36



Figure 3.4: Effect of populations size on different BNs when GAEM is run for fixed number of
EM iterations, nGAEM ∈ {250, 500, 750, 900, 1250}, shown on the x-axis. On the y-axis, in
the left column we show the cumulative number of generations, in the right column we show the
maximum log likelihood.

37



From the above two experiments, we conclude that for harder search spaces, a balance be-

tween the global search ( in terms of the number of generations for GA) and the local search (in

terms of the number of iterations) for EM needs to be maintained for a given initial population

size. A higher solution quality is shown by that population size. For easier search spaces, small

population size with more number of generations is sufficient to reach a high solution quality.

Previous works confirms our results where a small population size compared to traditional GAs

was found to perform well in hybrid genetic algorithms with high probability of local search

[25, 27].

3.5.4 Role of Mutation

If the EM algorithm is run on a converged BN individual, the algorithm does not iterate as it has

already converged. But when small changes are introduced in the CPTs of any random variable,

then the EM algorithm will iterate till that random variable’s CPT is converged. We introduce

random changes in the converged CPTs with the help of a mutation operator.

We hypothesize that if a mutation operator is applied to all random variables of the BN

individual, then the EM algorithm will take more number of iterations to converge. In this case,

the GA search may not help much because the local search is not taking place at the converged

region of the search space. It is useful to apply mutation on only a few random variables. We

experimented with different mutation probabilities for varying population sizes.

In this experiment, we study the role of mutation on the carstarts and alarm BNs. The

carstarts and alarm BNs are chosen as they represent an easy and hard search space respectively.

The different mutation probability values used are: pm = {0.05, 0.1, 0.5, 0.9}. We analyze the

performance of GAEM for these different mutation probability values on different population

sizes. The population sizes used are: np ∈ {2, 4, 8, 16, 32}. Other parameters of GAEM such

as crossover probability is set as pc = 0.1 and GAEM-TRAD replacement mechanism is used.

The results are based on 10 independent GA runs. We run GAEM for a fixed number of EM

iterations and find the maximum log likelihood reached so far in the generations. The constant

EM iterations used are: nGAEM ∈ {250, 500, 750, 900, 1250}. We allow GAEM to undergo any

number of generations till they reach the constant EM iterations. We use the constant number

of EM iterations as a measure of comparing the performance of GAEM for different mutation

38



probability values. This is done because the amount of time taken by crossover, mutation and

replacement mechanisms is negligible compared to the time taken by the EM iterations. Thus, it

is a way to keep the computational resources close to constant.

The results for carstarts and alarm BN are shown in Figure 3.6 and Figure 3.5 respectively.

On the left side of Figure 3.6 and Figure 3.5, we show the results of generations as a function

of iterations for four different mutation probability values. As expected, we can see a trend

where the small population sizes undergo more number of generations to reach the constant EM

iterations. For small mutation probabilities, the number of generations taken by the population

sizes such as np = {2, 4, 8} are higher compared to their corresponding number of generations

with high mutation probabilities. The reason is high mutation probabilities changes larger portion

of the converged CPTs than small mutation probabilities. This results in moving the GAEM to a

non converged region of the search space which in turn will lead to more number of EM iterations

in lesser number of generations. On the other hand, for population sizes such as np = 16, the

number of generations is almost ng < 2 for all mutation probabilities and for np = 32, the

number of generations, ng = 0. This is due to the fact that the total EM iterations of initial

population of individuals reaches the fixed number of EM iterations within a few generations of

GAEM. On the right side of Figure 3.6 and Figure 3.5, the graph shows maximum log likelihood

as function of iterations.

Easy Search Spaces

For easier search spaces (carstarts BN) as shown in Figure 3.6, we see that low mutation prob-

abilities 0.05 and 0.1 work well on small population size such as np = 2 and population sizes

of np = 4 or np = 8. Small population sizes reaches more generations for a given constant EM

iterations. Thus a GA dominant search reaches a better solution in easier search spaces. With

low mutation probability, a larger population size also performs well. This shows the strength

of GAEM for orienting the search towards better quality solution in each generation. For high

mutation probability, small population achieve better solution quality than larger population but

their solution quality is lower compared to the solution quality of small population with low

mutation probability.

39



Figure 3.5: Role of mutation on alarm BN (hard search space) when GAEM is run for nGAEM =
{250, 500, 750, 900, 1250} EM iterations, shown on the x-axis. On the y-axis, in the left column
we show the cumulative number of generations, in the right column we show the maximum log
likelihood.

40



Figure 3.6: Role of mutation on carstarts BN (easy search space) when GAEM is run for
nGAEM = {250, 500, 750, 900, 1250} EM iterations, shown on the x-axis. On the y-axis, in
the left column we show the cumulative number of generations, in the right column we show the
maximum log likelihood.

41



Hard Search Spaces

In Figure 3.5, we can see that for lower mutation probability values (pm = 0.05, pm = 0.1), a

small population size of np = 2, shows a slower progress and achieves poor solution quality.

Whereas the population size of np = 4 reaches the highest solution quality. For higher mutation

probability values (pm = 0.5 or pm = 0.9), small population size of np = 2 achieves a better

solution quality compared to other population sizes. The reason for this behavior in hard search

spaces is discussed in the below paragraphs.

From our earlier discussion, we know that the low mutation probabilities keeps the local

search exploration near the converged region and high mutation probabilities forces EM to start

from a non-converged region resulting in more EM iterations. Thus low mutation probability

values tend to make the EM search shorter. In general, we require more number generations

(GA search) to reach a given iteration value (for example, nGAEM = 1000 iterations). With

smaller initial population size of np = 2, more generations (for example, ng = 100) are needed

to reach a target iteration (for example, nGAEM = 1000) compared to other population sizes.

Thus GA search dominates the EM search which in turn leads to a poorer solution quality. With

larger population sizes such as np = 16, fewer generations are sufficient. Larger number of EM

individuals results in more EM iterations in fewer generations. Thus EM search dominates the

global search. So an initial population size such as np = 4 or np = 8, where there is a balance

between the GA and EM search produces higher quality solution ( as seen in the right side of

Figure 3.5, Alarm pm 0.05 and Alarm pm 0.1)

High mutation probability values tend to make the EM search longer resulting in more iter-

ations. So fewer number generations (GA search) is sufficient to reach a target iteration value

(for example, nGAEM = 1000 iterations). With a larger initial population size, fewer generations

are sufficient to reach a target iteration (for example, nGAEM = 1000 iterations can be reached

in ng = 2 generations for an initial population size of np = 8 and np = 1 generation for an

initial population size of 16). So EM search takes more time than the GA search. With smaller

initial population size, the number of generations needed to reach a target iteration (for example,

nGAEM = 1000 iterations can be reached in ng = 10 generations for an initial population size

of np = 2 and ng = 6 generation for an initial population size of np = 4) is more compared to

other larger population sizes. So a balance between the local and global search is achieved for

42



high mutation probability values and small population sizes, resulting in better solution quality.

For larger initial population sizes (such as np = 16 or np = 32) mutation probability does

not have a effect. Approximately, the same solution quality is obtained for different mutation

probability values. So EM search takes longer time resulting in more iterations with fewer gen-

erations. Thus the role of GA is limited in large populations. So the mutation probability has

only minimal impact on the solution quality.

Conclusion

We conclude that for hard search spaces (alarm BN), low mutation probabilities work well on

population size such as np = 4 or np = 8 and high mutation probabilities work well for small

population sizes such as np = 2. For easier search spaces, low mutation probability works

well with small or optimal initial population sizes. Whereas high mutation probability values

produces almost the same solution quality for all population sizes.

3.5.5 Role of Crossover

In this experiment, we analyze the role of crossover on hard and easy search spaces of Bayesian

networks for varying population sizes. We take alarm and carstarts as an example of hard and

easy search spaces respectively. The population sizes used are: np ∈ {2, 4, 8, 16, 32}.. The differ-

ent crossover probability values used are: pc = {0.1, 0.5, 0.9}. We keep the number of iterations

as constant and allow GAEM to run as many generations till we reach the constant iterations. We

run GAEM for a fixed number of EM iterations and find the maximum log likelihood reached

so far in the generations. The constant EM iterations used are: nGAEM ∈ {250, 500, 750, 900,

1250}. We allow GAEM to undergo any number of generations till they reach the constant EM

iterations. We use the constant number of EM iterations as a measure of comparing the perfor-

mance of GAEM for different crossover probability values. This is done because the amount of

time taken by crossover, mutation and replacement mechanisms is negligible compared to the

time taken by the EM iterations. Thus, it is a way to keep the computational resources close

to constant. The results are taken as an average over 10 independent GAEM runs. We used a

constant mutation probability of pm = 0.05 and GAEM-TRAD replacement mechanism is used.

On the left side of Figure 3.7 and 3.8, the number of generations is shown as a function of the

number of iterations when the crossover probability is varied. We can observe that for both hard

43



Figure 3.7: Role of crossover on alarm BN (hard search space) when GAEM is run for nGAEM =
{250, 500, 750, 900, 1250} EM iterations, shown on the x-axis. On the y-axis, in the left column
we show the cumulative number of generations, in the right column we show the maximum log
likelihood.

44



Figure 3.8: Role of crossover on carstarts BN (easy search space) when GAEM is run for
nGAEM = {250, 500, 750, 900, 1250} EM iterations, shown on the x-axis. On the y-axis, in
the left column we show the cumulative number of generations, in the right column we show the
maximum log likelihood.

45



and easy search spaces, the number of generations remains almost the same. This confirms the

exploitative nature of crossover. The alleles found so far are interchanged to exploit the current

search space as compared to exploring new search spaces. The explorative nature of search was

observed in mutation experiments (Figure 3.7 and 3.6) where the number of iterations increased

with mutation probability.

Easy Search Spaces

The results are shown on the right side of Figure 3.8. We can see that the solution quality is

high for low population such as np = 2 and it gets poorer as we increase the population size.

A low population size takes more generations to reach the constant EM iterations compared to

the high population sizes as shown in the left side of Figure 3.8. Thus, we can conclude that

GA search dominates which in turn implies more crossover operations in low population sizes.

For easy search spaces, a dominant exploitative search with low population sizes is sufficient

to produce better solution quality. The solution quality of optimal population sizes is seen to

improve slightly when the crossover probability is increased.

Hard Search Spaces

The results are shown on the right side of Figure 3.7. We saw that for hard and easy search

spaces, low population sizes were sufficient to produce good solution quality when high mutation

probabilities are used. But in crossover, we can see that a population size of np = 4 or np = 8

has to be maintained to observe a good solution quality. This is because a sufficient number of

individuals is needed so that the there is a high chance of the exchange of good alleles being used

in crossover. If the number of individuals are high np = 32 or np = 16, the solution quality is

poor. With too many individuals, chance of crossing over good individuals might be less. On

the other hand, when the population is low such as np = 2, the solution quality is very poor (as

shown in the right side of Fgure 3.7) which implies that with very less number of individuals, the

number of good alleles occurring is less and hence it is difficult for GAEM to come up with good

combinations of alleles. Thus a population size of np = 8 shows the highest solution quality for

all crossover probabilities.

46



Conclusion

For hard search spaces (alarm BN), a population size (np = 4 or np = 8) performs better for

any crossover probability. For easy search spaces (carstarts BN), a low population size (np = 2)

produces high solution quality for any crossover probability.

3.5.6 Role of Replacement

We tried four different replacement mechanisms such as traditional replacement (GAEM-TRAD),

deterministic replacement (GAEM-DETER), probabilistic crowding replacement (GAEM-PC)

and ALEM based replacement (GAEM-ALEM) on alarm and carstarts BN representing hard

and easy search spaces respectively. For alarm BN, we tried population sizes np = 4 and np = 8,

the crossover and mutation probabilities are taken as pm = 0.1 and pc = 0.1 respectively. For

carstarts BN, we tried population sizes of np = 2 and np = 4, the crossover and mutation proba-

bilities are taken as pm = 0.05 and pc = 0.5 respectively. The experiments are run for ng = 100

generations for alarm BN and ng = 200 generations for carstarts BN. The results are taken as

an average over 10 independent GAEM runs. The results are shown in Figure 3.9 and Figure

3.10 for alarm and carstarts BN respectively where the left side graphs the number of iterations

as a function of the number of generations and the right side graphs shows the maximum log

likelihood as a function of the number of generations.

Easy Search Spaces

For a small population size of np = 2, we see that the number of iterations taken by the GAEM-

ALEM replacement technique is lesser (as shown in the left side of Figure 3.10) and the cor-

responding solution quality is higher (as shown in the right side of Figure 3.10) compared to

other replacement techniques. For a higher population size of np = 4, we see that the number

of iterations for GAEM-ALEM is lesser than other techniques. The solution quality is higher for

probabilistic crowding based replacement technique.

Hard Search Spaces

From the left side of Figure 3.9, we can see that the number of iterations almost remains the

same for all GAEM-PC, GAEM-TRAD and GAEM-DETER replacement mechanisms. This

implies that the processor time taken is the same for all replacement mechanisms. We can see

47



that GAEM-ALEM shows a much lesser number of iterations. From the right side of Figure

3.9, we can see that the probabilisitic crowding based replacement technique produces a better

solution quality compared to others. For a larger population size of np = 8, the probabilistic

crowding technique produces a higher log likelihood starting from the first generation.

Figure 3.9: Role of replacement techniques on alarm BN (hard search space) when GAEM is
run for ng = {20, 40, 60, 80, 100} generations, shown on the x-axis. On the y-axis, in the left
column we show the cumulative number of iterations, in the right column we show the maximum
log likelihood.

Conclusion

From the above experiments, we see that for all the three replacement mechanisms, the solu-

tion quality increases with the increase in population size. We also conclude that for hard search

spaces, a larger population size with GAEM-PC based replacement technique produces better so-

lution quality compared to other techniques and GAEM-ALEM based technique produces much

lesser number of iterations. For easy search spaces and low population sizes, GAEM-ALEM

based replacement technique produces high solution quality in lesser number of iterations com-

pared to other replacement techniques.

48



Figure 3.10: Role of replacement techniques on carstarts BN (easy search space) when GAEM is
run for ng = {20, 40, 60, 80, 100, 120, 140, 160, 180, 200} generations, shown on the x-axis. On
the y-axis, in the left column we show the cumulative number of iterations, in the right column
we show the maximum log likelihood.

49



Carstarts Alarm

Samples GAEM-TRAD GAEM-PC GAEM-ALEM EM GAEM-TRAD GAEM-PC GAEM-ALEM EM

500 -3169.40 -3169.55 -3169.31 -3169.96 -3936.93 -3936.69 -3937.31 -3937.44
1000 -6924.56 -6924.56 -6924.54 -6924.80 -16047.15 -16048.18 -16048.6 -16050.20
1500 -8646.85 -8646.85 -8646.85 -8646.85 -22977.85 -22977.89 -22979.56 -22981.7
2000 -13743.87 -13744.50 -13743.84 -13743.85 -31217.09 -31217.02 -31217.90 -31218.10
2500 -14504.44 -14504.46 -14504.43 -14504.40 -40550.40 -40550.97 -40552.73 -40556.00
3000 -18888.15 -18887.61 -18887.84 -18887.90 -51210.45 -51211.13 -51217.46 -51220.50

Table 3.1: Comparing max LL for the GAEM-TRAD, GAEM-PC, and GAEM-ALEM methods
with the traditional EM method for Carstarts and Alarm. The highest max LL are in bold. The
total number of iterations taken to reach the max LL is shown in Table 3.2.

3.5.7 Processor Time Comparison

The goal of this experiment is three-fold. First, we want to measure the solution quality (max LL)

obtained by GAEM versus EM. Second, we want to compare the processor time (CPU time)

taken by GAEM and EM. Third, we want to understand the speed-up in terms of the total number

of iterations taken by GAEM (denoted as nGAEM ) versus traditional EM (denoted as nEM ). We

consider Alarm and Carstarts representing the hard and easy search spaces, respectively. For

Alarm, we let pc = 0.1, pm = 0.1, np = 4, and ng = 50, resulting in a total of 4× 50 = 200 EM

runs. For Carstarts, we let pc = 0.5, pm = 0.05, np = 2, and ng = 100, resulting in a total of

2× 100 = 200 EM runs. For apples-to-apples comparison, we transfer the concept of generation

from GAEM to traditional EM. In GAEM, we have np EM runs in the first generation and use

the learned individuals as parents in subsequent generation, also with np EM runs. Similarly,

in traditional EM, we start with np EM runs in the first generation and use a new set of np EM

runs in subsequent generations.5 We tried traditional replacement (GAEM-TRAD), PC based

replacement (GAEM-PC) and ALEM based replacement (GAEM-ALEM) and varied the sample

sizes from 500 to 3000 for both BNs.6

For Alarm, Table 3.1 shows that the solution quality for GAEM-TRAD is higher for most

of the sample sizes compared to GAEM-PC and GAEM-ALEM. But all the three replacement

methods have a higher solution quality than EM. For Carstarts, all three replacement techniques

achieve better solution quality than traditional EM (see Table 3.1) in all cases except for sample

size = 2500, where the difference in log-likelihood is very small (0.0002%).

We now consider the number of iterations until convergence, as well as the speed-up, for the

5We keep the total number of EM runs as 200 in both BNs because we assume that a new user who wants to
compare GAEM with traditional EM would allot time based on the time taken by traditional EM per EM run.

6The results for GAEM-DETER is found to be similar to GAEM-PC in terms of the number of iterations and
solution quality hence it is not shown in the Tables 3.1 and 3.2.

50



Carstarts Alarm

Samples GAEM-TRAD GAEM-PC GAEM-ALEM GAEM-TRAD GAEM-PC GAEM-ALEM

500 2049 (4.1) 2757 (3.1) 1397 (6.0) 3062 (4.6) 3172 (4.5) 2322 (6.1)
1000 1227 (4.6) 1765 (3.2) 1016 (5.6) 1659 (3.5) 1631 (3.6) 1386 (4.2)
1500 624 (1.5) 624 (1.5) 624 (1.5) 2515 (4.2) 2522 (4.2) 1940 (5.5)
2000 1282 (4.4) 1231 (4.6) 989 (5.8) 1097 (3.6) 1107 (3.6) 997 (4.0)
2500 688 (2.0) 683 (2.1) 684 (2.1) 2507 (3.8) 2499 (3.8) 1774 (5.4)
3000 1214 (5.2) 1208 (5.2) 977 (6.5) 4082 (4.0) 4002 (4.1) 2353 (7.0)

Table 3.2: Comparing total iterations for GAEM-TRAD, GAEM-PC and GAEM-ALEM meth-
ods with traditional EM method. Speedups are shown in parentheses, with the highest speedups
in bold. These results corroborate the CPU-time experiments in Figure 4.5.

Figure 3.11: Processor time comparison for EM and GAEM on Alarm (left) and Carstarts (right)
for 200 EM runs. The corresponding max LL for these configurations are shown in Table 3.1.

replacement methods. The speed-up is calculated as sX = nEM

nX
whereX reflects the replacement

method. In Table 3.2, for Alarm, we can see a speed-up of 3.5 ≤ sX ≤ 4.6 (as shown in the

parentheses) for all sample sizes using GAEM-TRAD and GAEM-PC techniques and a much

higher speed-up 4.0 ≤ sALEM ≤ 7.0 for GAEM-ALEM. For Carstarts, GAEM-TRAD and

GAEM-PC show a speed-up 1.5 ≤ sX ≤ 5.2 for all sample sizes (see Table 3.2). But GAEM-

ALEM has a higher speed-up 1.5 ≤ sALEM ≤ 6.5. These results suggest that GAEM can achieve

a better solution quality in a shorter time, measured by the number of EM iterations, compared

to the traditional EM for given set of random starting point configurations.

Figure 4.5 shows the results of comparing processor time for Carstarts and Alarm. All

GAEM-based methods take less time than traditional EM for both BNs across all sample sizes.

For both Alarm and Carstarts, we can see that the processor time consumption for GAEM-PC

and GAEM-DETER is almost the same. Among the methods, GAEM-ALEM is the fastest. For

Carstarts, GAEM-ALEM is the most suitable since there is an improvement both in solution

quality and compute time. For Alarm, GAEM-ALEM shows a decrease in the total number of

51



iterations which in turn shortens CPU time. The solution quality, though poorer than for GAEM-

TRAD and GAEM-PC, is better than for traditional EM. We conclude that GAEM-ALEM ob-

tains better solution quality (LL) in less time, relative to traditional EM, for both BNs.

3.6 Conclusion

In this work, we develop a Genetic Algorithm for EM (GAEM) for parameter learning from

incomplete data in Bayesian networks. From experiments, we find that GAEM achieves bet-

ter log-likelihoods in most cases compared to the traditional EM algorithm. A key component

of GAEM is a novel replacement technique, GAEM-ALEM. Using GAEM-ALEM, poorly per-

forming EM runs, in terms of their log-likelihoods, are discarded early during the progress of

EM optimization. In experiments, GAEM-ALEM produced a speed-up of 1.5 to 7, along with

better solution quality, compared to the traditional EM algorithm. These results suggest a general

capability of GAEM to produce better solutions in shorter time relative to traditional EM. We

also prove the global convergence of GAEM theoretically. For future work, we will explore other

evolutionary methods and compare their performance to that of GAEM. We will also investigate

other ways of characterizing the structure of the BN parameter search spaces.

52



Chapter 4

ALEM: Age Layered Expectation
Maximization

The EM algorithm is a popular algorithm for parameter estimation in models with hidden vari-

ables. However, the algorithm has several non-trivial limitations, a significant one being variation

in eventual solutions found, due to convergence to local optima. Several techniques have been

proposed to allay this problem, for example initializing EM from multiple random starting points

and selecting the highest likelihood out of all runs. In this chapter, we a) show that this method

can be very expensive computationally for difficult Bayesian networks, and b) in response we

propose an age-layered EM approach (ALEM) that efficiently discards less promising runs well

before convergence. Our experiments show a significant reduction in the number of iterations,

typically two- to four-fold, with minimal or no reduction in solution quality, indicating the po-

tential for ALEM to streamline parameter estimation in Bayesian networks.

4.1 Introduction

The EM algorithm [18] is one of the most established ways to perform parameter estimation with

incomplete or hidden data (e.g., [8, 87]). The basic idea of the algorithm is to alternate between

an E-step, wherein the algorithm uses current parameter estimates to generate a complete data

likelihood, and a M- step, in which the parameters are modified with the goal of maximizing the

data likelihood. These steps repeat until convergence. The algorithm and its variants and special

cases are prevalent in machine learning, as one can view training algorithms as optimizers, where

the overall aim is to estimate a set of parameters while maximizing a ‘score’, most often the data

likelihood, on training data.

Despite its successful and widespread use, the EM algorithm has at least one severe limita-

53



tion: it has a strong tendency to gravitate towards the locally optimal solution, depending pri-

marily on the initialization of the algorithm. This phenomenon can in turn lead to other issues,

for example poor generalization to unseen test data, and is especially exacerbated in parame-

ter estimation for difficult Bayesian networks, where we attempt to estimate parameters for a

joint distribution with many conditional dependencies. Another limitation is that the EM algo-

rithm can be very time-consuming, due to its slow convergence speed, in terms of the number of

iterations undergone.

In this work, we focus on speeding up the EM algorithm for difficult Bayesian networks with

no or minimal degradation in solution quality.

• We present and analyze our approach, age layered EM (ALEM) (Section 4.3), where we

incorporate an age-layered population structure heuristic in an attempt to reduce the aver-

age number of iterations in a multiple starting point EM setup.

• We highlight the local optima and slow convergence problems for a multiple starting points

EM strategy for select difficult Bayesian networks (Section 4.4.2). Our experiments with

these networks show that the main problem is the slow convergence of the EM algorithm

rather than the log-likelihood shortfall of the local optima.

• We demonstrate ALEM’s ability to significantly reduce the average number of iterations

(Section 4.4.3), typically two- to four-fold, and for larger sample sizes the wall-clock time

as well by the same magnitude.

4.2 Related Work

Several approaches have attempted to mitigate the local optima problem in the EM algorithm.

One can use an upper bound on the eventual log likelihood of a run at termination as a criterion

for early dismissal of a run [107]. Alternatively, the training data can be perturbed, rather than

the hypothesis, to generate new directions for greedy hill-climbing ascent [24]. The training data

is then annealed back to its original state over time. A genetic algorithm approach has also been

used [46]. Some work has looked at alternative stopping criteria that are less likely to converge

to local optima [64].

A prevalent way to tackle local optima is the multiple starting point or multiple restart strategy

[43, 68], wherein we initialize the EM algorithm from N random starting points. After the N

54



EM runs have completed, we choose the run that resulted in the highest data log likelihood. This

strategy allows us to search the parameter space more extensively for the optimal values, but can

be extremely expensive, considering that we expend a significant amount of processing cycles

on runs that are in no way guaranteed to be the global optimum or even close to it. We show this

experimentally in Section 4.4.

The effects of parameter sharing on local maxima during Bayesian network parameter learn-

ing when there is incomplete data has been explored [89]. The severity of the local optima

problem in EM has been demonstrated [105], but the authors restricted their analysis to a spe-

cific type of Bayesian network, the hierarchical latent class model. In Section 4.4, we perform

a similar analysis on two networks that do not fall into the hierarchical latent class model, and

show that the issue is prevalent in a wider class of networks but that the main problem is the

variation in average number of iterations needed, and not so much log likelihoods of the local

optima.

Additional work has looked at scaling up EM to very large datasets, for example incremen-

tal and lazy variants of EM [102]. Incremental EM partitions a dataset into blocks, with EM

computed incrementally on these blocks, the main variable being optimal block size selection

[78]. Lazy EM picks a significant subset of the dataset after a given number of iterations, and

then proceeds with EM using only this subset. The emphasis of these techniques is how to scale

EM to large databases, whereas our work focuses not necessarily on scale but on the orthogonal

issue of how to speed up parameter estimation on difficult Bayesian networks. As such, the scal-

ability methods and our approach can easily be combined. Simulated annealing [59] and Tabu

search methods [76] have been incorporated into EM, but they serve primarily as an alternative

to the multiple starting point strategy with the goal of avoiding local minima, and often require a

re-implementation of the core algorithm.

Our approach is influenced by the age-layered population structure (ALPS) paradigm, orig-

inally implemented for genetic algorithms [40]. ALPS assigns an age to each individual in the

population, which is then used to sort the individuals into different age layers, each layer having

its own age limit. Competition amongst individuals in the population is restricted to within age

layers, and all layers evolve independently. This division of the population aims to create a more

‘fair’ competition between individuals, as older individuals in the population compete amongst

55



themselves and not with substantially younger individuals. When an individual’s age exceeds

upper limit of its current layer, it is moved up to the next layer if it can replace a poor performing

individual in the target layer, otherwise it is discarded.

4.3 Expectation Maximization Approach

We present and analyze our algorithm which, like ALPS, relies on an age-layered structure to

efficiently remove underachieving runs early on, along with pseudocode for our algorithm.

4.3.1 The ALEM Algorithm: Age-Layered EM

The EM algorithm with multiple random starting points (henceforth referred to as ‘traditional’)

can be viewed as a genetic algorithm: each starting point can be seen as an individual. For the

age-layered paradigm, a natural measure of age would be the number of iterations an EM run

has undergone. With these basic concepts, we developed ALEM (Figure 4.1), the Age-Layered

Expectation Maximization algorithm.

In the main procedure of Figure 4.1, we have a set of L layers, Γ = {Γ1,Γ2,Γ3, . . . ,ΓL},

and a set of N EM runs, ρ = {ρ1, ρ2, ρ3, . . . , ρN} where Γi ⊆ ρ. We denote the age limit or the

maximum number of iterations for the ith layer to be βi, the minimum number of runs in the ith

layer to be Mi (these parameters control how runs move between layers and will be elaborated

upon shortly), and the set of runs1 in the ith layer to be Γi. Note that Γ1 ∪ · · · ∪ ΓL = ρ, and

Γi ∩ Γj = ∅, for 1 ≤ i, j ≤ L, i 6= j. The number of iterations reached by the j th EM run is

given by η(ρj) and its log likelihood is given by LL(ρj).

Each EM run ρj is created by initializing its variables with randomly generated initial prob-

abilities. We predefine the age limit βi for each layer Γi, except for the last layer, through an

exponential relationship between age limit and layer number: βi = a · 2i−1, where βi is the age

limit for the ith layer, and a is a predetermined constant (the age gap). Other relationships can

also be used, but we chose this representation as it corresponded well empirically with the distri-

bution of iterations in a multiple starting points strategy (Section 4.4.2). The last layer has no age

limit, it is set to the maximum number of iterations ω that an EM run can undergo as specified

for the EM algorithm: βL = ω.

1Γi refers to both the layer as well as the set of runs in that layer.

56



In ALEM, there are three ways to terminate a run. First, no run can exceed ω, the maximum

number of iterations for a run. Second, there is a log likelihood difference tolerance ε (the

relative difference in log likelihood between two successive iterations). These two termination

criteria, as shown in ALEMCHECK (Figure 4.1), are standard convergence criteria used for the

traditional EM algorithm [12, 106] and are not specific to ALEM.2 A run that terminates through

these two termination criteria is called an inactive run and resides in the layer it was last in;

all other non-terminated runs are called active runs. The third way, which we call culling, is

ALEM-specific and amounts to a run failing the log likelihood comparison test. As shown in

CHECKRUNS (Figure 4.1), if the age of an EM run ρj in layer Γi reaches βi, then we remove

it from layer Γi and try to insert it into the next layer Γi+1. An attempted insertion works as

follows: each layer has an associated minimum runs parameter, Mi. We define the minimum run

Mi for a layer Γi as the minimum number of runs that need to be in the layer before ALEM does

a log likelihood comparison check. If the number of active runs in Γi+1 is less than Mi+1, then

we automatically insert the EM run from Γi into Γi+1. Otherwise, we perform a log likelihood

comparison between the EM run to be shifted up, ρj , and runs, active or inactive, in Γi+1: if a

run with worse log likelihood is found in Γi+1, then that run is discarded, i.e., it is completely

removed from the age layers, and ρj takes its place. If both the minimum runs and the log

likelihood comparison conditions fail, then ρj is discarded and we proceed. Discarding only

takes place when a run fails the log likelihood comparison test.

We can intuitively view Mi as a parameter that can trade off computational efficiency and

solution quality. The lower the value of this parameter for a given layer Γi, the more likely

ALEM is to conduct a log likelihood check. On the other hand, inserting the run without a check

will mean we do not get a chance to cull. For simplicity in the rest of this paper we assume all

internal layers have the same minimum runs value (M2 = M3 · · · = ML−1), except for the first

layer Γ1 and the last layer ΓL. In Γ1, new runs are inserted when the number of active runs in

that layer is below M1, and thus M1 controls the rate at which we introduce these new runs. The

last layer can accommodate all N EM runs, and thus ML = N .

The main assumption is that log likelihood comparisons between similarly aged runs are a

reliable indicator of comparisons at convergence. Justification for this assumption is provided

2Despite the prevalence of these criteria, it has been noted [61] that the difference in successive log likelihoods
is a measure of lack of progress rather than convergence.

57



in Section 4.4.2, where we discuss empirical results on the distribution of log likelihoods and

iterations. We note a significant difference in iterations between runs that achieve the highest log

likelihood and runs that do not, which led us to posit that many runs are unsuccessful because

they are initialized in bad areas of the search space.

4.3.2 Analysis using Poisson Processes

In traditional EM, runs mostly terminate because the algorithm fails to improve the log likelihood

by a pre-specified amount ε between successive iterations. In ALEM, a run terminates for the

same reason, but in addition it can also be culled. In this section, we formalize this intuition by

analyzing ALEM’s rate of convergence as compared to that of traditional EM.

In a shared resource environment (e.g., all processes running on the same machine), the total

time required to complete a multiple starting points experiment can be thought of as the product

of the number of runs and the average time taken per run (or upper-bounded by the maximum

time over all runs). If we take into account the fact that as certain runs terminate, computational

resources free up and can be assigned to the runs that are still iterating, it then becomes a question

of which strategy results in a higher probability of undesirable (runs that iterate for too long,

runs that will converge to local optima, etc.) runs terminating early on. The main condition for

ALEM’s successful performance is that the probability of a young, poorly performing run turning

into an older, strongly performing run is low, and can be made low by the ALEM parameters,

i.e., βi and Mi. We model the termination of runs stochastically by assuming that terminations

in traditional EM and ALEM follow a Poisson process, motivated by the discrete, independent,

and uniformly distributed nature of the events (terminations) occurring over a continuous time

interval. Specifically, let N(t) be a Poisson process that dictates the number of terminations in a

given time interval, such that

P [(N(t+ τ)−N(t)) = k] =
eλτ (λτ)k

k!

for k = 0, 1, . . . (4.1)

where k is the number of terminations. We can model ALEM terminations as the superposition

of two independent Poisson processes: NEM(t) with Poisson parameter λEM, which is the process

for terminations occurring through standard EM termination, and Ncul(t) with Poisson parameter

λcul which is the culling process. The resulting Poisson processNALEM(t) has parameter λALEM =

58



Algorithm 4.3.1: ALEM (N,L,M )

procedure CHECKRUNS(Γi, ρl)
if |Γi+1| < Mi+1

then
{

Γi+1 ← Γi+1 ∪ {ρl}
inserted← true

else



comment: find if there is a worse run
for each ρm ← Γi+1

do


if LL(ρm) < LL(ρl)

then


Γi+1 ← Γi+1 − {ρm}
Discard EM run ρm
Γi+1 ← Γi+1 ∪ {ρl}
inserted← true

if inserted = false
then {Discard EM run ρl

Γi ← Γi − {ρl}

procedure ALEMCHECK (N,L,M)
comment: x denotes the number of terminated runs
x← 0
while x ≤ N

do



for i← 1 to L

do



if i = 1 and |Γi| < Mi

then


k ←M1 − |Γ1|
Insert k EM runs
Γ1 ← Γ1 ∪ {ρj , ρj+1 · · · ρk}
Start traditional EM algorithm
for each ρj ← Γ1

do EM(ρj , ε, ω)
for ρl ← Γi

do


If EM run terminated based on ω or ε
if ρl.isTerminated

then x← x+ 1
else if η(ρl) = βi
then CHECKRUNS(Γi, ρl)

main

Initialize layers with age limit β
for i← 1 to L− 1

do βi ← (a) · 2i−1

Set βL for the top layer
βL ← ω
Initialize layers with minimum runs M
for i← 2 to L− 1

do Mi ← 2
Set M for the bottom-most layer
M1 ← q
Set M for the top layer
ML ← N
Insert EM runs in the bottom-most layer
Γ1 ← {ρ1, ρ2 · · · ρq}
Start traditional EM algorithm on each run
for each ρq ← Γ1

do EM(ρq, ε, ω)
ALEMCHECK(Γ, ρ)
Find EM run with max log likelihood
for i← 1 to L

do LL← arg max(Γi)

Figure 4.1: Pseudocode for ALEM algorithm. The values for βi, Mi and a can be set depending on the
nature of the Bayesian network. In our experiments, we have set a = 5, ω = 1000, N = 200, M1 = 5 for
the bottom layer, ML = N for the top layer, Mi = 2 for i < 2 to L− 1 and ε = 0.00001

59



λEM + λcul [50].

Lastly, if we let T kALEM be the time taken for ALEM to reach k terminations, we can can say

T kALEM = X1
ALEM +X2

ALEM + · · ·+Xk
ALEM, where each element in the sequence X i

ALEM is an i.i.d.

exponential random variable with density function fALEM(t) = λALEMe
−λALEMt, t ≥ 0, and is the

distribution of run i terminating before time t. We can similarly define T kEM for the traditional

EM approach and also define it as a sum of i.i.d. exponential random variables with λ = λEM.

Now let Yk = T kALEM − T kEM. Then,

P [T kALEM < T kEM] = P [Y1 + Y2 + . . . Yk < 0] (4.2)

noting that Yi, i = 1, . . . , k are i.i.d. random variables with mean µ = 1
λALEM

− 1
λEM

and variance

σ2 = 1
λ2ALEM

+ 1
λ2EM

(addition of independent exponential random variables). Thus,

µ

σ
=
λEM − λALEM

λALEMλEM

λALEMλEM√
λ2ALEM + λ2EM

=
λEM − λALEM√
λ2ALEM + λ2EM

(4.3)

Now let T kY = Y1 + Y2 . . . Yk, and Zk =
Tk
Y −kµ
σ
√
k

. Then,

P [Y1 + . . . Yk < 0]=P

[
T kY − kµ
σ
√
k

<
−kµ
σ
√
k

]
=P

[
Zk <

λALEM − λEM√
λ2ALEM + λ2EM

√
k

]
(4.4)

From the central limit theorem, Zk converges in distribution to the normal distribution with

µ = 0, σ2 = 1. Therefore, if λALEM > λEM, i.e., λcul > 0, then Equation 4.4 tends to 1 as

k → ∞. The analysis gives the probability of the time taken for ALEM to reach k terminations

being less than the time taken for traditional EM to reach k runs. This probability approaches 1

as the number of terminations increases.

4.4 Experiments with Bayesian Networks

The objectives of the experiments are two-fold: to compare the average number of iterations

undergone by all runs in traditional EM and in ALEM, and to analyze the solution quality of

ALEM vis-à-vis traditional EM. In all sets of experiments, we set ω=1000, and ε = 0.00001,

60



i.e., if the relative difference in log likelihood between two successive iterations is less than ε,

then we deem the EM run to have converged or terminated and set its status to inactive. We

also analyze the effects of varying the minimum runs parameter on the average iterations and the

solution quality, and provide wall-clock times comparing the two strategies.

4.4.1 Datasets and Evaluation

We performed experiments on four Bayesian networks of different complexities, the Carstarts

with 18 nodes, Alarm with 37 nodes, Hepar2 with 70 nodes and Win95pts with 76 nodes. The

Carstarts BN [36] is based on the various operations in a car. The more complex Alarm BN [9]

represents a real life situation for monitoring a patient in intensive care unit. Hepar2 BN [83] is

used for diagnosing liver disorders. The Win95pts BN [41] is created for printer troubleshooting

in Windows 95. We collected these BNs from the bnlearn repository 3.

For all these networks, we generated N = 200 EM runs by randomly choosing starting

points in the search space, in this case starting conditional probability distribution values, for

each of the random variables in each run. We then varied two experimental parameters, namely

the training set size and the number of hidden variables. Firstly, through a Gibbs sampler, we

generated training sets consisting of 100, 250, 500, 1000, 2000, and 4000 samples. For Carstarts

and Alarm BNs, the EM runs are run in parallel on the same Linux machine, a 2.5 GHz Intel

quad core processor with 8GB RAM. For Hepar2 and Win95pts BNs, the EM runs are run in

parallel on the same Linux machine, a 2.2 GHz Intel 22 core processor with 16GB RAM. We

used the libDAI graphical models library [72], which contains an EM implementation suitable

for Bayesian network parameter estimation.

For each sample size, we generated n different hidden variable configurations, where n is the

number of random variables in the network, and for each configuration, we randomly chose m

variables to be hidden. For Alarm and Carstarts BN, m ranges from 0 to n − 1. For example,

for the Carstarts network, we had 18 different hidden variable configurations, ranging from 0

hidden variables to 17 hidden variables. For Win95pts and Hepar2, we hid 25%, 50% and 75%

of random variables.

For our first set of experiments (Section 4.4.2), we focus on Carstarts and Alarm BN. We

3http://www.bnlearn.com/bnrepository/

61



calculated the average relative likelihood shortfall for each hidden variable configuration-sample

size pair as:

RLSavg =
lavg − l∗

l∗
(4.5)

where l∗ is the maximum log likelihood from the 200 EM runs and is deemed the global max-

imum,4 and lavg is the average log likelihood across all 200 EM runs. We also computed the

average number of iterations undergone by all runs. This exhaustive analysis allowed us to iden-

tify which hidden variable configurations and sample sizes took a large number of iterations

to converge (we term these configurations as ‘problematic’), as well as the distribution of log

likelihood values at convergence.

For the second set of experiments (Section 4.4.3), we focused on the hidden variable configu-

rations from the first set of experiments that we found problematic (for Alarm and Carstarts BN)

and specific set of hidden variables (i.e., we hid 25%, 50% and 75% of randomly chosen variables

for Hepar2 and Win95pts BN). We perform EM parameter estimation through ALEM on these

hidden variable configurations. We compare average iterations and solution quality (through

Equation 4.5) between the traditional and ALEM approaches. The third set of experiments (Sec-

tion 4.4.4) focuses on varying the minimum runs parameter; we restrict ourselves to the hidden

variables used for the second experiment. The fourth group of experiments (Section 4.4.5) com-

pares the wall-clock time between the traditional EM and ALEM, once again restricted to the

hidden variables used for the second experiment.

4.4.2 Slow Convergence in Traditional EM

In the first set of experiments, we focus on Carstarts and Alarm BN. We used traditional EM and

went through the 6 sample sizes and the n different hidden variable configurations (n = 37 for

Alarm, n = 18 for Carstarts) for each of the 200 EM runs. Therefore, the total number of EM

runs amounted to 6× 37× 200 = 44, 400 for Alarm, and 6× 18× 200 = 21, 600 for Carstarts.

For each hidden variable configuration-sample size pair, we calculated the average RLS as per

Equation 4.5.

Figures 4.2 and 4.3 show the average number of iterations for the networks as we vary hidden

variables and sample size. We found that RLSavg never exceeds 1%, which means that on average

4We use for simplicity the term ‘global’ maximum for the purposes of this paper, although we recognize that the
maximum achieved from multiple starting points is not necessarily the true global maximum.

62



0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

Number of Hidden Variables

A
ve

ra
ge

 It
er

at
io

ns

Carstarts: Average Iterations

 

 

100
250
500
1000
2000
4000

Figure 4.2: Carstarts network: average number of iterations for 200 EM runs, across all hidden
variable and sample size configurations. Notice the peaks at particular hidden variable configu-
rations.

the log likelihood values obtained from each of the 200 EM runs was never more than 1% away

from the global maximum. In addition, the average RLS peaks and average iteration peaks in

the figures tracked each other fairly well. We generally find that the highest peaks occur with

the 100 sample size experiments, although one cannot establish a trend that a lower sample size

leads to a higher average number of iterations.

We also looked at the runs that eventually reached the global maximum (successful runs),

and calculated the average iterations for just those runs versus the average over all runs, and

found significant differences between these two sets of runs. The average number of iterations

for all runs exceeds the average number of iterations for successful runs by 17.6 iterations in

Carstarts and 5.2 iterations in Alarm, on average. This thorough analysis allowed us to identify

problematic hidden variable configurations and sample sizes which were more time-consuming.

Therefore, we felt that focusing on reducing the average number of iterations would result in the

most significant improvement in terms of the overall time taken to complete the runs and find the

global maximum.

4.4.3 ALEM: Mitigating Slow Convergence

Our ALEM implementation consisted of seven layers (L = 7). Based on results from traditional

EM (Section 4.4.2), we chose the age gap a to be 5, and so β1 = 5, β2 = 10, β3 = 20, β4 =

40, β5 = 80, β6 = 160, and β7 = 1000, as the last layer has no age limit per se and is simply

63



0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

Number of Hidden Variables

A
ve

ra
ge

 N
um

be
r o

f I
te

ra
tio

ns

Alarm: Average Iterations

 

 

100
250
500
1000
2000
4000

Figure 4.3: Alarm network: average number of iterations for 200 EM runs, across all hidden
variable and sample size configurations. Notice the peaks at particular hidden variable configu-
rations.

restricted by ω. For layers 2 to 6 we set Mi = 2, with M1 = 5 and M7 = 200.

For the second set of experiments, we run ALEM on the hidden variable configurations from

Section4.4.2 that we found problematic, which were 3, 4, 7, and 16 hidden variables for the

Carstarts network, and 7, 13, 19, 28, and 33 hidden variables for the Alarm network. These

configurations broadly correspond to the peaks in Figures 4.2 and 4.3. For Hepar2 and Win95pts

BN, we hid 25%, 50% and 75% of randomly chosen variables. Using ALEM, we did notexactly

achieve the global maximum in 4 out of 24 hidden variable-sample size configurations (6 sam-

ple sizes × 4 hidden variable configurations) in Carstarts, although on average we were within

0.007% of the global maximum for the ones we missed. For Alarm, we were off the global

maximum for 12 out of the 30 experiments (6 sample sizes × 5 hidden variable configurations),

but the average shortfall for the configurations where we did not achieve the global maximum

was also 0.007%. However, both of these RLSavg values are orders of magnitude less than the

RLSavg obtained in the traditional experiments, which were 0.13% and 0.10% for Carstarts and

Alarm respectively, indicating ALEM’s effectiveness even on configurations where the global

maximum was not found.

In no case did the average number of iterations ever increase with ALEM: mostly there is

a significant decrease, especially on very hard (i.e., high iterations in traditional EM) instances.

In some cases when the average number of iterations is already low there is no change. Table

64



Number of hidden variables
Carstarts Bayesian network Alarm Bayesian network

Sample size 3 4 7 16 7 13 19 28 33

100 15 (2.2) 19 (2.4) 93 (2.6) 59 (3.2) 14 (1.3) 13 (2.0) 27 (2.3) 27 (2.7) 6 (49.5)
250 31 (2.5) 7 (1.1) 9 (1.7) 30 (3.1) 4 (1.0) 16 (1.7) 28 (2.6) 35 (2.4) 6 (14.2)
500 26 (1.7) 20 (2.4) 38 (2.8) 18 (3.1) 4 (1.0) 4 (1.0) 29 (2.3) 26 (2.7) 7 (1.1)
1000 4 (1.0) 24 (2.5) 17 (2.9) 31 (3.2) 4 (1.0) 19 (2.5) 22 (2.6) 31 (2.7) 19 (3.5)
2000 26 (3.0) 22 (3.3) 13 (2.8) 8 (1.1) 10 (2.0) 14 (1.1) 23 (2.9) 19 (2.4) 25 (2.8)
4000 4 (1.0) 9 (1.9) 13 (2.5) 27 (2.7) 14 (1.8) 5 (1.0) 17 (2.2) 19 (2.7) 30 (2.7)

Table 4.1: Average number of iterations for chosen hidden variable configurations for the ALEM
approach, with speedup = traditional iterations

ALEM iterations in parentheses, for Carstarts & Alarm networks. High-
est speedups are in bold. These results corroborate with the wall-clock time experiments shown
in Figure 4.5.

Number of hidden variables
Win95pts Bayesian network Hepar2 Bayesian network

Sample size 18 35 53 19 38 57

100 19 (2.8) 25 (3.7) 20 (1.8) 21 (3.9) 16 (3.3) 6 (1.0)
250 19 (2.6) 27 (3.9) 14 (3.1) 21 (3.1) 25 (3.4) 10 (1.8)
500 18 (2.9) 25 (4.0) 18 (2.8) 19 (3.6) 23 (3.8) 11 (1.3)
1000 16 (3.1) 20 (4.8) 15 (2.7) 16 (3.3) 16 (2.7) 8 (1.3)
2000 14 (2.9) 20 (4.6) 18 (3.1) 14 (3.0) 14 (2.6) 9 (1.7)
4000 13 (2.4) 18 (4.1) 21 (2.8) 15 (2.9) 13 (2.5) 7 (1.4)

Table 4.2: Average number of iterations for chosen hidden variable configurations for the ALEM
approach, with speedup = traditional iterations

ALEM iterations in parentheses,for Win95pts & Hepar2 networks. High-
est speedups are in bold.

4.1 (for Carstarts and Alarm BN) and 4.2 (for Hepar2 and Win95pts BN) contains the average

number of iterations for the chosen hidden variable configurations in the ALEM approach, with

the speedup traditional #iterations
ALEM # iterations in parentheses. On average the decrease in average iterations for

Carstarts is 51.4%, for Alarm it is 47.8%, for Hepar2 it is 65.4% and for Win95pts it is 69.6%.

The fact that we managed to reduce the average number of iterations for these hidden variable

configurations so significantly yet still achieve the global maximum in most instances (or very

close to it in all instances) demonstrates to us how expensive the traditional strategy is. There are

clearly some initial points that result in a very high number of iterations but tend not to find the

global maximum due to the starting position in the search space. The ALEM approach effectively

culls these iterations, thus saving processing cycles.

65



Bayesian Minimum Failures RLSavg
network runs(Mi)

Carstarts 1 5 0.009%
Carstarts 2 4 0.007%
Carstarts 3 4 0.001%

Alarm 1 14 0.013%
Alarm 2 12 0.007%
Alarm 3 6 0.006%
Hepar2 1 12 0.11 %
Hepar2 2 8 0.06 %
Hepar2 3 4 0.04 %

Win95pts 1 8 0.06 %
Win95pts 2 5 0.07 %
Win95pts 3 4 0.08 %

Table 4.3: Minimum runs variation and solution quality: ‘Failures’ is a count of the number of
hidden variable-sample size configurations (out of a total of 24 for each entry for Carstarts, 30 for
each entry for Alarm, and 18 for each entry of Win95pts and Hepar2) where we fail to achieve
the global maximum as we vary the minimum runs, and RLSavg of only those experiments that
did not achieve the global maximum.

4.4.4 Parameter Variation

We performed a set of experiments where we varied the minimum runs parameter Mi to see

its effects on the average number of iterations as well as the solution quality. Figure 5.1 is a

box plot that shows how the average number of iterations (across the hidden variables that we

tested ALEM for) varies as a function of the sample size and the minimum runs parameter. One

can see a clear trend: as we reduce the minimum runs, the average iterations also decreases. In

fact, some of the average iteration reductions when setting the parameter to 1 were extremely

significant (e.g., 10x reduction in iterations with minimal or no reduction in solution quality, see

Table 4.3).

However, generally the solution quality is also reduced; as we reduce Mi, there are some

hidden variable-sample size configurations where the global maximum is not attained. Table 4.3

provides a count of the number of such hidden variable-sample size configurations. Each value

in the ‘Failures’ column is out of a total of 24 configurations for Carstarts, 30 for Alarm (which

corresponds to 6 sample size configurations × the number of hidden variable configurations

chosen for the network) and 18 (which corresponds to 6 sample size configurations × 3 hidden

variable configurations chosen for the network) for Win95pts and Hepar2. We also provide the

RLSavg of only those experiments that did not achieve the global maximum (the RLS for the

others would be 0). As with average iterations, we can see a consistent variation of solution

66



(a) Carstarts Bayesian network (b) Alarm Bayesian network

(c) Win95pts Bayesian network (d) Hepar2 Bayesian network

Figure 4.4: Variation in the number of iterations ALEM runs undergo, on average, as a function
of the minimum runs parameter Mi for both networks. The lower Mi is, the fewer iterations
undergone. Darker shades of gray denote lower values of Mi.

67



(a) Carstarts Bayesian network (b) Alarm Bayesian network

(c) Win95pts Bayesian network (d) Hepar2 Bayesian network

Figure 4.5: Wall clock time comparison between traditional EM and ALEM. ALEM is, for
larger sample sizes, significantly faster and the variation amongst runs tends to be much smaller.
Traditional EM is in dark gray, ALEM is in light gray.

68



quality as we vary Mi to take values between 1 and 3.

Mi can be adjusted by methods like simulated annealing where a temperature parameter can

be increased initially to allow less discarding of runs for exploration of the search space and then

gradually decreased to allow more discarding of EM runs. Future work will concentrate on a

method to tune this parameter.

4.4.5 Wall Clock Time Comparison

We recorded the time taken by traditional EM and ALEM when running the EM experiments

across all six sample sizes for the subset of hidden variables. Figures 4.5 show the box plots of

the average time taken for both approaches. From these graphs we can clearly see a considerable

decrease in time taken by ALEM for the Alarm and Hepar2 network. For Carstarts and Win95pts,

similar results are evident, but with sample sizes 500 and above. The variance in the number

of iterations is also significantly smaller in ALEM. Thus, we can conclude that a reduction in

average iterations, as reported in Table 4.1 an Table 4.2, translates well to a reduction in wall-

clock time, especially for larger sample sizes.

4.5 Summary

In this work, we present an age-layered influenced algorithm to mitigate the local optima prob-

lem in the EM algorithm. Specifically, our approach can be seen as a way to manage multiple EM

runs, randomized with different initial starting points. We have shown that parameter estimation

using EM on difficult Bayesian networks can be extremely computationally wasteful, underlying

the need for an efficient method to restrict the overall average number of iterations undertaken

for a given parameter estimation problem instance. We then show that ALEM manages to signif-

icantly decrease the average number of iterations required on four difficult Bayesian networks,

but at the same still achieves the global optimum, or gets very close, in all instances.

69



Chapter 5

NetEyes: Multi-Focus Visualization
Techniques

Networks analysts often need to compare nodes in different parts of a network. When zoomed to

fit a computer screen, the detailed structure and node labels of even a moderately-sized network

(say, with 500 nodes) can become invisible or difficult to read. Still, the coarse network structure

typically remains visible, and helps orient an analyst’s zooming, scrolling, and panning opera-

tions. These operations are very useful when studying details and reading node labels, but in the

process of zooming in on one network region, an analyst may lose track of details elsewhere. To

address such problems, we present in this chapter our NetEyes visualization software integrated

with multi-focus and multi-window techniques that improve interactive exploration of networks.

Based on an analyst’s selection of focus nodes, our techniques partition and selectively zoom

in on network details, including node labels, close to the focus nodes. Detailed data associated

with the zoomed-in nodes can thus be more easily accessed and inspected. The approach enables

a user to simultaneously focus on and analyze multiple node neighborhoods while keeping the

full network structure in view. We demonstrate our technique by showing how it supports inter-

active debugging of a Bayesian network model of an electrical power system and EM learning

in Bayesian networks. In addition, we show that it can simplify visual analysis of an electrical

power network as well as a medical Bayesian network. This chapter is based on the multi-focus

visualization technique [101] .

70



5.1 Introduction

Many datasets can be partly represented as networks or graphs. For example, a Bayesian network

[47] provides an elegant method of representing complex relationships among random variables

in the form of graphs. It is a directed acyclic graph model representing a set of variables, in the

form of nodes, and their conditional dependencies, in the form of edges (see Chapter 2 for more

details). Bayesian networks have become an important statistical machine learning tool and are

being used effectively in uncertainty reasoning for many real world problems such as electrical

power system diagnosis [69], medical diagnosis and image recognition.

As an example of an application, consider a Bayesian network for medical diagnosis. In this

case, nodes may represent diseases and symptoms. The edges represent the causal relationship

between diseases and their symptoms. The conditional probability table (CPT) table for each

disease node reflect prior probabilities, while a symptom node CPT has probability values for

the different combinations of states of its parent disease nodes. Given observed symptoms, also

known as evidence, the network can be used to compute the posterior probability distribution

for the presence of the diseases. Unlike other networks containing millions of nodes and edges,

Bayesian networks found in most applications to date contain up to a few thousand nodes. In

addition, the in- and out-degrees of Bayesian network nodes are quite small, typically a dozen or

less, while some social networks nodes have thousands or millions of neighbors.

While software tools like Hugin [1] and GeNIe/SMILE [21] provide powerful visualization

support for nodes, edges, and conditional probability tables (CPTs), many real-world Bayesian

networks are becoming so large and complex that more advanced visualization and interaction

techniques would be beneficial. Interactively investigating these networks, with hundreds or

thousands of nodes and edges, can be quite challenging [47]. Existing visualization tools used

for scrolling, zooming or panning the network do not elegantly combine network structure visual-

ization with interactive exploration and understanding of node details. Even when merely moder-

ately sized (say, with a few hundred nodes) Bayesian networks are zoomed to fit the screen, node

labels may become unreadable. Consequently, an analyst may need to zoom, pan, and scroll

in order to read node labels and thereby better understand the joint role of different network

nodes in Bayesian network computations. Unfortunately, in the process of zooming, panning,

and scrolling, an analyst may easily lose context. As an example, given a node of interest, it is

71



hard to understand interactions with its children and parents if some of them are located far-off in

the network layout. It is also difficult to keep values of the conditional probability tables (CPTs)

in mind when studying and understanding zoomed-in details. The multi-focus and multi-window

visualization techniques discussed in this chapter enable an analyst to better compare and analyze

internal details of nodes in different parts of a network while retaining network context.

The existing fisheye technique [31] seeks to enable zooming in on details while retaining

context; it was introduced to address the fundamental visualization problem of finding a specific

address node in a address book structure of AT&T employees. The fisheye technique maintains

context and lets users study details, but allows focus on only one part of a network. In many

cases, however, a user might need to compare multiple things in multiple parts of a network.

Remembering the details of a previously studied zoomed node becomes a tedious memory taxing

and error prone activity as the number of nodes for comparison increases. This is the limitation

of traditional single fisheye techniques.

The remainder of this chapter is structured as follows: Design goals on NetEyes are discussed

in Section 5.2. Section 5.4 provides an overview of previous related work, while the multi-focus

algorithm is described in detail in Section 5.5. Application and expert evaluation are discussed

in Section 5.6. Finally, Section 5.7 concludes the chapter with some hints for future research

directions.

5.2 Design Goals of NetEyes

To overcome the limitations of traditional fisheye technique, as well as others, we formulate a

number of design goals (DGs) that address our requirements associated with interactive explo-

ration and analysis of networks, in particular Bayesian networks. The design goals assume that

zooming is being used. For the zooming algorithm, we integrate the previously stated goals

[90] and the suggestions from Bayesian experts. We hypothesized that the inherent complexity

in Bayesian network representations could be overcome with visualization tools that focus on

comparing parts of the network and their contents.

DG1 Multi-focus zooming: Multiple focus nodes selected in different parts of the network

should be zoomed simultaneously, under user control, thus making their labels more read-

able regardless of their location in the network. The process of zooming in and zooming

72



out should be animated, to avoid hard to follow abrupt layout changes.

DG2 Topology maintenance: The continuity of layout adjustment should not challenge the

user’s mental map of the structure of the network, that is the topology, and the proximity

relations of the nodes should be maintained [99].

DG3 Focus nodes selection: The user should be able to determine which nodes to zoom by

studying the details associated with a subset of nodes. A similar set of nodes such as

current nodes in an electrical network or disease nodes in a medical network, should be

selectable by means of a search operation. A particular section of the network should also

be selectable by means of a group selection operation.

DG4 Scoped zooming: The zooming should be restricted to a region of interest or a partition,

around a focus node to avoid distorting the whole network layout. A partition algorithm

should intuitively decide on the region of interest around the focus node for zooming. The

set of nodes in the network should be partitioned accordingly. There is one partition per

focus node. With no focus node, there is one partition for all the nodes. The partitions

around the focus nodes is used to localize the zooming effect within that region.

DG5 Dynamic partitioning: The partitioning algorithm should dynamically adjust the partitions

as the user interactively adds or removes focus nodes for scoped zooming.

DG6 No ghost regions: After zooming, discontinuities or ‘ghost regions’ between the partitions

should not exist [10].

DG7 Context visibility: We consider both local and global context. For local context visibility,

the user should be able to control zooming to make the region surrounding the focus node

more visible. For global context, the whole network should fit to the screen space and be

visible during the user interactions. The user should still be able to control zooming the

whole network.

DG8 Label zooming: The user should be able to make the node labels of focused nodes bigger

and more easily readable. The degree of zooming decreases as we move away from a focus

node.

DG9 Data exploration: Users should be able to simultaneously open multiple detail windows

associated with the network nodes. Depending on the type of network, the data-level

73



windows should show node details such as CPTs, time-series graphs, or individuals bio-

data for comparison or data analysis.

Existing visualization techniques do not integrate all of the above design goals. We introduce

in this chapter a multi-focus technique to help analysts compare different parts of a network si-

multaneously while retaining network structural context. Our novel approach satisfies the above

goals and supports the visualization principles “overview first”,“ zoom and filter”, then “details-

on-demand” [98].

5.3 NetEyes

Our software tool illustrated in Figure 5.1 has several GUI components. Our multi-focus tech-

nique starts with an initial layout in the network window as shown in Figure 5.1(a). It allows

analysts to select a set of focus nodes to zoom-in on multiple parts of a network. In order to

minimize distortions while zooming, we localize a fisheye-like effect to a region surrounding a

focus node. The distortion neighborhood is defined by partitioning the display into polygonal

regions, using a Voronoi algorithm [30]. All the nodes inside a polygonal region are closer to

the focus node in that region than to the focus nodes in other regions. A localized fisheye zoom-

ing is applied to all partition regions, several such zoomed partitions can be created at the same

time allowing users to zoom several parts of the network without losing structural context (see

Figure 5.1(b)). The degree of distortion can be adjusted by using the slider in the control panel

as shown in Figure 5.1. Our analysis and visualization is targeted on two tasks, the validation

task and the diagnosis task (explained in more detail in Section 5.6.2). In the validation task,

the analyst understands and checks the overall network by inspecting various nodes in different

parts of the network. In the diagnosis task, the analyst focuses on the causal nodes that lead to

a particular outcome, for an in-depth comparison and analysis. The analysts can also use the

search operation in the control panel for selecting the nodes. There is also an option to show all

available node details, in a dataview window.

5.4 Related Work

A number of existing techniques partially fulfill the design goals (DG1 - DG9) outlined above.

This section discusses how visualization, visual distortion, multi-focus and interactive visual-

74



(a) Before fisheye zooming. Node labels are unreadable.

(b) After fisheye zooming. Node labels are readable.

Figure 5.1: Visualization of multi-variate probability distributions of ADAPT electrical Bayesian
network. Side panel in Figure 5.1(b) shows the multiple detail windows. The bubbles help the
user to trace a detail window to its corresponding node in the network view.

75



ization approaches might each improve on a user’s ability to understand and solve problems in

networks such as Bayesian networks.

5.4.1 Network Based Fisheye Techniques

A number of focus+context display techniques have been introduced [14]. A powerful and pop-

ular way to retain overview and detail is the fisheye approach [31]. In a single-fisheye view, the

entire node structure can be always visible. The user-selected node and its neighboring network

nodes are magnified and distant nodes in terms of graph structure are demagnified. The fisheye

techniques described by Sarkar and Brown [95] use filtering and distortion, but support focus on

a single item and distort the whole layout. An improved spatial distortion approach for the fo-

cus+context transformation using hyperbolic geometry is presented [55]. It places nodes around

the root and provides smooth and continuous animation as users click or drag nodes to read the

focus point of the layout. This approach also distorts the whole layout for each selection of focus

point. In these techniques, some of our design goals are not satisfied, such as multi-focus zoom-

ing (DG1), topology maintenance (DG2), focus nodes selection (DG3), scoped zooming (DG4),

dynamic partitioning (DG5) and data exploration (DG9). The design goals that are satisfied are

continuity in layout (DG6), context visibility (DG7) and label zooming (DG8). Topology main-

tenance (DG2) is achieved in Furnas’s fisheye approach [31] but not in the hyperbolic approach

[55].

Zooming techniques with orthogonal and polygonal stretching are investigated [96]. The

simple orthogonal distortion method maintains topological ordering of points (nodes maintain

their left-of, above, etc. relationships), but the polygonal method does not. The zooming action

is such that a user acts indirectly on the focus nodes through a ‘rubber sheet.’ This technique

unfortunately violates the design goal, no ghost regions (DG6). Formella and Keller [29] distort

network layout outside a polygonal area to make space for zooming all nodes inside the circum-

scribed polygon. This distortion mechanism does not scale to large networks as the user has to

manually select the focus area by using a rectangular selection. Both these techniques do not

support dynamic partitioning (DG5).

A topological fisheye method [33] precomputes coarsened graphs and renders the level of

detail from the combined graphs, depending on the distance from one or more foci. This system

76



supports more than one focus (DG1). The drawback, however, is the computation involved in

pre-computing the coarsened graphs, making it unsuitable for interactive exploration. Dynamic

insets [34] uses the connectivity of the graph to bring offscreen neighbours of on-screen nodes

and their context into the viewport as insets. Unfortunately, the entire structure of network is not

visible in this technique, thus violating DG7. A multi-focus+context technique [60] for generat-

ing spatiotemporal coherent time-varying graphs is introduced. This technique utilizes a triangle

mesh to partition the graph nodes and leverages this underlying mesh for constrained multi-

focus+context visualization. Multi-focus+context visualization was achieved through formulat-

ing an energy function for optimized deformation. This approach supports design goals such

as the topology maintenance (DG2), continuity in layout (DG6) and context visibility (DG7).

The above approaches do not support design goals such as focus nodes selection (DG3), scoped

zooming (DG4), dynamic partitioning (DG5), label zooming (DG8) and data exploration (DG9).

Other zoom algorithms [4] [97] provide more scalable multi-focus distortions, but without scop-

ing of distortion, any focus change affects the entire network layout in these approaches. Also,

the user has no direct control over the sizes of nodes aside from opening or closing them.

As described, previous techniques do not support one of our design goal, namely scoped

zooming (DG4), as they distort the whole layout when rendering graphs at different levels. While

the issue with distorting the whole layout is addressed by an improved fisheye zoom algorithm

[90], it results in wasted screen space called ‘ghost regions,’ thus violating DG6.

5.4.2 Tree Based Fisheye Techniques

Several previous systems demonstrate focus+context techniques for tree visualization, like Space-

Tree [86], which uses extensive zooming animation to help users stay oriented within its fo-

cus+context tree presentation. Unfortunately, this technique does not support focus nodes se-

lection (DG3), scoped zooming (DG4), dynamic partitioning (DG5), and creates ghost regions

(DG6). The TreeJuxtaposer [74] technique uses focus+context methods to support comparisons

across hierarchical datasets. The technique also creates ghost regions (DG6). The reason is that

this technique allows the user to do a rectangular selection which usually gives rise to ‘ghost

regions’.

Tu and Shen present ‘balloon focus,’ a multi-focus context technique for treemaps. Their

77



user study confirms that users prefer the multi-focus treemaps to identify select players in a

multi-year NBA dataset consisting of conferences, divisions, teams and player [104]. While the

treemaps provide good usage of the available space, network structure can be difficult to identify

[7]. So this approach does not retain the topology of the network (DG2). Bayesian networks are

in general not trees, making tree visualizations limiting.

5.4.3 Image Based Fisheye Techniques

A new distortion technique that folds the space between focus regions to guarantee visibility

of multiple focus regions is proposed [26]. The folds themselves show contextual information

and support unfolding and paging interactions [26]. A drawback of this technique is the lack

of user control over the scope of the focused regions. Non-linear magnification [49], pliable

surfaces [11] and compressed arc tangent graph algorithm [48], when applied to graphs, distort

the labels within the zoomed areas. Such distortions make labels difficult to recognize or read

(DG8). These techniques support multi-focus zooming (DG1), topology maintenance (DG2),

dynamic partitioning (DG5), no ghost regions (DG6), and context visibility (DG8). But they do

not support focus nodes selection (DG3), scoped zooming (DG4) (as the whole layout is distorted

for each selection of focus point), label zooming (DG8) and data exploration (DG9).

5.5 Multi-focus Zooming and Multi-window Techniques

Our multi-focus zooming algorithm helps to retain the network structure, thus limiting distortion

to preserve the user’s mental map of the Bayesian network. The distortion algorithm is indepen-

dent of the graph or network layout algorithm and is defined as a separate processing step on the

layout of the graph. This allows for a modular organization of software [38] and helped us to

easily understand, modify and reuse existing code to suit our visualization. However, care must

be taken for the fisheye distortion not to reduce readability of the display. To combat the negative

aspect of distortion while giving an analyst control, we take the three steps shown in Figure 5.2:

• In the focus nodes selection step, the analyst selects a set of nodes for zooming. This can be

done using a search operation over node labels or manually by selecting interesting nodes

from the dataview window where all the detail windows of the nodes are displayed.

78



Figure 5.2: The diagram depicts the visulaization pipeline flow in our multi-focus algorithm.
(a) The source data is loaded into Prefuse data tables and converted to visualizable attributes in
the visual abstraction. View transformation takes place in three main steps: (b) before fisheye
zooming; (c) partition generation; and (d) after fisheye zooming, also showing bubble anchors.

79



• After selection of the focus nodes, regions around the focus nodes are created by the parti-

tion generation step, which applies an incremental algorithm that maintains a set of parti-

tions that varies over time by insertion or deletion [2]. This is shown in Figure 5.2c which

has nine focus nodes and polygonal partitions. This second step also ensures that all the

nodes inside one partition are within that partition after distortion as shown in Figure 5.2d.

This is done by measuring the maximum distance to move the node during distortion; the

black lines as shown in Figure 5.2c denotes the maximum distance to position the node so

that it stays within the Voronoi partition.

• The third step, fisheye zooming, distorts each partition as shown in Figure 5.2d. This results

in zooming the focus nodes. For each focus node, the zooming gradually decreases as we

approach the edges of the Voronoi partition.

The above three steps repeat as the new focus nodes are selected and zoomed. Our technique

is based on distorting the size and position of the label box based on its euclidean distances from

the focus node. This helps to identify the focused node and its neighboring nodes. The process of

zooming in our approach therefore attempts to provide interactive rendering, ability to compare

multiple parts of a graph without excessive distortions and ghost regions, and exploration of node

details.

Both Voronoi and rectangular partitioning approaches for a multi-focus technique have been

proposed [100]. We use the Voronoi partitioning approach [3] as opposed to the traditional

rectangular partitioning approach [100]. This aids incremental partitioning (DG5) and prevents

ghost regions(DG6) while preserving both structure and efficient use of space for arbitrary net-

work structures. Another benefit of the Voronoi approach is that it does not create ghost regions

(DG6). After applying the fisheye technique locally inside each Voronoi polygon, the nodes near

the sides of all polygons are compressed, to preserve layout continuity. Previous work has, to

our knowledge, not combined the Voronoi and the fisheye algorithm for multi-focus zooming.

In addition to multi-focus, our approach is multi-window. The recent GraphPrism [10] shows

graph measures in stacked histograms and highlights nodes in a network based on selections in

the histograms. We follow, and use multiple small windows to show more details such as the

CPTs of the nodes. Having multiple windows with node detail information raises the question

of maintaining a connection between a node and its details. We do this by means of ‘lines of

80



bubbles’ (see Figure 5.5). Like bubbles connecting thoughts to a character in a cartoon, bubbles

act as anchors and connect nodes to their details. Using these bubbles, the user can trace a

detail window either in the side panel or floating, to its corresponding node in the network view.

The bubbles and the title bar of the detail window have the same color to clearly show their

connection. We use an improved version of previously used bubbles [16], replacing the solid row

of large dots with a progressively enlarged row of hollow bubbles. By using hollow bubbles, the

user can now more easily see the network underneath the bubbles, see Figure 5.7 for solid bubbles

and Figure 5.5 for hollow bubbles. We experimented with different bubble color representations,

solid versus hollow bubbles, and different sizes of the bubbles. We found that hollow colored

bubbles which progressively increase in size as it reaches the side panel are more effective.

The set of nodes in the network is denoted by X = {X1, X2 . . . Xn}. The focus nodes are

stored in a list Y. Each focus node is associated with a polygon ρ. The polygons are stored in a

list ρ = (ρ1, ρ2, . . . , ρm). The pseudo-code of the multi-focus algorithm is shown in Algorithm

5.5.1; we now discuss each of the three steps in more detail.

5.5.1 NetEyes Step 1: Selection of Focus Nodes

Many current visualization techniques mainly address how to display the data while the user’s

primary concern, especially for large datasets, is what are interesting nodes Y, that need to be

focused [31, 32]. In NetEye, we provide several options as discussed below to help users to

study the details associated with each node Xi to find the truly interesting nodes Y (line (viii) in

Algorithm 5.5.1), satisfying design goal, focus nodes selection (DG3). We denote a focus node

as X∗f .

1. The user can study the details of the nodes (via detail windows) such as the time-series

graphs or the CPTs (DG9). If an interesting behavior is found, the detail window can be

selected so that the corresponding node in the network window also gets selected.

2. In the network view, the detail windows can be viewed as a tooltip as the user hovers over

a node with a mouse. The detail window associated with a node can be anchored if the

time-series graph or the CPT requires further inspection, see Figure 5.5.

3. A search operation can be used to select a set of nodes. This operation is useful, for

example, when the user wants to study all the current nodes or the voltage-sensor nodes in

81



Algorithm 5.5.1: MULTI-FOCUS(X)

procedure FISHEYEZOOMING(ρ,Y )
comment: Apply fisheye distortion for each node
for each ρi ∈ ρ

do



X∗f ← getFocus(Y , ρi)
for each Xj ∈X

do



Ray casting is used to find if a node is inside a polygon
if (IsNodeInPolygon(Xj , ρi)

then



Get the intersectPoint (xp, yp) of the node
(xp, yp)← intersectPoint(Xj , X

∗
f , ρi)

Compute Dmax (i)
Dmax ←

√
(x∗ − xp)2 + (y∗ − yp)2

Get start and end distance (Ds and De) of the node Xi from the focus X∗f (ii)
Ds ←

√
(x∗ − xs)2 + (y∗ − ys)2

De ←
√

(x∗ − xe)2 + (y∗ − ye)2
Apply arcTan fisheye distortion for the node
Conversion from Cartesian to Polar co-ordinates (iii)
θs = arctan( y

∗−ys
x∗−xs )

θe = arctan( y
∗−ye
x∗−xe )

Normalize the distance (iv)
dnorms = Ds/Dmax
dnorme = De/Dmax
Calculation of radial distance r and de-normalization (v)
rs = a ∗ arctan(b ∗ dnorms ) ∗Dmax
re = a ∗ arctan(b ∗ dnorme ) ∗Dmax
Conversion from Polar to Cartesian co-ordinates (vi)
x′s = rs cos(θ) + x∗

y′s = rs sin(θ) + y∗

x′e = re cos(θ) + x∗

y′e = re sin(θ) + y∗

Compute the new font size and position (vii)
x′c = (x′e − x′s)/2
y′c = (y′e − y′s)/2
Xj .position← setPosition(x′c, y

′
c)

Xj .font← setFont((x′e − x′s), (y′e − y′s))

main

Graph layout is rendered and wait for user operation
if (Xi.selected)

then
{User can select nodes to start analysis (viii)
Y ← Y ∪Xi

Fortune’s Voronoi algorithm is called to create the polygons (ix)
ρ← DRAWVORONOI(Y )
FISHEYEZOOMING(ρ,Y )

Figure 5.3: Pseudocode for the multi-focus algorithm. The DrawVoronoi function takes the
focus nodes (Y ) as inputs and outputs the endpoints of the polygons (ρ) for each focus node.
The FisheyeZooming function takes the ρ and the Y as inputs and renders the distorted nodes.

82



Figure
5.4:

(a)
A

hard
to

read
baseline

netw
ork;(b)

Voronoipartition
lines

have
been

draw
n;(c)

V
iew

ing
one

zoom
ed-in

partition;
(d)

Show
ing,in

principle,how
the

m
axim

um
distance

for
each

node
labelpositions

are
com

puted
(so

thatthey
do

notm
ove

outof
the

polygon).B
lue

and
red

lines
show

the
startand

end
distance

ofeach
node

labelrectangle
from

the
focus;(e)arcTan

distortion
is

applied
forsom

e
node

labelrectangles
based

on
the

start(upper-left)and
end(low

er-right)coordinates;(f)Polygon
show

s
focus

nodes
afterdistortion.

83



an electrical network or in a Bayesian network, see Figure 5.7.

4. Rectangular selection allows the user to select a group of nodes in a particular region of

the network layout. After selection, the detail windows associated with those nodes can be

opened and studied in the side panel, see Figure 5.5.

5. Users can select neighboring nodes in a graph. The selected nodes can be zoomed and

studied, see Figure 5.8 and 5.10.

5.5.2 NetEyes Step 2: Partition Generation

After selecting a set of focus nodes Y, a bounded region ρ around each of the focus node X∗f
should be automatically generated by the partitioning algorithm. The zooming algorithm is ap-

plied inside this region.

We experimented with a variety of rectangular partitioning approaches but found them caus-

ing discontinuities [100]. The Voronoi algorithm [2] satisfies several design goals (DG4, DG5

and DG6); its works by dividing the display area into n polygonal regions ρ, given n node selec-

tions (line (ix) in Algorithm 5.5.1). This algorithm is based on the principle that any node in the

region will be nearer to the focus node in that region than to any other focus node.

When a node is selected as a focus node, a partitioning algorithm [2] is applied to that node

and neighboring existing focus nodes to generate a new polygon, showing the incremental aspect

of the algorithm. We apply the local fisheye to a bounded area by retrieving the corner co-

ordinates of the region and updating the display accordingly. Each node in the graph is checked

to see if it is present in the selected nodes’ partitioned area using a ray casting technique.1 Only

those nodes in the selected nodes’ partitioned area undergoes the fisheye distortion.

5.5.3 NetEyes Step 3: Fisheye Zooming

The analyst may want study the focus nodes Y in each partition. To do this, he or she may

use NetEyes to zoom-in on the focus nodes. A local fisheye effect does this; the selected focus

node is zoomed in and the sizes of the nearby nodes increase as a by-product. We minimize the

traditional fisheye effect that distorts the whole layout by localizing the fisheye effect within a

Voronoi partition. The user-selected node and its nearby nodes are magnified (DG7); the size of

1http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html

84

http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html


Figure
5.5:

T
he

tim
e-series

graphs
of

all
the

nodes
inside

the
rectangular

selections
are

aligned
and

show
n

in
the

side
pane

of
N

etE
yes.A

nalysts
can

hoverovera
node

to
display

its
tim

e-series
data

as
a

tooltip.T
he

tim
e

series
data

forthe
voltage

sensors
E

140,
E

240
and

E
340,show

n
as

floating
w

indow
s,have

been
anchored

in
the

netw
ork

view
by

clicking
on

the
netw

ork
nodes.

85



Figure 5.6: Arctan curve for different values of the distortion factor, b and its effect on the node
sizes: (a) b = 2.5 (b) b = 5.0. The original undistorted nodes are shown along the x-axis, while
the nodes after distortion are shown along the y-axis. It is hard for an analyst to read the small
labels along the x-axis, while the labels along the y-axis close to (0, 0) have become easier to
read.

the nearby nodes decrease by the arctan of the distance from the focus node as they reach the

edge of the polygonal partition providing a continuous layout.

Each node in the network has start coordinates (upper-left corner) (xs,ys), center coordinates

(xc,yc) and end coordinates (lower-right corner) (xe,ye). Let (x, y) denote either the start or the

end coordinates of the node. The center coordinates of the focus node are denoted by (x∗,y∗).

The start and end distance of a node from the focus is denoted by Ds and De respectively. In

Figure 5.4(d), Ds is indicated by the red line and De is indicated by the blue line. The distance

Dmax is measured as the distance from the focus node’s center (x∗,y∗) through the node’s center

(xc,yc) to the point of intersection with the edge of the polygon as shown in Figure 5.4(d) (line (i)

in Algorithm 5.5.1). These distance values are used to compute the transformed start (x′s, y
′
s) and

end (x′e, y
′
e) co-ordinates of the node label box. The font size of the labels are then determined

based on the difference between the transformed start and end co-ordinates in the X-dimension.

The new position (x′c, y
′
c) of the node is obtained by finding the center coordinates. The arctan

fisheye distortion for start or end co-ordinates (x,y) is done in the following steps:

Finding the distance of the node (x, y) (where (x, y) can represent either the start coordinates

86



(xs,ys) or the end coordinates (xe,ye) of a node) from the focus (x∗, y∗) is done (line (ii) in

Algorithm 5.5.1) as shown below:

D =
√

(x− x∗)2 + (y − y∗)2,

where D = Ds or D = De and (x,y) = (xs,ys) or (x,y) = (xe,ye).

Conversion from Cartesian to Polar co-ordinates is done (line (iii) in Algorithm 5.5.1) as

shown below:

θ = arctan( y−y
∗

x−x∗ ).

We normalize the distance so that the node is not moved outside its Voronoi polygon (line

(iv) in Algorithm 5.5.1) as shown below:

dnorm = D/Dmax.

Calculation of radial distance r and de-normalization is done (line (v) in Algorithm 5.5.1)

using:

r = a ∗ arctan(b ∗ dnorm) ∗Dmax,

where b is the distortion factor and a = 1
arctan(b)

so that r ∈ [0, 1] before de-normalization.

Distortion can be increased or decreased by respectively increasing or decreasing the value

of the distortion factor, b. We use the arctan function to distort; see Figure 5.6 for example arctan

curves and their effects on the sizes of nodes including labels for different values of b. The

topology or the relative position of the nodes are retained after the distortion (DG2).

Conversion from Polar to Cartesian co-ordinates is done (line (vi) in Algorithm 5.5.1) using:

x′ = r cos(θ) + x∗

y′ = r sin(θ) + y∗.

The above steps are applied to both the start and end coordinates of a node to get the trans-

formed coordinates (x′s,y
′
s) and (x′e,y

′
e). Size distortion is then done by finding the new label

based on the difference between the transformed coordinates (x′e−x′s), where x′e ≥ x′s (line (vii)

in Algorithm 5.5.1). The new center position (x′c, y
′
c) of the node is calculated as:

x′c = (x′e − x′s)/2

y′c = (y′e − y′s)/2.

Figure 5.7 shows the multi-focus zooming effect on nine focused nodes for a distortion factor

b = 18 (DG1). The health node labels (Health it281, Health it340, Health it261, ..) are all

clearly readable (DG8).

87



Figure 5.7: A zoomed-in visualization of nine focus nodes (Health it281, Health it340,
Health it261, ..) using the distortion factor b = 18. The health node labels are all clearly
readable. The focus node Health it281 has a green color border; the bubbles connecting the node
and the title bar of the detail window in the side panel are also represented in green color.

88



5.6 Applications of NetEyes

Our novel multi-focus technique is implemented in Java using the Prefuse framework [37].

ADAPT Bayesian network as well as other networks have been visualized. We discuss the

Bayesian network visualization in Section 5.6.1. Analytical tasks, to validate the CPTs and

diagnosis tasks, to find the faulty components are described in Section 5.6.2. We visualize the

progress of the CPT values and the solution quality (log likelihood) of the traditional EM algo-

rithm and GAEM in Section 5.6.3.

5.6.1 Network View for Bayesian Networks

The ADAPT Bayesian network, which can be used for automatic fault diagnosis [69], models an

electrical power network that is representative of those found in aerospace vehicles. A visualiza-

tion of the ADAPT network in which labels are hard to read (and with no distortion) is shown in

Figure 5.1(a). The network consists of 671 nodes and 790 edges. The font size of the labels is

the same for all the nodes. With the network fit to screen, as it is here, it is impossible to read

these labels on the computer screen making it extremely difficult to understand, validate or edit

the Bayesian network.

The ADAPT testbed has capabilities for power storage, distribution, and consumption, and

contains batteries, electromechanical relays, circuit breakers, and different kinds of loads, such

as pumps, fans, and light bulbs. Each component in ADAPT is modeled as a set of nodes.

Health nodes (H) and the evidence (e) are of particular interest. The health nodes serve as the

query variables, e.g., whether a component is defective or not, and the evidence nodes serve as

the input variables, e.g., a command such as closing a relay to allow current from the battery

to flow to the load. As an example fault scenario [69], suppose that e = {CommandRelay =

cmdClose, SensorCurrent = readCurrentLo, SensorVoltage = readVoltageHi, SensorTouchSensor

= readClosed}. This gives arg maxP (H | e)= {HealthBattery = healthy, HealthLoad = healthy,

HealthCurrent = stuckCurrentLo, HealthVoltage = healthy}. In this scenario, given the evidence

of the command and sensor readings, the current flows from the battery to the load as both of

them are healthy, also the voltage sensor is healthy. So the defective component is the current

sensor which reads low instead of high.

Using our NetEyes software, the analyst interacts with the graph by changing the position

89



of focus. The focus nodes (in this case, the health nodes) that have been zoomed, will use a

larger font for labels than their neighboring nodes as shown in Figure 5.7. It is now possible to

read the node labels for the focus nodes and the nodes close to them. In general, multi-focus

selection is used to make the labels readable and for comparing various nodes to explore their

differences and similarities. The side panel in Figure 5.7 shows detailed information about the

nodes, specifically the conditional probability tables, for further comparison and analysis [16].

The bubbles help the user to trace a detail window to its corresponding node in the network view.

5.6.2 Analytical Tasks for Bayesian Networks

Several problem solving tasks can be performed with NetEyes for a Bayesian network; we now

consider the validation and the diagnosis tasks.

Validation Task

When validating a Bayesian network such as ADAPT, the user may want to compare the CPTs of

a set of nodes, for example, health nodes that represent health of different components but with

similar conditional probability tables as shown in Figure 5.7. Thus, we investigate P (Hi|pa(Hi))

where Hi ∈ H is a Bayesian network health node and pa(Hi) denote the parent nodes of Hi.

There can be multiple nodes that may be the major causal nodes for certain hidden or observ-

able effects. These nodes can lie quite far-apart in a large Bayesian network as shown in Figure

5.8. Using our multi-focus and multi-window technique, they can be zoomed to analyze their

CPTs.

Diagnosis Task

The diagnosis task investigates P (Hi|e) where Hi is a Bayesian network health node and e is

the evidence. Here, multi-focus can help a Bayesian analyst by allowing him or her to focus, at

the same time, on multiple Hi’s with interesting posteriors P (Hi|e). For example, it might be

that multiple nodes have high posterior probabilities of being defective in a diagnostic Bayesian

network such as ADAPT. If the nodes are distant and their labels are hard to read in the original

network layout (as they can easily be in ADAPT and other Bayesian networks), our multi-focus

technique provides valuable support for interactive analysis. Figure 5.9 2 shows the usage of the

2http://www.youtube.com/watch?v=oJh1kbQVcXc

90

http://www.youtube.com/watch?v=oJh1kbQVcXc


Figure
5.8:

T
he

zoom
ed

parent
nodes

of
the

O
rl

w
ire

nodes
and

their
C

PT
s

in
the

A
D

A
PT

electrical
B

ayesian
netw

ork.
T

hese
zoom

ed
node

labels
are

readable
on

the
com

puterscreen
even

though
they

are
difficultto

read
in

this
screenshot.

91



multi-focus technique in detecting faulty components in an electrical power system.

Evaluation

Our evaluation approach has been to explore complex Bayesian networks while taking note of

how the tool aided an analyst in finding and remembering nodes of value during a problem

solving session. Specifically, we compare and contrast NetEyes with other Bayesian network

visualization tools like Hugin [1], Netica [77] and GeNIe/SMILE [21]. Many features and algo-

rithms were explored, including alternative distortion approaches under rectangular and Voronoi

polygonal partitioning. We ended up using user controllable distortion and Voronoi polygonal

partitioning. Simplifying the controls and amplifying the mechanisms for remembering where

one is in the network exploration process, were helpful for the user to make sense of the network.

The interface is a dramatic simplification over pop-up style controls, and helps focusing

action on the essential nodes of a network. The interface felt agile and powerful to our Bayesian

network expert as he was able to reformulate network questions several times a minute. He

commented on and enjoyed discovering six mechanisms to orient, annotate and understand the

relations between nodes. (1) Partitioning allowed him to quarantine (he used the word ”sacred”)

parts of the network that contained interesting nodes. (2) The fisheye, he said, allowed him to

highlight and remember which nodes he deemed important in a very visible way. (3) The bubbles

gave him easy to follow indications of where important nodes were. (4) The motion of panning

made the bubble lines show how distant the nodes were separate from other mechanisms. (5)

Panning motions and mouse-over helped resolve nodes that were overlapping. (6) The use of

node coloring helped to focus on nodes of similar types.

The interesting nodes in the network were found by using the search techniques as discussed

in Section 5.5.1. For Bayesian networks, in reviewing the conditional probability tables asso-

ciated with the focus nodes, our network expert found himself using a collect-review-dispense

loop to home in on the conditional probability tables that needed to be compared. Often he would

collect 10-20 of these tables and then prune down to 4-5 in one iteration of this collect-review-

dispense loop. He described the activity as a network review, similar to code review in software

engineering, as he poked around hunting and foraging with the support of the system’s many

memory aids. In particular, the tool helped in identifying important nodes for further analysis

92



and comparison in the side panel.

5.6.3 EM Learning

Our multi-focus technique can be used to study the progress of EM runs during traditional EM

learning. The Alarm Bayesian network, as an example, is visualized in the network window (see

Figure 5.11). Nodes can be zoomed and their CPTs can be studied (see Figure 5.12). CPTs are

visualized as time series graphs showing EM iterations on the x-axis versus probability values

on the y-axis. Each row in the detail window represents a random variable and each column

represents an EM run. Bubbles connect the nodes in the network view with the time series

graphs in the focus window (as shown on the right).

We can see from Figure 5.12, for the top two CPTs (INSUF and CO), the probability values

remain the same throughout the iterations (i.e., these random variables converge much earlier

during EM learning). The bottom CPT (PRESS) shows more variations during EM learning. For

a given training dataset, this behavior seems to be the same for all EM runs. From the network

view, we can see that the top CPT (INSUF) belongs to a parent variable and the bottom two CPTs

(CO and PRESS) belong to child variables. This analysis helps to identify the random variables

that can have significant impact on the solution quality.

In Figure 5.13, we show the progress of probability values in the CPT (detailed window) and

the solution quality (window on the left) for traditional EM. The black trace line (as shown in

Figure 5.14) is used to study the progress of an EM run at a particular EM iteration. For example,

the trace line is shown for an EM run (alarm 3 shown in blue color) at EM iteration 30. We can

notice that the EM run (alarm 3) shows significant changes in the CPTs values (right window)

and there is an increase in solution quality (left window) at EM iteration 30.

For GAEM learning, Figure 5.14 shows the progress of probability values in the CPT (de-

tailed window), the solution quality and iterations (on the left side window) for each generation.

The time series graphs (generations on x-axis versus probability values on y-axis), is used to

show the progress of probability values for each generation of GAEM. Each row in the detailed

window represents a random variable in the Alarm Bayesian network and each column repre-

sents one EM run. The black trace line (as shown in Figure 5.14) is used to study the progress of

EM run at a particular generation in GAEM. The changes in solution quality (measured in terms

93



Figure
5.9:

Tim
e-series

graphs
of

the
zoom

ed
sensor

nodes
in

the
A

D
A

PT
electrical

pow
er

netw
ork.

T
he

node
labels

and
their

tim
e-series

graphs
are

readable
forfurtheranalysis.

T
he

tim
e-series

graphs
around

the
node

C
B

180
(lightblue)show

a
drop

in
their

reading,suggesting
thatthe

com
ponentC

B
180

is
faulty.

94



Figure
5.10:

T
he

large
M

unin2
B

ayesian
netw

ork
and

application
of

m
ulti-focus

on
the

children
nodes

(L
LN

LE
U

LN
D

IF
LO

W
,

L
LN

LW
M

E
D

2
D

ISP
W

O
etc.)

for
a

neuraldisorder
disease

node
called

P
roxim

alM
yopathy

(the
leftm

ostfocus
node).

A
fter

the
application

ofm
ulti-focus

zoom
ing,the

children
and

the
disease

nodes
are

clearly
readable

on
the

com
puterscreen

even
though

they
are

difficultto
read

in
this

screenshot.

95



Figure 5.11: Alarm BN is shown.

of log likelihood (LL) value) and the number of iterations for each generation is shown on the

left window. For example, in Figure 5.14, EM run 3 (alarm 3 shown in gray color), shows an

increase in LL from generation 4 to 5 and change in CPT values. Traceline at generation 5 is used

to compare the LL values (window on the left) and CPT values (window on the right) for EM

run 3. This analysis is useful to understand the impact of random perturbations generated using

genetic operators (mutation, crossover and replacement) at each generation of GAEM. GAEM

was run with a mutation probability of pm = 0.9 in Figure 5.14 and pm = 0.05 in Figure 5.15.

On comparing these two figure, we can see that with high mutation probability, GAEM needs

more number of iterations to converge whereas with low mutation probability, few iterations are

sufficient to converge.

5.7 Discussion

Distortion such as fisheye views can increase the ability to keep context visible. Multi-focus

approaches improve visual analysis by allowing comparison of different parts of a network, pro-

viding analysts with a collect-review-dispense analytical capability. The NetEyes generates dis-

96



Figure
5.12:

In
alarm

B
N

,3
nodes

are
selected

and
zoom

ed.Progress
ofC

PT
values

for
65

iterations
during

traditionalE
M

learning
are

show
n

as
tim

e-series
graphs

on
the

right.B
ubbles

connectthe
nodes

in
the

netw
ork

view
to

the
C

PT
s

on
the

right.

97



Figure
5.13:

R
esults

of
traditionalE

M
learning

for
10

E
M

runs
is

show
n.

Progress
of

log
likelihood

(L
L

)
values

for
each

iteration
is

show
n

on
the

left.
C

hanges
in

C
PT

values
for

each
iteration

is
show

n
on

the
right.

For
E

M
run

3
(alarm

3),traceline
is

used
to

com
pare

L
L

values
(w

indow
on

the
left)and

C
PT

values
(w

indow
on

the
right)atE

M
iteration

30.

98



Figure
5.14:

R
esults

of
G

A
E

M
learning

for
5

E
M

runs
is

show
n.

C
hange

in
log

likelihood
(L

L
)

values
and

iterations
for

each
generation

is
show

n
on

the
left.

C
hanges

in
C

PT
values

for
each

generation
is

show
n

on
the

right.
For

E
M

run
3

(alarm
3),there

is
an

increase
in

L
L

from
generation

4
to

5.
Traceline

atgeneration
5

is
used

to
com

pare
the

change
in

L
L

values
(w

indow
on

the
left)

and
the

change
in

C
PT

values
(w

indow
on

the
right)forE

M
run

3.T
he

m
utation

probability
is
p
m

=
0.9

and
crossoverprobability

is
p
c

=
0.5.D

ue
to

a
high

m
utation

probability,m
ore

iterations
are

needed
forE

M
to

converge.

99



Figure
5.15:

R
esults

of
G

A
E

M
learning

for
5

E
M

runs
is

show
n.

C
hange

in
log

likelihood
(L

L
)

values
and

iterations
for

each
generation

is
show

n
on

the
left.

C
hanges

in
C

PT
values

for
each

generation
is

show
n

on
the

right.T
he

m
utation

probability
is

p
m

=
0.05

and
crossover

probability
is
p
c

=
0.5.

D
ue

to
a

low
m

utation
probability,

only
few

iterations
are

needed
for

E
M

to
converge.

100



tortion boundaries which can reduce global distortion, reducing visual comparison challenges.

In particular, our technique allows an analyst to interactively bring important parts of a network

‘forward’ by selectively zooming in, to be compared both structurally in the network and in

a multi-window semantic display [16]. Our system can be used to create over a dozen focus

partitions.

This system gives simultaneous multi-focus and multi-window zooming capability that en-

ables improved interactive visual exploration of Bayesian networks. In case of a failure in an

electrical circuit, the user may want to find the faulty component. For this, a deeper analysis

of each of the component is required. Using this multi-focus technique, similar components

like voltage or current sensors can be zoomed. Using the multi-window technique, their internal

readings can be studied. The multiple windows which contain detailed data can be floating or

aggregated in a side panel. The side panel is designed to align and compare internal readings

of multiple selected nodes. If there is any sudden drop or rise in the readings in any of the

components, then they can be diagnosed further.During traditional EM learning, the progress of

solution quality and changes in CPT values for EM iteration can be studied in detail. We found

that the CPTs some of the nodes converged much earlier during EM learning. In the case of

GAEM learning, the user can study the progress of the probability values, solution quality, and

iterations during each generation of GA. The analysis can help the user to better understand the

impact of genetic operators during EM learning.

The multi-focus with the multi-window views shown in this chapter promises to improve

network analysis. We have used our technique in electrical networks (Figure 5.9), Bayesian

networks (Figure 5.10) and even on social networks. We showed how the network view, the

CPTs (shown in detail window) and the solution quality graphs can be useful for understanding

the traditional EM and GAEM. This chapter pushes for adding techniques to the arsenal of ways

to allow users to better view and analyze large networks. Analytics and reasoning are being done

on increasingly complex datasets. This chapter demonstrates improvements towards and calls

for future work on systems that integrates scalable user interactivity into comparing parts and

internal semantics of large-scale networks.

101



Chapter 6

Conclusion and Future Work

The EM algorithm is a popular method for parameter estimation in Bayesian networks in the

presence of incomplete data. In real world scenarios, incomplete data can arise due to secu-

rity constraints or system fault. The algorithm has several limitations, such as the possibility of

getting stuck in local optima, slow convergence, lack of understanding of the progress of CPT

values during learning, and computational expense. The application of stochastic and visualiza-

tion techniques provides a possible way to solve the local optima and slow convergence problems

and improve the understanding of EM behavior.

6.1 Summary of Contributions

In this thesis, we have integrated genetic algorithm and age-layered methods for the problem of

parameter estimation when data is incomplete. We proposed two novel techniques, the GAEM

(Genetic Algorithm based Expectation Maximization) and ALEM (Age Layered Expectation

Maximization) algorithms for solving the local optima and slow convergence problems in EM.

We propose an intuitive user interface integrated with multi-focus technique (NetEyes) for aiding

in the analysis of the progress of EM runs during BN learning.

6.1.1 Genetic Algorithm for Expectation Maximization (GAEM)

A hybrid genetic algorithm for expectation maximization is proposed by combining the local

search property of EM with the global search property of GA. With the help of the genetic

operators, GA helps to widen the search. On the other hand, EM helps to orient the search

and does a hill climbing. We found that a small initial population such as 2 or 4 individuals

were sufficient to produce superior quality solutions compared to the traditional EM. This is

102



because the GAEM technique uses the already converged EM individuals as parents for the next

generation. The random perturbations introduced by GA helps to improve these converged EM

individuals further during the generations and reach better solution quality. For our experiments,

we split the Bayesian networks in to hard and easy search spaces based on their distribution

of log likelihood values. We experimented on two difficult Bayesian networks, the Alarm BN

representing the hard search space and the Carstarts BN representing the easy search space, for

varying sample sizes and hidden variable configurations. GAEM was able to produce speed up

in all cases.

6.1.2 Age-Layered Expectation Maximization (ALEM)

We proposed an age layered paradigm for speeding up EM algorithm. In this technique, ‘age’

is defined as the number of iterations an EM individual has undergone. Each layer has the age

limit or the maximum number of iterations for a layer. Whenever an EM individual reaches

a maximum iteration for a layer, it is moved to the layer above it by doing a log likelihood

comparison check. Thus, we group similarly aged individuals in layers. The key idea is that

log likelihood comparisons between similarly aged EM individuals are a reliable indicator for

comparisons at convergence. The EM individual that fail this check will be culled. Thus, we

save the computations cost that could have been wasted on this poorly performing EM individual.

We assume that the probability of a poorly performing EM individual during initial iterations,

becoming a high quality EM individual at later iterations is low. Each layer has the minimum

runs parameter, which is the number of EM individuals, a layer can accommodate without any

comparison. This parameter can be viewed as a tradeoff between computation efficiency and

solution quality. If the minimum runs parameter is a larger value, more EM individuals can

be inserted without the comparison check which means we do not get a chance to cull. We

show that ALEM can significantly decrease the average number of iterations on four difficult

Bayesian networks but at the same time achieve a higher solution quality, or gets very close, in

all instances.

103



6.1.3 Network Visualization with Multi-focus Technique (NetEyes)

We present Neteyes, an interactive software, where the user can compare and analyze a set of

nodes simultaneously. The user interface is integrated with a multi-focus technique that allows

a user to select nodes from different parts of the network and zoom in on them. The selected

node’s details can be studied in the focus window. Neteyes software is designed to meet carefully

selected set of design goals. The software also provides a detailed window wherein a thorough

analysis regarding all nodes details can be done. For example, CPTs of all the nodes can be

viewed as time series graphs to show the change in probability values during EM learning.

6.2 Future Work

In this thesis, we investigate genetic algorithm based techniques to mitigate the slow convergence

and local maxima problem of the EM algorithm. We focused on the problem of parameter

estimation for Bayesian networks in the presence of incomplete data. But the above strategies

can potentially be applied to any problems that involve EM learning.

As future work, the EM algorithm can be integrated with other population-based approaches

such as evolutionary strategies (ES) or differential evolution (DE) [22]. The performance of

GAEM can then be compared with other evolutionary techniques.

A higher speed-up can probably be achieved by deploying GAEM in a GPU environment.

The configuration parameters of GAEM can be auto-tuned based on the progress of the EM

individuals.

The ALEM technique can be enhanced by integrating it with robust methods to tune the

minimum runs parameter, as well as error bounds on using ALEM versus traditional EM. We

are also intrigued by the relationship between the nature of the stopping criterion used and the

convergence of EM, and more exploration can be done in this area.

NetEye software can be used in visualizing any networks such as social networks and com-

puter networks. The software currently supports visualization for hundreds of nodes which can

be improved with the help of powerful image rendering techniques. The multi-focus zooming

algorithm can also be improved to support faster zooming actions on large collections of nodes.

Novel visualization techniques can perhaps be integrated more closely with the machine learning

operations in order to even better understand the behavior of EM algorithm.

104



Bibliography

[1] Stig K. Andersen, Kristian G. Olesen, Finn Verner Jensen, and Frank Jensen. HUGIN - A

Shell for Building Bayesian Belief Universes for Expert Systems. In Proc. of IJCAI’89,

pages 1080–1085, Detroit, MI, USA, Aug 1989. 5.1, 5.6.2

[2] Franz Aurenhammer. Voronoi diagrams a survey of a fundamental geometric data struc-

ture. ACM Comput. Surv., 23:345–405, September 1991. 5.5, 5.5.2

[3] Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps for the visu-

alization of software metrics. In Proceedings of the 2005 ACM symposium on Software

visualization, SoftVis ’05, New York, NY, USA, 2005. ACM. 5.5

[4] Lyn Bartram, Albert Ho, John Dill, and Frank Henigman. The continuous zoom: a con-

strained fisheye technique for viewing and navigating large information spaces. In Proc

ACM symposium on User interface and software technology, UIST ’95, New York, NY,

USA, 1995. ACM. 5.4.1

[5] Aniruddha Basak, Irina Brinster, Xianheng Ma, and Ole J Mengshoel. Accelerating

bayesian network parameter learning using hadoop and mapreduce. In Proceedings of

the 1st International Workshop on Big Data, Streams and Heterogeneous Source Min-

ing: Algorithms, Systems, Programming Models and Applications, pages 101–108. ACM,

2012. 3.2.1

[6] Aniruddha Basak, Irina Brinster, and Ole J Mengshoel. Mapreduce for Bayesian network

parameter learning using the EM algorithm. Proc. of Big Learning: Algorithms, Systems

and Tools, 2012. 3.2.1

[7] V. Batagelj, W. Didimo, G. Liotta, P. Palladino, and M. Patrignani. Visual analysis of large

graphs using (x,y)-clustering and hybrid visualizations. In Pacific Visualization Sympo-

sium (PacificVis), 2010 IEEE, march 2010. 5.4.2

105



[8] E. Bauer, D. Koller, and Y. Singer. Update rules for parameter estimation in Bayesian

networks. In Proc. Thirteenth Annual Conference on Uncertainty in AI (UAI), pages 3–

13, 1997. 4.1

[9] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The alarm monitoring

system: A case study with two probabilistic inference techniques for belief networks.

Technical report, Knowledge Systems, AI Laboratory, 1989. 3.5.1, 4.4.1

[10] M. Sheelagh T. Carpendale, David J. Cowperthwaite, and F. David Fracchia. Extending

distortion viewing from 2d to 3d. IEEE Comput. Graph. Appl., 17(4):42–51, July 1997.

5.2

[11] M. Sheelagh T. Carpendale, M. Sheelagh, T. Carpendale, David J. Cowperthwaite, and

F. David Fracchia. 3-dimensional pliable surfaces: For the effective presentation of visual

information. In In Proc. of UIST’95. ACM, 1995. 5.4.3

[12] Chad Carson, Serge Belongie, Hayit Greenspan, and Jitendra Malik. Blobworld: Image

segmentation using expectation-maximization and its application to image querying. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24:1026–1038, 1999. 4.3.1

[13] D. M. Chickering. Learning equivalence classes of Bayesian Network structures. Journal

of Machine Learning Research, 2, 2002. 3.2.1

[14] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. A review of overview+detail,

zooming, and focus+context interfaces. ACM Comput. Surv., 41(1):2:1–2:31, January

2009. 5.4.1

[15] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic

networks from data. Machine Learning, 9(4):309–347, 1992. 3.2.1

[16] M. Cossalter, O. J. Mengshoel, and T. Selker. Visualizing and understanding large-scale

Bayesian networks. In The AAAI-11 Workshop on Scalable Integration of Analytics and

Visualization, pages 12–21, 2011. 5.5, 5.6.1, 5.7

[17] B. Delyon, M. Lavielle, and E. Moulines. Convergence of a stochastic approximation

version of the EM algorithm. Annals of Statistics, 27(1):94–128, 1999. 1.3, 3.2.1, 3.2.2

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

106



data via the EM algorithm. Journal of the Royal Statistical Society. Series B, 39(1):1–38,

1977. 1.2, 2.3.1, 2.3.2, 4.1

[19] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data

via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B,

39(1):1–38, 1977. 2.3

[20] C. B. Do and S. Batzoglou. What is the expectation maximization algorithm? Nature

Biotech., 26:897–899, 2008. 2.3.2

[21] Marek J. Druzdzel. SMILE: Structural Modeling, Inference, and Learning Engine and

GeNIe: A Development Environment for Graphical Decision-Theoretic Models. In Proc.

of AAAI’99, pages 902–903, Orlando, FL, USA, Jul 1999. 5.1, 5.6.2

[22] Agoston E Eiben and James E Smith. Introduction to evolutionary computing, volume 53.

Springer, 2003. 6.2

[23] Tarek A El-Mihoub, Adrian A Hopgood, Lars Nolle, and Alan Battersby. Hybrid genetic

algorithms: A review. Engineering Letters, 13(2):124–137, 2006. 2.4.1

[24] G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans. Data perturbation for escaping

local maxima in learning. In Eighteenth National Conference on Artificial Intelligence,

pages 132–139, 2002. 3.2.2, 4.2

[25] T. Elmihoub, A. A. Hopgood, L. Nolle, and A. Battersby. Performance of hybrid genetic

algorithms incorporating local search. In Proc. of 18th European Simulation Multiconfer-

ence, pages 154–160, 2004. 3.5.3

[26] N. Elmqvist, Y. Riche, N. Henry-Riche, and J.-D. Fekete. Melange: Space folding for vi-

sual exploration. Visualization and Computer Graphics, IEEE Transactions on, 16(3):468

–483, may-june 2010. 5.4.3

[27] F. P. Espinoza, B. S. Minsker, and D. E. Goldberg. Performance evaluation and popula-

tion reduction for a self adaptive hybrid genetic algorithm (sahga). In Proc. of the 2003

International Conference on Genetic and Evolutionary Computation: PartI, GECCO’03,

pages 922–933, 2003. 3.5.3

[28] Ronald Aylmer Fisher. On the mathematical foundations of theoretical statistics. Philo-

107



sophical Transactions of the Royal Society of London. Series A, Containing Papers of a

Mathematical or Physical Character, 222:309–368, 1922. 1.1

[29] Arno Formella and Jorg Keller. Generalized fisheye views of graphs. In Proceedings of

the Symposium on Graph Drawing, GD ’95, pages 242–253, London, UK, 1996. Springer-

Verlag. 5.4.1

[30] S Fortune. A sweepline algorithm for voronoi diagrams. In Proceedings of the second

annual symposium on Computational geometry, SCG ’86, New York, NY, USA, 1986.

ACM. 5.3

[31] G. W. Furnas. Generalized fisheye views. SIGCHI, 17, April 1986. 5.1, 5.4.1, 5.5.1

[32] George W. Furnas. A fisheye follow-up: further reflections on focus + context. In Pro-

ceedings of the SIGCHI conference on Human Factors in computing systems, CHI ’06,

pages 999–1008, New York, NY, USA, 2006. ACM. 5.5.1

[33] Emden R. Gansner, Yehuda Koren, and Stephen C. North. Topological fisheye views for

visualizing large graphs. IEEE Transactions on Visualization and Computer Graphics,

11:457–468, July 2005. 5.4.1

[34] S. Ghani, N.H. Riche, and N. Elmqvist. Dynamic insets for context-aware graph naviga-

tion. In Computer Graphics Forum, volume 30, pages 861–870. Wiley Online Library,

2011. 5.4.1

[35] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

(document), 2.4

[36] D. Heckerman, J. S. Breese, and K. Rommelse. Decision-theoretic troubleshooting. Com-

munications of the ACM, 38(3):49–57, 1995. 3.5.1, 4.4.1

[37] Jeffrey Heer, Stuart K. Card, and James A. Landay. Prefuse: a toolkit for interactive

information visualization. In Proceedings of the SIGCHI conference on Human factors in

computing systems, CHI ’05, New York, NY, USA, 2005. ACM. 5.6

[38] Ivan Herman, Guy Melancon, and M. Scott Marshall. Graph visualization and navigation

in information visualization: A survey. IEEE Transcations on Visualization and Computer

108



Graphics, 6(1):24–43, 2000. 5.5

[39] J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor, MI, USA, 1975. 3.2.1

[40] G. S. Hornby. Alps: The age-layered population structure for reducing the problem of

premature convergence. In Proc. of the 8th Annual Conference on Genetic and Evolution-

ary Computation, GECCO ’06, pages 815–822, New York, NY, USA, 2006. ACM. 1.4,

4.2

[41] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The lumière project:

Bayesian user modeling for inferring the goals and needs of software users. In Proc. of the

Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI’98, pages 256–265,

1998. 3.5.1, 4.4.1

[42] Edmundo Bonilla Huerta, Batrice Duval, and Jin kao Hao. A hybrid ga/svm approach for

gene selection and classification of microarray data. In EvoWorkshops 2006, LNCS 3907,

pages 34–44. Springer, 2006. 2.4.2

[43] S. H. Jacobson and E. Ycesan. Analyzing the Performance of Generalized Hill Climbing

Algorithms. Journal of Heuristics, 10:387–405, 2004. 1.3, 4.2

[44] M. Jamshidian and R. I. Jennrich. Acceleration of the EM algorithm by using quasi-

Newton methods. Journal of the Royal Statistical Society. Series B (Methodological),

59(3):pp. 569–587, 1997. 3.2.1, 3.2.2

[45] Mortaza Jamshidian and Robert I. Jennrich. Conjugate gradient acceleration of the EM

algorithm. Journal of the American Statistical Association, 88(421):pp. 221–228, 1993.

1.3

[46] W. Jank. The EM algorithm, its stochastic implementation and global optimization: Some

challenges and opportunities for OR. Perspectives in Operations Research, pages 367–

392, 2006. 1.3, 3.2.1, 3.2.2, 4.2

[47] J.Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, 1988. 2.1, 5.1

[48] Karlis Kaugars, Juris Reinfelds, and Alvis Brazma. A simple algorithm for drawing large

109



graphs on small screens. In Proc. of the DIMACS International Workshop on Graph Draw-

ing, GD ’94, London, UK, 1995. Springer-Verlag. 5.4.3

[49] T. Alan Keahey, Dirk Van Gucht, T. Alan Keahey, Nels Gustaf Jerde, and Thomas Elbert

Keahey. Nonlinear magnification. Technical report, transformations,Proceedings of the

IEEE Symposium on Information Visualization, IEEE Visualization, 1997. 5.4.3

[50] J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies in Probability. The

Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications.

4.3.2

[51] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques -

Adaptive Computation and Machine Learning. The MIT Press, 2009. 2.2

[52] Natalio Krasnogor and James Smith. A tutorial for competent memetic algorithms: model,

taxonomy, and design issues. IEEE Transactions on Evolutionary Computation, 9(5):474–

488, 2005. (document), 2.4

[53] K. Krishna and M. Narasimha Murty. Genetic K-means algorithm. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3):433–439, Jun 1999. 2.4.2,

3.4

[54] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist.,

22(1):79–86, 03 1951. 3.3.3

[55] John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on hy-

perbolic geometry for visualizing large hierarchies. In Proc. SIGCHI Human factors in

computing systems, CHI ’95, 1995. 5.4.1

[56] P. Larrañaga, H. Karshenas, C. Bielza, and R. Santana. A review on evolutionary algo-

rithms in Bayesian network learning and inference tasks. Inf. Sci., 233:109–125, June

2013. 3.2.1

[57] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, and Y. Yurramendi. Learning Bayesian net-

work structures by searching for the best ordering with genetic algorithms. IEEE Trans-

actions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 26(4):487–493,

Jul 1996. 3.2.1, 3.2.2

110



[58] K. B. Laskey and J. W. Myers. Population Markov Chain Monte Carlo. Machine Learning,

2003. 3.2.1, 3.2.2

[59] M. Lavielle and E. Moulines. A simulated annealing version of the EM algorithm for

non-Gaussian deconvolution. Statistics and Computing, 7(4):229–236, 1997. 4.2

[60] T.Y. Lee. Coherent time-varying graph drawing with multifocus+ context interaction.

IEEE Transactions on Visualization and Computer Graphics, 18(8), 2012. 5.4.1

[61] M. J. Lindstrom and D. M. Bates. Newton-Raphson and EM Algorithms for Linear Mixed-

Effects Models for Repeated-Measures Data. Journal of the American Statistical Associ-

ation, 83(404):pp. 1014–1022, 1988. 2

[62] F. G. Lobo and D. E. Goldberg. Decision making in a hybrid genetic algorithm. In

Evolutionary Computation, 1997., IEEE International Conference on, pages 121–125,

Apr 1997. 2.4.2

[63] S. W. Mahfoud. Crowding and preselection revisited. In PPSN 2, pages 27–36, Amster-

dam, 1992. North-Holland. 3.3.3

[64] Geoffrey McLachlan and David Peel. Finite Mixture Models. John Wiley & Sons, Inc.,

2005. 4.2

[65] X. L. Meng and D. B. Rubin. Maximum likelihood estimation via the ECM algorithm: A

general framework. Biometrika, 80(2):pp. 267–278, 1993. 1.3, 3.2.1, 3.2.2

[66] Xiao L. Meng and David van Dyk. The EM Algorithm–An Old Folk-Song Sung to a Fast

New Tune. Journal of the Royal Statistical Society. Series B (Methodological), 59, 1997.

2.3.2

[67] O. J. Mengshoel and D. E. Goldberg. Probabilistic crowding: Deterministic crowding

with probabilisitic replacement. In GECCO-1999, volume I, pages 409–416, Orlando,

FL, 1999. Morgan Kaufmann Publishers, San Francisco, CA. 3.3.3

[68] O. J. Mengshoel, D. C. Wilkins, and D. Roth. Initialization and restart in stochastic local

search: Computing a most probable explanation in Bayesian networks. IEEE Trans. on

Knowledge and Data Engineering, 23(2):235–247, 2011. 1.3, 4.2

[69] Ole J. Mengshoel, Mark Chavira, Keith Cascio, Scott Poll, Adnan Darwiche, and Serdar

111



Uckun. Probabilistic Model-Based Diagnosis: An Electrical Power System Case Study.

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,

40(5):874–885, 2010. 1.1, 5.1, 5.6.1

[70] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1

edition, 1997. (document), 2.2

[71] Baback Moghaddam, Tony Jebara, and Alex Pentland. Bayesian face recognition. Pattern

Recognition, 33(11):1771 – 1782, 2000. 1.1

[72] J. M. Mooij. libDAI: A free and open source C++ library for discrete approximate infer-

ence in graphical models. Journal of Machine Learning Research, 11:2169–2173, August

2010. 3.5.1, 4.4.1

[73] Robert I. Jennrich Mortaza Jamshidian. Conjugate gradient acceleration of the em algo-

rithm. Journal of the American Statistical Association, 88(421):221–228, 1993. 3.3.3

[74] Tamara Munzner, François Guimbretière, Serdar Tasiran, Li Zhang, and Yunhong Zhou.

TreeJuxtaposer: scalable tree comparison using Focus+Context with guaranteed visibility.

ACM Trans. Graph., 22(3):453–462, July 2003. 5.4.2

[75] J. W. Myers, K. B. Laskey, and K. A. DeJong. Learning Bayesian networks from in-

complete data using evolutionary algorithms. GECCO’99, pages 458–465, 1999. 3.2.1,

3.2.2

[76] PK Nanda, D Patra, and A Pradhan. Unsupervised Image Segmentation using Tabu Search

and Hidden Markov Random Field Model and Hidden Markov Random Field Model.

2004. 4.2

[77] Netica. by Norsys Software Corp., 1998. 5.6.2

[78] S. K. Ng and G. J. McLachlan. On the choice of the number of blocks with the incremental

EM algorithm for the fitting of normal mixtures. Statistics and Computing, 13(1):45–55,

2003. 4.2

[79] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled

and unlabeled documents using em. Mach. Learn., 39(2-3):103–134, May 2000. 1.2

[80] D. Nikovski. Constructing bayesian networks for medical diagnosis from incomplete and

112



partially correct statistics. IEEE Trans. on Knowledge and Data Engineering, 2000. 1.1

[81] Luis E. O. and Leslie P. K. Accelerating em: An empirical study. In In Proc. of the

fifteenth annual conference on uncertainty in artifical intelligence (UAI), pages 512–521.

Morgan Kaufmann, 1999. 1.3

[82] Il-Seok Oh, Jin-Seon Lee, and Byung-Ro Moon. Hybrid genetic algorithms for feature

selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11):1424–

1437, Nov 2004. 2.4.2

[83] Agnieszka Onisko, Marek J. Druzdzel, and Hanna Wasyluk. A probabilistic causal model

for diagnosis of liver disorders. In In Proc. of the Seventh International Symposium on

Intelligent Information Systems (IIS–98, pages 379–387, 1998. 3.5.1, 4.4.1

[84] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, San Mateo, CA, 1988. 2.1

[85] F. Pernkopf and D. Bouchaffra. Genetic-based EM algorithm for learning Gaussian mix-

ture models. IEEE Trans. Pattern Anal. Mach. Intell., 27(8):1344–1348, August 2005.

1.3, 3.2.1, 3.2.2

[86] C. Plaisant, J. Grosjean, and B.B. Bederson. Spacetree: supporting exploration in large

node link tree, design evolution and empirical evaluation. In Information Visualization,

2002. INFOVIS 2002. IEEE Symposium on, 2002. 5.4.2

[87] L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition. Proc. of the IEEE, 77(2):257–286, 1989. 2.3.2, 4.1

[88] E. B. Reed and O. J. Mengshoel. Scaling Bayesian network parameter learning with

expectation maximization using MapReduce. Proc. of Big Learning: Algorithms, Systems

and Tools, 2012. 3.2.1

[89] Erik Reed and Ole J Mengshoel. Bayesian network parameter learning using EM with

parameter sharing. In BMA@ UAI, pages 48–59. Citeseer, 2014. 4.2

[90] Tobias Reinhard, Silvio Meier, and Martin Glinz. An improved fisheye zoom algorithm for

visualizing and editing hierarchical models. In Workshop on Requirements Engineering

Visualization, REV ’07, 2007. 5.2, 5.4.1

113



[91] G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Trans. on

Neural Networks, 1994. 3.4, 3.4

[92] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1995. (document), 2, 2.1

[93] Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. Optimization with EM and

expectation-conjugate-gradient. In Proceedings, Intl. Conf. on Machine Learning (ICML),

pages 672–679, 2003. 1.3

[94] A. Saluja, P. Sundararajan, and O. J. Mengshoel. Age-layered expectation maximization

for parameter learning in Bayesian networks. AISTATS-2012, pages 984–992, 2012. 1.4,

3.2.1, 3.3.3, 3.5.1

[95] Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs. In Proceedings of

the SIGCHI conference on Human factors in computing systems, CHI ’92, pages 83–91,

New York, NY, USA, 1992. ACM. 5.4.1

[96] Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss. Stretching the

rubber sheet: a metaphor for viewing large layouts on small screens. In Proceedings of

the 6th annual ACM symposium on User interface software and technology, UIST ’93,

pages 81–91, New York, NY, USA, 1993. ACM. 5.4.1

[97] Doug Schaffer, Zhengping Zuo, Saul Greenberg, Lyn Bartram, John Dill, Shelli Dubs,

and Mark Roseman. Navigating hierarchically clustered networks through fisheye and

full-zoom methods. ACM Trans. Comput.-Hum. Interact., 3, 1996. 5.4.1

[98] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information visual-

izations. In Proceedings of the 1996 IEEE Symposium on Visual Languages, pages 336–,

Washington, DC, USA, 1996. IEEE Computer Society. 5.2

[99] M. A. D. Storey, F. Fracchia, and H. Müller. Customizing a Fisheye View Algorithm to

Preserve the Mental Map. Journal of Visual Languages and Computing, (10):245–267,

1999. 5.2

[100] Priya Krishnan Sundararajan, Ole Mengshoel, and Ted Selker. Multi-fisheye for interac-

tive visualization of large graphs. In The AAAI-11 Workshop on Scalable Integration of

114



Analytics and Visualization, 2011. 1.4, 5.5, 5.5.2

[101] Priya Krishnan Sundarararajan, Ole J. Mengshoel, and Ted Selker. Multi-focus and multi-

window techniques for interactive network exploration. volume 8654, pages 86540–15,

2013. 1.4, 5

[102] B. Thiesson, C. Meek, and D. Heckerman. Accelerating EM for large databases. Machine

Learning, 45:279–299, 2001. 3.2.1, 3.2.2, 4.2

[103] Bo Thiesson. Accelerated quantification of Bayesian networks with incomplete data.

University of Aalborg, Institute for Electronic Systems, Department of Mathematics and

Computer Science, 1995. 3.3.3

[104] Ying Tu and Han-Wei Shen. Balloon focus: a seamless multi-focus+context method for

treemaps. IEEE Transactions on Visualization and Computer Graphics, 14:1157–1164,

November 2008. 5.4.2

[105] Y. Wang and N.L. Zhang. Severity of local maxima for the EM algorithm: experiences

with hierarchical latent class models. In Proc. of the 3rd Workshop on Probabilistic Graph-

ical Models, 2006. 4.2

[106] Yi Zhang, Wei Xu, and Jamie Callan. Exact maximum likelihood estimation for word

mixtures. In Text Learning Workshop in International Conference on Machine Learning

(ICML), 2002. 4.3.1

[107] Z. Zhang, B. T. Dai, and A. K. H. Tung. Estimating local optimums in EM algorithm over

Gaussian mixture model. ICML ’08, pages 1240–1247, 2008. 4.2

[108] Q. Zhao, V. Hautamäki, I. Kärkkäinen, and P. Fränti. Random swap EM algorithm for

Gaussian mixture models. Pattern Recognition Letters, (16):2120–2126, 2012. 3.2.1,

3.2.2

[109] K. Zhu, H. Song, L. Liu, J. Gao, and G. Cheng. Hybrid genetic algorithm for cloud

computing applications. In Services Computing Conference (APSCC), 2011 IEEE Asia-

Pacific, pages 182–187, Dec 2011. 2.4.2

115


	1 Introduction
	1.1 Probabilistic Graphical Models and Machine Learning
	1.2 Expectation Maximization (EM)
	1.3 Challenges Associated with EM
	1.4 Summary of Thesis Contributions
	1.5 Outline of Thesis

	2 Technical Preliminaries
	2.1 Bayesian Networks
	2.2 Inference in Bayesian Networks
	2.3 Parameter Estimation for Bayesian Networks
	2.3.1 Maximum Likelihood Estimation
	2.3.2 Expectation Maximization Algorithm

	2.4 Genetic Algorithms
	2.4.1 The Simple Genetic Algorithm
	2.4.2 Genetic Algorithm with Local Search


	3 GAEM: Genetic Algorithm for Expectation Maximization
	3.1 Introduction
	3.2 Discussion of Related Work
	3.2.1 Related Work
	3.2.2 Comparison of GAEM to Related Work

	3.3 Genetic Algorithm for Expectation Maximization (GAEM)
	3.3.1 Notation and Definitions
	3.3.2 GAEM: The Algorithm
	3.3.3 Replacement Mechanisms

	3.4 Analysis
	3.5 Experiments
	3.5.1 Datasets and Evaluation
	3.5.2 Search Space Analysis
	3.5.3 Role of Population Size
	3.5.4 Role of Mutation
	3.5.5 Role of Crossover
	3.5.6 Role of Replacement
	3.5.7 Processor Time Comparison

	3.6 Conclusion

	4 ALEM: Age Layered Expectation Maximization
	4.1 Introduction
	4.2 Related Work
	4.3 Expectation Maximization Approach
	4.3.1 The ALEM Algorithm: Age-Layered EM
	4.3.2 Analysis using Poisson Processes

	4.4 Experiments with Bayesian Networks
	4.4.1 Datasets and Evaluation
	4.4.2 Slow Convergence in Traditional EM
	4.4.3 ALEM: Mitigating Slow Convergence
	4.4.4 Parameter Variation
	4.4.5 Wall Clock Time Comparison

	4.5 Summary

	5 NetEyes: Multi-Focus Visualization Techniques
	5.1 Introduction
	5.2 Design Goals of NetEyes
	5.3 NetEyes
	5.4 Related Work
	5.4.1 Network Based Fisheye Techniques
	5.4.2 Tree Based Fisheye Techniques
	5.4.3 Image Based Fisheye Techniques

	5.5 Multi-focus Zooming and Multi-window Techniques
	5.5.1 NetEyes Step 1: Selection of Focus Nodes
	5.5.2 NetEyes Step 2: Partition Generation
	5.5.3 NetEyes Step 3: Fisheye Zooming

	5.6 Applications of NetEyes
	5.6.1 Network View for Bayesian Networks
	5.6.2 Analytical Tasks for Bayesian Networks
	5.6.3 EM Learning

	5.7 Discussion

	6 Conclusion and Future Work
	6.1 Summary of Contributions
	6.1.1 Genetic Algorithm for Expectation Maximization (GAEM)
	6.1.2 Age-Layered Expectation Maximization (ALEM)
	6.1.3 Network Visualization with Multi-focus Technique (NetEyes)

	6.2 Future Work

	Bibliography

