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Abstract

As smart-vehicles, capable of advanced sensing and automated control procedures, be-

come more prevalent in the Intelligent Transportation System (ITS), there is a need for

next-generation road maps that contain all relevant environmental information that may

assist drivers, passengers, and other stakeholders connected to the ITS. The proliferation

of sensor-equipped consumer vehicles with dedicated communications systems has pro-

vided a valuable resource for continuous mobile data collection from which to extract such

information.

There are however, a number of challenges associated with such an information ex-

traction process. Since vehicles and road environments are heterogeneous, there are many

different possible sensor signals that could indicate an event. Sensor measurements may

have significant error, which is often correlated within vehicles, particularly for measure-

ments indexed by the Global Positioning System (GPS). Due to functional constraints of

sensors, the measurements are asynchronously collected, and the signal-of-interest is often

undersampled, requiring data to be aggregated from multiple vehicles to acquire a sufficient

data set.

In this thesis, we develop a vehicle-Cloud detection framework to extract environmen-

tal information from such aggregated, undersampled, and asynchronous vehicle data. We

introduce the noisy multi-source, variable-rate (MSVR) sampling model with correlated

errors in variables, and derive error models based on the vehicle and GPS sampling condi-

tions.
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Road environmental information extraction algorithms are developed for the vehicle

MSVR sampling conditions, specifically for the detection of continuous and binary types

of road information. Within the overall vehicle-Cloud detection framework, algorithm

adaptations are developed to detect events in multi-lane environments, filter data to reduce

the required network bandwidth, account for temporally changing information, apply side

information from other events, and use data-driven metrics to optimize the algorithm

parameters.

This framework is applied to detect road incline and bank angle information, and

pothole locations on multi-lane roads. These algorithms are developed specifically for

the MSVR sampling environment using only GPS and accelerometer data. Results are

analyzed for sets of both simulated and real-world data, examining the tradeoffs between

the number of aggregating vehicles and detection accuracy, in addition to the effects of the

data filters and parameter optimizations developed in the overall detection framework.
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Chapter 1

Introduction

1.1 Motivation

As automated vehicle control systems become more prevalent in consumer vehicles, there

is a need for next-generation road maps that contain an inventory of all relevant envi-

ronmental information that may affect driving behavior. Existing maps currently display

road location information and often relative traffic densities or predicted travel times, how-

ever there is further information such as potholes, traffic lights, road inclination angles,

crosswalks, speedbumps, etc., whose knowledge could be used for the benefit of drivers,

automated systems, and eventually fully autonomous vehicles.

In the past, detecting such environmental information relied on either driver self-

reporting or specialized event-specific detection equipment. These are expensive approaches

that lack the wide coverage required to keep pace with dynamic conditions. However, recent

years have witnessed significant proliferation in the number of sensor-equipped, Internet-

connected vehicles in the Intelligent Transportation System (ITS). The embedded sensors

and dedicated communications systems in consumer vehicles provide a resource for contin-

uous mobile data collection during drivers’ ordinary commutes. With consumer vehicles

acting as mobile sensor agents, the capability exists to enable wide-spread and current
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sensing of road conditions. By aggregating the sensed data from these vehicles, a system

can be implemented to extract any relevant environmental information.

However, there are a number of challenges that exist when attempting to extract infor-

mation from aggregated vehicle data:

• Vehicles do not directly sense most types of road information, e.g., there is no explicit

“pothole” sensor within the vehicle sensor suite. For most types of information, a

detector or mapping system needs to be directly designed and trained using the data

from conventional sensors monitoring the vehicles’ dynamics (e.g., accelerometers).

Although training procedures may be generalized for an entire detection framework,

each event-specific information extraction procedure will require its own unique set

of algorithms and application of existing system knowledge in order to design the

best-performing detector.

• Vehicles, sensors, and detection scenarios are heterogeneous. Therefore the measured

sensor data in each vehicle varies when experiencing a shared event. Any detection

process needs to account for the various possible sensor signals that may exist to

signify an event. Since it is difficult to design a customized detector for every unique

scenario, the detection processes therefore need to be designed to be generally appli-

cable.

• Environmental information falls into a number of different categorizations. Some in-

formation, such as the physical location of the road, is relatively static or unchanging,

while other information such as traffic density is highly dynamic. Similarly, some in-

formation could be denoted by a binary variable indicating whether or not an event

occurs at that location (e.g., is there a pothole at a given location?), while other

information is better represented by continuous functions where any value could ex-

ist for a given location (e.g., road inclination angle). These factors influence how

a detection procedure needs to be designed and in what form the results should be
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output.

• There may be significant noise or error in the sensor output from different vehicles.

Due to the nature of the sensor measurement systems, the error on consecutive mea-

surements may not be independent. This is particularly important when considering

Global Positioning System (GPS) measurements. Measured GPS locations spatially

index the measurement samples from other vehicle sensors. However, GPS may have

significant error associated with it and it is often strongly correlated over relatively

short times and distances. This error needs to be properly accounted for in the de-

tection systems. Many traditional event detection or signal processing algorithms

are ill-equipped to account for correlated location error. Therefore any information

extraction algorithm designed for vehicle sensor data as an input needs to be con-

structed to consider these sampling conditions.

1.2 Problem Statement and Goal

As the number of sensor-equipped, Internet-connected, smart vehicles have increased in

the Intelligent Transportation System, the vehicles’ sensor data has become a valuable

resource from which to extract useful environmental information. This information is

essential for the development of next-generation road maps, rich with current and vehicle-

relevant features.

Extracting the environmental information necessitates the creation of a vehicle-Cloud

framework to aggregate the vehicles’ sensor data and extract the required information. In

this thesis, we develop this framework and investigate detecting both binary and continuous

types of road event information. The framework and associated detection algorithms are

specifically designed to handle the undersampled and asynchronous sensing conditions that

exist for embedded vehicle sensors. Within this context, we address problems of vehicle

and environment heterogeneity, and correlated GPS error measurements that corrupt event
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detection and signal reconstruction.

We evaluate our detection framework both from a theoretical aspect on the signal

reconstruction methods, and on specific example event detection systems, those being

pothole and road topography information. We analyze our detection capabilities in terms

of the number of vehicles involved in the detection process, and how bandwidth may be

conserved for the ITS conditions.

1.3 Contributions of the Thesis

1.3.1 Detection Framework and Signal Reconstruction

In Chapter 4 we develop a framework to extract information regarding both continuous

and binary types of road events from asynchronous and undersampled vehicle sensor data.

The framework is designed to specifically account for the unique sampling conditions of the

road environment and the interaction of the various types of events or information within

the Intelligent Transportation System. These unique sampling conditions are introduced

in Chapter 3, where error models are derived for the types of correlated error inherent to

the road network sampling conditions. We derive the information extraction algorithms,

investigate their properties, develop adaptations for temporally changing information, and

analyze their applicability to different types of vehicle sensor data and desired road infor-

mation. Although the framework is applied to the Intelligent Transportation System, the

detection framework and derived signal reconstruction algorithms are applicable to more

general situations where undersampled or asynchronous sampling conditions necessitate

aggregating sensor data from multiple sources to detect or reconstruct information.
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1.3.2 Road Angle Information

In Chapter 5, an algorithm is developed to determine the bank and incline angles of the

road from noisy and undersampled vehicle acceleration measurements. The algorithm

estimates the angles for each individual data sample before transmitting the samples to

the Cloud for data aggregation where the road angle information signal for the entire road

is reconstructed. We demonstrate how the various aspects of the detection algorithm fit

within the context of the overall information extraction framework.

1.3.3 Pothole Detection

In Chapter 5, we demonstrate how the information extraction framework is applied to

detecting potholes from asynchronous and undersampled vehicle accelerometer data. We

apply the detection algorithm to multi-lane roads to attempt to finely localize the pothole

positions while developing filters to minimize the required transmission bandwidth of the

system. We evaluate the framework’s detection capabilities under these constraints.

1.3.4 Publications

Work in this dissertation has resulted in the following peer-reviewed publications:

1. A. Fox, B. V. K. Vijaya Kumar, J. Chen, and F. Bai, “Crowdsourcing undersam-

pled vehicular sensor data for pothole detection,” in 2015 12th Annual IEEE Inter-

national Conference on Sensing, Communication, and Networking (IEEE SECON

2015), Seattle, USA, Jun. 2015, pp. 515–523.

2. A. Fox, B. V. K. Vijaya Kumar, and F. Bai, “Multi-source variable-rate sampled

signal reconstructions in vehicular CPS,” in The 35th Annual IEEE International

Conference on Computer Communications (INFOCOM 2016), San Francisco, USA,

Apr. 2016, pp. 946–954
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3. A. Fox, V. Sharma, and B. V. K. Vijaya Kumar. “Signal Reconstruction for Multi-

source Variable-rate Samples with Autocorrelated Errors in Variables”, in 2016 IEEE

Statistical Signal Processing Workshop (SSP 2016), Palma de Mallorca, Spain, Jun.

2016.

At the time of publication, the following work is also under review:

1. A. Fox, B. V. K. Vijaya Kumar, J. Chen, and F. Bai, ”Multi-lane Pothole Detection

from Crowdsourced Undersampled Vehicle Sensor Data,” inMobile Computing, IEEE

Transactions on (TMC), Under Review.

1.4 Outline of the Document

The remainder of the dissertation is organized as follows: Chapter 2 presents a high-level

overview of the vehicle-Cloud information extraction framework. Important parameters

and interactions within the framework are introduced, and relevant variables are discussed

with regard to their effect on the framework design. Chapter 3 presents the noisy multi-

source variable-rate (MSVR) sampling model appropriate for vehicle sensing systems. Error

models for vehicle and GPS measurements are presented along with their effects on the

measurements. Chapter 4 presents detailed frameworks for how to detect continuous and

binary types of environmental information within the vehicle-Cloud framework. Chapter 5

applies these frameworks to the detection of specific types of information. Conclusions for

this thesis research are provided in Chapter 6.
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Chapter 2

Vehicle-Cloud Detection Framework

2.1 Introduction

The state of technology in consumer vehicles has advanced such that vehicles are now

equipped with a wide range of sensors to measure the surrounding road environment and

the vehicles’ physical states. All vehicles sold in the United States after 2008 are required

to implement the controller area network (CAN) standard, and vehicles can have up to 70

electronic control units (ECUs) that communicate using CAN protocols [1]. The data from

sensors on the CAN bus can be accessed using the On-Board Diagnostic (OBD-II) port,

which has been mandatory in vehicles since 1996 [2]. These sensors provide a mechanism

to obtain an instantaneous snapshot of the vehicle state and surrounding environment.

Keeping pace with other advances, the developments in vehicular communications sys-

tems and Cloud technology have allowed for data to be shared between vehicles and aggre-

gated for centralized processing. Since consumer vehicles continually cover a wide range of

the road network during ordinary commutes, data aggregation allows for analyses of wide-

ranging data for the entire Intelligent Transportation System (ITS). These technologies

allow one to use the vehicles’ sensor data regarding their physical states to reverse engi-

neer a system to extract information about the road environmental conditions that caused
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the vehicles to be in the respective measured states. Designing such a system effectively

crowdsources the environmental information from the existing fleet of sensors in mobile

consumer vehicles. Once determined, the extracted environmental information could sub-

sequently be transmitted back to the vehicles for the benefit of drivers or automated control

systems.

In this thesis work, we develop a general framework to extract road environmental

information from vehicle sensor data. In this chapter, we provide a general overview of

the information extraction process and highlight how the various aspects of the detection

framework are designed to handle heterogeneous vehicle and road conditions. This will be

approached from a high-level, justifying the reasons for the framework. Subsequent chap-

ters will detail specific algorithms and their adherence to the framework (Chapter 4) and

how those algorithms are applied to detecting specific types of environmental information

(Chapter 5).

In this thesis, the term “information” will refer to the high-level concept that is at-

tempted to be determined, e.g., information about a traffic light. The term “event” refers

to the process of a vehicle or multiple vehicles engaging or becoming under the influence

of the desired road information. For example, a vehicle experiences a traffic light event

as it slows to a stop at a red light. Often the terms “information extraction” or “event

detection” will be used interchangeably to describe the process of determining the desired

information. The term “data” is used to refer to the input to any event detection algo-

rithm. Depending on the algorithm, this data could include raw sensor measurements, or

processed sensor measurements used as an input to a secondary algorithm. For example,

accelerometer data is an input to a road incline angle detection algorithm, however the

output angles could be used as the input data to a pothole detection algorithm.

A block diagram of the overall information extraction framework is shown in Figure 2.1.

This framework features continual feedback and exchange of data and information between
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vehicles and the Cloud so that the raw data and any extracted information can be best

applied to the appropriate algorithmic element. The following sections expand on the

different components of the framework. For different types of events or information (Sec-

tion 2.2), vehicles first collect their own sensor data and potentially perform some initial

processing (Section 2.3) where they either attempt to fully detect the event, or perform

some form of filtering or data manipulation so that the data is in an appropriate format

for aggregation. Depending on the event of interest, either the raw vehicle sensor data,

preprocessed data, or vehicle-extracted information is transmitted to the Cloud, thereby

aggregating data from multiple vehicles (Section 2.4). The Cloud offers significantly more

computational and storage capacities than individual vehicles, as well as access to a broader

set of data. These capabilities allow for algorithms to be deployed in the Cloud to extract

environmental information from the aggregated data by methods that individual vehicles

are incapable of executing (Section 2.5). Within the detection process, both in vehicles

and on the Cloud, it is important to consider how the information extracted from one type

of detection algorithm may be used as side or additional information for detecting other

events (Section 2.6). It is also important to consider how any algorithmic parameters are

determined (Section 2.7) or how the detection algorithm is trained and developed (Sec-

tion 2.8) for both the vehicle and Cloud detection processes. Any information detected

within the Cloud should then subsequently be transmitted back to the vehicles, completing

the feedback loop. Similar to the side detection process, this Cloud information can be

used in the vehicles as an aid for detecting other types of information.

2.2 Types of Environmental Information

The nature of the environmental information to be detected determines how various aspects

of the detection framework need to be adapted to function properly in the applicable

domain. In order to customize the detection framework configuration to a specific type
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Figure 2.1: Framework of Vehicle-Cloud information extraction system

Table 2.1: Example types of environmental information, classified by spatial and temporal
granularity

Static or Dynamic or

Slowly-changing Information Quickly-changing Information

Binary

Information

• Pothole [3] • Slippery or icy road

• Speedbump [4] • Construction zone

• Train crossing • Poor visibility [5]

• Stop sign and traffic lights [6] • Rain
• Crosswalks [7] • Roadkill
• Traffic sign recognition [8] • Accidents [9]

• Road-side parking availability [10]

Continuous

Information

• Road incline and bank angle [11] • Traffic density

• Number of lanes [12] • Ambient temperature

• Speed limit [13] • Pedestrian density

• Fuel Efficiency Map [14]
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of environmental information, information regarding the following elements needs to be

specified:

Event Type

The event type is the specific event or piece of environmental information to be de-

tected. This high level concept acts as the ground-truth for comparison and provides

the reference to determine features to be used in any algorithm. Examples of different

types of events to be detected are shown in Table 2.1, indexed by spatial and tem-

poral granularity (to be discussed in the following). Parameters for the subsequent

component requirements depend on the physical nature of the event types and their

influence on driving behavior.

Sensor Data

It is important to identify the types of sensor data that are most appropriate for

extracting the desired environmental information. The sensor data specifies the data

source for the detection algorithms. The data could be chosen to fit into a machine

learning framework, or there may be a more fundamental, perhaps physics-based

reason, for utilizing the sensor data. We demonstrate examples of both situations

with pothole and road angle detection, respectively, in Chapter 5. The chosen data

also specifies how the detection process for a specified event may interact with other

event detection processes. If two different detection processes require the same raw

data to be uploaded to the Cloud, the processes should be indexed so that data is

transmitted only once and there is no redundancy within the system (unless required

for security or error-checking purposes). The type of data also specifies what types

of machine learning or signal processing techniques may be applied to the data. Due

to controller area network (CAN) bus limitations [15], different sensors operate asyn-

chronously and at different frequencies. Many sensors operate at only approximately

1 Hz, which undersamples many road signals. Any undersampled sensor data would
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therefore limit the capabilities of detecting events within the vehicle and may neces-

sitate aggregating data from multiple vehicles onto the Cloud to increase the effective

sampling rate to an adequate level for detection.

Spatial Granularity

The spatial granularity of a road feature can be examined at multiple scales. At a

high level we can separate events into two categories: binary features and continuous

features. Binary features are features that could be described by a binary value as

either existing or not existing at a given location. A speedbump is one such exam-

ple. Continuous features are those best described by continuous functions, often as a

function of the road location. These features have varying values. One such example

of a continuous feature is the road incline angle, which would be a continuous func-

tion along a road. Spatial classifications of other example road events are shown in

Table 2.1. There are also finer-grained specifications of events beyond just binary or

continuous classification. For binary road events for example, localizing the event to

an exact location is important. Most road events occupy some region of space (e.g.,

∼1 m for a pothole), however since the detection is not necessarily done in a contin-

uous domain, the event may be detected only in some specified window(s) depending

on the nature of the detection algorithm. It is beneficial to more precisely localize

an event. The desired granularity affects the parameters of the detection process.

For example, the parameters or amount of data required to localize a speedbump

to within 0.1 m vastly differ from being able to localize a speedbump to within a

10 m range. Specifying the required accuracy is important to the detection process.

Algorithms for the detection of continuous information are given in Section 4.1 and

for binary events in Section 4.2.

Temporal Information

Different types of road information are associated with different timescales, which
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dictates how a detection system should value dynamically changing temporal infor-

mation. Events could abruptly change (e.g., a pothole being filled), dynamically

change on short timescales (e.g., traffic density), or remain static for long periods of

time (e.g., road incline angle information). The lifespan or time constant associated

with an event dictates how the information extraction process collects new informa-

tion and factors in old information. For static processes, sensor data may not need

to be continuously collected after the event has been confidently detected as the new

data can not provide any updated information. In comparison, highly dynamic pro-

cesses need to continually collect new data to reexamine the current environment, as

well as using previous data to build up a history and sample size to predict how the

environment evolves. There are intermediate procedures as well where after an event

is confidently detected, the sampling rate could be significantly reduced and new data

is used to verify the existing information and possibly trigger a change. Depending

on the spatial granularity or event type, and therefore the machine learning or signal

processing algorithm used in detection, the method by which timing information is

accounted for may vary. An algorithm for discounting old information is presented

in Section 4.3.

Domain

The information extracted from the vehicles can fit into a number of different do-

mains. These domains could include road structure information (e.g., road incline an-

gle, speedbump locations), driving regulations (e.g., speed limits, stop signs), driver

or vehicle specific information (e.g., drunk or erratic driver detection), or anomaly

information (e.g., poor visibility, potholes). Identifying the domain of the informa-

tion dictates how it can be used by interested parties, such as drivers or automated

vehicle control systems, and what process the information should undergo after it

has been detected.
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Cloud and Other Event Information

Information from previously detected road features can be critical to helping in the

detection of another event. For example, in Section 5.1.3, we demonstrate how known

road curvature information can be used to determine the incline and bank angles of

the road. Similarly, in Section 5.2.4.1, we demonstrate how these incline and bank

angles are used in a pothole detection process. This shared information framework

means that the amount of data, or the difficulty of any detection process, can be

reduced since information from other sources may assist, or dictate some mutual

compatibility in the detection process. Specifying what other information is required

is critical to determining the control and data flow paths of the detection framework.

All of these requirements are critical to determining the appropriate features to calculate

in order to properly filter the vehicle sensor data and design the final event detection

algorithm.

2.3 In-vehicle Event Detection

It would be desirable, if possible, to detect environmental features from the raw sensor data

within the vehicle itself. This reduces the need to use bandwidth transmitting raw data to

the Cloud, where a large database system would be required to store such extensive data.

Performing detection within the vehicle can also mitigate the security and privacy risks of

transmitting raw vehicle sensor data.

However, as has been previously stated, the computational capabilities within each

vehicle are often restricted due to the limited amount of data that can be collected and the

computational infrastructure. These restrictions limit the suite of mathematical algorithms

that can be implemented to compute event-discriminating features or the detection of the

events themselves. Many road features occupy a small region of space, both in terms

of the size of the feature and the range of space over which the feature has measurable
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influence on vehicles. A pothole, for example, may only be a meter long, with noticeable

aftershocks in the vehicle for about one second. With sensor measurements acquired at only

1 Hz, features such as signal energy or zero crossings are either meaningless or undefined,

since there is likely to only be one data sample available for calculations in the region-

of-interest. Similarly, processes such as Kalman filters to estimate the vehicle’s dynamics

may be intractable as the dynamics change at a much higher rate than what the filter is

able to estimate.

Therefore any detection in the vehicle is likely to perform worse than a detector that

uses aggregated data from multiple vehicles. It was demonstrated in [3] how aggregating

detections from the weak detectors in the individual vehicles produced a worse result

than designing a detector for all the raw data. This is why it is often beneficial, from

the perspective of detection, to aggregate the raw data directly instead of relying on weak

detectors in individual vehicles that only have access to their own limited data set. However

a certain amount of pre-processing or filtering of the data within the vehicle may be feasible

and appropriate. In Section 5.2.4.1, we demonstrate how vehicles can isolate anomalous

components of their sensed acceleration data, so that only data that deviates from normal

road conditions and could possibly indicate an anomalous road event is transmitted to the

Cloud.

In this work, we do not consider the technical details of designing the control and

data flow in the vehicular detection system. However this is an important component

that dictates many of the constraints of the detection process. Other works have designed

specific architectures to consider and compensate for the environmental restrictions and

demands [16].
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2.4 Data Aggregation

There are two important components in aggregating data from multiple vehicles. The first

component describes the communication process by which the data is transmitted to the

Cloud, and what form the data takes for a given process (e.g., raw sensor data, preprocessed

data, detected event information). This is particularly important given the intermittent

connectivity periods [17] and high packet loss rates [18] in vehicular networks. The second

component in data aggregation involves how the data is stored and indexed on the Cloud

so that it can be used appropriately for any detection algorithm.

Any raw data sent to the Cloud should be indexed by a number of features. Beyond

labeling the sensor data by type, there are important additional details to index the data

by, including the vehicle from which the samples were obtained, the time the samples were

obtained, and the spatial location at which the data was acquired. The samples in the

aggregated data set should not be treated independently and ignorant of the knowledge

of which vehicle produced them. Vehicles have their own unique behaviors that affect the

errors or noise in any measurement. As will be described in Chapter 3, the measuring

vehicle is important when considering the GPS error for samples. The GPS errors in the

samples from the same vehicle tend to be highly correlated across both time and location.

Therefore, using the knowledge that two measurements came from the same vehicle can

be used to better estimate and mitigate the impact of error in the detection system.

Timing data is also critical information to be incorporated into the detection process.

As described in Section 2.2, different types of information have different time scales associ-

ated with them that dictate how the road event evolves over time. It is important to know

the age of any data sample to determine its relevance, or how much it should be weighted,

for extracting a certain piece of information.

Given the mobile conditions of the vehicular networking environment, there are new

protocols developed for Dedicated Short Range Communications (DSRC) [19] or for how
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to best store and disseminate event information [20]. However, the exact transmission

and storage mechanisms are not the focus of this work. We instead consider their impact

on the detection algorithms. Reducing the required bandwidth of a detection protocol is

explicitly built into our algorithms, for instance by reducing the amount of transmitted

raw data in pothole detection using the data filter described in Section 5.2.4.1. Also, the

knowledge of which vehicle each data sample was obtained from is critical in the signal

processing algorithms described in Chapter 4, which compensate for and try to estimate

the effects of GPS errors. Timing information is also critically considered as part of the

detection framework in Section 4.3.

2.5 Cloud Event Detection

Detecting events from aggregated data on the Cloud is beneficial when the individual

vehicles are not capable of performing satisfactory detection themselves. As detailed in

Section 2.3, this is generally a result of either lacking the computational capabilities to

perform the detection task, or lacking the necessary and sufficient data to build up a

model extensive enough to detect events. Aggregating data from multiple sources therefore

builds up a large enough sample size for training and testing a more comprehensive suite

of algorithms. Some examples include inferring road locations and directions from GPS

traces [21, 22] or trying to forecast travel times [23] where the behavior of a single vehicle

may not be indicative of the true nature of the event or the sensor data may be too noisy

for any reliable information extraction.

Performing the information extraction process on the Cloud generally takes two forms,

depending on the type of data transmitted from the vehicles. If raw sensor data is transmit-

ted from the vehicles, then the Cloud detection algorithm operates on an aggregated raw

data set where the full breadth of measured data is considered. This has the advantage of

increasing the effective sampling rate so that if there are certain infrequent behaviors in the
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data that can best capture the desired information, the effective sampling rate is increased,

resulting in a sample size where it is probable that such behavior can be discovered within

the data set. However such a breadth of data means that the heterogeneous behavior of

the different vehicles and road conditions may confuse the nature of the features. It may

be difficult to determine event-specific behavior if the behavior is not consistent among

vehicles. This method also requires transmitting some or all of the raw data, which may

be too bandwidth intensive for the vehicular network.

The other example of Cloud detection is where the Cloud aggregates detections made

from the vehicles themselves for a final determination. This has the advantage of saving

bandwidth since only a location and binary value need to be transmitted from the vehicles

to the Cloud. However if the classifiers on the individual vehicles are weak, due to low

sampling rates for example, this method is aggregating unreliable detection results. This

could result in inaccurate detections over the aggregated data set.

The Cloud framework is particularly helpful for mitigating the effects of GPS noise.

Data from different vehicles may conflict due to GPS noise identifying the same event at

multiple locations, or by blending the information from different regions onto the same lo-

cation. However by aggregating the data from multiple vehicles, the detection of the feature

itself can be used as a checkpoint to redetermine the likely true position of the measured

GPS values. This joint process uses the crowdsourced group knowledge to enhance both

the detection process and the quality of the measured data.

The algorithms for Cloud detection also vary depending on the nature of the type of

information to extract. A signal processing approach is outlined in Section 4.1 for detecting

continuous information, and a machine learning framework is outlined in Section 4.2 for

detecting binary road information.
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2.6 Side Information

Detection of each individual type of environmental information should not be performed

in isolation. The road network is a complex environment with many interacting events.

The detection of an event at a certain location could significantly increase the probability

of a second event occurring, and exclude a third event altogether. As an example, detect-

ing a 4-way stop at an intersection increases the probability that each of the roads is a

bidirectional single lane road, and excludes the possibility that a traffic light would exist

at the intersection. There are many similarities in vehicle behavior between stop signs

and traffic lights that could be used in a detector for both systems. If the detections are

done independently, it could falsely suggest that both a traffic light and a stop sign exist

at an intersection. However by considering the existing environmental information in con-

junction with the current detection process, a single more confident and correct detection

possibility can be determined.

In this thesis work, we focus on applying the detection framework to two specific types

of road events, namely detecting the road incline and bank angles, and detecting potholes.

In Section 5.2.4.1 and the ensuing results we describe a process for how the incline and

bank angles can be used as side information to the pothole detection process to significantly

enhance the accuracy of the detection system while also reducing the required transmission

bandwidth.

2.7 Parameter Optimization

Although many machine learning or signal processing frameworks attempt to be nonpara-

metric, there are inevitably choices of customizable event-specific features or model-tunable

parameters that are necessary in the design of any event detection algorithm. Such pa-

rameters could include:
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• The number of vehicles or sensor samples required to be aggregated for the detection

algorithm

• Function domain length or bandlimit for signal reconstruction

• Time constants or average lifespans of an event

• Thresholds on filters to determine the inclusion of data in an algorithm

• Thresholds on algorithms to determine if data should be transmitted from vehicles

to the Cloud

• Inherent algorithmic training parameters (e.g., penalty costs in Support Vector Ma-

chine training)

• Expected covariance of error terms

Many of these parameters can be estimated and tuned through repeated trial-and-error

processes. However, it is preferable if an automated process is able to select or tune the

appropriate parameters. In Section 4.1.4 we discuss methods to determine parameters for

our continuous signal reconstruction algorithm, and Section 4.3.1.1 discusses an automated

method for determining a temporal decay factor.

2.8 Training Framework

To create extensive detection models that represent a variety of circumstances and envi-

ronmental conditions, data is required from different vehicles experiencing events in diverse

scenarios, in addition to ground-truth data. Such data can be obtained from either real-

world driving or from simulations.

Obtaining extensive data through real-world driving is prohibitively labor-intensive

and expensive. With simulations, although the experiments can be extended beyond the

available equipment and distances can be simulated that would be too costly to drive

manually, the environment is often restricted to the variables of interest and the conditions
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may not be perfectly representative of real-world environments.

To address this problem we use a simulator to synthesize training data for our classifiers,

and we then evaluate our systems using both simulated and a more limited, but feasibly

obtainable real-world data set. This process also demonstrates how models derived from

simulated data can be applied to real-world scenarios.

We use the CarSimr [24] program to simulate vehicles in various driving conditions.

CarSimr is a highly customizable vehicle simulation kit, which accurately simulates vehicle

component (e.g., tires, suspension, steering, etc.) responses to given input environments

and stimuli. It is the default tool for kinematic and controls simulation testing in the vehicle

community [25]. With CarSimr, we simulated vehicles driving distances that vastly exceed

what could be collected manually. Using simulations also provided us the knowledge of

ground-truth information, since it was a simulation design parameter. The exact details

of the CarSimr simulations are discussed in Chapter 5 as to how the simulations are

constructed for testing the different types of road events.

2.9 Chapter Summary

In this chapter, we outlined the general vehicle-Cloud detection framework to extract

environmental information from vehicle sensor data. The interactive cycle of initially

acquiring the sensor data in individual vehicles, pre-processing the data, transmitting it

to the Cloud for aggregation, running detection algorithms on the aggregated data, and

transmitting the extracted information back to the vehicle for use in other products is

described, along with appropriate modifications and adaptations that may be required to

cope with varying types of environments, types of information, and algorithmic details.

The following chapters provide details for these high-level concepts, describe how the

detection processes fit into the presented general vehicle-Cloud detection framework, and

demonstrate examples of detecting specific types of environmental information.

21



22



Chapter 3

Noisy Multi-source Variable-rate

Sampling

3.1 Introduction

Due to controller area network (CAN) bus and cellular bandwidth constraints, many vehi-

cle embedded sensors operate at low sampling frequencies (e.g., 1 Hz). The low operating

frequencies undersample road information signals in the vehicle sensor data, thus making

aggregating sensor data a critical requirement to increase the effective sampling rate to a

sufficient level so that environmental road information can be adequately detected. How-

ever, aggregating data from multiple vehicles or mobile sensors results in unique sampling

conditions for the aggregated data set. The following paragraphs describe those sampling

conditions, with examples of how they manifest themselves on an example signal shown in

Figure 3.1.

Embedded sensors sample data as functions in the temporal domain, e.g., acquiring

samples periodically at 1 Hz. However road information is generally indexed by spatial

location instead of time. Speed and acceleration values are therefore required to map the

sensor sampling rate from the temporal domain to the spatial domain. Since vehicles have
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varying speeds and accelerations, even if the sensors were sampling perfectly periodically

in the time domain, the sampling rates in the spatial domain would still vary. These vary-

ing sampling rates therefore produce nonuniform spacings between the sample locations.

To further complicate the sampling environment, different sensors usually operate asyn-

chronously and the shared buffers can produce output labeled sampling times that do not

necessarily correspond to the true sampling times.

Similar to how individual vehicles produce nonuniformly spaced samples, different ve-

hicles also operate asynchronously due to the lack of coordinated control. Since different

vehicles have different acceleration patterns, the aggregated data from all the vehicles is

not only nonuniformly spaced, but there may also be a different number of aggregated

samples from each source over any given domain. The asynchronous sampling nature also

implies that the aggregated samples may be undesirably bunched and the sampling density

could vary significantly over the domain.

Aggregating data from multiple vehicles is also complicated by vehicle and sensor het-

erogeneity. Sensor responses, particularly from sensors measuring vehicle kinematics, are

affected by the physical features of the vehicle as well as its driving behavior. For ex-

ample, when measuring the accelerometer response from a vehicle driving over a pothole,

factors such as the size, weight, and length of the vehicle, quality of the suspension system,

and speed and turning behavior would all affect the vehicle’s response to the pothole and

therefore the resulting acceleration measurements. Therefore, when aggregating data from

multiple vehicles it is important to consider that the data differs from vehicle to vehicle

not just due to noise, but also because the vehicles’ responses to certain events vary due

to differences in the vehicles’ physical characteristics.

These sampling conditions should be taken into account when designing methods for

extracting information from networked vehicle systems. We refer to these conditions as

noisy multi-source, variable-rate (MSVR) sampling conditions. The complexity of these
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Figure 3.1: Vehicle MSVR sampled signal reconstruction difficulties, (a) Signal undersam-
pling, (b) Nonuniform sample spacing, (c) Uncontrolled sample spacing between sensor
sources, (d) Sample value error, (e) Errors in variables, (f) Correlated errors in variables
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conditions is an important consideration for trying to accurately extract and localize in-

formation from undersampled and asynchronous vehicle sensor data.

There is an additional challenge that further distinguishes vehicle sampling conditions

from traditional uniform sampling problems. Sensor measurements are indexed by the

GPS locations at which they were measured. However GPS measurements have errors

that are not independent and identically distributed (i.i.d.) for each sample, but instead

may be spatially and temporally correlated. Consider as an example the GPS location

measurements from 16 vehicle traces driving over a 300 m stretch of a two lane road (E 13

Mile Rd., Warren, MI, USA, between Mound Rd. and Ryan Rd.) in Figure 3.2. Note that

the GPS locations from each trace do not randomly fluctuate around the lane centerlines

from each lane. There are also more traces on the northern side of the road and some

traces that would indicate a vehicle is being consistently driven in the middle of the road.

The error, or location offsets from the lane centerlines, is strongly correlated for all the

sampling locations from each trace. Also note that the spacing between samples in each

trace and the total number of samples from each of the different traces varies in accordance

with the MSVR sampling model.

A second example of correlated GPS error is shown in Figure 3.3. The arrows are from

GPS measurements from 115 vehicle traces on Overlook Dr., Pittsburgh, Pennsylvania. All

the vehicles purportedly follow the same route (the road hidden under the winding cluster

of traces). However, note the purple arrows from a single vehicle trace that indicates

measured locations that cut through the field rather than the road. This highlighted trace

is in the same shape as the surrounding road, indicating a large and strongly correlated GPS

error for that particular vehicle. Although this trace is an extreme example, other traces

have similar GPS location biases that create difficulties when aggregating the erroneous

sampling locations.

These location errors extend the MSVR sampling model to a correlated errors in vari-
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Figure 3.3: Map of measured GPS locations on Overlook Dr., Pittsburgh, PA, from 115
vehicle traces
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ables (EIV) sampling model where there is error in both the sampling value being measured

(e.g., acceleration), and the sampling location. Although there has been ressearch investi-

gating signal reconstructions with error in variables models, we extend the work to MSVR

sampling conditions with particular consideration to correlations in the sampling location

errors.

In this chapter, Section 3.2 provides background on how the GPS errors are correlated.

Section 3.3 shows how we translate these error sources into mathematical models for use

in the information extraction algorithms. Section 3.4 summarizes the chapter.

3.2 Global Positioning System (GPS) Background

The Global Positioning System (GPS) is a satellite-based navigation system that provides

location estimates for, in this thesis work, vehicle-embedded GPS receivers. The GPS

system was originally launched in 1995 with 24 satellites, and currently functions with 31

operational satellites. A receiver needs to have line-of-sight interactions with a minimum

of 4 satellites to be able to determine its position.

Each satellite continually broadcasts its time of transmission, ephemeris data (satellite

position), and a pseudorandom code signal. A GPS receiver generates a replica code sig-

nal for the respective monitored satellite, and by correlating the receiver-generated signal

with the one received from the satellite, a receiver is able to estimate the signal propa-

gation time [26]. This propagation time is converted into a distance measurement from

the satellite, known as the pseudorange. The term “pseudorange” is used rather than

“range” due to errors in the system contaminating the distance calculation. The pseudo-

range for each satellite corresponds to a sphere of positions where the receiver could be

located. The spheres from a minimum of 4 satellites are used, often in a least-squares

problem [27], to estimate the true location of the GPS receiver. As an oversimplification,

this can be envisioned as the intersection of the spheres, however there are weightings by
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Table 3.1: GPS pseudorange error standard deviations [26]

Error Source Bias (m) Random (m) Total (m)

Ephemeris Data 2.1 0.0 2.1

Satellite Clock 2.0 0.7 2.1

Ionosphere (Single Freq.) 4.0 0.5 4.0

Ionosphere (Dual Freq.) 1.0 0.7 1.2

Troposphere 0.5 0.5 0.7

Multipath 1.0 1.0 1.4

Receiver 0.5 0.2 0.5

Total (Single Freq.) 5.1 1.4 5.3

Total (Dual Freq.) 3.3 1.5 3.6

probability distributions, adjustments for overdetermined systems, and nonlinearities in

error calculations that shift the final estimated location.

The process of estimating the location of a GPS receiver contains a number of error

sources that result in both random, but also spatially and temporally correlated location

measurement errors. Although not intended as a thorough investigation of GPS error, the

following sections highlight the most significant GPS error sources and how they manifest

themselves as both persistently biased and independent random error values. The errors

are divided into four categories: satellite errors (Section 3.2.1), atmospheric errors (Sec-

tion 3.2.2), earth-level errors (Section 3.2.3), and satellite geometry errors (Section 3.2.4).

Each error section highlights how the errors may be spatially or temporally correlated.

Table 3.1 summarizes the results of these sections, replicated from [26]. The errors are

presented as a constant bias (an error which persists for at least minutes within the range

of at least a few kilometers) in addition to a random independent error component, which

can be interpreted as i.i.d. for each measurement. Each error component is assumed to be

uncorrelated to other error components. These error values are similar to those obtained

from other sources [28].
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3.2.1 Satellite Errors

3.2.1.1 Ephemeris Error

The satellite ephemeris is its position in space. This position is required as a reference point

when determining the pseudorange from a GPS receiver to a satellite. Satellites predict

their trajectory based on previous observations and periodically uploaded (often daily)

predictions made from ground stations [29]. A satellite’s position error therefore undergoes

diurnal cycles between uploaded corrections [30]. It was shown in [31] that the error

autocorrelation function decreased approximately linearly over 30 minute time intervals,

reaching an autocorrelation value of 0.5 at about 20 minutes. Any GPS receiver using a

satellite to determine its location will continually receive the same correlated erroneous

ephemeris data. For receivers relatively close to each other, the error is therefore strongly

correlated as the pseudorange between devices is similarly affected in localized regions.

3.2.1.2 Satellite Clock Error

The satellite clock value is used to estimate the signal propagation time from the satellite

to the receiver, and therefore to estimate the pseudorange. Atomic clocks can drift ap-

proximately 10−8 s per day, equivalent to about 3.5 m in pseudorange. This error has been

shown to grow quadratically with time between updates [32, 33]. This clock error would

be equal for any receiver (in any location) using the satellite.

3.2.2 Atmospheric Errors

3.2.2.1 Ionosphere Error

The wave propagation speed of the GPS signal is reduced from the speed of light in

the ionosphere (50 km - 1000 km above the Earth’s surface) due to the free electron

concentration [34]. The delay is proportional to the squared inverse of the carrier frequency
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of the signal. There are diurnal models for the electron concentrations which are used as a

correction aid, however there are still errors when the true concentration does not match

the model. Dual frequency signals or differential GPS receivers can be used to significantly

reduce the error since the delay difference between the two signals can be better used to

estimate the true delays [34]. These errors are correlated in localized regions but are also

dependent on latitude, with the error increasing towards the equator and poles [35].

3.2.2.2 Troposphere Error

The troposphere is the atmospheric level closest to earth (0 km - 50 km above the Earth’s

surface), which is associated with most day-to-day weather variations. Since the signal

propagation speed is affected by changes in temperature, pressure, and humidity, localized

weather conditions can significantly delay the propagation time of the signal. These effects

vary depending on satellite elevation since there is a longer path through the troposphere for

lower elevation signals. However, given current conditions, the tropospheric errors are fairly

predictable and can therefore be compensated for when estimating the pseudorange [36].

These errors are also heavily correlated in time and location, however can vary for signals

from different satellites for the same receiver as their path lengths through the troposphere

are dependent on their geometry relative to the receiver.

3.2.3 Earth-level Errors

3.2.3.1 Multipath Errors

Multipath errors are caused by the satellite signal reflecting off nearby objects to the

receiver (e.g., large buildings, trees) creating multiple paths to the receiver and therefore

multiple (and delayed) estimates for the signal propagation time. These effects are the most

difficult to estimate or compensate for as they are highly localized and highly dependent

on which satellites a receiver is using for the pseudorange calculations. Receivers in the
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same location may experience similar multi-path error from a satellite if the same objects

are interfering with the signal.

3.2.3.2 Receiver Errors

Any coding, clock, or algorithm errors within a device will cause an error in the location

estimate. A coding error for example could be a mismatch between the satellite pseudo-

random code and the receiver-generated one meant to correlate the signals. Depending

on the exact nature of these errors, they may be temporally correlated, however they are

unlikely to be correlated between different GPS receivers in close proximity.

3.2.4 Geometric Dilution of Precision

The values expressed in Table 3.1 only express the errors in the pseudorange calculation.

It is important to also determine how those errors are reflected in localization accuracy

on an earth-level plane. This projection is done using the Geometric Dilution of Precision

(GDOP) which uses the satellite geometry to determine how the range errors are expressed

as localization errors. The GDOP is the ratio of the size of the location errors to the range

errors [37]. The GDOP is derived from the covariance matrix, Q, of the east (E), north

(N), elevation (Z), and time (t) errors,
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The matrix Q is determined by
(3.2)Q = (GTG)−1,

where G is derived from the satellite geometry for the S satellites used in determining the

location from their azimuth, α, and elevation, β, angles, as illustrated in Figure 3.4, as the
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transformation between spherical and Cartesian coordinate systems such that,

(3.3)G =
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Particular interest is paid to the horizontal dilution of precision (HDOP), where

(3.4)HDOP =
√

σ2
E + σ2

N ,

as that expresses the location error multiplicative factor in the latitudinal and longitudinal

plane. The HDOP is traditionally used to indicate the change in error on the ground plane,

however particular attention should be paid to the off-diagonal terms of Q as those indicate

how errors are correlated between the latitudinal and longitudinal directions. Typical

HDOP values are between 1.0-2.0 [37]. The elevation errors are typically larger than the

horizontal earth-plane errors since all the satellite measurements are biased to one side

along the vertical axis from the receiver (all satellites are above the receiver) while the

lateral and longitudinal coordinates are typically determined from satellites surrounding

the receiver [37]. This disparity increases as the latitudes approach the poles since the

satellite elevations are more limited.

To illustrate the difference in satellite geometries, consider a situation with four satel-

lites spread evenly around the sky with elevation and azimuth angles
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The resulting GDOP matrix is
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The resulting HDOP value is only 1.16 and the errors in the latitude and longitude are

uncorrelated. Compare this with a second situation where the satellites are not as evenly

distributed around the sky, with elevation and azimuth angles,

(3.7)
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Table 3.2: MSVR sampling notation

N Total number of aggregated samples

V Total number of sampling sources

nv Total number of samples from source v

xv
j Measured location of data sample j from source v

qv
j True location of data sample j from source v

∆v
j Location error of data sample j from source v

yv
j Measured sensor value for measured location xv

j

tvj Measurement time of data sample j from source v

σ2
x Variance for sampling location error for each data sample

σ2
v Variance for sampling location error for each source

σ2
a Variance for sampling location error for autocorrelated error model

σ2
y Variance for sample value error

T Exponential autocorrelation time constant

ρvjk Correlation factor for sampling location error for samples j and k from source v

Cxx Covariance matrix for sample location errors from aggregated data

Cv
xx Sample location error covariance matrix for source v

Cvv Condensed sample location error covariance matrix for all sources

The resulting GDOP matrix is

(3.8)Q =





















0.79 −0.33 −1.01 0.35

−0.33 1.07 1.12 −0.50

−1.01 1.12 5.72 −2.40

0.35 −0.50 2.40 1.27





















.

In this satellite geometry, the HDOP value is 1.36, and the variances for the latitude and

longitude are now different, with their components correlated.

3.3 Sample Location Error Models

Refer to Table 3.2 for a notation reference for this section. As outlined in the previous

section, GPS measurements have associated errors inherent in the measurements that are
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both spatially and temporally correlated. As related to the Intelligent Transportation

System (ITS), consider a system of V vehicles collecting data samples on a road or road

network. The jth sample location from the vth vehicle, where v ∈ {1, . . . , V } and j ∈

{1, . . . , nv}, is measured at the true (but initially unknown) location qv
j , however reported

to be at xv
j due to GPS positioning error. The measured location is offset from the true

location by the sampling location error, ∆v
j , such that

(3.9)xv
j = qv

j +∆v
j .

The measured and true location variables could be vectors in in R
3 if considering a (latitude,

longitude, elevation) coordinate system, in R
2 if one is only considering the (latitude,

longitude) system, or in R
1 if one is only considering a total distance coordinate system,

for example, the location along a single road. This is an errors in variables (EIV) [38]

sampling model due to the error ∆v
j .

There is also a signal of interest generally being measured with reference to the GPS

locations, for example, accelerometer or gyroscope readings. Let the ground-truth signal

be represented by the function f(q). Therefore the measurement output, yv
j corresponding

to the measured location xv
j is given by

(3.10)yv
j = f(qv

j ) + νv
j ,

where νv
j is the sample value error from the measurement. Therefore the true coupled

location and signal values, (qv
j , f(q

v
j )), are output as the reported measured values (xv

j ,y
v
j ).

Figure 3.5 presents an illustration of the relationship between these variables for an example

one-dimensional coordinate system.

When attempting to extract environmental information from the sensed vehicle data,

it is imperative that the error terms are properly taken into account to try and determine

the true location of the sensed data. Accounting for such behavior requires an error model

that well approximates the correlated location errors for all the GPS measurements in an

aggregated data set that includes data from multiple vehicles. To accomplish this goal, we
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Figure 3.5: Relationship of measured sampled location, xv
j , sampled value, yvj , true sam-

pling location, qvj , and true sample value, f(qvj ). The difference between xv
j and qvj is the

sampling location error and the difference between yvj and f(qvj ) is the sampling value error.

require the covariance matrix Cxx that relates the variances of all the location error terms

for the sampled locations of the aggregated data, where

(3.11)Cxx = E

























































































∆1
1

...

∆1
n1

...

∆V
1

...

∆V
nV













































[

∆1
1 . . . ∆1

n1
. . . ∆V

1 . . . ∆V
nV

]













































.

Let us also assume that x,q ∈ R
1.

Predetermining a covariance matrix that is generally applicable is difficult given all the

variables that may affect the spatial and temporal correlations in error from data samples

from multiple vehicles. We therefore make a few qualifying assumptions. The spatial

and temporal correlations for a single receiver are quite evident, as described by the error

sources in Section 3.2, however the correlation in location error between different GPS

receivers is more difficult to quantify since they may be tracking different satellites. We

therefore construct the covariance matrix such that the location error from samples from
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different vehicles is assumed to be independent. Therefore Cxx is a block diagonal matrix,

such that

(3.12)Cxx =





















C1
xx 0 . . . 0

0 C2
xx . . . 0

...
...

. . .
...

0 0 . . . CV
xx





















,

where Cv
xx is the location error covariance matrix for the data samples collected from

vehicle v.

In the following sections, we present error models for ∆v
j inspired by the background

information on GPS error.

3.3.1 Autocorrelated Location Error

Although the errors in Table 3.1 were presented as a persistent bias plus random error, it is

useful to quantify time scales over which such assumptions are applicable. An exponential

autocorrelation function has been found to well approximate the GPS error as it evolves

in time [39, 40]. Given the jth and kth measurements from vehicle v at times tvj and tvj ,

respectively, the covariance between the location error of the two measurements is given

by

(3.13)σ2
∆v

j ,∆
v
k
= σ2

a exp

(

−
∣

∣tvj − tvk
∣

∣

T

)

,

where T is the time constant of the exponential (found to vary between 200-500 seconds

for GPS applications [39]), and σ2
a is the variance of the sample location error. Denote the

autocorrelation component of the variance as ρvjk, where

(3.14)ρvjk = exp

(

−
∣

∣tvj − tvk
∣

∣

T

)

.
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By expanding the autocorrelation model to all the samples from each individual vehicle,

the covariance matrix Cv
xx is determined as

(3.15)Cv
xx = σ2

a





























1 ρv12 ρv13 . . . ρv1nv

ρv12 1 ρv23 . . . ρv2nv

ρv13 ρv23 1 . . . ρv3nv

...
...

...
. . .

...

ρv1nv
ρv2nv

ρv3nv
. . . 1





























.

If a periodic sampling model is assumed where

(3.16)τ = |tvj+1 − tvj |, ∀j,

then denote ρτ as

(3.17)ρτ = exp
(

− τ

T

)

,

which simplifies the covariance matrix Cv
xx to

(3.18)Cv
xx = σ2

a





























1 ρτ ρ2τ . . . ρnv−1
τ

ρτ 1 ρτ . . . ρnv−2
τ

ρ2τ ρτ 1 . . . ρnv−3
τ

...
...

...
. . .

...

ρnv−1
τ ρnv−2

τ ρnv−3
τ . . . 1





























.

However due to missing data, and asynchronous and irregular sampling in embedded sen-

sors, the periodic condition is unlikely to occur in practice. To demonstrate these prop-

erties, Table 3.3 shows speed measurements from a vehicle driving indexed by the epoch

timestamp of the measurement. Note that the time difference between measurements

(shown in the last column) is inconsistent.
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Table 3.3: Example real-world vehicle speed measurements

Timestamp (ms) Change in Time

UNIX Epoch Speed (km/h) from Previous Sample (ms)

1443637460637 79.39

1443637460752 79.39 115

1443637460863 79.39 111

1443637460940 79.42 77

1443637461056 79.45 116

1443637461140 79.46 84

1443637461220 79.48 80

1443637461333 79.49 113

1443637461423 79.53 90

1443637461555 79.53 132

1443637461657 79.54 102

1443637461734 79.56 77

1443637461840 79.60 106

The inverse of Cxx will be required for optimization problems over the aggregated data

set in Section 4.1. Due to its block diagonal structure,

(3.19)(Cxx)
−1 =





















(C1
xx)

−1
0 . . . 0

0 (C2
xx)

−1
. . . 0

...
...

. . .
...

0 0 . . . (CV
xx)

−1





















.

The matrix inverse for the vehicle sample error covariance matrix given by Equation 3.15

is,

(Cv
xx)

−1=
1

σ2
a























1
1−(ρv12)2

−ρ
v

12
1−(ρv12)2

0 0 . . . 0

−ρ
v

12
1−(ρv12)2

(ρv12)2

1−(ρv12)2
+ 1

1−(ρv23)2

−ρ
v

23
1−(ρv23)2

0 . . . 0

0
−ρ

v

23
1−(ρv23)2

ρ
v

23
2

1−(ρv23)2
+ 1

1−(ρv34)2

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

−ρ
v

nv−2,nv−1

1−(ρv
nv−2,nv−1

)2
0

0 . . . 0
−ρ

v

nv−2,nv−1

1−(ρv
nv−2,nv−1

)2

(ρv
nv−2,nv−1)2

1−(ρv
nv−2,nv−1

)2
+ 1

1−(ρv
nv−1,nv

)2

−ρ
v

nv−1,nv

1−(ρv
nv−1,nv

)2

0 0 . . . 0
−ρ

v

nv−1,nv

1−(ρv
nv−1,nv

)2
1

1−(ρv
nv−1,nv

)2























.

(3.20)
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3.3.2 Correlated Source Error

For some time-scales or distances, it may be more convenient to approximate the autocor-

relation error model as a constant error bias for each vehicle in addition to an independent

component, indicated in the style of Table 3.1. We follow a similar construction to [41]

and construct the vehicle location error covariance matrix as the sum of independent and

correlated components,

(3.21)Cv
xx = (Cv

xx)
ind + (Cv

xx)
corr.

Following this structure, we assume that the independent location error component is

distributed as N (0, σ2
x) and i.i.d. for all samples. The correlated error is a fixed bias term

for each vehicle, with each vehicle’s bias term distributed as N (0, σ2
v). Following this

model,

Cv
xx = σ2

xInv×nv
+ σ2

v1nv×nv
, (3.22)

=





















σ2
v + σ2

x σ2
v σ2

v · · ·

σ2
v σ2

v + σ2
x σ2

v · · ·

σ2
v σ2

v σ2
v + σ2

x · · ·
...

...
...

. . .





















, (3.23)

where In×n is the identity matrix of size n× n, and 1n×m is a n×m matrix of ones. This

covariance matrix is similar to that of Equation 3.15 in the Autocorrelated error model.

However, while this model maintains a constant correlation for any two different sample

location errors from the same vehicle, the autocorrelation model reduces the correlation as

the measurements are further separated in time.

42



As in the previous section, the inverse of Cxx, and therefore Cv
xx, is required for opti-

mization problems. Due to the Toeplitz structure of Cv
xx, its inverse is,

(3.24)(Cv
xx)

−1 =





















Av Bv Bv . . .

Bv Av Bv · · ·

Bv Bv Av · · ·
...

...
...

. . .





















,

where

Av =
(nv − 1)σ2

v + σ2
x

nvσ2
vσ

2
x + (σ2

x)
2
, (3.25)

Bv =
−σ2

v

nvσ2
vσ

2
x + (σ2

x)
2
. (3.26)

This considers the covariance between all of the sample location errors. However as

shown in Table 3.1, the source bias error (σ2
v) is often much larger than the independent

sample location error (σ2
x).

When constructing or comparing the correlated and autocorrelated noise models, the

covariance matrices of the two algorithms can be designed to approximate each other if

necessary. This can be accomplished by minimizing the Frobenius norm between the two

covariance matrices for a given vehicle, Cv
xx. For a given location variance σ2

a and time

constant T for the autocorrelated noise model, the required location variance terms for the

correlated source error model, σ2
v and σ2

x, are therefore solved to be,

σ2
v = σ2

a









nv
∑

i=1

nv
∑

j=i+1

ρvij

n2
v − nv









, (3.27)

σ2
x = σ2

a









n2
v −

nv
∑

i=1

nv
∑

j=1

ρvij

n2
v − nv









. (3.28)
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3.3.3 Fixed Source Error

For a sufficiently small distance and time, if the correlated location error component dom-

inates the independent noise component, then a simplifying assumption could be made to

neglect the independent noise component. The covariance matrix for the sample location

error from each vehicle could therefore be approximated as

(3.29)Cv
xx = σ2

v1nv×nv
.

This effectively means that there is a fixed (but random and independent for each vehicle)

offset for all sample locations from individual vehicles. This formulation reduces the num-

ber of error model parameters from the two in the previous two models (σ2
a and T for the

autocorrelation model, and σ2
v and σ2

x for the correlated error model) to just one (σ2
v) for

this fixed source error model.

The covariance matrix Cv
xx has all elements identical, and is therefore singular and

cannot be inverted. However since the location errors from all samples from each individual

vehicle are equal, the dimension of the covariance matrixCxx can be reduced so that instead

of expressing the covariance between all sample location error terms as in Equation 3.11,

it expresses only the error for the fixed vehicle offset error, ∆v, where

(3.30)∆v = ∆v
1 = ∆v

2 = · · · = ∆v
nv
.

We therefore replace the sample location covariance matrix Cxx with a vehicle location

error covariance matrix, Cvv, where

(3.31)Cvv = E





























∆1

...

∆V















[

∆1 . . . ∆V

]















.

This formulation simplifies to
(3.32)Cvv = σ2

vIV×V .

Therefore the matrix inverse is clearly given by

(3.33)C−1
vv =

1

σ2
v

IV×V .

44



3.4 Chapter Summary

In this chapter we introduced the noisy multi-source variable-rate (MSVR) sampling model

that results from vehicular sensing conditions in the Intelligent Transportation System. We

demonstrated how the MSVR sampling model was an errors in variables model, specifically

with correlated errors due to the nature of GPS location estimates. Three different error

models were introduced for the correlated error model, due to varying assumptions on the

sampling conditions. In the following chapter we demonstrate how these noisy MSVR sam-

pling conditions are incorporated into machine learning and signal processing algorithms

for extracting information from vehicle sensor data.
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Chapter 4

Aggregated Data Detection

Algorithms

There are many factors that influence how a detection algorithm needs to be constructed

to properly extract the desired environmental information from undersampled and asyn-

chronous vehicle sensor data. These factors were outlined in Section 2.2 and include the

event type, and spatial and temporal information, among others. The information ex-

traction algorithms presented in this section are designed to handle the noisy multi-source

variable-rate (MSVR) sampling conditions described in Chapter 3 within the overall infor-

mation extraction framework.

In this chapter, we describe specific algorithms for event detection with regards to

the overall vehicle-Cloud detection framework presented in Chapter 2. Specifically, the

framework for reconstructing continuous event data is presented in Section 4.1 and binary

event data is presented in Section 4.2. Section 4.3 describes adaptations to the framework

to handle dynamic (i.e., temporally changing) information. These algorithms are analyzed

with respect to general signals and data in this chapter and their application to specific

types of environmental information will be presented in Chapter 5.
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4.1 Continuous Signal Reconstruction

Many types of road environmental information are best represented by continuous signals

as functions of location. Example continuous information includes static road topography

(elevation, road inclination, bank angle, curvature), dynamic real-time conditions (traffic

density, road friction, ambient temperature), or others shown in Table 2.1. This informa-

tion is essential for route planning, predictive steering, and speed control, among other

functions. These algorithms are beneficial for adaptive driver assistance, automated pro-

cesses, city information databases, and eventually autonomous vehicles.

There are, however, a number of significant challenges associated with reconstructing

continuous signals from vehicle sensor data. One of the more significant challenges is the

noisy MSVR sampling conditions detailed in Chapter 3. These MSVR sampling conditions

prove to be difficult for signal reconstruction due to the following reasons:

• Due to the functional constraints of the vehicle sensor technology and limited network

bandwidth, the signals of interest are mostly undersampled in each vehicle. At low

sampling frequencies, crowdsourcing data is critical to obtain sufficient samples to

robustly reconstruct the desired signals.

• The various embedded vehicle sensors operate asynchronously and often at different

sampling rates. Different vehicles are also asynchronous as there is no coordinated

control between the sampling instances on different vehicles. Furthermore, most of

the signals of interest are functions in the spatial domain. Since the sensors sample

as a function of time, different speeds and accelerations, both within a single vehicle

and when compared vehicle to vehicle, cause the spacing of sample locations in the

aggregated data sets to be nonuniformly spaced. Additionally, the number of samples

collected from each source over a given domain will vary. These conditions must be

considered in the signal reconstruction algorithms.

• Sensor output varies from vehicle to vehicle. Factors such as noise, vehicle hetero-
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geneity (i.e., varying vehicle size, weight, sensor placement), sensor heterogeneity,

speed, and other driver-specific behavior affect the measurements different vehicles

produce.

• Data samples collected from each individual vehicle have correlated location errors as

described in Section 3.2. These location errors create an errors in variables model,

that unlike standard regression, creates an ill-posed problem for signal reconstruction.

The following sections describe how to reconstruct continuous signals given these sam-

pling conditions. Section 4.1.1 describes related work that reconstructs signals while ac-

counting for some subset of the sampling constraints. Section 4.1.2 details our algorithm

for signal reconstruction under the noisy and correlated MSVR vehicle sampling condi-

tions. Section 4.1.3 extends these algorithms to joint signal reconstructions. Section 4.1.4

provides details on how to determine or optimize the algorithmic parameters.

4.1.1 Related Signal Reconstruction Work

It should be noted that the language and notation in this chapter refers to reconstructing

a signal, f(x), as a function of spatial coordinate x. However, the methods are equally

applicable to temporal signals or any situation with noisy MSVR sampling conditions.

Other applications with MSVR sampling conditions include:

• Several low-frequency analog-to-digital converters (ADCs) interleaved in time to

achieve periodic sampling at higher frequencies [42].

• Astronomy applications, for example measuring star luminosity, where samples are

obtained by geo-distributed devices in an irregular manner due to weather conditions,

diurnal cycles, or equipment malfunctions [43]. The biases from individual equipment

units, the difficulties in syncing globally or orbitally distributed devices, and the

varied conditions at different sites produce correlated errors in the time and distance

measurements from individual sensors.
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Other works have attempted to reconstruct signals in the presence of a subset of the

noisy MSVR sampling conditions outlined in Chapter 3, however there are limitations to

these algorithms that prevent them from adequately reconstructing signals under the full

noisy and correlated MSVR conditions.

4.1.1.1 Paley-Wiener-Levinson Theorem

There are a number of signal reconstruction algorithms that are specifically designed for

nonuniform sample spacing [44]. These are more traditional sampling algorithms that

generally follow the Paley-Wiener-Levinson (PWL) theorem [45] for signal reconstruction.

Under PWL, the function f(x) is interpolated as

(4.1)f̂(x) =
∞
∑

j=−∞
yj

G(x)
∂G(xj)

∂x
(x− xj)

,

where G(x) is an interpolated Lagrange polynomial [46],

(4.2)G(x) =
∞
∏

j=−∞

(

1− x

xj

)

.

This interpolation matches all the input samples (f̂(xj) = yj, ∀j) in the reconstruction.

The interpolation in Equation 4.1 is a generalized model for nonuniform sampling. If x

were uniformly sampled such that xj = χ+ jW , then G(x) = sin
(

π
(

x−χ

W

))

and the PWL

interpolation in Equation 4.1 reduces to the traditional Whittaker-Shannon-Kotelnikov

(WSK) theorem [47, 48, 49] for uniform sampling, where

(4.3)f̂(x) =
∞
∑

j=−∞
yj · sinc

(

x− χ− jW

W

)

,

and sinc(x) = sin(πx)
πx

. The PWL theorem can be adapted to a class of reconstructions for

multiple sampling sources, each sampling periodically. In this formulation, the different

sampling sources have specified offsets such that

(4.4)xv
j = jWv + χv, v ∈ {1, . . . , V },
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where χv and Wv are the phase offset and the sampling period, respectively, for sampling

source v [46]. This results in the following reconstruction function,

(4.5)f̂(x) =
∞
∑

j=−∞

V
∑

k=1

V
∏

v=1

sin
(

π
Wv

(x− χv)
)

(−1)k π
Wv

[

V
∏

v=1,v 6=k

sin
(

π
Wv

(xk
j −Wv)

)

]

(x− xk
j )

.

There are a number of limitations associated with these reconstructions. The Lagrange

polynomial is constructed based on the unrealistic assumption of infinite number of sam-

ples. Truncation error is introduced when the number of samples is finite, particularly

when the sources sample below the Nyquist rate. There are functions which can be sub-

stituted to increase the rate of truncation error decay in the reconstruction [50], however

these are also less effective below the Nyquist rate as aliasing still occurs.

These approaches are based on the requirement that the reconstructed signal matches

all the samples perfectly (i.e., f̂(xv
j ) = yvj , ∀v, j). This requirement is evident from the

Lagrange interpolation formula that ensures that f(xv
j ) = yvj and therefore does not account

for the unique types of noise in MSVR samples. Matching samples on the estimated

function exactly is not a necessary or good requirement in the presence of noise, and in

fact often has negative consequences on the reconstruction due to overfitting.

As an example of this overfitting, consider the simple function y = sin(πx). Thirty

samples were drawn from a uniform distribution over the domain [−4, 4]. Reconstructions

using the PWL theorem were attempted under two sampling conditions. In the first sam-

pling condition, there was no additional noise. In the second sampling condition, zero-mean

white noise with standard deviation 0.001 was added to each of the sampling values. The

reconstructions for each of these sampling conditions are shown in Figure 4.1. Note that

even though the added sampling noise was too small to even be visible in the figure, it

necessitated complicated dynamics and higher frequency signal components to reconstruct

a signal that exactly matches with each sample. This poor reconstruction is an example

of how the PWL reconstructions fail in the presence of noise. Our signal reconstruction
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Figure 4.1: Signal reconstruction from nonuniformly spaced samples using the PWL theo-
rem for both (a) non-noisy, and (b) noisy samples. The degree of the polynomial G(x) is
30 due to 30 samples being used.

solution does not have the requirement that the reconstruction fits the samples exactly.

4.1.1.2 Trigonometric Polynomials

Sample value noise can be tolerated in the trigonometric polynomial interpolation ap-

proaches of [51, 52, 53]. However, these works are only concerned with the nonuniform
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spacing between the samples. We extend the trigonometric reconstructions in Section 4.1.2

to incorporate MSVR sampling conditions and errors in variables conditions. There is par-

ticular focus given to how source information can be used to reconstruct the signal in the

presence of correlated location error biases from the samples from each sensor agent.

4.1.1.3 Nonparametric Regression Algorithms

There is a class of nonparametric regression algorithms that attempt to estimate f(x)

by fitting kernel density functions to the sample probability density functions. The work

in [54], for example, estimates f(x) as

(4.6)f̂n(x) =

∑n

i=1 Kn(
x−xi

hn
)yi

∑n

i=1 Kn(
x−xi

hn
)
,

where for a Gaussian kernel function,

(4.7)Kn(x) =
hn

√

2π(h2
n − σ2

x)
exp

(

− h2
nx

2

2(h2
n − σ2

x)

)

, hn > σx,

where hn is a preselected bandwidth parameter, and σ2
x is the variance on the sampling lo-

cation error of xj. The regression is extremely sensitive to this parameter and the algorithm

does not account for any correlation in the sample location error.

Another nonparametric curve estimation model [55] attempts to minimize the mean

integrated square error in the reconstruction,

(4.8)minE

{∫ 1

0

(f̂n(x)− f(x))2 dx

}

,

by estimating Fourier coefficients for a truncated series. This is done with the following

data driven estimator

(4.9)f̂n(x) =
Jn
∑

j=0

(1− θ̂−2
j σ̂2N−1)θ̃jI{|h∆

j |>cH σ̂n− 1
2+bn}φj(x),

where φj are orthogonal basis functions, taken here as the cosine basis, θ̃ and θ̂ are estimated

Fourier coefficients, σ̂ is a normed sample median, Jn is the truncation parameter, h∆
j is
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Table 4.1: MSVR sampling and signal reconstruction notation

p(x) Reconstructed signal

a Complex coefficients for trigonometric polynomials

wv
j Weighting value for reconstruction algorithm for xv

j

M Signal reconstruction bandlimit

L Domain length over which signal is to be reconstructed

C Covariance matrix for sampling error terms in aggregated data

the value of the characteristic function of ∆ at jπ, and the remaining parameters are

data-driven coefficients with values further expanded on in [55].

However, this algorithm still requires a number of arbitrarily selected parameters that

the algorithm is particularly sensitive to. This selection often results in inadequate recon-

structions, especially when using the parameters in the data-driven estimator to param-

etrize the model. This model also does not explicitly account for any correlation in the

error in variables.

4.1.2 MSVR Sampled Continuous Signal Reconstructions

Refer to Table 4.1 for the signal reconstruction notation used in this section and to Table 3.2

for the previously introduced MSVR sampling notation.

We attempt to reconstruct the signal f(x) as p(x), a sum of trigonometric polynomi-

als [51] with bandlimit M , over a domain of length L. The reconstruction is formulated

as

(4.10)p(x) =
ML
∑

k=−ML

ake
2πikx

L ,

where ak is the complex coefficient of the complex exponential at frequency k
L
. The vector

of ak variables, a, is the (2ML + 1)-dimensional vector which needs to be determined to

reconstruct the signal. The continuous signal reconstruction of Equation 4.10 allows us to

obtain values of p(x) at any desired location, not just where the sensors carry out sampling.

We determine a by minimizing a cost function that includes both the sample value error
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and sample location error between the samples and the reconstructed signal, weighted by

the inverse of the covariance matrix of all the sampling errors. The cost function is also

used to estimate the true measurement locations by estimating the sample location errors,

∆, for each sample. The general framework for the cost function is therefore,

(4.11)min
a,∆





































√

w1
1 (p(q

1
1)− y11)

...

√

wV
nV

(

p(qVnV
)− yVnV

)

√

w1
1 (x

1
1 − q11)

...

√

wV
nV

(

xV
nV
− qVnV

)





































T

C−1





































√

w1
1 (p(q

1
1)− y11)

...

√

wV
nV

(

p(qVnV
)− yVnV

)

√

w1
1 (x

1
1 − q11)

...

√

wV
nV

(

xV
nV
− qVnV

)





































,

where wv
j is a weighting value based on sampling density for each sample (to be discussed

in Section 4.1.2.5) and C is the covariance matrix which includes the covariance between

all the error terms. The matrix C can be expressed as block matrices,

(4.12)C =







Cyy Cyx

CT
yx Cxx






,

where Cyy is the covariance matrix of sample value errors, Cyx is the matrix of covariances

between sample value errors and sample location errors, and Cxx is the covariance matrix

of the sample location errors for the entire data set as given by the MSVR sampling models

in Section 3.3.

Empirically determining the complete covariance matrix is impractical and leads to a

complicated minimization problem. We therefore make a number of simplifying assump-

tions on the covariance matrix. These assumptions are based on the MSVR sampling model

for vehicles and reducing the cost function in Equation 4.11 to a least-squares model. First,

we assume that the sample value errors are all independent from each other. Therefore,

(4.13)Cyy = σ2
yIN×N ,
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where IN×N is an N ×N identity matrix.

We further assume that the errors between the sample values and sample locations are

uncorrelated. Therefore,
(4.14)Cyx = 0.

This assumption is not always valid. We demonstrate in Section 5.1.5.2 that the mea-

sured location values affect how errors are propagated in estimating road angle values.

However, without prior knowledge of the final function or how the final data was obtained

from the raw data, it is difficult to make any further assumptions on Cyx.

The covariance matrix Cxx expressing the covariance between the sampling location

errors is adapted from the different MSVR error models given in Section 3.3. The following

sections detail how the signal reconstruction algorithms are designed to handle these various

MSVR vehicle sampling models.

4.1.2.1 Algorithm 1 - Autocorrelated Source Error

Using the assumptions about the covariance matrix given in Equation 4.12, the general

cost function of Equation 4.11 is reduced to the following,

(4.15)min
a,∆

V
∑

v =1

nv
∑

j =1

wv
j |p(qvj )−yvj |2+σ2

y

V
∑

v=1















√
wv

1(x
v
1 − qv1)

...

√
wv

nv
(xv

nv
− qvnv

)















T

(Cv
xx)

−1















√
wv

1(x
v
1 − qv1)

...

√
wv

nv
(xv

nv
− qvnv

)















.

The inverse of the vehicle source error covariance matrix, (Cv
xx)

−1, is given by the MSVR

autocorrelated error model in Equation 3.20. By expanding the covariance matrix further,

the minimization target cost function becomes,

(4.16)

min
a,∆

V
∑

v =1

nv
∑

j =1

wv
j

∣

∣p(qvj )− yvj
∣

∣

2

+
V
∑

v =1

nv−1
∑

j =1

σ2
y

σ2
a

1

1−
(

ρvj,j+1

)2

(√

wv
j∆

v
j −

√

wv
j+1∆

v
j+1

)2

+
V
∑

v =1

σ2
y

σ2
a

wv
nv

(

∆v
nv

)2
.
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The first term of the cost function represented by Equation 4.16 represents the sample

value error. The second term represents the difference in sample location error between

consecutive measurements from each individual vehicle. Due to the autocorrelation error

model, the error between consecutive terms should be relatively close (expressed by the

exponential autocorrelation function). The third term minimizes the sample location error

of the final measurement from each vehicle. This acts as a reference for all the other

sample location errors from that vehicle. Without this term, the location error from all

the other samples may be close to equal in accordance with the autocorrelation model, but

far exceed the expected magnitude of the errors. The final term helps to regularize the

estimated sample location error.

The cost function represented by Equation 4.16 is minimized with respect to coefficient

vector a and sampling location offset vector∆. We use the Levenberg-Marquardt algorithm

(LMA) [56, 57] with damping and stopping conditions from [58] for this task. The LMA

iteratively minimizes S(β), the sum of squares of m functions, r =

[

r1 . . . rm

]T

of n

variables β =

[

β1 . . . βn

]T

, where

(4.17)S(β) =
m
∑

i=1

ri(β)
2.

The LMA update involves solving the following linear equation,

(4.18)
(

JTJ+ λdiag(JTJ)
)

(β(s) − β(s+1)) = JT r(β(s)),

where the superscript s denotes the iteration index and J is the Jacobian matrix for r(β).

The LMA is a standard method of solving nonlinear least-squares problems, and is an

adaptation of the Gauss-Newton algorithm with damping parameter λdiag(JTJ). For the

minimization of the cost function in Equation 4.16,

(4.19)β =

[

∆1
1 . . . ∆1

n1
. . . ∆V

1 . . . ∆V
nV

aT

]T
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is the (N + 2ML+ 1)× 1 vector of variables to be solved for, where

(4.20)N =
V
∑

v=1

nv.

The 2N -dimensional vector of cost functions is

(4.21)r =

[

r11
T

. . . rV1
T

r12
T

. . . rV2
T

r13 . . . rV3

]T

.

The vector rv1 is the nv × 1 vector of cost functions for the sample value error from source

v consisting of elements,

(4.22)rv1j =
√

wv
j

(

ML
∑

k=−ML

ake
2πik(xvj−∆v

j )
L − yvj

)

.

The vector rv2 is the (nv − 1)× 1 vector of cost functions for the difference in consecutive

location error terms for source v, where

(4.23)rv2j =

√

σ2
y

σ2
a(1− (ρvj,j+1)

2)

(√

wv
j∆

v
j −

√

wv
j+1∆

v
j+1

)

.

The scalar cost functions rv3 for the final location error term for source v are equal to

(4.24)rv3 =

√

σ2
y

σ2
a

wv
nv
∆v

nv
.

The Jacobian matrix J is a (2N)× (N +2ML+1) sized matrix composed of the following

block matrices,

(4.25)J =















J1 A

J2 0

J3 0















.

The matrix J1 is the N × N block diagonal Jacobian matrix for the sample value error

cost functions with respect to the ∆ location error variables such that

(4.26)J1 =





















J1
1 0 . . . 0

0 J2
1 . . . 0

...
...

. . .
...

0 0 . . . JV
1





















,
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where Jv
1 is a nv × nv diagonal Jacobian matrix for source v such that

(4.27)Jv
1 jj = −

√

wv
j

(

ML
∑

k=−ML

ak
2πik

L
e

2πik(xvj−∆v
j )

L

)

.

The Jacobian matrix J2 is a (N − V )×N block diagonal matrix such that,

(4.28)J2 =





















J1
2 0 . . . 0

0 J2
2 . . . 0

...
...

. . .
...

0 0 . . . JV
2





















,

where Jv
2 is an (nv − 1)× nv sized matrix with non-zero entries on only the main diagonal

and superdiagonal, given by

Jv
2 j,j =

√

σ2
yw

v
j

σ2
a(1− (ρvj,j+1)

2)
, (4.29)

Jv
2 j,j+1 = −

√

σ2
yw

v
j+1

σ2
a(1− (ρvj,j+1)

2)
. (4.30)

Finally, J3 is also a block diagonal matrix such that,

(4.31)J3 =





















J1
3 0 . . . 0

0 J2
3 . . . 0

...
...

. . .
...

0 0 . . . JV
3


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
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









,

where the block matrices Jv
3 are 1× nv sized matrices with all zero entries except for

(4.32)Jv
3 1,nv

=

√

σ2
y

σ2
a

wv
nv
.
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The matrix A below is the N × (2ML+ 1) Jacobian matrix for the sample value cost

functions with respect to the coefficient vectors a, composed of the following block matrices,

(4.33)A =















A1

...

AV















,

such that Av is the nv × (2ML+ 1) Jacobian matrix for source v composed of elements

(4.34)Av
jl =

√

wv
j e

2πi(l−ML)(xvj−∆v
j )

L .

The initial estimate for the sampling location offsets and coefficient variables, β(0), is

(4.35)β(0) =







0

a(0)






,

where a(0) is the closed-form solution vector to the signal reconstruction model in Sec-

tion 4.1.2.4 that is derived from ignoring the errors in variables.

4.1.2.2 Algorithm 2 - Correlated Source Error

For the Correlated Source Error signal reconstruction mode, the Cxx covariance matrix for

the cost function in Equation 4.12 is constructed using the MSVR correlated source error

sampling model in Section 3.3.2. Similar to the autocorrelated source error model, the

general cost function in Equation 4.11 is expanded to produce the form of Equation 4.15.

However for this error model, the matrix Cv
xx is given by the correlated source error model

in Equation 3.24. The covariance matrices allow the minimization of Equation 4.15 to be

reformulated as

(4.36)

min
a,∆

V
∑

v=1

nv
∑

j=1

[

wv
j

∣

∣p(qvj )− yvj
∣

∣

2
+ σ2

y(Av −Bv)w
v
j (∆

v
j )

2
]

+
V
∑

v=1



σ2
yBv

(

nv
∑

j=1

√

wv
j∆

v
j

)2


 .
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The first term of the cost function represents the sample value error. The second term

represents the sample value error. The third term in the cost function is a corrective term

that is related to the sum of the location errors from all the samples from each vehicle,

since due to the correlated error model, all sample location error terms from a vehicle are

expected to be similar.

The LMA iterative solution is used to minimize the cost function in Equation 4.36.

The vector β of variables used in the minimization is the same as that in Equation 4.19

for the autocorrelated error model. The (2N + V )-dimensional vector of cost functions is

composed as,

(4.37)r =

[

r11
T

. . . rV1
T

r12
T

. . . rV2
T

r13 . . . rV3

]T

.

The vector rv1 is the nv × 1 vector of cost functions for the sample value error from

source v, with elements given by Equation 4.22.

The nv × 1 sized rv2 vector for the second term of Equation 4.36 is defined as having

the following components,

(4.38)rv2j =
√

σ2
y(Av −Bv)wv

j ∆v
j .

The scalar cost functions rv3 for the third term of Eq. 4.36 are,

(4.39)rv3 =
√

σ2
yBv

nv
∑

j=1

√

wv
j ∆v

j .

Similar to the autocorrelated error model signal reconstruction, the required Jacobian

matrix from the LMA algorithm, J, is composed of the following block matrices,

(4.40)J =















J1 A

J2 0

J3 0















.

The matrices J1 and A are defined (identically to the Autocorrelated Source Error

algorithm) by Equations 4.26 and 4.33 respectively.
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The matrix J2 is constructed from V N ×N block diagonal matrices similar to Equa-

tion 4.28, however in the correlated source error model Jv
2 is a diagonal matrix with diagonal

elements given by,

(4.41)Jv
2 jj =

√

σ2
y(Av −Bv)wv

j .

The matrix J3 is a V ×N block diagonal matrix similar to Equation 4.31, however the

composition block matrices Jv
3 are of size 1× nv and composed of elements

(4.42)Jv
3 1j =

√

σ2
yBvwv

j .

4.1.2.3 Algorithm 3 - Fixed Source Error

To simplify the error model and reduce the dimensionality of the problem space, we use the

MSVR sampling assumptions outlined in Section 3.3.3 where the sample location errors

from all samples from a single sensor source are assumed to be equal, but the errors

are i.i.d. for the different sources. This assumption reduces the number of location error

variables to estimate from N to V , which can be computationally advantageous.

In this formulation, the covariance matrix C in Equation 4.12 is replaced by

(4.43)C =







Cyy Cyv

Cyv Cvv






,

where Cvv is given by Equation 3.31 from the MSVR model. We still assume that the

sample errors and location errors are independent, so similar to Equation 4.14, Cyv = 0.

By expanding the covariance matrix, we arrive at the following least-squares problem,

(4.44)min
a,∆

V
∑

v =1

nv
∑

j =1

wv
j

∣

∣p(qvj )− yvj
∣

∣

2
+

V
∑

v =1

[(

nv
∑

j=1

wv
j

)

σ2
y

σ2
v

(∆v)2
]

.

To apply the Levenberg-Marquardt algorithm, we define the (V + 2ML+ 1)× 1 vector of

variables as

(4.45)β =

[

∆1 . . . ∆V aT

]T

,
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and we define r as the following (N + V ) × 1 vector of cost functions in terms of the

(V + 2ML+ 1) β variables,

(4.46)r =

[

r11
T

. . . rV1
T

r12 . . . rV2

]T

.

In this formulation, rv1 is a nv×1 vector for the first term of Equation 4.44 with components,

(4.47)rv1j =
√

wv
j

(

ML
∑

k=−ML

ake
2πik(xvj−∆v)

L − yvj

)

.

The scalar cost functions rv2 for the second term of Equation 4.44 are defined as

(4.48)rv2 =

√

√

√

√

σ2
y

σ2
v

nv
∑

j=1

wv
j ∆v.

The Jacobian J is a (N + V ) × (V + 2ML + 1) matrix composed of the following block

matrices,

(4.49)J =







J1 A

J2 0






,

where J1 is the N × V Jacobian matrix for the r1 cost functions with respect to the ∆

variables, composed of block matrices similar to Equation 4.26, however where Jv
1 are nv×1

Jacobian matrices for each source composed of elements,

(4.50)Jv
1 j1 = −

√

wv
j

(

ML
∑

k=−ML

ak
2πik

L
e

2πik(xvj−∆v)
L

)

.

J2 is a V × V diagonal matrix where,

(4.51)J2vv =

√

√

√

√

σ2
y

σ2
v

nv
∑

j=1

wv
j .

The Jacobian matrix A is defined by Equation 4.33.

Although this significantly reduces the problem dimension compared to the previous

two models, this remains an iterative solution. By ignoring the sampling location error, we

can derive a closed-form solution (and initial estimate for the iterative solutions) for the

frequency coefficient vector a.
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4.1.2.4 Algorithm 4 - Sample Value Error Only

The sample location error is neglected in this signal reconstruction model. This assumption

ignores a major component of the reconstruction, however it allows us to derive a closed

form solution that can be used as an initial estimate for the iterative solutions of the more

complete models. With no sample location error,

(4.52)Cxx = 0.

This eliminates the requirement of solving for location offsets, ∆, in the optimization, and

simplifies the cost function to a least-squares summation over just the sample value error

terms,

(4.53)min
a

V
∑

v =1

nv
∑

j =1

wv
j

∣

∣p(xv
j )− yvj

∣

∣

2
.

This is a version of the cost functions in [51], generalized to multiple sources. We follow a

similar derivation to their closed form solution. The least-squares problem of Equation 4.53

is a standard quadratic minimization and can be shown to lead to the following closed-form

solution. First the cost function is expanded as,

min
a

V
∑

v=1

nv
∑

j=1

[(

ML
∑

k=−ML

ake
2πikxvj

L − yvj

)(

ML
∑

k=−ML

a∗ke
−2πikxvj

L − yvj

)

wv
j

]

(4.54)

=min
a

V
∑

v=1

nv
∑

j=1

wv
j

[

ML
∑

k=−ML

ML
∑

l=−ML

aka
∗
l e

2πi(k−l)xvj
L −

yvj

(

ML
∑

k=−ML

(

ake
2πikxvj

L + a∗ke
−2πikxvj

L

)

)

+
(

yvj
)2

]

.

(4.55)

Differentiating with respect to ak, equating to zero, and taking the complex conjugate

results in the following equations,

V
∑

v=1

nv
∑

j=1

wv
j









ML
∑

l=−ML

a∗l e
2πi(k−l)xvj

L − yvj e
2πikxvj

L









= 0, (4.56)
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V
∑

v=1

nv
∑

j=1

wv
j y

v
j e

2πikxvj
L =

V
∑

v=1

nv
∑

j=1

wv
j

ML
∑

l=−ML

a∗l e
2πi(k−l)xvj

L , (4.57)

V
∑

v=1

nv
∑

j=1

wv
j y

v
j e

−2πikxvj
L =

ML
∑

l=−ML

al

V
∑

v=1

nv
∑

j=1

wv
j e

2πi(l−k)xvj
L . (4.58)

For the terms on the left side of Equation 4.58, define a (2ML+ 1) × 1 vector, b, with

components,

(4.59)bk =
V
∑

v=1

nv
∑

j=1

wv
j y

v
j e

−2πikxvj
L ,

and define a (2ML+ 1) × (2ML+ 1) Toeplitz matrix, T, for the terms on the right side

of Equation 4.58, with the following components,

(4.60)Tlk =
V
∑

v=1

nv
∑

j=1

wv
j e

2πi(l−k)xvj
L .

Then the solution for the signal reconstruction coefficient vector a satisfies the linear equa-

tion,

bk =
ML
∑

l=−ML

alTlk, (4.61)

b = Tâ. (4.62)

Toeplitz matrix system solutions [59] are available as efficient methods to solve Equa-

tion 4.62 for â. The solution to Equation 4.62 is used as the initial estimate for a(0) in

Equation 4.35 for the previous signal reconstruction algorithms.

4.1.2.5 Sample Weighting

The weight wv
j corresponding to the sample at xv

j for the reconstruction algorithms is

defined as the size of the Voronoi region [60, 61] over all N aggregated samples in the data

set. Let xk, k ∈ {1, . . . , N}, correspond to the sample xv
j in the sorted data set. For a
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one-dimensional domain, the Voronoi weight, wv
j , is therefore,

(4.63)wv
j = wk =

xk+1 − xk−1

2
.

The weights compensate for the local variations in sampling density caused by MSVR

sampling conditions by assigning higher weights to samples in lower density regions [52].

In lower density regions, there are fewer samples in the region that provide information

for the reconstruction. Therefore it is important that the reconstruction is closer to those

respective samples than for those in higher density regions where the noise characteristics

are more clearly manifested, and matching two close noisy samples exactly can produce

poor results.

For reconstruction Algorithms 1-3 that require an iterative solution, we interrupt the

algorithm between each iteration to recalculate the sample weights based on the newly

estimated q̂vj locations. This is done under the assumption that the estimated locations

are closer to the ground-truth than the original xv
j measurements, so the weighting scheme

should reflect the ground-truth locations as accurately as possible. We demonstrate the

importance of reweighting the samples between LMA iterations by reconstructing the fol-

lowing example signal,

(4.64)f(x) = sin(2π(0.132695)x+ 2.1) + 0.3 sin(2π(0.21)x+ 0.5)
+ 1.1 sin(2π(0.325869)x+ 0.3) + 0.4 sin(2π(1.612)x+ 0.1).

The sampling noise and reconstruction parameters are given in Table 4.2. We use

Algorithm 3 for the signal reconstructions by both reweighting samples between iterations

and by using only the originally calculated weights based on the xv
j locations. The resulting

reconstructions are shown in Figure 4.2. This figure demonstrates that the iteratively

reweighted scheme produces the better signal reconstruction. This is supported by the

RMS errors for the two reconstructions, which are 0.19 for the reweighting scheme and

0.55 for the non-reweighting scheme, which is a relatively large difference given that the

RMS signal value is 1.14.
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Table 4.2: Reconstruction and sampling parameters for the sample reweighting experiment
with results in Figure 4.2

Parameter Value

M 40
L

σv 0.7

σx 0.1

σy 0.05

V 100

N 2015

Source sample spacing Drawn from Rayleigh dist., mean 1
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Samples

Ground Truth

Alg 3 − Reweight

Alg 3 − No Reweight

Figure 4.2: Example signal reconstructions, using the conditions in Table 4.2, for both
recalculating the signal reconstruction sample weights and not recaulculating the sample
weights between LMA iterations

4.1.2.6 Reconstruction Analysis

We first compare the MSVR signal reconstruction algorithms on an example road bank

angle signal shown in Figure 4.3. The signal will be further explained in Section 5.1.4

with sampling details in Section 5.1.3. However at this stage it is sufficient to assume that

samples are drawn from the signal by vehicles traveling at an average of 50 km/h, with

error statistics to be specified.
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Figure 4.3: Ground-truth simulated road bank angle signal for reconstruction comparisons

One example set of signal reconstructions for V = 50, M = 30
L
, σy = 0.005◦, σv = 20

m, and σx = 40 m is shown in Figure 4.4. The RMSE values along with those for recon-

structions from other MSVR sampling conditions are given in Table 4.3. The effectiveness

of each signal reconstruction algorithm depends on the MSVR sampling conditions. For

the reconstruction in Figure 4.4, σ2
x ≫ σ2

v . Therefore the reconstruction from Algorithm 2

is able to best account for the noise conditions as the independent error for each sample

location dominates the source location bias. However, the reconstruction from Algorithm

3 still outperforms Algorithm 4 as the location from each source is still partially corrected.

The gains that the reconstruction from Algorithm 2 have over Algorithm 3 are de-

creased as the sampling location source bias error becomes a more dominating factor over

the independent location error component. In fact for σ2
x ≪ σ2

v , Algorithm 3 outperforms

Algorithm 2 for the given conditions. Since the number of variables to be estimated in Algo-

rithm 2 is significantly greater than for Algorithm 3, Algorithm 2 can be prone to overfitting

the sample noise when the independent error component is not dominant. However, it still

outperforms Algorithm 4, which does not correct for location error. When sample value

error is the dominant error source, as given by the final example in Table 4.3, correcting

for the location error does not offer significant benefits. Considering that Algorithm 2 has
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Figure 4.4: Comparison of bank angle signal using three MSVR signal reconstructions for
M = 30

L
, V = 50, σy = 0.005, σv = 20, σx = 40

the longest runtime and uses the most memory of these three algorithms (more variables to

estimate), the relative sizes of the different error components is an important consideration

to determine which algorithm offers the best and most efficient reconstruction.

To further demonstrate the importance of the MSVR error models, and to compare

against existing work [62], signal reconstructions are done on the following six synthesized

functions, similar to those examples used in [55]. The functions are chosen for their varying

smoothness properties, all defined on the domain x ∈ [0, 1], and note that Pµ,σ(x) =

1
σ
√
2π

exp (−(x− µ)2/(2σ2)):

a) Gaussian - fa(x) = P0.5,0.15(x)

b) Bimodal - fb(x) = 0.5P0.4,0.12(x) + 0.5P0.7,0.08(x)

c) Strata - fc(x) = 0.5P0.2,0.06(x) + 0.5P0.7,0.08(x)
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Table 4.3: RMSE values for reconstructing the road incline angle signal for the CarSimr

data, M = 30
L
, V = 50, N = 15109

Conditions RMSE (deg)

σy (◦) σv (m) σx (m) Alg. 2 Alg. 3 Alg. 4

0.005 20 40 0.627 1.117 1.251

0.005 30 30 0.678 0.841 1.206

0.005 40 20 0.882 0.656 1.392

0.2 5 5 0.293 0.294 0.295

d) Full Period Sine - fd(x) = 0.3 sin(2πx− 0.654) + 0.7 sin(4πx+ 2.1)

e) Partial Period Sine - fe(x) = 0.3 sin(2π(0.912)x−0.654)+0.7 sin(2π(1.513)x−0.294)+

sin(2π(1.765)x+ 2.1)

f) Sine and Polynomial - ff (x) = 0.5 sin(6πx− 0.215) + 5(x− 0.5)2 − 1

For each function, data was simulated to be sampled from 20 mobile sensors with a

spacing between samples from each sensor drawn from a Rayleigh distribution with mean

0.05. The time interval between measurements was distributed as N (1, 0.05). Under

these conditions, the aggregated sample distribution approaches a uniform distribution as

the number of sensors increases. The sample value error was drawn i.i.d. from a normal

distribution with standard deviation σy = 0.1. The location error was drawn from an

exponential autocorrelation function independently for each sensor with time constant

T = 50 and standard deviation σa = 0.1. These errors are relatively large given the

domain length and the period of the signals.

We reconstruct these signals using Algorithms 1 and 2 from our MSVR reconstructions,

along with the Kernel Regression (KR) algorithm outlined in Section 4.1.1.3 [54], and the

Nonparametric Curve Estimation (NPE) algorithm outlined in the same section [55]. The

median normalized reconstruction error, ‖f(x)−f̂(x)‖2
‖f(x)‖2 , for the different reconstructions for

10000 randomized iterations of these reconstructions is given in Table 4.4. An example of

one such set of reconstructions is shown in Figure 4.5.
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Table 4.4: Normalized reconstruction errors, ‖f(x)−f̂(x)‖2
‖f(x)‖2

KR NCE Alg. 2 Alg. 1

fa 0.2116 0.1948 0.0868 0.0843

fb 0.2936 0.2837 0.1918 0.1476

fc 0.4299 0.4752 0.5070 0.4280

fd 0.8443 0.5866 0.2938 0.2882

fe 0.6612 0.5480 0.5251 0.3563

ff 0.5861 0.3930 0.4146 0.2870

The reconstructions using Algorithm 1 have the lowest error for each of the recon-

structions. This is because the model uses the MSVR error model information in the

reconstruction when trying to determine the true location of the sample values. The exist-

ing algorithms do not incorporate such information. Algorithm 1 also estimates the true

locations of each sample and reduces the median RMS value of the sample location error

by between 7.4%-44% for the given signals and associated large error values. Algorithm

2 generally creates the second best reconstruction among the given algorithms since it

still corrects for the location error. However, the sample location error covariance matrix

for Algorithm 2 only approximates that of the exponential autocorrelation function and

overcompensates with too small correlations for closely timed data samples and too large

correlations for more distantly timed data samples.

Our MSVR signal reconstruction algorithms use the signal information to estimate the

true location of each sample. However for GPS applications, map information (i.e., loca-

tions of roads) can be used to directly estimate the true measurement locations [63]. Such

map matching algorithms often perform best when the location error is independent, or on

roads with known landmark locations (e.g., stop signs) or variations in road topography

(i.e., varying curvature) to provide reference locations. However, the use of either map

matching algorithms or our signal based algorithm to estimate the true measurement lo-

cations does not exclude using the other algorithm, and it is likely that estimations from
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Figure 4.5: Comparison of our Algorithm 1 and Algorithm 2 against existing signal recon-
struction algorithms for six example signals
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one algorithm could be used to enhance the other.

4.1.3 Joint Reconstructions

Measurements from different sensors in the vehicle are all spatially indexed by the GPS

measurements at the respective sampling instances. Data from two different sensors made

in the same time interval (which may be relatively long given the low sampling frequency of

standard GPS receivers) are therefore indexed to the same location. The signal reconstruc-

tions from the previous section (for all but Algorithm 4) estimate the true measurement

locations, qvj , jointly with the reconstruction parameters, a, for each signal reconstruction.

Therefore when reconstructing signals for G different events using data from common vehi-

cles, the G different signal reconstructions each produce independent estimates of the true

measurement locations, even if the data samples are indexed by the same GPS measure-

ments. This can result in incompatible location estimations between the two reconstruc-

tions.

Since both the true and measured GPS locations are identical for each of the signals,

it would be beneficial to jointly reconstruct the two signals, using the source and location

information from both signals to create only a single estimate for the true measurement

locations. This offers two benefits in the signal reconstructions:

1. The number of variables to estimate is reduced since the true location measurements

are only being estimated once for all signals together instead of for each signal inde-

pendently.

2. The information from one signal reconstruction can be used for the benefit of others.

The LMA iterations involve shifting the sampled data locations to minimize both

the location and sample value error in the signal reconstruction. This relies on

examining correlations between the distances to the signal for the samples from each

vehicle according to the MSVR models. With sufficient location noise, the original
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Table 4.5: Notation for joint signal reconstructions

G Number of signals being jointly reconstructed

Ng Total number of aggregated samples for signal g.

nvg Total number of samples from source v for signal g

xv
gj

Measured location of data sample j from source v for signal g

qvg j True location of data sample j from source v for signal g

yvg j Measured sensor value for measured location xv
gj

pg(x) Reconstructed signal g

wv
g j

Weighting value for reconstruction algorithm for xv
gj

σ2
yg

Variance for sample value error for signal g

Mg Signal reconstruction bandlimit for signal g

ag Exponential frequency coefficients for reconstructing signal g

signal reconstruction estimate for the first LMA iteration generally has a flatter slope

than the ground truth. Therefore reconstructions from early LMA iterations may

not have sufficiently well estimated the higher frequency coefficients for the location

error correlations to be truly realized. However by combining the information from

multiple signals, the correlations may become more obvious and signals with poor

original estimates can be more accurately reconstructed.

In the following subsections we demonstrate how to jointly optimize a set of G signals.

Section 4.1.3.1 details the algorithmic steps for the Autocorrelated error model and Sec-

tion 4.1.3.2 details the algorithm for the Correlated Source Error model. Section 4.1.3.3

explains how to perform the joint reconstruction when only the vehicle error bias is con-

sidered. This follows into Section 4.1.3.4, which explains how the joint reconstruction

for the fixed error model can be generalized to an asynchronous sampling model where

different data sensors in the vehicle index their samples at different locations (due to

varying sampling rates and asynchronous sensor operation). The modified notation for

these signal reconstructions is shown in Table 4.5. Any omission of the g subscript, where

g ∈ {1, . . . , G} implies that the respective variable is identical for each of the G signals.
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4.1.3.1 Autocorrelated Source Error

The cost function for the joint optimization is created using the errors weighted by the

inverse of the covariance matrix for the sample and location error for all the signals similar

to Equation 4.11. The simplified expansion is similar to the summation of G versions of

the cost functions of the form of Equation 4.16, with slight modifications to account for the

different possible sample value error variances and frequency coefficient vectors ag. The

components for the cost functions relating to the location error, however, are identical for

all the signals since the samples are the same for all signals. This summation results in

the following least-squares cost function for jointly reconstructing multiple signals,

(4.65)

min
a1,...,aG,∆

G
∑

g =1

V
∑

v =1

nv
∑

j =1

[

wv
j

σ2
a

σ2
yg

∣

∣

∣pg(q
v
j )− yvg j

∣

∣

∣

2
]

+G

V
∑

v =1

nv−1
∑

j =1

1

1− (ρvj,j+1)
2

(√

wv
j∆

v
j −

√

wv
j+1∆

v
j+1

)2

+G

V
∑

v =1

wv
nv
(∆v

nv
)2.

This formulation reduces the system from a total of GN +
∑G

g=1(2MgL + 1) variables for

if the signals were reconstructed independently, to N +
∑G

g=1(2MgL+ 1) variables for the

joint reconstruction, given by

(4.66)β =

[

∆1
1 . . . ∆1

n1
. . . ∆V

1 . . . ∆V
nV

aT
1 . . . aT

G

]T

.

The derivation of the cost functions and Jacobian matrices for the LMA algorithm for

minimizing the cost function in Equation 4.65 to jointly reconstruct the signals is provided

in Appendix A.1.

4.1.3.2 Correlated Source Error

Similar to the autocorrelated source error model, we can sum over G versions of the cost

functions of the form of Equation 4.36 to arrive at the following minimization cost function
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for jointly reconstructing multiple signals,

(4.67)

min
a1,...,aG,∆

G
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g =1

V
∑
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nv
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[

wv
j

σ2
yg

∣

∣

∣pg(q
v
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∣

∣

∣

2
]

+G
V
∑

v =1

nv
∑

j =1

[

(Av −Bv)w
v
j (∆

v
j )

2
]

+G
V
∑

v =1



Bv

(

nv
∑

j=1

√

wv
j∆

v
j

)2


 .

If the optimization was done independently for each of the G signals it would require solving

for GN +
∑G

g=1(2MgL + 1) variables in total (N location error variables and (2MgL + 1)

frequency coefficient variables for each of the G signals). However, since the N location

error variables are identical for each of the signals, with the joint optimization we reduce

the variable space to N +
∑G

g=1(2MgL+1) dimensions. The set of variables to solve for in

the LMA algorithm is the same as in Equation 4.66.

The remainder of the derivation of the cost functions and Jacobian matrices to minimize

the cost function in Equation 4.67 to determine the signal reconstructions is given in

Appendix A.2.

4.1.3.3 Fixed Source Error

Joint optimizations are similarly extended to the Fixed Source Error model to improve

the signal reconstructions. The cost function of Equation 4.44 for the individual signals is

extended to G signals as

(4.68)min
a1,...,aG,∆

G
∑

g =1

V
∑

v =1

nv
∑

j =1

[

σ2
v

σ2
yg

wv
j

∣

∣

∣
pg(q

v
j )− yvg j

∣

∣

∣

2
]

+G
V
∑

v =1

[(

nv
∑

j=1

wv
j

)

(∆V )2

]

.

This optimization setup reduces the number of variables to be solved for from GV +

∑G

g=1(2MgL + 1) for G separate signals to V +
∑G

g=1(2MgL + 1) variables for the joint

optimization. The vector of variables to solve for is

(4.69)β =

[

∆1 . . . ∆V aT
1 . . . aT

G

]T

.
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The remainder of the derivation of the cost functions and Jacobian matrices to minimize

the cost function in Equation 4.68 to determine the signal reconstructions is given in

Appendix A.3.

4.1.3.4 Asynchronous Data Collection

The previous sections assumed that the data used for each of the different signals was

sampled at the same locations, i.e., the sampling set (xv
j locations) are identical for each

of the signals. However, due to the asynchronous and varying sampling rate nature of

embedded vehicle sensors, this assumption is not necessarily valid. However, as long as

the samples for the different signals are obtained from an intersecting set of vehicles, the

signal reconstructions could still benefit from the joint framework since the errors between

samples from the same vehicle would still be correlated. This section details the joint signal

reconstruction framework for the fixed source error assumption under asynchronous data

collection environments.

Let there be nvg data samples collected from the vth vehicle for the gth signal. Let Ng

denote the total number of samples aggregated to reconstruct signal g, where

(4.70)Ng =
V
∑

v=1

nvg.

Let xv
gj

denote the jth sample from the vth vehicle for the gth signal, and let wv
g j

denote

that sample’s respective weight for the signal reconstruction. The cost function for the

synchronous joint reconstructions in Equation 4.68 is therefore modified to

(4.71)min
a1,...,aG,∆

G
∑

g =1

V
∑

v =1

nvg
∑

j =1

σ2
v

σ2
yg

wv
g j

∣

∣

∣
pg(q

v
g j
)− yvg j

∣

∣

∣

2

+
V
∑

v =1

[(

G
∑

g=1

nv
∑

j=1

wv
g j

)

(∆V )2

]

for the asynchronous case.

The joint minimization follows the LMA framework and is very similar to what was

outlined in Section 4.1.3.3. The main differences are the sizes of the vectors and matrices,

and replacing the multiplicative factor G in the final two terms of the cost function with
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summations over all the signals. The vector of variables β is the same as in the fixed

source error model in Section 4.1.3.3 since the location error for all samples from a vehicle

are assumed to be equal, so changing which samples from a vehicle are collected for each

signal does not alter this assumption.

The remainder of the derivation of the cost functions and Jacobian matrices to minimize

the cost function in Equation 4.71 to determine the signal reconstructions is given in

Appendix A.4.

4.1.3.5 Joint Reconstruction Analysis

The joint reconstructions are compared against individual reconstructions for four example

signals. The signals are sums of sinusoids of varying amplitudes, frequencies, and phase

shifts, to create the following four signals with varying degrees of smoothness:

y1 = sin(2π(0.132695)x+ 2.1) + 0.3 sin(2π(0.21)x+ 0.5)+

1.1 sin(2π(0.325869)x+ 0.3) + 0.4 sin(2π(1.612)x+ 0.1),

(4.72)

y2 = 1.1 sin(2π(0.232695)x− 1.187) + 0.4 sin(2π(0.31)x− 0.5)+

1.3 sin(2π(0.825869)x+ 0.83) + 0.35 sin(2π(1.312)x+ 0.7547),

(4.73)

y3 = 1.4 sin(2π(0.17856)x− 4.874) + 0.9 sin(2π(0.61)x+ 0.9547)−

0.8 sin(2π(1.03658)x+ 2.5478) + 0.25 sin(2π(1.723)x− 1.8547),

(4.74)

y4 = sin(2π(0.152695)x+ 1.1) + 0.25 sin(2π(0.19)x+ 0.5)+

1.1 sin(2π(0.295869)x− 0.31) + 0.02(x− 7.1)2.

(4.75)

The signals were considered over the domain x ∈ [0, 20] and a Tukey window was applied

to the first and last 10% of each of the four signals.

Reconstructions were performed for both the individual and joint versions of recon-

struction Algorithms 2 and 3, along with the reconstruction from Algorithm 4 that does
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not account for the errors in variables. The reconstructions are performed for two example

noise conditions, Joint Example A and B, as given by the sampling parameters in Table 4.6.

The resulting reconstructed signals for Joint Example A are shown in Figure 4.6 with

the associated RMSE values given in Table 4.7. For all of the signals the joint reconstruction

for Algorithm 3 improved on the individual Algorithm 3 reconstructions and produced the

lowest error. The improvements on Algorithm 2 when going to the joint reconstruction

were not as substantial, however this is generally due to the sampling noise conditions,

where for this example the correlated vehicle error component dominated the independent

term. The location errors are larger than the periods of some of these signals, which is why

the individual reconstructions sometimes have difficulty reconstructing the signal. However

the joint reconstructions are able to use information from other signals to help with the

reconstructions for all signals. Note that the reconstruction algorithm still works even with

different bandlimit parameters for each of the signals.

An example of the joint reconstruction performing considerably better for Algorithm 2

occurs for the sampling conditions in Example B in Table 4.6 where the independent noise

term becomes more dominant. Reconstructions of the example signals for these parameters

is shown in Figure 4.7 with RMSE results presented in Table 4.8. Both the independent

and joint versions of Algorithms 2 and 3 outperform Algorithm 4 due to the errors in

variables corrections. The joint version of Algorithm 2 performs best as it best accounts

for the error model in the optimization.

The joint reconstructions are not guaranteed to improve the results over the indepen-

dent reconstructions for all scenarios. If the sampling noise, particularly with respect to

the location error, is significantly larger than even the dynamics of the lowest frequency

signal, then both the independent and joint reconstructions can overfit to the data for

each of the signals. Additionally, if due to the sampling conditions, one of the considered

signals has a significantly better reconstruction from the independent scenarios than the
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Table 4.6: Reconstruction and sampling parameters for the joint reconstruction example
comparisons

Parameter
Value

Joint Example A Joint Example B

M1,M2,M3,M4
36
L
, 30
L
, 38
L
, 9
L

σv 0.7 0.2

σx 0.2 0.4

σy1, σy2, σy3, σy4 0.005, 0.01, 0.015, 0.02 0.05, 0.1, 0.15, 0.2

V 395

Vehicle sample spacing Rayleigh dist., mean 2

Table 4.7: Root mean-square-error (RMSE) results for joint reconstructions of four example
signals for Joint Example A

RMSE

Alg 2 Alg 2-J Alg 3 Alg 3-J Alg 4

Signal 1 1.00 0.60 0.33 0.24 0.62

Signal 2 0.95 0.89 0.66 0.41 0.99

Signal 3 0.98 0.86 0.70 0.43 0.93

Signal 4 0.23 0.41 0.08 0.12 0.48

other signals in the joint reconstruction, then it is possible that the reconstruction for

that signal becomes slightly worse for the joint reconstruction as the sampling errors from

the other reconstructions dictate the direction of improvement of the joint cost function.

Although the final joint reconstructions are likely to be improved in the aggregate across

all the signals, it is possible that a signal with an already good fit does not exhibit any

improvement.

4.1.4 Parameter Optimization

Section 4.1.4.1 describes an algorithm to select an appropriate bandlimit given the sam-

pling conditions and Section 4.1.4.2 details how the signal reconstruction variance can be

predicted as a function of the number of aggregated samples. This algorithm is used to

estimate the number of samples required to meet a specified variance.
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Figure 4.6: Comparison of joint and individual reconstructions for four example signals
with sampling and reconstruction conditions from Joint Example A in Table 4.6
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Figure 4.7: Comparison of joint and individual reconstructions for four example signals
with sampling and reconstruction conditions from Joint Example B in Table 4.6
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Table 4.8: Root mean-square-error (RMSE) results for joint reconstructions of four example
signals for Joint Example B

RMSE

Alg 2 Alg 2-J Alg 3 Alg 3-J Alg 4

Signal 1 0.34 0.20 0.38 0.38 0.41

Signal 2 0.83 0.33 0.78 0.85 0.87

Signal 3 0.80 0.34 0.75 0.76 0.81

Signal 4 0.40 0.14 0.22 0.24 0.26

4.1.4.1 Bandlimit Selection

For the presented signal reconstruction algorithms, the choice of bandlimit, M , and number

of sampling sources, V , or total aggregated samples, N , affect the accuracy and viability of

the reconstruction. The bandlimit is inversely proportional to the finest signal components

that can be reconstructed. If the original signal has spatial frequency components higher

than the chosen bandlimit, there will be components of the signal that cannot be recon-

structed regardless of the amount of sample noise or number of samples. This results in a

baseline bound for how accurately the signal can be reconstructed for a given bandlimit.

However using an extremely high bandlimit to try and reconstruct the signal perfectly has

its own limitations. One limitation is that a bandlimit higher than the maximum frequency

of the signal could overfit the reconstruction to noise in the data. Secondly, for higher ban-

dlimits, higher sampling density requirements necessitate that more samples are required

before the reconstruction becomes viable.

An example of such behavior is shown in Figure 4.8a, which displays the RMSE of

the reconstructions of an incline angle signal from the simulated data as a function of the

number of data samples. The reconstructions are shown for bandlimits M =
{

10
L
, 40
L

}

and

sampling value noise σ2
y = {0, 0.2, 0.8}. As shown in the figure, reconstructions have a

baseline error determined by the bandlimit. The baseline RMSE is lower for the higher

bandlimit since it captures more frequencies of the original signal. However, before the
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Figure 4.8: (a) RMSE, and (b) Variance of the RMSE, of signal reconstruction as a function
of the number of samples

sampling density is sufficient for the higher bandlimit reconstruction to be viable and begin

to approach the baseline, the higher bandlimit reconstruction is worse than for the lower

bandlimit reconstruction.

Reconstructions using noisy data approach the baseline as the number of samples in-

creases. However, there is a risk of overfitting noisy data with a higher bandlimit. The

higher frequency components in the reconstruction allow the signal to fluctuate between

noisy values, and more samples are required to accurately reconstruct the signal. This is

why the RMSE is greater for the higher bandlimit reconstruction for low N .

Due to these indicated behaviors, it is important to determine an appropriate bandlimit

M for the signal reconstruction. Using prior domain knowledge to determine the bandlimit

is ideal, however such information is not always available and an appropriate bandlimit

instead must be estimated. For a general nonuniform sampling problem with only sample
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value noise, the work in [64] increases the bandlimit until a stopping criterion based on a

function of the error is met. We adapt this heuristic to the MSVR sampled data with the

sample location error models described in Chapter 3.

Let C(M) represent the result of the cost function used for deriving the respective

signal reconstruction (Equations 4.16, 4.36, 4.44, and 4.53) as a function of the bandlimit,

excluding the Voronoi weights for a segregated set of validation data. The bandlimit is

increased until the value of C(M) increases greater than a threshold number of times in a

given window of tested bandlimits. This heuristic tests for when increasing the bandlimit

no longer provides significant benefits and potentially begins to overfit the data. Given a

set of noisy data, as M continues to increase, the reconstruction error will eventually begin

to increase due to the overfitting. This method does not necessarily find the reconstruction

with the minimum reconstruction error, however it finds a bandlimit where further increases

are not necessarily substantially beneficial. This acts as a regularization mechanism for

the bandlimit given the noise in the sampled data.

Consider three example reconstructions using the fixed source error model of Algorithm

3 of the bank angle signal in Figure 4.3 from 2500 samples using the following three noise

conditions:

• σv = 5 m, σx = 0.5 m, σy = 0.01◦

• σv = 50 m, σx = 10 m, σy = 0.3◦

• σv = 40 m, σx = 20 m, σy = 0.8◦

The validation data cost function and resulting reconstructed signal RMSE for the three

different conditions as a function of the bandlimit are shown in Figure 4.9. As shown in this

figure, both the cost function and the RMSE decrease initially as the increasing bandlimit

better reconstructs the original signal, then begins to increase as the higher bandlimit

overfits the sampled data. The bandlimit where the error or validation cost function begins

to increase depends on the noise parameters. For the given reconstructions, the selected
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Table 4.9: Selected bandlimits and resulting RMSE values for reconstructions as compared
to the optimal

Sampling Noise Selected Recon. Min. RMSE Min.

Conditions Bandlimit
(

1
L

)

RMSE (◦) Bandlimit
(

1
L

)

RMSE (◦)

σv=5 m, σx=0.5 m, σy=0.01◦ 72 0.021 82 0.017

σv=50 m, σx=10 m, σy=0.3◦ 31 0.217 45 0.202

σv=40 m, σx=20 m, σy=0.8◦ 37 0.469 40 0.428

bandlimits and resulting reconstruction RMSE compared to the minimum from testing all

bandlimits are given in Table 4.9. For each of the reconstructions, the selected bandlimit

was slightly less than the optimal, due to the regularization, however the reconstruction

RMSE was very close to the optimal value. This performs relatively well given that the

optimal bandlimit, RMSE values, and ground-truth signal are unknown in practice.

For the first listed sampling conditions, the reconstructions are shown in Figure 4.10 for

the ideal bandlimit compared to reconstructions from scenarios with either too high or too

low bandlimits. As expected, for the too low bandlimit there are components of the signal

at a higher frequency than the bandlimit that cannot be reconstructed, resulting in a poor

reconstruction. Also the too high bandlimit overfits to the sampling noise with too high

magnitudes for the high frequency signal components. How much these reconstructions

deviate from the ideal depends on the ground-truth signal and sampling conditions, however

the presented heuristic for estimating an appropriate bandlimit is generally applicable.

4.1.4.2 Number of Samples

Given a selection of N random samples, the variance of the reconstruction values, and

therefore also of the RMSE, decreases as N increases, as shown in Figure 4.8b. Each

incrementally added sample stabilizes the reconstruction, however there are diminishing

benefits for each additional sample.

Quantifying the variance of the reconstructed signal is critical to examining the validity
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Figure 4.9: (a) Cost function of validation data C(M), and (b) Resulting signal recon-
struction RMSE for reconstructing the bank angle signal with different noise conditions
for varied bandlimits

and stability of the reconstruction. By estimating the variance of the reconstruction as

a function of the variance of the input sample error, we can quantify the stability of the

reconstruction and predict the number of samples required to reach a desired variance.

When analyzing how the error propagates from the input samples to the reconstruction,

it is important to consider both the real and imaginary components of the reconstruction
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algorithm. The noise in the input data affects not just the magnitude, but also the phase of

the frequency coefficients, a. The following details a method to analyze error propagation

through a system of complex variables.

Denote an example complex number, x1, as the vector x1 =

[

x11 x21

]T

, where x1 =

x11 + ix21 [65]. This formulation allows us to represent N complex variables using 2N

real variables. Therefore, given a function f : Cm → C
n, the function in this notation is

represented as,

(4.76)Y =


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=f(X)=f(x1,x2, . . . ,xm)=f(x11, x21, x12, x22, . . . , x1m, x2m).
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The function is composed of real and imaginary components such that,

(4.77)Y =


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We construct the complex (2n× 2m) Jacobian matrix, J(Y) of the output as follows,

(4.78)J(Y) =
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The second-order statistics of X are represented by the 2m × 2m covariance matrix,

V(X),

(4.79)V(X) =
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where v(xij, xkl) is the covariance between xij and xkl.

By assuming a first-order Taylor series expansion, we can propagate the error to deter-

mine the covariance matrix for Y, V(Y), by,

(4.80)V(Y) = J(Y)V(X)JT (Y).

We can now apply this formulation to determine the variance of the reconstructed signal

p(x). This variance is calculated in terms of the variance of the average square of the signal
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value, 1
L

∫ L

0
|p(x)|2 dx. This is equivalent to the average energy of the signal, Ep, which by

Parseval’s identity,

(4.81)Ep =
1

L

∫ L

0

|p(x)|2 dx = a∗a.

Therefore we can determine the signal variance by calculating the variance of the recon-

struction parameters a and therefore also the average signal energy. We first require the

covariance matrix Σ for the input sensor measurement errors. The covariance matrix Σ is

determined as,
(4.82)Σ = MCyyM

T ,

where M is a 2N × N matrix to rearrange the covariance matrix Cyy into that required

for the complex form, where

(4.83)Mlk =



















1, if l = 2k − 1

0, otherwise

.

We assume the input locations and sample values are purely real and therefore only have

error in their real components. The covariance for the determined frequency coefficients

and the average energy of the signal are given respectively by,

V(a) = JaΣJT
a , (4.84)

V(Ep) = JEΣJT
E. (4.85)

The derivations of the Jacobian matrices Ja and JE for the nonuniform sampling algorithm

are provided in Appendix B.

For reconstructions by Algorithm 4, the covariance matrix Cyy should be slightly mod-

ified to adapt to the sample location error. The sample value variance σ2
y should be

reapproximated as the variance of the sample error to the reconstructed signal, assuming

that all error manifests itself as sample value error. We demonstrate the validity of this
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Figure 4.11: Comparison of the distribution of z-scores of the estimated parameter vari-
ances to the normal distribution

approach by collecting the calculated variances of the reconstruction parameter a from

reconstructing the following signal,

(4.86)y = sin(2π(0.132695)x+ 2.1) + 0.3 sin(2π(0.21)x+ 0.5)
+ 1.1 sin(2π(0.325869)x+ 0.3) + 0.4 sin(2π(2.012)x+ 0.1),

under 13 different error conditions from combinations of sampling variances in σ2
x ∈

{0, 0.01, 0.04, 0.1} and σ2
y ∈ {0, 0.01, 0.04, 0.09} from 1500 samples, each repeated for 100

iterations. If the variances are correct, we would expect the z-scores of the values of a

given the calculated variances to be normally distributed. The probability density func-

tion (PDF) of the z-scores from these trials as compared to the normal distribution is

shown in Figure 4.11. The distribution well approximates a normal PDF, with a slight

underestimate of the variances. This is a result of estimating the sample variances after the

reconstruction, where there may be some overfitting, instead of using the original derived

values.

The variance of the average signal energy is expected to decay at a rate 1
N
. To demon-

strate this, we iterate through 100 reconstructions each of the signal in Equation 4.86
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Figure 4.12: Signal reconstruction energy variance as a function of the number of samples

for noise parameters (σx, σy) ∈ {(0, 0.2), (0.1, 0.2), (0.2, 0.1), (0.2, 0.2), (0.2, 0.3)}. The real

variances of the energy are displayed in Figure 4.12 for the different reconstructions, in-

cluding a best fit line on the log-log scale for each example of the noise parameters once the

reconstruction becomes viable. The line on the log-log scale corresponds to the equation

σ2
E = eb

N−m where m and b are the slope and intercept respectively of the best fit line on the

log-log scale. For decay rate 1
N

we would expect m = −1. The values of m for the given ex-

amples are {−1.033,−1.01,−0.9974,−0.9983,−0.9922}, which is in good agreement with

the 1
N

energy variance decay rate.

We can therefore use the energy variance calculations to predict the required number

of samples to bound the average energy variance below a specified value. For a calculated

energy variance, σ2
E0, for a given number of samples, N0, if the variance is desired to be

below some threshold ε, then the number of required samples, Nε, to reach that threshold

is given by,

(4.87)N̂ε >
σ2
E0N0

ε
.

It would also be beneficial to estimate the intercept value b̂ from multiple variance calcula-
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tions using subsets of the data instead of relying on a single estimate. In those situations,

(4.88)N̂ε >
eb̂

ε
.

4.2 Binary Event Detection

Some examples of road information are best represented as isolated binary events, i.e.,

localized events described by a binary variable indicating whether or not they exist at a

given location. Example events include potholes, speedbumps, slippery road regions, or

other events indicated in Table 2.1. Drivers would benefit from the knowledge of these

events for planning their routes, and automated vehicle control systems could be adjusted

to prepare for such events instead of reacting after encountering them.

The MSVR sampling conditions, as given in Chapter 3, affect binary event detection

as they do continuous signal reconstructions. In the following we present a framework

for detecting binary events given these conditions, with mechanisms to filter data, reduce

network bandwidth, and adapt to multi-lane environments.

4.2.1 Detection Framework

There are two concurrent goals in the binary event detection framework. The first goal is to

accurately and reliably detect the appropriate event either within the vehicles or after data

has been aggregated from the vehicles to the Cloud. The second goal involves localizing

the exact position of the event on the road, both in terms of which lane the event resides

in, and its exact longitudinal position on the road.

For binary events we construct a detection framework, outlined in the block diagram

in Figure 4.13. In general, we first select data from both real-world and simulated driving

events. The simulated data is first used to train the model. The training data is grouped,

either within the individual vehicles or after being transmitted to the Cloud for aggregation.
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Figure 4.13: Detection framework for the training and testing of binary road features.

From the aggregated data, features are selected and a model is trained to detect the specific

event. Simulated and real-world data is then put through the same process to test the

detection model and produce final results.

The following sections delve into further detail on the detection framework and the

processes outlined in Figure 4.13. Section 4.2.2 describes how the data is grouped for

the calculation of candidate features. Section 4.2.3 explains how those features may be

adapted for multi-lane road environments. Section 4.2.4 details how features can be selected

from the candidate list for training the classifier. Section 4.2.5 explains how data may be

filtered to reduce the required transmission bandwidth, and Section 4.2.6 discusses how the

detected binary events may be finely localized to their exact location. Refer to Table 4.10

for a guide to new notation introduced in this section.
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Table 4.10: Binary event detection framework notation

s Sliding window length

wx
i Multi-lane weighting for sample x in lane i

wv
i Multi-lane weighting for samples from vehicle v in lane i

β True detection rate

α False alarm rate

4.2.2 Candidate Features

It is important to identify mathematical features that are able to suitably discriminate

between event and non-event regions in the data set. Whereas some previous works have

manually generated feature lists from observations of sensor data, we believe that manual

selection does not account well for all potential environmental variations and could lead to

misidentifying events in certain scenarios. We instead rely on machine learning approaches

to select appropriate features.

For aggregating data, we group the data in a window of length s. The length s should be

determined to encompass the length of the event, the distance for any measurable residual

effects in the vehicle, and a tolerance for reasonable GPS error. The window should slide

an amount less than s to count data in multiple windows. Since the true event location is

originally unknown, this redundancy ensures that there exists some window that overlaps

with the event region.

Features are calculated over the data in each window to form a list of candidate features

for use in classifying whether or not each window contains the specified road event. These

features are functions of any sensor data that has been identified as having discriminative

capabilities for that event.
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4.2.3 Multi-lane Adaptations

Many road events are localized to individual lanes. Therefore features should be calculated

differently when applying the sliding window to each of the lanes. Each window should

encompass all the data points measured across the width of the road, since due to GPS

error, it is not known a priori from which lanes the data originated. However to differentiate

the lanes, a weighting scheme is applied to the data for calculating the candidate features.

The weighting of each aggregated data point when calculating the features is the posterior

probability of the measurement belonging to the specified lane, as determined by Bayes’

rule. Given n lanes, the weighting for lane i of a data point with measured GPS coordinates

x is,

wx
i = P (lane = i|X = x), (4.89)

=
P (X = x|lane = i)P (lane = i)

n
∑

j

P (X = x|lane = j)P (lane = j)
. (4.90)

As an initial assumption, we may assume that the location error is i.i.d. normally dis-

tributed around the true lane centerlines. Therefore the prior probability of a GPS mea-

surement being made at x while driving in lane j is

(4.91)P (X = x|lane = j) =
1√
2πσ2

e−
‖x−q̂j‖

2

2σ2 ,

where q̂j is the estimated true location of the GPS location, and is taken as the point on

the centerline of lane j closest to x.

However this method assumes the sample location error is i.i.d., which we demonstrated

in Chapter 3 was not the case in the vehicle sampling environment. The weighting algo-

rithm should more appropriately account for the correlated MSVR sampling conditions.

We assume that a vehicle drives in only a single lane over the measured domain. There-

fore we can calculate the joint probability of all the samples from a single vehicle belonging
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to a lane. The weights (or probabilities) should be equal for all the samples from a specific

vehicle since it is assumed that the vehicle does not change lanes. This assumption is not

always valid, however by restricting the domain to a limited distance it could apply to most

vehicles. Also, side information from a lane change detection algorithm could be used to

indicate cutoff points for where a new vehicle lane weight should be calculated.

Let wv
i represent the sample weights for the data points from vehicle v in lane i. For

the data samples xv
j from vehicle v,

(4.92)wv
i =

P
(

(Xv
1, . . . ,X

v
nv
) = (xv

1, . . . ,x
v
nv
)|lane = i

)

P (lane = i)
n
∑

j

P
(

(Xv
1, . . . ,X

v
nv
) = (xv

1, . . . ,x
v
nv
)|lane = j

)

P (lane = j)
.

The conditional prior probability is determined using the covariance matrix from the au-

tocorrelated error model in Equation 3.15, as

(4.93)

P
(

(Xv
1, . . . ,X

v
nv
) = (xv

1, . . . ,x
v
nv
)|lane = j

)

=

1
√

(2π)nv |Cv
xx|
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,

where dvi j is the distance from xv
i to the closest centerline point in lane j, q̂vi j, such that

(4.94)dvi j = ‖xv
i − q̂vi j‖rvi j,

where rvi j is a binary variable, rvi j ∈ {−1, 1}, indicating if xv
i is to the right or left of the

lane’s centerline.

4.2.4 Classifier Training

It is important to determine an appropriate combination of the candidate features to use

for detection, since not every feature has an equal ability to discriminate the specified

event in all situations. For example, a pothole induces a large vertical acceleration as a

vehicle drives in and out of the pothole. A large magnitude for the vertical acceleration
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could therefore be an appropriate feature. However, that feature would not necessarily

differentiate a pothole from a speedbump, which could also induce a vehicle to have a

similar large vertical bounce. A lateral acceleration component could therefore help to

differentiate between these two events since a speedbump is generally uniform across the

road, while potholes are often smaller and isolated to only one side of the vehicle. Therefore

reducing the candidate feature list to a final selected feature list is important as it not only

reduces the dimension of the problem space by eliminating candidate features that may

not assist in detection, but also determines an appropriate combination of features to well

detect the event.

One example binary event classifier we use is the Support Vector Machine (SVM) [66].

SVMs are discriminative classifiers that identify the boundary between the features of two

classes of data by maximizing the margin between the two classes. These are appropriate

for binary event classification as they can discriminate between the two classes (namely,

event regions and non-event regions). Radial basis kernel functions [66] are used to create

nonlinear boundaries between the classes, which will be shown in Section 5.2.4.2 to be

important as many vehicle sensor signals have nonlinear relationships between event and

non-event classes.

One feature selection method we use is a greedy forward feature selection algorithm [67]

to determine which of the candidate features are best suited for classification. Pseudocode

for this feature selection algorithm is shown in Figure 4.14. Using this process, a separate

SVM is first created for every individual candidate feature. A score function is computed

for each SVM based on the true detection rate, β, and the false alarm rate, α, on the

validation data. If P is the number of windows that actually contain the event, N is the

number of windows that do not actually contain the event, TP is the number of windows

in which the event was correctly detected, and FP is the number of windows in which

the event was mistakenly detected, then β = TP
P

and α = FP
N
. For each round, whichever
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1: i← 0
2: score(0)← −∞
3: selectedFeatures← {}
4: candidateFeatures← {allFeatures}
5: do

6: i← i+ 1
7: bestScore← −∞
8: bestScoreIndex← 0
9: for j : candidateFeatures do

10: [β, α]←trainAndTestSVM(selectedFeatures, candidateFeatures(j))
11: γ(j)← β − α

12: if γ(j) > bestScore then

13: bestScore← γ(j)
14: bestScoreIndex← j

15: end if

16: end for

17: selectedFeatures.add(candidateFeatures(bestScoreIndex))
18: candidateFeatures.remove(bestScoreIndex)
19: score(i)← γ(bestScoreIndex)
20: while (score(i)− score(i− 1) > scoreThreshold)
21: selectedFeatures.remove(i)
22: finalSVM ←trainSVM(selectedFeatures)

Figure 4.14: Pseudocode for greedy forward feature selection algorithm for training the
binary road event SVM detector

candidate feature gives the highest score value, γ, where

(4.95)γ = β − α,

is added as a selected feature. This process is then repeated by training new SVMs with

the selected feature list in addition to each of the remaining candidate features individually.

We stop adding candidate features to the selected feature list when the difference in score

values on the validation data in consecutive rounds falls below a score threshold.

4.2.5 Data Filtering

Filtering data is an important mechanism in the vehicle-Cloud information extraction

architecture. Filtering data within the vehicle is a mechanism to prevent transmitting

excessive data to the Cloud, thus conserving the limited bandwidth available in the ITS

network. When data filtering is applied to a specific detection algorithm, it can prevent
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the inclusion of specifically identified data in the algorithm, with the intent of improving

the detection rate.

The filtering algorithm is dependent on the type of data used in the detection process.

Generally the input data is compared against a threshold based on the remainder of the data

set, or on some expected output from processing the data. If h(·) is a function representing

a feature calculation for a detection algorithm, and g(·) is a function representing the

expected output for the feature calculated in h(·), then for a given data sample xj from a

potentially larger data set x, the following distance value dj could be evaluated,

(4.96)dj = d (h(xj)− g(x)) ,

where d(·) is a distance metric function determined for that specific application. Comparing

dj to a threshold ε could be used to determine whether or not the value xj should be

transmitted or included in the next step of the detection algorithm. Specific versions of

this function are shown for a vehicle data filter in Section 5.2.4.1 and a Cloud data filter

in Section 5.2.4.3.

4.2.6 Localization

Correctly detecting a binary event in a window is not necessarily sufficient information for

describing the event. Due to GPS error or outliers, an event may be detected in multiple

windows around its true location, and the window size may be significantly larger than

the actual event size. It is important to attempt to finely locate the event within these

windows.

For the SVM classifiers, event localization is performed using the decision values from

the SVM training. The decision values for each true event from training are averaged to

create a base pattern. After detecting a pothole in testing, the resulting test SVM decision

values are cross-correlated against the base pattern. The maximum of the cross-correlation

defines a location shift to where the event is estimated to begin. The difference between
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the shifted location and the true pothole location is defined as the localization error.

4.3 Temporal Weightings

Many road features have a temporal element associated with them. For example, icy

roads return to normal as the weather changes or as they are salted, and municipalities

eventually repair potholes. Depending on the nature of the event or its associated location,

these events will all have different time constants. A slippery road may last for only hours,

while a pothole may persist for months before it is repaired.

Therefore, the data aggregated from multiple vehicles should not be equally weighted

when trying to detect road features. Older data should be weighted less heavily in the

detection process as it is less likely to represent the current state of the environment. A

time weighting function is therefore included with the weights associated with each data

sample, similar to the time-decay sequential hypothesis testing method used in [68]. We

use a time exponentially weighted model to decrease the weight for any sample, using a

time constant τT , which varies depending on the nature of the specific event and should be

approximated as a factor of 1
ln 2

multiplied by the expected half-life of the feature. For an

initial weighting for a sample, w0, for example derived from the multi-lane adaptation as

given by Equation 4.93 or from the Voronoi weighting scheme for the signal reconstructions

presented in Section 4.1.2.5, then the weighting for the respective sample at time t is given

by

(4.97)w(t) = w0 exp

(

− t

τT

)

.

Since the exponential function only approaches, but never equals, zero, any aggregated

data sample in the system would have some non-zero weighting for all times. This can lead

to significant storage and computational complexities as the run time for many algorithms

is dependent on the number of data samples used, irrespective of their weightings. We

therefore employ a lower threshold, λT , on the weightings to eliminate data samples from
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the system when the weighting falls below the threshold. This eliminates the need to

further consider the data samples with negligible weights in the system and reduces the

runtime of any algorithm. The weighting scheme in Equation 4.97 is therefore modified to

(4.98)w(t) =















w0 exp
(

− t
τT

)

, if exp
(

− t
τT

)

≥ λT

0, if exp
(

− t
τT

)

< λT

.

In the absence of temporal knowledge, the weightings from these schemes could be

ignored or interpreted as multiplying the original weights by a factor of one. An application

of the weights to the binary detection framework are discussed in Section 5.2.5.5. The

following section demonstrates adaptations so that the temporal weights can be applied to

continuous signal reconstructions.

4.3.1 Continuous Signal Reconstruction

The temporal weighting algorithm detailed in Section 4.3 is applicable to the signal re-

construction problems, with the initial weights, w0, given by the Voronoi weights in Sec-

tion 4.1.2.5. However tuning the time constant τT for the signal reconstruction problems is

more critical than for the binary event detection algorithm. This is because the signal re-

construction algorithms are extremely sensitive to the weighting scheme and any deviations

can degrade the reconstruction.

Consider a situation where the road environment is static, however the decay constant

was poorly approximated to describe the system as fast changing. For the binary events,

the data being input into the features would still have similar statistical properties to the

existing data. The weighting scheme therefore would not change the result of the features,

it would only result in there being less total weighted data than necessary. However in the

signal reconstruction case, the Voronoi weights would be significantly changed, even though

they should remain close to their original values. This could result in a poor reconstruction.
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4.3.1.1 Parameter Optimization

We therefore explore an adaptive method to try and optimize the time constant parameter

for signal reconstruction. Due to the MSVR sampling conditions, the amount of new data

received and the data’s respective locations cannot be easily predicted. Since this is not

a traditional input-output type system, we require a different metric by which to model

potential ground-truth signal changes. If the ground-truth signal were static, we would

expect the statistical properties of the new input data at a given time to resemble the

properties of the existing data. Any change in these properties is an indication that the

ground-truth signal may have changed. We frame the optimization in regard to the signal

reconstruction error.

Let ǫ2(t) represent the weighted sample reconstruction error for all samples up to time

t such that,

(4.99)ǫ2(t) =

V (t)
∑

v=1

nv(t)
∑

j=1

∣

∣p(xv
j )− yvj

∣

∣

2
w(t− tvj ),

where w(·) is the weight function in Equation 4.98, and V (t) and nv(t) are the number

of vehicles and samples per vehicle to have been aggregated at time t. Similarly, let N(t)

represent the weighted total number of aggregated samples at time t, given by the sum of

the weights of the samples and therefore not necessarily an integer, where

(4.100)N(t) =

V (t)
∑

v=1

nv(t)
∑

j=1

w(t− tvj ).

Let δ represent a given time interval after which the time constant τT should be recalculated.

We construct the following sample error equivalence equation, using a weight α to denote

how much to weight new data relative to the existing data,

(4.101)ǫ2(t+ δ) = ǫ2(t)

(

1 + α
N(t+ δ)−N(t)

N(t)

)

.

Equation 4.101 is a projection of the future error given the current error and number of

newly input samples. By rearranging Equation 4.101,

(4.102)α =
N(t) (ǫ2(t+ δ)− ǫ2(t))

(N(t+ δ)−N(t)) ǫ2(t)
.
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To avoid biasing above or below the existing error values, let β represent a new weight

based on α such that new data is always weighted more heavily than older data. Let

(4.103)β = 1 + |α− 1|.

This β value is exponentially smoothed based on the number of new and old sample points

and mapped to a β value for time t+ δ denoted βt+δ, such that

(4.104)βt+δ = βt

(

N(t)

N(t+ δ)

)

+ β

(

N(t+ δ)−N(t)

N(t+ δ)

)

.

This value is converted into the exponential time decay constant for time t by

(4.105)τT t+δ =
δ

ln βt+δ

.

4.3.1.2 Results

To demonstrate the effects of the temporal weighting scheme on the signal reconstruction

behavior, consider a situation involving the following two signals,

y1(x) = sin(2π(0.132695)x+ 2.1) + 0.3 sin(2π(0.21)x+ 0.5)+

1.1 sin(2π(0.325869)x+ 0.3) + 0.4 sin(2π(1.612)x+ 0.1),

(4.106)

y2(x) = 1.9 sin(2π(0.232)x+ 1.2584) + 0.8 sin(2π(0.465)x− 0.8)+

0.3 sin(2π(1.312)x+ 0.258).

(4.107)

The ground truth-signal is given by a linear transformation from y1(x) to y2(x) such that,

(4.108)y(x) =



































y1(x), if t ≤ t1

t−t1
t2−t1

y1(x) +
t2−t
t2−t1

y2(x), if t1 < t ≤ t2

y2(x), if t > t2

.

This function is a static function on y1(x) for t ≤ t1, then linearly changes to y2(x) over

the interval (t1, t2], then remains constant on y2(x) after t2.
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Consider three types of reconstructions, with 10 new sources sampling over the signal

per time unit, each with sample spacing drawn from a Rayleigh distribution with mean one.

In the first reconstruction, the parameter τT is set adaptively according to the algorithm

given in Section 4.3.1.1. In the final two reconstructions, the time constant is kept static for

the entire time period with one reconstruction performed with a relatively low time constant

and one reconstruction performed with a relatively high time constant. The resulting values

for the time constants for the given time period are shown in Figure 4.15. The values for

t1 and t2 are indicated by the black dashed lines in the figure. RMSE values for the three

different reconstructions are shown in Figure 4.16, with example reconstructions at various

times compared to the ground-truth signal shown for the adaptive time constant algorithm

in Figure 4.17 and for the relatively low static time constant in Figure 4.18.

The reconstruction using the low time constant reconstructs the signal poorly during the

initial and final periods when the ground-truth signal is static since the Voronoi weights

are being drastically changed from their original values. Conversely, the reconstruction

using the high constant time constant performs poorly in the middle time interval when

the signal is changing since it is unable to adapt quickly enough to the new data. The

adaptive time constant performs relatively well in all regions.

4.4 Chapter Summary

In this thesis chapter, we introduced algorithms to detect both continuous and binary

types of road environmental information, given the noisy, asynchronous, and undersam-

pled MSVR sampling conditions of vehicle sensor data. Adaptations were provided so that

the detection algorithms could operate in multi-lane environments and with temporally

changing information. Methods of data filtering were introduced to try and reduce the

required network bandwidth when aggregating data to the Cloud for detection. The algo-

rithms were analyzed against each other and previous work to assess the viability of the
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Figure 4.15: Evolution of time constant values for the adaptive algorithm compared against
constant cases
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Figure 4.16: RMSE values for the adaptive and static time constant reconstructions

event detection processes under a variety of circumstances.

In the following chapter, these event detection algorithms are used to detect specific

types of environmental road information.
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Figure 4.17: Reconstructions at various time intervals using the adaptive time constant
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Figure 4.18: Reconstructions at various time intervals using the relatively low time constant
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Chapter 5

Environmental Road Information

In this chapter, we apply the detection algorithms developed in Chapter 4, within the

overall vehicle-Cloud detection framework described in Chapter 2, to extract information on

specific types of environmental events. We extract road incline and bank angle information

in Section 5.1 and pothole information in Section 5.2 from aggregated MSVR sampled

vehicle sensor data.

5.1 Road Incline and Bank Angles

5.1.1 Introduction

Many vehicle control systems require an accurate model of the vehicle dynamics to de-

termine any actuation function. In determining the vehicle dynamics, it is important to

try and decouple the components of the vehicle state that should be expected from envi-

ronmental conditions to those components that are indicative of anomalous or dangerous

vehicle conditions. The road incline and bank angles are important factors that influ-

ence the vehicle state, and the knowledge of their conditions is useful for many vehicle

applications.
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Road incline and bank angle information is of particular importance to vehicle stability

control systems [69], especially in larger vehicles that may issue roll-over warnings or that

attempt to actuate the vehicle to restore stability [70]. However, since many of these

stability systems require a large actuation power, it is important to dissociate the roll

angle of the vehicle from the bank angle of the road to determine if initiating the control

actions is actually mandated.

Speed and steering control algorithms also make use of the vehicle dynamics and there-

fore also the road angle measurements. Both adaptive cruise control [71] and brake con-

trol [72] algorithms are aided by knowledge of road topography. These control algorithms

help the vehicle to determine optimal speed levels given that the available engine output

power has to be properly directed in regard to the road incline angles and the increasing

aerodynamic drag associated with increasing speeds. The speed control algorithms can

further help regulate inter-vehicle fleet spacing, for example in highway conditions [73].

Similarly, steering [74] control algorithms are helped by the road incline and bank knowl-

edge to know how to compensate for the environmental conditions.

For each of these control processes, prior knowledge could help to design predictive

control algorithms [75] that more efficiently plan for optimal speed or engine output control

points so that the vehicle control systems can conserve energy and feasibly operate around

their desired control points.

However, it is difficult to decouple the influence of the road incline and bank angles from

the remainder of the vehicle dynamics when only examining sensor measurements related

to the vehicle’s kinematic motion. For example, a lateral acceleration component could be

caused by centripetal acceleration from the vehicle driving on a curve, or a gravitational

acceleration component from the vehicle driving on a bank. These components need to

be separated and indicated as such, particularly when many of these conditions can occur

simultaneously (e.g., when driving on a banked curve).
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In this thesis work, we demonstrate how to estimate the road bank and incline angles

for entire stretches of road using only acceleration, speed, and GPS measurements from

embedded vehicle sensors. Since the sampling frequency of the sensors is very low and the

measurement data is so noisy, we are unable to determine continuous functions representing

the road angle signals using data only from individual vehicles. It is only by aggregating

data samples from multiple vehicles and reconstructing the signals using the framework

detailed in Section 4.1 that a final signal estimate for entire roads can be determined.

In the following, Section 5.1.2 discusses related work to our road angle determination

objective. Section 5.1.3 details our road angle estimation algorithm for individual sample

measurements. Section 5.1.4 describes the simulated and real-world data we used to test

the algorithm, and Section 5.1.5 presents the results of those experiments.

5.1.2 Related Work

There have been other approaches to determine road bank and incline angle information,

however they generally rely on data from more sensors and vehicle-specific parameters.

These parameters are not necessarily available in every vehicle, and each additional pa-

rameter or sensor introduces a new source of error. High frequency sensors are used to

estimate vehicle roll and pitch angles using inertial sensor data in [76]. In [77], known

four-wheel speeds, steering angles, acceleration, and gyroscopic data are used to construct

a non-linear road-tire friction model to estimate road inclination and bank angles. Vehicle

mass, gear and engine torque, wheel radius, vehicle frontal area, and air constant param-

eters are used with inertial sensor data to design a Kalman filter to estimate the road

grade in [75]. However even with this detailed information they still advocate multiple

measurement runs to estimate the road grade.

Some works use multiple GPS devices to identify road angles [78]. The carrier phase

difference between two roof-mounted GPS antennae as well as the ratio of the calculated
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Table 5.1: Road bank and incline angle notation

a Acceleration vector, vehicle frame

w Expected acceleration, inertial frame

f Forward acceleration, vehicle frame, change in speed

ac Centripetal acceleration

g Acceleration due to gravity

v Vehicle speed

R Rotation matrix from inertial to vehicle frame

p Acceleration components related to perturbations

n Noise in measured acceleration

θ Road incline angle

φ Road bank angle

D Normed difference between observed and expected acceleration

p Minimum expected number of measurements in a window

η Minimum fraction of data points to expect in a window

V Total number of vehicles

τ Threshold on D to transmit data to Cloud

horizontal and vertical velocities are used to determine the road grade and vehicle mass

in [79]. Using other sensors, a barometer in addition to acceleration and gyroscope data is

used to estimate the road inclination in [80]. Our system does not rely on such extensive

measurements; only GPS and accelerometer data are needed.

5.1.3 Road Angle Determination

Refer to Table 5.1 for relevant notation and Figure 5.1 for an illustration of the relevant

terms.

The information extraction algorithm presented in this section uniquely determines the

road bank, φ, and incline, θ, road angles from only acceleration and GPS measurements

by determining the rotation matrix, R, that rotates the expected acceleration vector in

a local inertial reference frame, w, to the measured acceleration vector from the vehicle
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Figure 5.1: Diagram of Road (a) Incline (θ) angle viewed from the right side of the vehicle,
and (b) Bank (φ) angle viewed from the rear of the vehicle

reference frame, a, where

(5.1)a =

[

ax ay az

]T

,

at that location. The rotation of the acceleration vectors between reference frames is

defined by
(5.2)Rw = a− f − p+ n,

where f =

[

f 0 0

]T

denotes the forward acceleration representing the change of speed

in the vehicle reference frame, p denotes the acceleration resulting from perturbations

unrelated to the road orientation (e.g., a pothole), and n denotes the sensor noise.

We determine R by minimizing the following cost function, representing the difference

between the measured vehicle acceleration vector and the expected acceleration inertial

frame vector rotated into the vehicle frame,

(5.3)J(R) =
1

2
‖(a− f)−Rw‖2 .

The cost function in Equation 5.3 is adapted from Wahba’s problem [81], which was

originally designed to determine satellite attitude. Wahba’s problem is commonly solved

using the Singular Value Decomposition (SVD) [82]. However, the SVD solution (as well

as other solution formulations [83]) requires multiple sets of paired vectors from the vehicle

and inertial frames (e.g., accelerometer and magnetometer measurements) in order to de-

termine a unique solution for R. We however, are restricted to only a single accelerometer
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measurement per location. We therefore require a method to reduce the infinite set of

solutions to a unique one.

Fortunately, unlike satellites, automobiles are constrained to driving on set paths, those

being the roads. Therefore, instead of using the same globally defined inertial reference

frame for all locations, we can use the GPS coordinates to predetermine a local coordinate

system aligned with the road at the measured location. This eliminates the need to deter-

mine the vehicle direction or yaw angle from the acceleration vectors and rotation matrix,

since the vehicle direction is tangent to the road at that location. We can therefore reduce

the inertial reference frame to only two dimensions, with one axis aligned perpendicular

to the road on a flat plane, and a second orthogonal axis pointing towards the zenith. An

illustration of the difference between these coordinate systems for two example locations

is shown in Figure 5.2. In two dimensions, in a locally defined coordinate system, the

expected inertial frame acceleration vector is reduced to

(5.4)w =







ac

g






,

where ac is the centripetal acceleration and g is the acceleration due to gravity. The

expected centripetal acceleration is determined as,

(5.5)ac = κv2,

where κ is the curvature of the road at the given location and v is the vehicle’s speed.

In our experiments the curvature is determined from parametric equations of the road,

(X(t), Y (t)), by

(5.6)κ(X(t), Y (t)) =
X ′Y ′′ − Y ′X ′′

(

X ′2 + Y ′2
) 3

2

,

where the prime notation indicates a derivative with respect to the parametric variable t.

Under this formulation, the rotation matrix is now a transformation between coordinate

systems such thatR : R2 → R
3 (the vehicle provides a three-axis acceleration measurement
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(a) Global Inertial

Reference Frame

(b) Local Inertial

Reference Frame

Figure 5.2: Example of the difference in coordinate system axes for the (a) 3D Global, and
(b) 2D Local inertial reference frames for two example locations

and the inertial frame is in two dimensions), composed of rotations by the incline angle

then bank angle as

R =















1 0 0

0 cosφ sinφ

0 − sinφ cosφ





























0 − sin θ

1 0

0 cos θ















(5.7)

=















0 − sin θ

cosφ sinφ cos θ

− sinφ cosφ cos θ















. (5.8)

To maintain the intuition of the rotational operation of R, the matrix will still be referred

to as a rotation matrix.

Define the matrix B by the inertial and vehicle frame vectors,

(5.9)B = (a− f)wT .

Given that the cost function represented by Equation 5.3 can be rearranged as follows,

(5.10)J(R) =
1

2

(

‖a− f‖2 + ‖w‖2
)

− tr(RBT ),
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maximizing tr(RBT ) is equivalent to minimizing the cost function. By the Singular Value

Decomposition,
(5.11)B = USVT .

Define

(5.12)M =















1 0

0 d

0 0















,

where
(5.13)d = det(U) det(V).

Since U and V are unitary matrices,

(5.14)d = ±1.

By Wahba’s SVD solution, R̂ is determined by

(5.15)R̂ = UMVT .

However reducing the dimension and using the steps from Equation 5.9 - Equation 5.15

still does not provide a unique solution for R̂. Since there is only a single measurement

per sample, BBT has a two-dimensional null space. Therefore the last two columns of

U (organized by decreasing singular values), denoted as U2−3, are not unique and R̂ is

therefore not uniquely determined. However from knowledge of the construction of R,

we can determine which vectors in null(BBT ) to use in constructing U to arrive at the

unique and correct solution. Let Υ be a matrix composed of orthonormal basis vectors for

null(BBT ), where Υ11 6= 0. We need to determine variables α and β to determine the last

two columns of U such that

(5.16)U2−3 = Υ







α β

β −α






.

Equation 5.16 ensures that U is orthogonal. There are three additional constraints:
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1. To maintain U as a unitary matrix,

(5.17)α2 + β2 = 1.

2. From Equation 5.8, R11 = 0. The product of terms from Equation 5.15 that form

R11 must therefore also equal zero. This constraint is stated as,

(5.18)U11V11 + dU12V12 = 0.

3. For any realistic road conditions, cos θ ≥ 0. Therefore

(5.19)sgn(R21) = sgn(R32).

From these constraints, the resulting solutions for α and β are

α = −ζΥ12 + dU11V11

Υ11V12

, (5.20)

β =
ζ

V12

, (5.21)

where,

(5.22)ζ =
−dU11V11Υ12 +Υ11

√

V 2
12(Υ

2
11 +Υ2

12)− (U11V11)
2

Υ2
11 +Υ2

12

.

Substituting Equation 5.20 and Equation 5.21 into Equation 5.16 uniquely determines

R̂ as given by Equation 5.15. The resulting incline and bank angles, θ and φ respectively,

are therefore estimated as,

θ̂ = − arcsin(R̂12), (5.23)

φ̂ = arctan 2(R̂22, R̂32). (5.24)

Extracting the angle and bank information in each vehicle results in an MSVR sampled

data set once aggregated on the Cloud. The aggregated MSVR samples are then recon-

structed into signals for the entire road using the reconstruction algorithms in Section 4.1.
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The iterative reconstructions also offer the opportunity to improve the angle estimates of

each individual sample, and therefore also improve the reconstructed signal. As given by

the linear LMA update equation in Equation 4.18, the true location of each sample is re-

estimated as a variable on each iteration of the LMA algorithm. The angle estimates could

therefore be updated after each iteration by recalculating the inertial frame centripetal

acceleration based on the updated sample location estimate q̂vj instead of the measured

sample location xv
j .

5.1.3.1 Vehicle Data Filter

An in-vehicle data filter is designed to reduce the required bandwidth of the information

extraction system. This filter is created by examining the difference between the measured

acceleration vector in the vehicle frame and the rotated expected acceleration vector from

the local inertial reference frame.

By comparing the terms from the general rotation equation in Equation 5.2 to the cost

function used to estimate R in Equation 5.3, it is clear that the solution for R̂ does not

fully account for any perturbations or noise. Any difference between the rotated inertial

frame vector and the vehicle measurement is therefore a potential indication that the

measurement is too noisy or that there are unaccounted for dynamics measured in the

vehicle. In either case, the resulting angle estimate is unlikely to be accurate and it would

be beneficial to exclude it from any signal reconstruction.

The in-vehicle filter is therefore constructed by comparing the norm of the difference

between the acceleration vectors in the cost function, D, where

(5.25)D =
∥

∥

∥
R̂w − (a− f)

∥

∥

∥

2
,

against a threshold, τ , and transmitting to the Cloud only the data that satisfies the

inequality,
(5.26)D ≤ τ.
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Table 5.2: CarSimr road course components for incline and bank reconstruction experi-
ments

Section Loc. (m) Road Details

Loop elevat-
ing 34 m

0-385 Euler spiral transitions straight road to circular. Incline
and bank angles increase.

385-527 Circular path. Incline and bank angles steady.

527-750 Euler spiral, transitions circular road to straight. Incline
and bank decrease to 0◦.

Straight, flat 750-810 Straight, flat

Sinusoidal
curves

810-1461 Two periods. 0◦ incline, bank angle varies to peak at
curve crests in appropriate direction.

1461-2119 Two periods. Incline decreases to 4◦ downhill and re-
turns to 0◦, bank continues variation with curves.

Back to flat 2119-2291 Straight, bank returns to 0◦

Hills 2291-2891 Bank varies slightly, unrelated to incline

Straight, flat 2891-3100 Straight, flat

This filter eliminates poor estimates from the system, which both reduces the required

bandwidth for transmission to the Cloud, and also improves the accuracy of the signal

reconstruction.

5.1.4 Road and Vehicle Data

To test our model in a variety of circumstances, we require data from different vehicles

driving in diverse scenarios. Obtaining such data through real-world driving is labor-

intensive and expensive. Also, ground-truth road angle information is currently difficult

to obtain for public roads. To address these problems, we propose using a simulator to

synthesize data, in addition to testing on real-world data. Simulated data provides a large-

scale, flexible, and controllable testbed to validate the algorithms, while the real-world

data complements this by providing a realistic empirical test environment.
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Figure 5.3: Ground-truth CarSimr (a) road incline and bank angles, (b) road course image

5.1.4.1 Simulated Data

As introduced in Section 2.8, we use the CarSimr [24] program to simulate vehicles driv-

ing over customized road courses. We designed a road course according to standard prac-

tices [84] with slight modifications to reflect real-world deviations from the ideal standard.

The incline, bank, and curvature values were varied to create an elevating loop, banked

curves, inclined banked curves, hills, and straight roads, as described in Table 5.2. Ground

truth incline and bank angle signals for this road are shown in Figure 5.3a, with an image of

the road from CarSimr in Figure 5.3b. The course was simulated driven over by standard

Sedan, Minivan, and SUV models at varying speeds and accelerations.

The resulting vehicle acceleration, speed, and location data were output at 200 Hz and

subsequently downsampled to 1 Hz to reflect real-world embedded vehicle sensors for use

in the analysis.

5.1.4.2 Real-world Data

The real-world data was collected using a vehicle-mounted smartphone inertial sensor de-

ployed in Pittsburgh, PA, USA [85]. The sensors asynchronously measured the GPS loca-
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Table 5.3: Data sample information for the roads used in the real-world data set

Road V N L (m) Map Curvature

Overlook Dr. (one-way) 90 26520 800 Figure 3.3 Figure 5.4

Overlook Dr. (two-way) 66 20494 550 Figure 5.5 Figure 5.6

Greenfield Rd. 31 5823 375 Figure 5.7 Figure 5.8

Beechwood Blvd. 25 5269 540 Figure 5.9 Figure 5.10

tion at 1 Hz and the three-axis acceleration at 40 Hz. These stated frequencies represent

the average, since the shared data bus within the phone caused delays resulting in an ir-

regular data output rate. Finite difference equations were used to estimate the speed and

forward acceleration from the GPS data.

Four roads were selected from the data set to test with road angle reconstruction

algorithms. Summary information regarding the number of data samples per road, and

references to maps and curvature figures are provided in Table 5.3. These roads were

selected from the data set due to their frequently changing curvature, bank, and elevation.

The location measurements are from multiple sources, nonuniformly spaced, and have the

types of correlated MSVR error described in Chapter 3.

It is difficult to obtain ground-truth road incline and bank angle data for real-world

roads. However there are resources such as GoogleMaps which provide estimates for spot

elevation data. Given locations x1 and x2 on a road, we can map the incline angle data to

an elevation change for comparison by integrating over the reconstructed incline angle as,

(5.27)Elevation Change =

∫ x2

x1

tan (−θ(x)) dx.

The GoogleMaps data is not necessarily ground-truth, however it is the best available

resource for comparison. Topographic survey maps were also examined, however they did

not have the resolution required to extract the exact road locations from their surrounding

areas for comparison purposes.
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Figure 5.4: Curvature for Overlook Dr. (one-way) as determined from fitting parametric
equations to the road on GoogleMaps

Figure 5.5: GoogleMaps image of Overlook Dr. (two-way) used in data set with selected
GPS locations from vehicle traces
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Figure 5.6: Curvature for Overlook Dr. (two-way) as determined from fitting parametric
equations to the road on GoogleMaps

Figure 5.7: GoogleMaps image of Greenfield Rd. used in data set with selected GPS
locations from vehicle traces
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Figure 5.8: Curvature for Greenfield Rd. as determined from fitting parametric equations
to the road on GoogleMaps

Figure 5.9: GoogleMaps image of Beechwood Blvd. used in data set with selected GPS
locations from vehicle traces. The arrows in this trace do not correspond to the direction
of the vehicles.
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Figure 5.10: Curvature for Beechwood Blvd. as determined from fitting parametric equa-
tions to the road on GoogleMaps

5.1.5 Road Angle Results

We analyze the results of applying our road angle estimation algorithm to both simulated

and real-world data. In Section 5.1.5.1, we demonstrate that the angle estimation algo-

rithm is effective for individual noiseless samples in simulated data, and reconstruct the

full continuous road angle signals from those estimated samples. In Section 5.1.5.2, we

demonstrate how the iterative signal reconstruction algorithms from Section 4.1.2 can be

used to re-estimate the angle values for each sample between iterations given the newly esti-

mated locations to further improve the final signal reconstructions. Finally, Section 5.1.5.3

presents the road angle signal reconstructions for the real-world data set.

5.1.5.1 Road Angle Estimation Algorithm

We randomly selected 50 traces from the simulated data set, where the speed of the runs

varied between 5 km/h - 90 km/h. No noise was added to the location or acceleration

measurements for each data sample. Since ∆v
j = 0 ∀v, j, the final signal was reconstructed

from the MSVR samples using Algorithm 4 in Section 4.1.2.4. The ground-truth, estimated
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Figure 5.11: Incline angle signal reconstruction for noiseless CarSimr data.

angle samples, and reconstructed signal are shown for the incline and bank angles in

Figure 5.11 and Figure 5.12 respectively for the simulated data.

The reconstructed signal aligns well with the ground truth. The RMS error for the

incline and bank angle signals are 0.09◦ and 0.21◦ respectively. Some of the samples

deviate from the ground truth and reconstructed signal. This occurs when the pitch and

roll angles of the vehicle from the local inertial reference frame do not match the incline

and bank angles of the road. This can result from driving at a speed above that intended

for the road design. Added knowledge of vehicle-specific parameters could help correct for

this effect [86], however the reconstruction still reliably matches the ground-truth signal,

indicating that the road angle estimation algorithm is working as intended.

5.1.5.2 Correcting Locations in Reconstruction

Estimating the true sample location values, q̂vj , for each sample is important for recon-

structing the signal, however as described at the end of Section 5.1.3, for algorithms such

as the road angle reconstruction, estimating q̂vj offers a second benefit.

The angle estimation algorithm in Section 5.1.3 reduces the global inertial reference
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Figure 5.12: Bank angle signal reconstruction for noiseless CarSimr data.

frame from three dimensions to two dimensions by creating a local inertial reference frame

aligned with the road. The alignment is determined by the GPS location with one axis

aligned vertically and the second orthogonal axis aligned on a flat plane perpendicular to

the direction of the road. The origin and direction of these axes determine the curvature

of the road for the specific data sample, as given by Equation 5.6. This curvature value is

ultimately used in Equation 5.5 to calculate the expected vehicle centripetal acceleration.

If the measured GPS location differs from the true location, then the road curvature

calculated in Equation 5.6 may be incorrect, resulting in a poor estimate for the inertial

frame acceleration vector in Equation 5.4. These errors could propagate to produce poor

estimates for the incline and bank angles.

However since q̂vj is re-estimated on each iteration of the LMA minimization algorithm,

the road and incline angles can be re-estimated using q̂vj to redetermine the origin of the

local inertial reference frame instead of using the origin originally determined by xv
j . This

improves the reconstruction on each iteration as not only do estimated locations of each

angle sample approach their true values, but the angle estimates are also improved to
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Table 5.4: Root-mean-square error angle values (degrees) for both re-estimating and not
re-estimating angle values between LMA iterations. Results correspond to data shown in
Figure 5.13.

RMSE (deg)

No Angle

Re-estimation

Angle

Re-estimation

Bank 0.25 0.16

Incline 0.95 0.66

better resemble their true values as well.

An example of this process in action is shown in Figure 5.13 for reconstructing the

incline and bank angles from the simulated data from 50 vehicles with location error given

by σv = 70 m, and σx = 15 m. Due to the sample location bias error being relatively larger

than the independent component, reconstructions are shown for only the Fixed Error joint

reconstruction model. However the results extend similarly to the other reconstructions.

The RMSE values for the different reconstruction types are provided in Table 5.4. There

is a definite advantage to re-estimating the angle values between iterations, marked by the

improvement in the RMSE. The advantages would be much larger for situations where the

curvature (or any variable dependent on location) has much larger variations with respect

to the magnitude of the location errors.

5.1.5.3 Real-world Data

The MSVR signal reconstruction algorithms were applied to the real-world data set to

determine the incline and bank angle signals for the city roads detailed in Section 5.1.4.2.

The in-vehicle data filter from Section 5.1.3.1 was applied with threshold τ = 0.9 m/s2.

This threshold eliminated 20%-30% of the data samples for each of the real-world examples.

The elevation change equation, given by Equation 5.27, requires a reference point for

comparison. The elevation obtained from GoogleMaps at the start of the road was used

as this initial reference value.
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Figure 5.13: Reconstructed bank and incline angles from 50 vehicles with white noise with
standard deviation 0.08 m/s2 added to acceleration signals and σv = 70, σx = 15 error,
using the Fixed Error joint reconstruction algorithm, when both re-estimating and not
re-estimating the incline and bank angles between LMA iterations
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The incline and bank angles are shown in Figure 5.14a and Figure 5.14b respectively

for Overlook Dr. (one-way). Although there is a fair amount of noise in calculating the

angles for each individual data sample, the reconstructed signal has a reasonable range. To

validate the results, the incline angle was converted to an elevation signal by Equation 5.27.

The results are shown in Figure 5.15 as compared to the cubic spline interpolation of the

spot elevation data obtained from GoogleMaps. The RMS error between the two signals

is 0.89 m, and the two signals exhibit similar properties over the length of the domain.

We further compare the results from the other three roads in the data set. The incline

and bank angles for the two-way component of Overlook Dr. are provided in Figure 5.16,

with the mapped elevation data compared to GoogleMaps shown in Figure 5.17. The

elevation change of the reconstruction was -9.0 m compared with -7.25 m from GoogleMaps.

The two signals follow approximately the same pattern, with the largest difference coming

from the larger decline towards the end of the road in our reconstructed signal.

The incline and bank angles for the Greenfield Rd. reconstruction are provided in Fig-

ure 5.18, with the respective elevation comparison to GoogleMaps in Figure 5.19. The

reconstruction was done for both the autocorrelated error model and for the fixed error

model. Both results compare reasonably well to the GoogleMaps data, with elevation

changes of -12.5 m and -13.3 m for the autocorrelated and fixed error model reconstruc-

tions respectively, and -11.4 m from GoogleMaps. The RMS errors are 1.37 m for the

autocorrelated error model and 1.76 m for the fixed error model. Both the reconstructions

and the GoogleMaps data share the property of the road flattening out near the end before

again declining.

The incline and bank angles for the Beechwood Blvd. reconstruction are provided in

Figure 5.20, with the respective elevation comparison to GoogleMaps in Figure 5.21. The

reconstructions were again performed for both the autocorrelated and fixed error models.

These elevation signal reconstructions significantly differ from the GoogleMaps data. The
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Figure 5.14: Reconstructed (a) incline and (b) bank angles for real-world data from Over-
look Dr. (one-way)
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Figure 5.15: Reconstructed real-world Overlook Dr. (one-way) road elevation signal com-
pared to GoogleMaps data

autocorrelated and fixed error models estimate elevation changes of -11.5 m and -12.2 m

respectively, while GoogleMaps data provides for a relatively flat road with and overall

elevation change of just -0.6 m. However from video inspection, displayed by the example

road image in Figure 5.22, there does appear to be a steady decline to the road that is

more consistent with our signal reconstructions than the GoogleMaps data.

Since we integrate our reconstructed incline signal to compare to GoogleMaps, any

slight error bias in the reconstructed signal will manifest itself as diverging signals in the

elevation comparison. Therefore for some figures, a slight error even in one part of the

incline signal, could make it appear as if the two signals are significantly different. It

is therefore important to also look at the general pattern of the two signals. It would be

beneficial as well to differentiate the elevation signal to compare it as an incline signal to our

reconstruction. However since it is not known exactly how the GoogleMaps elevation data

is determined, and the fact that the signal is created by interpolating splines on the spot

elevation data, it could create questionable dynamics in the incline signal if differentiated.

Overall, the road angle reconstruction estimates and signal reconstructions perform very
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Figure 5.16: Reconstructed (a) incline and (b) bank angles for real-world data from Over-
look Dr. (two-way)
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Figure 5.17: Reconstructed real-world Overlook Dr. (two-way) road elevation signal com-
pared to GoogleMaps data

well for the simulated data set. Different reconstructions were compared depending on the

location error model, and the benefits of re-estimating angle values jointly while estimating

the reconstructed signal were demonstrated. The angle reconstructions were also performed

for real-world vehicle sensor data. The reconstructed incline and bank angle signals were

presented with comparisons to elevation signals obtained from GoogleMaps data. The

elevation signals compared favorably, with any differences explained with references to

images from the specific roads. This evidence, in addition to the mathematical derivation

of the angle estimation algorithm, supports the application of the algorithm to well estimate

the true road bank and incline angle signals.
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Figure 5.18: Reconstructed (a) incline and (b) bank angles for real-world data from Green-
field Rd.
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Figure 5.19: Reconstructed real-world Greenfield Rd. road elevation signal compared to
GoogleMaps data

5.2 Pothole Detection

5.2.1 Introduction

Detecting anomalous road features is critical for driver and vehicle safety. One such exam-

ple of an anomalous road feature is a pothole. Potholes are hazardous road features that

damage wheels, suspensions systems, vehicle frames, and potentially injure drivers and

passengers. They are responsible for millions of dollars in insurance claims and roadway

repairs each year [87]. Drivers would benefit from the knowledge of pothole locations in

planning their routes and an automated detection system would assist municipalities in

planning repairs. Automatic suspension control systems would also be able to adjust to

anticipate potholes instead of reacting after hitting them.

In this thesis work, we follow the binary event detection framework described in Sec-

tion 4.2 to create a system to detect and localize potholes in multi-lane environments. The

detection process is conducted under the functional constraints and noisy MSVR sampling

conditions of vehicle sensor data detailed in Chapter 3.

Embedded vehicle accelerometers serve as our data source for the pothole information
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Figure 5.20: Reconstructed (a) incline and (b) bank angles for real-world data from Beech-
wood Blvd.

137



0 100 200 300 400 500 600
276

278

280

282

284

286

288

290

Distance (m)

E
le

v
a
ti
o
n
 (

m
)

 

 

Sig. Recon. − Alg. 1 (Autocorr)

Sig. Recon. − Alg. 3 (Fixed Source)

GoogleMaps

Figure 5.21: Reconstructed real-world Beechwood Blvd. road elevation signal compared to
GoogleMaps data

Figure 5.22: Live capture image of Beechwood Blvd.
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extraction objective. The low sampling frequency (e.g., 1 Hz) of such sensors result in

unreliable detection from individual vehicles and necessitate the crowdsourcing framework

to increase the detection rate. For example, a vehicle traveling at 50 km/h would only

make a measurement every 13.9 m, an interval that significantly exceeds the length of a

typical pothole. This spacing results in a low probability that the sensors in a single vehicle

capture a discriminating measurement at the appropriate pothole location.

In addition to the typical noisy MSVR sampling conditions, aggregating accelerome-

ter data from multiple vehicles is complicated by vehicle and sensor heterogeneity. The

accelerometer data of a vehicle driving over a pothole depends on that specific vehicle’s

response to the pothole. Since vehicles differ in physical properties such as size, weight,

length, and suspension systems, as well as driver behaviors such as steering and speed,

different vehicles respond differently even when driving over the same pothole. Therefore,

the expected signal from each vehicle is different.

Similarly, not all potholes are identical. The position of the pothole on the road, the

curvature and incline of the road, and the length and depth of the pothole all affect the

expected accelerometer signals. The derived detection framework needs to be generally

applicable to all these varied road and driving conditions and care needs to be taken to

not consider acceleration components related to physical phenomena other than potholes

in the detection system. This is an important consideration when generating the candidate

feature list from the signal data.

The remainder of this section is outlined as follows. Related work to the pothole

detection problem is presented in Section 5.2.2. The simulated and real-world data used

for the pothole detection experiments is described in Section 5.2.3. The architecture of the

pothole detection system is described in Section 5.2.4. Results from the detection system

are described in Section 5.2.5.
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5.2.2 Related Work

Pothole detection has been the focus of some previous works, however the sensor device

has generally been a smartphone instead of embedded vehicle sensors. We focus on the use

of embedded sensors since they are standardized across vehicles and are integrated into

the controls and communications systems of the vehicle. This makes them a much more

logical resource as the detection system can be integrated into the existing framework of

the vehicle and Cloud system. Smartphones generally have a much higher sensor operating

frequency (300+ Hz) than embedded vehicle sensors. These higher frequencies allow for

a detection system to measure the full dynamic motion of the vehicle caused by potholes

or other road features. This is important since when we transition to using low frequency

acceleration signals we lose some of the signal properties that distinguish pothole regions

in a single vehicle since so little data is available. Signal undersampling has been shown

to be problematic for other vehicular applications such as speed estimation [88].

Regarding existing pothole detection methods, the Pothole Patrol system [89] uses

speed, high-pass, and vertical and lateral acceleration filters to identify potholes from test

signals from Boston taxis. Road bumps are detected in [90] by examining the peak vertical

acceleration and the duration for which the acceleration dips below a heuristically defined

threshold. Gaussian Mixture Models are used in [91] on aggregated data to determine

potholes from 100 taxis in Shenzhen, China by examining z-scores of listed Pothole Patrol

features [89]. A linear model for speed using 38 Hz sensors was constructed to try to

eliminate the speed dependence in [92], however the vertical acceleration, which is used

to create most of the features, can deviate significantly from the linear model resulting in

poor adaptations to varied speed.

Since these works use non-embedded high-frequency sensors, they rely on only one

vehicle for detection. They therefore ignore problems resulting from GPS error since they

only consider a single trace where each vehicle must hit a pothole and are not focused on
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determining the exact pothole location. The GPS error increases classification difficulty,

as some normal road regions resemble pothole regions, and vice-versa, due to errors in the

reported locations. This is particularly problematic when aggregating data from multiple

vehicles with different dynamics as the exact ordering of the measurements cannot be

determined. These, and previous works which use crowdsourcing detection techniques

for pothole detection [3], do not consider multi-lane scenarios where GPS position error

obfuscates the pothole data with normal road data from adjacent lanes. We also address

the issue of finely localizing the pothole longitudinally on the road, which has not been

addressed in previous works.

Our proposed system uses accelerometer data and is therefore reliant on a few initial

vehicles being unable to avoid the potholes. The information obtained by those vehicles

that could not avoid driving over the potholes can be shared with subsequent vehicles for

their benefit. In comparison, there are other systems which attempt to help drivers by

pre-detecting potholes in real-time by using images from vehicle-mounted cameras instead

of accelerometers. However, even with the advantage of being able to picture the pothole

before the vehicle enters it, the required angle of the camera and subsequent processing

time does not necessarily provide the driver with sufficient opportunity to avoid the pot-

hole. With regard to the image-based methods, the work in [93] looks for pothole regions in

images via segmentation methods employing shape-based thresholding, and examining ge-

ometric and texture based properties of suspect pothole regions. Similarly, large simulated

potholes are found in images in [94] by looking for large circular objects with a predeter-

mined brightness difference. Unlike accelerometer-based detection methods, image-based

methods require specific lighting conditions to function properly and may be unusable at

night or in poor weather conditions.
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Figure 5.23: Coordinate system in relation to the vehicle for pothole detection

5.2.3 Pothole Data

Similar to the road angle estimation experiments as outlined in Section 5.1.4, we require

data from different vehicles driving over potholes in diverse scenarios in order to create an

extensive model capable of detecting potholes in a variety of circumstances. We also require

ground-truth information for training the detection models. Obtaining such data through

real-world driving is prohibitively labor-intensive and expensive. Therefore, similar to the

road angle experiments and as outlined in Section 2.8, we use a simulator to synthesize

training and testing data for our model and augment the system by testing the models

created using the simulated data on real-world data. The following sections outline the

simulated and real-world data used for the pothole detection problem. The data and

variables are defined in reference to the coordinate system shown in Figure 5.23.

5.2.3.1 Simulated Data

As detailed in Section 2.8, we use the CarSimr program to simulate vehicles driving over

potholes. With CarSimr, we simulated vehicles driving a total of 5220 km in diverse

conditions over potholes 22950 times with known ground-truth locations. These totals

vastly exceed what can be collected and labeled manually, and provides us with a basis for

creating models to subsequently apply to real-world data.

We designed an 8.7 km long, two-lane road course featuring different degrees of cur-

vature, incline, and bank that one may expect to find in real-world scenarios. The road
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Figure 5.24: Ground truth simulated road details, (a) Overhead road view, (b) Incline and
Bank angles

course was designed according to standard practices [84] with slight modifications to reflect

real-world deviations from the ideal standard. The road topography including an overhead

view, and incline and bank angles is shown in Figure 5.24. The course contains many

more features than what would be typical for an 8.7 km road, however this allows us to

test for potholes under difficult conditions. The non-pothole features of these courses were

meant to induce vehicle acceleration responses unrelated to potholes. Using the additional

features, the detection system could be trained to avoid false positives.

The terrain of the normal road is an important consideration for road course design,

particularly when comparisons are made to potholes. For a flat distance l traveled on the

road, where l is determined by the arc length of the parametric equations for the road

(X(t), Y (t)) as

(5.28)l (X(t), Y (t)) =

∫ t

0

√

(X ′(T ))2 + (Y ′(T ))2 dT,

where the prime notation indicates the derivative with respect to the parametric variable,

the road roughness profile, h(l), was constructed using the 2D Weierstrass-Mandelbrot
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(W-M) function [95],

(5.29)h(l) = L

(

G

L

)D−1 nmax
∑

n=1

cos
(

2πγnl

L
+ φn

)

γ(2−D)n
,

to represent a paved asphalt road. In the W-M function, L is the length of the road,

n is the frequency level index, nmax is the maximum frequency level, γ is the relative

phase difference between fractal modes (set equal to 1.5), and φn is a random phase shift

for frequency n uniformly distributed in the range [0, 2π). The parameters D and G are

the fractal dimension and fractal roughness parameters, respectively, chosen based on the

power spectral density of the surface distribution,

(5.30)φ(ω) = Rωk,

where

D =
k + 5

2
, (5.31)

G = (2R ln γ)
1

2D−2 . (5.32)

The W-M function has been shown to well approximate road roughness and its effect on

vehicle dynamics [96, 97]. No road is uniform across the width of the road so four different

profiles were generated for the two-lane simulated road: one profile for each side of the

vehicle in each of the two lanes. These profile locations represent the tire contact points

on each side of the vehicle when driving in each of the respective lanes. The four different

profiles were constructed by randomly shifting each of the phase shifts from the road profile

in the adjacent lane. Potholes were simulated by adding a constant dip of the respective

pothole size to the roughness profile. The details of the simulated potholes are shown in

Table 5.5 and represent varying lengths and depths for shallow potholes with no structural

failure below the top of the base layer beneath the road surface [98]. An example of the

roughness profiles for a 0.8 m long, 6 cm deep pothole is shown in Figure 5.25.
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Table 5.5: Simulated road pothole details

Quality Details

Length {0.2, 0.4, 0.6, 0.8, 1.0, 1.2} m
Depth {2, 4, 6, 8, 10} cm

Location
Every 100 m, Randomly chosen on

one side of one of the two lanes
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Figure 5.25: Road roughness data for the profiles on each side of each lane for the simulated
data with a 0.8 m long, 6 cm deep pothole on the right side of the right lane

For testing purposes we recreated two road types by appropriately selecting runs from

the simulated data set. The first road is a city road where the vehicles traveled at an average

speed of 50 km/h with a 10 km/h standard deviation. The second road is a highway road

where the vehicles traveled at an average speed of 100 km/h with a 15 km/h standard

deviation. The vehicles were randomly selected to drive in one of the two lanes with equal

probability. Experiments testing single-lane roads were done by simulating vehicles in only

the left lane.

The data for each simulation was output at 200 Hz, then downsampled to 1 Hz with

randomized starting points to emulate the low-frequency data acquisition of real-world

vehicle embedded sensors. Data on the following variables was collected:
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Table 5.6: Standard deviation on error added to measured sensor data from simulations

Sensor Standard Deviation

GPS

4 m i.i.d. for each vehicle plus

0.3 m i.i.d. each individual sample

Errors added in both coordinate directions (i.i.d.)

Speed 3.6 km/h

Acceleration 0.1 m/s2

• GPS coordinates, (x, y)

• Vehicle speed, v

• Longitudinal, lateral, and vertical accelerations (ax, ay, az), respectively at the vehicle

center of mass

Noise was added to the simulated data to better represent real-world deviations. Ta-

ble 5.6 shows the standard deviations for each of the sensors. All noise is i.i.d. zero-mean,

and normally distributed unless otherwise indicated. These values represent typical GPS

errors for short time frames [26].

5.2.3.2 Real-world Data

Real-world data was collected by driving repeated laps on a square of multi-lane city roads

in Warren, MI, USA. Each lap covered 6.6 km. The trip was repeated 8 times in each of

the left and right lanes. Since the multi-lane scenario is the focus of this experiment, we

exclude data from the beginning and end of each road segment where the vehicle had to

merge into or from the right lane for turning.

Data was collected from the embedded vehicle sensors for use in the pothole detection

system. Although the simulations assumed that each sensor operated at 1 Hz, due to

manufacturer specifications, some of the embedded sensors deviated from this frequency.

The GPS location was updated at 1 Hz. The magnitude of the vertical acceleration updated

at 1 Hz while the lateral acceleration updated at 50 Hz. The speed was updated at 10 Hz.
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Due to the shared CAN bus and the asynchronous measurements made from the different

sensors, the output times for the sensor data were not perfectly periodic and were instead

often bunched or had larger delays. This was demonstrated by the previously presented

example speed data in Table 3.3.

A video feed of the trip from a dashboard-mounted smartphone was used to visually

identify potholes for ground-truth reference. The timestamps on the video were mapped

to the GPS locations from the phone to identify the pothole locations. Lane locations were

determined by fitting parametric curves to Google Earth data. A total of 46 potholes were

identified in the left lane and 44 were identified in the right lane. There were a number

of regions where there were multiple consecutive potholes with small spacing (often less

than a meter) between them, and these were labeled as a single pothole region. Due to

the low quality of the roads, this resulted in pothole regions that were significantly longer

than those used in the simulated data. Due to the number of required mappings between

devices, the asynchronous clock nature between the devices, the 1 Hz sampling from the

GPS device leading to poor spatial resolution, and the low quality of the road terrain,

the ground-truth pothole locations were difficult to identify. The reported numbers are a

best-effort determination.

5.2.4 Pothole Detection Architecture

The goals of our pothole detection system are two-fold. The first goal is to accurately and

reliably detect potholes in multi-lane environments. This involves determining in which

lane a pothole is in and determining its exact longitudinal location on the road. The second

goal is to reduce the required bandwidth of the system by avoiding transmitting excessive

sensor data from the vehicles to the Cloud, while still maintaining good pothole detection

rates and localization accuracy.

To accomplish these goals, we design a Filtered Multi-stage Detection System, with the
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Figure 5.26: Architecture of the Filtered Multi-stage Detection Pothole system.

architecture shown in the block diagram in Figure 5.26. Following this architecture, the

vehicles first locally acquire GPS, speed, and acceleration samples from their embedded

sensors. If road bank and incline angle information is unavailable a priori, then the raw

sensor data is used to estimate the road angles locally in each vehicle to determine which

acceleration components correspond to normal road driving, as detailed in Section 5.1.3.

Any acceleration components that differ from normal road conditions by a certain thresh-

old, as explained in the filtering algorithm in Section 5.2.4.1, are then transmitted to the

Cloud for aggregation.

Once the data is aggregated in the Cloud, a sliding window scheme groups the data

to calculate features, as described in Section 5.2.4.2, with weightings for each data sample

to account for multi-lane environments, as described in Section 4.2.3. After calculating

the resulting features, the features are input into the trained classifier to determine if a

pothole exists. For positive detections, the classifier output is used to localize the pothole

longitudinally on the road.

5.2.4.1 Vehicle Data Filter

The in-vehicle data filter is designed to reduce the required bandwidth of the detection

system by refraining from transmitting data to the Cloud that correspond to normal road

conditions. The filter is constructed similarly to the in-vehicle road angle filter in Sec-
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tion 5.1.3.1.

This filter is created by comparing the measured acceleration vector from the vehicle

to an expected acceleration vector derived from gravity, centripetal acceleration, and the

forward acceleration. If the observed acceleration vector differs from the expected, it

is a possible indication that a pothole is present. This process also helps to dissociate

large acceleration components that may mistakenly indicate a pothole by appropriately

determining if those acceleration components should be expected at that location.

The design of this filter is an example of using side information, where environmental

information obtained for other purposes can be used to augment another algorithm. If

the road angles are not known a priori, for example as provided as side information by

a continuous reconstruction of the road angle data as given by example results in Sec-

tion 5.1.5, then the road angle estimation algorithm for individual samples, as detailed in

Section 5.1.3, can be used instead to estimate the angles for each individual sample.

Once the angles are estimated or transmitted to the vehicle and the rotation matrix R̂

is constructed, a comparison can be made between the measured and expected acceleration

vectors in the cost function, D, given by Equation 5.25. The normed difference between the

vectors is compared against a threshold, τ , and only the data which satisfies the following

inequality,
(5.33)D ≥ τ,

is transmitted to the Cloud. Data in windows for which D < τ are not uploaded to the

Cloud under the assumption that the data does not contain any discriminating information

as it too closely resembles the expected normal road data. The data transmitted is only

the acceleration components that hopefully correspond to the perturbation,

(5.34)(a− f)− R̂w.

The filter is essentially the opposite of the filter for road angle signal reconstruction

in Section 5.1.3.1. For the road angles, we only want to transmit data where the rotated
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acceleration vector and the measured one are in close agreement, whereas for potholes we

look for acceleration vectors with a large difference as that could indicate a perturbation.

This filter is particularly useful for multi-lane detection. The most difficult part of

multi-lane detection is having normal road data from adjacent lanes blend together with

the data from the pothole region (and vice-versa) due to GPS error. This filter helps to

systematically reduce the data blending problem since the normal road data from adjacent

lanes is no longer uploaded to the Cloud and acceleration components related to expected

normal driving conditions are removed.

5.2.4.2 Features

We first examine the effects that heterogeneous vehicles, potholes, and driving patterns

have on the accelerometer signals. This is important for determining discriminating fea-

tures for use as candidates in the detection models, and to design the models to be appli-

cable under general conditions without tuning for specific situations.

We analyze the effect that vehicle speed has on the simulated vertical acceleration

measurements (excluding gravity for these purposes). As an example, the 100 Hz vertical

acceleration signals for the three different vehicle types driving over a 40 cm long, 4 cm

deep pothole are shown in Figure 5.27a and Figure 5.27b for vehicles traveling at 25 km/h

and 100 km/h, respectively. The vehicle’s front and back tires each individually produce

significant vertical acceleration peaks when driving over the pothole, with the distance

between them dependent on the length of the vehicle. Since the sensor temporal output

frequency is the same for the trials at each speed, there is less data available in a given

distance at higher speeds since the traveling time is reduced. However, the response of

the suspension system for the different speeds differs beyond just the spatial sampling

rate since the impulses corresponding to the vehicle entering and exiting the pothole are

closer in time at higher speeds. Also, the aftershocks are larger at a further distance from
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the pothole at higher speeds since the vertical acceleration decays as a function of time,

not distance. This emphasizes the importance of including speed as a component in the

candidate features as it affects the acceleration signal properties.

The initial peaks from driving over the potholes are potential signature elements to

design candidate features on for pothole detection. We therefore examine the upper and

lower bounds of the vertical acceleration as a function of velocity. The results are shown in

Figure 5.28 for normal road and pothole regions. When driving over a pothole, the upper

bound on the acceleration increases until about 30 km/h and then decreases. The lower

bound is approximately constant at all speeds. The bounds on the vertical acceleration on

the normal road, however, symmetrically increase as the velocity increases. This opposing

behavior between the normal road and pothole regions increases the difficulty of detecting

potholes at high speeds, particularly when there is less available data. The bounds are also

proportional to the size of the pothole and the vehicle center of mass height.

We perform a similar investigation with the lateral acceleration, as shown in Figure 5.29.

A lateral acceleration response distinguishes potholes from features that span the width

of the road, such as speedbumps or expansion joints. The upper and lower bounds on

the lateral acceleration as a function of speed behave similarly to the vertical acceleration

when driving over a pothole. There is an increase in the magnitude of the bound over the

pothole until about 30 km/h, which is followed by a decrease. The lateral acceleration is

much more stable than the vertical acceleration when driving on a normal road.

The bounds and range of the acceleration values, as well as their relation to velocity are

therefore important discriminative features that could be used to detect the potholes. Can-

didate features are generated as functions of the acceleration and velocity measurements

including weighted means, standard deviations, and maximum values of the raw aggre-

gated inertial data. Absolute values as well as products and ratios of the accelerations

with speed along the three coordinate axes are also calculated. The various combinations
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Figure 5.27: Vertical acceleration signals from vehicles driving over a 40 cm long, 4 cm
deep pothole at (a) 25 km/h and (b) 100 km/h.
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Figure 5.28: Upper and lower bounds of the vehicle vertical acceleration as a function of
speed on (a) normal road, and (b) 40 cm long, 4 cm deep pothole.
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Figure 5.29: Upper and lower bounds of lateral acceleration on (a) normal road, and (b)
40 cm long, 4 cm deep pothole.

of these functions result in a list of 85 candidate features.

The low sampling frequency of the embedded sensors limits the nature of the candidate

feature list. A vehicle traveling at 50 km/h would average only 0.72 samples in each 10 m

window when using 1 Hz sampling. Therefore, many vehicle-specific features that would

require multiple data samples per window, such as the number of zero-crossings, can not

be defined. The window size would have to be significantly increased to consider these

features, however that would result in the windows being orders of magnitude larger than

the pothole region, which would encompass too much of the normal road to be able to

identify potholes. Therefore the features are determined over the entire aggregated data

set and are not defined specifically for data from any individual vehicles beyond using

the weighting schemes for multi-lane or temporal issues, outlined in Sections 4.2.3 and 4.3

respectively.

The resulting features selected by the greedy forward feature selection algorithm are

shown in Table 5.7. Note that there are features selected corresponding to each acceler-

ation coordinate axis. As vehicles drive into potholes, they generally enter one tire at a

time, resulting in a noticeable change in the accelerations along all three coordinate axes
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Table 5.7: Selected SVM features from greedy forward selection algorithm

max(ax) mean|ay| max(az) mean(v)

max|ax| mean
∣

∣

ay
v

∣

∣ mean|az|
std(axv) std(azv)

max(azv)

std|az|
mean|azv|

as one corner of the vehicle dips lower than then rebounds compared to the rest of the

vehicle. As expected from previous observations, speed has a major influence on the vehicle

accelerations and speed-related features are therefore selected by the algorithm.

5.2.4.3 Cloud Data Filter

The features described in the previous section are not calculated for every window for

data aggregated on the Cloud. When the in-vehicle data filter described in Section 5.2.4.1

is applied, only a fraction of the measured data is sent to the Cloud. In normal road

regions, this results in only noisy or corrupt data being transmitted to the Cloud. This

could lead to a significant number of false alarms since there would be no normal road data

aggregated from other vehicles to balance out the extreme data. A second filter is therefore

implemented in the Cloud before applying the pothole detector SVM to the aggregated

data to mitigate this situation. We disallow positive pothole detections in any window

that does contain a minimum number of data samples, p. This is based on a threshold

fraction, η, of the expected number of data samples from the V vehicles if all the data was

transmitted, where

(5.35)p = η
V s

v
.

The SVM is only applied in windows for which the sum of the weights of all the aggregated

data samples in the window is greater than p.
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5.2.5 Detection Results

The Filtered Multi-stage Detection System, as described in Section 5.2.4, is used to detect

and localize potholes. In the following, we first analyze the efficacy of the in-vehicle data

filter and its impact on the bandwidth requirements of the vehicle-Cloud network in Sec-

tion 5.2.5.1. We then analyze the detection and localization accuracy for the corresponding

tradeoffs in the number of required vehicles and the bandwidth requirements in the simu-

lated data on multi-lane roads in Section 5.2.5.2 and single lane roads in Section 5.2.5.3.

Results from testing real-world data are provided in Section 5.2.5.4. Temporal effects on

the system are analyzed in Section 5.2.5.5. Finally the impact of the scope of the data set

used for training the detection model is examined in Section 5.2.5.6.

5.2.5.1 In-vehicle Data Filtering

The filtering algorithm outlined in Section 5.2.4.1 uses the deviations from the expected

acceleration measurements to both remove acceleration components unrelated to potholes

and to prevent the transmission of data to the Cloud of any sample that likely corresponds

to normal road conditions.

We first demonstrate the efficacy of the filter. Figure 5.30 shows the ground-truth bank

angle signal from the simulated data set along with the estimated bank angles calculated

from samples from 100 vehicles driving at an average of 50 km/h in an idealized situation

with no added GPS or acceleration noise. The majority of the calculated sample bank

angle values closely match the ground truth signal (the ground truth data overlaps the

majority of the samples on the graph), indicating the calculated angles are correct. The

samples that deviate from the ground truth are generally isolated to the pothole locations,

where perturbations cause discrepancies between the expected and measured acceleration

vectors. The angle values differ from the ground-truth since the algorithm attempts to

rotate the expected acceleration vector from the inertial frame into a measured anomalous
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Figure 5.30: Road bank angle estimates from vehicle acceleration measurements in the
presence of potholes.
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Figure 5.31: Road bank angle estimates from vehicle acceleration measurements which
pass the threshold filter, τ = 2 m/s2.

vehicle state.

The discrepancies between the acceleration vectors are made more obvious when the

vehicle data filter is applied with τ = 2 m/s2. The resulting measurements that pass the

filter are shown in Figure 5.31. Here, all of the data which passes the filter correspond to

pothole locations. Therefore this filter can be extremely effective in isolating the pothole

data on each vehicle before transmission to the Cloud.
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It should be noted that the situation isn’t necessarily as clean as displayed in these

figures. Sensor noise or other perturbations, such as speedbumps, could cause an accelera-

tion measurement to still pass the vehicle filter. This is why crowdsourcing and the Cloud

SVM detector are still necessary.

The transmission bandwidth is a function of the normed acceleration difference thresh-

old, τ , being used in the vehicles to determine how much of the data is filtered out before

transmission. For the example simulated road, with vehicles traveling at an average of 50

km/h, Figure 5.32 shows the resulting percentage of data that passes the filter for trans-

mission. As the threshold initially increases above zero, the amount of data transmitted

rapidly falls off as the suspected normal road data is held from transmission. The transmis-

sion percentage then levels off as only extreme suspected pothole data is able to pass the

vehicle filter. The exact transmission value for a given threshold depends on the specific

vehicle and road environment, however the remainder of the results will be in reference to

our simulated course.

Assessing the value of decreasing the amount of data transmitted only makes sense in

the context of the pothole detection rates. In the following section, we analyze the impact

of reducing the amount of transmitted data and analyze the tradeoffs in the number of

sampling vehicles on the pothole detection rate and localization values.

5.2.5.2 Simulated Multi-lane Detection Results

Due to the multi-lane environment we examine three categories of pothole detections:

1. True Detection, Correct Lane - Correctly detecting the pothole in the lane the re-

spective pothole is residing.

2. True Detection, Adjacent Lane - Correctly detecting a pothole, however due to GPS

error, detecting it in an adjacent lane from its true location. This is generally a result

of GPS errors erroneously locating the discerning pothole data in an incorrect lane.
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Figure 5.32: Percentage of data transmitted from vehicle to Cloud in Filtered Multi-Stage
Detection as function of threshold τ for two-lane 50 km/h scenario.

Although these are technically incorrect detections, we classify them separately. For

any application of the detection system requiring manual inspection, such as repairing

the pothole, inspectors would be able to immediately see the correct pothole lane.

This detection class does not apply to single-lane roads.

3. False Alarms - Positive detections where there is no pothole in the vicinity.

The detection rates for the correct and adjacent lane classifications are shown in Fig-

ure 5.33 and Figure 5.34 respectively as a function of the number of vehicles transmitting

data and the ratio of data that passes the filter on each vehicle for the 50 km/h scenario.

For any transmission ratio, the correct lane detection rate increases as the number of ve-

hicles increases. Increasing the filtering threshold on the vehicle (and therefore decreasing

the transmission ratio) initially improves detection as the normal road data is eliminated,

however the detection rate then declines for high thresholds (low transmission ratios) as the

increasing threshold eliminates discerning pothole data in addition to normal road data.

The system performs best when only 30% of the vehicle data is transmitted. Therefore the
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benefits of decreasing the amount of data transmitted are twofold:

1. The required bandwidth of the system is decreased as less data is transmitted.

2. The detection rate improves since there is less normal road data mixing in with the

pothole data since the normal road data is not being transmitted.

Detections in adjacent lanes follow a similar pattern to the correct lane detection with

respect to the vehicle filtering threshold, however the behavior differs with respect to the

number of vehicles. The adjacent lane detection rate is initially high for a low number of

vehicles, where a few vehicle traces with extreme GPS errors could wield a large influence.

However as the number of vehicles involved in detection increases, the distribution of traces

better clusters around their true lanes and the detector can better discern in which lane the

pothole actually resides. For a large number of vehicles where the correct lane detection

rate is highest, the adjacent lane detection rate is close to zero.

The false alarms per true pothole rate for the varying vehicle numbers and transmission

ratios are shown in Figure 5.35. Similar to adjacent lane detections, the false alarm rate

initially increases for a small number of vehicles, where any individual vehicle’s corrupt or

noisy measurements has a large influence, but then decreases once the number of vehicles

increases the confidence in the group knowledge. The false alarm rate is low overall,

particularly for the conditions where the detection rate is highest.

The ability to localize the pothole on the road, not just to a specific lane, but also by

longitudinal distance on the road is important, particularly to any automated location-

based control algorithm. The root-mean-square error (RMSE) of the localization accuracy

for our proposed detection scheme is shown in Figure 5.36. The pattern is similar to

the correct detection rate. The accuracy increases as the number of vehicles increases,

reaching a minimum of about 2 m under tested values where the correct lane detection

rate is highest. This is significantly better than the 10-15 m range of prior works dictated

by the length of the sliding windows.
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Figure 5.33: Detection rate for potholes on two-lane road in their correct lane - 50 km/h
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Figure 5.34: Detection rate for potholes on two-lane road in an adjacent lane to their true
location - 50 km/h
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Figure 5.35: False Alarms per true pothole for two-lane pothole detection - 50 km/h

10
0

10
1

10
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  
RMSE Localization Accuracy (m)

Number of Vehicles Per Lane

 

F
ra

c
ti
o
n
 o

f 
D

a
ta

 T
ra

n
s
m

it
te

d
 t
o
 C

lo
u
d

2

2.5

3

3.5

4

4.5

5

5.5

6

Figure 5.36: Root Mean Square Error on pothole localization distance on two-lane road -
50 km/h
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Figure 5.37: Detection rate for potholes in their correct lane on two-lane road - 100 km/h
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Figure 5.38: Comparison of false alarm rates for multi-lane pothole detection when trans-
mitting 30% of the data when filtering by both the angle determination method of this
work and the Mahalanobis distance threshold of previous works - 50 km/h.
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The detection rates are also a function of the speed of the vehicles. Higher vehicle

speeds increase the detection difficulty due to a number of factors. For one, since the

sensors operate at a constant temporal frequency, the spatial sampling rate (the domain

of interest) is decreased as the speed increases. Therefore less data is available for a given

number of vehicle traces at higher speeds. Secondly, as the speed increases, normal road

vehicle behavior starts to resemble pothole behavior [3], as demonstrated in Section 5.2.4.2.

Vehicles tend to bounce more on normal roads at higher speeds, while they are also able to

more easily glide over potholes. This somewhat inverted behavior means that the calculated

detection features are less discerning at higher speeds.

This contrasting speed behavior is shown for the correct lane detection rate in Fig-

ure 5.37 for simulated vehicles driving on the course at an average of 100 km/h. Note

that it requires many more vehicles to achieve similar results than what is shown for the

50 km/h scenario in Figure 5.33. False alarms and localization results are also similarly

degraded.

We also compare this in-vehicle filtering algorithm to one from previous work [3], which

uses the comparison of the Mahalanobis distance of the accelerometer features to a thresh-

old. Although the correct lane detections are only slightly improved compared to the

Mahalanobis scheme, the false alarm rate is significantly improved for our system, partic-

ularly for the multi-lane environment as shown in Figure 5.38. The Mahalanobis distance

threshold allows through samples with large acceleration components, even if those compo-

nents are to be expected from normal driving. Given the winding nature of our simulated

course, this leads to many false positives.

These results were for multi-lane weights calculated using the autocorrelated weighting

model where all the samples from a single vehicle are given equal weight. However, this

involves estimating additional parameters of the covariance matrix, which we assumed was

known for these results. For comparison, the detection results for the multi-lane road
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Figure 5.39: Comparison of correct lane detection results for using autocorrelated multi-
lane weights per vehicle against independent weights for each data sample

for using independent weights for each data sample are shown in Figure 5.39 for vehicles

traveling at an average of 50 km/h and 100 km/h. The detection results for the correlated

weights are better than those for the independent weights as information from the entire

group is used to enhance the weight determination process. There is also a significant

improvement for the adjacent lane detection rate when using the autocorrelated weights,

as shown in Figure 5.40.

5.2.5.3 Simulated Data Single Lane Detection Comparison

We compare the detection results of the previous section to those obtained from crowd-

sourcing vehicles from a single lane environment. The detection rate and false alarm per

true pothole rate are shown in Figure 5.41 and Figure 5.42 respectively, and the RMS

localization error is shown in Figure 5.43 for an average vehicle speed of 50 km/h. The

results are significantly improved over the multi-lane scenario as there is no longer normal
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Figure 5.40: Comparison of adjacent lane detection results for using autocorrelated multi-
lane weights per vehicle against independent weights for each data sample

road data from adjacent lanes being mixed in with the pothole data. Significantly fewer

vehicles are required with only a single lane to obtain similar detection rates.

A comparison of the multi-lane and single lane detection rates for 30% of data passing

the in-vehicle filter for both 50 km/h and 100 km/h roads is shown in Figure 5.44. At 50

km/h it only takes about 20 vehicles to reach a 90% detection rate for a single-lane road.

It takes over 100 vehicles per lane to reach the same detection threshold for a two-lane

road. The results would continue to degrade as the number of lanes increases and there is

more normal road data from adjacent lanes to obfuscate a pothole. However on most city

roads it does not take a significant amount of time to obtain such vehicle numbers.

5.2.5.4 Real-world Data

We applied the SVMs trained from the simulated data to the real-world data outlined in

Section 5.2.3.2. Overall, the detectors derived from simulation perform adequately when

applied to real-world data and compare reasonably well to the simulated results given the

varied conditions.

The number of detections for each classification type for the real-world data is shown in
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Figure 5.41: Detection rate for potholes in single-lane scenario - 50 km/h
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Figure 5.42: False alarm rate per true pothole for single-lane scenario - 50 km/h
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Figure 5.43: Root Mean Square Error on pothole localization distance for single-lane sce-
nario - 50 km/h

Table 5.8. Overall, 60% of the potholes were detected in either the correct (51%) or adjacent

(9%) lanes. The detection rates from the two-lane simulation results for independent

weights for 8 vehicles per lane at an average of 50 km/h are 35% detection in the correct

lane, 8% in the adjacent lane, and 0.04 false alarms per true pothole. The correct and

adjacent lane detection results are comparable, although slightly higher than what would

be expected for this many vehicles given the results from the simulated data. This is likely

due to the increased sampling frequency from the lateral acceleration sensor and from the

lengthier pothole regions.

The false alarm rate is higher than expected though. This is due partially to the

extremely rough and broken paving of the road, and the slightly higher speeds than 50

km/h. It should also be noted that three of the false alarms correspond to manhole covers.

We also demonstrate how the detection rate increases as a function of the number of

vehicles transmitting their data. By using only a subset of the traces from the real-world
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Figure 5.44: Comparison of correct lane detection rates for single and multi-lane environ-
ments at different speeds when 30% of the data passes the in-vehicle data filter and is
transmitted to the Cloud.

data set, Figure 5.45 shows the detection rates for aggregating data from a varied number

of vehicles per lane. The overall increasing detection rate trend is similar to that from the

simulated data and we expect the detection rate to continue to increase as data from more

vehicles is collected.

5.2.5.5 Temporal Effects

The impact of the temporal weights, defined in Section 4.3, are tested by analyzing how

the detection system responds to dynamically changing pothole conditions.

We rerun the simulated environment by aggregating samples from 40 vehicles per time

unit (with average speeds of 50 km/h), and running the detection system after every time

unit. After 25 time units, the potholes were simulated to be repaired, i.e., data after this

time threshold was drawn from simulations without potholes. The time decay constant
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Table 5.8: Pothole detection results for real-world multi-lane data

Road
True

Potholes

Correct Lane

Detection

Adjacent Lane

Detection

False

Alarms

1 18 6 1 3

2 28 14 4 7

3 31 14 3 6

4 13 12 0 3

Total 90 46 8 19
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Figure 5.45: Real-world detection rates as a function of the number of vehicles per lane
providing data.

for weighting the data samples was set to τT = 6 time units. The threshold for the

in-vehicle filter allowed for approximately 30% of the data to be transmitted when the

potholes existed. The detection results for both the correct and adjacent lanes are shown

in Figure 5.46. Note that after t = 25, the detection rates are still shown using the correct

and adjacent lane detection terminology. After this threshold time, all the detections would

technically be false alarms, however continuing to show the detection results in terms of

where the potholes previously were provides appropriate context. This works well since no

new potholes were added.
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Also shown in Figure 5.46 is the temporally weighted number of vehicles used in detec-

tion. The value for this experiment reaches a stable value at approximately 124 vehicles

per lane. This is a function of the number of vehicles added per time unit and the decay

rate of the weightings. Other temporal rates would result in a different stable value (or

fluctuating if the rates fluctuated), however the stable rules were used for this experiment

so that the detection rates would stabilize, effectively removing the number of added or

removed vehicles as a variable, since everything can be evaluated in the context of the

stable detection rate. Note that for this scenario, the detection rate reaches a stable value

of about 0.89, which is just slightly below the rate of 0.95 shown in Figure 5.44 for 124

vehicles per lane. The detection rate declines fairly rapidly after the potholes are removed,

with no more detections in the pothole regions by t = 32. This quick dropoff in detections

is due to the relatively large rate of decay of the weights from the given time constant.

A sample collected at t = 24 (the last time instant the potholes existed) would only be

weighted at a factor of 0.26 when running the detection process at t = 32.

The opposite of this scenario is detecting potholes where none existed before (and data

was already aggregated indicating as such). The simulation settings were set the same as

for the previous experiment, however there were no potholes initially and at t = 25 potholes

were created at the 85 simulated locations. Detection results are shown in Figure 5.47.

These results are similar to those for the pothole being repaired in that detections begin

to increase when the potholes exist. Note that the detection rate increase is slower than

that shown in Figure 5.46 where the potholes exist at t = 0. This is because in the second

scenario when the potholes begin to be detected there remains data from previous times

when there was no pothole incorrectly influencing the detection result. The system has

to wait for the non-pothole information to decay out of the system using the temporal

weighting scheme before the detection rate can reach the target level.

In general, the aggregated data from a single vehicle would not be indicated by a single
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Figure 5.46: Detection results for simulated experiment where potholes are repaired at
t = 25.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Time

D
e
te

c
ti
o
n
 R

a
te

 

 

0 5 10 15 20 25 30 35 40 45 50
0

30

60

90

120

150

T
im

e
 W

e
ig

h
te

d
 N

u
m

b
e
r 

o
f 
V

e
h
ic

le
s
 P

e
r 

L
a
n
e

Correct Lane Detection Rate

Adjacent Lane Detection Rate

Potholes Created

Number of Vehicles

Figure 5.47: Detection results for simulated experiment where potholes are created at
t = 25.
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timestamp, but instead be a function of the speed of the vehicle along the road. However

these results still illustrate the larger point of how the detection system is able to adapt

to temporally changing conditions.

5.2.5.6 Training Data

The Filtered Multi-stage Pothole Detector is designed to isolate the acceleration compo-

nents on the vehicle that correspond to the pothole interaction, so that the aggregated

data set on the Cloud consists only of acceleration components unrelated to normal road

driving. This process allows for the creation of a generic detection model that is applicable

to diverse environments. Generic models are important as tuning embedded sensors or

detection parameters for specific situations may be extremely difficult.

To further demonstrate the importance of using extensive data, we simulated vehicles

driving on four additional road courses, where instead of a continually changing road

environment, as in the road course described in Section 5.2.3.1, each of these roads has

only a single type of non-pothole environmental feature. Details of these four road courses

are provided in Table 5.9. The road roughness and types of vehicles used were similar to

previous simulations.

To demonstrate the importance of using extensive data from a wide variety of circum-

stances and to try and isolate the anomalous acceleration components, we trained new

SVMs by using the simulated raw acceleration data from the vehicles on these four road

courses. Five different SVMs were trained: four from training using data from each road

separately, and one using data aggregated from all four courses. These SVMs were then

used to test and detect potholes on each of the different courses. The detection rate and

false alarms per true pothole are shown in Table 5.10 and Table 5.11, respectively, for each

training and test combination of the road courses with comparisons to training the SVM

using all roads. These results are for vehicles traveling at an average of 50 km/h, using
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Table 5.9: Description of simulated road courses to compare for model training.

Course Road Style Road Features (100 m spacing)

1

0.4 km long

Straight,

Flat

100 cm long, 8 cm deep pothole

40 cm long, 3.5 cm tall speedbump

120 cm long, 3.5 cm tall speedbump

2

3.1 km long

Straight,

Flat

30 potholes

2 cm - 10 cm deep

20 cm - 120 cm long

3

3.1 km long

Straight,

5◦ incline

30 potholes

2 cm - 10 cm deep

20 cm - 120 cm long

4

3.1 km long

Sinusoidally

curving, Flat

30 potholes

2 cm - 10 cm deep

20 cm - 120 cm long

data aggregated from 100 vehicles.

Depending on how different the environmental conditions of the courses are, the clas-

sifiers trained on only one course are inaccurate when applied to other courses. The

speedbumps on Course 1, for example, are continually detected as potholes by the other

SVMs and the curves on Course 4 mask the potholes from the classifiers trained on the

straight-line courses. The SVM boundaries are calculated to maximize the margin on the

training course without any consideration as to their impact on features from other courses.

The SVM trained on data from all the courses does not always beat the SVM trained on

individual courses when tested on those respective courses likely due to overfitting, but

overall is better able to handle diverse road conditions.

These results reinforce the need to capture training data representing as many diverse

scenarios as possible to create a general model. Simulations are used as the size and detail

of the data set would be too costly to empirically collect.
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Table 5.10: True detection rates for pothole detection on different road courses (see Ta-
ble 5.9) when trained on individual courses

Testing Course

1 2 3 4

T
ra

in
in
g
C
o
u
rs
e 1 1.00 0.99 1.00 0.42

2 1.00 0.99 0.97 0.35

3 1.00 1.00 1.00 0.43

4 1.00 0.85 0.87 0.95

All 1.00 1.00 0.99 0.98

Table 5.11: False alarms per true pothole for pothole detection on different road courses
(see Table 5.9) when trained on individual courses

Testing Course

1 2 3 4

T
ra

in
in
g
C
o
u
rs
e 1 0.20 0.01 0.03 0.23

2 2.00 0.04 0.04 0.05

3 2.60 0.14 0.05 0.04

4 2.00 0.04 0.01 0.007

All 1.00 0.05 0.01 0.03

5.3 Chapter Summary

In this thesis chapter, we demonstrated how the vehicle-Cloud information extraction

framework could be applied to determine road incline and bank angles, and potholes from

undersampled and asynchronous vehicle sensor data. Algorithms were developed for each

of the event types, then tested on both simulated and real-world data. Vehicle filtering al-

gorithms were presented to limit the required network bandwidth of the detection system.

It was shown that systematically constructed data filters can not only limit the required

bandwidth, but also improve detection results. It was shown how using the MSVR detec-

tion algorithms presented in Chapter 4 and the GPS location error models in Chapter 3
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were critical to enhancing the detection process. We also demonstrated the benefits of

an extensive training data set and how the algorithms are able to adapt to temporally

changing information.
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Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

In this thesis, we presented a framework with examples to extract environmental road in-

formation from asynchronous and undersampled vehicle sensor data. The framework for

the interconnected vehicle-Cloud detection system was presented in Chapter 2. Develop-

ments and limitations of vehicle sensing technology were presented that both necessitated

and made feasible the aggregation of data from multiple vehicles onto the Cloud in order to

satisfactorily detect road environmental information. Various components of the detection

framework were introduced, including the sensors, vehicle and Cloud data filters, event

type descriptions, information feedback, and parameter optimization. The importance of

each of these components and their relationships within the framework and to example

information detection algorithms were described.

Chapter 3 introduced the unique sampling conditions that arise when using embed-

ded sensors from multiple vehicles as a mobile sensor network to detect environmental

road information. These sampling conditions are referred to as multi-source, variable-rate

(MSVR) sampling conditions. Sampling error models were introduced, specifically with

regards to GPS location error, which is used to spatially index the measurements from
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all other sensors. Different frameworks for the error models were introduced depending on

various assumptions and how the error model was to be applied to any detection algorithm.

Chapter 4 introduced detailed algorithms to specifically detect both binary and contin-

uous types of road information, based on the sampling conditions presented in Chapter 3

as applied within the context of the framework of Chapter 2. The signal reconstruction

algorithms were analyzed for various sampling conditions. Adaptations for time-varying

information, improved localization accuracy, and optimizing the detection parameters are

presented with respect to the different detection algorithms.

Chapter 5 applied the detection algorithms of Chapter 4 to two specific types of event

detection, those being potholes, and road incline and bank angles. Specific detection

algorithms were derived for each of the events, and results were presented for both simulated

and real-world data. These results helped to validate both the specific event detection

algorithms and the application of the aggregated data detection algorithms within the

overall information extraction framework.

This final chapter will summarize the contributions of the thesis in Section 6.2 and

present directions for future related work in Section 6.3.

6.2 Thesis Contributions

The main contributions of the thesis are summarized as follows:

• Information Extraction Framework: We developed a framework to extract road

environmental information from asynchronous and undersampled vehicle sensor data.

The framework is developed for information with varying spatial and temporal gran-

ularities. Data filters and the use of side information are introduced to both reduce

the required bandwidth of the system and to improve the detection results. We de-

veloped algorithms to estimate the parameters of the detection algorithms based on

the data, including temporal information decay parameters and signal reconstruction
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bandwidth. We analyzed the tradeoffs for the number of sampling vehicles compared

to the detection accuracy for the various algorithms and applications presented.

• Multi-source, Variable-rate Sampling: We introduced the concept of multi-

source variable-rate (MSVR) sampling, specifically within the context of vehicle sam-

pling conditions. Samples obtained by vehicles are indexed by their GPS locations

which have spatially and temporally correlated error models, as detailed in Chapter 3.

We derived signal reconstruction models that specifically account for these types of

error models. The MSVR framework was extended to joint signal reconstructions,

with adaptations for temporally changing information, and optimizations presented

for the algorithmic parameters. Applications of the MSVR models were also in-

troduced for binary event detection, such as using them to determine a multi-lane

weighting scheme to distinguish samples obtained from each lane.

• Road Incline and Bank Angle Estimate: We developed an algorithm that esti-

mates the road incline and bank angles from individual acceleration and GPS mea-

surements. By crowdsourcing data from multiple vehicles and using the derived signal

reconstruction algorithms on these MSVR samples, we were able to reconstruct the

road incline and bank angle signals for entire roads.

• Pothole Detection: We applied the information extract framework to detect pot-

holes from vehicle sensor data. This was done by crowdsourcing the MSVR sampled

data to create a detector on the Cloud. To the best of our knowledge, this is the first

work that has performed detection on multi-lane roads with an attempt to finely lo-

calize the potholes given the GPS location noise. Road angle information was further

used to filter data to both reduce the required network bandwidth of the detection

system and to enhance the detection results.
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6.3 Future Work

In this section, we present four possible directions for future work. Section 6.3.1 presents

additional possible detection process parameters to optimize. Section 6.3.2 presents an in-

troduction and examples of multi-dimensional MSVR signal reconstructions, specifically as

applied to vehicle sampling conditions. Section 6.3.3 introduces reconstructing continuous

signals from only binary data. Section 6.3.4 provides an example of using the time decay

algorithm for continuous reconstructions to estimate a time-varying temperature signal.

6.3.1 Parameter Optimization

There are number of parameters presented in this work for which a more generalizable

tuning procedure could be implemented. One such example is the in-vehicle data fil-

tering threshold presented in Section 5.2.4.1 for pothole detection. Although results in

Section 5.2.5 identified the best performing threshold, the determined value was general-

ized across our simulation conditions. Due to the age and quality of the vehicle or sensor

system, different vehicles will perform differently with respect to the detection and filtering

algorithms and should therefore have different filtering thresholds associated with them.

A feedback algorithm could be implemented to attempt to determine the impact of any

given vehicle’s measurements on the performance of the detection system, which could be

used to reinforce the detection capabilities of individual vehicles. The reinforcement could

involve adjusting filtering thresholds for each vehicle. Additionally, a performance weight-

ing scheme could be implemented, similar to the temporally dynamic feature algorithm

presented in Section 4.3, to further enhance the feature calculation process.

Furthermore, the data transmission rate from the vehicles to the Cloud could be reg-

ulated as a function of the detection rate or detection confidence level on the Cloud. For

example, for a static signal such as the road incline angle, once the signal reconstruction

variance is reduced below a desired threshold, there is no need to continue to aggregate
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additional data as it would not provide any additional information. For a signal exhibiting

more variation in time, the transmission rate from the vehicle could still be regulated such

that transmission rates increase during periods the signal is believed to be more dynamic

and decrease when the signal is relatively slowly changing. Such a procedure could be

used in conjunction with a temporal weighting algorithm to reduce the required network

bandwidth in addition to improving the accuracy of the information extraction process.

6.3.2 Multi-dimensional MSVR Signal Reconstructions

Beyond reconstructing one-dimensional signals as functions of the distance along a road,

vehicle sensor data can be used to reconstruct multi-dimensional functions of environmental

information. By aggregating data from vehicles traveling on multiple roads, larger maps

can be developed containing information such as a temperature distribution or terrain

topography, inferred in spaces between the roads where no vehicles traveled. The signal

reconstruction algorithms presented in Section 4.1 could therefore be extended to multiple

dimensions for these signal reconstruction purposes. One example is the nonuniform image

reconstruction algorithm with no sample location noise in [99].

The same MSVR challenges highlighted in Chapter 3 extend to the two-dimensional

situation, however one must also account for the correlations between the multiple spatial

dimensions, for example as described by the GDOP covariance matrix in Equation 3.1.

There is also an additional signal reconstruction challenge in two dimensions when using

vehicular-based sensors. It was shown in Section 4.1.2.5 that a Voronoi weighting scheme

provided good results for MSVR sampled signal reconstructions. This weighting scheme is

also applicable two two-dimensional signals. However, using the area of the Voronoi regions

as weights is not as logically transferable to the domain of roadway sampling. Unlike in the

one-dimensional road case, the sample locations for a two-dimensional network of roads

never approximates a uniform distribution over the domain. When aggregating samples
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from vehicles on a road, there is a relatively small spacing between samples along the

tangential direction to the road. However, there is a large spacing in the sample distance

between different parallel roads in the regions where there are no roads from which to

obtain samples. Using a Voronoi weighting scheme, samples that are obtained along the

edge of the roadway (due to true locations or noise) have a disproportionately large weight

for the reconstruction, even though the samples may not be in any more of a sparse region

along the road direction than any other sample.

To demonstrate the weighting behavior, Figure 6.1 shows the Voronoi diagram (where

the area of each region represents the weight of each sample) for two sampling conditions.

In the first scenario, samples are drawn from a uniform distribution over the entire domain.

In the second scenario, samples are obtained from a uniform distribution over the indicated

roads, with i.i.d. sample location error (zero-mean, σx = σy = 0.1) added. The figures were

constructed with 2000 samples in each scenario. Observe that by using Voronoi weights, the

samples in the road sampling case that are obtained at the largest perpendicular distance

to each road have a significantly larger weight (larger area) in the reconstruction scheme

than other samples, and the samples in those respective regions are usually closer to the

borders of the Voronoi regions than the centers.

Using these sampling schemes, we attempt to reconstruct the following function of two

variables,
(6.1)z = sin(2π(0.189)y) sin(2π(0.132695)x+ 2.1) + 0.05(y − 10)2,

over the domain x, y ∈ [0, 20]. The ground-truth image is shown in Figure 6.2. The

road sampling method using Voronoi weights, as shown in Figure 6.1, does not produce

a viable reconstruction for 2000 samples. However, we repeat the simulation by adding

approximately three times as many roads to sample over, thus decreasing the sparsity of

many of the regions of the domain. Reconstructions (bandlimit Mx=My=0.4) for each

of the sampling schemes are shown in Figure 6.3. The RMSE for the reconstructions are

0.45 for the uniform sampling and 0.77 for the road sampling. This is a fairly substantial
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Figure 6.1: Voronoi areas for 2D samples taken from (a) uniform distribution over the
domain, (b) uniform distribution over roads

difference given that the RMS value of the signal is 1.70. The reconstruction would be

increasingly challenging for the road sampling conditions as higher frequency signals make

the regions between the roads more dynamic.

In the future one should investigate adapting the other noisy MSVR sampling recon-

struction algorithms given in Section 4.1 to multi-dimensional signals, and be able to design

those reconstructions to be computationally viable and efficient. Another possible research

direction is to investigate designing a more logical weighting system for the road sampling

environment that does not disproportionately assign a high weight to a sample just because

its sampled location is proximate to a road’s edge.

6.3.3 Continuous Signal Reconstruction from Binary Data

In this thesis, we demonstrated how both binary events and continuous signals could be

reconstructed from aggregated raw sensor data. Algorithms were also presented to limit

the data transmitted from the vehicles to the Cloud in an attempt to reduce the required
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Figure 6.2: Ground truth example two-dimensional signal, given by Equation 6.1, with the
indicated color representing the z value

Figure 6.3: Reconstructed two-dimensional signal of Equation 6.1 using (a) uniform sam-
pling, and (b) road sampling conditions
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network bandwidth of the detection framework. A natural extension to bandwidth reduc-

tion is to further limit the amount of transmitted data by only transmitting binary data

instead of the raw sensor data from the vehicles to the Cloud. An initial binary classifica-

tion could be performed within the vehicle, with only the binary result transmitted to the

Cloud where the entire event signal would be reconstructed from the aggregated binary

data.

We demonstrate an example of full signal reconstruction from binary data using the road

angle detection algorithm, initially presented in Section 5.1.3. In this scheme, individual

vehicles first calculate the road angles for each of their measured samples. The road angles

are converted to binary values by indicating whether or not the angle is greater than or

equal to a threshold of zero degrees. These binary values, indexed by their GPS locations,

would then be transmitted to the Cloud where similar results from other vehicles would be

aggregated. The MSVR signal reconstruction algorithms is then performed on the binary

data, where the reconstructed signal represents the probability of a data sample exceeding

the zero degree threshold. With knowledge of the original noise process, the probability

signal could then be mapped back to the road angle value that produces the respective

probability.

There are a number of challenges involved in this process. A first challenge is determin-

ing the reverse mapping algorithm required to estimate the original angle values from the

reconstructed probability signal. The algorithm requires both detailed knowledge of the

original angle calculation process and also how noise is manifested in the system. The noise

is a critical element of the reverse mapping. However unlike reconstructions directly from

raw data, binary reconstructions prove to be more challenging when the noise is limited.

Consider a situation where the vehicles used noiseless accelerometer sensors and the angle

detection algorithm exactly determines the respective road angles. A zero degree binary

threshold would not be reverse mappable in this situation. If the vehicles all measured the
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incline angle at one road location at 2◦ and another location at 5◦, the aggregated binary

data would be identical for both locations.

Measurement noise is therefore beneficial in such a system as it produces non-zero

probability distributions of measuring different angles for a given true value. However,

detailed knowledge of the noise model is required in the Cloud to adequately reverse map

the probability distribution to an angle value. As an example, consider the simulated road

from Section 5.1.4. Two example scenarios attempting to reconstruct continuous signals

from binary data are presented in Figure 6.4 and Figure 6.5 for data aggregated from 40

vehicles traveling at an average of 50 km/h, with zero-mean white noise on the angle errors

with standard deviations σy = 3◦ and σy = 1.5◦ respectively. The road angle signal is re-

constructed fairly well for the example with larger sample value error, since the probability

of a measured sample being above or below the 0◦ threshold is non-negligible for the given

road angles. With the lower measurement error, there are ranges where the probability of

obtaining measurements on both sides of the threshold are negligible, resulting in recon-

structions that fluctuate closely to zero or one. At this level, it is difficult to reconstruct the

angle signal since any small error in the probability signal is equivalent to many standard

deviations when mapped back to the angle signal. Also, since the reconstruction process

treats the binary data as it would any other data, the signal reconstruction is not restricted

to having values only in the range between zero and one. Exceeding the probability range

results in an undefined mapping back to the angle values, as indicated for some of the

extreme regions in Figure 6.5.

To maintain a defined mapping to angle values, the reconstructed probability signal

needs to be restricted to the range zero to one. One possible solution is to re-frame the

optimization problem determining the frequency coefficients a as a Karush-Kuhn-Tucker

(KKT) [100, 101] conditioned optimization problem such that over the reconstruction do-

main, 0 < p(x) < 1.
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Figure 6.4: Incline angle reconstruction from (a) binary thresholded data, and (b) converted
angle signal, with σy = 3◦
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Figure 6.5: Incline angle reconstruction from (a) binary thresholded data, and (b) converted
angle signal, with σy = 1.5◦

188



With focus on reconstruction Algorithm 4 with no sample location error, presented in

Section 4.1.2.4, the reconstruction problem is modified as follows. Let ξ be a vector of

fine-grained locations over the reconstruction domain, x ∈ [0, L], with spacing δ such that

(6.2)ξ =

[

0 δ 2δ . . . L− 2δ L− δ L

]T

.

Let λ1 and λ2 be
(

L
δ
+ 1
)

× 1 sized vectors of KKT multipliers corresponding to each

location in ξ. Therefore the Lagrange minimization problem is,

(6.3)min
a

V
∑

v =1

nv
∑

j =1

wv
j

∣

∣p(xv
j )−yvj

∣

∣

2−λT
1

ML
∑

k =−ML

ake
2πikξ

L +λT
2

([

ML
∑

k=−ML

ake
2πikξ

L

]

−1(L
δ
+1)×1

)

.

The solution for a to create the dual problem is similar to that presented in Sec-

tion 4.1.2.4, however the vector b in Equation 4.59 is replaced by a vector with compo-

nents,

(6.4)bk = (λ1 − λ2)
T e

−2πikξ
L +

V
∑

v=1

nv
∑

j=1

wv
j y

v
j e

−2πikxvj
L .

This KKT formulation is applied to the σy = 1.5◦ situation that without the KKT con-

ditions produced the result in Figure 6.5. The binary reconstruction and resulting incline

angle signal are shown in Figure 6.6. The KKT formulation improves the reconstruction

and allows it to be defined over the entire domain. However the benefits of this method

still become more limited as the noise is reduced and differences in values of the binary

signal reconstruction near zero and one represent many standard deviations when mapped

back to the angle values.

It would be beneficial in the future to be able to continue to design such a framework

so that continuous signals could be reconstructed from aggregated MSVR binary sample

values without such detailed knowledge of the noise model. This overall framework would

be beneficial from a bandwidth perspective as transmitting a binary value could be con-

siderably more network friendly than transmitting potentially large amounts of raw sensor

data.
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Figure 6.6: Incline angle reconstruction from (a) binary thresholded data, and (b) converted
angle signal, with σy = 1.5◦ using KKT conditions
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6.3.4 Temperature Map

Weather and temperature information is critical environmental knowledge. Reported tem-

peratures on websites for example are usually produced by weather stations spread through-

out the country. However weather stations can be sparsely spaced, particularly in rural

areas, and may not update their measurements frequently enough to provide current fore-

casts. However, using the embedded thermometers in vehicles, the Intelligent Transporta-

tion System can be leveraged to create current weather maps. Although values can be

interpolated in any region, any vehicle that drives in a low density region provides critical

data to reconstruct the signal. By adding a temporal factor to the data, as given by the

algorithm in Section 4.3.1.1, the reconstructed temperature function can be continually

updated, even in regions where data may be sparse or old.

As an example of such reconstructions, data was scraped from 82 weather stations [102]

spread between Buffalo, NY, USA and Boston, MA, USA near Highway I-90 between March

1, 2016 - March 7, 2016, spanning 718 km. The weather stations output data at an average

rate of one sample per 7.6 minutes over the course of the week, with a minimum station

sampling rate of one sample per 31.7 minutes and a maximum rate of one sample per 3.5

minutes (averaged over the week). The data was randomly split such that 95% of the data

was used as reconstruction data and 5% of the data was used as test data. To emulate

vehicles driving, the reconstruction data was replicated 25 times with simulated zero-mean

noise added with standard deviations σx = 10 km and σy = 0.3 ◦C. This is in addition to

any inherent errors that may already exist in the data set. At every instance a test data

sample was received, the test data was compared to the reconstruction using the temporal

decay algorithm detailed in Section 4.3.1.1. This produced a RMSE value of 0.87 ◦C over

the test data set. The reconstructions for temperature data for two example times over

this period are shown in Figure 6.7. Only the data samples displayed have a temporal

weighting that exceeds the threshold. The color of the data sample indicates its age. Data
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samples older than 70 minutes were not used in the reconstruction for these two times.

The time threshold and decay rate depend on the acquisition rate of new data and how

much the new data varies from the old data.

In the future it would be beneficial to test the temperature map reconstruction using

vehicle data as test data, with comparisons being made to weather stations as an approx-

imation of the ground-truth data. Since the vehicles were only being emulated in this

scenario, there were still sparse regions on the reconstruction wherever the weather sta-

tions were sparsely spaced, since there were no mobile vehicles to collect data from to fill

in the gaps.

It would also be beneficial to reconstruct the temperature map as a two-dimensional

function over an area, as per the extensions in Section 6.3.2, instead of doing so in one

dimension along a road. This would also provide for a better comparison to the weather

stations. Although most of the weather stations the data was aggregated from were within

10 km of the highway, many of the stations were intentionally located near bodies of water

or elevated regions, where the changes in environmental conditions were likely to produce

more drastic changes in weather than what would be expected in other localized regions.

Using vehicle sensors as the data source would allow one to better map out these changes

to more accurately reconstruct the temperature distribution for any location.
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Figure 6.7: Example temperature signal reconstructions at two times, as compared to test
data
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Appendix A

Joint Reconstruction LMA Equations

A.1 Autocorrelated Error Model

The following derives the LMA equations for minimizing the cost function of Equation 4.65

to jointly reconstruct signals using the autocorrelated error model.

Following the LMA solution, the (GN +N)× 1 vector of cost functions is,

(A.1)r =

[

r11
T

1 . . . rV1
T

1 . . . r11
T

G . . . rV1
T

G r12
T

. . . rV2
T

r13 . . . rV3

]T

.

The vector rv1g is an nv × 1 vector of cost functions for the sample value error for signal g

composed of elements,

(A.2)rv1gj =

√

σ2
a

σ2
yg

wv
j





MgL
∑

k=−MgL

agke
2πik(xvj−∆v

j )

L − yvg j



 .

The vector rv2 is a (nv − 1)× 1 vector for the difference in spacing of consecutive samples

from source v, composed of elements

(A.3)rv2j =

√

G

1− (ρvj,j+1)
2

(√

wv
j∆

v
j −

√

wv
j+1∆

v
j+1

)

.

The scalar rv3 represents the cost function for the location error for the final sample from

source v, given by

(A.4)rv3 =
√

Gwv
nv

∆v
nv
.
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The Jacobian matrix is defined similarly to Equation 4.25, however J is a (GN +N)×

(GN +
∑G

g=1(2MgL + 1)) block matrix. The block matrix J1 is a GN × N block matrix

composed as

(A.5)J1 =















J11

...

J1G















,

The block matrices J1g are N ×N diagonal block matrices, where

(A.6)J1g =





















J1
1g 0 . . . 0

0 J2
1g . . . 0

...
...

. . .
...

0 0 . . . JV
1 g





















,

and Jv
1g are diagonal matrices composed of elements

(A.7)Jv
1 gjj

= −
√

σ2
a

σ2
yg

wv
j





MgL
∑

k=−MgL

agk

(

2πik

L

)

e
2πik(xvj−∆v

j )

L



 .

The matrix J2 is a block matrix composed similarly to Equation 4.28, however the com-

ponent block matrices, Jv
2 have elements on the diagonal and superdiagonal given by

Jv
2 j,j =

√

Gwv
j

1− (ρvj,j+1)
2
, (A.8)

Jv
2 j,j+1 = −

√

Gwv
j+1

1− (ρvj,j+1)
2
. (A.9)

The matrix J3 is defined similarly to Equation 4.31, however the non-zero entry in the

block matrices, Jv
3 is defined as

(A.10)Jv
3 1,nv

=
√

Gwv
nv
.
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The matrix A is a GN ×
(

∑G

g=1(2MgL+ 1)
)

block diagonal matrix defined as

(A.11)A =





















A1 0 . . . 0

0 A2 . . . 0

...
...

. . .
...

0 0 . . . AG





















,

where similar to Equation 4.33,

(A.12)Ag =

[

A1
g

T
. . . AV

g

T

]T

.

The matrix Av
g is composed of elements,

(A.13)Av
gjl

=

√

σ2
a

σ2
yg

wv
j e

2πi(l−MgL)(xvj−∆v
j )

L .

A.2 Correlated Error Model

The following derives the LMA equations for minimizing the cost function of Equation 4.67

to jointly reconstruct signals using the correlated error model.

Following the LMA solution, we define the (GN +N + V )-dimensional vector of cost

functions r as

(A.14)r =

[

r11
T

1 . . . rV1
T

1 . . . r11
T

G . . . rV1
T

G r12
T

. . . rV2
T

r13 . . . rV3

]T

.

The vector rv1g is an nv × 1 sized vector representing the sample value error cost functions

for the samples from the vth vehicle and gth signal, composed of elements

(A.15)rv1gj =

√

wv
j

σ2
yg





MgL
∑

k=−MgL

agke
2πik(xvj−∆v

j )

L − yvg j



 .

The vector rv2 is an nv × 1 sized vector of cost functions composed of elements,

(A.16)rv2j =
√

G(Av − Bv)wv
j∆

v
j .
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The components rv3 are scalar cost functions where

(A.17)rv3 =
√

GBv

nv
∑

j=1

√

wv
j∆

v
j .

The Jacobian matrix is defined similarly to Equation 4.40, however J1 is a GN × N

block matrix defined similarly to Equation A.5. The block matrices J1g are N×N diagonal

block matrices, where

(A.18)J1g =





















J1
1g 0 . . . 0

0 J2
1g . . . 0

...
...

. . .
...

0 0 . . . JV
1 g





















,

and Jv
1g are diagonal matrices composed of elements

(A.19)Jv
1 gjj

= −
√

wv
j

σ2
yg





MgL
∑

k=−MgL

agk

(

2πik

L

)

e
2πik(xvj−∆v

j )

L



 .

The matrix J2 is defined by block diagonal matrices similarly to Equation 4.28, however

the diagonal values for the block matrices Jv
2 are now equal to

(A.20)Jv
2 jj =

√

G(Av −Bv)wv
j .

The matrix J3 is also defined similarly to Equation 4.31 as given previously however

the composition block matrices Jv
3 are now composed of elements

(A.21)Jv
3 1j =

√

GBvwv
j .

The matrix A is composed similarly to that of Equation A.11, but with components

(A.22)Av
gjl

=

√

wv
j

σ2
yg

e
2πi(l−MgL)(xvj−∆v

j )
L .
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A.3 Fixed Source Error Model

The following derives the LMA equations for minimizing the cost function of Equation 4.68

to jointly reconstruct signals using the fixed source error model.

Following the LMA optimization framework, the (GN + V )-dimensional vector of cost

functions, r, is given by

(A.23)r =

[

r11
T

1 . . . rV1
T

1 . . . r11
T

G . . . rV1
T

G r12
T

. . . rV2
T

]T

.

The vector rv1g is an nv × 1 sized vector representing the sample value error cost functions

for the samples from the vth vehicle and gth signal, composed of elements

(A.24)rv1gj =

√

σ2
v

σ2
yg

wv
j





MgL
∑

k=−MgL

agke
2πik(xvj−∆v)

L − yvg j



 .

The scalar value rv2 is equal to,

(A.25)rv2 =

√

√

√

√G
nv
∑

j=1

wv
j ∆v.

The Jacobian matrix, J is defined similarly to Equation 4.49 however with J1 and A

composed of block matrices similar to Equations A.5 and A.11, respectively. As for the

components of the block matrices in the Jacobians, J1g is an N × V matrix composed

similarly to Equation A.6, where Jv
1g is an nv × 1 matrix composed of elements,

(A.26)Jv
1gj1

= −
√

σ2
v

σ2
yg

wv
j





MgL
∑

k=−MgL

agk

(

2πik

L

)

e
2πik(xvj−∆v)

L



 .

J2 is a V × V diagonal matrix where,

(A.27)J2vv =

√

√

√

√G
nv
∑

j=1

wv
j .

The block matrices Ag are also composed by block matrices in the style of Equation A.12

where the elements of Av
g are equal to,

(A.28)Av
gjl

=

√

σ2
v

σ2
yg

wv
j e

2πi(l−MgL)(xvj−∆v)
L .
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A.4 Asynchronous Data Collection

The following derives the LMA equations for minimizing the cost function of Equation 4.71

to jointly reconstruct signals using the fixed source error model for asynchronous data

collection. The vector of cost functions, r, is defined similarly to Equation A.23, however

the vector rv1g is now of size nvg × 1 with components

(A.29)rv1gj =

√

σ2
v

σ2
yg

wv
g j





MgL
∑

k=−MgL

agke
2πik(xvgj−∆v)

L − yvg j



 ,

and the scalar value rv2 from the same Equation A.23 is now given by

(A.30)rv2 =

√

√

√

√

G
∑

g=1

nvg
∑

j=1

wv
g j

∆v.

The Jacobian of Equation 4.49 has dimensions (V +
∑G

g=1Ng)×
(

V +
∑G

g=1(2MgL+ 1)
)

where the J1g block matrices are of size Ng × V , and are constructed as block diagonal

matrices similar to Equation A.6, where the matrix Jv
1g is an nvg×1 matrix with components

(A.31)Jv
1 gj1

= −
√

σ2
v

σ2
yg

wv
g j





MgL
∑

k=−MgL

agk

(

2πik

L

)

e
2πik(xvgj

−∆v)

L



 .

The matrix J2 is a V × V diagonal matrix defined similarly to Equation A.27, but with

components

(A.32)J2vv =

√

√

√

√

G
∑

g=1

nvg
∑

j=1

wv
g j

.

The matrix A is defined similarly to Equation A.11, however the block matrix Ag

is of size Ng × (2MgL + 1) where its block matrix components Av
g (constructed as in

Equation A.13) are the nvg × (2MgL+ 1) matrices composed of elements

(A.33)Av
gjl

=

√

σ2
v

σ2
yg

wv
g j
e

2πi(l−MgL)(xvgj
−∆v)

L .
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Appendix B

Error Propagation Derivation

Given the MSVR sampling reconstruction algorithm in Section 4.1.2.4, we can frame the

reconstruction steps and the energy calculation as the following series of functions:

p(x) = f1(a) Equation 4.10 (B.1)

a = f2(T
−1,b) Equation 4.62 (B.2)

b = f3(x,y) Equation 4.59 (B.3)

T−1 = f4(T) Matrix Inverse (B.4)

T = f5(x) Equation 4.60 (B.5)

Ep = f6(a) Energy Calculation (B.6)

As a function of the sampling error, we can set the Jacobian matrices for the frequency

coefficient calculation and energy calculation as

Ja =
∂f2
∂b

∂f3
∂y

, (B.7)

JE =
∂f6
∂a

Ja, (B.8)

(B.9)
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where the partial derivative notation indicates the Jacobian matrix for the respective func-

tion with respect to the indicated vector of variables.

We next need to construct the Jacobian matrices for each of these functions. First note

that given the vector construction of complex values, that we can represent x = x1 + ix2

in matrix form for multiplication purposes using the function G(x) such that,

(B.10)G(x) =







x1 −x2

x2 x1






.

The Jacobian ∂f2
∂b

is a 2(2ML+1)×2(2ML+1) sized matrix composed of the following

2× 2 block matrices

(B.11)
∂f2
∂b

=





















∂f2−ML

∂b−ML

∂f2−ML

∂b−ML+1
. . .

∂f2−ML

∂bML

∂f2−ML+1

∂b−ML

∂f2−ML+1

∂b−ML+1
. . .

∂f2−ML+1

∂bML

...
...

. . .
...

∂f2ML

∂b−ML

∂f2ML

∂b−ML+1
. . . ∂f2ML

∂bML





















.

The component block matrices ∂f2k
∂bl

are the 2 × 2 Jacobian matrices corresponding to

differentiating the frequency component ak with respect to bl, determined as,

(B.12)
∂f2k
∂bl

= G(T−1
kl ).

The Jacobian matrix ∂f3
∂y

is a 2(2ML+1)× 2N sized block Jacobian matrix, composed

as,

(B.13)
∂f3
∂y

=





















∂f3−ML

∂y1

∂f3−ML

∂y2 . . .
∂f3−ML

∂yV

∂f3−ML+1

∂y1

∂f3−ML+1

∂y2 . . .
∂f3−ML+1

∂yV

...
...

. . .
...

∂f3ML

∂y1

∂f3ML

∂y2 . . . ∂f3ML

∂yV





















.

The block matrices ∂f3k
∂yv are 2× 2nv block matrices, composed as

(B.14)
∂f3k
∂yv

=

[

∂f3k
∂yv1

∂f3k
∂yv2

. . . ∂f3k
∂yvnv

]

,
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where ∂f3k
∂yvj

is a 2× 2 Jacobian matrix of the derivative of bk with respect to yvj , such that

(B.15)
∂f3k
∂yvj

=







wv
j cos

(

2πkxv
j

L

)

wv
j sin

(

2πkxv
j

L

)

−wv
j sin

(

2πkxv
j

L

)

wv
j cos

(

2πkxv
j

L

)






.

The Jacobian matrix ∂f6
∂a

is a 2× 2(2ML+ 1) block matrix, composed as

(B.16)
∂f6
∂a

=

[

∂f6
∂a−ML

∂f6
∂a−ML+1

. . . ∂f6
∂aML

]

,

where ∂f6
∂ak

is the 2× 2 Jacobian matrix of the derivative of the signal energy with respect

to ak such that,

(B.17)
∂f6
∂ak

=







2Re(ak) 2Im(ak)

0 0






.

Only the (1, 1) element of JE is relevant and non-zero since Ep is purely real.
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