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Chapter 1

Introduction

Many factors, including regulatory changes and the ubiquity of information technology, have spurred

the growth of innovative ways of delivering services. As a result, the operations management

community has been presented with new challenges. This dissertation seeks to model and provide

insights for three such problems in the healthcare and retail industries.

The widely reported liver transplant of former Apple CEO Steve Jobs “in Tennessee, some 2,000

miles from Jobs’ home in northern California”1 posed new questions for organ transplantation:

Critics of multiple listing – wherein patients awaiting organ transplants register in more than

one region – claim that the wealthy enjoy unfair access to organs at the expense of others, while

defenders argue that it helps alleviate geographic disparity. In Chapter 2 we model multiple listing

using a two-server queueing system with two classes of customers, one of which is redundant and

joins both lines while the other joins a single line. Prior work has focused on the improvements to

overall system efficiency due to redundancy, leaving open the question of fairness – whether this

benefit is at the expense of non-redundant (or singly-listed) customers.

A crucial aspect of this work is the ability to realistically study the fairness of multiple listing by

considering the approach that multi-listed patients are likely to resort to in its absence: Specifically,

we show that singly listed patients actually benefit under redundancy of the other class compared to

the case in which redundancy is prohibited, and the ‘wealthier’ class using their resources to travel,

if necessary, joins the shortest queue – i.e., redundancy is fair – if the queues are symmetric in

their arrival rates. But, if the queues are asymmetric, redundancy can be unfair; we find situations

when singly listed patients are provably worse off under redundancy than when the other class

utilizes JSQ. To prove the former result, we developed a novel coupling method that allows one

to process state transitions out of temporal order and showed that the queue length under the

redundancy policy satisfies a specific ordering. We also extend some of these results to include

customer abandonments and unequal service rates analytically, allowing us to more closely model

the organ transplantation application.

Redundancy shows up in other settings as well: Supermarkets with multiple checkout lines

exhibit a similar phenomenon when a customer and a companion each join a line, and abandon

the “slower” line as soon as either of them reaches the cashier. While singly listed patients join a

transplant center in whichever region they live in, non-redundant customers in other applications

1http://www.cnn.com/2009/HEALTH/06/24/liver.transplant.priority.lists/
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often need to pick a line. Thus, we also model more general redundancy settings by allowing the

non-redundant customers to have a queue-joining policy; for example, joining the shortest queue in

a supermarket. And we consider two variants of redundancy differentiated by when the redundant

request is dropped from the system – when the required service is complete or when it begins – thus

modeling a diverse set of applications. The question now is how should non-redundant customers

choose which queue(s) they join to minimize their wait. We show that joining the shortest queue

does not always result in the lowest delay for a non-redundant customer if complete system state

information (including which customers are redundant) is available, but that it is optimal if only

queue length information is observable. By analyzing different policy choices for the non-redundant

customer, this work provides fundamental insights on fairness, optimal queue-joining policies, and

the value of information in redundancy systems, from the non-redundant customers’ perspective.

Consumers in today’s e-commerce era are extremely savvy, and they interact with retailers across

multiple channels. Surveys show that their purchasing and return behavior is affected by the

retailer’s return policy; for example, charging fees for returns via mail or allowing free returns

to physical store locations. As a result, the omnichannel strategy – wherein a firm utilizes its

physical stores and digital assets to provide a convenient experience – is quickly becoming the

new norm among retailers. In Chapter 3 we study how an omnichannel firm makes return policy

and pricing decisions when faced with heterogeneous customers who purchase, and possibly return

misfit items, using either of its two (online or in-store) channels. Existing research focuses either

on return policies of single channel firms or on fulfillment strategies of omnichannel firms without

considering return policies: The primary contribution of this work is to marry the two streams to

fully understand the characteristics of an omnichannel firm that influence its preference for different

return policies observed in practice, such as full refunds, in-store returns and partial refunds.

We incorporate two important aspects of omnichannel operations that have largely been ignored

in prior work – identical prices across channels and cross-channel returns. In addition to being con-

sistent with practice, the identical price assumption highlights an important constraint experienced

by a firm due to its omnichannel nature. By modeling cross-channel returns, we are able to provide

one explanation for the generous refunds common in practice. We show that when customers return

online, the refund chosen by an omnichannel firm is more generous than suggested by prior work

that considers only single channel firms.

This is the first study to characterize the optimal return policy in an omnichannel context: We

demonstrate that all three return policies seen in the marketplace – full refunds, online returns for

a fee, and free in-store returns – may be prescribed by a profit-maximizing omnichannel firm. The

optimal policy helps explain why some omnichannel firms choose full refunds while others charge

a fee for returns: We find that firms with good salvage partners (e.g., Nordstrom) as well as those

with more store-based customers (e.g., Macy’s) should offer full refunds. In contrast, firms who

enjoy better in-store salvage opportunities (e.g., J.C. Penney) should charge a fee for online returns

in order to prompt free in-store returns. We also find that firms should be cautious in making
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the returns process overly convenient or improving accessibility to their stores, as these policies,

combined with the wrong return policy, could reduce the firm’s overall profit.

The ease of disseminating information online has made it possible to rate nearly every service,

from movies (IMDB) to physicians (RateMDs) to professors (RateMyProfessors). Recently, the

Centers for Medicare and Medicaid Services (CMS) published quality scores for hospices on various

dimensions (e.g., pain assessment, treatment preferences) throughout the US: The goal is to provide

more transparency for patients and encourage providers to improve the quality of their services.

In Chapter 4 we study a hospice manager’s problem of controlling quality of care in light of these

regulatory changes.

Hospice providers have questioned whether such programs actually improve quality. We inves-

tigate this claim analytically by studying a hospice manager’s incentives under mandated public

reporting of quality. A key modeling feature captured in this work is the impact of quality on the

patient census – the number of patients cared for by a hospice. On the one hand, quality impacts

the rate at which patients leave the hospice; for example, high hospital re-admissions are consid-

ered to be correlated with poor quality. On the other hand, publicly available measures enable

easy comparison of hospices, thus directly impacting the joining decision of new patients. We use

a discrete-time Markov decision process (MDP) model to study the weekly quality control problem

of the hospice.

By analyzing the MDP, we show that a simple constant quality policy is optimal in the absence

of reporting; but, the optimal policy under reporting is, in general, quite complex. Thus, we de-

signed a closed-form heuristic policy that is easy to compute. Using realistic parameter values that

represent a typical hospice setting, we conducted several experiments to investigate the heuristic’s

performance numerically. We find that the heuristic does extremely well against the optimal policy:

The average quality under the heuristic policy is within 3%, and the profit is within 0.05%, of the

optimal policy across all experiments. And the structural properties of the quality level under the

heuristic – high at low patient census and bounded below by the constant level in the absence of

reporting – translate to the optimal policy for realistic parameter settings.

By considering two scenarios – one before and one after public reporting is in effect – we show

that quality always improves under reporting. But not all hospices are likely to obtain a larger

profit in the presence of reporting: Those that enjoy a large share of the market in the absence of

reporting will be less inclined to report quality due to the risk of losing customers. We find that

the “pay-for-reporting” structure currently implemented by CMS is one approach to incentivize

reporting; but, those hospices that strategically choose not to report their quality metrics will

actually reduce their quality level as a result of the penalty on their reimbursement rate.

We conclude by summarizing the contributions of this dissertation and by outlining directions

for future research based on the work in this dissertation in Chapter 5.

3



Chapter 2

Queues with Redundancy: Is Waiting in Multiple

Lines Fair?

2.1 Introduction

While customers dislike waiting in general, they particularly dislike being stuck in a slow queue.

Thus, a party with multiple persons might have members join multiple lines (even though they

need service at only a single server) to reduce the risk of getting “stuck”; this creates redundant

requests or jobs. The most prevalent and highly relatable application of this sort of redundancy

is at the supermarket: To potentially reduce the checkout time, a customer and a companion may

each join a line, abandoning the “slower” line as soon as either one of them reaches the cashier.

Given that not all customers do this (because of differences in their patience levels or due to visiting

the supermarket alone), one may wonder how this partial redundancy affects those customers who

join only one queue, and whether the simple rule of joining the shortest queue (JSQ) will always be

these “non-redundant” customers’ best policy. Moreover, it is not clear if such redundancy harms

the non-redundant customers in any way i.e., if it is unfair. (Anecdotal evidence suggests that

customers who joined a single line are often annoyed when others indulge in redundancy.)

A more critical application, and our primary motivation for the majority of this chapter, is or-

gan transplants. For example, there are over 100,000 patients waiting for deceased donor kidney

transplants for End-Stage Renal Disease (ESRD) in the US (Organ Procurement and Transplan-

tation Network 2015). The unadjusted median wait times for adults transplanted in 2011 varied

from 0.8 to 3.8 years in different states (United States Renal Data System 2013). Owing to this

variability, patients have found that they can potentially improve their chances of getting a trans-

plant by listing at two or more transplant centers simultaneously i.e., multiple listing : Studies show

that transplantation rates are significantly higher (88% more access, Merion et al. 2004), and the

expected transplantation waiting time is reduced (White et al. 1997), for multiple listed patients.

Critics of multiple listing claim that it provides unfair access to organs for patients based on wealth

(e.g., Blumstein 1989, Merion et al. 2004), since it is not feasible for all patients to multiple list due

to the need for evaluations at every additional transplant center and potential travel and lodging

expenses incurred if the patient receives an organ outside of her local area (United Network for

Organ Sharing 2015). As a result, few patients are multiple listed (5.1% of patients on the kidney

transplant list as of January 31, 2009, Ardekani and Orlowski 2010). Startups, such as Organ-
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Jet Corporation, have emerged to try to alleviate this through the use of time-shared private jets

(Lamas 2014).

Redundancy finds use in computer systems as well: Large-scale distributed storage systems in

computing, such as the Google File System and the Amazon Elastic Block Store, have begun to

replicate content over multiple disks. Recent computer science papers analyze the use of redundancy

to allow content, stored on a set of disks, to be reconstructed by reading a subset of these disks

(Joshi et al. 2014), potentially enabling different jobs of a single customer to be in service at the

same time (Shah et al. 2016). There is some practical evidence that redundant jobs help reduce

latency (Liang and Kozat 2014).

Finally, in general service systems, redundancy can be particularly beneficial when customers face

uncertainty around resource availability. For example, a delay-sensitive firm may place requests for

orders from several suppliers and purchase from whomever delivers first. Similarly, Ticketmaster,

the ticket sales and distribution company, suggests that customers use more than one computer

while booking tickets for popular shows. And, families interested in adoption often apply to multiple

agencies in order to reduce the wait time to be matched.

We model redundancy using a two-server queueing system with two classes of customers:

1. Non-redundant customers join a single queue (according to some policy) upon arrival.

2. Redundant customers send jobs to both queues upon arrival.

Redundant systems may differ based on when redundant requests of a customer are dropped:

1. Cancel upon service (CUS) removes redundant requests when any one of them completes

service. Thus multiple copies of the same customer could be in service simultaneously.

2. Cancel upon entry (CUE) permits only one request of each customer to be in service at any

time. Thus when any request enters service, the others are removed from the queue.

The supermarket and distributed storage applications fall naturally into the CUE and CUS

settings respectively, whereas multiple listing may be modeled using CUS by defining being “in

service” as waiting at the head of the list for the next organ to become available.

All of the service systems mentioned above are built around redundancy; yet, several fundamental

questions about redundancy remain unanswered. First, whereas the improvement in overall system

performance due to redundancy has largely been the focus of prior work (Ata et al. 2016, Gardner

et al. 2017, 2016), the question of fairness – whether this improvement is at the expense of non-

redundant customers – has not been definitively addressed. This question is particularly important

in the context of organ transplants: Identifying if multiple listing is unfair to singly listed patients

and, if so, finding an alternative policy that is fair is crucial. Second, non-redundant customers

may have the option to choose which queue(s) to join to try to minimize their wait. While singly

listed patients join a transplant center in whichever region they live in, non-redundant customers

in the supermarket, distributed storage and adoption applications need to pick a line according to

some policy. What policies they should use, and how different levels of information affect these

decisions, is an open question. Finally, does redundancy help or hurt overall system performance,
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and what role does the customers’ joining policy have on the extent of this effect? We provide

answers to these questions.

Our main contributions are summarized below:

• Fairness: We are the first to provide analytical results on fairness: Are singly listed patients

necessarily harmed by multiple listing? We assume that the redundant class either utilizes

multiple listing (i.e., redundancy) or joins the shorter queue (if multiple listing is not allowed).

We prove that singly listed patients actually benefit under redundancy of the other class

(compared to JSQ) when the queues are symmetric. But, if the queues are asymmetric, there

are situations when singly listed customers are provably worse off under redundancy. By

incorporating the approach that multi-listed patients are likely to resort to in the absence of

multiple listing i.e., JSQ, we are able to realistically compare their impact on singly listed

customers and provide insights as to when multiple listing is unfair.

• Queue-joining policy: We analyze the queue-joining decision for non-redundant customers

who wish to minimize their delay. We show that the optimal policy depends on the extent of

state information – queue lengths and customers’ class – available to them: JSQ is optimal

when only queue lengths are known; but, if additional information regarding the class of each

customer is known, it may be better to join the longer queue.

• Value of information: Given that a complex state-dependent policy is optimal when com-

plete state information is revealed to non-redundant customers, we quantify the value of this

customer class information, finding that the (class-blind) JSQ policy is a very good heuristic.

• Optimality of ‘smallest workload’ policy: We show that the mean overall system time under

CUE is at most that under JSQ when there are two customer classes, one of which is flexible

and one that joins a queue randomly (with equal probability). Foss (1989) showed a similar

result for what he called the “smallest workload” policy (equivalent to CUE), for the special

case where only a single (flexible) class is present. We develop a new coupling approach and

a method for keeping track of state information under redundancy to show our result.

• Overall system performance: We find that redundancy could be an important tool to improve

the overall response times especially in less efficient systems such as when non-redundant

customers join a dedicated server, systems operating at higher loads, and systems with asym-

metric loads.

• Model extensions: We extend our optimal joining results and some of our fairness results to

systems with more than two queues. We also extend some of our fairness results to include

customer abandonments and unequal service rates, allowing us to more closely model organ

transplantation.

The rest of the chapter is organized as follows. In §2.2, we review the relevant literature and

describe how it differs from our present work. We formalize our queueing model in §2.3. In §2.4

we address the question of fairness. In §2.5 we study the optimal routing problem under different

information regimes, and quantify the value of revealing complete state information. We study
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the effect of redundancy on the overall system performance under different service policies in §2.6.

We present several extensions in §2.7 and finally, in §2.8, we conclude and discuss future research

directions.

2.2 Literature review

Our work falls in the area of redundancy models: These consist of n parallel queues such that each

incoming customer sends jobs to r queues and departs when any subset k ≤ r of them are served.

Most related to our work are Gardner et al. (2016) and Ata et al. (2016), both of which consider

class-based r. Gardner et al. (2016) obtain the limiting distribution for CUS under the assumption

that each class is associated with a fixed subset of queues to which a customer sends her jobs

– restricting themselves to only one queue-joining policy, the Dedicated policy. We analytically

compare the performance for several queue-joining policies for the non-redundant customers such

as Dedicated, JSQ, and the optimal joining policy. In follow-up work, Gardner et al. (2017) provide

a method to find the response time for systems in which a customer (i.e., single class) makes copies

at a constant number of servers.

A key result in these papers is that redundancy (CUS, in particular) improves mean overall

system time compared to when there is no redundancy. We show that the overall system time

under redundancy (both CUE and CUS) is lower compared to when redundant customers follow

JSQ, if the queues are symmetric. Furthermore, we are the first to provide analytical results on

the fairness of redundancy, identifying situations when redundancy (compared to JSQ) benefits

non-redundant customers. While Gardner et al. (2016) use numerical simulation to note that

redundancy is “often preferred” by non-redundant customers, we analytically provide sufficient

conditions for this to be true, as well as conditions for the opposite: There are parameters for

which redundancy is not preferred i.e., it is unfair to non-redundant customers.

Ata et al. (2016) use fluid and diffusion approximations to analyze their overloaded queueing

model for organ transplantation. While they find that multiple listing (i.e., by wealthier patients)

can lead to improvements in geographic equity compared to when all patients join the closest

regional transplant center, we show that multiple listing is beneficial to singly-listed patients com-

pared to when these (wealthier) patients, prevented by multiple listing, join the transplant center

with the shorter wait list. Thus, we are arguably able to compare multiple listing to a more realistic

alternative. Finally, we extend our fairness results to include key aspects of organ transplantation,

such as patient abandonment and unequal service rates, that also appear in their model.

This research stream has gained attention as redundancy has begun to be utilized to improve

latency in large-scale distributed storage systems: For a single class of customers Joshi et al. (2014)

and Shah et al. (2016) note that waiting for only a subset of disks (i.e., k < r) improves latency.

Kumar et al. (2014b) consider class-based k and obtain bounds on the response time for the CUS

system. While they demonstrate through simulation that increasing redundancy for all classes
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reduces the system time for all classes, they do not study the impact of more redundant jobs on

less redundant ones, or the performance of different routing policies for non-redundant jobs. Guo

and Hassin (2016) consider the strategic behavior of customers who, upon arrival to a two-server

queueing system, may choose either to place redundant orders, place a single order, or balk, and

analyze the equilibrium thereof.

Some papers consider redundancy within a central queue setting, removing the question of routing

policies, which differentiates this line of work from ours. For the CUS system Chen et al. (2014)

identify the optimal policy for allocating identical servers to customers. Sun et al. (2015) study

the performance of various scheduling policies under non-exponential distributions, and Lee et al.

(2015) incorporate the overhead of canceling redundant requests. Koole and Righter (2008) identify

conditions ensuring that it is optimal to replicate all jobs to all servers.

There are several other areas that are closely related to our model, namely fork-join queues,

flexible server systems, and duplicate orders. The fork-join queue is used to model a system where

jobs requiring multiple resources may be executed in parallel. Jobs arrive in batches of k tasks

and each of them is served by one of n servers. The job is complete when the last of the k tasks

finishes service. This is different from our model because fork-join queues have no redundancy – all

of the tasks must be completed. Exact solutions for the stationary distribution have been obtained

by Flatto and Hahn (1984) for the case of two servers. Li et al. (2016) use mean-field analysis to

derive the stationary distribution when jobs are sent to the k least-loaded servers among n servers.

In flexible server systems jobs may be of different classes; each server is capable of serving some

subset of these classes. The CUE model in which the non-redundant customers arrive to each queue

according to independent Poisson processes (i.e., they follow the Dedicated policy) can be modeled

as a flexible server system. Visschers et al. (2012) derive the stationary distribution for this model

under specific assumptions on the assignment of flexible (i.e., redundant) jobs to idle servers. And,

for the two server case, McDonald and Turner (2000) use large deviations methods to show that

having flexible servers outperforms other policies, such as routing the flexible class to the shorter

queue, for minimizing mean system time. But neither of the aforementioned papers provide any

discussion of optimal policies for the non-redundant customers, or evaluate whether redundancy is

unfair to non-redundant customers, as we consider.

During a product stockout a delay-sensitive customer may place her order at many firms, ob-

tain the product from whomever produces it first, and cancel other outstanding orders. Li (1992)

notes that such “duplicate ordering” is a common pheonomenon in the semiconductor industry, and

studies its welfare implications in the presence of lead-time competition between firms. Consider-

ing the perspective of a manufacturer selling through two independent distributors, Armony and

Plambeck (2005) study the demand estimation and capacity investment implications of duplicate

orders. These papers differ from our model in that redundancy exists in the above settings only

when the product is out of stock.

Table 2.1 provides a categorization of the theoretical redundancy literature (excluding overloaded
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Table 2.1: Brief overview of redundancy literature.

Paper Type
Class-
based

Service
policy

Non-
FCFS

scheduling

Info.
regimes

Fairness
General
service

Chen et al. (2014) CUS Central X

Gardner et al. (2016) CUS X Dedicated X

Gardner et al. (2017) CUS Dedicated

Joshi et al. (2014) CUS Dedicated

Koole and Righter
(2008)

CUS Central X X

Kumar et al. (2014b) CUS X Dedicated X

Lee et al. (2015) CUS Central

Shah et al. (2016) CUS
Central,

Dedicated
X

Sun et al. (2015) CUS X Central X X

Visschers et al. (2012) CUE X Dedicated

Joshi et al. (2015) Both Dedicated X

This work Both X
Dedicated,

JSQ,
Optimal

X X

systems, which are analytically distinct) based on the main aspects considered in each paper. Our

work alone considers the following aspects together:

1. We study class-based redundancy under CUS and CUE, thus encompassing a great variety

of applications.

2. We analyze alternate queue-joining policies for non-redundant customers, such as JSQ and

the optimal policy, in addition to Dedicated.

3. We identify the optimal delay minimizing policy for non-redundant customers under different

information regimes, and quantify the value of complete system information to them.

4. We provide analytical results on fairness and identify when redundancy harms or benefits

non-redundant customers, as compared to other policies such as JSQ.

2.3 Model

We consider a system with two identical servers, denoted j ∈ {1, 2}, each with its own queue, and

two classes of customers, denoted i ∈ {1, 2}. The arrival process for class i ∈ {1, 2} is assumed to

be Poisson with rate λi. Class 2 customers constitute a fraction r ∈ [0, 1] of the total arrival stream

(arriving at rate λ), so that λ2 = rλ and λ1 = (1− r)λ.
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A customer of class 2 replicates into two jobs upon arrival, with each job joining a queue. Let

π2 ∈ {CUS, CUE} denote the specific (redundancy) policy used by class 2. (Later, in §2.4, we

will investigate π2 = JSQ as well.) A customer of class 1 does not replicate; she joins a queue

immediately upon arrival according to policy π1 ∈ {Ded, JSQ, Opt}. Under the Dedicated policy

(π1 = Ded) class 1 customers form independent Poisson streams to either queue: They arrive to

queue 1 at rate λ1p and queue 2 at rate λ1(1 − p), where p ∈ [0.5, 1] denotes the fraction of class

1 customers joining queue 1 under this policy. This policy arises naturally in many unobservable

queueing models that deal with strategic customer behavior (Edelson and Hilderbrand 1975). The

case of p = 0.5 is of particular interest: It is the equilibrium strategy when customers choose to be

redundant or not (due to replication costs), as in Guo and Hassin (2016). In addition, Dedicated

is often used to model arrivals in related work (see Table 2.1), for example independent arrivals

of patients to different regional transplant centers. Under the JSQ policy (π1 = JSQ) class 1

customers join the shorter queue upon arrival; when the queue lengths are equal the customer joins

queue 2 with some probability, say η. We also examine the individually optimal policy (π1 = Opt)

that minimizes the class 1 customers’ delay. By definition the optimal policy provides superior

performance, but may be quite complex. The JSQ policy is simpler and yet is known to perform

well in a variety of settings when queues are observable. In all cases we assume jockeying is

prohibited.

The service time at each server is independent and distributed exponentially with rate µ. We

define the system load to be ρ = λ/2µ. A redundant customer arriving to an empty system under

π2 = CUE chooses server 2 with probability η. Within each queue the service discipline is first-come

first-serve (FCFS). Our assumptions of exponential service time and Poisson arrivals are empirically

justified in our motivating kidney transplants application (Davis et al. 2013). Furthermore, using

real traces from Amazon S3, Chen et al. (2014) find that exponential service times are an accurate

approximation for distributed storage systems.

We focus on two servers in the majority of this chapter for two reasons: (i) This is assumed in

several related papers due to its (relative) ease of analysis: Guo and Hassin (2016) consider two

parallel queues with strategic redundancy, and Gardner et al. (2016) derive performance measures

in closed-form for simple two or three server systems; and (ii) It captures the primary dynamics

of redundancy and highlights important trade-offs: Gardner et al. (2017) show that the biggest

improvement due to redundancy occurs when customers replicate to two servers, and Ata et al.

(2016) allow customers to list at only one other location. Nevertheless, we extend our results to

larger systems in §2.7, where we also allow customer abandonments and unequal service rates.

The state S = {S1; S2} of the system is given by vectors Sj , j ∈ {1, 2} denoting the types of

different jobs at server j in the order of their arrival; the first (left-most) element denotes the job

in service at that server. Exact analysis of this system is prohibitively complex, except in certain

special cases for π1 = Ded (Gardner et al. 2016, Visschers et al. 2012).

We denote the class i mean response time – which is defined as the average time spent in
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the system (including in service) – under joining policies π1 and π2 as T
(π1,π2)
i , and the mean

overall response time (taken over both classes) as T (π1,π2), for π1 ∈ {Ded, JSQ, Opt} and π2 ∈
{CUS, CUE, JSQ}. It immediately follows that T (π1,π2) = rT

(π1,π2)
2 + (1 − r)T (π1,π2)

1 . We assume

that ρ < 1, and additionally λ1p < µ when π1 = Ded, for stability (Gardner et al. 2016, Visschers

et al. 2012).

2.4 Fairness

This section addresses the question of fairness – are non-redundant customers adversely affected

by redundancy of the other class? Suppose we have two systems X and Y that differ only in the

policy adopted by class 2 customers, say x and y in X and Y respectively. Then, we define system

X as less “fair” than Y if T
(π1,x)
1 ≥ T (π1,y)

1 .

Since this question is of particular interest for organ transplantation due to the extant discussion

around the (seemingly) unfair advantage for multiple listed patients (Blumstein 1989, Merion et al.

2004), we consider π1 = Ded and π2 ∈ {CUS, CUE, JSQ} in §2.4.1. We then consider the JSQ

policy (π1 = JSQ) in §2.4.2.

2.4.1 Fairness when class 1 uses the Dedicated policy

In organ transplantation, singly listed patients are likely constrained (e.g., due to cost) to listing

in their home geographic region. Thus, we assume π1 = Ded. In contrast, if redundancy were

prohibited, potentially in the name of fairness, class 2 customers would likely list at whichever

transplant center has the shorter wait list at the time of listing: They have the resources to travel,

and it is easy to see that this is their optimal action in this regime. Thus, we assume that they will

join the shorter queue (i.e., π2 = JSQ) in the absence of redundancy.

Throughout this analysis we will focus on class 1 response times weighted by which queue they

joined i.e., as an average of the response time of class 1 customers who join server 1 (weighted by

p) and those who join server 2 (weighted by 1− p). This is because we are interested in the class of

singly listed customers’ preference as a whole within the context of multiple listing. Later, in Figure

2.6, we will consider the impact of redundancy on class 1 customers at each server separately.

Before we study the impact of class 2 customers’ joining policy π2 ∈ {JSQ, CUE, CUS} on class

1 customers’ mean response time, we first specify its impact on the mean overall response time i.e.,

the response time taken over all customers, in Theorem 2.1. In addition to being of independent

interest, we will use this result in the proof of Theorem 2.2 when we consider fairness.

Theorem 2.1. When class 1 customers follow the Dedicated policy with p = 0.5, T (Ded,CUS) ≤
T (Ded,CUE) ≤ T (Ded,JSQ), ∀r ∈ [0, 1].

All proofs appear in Appendix A.1.
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Theorem 2.1 states that when the two queues are symmetric, the mean overall response time is

smallest when class 2 utilizes CUS, and largest when class 2 utilizes JSQ, among the policy choices

available to class 2. Redundant customers improve server utilization by getting served (queueing)

at whatever turns out to be the “faster” server in the CUS (CUE) model, effectively balancing

queues, thus leading to a decrease in the mean response time taken over all customers.

When class 2 customers utilize CUE, it is easy to see that their routing policy is equivalent to

the smallest workload (SW) queue policy. Thus, the second inequality in Theorem 2.1 extends the

classical result – the policy that routes all customers (i.e., a single class) to the SW queue results in

a smaller overall response time compared to other policies such as JSQ (Foss 1989) – to two classes

of customers, one of which is flexible (can be routed either according to the SW queue policy or

the JSQ policy) while the other class forms two independent arrival streams (with the same arrival

rate) to either queue. While McDonald and Turner (2000) use large deviations methods to show a

similar result, our result has a more general scope and is true at all loads.

Our proof of the second inequality in Theorem 2.1 adopts a new coupling approach that allows

us to process state transition events out of order, as needed, and a novel counting method to keep

track of redundant jobs. Using these tools, we show that the queue length vector (including any

customers in service) when π2 = CUE is weakly submajorized by that when π2 = JSQ; in other

words, CUE results in lower overall number of customers in system and queues that are more

balanced. (See Appendix A.1 for details.) We use the response times from Visschers et al. (2012)

and Gardner et al. (2016) for CUE and CUS respectively, to show the first inequality in Theorem

2.1.

Next, we consider the impact of class 2 customers’ joining policies on non-redundant customers

i.e., when redundancy is fair.

Theorem 2.2. When class 1 customers follow the Dedicated policy with p = 0.5, they prefer CUS

over CUE over JSQ for class 2, i.e., T
(Ded,CUS)
1 ≤ T (Ded,CUE)

1 ≤ T (Ded,JSQ)
1 , ∀r ∈ (0, 1). Further-

more, in this case T
(Ded,CUS)
1 and T

(Ded,CUE)
1 are decreasing in r.

Theorem 2.2 states that when p = 0.5, class 1 customers prefer redundancy (CUS more so than

CUE) no matter what the proportion r or the load ρ is, i.e., redundancy is fair. Moreover, they

prefer that more jobs be redundant. Figure 2.1 shows class 1 response time under redundancy

indexed to π2 = JSQ when p = 0.5. The two curves never exceed 1 which reiterates class 1

customers’ preference for redundancy.

To understand the benefit of redundancy, suppose a “tagged” redundant customer enters ser-

vice at server 2 but would have joined queue 1 if she were non-redundant. Then, non-redundant

customers joining queue 1 after the tagged job in the current busy period experience one of the

following two “benefits”: (i) Under CUE, there is one fewer real job ahead of them; (ii) Under

CUS, there is one fewer job ahead of them if the tagged job never reaches service at server 1. If the

tagged job does enter service at server 1, it is served in half the time (in expectation). But, when

p = 0.5 the two queues are symmetric, so, intuitively, any such expected benefit experienced by
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Figure 2.1: Ratio of T
(Ded,π2)
1 when π2 ∈ {CUS, CUE} indexed to π2 = JSQ for p = 0.5 and

ρ = 0.7.
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class 1 customers in queue 1 due to redundancy is offset by the expected pain to class 1 customers

in queue 2. Nevertheless, since redundant customers improve server utilization and overall mean

system time (Theorem 2.1), the resulting reduction in the length of the busy period of the servers

leads class 1 customers to prefer redundancy of class 2 over JSQ.

Theorem 2.2 states that redundancy is fair when p = 0.5. But can we say anything for general

p? We answer in the affirmative in the following theorem, which shows how class 1 customers’

preference changes with the extent of redundancy.

Theorem 2.3. Suppose class 1 customers follow the Dedicated policy, and the limit of their wait

time at either server exists as r approaches 1. Then, the limit of T
(Ded,π2)
1 as r approaches 1 is

given by 1
µ + Nπ2

2µ ,∀p, where Nπ2 is the mean number of customers when all customers follow policy

π2 ∈ {CUS, CUE, JSQ}. Moreover, in this case class 1 customers prefer CUS over CUE over JSQ.

Theorem 2.3 presents the limiting value of class 1 response time, and states that redundancy

is more fair than JSQ, as r approaches 1, if this limit exists1. When r = 1 there are no class 1

customers, but, contingent on the limit’s existence, in a small neighborhood around r = 1, we can

analyze fairness: Class 1 customers’ preference for redundancy is sustained when the proportion r

is sufficiently high. The reason is that if there are enough redundant customers, the improvement

they bring to system utilization benefits class 1 customers no matter what p is.

So, is redundancy always fair? Theorem 2.4 answers this in the negative:

Theorem 2.4. When class 1 customers follow the Dedicated policy, they prefer JSQ over CUE

over CUS for class 2, i.e., T
(Ded,JSQ)
1 ≤ T (Ded,CUE)

1 ≤ T (Ded,CUS)
1 , if p = η = 1 and r approaches 0.

1The existence of the limit depends upon the convergence of the response time as r → 1; conditions guaranteeing
this are beyond the scope of this work.
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Theorem 2.4 is a limiting result: When r = 0 there are no class 2 customers and class 1 response

times are independent of π2, but there is a small neighborhood around r = 0 such that class 1

prefers that class 2 follow JSQ as opposed to redundancy. In other words, redundancy becomes

“unfair” as the queues become imbalanced and redundant jobs become scarce. To see the intuition

assume the queues are highly asymmetric, i.e., p is very high. In the much more common case of

queue 2 being shorter, a redundant customer will join both queues and could be served at queue

1 with non-zero probability, thus hurting class 1 customers at the more heavily loaded queue 1

(compared to JSQ). On the other hand, if queue 1 is shorter, class 1 customers at queue 1 could

benefit from redundancy (compared to JSQ) since the customer may end up getting served at queue

2 if she were redundant. Since p is high, the former scenario is much more likely to occur than

the latter. Thus the net effect is a preference for JSQ among class 1 customers at queue 1, who

comprise the overwhelming majority of class 1 customers as p → 1. As before, there may also be

a reduction in the busy period of the servers due to redundancy, which benefits class 1, but this is

outweighed for p close to 1 and r close enough to 0.

Overall, depending on which of the effects is stronger, class 1 may prefer JSQ over redundancy,

or vice-versa. Intuitively, preference for JSQ is amplified when (i) p is high, due to increased

asymmetry; (ii) ρ is high, due to increased load (and therefore sensitivity of jobs at queue 1 to

interference); and (iii) r is low, due to a higher proportion of class 1 customers, which also heightens

the asymmetry.

Within redundancy, class 1 customers prefer CUS over CUE when p = 0.5 (Theorem 2.2) while

the reverse is true when p = 1 and r is low (Theorem 2.4). When the two queues are symmetric,

class 1 customers prefer the more efficient system i.e., CUS. On the other hand, when p = 1 and r is

infinitesimally small, the CUE policy is virtually equivalent to the JSQ policy, and thus preference

for CUE over CUS is similar to that for JSQ over redundancy described above.

Quantifying Unfairness

We utilize numerical computations to evaluate fairness at general values of p, ρ and r. Specifically,

we compare the response time for class 1 under CUS calculated using Gardner et al. (2016), to

that under JSQ calculated using Matrix-Analytic methods (Neuts 1981) and formulated as in van

Houtum et al. (2001). We assume η = 0.5 for simplicity throughout this subsection.

Figure 2.2 depicts the combinations of p and r for which CUS is fair (or unfair) for a fixed ρ = 0.6

and summarizes our findings: Analytically, we show that redundancy is fair when p = 0.5 (i.e.,

bottom boundary) in Theorem 2.2, and for r → 1−,∀p, if the limit exists, in Theorem 2.3 (i.e.,

right boundary), and that redundancy is unfair when p = 1 and r is sufficiently small (i.e., the top

left corner) in Theorem 2.4. Our numerical computations corroborate our findings, and in addition,

we find that there is a boundary where the preference switches from JSQ to redundancy. We also

see that redundancy is increasingly preferred at high r or low p, confirming our intuition based
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Figure 2.2: Fairness, comparing CUS against JSQ, when π1 = Ded and ρ = 0.6.
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Note: “Unfair” region indicates parameters for which redundancy is unfair i.e., T
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Our analytical results are overlaid with the shaded regions, and the corresponding theorems are also
indicated.

on Theorems 2.2-2.3: Redundancy becomes fair either when r is increased for fixed p (increasing

redundancy drives greater efficiency), or when p is decreased for fixed r (greater symmetry balances

relative pain and gain, leading to improvements, again, due to increased efficiency).

To see how class 1 customers’ preference is impacted by load, Figure 2.3 depicts the combinations

of p and ρ for which CUS is unfair, thus revealing class 1 customers’ preference along two vertical

axes of Figure 2.2 – at r = 0.3 (Figure 2.3a) and at r = 0.45 (Figure 2.3b) – for varying ρ. At

low r (Figure 2.3a) we find a larger range of parameters where JSQ is preferred due to increased

asymmetry, whereas when the proportion of the two classes is comparable (Figure 2.3b), JSQ is

preferred only at high p and ρ, reiterating our intuition based on Theorem 2.4.

To quantify the magnitude of this preference, we compare the class 1 response time when π2 ∈
{CUS, JSQ} in Table 2.2. To focus on situations when redundancy is likely to be unfair, we consider

p = 1 and large ρ. For r = 0.45, the response time for moderate values of ρ is comparable for the

two policies – 0.2% increase for ρ = 0.7; the gap in response time, in both absolute and relative

terms, is larger at higher values of ρ – a 1.2% increase for ρ = 0.85. There is a drop in the relative

difference at very high load. Here, the absolute difference is increasing in ρ, but not as fast as the

increase in the mean response times due to increasing load.

Additional experiments indicate that when p 6= 1 CUS tends to perform better, so that the

difference is not as large. Thus, even though class 1 customers do prefer JSQ over redundancy at

certain parameters, the difference is likely not enough to be significant unless delay is very costly,

as potentially in the case of organ transplants.
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Figure 2.3: Parameters for which class 1 prefers π2 = JSQ over π2 = CUS, when π1 = Ded.
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Table 2.2: Class 1 response time T
(Ded,π2)
1 for p = 1, r = 0.45, and µ = 1.

ρ Preference
T

(Ded,π2)
1

π2 = CUS π2 = JSQ
Difference

(%)

0.65 CUS 4.16 4.17 0.32

0.7 JSQ 5.2 5.19 -0.20

0.75 JSQ 6.86 6.82 -0.69

0.8 JSQ 9.94 9.83 -1.08

0.85 JSQ 17.78 17.57 -1.19

0.9 JSQ 104.01 103.57 -0.42

Note: The percentage difference in column 5 is computed as (T
(Ded,JSQ)
1 − T (Ded,CUS)

1 )/T
(Ded,CUS)
1 .
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Figure 2.4: T
(Ded, CUS)
1 indexed to T

(Ded, JSQ)
1 under general service time distributions when

r = 0.3 and ρ = 0.6.
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Note: A ratio smaller than 1 indicates that CUS is fair. The curves correspond to service time S ∼ Erlang
with squared coefficient of variation C2 = 0.5, S ∼ Exp with C2 = 1, and S ∼ H2 with C2 = 2. The mean
service time E[S] is set to 1 in all cases.

Fairness under general service distribution. We conjecture that the benefit from redundancy

is larger when the service times have higher variability than an exponential distribution, and in this

case, non-redundant customers may prefer redundancy more often than suggested by our model.

Indeed, we observe this to be true from Figure 2.4, which shows the response time under CUS

relative to JSQ for distributions that are more (Hyperexponential with C2 = 2) and less (Erlang

with C2 = 0.5) variable as compared to the exponential distribution (i.e., C2 = 1).

Fairness of CUE. Theorems 2.2 and 2.4 together suggest that the preference for class 1 customers

between CUE and JSQ of class 2 is similar to that between CUS and JSQ. Figure 2.5 shows class 1

response times (indexed to π2 = JSQ) for two parameter combinations: r = 0.3, ρ = 0.5 in Figure

2.5(a) and r = 0.45, ρ = 0.8 in Figure 2.5(b). We see that the fairness of CUE is qualitatively similar

to that under CUS: CUE is fair when p = 0.5, but is less so when the queues are imbalanced. A key

difference is that class 1 customers’ preference switches from redundancy to JSQ at lower values of

p when π2 = CUE than when π2 = CUS. The CUS system tends to outperform CUE due to an

additional benefit in the form of the minimum of two service times, when only one class 2 job is

present. But, as Theorem 2.4 shows, CUE can be preferred to CUS: The CUE curve dips below the

CUS curve in Figure 2.5(b) at p = 1. In this case the benefit through improved server utilization is

not as dominant as the load is quite high, and class 1 prefers that class 2 not be served at (highly

congested) server 1.
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Figure 2.5: Class 1 response time T
(Ded,π2)
1 when π2 ∈ {CUS, CUE} indexed to π2 = JSQ.
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Fairness at each server. Up until now we have looked at aggregate metrics. But of course class

1 customers at queue 1 (and, likewise, those at queue 2) care much more about how redundancy

affects them than class 1 as a whole. Therefore, Figure 2.6 shows the class 1 response time taken

over all class 1 customers i.e., T
(Ded,CUS)
1 , as well as that at each server, for varying values of p.

(The only value at which all three coincide is p = 0.5; when p = 1, T
(Ded,CUS)
1 coincides with

that at server 1 because all class 1 customers join server 1.) From Figure 2.6 we see that those

class 1 customers at the more congested server increasingly prefer JSQ as the queues become more

asymmetric, and they do so at lower values of p than when the entire class would: When ρ = 0.6 and

r = 0.3, class 1 customers at server 1 switch their preference to JSQ closer to p = 0.85, whereas the

entire class switches at approximately p = 0.9. In other words multiple listing may be considered

even more unfair in a congested region.

Figure 2.6: Class 1 response time – taken over all class 1 and at each server – when π2 = CUS
indexed to π2 = JSQ, for π1 = Ded, ρ = 0.6 and r = 0.3.
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Implications for Multiple Listing

Our model suggests that when the arrival and service rates at two transplant centers are close,

multiple listing likely benefits not only those patients who are able to do so, but also singly listed

patients as a class and, by extension, the aggregate patient population. Thus, it is fair. However,

when the two transplant centers are significantly asymmetric, singly listed patients (in aggregate)

may be worse off under multiple listing. (Although singly listed patients at one of the centers may

be better off.) Thus, it may be more fair to force patients who are capable of multiple listing to

join the transplant center with the shorter wait list instead.

2.4.2 Fairness when class 1 uses the JSQ Policy

We now assume that the non-redundant customers join queues according to the JSQ policy, i.e.,

π1 = JSQ; class 2 customers can potentially list at both (π2 ∈ {CUS, CUE}) or follow JSQ

(π2 = JSQ). The following theorem specifies conditions under which class 1 prefers that one of the

two types of redundancy, CUS or CUE, be followed by class 2 versus the other type of redundancy.

Theorem 2.5. Suppose class 1 customers follow the JSQ policy. Then, the limit of T
(JSQ,π2)
1 as r

approaches 1, when it exists, is given by 1
µ + ρ2(2−ρ)

µ(1−ρ2)
and 1

µ + ρ
2µ(1−ρ) for π2 = CUE and π2 = CUS

respectively. They prefer π2 = CUE if ρ < 0.5 and π2 = CUS if ρ > 0.5 (they are indifferent for

ρ = 0.5).

Theorem 2.5 is also a limiting result as r approaches 1 (similar to Theorem 2.3). When π1 = JSQ,

class 1 customers’ preference between the two types of redundancy for class 2 customers depends

on the load – at low load they prefer π2 = CUE to π2 = CUS. To see the intuition behind this,

consider the waiting time for an arriving class 1 customer (who utilizes JSQ) when she sees only

one customer in either system. In the CUS system, the redundant customer is in service at both

servers, so the wait time is 1/2µ, whereas in the CUE system the redundant customer is in service

at one of the two servers, so the wait time is zero. On the other hand, at high loads the number

of customers, say n, in either system tends to be large, and the wait time is n/2µ in both. Since

the expected number of customers in a single M/M/1 working at rate 2µ is less than that in an

M/M/2 where each server works at rate µ (Wolff 1989), class 1 prefers CUS at high loads.

To evaluate class 1 customers’ preference between the JSQ policy and redundancy of class 2

customers, Figure 2.7 shows the ratio of class 1 response times when class 2 customers follow

redundancy to that of JSQ i.e., T
(JSQ,π2)
1 /T

(JSQ, JSQ)
1 , π2 ∈ {CUS, CUE}, where T

(JSQ,π2)
1 is given

by Theorem 2.5 for r → 1− and using simulation for r = 0.9, and T
(JSQ, JSQ)
1 (independent of r)

is computed using van Houtum et al. (2001). Since the graphs of CUS and CUE lie above one,

class 1 prefers JSQ, i.e., redundancy is unfair, in the limit r → 1−. Moreover, comparing r = 0.9

to r → 1−, we find that class 1 customers’ preference is qualitatively identical to that in the limit:

Both curves lie above one and cross each other at ≈ ρ = 0.5. Thus, class 1 customers prefer JSQ
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Figure 2.7: Class 1 response time T
(JSQ,π2)
1 when π2 ∈ {CUS, CUE} indexed to π2 = JSQ.
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over redundancy, and within redundancy, they prefer CUE (CUS) at low (high) loads.

Comparing these results on fairness when π1 = JSQ to π1 = Ded and p = 0.5 from the previous

section, we note two major differences:

1. Class 1 customers prefer π2 ∈ {CUS, CUE} to π2 = JSQ under the Dedicated policy, and the

opposite is true under the JSQ policy; and

2. Under the Dedicated policy class 1 customers prefer π2 = CUS to π2 = CUE, while their

preference under JSQ switches from π2 = CUE to π2 = CUS at ρ = 0.5.

The former effect arises because when class 1 customers follow JSQ, they no longer prefer the

system with the least total number of jobs as in the Dedicated case; they only care about the

least number of jobs in the shorter queue. Since redundant jobs balance load across servers, thus

lengthening the shorter queue, class 1 customers prefer π2 = JSQ. The intuition behind class 1

customers’ preference for π2 = CUE under the JSQ policy at low loads is similar to the intuition

presented after Theorem 2.5 – JSQ enables them to enjoy zero queueing time if they find one server

free; they may not experience this advantage if they follow the Dedicated policy. Thus, class 1

customers experience their JSQ benefit only in the CUE system.

2.5 Optimal queue-joining policy

We remove the restriction of class 1 joining policy to π1 ∈ {Ded, JSQ}, examining now class 1

customers’ optimal queue-joining decision. Specifically, let π1 = Opt denote the optimal queue-

joining policy i.e., the one that minimizes their individual system time. (Class 2 customers do not
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face this question since they join both queues upon arrival.) We consider two possible regimes of

state information that arriving class 1 customers may use to make their decision:

1. Fully Observable (FO): The customer has information about the class and position of each

of the jobs at each server; including which replicated jobs are “paired up.”

2. Partially Observable (PO): The customer has information about only the number of jobs at

each server, not any classes.

While it is relatively easy to keep track of queue lengths (the PO regime), this may not be true

for the FO regime. For example, a centralized list of multi-listed candidates, and where they are

listed, does not currently exist for transplant patients. On the other hand, in a distributed storage

system, FO information is readily available and may be utilized to improve performance (Sun et al.

2015 allow scheduling policies to take into account both the number of requests served so far as

well as those in service); however, it would involve storing a large amount of data. Thus, the move

from a PO to a FO regime would likely be costly, making the question of the incremental benefit

an important one.

For the case with no redundancy (i.e., all jobs are class 1), Winston (1977) showed that JSQ is

optimal among policies that can observe queue lengths but not job sizes. This being a special case

of our model when r = 0, it is logical to consider whether this holds true under redundancy as

well. We evaluate the optimality of JSQ in §2.5.1, and then compare its performance against the

optimal policy for those cases when JSQ is suboptimal in §2.5.2.

2.5.1 Is JSQ Optimal?

The following proposition answers our question about JSQ’s optimality for the FO regime.

Proposition 2.1. In the Fully Observable case – i.e., when an arriving class 1 customer has

information about the class of each of the jobs at each server – the optimal policy is state-dependent.

In particular, JSQ is not always optimal.

The suboptimality of JSQ in some FO states arises because – depending on the position of

the jobs – some jobs in the longer queue may be more likely to vanish before they enter service,

effectively decreasing the queueing delay. Joining the longer queue has been shown to be optimal in

other settings that are very different from our present model. In a game where customers arriving to

two service providers choose strategically – based on unknown service values and observable queue

lengths – Veeraraghavan and Debo (2009) show that customers may purchase from the provider

with the longer queue. Likewise, Whitt (1986) presents counterexamples to show that there are

service time distributions for which it is optimal to join the longer queue.

This brings up the question of optimality of JSQ in the PO regime.

Theorem 2.6. In the Partially Observable case – i.e., if an arriving class 1 customer can observe

only the number of jobs at each server – JSQ is optimal: For PO state n = (n1, n2), n1 ≥ n2,
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joining queue 2 results in no more mean system time than queue 1, where nj ≥ 0 represents the

number of jobs, in queue and in service, at server j ∈ {1, 2}.

Theorem 2.6 states that, in contrast to the FO regime, the optimality of JSQ is preserved when

information about only the number of jobs is shared with the arriving customer2. Together with

Proposition 2.1, this suggests that even though there may exist some underlying FO states in which

joining the longer queue is delay minimizing, the mass of the JSQ-optimal states dominates those

states in which JSQ is sub-optimal. In the next subsection we will quantify this difference.

2.5.2 Value of FO Information

We want to determine the value of revealing all state information by evaluating how effective JSQ is

as a heuristic for the state-dependent optimal FO policy. To do so, we first formulate the problem as

a continuous-time Markov chain (CTMC). We then compare T
(π1,π2)
1 under the optimal (π1 = Opt)

and JSQ (π1 = JSQ) policies. We demonstrate this approach for the CUS model (i.e., π2 = CUS).

The approach for CUE is similar, and is omitted.

Recall that the state of the system is denoted by S = {S1; S2} ∈ S where Sj denotes the vector

of classes of each of the jobs, and let hj(S) ∈ {1, 2} be the first element of Sj for |Sj | > 0, i.e.,

the class of the job currently in service at server j ∈ {1, 2}. Without loss of generality we consider

states such that queue 2 is at most as long as queue 1, or |S1| ≥ |S2|, reindexing states as necessary.

Let ci(S) denote the number of class i ∈ {1, 2} customers in the system in any state S ∈ S.

Suppose a policy selects queue a ∈ {1, 2} to join for every state S.

Below, Sja represents the next state due to arrivals, Sjd, j ∈ {1, 2} the next state due to departures,

the operator J \ {k} removes the first instance of k from vector J, and I(·) represents the indicator

function. With this notation, the transition rates are given by:

1. p{S,S1
a|a} = λ(1 − r), S1

a = S ◦ {1} , Ia=1{(S1, 1); S2} + Ia=2{S1; (S2, 1)}. Class 1 arrivals

join one of the queues according to policy a ∈ {1, 2}.
2. p{S,S2

a|a} = λr, ∀a, S2
a = S ◦ {2} , {(S1, 2); (S2, 2)}. Class 2 arrivals join both queues.

3. p{S,S1
d|a} = µ, ∀a if |S1| > 0, h1(S)h2(S) 6= 4, S1

d = Ih1(S)=1{S1\{1}; S2}+Ih1(S)=2,h2(S)=1{S1\
{2}; S2 \ {2}}. If there is a service completion at queue 1 and the jobs in service are not both

class 2, remove the completed job from queue 1 and its copy if the completed job is of class

2.

4. p{S,S2
d|a} = µ, ∀a if |S2| > 0, h1(S)h2(S) 6= 4, S2

d = Ih2(S)=1{S1; S2\{1}}+Ih2(S)=2,h1(S)=1{S1\
{2}; S2 \ {2}}. If there is a service completion at queue 2 and the jobs in service are not both

2The optimality of JSQ is preserved even if, in addition to the number of jobs at each server, the total number
of customers of each class in the system (queue) is revealed in the CUS (CUE) model. In this “Class Observable”
(CO) regime the state would be (n1, n2, nr), where nj , j ∈ {1, 2} represents the number in system at server j as in
PO, and nr represents the total number of redundant customers in system (queue) in CUS (CUE). It follows that
0 ≤ nr ≤ n2 in CUS and 0 ≤ nr ≤ (n2 − 1)+ in CUE. A similar induction as in the proof of Theorem 2.6 (Appendix
A.1) – now three-step (on n1, n2 and nr) with boundary states of the form (i, 0, 0) and (i, i, j) – will reveal that JSQ
is optimal.
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class 2, remove the completed job from queue 2 and its copy if the completed job is of class

2.

5. p{S,S1
d|a} = 2µ, ∀a if |S1| > 0, |S2| > 0, h1(S)h2(S) = 4, S1

d = {S1 \{2}; S2 \{2}}. If the jobs

in service are both class 2, any service completion leads to the departure of both jobs.

We apply uniformization as in Puterman (1994) with rate Λ , λ+ 2µ, and consider the discrete

time equivalent of the CTMC. Thus, the transition probability from state S to state S′ 6= S is

p(S,S′, a)/Λ and that from state S to itself is 1−
∑

S′ 6=S p(S,S
′, a)/Λ.

Since the number of FO states increases combinatorially in the length of the queues, we must limit

ourselves to a smaller, more manageable state space. Inspired by the approximation in Nahmias

(1977) we propose a modified version of our model where, in addition to a finite number of FO

states corresponding to at most k jobs in the longer queue, we have a central queue of finite, possibly

larger, size M . We use this central queue to track arrivals at the boundary (when there are k jobs

in the longer queue) so that we can assign a class – and a joining choice if the job is of class 1

– to these jobs when slots become available in the FO state. Since we are potentially delaying

the queue-joining decision for the class 1 jobs, our modified model gives us a lower bound on the

response time of the original model. Our goal is to compute the gap between the response time

under the optimal and the JSQ policies; using the same modified model to evaluate JSQ gives us

an approximation for this gap. Therefore for our modified model, the state of the system is given

by (S,m), where S ∈ S represents the FO state and m ∈ {0,M} the number of jobs in the central

queue, and the transitions p̃((S,m), ·|a) are provided in Appendix A.2.

For any policy a ≡ a(S,m) we can numerically evaluate the stationary probability πa(S,m), ∀S ∈
S,m ∈ {0,M}. Using Little’s law we can compute the mean response time for class i

as T
(a,CUS)
i = Na

i /λi where Na
1 =

∑
S∈S,m∈{0,M} π

a(S,m)
(
c1(S) + m(1 − r)

)
and Na

2 =∑
S∈S,m∈{0,M} π

a(S,m)(c2(S) + mr). The overall response time is therefore T (a,CUS) =

(1− r)T (a,CUS)
1 + rT

(a,CUS)
2 . In order to numerically evaluate the optimal policy (and separately,

JSQ) we fix k = 5. We allow M to be a function of the arrival rate λ so that virtually all of the

stationary probability is contained within M slots of the central queue: For a given value of λ,

we start with M = 0 and iteratively increase M until the difference between the resulting overall

response time for r = 1 and the exact response time (M/M/1) is at most ε = 0.0001. To identify

the individually optimal policy π1 = Opt we compute the mean wait time for an arriving class 1

customer at either queue for all FO states (as in the proof of Proposition 2.1 in Appendix A.1).

Let γ ≡ T
(JSQ,CUS)
1 − T

(Opt,CUS)
1 denote the gap between our approximation for the class 1

response time for the optimal and JSQ policies. Figure 2.8 shows γ for different values of ρ. If the

proportion of one of the two classes is much higher than the other the two policies are very similar

in their performance – the gap for ρ = 0.5 is 0.001 when r = 0.1 or r = 0.9. When the proportion

of both the classes is comparable i.e., r ∈ [0.4, 0.7], JSQ experiences the greatest deviation; the

difference achieves a maximum of 0.015 at ρ = 0.8 and r = 0.6. Intuitively, in order for JSQ to be

non-trivially suboptimal for an arriving class 1 customer, we need a staggered arrangement of class
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Figure 2.8: Difference γ in class 1 response time T
(·,CUS)
1 under the optimal and JSQ policies

(µ = 1).
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2 jobs (such as in the proof of Proposition 2.1) which makes those in the longer queue more likely

to depart prior to reaching service. To ensure this we need a sufficient number of class 2 customers

to be present; thus, γ skews right of r = 0.5. Finally, at higher loads these arrangements are more

likely, and any such deviation between the two policies gets amplified.

Since γ ≤ 0.015 the average difference is small, but this does not tell the entire story; the difference

in any particular state could be quite significant. For example, the mean wait times are 1.25 and 1.75

in queues 1 and 2 respectively, for a class 1 customer arriving to the state S1 = (1, 2),S2 = (2, 1);

under JSQ, the customer would experience a wait time of 1.5. Thus, revealing “full” information

could result in 17% savings in wait time for this particular customer; but, the probability of being

in this state is only 0.012 – about one-fifth that for state S1 = (1, 2),S2 = (2) – when r = ρ = 0.6.3

These examples provide concrete values for how large the value of information can be in a given

state; however, finding tight bounds on γ remains an open question.

Finally, since the system time obtained for the JSQ policy using the modified model is on average

only 0.03% off from that obtained from simulating the original model, we believe the modified model

provides a very close lower bound for the JSQ policy. In fact, the gap between the modified model’s

optimal policy (i.e., a lower bound for the optimal policy) and the upper 95% confidence interval

(c.i.) bound on the original model for JSQ from simulation is less than 3%, suggesting that JSQ

is a very good heuristic in general. Combined with the fact that there may be overhead costs

associated with tracking state information, this suggests that it is advisable to use JSQ except in

those situations in which information is inexpensive and/or delay is extremely costly. Note that,

3We provide two examples – one with very few customers and one with infinitely many in Appendix A.2 – to
demonstrate settings in which this absolute difference is unbounded, and their ratio approaches constants between
1.46 and 1.67. These provide concrete values for how large the value of information can be in a given state; however,
finding tight bounds on γ remains an open question.
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arguably, organ transplantation may very well fall into this latter case.

2.6 System performance

In this section we numerically evaluate the benefit to the overall system from redundancy: We

compare the overall response time T (π1,π2) under different policies π1 and π2 to identify when this

benefit is significant. Our analysis focuses primarily on low to high loads; other techniques may be

available to study the system in heavy traffic.

Figure 2.9: Overall system time when class 2 customers constitute a fraction r of all arrivals.
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Note: p = 0.5 for π1 = Ded.

Figure 2.9 compares T (π1,π2) when class 2 customers form a fraction r ∈ {0, 0.3, 0.6, 1} of the

total arrival stream. When class 1 customers follow π1 = JSQ, Figure 2.9(a)-(b) shows that

redundancy improves the overall system time in both π2 = CUS and π2 = CUE settings; however,

the improvement is considerably smaller in CUE. The extremes of the CUE model – JSQ at no

redundancy (r = 0) and M/M/2 at full redundancy (r = 1) – have comparable performance at all

loads, whereas the extremes for CUS, JSQ (r = 0) and M/M/1 serving at rate 2µ (r = 1), have
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a significantly wider dispersion. In contrast, when class 1 customers follow the Dedicated policy

(π1 = Ded) with p = 0.5, Figure 2.9(c)-(d) shows that there is considerable improvement in the

overall system time under both CUS and CUE, particularly at higher loads, since both M/M/2

and M/M/1 queues serving at rate 2µ (r = 1) are more efficient than two M/M/1 queues serving

at rate µ each (r = 0).

To explore the benefits of partial redundancy more closely, Table 2.3 shows how much of the

benefit of full redundancy is captured by having some fraction of redundant customers. Let tr ≡
T (π1,π2) be the overall system time when the proportion of class 2 is r. Specifically, Table 2.3 shows

τ(r) ≡ t0 − tr
t0 − t1

, (2.1)

calculated analytically for π1 = Ded and via simulation (with 95% c.i.) for π1 = JSQ.

Table 2.3: Benefit τ(r) (%) from having a fraction r of redundant customers.

π2 ρ π1
r

0.1 0.3 0.5 0.7 0.9

CUS

0.6

Ded 22 52 71 85 96

JSQ
11

(10-12)
30

(30-31)
49

(48-50)
69

(68-70)
89

(88-90)

0.9

Ded 53 81 91 96 99

JSQ
14

(11-17)
35

(33-38)
57

(54-60)
71

(68-74)
94

(91-97)

CUE

0.6

Ded 24 55 75 88 96

JSQ
9

(6-12)
31

(27-34)
53

(50-56)
72

(69-74)
87

(84-90)

0.9

Ded 55 83 92 97 99

JSQ
17

(12-22)
46

(41-52)
66

(61-71)
81

(76-86)
96

(91-100)

Note: Benefit τ(r) is defined in (2.1). The values for π1 = JSQ correspond to the mean, and the 95% c.i. in
parenthesis, obtained via simulation. p = 0.5 for π1 = Ded.

When π1 = Ded and p = 0.5 the reduction in system time is dramatic; for instance, attaining 53%

of the benefit with only 10% redundancy at ρ = 0.9 for CUS. The corresponding benefit at ρ = 0.6

is 22%, indicating that the higher the load, the greater the benefit. Furthermore, as r increases the

% benefit likewise increases rapidly. The % benefit is slightly larger for the CUE system, but recall

from Figure 2.9 that these are larger percentages of a relatively smaller total benefit. In further

experiments (not shown), we find that the % benefit is significantly greater when the queues are

asymmetric under the Dedicated policy: 56% and 93% of the benefit are attained at 10% and 50%

redundancy respectively, when ρ = 0.6 and p = 0.75 in the CUS model.
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Table 2.3 also shows that when class 1 jobs follow JSQ instead of Dedicated, the impact of

redundancy is not as dramatic; as class 1 jobs already experience the benefits of JSQ, redundancy

does not benefit them as much. Redundancy is thus an important lever to improve response times,

particularly in less efficient systems (such as Dedicated) as compared to JSQ, and even more so at

higher loads and more asymmetric systems.

Redundancy and JSQ are similar in that they both make a joining decision to minimize some

form of delay – actual system time for CUS, actual queueing time for CUE, and expected queueing

and system time for JSQ. This observation invokes a comparison of our results to van Houtum et al.

(2001) where they consider two classes of jobs: 1) common jobs (fraction r) that can be served

by all servers and are assigned to queues according to JSQ; and 2) specialized jobs that form a

dedicated stream to each server. Their reported “realized reduction” in the gap (similar to (2.1)) –

54% at r = 0.1, 82% at r = 0.3, and 91% at r = 0.5 for ρ = 0.9 – is very similar to ours under the

Dedicated policy, implying that the underlying dynamics are similar i.e., the presence of few delay

minimizing “common” or redundant jobs improves the overall response time significantly.

2.7 Extensions

2.7.1 Larger Systems

We now consider a system with m identical servers, denoted j ∈ {1, . . . ,m}, each with its own

queue, two classes of customers, denoted i ∈ {1, 2}, and “s-Redundancy (sR)” in which a class 2

customer replicates into s ≤ m jobs upon arrival so that each job joins the same dedicated subset

of queues, say k ∈ {1, . . . , s}.4 Let πi be the queue-joining policy adopted by class i customers, pj

be the proportion of class 1 customers joining queue j ∈ {1, . . . ,m} under π1 = Ded, and let ηj be

the probability that a class 2 customer joins queue j when more than one of the queue lengths are

equal under π2 = JSQ, or when more than one of the servers are idle under π2 = CUE.

Our main structural results from §§2.4-2.5 continue to hold for these larger systems.

Theorem 2.7. Suppose class 1 customers follow the Dedicated policy, s = m, and the limit of their

wait time at any server exists as r approaches 1. Then the limit of T
(Ded,π2)
1 as r approaches 1 is

given by 1
µ + Nπ2

mµ ,∀pj, where Nπ2 is the expected number of customers in a system of m parallel

queues where all customers follow policy π2 ∈ {CUS, CUE, JSQ}. Moreover, in this case class 1

customers prefer CUS over CUE over JSQ.

As before, the preference is due to the reduction in the length of the busy periods.

Unfortunately, our proof fails for the extension of Theorem 2.2; while we have not been able to

construct a counterexample where the coupling approach in the proof of Theorem 2.1 (which is

4There are other ways to extend our model to larger systems: one option is to allow redundant customers to join
any (randomly chosen) s < m queues upon arrival. This is a significantly harder problem, and extending our results
to this particular type of redundancy would be non-trivial.
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used in Theorem 2.2) breaks, we have also not been successful in extending the argument. We have

been able to generalize Theorem 2.4:

Theorem 2.8. When class 1 customers follow the Dedicated policy, they prefer JSQ and CUE over

CUS when p1 = 1, η1 = 0 and r approaches 0.

Theorem 2.8 suggests that in the extended model – as in the two-server model – redundancy

may be unfair, particularly if the queues are asymmetric.

We now turn to the optimal queue-joining policy for class 1 customers: As in the two-server

model, we can easily construct counterexamples to show that JSQ is not always optimal in the FO

regime. But JSQ continues to be optimal in the PO regime:

Theorem 2.9. In the FO regime, JSQ is not always optimal. In the PO regime, JSQ is optimal

if s = m, but it is not always optimal if s < m.

2.7.2 Abandonments

In this subsection we will add abandonments to our model. This is particularly important in

the context of organ transplants where patients may leave the wait list before receiving an offer

because they become too sick to receive a transplant, they receive a living donor organ, or due to

death. We assume that each customer (regardless of her class) will leave the system after some

uncertain time, which is exponentially distributed with rate α. (A redundant customer has a single

deadline.) We allow abandonments to occur from the system; thus, a customer may leave even

if she is in service5. This is justified if we consider service time as the time between consecutive

organs becoming available.

In addition to showing that exponential service times and Poisson arrivals are valid assumptions

in the context of organ transplants, Davis et al. (2013) also show that individual abandonment time

is also exponentially distributed. The only related work in redundancy that models abandonments

is Ata et al. (2016), who study an overloaded queueing system using fluid and diffusion limits. To

the best of our knowledge there is no other work that considers the fairness of redundancy in the

presence of abandonments.

Let A(π1,π2) denote the mean number of abandonments from the system when class i uses policy

πi, i ∈ {1, 2}. Note that T (π1,π2) (T
(π1,π2)
i ) now denotes the overall (class 1) average time in system

– either before service is complete or until the customer abandons6. The following theorem partially

extends one of our main results to include abandonments.

5One may consider deadlines to the beginning of service so that customers do not abandon if they are in service;
however, this typically imposes additional conditions (such as α < µ) for similar stochastic results to hold (Akgun
et al. 2011, Sparaggis and Towsley 1994).

6We use this definition for two reasons: 1) It allows us to derive an ordering on the system times; and 2) Other
work that consider customer abandonment such as Whitt (2005) and Akgun et al. (2012) use the same definition.
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Figure 2.10: Class 1 response time T
(JSQ,π2)
1 when π2 ∈ {CUS, CUE} indexed to π2 = JSQ when

ρ = 0.5 and p = 0.5, in the presence (α = 0.03) and absence (α = 0) of customer abandonments.
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Theorem 2.10. Let each customer abandon the system after an exponentially distributed time at

rate α. When class 1 customers follow the Dedicated policy with p = 0.5, T (Ded,CUE) ≤ T (Ded,JSQ)

and A(Ded,CUE) ≤ A(Ded,JSQ), ∀r ∈ [0, 1].

When the queues are symmetric, Theorem 2.10 states that CUE-redundancy results in lower

mean system times – and mean number of customers in system by Little’s Law – as compared to

JSQ, for a system with abandonments. To show this result, we provide a novel coupling approach

that includes abandonments (see Appendix A.3). Importantly, Theorem 2.10 also shows that

redundancy results in fewer mean number of abandonments, which implies that the number of

service completions is higher when π2 = CUE as well.

Since we no longer have a closed-form expression for CUS under abandonments to compare

against CUE, and our coupling approach does not extend to CUS7, we cannot show the corre-

sponding result T (Ded,CUS) ≤ T (Ded,CUE) to be true.

With respect to fairness, it is no longer immediate that class 1 customers prefer a more balanced

system: For example, when π1 = Ded, p = 0.5 and α > 0, the state (3, 1) results in a smaller

response time for an arriving class 1 customer than the more balanced state (2, 2). This is because

while each individual customer has the same rate of abandonment from the system, longer queues

are likely to witness more abandonments, so that abandonments effectively “shorten” long queues.

Thus, it is not trivial to extend Theorem 2.2, i.e., T
(Ded, CUE)
1 versus T

(Ded, JSQ)
1 , purely from

Theorem 2.10 using Little’s law and PASTA as we did in §2.4.

We numerically find that Theorem 2.2 holds when the abandonment rate is small8: Figure 2.10

7This is because when the two copies of a class 2 customer are both in service, the weak submajorization ordering
used in the proof of Theorem 2.1 breaks.

8When α or ρ is large we conjecture that redundancy can be unfair for p = 0.5. In this case the preference of class
1 for unbalanced systems (described above) is likely to dominate the overall system efficiency effect in Theorem 2.10.
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shows class 1 response time under redundancy (CUS and CUE) indexed to JSQ for p = 0.5, both

when abandonments are considered (α = 0.03) and when they are absent (α = 0). The gap

between the α = 0 and α = 0.03 curves is precisely due to the decrease in response times owing to

abandonment. The indexed class 1 response times lie below one, indicating that redundancy can

be fair under both CUS and CUE, if p = 0.5 and α is small.

This being said, we can still show that redundancy can be unfair to class 1.

Theorem 2.11. Let each customer abandon the system after an exponentially distributed time at

rate α. When class 1 customers follow the Dedicated policy, they prefer JSQ over CUE over CUS

for class 2, i.e., T
(Ded,JSQ)
1 ≤ T

(Ded,CUE)
1 ≤ T

(Ded,CUS)
1 and A

(Ded,JSQ)
1 ≤ A

(Ded,CUE)
1 ≤ A

(Ded,CUS)
1 ,

if p = η = 1 and r is sufficiently close to 0.

Theorem 2.11 extends Theorem 2.4: Even though customers abandon from the system, the

fundamental issue of redundant customers sometimes being served at the congested server, thus

impacting non-redundant customers at that server, continues to exist. When the queues are asym-

metric enough, this effect causes redundancy to be less fair compared to JSQ.

The implication for multiple listing is that redundancy is better on two levels when queues are

symmetric: (i) It reduces the number of patients leaving the wait list before receiving an organ;

and (ii) Patients, on average, spend less time on the wait list. But, when queues are asymmetric,

it may be more fair to have flexible patients join the shorter queue instead of multiple listing.

2.7.3 Unequal Service Rates

We have considered equal service rates at the two servers throughout this chapter. This is a

common assumption in related work, such as Sparaggis and Towsley (1994) and Akgun et al. (2011,

2012), that involve comparisons of performance measures using stochastic ordering or optimality

of intuitive routing policies, as we do. Nevertheless, we now extend our system to consider unequal

service rates. Similar to §2.7.2, this may be justified in organ transplantation models because

different regions are likely to have different rates of organ availability. Let µj be the service rate at

server j ∈ {1, 2}.
We need to modify our queue-joining under policies π2 ∈ {JSQ, CUE} appropriately: If only

one server is idle, a class 2 customer will enter service at that server. Under π2 = JSQ, a class 2

customer will join the shorter queue i.e., the queue with fewer customers. Under these assumptions,

the following theorem shows that redundancy may be unfair.

Theorem 2.12. Let the service rate at server j ∈ {1, 2} be µj. When class 1 customers follow the

Dedicated policy, they prefer JSQ over CUE over CUS for class 2, i.e., T
(Ded,JSQ)
1 ≤ T

(Ded,CUE)
1 ≤

T
(Ded,CUS)
1 , if p = η = 1 and r approaches 0.

If the arrival rates to the two queues are very different, Theorem 2.12 shows that class 1 customers

prefer JSQ to redundancy when the service rates are unequal. The intuition behind this result is
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similar to that of Theorem 2.4. This confirms that our results on the unfairness of multiple listing

are robust in the more realistic scenario where the service speeds in the two regions is different.

From the proof of Theorem 2.12 (Appendix A.3), we know that the additional pain when π2 =

CUS (compared to when π2 = CUE or π2 = JSQ) is 1
µ1+µ2

to (potential) class 1 customers, and

this pain occurs with probability
(

µ1
µ1+µ2

)n
, in any state with n customers at server 1. Therefore,

the unfairness of CUS is likely to be decreasing in µ2 for constant µ1. In other words, if the less

congested transplant center is also the one with the slower rate of organ arrivals (which is likely

given that population likely impacts both the arrival and the service rates in the same direction),

then singly listed patients are likely to be more worse off than suggested by our base model with

equal service rates.

It is worth noting that, even with exponentially distributed service times and a single class of

(flexible) customers, the policy that minimizes individual mean system time is not optimal for the

system as a whole, when the service rates are unequal: Krishnan (1987) shows that an alternate

‘separable rule’ performs better than the individually optimal policy. Identifying the individually

and socially optimal routing policies – for either customer class – in the presence of redundancy and

unequal service rates remains an open problem, and it will be interesting to investigate whether

Theorems 2.1 and 2.2 extend (albeit with some modifications) as well.

2.8 Conclusion

We study a system of two parallel queues with two classes of customers: redundant customers join

both queues and non-redundant customers join a single queue according to some policy. We allow

for two different variants of our model, differentiated by when the redundant jobs are deleted from

the system: when the required service is complete, or when it begins, thereby modeling a diverse

set of applications. By incorporating policy choices of class 1 customers and considering class-based

redundancy, our model provides fundamental insights on the fairness of redundancy, the optimal

queue-joining policy for non-redundant customers, and the value of information.

We show that non-redundant customers forming independent Poisson streams to each queue are

always better off when the other class is allowed to be redundant, as opposed to utilizing JSQ, if

the queues are symmetric. However, if the queues are asymmetric there may be situations in which

the non-redundant class is worse off under redundancy. This implies that in settings such as kidney

transplantation, multiple listing may benefit not only those patients who are able to multi-list but

also singly listed patients, when the transplant centers are symmetric (or nearly so). But such

multi-listing may harm singly listed patients if centers are asymmetric – implying that it might be

more fair to have patients who possess the means to multi-list join the transplant center with the

shorter wait list instead. Our analysis helps identify when, and by how much, multiple listing may

be “unfair,” and as such could be a useful tool for policy makers.

Our analytical results on the optimal queue-joining policy show that different policies may be
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optimal under different information regimes: If an arriving non-redundant customer can observe

only the total number of jobs at each server, JSQ is optimal, but if the customer can observe the

class of each of the jobs at each server, JSQ is not always delay minimizing. But, even in this latter

case, JSQ is near-optimal. Thus, considering the potential costs of gathering such information, it

may not be worthwhile to do anything but JSQ, unless the setting is one in which delay is very

costly, such as waiting for a kidney transplant.

There are several interesting directions for future research. Customers may incur a cost for

generating redundant jobs; for example, evaluation costs associated with being listed at more than

one transplant center, or communication costs for sending jobs to nodes. How does the presence of

such costs affect the decision to be redundant under CUE and CUS? Our simplifying assumptions

of Poisson arrivals and exponential service times, while enabling us to derive structural properties

of this complex problem, may not always hold true in practice. One may also consider other

scheduling disciplines instead of FCFS, or strategic redundancy instead of an exogenous proportion

of redundant customers, particularly if redundancy comes with a cost. And, even though our model

can be used to describe the dynamics of a kidney transplant center with multiple listing at a high

level, there are many aspects of this problem such as the complex matching system assessing the

compatibility of a donor kidney, organ allocation policies, and post-transplant survival outcomes

that would be important additions to our model.
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Chapter 3

Consumer Return Policies in Omnichannel Operations

3.1 Introduction

The retail landscape is rapidly evolving in response to changing customer preferences: While same-

store sales have been declining due to decreasing store traffic (Bloomberg 2016), online sales have

been growing steadily (Centre for Retail Research 2017). Fortunately, the omnichannel strategy –

providing an integrated shopping experience through physical stores and digital channels – allows

a firm to effectively participate in both channels, yielding advantages over single-channel peers. An

omnichannel firm has advantages over conventional brick-and-mortar retailers, since it is appealing

to customers who value the convenience of online shopping. Likewise, an omnichannel firm enjoys

a competitive edge over pure-play online retailers – it can leverage its store assets to cater to

customers who value the ability to test the “fit” of an item before purchasing.

This latter advantage is significant – many customers feel that the biggest drawback of shopping

online is the inability to accurately assess the fit of an item before purchase (Body Labs 2016). To

overcome this drawback customers must either visit a retail location or order the item and check

the “fit” at home.1 The prevalence of this latter strategy is borne out by the fact that a third of all

Internet sales get returned (WSJ 2013). It is not surprising then that customers value the option of

returning, with a majority (66% according to UPS 2014) reviewing the return policy before making

their purchasing decision. But, handling these returns is a costly affair for retailers – the average

cost of processing a returned item is $30–$35 – and these items may need to be salvaged at a loss;

for example, third party outlet stores buy returned items for only 10-20% of their value (Stock

et al. 2006).

This leads to yet another advantage omnichannel firms enjoy compared to their single-channel

competitors: Omnichannel firms can offer cross-channel returns. Again, customers value this flex-

ibility: UPS (2015) finds that over 50% of shoppers would not complete their purchase if “return

to store” were not allowed.

Interestingly, we see a wide range of return policies offered by omnichannel firms, from the “no

questions asked” full refunds for all returns policy (e.g., Nordstrom and Macy’s) to charging a fixed

1Customers may indulge in showrooming i.e., buying online after assessing “fit” in-store. Some firms also offer
physical showrooms – stores set up for display purposes where customers can try on items – and virtual showrooms
– programs that allow them to try on items virtually.

33



return fee (e.g., $5.99 offered by H&M) for returns by mail, to the no returns policy (e.g., Gap

and J.Crew for “clearance” items). And, while most omnichannel firms offer the additional “free

returns to store” option of returning (non-clearance items) to their physical stores for a full refund,

the convenience of this option ranges widely, depending on the number of stores and the ease of

the in-store return process. For example, while some retailers offer store credit instead of refunds

for in-store returns – which may be seen as a significant inconvenience – others (e.g., J.C. Penney)

seem to encourage in-store returns as “the quickest and easiest way to return.”2

Unfortunately, research on return policies has largely focused on single channel firms; the return

policy decision in an omnichannel setting remains an open problem. In fact, our analysis reveals

that while some results obtained by prior research on single channel firms apply to the omnichannel

firm, others do not. Thus, our main contribution in this chapter is to model and analyze how an

omnichannel firm makes return policy (and pricing) decisions when serving customers who interact

across its channels. We specifically ask the following questions:

• Do the different return policies we see in practice, such as full refunds, partial refunds, and

in-store returns, arise as the optimal policy of a profit-maximizing omnichannel firm? In

particular, are the generous refunds seen in practice advisable?

• What are the key characteristics of the omnichannel firm that influence its preference for key

return policies such as full refunds and incentivizing in-store returns?

• What impact does improving customers’ accessibility to stores (e.g., by opening more physical

locations) and the convenience of in-store returns (e.g., not requiring a receipt or having a

dedicated area for processing returns) have on the firm’s overall profit?

To answer these questions, we consider an omnichannel firm that sells a product to customers

who face uncertainty around their valuation for the product. These customers differ in how they

resolve their uncertainty – some evaluate the product in person at a physical store before deciding

to purchase, while others purchase online and may or may not return misfit items depending on the

firm’s return policy. Keeping with the practices of most omnichannel firms, the firm sets identical

prices across its channels and allows free returns to its stores.

Our main contributions are summarized below:

• We demonstrate that all three return policies – full refunds, online returns for a fee, and free

in-store returns – may be prescribed by a profit-maximizing omnichannel firm. Prior work

considering single-channel firms concluded that the refund must be set equal to the salvage

value. In contrast, we show that when customers return online, the optimal refund chosen

by an omnichannel firm is more generous: It is larger than the salvage value, and it may

even be a full refund. We attribute these high refunds to two key drivers not considered in

prior work – the mixed customer base (in-store and online) and the convenience of returning

items in-store. Thus, we are able to explain the negligible or zero fees for online returns often

offered by omnichannel firms in practice.

2Source: https://www.jcpenney.com/dotcom/jsp/customerservice/serviceContent.jsp?pageId=pg100026.
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• Our results help omnichannel firms decide when to offer full refunds or charge a fee for online

returns. We show that an omnichannel firm should offer full refunds whenever it is able to

salvage online returns at mild discounts, or if a majority of its customers choose to visit its

stores before purchasing. The former result extends prior work considering single-channel

firms, and can explain why firms that have their own outlet stores, e.g., Nordstrom and

Nordstrom Rack, offer full refunds. But, through the latter result, we are able to explain why

firms such as Macy’s that use third-party outlet stores for salvaging (e.g., T.J. Maxx, likely

at low values) offer full refunds as well: We attribute it to Macy’s share of store sales being

more significant than Nordstrom.

• We recommend that omnichannel firms who enjoy better salvage capabilities in-store, and a

sufficiently wide physical store network, charge a fee for online returns in order to prompt

customers to utilize free in-store returns. For example, J.C. Penney claims to have strong

in-store cross-selling capabilities and possesses a wide store network. And, in line with our

results, they offer partial refunds online, but advertise free in-store returns, and reportedly

over 90% of their (online-purchased) returns take place in-store.

• By introducing two model elements not considered together in prior work – the convenience

of returning in-store and the share of customers who choose to shop online – we are able to

explore the impact of improving customers’ accessibility to stores. Prior work empirically

finds that an omnichannel retailer who offers full refunds sees increased revenue as a result

of opening a new store. This is in line with our results for a firm offering full refunds, and

we attribute it to either more customers visiting the physical store before purchasing or to

more customers finding “free returns to store” convenient. In addition, we find that this

increase in revenues may not prove to be true in general, and we caution that, depending on

the return policy in place, measures that improve accessibility or the convenience of returns

may actually hurt an omnichannel firm.

The rest of the chapter is organized as follows. In §3.2, we review the relevant literature and

describe how it differs from our present work. We formalize our model in §3.3 and study the two

extreme policies of full refunds and no returns, that are commonly considered in prior work, in §3.4.

We derive the optimal policy for general refunds, and illustrate our results using realistic parameter

values that represent a typical omnichannel setting, in §3.5. We explore several extensions in §3.6

and finally, in §3.7, we conclude and discuss future research directions.

3.2 Literature review

Our work is primarily related to two streams of research: 1) return policies of single-channel

retailers; and 2) operational problems of omnichannel firms. The literature on consumer returns

largely highlights the positive sales effects of a lenient return policy. Early research by Davis et al.

(1995) and Che (1996) studied two extreme policies – full and no refunds – to identify when a
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firm benefits from money-back guarantees. Moorthy and Srinivasan (1995) show that full refunds

may also signal quality, and Petersen and Kumar (2009) find that a satisfactory return experience

results in higher levels of customer trust.

More recent papers study optimal return policies of single-channel firms: Su (2009) considers

a firm selling to ex-ante homogeneous customers who realize their valuation after purchase, and

shows that the optimal refund is equal to the salvage value. Moreover, he identifies two extensions

wherein the firm offers generous refunds i.e., the optimal refund exceeds the salvage value: (i) when

customers are heterogeneous in their uncertainty before purchase; or (ii) if customers are boundedly

rational (or, forgetful) and naively believe that they will return items as originally planned. In

contrast to Su (2009) we show that an omnichannel firm offers generous refunds in the absence of

these additional features, thus providing an alternate explanation for the same. Su (2009) also finds

the optimal inventory to stock and the impact of return policies on supply chain performance. In a

similar vein, Hsiao and Chen (2014) assume that customers have ex-ante heterogeneous valuations,

but they allow the firm to decide the “hassle” for returns, i.e., how inconvenient it is to return an

item, and compare two special policies – full refunds with optimally chosen hassle and hassle-free

policies that provide partial refunds.

Matthews and Persico (2007) find a similar result to Su (2009) i.e., optimal refund is equal to

salvage value, even when customers can choose to acquire costly information about the product

on their own; however, the firm may promise a larger refund to dissuade customers from seeking

this information. In earlier work Matthews and Persico (2005) consider two customer types such

that one type has negligible costs of obtaining this information, which is mathematically similar to

assuming that customers shop across different channels (as we do). Their work differs from ours in

two ways: (i) They allow the firm to offer a menu of contracts, and in particular, two different prices

and refund policies to the two customer types, which is not common in omnichannel settings; and

(ii) They do not model cross-channel returns, or the inconvenience of doing so, since they consider

a single-channel setting.

Several papers add other dimensions such as customer behavior and competition to this line of

work. Shulman et al. (2009) study the optimal policy in a two-product setting, thus adding the

exchange option to the return vs. keep decision. They find that the optimal refund can be more

or less than the salvage value. They also identify conditions under which it may be optimal for

a seller to provide more information about product fit to prevent misfit. Shulman et al. (2011)

study the equilibrium strategies when firms compete; they find that restocking fees may be higher

in a duopoly than that in a monopolistic setting. Altug and Aydinliyim (2016) consider strategic

customers who incorporate the product’s availability in the clearance period into their decision to

purchase at the full price. The authors find that the optimal refund must be less than the salvage

value, contrary to Su (2009). In contrast to both these papers, we find that an omnichannel firm

may optimally choose a refund that is larger than the salvage value.

The issue of opportunistic behavior – wherein consumers purchase with no intention of keeping
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the product – has also been studied: Chu et al. (1998) show that partial refunds are preferable in

the presence of opportunistic customers, and Hess et al. (1996) show that one way to limit them is

to impose a non-refundable fee.

Overall, this stream of research provides valuable insights that help understand the role of con-

sumer return policies, but it does not shed light on the challenges (and potential advantages) of a

typical omnichannel firm. In particular, it ignores cross-channel purchasing and return behavior

and the impact of price being linked between the two channels.

The second stream of related literature considers the unique problems associated with operating

more than one channel, especially with interactions between the two; see Brynjolfsson et al. (2013)

and Bell et al. (2014) for a broad survey. Huang and Swaminathan (2009) study the optimal

pricing strategies of a firm selling through two channels. The dual channel nature also creates

complex information flows: For example, Lal and Sarvary (1999) show that the online channel

affects consumers’ search behavior and may result in higher prices.

Recent papers empirically evaluate different omnichannel fulfillment strategies: Gallino and

Moreno (2014) consider the impact of buy-online, pickup-in-store (BOPS) on a firm’s sales, and

Gallino et al. (2016) consider the effect of introducing the ship-to-store functionality, wherein cus-

tomers have an out of stock product shipped to their local store for free. Bell et al. (2017) investigate

the impact of opening physical showrooms on consumers’ channel choices. Others approach these

problems from a theoretical perspective: Gao and Su (2016a) study the implications of BOPS on

customers’ purchasing decisions, whereas Gao and Su (2016b) study the impact of three different

approaches to sharing information – physical showrooms as in Bell et al. (2017), virtual showrooms,

and providing information on in-store product availability. In related work Karp et al. (2017) study

the order fulfillment strategies for online orders considering that inventory counts may be inaccu-

rate, due to depletion by an in-store sale before the item is picked for shipment. Harsha et al.

(2016) develop an approach to optimize the cross-channel fulfillment inventory at an omnichannel

firm. And, Ofek et al. (2011) examine how physical store assistance levels change as a result of

adding an online channel. While some of these papers (Bell et al. 2017, Gao and Su 2016b, Ofek

et al. 2011) acknowledge that customers may return misfit items, they do not model the return

policy decision of the firm.

In fact, there has been very limited work on customer return policies in an omnichannel setting.

An empirical study by Kumar et al. (2014a) investigates the impact of opening a new store on

revenue for an omnichannel firm that offers a full refund policy. The authors find that the revenue

increased as a result of the store opening, and they attribute this, partially, to customers buying

more online owing to the reduced cost of returning in-store. Our model is able to capture this

effect of opening a new store at a high level, and our results corroborate their finding when the firm

offers full refunds. In addition, we find that the impact of improving the convenience of returns

crucially depends on the return policy in place, suggesting that the conclusions may be different

for an omnichannel firm that offers partial refunds.
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The closest paper to ours is Chen and Chen (2017), who investigate when a firm should offer full

refunds versus no returns, as well as when to operate in both channels. But they (and Ofek et al.

2011) model the rate of product returns using an exogeneous parameter (i.e., a fraction of sales); in

contrast, we allow the firm to influence the return decision of its customers by controlling the price

and refund amount (as in the single-channel model of Su 2009). Our approach of endogenizing the

return decision is more realistic as several surveys (summarized in §3.1) find that customers do

make their choices for returns by considering the firm’s policy. In addition, Chen and Chen (2017)

allow the price to be set independently in both channels, and they do not consider cross-channel

effects, as we do. Finally, they only consider two extreme policies (full refunds and no returns),

whereas we derive the optimal return policy.

The primary contribution of our work is in marrying the above two streams of literature to fully

investigate the return policy decisions of an omnichannel firm. We incorporate two common prac-

tices – identical prices across channels and cross-channel returns – that have largely been ignored

in prior work, and we are the first to characterize the optimal return policy in an omnichannel

context. In addition to being consistent with practice in most omnichannel settings, the identical

price assumption highlights an important tension experienced by a firm due to its omnichannel na-

ture i.e., the inability to charge a higher price to customers who visit their stores. By modeling the

cross-channel return option, we are able to explain why some firms (e.g., J.C. Penney) experience

more online purchases returned in-store (and why they advertise this option). Finally, through

the optimal policy, we are able to explain which commonly observed policies are advisable, and in

particular, when an omnichannel firm prefers one return policy over another (e.g., when to offer

full refunds over in-store returns). The novel aspects of our model enable us to generate valuable

insights on the decisions of an omnichannel firm, but they also present analytical challenges; for

example, the solution to the optimal return policy involves optimizing over a two-dimensional space

wherein some optimal policies do not have a simple characterization and are not amenable to a

straightforward comparison.

3.3 Model

We consider an omnichannel firm that sells a product through two channels – online and physical

store. The firm can decide whether to allow mail-in product returns (referred to as online returns),

and if so, the refund amount r offered to the customer for any items purchased online that are

shipped back. In addition, the firm may allow online purchases to be physically returned to a store

in exchange for a full refund as is commonly observed in practice – “free returns to store” (referred

to as in-store returns).

The firm faces a unit cost c of procurement, a salvage value se for products returned online, and

a salvage value sp for products returned to the physical store. The values of c, se and sp represent

how efficient the firm’s supply chain is and how effectively it can resell through its (own or external)
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Table 3.1: Table of notation.

Symbol Definition

c Firm’s marginal cost of production

se Firm’s salvage value for an item returned online

sp Firm’s salvage value for an item returned to its physical store

h
Online-savvy customer’s hassle cost of returning to the physical
store

θ Fraction of store-savvy customers

V
Random variable denoting a customer’s valuation for the prod-
uct

p Price charged for the product

r Refund offered for online returns

secondary channels. We assume that se and sp are smaller than or equal to c.3 We also assume

that the firm has enough production capacity and inventory to meet its demand. This allows us to

isolate insights on the pricing and return policy decisions, which are the main focus of this work.

Table 3.1 summarizes our notation.

The firm also decides the price p to charge for the product. Keeping with the practices of most

omnichannel firms, the price is assumed to be identical across channels. Cavallo (2017) finds that

70% of retailers have identical pricing across channels – even more so (92%) for clothing products

– and that differences, if any, are negligible. In fact, customers expect this: 82% expect a retailer’s

prices to be the same in-store and online (Accenture 2015), and increasingly so (up from 69% in the

previous year) as it becomes easier to check prices online and to express dissatisfaction regarding

price differences through social media and the retailer’s website.

Finally, omnichannel firms have a key advantage over online-only competitors when customers

utilize their store-return policy – the ability to sell items in-store to them (UPS 2016b, WSJ 2016).

To capture this effect we assume that the firm may earn an additional (cross-selling) profit from each

customer who returns an item to their store.4 Given that such cross-selling is more effective when

returning in-store compared to returning online – UPS (2016b) finds that 25% more customers

made an additional purchase while returning in-store – we assume that the additional profit is

realized only when the “free returns to store” option is exercised. This implies that se ≤ sp.
Customers face uncertainty in their valuation V for the product, which is drawn from a uniform

distribution: V ∼ U [0, 1]. They differ in how they resolve this uncertainty; either by purchasing

online, or by inspecting the item in a physical store. We model this heterogeneity by considering

3This assumption, which is standard in the literature reviewed in §3.2, ensures that the firm does not receive a
net profit from returned items.

4For example, J.C. Penney claims that about one-third of shoppers spend an additional $60 when they visit a
store to make a return (WSJ 2016).
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two customer types:

• The “online-savvy” type who prefers to purchase the item online, and can return a misfit item

– either online or to the store – deciding based on the return policy and the “hassle cost” h

she experiences when utilizing in-store returns. Returning to the store can be inconvenient

to a customer because of reasons such as traveling to the store, waiting in checkout lines, or

needing to show a receipt.5

• The “store-savvy” type that visits the store to inspect the item before making a purchase.

For simplicity, we assume that they do not make a return. This type also accommodates

customers who indulge in showrooming which constitutes 17% of online shoppers (KPMG

2016).

We assume that a customer is of the latter (store-savvy) type with some exogenous probability

θ. The consumer model in Su (2009) is a special case of ours when only the online-savvy customer

segment is present, i.e., θ = 0. One can interpret θ as capturing customers’ inherent preference for

one mode of shopping (over the other) with a particular omnichannel firm: Since different firms

enjoy different levels of online traffic, the value of θ may be firm-specific. For example, Macy’s

(2015) finds that 53% of its customers prefer to shop at their brick-and-mortar stores. A recent

consumer survey by Market Force (2017) found that 64% of respondents visited Nordstrom’s website

in the past 90 days as opposed to 39% for H&M; therefore, concluding that Nordstrom’s value of θ

is relatively low compared to H&M is valid. Alternatively, one can think of a firm serving two types

of customers who differ in their costs of visiting a physical store before purchase: For a proportion

θ of the customers this cost is negligible (thus, normalized to zero), whereas for the remaining

customers this cost is prohibitively high.

Online customers are affected by two primary competing aspects of returns: (1) paying for returns

(50% of customers claim this to be an issue according to UPS 2016a); and (2) the inconvenience

of returning to a store (21% of customers, UPS 2016a). Thus, we consider online returns to be

(relatively) hassle-free since most retailers provide a return label (and a package); however, they

may levy return fees. We model any such fees by allowing the refund amount r to be less than the

price p. For analytical convenience, our model ignores the hassle cost of online purchases (including

any time spent for searching, payment etc.) as well as any hassle costs of store-savvy customers

in visiting the store; these costs would result in some customers not purchasing the product but

would not affect any of our main results. We also assume that c ≤ EV = 1
2 as in Su (2009).

Given the firm’s price and return policy choices, online-savvy and store-savvy customers will

make their purchase (and return, if necessary) decisions as follows.

Online-savvy type: An online-savvy customer makes two sequential decisions: (i) buy the

product or not, and then, if she buys, (ii) keep the product or return (after observing her valuation

for the item). This combined with the two options for returning the product – return online for

5The optimal hassle cost to induce has been the subject of research as well (Davis et al. 1998, Hsiao and Chen
2014), but we consider this cost to be exogenous.
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refund r or in-store for a full refund – results in three alternatives.

1. Buy online, and (possibly) return online (BORO): In this case, she will return the product in

stage (ii) if her valuation V is less than the refund r. Therefore, if she buys the product in

stage (i), she will receive expected utility uBORO = Emax{V, r} − p.
2. Buy online, and (possibly) return in-store (BORS): In this case, she will return the product in

stage (ii) if her valuation V is less than the refund p for returning the product less the hassle

cost h of doing so. Therefore, if she buys the product in stage (i), she will receive expected

utility uBORS = Emax{V − p,−h}.
3. Do nothing: In this case, she will receive a utility of zero (outside option).

The online-savvy customer chooses the alternative that maximizes her utility. We can show that

BORO is dominated by BORS if and only if p − r > h, and the customer purchases the product

if and only if uBORO ≥ 0 (uBORS ≥ 0) under BORO (BORS). The firm’s expected profit πOS(p, r)

from online-savvy customers depends on their return behavior:

πOS(p, r) =

p− c− (r − se)r, if p− r ≤ h, uBORO ≥ 0

p− c− (p− sp)(p− h), if p− r > h, uBORS ≥ 0
(3.1)

where (p−c) represents the margin the firm makes if the item is kept by the customer, r and (p−h)

represent the probability that a customer makes a return under BORO and BORS respectively,

and r and p represent the refund for a returned item under BORO and BORS respectively.

Store-savvy type: A store-savvy customer may choose to visit the store, and, if so, she resolves

her valuation uncertainty by inspecting the product in-store. She then buys the product if her valua-

tion V is larger than p; thus her expected utility from visiting the store is uStore = Emax {V − p, 0}.
She receives a utility of zero if she does not visit the store. Since uStore is non-negative, the store-

savvy customers always choose to visit the store regardless of the price.6 (The store-savvy customer

may visit the retailer’s website to check the product online, but she will still have to visit the store

in order to know her V.) The firm’s expected profit πSS(p) from store-savvy customers is

πSS(p) = (p− c)(1− p), (3.2)

where (1 − p) represents the probability that a store-savvy customer realizes a valuation V > p,

and therefore purchases the product.

Combining the profit from the two types of customers, we can express the firm’s total expected

profit as θπSS(p) + (1 − θ)πOS(p, r). We are interested in the setting where the firm chooses to

sell to both segments. We focus on this setting for two reasons: 1) Most omnichannel firms have

non-zero sales from both types of customers – otherwise, the cost of operations may not justify

its being “omnichannel” in the first place; and 2) The constraints in our model (on uBORO and

uBORS) only exist due to online-savvy customers; ignoring this segment removes the question of

6Recall that her hassle cost is zero.
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returns, which is the key decision we seek to study in this work. We do analyze the setting where

the firm serves only the store-savvy customers, as an extension in §3.6.1. We also consider other

extensions, such as incorporating customer heterogeneity in the hassle cost for in-store returns in

§3.6.2, evaluating the potential benefits of providing fit information to customers in §3.6.3, and

allowing product returns from store-savvy customers in §3.6.4.

3.4 Analysis of special return policies

We begin our analysis with two special return policies commonly studied in the literature: 1) the

full-refund policy; and 2) the no-returns policy. In the full-refund case, the firm offers a “money-

back guarantee” to ensure customer satisfaction. In our model, this implies that the refund must

be equal to the price; i.e., r = p. Such generous full-refund policies are offered by many retailers,

including Nordstrom and Macy’s. In the no-returns case, the firm offers no returns whatsoever

or, in other words, “all sales are final.” In our model, this implies that the refund is equal to

zero (i.e., r = 0) and the BORS option does not exist. Several retailers (e.g., Gap and J.Crew)

offer such an extreme policy on their “final sale” or “clearance” items, but a few retailers (e.g.,

American Apparel) also offer such a policy on regular items. We analyze these two special policies

and examine when the seller prefers one to the other.

3.4.1 Full-refund policy

Under the full-refund policy, the online-savvy customer always chooses the BORO option to receive

utility uBORO = Emax{V − p, 0} ≥ 0. Thus, regardless of the price p, all online-savvy customers

will purchase the product; however, those with realized valuation V < p will return the product

(online) and receive a full refund. In this case the firm sets price p in order to maximize its expected

profit,

ΠF (p) = θ(p− c)(1− p) + (1− θ)(p− c− (p− se)p), (3.3)

which is obtained from (3.1) and (3.2) by fixing r = p. The following lemma characterizes the

optimal full-refund policy that maximizes (3.3). All proofs appear in Appendix B.1.

Lemma 3.1. The optimal price under full-refund is pF = 1
2 (1 + se + (c− se)θ) and the optimal

profit is πF = 1
4 (1 + se + (c− se)θ)2 − c.

We can conclude from Lemma 3.1 that the price and profit under the full refund policy are non-

decreasing in both salvage value (se) and the proportion of store-savvy customers (θ). Under full

refunds, a proportion (1− p) of customers, including both online-savvy and store-savvy customers,

pay p and keep the product, and a proportion (1 − θ)p of the customers (i.e., a proportion p of

online-savvy customers) return the product, which then has to be salvaged at (possibly) a net loss.

Therefore, at higher θ, there are fewer customers returning the product, and at higher se, when
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they do return the product, the firm is able to salvage the product at a reasonable value. Even

though increasing prices makes (online) returns more likely, increasing θ and se blunts the cost of

these returns, so that together they enable the firm to benefit from increasing prices.

3.4.2 No-returns policy

Under the no-returns policy, an online-savvy customer who purchases online cannot return the

product if she is unsatisfied with it. These customers are willing to pay a maximum price of

EV = 1
2 , their expected valuation for the product, and will keep it regardless of their realized

valuation. In this case the firm sets price p in order to maximize its expected profit,

ΠN (p) = θ(p− c)(1− p) + (1− θ)(p− c), (3.4)

obtained from (3.1) and (3.2) by setting r = 0 (and ignoring BORS), subject to the constraint

p ≤ 1
2 . The following lemma characterizes the optimal no-returns policy.

Lemma 3.2. The optimal price under no-returns is pN = 1
2 and the optimal profit is πN =

1
4 (1− 2c)(2− θ).

According to Lemma 3.2, the firm fully extracts the surplus from online-savvy customers. As

more customers are online-savvy, its profits increase – i.e., πN is decreasing in θ – when c < 1
2 .

(Profits are zero when c = 1
2 .) This is because the firm wishes to charge a higher price in order to

extract more profit out of its customers, but is unable to do so since the price is constrained by the

online-savvy customers’ low willingness to pay. (We explore the case when the firm may exit the

online-savvy market in order to raise the price i.e., serve only the store-savvy customers, in §3.6.1.)

3.4.3 Preference between full-refund and no-returns policies.

A key question posed in the prior literature is: When is it preferable for a firm to offer full refund

policies relative to no returns? The following proposition compares the performance of these two

policies.

Proposition 3.1. The firm prefers no returns when both the salvage value se and proportion θ of

store-savvy customers are sufficiently low. Moreover, the firm offers full refunds when θ or se are

sufficiently high.

This proposition provides sufficient conditions for the firm’s preference and cautions us that no

returns – as recommended in the related literature – may be worse than offering full refunds. In

particular, an omnichannel firm prefers to offer no returns when both the salvage value se and the

proportion θ of store-savvy customers are low; in contrast, if θ were high enough, the firm would

offer full refunds even at low salvage values.
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The full refund policy affects the firm’s profit in two ways: First, beneficially, it allows the firm

to charge a higher price since an online-savvy customer can return the product for free, and thus is

willing to pay more for it upfront before she realizes her valuation. Second, detrimentally, generous

refunds result in returned items that need to be salvaged at a net loss (if se < c). The relative

magnitude of these two effects drives our result: When θ is low, the firm suffers considerably from

returned products at low se, since a significant segment of its customers choose to shop online, so

that the second (adverse) effect is more dominant and the no-returns policy is preferred. On the

other hand, when θ is high, the firm is able to extract higher profits from the store-savvy customers

(who now form the majority of its customer base) by promising full refunds to its fewer online-savvy

customers to support raising prices.

When only online-savvy customers are present (i.e., θ = 0)7 our result that full refunds are

preferred at high salvage values coincides with Su (2009). Note though that the salvage value

above which full refunds are preferred to no returns is quite high: more than 83% of the cost c.8

Thus, the argument that full refunds are offered at high salvage values explains why firms like

Nordstrom or Neiman Marcus offer full refunds: Both enjoy higher salvage value se owing to their

own outlet stores – Nordstrom Rack and Last Call respectively – which allow them to sell returned

items at mild discounts (Altug and Aydinliyim 2016). Furthermore, as they operate both channels

(i.e., θ ≥ 0), we are thus able to extend results from prior work to the omnichannel setting.

In practice, not all firms experience high salvage values: It is estimated that a third-party outlet

store buys returned goods for only 10-20% of their value (Stock et al. 2006). Previous literature –

specifically Su (2009) – cannot explain why firms such as Macy’s and Gap, that predominantly use

off-price retailers (e.g., T.J. Maxx), also offer full refunds for regular product categories. In fact,

using the logic of Su (2009) would lead to the conclusion that no returns will be preferred by these

firms because their salvage values tend to be low. Now we can provide an explanation for this: The

proportion of store-savvy customers (θ) at these firms is high. Therefore, even though they face

lower salvage values, they choose to offer full refunds in order to benefit from higher margins, while

maintaining a presence in the online market.

We have demonstrated that how “omnichannel” the firm is (captured by θ) plays a key role in

comparing full refunds against no returns. Specifically we see that policy conclusions based on prior

research that considers only a single (online-savvy) segment – that full refunds are only preferred

at high enough salvage values – do not in general hold in the omnichannel setting. In order to

identify if more general return policies we see in practice – such as full refunds, partial refunds, and

in-store returns – arise naturally, we next examine the optimal return policy.

7θ = 0 implies only one customer type; we consider this case in order to compare our model with prior work.
8This is because full refunds are optimal if

√
2 − 1 < se, ∀θ: This is a sufficient condition when θ > 0, but it is

necessary and sufficient when θ = 0. Since se ≤ c ≤ 1/2, se/c > 2(
√

2− 1), or the salvage value must be at least 0.83
times the cost, when θ = 0.
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3.5 Optimal return policy

Under the optimal policy, the firm can set both the refund amount r and the price p. A positive

p − r can be interpreted in one of two ways: (i) as the fee levied on online returns (e.g., $5.99 fee

charged by H&M and Victoria’s Secret); or (ii) as a restocking fee (e.g., 15% fee charged by Macy’s

for bulky items such as furniture). We assume that the firm allows free in-store returns as before.

Through its policy choice, the firm can induce one of two outcomes depending on online-savvy

customers’ return behavior – either the BORO option or the BORS option – choosing whichever will

yield a higher profit. We first analyze the two induced outcomes – BORO and BORS – separately

in §3.5.1 and §3.5.2, respectively. We then identify the better of the two – the optimal policy – in

§3.5.3.

3.5.1 BORO outcome

First, we need uBORO ≥ 0 so that online-savvy customers purchase the product. Equivalently, from

the definition of uBORO = Emax{V, r}−p, the highest price that online-savvy customers are willing

to pay is 1
2(1 + r2) (Lemma B.5(i) in Appendix B.2). Those customers with V < r will return the

product (online). Second, the optimal policy must result in the BORO outcome. From (3.1) this

means that p ≤ r + h. Thus, there are two constraints that must be satisfied: 1) p ≤ 1
2(1 + r2)

capturing the maximum willingness to pay; and 2) p ≤ r+h inducing the BORO outcome. Subject

to these constraints, the firm sets p and r in order to maximize its expected profit,

ΠO(p, r) = θ(p− c)(1− p) + (1− θ)(p− c− (r − se)r), (3.5)

which is obtained from (3.1) by considering the BORO option, and (3.2).

The following proposition characterizes the BORO policy.

Proposition 3.2. The optimal refund (rO) and price (pO) under the BORO outcome are

rO =


rβ, if 0 ≤ h ≤ hβ
rγ , if hβ < h < hα

rα, if hα ≤ h

pO =


rβ + h, if 0 ≤ h ≤ hβ
rγ + h, if hβ < h < hα

1
2(1 + r2

α), if hα ≤ h

(3.6)

where hβ = 1
2θ2

(
1−

√
(c− se)θ2 + (se − 1)θ + 1

)2
, rβ = 1

2 (1 + cθ − 2hθ + se(1− θ)) , rγ = 1 −
√

2h, hα = 1
2(1 − rα)2, and rα ∈ [0, 1) is defined as the largest non-negative real root of the cubic

equation: −θr3 + r(cθ + θ − 1) + se(1− θ) = 0.

The optimal policy under the BORO outcome satisfies:

(i) The return fee (pO − rO) is non-decreasing in h.
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(ii) The refund rO is non-increasing in h.

(iii) The refund rO is at least as large as the salvage value se.

(iv) rα is increasing in θ when se > 0.

The firm considers two critical forces while deciding the optimal policy – the highest price that

customers are willing to pay i.e., 1
2(1+r2), and online-savvy customers’ incentive to patronize online

returns i.e., the magnitude of the return “fee” (p−r) relative to the return hassle h. Not surprisingly,

as store returns become more convenient, the return fee often becomes smaller (Proposition 3.2(i)):

The low fee serves to deter online-savvy customers from returning items to the store – i.e., ensuring

BORO is optimal – since they tend to compare the fee imposed by the firm against the hassle

of returning to the store for a full refund. But, Proposition 3.2(ii) reveals that even the absolute

refund amount may become more liberal: As h decreases, the incentive constraint p ≤ r+h becomes

tighter, thereby constraining the firm’s pricing power. Responding by decreasing r further would

constrain the firm’s price – both through the incentive constraint and by reducing online-savvy

customers’ willingness to pay. So the firm never decreases the (online) refund amount r as in-store

returns become more convenient.

Thus the optimal decision depends on the hassle cost, which may be high (h ≥ hα), medium

(hβ < h < hα), or low (h ≤ hβ) as indicated in Proposition 3.2. First, at high h, customers’

incentive to consider store-returns is weak, so that only the willingness to pay constraint is binding.

Even so, the optimal refund can be larger than the salvage value se (Proposition 3.2(iii)) – the

optimal refund prescribed in Su (2009). The firm benefits from offering higher prices to store-

savvy customers9, and to do so, it must promise large refunds to online-savvy customers. As

the proportion θ increases, the firm offers higher refunds (Proposition 3.2(iv)). Thus, taking into

consideration the omnichannel nature of a firm offers an explanation for refunds that are more

liberal than previously concluded.

At low and medium h the firm chooses to steadily increase refunds (when θ 6= 0) as in-store

returns become more convenient, indicating that the cross-channel return option offers another

explanation for refunds that are very generous. At medium h if the firm decreased prices it would

be leaving some surplus to online-savvy customers; by increasing the refund offered, it benefits from

charging higher prices (as online-savvy customers’ willingness to pay is increasing in the refund). It

is easy to see that the optimal price pO is decreasing in h when hβ < h < hα. However, as h grows

very small (i.e., low h) this strategy dictates very high prices and refunds, which are undesirable

due to the resulting low “real” sales (i.e., unreturned purchases from online-savvy customers and

purchases from store-savvy customers) and high volume of returns. Thus, the firm sets its price

to be lower than what online-savvy customers are willing to pay. Furthermore, the price is non-

decreasing in h with a slope (= (1− θ)) that is decreasing in θ, implying that as customers become

more online-savvy, this effect becomes more pronounced: The price decreases more sharply as

9We have rα =
√
c when θ = 1 (3.6), and rα ≤

√
c,∀θ (Proposition 3.2(iv)). Thus, pO ≤ 1

2
(1 + c) when h ≥ hα.

Since πSS(p) is uniquely maximized at 1
2
(1 + c), the firm’s profit from store-savvy customers πSS(pO) increases with

pO.
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Figure 3.1: Firm’s optimal price pO and refund rO under the BORO outcome.

Note: The following parameter values are used: c = 0.3, se = 0.2, and θ = 0.5. These values are motivated
by a typical omnichannel firm; see Appendix B.3.

in-store returns become more convenient at lower values of θ.

Figure 3.1 shows the optimal policy as a function of h. The values of h defining the three regions

are indicated on the h-axis. The refund set equal to salvage value se – the optimal policy in prior

work (Su 2009) considering only online-savvy customers – is indicated on the vertical axis in order

to numerically compare our results against theirs.

Proposition 3.2 also reveals that the optimal policy prescribes full refunds whenever h = 0

(indicated in Figure 3.1). In this case online-savvy customers will return items to the store unless

they are offered a full refund online, thereby forcing the firm to price as per the full refund policy

as in Lemma 3.1. By modeling the hassle of in-store returns, we are able to demonstrate that full

refunds may be optimal when the firm induces the BORO option. (Later, in §3.5.3, we will show

that this can be optimally chosen – considering both BORO and BORS – by the firm.)

3.5.2 BORS outcome

First, the optimal policy must result in the BORS outcome, i.e., p > r + h from (3.1). Second, we

need uBORS ≥ 0 so that online-savvy customers purchase the product. The constraint uBORS ≥ 0

can be equivalently expressed as p ≤ h + 1 −
√

2h (Lemma B.5(ii) in Appendix B.2). These

customers will return the product if their realized valuation V < p− h, i.e., the volume of returns

from online-savvy customers is (p− h).

Because the firm induces the online-savvy customers to choose BORS, the optimal online refund

r is zero, or some (possibly negligible) value, i.e., rS ∈ [0, pS − h), where pS is the optimal price

under this outcome. This corresponds to a scenario wherein a firm charges a significant return fee

(i.e., low rS), but allows (free) returns to its physical store. We will consider rS = 0 and derive the

optimal price pS .10 There are two constraints that must be satisfied: 1) p ≤ h+ 1−
√

2h capturing

10The optimal solution is independent of the exact value of rS ∈ [0, pS − h); we choose rS = 0 for simplicity.
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the maximum willingness to pay; and 2) p > h inducing the BORS outcome. Subject to these

constraints, the firm sets p to maximize its expected profit,

ΠS(p) = θ(p− c)(1− p) + (1− θ)(p− c− (p− sp)(p− h)), (3.7)

which is obtained from (3.1) considering the BORS option, and (3.2). Note that returning an

unsatisfactory product to the store is feasible only when h < 1
2 because otherwise no price p

satisfies the constraint that h < p ≤ h+ 1−
√

2h. Thus, we assume that h < 1
2 .

The following proposition characterizes the BORS policy.

Proposition 3.3. The optimal price (pS) and profit (πS) under the BORS outcome are given by

pS =

1
2(1 + h+ sp + (c− sp − h)θ), if h < h̄

h+ 1−
√

2h, if h̄ ≤ h < 1
2

(3.8)

πS =

1
4(1 + h+ sp + (c− sp − h)θ)2 − c− hsp(1− θ), if h < h̄

K(sp), if h̄ ≤ h < 1
2

(3.9)

where h̄ is defined as the value of h ∈
(
0, 1

2

]
that satisfies 1

2(1 + sp + (c− sp)θ) = h
(

1+θ
2

)
+ 1−

√
2h

and K(sp) ≡
√

2h3/2(1 + θ) − h2θ +
√

2h(1 − sp(1 − θ) − cθ) − h(2 + θ(1 − c)) − (c − sp)(1 − θ).
Moreover, when θ 6= 1, πS is increasing in sp ∀h, and increasing in h for h < h̄.

The firm’s optimal policy is determined by two factors – the online-savvy customers’ willingness

to pay, i.e., h + 1 −
√

2h, and the volume (p − h) of returns as a result of price p (from online-

savvy customers). The former is decreasing in h: Some customers, i.e., those with valuation

V ∈ (p − h, p), will keep the item even though they will receive negative utility (ex-post) from

doing so, because returning it is not worth the “hassle.” As h increases, online-savvy customers

increasingly incorporate this effect into their purchasing decision, and thus, they are not willing to

pay as much for the product. Correspondingly, the latter is decreasing in h for constant p: The

volume of returns decreases as it becomes more inconvenient to return in-store.

Figure 3.2 shows the firm’s optimal price pS and the resulting volume of returns pS−h. Consider

an increase in h within the low h region (i.e., h < h̄). In this case fewer customers return the

product at a given price, so the firm can raise the price (at a rate slower than the growth of h) and

still benefit from a lower return volume. Since online-savvy customers willingness to pay is high

in this region the firm can afford to do so, and this is evident in the increasing nature of price pS

(Figure 3.2) and profit πS (Proposition 3.3). At high h (i.e., h ≥ h̄), this strategy of increasing

price with h raises the price above the online-savvy customers’ (lower) willingness to pay, so that

the firm now extracts maximum consumer surplus by charging pS = h+ 1−
√

2h, and the price is

now decreasing in h.
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Figure 3.2: Firm’s optimal price pS and volume of returns pS − h under the BORS outcome.

Note: The same parameter values are used as in Figure 3.1.

3.5.3 Optimal policy

We focus on the optimal policy when h < 1
2 ; otherwise, the BORS outcome is infeasible and the

BORO outcome is trivially optimal. The following proposition compares the firm’s profit under the

two outcomes – BORO and BORS – in order to identify the optimal policy.

Proposition 3.4. (i) When sp = se, the optimal profit under the BORO outcome, πO ≡
ΠO(pO, rO), is at least as high as that under the BORS outcome πS.

(ii) When sp > se, the optimal profit under the BORO outcome πO is lower than that under the

BORS outcome πS if θ 6= 1 and h is sufficiently small.

Proposition 3.4 highlights the important role of the firm’s salvage capability: If the salvage values

in-store and online are identical, the optimal policy always induces the BORO outcome, and will

be given by Proposition 3.2. However, if in-store salvage value is better i.e., sp > se (possibly from

cross-selling in-store), Proposition 3.4(ii) presents sufficient conditions for the optimal policy to

induce the BORS outcome: There are situations when store returns are preferred by an omnichannel

firm. In the latter case, the firm deliberately sets low refunds online to induce the BORS outcome,

and the optimal policy is given by Proposition 3.3.

Figure 3.3 depicts the firm’s preference as stated in Proposition 3.4. We consider identical salvage

values across the two channels in Figure 3.3(a) and allow the salvage value to be higher in-store

in Figure 3.3(b). When the salvage values are identical, i.e., se = sp (Figure 3.3a), combining

Proposition 3.4(i) and Proposition 3.2, full refunds are optimal when h = 0, but when h > 0, a

partial refund is optimal. To see the intuition behind this result, consider low h (very close to zero).

When h = 0 and se = sp, we have pO = rO = pS = pF . For small h around h = 0, the refund

amount and the proportion of online-savvy customers returning items are both p − h under the

BORO outcome (Proposition 3.2), but they are p and p−h respectively, under the BORS outcome

(Proposition 3.3). Thus, when se = sp, the firm is better off under the former scenario since it

gives out a smaller refund.
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Figure 3.3: Firm strategies: When to offer full refunds, partial refunds with online returns, or
store returns.

Note: The same parameter values are used as in Figure 3.1, except that θ is now variable. Additionally, we
use sp = se + 0.1; see Appendix B.3 for details.

When the salvage value in-store is higher, i.e., sp > se, the policy switches from partial refunds

to store returns at low h (Figure 3.3b): At low h, customers are able to easily return items to the

store. From the firm’s perspective, the added benefit sp − se from salvaging in-store negates the

higher payout for store returns i.e., p compared to p − h under online returns. Indeed, in many

cases e.g., as in Figure 3.3(b), the policy switches exactly when the difference (h) in the payout

coincides with the additional benefit (sp− se).11 At high h, many online-savvy customers will keep

a misfit item if they are forced to return it to the store, implying that the firm would not enjoy

significant benefits from the higher salvage value in-store since return volumes are low. Moreover,

the firm would be constrained to charge low prices due to online-savvy customers’ low willingness

to pay. Thus the firm is better off offering partial online refunds.

Demand stimulating effects of full refunds

It is important to note that our model thus far disregards an additional, favorable effect of full refund

policies – the ability to influence customers’ long term loyalty with the firm and stimulate future

demand. Bower and Maxham III (2012) note that free return policies result in future customer

spending that is 158% to 457% more by the end of two years. Moreover, money back guarantees

could signal higher quality (Moorthy and Srinivasan 1995), which may result in increased demand

11This occurs when the switching value h̃ satisfies h̃ ≥ h̄ and hβ < h̃ < hα so that the price is the same under the
two policies (= h+ 1−

√
2h). In this case setting πO = πS gives the switching value h̃ = sp − se.
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Figure 3.4: Firm strategies in the presence of demand stimulation.

Note: The same parameter values are used as in Figure 3.3. Additionally, we use β = 1.5; see Appendix
B.3 for details.

as well.

We now incorporate the effect of additional demand stimulated by offering full refunds into our

model, through an exogenous multiplicative factor β ≥ 1. Thus, the firm’s profit under full refund

is βπF .12 Figure 3.4 recreates the firm’s strategies in Figure 3.3 considering demand stimulation

i.e., when β = 1.5. Not surprisingly, we find that full refunds are preferred more often than before.

The impact of customers’ channel preference (θ) on the firm’s optimal policy is however more

interesting. On the one hand, when the firm enjoys high foot traffic (high θ), it offers full refunds.

The intuition for this is similar to that in Proposition 3.1: The firm benefits from promising full

refunds to online-savvy customers so that it can charge a sufficiently high price to store-savvy

customers. On the other hand, when the firm enjoys high online traffic (low θ), the difference in

salvage capabilities plays a key role in determining the return policy. The optimal policy induces

in-store returns (BORS) when customers can effortlessly visit the store to return items (low h) if

sp > se so that the firm reaps the benefit of the higher in-store salvage value. But, when in-store

returns are inconvenient i.e., high h, the firm offers partial online refunds which are generous enough

to discourage store returns.

12A similar technique is considered by Altug and Aydinliyim (2016) to capture the “demand boost” created by a
lenient policy.
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Profit increasing effects of improving convenience and accessibility

As the hassle of in-store returns plays an important role in our results, a firm might consider

adopting measures to reduce it: It could make it more convenient to return a product to the physical

store (e.g., either by not requiring a receipt or by allocating a designated area for handling returns)

and/or increase the number of locations they operate, thereby improving customers’ accessibility

to their stores. In addition to decreasing h, these measures may also result in increased θ since

some online-savvy customers may now choose to visit the store prior to purchase. We classify these

measures into two scenarios: (Scenario 1) that results in lower h only; and (Scenario 2) that results

in lower h and higher θ. The question is whether such measures necessarily translate into higher

profit. We find that the effect depends on the return policy in place.

First consider Scenario 1. While the optimal profit under full refund is constant in h (Lemma

3.1), the optimal profit under partial refund is increasing in h for low h.13 The driving force here

is that, although customers receive full refunds when they return the product to the store, not all

misfit items are returned under the store returns policy; a decrease in h causes more customers to

return misfit products, hurting the firm’s profit. Thus, it may be unprofitable for an omnichannel

firm with a partial refund policy to implement measures that only decrease h.

Next, consider Scenario 2. In this case, while the net effect under full refund is higher profit since

πF is increasing in θ when se < c (Lemma 3.1), the effect under partial refund is not straightforward

since both πS and πO can be either increasing or decreasing in θ (Lemma B.6 in Appendix B.2).

Therefore, such measures that decrease h and increase θ could lower profits under partial refunds,

depending on the relative strengths of the two effects (decreasing h and increasing θ) in general.

It is of note that Kumar et al. (2014a) find empirically that an omnichannel retailer’s opening

of a new store results in increased total revenue. Since their firm’s return policy is free returns

both online and to the store, our insights – assuming that more customers become store-savvy

(Scenario 2) – corroborates this result. In addition, they suggest that the increased ease of in-store

returns also drives this effect: While the hassle of in-store returns does not impact the firm’s profit

under full refunds in our model, this mechanism does arise in our extension where customers are

heterogeneous in their hassle costs in §3.6.2. In this case we show that the firm’s profits under full

refunds do improve when more customers find in-store returns convenient. In contrast, we caution

that an omnichannel firm that charges a return fee, or one that experiences returns predominantly

in-store, may need to carefully evaluate the impact on its profit, and further empirical research is

needed to fully understand this phenomenon in practice.

13Under BORS, this occurs when h < h̄ and θ 6= 1 (Proposition 3.3). Under BORO, when h < hα (Proposition
3.2), this occurs because the constraint p ≤ r + h becomes tighter at smaller h.
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3.6 Extensions

3.6.1 Serving only store-savvy customers

Our analysis has focused on serving both customers types; however, in some cases, it may be

profitable to sell only to one segment i.e., the store-savvy type. (This is because the constraints in

our model on uBORO and uBORS, and thus, on price p and refund amount r, exist only to ensure

serving the online-savvy type.) In this subsection we identify those situations where serving only the

store-savvy customers could be more profitable. In this case the profit is ΠSS(p) = θ(p− c)(1− p),
so that the unconstrained price and profit are pSS = (1 + c)/2 and πSS = θ(1− c)2/4 respectively.

First, consider the analysis in §3.4. Comparing πSS against the profit πF under full refunds, we

find that the preference depends on the salvage value se. If se = c, then serving only store-savvy

customers is never preferred (for any θ < 1). When se < c, this strategy may be preferred at

high enough θ, over both full refunds and no returns. Thus, if the online segment is small enough

the firm may choose to shut out its pure online shoppers entirely in exchange for more freedom in

setting price; in this case, the firm receives no returns. Next, consider the analysis in §3.5. Serving

only store-savvy customers is not feasible when h = 0; but, it may be optimal when h is high,

salvage value se is low, and θ is high enough, again for reasons similar to those in §3.4.

Therefore, exiting the online-savvy market may be preferred in the top right region in Figures 3.3

and 3.4. (With sufficient demand stimulation, there may be no difference in Figure 3.4.) Thus, even

when we relax our constraint that both segments must be served, our main findings and practical

implications for omnichannel firms continue to hold.

3.6.2 Heterogeneous hassle costs

In our model we assume that all online-savvy customers experience the same hassle cost h for

returning in-store. However, in reality, customers may face different hassle costs; for instance,

due to distance from stores. Suppose a fraction δ ∈ (0, 1) of online-savvy customers experience

negligible hassle cost (h = 0), whereas others have a prohibitive cost (h = 0.5) so that they will

not consider in-store returns at any refund amount or price. In this case the firm sets p and r

to maximize its profit θ(p − c)(1 − p) + (1 − θ)(p − c − δ(p − sp)p − (1 − δ)(r − se)r), subject to

r ≤ p ≤ (1 + r2)/2. Here the term δ(p− sp)p corresponds to those customers with zero hassle cost

who choose to return in-store for a full refund, and the term (1− δ)(r − se)r corresponds to those

who have high hassle cost and return online to receive refund r. Thus, we can capture the more

realistic scenario wherein customers return both in-store and online.

In this setting we can show that the firm sets its price to extract the maximum surplus i.e.,

the optimal price pH and refund rH satisfy pH = (1 + r2
H)/2, and rH is the solution to a cubic

expression similar to that in Proposition 3.2. Our key findings qualitatively continue to hold in this
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setting, with the difference that the policies now depend on δ: In particular, we can show that the

optimal refund rH is at least as large as the salvage value se and non-decreasing in δ. Thus, the

optimal refund continues to be more generous than previously concluded, and as more customers

use the free in-store return option, this optimal refund could become even more generous.

As in §3.4, we can derive the optimal policy under the special case of full refunds i.e., when

p = r. It is easy to show that the optimal profit is non-decreasing in both θ and δ (Lemma B.7

in Appendix B.2), showing that the firm benefits from improving accessibility to its stores when

it offers full refunds. This benefit may be either due to more customers visiting the physical store

before purchasing (as in §3.5), or due to more customers finding in-store returns convenient.

3.6.3 Complete fit information

Some of the prior work (Bell et al. 2017, Gao and Su 2016b) consider the benefit of providing fit

information to customers in an attempt to reduce undesirable returns; for example, firms could

invest in virtual showroom technology. Similar to Shulman et al. (2009), we consider the extreme

scenario where customers are able to resolve their uncertainty completely using the fit information

provided by the firm. (In reality, such perfect information is unlikely, but this abstraction helps

us to compare the effects more clearly.) When customers have complete fit information, returns

are completely eliminated. Thus, customers are homogeneous and purchase only if their valuation

(now revealed exactly) exceeds the price p. The firm sets price (1+c)/2 and enjoys profit (1−c)2/4.

We find that the profit under the BORO outcome (with incomplete fit information) may be larger

than that under complete information at high enough salvage values and high hassle costs. Thus,

even if it were costless to provide fit information, it may not be in the firm’s best interests to do so.

Intuitively, when the firm does not provide this information, it is able to take advantage of customers

who choose to keep the item – even though their valuation is lower than the price – by setting the

(partial) refund amount optimally. Additionally, at high salvage values, any returns that may

result will have a minimal adverse impact on the firm. Our result extends those in Shulman et al.

(2009) for a single-channel firm to an omnichannel setting, and cautions omnichannel firms against

naively providing information to its customers without accurately evaluating the consequences of

doing so.14

3.6.4 Returns from store-savvy customers

In our model we assume that store-savvy customers – who know their valuation exactly upon

inspecting an item in-store – do not make returns. But, in reality, they may realize that the

product is a misfit after they have made the purchase and want to return items. Such returns on

in-store purchases occur less often (about 8%, Transport Topics 2017) relative to returns on online

14Although, of course, there may be other benefits to providing additional fit information – along with the additional
costs – that we do not capture.
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purchases (about 33%, WSJ 2013). To model this, we assume that store-savvy customers still

realize their valuation upon inspecting in-store but with some probability δ those who purchase an

item will return it back to the store for several reasons such as buying impulsively, not spending

adequate time inspecting the item’s fit, etc. In this case πSS(p) = (1 − p)(p − c − (p − sp)δ). We

can show that the optimal refund rSS at high h is the solution to a (similar) cubic expression as

in Proposition 3.2, and the optimal refund is once again more generous than previously concluded

even when we consider returns from store-savvy customers.

3.7 Conclusion

An omnichannel firm’s choice of a return policy, particularly charging fees for returns via mail and

allowing free returns to the physical store, has a significant impact on its customers’ shopping (and

return) behavior. In this chapter we model an omnichannel firm that sells a product through two

channels – physical store and online – to customers who face uncertainty around their valuation

for this product. We allow customers to be heterogeneous in how they resolve their uncertainty: a

customer of the online-savvy type purchases the item online, and after learning her valuation, she

may return a misfit item, whereas a customer of the store-savvy type visits the store to inspect the

item (and thus, realize her valuation) before making her purchasing decision. The firm optimally

decides both the price – which is identical across channels – and the refund amount for returns by

mail, while allowing free returns to their physical stores. Thus our model captures several features

of omnichannel retailing not considered by previous research.

We identify two drivers for the generous refunds observed in practice when customers return items

online: 1) A heterogeneous customer base that uses two different channels to resolve their valuation

uncertainty; and 2) The convenience of returning misfit items in-store for a full refund. In particular,

we show that full refunds can be optimal, and are likely to be offered by firms with a large store-

savvy customer base: This not only enables the firm to enjoy higher margins – by taking advantage

of its online-savvy customers’ willingness to pay that increases in the refund amount – but also

may increase future purchases (by signaling higher quality and increasing customer satisfaction).

Moreover, we extend prior work suggesting that full refunds are offered by firms that can salvage

returned items at mild discounts to the omnichannel setting. Thus, we can explain why firms that

own their own outlet stores (e.g., Nordstrom) and those with more store-based customers (e.g.

Macy’s) both offer full refunds.

We also show that firms with a significant store presence and higher salvage value in-store than

online often charge a return fee to nudge their customers to return in-store. For example, both

J.C. Penney and Victoria’s Secret have a significant store footprint with over 1000 stores, which

suggests a lower hassle cost for returning items to their stores, and J.C. Penney claims to have

strong cross-selling capabilities in-store. In line with our results, both firms offer partial (online)

refunds but free in-store returns; J.C. Penney claims that over 90% of their (online-purchased)
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returns take place in-store.

Thus, using three key levers – the extent of the omnichannel nature of a firm, salvage capabilities

in both channels, and how large its store presence is – we are able to provide an explanation for

the different return policies adopted by real omnichannel firms. Our model emphasizes that return

policies can be a valuable tool for an omnichannel firm: In addition to serving the classical purpose

of avoiding costly returns, the firm could also use return policies to sway customers’ choice of

channel for returns to a more profitable one, and to extract higher margins from its heterogeneous

customer base by exploiting one segment’s willingness to pay.

There are several interesting avenues to extend this research further. First, our model abstracts

away the leniency of return windows: Some firms such as Macy’s allow up to one year for returning

items, whereas others such as Forever 21 allow only 30 days. While this directly impacts the salvage

value, which we consider, it also impacts customers’ return decisions due to both the forgetful nature

of customers (e.g., boundedly rational customers as in Su 2009) and any endowment effect they may

experience (Janakiraman et al. 2016). Second, it would be interesting to empirically investigate the

role of the firm’s return policy on the impact of improving accessibility, for example, by opening

more physical locations. Finally, competition between omnichannel firms, inventory decisions at

the two channels considering returns, and order fulfillment strategies could be valuable additions

to our model. Our work is a first attempt at capturing the complex dynamics that motivate the

different omnichannel return policy choices we see in practice, and we hope that it presents an

analytical foundation to investigate these important questions.
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Chapter 4

Modeling Quality of Care in Hospice Operations

4.1 Introduction

Hospice is a philosophy of care that focuses on providing palliative care to terminally ill patients.

Eligible patients have a prognosis of 6 months or less to live if their disease were to run its natural

course. These patients choose to forgo curative care in lieu of receiving relief from the symptoms of

the disease. The goal of the hospice is to improve the quality of life for both the patient and their

family: The American Cancer Society defines the purpose of the hospice as providing “humane and

compassionate care for people in the last phases of an incurable disease so that they may live as

fully and comfortably as possible.”1

Hospice care is divided into four levels of which Routine Home Care (RHC) – wherein the patient

receives hospice care at their residence – is the most common level of care, accounting for 98% of care

days in 2015 (NHPCO 2016). The service is covered under Medicare, which reimburses a hospice

on a per patient, per day basis depending on the level of care2. More recently, the reimbursement

structure for RHC has been modified to reflect the higher level of effort typically required at the

start and the end of patients’ length of stay (LoS) (Huskamp et al. 2001): The new structure is

two-tiered with a higher payment rate for the first 60 days of care along with an add-on payment

for the last 7 days of a hospice patient’s life (NHPCO 2015).

Patients associate a quality level with the service provided by the hospice; however, quality is

difficult to quantify in the hospice setting due to inherent differences from other healthcare settings

where one may measure the wait time, number of beds available, mortality rate, etc. Indeed,

hospice providers note that traditional quality improvement measures may not be a good fit for

hospice (Durham et al. 2011). Instead, adherence to the patient’s plan of care, satisfaction ratings,

and symptom and pain management are widely considered to be good measures of quality (CMS

2012).

More recently, the Centers for Medicare and Medicaid Services (CMS) has required hospices to

report specific quality measures as part of the Hospice Quality Reporting Program (HQRP). Some

1https://www.cancer.org/treatment/finding-and-paying-for-treatment/choosing-your-treatment-team/hospice-
care.html

2The payment rates may differ by geographical regions according to the wage index. Also, patients may have
other insurance.
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of the measures currently monitored are pain asessment and dyspnea screening3. These measures

– computed for each hospice provider as the percentage of patient stays where the particular

activity was documented – are publicly available (CMS 2017). But there is concern as to whether

such programs actually improve quality (Durham et al. 2011). Moreover, HQRP being of the

“pay-for-reporting” type, i.e., failure to submit required quality data results in a reduction in the

reimbursement rates (CMS 2015), one may question the usefulness of the program as hospices may

choose, strategically, not to report quality. We investigate these concerns analytically and study a

hospice manager’s incentives under the HQRP.

A key modeling feature captured in our work is the impact of quality on the patient census –

the number of patients cared for by a hospice – and thus on the hospice’s revenue. On the one

hand, quality impacts the rate at which patients leave the hospice; for example, Kelley et al. (2013)

consider thirty-day re-admission rates and in-hospital death rates as measures of quality of care. On

the other hand, the goal of the publicly available quality measures is to “help consumers compare

hospice providers on their performance and assist consumers in making decisions that are right

for them”4 i.e., these measures are meant to directly impact whether new patients choose a given

hospice or not (National Association for Home Care & Hospice 2015).

The main contribution of this chapter is to model the quality choices of a profit-maximizing

hospice and analyze the impact of various regulatory changes on this choice. We specifically ask

the following questions:

• How should a profit-maximizing hospice choose the quality of care it provides? Are the quality

choices of a for-profit hospice significantly different from that of a nonprofit hospice?

• Does reporting necessarily improve quality of care? What types of hospices may choose to

receive the penalty rather than enroll in such reporting programs?

• How does the sensitivity of patient census to quality affect the hospice’s choice?

To answer these questions we model a hospice’s choice of quality of care by incorporating two key

features: 1) a mechanism for incorporating the effect of quality of care on patient census; and 2)

a controllable proxy for quality of care. Specifically, quality affects the rate at which new patients

join (National Association for Home Care & Hospice 2015), and low quality of care can elevate

departures, due to increased hospital re-admission rates and in-hospital deaths (Kelley et al. 2013).

And, crucially, we assume that the hospice can control the level of quality it chooses to provide. A

high quality of care – to ensure that patients’ symptoms are effectively managed through regular

monitoring and hospital re-admissions are low – can be achieved through staffing levels, overtime

working hours, or active monitoring of patient health, all of which result in higher costs. Thus, the

hospice faces a tradeoff between revenue and quality of care costs.

The rest of the chapter is organized as follows. In §4.2, we review the relevant literature. We

3https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/Hospice-Quality-
Reporting/Current-Measures.html

4https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/Hospice-Quality-
Reporting/Hospice-Quality-Public-Reporting-Background-and-Announcements.html
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describe our model for quality of care decisions in §4.3, and conduct numerical experiments using

parameter values that represent a typical hospice setting in §4.4. Finally, in §4.5, we conclude and

discuss future research directions.

4.2 Literature review

There is an extensive literature studying quality of care within healthcare. Lu and Rui (2017)

explore online ratings of cardiac surgeons, and they find that those with a low rating may have

significantly higher in-hospital mortality rates, a measure of their performance. Using a national

data set, Lu and Lu (2016) show that quality at nursing homes can be negatively affected by laws

that restrict the use of mandatory overtime work hours for nurses. Previously, Castle and Engberg

(2007) found that the quality of care at nursing homes could be improved by addressing staffing

issues such as turnover and levels of temporary nurses.

There are several papers on issues pertaining specifically to hospice operations. Ata et al. (2013)

investigate a hospice’s incentives for patient management under the Medicare reimbursement struc-

ture; they find that the hospice may seek out patients with shorter expected LoS. Cherlin et al.

(2010) find that there is significant variation in the staffing mix of nurses depending on a hospice’s

ownership type – for-profit or nonprofit. Related work on quality of care at hospices mainly focuses

on investigating which quality measures may be appropriate in this setting (Carlson et al. 2011,

CMS 2012). Notably, even though it has been established that low quality of care can elevate hos-

pital re-admission rates in a hospice setting (Kelley et al. 2013), and therefore effect the complex

dynamics of patient census, the fundamental question of how a hospice should choose quality of care

remains an open question. Our work seeks to answer this question by modeling the relationship

between quality and patient census, while taking into account the recent regulatory changes that

mandate reporting of quality measures.

We formulate the problem of setting quality each week considering the uncertainty in patient

census dynamics as a Markov decision process (MDP). Thus, there is relevant work in the literature

on optimal control problems. Lee and Kulkarni (2014) investigate a multi-server queueing system

wherein both the arrival and service rate can be controlled subject to convex holding and service

costs, while earning revenue that is concave in the arrival rate; they find that the optimal arrival

and service rates are monotonic in the number of customers. Similarly, Chan and Yom-Tov (2014)

study an admission control and speedup problem within the healthcare setting; they assume concave

service costs and show that the optimal control policy only chooses the maximum or the minimum

of the available actions. In contrast, we consider very general transition probabilities owing to

the discrete-time nature (i.e., weekly quality update) of our problem. Furthermore, we impose a

different structure on the cost and revenue terms motivated by the application to hospices: Our

model is characterized by a quality of care cost that is convex in the chosen quality and linear in

the patient census, and revenue that is linear in the patient census.
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4.3 Markov decision process formulation

We use a discrete-time infinite-horizon MDP with stationary rewards and general transition prob-

abilities to formulate the quality control problem. This model can be interpreted as a guide for

decisions of the hospice; for example, how to adjust staffing levels after realizing the patient census

for the week.

We consider a single class of patients, all of whom fall under RHC as this most common level of

care (NHPCO 2016). Let S ∈ {0, 1, . . . } be the state space of patient census, and let Q = [0, q̄] be

the set of permissible values for quality q (action)5. Our time increment is one week, since staffing

choices (e.g., number of per diems to hire, home visits etc.) are typically made for the upcoming

week. The hospice earns revenue r > 0 per patient, per week and incurs cost c(q) (increasing and

convex in q with c(0) = 0) per patient, per week for providing quality q.

If we provide quality q in state i, the next state j is given by the random variable Xi(q) ∼ Pij(q).
Furthermore, let p(q) denote the probability with which any individual patient may depart, and

let λ(q) denote the arrival rate of new patients. We assume that λ(q) is finitely valued and non-

decreasing and concave in q, and p(q) is decreasing and convex in q. The non-decreasing nature of

the arrival rate in q captures the effect of quality on whether new patients choose a given hospice

or not (National Association for Home Care & Hospice 2015), whereas the decreasing nature of

the departure probability in q serves as a proxy for either the adverse affects of poor quality

such as increased thirty-day re-admission rates and in-hospital death rates (Kelley et al. 2013), or

dissatisfied patients choosing alternate hospice providers6.

Let v(i) denote the maximum expected total β-discounted profits over the infinite horizon when

starting in state i. The Bellman optimality equation is given by

v(i) = max
q∈Q

{ri− c(q)i+ Σj∈Sβv(j)Pij(q)} , ∀i ∈ S. (4.1)

We are interested in the optimal stationary policy q∗ = {q∗(0), q∗(1), . . . } i.e., the hospice pro-

vides quality q∗(i) whenever the number of patients is i ∈ S. The following proposition shows the

existence of an optimal policy. All proofs appear in Appendix C.1.

Proposition 4.1. If there exists a policy q∗ satisfying q∗(i) = arg maxq∈Q {ri − c(q)i +

Σj∈Sβv(j)Pij(q)}, then q∗ is an optimal policy.

Even though the rewards are unbounded, Proposition 4.1 shows that a stationary optimal policy

exists and suggests an approach to compute this policy.

Before turning to finding an optimal policy, we will first consider an alternate model where the

arrival rate is independent of the quality provided, i.e., λ(q) = λ0. This model can be interpreted as

representing a scenario in the absence of quality reporting, where the hospice has a steady market

5For simplicity we assume that all patients are provided the same quality. The hospice could create a personalized
plan of care for each patient; in this case we would consider q as an aggregate quality measure.

6https://www.kindredhealthcare.com/our-services/hospice/faqs
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share. Because patient departures are primarily determined by the actual quality of care provided

and not the reported measures, we assume that p(q) is the same in the absence and presence of

reporting7. The following lemma characterizes the optimal policy for this model.

Lemma 4.1. The optimal policy when λ(q) = λ0 is q0 = min
{
q̄, arg max

{
r−c(q)

1−β(1−p(q))

}}
, ∀i.

Moreover, the return is given by v0(i) = αi+ γ, where α = r−c(q0)
1−β(1−p(q0)) and γ = βλ0α

1−β .

Lemma 4.1 shows that a constant quality policy is optimal in this alternate model. To see

the intuition behind this policy, consider the effect of a given action (quality q) on the hospice:

Each patient earns the hospice a constant reward, and for a given q, has a constant probability

of departing by the next stage. The arrival of new patients is unaffected by quality, and the only

trade-off – between the reward (decreasing in q) and the departure probability (also decreasing in

q) – is identical for each patient. Therefore, the optimal policy chooses quality q0 regardless of the

number of patients.

The intuition behind the linearity of v0(i) is similar: Each patient earns the hospice a fixed return,

which is independent of the state i due to the optimality of the constant quality policy. Thus, we

have a linear term in i. In addition, new patients that arrive to the system at rate λ0 provide

additional return; not surprisingly, the return γ from new patients is directly proportional to the

per patient return rate α with an appropriate discounting factor – the term β in the numerator

denotes that the return is incurred starting from the subsequent stage whereas the term 1 − β in

the denominator captures discounting over the infinite horizon. The per patient return α is simply

the profit per patient r − c(q0) discounted by β(1− p(q0)), where 1− p(q0) reflects the probability

that a customer will not depart by the next stage.

In the presence of reporting (when λ(q) is increasing in q) the problem is no longer separable by

patient. This is because providing a higher quality increases the arrival rate of new patients, and

the hospice may choose to utilize this to modify the patient census to more profitable levels, the

value of which must be balanced against the aggregate change in profit across its patient census,

which depends on the current census. Thus, the optimal policy is in general complicated, and we

must resort to heuristics, which we do next.

4.3.1 A heuristic policy

By exploiting the linear structure of the return function in Lemma 4.1 we can evaluate the first

step of a policy improvement algorithm for the original model in closed form. This is because the

summation term in (4.1) simplifies to terms involving only the expected value of next state Xi(q)

when v(j) is linear. The resulting policy is our heuristic, which is defined below.

Definition 4.1. The heuristic policy qH is given by qH(i) = arg maxq∈Q{r− c(q) +βα(1− p(q)) +

βαλ(q)
i },∀i > 0, and qH(0) = q̄, where α = r−c(q0)

1−β(1−p(q0)) .

7Certainly published annual quality scores could effect departures, but we view this as a second-order effect, and
disregard it.

61



A brief derivation of qH is provided in Appendix C.1. The following lemma presents some

structural properties of the heuristic policy and the optimal policy in the absence of reporting.

Lemma 4.2. For all states i ∈ S,

(a) qH(i) is non-increasing in i and qH(i) ≥ q0,

(b) qH(i) and q0 are non-decreasing in r,

(c) If qH(i) 6= q̄, then qH(i) becomes larger as λ′(q) becomes larger; otherwise, it stays the same.

Lemma 4.2(a) reveals that the quality level of our heuristic is non-increasing in the patient

census. Moreover, it is bounded below by q0 – the quality chosen by the optimal policy in the

absence of reporting – indicating that the quality provided in every state by our heuristic in the

presence of reporting is at least as large as that in the absence of reporting. While the hospice

extracts the maximum value out of its existing patient census at quality q0 (Lemma 4.1), providing

a higher quality increases the number of new patients that are expected to join. This is particularly

beneficial when the patient census i is small (Lemma 4.2(a)) as the resulting costs from providing

higher quality will not be too large when i is small.

Lemma 4.2(b) shows that the quality chosen by both the optimal policy in the absence of reporting

and the heuristic policy is non-decreasing in the reimbursement rate r: As patients earn more

revenue for the hospice it makes sense for the hospice to work harder to attract and retain them.

And thus it can provide a higher quality of care for its patients. As the arrival rate becomes more

sensitive to quality, the quality chosen under the heuristic may be larger (Lemma 4.2(c)). When

quality goes a long way – by attracting more patients – it makes sense for the hospice to provide a

higher quality of care for its patients.

In the next section we will run several numerical experiments to evaluate the performance of

this heuristic policy. We will also identify, numerically, whether the structural properties of the

heuristic extend to the optimal policy; for example, whether the quality under the optimal policy

is also non-increasing in i ∈ S.

4.4 Numerical results

In this section we will examine the performance of our proposed heuristic policy using numerical

approaches. We will first calibrate the parameters of our model to capture a typical hospice as well

as design experiments to evaluate multiple variants in §4.4.1; we then compare the performance

of the optimal and heuristic policies in §4.4.2. We numerically explore the strategic choices of a

hospice under pay-for-reporting in §4.4.3.
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4.4.1 Experimental setup

Since 98% of patient care days fall under RHC (NHPCO 2016), we will consider a single class of

RHC patients as in §4.3. We will consider two types of hospices – for-profit and nonprofit – in our

experiments owing to significant differences both operationally and in performance; for example,

the average LoS was 105 and 65 days for for-profit and nonprofit hospices, respectively (MEDPAC

2017).8

We use the Hospice Compare dataset published by CMS (2017) to identify the average quality

of hospices. This dataset contains reported measures of quality from hospice providers collected as

part of the HQRP as well as the type of hospice ownership i.e., for-profit or nonprofit. We focus

on one specific measure to calibrate our model – NQF #1637 Pain Assessment – for two reasons:

1) It shows the highest variation between hospice ownership types in the dataset, and indeed, this

measure stands out in its ability to help customers differentiate between hospices (STAT 2017); and

2) It is defined as “Percentage of patient stays during which the patient screened positive for pain

and received a comprehensive assessment of pain within 1 day of the screening,” which suggests

that it is a more in-depth and rigorous proxy for quality of care compared to others which are

either focused on the initial assessment period or deal with a specific concern limited to only some

patients. The average score for the Pain Assessment measure was found to be 80% and 75% for

for-profit and nonprofit hospices respectively. We limit the choice of quality to q ∈ [0, 1], so that the

calibrated values for quality are 0.8 and 0.75 for for-profit and nonprofit hospice types, respectively.

We will use these values in calibrating other parameters of our model.

Given the fundamental differences in the staffing mix of hospices by ownership type (Cherlin

et al. 2010), we will differentiate between the two types solely based on their cost function. We

assume that the cost of quality is given by c(q) = c0q
2, where c0 depends on the type of hospice.9 To

compute the cost of quality we use estimated data from Killaly and Mukamel (2007): The median

daily cost is $91.47 for a cancer patient and $61.11 for a non-cancer patient whereas the fixed cost

per admission is $897. Noting that cancer patients form 27.7% of the patients (NHPCO 2016), we

have the median daily cost per patient as $69.5.10 We next use the average LoS by hospice type

– 105 days and 65 days for for-profit and nonprofit respectively (MEDPAC 2017) – to amortize

the fixed cost per admission into the daily costs, thus obtaining a total effective cost per patient

per day of $78.1 and $83.3 for for-profit and nonprofit hospices respectively. Assuming the quality

to be the calibrated value described above, we can estimate c0 such that the average daily cost

matches our estimate. The value of r is given by the Medicare reimbursement rate for RHC, which

8The larger LoS for for-profits may be due to the lower share of cancer patients – who have short LoS (NHPCO
2016) – in their patient mix (Wachterman et al. 2011).

9We use this functional form for c(q) as it is simple, convex and increasing in q, and widely used in related work:
for example, Ata et al. (2013) uses a similar function for the cost of recruiting hospice patients at a given rate.

10This is obtained by taking the weighted average of $91.47 and $61.11 assuming that the proportion of cancer
patients is 27.7%. An alternate approach is to use a different proportion depending on the hospice ownership type
to compute this cost separately for each type, but this will only amplify any difference in the cost parameters since
the proportion of cancer patients at for-profits may be lower (Wachterman et al. 2011).

63



Table 4.1: Parameter values for λ(q) and p(q) used in experiments.

No. λ(q) parameters Value

1 (a0, a1) (2, 1)

2 (a0, a1) (4, 1)

3 (a0, a1) (3, 2)

4 (a2, a3) (2, 0.5)

5 (a2, a3) (4, 1)

No. p(q) parameters Value

1 (b0, b1) (0.1, 0.04)

2 (b0, b1) (0.15, 0.15)

3 (b0, b1) (0.3, 0.2)

4 b2 0.5

5 b2 0.35

was $159.34 in 2015 (CMS 2014). We normalize r = 1 and scale the costs appropriately, which

gives c0 = 0.76 and c0 = 0.92 for for-profit and nonprofit hospice types respectively11.

We will now describe the functional forms for the patient census dynamics. In order to ensure

a fair comparison in the strategies of the two types of hospices, these functions are assumed to

be independent of the hospice type12. Specifically, we will run the following 50 experiments (25

each for the two types of hospices) with the following functions for the arrival rate and departure

probability13:

• λ(q) ∈ {a0 + a1q, a2 + a3
√
q},

• p(q) ∈ {b0 − b1q, b2(1−√q)},
where the parameters are shown in Table 4.1.

Noting that the average daily census in 2015 was 63 (NHPCO 2016) and the average LoS was 87

days (MEDPAC 2017), the average arrival rate is 0.73 patients per day (or, 5.1 patients per week)

by Little’s Law. Assuming that the LoS is exponential with a mean of 87 days, we can compute

the probability of a patient departure in a week as 0.08.14 The parameters in Table 4.1 are chosen

such that the resulting values of λ(q) and p(q) at the calibrated quality vary (smaller or larger)

roughly by up to a factor of 2 times that of the above average values.

4.4.2 Comparison of optimal and heuristic policies

To compute the optimal policy we implement an augmented value-iteration algorithm exploiting

the structure of the heuristic policy: First, we use the heuristic policy to compute a good starting

return function to be used in the value-iteration step. Specifically, using the heuristic policy in the

place of the optimal policy in the R.H.S. of (4.1) yields a system of simultaneous linear equations,

the solution to which is the starting return function vH . Second, we implement a value-iteration

11The fact that for-profit hospices have a lower cost is in line with the findings of Cherlin et al. (2010).
12One can certainly assign different functions for the two hospice types, for example to capture differences in the

mix of patients (Wachterman et al. 2011). By ensuring that both types are faced with identical patients, our approach
allows us to isolate the effects of their quality choices.

13The functional forms are either linear or sublinear in order to explore different potential relationships while still
keeping them simple.

14The exponential assumption allows us to compute this probability while ignoring historical LoS effects.
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algorithm that improves this return function by recalculating the policy that maximizes the R.H.S.

of (4.1) until the return function converges. The corresponding policy is our optimal policy, and

the corresponding return function is the optimal return v∗. Let q∗(i) be the quality chosen in state

i ∈ S by the optimal policy.

We derive the stationary probability πa(i) of being in state i under policy a by using the tran-

sition matrix corresponding to that policy; we obtain the stationary probabilities π∗(i) and πh(i)

corresponding to the optimal and heuristic policies respectively. We use these to compute the ex-

pected quality Qa for each experiment under policy a as follows: Q∗ =
∑

i∈S q
∗(i)π∗(i) and Qh =∑

i∈S qH(i)πh(i). Similarly, we can also compute the expected patient census N∗ =
∑

i∈S iπ
∗(i) and

Nh =
∑

i∈S iπ
h(i) under the optimal and heuristic policies respectively. We can use the average

quality, and therefore the arrival rate, to compute the expected LoS by using Little’s Law.

We assume that the discount factor β is 0.95, and to facilitate computation, we discretize quality

to increments of 0.001 and truncate the space space at a large value15. New patients arrive according

to a Poisson process with rate λ(q), and each existing patient either departs before the next stage

with probability p(q) or stays with the hospice in the next stage with probability 1− p(q).

Table 4.2: Comparison of optimal and heuristic policies; averages over 25 settings for each type.

Type
Avg. quality Avg. patient census Avg. LoS (days) Avg. profit

Heuristic Optimal Heuristic Optimal Heuristic Optimal Heuristic Optimal

For-profit 0.640 0.637 74.28 73.91 158.6 157.9 408.83 408.86

Nonprofit 0.523 0.521 42.56 42.35 90.2 89.8 365.54 365.57

Note: For average profit we use vH(0) and v∗(0) assuming that the system starts empty.

We compute several performance metrics – the expected quality, the expected patient census,

and the expected LoS – under the heuristic and optimal policies for each of the 25 experiments

described in Table 4.1. We can also compute the discounted profits starting from any state, i.e.,

vH and v∗ under the heuristic and optimal policies respectively. We then aggregate these metrics

across the experiments for the two types of hospices, and report these averages in Table 4.2.

The heuristic performs extremely well across all metrics for both types of hospices and is a very

good approximation for the optimal policy. In all our experiments, we find that the return when

starting in the empty state under the heuristic policy i.e., vH(0) for both hospice types, is always

within 0.05% of that under the optimal policy i.e., v∗(0), and the difference between them under

the two policies averaged across all experiments is ≈ 0.01%, confirming that the heuristic is a very

good one. Moreover, the average quality under the heuristic is always within 3% of the optimal

policy across our experiments.

The two hospice types differ in their cost structure: One would expect that the lower cost of

quality would enable a for-profit hospice to provide a higher quality of care thus attracting more

15We determine this large value such that the stationary probability of being in this state is at most 1e−10.
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Figure 4.1: Optimal and heuristic policies: For-profit, (a0, a1) = (2, 1), and (b0, b1) = (0.15, 0.15).
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Figure 4.2: Optimal and heuristic policies: For-profit, (a0, a1) = (3, 2), and (b0, b1) = (0.15, 0.15).
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Figure 4.3: Optimal and heuristic policies: For-profit, (a0, a1) = (3, 2), and (b0, b1) = (0.1, 0.04).

0 50 100 150 200
Patient census

0

0.2

0.4

0.6

0.8

1
(a) Quality

Heuristic
Optimal

0 50 100 150 200
Patient census

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200
Patient census

0

0.05

0.1

0.15

66



Figure 4.4: Optimal and heuristic policies: Nonprofit, (a0, a1) = (2, 1), and (b0, b1) = (0.15, 0.15).
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Figure 4.5: Optimal and heuristic policies: Nonprofit, (a0, a1) = (3, 2), and (b0, b1) = (0.15, 0.15).
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Figure 4.6: Optimal and heuristic policies: Nonprofit, (a0, a1) = (3, 2), and (b0, b1) = (0.1, 0.04).
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patients, who in turn provide more revenue. Table 4.2 shows this to be true; the for-profit type

provides a higher quality, resulting in a longer LoS, compared to the nonprofit type, which is in

line with MEDPAC (2017).16

Figures 4.1-4.3 compare the performance of the two policies as a function of the patient census in

three representative experiments for a for-profit type hospice: Panel (a) shows the quality chosen

by the optimal and the heuristic polices, panel (b) shows the difference in the profit functions,

and panel (c) shows the stationary probability distribution corresponding to the optimal policy17.

(Figures 4.4-4.6 show the same for a nonprofit type hospice.) The optimal policy has a similar

structure to the heuristic; both policies are non-increasing in the number of patients. (Lemma

4.2(a) showed this to be true for the heuristic policy.) While this property does not hold in general

for the optimal policy (see Appendix C.2), we find that it is true in all our settings. Moreover, the

quality under the heuristic policy is very close to that under the optimal policy across all states in

addition to on average (Table 4.2). Interestingly, the heuristic always chooses a higher quality level

than the optimal policy. This is likely due to the myopic nature of the update the heuristic makes

(by design) to the quality level q0 chosen in the absence of reporting; the optimal policy considers

a more integrated view incorporating the profit across the patient census through the optimality

equation (4.1).

We find that the difference between the two policies is more pronounced when the arrival rate

is highly sensitive to quality. Figure 4.2 corresponds to an experiment with an arrival rate that

is more sensitive to quality relative to that in Figure 4.1, and shows a larger difference in the

return function under the two policies (panel b). This is not surprising because the heuristic was

developed by first assuming that the arrival rate is independent of quality, and as quality affects

arrivals more strongly, the return under the heuristic policy will likely be further away from that

under the optimal policy. Furthermore, Figure 4.2 shows a slightly larger quality level compared

to Figure 4.1 (panel a)18, which is in line with Lemma 4.2(c): As the sensitivity of the arrival rate

to quality increases, the heuristic chooses a larger quality level.

Figure 4.3 corresponds to an experiment with a departure probability that is less sensitive com-

pared to that in Figure 4.2, and shows a significantly lower quality level and a larger difference in

the return function. The former is intuitive since quality does not sway patients’ departure choices

as much so that it is not worthwhile to increase it. The significant adjustments to the quality level

across states in Figure 4.3, i.e., the steeper decline from the maximum level chosen in the empty

state in both cases, manifests in a larger difference between the two return functions.

16In reality the longer LoS for for-profit types may also be due to the patient mix (Wachterman et al. 2011).
17The stationary probability distribution corresponding to the heuristic is very similar and thus omitted.
18The average quality under the optimal policy – the weighted average of the optimal policy in panel (a) with the

distribution in panel (c) – is 0.704, 0.715 and 0.370 in Figures 4.1, 4.2 and 4.3 respectively.
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4.4.3 Incentives for quality reporting

One of the goals of the quality reporting program is to encourage providers to improve the quality

of their services. Lemma 4.2(a) showed that the quality chosen by the heuristic policy is at least

as large as the optimal quality in the absence of reporting. Moreover, §4.4.2 revealed that the

heuristic is a very good approximation for the optimal policy, and for most realistic parameter

settings, the optimal policy under reporting also chooses quality levels that are at least as large as

that in the absence of reporting. Thus, if a hospice chooses to report, the quality of care will most

likely improve.

But the question remains as to what type of hospices would choose to enroll in such reporting

programs? We explore this question in light of the pay-for-reporting incentive structure that is

currently in use: hospices that fail to submit quality metrics will be face a penalty of 2 percentage

points on their Medicare reimbursement rate (CMS 2015). Let δ denote this penalty. Thus, the

hospice faces two choices: (1) Report quality and expose itself to reputation effects influencing

new patients’ joining decisions; or (2) Not report quality, receive a lower reimbursement rate,

but ensure that customers remain ignorant about its quality of care when they make their joining

decision.

We will evaluate the profit under both choices separately; we then study the hospice’s strate-

gic choice regarding reporting quality. The optimal strategy is defined as the choice (Report or

Not report) that gives the hospice a larger profit when starting from the empty state. We also

consider the status quo scenario in the absence of quality reporting and under the standard reim-

bursement rate (i.e., without penalty). Lemma 4.1 gives the quality and profit under the status

quo scenario and Not report: The quality is q0 and the profit is v0(0) = γ, where q0 and γ depend

on the reimbursement rate, i.e., r and (1 − δ)r in status quo and Not report respectively. The

average quality Q∗ and profit v∗(0) under the Report choice is computed numerically as in §4.4.2.

Figure 4.7: Comparison of strategies and quality of care under pay-for-reporting.
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Note: This figure is for a for-profit with (a0, a1) = (3, 2) and (b0, b1) = (0.15, 0.15), and δ = 0.02.

69



Figure 4.7 shows the profit and the quality level under the different outcomes as a function of λ0

– the arrival rate in the absence of reporting. The profit v∗(0) under Report is independent of λ0,

whereas the profit γ under Not report is linear in λ0 (Lemma 4.1). As a result, the profit curves

under the two choices cross each other at exactly one point, say λT, as shown in Figure 4.7(a), and

the optimal strategy is to report whenever λ0 is smaller than λT. A “fair” value for this arrival rate

– one that corresponds exactly to the quality q0 the hospice provides in the status quo scenario –

is given by λ0 = λ(q0). For the example in Figure 4.7 this value is λ0 = 4.3 while the threshold

λT = 4.5 suggesting that a hospice that enjoys 5% larger market share than what is considered fair

would choose not to report.

In other words it need not be optimal for a hospice to enroll in reporting. Thus, the incentive

to report quality depends on the extent of the market captured by the hospice in the absence of

reporting: If the hospice enjoys a disproportionate market share (high λ0), then it may be better off

not revealing its quality: Revealing this may just chase customers away. Moreover, the threshold

λT is increasing in δ19, suggesting that imposing such a penalty may serve as a way to encourage

reporting to be the strategic choice.

Figure 4.7(b) compares the quality level chosen by the hospice under the optimal strategy (identi-

fied above) against that under the status quo scenario. Interestingly, the hospice reduces its quality

level when it chooses not to report. Indeed, Lemma 4.2(b) showed that the quality level in the

absence of reporting is non-decreasing in the reimbursement rate, or equivalently non-increasing in

the penalty δ. As the penalty increases, the drop in quality for hospices that choose to not report

quality will be more pronounced.

Thus, the pay-for-reporting incentive structure is a double-edged sword: On the one hand, it

may encourage a hospice to enroll in reporting, and if chooses to do so, the quality may improve.

On the other hand, some hospices may strategically choose not to report quality, and may actually

reduce their quality level due to the reduced reimbursement rate. An alternate approach is to

reward hospices that report quality instead of penalizing those that fail to report. In this case the

quality under the optimal strategy would be at least as good as that in the status quo scenario.

But, the threshold to choose reporting may be smaller relative to that in Figure 4.7(a)20, in which

case fewer hospices would strategically report quality.

4.5 Conclusion

CMS has recently required hospices to report their performance across a given set of quality mea-

sures. These measures are publicly available and are expected to help patients make better choices

19The threshold λT is given by the solution to v∗(0) = αλTβ
1−β (Lemma 4.1). We know that α is increasing in the

reimbursement rate i.e., r(1 − δ) (or, decreasing in δ) from the proof of Lemma 4.2(b). Thus, the threshold λT is
increasing in δ.

20This occurs when the impact of the reward on boosting v∗(0) is dominated by that of the penalty on lowering γ.
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when it comes to hospice care. In this chapter we examine a hospice’s choice of quality of care

considering the effects of reporting on the rate at which new patients join the hospice.

We model the quality control problem as a discrete-time Markov decision process: Our results

serve as a guide for hospice managers to determine any changes – for example, in staffing levels or

schedule of visit services – to be made depending on the patient census realized in a given week.

The patient census is governed by general transition probabilities, wherein the departure probability

and the arrival rate may depend on the quality chosen. We show that a constant quality policy is

optimal in the absence of reporting. On the other hand, when quality is reported it affects the rate

of new arrivals, and the optimal policy is, in general, complicated.

We exploit the structure of the problem to derive a closed-form heuristic that performs very well

against the optimal policy: The average quality under the heuristic is within 3%, and the profit is

within 0.05%, of the optimal policy across our numerical experiments. Not surprisingly, a for-profit

hospice – characterized by lower quality costs – provides higher quality, and experiences longer

stays, on average compared to a nonprofit one.

We derive several structural properties of our heuristic: The policy chooses quality levels that

are non-increasing in the patient census, demonstrating the benefit of providing better quality –

thereby attracting more patients – when the cost of doing so is not too large. Moreover the heuristic

offers a quality that is at least as large as that in the absence of reporting. Through our numerical

experiments we find that these properties translate very well to the optimal policy for realistic

parameter settings; however, we also identified situations where it does not.

By comparing two systems – before and after reporting of quality is in place – we find that re-

porting does incentivize hospices to provide better quality of care. However, not all hospices may be

willing to participate in a voluntary quality reporting program: Those that enjoy a disproportion-

ate share of the market in the absence of reporting, and thus risk losing customers upon reporting

their actual quality publicly, will be less inclined to do so. While the current “pay-for-reporting”

approach implemented by CMS does serve as a way to encourage hospices to report quality, it

does have some unintended consequences: Hospices that strategically choose not to report may

actually reduce their quality level due to the penalty imposed for not reporting. To the best of our

knowledge, this is the first work that models the relationship between quality of care and patient

census explicitly to explore incentives for participating in quality reporting in the hospice setting.

There are several directions to extend this work. The patient population may be extended to

multiple classes where patients may have different diagnoses and/or require different levels of care.

An interesting effect to consider in this case is possible movement of patients between classes –

both naturally as well as due to poor monitoring by hospice staff – and whether reimbursement

rates should be class-dependent. One may also wish to explore the joint effects of having alternate

reimbursement structures – for example, the two-tier rate for RHC – along with quality reporting.

Another variant is to consider the impact of offering specialty hospice programs such as for cardiac

or pulmonary care. While patients in these programs typically require higher levels of care, offering
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such programs may help hospices differentiate themselves from their competition. Finally, it is of

interest to identify a metric of quality that is both controllable and amenable to fair comparison

across hospices with different mixtures of patients.
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Chapter 5

Conclusion

This dissertation develops stochastic models to analyze problems in service operations, particu-

larly dealing with issues in healthcare and retail operations. Within healthcare, we explore when

multiple listing for organ transplantation is fair given criticism that this provides disproportionate

advantages to wealthier patients (Chapter 2), and the quality of care chosen by a hospice in light

of recent regulations around reporting (Chapter 4). Within retail operations, we investigate the

different options for return policies of a typical omnichannel firm, taking into account the fact that

customers are increasingly using more than one channel for their interactions (Chapter 3). The

insights generated through these studies provide guidance for practitioners as well as policy makers.

The work in this dissertation makes several contributions to the theory of operations manage-

ment. The analysis on fairness under redundancy was facilitated by the development of a novel

coupling method and a counting procedure to track customers (presented in Chapter 2). The cou-

pling method allows one to process state transitions out of temporal order to obtain an ordering of

the queue lengths, while the counting procedure helps define queue lengths in spite of customers’

(dynamically) changing positions in queues. We believe that these methods are of interest to the

research community for two reasons. First, the coupling method presents a new way to study

systems that are difficult to analyze using traditional sample path approaches. And in conjunc-

tion with sample path techniques, the counting procedure may be invoked whenever there is no

straightforward way to record customers. Moreover, both of these methods lend themselves to

extensions involving customer abandonments – which are notoriously difficult to study analytically

– demonstrating their power to aid in the analysis of otherwise complex queueing systems. Second,

this work has implications beyond redundancy systems: The smallest workload policy is closely

related to certain redundancy policies, and our results extend prior work in this area considering a

single (flexible) class to two customer classes, only one of which is flexible.

The work on fairness in systems with redundancy helps identify when, and by how much, joining

multiple lines may be unfair as compared to joining the shortest queue, and as such could be a useful

tool for policy makers in organ transplantation. In addition, the optimal queue joining analysis

indicates when a shopper should join the shortest checkout line at the supermarket depending on

whether she is aware of which shoppers are “paired up.” Future work could broaden the scope of

the model to include aspects of organ transplantation such as the acceptance decisions of patients,

endogenous listing when redundancy comes with a cost, and priority-based policies.
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The work investigating return policies of omnichannel firms provides a potential explanation for

the different policies adopted by real retailers, and helps guide when a firm should choose full

refunds versus when it should charge a fee for returns. Future work on this front could explore

the inventory aspect of omnichannel operations: How can an omnichannel firm gain from jointly

managing its inventory levels and return policy, especially given the high return rates in the online

apparel industry. Another direction is to explore how return windows – the time that a customer

has to return an item for a refund – impact customers’ return decisions (e.g., due to either the

forgetful nature of customers or the endowment effect). This in turn affects the firm’s policy: A

lenient policy (i.e. a large window) increases the chance that an item may need to be salvaged at

a loss, but it could also reduce returns. Some firms adopt innovative policies for returns, thereby

introducing new directions for future work: Firms (e.g., Jet) may offer customers the option to

self-select their return behavior (such as opting out of free returns) at the time of purchase using

a menu of prices, and one could investigate when a firm should offer such an option and how to

design such a contract.

The findings from the quality choices of hospices suggests that the current approach of reporting

metrics publicly is a step in the right direction, but cautions policy makers that the incentive

structure may result in unintended consequences such as a reduction in the quality levels. Future

work could empirically investigate the impact of quality on patient dynamics, incorporating a

study of a hospice’s actual quality choices. One can also explore the relationship between patient

satisfaction ratings and the various metrics of hospice quality currently reported to identify which

key metrics matter the most to patients. Another direction to pursue is customers’ response to

quality disclosure and its implications for the hospice’s quality choices.

An important application on the intersection of queueing theory and omnichannel strategy is

omnichannel service operations. Specifically, how should a firm (e.g., Starbucks) that receives

orders both in person and through a mobile interface serve its customers. This is particularly

interesting given that an uptick in mobile ordering is a double-edged sword: While it streamlines

the ordering and payment process resulting in improved customer wait times, it may also lead to

bottlenecks from ineffective juggling between walk-ins and mobile orders, as well as uncertainty

with respect to when customers will actually arrive to claim their orders.
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Appendix A

Supplements to Chapter 2

A.1 Proofs

Proof of Theorem 2.1. We will first show that T (Ded,CUS) ≤ T (Ded,CUE). To compute T (Ded,CUE) we

use the stationary distribution from Visschers et al. (2012); Appendix A.2.1 provides details on the

steps involved. From Lemma A.5, when p = 0.5, we have

T
(Ded,CUE)
1 =

1

2µ
+

1

2µ− λ
+

1

2µ− λ(1− r)
− 1

2µ+ rλ
, (A.1)

T
(Ded,CUE)
2 =

1

2µ− λ
+

1

r(2µ+ rλ)
− 1− r

2rµ
, (A.2)

T (Ded,CUE) =
1

2µ− λ
+

1− r
2µ− λ(1− r)

+
r

2µ+ λr
. (A.3)

From Gardner et al. (2016) we have that

T
(Ded,CUS)
1 =

p

µ− λ(1− r)p
+

1− p
µ− λ(1− r)(1− p)

+
1

2µ− λ
− 1

2µ− λ(1− r)
, (A.4)

T
(Ded,CUS)
2 =

1

2µ− λ
. (A.5)

When p = 0.5 this gives us

T
(Ded,CUS)
1 =

1

2µ− λ
+

1

2µ− λ(1− r)
, (A.6)

T (Ded,CUS) =
1

2µ− λ
+

1− r
2µ− λ(1− r)

. (A.7)

Together we have T (Ded,CUE) − T (Ded,CUS) = r
2µ+λr when p = 0.5. Since r

2µ+λr ≥ 0, we have our

result.

Next, we show that T (Ded,CUE) ≤ T (Ded,JSQ). We first highlight classical results on majorization.

Let vectors x, y ∈ Nn be restricted to take non-negative integer values, and let χx(q) be the index

of the q-th largest component of x. Let ei ∈ Nn be the vector whose components are zero except for

the i-th component which is one. Define Aq(x) = x+eχx(q) as the vector that is obtained by adding

one to the q-th largest component, and Dq(x) = x− 1(xχx(q) > 0)eχx(q) as the vector obtained by
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subtracting one from the q-th largest component of x if this component is strictly positive. Then,

from Definition 3.2 and Lemma 3.2 in Liu et al. (1995) we have:

(L1) x is weakly submajorized by y i.e., x ≺w y if
∑k

q=1 x[q] ≤
∑k

q=1 y[q], k = 1, 2, . . . , n, where x[·]

denotes the component of x in decreasing order;

(L2) if x ≺w y, then Aq(x) ≺w As(y), 1 ≤ s ≤ q ≤ n;

(L3) if x ≺w y, then Dq(x) ≺w Ds(y), 1 ≤ q ≤ s ≤ n.

Consider a sample path, ω, that contains arrival times and class types for each customer, and

service completion times at each server. We consider two systems – R and J – differentiated only

by the policy (CUE and JSQ respectively) utilized by class 2 customers on ω. We assume that both

systems start empty. The queue length vector in the J system is straightforward; queue length in

the R system is defined as follows. For each redundant customer we assign one of the two jobs to

be the “real” job: In particular, the redundant job that is closer to the server is considered to be

real job (adds one to that queue), and the other one is not counted, breaking ties arbitrarily.

Arrivals do not change which job of a redundant customer is counted in this way, but the

assignment may change after a departure event: After a service completion, if the “real” job of

a redundant customer faces more jobs ahead of it than the other copy, then the latter copy will

be counted as the “real” job; otherwise the assignment is unchanged. Conceptually, we think of

the systems evolving as we sequentially process events along ω. We also consider two “modified”

systems, R̃ and J̃ , on ω that differ from the corresponding original systems in the sequence in which

the given arrival and service events are processed. The three scenarios that the modified systems

could be in, and the associated sequencing rules for advancing states, are:

(A) Any queue (in R̃ or J̃) is idle. In this case advance both systems to the next event (service

or arrival).

(B) No queue (in R̃ or J̃) is idle and there is no redundant customer in the queue in the R̃ system.

In this case advance both systems to the next event (service or arrival).

(C) No queue (in R̃ or J̃) is idle and there is at least one redundant customer in the queue in

the R̃ system. In this case advance both systems to the next service event, deferring arrival

events as necessary.

Both systems start empty and have the arrival and service events considered in the order they

occur until the arrival of the first redundant customer to face two busy servers in R̃. This moves

the system to (C), and only service events will be considered; arrival events, if any, will be tracked

but will be added to the queue only when a service completion moves the system either to (A) if

any of the queues are empty, or to (B) if the last redundant customer in the queue enters service

in R̃. In either case, any customers that arrived when the system was in (C) are added to the

system sequentially and instantaneously when the system transitions into (A) or (B). Finally, we

move from (A) upon an arrival that leaves no queue idle, either to (B) if there are no redundant

customers in the queue or to (C) if there is at least one redundant customer in the queue in R̃,

whereas we move from (B) either to (A) if one of the queues idles or to (C) if a redundant customer
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arrives in R̃.

The routing probabilities for customers are coupled between the four systems as follows. If there

are no redundant jobs in the queue in R̃ when a class 1 customer arrives (say customer n0 arriving

at time t0), then all of the arrival and service events prior to time t0 have been processed at all four

queues. In this case customer n0 joins either the shorter or the longer queue in all four systems at

t0. Ties, if any, may be broken arbitrarily; however, the routing in the modified system should be

identical to that in the corresponding original system.

On the other hand, when a class 1 customer arrives and the system is in scenario (C), she is not

assigned in the J̃ and R̃ systems but is in J and R. These assignment choices, to J and R, occur

as follows: Customer n0 looks forward to time τ when the (̃·) systems will transition out of state

(C) i.e., τ is the minimum of the time until the last class 2 customer in front of customer n0 in

the R system enters service and the time until one of the servers idles in J . (We prove, in Lemma

A.1, that the systems J and J̃ , and R and R̃, are coupled on ω.) Customer n0 evaluates the queue

lengths of jobs that arrived prior to time t0 and remain in the system at time τ . She chooses the

shorter of these queues (in systems R and J) with probability 0.5, and the longer of these queues

with probability 0.5, breaking ties arbitrarily (but consistently between the original and modified

systems). When customer n0 is eventually added to the J̃ and R̃ systems, she joins the queues

the same way – either the shorter or the longer queue measured at time τ , according to what was

selected for the J or R systems. If a class 2 customer arrives to the J system but is not assigned

a queue upon arrival in the J̃ system immediately, then whenever she needs to be added in the J̃

system, she is assigned whichever queue she is presently at in the J system. There is no explicit

routing for class 2 customers joining R and R̃ as they are added to both queues; however, if both

the servers are idle, she joins whichever server she joins in J .

We present an illustration in Figure A.1. We start with two class 1 customers at each server

(denoted a and b) followed by a class 2 customer (Figure A.1a). The modified systems are currently

in scenario (C), and no further arrivals are considered (indicated by the dashed line in J̃ and R̃).

Suppose the next three events are: (i) a class 1 customer n0 arrives to the system at time t = t0;

(ii) a service completion occurs at server a at time t1; and (iii) another service completion occurs

at server a at time t2. To identify which queue customer n0 must be sent to in J and R at time

t0, we look forward in time to time τ = t2 (Figure A.1b) when the modified systems are no longer

in scenario (C) (they are in scenario (A)). If we choose (according to a coin flip) the shorter queue

in J at time t2, then customer n0 should be sent to queue a in both J and R at time t0 (Figure

A.1c). Note that she is not assigned a queue in J̃ and R̃ at this time. When the system eventually

evolves to time t2, customer n0 will be assigned to queue a (i.e., the shorter queue at time t2) in J̃

and R̃ (Figure A.1d), so that the systems J and J̃ , and R and R̃, remain coupled.

Define w(x) and w̃(x) as the state vector ahead of customer x (after she is assigned a queue in

the modified system) i.e., comprising all customers who arrived before x and are still in the system,

in the original and modified systems respectively. The following lemma states that the two sets of
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Figure A.1: An illustration of system state evolution in J,R, J̃ and R̃.

1 

1 1 

1 1 1 1 

1 1 1 

𝐽 𝐽 𝑅 𝑅� 

2 
1 1 

1 
a b 

1 

1 

2 
1 
2 

1 

1 
a b 

1 

2 
1 1 

1 
a b 

1 

2 
1 
2 

1 

1 
a b 

1 

(a) 𝑡 = 𝑡0  

2 
1 

a b 
1 

1 

2 
a b 

1 

2 
1 

a b 
1 

1 

2 
a b 

1 

(b) 𝑡 = 𝑡2  

System  

2 
1 1 

1 
a b 

1 

2 
1 
2 

1 

1 
a b 

1 

2 
1 1 

1 
a b 

1 

2 
1 
2 

1 

1 
a b 

1 

(c) 𝑡 = 𝑡0  

(d) 𝑡 = 𝑡2  2 
1 

1 
a b 

1 

1 

2 
a b 

1 

2 
1 

a b 
1 

1 

2 
a b 

1 

Note: A class i ∈ {1, 2} customer is denoted by i in all four systems; customer n0, described in Proof of
Theorem 2.1, is indicated using diagonal stripes.

systems remain coupled.

Lemma A.1. The two sets of systems – J and J̃ , as well as R and R̃ – are coupled. In particular,

w(i) = w̃(i) for every customer i in both sets of systems.

Proof. If w(i) = w̃(i) for a customer i upon her assignment to a queue in the modified system, this

remains true until customer i departs the system because the service events are coupled exactly

between the original and modified systems. So we prove Lemma A.1 by induction on customers at

the time when they are assigned a queue in the (̃·) system.

Consider the first set of systems: J and J̃ . Since the two systems start empty, the statement is

true for the first customer (regardless of her class). Let the two systems be coupled for the (n−1)th

customer, say x, i.e., w(x) = w̃(x) at the time when x is assigned a queue in J̃ . We need to show

that the next arrival to be assigned, say y, satisfies w(y) = w̃(y) as well. If x is of class 1, she

joins either the longer queue or the shorter queue in both (defined according to w(x) and w̃(x)).

If x is of class 2, she would have joined the shorter queue in J upon arrival, and joins the same

relative position as in J upon being assigned a queue in J̃ . Thus, the systems are coupled just after

assigning x as well. Now, either y has already arrived and is waiting for an assignment in J̃ or y is

78



yet to arrive and be assigned. In both cases, there may be some (possibly zero) service completions

(regardless of the scenario (A), (B) or (C)) that occur before y is assigned. Each of these service

completions, if any, are coupled i.e., they occur from the same queue in both systems.

We also need to show that y, if delayed in J̃ , does not depart in J before being assigned in J̃ .

This could happen if the following three events occur together: (i) the queue that y should join in

J̃ idles; (ii) y is not assigned immediately in J̃ ; and (iii) y is the next job in service at J . But if y

is about to enter service in J , the corresponding queue will be idle in J̃ , because the systems are

coupled. Since the modified systems assign any delayed jobs as soon as one of the queues becomes

empty (if not sooner), y will be added to the queue (and begins service) in J̃ immediately, so that y

can never depart in J before being assigned in J̃ . Thus, the two systems are coupled to begin with,

and any service completions are coupled, so that the two queues remain coupled when assigning y

as well. Therefore, by induction, the two systems remain synchronized, and w(y) = w̃(y).

For the second set of systems – R and R̃ – we use a similar induction. Under the induction

assumption as before, we claim that the two systems remain coupled just after assigning x. To see

this, let us consider the class of customer x: If x is of class 2 type, then we add her to both queues

in the two systems, and if one or more servers are idle, we add her to the same server in both

systems. On the other hand, if x is of class 1 type, then we assign her to whichever queue (longer

or shorter) we assigned her in J̃ . Again, there may be some (possibly zero) service completions

before assigning y to a queue, but since the systems are coupled just after x is assigned and any

service completions are coupled, the two queues remain coupled when it is time to assign y. As

before, y does not depart in R before being assigned in R̃.

Let T J̃ and T R̃ denote the mean overall response times in J̃ and R̃ respectively. The following

lemma provides an ordering of the response times.

Lemma A.2. T R̃ ≤ T J̃ .

Proof of Lemma A.2. At any instant t, let the queue length vector in R̃ and J̃ be given by q̃R(t) =

(r1, r2) and q̃J(t) = (j1, j2) respectively, where the first component of each vector represents the

longer queue. We first use induction on time t to show that the states satisfy weak submajorization

(as in (L1)) i.e., at any instant t, we have

r1 + r2 ≤ j1 + j2, (A.8)

r1 ≤ j1. (A.9)

It is easy to see that (A.8) and (A.9) are trivially true for t = 0. Assume that (A.8) and (A.9) are

true until time t. Let the queue lengths after the next event (time t′) be given by q̃R(t′) = (r′1, r
′
2)
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and q̃J(t′) = (j′1, j
′
2) in R̃ and J̃ respectively. We will show

r′1 + r′2 ≤ j′1 + j′2, (A.10)

r′1 ≤ j′1. (A.11)

First off, note that if the system is in scenario (C), there is at least one redundant job in the

queue in R̃. Then unless the shorter queue in system J̃ is idle i.e., a departure causes a transition

to (A), there can be no arrivals. And, even if it is idle and the next event is an arrival to the shorter

queue, there can be no further arrivals i.e., j′2 = 1 and the system moves back to (C). In other

words, when there is a redundant customer in the queue, either (i) there are no jobs behind it and

j2 ≥ 0; or (ii) there are jobs behind it (including possibly other redundant jobs) and j2 ∈ {0, 1}.
Let z denote the number of redundant customers in the queue, and when z = 1, let I ∈ {0, 1}

denote whether that redundant customer is the last job (I = 1) in the system or not (I = 0) in R̃.

If the next event is a class 1 arrival, since we couple the routing such that the arrival is sent to the

shorter queue in both R̃ and J̃ , or to the longer queue in both, by (L2), (A.10) and (A.11) hold. If

the next event is a class 2 arrival, the job is “counted” towards the shorter queue in the R̃ system.

Even though the class 2 customer uses the JSQ policy in the J system, the queue that she would

have joined upon arrival may have become the longer queue when she is assigned in the J̃ system.

Thus, the job may either be added to the shorter or the longer queue in J̃ and, by (L2) we have

our result. Next, we need to consider service completions in the various possible sets of states:

1. z = 0. If the server at the longer (shorter) queue completes, a job departs from the longer

(shorter) queue in both systems, so by (L3) we have our result.

2. z ≥ 2, j2 = 0 or z = 1, I = 0, j2 = 0. We have r2 ≥ 1 since there is at least one redundant

customer in the queue, and r1 + r2 ≤ j1 from (A.8) so that r1 ≤ j1 − 1. The next state is

either (r1 − 1, r2) or (r1, r2 − 1) in R̃ depending on the way the redundant job(s) rearrange

in queue, and whether r1 = r2 or not. If the service is at the longer queue, we have state

(j1 − 1, 0) in J̃ . In this case r′1 + r′2 = r1 + r2 − 1 ≤ j1 − 1 = j′1 + j′2 from (A.8) so that

(A.10) holds true. If the next state in R̃ is (r1 − 1, r2), then r′1 = r1 − 1 ≤ r1 ≤ j1 − 1 = j′1
so that (A.11) holds true. If the next state in R̃ is (r1, r2 − 1), then r′1 = r1 ≤ j1 − 1 = j′1 so

that (A.11) holds true. If the service is at the shorter queue, we have state (j1, 0) in J̃ . Since

j1 − 1 < j1, we have our result.

3. z ≥ 2, j2 = 1 or z = 1, I = 0, j2 = 1. In this case r′1 + r′2 = r1 + r2 − 1 ≤ j1 = j′1 + j′2 from

(A.8) so that (A.10) holds true. There are at least 3 jobs in R̃, so there must be at least

2 jobs in the longer queue in J̃ . Thus, if the service is at the longer queue, we have state

(j1 − 1, 1) in J̃ . If the next state in R̃ is (r1 − 1, r2), then r′1 = r1 − 1 ≤ j1 − 1 = j′1 from

(A.9) so that (A.11) holds true. If the next state in R̃ is (r1, r2 − 1), as long as there is at

least one redundant customer in the queue, the servers in R̃ never become idle upon a service

completion, so r2 − 1 ≥ 1. Along with r1 + r2 ≤ j1 + 1 from (A.8), this gives us r1 ≤ j1 − 1
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so that r′1 = r1 ≤ j1− 1 = j′1 and (A.11) holds true. If the service is at the shorter queue, we

have state (j1, 0) in J̃ . Since j1 − 1 < j1, we have our result.

4. z = 1, I = 1 and j2 ≥ 0. We consider two separate sets of states in R̃: (I) r1 6= r2 + 1 so

that service at the longer queue results in state (r1 − 1, r2) if r1 > r2 + 1 and (r1, r2 − 1) if

r1 = r2, and service at the shorter queue results in state (r1, r2 − 1); and (II) r1 = r2 + 1 so

that, depending on the underlying position of the redundant customer, service at the shorter

queue may result either in state (r1, r2 − 1) or (r1 − 1, r2), whereas a service at the longer

queue results in state (r1− 1, r2). Regardless of which state we are in, it is easy to show that

(A.10) is true: We have r′1 +r′2 = r1 +r2−1 ≤ j1 +j2−1 ≤ j′1 +j′2 from (A.8), where the final

inequality is because the number of total jobs in J̃ after the service completion is either that

at time t less one if the service completion resulted in a departure, or that at time t if the

service completion was at the shorter queue and j2 = 0. If we are in state (I), then the new

state upon service completion is exactly the same as if there were no redundant customer, so

(A.11) follows from (L3). Similarly, if we are in state (II) and the service completion is from

the longer queue, we have (A.11) from (L3). However, if we are in state (II) and the service

completion is from the shorter queue we may either be in state (r1, r2−1) or (r1−1, r2). The

departure of a job from the shorter queue in J̃ results in state (j1,max{j2 − 1, 0}). For the

former state: r′1 = r1 ≤ j1 = j′1 from (A.9), and for the latter state r′1 = r1−1 ≤ r1 ≤ j1 = j′1
from (A.9) again, so that (A.11) is true in both cases.

Thus, the modified systems satisfy (A.8) and (A.9) ∀t ≥ 0. Let u denote the number of unassigned

customers (it is equal in both), then the total number of customers at time t is r1 + r2 + u and

j1 + j2 + u in the R̃ and J̃ systems respectively. Then, from (A.8), the time average number of

customers N s in system s ∈ {R̃, J̃} satisfies N R̃ ≤ N J̃ . Finally, since our system is ergodic and

N s = λT s by Little’s Law, we have our result.

According to Lemma A.1 the two systems J and J̃ (similarly, R̃ and R) are coupled exactly.

In particular, each customer arrives and departs at the same time in the corresponding original

and modified systems (although they may not be assigned a queue immediately in the modified

system). As a result, the mean overall response time in J (R) is exactly equal to that in J̃ (R̃),

and, by Lemma A.2, we have T R̃ ≤ T J̃ . Thus, T (Ded,CUE) ≤ T (Ded,JSQ).

Proof of Theorem 2.2. To show that class 1 customers prefer CUS over CUE for p = 0.5, we com-

pute the difference (using ((A.6)-(A.1))) T
(Ded,CUE)
1 − T (Ded,CUS)

1 = 1
2µ −

1
2µ+rλ , which is increasing

in r and is zero for r = 0, so that T
(Ded,CUE)
1 > T

(Ded,CUS)
1 for r ∈ (0, 1).

Next, we show that their response time is decreasing in r: It is easy to see that this is true for

CUS since r is in the denominator (with a positive coefficient) of a positive term in the expression

of T
(Ded,CUS)
1 as in (A.6). For CUE, rearranging the terms in (A.1): T

(Ded,CUE)
1 = 1

2µ + 1
2µ−λ +

λ
(2µ−λ(1−r))(2µ+rλ) . Since r is in the denominator (with positive coefficients) of a positive term we

have that T
(Ded,CUE)
1 is also decreasing in r.
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Finally, we show the preference for CUE over JSQ. Let ni, i ∈ {1, 2} denote the number of jobs

at server i when π2 = JSQ. Consider a tagged class 1 customer x arriving to an arbitrary state

(n1, n2). Her wait time in either queue will be n1/µ or n2/µ with probability 0.5 each, and her

expected wait time will be (n1 + n2)/2µ. By PASTA the mean wait time for a class 1 customer is

given by N (Ded, JSQ)/2µ where N (Ded, JSQ) is the expected number of customers in this system. The

total number in system when π2 = CUE is given by N (Ded, CUE) = λT (Ded, CUE) by Little’s Law, and

it can be easily verified that T
(Ded, CUE)
1 = 1

µ + N(Ded, CUE)

2µ , where T
(Ded, CUE)
1 and T (Ded, CUE) are

given by (A.6)-(A.1) and (A.7)-(A.3) respectively. Thus class 1 wait time under π2 ∈ {CUE, JSQ}
is given by N (Ded,π2)/2µ, and they prefer the system with the smaller N (Ded,π2). From Little’s

Law, this is the one with the smaller mean overall response time i.e., when π2 = CUE by Theorem

2.1.

Proof of Theorem 2.3. We are interested in the mean wait time (i.e., time in queue) W π2
1 for class

1 customers when class 2 customers follow policy π2 and r → 1. Suppose a tagged class 1 customer

arrives to the system to find wj amount of work at server j. (For every class 2 customer, only

“real” work is counted i.e., one of the two copies’ work will be counted at the corresponding server

in CUE, and in CUS provided both copies are not in service at the same time; if both copies end up

in service under CUS, then the minimum of the service times is counted in the work at both servers

for this customer.) This tagged customer, upon joining queue j, has to wait until wj amount of

work is completed, so that class 1 wait time at server j is wj , and the overall (or weighted average)

class 1 wait time is W (p, r) = pw1 + (1− p)w2, ∀p, r.
Suppose the limit of the wait time at each server, i.e., limr→1− wj , exists. Then, by the sum

law of limits, the limit of W (p, r) also exists as r → 1−. The mean wait time W π2
1 is simply

equal to pw1 + (1 − p)w2 where wj represents the work at server j when r = 1. In this case

the stationary probability of any state is given by simple systems such as an M/M/1 working at

rate 2µ when π2 = CUS and an M/M/2 when π2 = CUE, and the work wj is independent of j

since the queues are symmetric. Thus, the value of p does not matter. We will compute W π2
1 for

π2 ∈ {JSQ, CUE, CUS} separately.

(i) π2 = JSQ. In this case the total work is n1+n2
µ in state n = (n1, n2). Since the expectation of

n1 +n2 with respect to the stationary JSQ distribution is the expected number NJSQ in a JSQ

system, and wj equals half the total expected work in the system, we have W JSQ
1 = NJSQ

2µ .

(ii) π2 = CUE. Let n denote the number of class 2 customers in the system (effectively an M/M/2

when r = 1). For n = 1, the work at a server (in expectation) is w(1) = 1
2µ . For n > 1,

the work in either queue is the sum of the time required for (n − 2) service completions at

any server (so that there are no jobs in queue) and one service completion at a particular

server (since there is exactly one job at each server). The former is given by n−2
2µ and the

latter is given by 1
µ . Thus, the work at either serverw(n) = n

2µ ,∀n ≥ 0. Since the expectation

of n with respect to the stationary M/M/2 distribution is the expected number NCUE in an

M/M/2 system, WCUE
1 = NCUE

2µ .
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(iii) π2 = CUS. Let n denote the number of class 2 customers in the system (effectively an M/M/1

with rate 2µ when r = 1). For n ≥ 0, the work at either server w(n) is the sum of the time

required for n service completions at rate 2µ so that w(n) = n
2µ . As before, WCUS

1 = NCUS

2µ .

Thus, W π2
1 = Nπ2

2µ , ∀p, π2 ∈ {CUS, CUE, JSQ}. Finally, T
(Ded,π2)
1 = 1

µ + W π2
1 , and we have our

result.

Since the total number in an M/M/1 serving at rate 2µ is at most that in an M/M/2 serving at

rate µ per server (Wolff 1989, p. 258), we have NCUS ≤ NCUE. From Foss (1989) we know that

the policy that routes arriving customers to the queue with the smallest workload is optimal. Since

the CUE (or M/M/2) system is equivalent to the smallest workload policy, the number of jobs in

a system of two parallel queues where jobs are routed using the JSQ policy is at least as large as

when they use CUE so that NCUE ≤ NJSQ. Thus, we have our preference ordering.

Proof of Theorem 2.4. For this proof (and the proofs of Theorems 2.8, 2.11 and 2.12) we will adopt

the “tagged job” approach of Akgun et al. (2012) summarized as follows. First, consider a separate

class of “extra” jobs which constitute a fraction ε of the total arrival rate.

Next, tag the first extra job in any busy period. Let K and Ke be random variables denoting

the total number of new customers (of any class) and new extra customers that arrive to the

system during this busy period respectively. It is easy to see that both E[K] and E[Ke] are finite

if the length of the busy period is finite. In fact, since arriving customers belong to a class in a

probabilistic fashion, the conditional probability ofKe givenK = k is distributed as a Binomial with

parameters ε and k. Therefore, we have P (Ke = 0) =
∑

k≥0(1 − ε)kP (K = k) or limε→0 P (Ke =

0) = 1. Similarly, P (Ke = 1) =
∑

k≥1 εk(1 − ε)k−1P (K = k) or limε→0
P (Ke=1)

ε = E[K] < ∞.

Finally, E[Ke] ≥ P (Ke = 1) + 2P (Ke = 2) by definition of expectation, E[Ke|K = k] = εk, and

E[Ke] = εE[K]. Together, this gives us 0 ≤ P (Ke≥2)
ε ≤ 1

2

(
E[K]− P (Ke=1)

ε

)
, or limε→0

P (Ke≥2)
ε = 0.

These results can be summarized as follows:

P (Ke = 0) = 1−O(ε), P (Ke = 1) = O(ε), P (Ke ≥ 2) = o(ε). (A.12)

Furthermore, suppose we are interested in the response time Te for extra customers, then we can

condition on the number of extra customers to obtain Te = T 0
e (1−O(ε)) + T 1

eO(ε) +
∑

j≥2 T
j
e o(ε),

where T je is the response time given that j more of them arrive after the tagged (extra) job in the

current busy period. This enables us to compute limε→0 Te = T 0
e and limε→0

Te
ε etc.

For the proof of Theorem 2.4, our parameters must satisfy λ < µ for stability since p = 1 and

r → 0+. We have finite busy periods even if there is only one server that serves all incoming

jobs; therefore, we have finite busy periods for our present system with two servers as well ∀π2 ∈
{CUS, CUE, JSQ}. We can use the tagged job approach as in Akgun et al. (2012). Consider the

extra class to be the class 2 customers using policy π2. They form a proportion ε ≡ r of all arrivals.

We need T
(Ded, CUS)
1 ≥ T (Ded, CUE)

1 ≥ T (Ded, JSQ)
1 in a neighborhood close to r = 0. (For r = 0 we

have T
(Ded, CUS)
1 = T

(Ded, CUE)
1 = T

(Ded, JSQ)
1 since all three systems are identical.) In other words,
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the difference in the mean class 1 response times for any two adjacent policies i.e., ∆T
(CUS-CUE)
1 ≡

T
(Ded, CUS)
1 − T (Ded, CUE)

1 and ∆T
(CUE-JSQ)
1 ≡ T (Ded, CUE)

1 − T (Ded, JSQ)
1 , must be non-negative.

First, we will show that ∆T
(CUS-CUE)
1 ≥ 0. We consider two systems: (i) CUS where extra

customers follow the CUS policy; and (ii) CUE where extra customers follow CUE. We fix the

sample path of arrivals to both systems and couple the service times at each of the servers. We

consider some arbitrary state (n1, n2) where the sample paths for the two systems differ i.e., the

next event is the arrival of the tagged class 2 customer, the first in the busy period. Using the

tagged job approach (Akgun et al. 2012) and (A.12), we know that the limit of ∆T
(CUS-CUE)
1 as

ε → 0 is given by this value conditional upon no other extra customers arriving during this busy

period. Suppose there are n1 ≥ 0 customers (all class 1) at server 1 when the tagged job arrives;

the other server is idle i.e., n2 = 0.

Under π2 = CUS the tagged job joins both queues and enters service at server 2 while the other

copy of this job joins the queue at server 1; however, under π2 = CUE the job enters service at

server 2 either because it is idle (if n1 > 0) or since η = 1 (if n1 = 0). If the two copies of the

tagged job both eventually enter service, the class 1 customers (if any) joining behind the tagged

job during this busy period i.e., of server 1 in CUS, will experience an increased delay in the CUS

system compared to those joining in the CUE system. The expected delay is equal to 1
2µ and occurs

with non-zero probability – the probability that n1 jobs finish at one server before 1 job at the

other server – equal to
(

1
2

)n1 . Therefore, in this case ∆T
(CUS-CUE)
1 ≥ 0.

Let the derivative of the difference at r = 0 be denoted by g, i.e., g ≡ d∆T
(CUE-JSQ)
1
dr

∣∣∣
r=0

. We will

show that g ≥ 0. We consider two systems as before: (i) CUE where extra customers follow the

CUE policy; and (ii) JSQ where extra customers follow JSQ. From the definition of the derivative

and using the fact that the difference is zero when r = 0, we have

g = lim
ε→0+

∆T
(CUE-JSQ)
1

ε
. (A.13)

This can be simplified using (A.12) so that

g = lim
ε→0+

∆T
(CUE-JSQ,0)
1 (1−O(ε)) + ∆T

(CUE-JSQ,1)
1 O(ε) +

∑
j≥2 ∆T

(CUE-JSQ,j)
1 o(ε)

ε
, (A.14)

where ∆T
(CUE-JSQ,j)
1 is the value of the difference ∆T

(CUE-JSQ)
1 conditioned on the number j of

additional extra customers arriving during the busy period.

Again, suppose n1 ≥ 0 customers (all class 1) and n2 = 0 when the tagged job arrives. It is

easy to see that the single tagged job is indistinguishable between the two systems: They join the

same server when both servers are idle and they join the idle server whenever n1 ≥ 1. Therefore,

∆T
(CUE-JSQ,0)
1 = 0. To find the value of y ≡ ∆T

(CUE-JSQ,1)
1 , we assume another extra job, say D,

arrives to the system, which may be in one of the following states:

(a) n2 = 0, n1 ≥ 0. In this case job D joins the same queue in either system and y = 0.
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(b) n2 = 1, n1 = 0. In this case job D joins queue 2 in either system and y = 0.

(c) n2 = 1, n1 ≥ 1. In this case job D joins both queues in the CUE system, but joins queue 2

in the JSQ system. With probability
(

1
2

)n1 D enters service at server 1, creating a delay for

any class 1 customers joining after her in the CUE system – compared to those joining in the

JSQ system – within this busy period i.e., of server 1 in CUE. Therefore, y ≥ 0.

Thus, ∆T
(CUE-JSQ,0)
1 = 0 and ∆T

(CUE-JSQ,1)
1 ≥ 0. Additionally, O(ε) ≥ 0 since it represents

the probability of having one new “extra” customer in a busy period. Together with (A.14) and

limε→0+
o(ε)
ε = 0,

g = lim
ε→0+

∆T
(CUE-JSQ,1)
1 O(ε) +

∑
j≥2 ∆T

(CUE-JSQ,j)
1 o(ε)

ε
≥ 0. (A.15)

Finally, since the derivative is non-negative, the difference ∆T
(CUE-JSQ)
1 is non-decreasing in r when

r = 0. Combined with the fact that the difference is exactly zero when r = 0, this implies that the

value is non-negative for low enough r, or equivalently r, and JSQ is preferred to CUE.

Proof of Theorem 2.5. As in the proof of Theorem 2.3, we will take the limit of class 1 wait time in

any state as r → 1−. A key difference is that the class 1 wait time is now W (p, r) = w where w is

the total work at the shorter queue. Whenever the limit of class 1 wait time, i.e., limr→1− w, exists,

its value will be equal to that when r = 1, and the distribution of the number of customers is the

same as the stationary distribution of the system when r = 1 i.e., an M/M/1 with rate 2µ under

π2 = CUS and an M/M/2 under π2 = CUE. Under CUS the queue lengths are equal, and the work

due to class 2 customers when there are n customers in the system is given by w(n) = n
2µ . Thus,

the expected wait time is WCUS
1 = NM/M/1

2µ = ρ
2µ(1−ρ) where NM/M/1 denotes the mean number in

system in an M/M/1 working at rate 2µ.

Under CUE the work due to class 2 customers depends on n: When n ≥ 2, the queue lengths are

equal, and the work is given by w(n) = n
2µ as in the proof of Theorem 2.3. When n < 2, the work

is zero since at least one of the servers is idle. Thus, the expected queueing time WCUE
1 is given

by WCUE
1 = 1

2µ

(
NM/M/2 − qM/M/2(1)

)
where NM/M/2 and qM/M/2(n) denote the mean number in

system and the stationary probability of n customers in system in an M/M/2. Note that NM/M/2 is

summed for n ≥ 1 in an M/M/2; we need to subtract qM/M/2(1) to correct for the fact that we sum

for n ≥ 2. Since NM/M/2 = 2ρ
1−ρ2 and qM/M/2(1) = 2ρ(1−ρ)

1+ρ we have WCUE
1 = 1

2µ

(
2ρ

1−ρ2 −
2ρ(1−ρ)

1+ρ

)
=

ρ2(2−ρ)
µ(1−ρ2)

. Since the mean system time is the sum of the mean wait time W π2
1 and mean service time

(= 1
µ) we have the required expressions for the limiting value of class 1 customers’ mean system

time T
(JSQ,π2)
1 .

To compare the two expressions WCUS
1 and WCUE

1 we look for sign changes in ∆ ≡WCUE
1 −WCUS

1

i.e., ∆ = ρ2(2−ρ)
µ(1−ρ2)

− ρ
2µ(1−ρ) = ρ

2µ(1−ρ2)

(
−2ρ2 + 3ρ− 1

)
. Since the sign of the quadratic −2ρ2 +3ρ−1

changes at ρ = 0.5 we have ∆ ≥ 0 for ρ ≥ 0.5 and ∆ < 0 otherwise. Thus we have that

WCUE
1 > WCUS

1 for ρ > 0.5 so that class 1 customers prefer CUS instead of CUE, and the reverse
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is true for ρ < 0.5. Finally, WCUE
1 = WCUS

1 for ρ = 0.5 so they are indifferent between CUS and

CUE.

Proof of Proposition 2.1. We present a counterexample to show that JSQ is not always optimal.

Consider the CUS state described by S = {S1; S2} where S1 = (A,B,C1, D1) and S2 = (C2, D2, E)

i.e., C and D are redundant. Define w
(j)
1 as the wait time for an arriving job if she joins server

j ∈ {1, 2}, and let W
(j)
1 be its mean. If the random variable {dj(S)} denotes queueing delay for an

arriving class 1 job if it joins queue j when the state is S, then

w
(j)
1 ∼ dj

(
A,B,C1, D1

C2, D2, E

)
.

Under the independent exponential assumption, the first service event is distributed as exp(2µ).

With probability 0.5 the service completion could be at either the first or the second server, so

w
(j)
1 ∼ exp(2µ) +

1

2
dj

(
B,C1, D1

C2, D2, E

)
+

1

2
dj

(
A,B,D1

D2, E

)
.

Similarly, conditioning on the remaining service events one at a time,

w
(j)
1 ∼ exp(2µ) +

1

2

[
exp(2µ) +

1

2
dj

(
C1, D1

C2, D2, E

)
+

1

2
dj

(
B,D1

D2, E

)]

+
1

2

[
exp(2µ) +

1

2
dj

(
B,D1

D2, E

)
+

1

2
dj

(
A,B

E

)]

= 2 exp(2µ) +
1

4
dj

(
C1, D1

C2, D2, E

)
+

1

2
dj

(
B,D1

D2, E

)
+

1

4
dj

(
A,B

E

)

=
11

4
exp(2µ) +

1

2
dj

(
D1

D2, E

)
+

1

4
dj

(
B

E

)
+

1

4
dj

(
A,B

E

)
.

A class 2 customer is served at rate 2µ if both her jobs are in service at the same time, so

w
(1)
1 ∼ 11

4
exp(2µ) +

1

2
exp(2µ) +

1

4
exp(µ) +

2

4
exp(µ) =

13

4
exp(2µ) +

3

4
exp(µ),

w
(2)
1 ∼ 11

4
exp(2µ) +

1

2
(exp(2µ) + exp(µ)) +

1

4
exp(µ) +

1

4
exp(µ) =

13

4
exp(2µ) + exp(µ).

Taking the expectation over w
(j)
1 gives W

(1)
1 = 19

8µ and W
(2)
1 = 21

8µ : joining the longer queue 1 results

in lower mean system time, implying that JSQ is not optimal. Similarly, S1 = (A,B,C,E1, F1)

and S2 = (D,E2, F2, G) results in W
(1)
1 = 27

8µ and W
(2)
1 = 29

8µ : a counterexample for CUE.

Define the random variable w̄
(j)
1 (s) , {w(j)

1 |S = s} as queueing delay given that an arriving class

1 customer joins queue j when the FO state realized is s. Then the mean queueing delay for a given
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PO state if an arriving job joins queue j can be defined as the expectation of the FO queueing

delay over all possible realizations of the FO state: W̃ (j) = ES

[
E[w̄

(j)
1 (S)]

]
.

Proof of Theorem 2.6. We prove Theorem 2.6 with the aid of the following lemma.

Lemma A.3. Joining queue 2 is at least as good as joining queue 1 for all “boundary” states of

the form (i, 0) and (i, i), ∀i ≥ 0.

Proof of Lemma A.3. For states of the form s = (i, 0) the only possible FO state realization is when

all i customers belong to class 1, so the queueing delay w̄
(j)
1 (s) for an arriving class 1 customer at

queue j is distributed as: w̄
(1)
1 (s) ∼ i · exp(µ), w̄

(2)
1 (s) = 0. Therefore, JSQ is optimal for (i, 0),

∀i ≥ 0. For states of the form (i, i), by symmetry, the mean queueing delay is the same in either

queue.

Regardless of which queue the arriving customer joins, future arrivals do not impact her response

time. We can therefore shut off arrivals and focus on the system in state n = (n1, n2), n1 > n2;

when n2 = n1, JSQ is optimal from Lemma A.3. For our proof, we will consider a single departure

event and use a two-step induction, on n1 and 0 ≤ n2 < n1, to show that JSQ is optimal in all

resulting states. Clearly the theorem is true for (1, 0) from Lemma A.3. Assume the theorem is

true for n1 = 1, 2, . . . , i and n2 < n1 (induction hypothesis I). We need to show that it is optimal

for n1 = i + 1 and n2 < i + 1. First, the theorem is true for n1 = i + 1 and n2 = 0 by Lemma

A.3. Now, assume it is true for n2 ≤ k, 0 ≤ k < i (induction hypothesis II): we need to prove that

JSQ is optimal for n2 = k+ 1. Thus, our state is (i+ 1, k+ 1). Consider the departure events that

could occur at state (i+ 1, k + 1) for the CUS (CUE) model:

1. A class 1 job departs from queue 1 (A job departs from queue 1 and the next job is not

class 2), resulting in state (i, k+ 1): JSQ is optimal for (i, k+ 1) by induction hypothesis I if

k + 1 < i, and by Lemma A.3 if k + 1 = i.

2. A class 1 job departs from queue 2 (A job departs from queue 2 and the next job is not class

2), resulting in state (i+ 1, k): JSQ is optimal for (i+ 1, k) by induction hypothesis II.

3. A class 2 job departs (A job departs from either queue and the next job is class 2), resulting

in state (i, k): JSQ is optimal for (i, k) by induction hypothesis I since k < i.

So joining queue 2 was optimal upon the job’s arrival in all three cases. Hence, JSQ is optimal for

the state (i+ 1, k + 1) under CUS and CUE, and, by induction, the proof is complete.

A.2 Additional results

A.2.1 Derivation of performance measures under CUE

Consider the system where π1 = Ded. We define two separate classes of class 1 customers – class A

with arrival rate λA is dedicated to server 1 and class B with arrival rate λB is dedicated to server 2.
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Let class R denote the redundant customers with π2 = CUE and λR denote their arrival rate. Let

the service rates at the two servers be µ1 and µ2. Define η as the probability that an incoming class

R customer who sees both servers idle chooses server 1. We use Wi to denote the mean wait time

for class i customers. Then the following lemma provides the performance measures of interest.

Lemma A.4. When π1 = Ded, π2 = CUE and η = λB+λR
λA+λB+2λR

, the wait time Wi for class i

customers is given by:

WA =
1

µ1 − λA
(g1 + g21) +

1

µ1 + µ2 − λ
(g12 + g21), (A.16)

WB =
1

µ2 − λB
(g2 + g12) +

1

µ1 + µ2 − λ
(g12 + g21), (A.17)

WR =
1

µ1 + µ2 − λ
(g12 + g21), (A.18)

where

g1 =
λA + ηλR
µ1 − λA

g0, (A.19)

g2 =
λB + (1− η)λR

µ2 − λB
g0, (A.20)

g12 =

[
λA + λR

µ1 + µ2 − λ
· λB + (1− η)λR

µ2 − λB

]
g0, (A.21)

g21 =

[
λB + λR

µ1 + µ2 − λ
· λA + ηλR
µ1 − λA

]
g0, (A.22)

g1 + g2 + g12 + g21 + g0 = 1. (A.23)

Proof. We use Visschers et al. (2012) to derive the required performance measures. We will use

the same notation as in Visschers et al. (2012). Let mi denote server i. First, we derive the value

of η that satisfies the “assignment condition” (as in Visschers et al. 2012): η solves the equation

(λA + ηλR)(λB +λR) = (λB + (1− η)λR)(λA +λR). The solution is unique and is stated in Lemma

A.4. Our system may belong to one of five types of states: 1) π(·,m2, ·,m1); 2) π(·,m1, ·,m2);

3) π(·,m1); 4) π(·,m2); and 5) the empty state. The probability of the first four states can be

computed in terms of the probability, say g0, of being in the empty state using equation (32) in

Visschers et al. (2012), and they are given by (A.19)-(A.22).

Let Di denote the wait time for class i. Then, we can use Theorem 3 in Visschers et al. (2012)

to derive the Laplace-Stieltjes transform (LST) of Di i.e., L(i)(s) = E[e−sDi ]:

E[e−sDR ] = g0 + g1 + g2 + (g12 + g21)
µ1 + µ2 − λ

µ1 + µ2 − λ+ s
, (A.24)

E[e−sDA ] = g0 + g2 + g1
µ1 − λA

µ1 − λA + s
+

µ1 + µ2 − λ
µ1 + µ2 − λ+ s

(
g12 + g21

µ1 − λA
µ1 − λA + s

)
, (A.25)

E[e−sDB ] = g0 + g1 + g2
µ2 − λB

µ2 − λB + s
+

µ1 + µ2 − λ
µ1 + µ2 − λ+ s

(
g21 + g12

µ2 − λB
µ2 − λB + s

)
. (A.26)

88



The expected wait time Wi for class i can be computed from the LST L(i)(s) using the relation-

ship: Wi = −dL(i)(s)
ds

∣∣∣
s=0

. Thus, we have the expressions (A.16)-(A.18).

Lemma A.5. When p = 0.5 and µ1 = µ2 = µ, the mean system time Ti for class i customers is

given by:

TA = TB =
1

2µ
+

1

2µ− λ
+

1

2µ− λ(1− r)
− 1

2µ+ rλ
,

TR =
1

2µ− λ
+

1

r(2µ+ rλ)
− 1− r

2rµ
,

where r denotes the fraction of redundant customers.

Proof. When p = 0.5 we have η = 0.5 since λA = λB. This gives us:

g1 = g2 =
λ

2µ− λ(1− r)
g0, (A.27)

g12 = g21 =

[
λ(1− r)/2 + λr

2µ− λ
· λ

2µ− λ(1− r)

]
g0. (A.28)

Using (A.23) and Mathematica, we can obtain the values of g1, g0 and g12 in terms of our parameters.

Then, we can use (A.16)-(A.18) we get the required wait time expressions. Finally, the system time

Ti for class i is simply 1
µ +Wi.

A.2.2 Modifications to the CTMC in §2.5

Given a state S = {S1; S2}, let ni(S) denote the length of the vector Si, i ∈ {1, 2}, and let J ◦ {k}x

be the operator that adds x copies of job type k to state J according to action a. The modified

transitions p̃{·|a} relative to those of the original CTMC p{·|a} given policy a ∈ {1, 2} are:

1. p̃
{

(S,m = 0), (Sja,m = 0)|a
}

= p
{
S,Sja|a

}
, ∀j, a ∈ {1, 2}, n1(S) < k, or a = 2, n1(S) =

k, n2(S) < k. Arrivals when the FO state is not full are the same as before.

2. p̃{(S,m = 0), (S,m = 1)|a = 1} = λ if n1(S) = k. Arrivals when the longer FO state is full

are added to the central queue if a = 1.

3. p̃{(S,m = 0), (S,m = 1)|a = 2} = λIn2(S)=k + λrIn2(S)<k. Class 1 arrivals when the shorter

FO queue is full are added to the central queue if a = 2; class 2 is added if the longer FO

queue is full.

4. p̃{(S,m), (S,m+ 1)|a} = λ if 0 < m < M . Arrivals when the central queue is not empty are

added to the central queue.

5. p̃{(S,m = 0), (Sjd,m = 0)|a} = p{S,Sjd|a}, ∀j, a ∈ {1, 2}. Transitions due to service comple-

tions when the central queue is empty are the same as before.
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6. p̃{(S,m), (Sjd,m)|a} = p{S,Sjd|a}, ∀a ∈ {1, 2},m > 0 if n1(Sjd) = k and n2(Sjd) > 0. Transi-

tions when a service completion does not lead to an idle server and the longer queue remains

full are the same as before.

7. p̃{(S,m), (Sjd ◦{2},m−1)|a} = p{S,Sjd|a}r, ∀a ∈ {1, 2},m > 0 if n1(Sjd) < k. When a service

completion leads to an empty slot in the longer FO queue, a class 2 customer (probability r)

from the central queue enters the FO state.

8. p̃{(S,m), (Sjd◦{1},m−1)|a = 1} = p{S,Sjd|a = 1}(1−r),m > 0 if n1(Sjd) < k. When a service

completion leads to an empty slot in the longer FO queue, a class 1 customer (probability

1− r) enters the empty slot from the central queue if a = 1.

9. p̃{(S,m), ((S
′
1\{1}; S

′
2) ◦ {2},m− 1)|a} = p

{
S,Sjd|a

}
r, ∀a ∈ {1, 2},m > 0 if n1(Sjd) = k and

n2(Sjd) = 0 where S
′

= Sjd. When a service completion leads to an idle server and the longer

queue is full, a class 2 customer (probability r) from the central queue enters the FO queue

by replacing a class 1 customer in the longer queue. This is to ensure that the response time

is a lower bound.

10. p̃{(S,m), (Sjd,m)|a = 1} = p{S,Sjd|a = 1}(1− r),m > 0 if n1(Sjd) = k and n2(Sjd) = 0. When

a service completion leads to an idle server and the longer queue is full, a class 1 customer

(probability 1− r) does not enter the FO state if a = 1.

11. p̃{(S,m), (Sjd ◦ {1}
x ◦ {2},m− x− 1)|a = 2} = p{S,Sjd|a = 2}(1− r)xr,m > 0 if n1(Sjd) < k

and 1 ≤ x ≤ min{m − 1,−n2(Sjd) + k − 1}. When a service completion leads to an empty

slot in the longer FO queue, several class 1 customers (probability (1 − r)x) may enter the

FO queue from the central queue followed by a class 2 customer (probability r) (either until

the central queue is empty or until no slots are left in the FO queue) if a = 2.

12. p̃{(S,m), (Sjd ◦ {1}
x,m − x)|a = 2} = p{S,Sjd|a = 2}(1 − r)x,m > 0 if n1(Sjd) < k and

x = min{m,−n2(Sjd) + k}. When a service completion leads to an empty slot in the longer

FO queue, as many class 1 customers (probability (1−r)x) as possible (either until the central

queue is empty or no slots are left in the FO queue) enter the FO queue (according to policy

a = 2) from the central queue if a = 2.

13. p̃{(S,m), (Sjd ◦ {1},m − 1)|a = 2} = p
{

S,Sjd|a = 2
}

(1 − r),m > 0 if n1(Sjd) = k and

n2(Sjd) = 0. When a service completion leads to an idle server, a class 1 customer enters

service if a = 2.

A.2.3 Bounds on value of information

Consider the state described by S = {S1; S2} where S1 = (2, . . . , 2, 1, . . . , 1) and S2 =

(1, . . . , 1, 2, . . . , 2) where the number of class 2 customers is y, and the number of class 1 customers

in queue 1 (queue 2) is z (x).

(i) y → ∞ and z < x. Let W1(x, z) and W2(x, z) denote the expected waiting time for an

arriving class 1 customer upon joining queue 1 and 2 respectively (subscript y is omitted since
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y →∞). By conditioning on a single service completion, we have Wj(x, z) = 1
2µ + 0.5Wj(x−

1, z) + 0.5Wj(x, z), j ∈ {1, 2} (as y →∞), which simplifies to yield a recursive equation in x:

Wj(x, z) = 1
µ + Wj(x − 1, z), x ≥ 1. Therefore, Wj(x, z) = x

µ + Wj(0, z), ∀x ≥ 1, j ∈ {1, 2}.
Since W1(0, z) = y

2µ + z
µ and W2(0, z) = y

2µ , we have W1(x, z) = x
µ + y

2µ + z
µ and W2(x, z) =

x
µ + y

2µ . The ratio of the queueing time (from joining the shorter queue 1 relative to the

optimal policy i.e., joining queue 2) δ ≡ W1(x,z)
W2(x,z) = x+y/2+z

x+y/2 represents a measure of the value

of information. If z = x − 1 and x scales with y then the ratio approaches 5
3 , however, the

absolute difference, W1(x, z)−W2(x, z) = z
µ , could be arbitrarily unbounded.

(ii) x = z = 1. Then, the queueing times (as defined in (i) above) are: W1 = T + Ŷ
2µ + z

µ and

W2 = T + Ŷ
2µ + X̂

µ where T denotes the minimum of the time until x jobs are served at server 2

or until y jobs are served at server 1, and Y (X) denotes the number of redundant customers

(non-redundant customers at server 2) left behind at time T . Let the expected values of

T,X and Y be denoted by T̂ , X̂ and Ŷ respectively. Since x = z = 1, by conditioning on

the different service completions possible, we have the following distribution T ∼ n
2µ with

probability (w.p.) 2−n, ∀n ∈ {1, y} and T ∼ y
2µ w.p. 2−y so that T̂ = 1

µ(1− 2−y). Similarly,

the number of redundant customers left at time T is Y ∼ (y − n + 1) w.p. 2−n, ∀n ∈ {1, y}
and Y ∼ 0 w.p. 2−y, and the number of non-redundant customers at server 2 is X ∼ 1 w.p.

2−y and X ∼ 0 w.p. (1− 2−y), so that Ŷ = y − 1 + 2−y and X̂ = 2−y. Thus, W1 = y+3−2−y

2µ

and W2 = y+1+2−y

2µ . The ratio δ = W1
W2

= y+3−2−y

y+1+2−y achieves its maximum value δ = 19
13 at

y = 2, and the absolute difference 1−2−y

µ achieves its maximum value 1
µ as y →∞.

A.3 Proofs of extensions

Proof of Theorem 2.7. We are interested in class 1 wait time W π2
1 when class 2 customers follow

policy π2 as r → 1−. Similar to the proof of Theorem 2.3 in Appendix A.1, the limiting value exists

under the condition stated in the theorem and the limiting value will equal that when r = 1 and

independent of pj . Moreover, the stationary probability of being in a particular state when r = 1

is given by simple systems. We will compute W π2
1 – considering the work at a server – for each

case separately (similar to the proof of Theorem 2.3):

(i) π2 = JSQ. The total work w(n) at server j ∈ {1, . . . ,m} in state n = (n1, . . . , nm) is nj/µ, so

that the expected wait time W JSQ
1 = NJSQ/mµ.

(ii) π2 = CUE. If the number i of class 2 customers in the system is such that 0 < i ≤ m, then

with probability i/m the work at a server is 1/µ and 0 otherwise, so that the expected work

at a server is w(i) = i/mµ. For states with i > m the work is the sum of the time for (i−m)

service completions at any server (= (i−m)/mµ) and one service completion at a particular

server (= 1/µ). Thus the wait time is WCUE
1 = NCUE/mµ.

(iii) π2 = CUS. The work at any server when there are n customers is the time for n service
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completions at any of the m servers so that w(n) = n/mµ,∀n ≥ 0 and the expected wait

time is WCUS
1 = NCUS/mµ.

Thus, W π2
1 = Nπ2

mµ , ∀p, π2 ∈ {CUS, CUE, JSQ}. Since NCUS ≤ NCUE ≤ NJSQ (Foss 1989, Wolff

1989) we have the required result.

Proof of Theorem 2.8. Again, since λ < µ we have finite busy periods. We will show that

∆T
(CUS-JSQ)
1 ≥ 0. We consider two systems as in the proof of Theorem 2.4 in Appendix A.1 –

the CUS and the JSQ systems – distinguished by the policy used by class 2, and focus on this

customers’ impact provided no other extra customers arrive during this busy period. Let n1 ≥ 0

denote the number of customers at server 1 when this tagged job arrives; all other servers are idle.

The tagged job joins a queue 2-s in the JSQ system but joins all queues in the CUS system. Since

there may be a delay to any class 1 customers joining after this job in the current busy period

i.e., of server 1 in CUS, and this delay occurs with non-zero probability (if the tagged job reaches

service at server 1 as well), class 1 customers prefer JSQ to CUS. The policy of the tagged customer

under CUE is identical to that under JSQ so that they are indifferent between JSQ and CUE.

Proof of Theorem 2.9. First, we show that JSQ is not always optimal under the FO regime.

Consider π2 = CUS, s = m, and state S = {S1; S2 . . . ; Sm}, where S1 = (C1, D1, E) and

Sj = (A(j), B(j), Cj , Dj), j ∈ {2, . . . ,m} such that A(j) and C1 are currently in service, A(j), B(j)

and E belong to class 1, and C and D are redundant. Define W
(j)
1 as class 1 wait time upon joining

queue j. Then, for m = 5, µ = 1,W
(1)
1 = 2.2234 and W

(j)
1 = 2.1941,∀j ∈ {2, . . . ,m}, showing that

JSQ is not optimal in this state.

Next, we show that JSQ is optimal under the PO regime if s = m. This proof is on the

same lines as in the case of two servers in the proof of Theorem 2.6. We first modify Lemma

A.3 to show the optimality of JSQ in “boundary” states of the form (i0, i0, . . . , i0), i0 ≥ 0 and

(i1, i2, . . . , 0, 0), ∀ij > 0, 1 ≤ j ≤ k, ∀k < m. (We assert this without proof, as it is straightforward.)

Then we will condition on a single departure event at any state n and use an m-step induction on

nj , j ∈ {1, . . . ,m} to show that JSQ is optimal in all resulting states (reordering states as necessary

so that the queue lengths are non-increasing in j). As before, our final induction step is to show

that JSQ is optimal for state i = (i1 + 1, i2 + 1, . . . , im + 1) given that the induction hypothesis

at stage nj is true, i.e., JSQ is optimal for state i = (i1 + 1, i2 + 1, . . . , ij−1 + 1, nj , nj+1, . . . , nm)

∀nj ≤ ij , ∀nk ≤ nk−1, j < k ≤ m. The base case at stage nj is that JSQ is optimal for state

i = (i1 + 1, i2 + 1, . . . , ij−1 + 1, 0, . . . , 0, 0) which is true from the Lemma. The proof follows by

conditioning for CUS (CUE):

1. A class 1 job departs from queue j < m (a job departs from queue j < m such that the next

job is not of class 2), resulting in state i = (i1 +1, i2 +1, . . . , ij , . . . , im+1) i.e., the k-th index

of state i is ij where k = j + Iij=ij+1 : JSQ is optimal by inductive hypothesis at stage nk if

ij 6= 0, and by the Lemma if ij = 0.

2. A class 1 job departs from queue m (a job departs from queue m such that the next job is
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not of class 2), resulting in state i = (i1 + 1, i2 + 1, . . . , im): JSQ is optimal by inductive

hypothesis at stage nm if im 6= 0, and by the Lemma if im = 0.

3. A class 2 job departs (a job departs from any queue such that the next job is of class 2),

resulting in state i = (i1, i2, . . . , im): JSQ is optimal by inductive hypothesis at stage n1.

Finally, to see why JSQ is not optimal when s < m under the PO regime, consider m =

3, s = 2 and state n = (1, 1, 1) under CUS. There could be two underlying FO states, namely

S(1) = {A1;A2;B} and S(2) = {C;D;E} where A is a class 2 customer who is served at rate

2µ while B,C,D and E are class 1 customers. The arriving class 1 customer prefers to join

queue 1 or 2 over queue 3 because the queueing time at queue 1 or 2 lies in [ 1
2µ ,

1
µ ] depending

on the relative probability of states S(1) and S(2), whereas at queue 3 it is 1
µ . If JSQ were the

optimal policy the customer would be indifferent between joining any of the queues.

Proof of Theorem 2.10. The proof is similar to the case without abandonments (proof of Theorem

2.1 in Appendix A.1) with three main differences: (1) We replace a service event with service

events or abandonments, both of which are coupled between the modified and original systems;

(2) Abandonments in the modified systems may occur before a job is assigned a queue; and (3)

Lemma A.2 will be replaced by Lemma A.6. To illustrate (1), the scenarios and sequencing rules

that constitute the modified systems are updated as follows:

(A) Any queue (in R̃ or J̃) is idle. In this case advance both systems to the next event (service,

abandonment or arrival).

(B) No queue (in R̃ or J̃) is idle and there is no redundant customer in the queue in the R̃ system.

In this case advance both systems to the next event (service, abandonment or arrival).

(C) No queue (in R̃ or J̃) is idle and there is at least one redundant customer in the queue in

the R̃ system. In this case advance both systems to the next service or abandonment event

(whichever is first), deferring arrival events as necessary.

Similarly, in the proof of Lemma A.1, we can consider service and abandonment events as coupled

as well. The additional difference is that a job may abandon in J , but in this case, the job abandons

in J̃ as well (either before or after being assigned a queue).

Let AJ̃ and AR̃ denote the mean number of abandonments in J̃ and R̃ respectively. The following

lemma provides an ordering of the response times – T R̃ and T J̃ – and the number of abandonments.

Lemma A.6. T R̃ ≤ T J̃ and AR̃ ≤ AJ̃ .

Proof. We use the same notation, and adopt a similar approach, as in the proof of Lemma A.2.

Let ar and aj represent the total number of abandonments upto time t, and let a′r and a′j represent

the same upto time t′. Assuming that ar ≤ aj , we will show that

a′r ≤ a′j , (A.29)
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in addition to (A.10) and (A.11).

Let us consider the different events that occur at time t′. We couple the arrival and service

completions as in the proof of Lemma A.2. This ensures that if the next event is either an arrival

or a service completion, (A.10) and (A.11) are true as before, and (A.29) is true by our induction

assumption.

Next we consider the case where the next event is an abandonment. If any of the unassigned

customers in either system abandon, then the two modified systems are coupled exactly and the

same customer leaves from both systems. This increases the number of abandonments in J̃ and R̃

by one, so that (A.29) is true. This event does not affect the queue lengths, and the unassigned

customers remain coupled, so (A.10) and (A.11) are true.

If the next event was an abandonment from one of the two queues, we couple them as follows.

(Given that J̃ has at least as many total customers as R̃ due to (A.8), we consider J̃ to be the one

that “drives” this coupling.) We couple each abandonment from J̃ with an abandonment in R̃ (as

much as possible) in such a way that the orderings – (A.10), (A.11) and (A.29) – are preserved.

More rigorously, we start by numbering the customers in both systems. First, label those in

queue 1 in both systems from 1 to r1. Next, label from r1 + 1 to s2 ≡ min{j2, r2} + r1. Define

MLL = {1, r1} and MSS = {r1 + 1, s2}. There may be some unlabeled customers at queue 1 in J̃

(if r1 < j1) and at queue 2 in either J̃ (if r2 < j2) or R̃ (if r2 > j2). Now we consider two cases:

(a) r2 > j2 and (b) r2 ≤ j2.

Under (a) there are r2 − j2 left at queue 2 in R̃ and j1 − r1 left at queue 1 in J̃ . From (A.9), we

know that j1 − r1 ≥ r2 − j2, so label the unlabeled customers at queue 2 in R̃ and at queue 1 in J̃

from s2 + 1 to s2 + r2− j2. The remaining customers at queue 1 in J̃ will be labeled s2 + r2− j2 + 1

to s2 + j1 − r1 if j1 > r1 so that all customers are labeled. Define MLS = {r1 + j2 + 1, r1 + r2} and

ML = {r1 + r2 + 1, j1 + min{j2, r2}}.
Under (b) there are j1 − r1 left at queue 1 and j2 − r2 left at queue 2 in J̃ . In this case all

unlabeled customers are at J̃ so we label the ones at queue 1 from s2 + 1 to s2 + j1 − r1 if j1 > r1

(again, define ML as before) and those at queue 2 from s2 + j1− r1 + 1 to s2 + j1− r1 + j2− r2, so

that all customers are labeled. Define MS = {r2 + j1 + 1, j1 + j2}.
Note thatMxy, x ∈ {L, S}, y ∈ {L, S} indicates that the abandonment is from the longer (shorter)

if x = L (x = S) queue in J̃ and from the longer (shorter) if y = L (y = S) queue in R̃. Similarly,

Mz, z ∈ {L, S} indicates that it is from the longer (shorter) if z = L (z = S) queue in J̃ and there

is no abandonment in R̃. Thus, we have the following mutually exclusive sets (and labels) under

the two cases:

(a) MLL (from 1 to r1), MSS (from r1 + 1 to r1 + j2), MLS (from r1 + j2 + 1 to r1 + r2), and ML

(from r1 + r2 + 1 to j1 + j2).

(b) MLL (from 1 to r1), MSS (from r1 + 1 to r1 + r2), ML (from r1 + r2 + 1 to j1 + r2), and MS

(from j1 + r2 + 1 to j1 + j2).

Figure A.2 shows an example for each case.
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Figure A.2: Sample states and labeling.
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Suppose the abandonment is of customer h under the above numbering. If h ≤ r1 + r2 then

she departs in both systems, h ∈ MLL ∪ MSS ∪ MLS and a′r = ar + 1 ≤ aj + 1 = a′j , and if

r1 + r2 < h ≤ j1 + j2 then she departs only in J̃ , h ∈ML ∪MS and a′r = ar < aj + 1 = a′j . Thus,

(A.29) is true. To show (A.10) and (A.11), we consider the following cases:

(i) h ∈MS . This only occurs if r1 + r2 < j1 + j2 and the abandonment is from the shorter queue

in J̃ which preserves r1 ≤ j1. Furthermore, r′1 + r′2 = r1 + r2 ≤ j1 + j2 − 1 = j′1 + j′2 so that

(A.10) is true.

(ii) h ∈ML. Again, this only occurs if r1 + r2 < j1 + j2, and by definition of ML, this case exists

only if r1 < j1. Since the abandonment is from the longer queue in J̃ and r1 < j1, this implies

j′1 = max{j1−1, j2} ≥ j1−1 ≥ r1 = r′1. Furthermore, r′1 + r′2 = r1 + r2 ≤ j1 + j2−1 = j′1 + j′2
so that (A.10) is true.

(iii) h ∈MSS ∪MLL. In this case the abandonment is from both systems, and the state evolution

is identical to if there was a coupled service completion in both systems either at the shorter

queue (if h ∈MSS) or at the longer queue (if h ∈MLL) so that (A.10) and (A.11) are true.

(iv) h ∈ MLS . This only occurs if r2 > j2. Combined with (A.8), this gives us r1 < j1 since

r1 + j2 < r1 + r2 ≤ j1 + j2. Since the abandonment is from the longer queue in J̃ , we have

j′1 = max{j1 − 1, j2} ≥ j1 − 1. Since it is from the shorter queue in R̃, r′1 takes one of two

values – r1 or r1 − 1, so that r′1 ≤ r1 – depending on the rearrangement of redundant jobs as

in the proof of Lemma A.2. Thus, r′1 ≤ r1 ≤ j1 − 1 ≤ j′1 so (A.11) is true. The total number

in both systems decreases by one so (A.10) is true.

Thus, the modified systems satisfy (A.10), (A.11) and (A.29) ∀t ≥ 0. As before, we have T R̃ ≤ T J̃ ,

and AR̃ ≤ AJ̃ .

Finally, as the modified systems are coupled exactly with their original counterparts, we have

our result.
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Proof of Theorem 2.11. We can show this result by using a similar approach to the proof of Theorem

2.4 in Appendix A.1. (We have finite response times due to abandonments.) To show class 1’s

preference between CUE and CUS, we consider the state such that there are n1 ≥ 0 customers at

server 1 and n2 = 0 customers at server 2, when the tagged job, say J, arrives. As in the proof of

Theorem 2.4 we only need to consider one “extra” job in the busy period. Customer J joins server

2 in both systems in addition to joining queue 1 in the CUS system, as before. The individual

customer abandonments are coupled exactly: If any class 1 customers abandon, they do so in both

systems, so the number of class 1 customers, and the total number of abandonments, in either

system is the same. If J abandons or finishes service at server 2 before its copy at queue 1 enters

service, the two systems are identical. But there is a non-zero probability – equal to n1 departures

(either due to service or abandonment) occurring at server 1 before one at server 2 – that the copy

at queue 1 enters service. In this case we will consider the total number of class 1 customers in the

two systems and show that there are at least as many in CUS during the current busy period, and

we will have our result by Little’s Law. Similarly, to show that A
(Ded,CUE)
1 ≤ A

(Ded,CUS)
1 we need

to consider the number of abandonments within this case as well.

Let x be the number of class 1 customers in the system when the copy of J at queue 1 enters

service: If x ≥ 1, then there is a class 1 job in service in the CUE system. Any abandonments

of class 1 are exactly coupled between the two systems, so the number of class 1 customers, and

the total number of abandonments, in either system is the same. If a service completion occurs at

server 2 or a class 2 abandonment occurs, the two systems are identical from then on. If a service

completion occurs at server 1, there is an impact if x ≥ 1: The total number of class 1 customers

will be larger (by one) in the CUS system. Moreover, the abandonments are coupled between the

two systems, so an abandonment in CUS need not always correspond to one in CUE. When it does

not correspond, there is an abandonment in CUS but not in CUE; thus, the number of class 1

abandonments in CUS is larger, and the two systems are identical from then on. Repeating this

argument proves our result.

To show class 1’s preference between JSQ and CUE, we will consider another extra job D that

arrives to the system and the different possibilities for the system state. (As in the proof of Theorem

2.4 we only need to consider one additional “extra” job that arrives in the busy period.) In cases

(a) n2 = 0, n1 ≥ 0 and (b) n2 = 1, n1 = 0, the two systems are identical since D joins the same

server in both systems, as before. In case (c) n2 = 1, n1 ≥ 1, D joins queue 2 in the JSQ system

and both queues in the CUE system. If any class 1 customers abandon, they do so in both systems,

so the number of class 1 customers, and the total number of abandonments, in either system is

the same. If D abandons before entering service in CUE or if D enters service at server 2 in CUE,

the two systems are identical. As before, there is a non-zero probability that D enters service at

server 1 under CUE. Repeating the previous argument using the number of class 1 customers in

the system when the copy of D at queue 1 enters service proves our result.

Proof of Theorem 2.12. We have finite busy periods since λ < µ1 as in proof of Theorem 2.4 in
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Appendix A.1. First, we will show class 1’s preference between CUE and CUS by using a similar

approach to that in the proof of Theorem 2.4. Suppose the state is n1 ≥ 0, n2 = 0 when the tagged

job arrives. As in the proof of Theorem 2.4 we only need to consider one “extra” job in the busy

period. This job joins both queues in the CUS system, but joins server 2 in the CUE system. The

non-zero probability that the copy of the tagged job will enter service at server 1 under CUS is

given by
(

µ1
µ1+µ2

)n1

. The delay, when it occurs, is 1
µ1+µ2

, which is the expected service time for a

CUS customer when both her copies are in service. (Under CUE there is no corresponding delay.)

Thus, class 1 customers arriving after the tagged job during this busy period i.e., of server 1 under

CUS, experience additional delay in the CUS system compared to CUE.

Next, we will show class 1’s preference between CUE and JSQ. We will consider another extra

job D that arrives to the system and the different possibilities for the system state. (As in the

proof of Theorem 2.4 we only need to consider one additional “extra” job that arrives in the busy

period.) In cases (a) n2 = 0, n1 ≥ 0 and (b) n2 = 1, n1 = 0, the two systems are identical since

D joins the same server in both systems. In case (c) n2 = 1, n1 ≥ 1, D joins queue 2 in the JSQ

system and both queues in the CUE system. There is a non-zero probability that D enters service

at server 1 under CUE. In this case class 1 customers will experience additional delay in the CUE

system compared to JSQ, and we have our result.
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Appendix B

Supplements to Chapter 3

B.1 Proofs

Proof of Lemma 3.1. The first derivative of ΠF (p) with respect to (w.r.t.) p is Π′F (p) = −2p +

1 + se + (c − se)θ. Since the second derivative is negative, setting Π′F (p) = 0 yields the pF =
1
2(1 + se + (c − se)θ). Now, 0 ≤ se + (c − se)θ = se(1 − θ) + cθ ≤ c < 1 since 0 ≤ se ≤ c, so that

0 < pF < 1 and, thus, a valid optimal price. Substituting pF in ΠF (p) gives the optimal profit

πF .

Proof of Lemma 3.2. The first derivative of ΠN (p) w.r.t. p is Π′N (p) = 1 + cθ− 2pθ. Proceeding as

in the Proof of Lemma 3.1, the unconstrained maximizer is 1
2θ (1 + cθ). Now, 1

2θ (1 + cθ) ≥ 1
2 since

c ≥ 0 and θ ≤ 1. Thus, the solution violates the constraint p ≤ 1
2 when θ ∈ [0, 1) or c ∈ (0, 1

2 ], and

the constraint is binding when θ = 1 and c = 0. Since, Π′N (p) > 0 for p < 1
2θ (1 + cθ), the optimal

price pN = 1
2 . Substituting pN in ΠN (p) gives πN .

Proof of Proposition 3.1. Consider se = θ = 0. In this case, the optimal profit πF under full refund

is πF = 1
4 − c but that under no returns is πN = 1

2(1− 2c) = 1
2 − c > πF . By continuity, the firm

prefers no returns when se and θ are sufficiently small.

For any fixed se and c, πF is non-decreasing in θ whereas πN is non-increasing in θ. Similarly, for

any fixed c and θ, πF and πN are non-decreasing and constant in se respectively. Thus, if we can

show that ∆FN = πF − πN is positive at some value of θ1 and s1, then we can conclude that ∆FN

continues to stay positive for all se > s1, keeping θ = θ1 and c fixed, or for all θ > θ1 keeping se = s1

and c fixed. Consider se = 0. Then, ∆FN = 1
4((1+cθ)2−4c−(1−2c)(2−θ)) = 1

4(c2θ2+θ−1). ∆FN is

increasing in θ ∈ [0, 1] – since c2θ2 +θ−1 has a positive derivative w.r.t. θ (i.e., 2c2θ+1) – and takes

values−1
4 and c2

4 at θ = 0 and θ = 1 respectively. Thus, ∆FN crosses the θ-axis once at θ0(c) ∈ (0, 1)

for c > 0, and stays positive ∀θ > θ0(c), where θ0(c) = 1
2c2

(
√

1 + 4c2− 1) is the positive solution to

the quadratic. Next, consider θ = 0 so that ∆FN = 1
4((1 + se)

2− 4c− 2(1− 2c)) = 1
4(s2

e + 2se− 1).

Again, ∆FN is increasing (slope is (se + 1)/2), takes negative (−1/4) and positive (1/16) values at

se = 0 and se = 1/2 respectively, so it crosses once at s2 =
√

2− 1 and is positive ∀se > s2.

Proof of Proposition 3.2. We first prove two lemmas.
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Lemma B.1. The function fα(r) ≡ ΠO

(
1
2(1 + r2), r

)
is uniquely maximized at rα, defined as the

largest non-negative real root of: −θr3 + r(cθ + θ − 1) + se(1− θ) = 0, and rα ∈ [0, 1).

Proof. The first derivative of fα(r) = 1
2c
(
r2θ + θ − 2

)
− 1

4θ
(
1− r2

)2
+ rse(1− θ) + 1

2(1− r2) w.r.t.

r is given by f ′α(r) = −θr3 + r(cθ + θ − 1) + se(1 − θ). To find the maximizer, we need to find

the roots of this cubic equation. First consider se 6= 0, θ 6= 1 and θ 6= 0. We apply Descartes’ rule

of signs to find the maximum number of positive roots. Regardless of the sign of the second term

cθ+ θ− 1, we only have one sign change so the number of positive roots is exactly 1. To show that

this positive root is between 0 and 1, we look at the value of the derivative at r = 0 and r = 1:

f ′α(0) = se(1 − θ) > 0 since se 6= 0, θ 6= 1 and f ′α(1) = cθ − 1 + se(1 − θ) ≤ c − 1 < 0 since se ≤ c

and c ≤ 1/2. Thus, f ′α(r) crosses the r axis at some point rα ∈ (0, 1).

Note that the second derivative of fα(r) w.r.t. r is given by f ′′α(r) = −3θr2 + (cθ + θ − 1). To

show that rα is the required maximizer, we need f ′′α(rα) < 0: From the definition of rα we have

cθ+ θ− 1 = θr2
α− se(1− θ)/rα so that f ′′α(rα) = −3θr2

α + (cθ+ θ− 1) = −2θr2
α− se(1− θ)/rα < 0.

Thus, we also know that f ′α(r) is positive for r ∈ [0, rα) and negative for r ∈ (rα, 1]. We will now

consider the three special cases: θ ∈ {0, 1} and se = 0.

(a) θ = 0. In this case, r = se is the solution to f ′α(r) = 0 and the second derivative is −1 so the

unique maximizer is r = se.

(b) θ = 1. In this case, there are two solutions to f ′α(r) = 0, namely r = 0 and r =
√
c, but

the value of f ′′α(r) is c and −2c at the two solutions respectively. When c > 0, the second

derivative is negative only at r =
√
c, so this is the unique maximizer. When c = 0, the

second and third derivatives are zero, but the fourth derivative is negative, so that r = 0 is

the unique maximizer.

(c) se = 0. In this case, there are two solutions to f ′α(r) = 0, namely r = 0 and r =
√

cθ+θ−1
θ ,

but the value of f ′′α(r) is cθ+θ−1 and −2(cθ+θ−1) at the two solutions respectively. Thus,

the solution depends on the sign of cθ + θ − 1: if it is positive, the solution is r =
√

cθ+θ−1
θ .

Note that cθ + θ − 1 < θ since θ ≤ 1 and c ≤ 1/2 so that
√

cθ+θ−1
θ lies in (0, 1). On the

other hand, if it is negative the solution is r = 0. If it is zero, then r = 0 is the solution since

the fourth derivative is negative (similar to when c = 0 in (b) above), but it is a highly flat

maximum.

Lemma B.2. The function fβ(r) ≡ ΠO(r + h, r) is uniquely maximized at rβ ≡
1
2 (1 + cθ − 2hθ + se(1− θ)), and rβ ∈ [0, 1) if h ≤ 1

2 .

Proof. The function simplifies to a quadratic −r2 + r(1 + cθ − 2hθ + se(1 − θ)) + (c − h)(hθ − 1)

which is concave in r and maximized at rβ ≡ 1
2(1+cθ−2hθ+se(1−θ)). We have rβ ≤ 1

2(1+c) < 1

since h ≥ 0, θ ≥ 0, se ≤ c and c ≤ 1/2, and rβ ≥ 1
2(1 + se − θ) ≥ 0 since h ≤ 1/2, 0 ≤ se ≤ c and

θ ≤ 1, so that rβ ∈ [0, 1) is a valid maximizer.
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Figure B.1: Feasible region under the BORO outcome.

Note: The feasible region p ≤ B(r) is shaded.

Next, we prove Proposition 3.2. First, note that ΠO(p, r) is concave and quadratic in p and r.

We evaluate the partial derivatives δp and δr of ΠO(p, r) w.r.t. p and r: δr = −(1 − θ)(2r − se),
δp = 1 + cθ − 2pθ. Setting them to zero gives us the unconstrained maximizers: rU = se

2 , pU =

min{1, 1+cθ
2θ }. When c 6= 0 or θ 6= 1, this solution violates the constraint p ≤ 1

2(1+ r2) in one of two

ways: (1) Case pU = 1+cθ
2θ : Then, 1

2(1 + r2
U )− pU = 1

2(1 + s2e
4 −

1+cθ
θ ) = 1

8θ (−4 + θ(s2
e − 4c+ 4)) ≤

1
8θ

(
−4 + θ(2− c)2

)
< 0 where the first inequality is due to se ≤ c and the second inequality is due

to θ < 1 and 0 < c ≤ 1/2; or (2) Case pU = 1: Then, 1
2(1 + r2

U ) − pU = 1
2(s2

e/4 − 1) < 0. When

c = 0 and θ = 1, the constraint is binding with pU = 1/2, rU = 0 (since se = 0). Note that if

pU = 1, then δp > 0 for all p < 1; however, if pU = 1+cθ
2θ , we have δp > 0 for all p < pU and δp < 0

for all p > pU . Similarly, δr > 0 for all r < rU and δr < 0 for all r > rU .

Second, we shall prove that the optimal solution will always lie on the boundary of the feasible

region. The two-dimensional feasible region is non-convex and is defined by p ≤ B(r), where

B(r) ≡ min{(1 + r2)/2, r + h} because of the constraints p ≤ (1 + r2)/2 and p ≤ r + h. Figure

B.1 shows the feasible region. Note that B(r) is strictly increasing in r. Thus, the feasible region

can be defined as p ≤ B(r) or equivalently, r ≥ B−1(p). Consider any interior point solution, say

(r1, p1). By definition, r1 > B−1(p1). We will show that (r1, p1) cannot be an optimal solution.

Let us consider three regions where (p1, r1) can lie:

(a) p1 ≥ B(rU ): We have r1 > B−1(p1) ≥ rU since (p1, r1) is an interior point and by the

definition of this case. Since δr < 0 for r > rU , we can decrease r to B−1(p1) from r1 (keeping

p constant at p1) and increase profits.

(b) p1 < B(rU ) and r1 ≤ rU : We have p1 < B(rU ) ≤ pU since (pU , rU ) either lies on the boundary

(when c = 0 and θ = 0) or strictly outside it. Since δp > 0 for p < pU , we can increase p to

B(r1) from p1 (keeping r constant at r1) and increase profits.
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(c) p1 < B(rU ) and r1 > rU : Since r1 > rU we have δr < 0 and since p1 < pU (from (b) above)

we have δp > 0. Thus, we can decrease r to rU (keeping p constant at p1), and then increase p

to B(rU ) (keeping r constant at rU ), thereby reaching the boundary. Both these steps result

in an increase in profits.

Thus, (p1, r1) cannot be an optimal solution.

Furthermore, r ≤ p at the optimal solution: Since the optimal solution lies on the boundary, or

p = B(r), the value of p− r is either (1− r)2/2 or h, and thus, non-negative.

Third, we shall characterize the optimum solution for different values of h. It is easy to see that

if h > 1/2 the constraint p ≤ r+h will never bind: This is because r+h > r+ 1
2 ≥

1
2(r2 +1) ≥ p,∀r,

where the second inequality is because r2 ≤ 2r when r ≤ 1. Thus we restrict h ≤ 1
2 for the rest

of this proof. Define rγ = 1 −
√

2h as the unique value of r ∈ (0, 1] where the two constraints

meet. Therefore, the boundary is given by B(r) = 1
2(1 + r2) if r ≥ rγ , and by B(r) = r + h

otherwise. Suppose h is large enough that, by definition, B(r) = 1
2(1 + r2) at the optimal r. Then,

the solution can be found by solving the maximization assuming that p = 1
2(1 + r2) holds at the

optimum solution, subject to the constraint r ≥ rγ . Thus, from Lemma B.1, we will have rα as the

optimum solution if rα ≥ rγ or, in other words, h ≥ hα ≡ 1
2(1− rα)2. This, combined with the fact

that f ′α(r) is negative for r > rα, gives us: r = rα, if h ≥ hα, and r = rγ , otherwise.

Similarly, for small enough h, the boundary is B(r) = r+h at the optimal r, and the solution can

be found by solving the maximization assuming that p = r+h holds at the optimum solution, subject

to the constraint r ≤ rγ . Again, from Lemma B.2, we know that the solution will be rβ if rβ ≤ rγ ,

or in other words, ∆(h) ≡ rβ−rγ ≤ 0. Now, since ∆(h) = 1
2 (1 + cθ − 2hθ + se(1− θ))−(1−

√
2h),

∆(h) = 0 has a unique root at hβ ∈ (0, 1/2]. This is because of two reasons: (a) the values of ∆(h)

at h = 0 and h = 1/2 are not of the same sign: ∆(0) = 1
2 (1 + cθ + se(1− θ)) − 1 ≤ 1

2 (c− 1) < 0

since se ≤ c < 1, and ∆(1/2) = 1
2 (1− θ + cθ + se(1− θ)) ≥ 0 since (1 − θ) ≥ 0, se ≥ 0 and c ≥ 0;

and (b) ∆(h) is increasing in h < 1/2: its derivative is 1√
2h
− θ > 0 since θ ≤ 1. Thus, ∆(h) < 0

for h ≤ hβ, and rβ ∈ [0, 1) is a valid maximizer. Note that ∆(h) is a concave (quadratic) function.

Rewriting in terms of x =
√
h, ∆(x) = −θx2 +

√
2x + 1

2(cθ + se(1 − θ) − 1). Thus, the required

root of ∆(h) is given by hβ = 1
2θ2

(
1−

√
(c− se)θ2 + (se − 1)θ + 1

)2
. This, combined with the

concavity of fβ(r), gives us: r = rβ, if h ≤ hβ, and r = rγ , otherwise. The following lemma relates

hβ and hα.

Lemma B.3. hβ ≤ hα.

Proof. Define r0 ≡ 1 −
√

2hβ = 1
θ

(
θ − 1 +

√
(c− se)θ2 + (se − 1)θ + 1

)
and a function g(se) ≡

f ′α(r0). From the proof of Lemma B.1, g(se) = −θr3
0 +r0(cθ+θ−1)+se(1−θ). The first derivative

g′(se) w.r.t. se is g′(se) =
(
−3θr2

0 + cθ + θ − 1
)
dr0
dse

+(1−θ). The goal is to show that g(se) ≤ 0, ∀θ,
so that r0 ≥ rα, and 1−

√
2hα = rα ≤ r0 = 1−

√
2hβ, and we have our result. We can easily show

g(se) ≤ 0 to be true using the Reduce function in Mathematica.

Since hβ ≤ hα, the regions where the solutions for the individual problems in terms of r (under
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a single constraint) are not equal to rγ are non-overlapping, and the solution in the intermediate

region h ∈ (hβ, hα) is rγ . Finally, since the constraint p ≤ r+ h never binds for h > 1
2 , the optimal

solution is the same as when h ≥ hα. Thus, the optimal solution is as stated in (3.6).

To prove Proposition 3.2(i)-(iv) we will use the following lemma.

Lemma B.4. rα is increasing in se when θ 6= 1, and constant otherwise.

Proof. We first consider θ ∈ (0, 1). From Lemma B.1 we know that rα maximizes fα(r) =

ΠO

(
1
2(1 + r2), r

)
, and the second derivative f ′′α(rα) < 0. Now, since f ′α(r) is continuous and dif-

ferentiable everywhere, we can use the Implicit Function Theorem to evaluate the sign of drα
dse

. To

do so, we define the implicit function F (r, se) = f ′α(r), so that F (rα, se) = 0 and ∂F (r,se)
dr = f ′′α(r).

Therefore, drαdse = −
∂F (rα,se)

dse
f ′′α(rα) . Since f ′′α(rα) < 0, the sign of drαdse is the sign of ∂F (rα,se)

dse
, which is given

by ∂F (rα,se)
dse

= (1 − θ). When θ ∈ (0, 1) we have ∂F (rα,se)
dse

> 0, and rα is increasing in se. Finally,

we consider the special cases: From Lemma B.1 we know that rα = se when θ = 0, and rα =
√
c

when θ = 1, so we have our result.

(i) Using the optimal policy, the fee i.e., pO − rO, takes the value h when h < hα and 1
2(1− rα)2

otherwise. Thus, the fee is increasing in h when h < hα and constant in h otherwise.

(ii) By definition, rα = 1−
√

2hα and rγ = 1−
√

2h. Since h < hα in the region that rγ is optimal

we have rγ = 1 −
√

2h > 1 −
√

2hα = rα. Furthermore, rγ is decreasing in h. To show that

rβ ≥ rγ : the optimal solution rβ for any h < hβ is at least as high as its value when h = hβ

since rβ is non-increasing in h. Therefore, it suffices to show that rβ ≥ rγ for h = hβ. By the

definition of hβ we have rγ = 1−
√

2hβ = rβ at h = hβ. Thus, we have rβ ≥ rγ ≥ rα, and rβ

is non-increasing in h, rγ is decreasing in h and rα is constant in h so that rO is non-increasing

in h.

(iii) It is sufficient to show that rα ≥ se because of Proposition 3.2(ii). To do so, we will show that

f ′α(r) ≥ 0 at r = se. We have f ′α(se) = −s3
eθ + se(cθ) = seθ(c− s2

e) ≥ 0 where the inequality

is because 0 ≤ se ≤ c, θ ≥ 0 and se < 1.

(iv) We will use the Implicit Function Theorem as in the proof of Lemma B.4. Define the implicit

function F (r, θ) = f ′α(r) so that the sign of drα
dθ is the sign of ∂F (rα,θ)

dθ since f ′′α(rα) < 0,

as before. Now ∂F (rα,θ)
dθ = rα(c − r2

α) + (rα − se). Substituting r =
√
c in f ′α(r) we have

f ′α(
√
c) = (1− θ)(se−

√
c) < 0. The inequality is because when se > 0 we have c > 0 as well,

and se ≤ c <
√
c. This implies that rα <

√
c from the proof of Lemma B.1, and thus, r2

α < c.

Combined with rα ≥ se > 0 (Proposition 3.2(iii)), we have ∂F (rα,θ)
dθ > 0 when θ ∈ (0, 1) and

se > 0.

Proof of Proposition 3.3. First, we will show that 0 < h̄ ≤ 1/2 exists and is unique. Consider

the two expressions yL(h) ≡ 1
2(1 + h + sp + (c − sp − h)θ) and yR(h) ≡ h + 1 −

√
2h: yL(h) is

non-decreasing in h since its derivative y′L(h) = 1
2(1− θ) ≥ 0 whereas yR(h) is decreasing in h since
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its derivative y′R(h) = 1− 1√
2h
< 0,∀h < 1/2. Now, yL(0) = 1

2(1 + cθ + sp(1− θ)) ≤ 1
2(1 + c) since

sp ≤ c so that yL(0) < 1. We also have yL(h) ≥ 1/2. This is because yL(h) is non-decreasing in

h and yL(0) ≥ 1/2 since sp, c − sp and θ are all non-negative. On the other hand, yR(0) = 1 and

yR(1/2) = 1/2. Thus, yR(h) is decreasing in h from 1 to 1/2 whereas yL(h) is increasing from (or

constant at) a value at least as large as 1/2. Since both yL(h) and yR(h) are continuous, the two

curves must cross each other at exactly one point in the interval (0, 1/2] which is precisely the value

h̄. Furthermore, we also have yL(h) ≤ yR(h) for h ≤ h̄ and yL(h) > yR(h) for h̄ < h < 1/2.

Second, we solve the problem of maximizing ΠS(p) subject to h < p ≤ yR(h). Note that yR(h) > h

since h < 1/2. The first derivative of ΠS(p) w.r.t. p is Π′S(p) = (c−h)θ+h−2p+sp(1−θ)+1. Since

the second derivative is negative (= −2), setting Π′S(p) = 0 yields the unconstrained maximizer

yL(h) (defined above). Now, yL(h) > h since h < 1/2 and yL(h) ≥ 1/2. Consider h ≤ h̄: We have

h < yL(h) ≤ yR(h), so the unconstrained maximizer yL(h) satisfies both constraints and is the

optimal solution in this region. Next, consider h > h̄: We have yL(h) > yR(h) > h. In this case the

unconstrained maximizer yL(h) violates the constraint p ≤ yR(h). Since the first derivative Π′S(p)

is positive when p < yL(h), the optimal price is yR(h). Thus, the optimal solution is given by (3.8).

Third, we show that πS is increasing in sp, or equivalently, dπS
dsp

> 0. Consider h < h̄ and θ 6= 1:

Taking the derivative of πS w.r.t. sp we have dπS
dsp

= 1
2(1− θ) (1 + cθ + sp(1− θ)− h(1 + θ)). Since

h < h̄ and θ 6= 1, we have dπS
dsp

> 1
2(1− θ)

(
1 + cθ + sp(1− θ)− h̄(1 + θ)

)
, and by the definition of

h̄ (Proposition 3.3), dπS
dsp

> (1 − θ)(1 −
√

2h̄) ≥ 0. Next, consider h̄ ≤ h < 1/2 and θ 6= 1: In this

case, dπS
dsp

= (1− θ)(1−
√

2h) > 0. Also, dπS
dsp

= 0,∀h if θ = 1.

Finally, we show that πS is increasing in h for h < h̄ when θ 6= 1. Taking the deriva-

tive dπS
dh = (pS − sp)(1 − θ) when h < h̄. Showing that pS > sp when θ 6= 1 i.e.,

1
2 [(1 + h+ (c− h)θ) + sp(1− θ)] > sp, is equivalent to showing that 1 + h(1− θ) > sp(1 + θ)− cθ.
Since sp ≤ c < 1 we have sp(1 + θ)− cθ ≤ c < 1 ≤ 1 + h(1− θ). Thus pS > sp and dπS

dh > 0.

Proof of Proposition 3.4. (i) First, we show hβ ≤ h̄. By its definition (Proposition 3.3), h̄ solves

the equation: 1
2(1 + cθ + sp(1 − θ)) = 1 −

√
2h + h

2 (1 + θ). Similarly, hβ solves the equation:
1
2(1 + cθ + se(1 − θ)) = 1 −

√
2h + hθ from the proof of Proposition 3.2. Define R1(h) ≡ 1 −√

2h+ h
2 (1 + θ) and R2(h) ≡ 1−

√
2h+ hθ. First, since θ ≤ 1, R1(h) ≥ R2(h),∀h. Second, R1(h)

and R2(h) are decreasing in h: their derivatives are R′1(h) = − 1√
2h

+ 1+θ
2 ≤ 1 − 1√

2h
< 0 and

R′2(h) = − 1√
2h

+ θ ≤ 1− 1√
2h
< 0 respectively, where the inequalities are due to θ ≤ 1 and h < 1/2.

Finally, since the LHS of the two equations are identical when se = sp and independent of h, and

the RHS values are decreasing and satisfy R1(h) ≥ R2(h), the unique solutions satisfy hβ ≤ h̄.

Next, we show h̄ ≤ hα. Since h̄ solves a quadratic in
√
h, we have the solution as h̄ =

(√
2−
√
Q1

1+θ

)2
,

where Q1 = (c− sp)θ2 + (c− 1)θ+ 1 + sp. Define r̄ ≡ 1−
√

2h̄ = 1−
(

2−
√

2Q1

1+θ

)
. From the proof of

Lemma B.1 we know that f ′α(r) ≤ 0 when r ≥ rα. By definition, hα = 1
2(1−rα)2 (Proposition 3.2).

Thus, showing that h̄ ≤ hα is equivalent to showing that r̄ ≥ rα. If we can show that f ′α(r̄) ≤ 0

when se = sp, we will have our result. By using the Reduce function in Mathematica, we find that
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this is true for all parameter values.

Thus, we can divide h into three regions. We will show πO ≥ πS in each region.

(a) h̄ ≤ h < 1/2: In this case the price under the BORS outcome is p1 ≡ h+ 1−
√

2h. Note that

r1 ≡ 1−
√

2h and p1 = h+1−
√

2h is a feasible solution to the BORO outcome problem. The

profit under the BORO outcome πO ≥ ΠO(p1, r1). Thus, πO ≥ πS + (1− θ)h(p1 − h), where

the inequality uses πS = ΠS(p1) = θ(p1− c)(1− p1) + (1− θ) (p1 − c− (p1 − sp)(p1 − h)), the

definition of ΠO(p1, r1), and se = sp. Since h < 1/2 we have p1 > h, or πO ≥ πS .

(b) 0 ≤ h ≤ hβ ≤ h̄: In this case the optimal refund rO in the BORO outcome problem is the

unconstrained maximizer of ΠO(r+h, r) i.e., rβ = 1
2 (1 + cθ − 2hθ + se(1− θ)). From Lemma

B.2 we know that ΠO(r+ h, r) is concave in r. By the definition of this case h ≤ hβ, we have

rO ≤ rγ = 1 −
√

2h. The optimal price pS under the BORS outcome is the unconstrained

maximizer of ΠS(p) (Proposition 3.3). Define r2 ≡ pS − h = 1
2(1 + cθ+ sp(1− θ))− h

2 (1 + θ).

Since θ ≤ 1 and sp = se we have r2 ≤ rO. Combined with rO ≤ 1 −
√

2h and the concavity

of ΠO(r + h, r), this implies that r2 is feasible, and results in at most as large a profit as

rO, in the BORO outcome problem. Thus, πO ≥ ΠO(r2 + h, r2) where ΠO(r2 + h, r2) =

πS + (1− θ)h(pS −h) by the definition of r2 and πS and using sp = se. We know that pS > h

from the proof of Proposition 3.3. Therefore, πO ≥ πS + (1− θ)h(pS − h) ≥ πS .

(c) hβ < h < h̄ ≤ hα: In this case the optimal policy in the BORO outcome problem is rO =

1−
√

2h. From the proof of Proposition 3.2 we know that this is because the unconstrained

maximizer rβ of the profit, ΠO(r+h, r), violates the constraint r ≤ 1−
√

2h, or rβ > 1−
√

2h.

The optimal price pS under the BORS outcome is the same as in (b). Proceeding as in (b), we

set r2 ≡ pS−h. Since pS is the unconstrained maximizer and h < h̄, we have pS < h+1−
√

2h,

or, in other words, r2 < 1 −
√

2h. Thus, r2 < 1 −
√

2h < rβ, or r2 is feasible in the BORO

outcome problem, and due to the concavity of ΠO(r+h, r), results in at most as large a profit

as rO. This implies πO = ΠO(rO + h, rO) ≥ ΠO(r2 + h, r2). Finally, by the definition of r2

and πS and using sp = se, we have ΠO(r2 +h, r2) = πS + (1− θ)h(pS −h) as in (b). We know

that pS > h from the proof of Proposition 3.3. Therefore, πO ≥ ΠO(r2 + h, r2) ≥ πS .

(ii) Consider h = 0. Then, πO = πF from Proposition 3.2. From Proposition 3.3 we have πS is

increasing in sp when θ 6= 1, and πS = πF when h = 0 and sp = se. Therefore, πS > πO when

sp > se. By continuity, we have that BORS is preferred at sufficiently small h when sp > se and

θ 6= 1.

B.2 Additional results

Lemma B.5. (i) uBORO = Emax{V, r} − p ≥ 0 is equivalent to p ≤ 1
2(1 + r2).

(ii) Given p > r + h, uBORS = Emax{V − p,−h} ≥ 0 is equivalent to p ≤ h+ 1−
√

2h.

Proof. (i) Since r ∈ [0, 1] we have Emax{V, r}−p =
∫ r

0 rdV +
∫ 1
r V dV −p = r2 + 1

2(1−r2)−p =
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1
2(1 + r2)− p. Thus, uBORO ≥ 0 is equivalent to p ≤ 1

2(1 + r2).

(ii) The condition p > r + h yields p > r + h ≥ h, and since the price must not exceed the

maximum valuation for the item, we also have p ≤ 1. Taken together, we have h < p ≤ 1, or

0 < p−h ≤ 1. Using this we can simplify uBORS = Emax{V −p,−h} = Emax{V, p−h}−p =∫ p−h
0 (p−h)dV +

∫ 1
p−h V dV −p = (p−h)2 + 1

2(1− (p−h)2)−p = 1
2

(
p2 − 2(1 + h)p+ 1 + h2

)
.

The quadratic g(p) ≡ 2uBORS = p2−2(1+h)p+1+h2 is convex, takes positive value 1+h2 at

p = 0, and takes a non-positive value h(h− 2) when p = 1. Thus, for values of p less than the

smaller root of g(p) we have g(p) ≥ 0, or equivalently uBORS ≥ 0 since uBORS = 1
2g(p). The

value of this root is easily obtained from the quadratic formula, and is given by 1 + h−
√

2h.

Lemma B.6. Both πS and πO may be either increasing or decreasing in θ.

Proof. Consider BORS and 0 < h < h̄: When sp = c, dπS
dθ = −h

2 (1 − c + h(1 − θ)) < 0 so πS

is decreasing in θ, and when sp = 0 and c = 1
2 , dπS

dθ = 1
2

(
1 + h+ (1

2 − h)θ
) (

1
2 − h

)
> 0 so πS is

increasing in θ.

Consider BORO and h ≥ hα: Define ΠO(r, θ) = θ((1 + r2)/2− c)(1− (1 + r2)/2) + (1− θ)((1 +

r2)/2− c− (r − se)r). Then, using the chain rule, we have dΠO(r,θ)
dθ = ∂ΠO(r,θ)

∂θ + ∂ΠO(r,θ)
∂r

dr
dθ . Since

the optimal refund is the unconstrained maximizer rα we know that ∂ΠO(r,θ)
∂r = 0 when r = rα.

Thus, dπOdθ = ∂ΠO(r,θ)
∂θ

∣∣∣
r=rα

. This simplifies to dπO
dθ = (rα− se)rα+ 1

2(1 + r2
α)
(
c− 1

2(1 + rα
2)
)
. Thus,

when se = c > 0, we have dπO
dθ = 1

4(1 − rα)2
(
2c− (1 + rα)2

)
. Since c ≤ 1/2 and rα ≥ se > 0, we

have dπO
dθ ≤ −

1
4(1 − rα)2rα (rα + 2) < 0, and thus, dπO

dθ < 0. Next, consider se = 0 and c = 1
2 , so

that dπO
dθ = 1

4r
2
α(3 − r2

α) ≥ 0. From the proof of Lemma B.1, we know that rα > 0 when se = 0

provided cθ + θ − 1 > 0, or θ > 2/3 when c = 1/2. Thus, dπO
dθ > 0 when θ > 2/3.

Lemma B.7. The profit under full-refund in the case of heterogeneous hassle costs is non-decreasing

in both θ and δ.

Proof. The firm’s expected profit is given by ΠH(p) = θ(p − c)(1 − p) + (1 − θ)(p − c −
δ(p − sp)p − (1 − δ)(p − se)p). As in §3.4, this problem is also unconstrained, and the op-

timal price pHF is the maximizer of ΠH(p). Proceeding as in the proof of Lemma 3.1, pHF =
1
2 (1 + cθ + (1− θ)(δsp + (1− δ)se)). Since sp ≤ c and se ≤ c we have pHF ≤

1
2(1 + c) < 1. Now,

pHF ≥ 0 since c ≥ 0, 0 ≤ θ ≤ 1, 0 ≤ δ ≤ 1, sp ≥ 0, and se ≥ 0.

The derivative of the optimal profit ΠH(pHF ) w.r.t. θ is yθ ≡ 1
2(c− δsp − (1− δ)se)[1 + cθ + (1−

θ)(δsp + (1− δ)se)] = (c− δsp − (1− δ)se)pHF and that w.r.t. δ is yδ ≡ 1
2(1− θ)(sp − se)[1 + cθ +

(1− θ)(δsp + (1− δ)se)] = (1− θ)(sp − se)pHF . We know pHF ≥ 0. Since sp ≤ c and se ≤ c we have

c − δsp − (1 − δ)se ≥ 0 in the expression for yθ, so that yθ ≥ 0. Finally, since sp ≥ se and θ ≤ 1,

we have yδ ≥ 0 as well.
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B.3 Parameter values used in figures

The parameter values used in our numerical calculations are chosen with the intention of repre-

senting a typical omnichannel setting. In Figures 3.1-3.2 we use θ = 0.5, c = 0.3, and se = 0.2. We

chose θ = 0.5 since Macy’s (2015) finds that 53% of its customers prefer to shop at their brick-and-

mortar stores. On the one hand, the salvage value at third party outlet stores is about 10-20% of

their value (Stock et al. 2006); on the other hand, Su (2009) shows that the salvage value must

be more than 83% of the cost (see §3.4.3 for details) for single-channel firms to prefer full refunds.

Finally, using our model, the salvage value must be more than 66% of the cost for an omnichannel

firm with θ = 0.5 to prefer full refunds. This is obtained by comparing πF against πN for θ = 0.5.

Thus, we set se = 2c/3. We choose c = 0.3 to obtain a full refund profit margin of 30%. The profit

margin is computed as πF /(πF + cF ), where cF is the total cost incurred by the firm. This cost is

given by cF = θ(1−pF )c+c(1−θ) since the firm procures products at cost c for all the online-savvy

customers (proportion 1 − θ) and for (1 − pF ) of the store-savvy customers (proportion θ). This

yields se = 0.2. From annual reports we find that omnichannel firms enjoy a gross profit margin in

the range of 30% to 40%: The 2016 gross margin was 34.9% and 39.4% for Nordstrom and Macy’s

respectively, whereas that for J. C. Penney was in the range of 29.4% to 36% from 2013 to 2016.

We chose in-store salvage value sp = se+0.1 in Figures 3.3-3.4. The expected cross-selling revenue

is $20 per sale: J.C. Penney claims that about one-third of shoppers spend an additional $60 when

they visit a store to make a return (WSJ 2016), which yields expected revenue of $20. Using

our model parameters we have pF = 0.625 so that assuming a typical sale to be about $100 (and

normalizing the price to pF ) gives the additional cross-selling revenue sp−se ≈ 20∗0.625/100 ≈ 0.1.

Additionally, in Figure 3.4 we use β = 1.5: Bower and Maxham III (2012) note that free return

policies result in future customer spending that is 158% to 457% more by the end of two years,

and in order to be conservative in the effect of demand stimulation, we choose a value closer to the

lower end of this range.
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Appendix C

Supplements to Chapter 4

C.1 Proofs

Proof of Proposition 4.1. Let R(i, q) denote the reward in state i under action q. Then, R(i, q) ≡
(r−c(q))i, which is unbounded. Since the state space S is countable, we will use results in Puterman

1994 (replicated below) to show our result. Note that Puterman (1994) uses λ to denote the discount

rate, r(s, a) to denote the reward in state s, and p(j|s, a) to be the transition probability from state

s to state j, under action a ∈ As for s ∈ S. Furthermore, rd and Pd are the return vector and

transition matrix respectively, corresponding to the decision rule d. Let w(i) be as defined in

Puterman (1994).

Assumption C.1 (Assumption 6.10.1 in Puterman 1994). There exists a constant µ < ∞ such

that supa∈As |r(s, a)| ≤ µw(s).

Proposition C.1 (Proposition 6.10.5(a) in Puterman 1994). Suppose there exists a constant L > 0,

for which
∑

j∈S p(j|s, a)w(j) ≤ w(s) + L for a ∈ As and s ∈ S. Then Assumption 6.10.2 holds.

Theorem C.1 (Theorem 6.10.4(a) and (c) in Puterman 1994). Let S be a countable set and suppose

that Assumptions 6.10.1 and 6.10.2 hold. Then the following holds true: The optimality equation

has a unique solution v∗λ. And, if there exists a d∗ ∈ D satisfying d∗ ∈ arg maxd∈D{rd + λPdv
∗
λ},

then (d∗)∞ is an optimal policy.

Lemma C.2. Our model satisfies Assumption C.1.

Proof. Let w(i) ≡ ri,∀i ∈ S. We need to show there exists a constant µ < ∞ such that

supq∈Q |R(i, q)| ≤ µw(i). The highest value of R(i, q) is ri when q = 0, and the lowest value

of R(i, q) is (r − c(q̄))i when q = q̄. Thus, supq∈Q |R(i, q)| = max{ri, |r − c(q̄)|i}, and Assumption

C.1 holds with µ = max{1, c(q̄)r − 1} since r > 0.

Assumption C.2. There exists a constant L > 0, for which
∑

j∈S p(j|s, a)w(j) ≤ w(s) + L for

a ∈ As and s ∈ S.

Lemma C.3. Our model satisfies Assumption C.2.
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Proof. We need to show that
∑

j∈S Pij(q)w(j) ≤ w(i) + L,∀i ∈ S, q ∈ Q for some L > 0. We have∑
j∈S

Pij(q)w(j) =
∑
j∈S

Pij(q)rj

= rλ(q) + ri− rp(q)i

≤ ri+ rλ(q̄) = w(i) + L,

where L ≡ rλ(q̄), the second equation uses the fact that the expected next state from any state i

is i(1− p(q)) + λ(q), and the inequality is due to p(q) ≥ 0, r > 0, i ≥ 0, and λ(q) ≤ λ(q̄).

From Lemma C.2 we have that the first condition (Assumption 6.10.1) in Theorem C.1 is met.

From Lemma C.3 and Proposition C.1, the second condition (Assumption 6.10.2) in Theorem C.1

is also met. Thus, our result follows from Theorem C.1.

Proof of Lemma 4.1. Let z(q) = r−c(q)
1−β(1−p(q)) . By definition α ≡ maxq∈Q{z(q)}. Let qmax =

min{q̃, q̄}, where q̃ is defined as the value of q at which the per patient profit is zero i.e., r−c(q̃) = 0.

Since providing quality q > q̃ results in negative profits z(q) < 0 whenever q > q̃, the feasible set

can be reduced to q ≤ qmax. The following lemma states that there is a unique maximizer of z(q).

Lemma C.4. z(q) is uniquely maximized at x0. Furthermore, the feasible set is reduced to q ≤ q̄.

Proof. The first derivative z′(q) = 1
(1−β(1−p(q)))2 [−c′(q)(1 − β(1 − p(q))) − βp′(q)(r − c(q))]. Let

N(q) denote the numerator i.e., N(q) = −c′(q)(1− β(1− p(q)))− βp′(q)(r − c(q)) and its root be

x0, i.e., x0 solves

− c′(q)

βp′(q)
=

r − c(q)
1− β(1− p(q))

. (C.1)

First, we show that x0 maximizes z(q). The second derivative is z′′(q) = d
dq

[
N(q)

(1−β(1−p(q)))2

]
, and

at q = x0 its value is given by z′′(x0) = 1
[1−β(1−p(x0))]2

dN
dq

∣∣∣
q=x0

because N(x0) = 0. Now dN
dq =

−c′′(q)(1 − β(1 − p(q))) − βp′′(q)(r − c(q)) < 0 since c′′ > 0, p′′ > 0, x0 ≤ q̃ and β(1 − p(q)) ≤ 1.

Thus, z′′(x0) < 0 so that x0 is a maximizer.

Next, we show that x0 is unique. We already have that dN
dq < 0 from above, or N(q) is decreasing.

The sign of z′(q) is the same as that of N(q), and N(q) = 0 at q = x0. Combined with N(q) being

decreasing, this implies that N(q), or equivalently z′(q), is positive for q < x0, zero at q = x0, and

negative otherwise. Thus, z(q) is uniquely maximized at x0.

Finally, the L.H.S of (C.1) is positive at the solution since c′ > 0 and p′ < 0 so that the R.H.S.

must also be positive. Thus, r − c(x0) ≥ 0, or x0 ≤ q̃. This implies that the feasibility constraint

can be simplified to q ≤ q̄.

The following lemma defines the optimal solution q0.

Lemma C.5. The optimal solution to maxq∈Q{z(q)} is q0 = min{x0, q̄}.
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Proof. Given that the feasibility constraint is simplified to q ≤ q̄ (Lemma C.4), we only need to

consider the following two cases to derive q0:

1. x0 ≤ q̄: In this case the solution x0 is the optimal solution as it does not violate our constraint.

2. x0 > q̄: In this case x0 is not feasible. From the proof of Lemma C.4 we have that the first

derivative z′(q) is positive for q < x0. Since the unique maximizer is not feasible due to the

constraint q ≤ q̄, this implies that the optimal solution is q̄.

Therefore, we have our result.

Next, we will show that q0 maximizes the maximand in (4.1) and that the return function

v0(i) = αi + γ solves the system of simultaneous equations given by (4.1). We will start from the

R.H.S. of (4.1) and show that it simplifies to the L.H.S. The maximand y(i, q) in (4.1) corresponding

to v0(j) = αj+γ is y(i, q) = [r− c(q)]i+β
∑

j∈S(αj+γ)Pij(q), so that the R.H.S. is maxq∈Q y(i, q)

and the L.H.S. is v0(i). In other words, we need to show that maxq∈Q y(i, q) simplifies to v0(i).

We first simplify y(i, q):

y(i, q) = [r − c(q)]i+ β
∑
j∈S

(αj + γ)Pij(q) (C.2)

= [r − c(q)]i+ βα
∑
j∈S

jPij(q) + βγ
∑
j∈S

Pij(q) (C.3)

= [r − c(q)]i+ βα
∑
j∈S

jPij(q) + βγ (C.4)

= [r − c(q)]i+ βα[λ0 + i(1− p(q))] + βγ (C.5)

= [r − c(q) + βα(1− p(q))]i+ βγ + βαλ0, (C.6)

= [r − c(q) + βα(1− p(q))]i+ γ, (C.7)

where (C.4) uses
∑

j∈S Pij(q) = 1, and (C.7) uses the definition of γ.

Define h(q) ≡ r − c(q) + βα(1 − p(q)). Since γ is a constant, we only have to show that q0

maximizes h(q)i+ γ subject to q ∈ Q and maxq∈Q h(q)i+ γ = v0(i). We consider two cases:

1. i = 0: In this case we have y(0, q) = γ. In this case there is no unique maximizer and

maxq∈Q h(q)i+ γ = γ, which equals the L.H.S. of (4.1), i.e., v0(0).

2. i > 0: In this case let the unconstrained maximizer be x1. The first derivative of h(q) is

h′(q) = −c′(q) − βαp′(q) and the second derivative is h′′(q) = −c′′(q) − βαp′′(q) < 0 since

c′′ > 0 and p′′ > 0. Thus, x1 solves

α =
−c′(q)
βp′(q)

. (C.8)

The expression −c
′(q)

βp′(q) is increasing in q: Its derivative is − 1
β(p′(q))2 (p′(q)c′′(q)−c′(q)p′′(q)) > 0.

Moreover, h′(q) > 0 when q < x1 since the second derivative is negative. We will condition

on the different values of q0 relative to q̃:

(a) q0 = x0. By definition α = −c′(x0)
βp′(x0) from (C.1) so that h(q) is maximized at x1 = x0.
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Furthermore, h(x1) = α: This is because α = r−c(q0)
1−β(1−p(q0)) by its definition. Rearranging

the terms, we have α(1−β(1−p(q0))) = r−c(q0), or h(x0) = α. Thus, maxq∈Q h(q)i+γ =

αi+ γ = v0(i).

(b) q0 = q̄ < x0. In this case we know that z′(q̄) > 0 (see Lemma C.5 and proof of Lemma

C.4). Thus, by the definition of z′(q) we have −c′(q)(1−β(1−p(q)))−βp′(q)(r−c(q)) > 0

at q = q̄, or r−c(q̄)
1−β(1−p(q̄)) > −

c′(q̄)
βp′(q̄) . By definition α = r−c(q̄)

1−β(1−p(q̄)) so that α > − c′(q̄)
βp′(q̄) .

Combined with −c′(q)
βp′(q) increasing in q and (C.8), this implies that x1 > q̄. Since x1

violates the feasibility condition and h′(q) > 0 for q < x1, the optimal solution is q̄.

Again, h(x1) = α by definition of α (see above) so that maxq∈Q h(q)i+γ = αi+γ = v0(i).

From Proposition 4.1 this implies that q0 is optimal.

Derivation of qH in Definition 4.1. We need to evaluate the maximand in (4.1) i.e., y(i, q) ≡
[r − c(q)]i +

∑
j∈S βv0(j)Pij(q),∀i ∈ S, q ∈ Q. This is because, by definition, the heuristic max-

imizes y(i, q) with respect to q ∈ [0, q̄]. Given the starting return function v0(j) = αj + γ and

proceeding similar to Proof of Proposition 4.1 and (C.2)-(C.5), we have y(i, q) = [r − c(q)]i +

βα[λ(q) + i(1 − p(q))] + βγ. In other words, y(i, q) = [r − c(q) + βα(1 − p(q))]i + βαλ(q) + βγ.

Note that βγ is independent of q and i. When i = 0 we have y(i, q) = βαλ(q) + βγ,

which is maximized at q = q̄ since λ′(q) ≥ 0. The heuristic policy qH is given by qH(i) ≡
arg maxq∈Q

{
r − c(q) + βα(1− p(q)) + βαλ(q)

i

}
, ∀i > 0 and qH(0) = q̄ as in Definition 4.1.

Proof of Lemma 4.2. (a) When i = 0, we have qH(0) = q̄ so that qH(1) ≤ q̄ = qH(0). From the

definition of q0 (Lemma C.5) we also have that q0 ≤ q̄ = qH(0). Thus, we only need to consider

i > 0. Let z(i, q) ≡ r− c(q) + βα(1− p(q)) + βαλ(q)
i , i > 0, so qH maximizes z(i, q) subject to

q ∈ Q. The derivative z1(i, q) of z(i, q) w.r.t. q is given by z1(i, q) = −c′(q)−βαp′(q)+βαλ
′(q)
i ,

and its second derivative z2(i, q) is given by z2(i, q) = −c′′(q) − βαp′′(q) + βαλ
′′(q)
i . Since

c′′ > 0, p′′ > 0 and λ′′ ≤ 0 we have z2(i, q) < 0. Suppose x1(i) is the value of q that

solves the equation z1(i, q) = 0. Since z2(i, q) < 0 we have z1(i, q) > 0 for q < x1(i),

and the heuristic qH(i) = min(q̄, x1(i)). From the Proof of Lemma 4.1 (cases (a) and (b))

we know that α ≥ −c′(q0)
βp′(q0) , or −βp′(q0)α − c′(q0) ≥ 0 since p′(q0) < 0. Thus, z1(i, q0) =

−c′(q0) − βαp′(q0) + βαλ
′(q0)
i ≥ βαλ

′(q0)
i ≥ 0 since λ′(q) ≥ 0. Combined with the fact that

z1(i, q) ≥ 0 for q ≤ x1(i), we have q0 ≤ x1(i),∀i ∈ S. Since q̄ ≥ q0 and qH(i) = min(q̄, x1(i)),

we have q0 ≤ qH(i), ∀i.

It is easy to see that z1(i, q) is non-increasing in i, i.e., z1(i + 1, q) ≤ z1(i, q). Combined

with z1(i, q) decreasing in q since z2(i, q) < 0, this implies that the value of q at which

z1(i+ 1, q) = 0 is at most that at which z1(i, q) = 0, or x1(i+ 1) ≤ x1(i). It is easy to show

that qH(i + 1) ≤ qH(i) as well by conditioning on the different cases for q̄: (a) q̄ > x1(i):

Then, qH(i+ 1) = x1(i+ 1) ≤ x1(i) = qH(i); (b) q̄ < x1(i+ 1): Then, qH(i+ 1) = qH(i); and

(c) x1(i+ 1) ≤ q̄ ≤ x1(i): Then, qH(i+ 1) = x1(i+ 1) ≤ q̄ = qH(i).
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(b) First we will show that q0 is non-decreasing in r. Consider z′(q) and x0 from the proof

of Lemma 4.1. Now, since z′(q) is continuous and differentiable everywhere, we can use the

Implicit Function Theorem to evaluate the sign of dx0dr . To do so, we define the implicit function

F (q, r) = z′(q), so that F (x0, r) = 0 and ∂F (q,r)
dq = z′′(q). Therefore, dx0

dr = −
∂F (x0,r)

dr
z′′(x0) . Since

z′′(x0) < 0, the sign of dx0dr is the sign of ∂F (x0,r)
dr , which is given by ∂F (x0,r)

dr = − βp′(q)
(1−β(1−p(q)))2 >

0, where the inequality is because p′(q) < 0. Thus, x0 is increasing in r. Since q0 = min{q̄, x0},
we have that q0 is non-decreasing in r.

Next, we show that α is increasing in r. Consider x0 and α from the proof of Lemma 4.1.

Suppose we have two values of the reimbursement rate r1 and r2 such that r2 > r1. Let αi

and x
(i)
0 be the values of α and x0 respectively, corresponding to rate ri. Then, the quality

q
(i)
0 corresponding to ri is given by q

(i)
0 = min{q̄, x(i)

0 }. Since x0 is increasing in r, we have

x
(2)
0 > x

(1)
0 . We will condition on the value of q̄ to show that α2 > α1:

(i) q̄ > x
(1)
0 . In this case α2 =

r2−c(q(2)0 )

1−β(1−p(q(2)0 ))
>

r2−c(x(1)0 )

1−β(1−p(x(1)0 ))
>

r1−c(x(1)0 )

1−β(1−p(x(1)0 ))
= α1, where

the equations are by definition of αi, the first inequality is due to the suboptimality of

x
(1)
0 when the reimbursement rate is r2, and the second inequality is due to r2 > r1.

(ii) q̄ ≤ x
(1)
0 . In this case α2 = r2−c(q̄)

1−β(1−p(q̄) >
r1−c(q̄)

1−β(1−p(q̄) = α1, where the equations are by

definition of αi and the inequality is due to r2 > r1.

To show that qH(i) is non-decreasing in r, it suffices to show that x1(i) is non-decreasing in

r for i > 0. This is because qH(0) = q̄ which is independent of r, and qH(i) = min{q̄, x1(i)}.
From the proof of (a) above, we know that x1(i) solves z1(i, q) = 0. We can apply the Implicit

Function Theorem again with F (q, r) = z1(i, q) to compute dx1(i)
dr . Since z2(i, q) < 0, the sign

of dx1(i)
dr is the sign of ∂F (x1(i),r)

dr , which is given by ∂F (x1(i),r)
dr = β

[
−p′(q) + λ′(q)

i

]
dα
dr > 0,

where the inequality is because p′(q) < 0, λ′(q) > 0, and α is increasing in r.

(c) As in (b) we will show that x1(i) is larger when λ′ is larger for i > 0 because qH(0) = q̄ which

is constant. We know from the proof of (a) above that x1 solves z1(i, q) = 0, where z1(i, q) =

−c′(q)− βαp′(q) + βαλ
′(q)
i . Rearranging we have that x1(i) solves βαλ

′(q)
i = c′(q) + βαp′(q).

The R.H.S. is increasing in q: Its derivative is c′′ + βαp′′ > 0 since c′′ > 0, p′′ > 0 and α > 0.

The L.H.S. is decreasing in q for i > 0: Its derivative is βαλ′′/i < 0 since λ′′ < 0. The L.H.S.

is larger when λ′(q) is larger, so that the intersection point of the two curves i.e., x1(i), will

be larger. Since qH(i) = min{q̄, x1(i)}, we have our result.

C.2 Additional results

Violation of Lemma 4.2(a). We will show that Lemma 4.2(a) may be violated by the optimal

policy by constructing a counterexample. The following parameters provide one such counterex-
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ample: λ(q) = q, p(q) = 1 − 0.9q, and c0 = 4; the remaining values are as in §4.4. This results in

q0 = 0.11.

Figure C.1 shows the quality under the optimal and heuristic policies. While the heuristic still

satisfies Lemma 4.2(a), the optimal policy q∗ is increasing in state i for i ≥ 5, and q∗ chooses

values that are smaller than q0. The counterexample is characterized by high cost of quality and a

departure probability function that is sensitive to quality. Revenues are increasing in the number

patients, so the hospice ideally prefers to increase its patient census. The high cost of quality

incentivizes the hospice to provide high quality when the patient census is zero (so that costs are

zero) to attract the most demand without high costs. And, at low patient census, the hospice is

better off lowering quality to accelerate its course to the zero state, where it can take advantage

of the high quality “for free.” However at high patient census, the hospice can afford to increase

quality to ensure that not too many patients depart; it is more profitable to try to extract revenue

from patients than to immediately drift to zero to bring in a new batch.

Figure C.2 shows the evolution of a sample path over 100 stages under the optimal policy for

this example, starting from either the empty state (Figure C.2(a)) or a larger state (Figure C.2(b)).

We see that the patient census bounces off the empty state very often: It reaches a non-zero state

but does not stay there for a long time. On the other hand, when the starting state is large enough

(Figure C.2(b)), the policy offers a slightly higher quality (Figure C.1) and the patient census does

not reach zero immediately. To facilitate comparison against more realistic examples, Figure C.3

shows the sample path corresponding to one of our experiments in §4.4: Relative to Figure C.2,

the census in this example moves steadily towards a non-zero state.

Figure C.1: Comparison of optimal and heuristic policies for the counterexample in Appendix C.2.
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Figure C.2: Sample paths under the optimal policy for the counterexample in Appendix C.2.
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Figure C.3: Sample path under the optimal policy for for-profit, (a0, a1) = (3, 2), and
(b0, b1) = (0.1, 0.04) with initial state i = 0.
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redundant requests: exact analysis. Queueing Systems 83(3-4):227–259.

Guo P, Hassin R (2016) Why do customers place duplicate orders in queues and why do firms allow such

behavior? Technical report, Working paper, Hong Kong Polytechnic University.

Harsha P, Subramanian S, Uichanco J (2016) Omni-channel revenue management through integrated pricing

and fulfillment planning. Technical report, Working Paper, Ross School of Business, University of

Michigan.

Hess JD, Chu W, Gerstner E (1996) Controlling product returns in direct marketing. Marketing Letters

7(4):307–317.

Hsiao L, Chen YJ (2014) Return policy: Hassle-free or your money-back guarantee? Naval Research Logistics

(NRL) 61(5):403–417.

Huang W, Swaminathan JM (2009) Introduction of a second channel: Implications for pricing and profits.

European Journal of Operational Research 194(1):258–279.

Huskamp HA, Buntin MB, Wang V, Newhouse JP (2001) Providing care at the end of life: do Medicare

rules impede good care? Health Affairs 20(3):204–211.

Janakiraman N, Syrdal HA, Freling R (2016) The effect of return policy leniency on consumer purchase and

return decisions: A meta-analytic review. Journal of Retailing 92(2):226–235.

Joshi G, Liu Y, Soljanin E (2014) On the delay-storage trade-off in content download from coded distributed

storage systems. Selected Areas in Communications, IEEE Journal on 32(5):989–997.

Joshi G, Soljanin E, Wornell G (2015) Efficient replication of queued tasks for latency reduction in cloud

systems. Communication, Control, and Computing (Allerton), 2015 53rd Annual Allerton Conference

on, 107–114 (IEEE).

Karp J, Ravi R, Tayur S (2017) Models and methods for omni-channel fulfillment. Working Paper, Carnegie

Mellon University.

Kelley AS, Deb P, Du Q, Carlson MDA, Morrison RS (2013) Hospice enrollment saves money for Medicare

and improves care quality across a number of different lengths-of-stay. Health Affairs 32(3):552–561.

116



Killaly B, Mukamel D (2007) The cost structure of hospice providers. Technical report, Working paper,

University of California, Irvine.

Koole G, Righter R (2008) Resource allocation in grid computing. Journal of Scheduling 11(3):163–173.

KPMG (2016) Omnichannel retail survey 2016. Available at https://assets.kpmg.com/content/dam/

kpmg/pdf/2016/02/omnichanel-retail-survey-2016.pdf.

Krishnan K (1987) Joining the right queue: A Markov decision-rule. Decision and Control, 26th IEEE

Conference on, volume 26, 1863–1868 (IEEE).

Kumar A, Mehra A, Kumar S (2014a) How physical retail channels impact customers online purchase

behavior? Working Paper.

Kumar A, Tandon R, Clancy TC (2014b) On the latency of erasure-coded cloud storage systems. arXiv

preprint arXiv:1405.2833 .

Lal R, Sarvary M (1999) When and how is the internet likely to decrease price competition? Marketing

Science 18(4):485–503.

Lamas DJ (2014) A private jet is waiting to take you to your kid-

ney transplant. URL https://www.theatlantic.com/health/archive/2014/10/

the-businessman-disrupting-organ-transplantation/381843/.

Lee K, Pedarsani R, Ramchandran K (2015) On scheduling redundant requests with cancellation overheads.

Proc. of the 53rd Annual Allerton conference on Communication, Control, and Computing.

Lee N, Kulkarni VG (2014) Optimal arrival rate and service rate control of multi-server queues. Queueing

Systems 76(1):37–50.

Li B, Ramamoorthy A, Srikant R (2016) Mean-field-analysis of coding versus replication in cloud storage

systems. Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International

Conference on, 1–9 (IEEE).

Li L (1992) The role of inventory in delivery-time competition. Management Science 38(2):182–197.

Liang G, Kozat UC (2014) Fast cloud: Pushing the envelope on delay performance of cloud storage with

coding. Networking, IEEE/ACM Transactions on 22(6):2012–2025.

Liu Z, Nain P, Towsley D (1995) Sample path methods in the control of queues. Queueing Systems 21(3-

4):293–335.

Lu SF, Lu LX (2016) Do mandatory overtime laws improve quality? Staffing decisions and operational

flexibility of nursing homes. Management Science 63(11):3566–3585.

Lu SF, Rui H (2017) Can we trust online physician ratings? Evidence from cardiac surgeons in Florida.

Management Science .

Macy’s (2015) Macy’s shopper survey yields insights for holiday 2015. Available at http://investors.

macysinc.com.

Market Force (2017) Nordstrom is nation’s favorite fashion retailer, new

Market Force study finds. Available at http://www.marketforce.com/

consumers-favorite-apparel-retailers-2017-Market-Force-study.

Matthews SA, Persico N (2007) Information acquisition and refunds for returns. Working Paper, University

of Pennsylvania.

Matthews SA, Persico NG (2005) Information acquisition and the excess refund puzzle. Working Paper,

University of Pennsylvania.

117



McDonald D, Turner S (2000) Comparing load balancing algorithms for distributed queueing networks.

Analysis of Communication Networks: Call Centres, Traffic, and Performance 28:105.

MEDPAC (2017) Report to the congress: Medicare payment policy. URL http://www.medpac.gov/

-documents-/reports.

Merion RM, Guidinger MK, Newmann JM, Ellison MD, Port FK, Wolfe RA (2004) Prevalence and outcomes

of multiple-listing for cadaveric kidney and liver transplantation. American Journal of Transplantation

4(1):94–100.

Moorthy S, Srinivasan K (1995) Signaling quality with a money-back guarantee: The role of transaction

costs. Marketing Science 14(4):442–466.

Nahmias S (1977) Higher-order approximations for the perishable-inventory problem. Operations Research

25(4):630–640.

National Association for Home Care & Hospice (2015) IN FOCUS Part 3: The Proposed FY2016 Hospice

Payment Rule HQRP. URL http://www.nahc.org/NAHCReport/nr150603\_1/.

Neuts MF (1981) Matrix-geometric solutions in stochastic models: an algorithmic approach (Courier Corpo-

ration).

NHPCO (2015) FY201 hospice wage index final rule. URL https://www.nhpco.org/sites/default/

files/public/regulatory/RegAlert_FY2016-HospiceWageIndex.pdf.

NHPCO (2016) NHPCO Facts and Figures: Hospice Care in America .

Ofek E, Katona Z, Sarvary M (2011) “Bricks and clicks”: The impact of product returns on the strategies

of multichannel retailers. Marketing Science 30(1):42–60.

Organ Procurement and Transplantation Network (2015) Waiting list candidates. URL http://optn.

transplant.hrsa.gov/converge/data/default.asp.

Petersen JA, Kumar V (2009) Are product returns a necessary evil? Antecedents and consequences. Journal

of Marketing 73(3):35–51.

Puterman ML (1994) Markov decision processes: Discrete dynamic stochastic programming. New York, NY:

John Wiley. doi 10:9780470316887.

Shah NB, Lee K, Ramchandran K (2016) When do redundant requests reduce latency? IEEE Transactions

on Communications 64(2):715–722.

Shulman JD, Coughlan AT, Savaskan RC (2009) Optimal restocking fees and information provision in an

integrated demand-supply model of product returns. Manufacturing & Service Operations Management

11(4):577–594.

Shulman JD, Coughlan AT, Savaskan RC (2011) Managing consumer returns in a competitive environment.

Management Science 57(2):347–362.

Sparaggis PD, Towsley D (1994) Optimal routing and scheduling of customers with deadlines. Probability in

the Engineering and Informational Sciences 8(01):33–49.

STAT (2017) Most hospices fare well in first public release of Medicare quality scores. URL https://www.

statnews.com/2017/08/18/hospice-compare-quality-scores/.

Stock J, Speh T, Shear H (2006) Managing product returns for competitive advantage. MIT Sloan Manage-

ment Review 48(1):57.

Su X (2009) Consumer returns policies and supply chain performance. Manufacturing & Service Operations

Management 11(4):595–612.

118



Sun Y, Zheng Z, Koksal CE, Kim KH, Shroff NB (2015) Provably delay efficient data retrieving in storage

clouds. Computer Communications (INFOCOM), 2015 IEEE Conference on, 585–593 (IEEE).

Transport Topics (2017) Returns of online purchases a key factor in e-commerce boom. Available at http:

//www.ttnews.com/articles/returns-online-purchases-key-factor-e-commerce-boom.

United Network for Organ Sharing (2015) Questions and answers for transplant candidates about multiple

listing and waiting time transfer. URL https://www.unos.org.

United States Renal Data System (2013) 2013 annual data report: Atlas of chronic kidney disease and

end-stage renal disease in the United States. URL http://www.usrds.org.

UPS (2014) UPS pulse of the online shopper. A customer experience study. Available at https://www.ups.

com/media/en/2014-UPS-Pulse-of-the-Online-Shopper.pdf.

UPS (2015) Rethinking online returns. Available at https://solvers.ups.com/assets/UPS_

ReturnsExecutiveSummary.pdf.

UPS (2016a) 2016 UPS pulse of the online shopper. Available at https://pressroom.ups.com/assets/

pdf/2016_UPS_Pulse%20of%20the%20Online%20Shopper_executive%20summary_final.pdf.

UPS (2016b) UPS pulse of the online shopper. Tech-savvy shoppers transforming retail. Available at https:

//solvers.ups.com/ups-pulse-of-the-online-shopper/.

van Houtum GJ, Adan I, Wessels J, Zijm WH (2001) Performance analysis of parallel identical machines

with a generalized shortest queue arrival mechanism. OR-Spektrum 23(3):411–427.

Veeraraghavan S, Debo L (2009) Joining longer queues: Information externalities in queue choice. Manufac-

turing & Service Operations Management 11(4):543–562.

Visschers J, Adan I, Weiss G (2012) A product form solution to a system with multi-type jobs and multi-type

servers. Queueing Systems 70(3):269–298.

Wachterman MW, Marcantonio ER, Davis RB, McCarthy EP (2011) Association of hospice agency profit

status with patient diagnosis, location of care, and length of stay. JAMA 305(5):472–479.

White A, Ozminkowski RJ, Hassol A, Dennis JM, Murphy M (1997) The relationship between multiple

listing and cadaveric kidney transplantation and the effects of a multiple listing ban. Transplantation

Reviews 11(2):76–83.

Whitt W (1986) Deciding which queue to join: Some counterexamples. Operations Research 34(1):55–62.

Whitt W (2005) Engineering solution of a basic call-center model. Management Science 51(2):221–235.

Winston W (1977) Optimality of the shortest line discipline. Journal of Applied Probability 181–189.

Wolff RW (1989) Stochastic modeling and the theory of queues (Pearson College Division).

WSJ (2013) Rampant returns plague e-retailers. Available at https://www.wsj.com/articles/

rampant-returns-plague-eretailers-1387752786.

WSJ (2016) Stores gear up for returns – and more shopping. Available at www.wsj.com/articles/

stores-gear-up-for-returnsand-more-shopping-1482769959.

119


	Dissertation Nageswaran.pdf
	DISSERTATION
	Titled
	Presented by
	Accepted by
	Approved by The Dean



	lnageswa_tepper_2018

