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Abstract 

 

Management solutions for current and future Infrastructure-as-a-Service (IaaS) Data Centers (DCs) 

face complex challenges. First, DCs are now very large infrastructures holding hundreds of thousands if 

not millions of servers and applications. Second, DCs are highly heterogeneous. DC infrastructures consist 

of servers and network devices with different capabilities from various vendors and different generations. 

Cloud applications are owned by different tenants and have different characteristics and requirements. 

Third, most DC elements are highly dynamic. Applications can change over time. During their lifetime, 

their logical architectures evolve and change according to workload and resource requirements. Failures 

and bursty resource demand can lead to unstable states affecting a large number of services. Global and 

centralized approaches limit scalability and are not suitable for large dynamic DC environments with 

multiple tenants with different application requirements. 

We propose a novel fully distributed and dynamic management paradigm for highly diverse and volatile 

DC environments. We develop LAMA, a novel framework for managing large scale cloud infrastructures 

based on a multi-agent system (MAS). Provider agents collaborate to advertise and manage available 

resources, while app agents provide integrated and customized application management. Distributing 

management tasks allows LAMA to scale naturally. Integrated approach improves its efficiency. The 

proximity to the application and knowledge of the DC environment allow agents to quickly react to changes 

in performance and to pre-plan for potential failures. We implement and deploy LAMA in a testbed server 

cluster. We demonstrate how LAMA improves scalability of management tasks such as provisioning and 

monitoring. We evaluate LAMA in light of state-of-the-art open source frameworks. LAMA enables 

customized dynamic management strategies to multi-tier applications. These strategies can be configured 

to respond to failures and workload changes within the limits of the desired SLA for each application. 
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Chapter 1 

Introduction 

1.1. Data Centers and Cloud Computing: A Brief History 

The first Data Centers (DCs) were originally used to house the first large and complex computers. 

These facilities started to change with the advent of microcomputers during the 1980s and the widespread 

use of the Internet during the 1990s. The need to make data available to thousands of clients led companies 

to create their own DCs. The evolution of microcomputers to small powerful servers led to the creation of 

infrastructures with large numbers of server racks.  

IBM introduced the notion of virtualization to share resources among different applications within a  

mainframe. The software had to be developed specifically to run on those large machines. To achieve 

resource flexibility, most enterprise applications evolved into distributed architectures. Extra machines 

could be added as soon as the application required more resources. The distributed architecture allowed 

scaling of application requirements. Even so, each application would require its own infrastructure, leading 

to underutilization and cumbersome management. This compartmentalization was often extended to the 

network infrastructure. The risk of an application’s traffic affecting other applications and the lack of 

flexibility led to dedicated physical network segments for each application. Data processing environment 

paradigms like Grid Computing were used to share resources of a large number of machines. However, the 

Grid paradigm would only support a specific subset of applications. 
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The next big step in DC evolution came with the widespread use of virtualization. Years after the first 

application-level virtualization concept of IBM mainframes, virtualization was used to emulate full 

hardware environments. Users of one operating system are able to run software in other platforms. The 

application of virtualization to DCs brought other advantages. Applications could be easily deployed and 

moved between different servers leading to faster application provisioning. Applications sharing the same 

server could be logically isolated from each other. For instance, upgrading one virtual machine (VM) 

operating system would not affect the others. The choice of operating systems would also be independent 

of the physical machine.  

Cloud computing is the realization of the idea of computing as a utility [1], i.e. users can rent resources 

to run their own software and pay only the used amount. Vaquero et al [2] summarized a definition of a 

cloud as a “large pool of virtualized resources … that can be dynamically reconfigured to adjust to a variable 

load”. These resources would be offered as a service and users would only pay for used resources. The 

cloud model can be applied to: the infrastructure (Infrastructures-as-a-Service or IaaS), where the hardware 

is rented to the user using VMs; software platforms (Platform-as-a-service or PaaS), where the user can 

develop her applications using a development platform defined by the provider; and software (SaaS), where 

the user acquires a license to use an application that is deployed in the provider’s DC. The Cloud computing 

paradigm allows high consolidation of servers, optimized resource consumption, fast provisioning of new 

applications, independence from hardware manufacturers, and application isolation. The idea of isolation, 

together with cost savings, is the main factor that drives companies to migrate their applications to the 

cloud. In perfect isolation, the applications can maintain the same performance and security guarantees 

provided by dedicated and private infrastructure. More recently the concept of virtualization has been 

extended to networks. New technologies allow DC providers to deploy virtual networks [3], which can 

isolate the traffic between different applications and facilitate sharing of resources in the network.  

However, DC management solutions for Cloud Computing are still in their infancy. Integrating all the 

new technologies and, at the same time, being able to manage the interests of different applications is highly 

challenging.  

1.2. Diversity and Complexity 

Large companies operating cloud DCs host over a million servers. A single DC can host hundreds of 

thousands of servers and this number is expected to grow. Virtualization allows several different 

applications to be deployed on the same server. The number of VMs per server can vary widely with the 

hardware capabilities and application requirements. Additionally, the communication capacity among 
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servers depends on their location in the network. These characteristics make DCs a complex environment 

to manage and maintain. 

1.2.1. Physical Infrastructure Diversity 

The physical infrastructure can be very diverse with respect to servers, network devices and middle-boxes 

(i.e. load-balancers, firewalls, IDS, etc.). 

• Different generations of hardware: As DCs evolve, there might be several stages of hardware 

acquisition. More servers are added as the demand on DCs increases. This leads to several generations 

of servers with different capabilities in the DC. 

• Replacement due to failures: The occurrence of failures imposes changes on server and network 

characteristics. As hardware evolves quickly, several components may be upgraded, leading to 

machines with different characteristics even in the same cluster. 

• Diverse manufacturers: DC managers usually equip their infrastructure with the same manufacturer 

for management simplicity. However, buying from different manufacturers has some advantages. It 

reduces risk by lowering the dependency on one manufacturer and reduces acquisition costs by 

increasing competition among manufacturers. It also lowers dependency on proprietary technologies 

and increases options to align infrastructure capability with functional requirements [4]. On the other 

hand, different manufacturers can also lead to various proprietary technologies in the DC environment.  

• Different application requirements: The DC hosts applications with very different requirements. 

Some applications require fast processing, I/O and network connections while others require parallel 

processing on several cores. To be able to efficiently support a wide range of applications, DC managers 

may acquire machines with different capabilities. 

• Legacy technologies and applications: Legacy applications often hold back hardware upgrades. For 

instance, large applications designed for mainframes or older operating systems may be too costly to 

upgrade. Some technologies can become obsolete. But DC managers continue to use them while other 

parts of the DC are upgraded. It would be too costly to completely upgrade the infrastructure at once. 

There are heterogeneous server and network capabilities within the same DC [5]. Servers can be 

heterogeneous in terms of memory, number of CPU cores, CPU speed, disk space and I/O speed. Network 

switches and routers can have different bandwidth, latency and number of ports. The architecture of the 

network leads to large differences in latency between pairs of hosts. Clusters of servers can also vary in 

size and interconnection capacity.  
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1.2.2. Application Diversity 

DCs host a multitude of heterogeneous applications. While this diversity can occur in any DC, it is 

more pervasive in public multi-tenant clouds with the Infrastructure-as-a-Service paradigm. Users deploy 

their applications in a common infrastructure. The DC provider controls only the virtual machines and their 

placement in the network. User applications can have varied architectures and QoS requirements. There are 

several application characteristics that can influence how and where applications are deployed: 

• Application architecture: From a logical point of view, an application consists of one or more 

components that we will refer to as services. Each service can have several instances where each 

instance runs on one VM. The application architecture defines the number of different services, the 

computing requirements for each service and the communication requirement among services. The 

resources with the most impact on application performance can vary among application services. 

• Dependencies on DC services: User applications often require generic services provided by DC. For 

instance, firewall, intrusion detection systems or load balancing can be provided transparently to the 

application. Devices providing these services are often called middle-boxes. The locations of the 

application’s VMs depend on the location of the servers providing these services. These DC services 

can also be mobile and its placement varies according to the locations of the VMs. 

• Performance Requirements: Applications have different performance requirements. Highly 

interactive services need very low latency (e.g. web shopping websites), while other static websites 

tolerate a longer response time. Other applications may require high availability of a specific subset of 

services. Therefore, each service has different semantic and quantitative requirements. These 

requirements are defined as Service Level Agreements (SLA). The use of SLAs is often limited to 

availability guarantees. Availability is the only metric current DCs guarantee in IaaS deployments. 

This diversity makes resource allocation using generic centralized mechanisms extremely difficult. The 

dependencies among services play an important role on the performance of the application. Thus, the 

resource allocation for one service depends on the rest of the application. 

1.2.3. Context Diversity: Synergies and Conflicts between Applications and Infrastructure 

Applications and infrastructure characteristics can be highly diverse within the DC. In a virtualized 

environment, applications share physical resources. We need to consider both the effects of the interaction 

among co-located applications and the suitability of an application in the underlying infrastructure. We 

need to consider the following aspects: 
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• Co-located applications: Despite the logical isolation, the physical resources of a server are shared 

among several applications. To increase resource usage, DC managers could over-provision servers. 

Typical resource allocation algorithms only verify if a server has enough resources available to hold a 

logical VM. However, the characteristics of both the application as well as the resource usage on the 

host should be considered. For instance, two very-low latency applications may not be deployed 

together in a single-CPU server, as both would need to access resources with high priority.  

• Host-aware allocation: It has been shown that the power consumed by workloads can depend on the 

host characteristics [5]. Considering host characteristics in resource allocation of applications helps 

lowering power consumption. Other often-neglected characteristics of the hosts can significantly 

impact application performance. CPU cache characteristics may impact some applications [6]. 

Different types of applications require different tuning of resources. For example, Facebook uses 

specific tuning of their servers to handle a large number of UDP connections [7]. These optimizations 

may be helpful for some applications and harmful for others and should be taken into account when 

allocating applications. 

• Topology-aware allocation: Distributed applications are highly dependent on network latency and 

bandwidth. Allocations should consider the topology and status of the network. Some applications must 

run inside a cluster, while others may run on servers spread across the network for resilience. 

• Security: In a public Cloud, different users use the same resources. Virtualization provides logical 

isolation among applications owned by different users. However, isolation can sometimes be 

compromised by software vulnerabilities or even human error. To ensure security required by some 

applications, users may impose constraints on which applications can share physical hosts. A user with 

many applications may be willing to spend more to have resources shared only among his applications. 

Another important issue is legacy applications requiring old software. The DC manager may want to 

isolate these applications from others.  

Applications can be managed more efficiently if the environment characteristics are known. For example, 

an application might tolerate some degree of interference while still meeting their SLA requirements. 

1.3. Dynamic Behavior 

Challenges for DC management also arise from the dynamic behavior of DC applications and 

infrastructure. 
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1.3.1. Allocation Patterns 

An import characteristic of applications is how often new VMs are requested.  Some applications, like 

multi-tier applications can run on the same VMs for their entire lifetime. New VMs are only launched due 

to workload variations or failures (see Section 1.3.3) and not due to the intrinsic nature of the application. 

However, applications that do batch processing might launch new VMs to run only a time-limited task. 

These applications are constantly reserving and releasing resources. Thus, they are more flexible and 

require more agile allocation mechanisms. On the other hand, long running applications are less demanding 

in terms of allocation processing but require more stable environments to run. 

1.3.2. Application Architecture Evolution 

Another aspect to consider is the evolution of an application over time. Users may launch new features, 

refactor the application or make use of new technologies. Thus, during its lifetime, an application can suffer 

changes on its architecture, on its resource requirements or on in their dependencies on the DC services. 

Cloud management mechanisms need to be able to adapt to these changes dynamically. The changes in the 

configuration and allocation of one application can affect other co-located applications. Thus, all 

applications should be aware of the environment they are running on and actuate when changes can affect 

their performance or resilience. This requires granular monitoring of the environment. 

1.3.3. Workload Variation: Automatic Scaling 

Even if the application architecture does not change, an application workload can change dynamically:  

• Workload can change during the day. The effect of these changes depends on the provisioning strategy. 

We can have low resource utilization periods if provisioning is done with respect to expected peak 

usage. This inefficient host utilization can be improved by resorting to over-provisioning. However, 

there is the risk of congestion and consequently degradation on application performance; 

• Workload evolves as the popularity of the application evolves and new resources need to be assigned;  

• Sudden changes due to specific events. These changes can be expected or not, depending on if the event 

was planned (e.g. marketing campaign) or not (e.g. new popular item on shopping website); 

To handle dynamic workloads, DC managers resort to automatic scaling mechanisms. However, once 

again, the proper mechanisms to use depend on application characteristics and on the context surrounding 

the event. Automating scaling can be either horizontal, where new VMs are provisioned to handle new 

traffic, or vertical, when the resources used by a VM are increased. Horizontal scaling assumes the 

application is developed to handle multiple simultaneous instances. On the other hand, vertical scaling 
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requires the host to have enough free capacity to handle the new requirements. Eventually, as an application 

workload changes, either the affected applications or some other co-located applications need to migrate so 

that enough requirements are available.  

1.3.4. Failures and other Environment Changes 

The physical DC environment can also change: new servers can be added, the network architecture 

could change or failures may occur leading to sudden changes in availability of the physical infrastructure. 

Ideally, managers would like the DC environment to automatically adapt when conditions change. For 

instance, applications looking to improve performance should automatically make use of the new resources 

without requiring manual requests or configuration. 

Another important aspect is application resilience. An application should maintain its performance as 

failures occur, or at least present a controlled progressive degradation. To improve resilience, the allocation 

process needs to take into account the application architecture, the physical environment and the 

performance requirements. There are two main methods to deal with failures: 

• Static (fault-masking): multiple instances are deployed to ensure, that if a failure occurs, the service 

continues to operate with sufficient performance. This approach is costly but might avoid downtime; 

• Dynamic (fault-recovery): fail-over instances are prepared to take over when a failure occurs. 

Although less costly, this solution assumes a period of unavailability during recovery. 

The most adequate scheme to use depends on the application architecture and capabilities. It can also 

be determined by cost, as multiple active instances are normally more expensive as they imply higher 

resource reservation. Thus, the final solution is trade-off between cost and application requirements (in 

terms of SLAs defining response time, MTTR, MTBF, etc.). 

1.4. Cloud Management 

Hundreds of thousands of dynamic applications can co-exist and share resources within these 

infrastructures. Cloud management systems need to handle frequent allocation requests and requirement 

changes.  

1.4.1. DC Entities and their Goals 

The DC ecosystem consists of several entities with conflicting interests and different timeframes: 

• Physical Infrastructure (Resource Providers): Servers, switches, routers, power supplies, coolers, 

etc. These are resources to be allocated to applications and services. The main goal of resource 
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allocation is efficiency. DCs should accommodate as many applications as possible, without 

compromising performance. 

• User applications (Resource Consumers): Applications owned by users. Each application has its own 

specific performance objectives and resource requirements. 

• DC services (Resource Consumers and Providers): Generic services that can be used by multiple 

applications (e.g. firewalls, IDS, load balancers, etc.). These services can be both service consumers 

and/or providers. These services can be virtualized and deployed just like user’s services.  

1.4.2. Management Systems 

Cloud Management systems encompass several operations to be able to run applications with 

acceptable performance. The first basic function is resource allocation. The system searches for appropriate 

resources and deploy the application. In current DCs, specific services like data or image storage are 

physically separated and often allocated separately. The allocation process may also include network 

services to define the addressing scheme and/or virtual private networks. A second important feature is 

application monitoring. The management system must be aware of the DC environment. This includes 

application location, characteristics and performance. Finally, a management system should provide 

customized application management. The system should allow applications to adapt to changes not only on 

their workload and characteristics but also on the underlying infrastructure (e.g. failures, maintenance or 

reconfiguration). Adverse conditions should be detected and appropriate VM management operations (e.g. 

live migration, replication, scaling, etc.) have to be deployed. 

There are several management systems for large Cloud DCs [8], [9]. OpenStack is supported by several 

large players in the DC market and reflects many of the current design concerns of DC managers. 

OpenStack splits management into three main components: compute, networking, and storage. The 

compute module allocates VMs to physical servers. A centralized component determines the location of a 

VM for each allocation request. Compute nodes on each physical server are responsible for periodically 

announcing their resource availability and deploy local VMs. The network component defines the 

networking model for each application. It manages, for instance, configuration of VLANs, virtual private 

networks and mappings to public addresses. The storage node manages VMs in storage volumes. Finally, 

a graphic interface allows a manager to control the DC from a central point and users to make allocation 

requests.  

The current default OpenStack’s VM allocation mechanism has two main steps: First, it uses constraints 

in the VM allocation request to filter hosts retrieved from the central database. The filtered list is then sorted 
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according to customized cost functions. The cost functions depend on the user request or on host 

characteristics. Furthermore, the system combines multiple cost functions. Once the host is selected, 

OpenStack contacts the selected compute node to deploy the VM. 

The generic approach taken by OpenStack can be highly customized but it is a centralized mechanism 

that sequentially processes VM requests. There are several optimization algorithms to determine resource 

allocation. These algorithms aim to maximize the number of deployed applications with respect to one or 

two parameters (for instance, CPU, bandwidth, network, configuration cost or failure resilience) [10]–[16]. 

However, centralized solutions do not scale for large and highly diverse DCs. Optimal solutions may require 

a large number of applications to be reallocated. Given the dynamics of DCs, the state of the environment 

can change faster than the time it takes to migrate all applications to the new allocation. Additionally, some 

applications must be running continuously and may not be able to migrate immediately or may incur a high 

cost [17], [18]. Optimal placement solutions may become obsolete shortly after being found. Some solutions 

assume that the traffic matrix is fully known [19], which is infeasible in highly heterogeneous environments. 

Others assume that the DC has identical VMs [11]. This optimization approach is more suitable for DCs 

that operate large applications with a large number of identical VMs performing similar tasks like web 

search or social networking. In an ever-growing multi-tenant DC scenario, it is not possible to apply these 

solutions due to diversity of the applications and infrastructures. 

1.5. An Integrated Approach to Distributed and Dynamic Management for a 

Cloud Data Center  

We explore a generic approach for automatic management of highly complex and dynamic applications 

within a multi-tenant cloud DC environment. Given the diversity and dynamic changes in DCs, we propose 

a distributed and dynamic approach for DC management. Allocation decisions should be distributed 

throughout the DC. Autonomous agents running on each DC server analyze and allocate application 

requests. Instead of a single centralized entity with complex tasks for a very large number of application 

requests, we propose thousands of autonomous agents, each assigned to process a few application requests. 

A fully distributed system can be more effective and easily scale to a very large, complex and dynamic 

cloud environment. A distributed approach effectively reacts to congestion or failures. Each agent that 

allocates resources gathers the necessary information to be able to analyze an application request. We apply 

resource discovery protocols so that each agent can gather information about available resources in other 

servers.  
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Our approach integrates application management operations into the cloud. Autonomous local agents 

adapt to the time-variant nature of most DC applications and infrastructure. Agents customized to each 

application can monitor the application locally, and quickly react to changes. The dynamic nature of our 

proposed system constantly renews information about resource availability and quickly adapt to sudden 

events that affect application performance. Distributed application agents increase the capacity to monitor 

applications, maintain state information and make more granular decisions. Agents run inside the cloud, in 

close proximity of the entities they manage. They can access information with finer granularity and react 

quickly to environment changes. Our proposal provides the management elasticity to the advertised 

resource elasticity of the cloud. 

1.5.1. Management as a Service 

The decision of moving applications to the cloud is mostly supported by a he pay-per use model. 

Arguably the user would only pay for the resources it uses. However, in order to achieve the desired 

performance levels, the user has to overestimate the resources it needs. Current DC providers offer 

automatic horizontal scaling based on pre-defined thresholds. The responsibility for the availability of a 

service is left to the user. For instance, Microsoft Azure requires users to deploy instances of a service on 

VMs in at least two fault domains, to achieve a 99.95% availability [20]. The user is left to design the fault 

tolerance mechanisms and set the conditions for automatic scaling. We believe this approach contradicts 

the goal of the cloud since the user needs to manage intrinsic failure events of the cloud.  

1.6. Contributions 

Management solutions for current and future Infrastructure-as-a-Service (IaaS) Data Centers (DCs) 

face complex challenges. First, DCs are now very large infrastructures holding hundreds of thousands if 

not millions of servers and applications. Second, DCs are highly heterogeneous. DC infrastructures consist 

of servers and network devices with different capabilities from various vendors and different generations. 

Cloud applications are owned by different tenants and have different characteristics and requirements. 

Third, most DC elements are highly dynamic. Applications can change over time. During their lifetime, 

their logical architectures evolve and change according to workload and resource requirements. Failures 

and bursty resource demand can lead to unstable states affecting a large number of services. Global and 

centralized approaches limit scalability and are not suitable for large dynamic DC environments with 

multiple tenants with different application requirements. 
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We believe that highly distributed systems fare better in this ever-growing and highly dynamic scenario. 

Among distributed paradigms, multi-agent systems provide the flexibility and autonomy required to 

manage individual applications. 

This thesis proposes LAMA, a multi-agent cloud management system that:  

• distributes management tasks over all hosts to increase scalability with the number of hosts and 

operations; 

• dynamically adapts to changes in the environment or application needs; 

• integrates application management into the infrastructure for faster and more efficient reaction to 

events. 

The main contribution of this thesis is the study and development of a distributed, integrated and 

dynamic management system for highly diverse and volatile DC environments. Our approach allows 

management systems to scale with the DC size and automatically and dynamically adapt to changes on its 

characteristics.  

Contributions: 

1. Distributed Management and Control for Scalability 

Current cloud management frameworks follow a centralized paradigm. Management is split into 

multiple centralized services. Each service performs a required management task for all hosts (e.g. 

scheduler, monitoring, orchestration, image management, networking, security). LAMA differs from 

current cloud management system as it does not split management workload per task. Instead, LAMA splits 

management workload into autonomous agents that can handle all required management tasks for only few 

requests.  

LAMA distributes workload for all management tasks: scheduling, provisioning, monitoring, 

orchestration, image management and networking. LAMA eliminates typical bottlenecks seen in 

centralized systems. Provisioning requests can be processed by any host in the DC. Monitoring data is 

distributed among the DC network. Network management is handled by SDN controllers in different hosts. 

LAMA scales naturally as the size of DC increases. Whenever a new host is deployed it includes a new 

management agent. The management capacity increases as the DC capacity grows. 

We demonstrate the advantages of our distributed approach through the following results: 

a. We demonstrate, using a network simulator, that LAMA schedules enough instances in parallel 

to fill 95% of a cloud DC with capacity for 70000 instances in only 120 milliseconds. 
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b. We demonstrate, using implementation in a production data cluster, that LAMA scales better 

than OpenStack when provisioning a high number of concurrent requests. LAMA maintains 

constant time to activate an instance as the number of concurrent requests is increased. 

OpenStack’s time to activate each virtual instance increases linearly with the number of 

concurrent requests. In our cluster, with capacity for 82 instances without over-allocation, 

OpenStack takes 100 seconds to provision all the instances while LAMA completes the task in 

8 seconds. 

c. We show that LAMA eliminates centralized bottlenecks for monitoring services in the DC. 

Workload in centralized systems increases linearly with the number of hosts and instances 

managed. In LAMA, the monitoring workload on each link depends only on the instances 

deployed in a single instance. 

2. Dynamic Management for Better Adaptation to Events and Past Behavior 

Current cloud management frameworks provide auto-scaling mechanisms based on static rule-based 

mechanisms. LAMA introduces autonomous management agents that can adapt application deployment 

periodically or when a failure occurs. LAMA introduces the concept of management strategies. 

Management strategies are used to determine application deployment (e.g. number of instances per service, 

constraints on location of instances, etc.) while taking into account current performance of the application, 

past history of downtime and service-level goals. Strategies not only determine the number of instances 

needed to process current workloads, but also pre-plan for failures using backup instances. Latent instances 

(warm, hot, cold) are in different phases of the deployment process. The phase determines how fast those 

instances become active. Additionally, coordination messages between agents enable detection of conflicts 

of allocation of latent instances. This enables agents to continuously update deployment to be ready to 

respond to the next failure. 

LAMA’s management strategies allow continuous adaptation to different events and application states. 

This allows us to achieve different service levels for different types of applications across different periods 

of time.  

In order to illustrate the advantages of our dynamic approach: 

a. We analyze the different recovery times we can achieve by using different types of latent 

instances in LAMA. Recovery time can range from several minutes to no downtime. This 

enables LAMA agents to adjust recovery times according to each application service level 

requirements.  
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b. We demonstrate that LAMA satisfies the availability required by applications with different 

SLAs in the presence of multiple sequential failures. The dynamic nature of app agents allows 

refreshing the application deployment after changes caused by failures. We deploy multiple 

applications with diverse availability requirements ranging from zero to a few minutes of 

downtime. We show that recovery time remains below the recovery value determined by a 

user-set SLA after several sequential failures. This includes zero downtime for applications 

that need to be continuously available. 

c. We demonstrate, in detail, how an application agent adapts the deployment of an application 

as failures occur. We show that LAMA can avoid downtime for applications that are close to 

violating their SLA.  We deploy a multi-tier application with service-level parameters defined 

within a sliding window. We demonstrate that the application keeps the minimal number of 

deployed instances required to achieve the desired performance and be able to recover within 

the available recovery time. If a failure causes downtime, the SLA is affected. LAMA 

immediately adapts the application deployment to the new SLA by adding new recovery or 

active instances. If the time available to recover as defined the SLA becomes very low (below 

the time to recover from a hot instance), the app agent deploys extra active instances. The 

application downtime is thus bounded by the SLA defined for a sliding-window. 

3. Integrated Management to enable Environment-Aware Application Management 

Current cloud frameworks allow cloud users to manage their applications through a centralized API. 

These management systems provide metrics about the state of virtual instances. However, performance of 

the cloud applications does not depend only on the state of the instances. It depends on the entire application 

ecosystem, i.e. application, host, network and co-located instance characteristics. 

LAMA allows application management agents to access information about the whole application’s 

ecosystem. LAMA also allows cloud users to provide algorithms tailored to their applications’ needs and 

characteristics. This enables deployment of monitoring algorithms that can detect failures that depend on 

the host behavior and application characteristics. Traditionally systems, lacking customization, would miss 

it or generate false positives. 

We illustrate the advantages through the following experiments: 

a. We present a case study of failures that can affect the application even with low workloads. 

We demonstrate how to design a customized algorithm to be deployed in LAMA. It uses 

information not made available on other platforms. We demonstrate how this algorithm 

determines the right action to perform and eliminates false positives from basic rule based 
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techniques. Using LAMA, we build a monitoring strategy to detect disk interference at the host 

level for a multi-tier online application. A decision tree is built to diagnose and react to two 

types of interferences that cause significant impact on the application’s response time: (1) Disk 

write interference on the host of a database service that causes significant increase on the 

application response time when the CPU IO Wait metric of the host surpasses 25%; (2) Disk 

read interference on the host of the web server that causes significant increase on the application 

response time when the CPU User and System metrics surpasses 90%. Resource usage analysis 

on the virtual instances only leads to false negatives, while plain resource usage thresholding 

for the hosts leads to false positives.   

b. We propose a management strategy that operates according to application’s characteristics and 

service-level parameters defined by the user. This strategy uses internal information about the 

time it takes to deploy and configure new instances. We show how users can have different 

recovery times per failure simply by adjusting SLA parameters for their applications. The 

availability requirements range from allowing several minutes of downtime to avoiding any 

downtime. We apply this strategy to a multi-tier online application. We show that the app agent 

maintains recovery time below the SLA. We demonstrate that the app agent takes differentiated 

decisions per service. As provisioning times vary with the service’s image size and instance 

configuration, the app agent deploys different recovery instances per service accordingly. 

1.7. Dissertation Organization 

In Chapter 2 we present a detailed description of the LAMA framework. Chapter 3 describes the 

algorithms and protocols used for resource allocation. In Chapter 4, we analyze LAMA instance 

provisioning workflow and compare its performance with OpenStack. Chapter 5 introduces LAMA’s 

distributed monitoring framework and discusses its advantages. Chapter 6 describes a dynamic 

management strategy for multi-tier web applications. It demonstrates how cloud users can deploy 

customized management strategies for their applications. In Chapter 7, we present LAMA’s web interface 

that allows visualization of the state of the framework and applications. Chapter 8 summarizes and presents 

our conclusions.  
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Chapter 2 

The LAMA Framework 

In IaaS infrastructures, a large number of third-party apps share a large pool of resources. Increasing 

size of IaaS DCs and number of hosted applications lead to a highly dynamic computing environment. 

Cloud management frameworks need to handle frequent provisioning requests, to manage failures and 

recovery for servers and applications, and to adapt to variable and unpredictable workloads. The fact that 

cloud providers know little about applications and the virtual instances they host, only makes management 

more challenging.  

LAMA is a multi-agent system (MAS) that manages IaaS cloud data centers. Efficient management of 

these infrastructures involves a high number of tasks (e.g. monitoring, provisioning, failure detection and 

recovery, network management, application scaling, and access control). LAMA distributes management 

tasks among multiple autonomous entities spread over the DC. LAMA’s agents are dynamic entities 

continuously adapting to changes in their environment. 

2.1. LAMA Design Vectors 

We built LAMA based on three main design concepts: distributed processing, dynamic adaptation and 

integrated management of applications. 
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2.1.1. Distributed Processing 

Current DC cloud infrastructures can host hundreds of thousands of servers. A single company can 

have more than a million servers across its multiple DCs. A single centralized management system is not 

able to scale indefinitely. We apply a distributed management approach with two main goals in mind: 

• Scalability: A DC management system should be independent of the DC size. In multi-tenant DCs, 

users create a high number of small applications. Thus, the management complexity should be driven 

by the application size and complexity. To allow DC growth, management operations should be 

independent on the number of servers and deployed applications. A distributed approach allows agents 

located in any server in the DC to make localized management decisions. 

• Granularity: The time frame to react to events depends on application characteristics and on the current 

state of the application. For instance, for lower response times to failure we may need to increase the 

granularity of monitoring and make decisions locally and independently of centralized management 

systems. To be able to achieve higher processing and monitoring granularities, some of the load should 

be processed locally and communication should be spread throughout the network. 

In our approach, resources are managed by multiple autonomous entities. Each of these entities builds 

its own database of free resources by establishing peer-to-peer communication with other resource 

management entities. Each entity will be able to make resource allocation decisions independently. On the 

other hand, an independent autonomous agent will manage each user application. These agents are also 

distributed across the network. The agent behavior will depend on the application characteristics and 

performance goals. As a result of this distribution of the management load, each agent will be able to make 

more granular decisions and access data with finer granularity.  

2.1.2. Dynamic Adaptation 

Current DCs environments are highly dynamic in time and space. Time-variant nature arises from 

constantly changing workloads and from events that affect the capacity of the DC infrastructure. The 

granularity of these changes can vary from a few microseconds to months. The changes can also be gradual 

over a period time or bursty. Additionally, failures can make a server unavailable or cause performance 

degradations. On the other hand, technologies like virtualization allow easy migration of applications across 

the DC. Therefore, congestion hotspots can change quickly between different locations on the DC.  

To handle the dynamic nature of the DC environment, each agent representing a provider or an 

application implements specific actions to adapt to: 
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• Changes in infrastructure: The agents managing a set of physical resources should adapt to variations 

in infrastructure like changes in network topology or addition or removal of servers; 

• Adapt to volatile workloads: Some services have very volatile workloads. The agent should include 

mechanisms to quickly provision extra resources to handle workload bursts. 

• Resilience to failures: Failures occur frequently in DCs. The agents should consider instances’ failure 

dependency to avoid application downtime. The agent should quickly react to failures guaranteeing that 

the application recovers to normal operation within the limits specified in its SLA. 

• Adaptable Overhead: The use of management tools like monitoring or VM migration should be 

adjusted to the characteristics of the application. Management details concerning, for example, 

monitoring granularity and reaction time should depend on the requirements of the application. Low 

response time applications need faster adjustments than long response time or batch applications. 

LAMA provides features to allow fast and effective reaction to workload changes and failures.  

2.1.3. Integrated Management  

We use distributed and dynamic features of the platform create an integrated management environment 

for applications.  Applications are managed by agents deployed in the cloud environment. Each application 

has specific characteristics and QoS demands. An integrated approach allows creation of differentiated 

management strategies to satisfy specific application requirements. Building centralized systems with 

differentiated management algorithms is complex and incurs in high overhead.  

LAMA’s integrated management approach has two main advantages: 

• Holistic view of the application environment: The agents have information not only about the 

instances that compose the application, but also about their hosts. This allows agents to better diagnose 

application issues and create recovery plans for potential failures. Thus, we can build more dynamic 

and efficient management algorithms. 

• Proximity to data: In traditional systems, application management is done outside the cloud. An 

integrated approach allows app agents to be close to the instances they manage. This enables real-time 

access to performance data and, consequently, faster reaction to events that affect application 

performance. 

Agents that manage applications maintain a view of the application that includes: a logical architecture 

based on user specifications, a mapping of each logical component to the allocated physical resources and 

an estimate of the application’s performance. Based on the evolution of its view of the application, the agent 
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decides the necessary steps to guarantee current and future performance of the application. LAMA provides 

a programmable environment that allows users to define their own management strategies. 

2.2. Multi-Agent System (MAS) 

In its most basic form, Cloud Computing defines a pool of resources to be shared by several different 

applications. Thus, there are two main types of entities in the DC: providers, which represent entities with 

resources to be shared, and applications, which represent entities that consume resources. Providers are 

more efficient when all their resources are fully utilized. Applications need to be able to access resources, 

whenever they require them. This leads to conflicting interests between providers and applications and 

among different applications sharing resources. 

2.2.1. The Agents 

The main building block of our system is a multi-agent system (MAS). Each agent operates 

autonomously representing an entity in the DC. Thus, we define three basic types of agents: 

• Provider Agents: Autonomous entities responsible for managing a small set of resources. The 

providers control the allocation of resources. In this sense, providers represent the management system 

at each resource hub. The provider agent can be local to the provider or remote. For instance, a provider 

agent managing resources of a server can run on that same server. For a set of network resources, we 

can have an agent deployed on a server controlling those resources. 

• Application (or App) Agents: Autonomous entities responsible for acquiring the resources an 

application needs to operate with a specified performance. Complex applications can be distributed 

throughout the network. Thus, one application can have multiple agents deployed close to the allocated 

resources. Also, in a virtualized Cloud Computing environment, application services can migrate 

between servers. Likewise, application agents should be able to move around the DC to be closer to 

where the application resources are currently reserved. 

• Dispatcher Agent: Centralized autonomous entity responsible for support operations. The dispatcher 

maintains a registry of provider and app agents in the system. Each agent authenticates itself to the 

dispatcher during initialization. The dispatcher suggests new peers for provider agents and handle new 

applications requests from cloud users by assigning them to a new provider agent. The dispatcher is not 

involved in actual management of applications.  

To understand how our MAS agents fits into the DC infrastructure consider the layered diagram of 

Figure 1. The typical virtualized environment is composed by a hypervisor that controls the access by the 
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VMs to the physical resources. The provider agents are placed on top of the physical machine operating 

system. The provider agents work in close connection with the hypervisor executing VM management (e.g. 

create and delete VMs, set resource allocations, migrate applications, etc.) and monitoring actions. 

Application agents are logically placed on top of provider agents, as they do not interact directly with the 

operating system or the hypervisor. Each application will deploy an application agent on servers where 

instances of each service are deployed. One of the application agents is elected as application controller. 

The controller maintains information about the application (i.e. architecture, dependencies, current 

allocation and performance) and defines actions to improve the performance of the application or its 

predicted resilience. If the controller fails, any application agent can take over as the new controller. 

 
Figure 1 – Architecture of the MAS with provider and application agents. 

2.2.2. Agent Architecture 

The generic architecture of an agent in a MAS is depicted in Figure 2. Every agent has a central unit 

that processes information about the environment collected by sensors. This information is used to create a 

model, which represents a partial view of environment. The model contains only the environment 

information that is relevant to the agent’s goals. Each agent has a set of mechanisms to influence the state  

of the environment: the effectors. Finally, each agent needs to interact with other agents to either gather 

information or to indirectly change the environment. 

 
Figure 2 – Generic logical agent architecture: every agent maintains a view of the environment using sensors’ results 

and uses effector to change that environment according to their interests. 
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In our MAS, we implement two types of agents representing applications and resource providers. Table 

I contains a short description of the purpose of each component for each type of agent. The main difference 

is that application agents’ models are centered on the application while the provider agents’ models are 

based on the resources they manage. It is important to note that only providers can directly reserve resources 

in a physical server. This is important because application agents represent the interests of external users. 

Therefore, the provider can implement access controls to the physical resources (for instance, constrain 

resource allocations or control which VMs can be co-located for security purposes). 

Table I – Functions of agent components per agent type. 

 Application Agent Provider Agent 

Model The agent builds a model of the 

application architecture including its 

services, dependencies among 

services, dependencies on DC 

services and on fault domains. It also 

maintains allocation information and 

current performance of the 

application. 

The agent maintains information 

about (1) a subset of available 

resources, (2) the current state of the 

provider including allocations, 

resources available, and application 

behavior. 

Sensors The agent monitors the performance 

of the application services.  

Sensors monitor resource usage per 

tenant application.  

Effectors The agent does not directly actuate 

on the environment. Instead, all 

resource allocation requests go 

through provider agents. 

The agent deploys application agents 

and sets resource allocations for 

services. 

Interactions Interacts with provider agents to 

request resource reservations. 

Interacts with other providers to 

create a view of available resources. 

Interacts with applications to respond 

to allocation requests and alert for 

resource contention or failures. 
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2.3. Application Model 

In LAMA, clouds users specify their applications (or simply apps) structure and requirements by 

defining a graph of services.  Services designate logical components of an application (e.g. database, web 

server). The application agent will use that specification to determine what support services are required, 

the number of virtual machines and their allocations. The complete application model is depicted in Figure 

3. 

 

Figure 3 – App Architecture Graph. 

The user spec is a high-level representation of the application provided by the user. The logical, virtual 

and physical layers are internal representations used by LAMA agents. 

2.3.1. User Spec 

The application is defined through a user spec, a GraphML [21] document that defines the structure of 

the application. The user references the images of each service, service level requirements (or SLA) for the 

application, and other service configuration parameters (e.g. allocation constraints, minimum resource 

requirements, auto-scaling configurations, etc.). An example of a user spec is defined in Figure 4. 

 
graph [ 
    name "rubbos" 
    label "RuBBoS (MySQL)" 
    directed 1 
    connector rubbos 
    strategy resilience_graph 
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    sla_period 200 
    sla_performance_index 0.9 
    sla_miss_fraction 0.1 
 
    node [ 
        id client 
        label "Client Generator" 
        image "../rubbos-client.qcow2" 
        subtype application 
        user "lama" 
        password "lama" 
    ] 
 
    node [ 
        id apache 
        label "Apache Web Tier" 
        image "../rubbos-apache.qcow2" 
        subtype application 
        scaling auto 
        scaling_port 80 
        user "lama" 
        password "lama" 
    ] 
 

node [ 
        id "mysql" 
        label "MySQL" 

    subtype service 
        image "../rubbos-mysql.qcow2" 

    image_init ../rubbos-mysql.init.qcow2" 
        user "lama" 
        password "lama" 
        resource_ram 2GB 
    ] 
 
    edge [ 
        source client 
        target apache 
        label "Client Flow" 
    ] 
 

edge [ 
        source apache 
        target mysql 
        label "DB Flow" 
        type client 
    ] 
] 

 
Figure 4 – Sample User Specification of an Application. 

The user-provided logical specification directs the agent to create an internal logical architecture. The 

graph can have the following properties: 
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• name: The name used to identify the application. This should be a unique identifier. Thus, LAMA 

might add a suffix to guarantee that the name is unique; 

• label: A user friendly name for the application (not necessarily unique); 

• connector: A user-defined class with application specific code to update instances. LAMA defines a 

series of hooks in the management workflow to handle application lifecycle events. Example of these 

events are the deployment or termination of a new instance. The user is responsible for defining code 

to setup instances (e.g. edit configurations, run applications specific commands, install packages, etc.); 

• strategy: The user can define a strategy to use to manage the application. The strategy determines how 

the app agent scales the application, reacts to failures, or what to metrics to monitor and create for 

application visualization. 

• strategy parameters: The user can specify custom parameters to be used by the management strategy. 

In the example of Figure 4, we define three SLA parameters. These are used by an SLA-based 

management strategy that we present in Chapter 6  

Each node specifies a service. Nodes can have the following attributes: 

• id: An identifier of the service that must be unique within the application. 

• label: A user-friendly name for the service; 

• subtype: Each service can have two subtypes. The default type is application to indicate an application 

service. The other type is client. As LAMA was designed as research framework, we introduce the 

client subtype to indicate a service that will hold a client generator. This type of service is treated a 

little differently than application services, as LAMA guarantees that there is one client instance ready 

to be used to generate workload. Once a client is started, LAMA launches a new client instance for a 

new workload. We use this feature to run fully automated experiments in our cluster; 

• image: Identifies the image to use for the new instances.  

• image_init: Identifies the image to use for the first instance. For some applications, the user might want 

the first image to be different than the subsequent images. For instance, in MySQL Cluster setup, the 

initial images can be load with data in the database. Subsequent images added during scaling will 

receive state from the remaining images. Alternatively, the user can define a single stateless image and 

create some procedure to download the data required. This alternative normally takes longer to deploy 

but creates smaller images. 

• user, password: Credentials to access the instances. 
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• resource_*: Users can specify the amount of resources to be used for instances of each service. It can 

be used to indicate the following resources: CPU Speed, CPU Cores, RAM, Disk Speed, Disk Space, 

Network Rate. 

• scaling [optional]: If ‘true’, indicates that a service can be horizontally scaled, i.e. the app agents can 

add additional instances. If the value is set to ‘auto’, indicates that LAMA should handle the scaling of 

the service automatically. In this case, the app agent will add a load-balancer service to handle request 

distribution. The user should define the parameter scaling_port to indicate which port is listening for 

requests. 

Edges represent a relationship between services. They are used to indicate dependencies, so that LAMA 

knows which services need to be update upon changes in the application deployment. They are also useful 

for visualization purposes. Edges can have the following attributes: 

• source: The client service in the relationship; 

• target: The server service in the relationship; 

• label: A user-friendly name for the relationship; 

• type: An edge of type client indicates that the source nodes should be updated, whenever there is a 

change on the target node. LAMA ensures that these updates are triggered whenever new instances 

are added or deleted. By default, LAMA does not trigger those updates. 

2.3.2. Logical Layer 

The logical layer contains the services that compose the application. It is constructed by adding support 

services to the structure defined in the user spec. For each image defined in the user spec, a new image 

service is added. The image services are responsible for storage, backup and maintenance of VM images. 

For each image service, the app agents will have to reserve the necessary disk space before the image can 

be uploaded. A dependency is explicitly created in the application graph between the image service and the 

service itself. App agents can take that relation into account when evaluating and managing the application. 

For services marked as scalable, app agents add a new support load-balancer as a predecessor node. 

The load-balancer services manage load among instances of services that are designed to scale.  From this 

point on, the load-balancer service is handled the same way as any other application service.  

2.3.3. Virtual Layer 

The virtual layer represents the virtual instances that compose the application. A service can comprise 

multiple instances. If the service is scalable, the number of instances is increased to accommodate new 
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workloads. If not, backup instances can to improve the application resilience to failures. The app agent is 

responsible for determining how many instances must be deployed for each service. By default, the app 

agent deploys an instance per service and then scales it according to workload variations.  

2.3.4. Physical layer 

The physical layer contains the servers used by the instances of the application. The app agent sends 

requests for new instances to the provider agent. The requests can contain resource requirements and 

constraints to where each instance can be allocated.  The provider agents use its peer network to find servers 

that meet the request requirements.  

As we will see in Chapter 6 this holistic view of the application structure is used to identify potential 

failures and plan how to recover from them.  

2.4. Provider Agent 

Provider agents are designed to provide features for app agents to manage their applications. These 

functions include searching and reserving resources, launching app agents for new applications, subscribe 

relevant monitoring data, and execute virtual instance operations. Dynamic management strategies are 

enabled by the distributed nature of all management tasks in LAMA. Provider agents can execute most 

cloud management tasks independently. This means that multiple app agents can adapt to events in parallel 

by contacting their local provider agent, thus accelerating recovery from failures.  

2.4.1. Architecture 

The architecture of a provider agent is depicted Figure 5. 

 
Figure 5 – Architecture of Provider Agents 
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2.4.1.1. Agent Core 

The core module of the agent is responsible for: 

• Initialization: The core module configures the agent (determine current address) and starts the 

remaining modules. 

• Authentication: The core module authenticates the agent with the dispatcher agent. It receives a new 

identifier when it is first initialized. 

• Communication: The core module handles all events from other agents. Upon reception of a new 

event, it determines which module(s) can handle the event.  The agent also starts up a web interface to 

answer queries about the status of the provider and local application agents. LAMA includes a web 

interface that allow cloud providers and users to access information on the state of the infrastructure 

and applications. As each provider agent is able to answer information about itself and the app agents 

it hosts, we are able to distributed the web interface workload among all the DC servers. 

2.4.1.2. Resource, Allocation and Peer Managers 

The resource manager, the allocation manager and the peer manager are the modules responsible for 

creating a database of resources and allocating resources to applications.  

The resource manager maintains the local resource database. On initialization, it needs to scan the 

resource available at the local host. This scan is reviewed periodically. To increase the number of resources 

in the database it requests a new peer search. This drives the peer manager to search for new provider agents 

with resources available. When new peer provider agents are found, its resources are added to the database. 

These resources are used to answer to allocation requests from local app agents. 

The allocation manager manages the distributed workflow of a new allocation requests. When a new 

resource request is received, it is first reserved in the local database. This initial reservation is then reserved 

remotely. The allocation process terminates once the reservation is confirmed. The allocation process is 

described in more detail in Chapter 3. We study its performance under different workloads and cluster state. 

We designed LAMA to be easily extended to support allocation of any type of resources. This allows 

providers to advertised any type of resources or capabilities. Currently, the LAMA framework supports 

allocation of disk space, disk IO, RAM, CPU usage and network I/O. It also allows providers to advertise 

the CPU speed of their servers. Thus, app agent can impose CPU constraints for new instance requests. For 

instance, an app agent can request that allocations are made only for servers with a minimum CPU speed. 
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2.4.1.3. App Manager 

The app manager is responsible for initialization and management of local app agents. When a new 

application request is received, the app manager creates the app agent. The app agent is initialized using 

the user spec for the application. 

 For each application, LAMA creates a virtual private network (VPN). The VPNs are deployed using 

Open vSwitch [22] virtual bridges. Open vSwitch allows us to setup a Software Defined Network (SDN). 

The app manager deploys an SDN controller, to allow the app agent to control the communication between 

the application’s instances and a DHCP server process to assign private IP addresses to new instances. An 

application agents runs in their own network namespace and its process uses a low-privilege user. Thus, 

they do not have access to the network interfaces or data in the physical host. The VPN allows application 

instances to communicate not only among themselves but also with the application agent. This allows the 

instances to publish application specific metrics directly to the app agent. 

The app manager includes an app monitor, which is responsible for monitoring the app agent and 

network processes and for restarting them if they die. Finally, the app manager is responsible for forwarding 

requests to and from the application to other providers or to respond to requests from the web interface.  

2.4.1.4. Instance Manager 

The instance manager is responsible for instance deployment. It includes function like copying instance 

images from other provider agents and define, create, remove or change the state of instances. We use the 

KVM (Kernel-based Virutal Machine) hypervisor to run virtual machines. Virtual machines are managed 

through the libvirt API.  

2.4.1.5. Monitoring 

Provider agents manage a monitoring sub-system with two main goals:  

• provide app agents with data from entities in the application’s environment (hosts, instances and 

network used by the application);  

• allow users to customize methods for detecting and reacting to events that affect application’s 

performance.  

Local resource monitoring is done using collectd [23], a plugin-based open source monitoring tool. A 

key-value in-memory database (using Redis[24]) provides a publish-subscribe mechanism that notifies 

agents of new metrics in real-time. Redis serves as a proxy to all metrics. App agents can ask the local 

provider agent to subscribe metrics for hosts or instances that are part of their application environment. 
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Provider agents manage all remote subscriptions. This avoids abuse from app agents and redundant 

subscriptions. It also provides accountability of the volume of monitoring data per app agent. Explicit 

subscription from app agents guarantees that providers only subscribe metrics from remote peers that are 

actually going to be used by app agents. 

Additionally, provider agents allow app agents to request data with a specified granularity. This allows 

app agents to adjust the monitoring behavior according to application needs [25]. However slower provider 

agents might limit monitoring granularity options according to its capabilities. 

2.4.2. Active and latent resource allocations 

One of the main goals of the LAMA framework is to allow fast reaction to failures and other events 

that can affect application performance. LAMA implements a feature that allow app agents to pre-plan the 

future evolution of the application in case of potential failures. 

LAMA provider agents can allocate resources for active or latent instances. Active instances run and 

process application workload. Latent instances have resources reserved for later requirements. Latent 

instances can be in cold, warm or hot states, depending on what stage they are in the provisioning process. 

These instances are used by app agents to pre-plan recovery from failures. For active instances, provider 

agents reserve all the resources required by the instance. For latent instances, reservations of certain 

resources are made according to particular later event. Provider agents need to guarantee that, for a given 

event, resources are not over-allocated above a configured limit. This customized local limit allows provider 

agents to over-allocate resources to increase server resource utilization. Table II shows which resources are 

allocated per provisioning stage. Active allocations always have precedence over latent reservations. If a 

new active resource allocation leads to an overload situation, the provider agents remove affected latent 

allocations and notify the corresponding peer or app agents. On the other hand, app agents notify provider 

agents whenever the dependencies of latent allocations change. 
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Table II – Possible instance states. The table shows which resources types are active or reserved (A) or 

Latent (L) for each instance state.  
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LEVEL NO. STATE PROVISIONING STAGE 

1 Cold Host/resources reserved. L L L L L 

2 Warm Image copied to host. A L L L L 

3 Hot Instance created+paused. A A A L L 

4 Active Instance active. A A A A A 
 

2.5. Application Agent 

Application agents are autonomous entities that continuously monitor and adapt to changes in the state 

of the application. Its decisions are determined by monitoring strategies that a user can customize to fit their 

goals to the application. 

2.5.1. Architecture 

The architecture of app agents is depicted in  Figure 6. 

 
 Figure 6 – Architecture of Application Agent. 

The application agents share the same core as provider agents. Thus, module initialization and 

communications between them operates in the same fashion. However, app agents authenticate to their 

local provider agents. App agents can only start allocation requests after authentication.  

The app controller module maintains a view of the current app model and is responsible for 

coordination between the different modules. It also can publish relevant events of the app’s life-cycle to 

cloud users. The app controller initializes a user-defined management strategy. Management strategies 
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use the application graph as a view of the application structure. They implement a custom evaluation of the 

status of the application. The evaluation is based on the structure of the application and monitoring data 

available from LAMA’s monitoring infrastructure.  Management strategies are typically triggered by a 

monitoring strategy. Users can subscribe to common events provided by the framework (e.g. host or 

instance failures) or define their own monitoring rules or algorithms. The goal of these strategies is to 

determine provisioning operations (e.g. add or remove active or latent instances) for scaling and responding 

to failures. In Chapter 6, we propose and evaluate a dynamic management strategy for multi-tier web 

applications. 

The operations module handles the workflow of all instance actions (e.g. start, remove, migrate). For 

instance, starting an instance includes a series of commands to copy the instance image, set up network and 

verify connectivity. Users can provide custom code to connect to instances and execute custom 

configurations or verify application’s status. The ‘connector’ attribute in the user spec (see Section  2.3.1) 

is used to define a class that handles instance configuration. 

Each application runs in its own virtual private network. The SDN controller manages the application’s 

private network and enforces any security constrains imposed by the user. The app agent cannot access the 

SDN controller directly. Instead a local in-memory key-value database (based on Redis) is used to provide 

communication between the SDN controller and the rest of the modules. This interface allow us, to limit 

app agents actions for security purposes. 

 The in-memory database is also used to provide communication between the low-level monitoring tool 

and the monitoring module. The monitor module collects raw data and detects high level events. It allows 

a user to configure monitoring strategies. These strategies define custom code that can generate higher 

level events (e.g. failure detection) from low level system metrics (e.g. resource usage). LAMA provides a 

set of default algorithms that can be configured by the users (e.g. state machines for failure detection, 

window-based analysis and rule based decisions). 

2.6. LAMA as a Research Framework 

LAMA’s characteristics make it an ideal framework for research purposes.  LAMA was designed to be 

an open environment that allows the integration of advanced app management algorithms. Cloud users may 

deploy customized management code for their applications. This code can make use of LAMAs 

management API that includes operations for monitoring (subscribe metrics about hosts and instances, 

setup aggregations metrics, etc.) and provisioning (create, remove active or backup instances). 
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LAMA also includes other features and modules to enable fully automation of experiments and data 

collection: 

• Client Services: As we have seen LAMA allows client services to be specified in the user spec for the 

application. Client services are used to generate workloads for applications. They can also publish 

metrics through the application’s VPN. 

• Event Publish System: Controllers in application agents publish relevant application lifecycle events 

to the in-memory database. LAMA provides an option for cloud users to subscribe to these events. 

• Scenario Constraints: LAMA allows constraining which provider agents should have peer 

relationships and instance allocation. This allows creating very specific scenarios for analysis. 

• Automation Packages: We developed two additional packages for emulating failures in instances and 

host (LAMA Thanatos) and to automate schedule of experiments (LAMA Experiments). LAMA also 

includes management commands that enable users to remotely install provider agents and to stop, reset, 

and restart each provider or the entire LAMA framework. 

2.6.1. LAMA Thanatos 

LAMA Thanatos is a distributed failure emulation tool. An agent is deployed on each of LAMA servers. 

In its current version, it allows emulation of failures at the host level (host crash and resource congestion) 

and instance (instance crash) levels. 

2.6.2. LAMA Experiments 

LAMA Experiments is a distributed experiment scheduler. This tool was used for all experiments 

performed in our testbed cluster. Experiments can be configured using YAML files. An example of an 

experiment configuration is presented in Figure 7. This sample experiment starts by deploying new app. 

Once that app is active, it schedules three more events: the start of a client workload generator after 60 

seconds, a crash of a random instance of service ‘apache’, and the termination of the experiment after 700 

sec. LAMA experiments allows us to easily launch large scale experiments.  

LAMA experiments has two additional relevant features: 

• Parallel/Concurrent Scheduling: LAMA Experiments can deploy helper agents in all the servers in 

the cluster. This enables us to schedule multiple parallel requests. This accelerates the execution of 

multiple concurrent requests to test high load scenarios. 

• Real-time Reporting: A command line tool allows us to configure an HTML report with a timeline of 

the events generated during the experiment and time-series charts of resource usage metrics. 
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duration: 1500 
users: 
  user1: 
    lama: 
      username: rubbos_01 
events: 
- time: 10 
  actions: 
    - cmd: create_app 
      app_name: rubbos-001 
      app_type: rubbos-mysql 
      config: 
        sla: 
          sla_period: 200 
          sla_performance_index: 0.9 
          sla_miss_fraction: 0.1 
- time: 60 
  dependencies: 
    - active_app: 
        app_name: rubbos-001 
  actions: 
    - cmd: launch_client 
      app_name: rubbos-001 
      config: 
        workload_number_of_clients_per_node: 300 
        workload_up_ramp_time_in_ms: 60000 
        workload_down_ramp_time_in_ms: 10000 
        workload_session_run_time_in_ms: 600000         
        monitoring_debug_level: 0 
        monitoring_all_response_times: 1 
- time: 180 
  dependencies: 
    - active_app: 
        app_name: rubbos-001 
  actions: 
    - cmd: failure 
      failure_type: instance_crash 
      app_name: rubbos-001 
      params: 
        service: apache 
        choice: random 
- time: 700 
  dependencies: 
    - active_app: 
        app_name: rubbos-001 
  actions: 
    - cmd: experiment_end 

 
# maximum total duration 
# default user for the experiment 
 
 
 
# at 10 sec, create a new 
# app named rubbos-001  
# with user spec defined # by 
rubbos-mysql 
 
# configuration 
# parameters for strategy 
 
 
 
# 60 sec after rubbos-001 # is 
active, launch a  
# client generator for 
# app named rubbos-001 
 
# configuration to be 
# used in the client (the # app 
connector should  
# know how to apply it) 
 
 
 
 
 
# 180 sec after rubbos- 
# 001 is active, generate # a 
failure (crash a 
# random instance of the  
# ‘apache’ service  
 
 
 
 
 
 
# 700 sec after rubbos- 
# 001 is active,  
# terminate the  
# experiment 

Figure 7 – Sample Experiment Configuration. 
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2.7.Assumptions 

Assumption 1. We consider an Infrastructure-as-a-Service scenario with a high number of small to 

medium applications 

This work addresses the problem of high workload and overhead of managing a high number of 

applications centrally. LAMA is designed to distribute the management load of different application among 

the hosts of the DC. Thus, LAMA assumes a public-cloud Infrastructure-as-a-Service scenario with a high 

number of small to medium applications (a few tens of virtual instances). Thus, we assume that the cost of 

management and monitoring of each application is low. As currently deployed, the application agent is 

indivisible. This means that as an application grows, the processing overhead of the application agent 

increases. The application agent uses host resources and might interfere with the co-hosted applications.  

In our design, we include the possibility of using multiple distributed agents per applications. As we 

have seen, the user can define and deploy multiple monitoring strategies. Each of these monitoring 

strategies can run in a different agent. In the future, we plan to study how a management strategy for a 

single application can itself be distributed. In a production environment, the complexity of management 

strategies should be carefully evaluated before deployment.  
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Chapter 3 

Distributed Resource Allocation  

We study the advantages of distributing DC management functions. The first basic operation in DC 

management system is to reserve computing resources to user applications 

3.1. Introduction 

Traditional resource allocation is done centrally with a global database of system metrics. They are 

split into three different types shown in Figure 8. In a monolithic approach, as used in OpenStack, a single 

resource allocator processes one request at a time and accesses the entire DC state. On a 2-level approach, 

as used in Mesos [26], a first-level resource allocator assigns request to multiple second-level allocation 

frameworks. Disjoint subsets of the DC resources are split among different second-level frameworks. In a 

shared state approach [27] multiple parallel resource allocators access copies of the global state of the DC. 

Despite the use of parallel processing, the shared state approach is still centralized in nature as all allocators 

access the same global state. The main advantage of these systems is the ability to access the complete DC 

state to process allocation requests. On the other hand, as the DC grows, the overhead of maintaining that 

centralized state also increases. Monolithic approaches cannot handle the ever-growing demand in DCs and 

suffer from head of line blocking. Complex requests can block processing of other simpler requests. The 

two-level approach constrains the resources that can be used by each allocator simultaneously. It 
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sporadically limits the capacity to make decisions and creates blocking. The shared state approach generates 

allocation conflicts. Due to its inherent centralized nature, collision is only detected after a request was 

complete locally. In this situation requests need to be processed again. 

 

  

(a) Monolithic approach. (b) 2-level approach. (c) Shared state approach. 

Figure 8 – Typical resource allocation approaches. 

We apply our fully distributed approach to process resource allocation requests. We take advantage of 

the placement of resource allocators next to the resources themselves. The provider agents deployed on 

each DC server should be able to make autonomous allocation decisions. However, a single provider may 

not have enough resources to accept allocation requests from complex applications. Thus, we define 

interactions among provider agents that enable them to make allocation requests remotely. When humans 

are presented with a problem, they naturally resort to their close friends or connections that might have the 

necessary resources to solve it. Likewise, each agent constructs and maintains a short-list of other peer 

agents that have access to free resources. Agents communicate among themselves to gather information 

about resources. 

An application setup starts with an application agent being deployed randomly in any DC server. The 

application agent starts the allocation process by sending an allocation request to the provider agent in the 

same server. Provider agents maintain short-lists containing references to other provider agents. We refer 

to these other provider agents as peers as they communicate using a peer-to-peer overlay network. The 

provider agent uses the short-list to determine if it can satisfy the application agent’s allocation request. 

There are four main components: 

• Provider Short-List: describes how provider agents setup and maintain short-lists of peer providers; 

• Allocation Protocol: describes how provider agents make allocation decisions based on their short-lists; 

• Short-list Maintenance: describes how provider agents adapt their short-list to external events; 

• Resource-based Routing: describes how provider agents redirect allocation requests they cannot fulfill. 
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3.2. Provider Short-list Setup 

3.2.1. Short-list Properties 

At the initial stage, provider agents are not aware of other provider agents. We develop a protocol to 

find and create a shortlist of other provider agents. We consider three design goals: 

• Independence: As DC utilization increases, we want different provider agents to have distinct lists 

of peers. Thus, provider agents should create their short-list independently. Diversified short-list 

increase the probability that, if a provider cannot satisfy one allocation request, one of its peers 

might; 

• Locality: During the allocation phase, provider agents select other peers to provide services of the 

same application. It is often best for application’s performance that its services are placed in servers 

close to each other. Thus, the choice of peers prefers the nearest agents; 

• Controllability: The protocol should have low communication overhead to avoid affecting 

applications performance. 

3.2.2. Random Hop: Randomized Hop-by-Hop Forwarding 

Resource discovery is typically based on centralized directories, broadcast or multicast queries or 

random search [28]. Using a centralized directory-based protocol violates our goal of using fully distributed 

protocols. Using multicast solutions to find provider agents, leads to the message being broadcast to the 

entire network. The overhead would be uncontrollable given the high redundancy present in the DC 

networks. Thus, we use a randomized protocol to route packets. Contrary to the protocol proposed in [28] 

we do not know where direct neighbors are nor do we intend to find all the nodes in the network. We do 

not copy lists of peers or else we would violate the independence design goal.  

Provider agents send resource probe messages that are randomly routed through the network. When 

another provider agent receives a probe message, and it has enough resources available, it replies directly 

to the agent that sent the message. Upon receiving this response, the provider agent verifies if the peer 

provider is already on the short-list. If not, it adds the new peer. Each provider agent repeats this procedure 

until it gathers the necessary number of peer agents. In order to meet the locality design goal, we 

progressively increase the TTL value in the packet. Figure 9a shows possible random routes that request 

packets can follow for different TTLs. The dashed line represents a request for TTL equal to two hops. In 

this case, the host will only be able to add peers located in the same cluster. The thicker lines represent a 

request with TTL equal to four. At this point, the provider agent randomly finds peers located farther away. 

However, the probability that the packet is lost due to TTL expiration is also larger. Traditionally TTL is 
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only present on IP header. However, hop counts are also available in a recent layer-2 proposal through 

TRILL [29]. Thus, the first few packets reach the closest neighbors. As the TTL is increased, the provider 

agent finds peers farther away. 

 

(a) Random routing hop-by-hop (b) Random routing by edge device 

Figure 9 – Possible routes taken by peer probing packets sent by provider agents when extending 

their short-lists. 

 

We also control link utilization to meet the control design goal. As the provider agent only sends one 

packet at a time, it can pace the packets in order to maintain network utilization at any desired level. Given 

that the protocol is resilient to packet loss, its random nature and low overhead requirements, we run it over 

UDP. 

3.2.3. Publish/Subscribe 

A provider agent needs to stay informed about changes in peers in its short-list. This information is 

updated through a publish/subscribe mechanism. Each time the provider agent adds a peer to the short-list, 

it sends a subscribe message to that peer. Every time the resources available change, the provider sends a 

message to all the peers that subscribed its updates. Each update carries the total resources available in the 

provider agent’s server. 

3.2.4. Random Edge: Reducing Spurious Request Packets 

Since we are using random routing, some packets may be lost without ever reaching an end node. 

Depending on the technology used in the DC [16], [2], [17], [18], the protocol may be optimized to reduce 

the number of probe packets that do not reach another provider. If we assume that the edge nodes know the 

routes and distance to other edge nodes, we can eliminate the packets that are lost in the network core. 

Instead of choosing a random hop to forward the packet to, each edge switch chooses another edge node 

randomly. It can use the distance to the other edge node as a reference. Figure 9b illustrates this behavior. 

Notice that the packets are sent directly to the edge nodes. They no longer go through hops where, given 

the limited TTL, they will not be able to find a peer provider. 
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Naturally, this solution immediately assumes some knowledge about the routing technology in the DC. 

However, we can adapt this solution for most protocols used in the DC today. As an example, consider 

TRILL. TRILL has knowledge about the existent edge rbridges. In this case, we can randomly select the 

edge rbridge and forward the packet. The destination rbridge will then randomly forward the packet to one 

of the servers directly connected to it. 

3.3. Multi-Resource Distributed Allocation 

Each provider is able to respond to allocation requests from any application agent. The allocation 

workflow is depicted in Figure 10. The allocation process is triggered when the provider receives an 

application allocation request from an application agent. The provider looks into its short-list of provider 

agents to verify that they have enough resources to satisfy the request. If this local search is successful, it 

starts the second phase of actually reserving those resources at the corresponding provider agents. Once 

and if it receives confirmation that resources were allocated it sends a successful response to the application. 

 
Figure 10 – Distributed Resource Allocation 

3.3.1. Initial local search 

An application request is composed by a set of n services each with resource requirement vector 

R=[0,M]K. The provider agent has a shortlist of peers, which can be defined by a set of p provider agents 

each with available resources vector A=[0,M]K. The goal of the local search is to verify if the set of services 

can be satisfied by the set of provider agents in the short-list. 

The goal of the provider is to quickly return a response to the application. Thus, in this paper, we take 

a simple greedy approach to this problem. For each service, the algorithm tries to find a provider that can 

fit the service. If we are able to allocate all the services, the request is successful. If not, the provider keeps 

track of the services it was not able to allocate. In this case, the provider can take two actions: 

• If it finds a provider with more available resources in its short-list, it forwards the request to that 

provider. This resource-based routing procedure in described in Section 3.5; 
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• If it does not find a better provider it starts a procedure to adjust the short-list until it is able to fit 

all services requested by the application. This short-list adjustment procedure is described in 

Section 3.4 

3.3.2. Resource reservation on peer providers 

If the provider finds enough resources in the short-list, it has to actually reserve resources on the 

selected peer providers. The provider sends one Reservation message per selected peer. Once all peers 

confirm the reservation, the provider sends a response with a list of the assigned servers per service to the 

application agent. 

3.3.3. Trigger short-list maintenance 

Once the allocation process is complete, the short-list maintenance procedure is triggered. If the 

allocation was successful, the provider must verify whether the peer providers used to allocate resources 

need to be replaced in the short-list. If the allocation process failed, the provider needs to improve the short-

list in order to be able to meet the next request.  

3.3.4. Termination 

Given our distributed approach, each provider agent does not know if any provider in the DC can satisfy 

an allocation request. The agent has only knowledge of its own resources and those in the short-list. 

Therefore, it continues to improve its short-list to find better providers or enough resources to fulfill the 

request. Given that we control the overhead imposed, this continuous search has not much impact in 

performance. However, at some point the provider needs to give up and return a negative answer to the 

application agent. The application agent can set a time limit for allocation response. Additionally, provider 

agents also automatically set a time limit to make an allocation decision. We use a threshold of 100 times 

the average time it takes to complete successful requests computed over a sliding window. In Section 3.6.2 

we demonstrate that the allocation time is stable enough to set that limit.  

3.4. Short-List Maintenance 

During its lifetime, the goal of the provider is to have a short-list of peers that allow him to successfully 

allocate resources to applications. As allocations are made, the state of providers changes. Thus, each 

provider needs to dynamically update its short-list.  
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Figure 11 – Short-List Maintenance 

The short-list maintenance process is represented in Figure 11. A provider’s short-list at a provider may 

become outdated for three reasons: 

• The provider has just received an application request. In this case, two situations may occur: 

o The application request was successful: in this case the short-list has now less resources 

available than before; 

o The application request was not successful: in this case, the provider must improve the 

short-list to be able to satisfy the next request. 

• A provider in the short-list has reserved resources for some applications and sent a message updating 

its available resources; 

• Providers have become unavailable due to management decisions or failure. 

The short-list is continuously updated according to a set of metrics. Initially, the provider uses a single 

parameter: the size of the short-list. We described the initial short-list setup in process in Section 3.2. After 

the initial setup, the process is repeated every time the short-list does not fulfill the target metrics.  

The arrival of an application request changes either the state of the short-list or the target metrics.  If 

the application request is successful, it consumes a certain number of resources in the short-list. If the 

provider fails to satisfy the request, it must update the target metrics according to the request. The provider 

uses the services it was unable to allocate (see Section 3.3) to create a list of minimum requirements. From 

this point on, the messages requesting a new provider will carry a list of minimum resource requirements. 

These messages are routed randomly through the network just like in the initial setup process. However, 

peer providers only respond if they have the amount of resources specified in the message available. Every 

time the provider receives a response of a provider that can satisfy an element in the list of minimum 

requirements that element is removed from the list. The process should continue until the target metrics are 

fulfilled: the short-list has the targeted size and there are enough providers that meet the minimum 

requirements. 
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During the lifetime of the provider, the short-list may grow in size. The provider may want to reduce 

the size of the short-list to maintain the allocation process simple. The provider may need to limit number 

of peer providers it can process. This limitation can be imposed based on the amount of computing resources 

currently available at the provider. A provider hosting many demanding applications may be less willing to 

spend resources allocating other applications. Thus, reducing the size of the short-list also limits the 

applications that it can allocate. On the other hand, an idle provider agent can use some extra resources 

creating larger short-lists to be able to answer positively to most future resource allocation requests. 

A successful allocation depends not only on the size of the short-list but also on its quality in terms of 

resources per host. We may include several heuristics to improve the chance of successful allocation. The 

simplest heuristic specifies a target average resource per host. In our current implementation, the provider 

agent uses the last allocated applications as a reference. Peers that repeatedly do not have enough resources 

to allocate any of the services of those applications are removed from the short-list. We go through an 

example of how allocation request events can impact short-list size in Section 3.6.5. 

3.5. Resource-Based Routing 

Whenever a provider cannot meet an allocation request, it has a decision to make: either extend the 

short-list to meet application’s requirements or forward the request to a different provider. The provider 

will only forward the request if it believes some other provider is in better state to fulfill the request. To 

help peer providers decide, each provider advertises the total resources it has in their short-list. Thus, 

whenever a publish message is sent, a provider includes not only its available services, but also the total 

amount of resources of all the providers in their short-list. Figure 4a depicts the request forwarding process. 

When a provider receives an allocation request, it checks its own as well as its peers’ resources. If it does 

have enough resources it then searches for a peer with more resources in the short-list. If it finds one, it 

forwards the request to the chosen peer provider. The peer provider will allocate the application normally 

(if it has enough resources) and respond directly to the application agent. 
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(a) (b) 

Figure 12 – Resource-based allocation request routing. 

To decide where to route failed requests, the provider uses the resource-based routing mechanism 

depicted in Figure 4b. In the figure, we represent the resource vectors of each provider and the resource 

requirements vector of the application in a resource space. For the example in the figure, we use a 2-

dimension resource space. However, the procedure is the same for n-dimensional resource space. During 

the allocation process, the provider computes a vector corresponding to the sum of all resources demanded 

by the application. The vector is represented in the figure by the circle point. The providers who do not 

have enough resources are filtered out (single shaded areas in the figure). The provider then computes the 

root mean square distance between the application resource requirements vector and each resource vector 

of the remaining peers. The provider will consider the peer presenting the largest distance. The goal is to 

increase the chance of that provider being able to serve the request. 

3.6. Experimental Results 

In this section, we demonstrate (1) the protocols efficacy, (2) that the protocols can scale to increasingly 

complex conditions (number of entities, concurrent requests, diversity of applications), and (3) they can be 

as effective as an optimized system given the dynamic nature of the DC computing environment. 
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Figure 13 – Fat-Tree topology with custom cluster size. 

The DC architecture used throughout the experiment corresponds to a typical Google DC architecture 

with 40 servers connect by 1Gbps top-of-the-rack switch [30], [31]. We connect these clusters using a Fat-

Tree topology [32] as it is a generally accepted topology for these infrastructures [30], [31]. In the Google 

cluster scenario, the 40 servers in the cluster have 1Gbps connections to the rack switch and this edge switch 

has 8 1Gbps connections to the top level. This corresponds to an oversubscription of 5 and a Fat-Tree 

parameter k=16. This infrastructure accommodates a total of 5120 servers. During the experiments, we vary 

the parameter of the fat-tree, k, and the cluster size, c. Figure 13 provides an example of this topology (the 

number of switches in the figure corresponds to k=4). We analyze the performance of our approach through 

simulation using the Network Simulation 3 (NS-3) [33]. We implemented the protocols as described in this 

paper and the topologies referred above. 

3.6.1. Short-List: Peer Provider Search 

This section studies the performance of the protocol that constructs a short-list of peer providers. This 

process is applied during initial short-list setup and during short-list maintenance. As referred in Section 

3.2 we propose two modes: random hop and random edge. In the first option, each switch randomly chooses 

an output interface to forward the probe packet to. In the latter, each edge node randomly chooses another 

edge node to receive the probe packet and forward it to one of its directly connected servers. The choice of 

an edge switched is constrained by the TTL value in the packet. The provider also guarantees that utilization 

of the link to the edge nodes does not surpass a certain value. As base parameters for this experiment, we 

use a topology factor, k=16, cluster size c=40, maximum link utilization (using 1Gbps links), u=0.1% and 

a short-list target size of 20. In the following subsections, we study the time to create the short-list (tSL) 

when we vary each one of these parameters. We start every provider simultaneously and measure the time 

it takes for all providers to build their short-lists. 
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3.6.1.1. Short-List Size 

We vary the target short-list size from 1 to 50 peer providers. The results are displayed in Figure 14a. 

We can see that the time to setup the short-list varies linearly with the short-list size when we use the 

random hop mode. This is an interesting result as in a highly redundant topology, like the Fat-Tree, cycles 

could affect the protocols performance due to spurious packet as soon as we increased the TTL. However, 

this is compensated by the higher probability of find a new provider (not already contacted) to the short-

list. The performance significantly improves when we use the random edge mode. In this case, there are no 

spurious packets. We can observe that it exhibits a logarithmic variation. This happens because the protocol 

spends some time searching for close nodes. But, as TTL increases, the probability of finding a new peer is 

higher, leading to performance improvement.  

 

 

 

 

(a) (b) 

 

 

  

 

(c) (d) 

Figure 14 – Time to create the short-lists when varying list size, maximum link utilization and topology size. 

 The short-list size impacts the size of an application (in number of VMs) that a single provider can 

allocate. Thus, we can see that a provider can quickly find a large number of providers to be able to support 

large applications. 
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3.6.1.2. Host Link Utilization 

Each provider determines the rate at which it sends probe packets to limit the overhead in the access 

link. We study the time it takes to build the short-list in both modes as we increase the utilization of the link 

from 0.001% to 10%. The results are depicted in Figure 14b. We can observe that even using only 0.1% of 

the channel the protocol takes only 30ms to terminate in the random hop mode. The variation of log(tSL) is 

linear with respect to log(u). This is a logical result because, as we increase utilization, we only increase 

the rate of packets transmitted. The whole protocol logic and, therefore, the probability of finding new 

peers, remains the same.   

3.6.1.3. Cluster Size 

In this experiment, we vary the cluster size from 8 to 40 servers. The results are depicted in Figure 14c. 

The cluster size impacts the protocol in how much the probe’s TTL has to be increased for a provider agent 

to be able to find enough peers to fill the short-list. For cluster sizes smaller than the short-list target size 

(s=20), the cluster is not enough for providers to complete their lists. Thus, the protocol lasts until the TTL 

is increased to search for peer providers farther away. We can observe a significant drop when c=20. The 

variation is always decreasing because larger clusters decrease the probability of selecting repeated 

providers. In random edge mode, the decrease in allocation time is very small due to the absence of spurious 

probes when TTL is increased. 

3.6.1.4. Topology Size 

We now vary the value of the Fat-Tree factor, k, from 4 to 64. The results are depicted in Figure 14d. 

Increasing the topology size means increasing the number of clusters and number of links in the DC. This 

significantly impacts the performance in the random hop mode as it increases the number of probes lost due 

to expiration of TTL. In random edge mode, the topology size does not impact the performance. 

3.6.2. Application Allocation Time: Isolated Requests 

In this section, we evaluate the time it takes to reserve resources in the network as the load increases. 

We randomly generate applications and deploy application agents in the network in a random node. We 

then measure the time between the initial allocation request and the final response. All servers are setup 

with the same number of resources. Each server offers four different resources (e.g. CPU, Memory, Disk 

IO, Network IO). For each resource, we define three different profiles:  

• Low usage: resource usage randomly chosen between 0 and 5% of the providers’ capacity; 
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• Medium usage: resource usage randomly chosen between 5% and 15% of the providers’ capacity; 

• High usage: resource usage randomly chosen between 15 and 50% of the providers’ capacity. 

We run three sets of experiments. In each set we use a different application generator: 

• Uniform service generator: creates applications composed by a single service with medium usage 

profile for all resources; 

• Heterogeneous service generator: creates applications composed by a single service, where the profile 

for each resource is randomly selected according to a uniform distribution. 

• Heterogeneous application generator: randomly chooses the number of services that compose an 

application between 1 and 10 according to a uniform distribution. It uses the heterogeneous service 

generator to create each service. 

We run each set for three different topology sizes (k ={4, 16, 64} and c={10, 40, 40}. These topologies 

correspond to DCs with 160, 5120 and 81920 servers. We use an initial short-list size equal to 5 and a 

maximum utilization of 0.1%. We generate applications one second apart. In NS-3 we typically simulate 

the speed of network protocols. However, we use the Linux function clock_gettime to estimate the time it 

takes to process each packet and embed that time in the simulation.  

In this experiment, we measure the time it takes to return a successful allocation and the acceptance 

rate (success requests vs. failed) as the utilization of the DC increase. The utilization of the DC corresponds 

to the utilization of the dominant resource. The dominant resource is the resource that has more demand by 

all the applications allocated combined. For instance, if CPU is the dominant resource, 90% DC utilization 

means that, on average, 90% of each CPU is reserved.    

3.6.2.1. Uniform Services 

The results obtained with the uniform services generator are displayed in Figure 15. We observe that 

the performance is constant up to high levels of occupation of the DC (above 90%). This means that the 

nodes adapt to the service size required by maintaining in their short-list peers with enough resources to 

host the application. We also observe that this behavior does not change even as we increase the size of the 

DC. The time to allocate one service is very similar across all topology sizes (roughly 1ms). For high values 

of DC utilization, it is hard for the nodes to find new peers with enough available resources for their short-

list. This leads to a sudden increase in the time to allocation services. We can use this stability information 

to ensure the termination of the protocol as described in Section 3.3.4. Application agents can also set 
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timeouts for their requests of few tenths of milliseconds. If the request is not satisfied in that time, there is 

a high probability that it will not be successful. 

 
(a) 

 
(b) 

  
(c) 

Figure 15 – Time to allocate resources as utilization of the DC increases (uniform service). 

3.6.2.2. Heterogeneous Services 

We repeat the experiment but now generating heterogeneous services. Some of the services can demand 

a high value of a single resource. The results obtained for increasing topology size are depicted in Figure 

16. We observe that allocation time is stable, for all topologies, until the utilization of the DC approaches 

80%. Remember that, according to our setup, a random service can demand up to 50% of the resources 

available on 1 server. This is the point when servers have fewer resources and their short-lists need to be 

rebuilt to allocate new servers. However, resources start being scarcer all over the DC. Thus, requests with 

a high demand of some resource have a higher impact on the short-list maintenance process. This leads to 

an increase in the time to allocate as the utilization of the DC increases. Once again, we see almost no 

difference in the performance of the protocol as we increase topology size. The main difference occurs for 

the smaller topology. This is due to the ratio of the size of services (in number of resources required), when 

compared with the resources available in the DC. 
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(a) 

 
(b) 

  
(c) 

Figure 16 – Time to allocate resources as utilization of the DC increases (heterogeneous service generator). 

3.6.2.3. Heterogeneous Applications  

In this phase of the experiment we generate full applications with up to 10 random services. In Figure 

17, we represent the time to allocate the whole application and the acceptance rate. The increase on the time 

to allocate when compared with the previous experiment comes from the application size. Previously we 

were allocating only one service. The behavior of the protocol is quite similar to the observed in the previous 

experiment. The only difference is that there is a steeper increase when the utilization surpasses 80%. This 

is due to the nature of the applications we used in this experiment: large number of services with possible 

high resource demand. 
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(a) 
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(c) 

Figure 17 – Time to allocate resources as utilization of the DC increases (heterogeneous application 

generator). 

3.6.2.4. Environment Dependence 

As we increase the size of the network and the number of servers, the allocation time remains constant 

for the same utilization and application type. We therefore conclude that the behavior of the protocol is 

independent of the number of nodes in the topology. 

To understand how the protocol behaves with respect to the nature of applications we compute a 

normalized value of the allocation time. For each request, we divide the allocation time by the number of 

resources requested. We plot the curves obtained for the k=16 topology in Figure 18. As we can see the 

curves for all application types are very similar in shape and value. From this, we can conclude that the 

allocation time depends mostly on the total number of resources that the application requires. It is, however, 

independent on the complexity of the application. 
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Figure 18 – Allocation Time Normalized per Resource. 

Finally, we observe that utilization of the DC is the factor that impacts most the behavior of the protocol. 

Naturally, as resources become scarce, the provider agents take more time to find the resources necessary 

to allocate the application. This is also related to the short-list size and quality. If a provider agent has 

enough resources, it can increase the size of the short-list to be able to respond immediately to more 

complex resource requests. The time to allocate only starts increasing steeply when the DC approaches its 

full capacity.  

3.6.3. Application Allocation Time: Concurrent Requests 

We now study the performance when the DC is faced with a burst of allocation requests. We run this 

experiment on the standard Google topology (k=16). We generate n simultaneous allocation requests and 

measure the time it takes for each application to receive a response. The results obtained are presented in 

Figure 19. We plot the curves, for average allocation time, the percentage of reject requests and the final 

utilization of the DC. We can see that the allocation time is approximately constant up to higher values of 

utilization of the DC, increasing slightly as we approach 100%. We observe also that the average allocation 

value is very similar to the values we obtained when allocating a single service at a time in the previous 

experiment. The system also does not reject requests until the utilization is very close to the limit (slightly 

above 60000 services). We can conclude that the time to allocate a service does not depend on the rate of 

arrival of requests either. 
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Figure 19 – Allocation Time for Concurrent Allocation Requests. 

3.6.4. Efficiency 

From the experiments presented earlier in Figures 15, 16 and 17, also demonstrate how efficiently our 

distributed solution uses the DC. For uniform services, the protocol only starts refusing services when the 

full DC utilization is close to 90%. For more complex applications requiring more resources, the acceptance 

rate starts dropping as utilization reaches 80%. These values are highly dependent on the resource demand 

models defined earlier. Thus, this simple greedy approach to allocation is able to achieve a high utilization. 

Furthermore, this value of utilization is achieved without targeting a particular resource type. The allocation 

protocol does not focus on optimizing any specific resource.   

For a static allocation, the DC utilization efficiency depends mostly on the ratio between the resources 

available on each server and the resources consumption profile. However, the dynamic characteristics of 

the DC can have a huge impact on the overall utilization efficiency. When the workload of applications 

varies frequently, the ability to quickly respond to bursts of requests allows quick re-adaptation of allocation 

to the new conditions. 

3.6.5. Short-List Dynamics 

In Figure 20 we plot a sample of the evolution of the short-list size at one provider agent. Short-lists 

are increased in reaction to failed allocation requests. In case of a successful request, the provider can also 

trigger short-list maintenance to increase the number of resources available and prevent future failed 

requests. We marked six relevant events in the evolution of the short-list. In this experiment, the initial 

short-list size was zero. This means the provider does not have peer providers, and could only immediately 

allocate its own resources. At event a, the provider agent receives a new allocation request for which it does 

not have enough resources. The agent starts increasing the size of the short-list to satisfy the request. At 

event b, the provider is able to allocate the application. To prepare for future allocation requests, the 

provider uses the last application as a reference to rebuild the short-list. Thus, the provider agent checks if 
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it can allocate an application like the previous one. In this case, the response is negative and the agent keeps 

searching for peers to add until the target size is achieved. At event c, a new allocation request arrives. 

Every time a request is processed, the provider keeps track of peers that repeatedly did not have sufficient 

resources to allocate services. The provider deletes these peers from the list after a given number of failed 

attempts. At moment d the short-list is again complete. Finally, at moments e and f, after successful requests, 

the provider agent removes some more elements with insufficient available resources. 

 
Figure 20 – Evolution of the size of one provider’s short-list during one execution. 

3.7. Assumptions 

Assumption 2. We have the ability to define and control network protocols.  

Our de-centralized proposal for searching for new peers assumes that the provider can deploy 

customized network protocols like TRILL in the DC or broadcast peer probe packets. This might not be 

possible due to security concerns. Broadcasts are often blocked, and the network might have constraints on 

the protocols that can be used. 

Thus, the protocol to search for new peers might need to adapted to network that is not flat or open. 

One possible solution is ad-hoc hierarchical groups. The first provider agent in a local network could take 

a coordinator role. It would be responsible for handling peer probe requests in the local network. Other 

provider agents would first try to find a local coordinator and join the group. The local coordinators could 

then form a network between them using a centralized coordinator. This would allow provider agents to 

find peers in different networks. 

3.8. Summary 

Resource allocation is an elementary function of any cloud management framework and, in particular, 

LAMA. Application agents request allocation of virtual instances to local provider agents. The provider 

agent searches available resources using a peer-to-peer network. This partial view of resources available in 

the DC is dynamically adjusted as resources are requested and reserved.  



 53 

In this Chapter, we study the efficiency of LAMA’s distributed resource allocation mechanism. We 

demonstrate its performance and adaptability by simulating various scenarios in a large data center. We 

observed that resource allocations maintain good performance for large number of concurrent requests. A 

natural question that arises when using multi-agent systems is if the agents view (in this case, local resource 

database) is able to adapt fast enough to answer environment demands (in this case, new allocations 

requests). Our experiments demonstrate that performance remains stable up to high levels of data center 

utilization. 

In the next Chapter, we compare the performance of the entire provisioning workflow of our distributed 

system with a state-of-the-art centralized framework (OpenStack). 
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Chapter 4 

Distributed Provisioning 

4.1. Introduction 

The single most important task of cloud management framework is the ability to provision virtual 

instances. Cloud frameworks should guarantee that this function does not constitute a bottleneck during 

periods of high volume of provisioning requests. As cloud services become more popular, the volume of 

requests tends to increase and congestion situations will occur more frequently. In this chapter, we analyze 

LAMA’s provisioning mechanism. We compare its performance to OpenStack, the most popular open-

source cloud management framework. OpenStack has a centralized logic. Resources are managed in a 

centralized database. OpenStack comprises several independent services that manage a specific function 

for all hosts.  We aim to understand how provisioning performance might vary in diverse scenarios and 

how it differs between our distributed (LAMA) and a centralized (OpenStack) approach.   

We start by describing the workflows for instance provisioning in both frameworks: OpenStack and 

LAMA. We then create series of three scenarios with gradual increase of concurrency between provisioning 

requests. Finally, we provide an analysis of the differences between the two frameworks.   
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4.2. OpenStack Workflow 

The OpenStack framework has multiple centralized services. The following components are involved 

in resource provisioning: 

• Dashboard: Web interface that allows cloud administrators to manage the framework and users to 

manage their applications. It can be used to trigger provisioning requests; 

• Keystone: OpenStack authentication service. All operation requests need to be accompanied by an 

authorization token; 

• Nova: Centralized controller and scheduler. It manages the workflow of provisioning requests and 

handles resource search and allocation for instance provisioning; 

• Compute: Distributed agent running on each server that can host virtual instances. It handles local 

provisioning of new virtual instances; 

• Glance: Service responsible for storing and serving the virtual images; 

• Quantum: Network service that manages network for all applications deployed in the OpenStack 

framework. 

OpenStack support multiple mechanisms for communication between its services. It can use Advanced 

Message Queuing Protocol (AMQP) frameworks like RabbitMQ or peer-to-peer technologies like ZeroMQ. 

To provision a new virtual instance, a user needs to upload the instance’s image file. The following 

description of the workflow (depicted in Figure 21) assumes that the image was uploaded to the Glance 

service: 

(1) When a user makes a request for a new instance, the dashboard requests a token for the operation from 

the authentication server. Alternatively, the requests can be made to the Nova controller API. In this 

case, the user must obtain a token in a previous step; 

(2) The dashboard sends a new provision request to nova, which includes the authorization token and the 

instance type (which defines resource requirements); the nova scheduler needs to validate token with 

the Keystone authentication service;  

(3) The Nova scheduler searches the database for the requested resources and selects the server that will 

host the instance. It then sends a reservation to the compute node, who in turn confirms if it can host 

the instance. The compute node handles the remainder of the workflow; 

(4) The compute node requests details about the instance from the Nova scheduler; 

(5) The compute node requests the network configuration info from the Quantum service. The Quantum 

server validates the compute node’s token, configures the instance in the DNS and DHCP service and 
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returns the relevant configuration information to the compute node. The compute node also has to 

configure the local virtual network interfaces; 

(6) The compute node requests the image to be copied from the image service. After validating the compute 

node’s token, the Glance image server starts transferring of the image. 

(7) Once the image is copied, the compute node initiates the instance. It notifies the nova scheduler, once 

the instance is ready.  

 
Figure 21 – OpenStack Provisioning Workflow. 

We have seen that the OpenStack framework is based on task-specific services. Each service performs 

the same task for all the applications and host in the data center. We consider this a centralized paradigm, 

despite the fact that each service can be placed in a different server and communicate with others like a 

distributed framework.  

4.3. LAMA Workflow 

LAMA utilizes a MAS approach where autonomous agents can handle multiple tasks. The workflow 

for provisioning a new instance is depicted in Figure 22. There are two main steps. The initial step creates 

an application. This step is only required if the instance is not being added to an existing application. The 

only centralized entity is the dispatcher agent that selects a provider agent and forwards the initial 

application request. 

The workflow for creating a new app proceeds as follows: 

(1) A user creates a new application by sending a new request to the dispatcher agent. This request can be 

done through the LAMA’s web interface or through the command line API; 
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(2) The dispatcher agent registers the app and selects a provider agent, using random round robin, to 

forward the app request to. It will continue search until finding a provider agent that is able to launch a 

new application agent. 

(3) Once the provider confirms acceptance of the application request, the dispatcher sends the provider 

information to the cloud user; 

(4) The provider configures a VPN for the new application: configures the Open vSwitch bridges, launches 

an SDN controller and a DNS server process. 

(5) Once the network is configured, the provider agent launches the app agent process. Upon initialization, 

the app agent authenticates to the provider agent, thus confirming a successful start-up. 

Once the app agent is deployed, launching an instance takes the following steps: 

(1) The user requests a new instance by sending a new request to the provider agent. 

(2) The provider agent forwards the request to the app agent. The app agent updates the application model 

and sends a new allocation request to the provider agent. 

(3) The provider agent follows the LAMA’s resource allocation mechanism (see Chapter 3): it searches 

the resources in the local database. If it selected resources are not local, it needs to remotely reserve the 

resources at the peer provider agent. In the end, it notifies the app agent that the resources were 

allocated.  

(4) The app agent sends a request to the selected provider to start the instance.  

(5) The host provider agent retrieves a copy of the instance’s image. The image may have been stored in a 

different peer provider. As we have seen before, image services are allocated in the same manner as 

other instances. They however, only take disk space resources. 

(6) A final notification is sent to the in-memory database at the local provider. Users can subscribe these 

notifications directly from provider agents. 
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Figure 22 – LAMA Provisioning Workflow. 

4.4. Experiments 

We compare the performance of OpenStack and LAMA for sequential requests (light load) and parallel 

requests (high load). For that purpose, we deployed the two frameworks in our cluster. We use the LAMA 

Experiments module to automatically schedule the launch of all instances. 

4.4.1. Testbed and Experiments Setup 

Table III presents the characteristics of testbed cluster used in the experiments. To deploy OpenStack 

centralized services (Keystone, Nova, Glance and Quantum) we use one type-4 server with 8 logical cores 

and 8GB of RAM. We use the same node for LAMA’s dispatcher agent. The dispatcher agent is a light 

process, that does not require as many resources. However, we do not deploy a provider agent in the same 

server as the dispatcher agent. The total number of servers available to host instances is the same for both 

frameworks. This setup leaves a total of 22 servers (82 logical cores and 172GB of RAM) to serve as hosts. 

Table III – Characteristics of the Testbed Cluster Servers. 

SERVER 

TYPE 
NO. 

SERVERS 
CPU 

CPU MAX 

(MHZ) 
PHY. 

CORES 
LOG. 

CORES 
RAM 

(GB) 

1 9 Intel(R) Core(TM)2 Duo CPU E8500  3167 2 2 4 

2 2 AMD Athlon(tm) 64 X2 Dual Core Processor 3200 2 2 4 

3 7 AMD FX(tm)-4100 Quad-Core Processor  3600 2 4 16 

4 5 Intel(R) Core(TM) i7-3770 CPU 3400 4 8 8 

Total 23   56 90 180 

https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Duo+E8500+%40+3.16GHz
https://www.cpubenchmark.net/cpu.php?cpu=AMD+FX-4100+Quad-Core


 59 

In these experiments, we use an image of the CirrOS operating system. This is a tiny Linux distribution 

of only 12MB, designed precisely for cloud tests. For each instance we reserve 1 logical core and 512GB 

of RAM, which corresponds to the ‘m1.tiny’ instance flavor in OpenStack. This allows us to deploy up to 

82 instances in the cluster without over-allocation. 

4.4.2. Experiment Scenarios  

OpenStack allows users to create projects, which are typically used by cloud users to group related 

instances. Virtual instances are created for a given project. Applications in LAMA work like OpenStack 

projects. When running OpenStack scenarios, all projects are created before the start of the experiment. 

LAMA applications, however, are created during the experiment. Creating LAMA applications beforehand 

would provide an unfair advantage to LAMA, as it would remove the only centralized agent in the system, 

the dispatcher agent, from the workflow. Using LAMA Experiments, we create three scenarios: 

• Single User, Sequential Requests (Figure 23a): We create a sequence of n requests from a single node. 

In the OpenStack scenario, all requests are directed to the nova API. In LAMA scenario, we request a 

new app to the dispatcher agent. The requests for new instances are sent to the provider agent where 

the app agent was created. 

- This scenario does not overload frameworks with many concurrent requests. It serves as a baseline 

to compare with the other two scenarios. 

• Single User, Parallel Requests (Figure 23b): Using the distributed LAMA Experiments agents we 

create a total of n requests as fast as possible. Maximum number of simultaneous requests is 𝑛/𝑘 where 

𝑘 is the number of experiment agents deployed. In the OpenStack scenario, all requests are directed to 

the nova API. In the LAMA scenario, for each request, experiment agents try to create the application. 

If it already exists, the dispatcher returns the provider agent address that contains the app agent. The 

request to create a new instance is then directed to the app agent.  

- Compared with the sequential requests scenario, this experiment increases the contention between 

requests for the same application. 

• Multiple Users, Parallel Requests (Figure 23c): Using the distributed LAMA Experiments agents we 

create a total of n requests as fast as possible. Each request creates an instance for a different project 

(in OpenStack) or application (in LAMA). Just like in previous scenario, OpenStack requests are 

directed to the centralized API. For LAMA, in this scenario, all requests will create a new application 

and add a new instance. However, now instance creation requests are directed to multiple provider 

agents as app agents are distributed among all servers. 
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- This scenario creates multiple projects/applications with a single instance. For LAMA, each 

application will be managed by a different agent in a different node.  

  

(a) Single User, Sequential Requests (b) Single User, Parallel Requests 

 

(c) Multiple Users, Parallel Requests 

Figure 23 – Provisioning Experiment Scenarios 

 

4.4.3. Experiment Metrics 

For each experiment, we measure: 

• API Call time: Measures the time that the framework takes to respond to the API call to create a new 

instance.  

• Activation Time: Measures the total time since the request is made until the instance is active. 

• Number of errors: Counts the number of instances that could not be allocated either due to framework 

error or lack of available resources. 

4.5. Results 

For each experiment, we do several runs for different values of 𝑛 = 1, 5, 10, 20, 30, …, 90 instances. 

The cluster can only allocate 82 instances, thus this maximum value of 𝑛 will saturate the cluster, to the 
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point that some instances have to be rejected. In the parallel experiments, we launch one experiment agent 

per node (except for the dispatcher or OpenStack server node), thus 𝑘 = 22. 

4.5.1. Single-User Sequential Requests 

Figures 24 to 26 show the results obtained for the single-user with sequential requests scenario. Figure 

24 (a and b) shows the evolution of average API call and activation times per instance (error bars represent 

minimum and maximum) as we increase 𝑛 for each of the two platforms. Figure 24c shows a comparison 

of the activation times for both frameworks. Figure 25 show the number of instances that the frameworks 

were unable to provision (as expected, in this scenario 8 instances where not provisioned when requesting 

90 instances, as they do not fit in the cluster).  

For LAMA, we observe an initial increase in the average time it takes to provision an instance. This is 

due to concurrency when copying the image to the host where the instance is deployed. The image is small 

and is copied quickly. However, because the API call times are very short (< 1𝑠), we still face concurrent 

copies. We can see that when we run experiments with more instances, the time to activate instances 

stabilizes (minimum and maximum values between 3 and 12 seconds).  

OpenStack presents a more stable average behavior. However, the API call takes, on average, around 

3 seconds to respond (as a production framework, the call makes more operations). However, the variation 

is wider. The time it takes to activate the instance varies between 10 and 30 seconds. The API call time 

ends up spreading the image copy processes over time, thus reducing contention.  

We can have a better understanding of the relative progress of the experiment using Figure 26. It 

represents an inverted timeline of the experiment with 50 instances. For each instance, we represent three 

points. In the x axis, each instance is represented by its ordinal number in the sequence of requests. The y 

coordinates are: the instant of time when the instance was requested, the instance of time when the user got 

the response of the API call, and the instant of time when the instance become active. 

We can see that, given its faster API call, the experiment using LAMA makes all requests within 2 

seconds. The instances are activated in parallel, leading to a total running time of about 13 seconds. On the 

other hand, it takes 80 seconds to make all the requests using OpenStack and 100 seconds to activate all 

instances.  
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(a) LAMA 

 
(b) OpenStack 

 
(c) Time to activate instances: OpenStack vs. LAMA 

Figure 24 – Single-User, Sequential Requests: Evolution of call and activation times for LAMA and 

OpenStack. The green line represents the difference between active and call times. 

 
Figure 25 – Single-User, Sequential Requests: Failed Requests: OpenStack vs. LAMA. 
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Figure 26 – Single-User, Sequential Requests: Timeline of the’ experiment with n=50. For each instance, 

we plot: (x, y1, y2, y3) = (instance ordinal number,  request timestamp, API call response timestamp, 

Activation timestamp). 

4.5.2. Single-User Parallel Requests 

Figures 27 to 29 show the results obtained for the single-user with parallel requests scenario. Figure 

27a shows that LAMA maintains exhibits similar performance for experiments with up to 60 concurrent 

instances. The increase on average activation time for a higher number of instances is due to local contention 

while creating the instances. From the timeline, in Figure 29, we can see that the total time LAMA takes to 

start all requests is similar. Thus, the contention while copying the image is similar to the previous 

experiment. 

From Figure 27b, we can see a deterioration of performance for OpenStack for both the API call and 

the time to activate the instances. The average time to allocate each instance seems to grow linearly with 

the number of simultaneous requests. From the timeline, in Figure 29, we see that the API call time quickly 

increases to approximately 30 seconds when we create a bulk of requests. For more than 80 simultaneous 

requests some timeouts occur (see Figure 28). These errors where mostly due to timeouts on the API call, 

as the nova API became congested. We can see the difference in overall performance between the two 

frameworks in Figure 27c.  
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(a) LAMA 

 
(b) OpenStack 

 
(c) Time to activate instances: OpenStack vs. LAMA 

Figure 27 – Single-User, Parallel Requests: Evolution of call and activation times for LAMA and 

OpenStack per isntance. The green line represents the difference between active and call times. 

 
Figure 28 – Single-User, Parallel Requests: Failed Requests: OpenStack vs. LAMA. 
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Figure 29 – Single-User, Parallel Requests: Timeline of the  experiment with n=50. For each instance, we 

plot: (x, y1, y2, y3) = (instance ordinal number,  request timestamp, API call response timestamp, 

Activation timestamp). 

4.5.3. Multiple-User Parallel Requests 

Figures 30 to 32 show the results obtained for the multiple-user with parallel requests scenario. For the 

OpenStack framework, the performance degrades slightly. API call response time and activation times are 

similar (Figure 30b) to the previous single-user scenario. The experiment timeline for n=50 is also similar 

(Figure 32). However, we notice a clear increase in the number of failed requests (Figure 31). The main 

reason for the increase in the number of errors was congestion in OpenStack’s network server. The Quantum 

server handles the configuration of the networks for all projects. Using different projects, increased the 

number of network the server had to manage. 

For LAMA, we observed that creating multiple applications had a positive impact in the API call time 

(Figure 30a) and in the activation times. The API call time improved in particular when we requested 50 or 

more instances simultaneously. The average and variation of activation times were also reduced. Using 

multiple applications distributed the load among different app agents located in different servers (4/5 app 

agents per server). Nevertheless, LAMA provisioning still experiences some congestion in the hypervisor 

when multiple instances are provisioned at the same time in the same server.  
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(a) LAMA 

 
(b) OpenStack 

 
(c) Time to activate instances: OpenStack vs. LAMA 

Figure 30 – Single-User, Parallel Requests: Evolution of call and activation times for LAMA and 

OpenStack. The green line represents the difference between active and call times. 

 
Figure 31 – Single-User, Parallel Requests: Failed Requests: OpenStack vs. LAMA. 
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Figure 32 – Single-User, Parallel Requests: Timeline of the  experiment with n=50. For each instance, we 

plot: (x, y1, y2, y3) = (instance ordinal number,  request timestamp, API call response timestamp, 

Activation timestamp). 

4.6. OpenStack Provisioning Analysis 

OpenStack experiences a degradation in provisioning times as the load increases. However, we aim to 

understand, in detail, the causes for that change. It is especially relevant to understand if those causes are 

related with the centralized logic of OpenStack. We analyzed the OpenStack logs to track how much time 

is spent on different provisioning phases per instance. 

We split the time take by OpenStack provisioning workflow into the following phases: 

• Phase ‘receive’: Reception of the requests. Measured from the moment the request is made until it is 

received by the nova controller; 

• Phase ‘unknown setup’: Initial configuration of OpenStack to provision the instance (we were unable 

to identify the exact actions OpenStack performs). Measured from the moment the request is received 

by the nova controller until it is received by the nova scheduler; 

• Phase ‘scheduling’: Determine the compute node that will receive the instance. Measured from the 

moment the request is received by the scheduler until we see the selected host information; 

• Phase ‘controller_to_compute’: Transmission of the request from the Nova controller to the compute 

node. Measured from the moment the request is scheduled until the computer node acknowledges its 

reception; 

• Phase ‘local_claim’: The compute node reserves the local resources for the instance. Measured from 

the moment the request is received by the computed node until it announces that it has reserved the 

resources for the instance; 
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• Phase ‘before_creating’: The compute nodes executes local configurations required by the instance. 

It includes configuring the local network to accommodate the instance. Measured from the moment the 

compute node announces the reserved resources until it actually creates the instance image. 

• Phase ‘create_image’: The compute node copies and creates the image. Measured from the moment 

the image is created until the compute node creates the instance in the hypervisor. 

• Phase ‘lifecycle’: The hypervisor creates the instance. Measured from the moment the compute node 

creates the instance until the instance is active; 

• Phase ‘notify’: The compute node notifies the nova controller that the instance is active. Measured 

from the moment the compute node announces locally that the instance is active until we receive a 

notification sent by the nova controller.  

 
(a) Sequential (Single-user) 

 
(b) Parallel (Multiple-user) 

Figure 33 – Time spent in each provisioning phase per instance in OpenStack. 

We plot the average time spent by each instance in each of the provisioning phases in Figure 33. Figure 

33a displays the results for sequential request in a single-user scenario, while Figure 33b shows the results 

for parallel requests with multiple users. The statistics show that most phases (receive, unknown_setup, 

scheduling, controller_to_compute, local_claim, before_creating, and notify) perform progressively worse 

as we increase the load. This is due to the workload increase in the server we use to manage OpenStack. 

OpenStack can be scaled by adding more replicas for each of its services. This would naturally reduce the 

number of instances the cluster could receive as more servers were used for management. 

Three phases standout by their either significant or unexpected increase in duration: 

• The receive phase (blue columns in Figure 33, steps (1) and (2) in Figure 21): The API web server 

performance degrades significantly affecting the initial time to receive requests. With 50 simultaneous 

instances, this phase accounts for roughly 30% of the provisioning time. This could be addressed by 
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scaling the web server horizontally (more servers) and by increasing the number of simultaneous 

threads. 

• The scheduling phase (green columns in Figure 33, step (3) in Figure 21): The scheduling phase 

degrades when we request more than 30 instances concurrently. This happens due to the logic of the 

scheduling procedure. The nova scheduler searches for resources in the central database. After that it 

tries to reserve the resources in the compute node. The reservation is only completed once the compute 

node confirms that it can allocate the resources. When we increase the number of concurrent requests, 

resource collisions occur more frequently. In this case, the compute node rejects the reservation and the 

nova scheduler needs to search for new resources. A change on the logic of the provisioning mechanism 

could solve this issue. For instance, the scheduler could reserve the resources atomically in the central 

database or simply add some more randomness in the resource scheduling could help reduce collisions. 

• The before_creating phase (pink columns in Figure 33): This phase degrades due primarily to network 

configuration. This procedure depends on the centralized network server. As we increase the number 

of concurrent requests, the workload in the network server increases. We also observed timeouts in the 

network server.  

LAMA avoids most of these problems with its distributed architecture. The distribution of the resource 

search phase, where each provider agent has a partial database of the resources, reduces the likelihood of 

collisions. On the other hand, LAMA scales naturally, as all servers contain a provider agent capable of 

answering requests. This avoids the need of constantly worrying about scaling the management system. 

The dispatcher, the only centralized component, handles very simple low frequency tasks. Scaling 

OpenStack is possible, but cumbersome. An experiment made by the Ubuntu engineering team [34] has 

shown the ability to allocate 168000 instances in 640 servers. During the experiment, where they run into 

multiple scalability issues, they observe a significant degradation in the time to activate instances in the 

framework (30s to 90s). It also took more than 10 hours to deploy 100000 instances. 

4.7. Assumptions 

Assumption 3. Pre-load images to storage. 

We consider the performance of the provisioning mechanism. In order to provision new instances, their 

images need to be uploaded to storage. This is true for both OpenStack and LAMA. OpenStack uses a 

central service to store images. LAMA processes images per application. Each app agent is responsible for 

determining where images for each service are to be deployed. However, there are several conditions we 
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are unable to accurately emulate in our experiments to achieve meaningful results. First, the performance 

of the image uploading phase depends on the network bandwidth of the access path. Second, LAMA’s 

distributed approach would benefit from multiple entry points to the DC infrastructure. Deployment of 

multiple entry points can be constrained by security policies. Finally, image storage services are normally 

deployed in storage area networks with better disk and network capabilities. Thus, the presented results do 

not include possible benefits from distributed images storage. 

Assumption 4. No post-deployment configuration. 

The metric ‘activation time’ measures the time it takes for an instance to become active. In order to be 

usable by the application, some instances require additional configuration. LAMA handles automatic post-

configuration of virtual instances. OpenStack expects manual configuration by the users (most commercial 

frameworks include solution automatic instance configuration). This, final step of provisioning is not taken 

into account in these experiments. Thus, the time for an instance to become an active application instance 

is longer than the activation time considered. 

4.8. Summary 

In this Chapter, we present a comparison of the provisioning task for two frameworks: our distributed 

LAMA framework and the logically-centralized OpenStack. We are able to observe major differences in 

the performance of the two systems. LAMA maintains its performance as we increase the number of 

concurrent requests. Contention when deploying multiple instances in the same host, is the only type of 

congestion LAMA cannot avoid. OpenStack struggles as we increase the number of requests.  
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Chapter 5 

Distributed and Integrated Monitoring and Diagnosis 

This Chapter describes LAMA’s monitoring sub-system. We demonstrate the benefits of distributed 

monitoring in the time to react from failures or events that might affect application performance. We also 

explore the advantages of our integrated approach diagnosing performance problems due to interference at 

the host. 

5.1. LAMA Monitoring Sub-System 

The monitoring sub-system has two main goals:  

(1) Provide app agents with real-time data from its ecosystem (hosts, instances and network used by the 

application);  

(2) Allow users to customize methods for detecting and reacting to events that affect application’s 

performance. 

The architecture of the monitoring modules is presented in Figure 34. Local resource monitoring is 

done using collectd [23], a plugin-based open source monitoring tool. A key-value database (using Redis 

[24]) provides a publish-subscribe mechanism that notifies agents of new metrics in real time. Redis serves 

as a proxy to all metrics. Application instances can also publish custom metrics to be sent to the monitor 

module of the app agent through a private network.  
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The user defines one or more monitoring strategies that determine metrics to subscribe, algorithms to 

apply and granularity of monitoring. If the instance is deployed in a different server, the provider agent is 

responsible for subscribing metrics on the remote server and publishing them to the local Redis instance. 

The provider can subscribe metrics of the host and the virtual instance. The subscribed metrics are defined 

by the monitoring strategy in the app agent. App agents only subscribe metrics from the local Redis 

database. This avoids redundancy of data with co-located agents subscribing the same metrics from remote 

servers. The monitor module in the app agent thus receives this metrics as soon as they are published. It 

then applies a detection algorithm defined in the monitoring strategy. 

 

Figure 34 - LAMA Monitoring module. 

 

Figure 35 – Monitoring Strategies. 

App agents use monitoring strategies to react to events in the application’s ecosystem. Strategies 

subscribe metrics from the monitor module and generate actions to be performed by the app agent. Users 

can fully customize a strategy to be used by an app agent. A high-level overview of the execution of 

monitoring strategies is shown in Figure 35. The user can configure multiple strategies, each specific to a 

distinct function (e.g. failure detection, scaling or identification of other relevant events). There are three 

main components in strategy definition: 

• Inputs and Triggers: Inputs are the metrics of the ecosystem used by the strategy (app events, instance, 

host or network metrics). The strategy can be run periodically, or triggered by new values of a metric 

chosen by the user. The user can also configure the granularity of monitoring; 

• Algorithm: The user defines how the metrics are processed. It could be done by either user’s custom 

code or using LAMA’s existing constructs. LAMA provides basic data stream blocks such as sliding 

window averages, threshold comparison, rule-based processing and finite state machines;  
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• Output Actions: The strategy can trigger an output action or notifications. The actions could be scale 

up or down instances according to the workload, migration of instances or simply notifications to the 

app controller. 

5.2. Related Work 

It is difficult to obtain detailed information about commercial cloud providers and their infrastructures. 

However, we can observe some limitations in their monitoring services. Provider monitoring services vary 

in terms of granularity and number of metrics. Amazon [35] provides metrics with 5-minute periods. Users 

pay for an additional cost if they want data with 1-minute periods. Azure [36] metrics are retrieved every 3 

minutes. Enabling verbose mode provides extra data but reduces monitoring granularity to 5-minute 

intervals. Google [37] metrics are collected in 1-minute intervals. These metrics can take 3 to 4 minutes to 

be available after being monitored. OpenStack [9] is the most popular open-source management platform. 

It has a monitoring module, Ceilometer [38], and a separated orchestration system, Heat, that  handles 

orchestration of the application based on alarms from ceilometer. Overall, the centralized nature of 

OpenStack management leads to longer detection and response times. 

There are numerous research on monitoring platforms for large infrastructures [39]–[41]. Nagios [42], 

Collectd [23] and PCP [43] are examples of low-level platforms that make use of local agents to extract a 

wide range of metrics. We use collectd agents to monitor information on the host infrastructure and 

instances. Most systems propose hierarchical solutions [38], [42], [44] to scale to large systems. They focus 

on low level metrics and use sampling to handle large volumes of data [45]. Wuhib et al. [46] propose a 

distributed P2P monitoring to handle resource usage overload. However, it is agnostic to application 

characteristics. Quality of Service (QoS) of cloud applications is critical specially in the presence of VM 

interferences. [47] [48] purpose QoS based management that focuses on scheduling of well-known 

workloads. They do not address changes in the environment with failures or workload dynamics. There is 

no work addressing the design of monitoring systems for end user management of their own applications. 

Our work focuses on a fully distributed monitoring platform that allows customization of each 

application monitoring according to its requirements. The agent reacts to events that affect application’s 

performance using information about the application state and architecture but also about the hosting 

infrastructure. It enables customized diagnostic of failures and faster response time. To our knowledge, our 

proposed platform is first to address such integrated environment. Its open and flexible design enables the 

use of other techniques proposed in the literature. Applicable techniques include dynamic granularity [25], 
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adaptive [49], model-based analysis [50], stream and window based analysis [51] and machine learning and 

classification [48]. 

5.3. Experiments Setup 

We analyze the advantages of having app agents integrated and distributed in LAMA. We demonstrate:  

(1) how an integrated approach with access to the state of the app’s ecosystem improves efficiency of 

failure detection;  

(2) how our monitoring and diagnosing architecture can improve load distribution in the network;  

(3) the impact of increasing granularity on failure detection time. 

We implement and deploy LAMA in our datacenter with 23 interconnected heterogeneous servers. The 

available resources amount to a total of 90 logical cores and 180GB of RAM. Our experiments focus on 

online multi-tier transaction applications. We use the LAMA Experiments module to automatically deploy 

a online transaction benchmark, RUBBoS [52] that emulates a bulletin board. LAMA reads a logical 

specification of the application (see Figure 36), and provisions the application’s services (apache and 

MySQL). LAMA also adds image service per application service and load-balancers before scalable 

services.  

5.4. Case Study - Integrated Failure Detection 

We explore the advantages of integrated monitoring on detection and diagnosis of performance 

degradations. RUBBoS has various web pages with different characteristics. We focus our analysis on the 

response time of two of those pages:  

(1) ‘StoriesOfTheDay’: Web page that retrieves the stories to be displayed at the present moment; 

(2) ‘StoreComment’: web page that stores a user comment about a story in the database. We emulate 

disk interferences at the host level. 

5.4.1. Factors that Influence the Impact of Host Interference 

We start by analyzing the factors that influence the impact of interferences at the host on application 

performance. We consider two setups: all three application instances deployed in the same host (Figure 

36a) and each of the three instances in a different host (Figure 36b). The hardware characteristics of the 

servers used in the experiments are detailed in Table IV. 
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(a) Single host setup 

 
(b) Multiple Host Setup. 

Figure 36 – Application Model for RUBBoS. 

Table IV – Hardware Characteristics of Server used in the Distributed Monitoring Experiments. 

 PROCESSOR 

RAM 

DISK 

 PHY/LOG 
CORES 

SPEED 
TRANSFER 

RATE 

(SPEC)† 
CACHE 

 Units GHz GB Gb/s MB 

Host A 2/4 3.6 16 6 16 

Host B 2/4 2.5 16 6 16 

Host C 2/4 3.3 16 6 16 

Host D 4/8 2.88 8 6 64 

Host E 4/8 3.4 8 6 64 

Host F 4/8 3.4 8 3 32 

† Transfer rate as specified by the disk vendor (typically proportional 

to but not matching physical speed). 

 

We create hard disk interferences by running a disk IO-intensive process and evaluate its impact on 

application performance (we use the btest  [53] tool). We add an additional feature to btest that allows the 

introduction of a small delay between each operation. This interval allows us to trigger different interference 

levels. We use two types of disk interferences:  

• Interference Type Read (IT-R): a btest process reading from a file on disk; 

• Interference Type Write (IT-W): a btest process writing to a file on disk.  

The parameters that determine the intensity of the interference are:  

• Delay (d) between each read or write operation; 

• Number of threads (t) used by the btest process to request operations in parallel.  
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We deploy the application in our cluster using LAMA and schedule a sequence of 2-minute-long 

interferences with different configurations. The interference configurations are:  

• Three IT-R interference with: 

(1) 𝑑 = 0 and 𝑇 = 1;  

(2) 𝑑 = 0 and 𝑇 = 4;  

(3) 𝑑 = 100𝑛𝑠 and 𝑇 = 4; 

• Three IT-W interference with:  

(1) 𝑑 = 0 and 𝑇 = 1; 

(2) 𝑑 = 0 and 𝑇 = 4; 

(3) 𝑑 = 50𝑚𝑠 and 𝑇 = 4.  

We compare the application performance during each interference with a baseline period without any 

interference. 

The response times for the two reference pages during each period for the single-host setup are 

presented in Figure 37. The Figure shows the response time per percentile for each of the pages during each 

of the seven periods considered (baseline plus interferences). 

 
(a) ‘StoriesOfTheDay’ 

 
(b) ‘StoreComment’ 

Figure 37 – Response time by percentile of requests in a single host scenario. 

 

Table V contains the average, 80th and 95th percentiles for each of the experiments. This experiment’s 

results are included in rows 0 (baseline) to 8 and variations are relative to the baseline case. 
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Table V – Numeric Results for the Diagnosis Experiments: Variation is computed with respect to the 

equivalent case (i.e. same interference) in the baseline scenario. 
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We observe differences in the impact of the interferences on each of the two pages. ‘StoriesOfTheDay’ 

page is mostly affected by multithreaded IT-R. The delay parameter has a proportional impact on the 

response time. We see an increase of approximately 60% for the IT-R interference with the delay and 2.5 

to 5 times in the response time with four threads. On the other hand, ‘StoreComment’ page is affected by 

all interferences. A single-threaded IT-W is enough to overload the disk capacity to write. IT-R 

interferences increase the response time by 100% while IT-W interferences raise mean response time by 

500%. IT-R interferences overload the CPU and the processor spends most of the time executing processes 

in the user and system levels. This causes disk read intensive processes to perform worse. IT-W 

interferences cause an increase in disk IO wait. This can cause problems to any process that needs to access 

the disk like, for the ‘StoreComment’ page, the database writing a comment. It affects mostly the write 

requests. Read requests are often optimized using cache mechanisms that can reduce disk accesses. This 

demonstrates that the impact of interference in the host depends heavily on the application logic.  

We repeat the experiment using the multiple host setup. We deploy each of the application instances to 

a different host. We run multi-threaded IT-R and IT-W interferences on each of the physical hosts. Figure 

38 shows the response time in percentile during each interference per host and page. The numerical results 

are shown in rows 9-21 of Table V. The variation is computed with respect to the single-host experiment 

with the same interference. Naturally, we observe a general improvement to the response time compared 

with that of the single host scenario. Each interference only affects one service at a time. The 

‘StoriesOfTheDay’ is only significantly affected by the IT-R interference with no delay at the Apache host. 

The response time increases by 100% compared to the single host baseline. The ‘StoreComment’ page is 

mostly affected by IT-W interference in the MySQL host. This is a natural consequence, as MySQL is the 

service that does most of app’s access to the disk. A new comment always has to be written to the database. 

IT-R interferences are mostly significant in the host of the load-balancer service. The impact is almost half 

of the impact seen in the single-host scenario. Thus, in complex multi-tier applications not all component 

types are sensitive to a given interference. 
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(a) Load Balancer / ‘StoriesOfTheDay’ 

 
(b) Load Balancer / ‘StoreComment’ 

 
(c) Apache / ‘StoriesOfTheDay’ 

 
(d) Apache / ‘StoreComment’ 

 
(e) MySQL / ‘StoriesOfTheDay’ 

 
(f) MySQL / ‘StoreComment’ 

Figure 38 – Response time by percentile of requests in a multiple host scenario (host with 

interference/page). 

We now analyze the impact on the response time when the application is deployed in hosts with 

heterogeneous hardware characteristics. We study deployments of the application in three different hosts. 

We use the single-host setup in Figure 36a, using hosts B, E and F. Hosts E and F have twice the number 

of cores and different disk performance (Table IV).  Host E’s disk has the same speed and better cache than 

host B. Host F has a slower disk and slightly better cache than host B.  

In Figure 39, we represent the response time for the page ‘StoriesOfTheDay’ when we trigger IT-R 

interferences using different number of threads (rows 1-4, 23-25 and 30-32 of Table V). The performance 

of the two hosts with 8 cores (E and F) is very similar except when we use 8 threads for the interference. 

The app in the host F (slower disk) has response time two times higher than host E. CPU overload is 

typically the main cause for performance degradation in the ‘StoriesOfTheDay’ page. However, extreme 

interferences (8-threads) can move the bottleneck to Disk IO.  
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(a) T=1 

 
(b) T=4 

 
(c) T=8 

Figure 39 – Response time by percentile of requests in a single host scenario for different hosts: Page 

‘StoriesOfTheDay’, IT-R. 

Consider the impact of Disk Write interference using a single thread in the ‘StoreComment’ page 

displayed in Figure 40 (rows 5-8, 26-28 and 33-35 of Table V). Hosts with better disk perform better. 

Naturally, host E still outperforms host B as it has higher CPU speed. However, the resulting response time 

is not significantly different (ranges between 5 and 26%). Thus, the impact of the interference is also highly 

dependent on the host’s hardware characteristics. 

 

Figure 40 – Response time by percentile of requests in a single host scenario for different hosts: Page 

‘StoriesOfTheDay’, IT-R, T=1. 

We demonstrated that the impact of interferences depends on factors like the nature of application, type 

of affected components and host’s hardware characteristics. The true impact of the interference can only be 

assessed by observing the entire app’s ecosystem. We designed LAMA to provide app agents with all the 

tools and metrics to implement customized and effective diagnosis algorithms.  
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5.4.2. Custom Detection and Diagnosis 

This section describes an application of our tool to improve effectiveness of detection and diagnosis. 

As seen in Section Table V we can define monitoring strategies to customize detection of events and 

diagnosis. We will use this feature to build customized decision trees to diagnose problems in the RUBBoS 

benchmark. As we have seen we need to define inputs and trigger metrics, algorithm and output actions. 

To define the components of the decision tree, we start by analyzing application resource usage under 

different levels of IT-R and IT-W interferences. We deploy RUBBoS and generate twelve different 

interferences with different values of delay. 

Figure 41 displays resource usage at the host, while Figure 43 display the response time of the two 

reference pages. These interferences are marked with lighter vertical bands. 

 
Figure 41 – Performance diagnosis: CPU usage detail by core. Bands indicate each interference period with varying 

delay. 
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(a) Single host setup 

 
(b) Multiple Host Setup. 

Figure 42 – Decision strategies for migrating MySQL and Apache Instances due to host interference. 

 
Figure 43 – Performance diagnosis: Response time and Action. Bands indicate each interference period with varying 

delay. 

We observe:  

(1) IT-R interferences impact the time the CPU spends in user and system tasks while IT-W impacts the 

time spent waiting for disk operations. Additionally, we observed during the experiment that resource 

usage for the virtual instances remains stable;  

(2) From the response time chart, we can see the impact that these metrics have on the response time of 

each of the two reference pages. Just as we had seen in previous experiments, IT-R interferences do not 
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significantly affect the performance of the ‘StoreComment’ page while IT-W interferences do not 

significantly affect the performance of the ‘StoriesOfTheDay’ page;  

(3) We had seen from Figure 38 that the ‘StoriesOfTheDay’ page is mostly affected by IT-R interferences 

on the Apache server and ‘StoreComment’ is mostly affect by IT-W interferences in the MySQL server;  

(4) Response time presents isolated peaks that can affect the effectiveness of the diagnosis. To smooth this 

metric, we define an aggregation statistic that takes the average of the response times of requests in the 

95th-percentile (represented as solid lines in Figure 43).  

Using these observations, we can now design the three components of our monitoring strategy. We 

define two decision trees (shown in Figure 42): one to diagnose problems in a server hosting a MySQL 

instance that affect the ‘StoreComment’ page and the second to diagnose problems in a server hosting an 

Apache instance that affect the ‘StoriesOfTheDay’ page.  

The MySQL instance decision tree suggests migrating the MySQL instance when response time of 

‘StoreComment’ is high (aggregate response time higher than TRT_SC), host CPU wait is high (above 

threshold TCPU(Wait)) and the instance resource usage is low (below threshold, TVCPU).  

The Apache instance decision tree suggests migrating the Apache instance when response time of 

‘StoriesOfTheDay’ is high (aggregate response time higher than TRT_SOTD), host CPU wait is high (above 

threshold TCPU(U+S)) and the instance resource usage is low (below threshold, TVCPU).  

Diagnosis is triggered by the arrival of new values of response time. The results of the diagnosis tree 

are displayed in Figure 43. The triangles indicate when the algorithm signals that instances should be 

migrated due to interference in the host, while the dashed black lines represent the response time thresholds. 

We used the following parameters: TVCPU = 70%, TCPU(Wait) = 20%, TRT_SC = 300ms, TCPU(U+S) = 70% and 

TRT_SOFD > 25ms.  

The response time statistic and threshold values are highly dependent on user goals for the application’s 

performance. This is an example of how to design an effective diagnosis algorithm by leveraging 

information from the entire application ecosystem (hosts, instances and application). 

5.5. Overhead vs. Granularity for Specific Detection Strategy 

One of the advantages of using distributed architectures is reduced network overhead. In centralized 

solutions, all monitoring data is aggregated to a central system, which creates a network bottleneck. To 

assess the overhead reduction, we deploy as many applications and instances as possible in our datacenter 

cluster. Each application has four services (client, load balancer, web server and database). Each service is 

composed by a single instance. The monitoring granularity is set at 10 seconds between each data point for 
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all servers. We deploy 5 applications (with a total of 20 instances) at a time and measure the average 

overhead for 5 minutes before deploying a new batch of applications. For a centralized system, we deploy 

all our agents in the same server, so that all monitoring data is sent to the same host. In LAMA, app agents 

are assigned to a server in a random round-robin fashion. For each host, we collect detailed CPU 

consumption per core, memory usage, disk usage for all local disks, and network traffic statistics per 

interface. For each instance, we collect total CPU usage per core, memory, disk and network usage.  

Figure 44 shows the average received traffic at the bottleneck link (i.e. the link with most traffic in the 

datacenter). The overhead for the centralized system grows linearly with the number of applications or 

instances deployed in the cluster. The overhead of the distributed system reaches a plateau that depends on 

the number of applications per host. Ensuring that app agents are distributed evenly in the cluster ensures 

optimal overhead distribution. As we are operating a small datacenter cluster, the total traffic is not 

significant. This can quickly increase in large datacenters, with hundreds of thousands of servers. 

Applications might need more metrics or finer granularity. Another advantage of the LAMA’s multi-agent 

framework is that it scales organically with the datacenter. A centralized system for processing monitoring 

data needs to be maintained and scaled individually. 

 
Figure 44 – Monitoring traffic overhead at the bottleneck: centralized vs. distributed setup, period=10sec. 

5.6. Impact of Granularity on Detection and Recovery Time 

We analyze the impact of monitoring granularity on the detection time of failures in applications. We 

start with a deployment of RUBBoS app. Twenty seconds after the deployment is complete, we start a 

RUBBoS client with a workload that does not overload the application. The number of simultaneous users 

for the benchmark is set to 400. Sixty seconds after the deployment, we crash the MySQL instance.  The 

monitoring strategy uses a simple rule that signals a failure when no monitoring data is received for three 

consecutive periods. 

LAMA handles the recovery automatically by allocating resources for the service. The provider agent 

copies a new disk image for the chosen host and launches a new MySQL instance. LAMA publishes 
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notifications to the user. The notifications include failure detection and deployment of new instances. We 

measure detection and recovery time from these notifications. We run this experiment for monitoring 

periods of 1s to 60s. Figure 45 shows the number of requests and errors for two experimental runs with 

different monitoring granularity (1s, 10s and 60s). The orange area with a diagonal pattern represents the 

time to detect the failure. The failure detection time is measured from the moment the failure happens until 

LAMA flags it. The green area with a cross-hatch pattern represents the time to recover. The recovery time 

is the time since the failure is flagged by LAMA until the replacement instance is active and configured.  
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(a) 60-sec monitoring granularity. 

 

(b) 10-sec monitoring granularity. 

 

(c) 1-sec monitoring granularity. 

 

Figure 45 – Time-to-detect and time-to-recover from a crash failure. 

After we trigger the failure, the number of errors due to timeouts increases to the same number of 

requests. The number of requests increases as we set a short time out (a few seconds) for each request. 

Clients retry loading the same page. As we change the monitoring granularity, we can see how the 
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bottleneck changes from the detection to the recovery procedure. The failure detection time ranges from 2 

to 3 minutes when the monitoring interval is 60s. The failure detection is negligible compared to the 

recovery time when the monitoring interval is 1s. The recovery time remains constant. We address 

improvements of recovery time in other modules of the LAMA framework. Management strategies can 

make use of warm and hot instances to decrease the recovery time. Figure 46 shows how the detection time 

varies with the monitoring periods. The monitoring granularity is linearly proportional to the detection time, 

as expected. This experiment shows the importance of finer monitoring and diagnosing granularities. 

Current commercial frameworks are limited to several minutes of detection time. Our system can definitely 

decrease the detection time to few seconds.  

 
Figure 46 – Time-to-detect with respect to granularity (or monitoring period). 

5.7. Assumptions  

Assumption 5. Monitoring is not affected by failures. 

We do not consider failures that can affect the monitoring infrastructure. Delays in the LAMA’s 

monitoring subsystem could cause false positives. The recovery from this false positive events could cause 

disruptions to application performance.  

In the future, we intend to take into account failures that can affect LAMA’s framework. On one hand, 

application agents should use monitoring as an indication of the health of the hosts and provider agents. 

This allows applications agents to not utilize hosts that it considers unstable or affected by congestion. As 

we have seen in Section 2.7, we plan to make application agent divisible. This enables us to implement a 

monitoring strategy between application agents of the same application. Backup application agents will 

monitor the active application agent health. Through a leader election scheme, backup agents will be able 

to take over when the performance of an app agent deteriorates. 
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5.8. Summary 

We propose a monitoring and diagnosing framework that aims to significantly reduce detection and 

increase effectiveness of problem diagnosis. Autonomous distributed app agents aggregate monitoring data 

and make diagnose decisions per application. The app agents are also environment-aware. They have access 

to monitoring data from all the entities that affect its application performance. We deploy LAMA in our 

datacenter and run extensive experiments to validate our design. We demonstrated how an integrated 

approach, that allows app agents access to the state of app’s ecosystem, enables us to construct a customized 

diagnostic decision tree that increases effectiveness of failure detection and diagnosis. We showed how our 

monitoring and diagnosing architecture can improve load distribution in the network and eliminate 

bottlenecks. In LAMA, monitoring traffic in a link depends on the number of instances per application, 

while in centralized systems the traffic in the bottleneck link varies linearly with the total number of hosts 

and instances. Finally, we saw how the finer granularities achievable by our platform can decrease failure 

detection time from minutes to a few seconds. 
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Chapter 6 

Dynamic Management Strategies for Multi-Tier 

Applications 

LAMA is a generic platform that eases the deployment of custom management algorithms for any type 

of application. LAMA is especially effective for applications with complex and multiple tiers. For instance, 

management strategies can leverage information of the applications’ environment to improve performance 

of the application and enable advanced coordinated planning for failures. Additionally, LAMA prioritizes 

applications during recovery periods and accelerate overall recovery.  

Using LAMA, we develop a dynamic management strategy to control a multi-tier web application. The 

cloud user needs to manage the performance of multiple components that can affect the application in 

different ways. The strategy is driven by user-configured service-level agreement (SLA) parameters and by 

the application graph. It leverages information about the infrastructure in order to determine performance 

of the application and to pre-plan for failures that affect application performance. Our goal is to develop a 

generic strategy for multi-tier application management. However, some formulas and/or parameters can 

and should be customized to a specific application. LAMA framework facilitates the deployment of custom 

management algorithms to better fit apps needs. Additionally, LAMA provides visually rich interfaces that 

help cloud users to get a better sense of the state of the application and how it will respond to potential 

future events. 
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6.1. SLA Definition 

In our strategy, a continuous SLA is defined as a desired performance level over a fraction of time 

within a sliding time window. It is completely defined by three parameters, (𝜂𝑆𝐿𝐴, 𝑇𝑆𝐿𝐴, 𝐴𝑆𝐿𝐴): 

• Target Performance Index (𝜂𝑆𝐿𝐴): a threshold above which a key performance metric represents a 

desired level of performance for the application. 

• Window Size (𝑇𝑆𝐿𝐴): the size of a sliding-time-window used to evaluate SLA performance metrics; 

• Availability (𝐴𝑆𝐿𝐴): the fraction of time the application is available above the defined performance-

level. 

The goal of our strategy is two-fold. First, the strategy ensures that the application has enough resources 

to achieve performance level 𝜂. Second, the strategy pre-plans allocations using warm, hot or extra active 

instances as necessary. It ensures that, upon a failure, the application returns to the desired performance 

within the time available for recovery. Typically, the word downtime is used to refer to a period of time 

when the application is unavailable. In our strategy, instead of downtime, we use the term degraded time 

to refer to periods when the application is performing below the requested performance index. 

6.2. Performance Metrics 

An application may consist of multiple diverse services. The state of each service is evaluated using 

three metrics: 

• Performance Index (𝜂) : Measures the performance of the application. In the current LAMA 

implementation, resource usage is used as a metric. Performance depends on the available resources 

from the original allocation. This index is used to determine scaling needs. 

• Resilience Index (𝜓): Measures the performance of the application in the event of a failure. This index 

is used to determine additional active instances that need to be allocated if the SLA application does 

not allow degraded time. 

• Recovery Time (𝑟): Measures the expected time to recover from a failure, during which the application 

might experience degraded performance following a failure. The recovery time includes the time the 

framework takes to detect a failure and to provision the necessary instances to bring the application to 

desired performance levels. 

The management strategy makes all decisions based on these metrics. 
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6.3. Recovery Time Estimation 

App agents control every step of instance provisioning. They know: 

• The monitoring strategies applied. Thus, agents know the maximum time it takes to detect each failure; 

• Where instances are allocated and images are stored; 

• The time taken by each phase of the provisioning procedure for previous instances. 

Thus, the app agent estimates the time it takes to deploy new service instances. By comparing this time 

estimate to the time available to recover from failures at a given time, the app agent decides what kind of 

recovery instances needs to be provisioned.  

In order to estimate recovery time per instance type, we estimate the time to detect the failure and 

measure the time of four recovery steps: (1) resource allocation; (2) image deployment; (3) instance 

bootstrapping (for Cold and Warm instances); (4) instance resumption (for Hot instances).  

In the current LAMA implementation, we use a simple prediction mechanism of 𝜇 + 𝑘 ⋅ 𝜎2 for each of 

the phases. 𝜇 and 𝜎 are the mean and variance of the observed values for the duration of each phase 

respectively and 𝑘 is a configurable parameter that regulates the estimation error. 

Failure detection time has a significant impact on downtime. Recovery procedures can only start once 

the failure is detected. Thus, when the available time to recover is below the estimated maximum detection 

time, the only resilient option is to provide extra active instances. The default load-balancer redirects 

requests to alternative active instances when it suspects that one of the instances is down. 

6.4. Resilience Graph 

Using the application graph in Section 2.3, we can estimate the performance metrics of the application. 

The performance of the nodes on each layer is computed using the dependent nodes on the layer below. To 

compute the performance metrics defined in Section 6.2, we build a resilience graph (see Figure 47). The 

resilience graph is a directed graph that maps the structure of the application. In the resilience graph, edges 

between the nodes in different layers contain information about the failures that can affect the relationship 

between nodes. The edge between a service node and an instance node includes a crash failure of the 

instance. For each failure, we define a penalty factor, 𝑝 ∈  [0,1], that represents the magnitude of the 

impact. We also add a root node that represents the overall performance of the application. 
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Figure 47 – Sample Resilience graph. 

Each node in the graph includes the name of the node (e.g. service name, instance name or host IP 

address) and information about the node’s performance. Transparent nodes represent latent instances. 

Nodes with a red center represent hot instances, while nodes with an orange center represent warm 

instances.  

The nodes in the graph are represented using up to three donut charts. Each of the charts indicates one 

of the key performance metrics. The performance and resilience indices are represented using green and 

blue charts. A full circumference indicates a value of 1 for the respective index. Consider the service 

represented on Figure 48. The almost-full green circle indicates that the node is currently performing well. 

An almost-full blue circle indicates that the node will continue to perform well if any of the failures below 

the node in the resilience graph is triggered.  
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 The recovery time index, in purple, has a different meaning. The full circumference represents the total 

time to recover as indicated in the SLA. The purple section, indicates how much time will be left after 

recovery from the worst-case failure. The failure that imposes the longest recovery time is considered the 

worst-case scenario. Thus, the recovery circumference indicates the margin of time available for recovery 

once the worst-case failure occurs.  

 
Figure 48 - Sample service entity node. 

In Figure 47, the circles in the edges between each pair of entities represent the failures considered. The 

number inside represents the penalty factor associated with each failure. For instance, between each 

instance and its host, we represent a host crash failure. Between each service and each instance, we represent 

an instance crash failure. Failures closer to leafs will have an impact on the metrics all the way to the root 

of the graph. 

To evaluate the performance and resilience of the application, we traverse the resilience graph using a 

post-order depth-first search. During evaluation of the graph, information about failures is propagated to 

the root of the tree. Thus, each node’s resilience is computed with respect to all failures below it. After 

evaluation is complete, the app agent has information about the resilience per failure for the entire 

application. The app agent uses the resilience graph to deploy additional active or latent instances to meet 

the SLA. 

6.4.1. Failure model 

We consider instance and host crash failure. Crash failures imply a penalty factor of 𝑝 = 1, i.e. the 

failure causes total loss of the affected resources. 

6.4.2. Recovery model 

Recovery is done at the service level. The app agent may deploy extra active, hot or warm instances 

according to the target response time or resilience index to failures. The actual recovery depends on each 

service’s characteristics. For horizontally scalable services, the app agent can increase the number of active 
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instances indefinitely. For non-scalable services, it can only allocate backup instances to be activated in 

case of failure. The initial recovery time available (𝑟𝑆𝐿𝐴) is computed from the SLA parameters:  

 𝑟𝑆𝐿𝐴 = (1 − 𝐴𝑆𝐿𝐴) ⋅ 𝑇𝑆𝐿𝐴 (1) 

6.4.3. Performance Evaluation 

For each node, we compute an instant performance index that represents the expected performance of 

application requests. The actual impact on the final application performance depends on the structure of the 

graph, for instance, based on the number of instances per service. 

6.4.3.1. Physical nodes 

 In the absence of over-allocation, the performance of physical servers would be irrelevant. However, 

even without over-allocation, VM interferences can have an impact on the applications. Cloud providers 

can also allow use over-allocation to increase efficiency of resources. The performance index of physical 

nodes indicates how the state of a server can affect the instances. The same server state can affect different 

applications differently. Thus, the computation of the performance index for server nodes should be 

customized for each application. 

User requests in web applications requests can typically be split into read (e.g. request a page or 

resource) and write requests (e.g. update state, write to database). The server uses various resources and 

contention among these resources are inevitable. As seen in Chapter 5, CPU spent running user space and 

CPU spent on kernel processes indicate possible contention for CPU time. CPU spent waiting for IO 

operations indicates contention for disk operations. We define the performance index of physical nodes 

(𝜂𝐻) as a function that varies exponentially with the resource usage: 

 𝜂𝐻(𝑢) = 1 − 𝑒𝛼𝑐𝑝𝑢⋅(𝛽𝑐𝑝𝑢⋅(𝑢𝑢𝑠𝑒𝑟+𝑢𝑠𝑦𝑠) −1) ⋅ 𝑒𝛼𝑖𝑜⋅(𝛽𝑖𝑜⋅𝑢𝑖𝑜−1) (2) 

The parameters 𝛼 and 𝛽 are determined empirically by studying application behavior and response to 

interference. We developed a monitoring strategy that estimates these values by observing the response 

time of the application and correlating it with host and instance resource usage.  

6.4.3.2. Virtual Nodes 

We define the performance of an instance (𝜂𝐼) based on the resource usage of the instance (𝜂𝐼|∅) and 

on the performance index of its physical host (𝜂𝐻|𝐼). We compute the performance index as a function of 

the total CPU usage of the virtual instance. 
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 𝜂𝐼|∅ = 1 − 𝑒𝛼⋅(𝛽⋅𝑢𝑣𝑖𝑟𝑡−1) (3) 

We estimate the performance index of the instance as the minimum between the performance of the 

instance and the performance of the server hosting the instance. 

 𝜂𝐼(𝑢𝑣𝑖𝑟𝑡) = 𝑚𝑖𝑛{𝜂𝐼|∅, 𝜂𝐻|𝐼  }  (4) 

6.4.3.3. Logical nodes 

The performance of a scalable service depends on the performance of all its instances. The impact of 

an instance depends on the fraction of workload that instance handles. Thus, the performance of a service 

is computed by the weighted average of the performance of their active instances.  

 𝜂𝑆 = ∑ 𝜔𝑖 ⋅ 𝜂𝐼
(𝑖)

𝑁𝐼

𝑖

 (5) 

The weights 𝜔𝑖  correspond to the fraction of requests that are distributed to each instance by the 

predecessor load balancer service. If a service is not horizontally scalable, the performance of the service 

is the same as its active instance. In this case, the only possible strategy for performance improvement is to 

use vertical scaling, i.e. an instance with more resources. 

6.4.3.4. App node 

The performance of the app node (𝜂𝐴𝑝𝑝) depends on the performance of its services. We consider that 

the app performs as well as their worst service. 

 𝜂𝐴𝑝𝑝 = min {𝜂𝑆
(1)

, … , 𝜂𝑆
(𝑁𝑆)

} (6) 

6.4.4. Resilience Index 

The resilience index indicates the app’s ability to continue working in the event of a failure. We 

consider the worst-case failure. The resilience for each node depends on available recovery mechanisms. 

We provision replicas per service in order to protect from crash failures in the instances and hosts. Only 

logical nodes that correspond to services of the app can be resilient to failures. 

Physical nodes correspond to leafs in our resilience graph. As such, from the perspective of our strategy 

they are not replaceable and are not resilient. In this work, we do not consider live migration, which could 

be used to recovery a specific virtual instance. Thus, we only compute the resilience index at the service 

and app levels. However, failures that are associated at lower nodes still need to be considered. For instance, 

host crash failures affect availability of instances.  
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6.4.4.1. Logical nodes 

For a service, the resilience index per failure corresponds to the service’s estimated performance during 

the failure. For each failure, we consider the impact of redistributing the workload among the instances not 

affected by that failure. Consider 𝐹 = {𝑓(1), … 𝑓(𝐾)} as the set of failures that can affect instances of the 

service. Consider 𝐼𝑓(𝑘) as the set of instances affected by the failure 𝑓(𝑘). The workload increase on the 

remaining active instances is given by: 

 𝜌𝑓𝑘
= (1 + ∑ 𝑝𝑖 ⋅ 𝜔𝑖

𝑖∈𝐼
𝑓(𝑘)

) (7) 

In our implementation, workload is distributed evenly among instances and, 𝜔𝑖 = 1 𝑁𝐼⁄ . The resilience 

index per failure indicates the performance index when the failure triggers the loss of instances: 

 𝜓𝑆|𝑓(𝑘) = min
i∉I

𝑓(𝑘)

{𝜂𝐼
(𝑖)

[𝑢𝑖 ⋅ (1 + 𝜌𝑓(𝑘))]} 
(8) 

Finally, we compute the resilience index per service, 𝜓𝑆: 

 𝜓𝑆 = min
k

{𝜓𝑆|𝑓(𝑘)} (9) 

6.4.4.2. App node 

The resilience of an app is computed by aggregation of the resilience of its services. Just as in the case 

of the performance index, the app resilience matches the minimum resilience index among its services: 

 𝜓𝐴𝑝𝑝 = min {𝜓𝑆
(1)

, … , 𝜓𝑆
(𝑁𝑆)

} (10) 

6.4.5. Recovery Time 

Given the availability, 𝐴, defined in the SLA we can determine the time available to recover from 

failures for any given time window of size 𝑇𝑆𝐿𝐴. The available recovery time depends on the on the SLA-

defined availability and the total degraded time (𝐷) observed in the interval [𝑡, 𝑡 − 𝑇𝑆𝐿𝐴]: 

 𝑟(𝑡) = (1 − 𝐴𝑆𝐿𝐴) ⋅ 𝑇𝑆𝐿𝐴 − 𝐷(𝑡, 𝑡 − 𝑇𝑆𝐿𝐴)  (11) 

6.5. Pre-planning for Scaling and Failures 

6.5.1. Scaling 

In order to scale application services, we need to know workload fluctuations that an active instance 

can support. We define a user-configurable parameter, 𝛿𝑊 = 𝑊𝑡 𝑊𝑡−1⁄ . It indicates the relative workload 
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increase supported at time 𝑡. Assuming that resource usage changes linearly with the workload, we compute 

the number of active instances need to accommodate the expected fluctuations. From Equation (3) we 

compute the maximum resource usage that maintains the instance below the SLA, 𝑢𝑣𝑖𝑟𝑡
′ . Given  𝛿𝑊: 

 𝑢𝑣𝑖𝑟𝑡
(𝑖)

≤
𝑢𝑣𝑖𝑟𝑡

′(𝑖)

𝛿𝑊 ⋅ 𝜔𝑖
 (12) 

We scale up the service by adding an extra instance when this value is surpassed for any of the instances. 

We use a similar formula to scale down the service. 

 𝑢𝑣𝑖𝑟𝑡
(𝑛−1)

≥
𝑢𝑣𝑖𝑟𝑡

′(𝑛−1)

𝛿𝑊 
⋅

1 − 𝜔𝑛

𝜔𝑛−1
 (13) 

In order to avoid frequent changes, we scale up or down when the conditions (12) and (13) are violated 

for 𝑇𝑆 seconds (a user-configurable parameter). The scaling mechanism outputs the required number of 

active instances, 𝑛,  to handle current and future workloads. The actual number might increase after 

evaluation when the application resilience is considered. Thus, the app agent marks the oldest 𝑛 instances 

as active to differentiate them from recovery active instances. 

6.5.2. Pre-planning for Failures 

To be resilient, the application services require additional active or latent instances. We take a greedy 

approach by allocating the minimum number of instances that will maintain:  

(1) the performance index above the SLA target value;  

(2) the predicted recovery time for the current window under the available recovery time (Equation 

(11)).  

The procedure to determine which recovery instances to deploy per service is as follows: 

1. Inputs:  

1.a. The scaling procedure determines the number of required active instances, 𝑛; 

1.b. List of recovery instance states, 𝑆𝑅
0; states are represented by integers, 0: None, 1: Cold, 2: Warm, 

3: Hot, 4: Active. 

1.c. Current target recovery time (𝑟) from equation (11) 

2. Use the recovery estimator module to determine the lowest instance state (𝑆𝑇) that has recovery time 

lower than 𝑟;  

3. Initialize: 

3.a. List of target states 𝑆𝑅 with size |𝑆𝑅
0| and elements set to 0. 

3.b. List of constraints 𝐶𝑅  with size 0; 
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3.c. List of triggers 𝑇𝑅 with size 𝑓(𝑘)  and elements equal to an empty set. 

4. For each failure 𝑓(𝑘) associated with the service: 

4.a. Determine the number of non-recovery active instances affected by the failure, 𝑛𝑓(𝑘). This denotes 

the number of instances that need to be recovered; 

4.b. Determine a mask 𝑀 of recovery instances that are not dependent on the failure. 𝑀 is a binary array 

of size |𝑆𝑇|, where 1 indicates dependency of the instance on the failure.   

4.c. for 𝑖 =  0, … , |𝑆𝑅|: 

- if 𝑀[𝑖] = 0: set 𝑆𝑅[𝑖] = 𝑆𝑇, add 𝑖 to 𝑇𝑅[𝑘], and 𝑛𝑓(𝑘) =  𝑛𝑓(𝑘) − 1; 

- if 𝑛𝑓(𝑘) = 0: break for loop;  

4.d. if 𝑛𝑓(𝑘) > 0, for 𝑖 = 0, … , 𝑛𝑓(𝑘) − 1 

- append 𝑆𝑇 to list 𝑆𝑅, append set {𝑓(𝑘)} to 𝐶𝑅[𝑖], add |𝑆𝑅| to 𝑇𝑅[𝑓(𝑘)]; 

5. Output: 

5.a. List of desired states, 𝑆𝑅; 

5.b. List of constraints for new instances, 𝐶𝑅 ; 

5.c. List of triggers for each failure, 𝑇𝑅. 

Now the app agent can adjust the instances: 

1. for 𝑖 = 0, … , |𝑆𝑅
0|:  

1.a. if 𝑆𝑅 = 0, remove instance  

1.b. if  𝑆𝑅[𝑖] ≠ 𝑆𝑅
0[𝑖], change instance from 𝑆𝑅

0[𝑖] to 𝑆𝑅[𝑖]; 

2. for 𝑖 = 0, … , |𝐶𝑅|: 

2.a. Request new instance with constraints 𝐶𝑅[𝑖] to the provider agent. 

The provider agent tries to find allocations that satisfy all the constraints. If it is unable to do so, the 

app agent splits the constraints into multiple instances. Additionally, latent allocation requests carry 

information about the failures that trigger their activation. The provider agent determines if there are latent 

allocations that depend on the same failure. This procedure avoids over-allocation when many applications 

use the same host to recover from the same failure.  

The app agent uses the computed triggers (𝑇𝑅), to quickly activate the respective latent instances in 

case of failure. 
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6.5.3. Complexity and optimization 

The complexity of evaluating the entire resilience graph depends on the number of instances and the 

number of failure classes, |𝐶𝐹|. For instance, as illustrated in Figure 47, we consider two failure classes: 

instance and host crash failures. In the worst case, we evaluate the resilience graph in 𝑂(𝑁 ⋅ |𝐶𝐹|) time. If 

a user is using LAMA’s graphical interface, we need to periodically recompute the entire resilience graph. 

However, for changing the application deployment, the resilience graph can be updated on key events: 

when failures are detected, or when resource usage crosses key thresholds. In this case, we only need to re-

evaluate the graph from the affect node to the root of the graph. 

6.6. Monitoring Strategies 

Monitoring strategies are used to detect relevant events that require adjustment of the application 

deployment. There are two types of relevant values. When resource usage crosses thresholds defined in 

(12) and (13), we recompute the application’s performance and re-evaluate the resilience graph. When an 

instance or host failure occurs, we adjust application deployment using the resilience graph. Our 

implementation defines three management strategies: 

• Instance crash detection: Signals a failure of an instance when the agent stops receiving CPU usage 

metrics for the instance after three periods. 

• Host crash detection: Signals a failure of a host when the agent stops receiving CPU usage metrics 

for the host after a period three periods. 

• Resilience graph re-evaluation: Rule-based monitoring strategy that triggers recomputation of 

resilience graph and recovery mechanisms, when conditions (12) and (13) are violated. 

The monitoring period is defined in the configuration of the low-level monitoring module (collectd). 

The app agent automatically detects the period as it receives new metrics. For finer granularities, the 

monitoring strategies can use a minimum period of time instead of number of periods. 

6.7. Coordinated Recovery 

As seen in Section 6.5.2, a latent instance covers for a set of failures. We call this set, the latent 

allocation’s failure dependencies. A new resource reservation request for latent instances carries 

information about its failure dependencies. Provider agents only reserves the latent resources, if there is no 

over-allocation for of the failure dependencies. 
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When the provider agent receives a new active allocation or a request to change an instance from latent 

to active, it checks the current latent allocations. If there is an over-allocation, the latent allocation is deleted 

and the app agent is notified. The app agent removes the latent instance from the application graph and re-

computes the resilience graph. 

6.8. Experiments 

We analyze the advantages of LAMA with multi-tier online web applications in a very dynamic 

environment. We demonstrate that: 

(1) LAMA’s monitoring and provisioning features can dramatically reduce time to detect and recover from 

failures;  

(2) LAMA enables dynamic management strategies that adapt given application’s SLA and past history of 

degraded time;  

(3) Distributed pre-plan for recoveries enables differentiated recovery per application and accelerates total 

recovery. 

6.8.1. Testbed and Experiment Setup 

We implement and deploy LAMA in our datacenter with 24 interconnected heterogeneous servers. The 

available resources amount to a total of 84 logical cores and 200GB of RAM. Our experiments focus on 

online multi-tier transaction applications. We use LAMA to automatically deploy a online transaction 

benchmark, RUBBoS [52] that emulates a bulletin board. LAMA reads a logical specification and 

provisions the application’s services (Apache and MySQL). As described in Section 2.3.2, LAMA also 

deploys load-balancers before scalable services.  

6.8.2. Reducing Total Recovery Time 

We analyze the impact of monitoring granularity and the recovery time from a failure. We create a 

RUBBoS deployment with two services Apache and MySQL. The application is deployed automatically 

by LAMA. Once the application is deployed, we launch the client generator with 300 simultaneous users. 

Approximately two minutes after launching the client, we create a crash failure for the Apache instance. 

The app agent detects the failure, and triggers recovery using the resilience graph. We measure the total 

time taken by the framework to detect and to recover from the failure. We test the performance under five 

scenarios by varying the monitoring granularity and SLA parameters. The SLA parameters are chosen to 

induce the app agent to create recovery instances in different states for each scenario. The monitoring 

strategies for instance crash detection wait for three periods without metrics before signaling a failure. 
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Figure 49 shows the results for each experiment. We plot the number of requests and number of errors 

observed during the period of the experiment. We also mark the time to detect a failure (orange area with a 

diagonal pattern) and the time to recover from the failure (green area with a cross-hatch pattern). In Figure 

49a, we use a monitoring granularity of 60 seconds and 𝐴𝑆𝐿𝐴 = 0. An availability value of zero forces the 

app agent to only use cold recovery instances. In Figure 49b, we decrease the monitoring period to 10s. 

Given our failure detection strategy, the detection time is drastically reduced in proportion to the reduction 

of period size. In this particular example, the reduction is more significant, from 192 to 22 seconds. Larger 

periods also induce larger deviations in the detection time. In the Figure 49c, we set 𝑇𝑆𝐿𝐴 = 500𝑠 and 

𝐴𝑆𝐿𝐴 = 0.9. The app agent creates warm recovery instance instead of cold. This behavior depends on the 

service and time it takes to deploy a new instance. The recovery time is reduced from 60 to 35 seconds. It 

corresponds to the time it takes to copy the image. In the Figure 49d, we further tighten the SLA parameters 

by changing the availability, 𝐴𝑆𝐿𝐴, to 0.95. The app agent deploys an instance in the hot state. In this case, 

the recovery time was reduced from 35 to 1.5 seconds. This difference corresponds to the time it took to 

configure the instance. In all experiments, we observe a period of downtime due to slow failure detection 

time. To further improve the performance of the application, we increase the target availability, 𝐴𝑆𝐿𝐴, to 

0.99. In Figure 49e, the app agent deploys two active instances. The detection and recovery time, consists 

of the time it takes to return to a setup with two active instances. We can observe that the application 

experiences almost no errors during the failure. LAMA automatically adapts the management strategy to 

meet the SLA requirements defined for each application. The end user does not have to know the availability 

of host infrastructure. 

 
(a) Instance state: cold, monitoring period: 60s. 
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(b) Instance state: cold, monitoring period: 10s. 

 
(c) Instance state: warm, monitoring period: 10s. 

 
(d) Instance state: hot, monitoring period: 60s. 
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(e) Instance state: active, monitoring period: 60s. 

Figure 49 – Time to detect and recover from an instance crash failure and impact on application errors. 

6.8.3. Adaptive Recovery Planning 

We demonstrate how the app agent adapts its application deployment given the history of failures. As 

failures occur, the SLA availability becomes harder to meet. We start with a base deployment of RUBBoS 

with a load-balancer, Apache and MySQL services. We set SLA parameters to 𝑇𝑆𝐿𝐴 = 2000𝑠𝑒𝑐 and 

𝐴𝑆𝐿𝐴 = 0.9. During the experiment, we trigger five failures at different times. We observe how the app 

agent responds to each failure and the impact in application availability. 

Figure 50 plots the variation of key metrics during the experiment: (1) the time available to recover 

from failures, 𝑟(𝑡),  given past downtime period in the sliding window  [𝑡, 𝑡 − 𝑇𝑆𝐿𝐴] and (2) the resilience 

index of the application at time t. Figure 51 plots the variation of the total number of instances of each type 

(Active, Hot, Warm) during the experiment. Black dashed lines represent the moment that failures occur in 

the application. We mark periods when application is unavailable using gray bands. 

The application starts with a minimal deployment. The app agent provisions one instance for each of 

the three services. According to the SLA metrics (11), there are 200 seconds available to recover from 

failures. At t=2m54s the first failure occurs. The app agent has no warm or latent instances, so recovery is 

done from a cold instance. After a period of downtime, 𝑟(𝑡) is down to 135 seconds. The available time is 

still enough to launch a cold instance.  

When the second failure is triggered, a new period of downtime follows. When the 𝑟(𝑡) drops below 

the time it takes to provision a cold instance, the agent starts planning additional recovery instances. 

Initially, it deploys a warm instance. As 𝑟(𝑡) drops further, the app agent decides to double the number of 

active instances per service. At this point, the application is resilient to all the failures considered in the 

model, 𝜓 ≈ 1. When the other three failures occur, the application remains available.  
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At 𝑡 = 𝑡𝐹1 + 𝑇𝑆𝐿𝐴, 𝑟(𝑡) starts increasing. At this point, the first period of downtime is gradually leaving 

the sliding-window considered in the SLA. We observe that, at 𝑡 = 40𝑚34𝑠, 𝑟(𝑡) is large enough that the 

app agent decides that it no longer needs additional active instances. It changes the states of three active 

instances to hot (two instances) and warm (one instance). The final latent state depends on the estimated 

recovery time for each service.  As the second period of downtime gradually leaves the sliding window, 

𝑟(𝑡) becomes large enough that the system can again recover from cold instances. 

 
Figure 50 – Adaptive recovery planning: resilience index and time available to recover from failures. Dashed lines 

represent failures and gray band periods of application downtime. 

 
Figure 51 – Adaptive recovery planning: adaptation of the number of active and latent instances provisioned by the 

app agent. Dashed lines represent failures and gray band periods of application downtime. 

 

6.8.4. Differentiated Application Recovery 

In this experiment, we analyze how our strategy provides differentiated recovery performance given 

application SLA. Our dynamic strategy continuously adjusts the deployment plan based on the time window 

and availability defined by the SLA. Failures that affect latent instances have no impact on application 
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performance. However, the app agent still needs to adjust its deployment. In this experiment, we take a 

static approach, i.e. the agent has no memory of past failures. Therefore, for the same SLA, recovery time 

per instance should be similar. 

We start by deploying six RUBBoS applications with identical SLA. We trigger a sequence of 𝑛 semi-

random host crash failures separate by a period 𝑝. For each failure, we select a random server that is hosting 

at least one active instance. We determine, for each application: the number of failures that caused 

downtime and statistics on the time to recovery per failure. Figure 52 displays the results obtained for 𝑛 =

40, 𝑝 = 120𝑠 ,  𝑇𝑆𝐿𝐴 = 500𝑠 and 𝐴𝑆𝐿𝐴 = 0.9. The red-shaded region represents recovery time available 

given by Equation (11). 

We observe that the average recovery time per failure is very similar for all applications. However, 

there are few cases where the recovery time surpasses the SLA threshold. The main factor for deviations is 

hardware diversity. Some servers with slower disk and CPU, take longer to provision an instance.  

 
Figure 52 – Recovery time for multiple applications with the same SLA. The left chart represents the number of 

failures that caused downtime. The right chart represents the total time to recover (minimum, maximum, mean and 

standard deviation). The red shaded area represents SLA violations.  

We now analyze recovery as we deploy applications with different SLAs. We define three SLA classes: 

(SLA 1) 𝑇𝑆𝐿𝐴 = 200𝑠 and 𝐴𝑆𝐿𝐴 = 0.9, (SLA 2) 𝑇𝑆𝐿𝐴 = 800𝑠 and 𝐴𝑆𝐿𝐴 = 0.9 and (SLA 3) 𝑇𝑆𝐿𝐴 = 2000𝑠 

and 𝐴𝑆𝐿𝐴 = 0.9. Figure 53 displays the results obtained for 𝑛 = 40 and 𝑝 = 180𝑠 . The SLA violation 

regions are now different for each SLA class. As we can see, average recovery times depend on the SLA 

define per application. For class SLA 1, the applications did not experience any downtime. The app agent 

ensured that there were extra active instances deployed. For the other two classes, the SLA adjusted the 

deployment to the required latent instances that could be recovered within the SLA-based window.  As we 

are using a static approach, performance of the class SLA 2 is the worst-case scenario. Instances are always 

recovered from cold latent instances. 
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Figure 53 – Recovery time for multiple applications with the diverse SLAs. The left chart represents the number of 

failures that caused downtime. The right chart represents the total time to recover (minimum, maximum, mean and 

standard deviation). The red shaded area represents SLA violations.  

6.9.Assumptions 

Assumption 6. LAMA is always available. 

We study how LAMA’s features enable the deployment of resilient applications. In our example, we 

study possible failures in the application and how LAMA is able to trigger recovery of instances marked as 

failed. However, failures can also occur in the LAMA framework itself. We currently constraint the location 

of the app agent. We ensure that the app agent is not placed in the same host as any of the application 

instances. This ensures that failures affecting the application will not affect the app agent (assuming 

independent failures). However, crash (fail-stop) failures in the LAMA framework affect the ability of 

applications to recover from failures. 

Naturally, LAMA needs to be resilient and self-monitored. Agents currently save their state to local 

storage. This allows use to restart agents if necessary using old state. However, app agents cannot currently 

be recovered if their host dies. We plan to deploy multiple agents per application with one controller agent 

and multiple sub-agents. The controller is responsible for running or delegating management tasks and for 

sending state changes to sub-agents. The sub-agents in turn, would be responsible for monitoring the health 

and the availability of the controller and take over if necessary. Provider agents can also fail. However, 

provider agents are directly connected to the host they are deployed in. If the host dies, the corresponding 

provider agent does not need to be restarted in another host. Application agents in different hosts will be 

notified of the failure. In this case, they can adapt the strategy to handle the host failure. 

Assumption 7. There are no simultaneous independent failures (i.e. single-failure). 

The current strategy is a best effort strategy designed for a single failure at a time. No failures occur 

while the app agent is recovery from the last failure. If more than two failures occur the time to recover 
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defined in the SLA might not be met. The strategy eventually would recover from failures. However, 

instances need to be deployed from initial phase leading to longer recovery times than predicted.  

We plan to develop a probabilistic fault strategy that will take into account the probability of failures 

occurring. This strategy will then take into account the probability of simultaneous failures. 

Assumption 8. Fault model is defined by cloud providers and application-specific monitoring 

strategies are defined by users. 

We consider independent fail-stop failures for instances and hosts. The failures are defined according 

to user needs and infrastructure configuration. For instance, if two hosts are in the same rack in a DC, they 

would fail if the top of the rack switch fails. In this case, a new failure should be added to the resilience 

graph that will represent the failure that creates a dependency between the two hosts. The strategy can adapt 

its recovery as the hosts and the instances deployed will be dependent on the same failure. The knowledge 

about what failures can affect each instance and each host is known only to the cloud provider. These 

failures per host and instance can be configured in the LAMA framework. The application agent uses that 

configuration to add failures to the resilience graph when adding a new instance or host. 

We deploy semi-synchronous monitoring strategies to detect the instance and host fail-stop failures 

considered. The period of each metric is determined automatically using the interval between data instances 

of the same metrics. However, timing failures can delay some data metrics. This can deceive the period 

detection algorithm, and generate false positives. The application agent would react, thus creating an 

unnecessary disturbance in the application. 

Applications often present odd behaviors in the presence of local instance failures. The cloud user is 

responsible for defining monitoring strategies to detect anomalous application-specific events. An instance 

exhibiting anomalous behavior can be reported and replaced like a crashed instance. 

We plan to include more faults in the resilience graph. The strategy will need to be adapted to handle 

other types of faults that do not cause simple loss of resources. Examples of these type of failures are 

intermittent, byzantine or omission failures. Often monitoring and recovery of these failures are application 

specific. LAMA was built so that custom monitoring and recovery procedures can be deployed per 

application. 

Assumption 9. State management handled by users through management strategies. 

LAMA detects and recovers crashed instances and hosts. Recovery is considered completed once the 

instance is considered active. The application agent checks if an instance is active using the user-provided 

application-specific connector. The connector should check if the instance has been correctly configured 
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and has all the state needed to execute its function. Recovering state can be a long process for stateful 

applications. LAMA is not responsible for state replication for applications. Cloud users deploying stateful 

applications should implement the necessary state replication mechanisms. 

We plan to implement an application-agnostic image backup service in LAMA. This feature would 

provide state protection for some applications. However, a generic solution would not work for all 

applications and users opting for this feature would still need to handle state synchronization between 

instances of the same service. 

6.10. Summary 

In this Chapter, we introduce a new dynamic strategy for multi-tier online applications for LAMA and 

provides differentiated treatment according to SLA’s requirements and the history of failure.  

LAMA’s provisioning features allow agents to deploy different type of latent instances. Each latent 

instance type represents a different stage of instance provisioning. By using estimating recovery times for 

latent instance type, the agent can provide diverse guarantees to the application. We have shown that 

LAMA’s monitoring and provisioning features can dramatically reduce time to detect and recover from 

failure.  

The proposed dynamic strategy adapts application deployment given past history of degraded time 

according to application’s SLA. As failures occurs, SLAs become harder to meet. We show an example of 

a how the app agent reacts to failures and adapts the application deployment to face changing SLA 

requirements. 

We applied our proposed adaptive strategy to multiple applications sharing our testbed cluster. We 

demonstrated that a distributed pre-plan for recoveries enables differentiated recovery per application and 

accelerates total recovery.  
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Chapter 7 

Graphical User Interface 

Visualization and management tools are essential for large scale systems. It allows cloud providers and 

users to quickly assess the state of the infrastructure and applications. These tools are even more relevant 

in a distributed framework as LAMA. As information is decentralized, users need a tool that is able to find 

and contact the different agents and aggregate it in a visualization tool. 

The web interface needs to adapt to the distributed nature of the LAMA framework. We avoid 

centralized bottlenecks in all LAMA’s management functions. The web interface follows the same 

paradigm. We build the interface using client-side technology. The web interface uses JavaScript and the 

recent AngularJS framework. The interface only contacts the centralized dispatcher to retrieve an initial list 

of providers and to retrieve the location of an application agent. All other requests are directed to the 

relevant agent. Intensive operations like real-time charts and events or application status data are distributed 

among all provider agents. 

7.1. Provider Agents 

The status page for provider agents allows cloud managers to understand the state of the servers and 

communication between provider agents. Figure 54 displays the provider agents’ status page. We can 

visualize the peer-to-peer relations among providers and the details of each provider: IP address, the server 

resources, and the percentage of resources available. The radial chart represents the peer-to-peer network 

of provider agents. Selecting a provider displays the direction of information flow. It highlights, in red, 

connections and providers from which the provider subscribes resource information. Green lines represent 

connections to peers to which the selected provider send resource information. 
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Figure 54 – LAMA web Interface: Provider agents view. 

7.2. App Agent and Applications 

The status pages for the app agent provide the application owner with information about the agent and 

the status of the application. 

The page in Figure 55 displays information about the application structure. Each node, in dark gray, 

represents an instance, i.e. a virtual machine or an image. Instances are grouped by logical service inside 

light gray boxes. Figure 56 presents a detail of the nodes. Each node contains the name of the instance, the 

virtual address and private address. The state of each instance is indicated on the left side. Three colors are 

used to indicate performance levels (green for good, yellow for warning and red for bad). The status is 

defined by a user-configured monitoring strategy. For example, in this screenshot we were using a 

monitoring strategy that indicates that the instance is performing well when total CPU usage is below 75%. 

Users can follow the status of the application in real time. When a new node is added, it is displayed with 

a blinking red color for a few seconds. The users can also filter out support services like image services to 

improve legibility.  
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Figure 55 – LAMA web interface: Application architecture page. 
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Figure 56 – LAMA web interface: Detail Application Status. 

 

Figure 57 display the web page used to visualize the resilience graph. We described the resilience graph 

representation in Section 6.4. The resilience graph is updated periodically. The sidebar on the right side 

indicates the current status metrics for the application node: performance index, resilience index, worst 

time-to-recover and the current available time to recover. The SLA requirements for the application are 

also indicated: target performance index, the sliding time-window size and the fraction or time the 

application should be available. 
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Figure 57 – LAMA web interface: Application resilience status. 

7.3. Provisioning and Experiment Control 

LAMA also provides an interface to launch new applications. This web page is presented in Figure 58. 

The user can create a new app by choosing the GraphML file that contains the application spec. The 

interface includes a list of all the applications currently active in LAMA. As a research framework, LAMA 

allows users to launch clients to generate synthetic loads to their application. The interface allows the user 

to configure the parameters of the client generator on launch. 
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Figure 58 – LAMA web interface: Application and client generator manager. 
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Automated experiments are triggered through the command line. The user can follow the evolution of 

the experiment through the timeline displayed in Figure 59. The timeline shows the events published by the 

agents. The events are represented by color-coded flags that indicate its class (experiment, application or 

instance). The currently defined events are described in Table VI. A code inside the flag indicates the type 

of event and contextual tooltip contains extra details. The experiment interface also includes real-time charts 

of the metrics configured in the experiment.  

 

Table VI – LAMA web interface: Events represented in the experiment timeline. 

 

EVENT CLASS EVENT CODE EVENT DESCRIPTION 

Experiment Start Experiment started 

Experiment End Experiment ended 

Experiment Fail Failure was triggered 

Experiment * Experiment note added by the user 

App AReq Application requested 

App AAct 
Application become active: at least one ready instance for 

each service 

App ACli Client generator started 

Instance IAlloc Instance allocated 

Instance IOn Instance active (when it is first created by the hypervisor) 

Instance IRdy Instance ready (when it is accessible by the app agent) 

Instance IDel Instance removed (if it failed or is no longer needed) 
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Figure 59 – LAMA web interface: Experiment timeline. 
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Chapter 8 

Conclusion 

Management solutions for current and future Infrastructure-as-a-Service (IaaS) Data Centers (DCs) 

face complex challenges. The large number of application and servers in these infrastructures pose 

scalability problems. The heterogeneity of application’s and hardware characteristics make generic 

solutions inefficient. These environments are also very dynamic. Applications and hardware evolve. 

Workloads can vary progressively or in bursts. Frequent failures lead to potential downtime. Current cloud 

management frameworks are centralized in nature. They provide generic management functions like 

monitoring, resource allocation and provisioning. There is no differentiation per application. Cloud users 

manage their applications from outside the cloud using data collected from an external API. The latency 

leads to slow response to failures. Applications with non-demanding requirements are often over-allocated. 

On the other hand, application with high availability demands are not able to respond quickly enough to 

failures.  

We propose a novel fully distributed and dynamic management paradigm for highly diverse and volatile 

DC environments. We develop LAMA, a novel framework for managing large scale cloud infrastructures 

based on a multi-agent system (MAS). Provider agents collaborate to advertise and manage available 

resources, while app agents provide integrated and customized application management. Distributing 

management tasks allows LAMA to scale naturally. Integrated approach improves its efficiency. The 



 118 

proximity to the application and knowledge of the DC environment allow agents to quickly react to changes 

in performance and to pre-plan for potential failures. 

We analyze the performance of LAMA’s resource search and allocation. The efficiency of LAMA’s 

resource search depends on the ability to find new available resources using a peer-to-peer network. 

Resources become harder to find when the DCs has high utilization. We demonstrated that LAMA resource 

allocation mechanism performs well up to high levels of DC occupancy. Only, when over 80% of the 

resources are allocated does the search time increases. LAMA also performs well under a high volume of 

concurrent requests. We observe no increase in resource allocation time with the number of concurrent 

requests. 

We study LAMA’s advantages when compared with a state-of-the-art open source framework, 

OpenStack. LAMA Provisions instances faster as it is able to process more requests in parallel. OpenStack 

provisioning time per requests grows linearly with the number of concurrent requests. LAMA provisioning 

time grows only with to local contention, i.e. when several VMs are assigned to the same server at the same. 

LAMA removes sources of contention in centralized management services like the request API, scheduler 

and network management. This lead to significant differences in allocation time per instances. For instance, 

we ran an experiment where we requested to provision 80 virtual instances in a cluster with capacity to 82. 

LAMA finished the experiment 17 times faster than OpenStack. 

We demonstrate the advantages of LAMA monitoring subsystem. LAMA monitoring can achieve finer 

monitoring granularities while removing centralized bottlenecks. This change has a significant impact in 

failure detection. Applications can respond to failures in the order of failures. Current cloud providers 

provide data every few minutes. Any failure detection mechanism would thus take several minutes to detect 

a failure.  

We demonstrate how LAMA dynamic features can be used to further reduce application downtime. We 

develop a dynamic integrated application management strategy customized for multi-tier online 

applications. Leveraging knowledge of application’s deployment details, SLA requirements and past 

history of failures, the app agent can determine the latent instances required to respond to failures. We 

demonstrated that the LAMA coordinated failure planning mechanism allows multiple applications to 

prepare response to failures. Each application can have differentiated recovery plans according to its SLA. 

We also presented LAMA’s web interface. The interface allows visualization of the state of provider 

agents, servers and applications. Users can provision applications, launch client generators and visualize 

metrics in real-time.  
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