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Abstract 

Current research studies show that building heating, cooling and ventilation energy 

consumption account for nearly 40% of the total building energy use in the U.S. The 

potential for saving energy through building control systems varies from 5% to 20% 

based on recent market surveys.  In addition, building control affects environmental 

performances such as thermal, visual, air quality, etc., and occupancy such as working 

productivity and comfort. Building control has been proven to be important both in 

design and operation stages.  

 

Building control design and operation need consistent and reliable static and dynamic 

information from multiple resources. Static information includes building geometry, 

construction and HVAC equipment. Dynamic information includes zone environmental 

performance, occupancy and outside weather information during operation.. At the same 

time, model-based predicted control can help to optimize energy use while maintaining 

indoor set-point temperature when occupied. Unfortunately, several issues in the current 

approach of building control design and operation impede achieving this goal. These 

issues include: a) dynamic information data such as real-time on-site weather (e.g., 

temperature, wind speed and solar radiation) and occupancy (number of occupants and 

occupancy duration in the space) are not readily available; b) a comprehensive building 

energy model is not fully integrated into advanced control for accuracy and robustness; c) 

real-time implementation of indoor air temperature control are rare. This dissertation 

aims to investigate and solve these issues based on an integrated building control 

approach.  

 

This dissertation introduces and illustrates a method for integrated building heating, 

cooling and ventilation control to reduce energy consumption and maintain indoor 

temperature set-point, based on the prediction of occupant behavior patterns and weather 

conditions. Advanced machine learning methods including Adaptive Gaussian Process, 

Hidden Markov Model, Episode Discovery and Semi-Markov Model are modified and 
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implemented into this dissertation. A nonlinear Model Predictive Control (NMPC) is 

designed and implemented in real-time based on Dynamic Programming. The experiment 

test-bed is setup in the Solar Decathlon House (2005), with over 100 sensor points 

measuring indoor environmental parameters such as temperature, relative humidity, CO2, 

lighting, motion and acoustics, and power consumption for electrical plugs, HVAC and 

lighting. The outdoor environmental parameters, such as temperature, relative humidity, 

CO2, global horizontal solar radiation and wind speed, are measured by the on-site 

weather station. The designed controller is implemented through LabVIEW.   

 

The experiments are carried out for two continuous months in the heating season and for 

a week in cooling season.  The results show that there is a 26% measured energy 

reduction in the heating season compared with the scheduled temperature set-points, and 

17.8% energy reduction in the cooling season. Further simulation-based results show that 

with tighter building façade, the cooling energy reduction could reach 20%. Overall, the 

heating, cooling and ventilation energy reduction could reach nearly 50% based on this 

integrated control approach for the entire heating/cooling testing periods compared to the 

conventional scheduled temperature set-point.  
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Chapter 1  Introduction

 

1.1 Background and Motivation 

Background 

Three years ago, the World Business Council for Sustainable Development published the 

first report on energy efficiency in buildings stating that buildings are responsible for at 

least 40% of energy use in many countries, energy mostly derived from fossil fuels. 

Worldwide building energy consumption is expected to grow 45% over the next 20 years 

(WBCSD, 2007). In the United States, commercial buildings consume almost 17% of 

national energy use. 76% of the services used by buildings (e.g. heating, cooling, lighting, 

etc.) are powered by electricity, and these account for 35% of the total electricity 

consumed nationally (EIA, 2009). Heating, ventilation and air-conditioning (HVAC) 

systems in commercial buildings account for nearly 37% of the total building energy.    

According to the market surveys done by Brambley (2005), building controls can 

potentially reduce energy consumption significantly in commercial buildings. Table 1.1 

demonstrates how a traditional Energy Management and Control System (EMCS) can 

save between 5 and 15% of a building’s energy with an 8 to 10 year return on investment 

for the system, while occupancy sensors for lighting control can save 20 to 28% energy 

with 1 to 5 years payback on the initial investment. In addition, one of the objectives of 

almost every control system is to improve temperature control and provide thermal 

comfort for occupants.  Figure 1.1 further illustrates that HVAC controls have the biggest 

impact on the building energy consumption, yet with the least installations in buildings.  
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In addition, the Building Investment Decision Support Tool developed by the Center for 

Building Performance and Diagnostics at Carnegie Mellon University has identified 20 

studies that link improved temperature control to productivity gains, with an average 5.5% 

productivity increase and a range of other improvements of between 6.2% and 24% 

(eBIDS, 2010). 

Table 1.1 Summary of energy saving potentials for different control approaches (Brambley, 2005) 

 

 

 

Figure 1.1 Installed units versus system impact on energy consumption in buildings (WBCSD, 2009) 

Typical control functions in buildings can be divided into two categories: local control 

and supervisory control. Local control provides basic control and automation functions, 

such as ON/OFF control and proportional-integral-derivative (PID) control, that allow 
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building services to operate properly. Many studies show that local controls can provide 

thermal comfort and satisfy goals for indoor air quality (Moore and Fisher, 2003; Nassif, 

et al. 2005; Zhang, et al. 2005). Supervisory control functions are higher level controls 

that include local control functions while considering whole system characteristics (both 

HVAC and passive systems), interaction and energy optimization for total building 

energy saving. Supervisory control functions are developed using the physical model-

based method, hybrid method, performance mapping method and data learning approach 

(Wang, et al. 2008). In the last decade, research has increasingly focused on supervisory 

control due to higher energy prices and tighter energy supply. This thesis will focus on 

the hybrid method combining physical model-based method, which is supervisory and 

set-point control, which is local.  

A typical physical model-based method involves using dynamic/static equations to 

construct control methods, where the equations are based on fundamental thermal 

dynamics, heat and mass transfer. During the initial control design stage and the later 

operation stage, both static and dynamic information are needed for a successful model-

based control design and online control management of operation as shown in Table 1.2 

below.  

 

Table 1.2 Information requirements for the design and operation of a model-based building control 

Information 
Type 

Information 
Elements 

Input Parameters During Control Design Stage 

Geometry Information 
Static  

Information 

No. of thermal zones 

No. of doors, windows 

Wall surface area 

Zone volume 

Surface orientation, tilt and azimuth 

Construction Information 
Static  

Information 

External/internal wall, window and door construction type 

Material properties: thickness, thermal conductivity, 
specific heat, solar/infrared absorbance 

Zone Interior Information 
Dynamic 

Information 

Internal gains: No. of occupants, amount of internal 
equipment 

Indoor temperature set-point, air  flow rate, etc. 

System Information Static  
HVAC system type (chiller, heat pump, fan coil, etc.) and 
their physical parameters 
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Motivation 

  

This thesis focuses on the integrated building control design and operation. The 

integration here refers to: 1) the prediction of dynamic occupancy changes and weather 

information; 2) the optimal control profile which minimizes the energy consumption 

while maintaining set-point temperature. From the literature review, an integrated 

building control requires (Braun, 2007; Wang, et al. 2008):  

 Correct and consistent static information; 

 Available and reliable dynamic information; 

 Predictable and robust controller behavior; 

 Efficient optimal control algorithm;  

 Online implementable.   

Unfortunately, there are several issues in the current approach to achieve this goal. These 

issues include:  

 Fragmented static and dynamic information  

 Dynamic information such as real-time onsite weather (e.g. temperature, wind speed 

and solar radiation) and occupancy (number of occupants and occupancy duration in 

the space) data are not available  

Information Duct or pipe physical parameters such length 

Dynamic  

Information 
Designed operation information 

Weather  Information Dynamic 
Information 

Outside temperature, solar radiation, etc. 

Data Resources During Operation 

Static Information CAD MEP drawings, construction and material manufactures, predefined 
schedules for HVAC systems, occupancy, lighting, etc. 

Dynamic Information 

Real-time HVAC system performance from sensors in systems such as: 
supply air temperature, supply air flow rate, return air temperature, relative 
humidity  

Real-time indoor environmental measures from sensors such as: temperature, 
RH, CO2, air flow, etc. , and dynamic occupancy information from sensors  

Dynamic usage of internal equipment from power metering 

Historical/simulated weather information, onsite weather measurements 



5 
 

 Comprehensive whole building energy prediction model is not fully integrated into 

advanced controls for accuracy and robustness 

 Real-time implementation cases of such control on indoor air temperature are few. 

 

1.2 Literature Review 

The literature review is organized into three parts:  

1. Model-based supervisory control 

2. Optimization techniques in the building HVAC controls 

3. Occupancy detection and behavior prediction in buildings 

1.2.1 Model-based Supervisory Control 

In this thesis, the term model-based control particularly refers to the physical-model 

based control. In this modeling process, physical models are used to predict the 

energy/cost and environment performance. The terminology, physical model, begins with 

the description of a system or process and uses a priori knowledge of the system or 

process to specify an equation-based model that serves as the basis for overall 

performance prediction. These models have high performance in prediction and high 

control reliabilities. Based on this process, this control method can further be divided into 

two main categories: Equations developed from scratch and equations integrated into 

existing energy simulation tools.  

Developing Equations from Scratch 

Many studies in building controls over the last two decades fall into this category and the 

equations tend to be simplified. Taking the whole building thermal, mass, heat transfer 

and other factors into equations is too complex and impractical for control design. 

Simplified models have been shown to greatly improve building energy efficiency 
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(Henze, et al. 1997; Zaheer-uddin and Zheng, 2001; Zhang and Hanby, 2006; Sane and 

Guay, 2008).  

Kaya, et al.(1982) initially introduced a thermal model based on the equations for an 

office space along with an index of energy use to develop the optimal control method for 

one air conditioned zone. The main objective of this study is to demonstrate improvement 

in control performance and reduction in energy consumption through controlling 

temperature, humidity, and velocity simultaneously rather than independently. The results 

indicated that the optimal control strategy can result in reduced energy use.  

House, et al. (1991) and House and Smith (1995) developed a systematic standard 

approach for physical model-based optimal control of building HVAC systems. The 

detailed plant equations are derived from the principles of conservation of mass and 

energy, where the interactive of system components, the multi-zone building systems and 

their interaction were considered. A nonlinear programming technique is used to solve 

the optimal control problem. Four cases were simulated and the final results show there is 

a 24% reduction in operation costs compared to the conventional control strategy, while 

the comfort zone is maintained in only one case.  

Kota, et al. (1996) applied the dynamic programming (DP) technique to the optimal 

control of building HVAC systems. The optimization results were compared with that 

obtained from a nonlinear programming (NLP) technique using the sequential quadratic 

programming (SQP) method. The results showed that DP is more efficient compared with 

NLP for the example problems, while NLP is more robust and can treat constraints on the 

state variables directly.  

Zaheer-uddin and his colleagues completed several studies on the optimal and sub-

optimal control of variable-air-volume (VAV) systems in buildings (Zaheer-uddin and 

Patel 1995; Zheng and Zheer-uddin 1996; Zaheer-uddin and Zheng, 2001). Their 

simulation results demonstrated that these optimal and sub-optimal control strategies, in 
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which the multiple control variables were optimized simultaneously using the steepest 

descent method, can improve the system performance and operational efficiency.   

Henze, et al. (1997) paid great attention to the predictive optimal control of building 

thermal storage systems. In this study, a predictive optimal controller is developed and 

the performance of the controller validated by simulations. This optimal controller 

minimized operating costs of the cooling plant over the simulation horizon. An optimal 

storage charging and discharging strategy is planned at every time step over a fixed 24-

hour horizon.  The simulation results showed that his optimal controller can achieve 

significantly better system performance than the conventional controller.   

Wang and Jin (2000) presented an optimal control strategy for VAV systems, where the 

simplified physical models were utilized to predict the overall system performance. 

Genetic algorithm (GA) was used to solve the optimization problem of multiple control 

variables. This was the first application of GA in the building HVAC control domain. 

The simulation results demonstrated that this proposed real time control strategy can 

improve the overall system energy performance and reduce energy use.  

Mendes, et al. (2003) introduced the development of the physical model based on the 

Matlab/Simulink for building temperature performance analysis with automatic control. 

They built up a room model based on principles of thermal and mass balance equations 

with a lumped capacitance approach. A fuzzy logic control (FLC) algorithm was applied 

and the results show that the new FLC logic has less settling time and a more stable room 

temperature than the conditional PID controller.  

Zhang and Hanby (2006) presented a model-based supervisory control of renewable 

energy systems. The objective of the control problem was to minimize the net external 

energy consumption of the system subject to a series of constraints. An evolutionary 

algorithm was used to seek the optimal and near-optimal control settings. The simulation 

results indicated that significant improvements in system operations are possible as 

compare to the existing rule-based control schema. The results also indicated that 
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significant improvement in execution time will be needed for any future online 

deployment.  

Sane and Guay (2008) presented a real-time dynamic minmax optimization technique 

over a finite-time horizon applied to the building “demand response” problem. This 

approach is applied to the peak power demand control problem where electricity 

consumption and peak power usage in a building has to be controlled in response to real-

time pricing. They applied this method to a supervisory control problem for building 

HVAC control that involves minimization of fixed horizon electric utility cost. The one-

day simulation results showed that real-time optimization procedures can provide 

significant reductions in energy costs.  

Some model-based approaches mentioned above (House and Smith, 1995; Zaheer-uddin 

and Patel 1993; Zheng and Zheer-uddin 1996; Zaheer-uddin and Zheng, 2001) have very 

detailed physical models. Many parameters in such models require detailed information 

of the system and building which is a big concern in terms of model built up time and 

efforts. The parameter identification and performance predictions of these detailed 

equation-based approaches often require a lot of iterations, which may result in high 

computational costs and memory demand.  

Other approaches mentioned above (Henze, et al. 1997; Wang and Jin, 2000; Mendes, et 

al. 2003; Zhang and Hanby, 2006; Sane and Guay, 2008) involve ASHRAE thermal 

network models (ASHRAE, 2009). Such model presents the thermal dynamic and heat 

transfer process as thermal capacitances and resistances, which is computationally fast 

and easy to implement online (Wang, et al. 2008). This thesis adopts this approach to 

build up building zone and system models.  
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Integrations with Existing Energy Simulation Tools 

There are several well-established and empirically validated building energy simulation 

tools, such as ESP-r (Clarke, 2001), EnergyPlus (Crawley, 1999), TRNSYS (TRNSYS, 

2009) and SPARK (Simulation Problem Analysis and Research Kernel) (LBNL, 2006b), 

which are based on fundamental laws of energy, mass, heat transfer, flow balance, etc. 

These energy simulations tools, in use for the past two decades, are utilized to predict the 

energy performance of buildings based on building enclosures, HVAC systems, internal 

heat gain, occupancy schedules and outside weather. These simulation tool themselves 

have very limited control functions such as ON/OFF control. Only recently have a few 

research works started trying to integrate these energy simulation tools with existing 

control design tools such as MATLAB/Simulink and Dymola.  

Clarke (2001) described the development and testing of a prototype simulation assisted 

controller, in which a detailed simulation program is embedded in real-time control 

decision making. The prototype system used LabVIEW as the weather data prediction 

and ESP-r for modeling HVAC system and control design decision support. It pointed out 

that the predict control, which uses a model in addition to measured data in order to 

forecast the optimum control strategy to be implemented, could assist in the more 

efficient operation of building energy management system. 

Xu and Haves (2004) presented a hybrid simulation environment for controls testing and 

training. A real-time simulation of a building and HVAC system was coupled to a real 

building control system through a hardware interface. A prototype was constructed and 

tested in which the dynamic performance of both the HVAC equipment and the building 

envelope was simulated using SPARK. A PID controller was designed to tune room air 

temperature.  

Xing (2004) presented a study on the multiple building load control and optimization 

using EnergyPlus and genetic algorithm. The second part of his research described three 

ways of optimizing load control in an aggregation pool: Enumeration, multi-GA and 
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model-based nonlinear optimization. The results showed that load aggregation offered 

load diversification opportunities among participants and improved the aggregated load 

profile. Load shedding later individual load profiles in a way that enhances the 

aggregation performance 

Kummer, et al. (2005) developed and tested an optimal controller for an HVAC system 

with a high internal gain multi-zone building in TRNSYS type 56. The controller design 

is based on linear quadratic programming. A PID is cascaded with the optimal controller 

to compensate for modeling and forecasting errors. This PID adjusted the water supply 

temperature only.  

Yahiaoui, et al. (2005) presented ongoing research on better control modeling in building 

performance simulation by integrating distributed computer programs. The research 

focused on the problem of developing run-time coupling of MATLAB and ESP-r over 

TCP/IP using Internet sockets. The one-day simulation results showed that MATLAB 

gives better controls over the control function within ESP-r itself.  

Henze, et al. (2005) developed a model-based predictive (MPC) controller for a building 

with active ice storage and passive thermal storage in the building mass, using a 24-hour 

future horizon, and a 1-hour time-step. TRNSYS was used for the building model and 

Matlab was used to control the optimization. A subsequent study was conducted by Liu 

and Henze (2005) to develop a method for automated model calibration to ensure 

continued accuracy over time. They also worked on the development of a hybrid control 

system that attempts to incorporate the aspects of continual updating (found in the 

learning algorithm approach to control) with the simulation-based control approach (Liu 

and Henze, 2006). 

Coffey (2008) presented a flexible software framework for simulation-based supervisory 

control, along with a modified genetic algorithm developed for use within it, and applied 

it to a case study of demand response by zone temperature ramping in an office space. 

Rule-based and simulation-based control variants were studied by using a two-model 
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configuration (one is acting as the ‘real’ building; the other is being used within the 

simulation-based control framework). For the case study, simulation-based control was 

found to perform only slightly better than a logarithmic rule-based approach under ideal 

conditions, and performed worse under conditions of model or prediction inaccuracies. 

The results are of use in guiding further research, and the case study itself has been a 

good test of the software framework.  

In summary, these model-based control strategies demonstrated that system energy, 

environmental performance and system response can be greatly improved. However, very 

few studies have applied the designed optimal controller in a real building test-bed. The 

simulation-based supervisory control approach suggests an even longer prediction 

horizon than detailed equation-based approaches. All these characteristics are barriers for 

successful real time implementations of optimal control strategies. 

1.2.2 Optimization techniques in the building HVAC controls 

The discussion of previous research above illustrates the variety of optimization 

techniques used in building HVAC controls. There are two basic categories for 

optimization techniques in non-linear HVAC system modeling: the global minimum and 

the local minimum. The major difference between these two is that nonlinear local 

optimization techniques always lead to a local optimum and never to a global optimum. 

Nonlinear local optimization includes direct search and gradient-based approaches, 

among others, while the nonlinear global optimization includes simulated annealing, 

evolutionary algorithm, etc. Wang, et al. (2008) and ASHRAE (2007) offer a very 

detailed literature review on different optimization techniques in the building research 

domain. Here, only optimization techniques related to building HVAC supervisory 

controls are reviewed. Table 1.3 shows a detailed review and comparisons among 

different nonlinear optimization techniques.  

Most of these optimization techniques demonstrated their performance for particular 

applications. Some optimization techniques may only result in a locally optimal solution, 
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and a globally optimal solution is not always guaranteed. The genetic algorithm (GA) has 

been attracting growing attention from researchers and has been widely applied in several 

studies. GA is a result-based method. No derivatives are required during the calculation. 

This feature makes it possible to solve complicated global optimization problems. 

However, it needs extensive computational cost and memory demand which is an 

obstacle for online implementation. There is a need for the future research to improve the 

computational efficiency and make it feasible for real time implementation. 

Table 1.3 Summary of main optimization techniques used in building HVAC supervisory controls 

 Techniques Research 
Studies 

Strength Weakness 

Nonlinear 
Local 

Techniques 

Direct search 
Zaheer-uddin 
and Zheng, 

2001; Xu 2004 

Simple and easy to 
be understood and 
implemented. No 

derivatives are 
required 

Often fails to obtain an 
optimal solution and less 
computationally efficient 

Sequential 
quadratic 

programming 

House and 
Smith 1995; 
Kota et al. 

1996; Sun 2005 

Handle a large 
number of 
inequality 
constraints 
efficiently 

Has to start from initial 
guess values and the speed 

is affected by its initial 
values 

Lagrange 
method 

Chang 2004; 
Sane 2008 

Easy to be 
implemented since 
Lagrange formula 

does not depend on 
the order in which 

the nodes are 
arranged 

The convergence is not 
always guaranteed 

Nonlinear 
Global 

Techniques 

Simulated 
annealing 

Flake 1998; 
Chang et al. 

2006 

Relatively easy to 
be implemented 

High computational costs 
and memory demands 

Evolutionary 
algorithms and 

genetic 
algorithm 

Henze 1997; 
Wang et al. 
2000; Xing 

2004; Kumer 
2005; Zhang 

2006 and 2007; 
Coffey 2008 

With high 
generalities and 
flexibilities, and 

there are also robust 
to find the global 

minimum 

Extensive computational 
costs and memory 

demands due to high 
number of fitness 

evaluations 
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1.2.3 Occupant detection and behavior prediction in buildings 

A fundamental goal of energy efficient and high performance buildings is to facilitate a 

comfortable, healthy and productive environment for the occupants while maintaining 

minimum energy consumption.  Information regarding the number of occupants in a 

building space is a key component to achieving this task and is useful for numerous 

applications, such as lighting control or demand-controlled ventilation.  Occupant 

presence and behavior in buildings has been shown to have large impacts on space 

heating, cooling and ventilation demand, energy consumption of lighting and space 

appliances, and building controls (Page, 2007). The impact of occupants’ behavior on 

their working environment can be categorized into several methods of interaction and can 

be represented as in Figure 1.2.  Each interaction is a stochastic process. Occupants emit 

heat, “pollutants” such as carbon dioxide (CO2) and odors, and generate sound in the 

space. These interactions and their effects on the indoor environment can be measured via 

appropriate environmental sensors.  

 
 

Figure 1.2 Occupant interactions with the surrounding environment 

Several stochastic models have been developed to model occupant presence and 

interactions with space appliances and equipment. Fritsch, et al. (1990) proposed a model 

Occupant 
Presence

CO2,TVOC
Acoustics

Internal 
heat gains
through 

occupancy 
activities

Occupant 
Behavior 
Patterns

Grace arrived office everyday around 8:00am
There is no class every Tuesday and Thursday 
from 9:00am to 10:20am
…………………….

At 6:00pm on Monday, Wednesday and Friday 
alternatively, Dave leaves work and goes to the 
gym.
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based on Markov chains to model the random opening of windows by occupants. 

Degelman (1999) developed a Monte Carlo modeling approach for space occupancy 

predictions based on survey statistics. Reinhart, et al. (2004) determined occupant 

presence for lighting software by using a simplified stochastic model of arrival and 

departure. Wang, et al. (2005) applied Poisson distributions to generate daily occupancy 

profiles in a single-occupied office.  Bourgeois, et al. (2006) integrated an occupancy 

model based on Reinhart’s algorithm into ESP-r to investigate lighting use. However, 

most of the previous occupancy presence models were either tested on a single-person 

office or presented a specific application such as lighting control. Only recently, Page, et 

al. (2008) targeted individual occupancy behaviors by developing a generalized 

stochastic model for the simulation of occupant presence with derived probability 

distributions based on Markov chains. However, some of the occupant behavior derived 

from stochastic model was based on the assumption that occupants will interact with 

different appliances in the space, and the validation was conducted in single-person 

occupied offices. In addition, current approaches to occupancy detection take place 

mostly in commercial buildings through the use of passive infrared (PIR) motion 

detectors. However, motion detectors have inherent limitations when occupants remain 

relatively still. Moreover, motion detectors alone only provide information regarding the 

presence or absence of people in a space rather than the number of occupants, 

information which is highly useful for building control tasks such as demand controlled 

ventilation (Emmerich, 2001).   

Video cameras have also been used to detect indoor human motions. Trivedi, et al. (2000) 

conducted rigorous experimental investigations on the processing and control modules 

for the active camera networks and the microphone array which are embedded in an 

intelligent room.  The integrated system has the functionality of human tracking, active 

camera control, face recognition, and speaker recognition. Lymberopoulos, et al. (2008) 

developed a system called BehaviorScope for interpreting human activity patterns using a 

camera network and its application to elder monitoring in assisted living. However, video 

capture raises privacy concerns and requires large amounts of data storage. Other work 

has focused on the use of carbon dioxide (CO2) sensors in conjunction with building 
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models for estimating the number of people generating the measured CO2 level 

(Federspiel, 1997, Wang, et al. 1998). Sufficient models, though, are often not easy to 

obtain, and extensions to complex or open spaces may be difficult.   

Recent research on so-called ‘smart environments’ involves the use of a diverse set of 

sensors to monitor and infer human activity in a building.  Examples include the MIT 

Intelligent Room (Torrance, 1995), the University of Colorado Boulder Neural Network 

Adaptive Home (Mozer, 1998), Georgia Tech Aware Home (Lesser, et al. 1999) and the 

University of Texas at Arlington MavHome (Cook, et al. 2004; Youngblood, et al. 2007). 

Most of these works focus on behavioral modeling or mobility tracking and do not 

exploit additional sensing capability for the detection of occupancy numbers. In addition 

to these test beds, Duong, et al. (2006) used Hidden Semi-Markov models for modeling 

and detecting activities of daily living such as cooking and eating, and Youngblood, et al. 

(2007) introduced a new method of automatically constructing Hierarchical Hidden 

Markov models using the output of a sequential data mining algorithm to control a smart 

environment. Other research investigates HVAC preconditioning and device automation 

via mined location and device interaction patterns, and the energy saving potential is 

estimated through a relatively simple consumption model (Roy, et al. 2007). 

In summary, methodologies for the detection of the presence of occupants based on 

sensor networks have been well established and tested. However, the sensor networks are 

either as one type of sensor, such as PIR, or video camera which comprises concerns of 

occupant privacy. In general, occupancy detection that fully exploits information 

available from low cost, non-intrusive, environmental sensors is an important yet under 

explored problem in office buildings. Furthermore, the models of occupant behavior 

patterns for the duration of occupancy within the context of building HVAC controls are 

very important for the operation of energy efficient buildings, but not explored in the 

literature review. 



16 
 

1.2.4 Summary of Literature Review 

Based on the literature review above, several issues emerge requiring further research in 

order to achieve better building HVAC control operation. These issues include: 

 Very few studies implement the real time optimal control into a real building 

 High computational costs and large memory demands are concerns for detailed 

physical model-based design 

 Dynamic occupancy and weather information based on non-intrusive 

environmental sensor networks are important for the building operation but has 

not yet been studied 

1.3 Research Objective and Approach  

Table 1.4 Comparisons of integrated HVAC control with previous studies 

 Input Information for 

Control Modeling 

Actual Implementation 

Author 
Local 

Weather 
Forecasting 

Dynamic 
Occupant 
Patterns 

Real-
time 

Fully Model-
Based 

High 
Computational 

Speed 

Wang, et al. (2000) 
 

√ √ 

Henze, et al.(1997, 
2003, 2005)   

√ 
  

Xu (2004) 
 

√ √ 

Xing (2004) 
 

√ 
 

Sun (2005) 
 

√ 
 

Kummert (2005) 
 

√ √ 
 

Zhang (2006,2007) 
 

√ √ 

Sane (2008) 
 

√ √ 

Coffey (2008) 
 

√ √ 
 

Dong (2010) √ √ √ √ √ 
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Based on the issues highlighted in the literature review, there is a demand for innovative 

approaches for control design and operation which allows real time implementation with 

dynamic occupancy schedules and real-time onsite weather information and ultimately 

reduce energy consumption while maintaining indoor temperature set-points. This 

motives the objective of this study to develop integrated heating, cooling and ventilation 

controls. Comparing to the previous studies, the character of current study is an 

integration of new, current and previous technologies in HVAC control. Table 1.4 shows 

the differences between this study and others.  The computational costs of those previous 

studies can be referred to Table 1.3.  

The hypothesis of the thesis is:  

With the rapid developing of computer and information hardware and software 

technologies, an integrated building heating, cooling and ventilation control through the 

prediction of dynamic occupant behavioral patterns and weather information can reduce 

building energy consumption while still meeting the indoor temperature set-points.  

More specifically, the research in this thesis aims to: 

 Develop and implement an equation based building model for the Solar Decathlon 

house test-bed with radiant floor heating and heat pump cooling systems based on 

fundamental scientific and engineering principles; 

 Validate the building model using data from field measurements; 

 Develop and implement a data driven model for occupancy behavior patterns;  

 Develop and implement a data driven model for weather information (temperature, 

solar radiation and wind speed) forecasting; 

 Implement an real time integrated building HVAC controls in the Solar Decathlon 

House test-bed based on the prediction of occupancy and weather information ; 

 Compare the HVAC energy consumption of proposed integrated control with 

commonly implemented fixed set-point temperature control strategy.  
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1.4 Thesis Chapter Overview 

This thesis comprises five chapters: 

Chapter 1, Introduction: Provides background and motivation of this thesis work. The 

current research status of the occupancy pattern detection and optimal HVAC control are 

also introduced. It identifies the research gaps, defines the detailed research objectives 

and approaches.  

Chapter 2, Development of the Occupant Behavior Pattern Model: Presents novel models 

for: 1) detection number of occupants; 2) duration of the occupancy in the space. These 

two models have been tested and validated through a large-scale sensor network test-bed 

setup. In addition, other existing data driven models such as Neural Network are 

compared with the proposed model.  

Chapter 3, Development of the Building Model: Describes the experimental test-bed 

setup, and first-principle based approaches to develop building zone models and HVAC 

system models. It also presents the validation results of this building model based on 

measured field data.  

Chapter 4, Integrated Building Control Design and Implementation: Discusses the 

development of integrated optimal control design with the results from Chapter 2 and 3. 

It also presents the real-time on-line implementation of the designed controller in the 

Solar Decathlon house both for heating and cooling seasons. It compares the results with 

conventional setback temperature control strategies as well.  

Chapter 5, Contribution, Conclusion and Future Work: Summaries the major 

accomplishments achieved in this thesis and conclusions drawn from the work. It also 

outlines the future directions of research in the area of building HVAC controls.  
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Chapter 2  
 

Development of the Occupant
Behavior Pattern Model

 

2.1 Introduction 

Contemporary office buildings commonly experience changes in occupancy patterns and 

needs due to changes in business practice and personal churns. Hence, it is important to 

understand and accurately capture the information of such trends for applications in 

building design and subsequent building operations. Detection of occupancy presence has 

been used extensively in built environments for applications such as demand-controlled 

ventilation and security, and occupancy profiles are widely used in building simulations. 

However, the ability to discern the actual number of people in a space and the occupancy 

duration are often beyond the scope of current sensing techniques. This chapter presents a 

study to develop algorithms for occupancy number detection and occupancy duration 

models based on the analysis of environmental data captured from ambient sensing 

networks.  

2.2 Model Development for Detecting Number of Occupants 

To investigate the use of ambient sensors for detecting the number of occupants in an 

office building, a comprehensive, ubiquitous, environmental sensing test-bed was 

deployed in the Robert L. Preger Intelligent Workplace (IW) at Carnegie Mellon 

University. The overall goal of this test-bed is to integrate state-of-the-art IT systems as 

well as sensing, actuating, and controls technologies to achieve energy efficiency while 

providing a healthy and productive environment. This test-bed includes distributed 

sensors for a variety of environmental parameters such as CO2, total volatile organic 

compounds (TVOC), small particulates (PM2.5), acoustics, illumination, motion, 
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temperature, and humidity.  In addition to the sensing networks, a video camera network 

is deployed with one camera in each of selected IW bays.  Captured videos can be 

analyzed by user-assisted software to determine the number of occupants in the space at a 

given time.  This information is used for ground truth occupancy profiles in the analysis. 

The contribution of the test-bed lies in the magnitude and diversity of the sensor 

infrastructure deployed as well as the ability to capture data continuously with very little 

human intervention.  While the aim of the study described here is on the detection of the 

number of occupants in the building space, this test-bed is an ideal testing environment 

for a large variety of building technology research areas such as human-centered 

environmental control, security and energy efficient and sustainable green buildings. In 

particular, the derived occupancy information can be used as an input for both validating 

building simulation models and simulating new building or control designs on realistic 

occupancy profiles. 
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Figure 2.1 Sensor network layout of the Intelligent Workplace, Carnegie Mellon University 
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2.2.1 Data Collection 

Table 2.1 Data collection periods 

Dataset Bay Starting date Ending date # Data points in total 

B13_P1 13 01/29/08 03/07/08 21528 

B13_P2 13 03/17/08 04/04/08 7705 

B13_P3 13 03/27/08 04/03/08 1156 

B10_P1 10 01/29/08 03/07/08 20702 

B10_P2 10 03/17/08 04/04/08 7555 

B10_P3 10 03/27/08 04/03/08 1157 

 

Figure 2.1 shows the sensor network setup in Intelligent Workplace (IW) at Carnegie Mellon 

University (CMU). Data collection in the IW for this work took place during two continuous 

periods and in two bays. The time periods are (1) January 29 to March 7, 2008; and (2) March 17, 

2008 to April 4, 2008.  Occupancy data is recorded on weekdays from 8:00 am to 6:00 pm from 

the two bays with the most frequent occupancy activity, bays 13 and 10.   Table 2.1 lists the 

details of each dataset and the label for the dataset used throughout the rest of the paper.   

2.2.2 Feature Selection 

The features of the environmental sensing network are explored to provide the most useful 

information in the detection and prediction of the occupancy number. To this end, the notion of 

information gain is implemented, which is a measure of the amount of uncertainty of the input of 

a system given the value of the output.  Here presents a brief overview of the methodology and 

results of the feature selection analysis; a full report of the details can be found in (Lam, et al. 

2009). 
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Information gain 

Mathematically, the relative information gain (RIG) between two random variables x and y is 

defined as (Mitchell, 1997) 

 %100
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(2.1)

        

where the mutual information IG is  
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and the entropy H(y) is a measure of the inherent uncertainty of the random variable y: 
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with n is the total number of values the random variable y can take. High entropy corresponds to 

high uncertainty and vice versa.  Information gain is calculated to assess the correlation between 

occupancy and different sets of features derived from the sensor data.  In general, the feature set 

is comprised of the following features computed for each ambient sensor: the original output, 

first order difference, second order difference and its difference with outdoor values. For CO2 

and acoustics, a 20 minute moving average value is also considered. The indoor CO2 level is 

assumed to be equally contributed by each occupant. A tool (Anderson and Moore, 1998) is 

employed, which uses an exhaustive search algorithm to check all possible feature combinations 

from the feature space and then select the most informative combination of features based on the 

relative information gain.   
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Results from feature selection 

Table 2.2 shows an example of the feature selection analysis on CO2 data for a particular bay. 

The features investigated are shown in Table 2.3.  

Information gain is computed for increasing numbers of input features and, for each iteration, 

feature combinations yielding the highest information gain are noted (indicated by the check 

marks in Table 2.3).  This analysis is repeated for each bay, and the number of selections of each 

feature is totaled to obtain the most informative features for a given sensor.  For instance, the 

three most informative features for CO2 are found after totaling the selections across all bays to 

be CO2_Out, CO2_FD2 and CO2_MA_20min. 

Table 2.2 Investigated features of CO2 

Feature Description 

CO2_FD 1st order difference of CO2: CO2(t(i))-CO2(t(i-1)) 

CO2_FD2 1st order shifted difference of CO2 (CO2(t(i))-CO2(t(i-2) 

CO2_SD 2nd order difference of CO2: CO2_FD(t(i))–CO2_FD(t(i-1)) 

CO2_Diff 
1st order difference of CO2 difference between indoor and outdoor: 

CO2_Diff(t(i))-CO2_Diff(t(i-1)) 

CO2_Diff_FD 
CO2_Diff_SD (2nd order difference of CO2 difference between indoor and 

outdoor: CO2_Diff_FD(t(i))-CO2_Diff_FD(t(i-1)) 

CO2_MA_20min 20 minutes of moving average of CO2 measurement 

 

A similar analysis was conducted combining the three most informative features for a given 

sensor with those from other sensors. A detailed analysis can be found in (Lam, et al., 2009).  

Summarizing the results, thermal performance parameters such as temperature and relative 

humidity are dominated more by the building heating, cooling, and ventilation systems. The 

selected features giving the largest information gain are found to be: CO2, CO2_Diff, CO2_FD2 
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and CO2_MA_20min acoustics, acoustics_FD2 and PIR. These features are used as inputs to the 

occupancy estimation methods discussed below. Note that the occupancy estimation methods 

ware also evaluated with additional feature combinations, and those yielding the best results are 

consistent with the results of Lam, et al. (2009). 

Table 2.3 Information gain with different number of features as output for CO2 for the period B13_P1 
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2.2.3 Occupancy Estimation Methodology 

2.3.1.1 Neural Network 

An Artificial Neural Network (ANN) is an interconnected group of artificial neurons that uses a 

mathematical or computational model for information processing based on a connection 

approach to computation (Hassoun, 1995).  

An ANN of two hidden layers with different combinations of neuron numbers in each hidden 

layer is tested on the data from the IW.  Figure 2.2 shows the structure of the ANN. The neural 

network applied in this study is used for creating, training, and simulating a fully-connected, 

feed-forward network. Fully-connected means that each node is connected to all other nodes in 

the adjacent layers, and feed-forward indicates that information is passed in a single direction 

from the input to the output nodes. 
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The learning algorithm employed is the back-propagation, generalized delta method. In this 

algorithm, the value of the output of the NN is compared to a target value to determine an error. 

The weights associated with the connection between nodes are then adjusted in a backward 

direction from the output layer to the input layer in order to minimize this error. 

The ANN is implemented using the MATLAB Neural Network Toolbox.  The input layer has the 

most important features obtained from the results of feature selection. The Log Sigmoid function 

is used as the transfer function in all hidden layers, and a linear function is used in the output 

layer. Because neural networks are not guaranteed to reach a global solution, training is repeated 

10 times, and the output results are averaged. 

 

Figure 2.2 Structure of 2-hidden layer Neural Network used in occupancy detection 

 

  Output LayerInput Layer Hidden Layer 2Hidden Layer 1

Feature 1
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Feature n

Number of
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2.3.1.2  Hidden Markov Model 

A hidden Markov model is a statistical model in which the system being modeled is assumed to 

be a Markov process with unknown parameters, and the challenge is to determine the hidden 

parameters from the observable parameters. The extracted model parameters can then be used to 

perform further analysis, for example, for pattern recognition applications. A HMM can be 

considered to be the simplest dynamic Bayesian network. 

In this study, the occupancy number is considered to be a hidden state and the most important 

features from the sensor network as observations as shown in Figure 2.3. Unlike the NN 

approach, the HMM method explicitly accounts for temporal correlations between occupancy 

levels and environmental parameters in consecutive time steps. This temporal information has 

the potential to greatly improve prediction. 

 

Figure 2.3 Structure of HMM 

To train the HMM, the forward and backward algorithm is applied. The update rule is (Rabiner, 
1989): 

(1)Initialize: |      (2.4) 

 

Where ..   are observed sensor values.  

(2)For i=2 to n,  

 ∑ | |    (2.5) 

and  are the number of occupancy in time t and time t-1.  
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(3)Initialize: 1                (2.6) 

(4) For i =2 to n,  

 
∑ | |         (2.7) 

(5) Finally, | … ∝                  (2.8) 

where    

  forward probability 

  backward probability 

  state 

  observation. 

The final estimation is obtained from Equation (2.8), which is the maximum probability based on 

the current sensor observations and previous occupancy number. 

 



29 
 

2.2.4 Preliminary Experiment Results 

 

Figure 2.4 Occupancy estimation results of bay 13_p2 on March 21 with ANN of 75% accuracy 

 

 

Figure 2.5 Occupancy estimation results of bay 13_p2 on March 21 with HMM of 75% accuracy 
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Figure 2.4 and Figure 2.5 show the results from the ANN and HMM analysis, respectively. Data 

for one day (March 21) is used for testing, and the remaining dates are used for training. The x 

axis corresponds to the number of time steps  (2-minute interval), and the y axis the number of 

occupants in the space. The solid line is the actual occupancy profile and the red dotted line is 

the estimation. ANN generates rather noisy occupancy estimates with frequent fluctuations. This 

can in part be attributed to the ANN assumption that each data point is independent and 

identically distributed, which is not always accurate.  This is particularly true with respect to 

parameters such as CO2 because of the strong temporal correlations inherent in CO2 

measurements. The HMM approach is more well suited to account for these temporal 

correlations because of the dynamic Markov properties. 

Figure 2.6 and Figure 2.7 show one week estimation results from bays 13 and bay 10, 

respectively. The testing period is from period P3 as shown in Table 2.1 and the training period 

is obtained by combining the P1 and P2 periods. In total, there are 1156 data points. Accuracies 

for Figures 2.6 and 2.7 are 70% and 65%, respectively.  While these numbers appear somewhat 

low, the profiles illustrate that the estimations track changes in occupancy fairly well. The 

estimated profiles also present a “smoothed” version of the true occupancy profile.  

 

 
Figure 2.6 Occupancy estimation results of bay 13 from results from dataset b13_p3 from March 21 to April 

3 with HMM of 70% accuracy 
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Figure 2.7 Occupancy estimation results of bay 10 from results from dataset b10_p3 from March 27 to April 

3 with HMM of 65% accuracy 

Table 2.4 Summary of occupant number prediction in IW 

Dataset Bay Match (%) Not-Match (%) 

B13_P1 13 65 35 

B13_P2 13 72 28 

B13_P3 13 70 30 

B10_P1 10 68 32 

B10_P2 10 70 30 

B10_P3 10 65 35 

 

Table 2.4 presents a summary table from the results of occupant number prediction. In summary, 

the HMM estimates occupant numbers successfully for 70% of the testing period, but ignoring 

abrupt fluctuations of short duration. From the perspective of an occupancy-based HVAC control 

scheme, this behavior is sufficient because the abrupt changes are rather insignificant.  This test-

bed has a comprehensive sensor network covering possible sensors that can be installed in 

buildings. The methods are based on information theory and rigorous mathematical models. It is 

believable that the model developed here can be applied to any building with the same sensor 

network setup.  
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2.3 Model Development for Occupancy Duration Estimation 

The objective here is to develop and implement unsupervised algorithms for ambient sensor-

based modeling and prediction of user behavior within the context of intelligent buildings and 

connect the derived user behavioral patterns to building energy and comfort management. The 

approach is based on the work of Youngblood, et al. (2007) in that a behavioral pattern model is 

constructed by mining sensor events for significant patterns (Episode Discovery), and then a 

Markov model is generated from the resulting patterns.  However, three additional contributions 

to the model are introduced here: 

1) Integration of a rich environmental sensor network with acoustics, temperature, relative 

humidity, CO2 and motion detection etc. into the data-driven model of occupancy 

behavioral patterns.  

2) Incorporation of occupancy duration into the Semi-Markov Model to capture behavioral 

transitions over larger time scales as well as energy related events.  

3) Development of a formal method to connect the discovered patterns with energy and 

thermal comfort management in buildings, demonstrated through simulation using 

measured data.  In particular, a comparative analysis is conducted between using a 

dynamic occupancy schedule versus a conventional temperature set-point schedule in 

EnergyPlus simulation.  

Figure 2.8 illustrates the overall approach, comprising: (1) sensor event detection method; (2) 

frequency pattern detection using Episode Discovery, minimum description length (MDL), 

period detection (PD) and energy weighting factors; (3) a Semi-Markov Model for occupancy 

duration models.  
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2.3.1 Event Detector 

The detection of events comes from a variety of different measured sensor data. Each single 

event is denoted with a code and an episode as a sequence of codes.  Table 2.4 shows code 

assignments. An example of an episode may be “agghkjhk…”. All parameter values used in the 

definitions are determined empirically for the test-bed environment used in this study.  

Table 2.5 Definition of important events from sensors 

Sensors State Transitions Code Sensors State Transitions Code 

Acoustics 1. Low acoustics a CO2 1. Increasing g 

2. Loud acoustics b 2. Decreasing h 

Illumination 1. Off-On c Temperature 1. Increasing i 

2. On-off d 2. Decreasing j 

Motion 1. Off-on (motion) e Relative 

Humidity 

1. Increasing k 

2. On-off (no motion) f 2. Decreasing l 

 

Figure 2.8 A holistic view of occupancy duration estimation 
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a. Acoustics 

The acoustics sensor outputs a calibrated percentage of the acoustics level in the space. Figure 

2.9 shows an acoustics profile example for a typical day in a conference room. The acoustic 

events are categorized into two types: (1) ventilation noise or background noise, defined as an 

acoustics level between 15% and 20% that is accompanied by at least a 5% increase from the 

previous level (event ‘a’); (2) human activity (e.g., voice or door opening/closing), defined as an 

acoustics level above 20% accompanied by at least a 10% increase from the previous level 

(event ‘b’). A smoothing method based on a root mean square approach is implemented to 

reduce noise (Smaton  and McHugh, 2006).  

 
Figure 2.9 One day example of acoustic events 

b. Lighting  

Lighting events are defined as: (1) light turned on (event ‘c’); (2) light turned off (event ‘d’).  

c. Motion 

Motion sensor events are defined in the obvious way for a binary motion sensor with an event 

each for motion switching (1) on (event ‘e’) and (2) off (event ‘f’).  However, to avoid capturing 
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high frequency fluctuations that occur naturally when occupants are inside the room and to 

obtain a more informative signal, a 10 minute time window is used to smooth the signal. A 

motion off event must be followed by no motion activity within this window. Figure 2.10 shows 

an example motion profile and the accompanying events. 

 
Figure 2.10 Example motion events 

d. Carbon Dioxide   

According to the results from Lam et al. (2008), an increase of 50 ppm CO2 level in 10 minutes 

is found to have high correlation with human presence. This, however, clearly depends on the 

location of the sensor; in this study, the CO2 sensor is located above the conference table in the 

center of the room at roughly nose level. The events are then defined as: (1) CO2 increase of 50 

ppm in a 10 minute time window (event ‘g’); (2) CO2 decrease of 50 ppm in 10 minutes (event 

‘h’).  

e. Temperature and relative humidity 

In a room without windows such as the conference room test-bed, individual human-based 

temperature fluctuations are minimal or on vary slow time scales. Large changes in temperature 

(1 ºC) in a short time frame (10 minutes) are more likely associated with high energy activities 
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such as large group presence, the HVAC system being turned, or a projector. Hence, the events 

for temperature are defined as (1) 1 ºC increase in 10 minutes (event ‘i’); (2) 1 ºC decrease in 10 

minutes (event ‘j’). Relative humidity fluctuates very little under the test-bed conditions unless 

there are occupants inside the space or the HVAC system brings in outside air. Hence RH events 

are defined as: (1) 10% increase in 10 minutes (event ‘k’); (2) 10% decrease in 10 minutes (event 

‘l’).  

2.3.2 Episode Discovery 

Episode Discovery (Heierman, et al. 2004) is the process of discovering significant patterns in 

the data sequence by first generating candidate sequences and then pruning this set to obtain a 

final set of important sequences. Time series sensor event sequences generated according to the 

author’s definitions in the previous section are mined for potentially significant candidate 

episodes using a sliding time window.  Briefly, in every episode window, the event codes are 

ordered according to the time of occurrence. If the codes happen at the exact same time, they are 

ordered by alphabetical order for consistency. For each episode window, all possible subsets of 

the episode are generated.  The generation of these subsets as additional candidates accounts for 

fluctuations in event order or the occurrence of spurious events. For example, if the episode 

pattern in a 3 minutes time window is {c,e,f,g,d}, then the candidate episode patterns are {null}, 

{c,e,f}, {g,d} and so on. However, to make this problem more tractable and avoid considering 

the superset of the episode as candidates, subsets are pruned using the following rule (Heierman 

et al., 2004). The subset candidates of a candidate episode that have the same episode 

occurrences as the parent episode do not need to be generated as candidates. An example 

resulting candidate episode is ‘cef’, which, for our event definitions, corresponds to ‘light on’ 

followed by ‘motion on’ and ‘motion off’ and is most likely representative of someone entering a 

room.  

After candidate episodes are generated, significant episodes to be included in the behavioural 

model are determined using the minimum description length (MDL) criteria and periodicity (PD) 

as described below.  In addition, since the focus is on energy consuming behaviour, a weighting 
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factor is used in both the MDL and PD steps to increase the importance of episodes containing 

high energy impact events, namely, lighting, temperature, and humidity events. 

Minimum description length 

The intent of MDL is to discover event patterns that have the largest compression ratio which 

best represent the original input stream. Event patterns may be thought of as a code table for 

encoding the original input sequence.  The optimal code table is the one that minimizes both the 

size of the code table plus the length of the encoded original sequence.  A brief algorithm is 

shown below (for a detailed algorithm, see Bathoorn, 2006): 

Let candidate episodes Θ={P1, P2,.. Pn}, where Pn is the nth episode.  

1. Ordering Θ according to  

a. Length; b.Frequency 

2. Compress (Θ) 

CodeTable = allSinglePatterns; 

minSize  = computeSize(CodeTable) 

for each Pi Є Θ 

 CodeTable.add(Pi) 

 newSize = computeSize(CodeTable) 

 if newSize<minSize 

    minSize = newSize; 

 else 

   CodeTable.remove(Pi) 

return CodeTable 
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Periodicity detection 

Often, behaviours with the most utility for building automation systems are those that exhibit 

some periodicity.  In a time series data set Dorg, a symbol s or an episode p is said to be periodic 

with a period l, if s or p exists every l time step. Episode periodicity is computed using a 

convolution-based approach, where the time series is shifted l positions and the shifted series 

Dnew is compared with Dorg (Mohamed, et al., 2005).  This tantamount to conducting a frequency 

spectrum analysis using a Fourier transform.  Detailed algorithm information can be found in 

Mohamed et al. (2005).    

2.3.3 Semi-Markov model generation 

 
Figure 2.11 Differences between HMM and SMM 

 

A Semi-Markov Model (Figure 2.11) allows for duration in each state before transitioning to the 

next state (Murphy, 2002).  In standard HMM, a set of parameters  is learned, where  is the 

initial probability matrix,  is the state transition probability from state i to state j, and |  is 

the observation matrix. In SMM, in addition these, the state i is not hidden and cannot have a 

transit to itself. In other words, an additional parameter  is learned, which is a duration model. 

As pointed out by Duong et al. (2006),  could be modeled as multinomial distribution in the 

case of non-parametric modelling or as a distribution in the exponential family. In this study,  

is modeled as the exponential distribution, consistent with the previous study (Duong, et al. 

2006).  
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After learning the parameter , the expected duration, given a random variable X, is the 

reciprocal of  . In this study, as in Youngblood, et al. (2007), each discovered important pattern 

is treated as a state in the Markov model. The Semi-Markov Model is learned using a forward-

backward algorithm (Yu and Kobayashi 2003).  In this current approach, states are not 

considered hidden.  Hence, | is explicitly defined and does not require a learning process. 

2.3.4 Connections to Building Energy Management 

A dynamic occupancy schedule with expected durations is developed from the behavioral pattern 

recognition results. This dynamic schedule, as described below, can be connected with a building 

energy and comfort management system (BECMS) through dynamic real-time temperature and 

ventilation set point inputs. The BECMS can then make decisions according to the dynamic 

schedule. In order to test the practicality of this approach, the dynamic schedule is coupled with 

EnergyPlus, a widely used energy simulation tool (Crawley, et al. 1999). 

There are several current approaches in the literature for modeling occupancy within the context 

of energy simulation. Claridge, et al. (2001) suggested that occupancy diversity profiles might be 

derived from lighting diversity profiles through establishing a strong correlation between 

observed occupancy levels. However, other studies suggested diversity profiles generate 

misleading information when occupancy-sensing lighting controls are used (Degelman, 1999). 

Bourgeois, et al. (2006) developed a sub-hourly occupancy-based control (SHOCC) coupled 

with the ESP-r simulation program. SHOCC tracks individual instances of occupants and 

occupancy-controlled objects such as blinds. However, its application is limited with lighting 

controls.  
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In this preliminary analysis stage, the dynamic schedule is used toward lighting and HVAC 

controls. The control strategy utilizes the learned Markov model of behaviour and takes 

advantage of the fact that some patterns such as ‘ecfdef’ only last briefly, corresponding to 

commonly found scenarios where users step into the conference room to, for example, make a 

cell phone call. In situations such as this, the HVAC system does not need to meet the 

temperature set point and ventilation rate. Figure 2.12 illustrates the coupling of an HVAC 

control strategy with occupancy pattern recognition.   

                                 

The term “dynamic schedule” refers to the time and state-dependent use of the Markov model in 

the HVAC and lighting control strategy.  The system monitors sensor events to determine the 

current state of the environment as given by the Markov model.  If an entry state (e.g., one 

involving lights turning on) is identified, the system computes the most probable duration of 

occupancy based on the model and responds accordingly.  The control strategy is updated as the 

detected state changes.  Because our emphasis here is on illustrating the utility of data-driven 

behavioral modeling for energy management rather than on controller design, the author 

implemented a simple occupancy-dependent on/off control; however, more advanced controllers 

can achieve better performance by utilizing the duration information contained in the model. For 

our simulation, a software link between the dynamic schedule and EnergyPlus is used so that the 

time dependent schedule can be generated automatically from pattern recognition.  

Space Raw 

Occupant Behavior 

Pattern Recognition 

HVAC  

Short period  

Long period  

No Action  

Optimal  

Sensor 

Figure 2.12 HVAC controls based on pattern recognition 
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2.3.5 Preliminary Experiment Results 

The preliminary experiment is conducted in a conference room in a commercial building in 

Pittsburgh.  Data is collected every one minute from June 1 to June 30, 2008. Figure 4 shows a 

picture of the conference room and its installed sensors.  The results are two parts: 1) Occupancy 

behavior patterns; 2) Dynamic occupancy-based energy management.  

Occupant behavior patterns 

Figure 2.14 illustrates an example day of sensor events generated according to the definitions 

described in Table 2.5. Event numbers on the y axis indicate which event occurred for the given 

sensor according to the codes in Table 2.2. For example, at 5:40am, the temperature decrease 

event (Event_2 for the temperature decrease event) occurred when the air conditioning system 

turned on. As is typical with most days in the conference room, numerous motion and acoustic 

events occur from 10:00am to 11:00am when the room is active with meetings. At 11:00 pm, a 

custodian enters the room, generating lighting and acoustics (vacuum cleaner) event 

 

 

Figure 2.13 Test-bed in a conference room 
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Figure 2.14 A one day example results of event detection 

Based on a time window of 10 minutes, a summary of important patterns resulting from the 

MDL and PD selection criteria are shown in Table 2.6. It is noted here that the MDL component 

discards some very long patterns due to highly infrequent occurrence (once every week or every 

few days). The final set of important patterns is those resulting from both MDL and PD.  

Table 2.6 Results of Patterns from MDL and PD 

 # of 

Patterns 

Longest 

Pattern 

Most Comp. 

Pattern 

Other Patterns 

MDL 9 bebdf (22) cedf (19) dfcedf, bebdf, ebbdf, fefe, 

aa, ghg,gge 

PD 8 ebbfe(24) bg (84) bgfb, feg, hbe, aec, fhd 

 

The exponential family of distribution functions is used to model the durations associated with 

the discovered patterns.  This is consistent with other work in speech recognition (Russell, 1985) 

and occupancy of single-person offices (Wang, et al. 2005). Figures 2.15 and 2.16 show the 

resulting semi-Markov model of important patterns. Event code letters are as defined in Table 

2.2. Figure 2.15 shows a standard Markov model with numbers on the arcs indicating the 
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transition probability between states, Transitions with relatively low probabilities (less than 15%) 

are not shown. Parentheses indicate number of occurrences of the pattern in the training period. 

As an example, state “ecf” has a 25% transition probability to state “eb” and a 24% probability to 

state “def”, with “ecf” occurring 22 times, “eb” 37 times and “def” 15 times during the month. 

Figure 7 shows the results of including duration in the model. Each duration distribution is 

denoted as X~(time), where time is the expected duration for the exponential model.  For 

example, “ecf” has an expected duration of 30 minutes before it transitions to state “eb” and 10 

minutes before transiting to state “def”. The dotted line indicates a typical 75 minute meeting 

scenario where an occupant enters the room, triggers the motion sensor “e”, turns on the light “c”, 

and sits down, triggering the motion off “f”. The occupant continues to stay in the room, 

generating acoustics “b” and moving around generating motion “e”. Upon leaving, the occupant 

turns off the light “e”, moves towards the door “e” and finally departs “f”. Another possible 

duration path is on average 138 minutes, representing a longer meeting.  

 
Figure 2.15 Markov model of discovered patterns on 10 minutes maximal window 

 
Figure 2.16 Semi-Markov model of discovered patterns on 10 minutes maximal window 
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Figure 2.17 Markov model of discovery patterns on patterns 

 
Figure 2.18 Semi-Markov model of discovery patterns on patterns 

Additional models representing longer time scales may be generated by considering a pattern 

such as ‘ecf’ as a new event ‘G’ and repeating the pattern discovery process (Youngblood, et al. 

2007).  Results are shown in Figure 2.17 to Figure 2.18 for the resulting model of this approach 

using a maximal window of two hours. 

Dynamic occupancy-based energy management 

In order to evaluate the energy saving effects and thermal comfort conditions based on dynamic 

scheduling strategies from the occupant behavioral patterns, the energy usage of four different 

set point strategies are compared. These four possible HVAC set point schedules, and their 

advantages and disadvantages are: 

1.  Fixed system schedule set point at 24 C from 7:00am to 6:00pm. 
     Advantage: simplicity for facility manager 
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     Disadvantage: High Energy Cost. No need to maintain 24 C when there are no people 

present 

2.  Outlook schedule based on company outlook (Barney and Lynne, 2007) 
     Advantage: exact meeting schedule and possible meeting duration 

     Disadvantage: Many meetings occur spontaneously with no pre-scheduling in Outlook 

3.  Occupancy (Motion) sensor based 

     Advantage:  Simplicity 

     Disadvantage: No motion occurs if occupants are relatively still in the room. Also, motion is 

triggered if an occupant enters the room in the middle of the meeting, generating spurious 

events.  

4.   Dynamic occupancy schedule  
     Advantage: Dynamic temperature set point; an explicit meeting duration model; Automatic 

lighting control when zero occupancy; Save energy and maintain comfort  

     Disadvantage: Need for additional sensors  

All schedules have a night setback temperature of 30 C, and, aside from the fixed-point 

schedule, all have a daily setback of 27 C at 7:00 am. A lower temperature set-point of 24 

Cduring the day is set when the room is considered occupied. 

EnergyPlus simulations with three zones are conducted: a simple conference zone of size 3 x 6 

m2 faces east, a “Resistive” zone before the conference zone, and a North zone. We focus on 

evaluating controller performance in the conference zone (the other zones are kept at fixed 

standard operation schedules).  Building loads are calculated from June 1 to August 31, 2008, 
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with TMY-3 Pittsburgh weather data. The true occupancy profile used for the simulation is taken 

from an “occupancy counter box” (see Figure 2.9) deployed in the conference room that allows 

occupants to keep track of the number of people in the room at all times by pushing up or down 

buttons.  Table 2.7 shows the results from EnergyPlus in terms of total building loads for the 

three months.  

Table 2.7 Building loads and comfort based on different HVAC set point schedules in the conference room 

 Fixed Outlook Motion Dynamic 

Total Cooling Loads (kWh) 5483 4050 3794 3833 

Total Lighting (kWh) 1150 880 872 872 

Total (kWh) 6633 4930 4666 4705 

Duration When Comfort Not Met 

(ASHRAE-55) (hour/day) 
0.63 3.26 2.38 1 

 

Table 2.7 shows that while the fixed schedule achieves very good comfort conditions (with very 

little time when comfort is not met), it is very energy inefficient.  The Outlook schedule does not 

perform well because meetings are often either shorter than scheduled or even cancelled, leaving 

the HVAC system running with no one present.  The largest total saving is from the motion–

based approach. However, this comes with a sacrifice in occupant comfort because of times 

when occupants are present with little or no motion, causing the HVAC system to revert to the 

higher, less comfortable daily setback temperature. The dynamic schedule, which is derived from 

the data-driven pattern model, achieves energy saving comparable to that of the motion-based 

approach, but with a less amount of time when comfort is not achieved.  The one hour per day of 

temperature set-point not met arises mostly from short visits to the meeting room (approximately 

10 minutes) that are not worthwhile and not effective to start the cooling. 

Figure 2.19 shows a daily indoor temperature profile from these four different set point 

schedules. The outlook schedule for the given day is: 9:15am~10:30am and 1:45pm~3:30pm. All 



47 
 

three non-fixed set point schedules reach the daily setback temperature at 7:00am as scheduled. 

Beginning at 7:00am, the temperature profiles behave differently according to the different set 

point strategies. Interestingly, during lunch time, the motioned-based schedule still tried to meet 

the set point despite only short visits to the conference room during that time. 

The result from this section is only a preliminary test run for the developed occupant behavior 

pattern algorithm. A more comprehensive experiment is implemented in the Solar Decathlon 

house and results are discussed in Chapter 4.  

 
Figure 2.19 Temperature profile on Summer Design Day (July 21) based on different set points 

 

2.4 Summary 

This chapter presents methods for occupancy number estimation and occupancy duration 

prediction based on environmental sensor networks. Both results have accuracy as high as 75%. 

In addition, through simulation the energy-saving utility of using a data-driven model of 

occupant behavior for energy management is demonstrated. Ambient sensing data such as 

lighting, acoustics, CO2, temperature, and relative humidity are incorporated into an event-based 
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pattern detection algorithm used for modeling occupant behavior toward HVAC system control. 

Furthermore, a connection of the learned behavioral model with energy control systems is 

illustrated through the generation of a dynamic occupancy schedule.  Such a dynamic schedule is 

generated from a conference room environment equipped with a wireless sensor network and 

tested as an input to an HVAC control system in an EnergyPlus simulation.  Compared with 

other alternative occupancy-based control strategies, the results of the dynamic schedule show 

significant energy saving with minimal comfort sacrifice. The algorithms developed in this 

chapter are integrated with predictive controls in Chapter 4.  
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Chapter 3 

 

Development of the Building 
Model 

 

3.1 Experiment Setup  

The experiment is setup in the Solar Decathlon 2005 house, which has a typical office setup with 

a meeting room and several office workstations, as shown in Figure 3.1 below. The house is 

facing exactly South with a tilted wall at 14 degree off the vertical line, which has the least direct 

sun into the space. The upper roof is equipped with a solar thermal system, which did not 

function at all during the heating experiment time. The office room is occupied by a single 

occupant. The meeting room has both regular meetings and classes for graduate students. All 

HVAC equipment and appliances are easy to access. It serves as a living lab for graduate level 

researches.  

 
Figure 3.1 Exterior view of solar decathlon house 2005 at CMU 
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Figure 3.2 Layout of solar decathlon house  

3.1.1. Overview of HVAC Systems  

Figure 3.3 shows the overview of the energy supply and demand systems in the solar house. PV 

and solar thermal are two main energy supply systems. Electric instant water heater, energy 

recovery ventilation, fan coil and heat pump are main energy demand side systems.  

Heating system 

The heating system in this study is called hydronic radiant floor heating system (HRFHS). The 

radiant floor heating system ideally consists of six main components if all components are 

functioned: the solar thermal collector, heat transfer/storage tank, instant water heater, radiant 

floor, the heating zone (room), and the system controls. In this study, only instant water heater is 

considered and implemented as the heating source of the water. As shown in Figure 3.3, HRFHS 

of the Solar Decathlon House has two loops which are the main loop (where thermal tank, instant 

water heater, and inlet and outlet nodes for supply and return pipes are connected in series) and 

three different secondary loops serving each different thermal zone of the building (meeting 
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room, office, and bathroom). There is a single main pump on the main loop and the other three 

pumps are serving the three thermal zones. Secondary loops are closed loops by the use of three-

way valves which mix the return water from each room to each supply pipe.  

 
Figure 3.3 Overview of the energy supply and demand systems in the SD House 

The thermal tank of the system is also connected to a solar collector which is acting as an 

auxiliary system to the operation of instant water heater. Due to the fact that each secondary 

water loop is connected to each other in series, the thermal conditions inside one room (e.g., 

meeting room) has an effect on the required supply water temperature for the next coming room 
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(e.g., office room). As a result, the main water supply temperature should be regulated taking 

into account of all three different thermal zones and their supply and return temperature 

differences.  In this study, only meeting room is a controlled zone.  

An electric instantaneous (tankless) hot water heater provides the heat source for supply water.  

This water heater, model SH-5 manufactured by SEISCO, is connected in series with the solar 

thermal loop. The SH-5 is rated at 5kW, and runs on a standard 240 VAC circuit.  Advanced 

micro-processing contributes to extremely efficient operation of the unit, with one agency rating 

it at over 99% efficient.  When no additional heating required, the water simply passes through 

the heater passively.   

Cooling system 

The cooling system uses multi-split fan coil units manufactured by Mitsubishi, Mr. Slim, MXZ 

series. As shown in Figure 3.3, it has two components, indoor fan coil units and outdoor air to air 

heat pump. Office and meeting room have one indoor fan coil unit independently. The user can 

control the temperature set-point and fan speed by using a remote infrared controller. The 

variable speed heat pump provides a constant supply air temperature at varying flow rate.  

Ventilation system 

The ventilation system is an Energy Recovery Ventilation (ERV) EV300 from RenewAir Inc.  It 

supplies constant air to the great room (meeting room) only in the amount of 295cfm. The return 

duct is placed in the upper loft space. Basically, it takes outside air and return air, having them to 

exchange energy in the core part, and supplies the heated or cooled air into the space. The 

expected efficiencies are 61% ~75% in winter and 45%~60% in summer.  
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3.1.2 Sensor Network  

 

Figure 3.4 Overview of the sensing infrastructure in solar house 

The house is equipped with a complex sensor network to measure and retrieves as much 

operational information as possible.  Figure 3.4 shows the overall sensor infrastructure. Basically, 

there are three independent sensor networks.  

 LabVIEW based data acquisition system (DAQ), called “environmental sensor 1”. All 

sensors are connected with DAQ and signals are transferred and stored through 

LabVIEW.  

 A wireless environmental sensor network, donated by BOSCH RTC, Pittsburgh.   

 Campbell Scientific CR1000 data logger system. This system not only measures the 

environmental performance variables, but also the system operations including PV, 

HVAC, lighting and appliances.   
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All sensor data is finally integrated into a central database. Since different sensor networks have 

their own timestamps, they have to be synchronized in the central database.  

3.1.2.1 Environmental Sensor Network 

The three environmental sensor networks are described below. LabVIEW based sensor network 

measures indoor temperature at different heights, RH and both indoor and outdoor CO2 levels 

with a sampling of one minute.  The CO2 sensors are manufactured by TelAir. Most of the 

temperature sensors in “environmental sensor 1” are made with LM 35DZ.  As shown in Figure 

3.5, mean radiant temperature is measured with a black globe.  

The BOSCH wireless sensor network measures temperature, RH, lighting, acoustics and motion 

with a sampling time of one minute. All the other information is preparatory.  

CR1000 measures indoor temperature sensors, outdoor local weather station (temperature, RH, 

wind speed, pyranometer) and power metering for every electricity consumer, with a sampling 

time of five seconds. All the temperature sensors are from Omega engineering, type T sensor. 

The temperature and RH probe is HMP50-50, Campbell Scientific.  Every indoor temperature 

sensor from Omega engineering has a radiation shell to exclude the effect from radiation and 

measure the pure air temperature.  
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TeleAir CO2 Sensor 

 

Temperature Sensor 

 

 

RH and Temperature Probe 

 

 

 

Floor Surface Temperature Sensor Mean Radiant Temperature Sensor BOSCH Wireless Mote 

Figure 3.5 Environmental sensors in solar house 
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3.1.2.2 System Sensor Network  

 
CTs inside Power Distribution Board 

 
WattsNode connecting with CTs 

 

Figure 3.6 Power system measurement 

Figure 3.6 shows the power consumption measurement in the SD house. For each switch in the 

power distribution board, the power consumption is measured. The power generated by PV 

system is also measured through measuring the AC and DC side of inverter.  

 

Surface temperature sensors of radiant floor system Temperature and RH sensors for fan coil 

Figure 3.7 Heating and cooling system sensors 
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Figure 3.7 shows the heating and cooling system sensors.  For radiant floor heating system, the 

supply and return pipe surface temperature and water flow to each branch are measured. The 

pipes are well insulated so that the surface temperature of the copper pipes is assumed to be the 

same as water temperature. In addition, the floor surface temperature is also measured as shown 

in Figure 3.4. For cooling system, the supply air temperature and RH is measured at the outlet of 

the indoor fan coil. The supply air flow rate has three stages and measured by a portable flow 

meter before the experiment period.  

3.2 Building Zone Model  

The building zone model represents the thermal dynamics interaction between the indoor and 

outdoor environment. It mainly includes wall and roof heat transfer, zone air infiltration and 

solar radiation impacts. It describes how outdoor environment changes can affect the indoor 

environment changes and the HVAC systems as well.  

3.2.1 Model of Zone Air Infiltration 

Based on the model of Sherman and Grimsrud (1980), which uses the effective air leakage area, 

the airflow rate from infiltration is calculated according to:  

 
Δ  (2.11) 

where, 

 Effective air leakage area [m2] 

 Stack coefficient [-] 

Δ  Indoor-outdoor temperature difference [°C] 

 Wind coefficient [-] 

 Local wind speed [m3/s] 
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 Air flow rate through infiltration [m3/s] 

 

According to the ASHRAE fundamentals Chapter 16, 0.015 for a one story basic house 

and 0.0065 is for a one story house with “Typical shelter caused by other buildings across 

street from building under study”.  

The energy flux due to the infiltration and window opening are calculated as below: 

 Δ  (3.8) 

where, 

 Specific heat of the air [J/Kg·K] 

 Energy flux due to the infiltration [W] 

 

3.2.2 Model of Wall Heat Transfer 

A surface temperature sensor is installed on the inside surface of the east and west façade. The 

east wall is modeled as standard two capacitances and three resistances (2C3R) model 

(ASHRAE thermal network model) as shown in Figure 3.8.  
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Figure 3.8 Wall Heat Transfer Modular 

The relationship of solar radiation and internal heat gain is defined as below, one purpose of 

system identification is to find _ , _     _ .  

 _ _  (3.9) 

 

 _ _ _  (3.10) 

where 

_  Coefficient of absorbed internal heat gain from occupancy and equipment by 
inside surface of the wall 
 

_  Coefficient of absorbed solar radiation on the external surface of an external 
wall 
 

_  Coefficient of absorbed transmitted solar radiation on the inside surface of an 
external wall 

 

According to the relationship between thermal resistance and capacitance described in Figure 3.8, 

the thermal network model can be written as:  

Rout Rwall Rint

Cout Cint

Tsur_out Tsur_in

Qsol_out Qint_rad

Tout Tint
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Cout

dTsur_out
dt _

_ _ _  (3.11) 

 

 
Cin

dTsur_in
dt _ _

_ _

_  

(3.12) 

where 

 Outside wall convective heat transfer coefficient [K.m2/W] 

 Inside wall convective heat transfer coefficient [K.m2/W] 

 Thermal resistance of the wall [K·m2/W] 

 Heat capacitance of the external part of the wall [J/m3·K] 

 Heat capacitance of the internal part of the wall [J/m3·K] 

_  Solar radiation on the outside surface of the wall [W] 

_  Internal radiative heat gain absorbed by inside surface of the wall [W] 

 

The roof heat transfer model takes the same approach as described above, which is not described 

in detail here.  

3.2.3 Model of Zone Heat Transfer  

Meeting room and office room have at least one person during day time. The main heating 

source is from radiant heating floor. The cooling source is from a fan coil unit. Figure 3.9 below 

shows the thermal network in these two zones. Each wall is simulated as 2R3C model as 

discussed above. The internal zone including the loft, mechanical room, bathroom and entrance 

room is simulated as 2R3C model, which is adopted from Wang et al. (2002). All resistances and 

capacitances are assumed to be time invariant. The thermal storage effect of window is neglected 

and represented as a resistance only. There is a door between office and meeting room, which is 



61 
 

represented as a resistance as well. Office and meeting rooms are decomposed to indentify 

independently.  

The calculation of solar radiation on specific building surfaces is presented in Lam (2004). This 

calculation is used for the system identification.  

 
Figure 3.9 Thermal network model of solar house test-bed 

The heat transfer for meeting room is represented with the following differential equation: 
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CMR_Air_in
dTMR_in
dt

_ _ _
_ _ _

_

_ _ _

_ _

_ _ _

_

_ _

_

_ _ _

_
 

(3.13)

The heat transfer for lumped other zones is:  

 

 
Coz_out

dTsur_oz_out
dt

_ _

_

_ _ _ _

_
 

(3.14)

 

Coz_in
dTsur_oz_in

dt

_ _ _ _

_

_ _ _

_
 

(3.15)

 

The heat transfer for office zone is: 
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COff_Air_in

dToff_in
dt

_ _ _

_ _ _

_

_ _ _

_ _

_ _ _

_

_ _

_

_ _ _

_
 

(3.16)

 

Where  is number of external façades include roof,  is the ith external façade,  is the 

temperature,  and  are capacitance and resistance, subscripts , , , , ,  indicate 

surface, indoor, outdoor, floor, roof and other zone respectively. To smoothing the later model 

parameter identification, the coefficient of combined effects of radiation and convection from 

radiant heating floor is represented by _ _  and _ _ , instead of fourth order 

calculation.   is the cooling from fan coil unit.  is the internal heat gain from occupancy, 

office equipment etc. is the heat or loss through infiltration and natural ventilation.  

3.3 Building HVAC System Model  

3.3.1 Radiant Floor Heating System Model 

A radiant floor for meeting room has 0.089 thick exposed concrete slabs of 21.6 m2. Office room 

has a hardwood (oak) floor covering (with 7.6m2 exposed-area) that sits on a concrete slab. Hot 

water is circulated through the 0.0127m diameter PEX (cross-linked polyethylene) tubes which 

are embedded in the middle of concrete slabs of meeting room and located underneath the timber 

flooring of office room. The office room has a single loop of PEX tubes with total length of 47m, 

whereas, meeting room has two loops of PEX tubes (assumed to be in identical layout) with a 

total length of 107.2m. 
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3.3.1.1 Model of Radiant Floor Heating  

Figure 3.10 shows the floor section view and its thermal circuit model to model the radiant 

heating process. This process involves heat conductivity within the concrete; heat convection and 

radiation with surrounding air; radiation from floor to other surfaces; and transmitted solar 

radiation through the window.  Basic thermal properties of radiant floor material and tube are 

listed in Table 3.1 (Engineering ToolBox, 2009).  

 

Figure 3.10 Section view of radiant heating floor system 

 

Table 3.1 Thermo-physical properties of radiant floor materials 

RFHS Material Density

(kg/m3) 

Specific Heat

(J/kg·K) 

Conductance

(W/m·K) 

Concrete 2200 840 1.700 

Oak (hardwood) 720 1260 0.160 

PEX tubing 950 2301 0.502 

 

The floor concrete slab is modeled as a thermal capacitance with a resistance as shown in Figure 

3.10.  Since the floor is well insulated, the heat loss through the ground is assumed to be 0.  

Equations (3.17) to (3.20) describe the detailed heat transfer model.  
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CMR_cf_sp

_ _

dt

_ _ _
_ _ _

_
 

(3.17)

 

 
CMR_cf_sp

_
_ _ _

_ _ _

_
 (3.18)

 

 
CMR_cf_sp

_ _ _ _ _

_
 (3.19)

 

 
_ _ _ _ _ 1 _  (3.20)

 

where  

_  Temperature around the water tubes [°C] 

_  Inlet water temperature of radiant floor system [°C] 

_  Outlet water temperature of radiant floor system [°C] 

_  Mass density of concrete floor [kg/m3] 

CMR_cf_sp Specific heat of concrete floor [kJ/kg·K] 

 Coefficient of transmitted solar absorbed by the concrete floor [-] 

 Water to floor heat transfer coefficient [W/m2.K]  

 Overall heat transfer coefficient for floor surface [-] 

 Diameter of water tubes [m] 

 

 includes both radiation and convection. It is defined as 
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 _ _  (3.21) 

where 

 
_ 4 _ 273.15  (3.22) 

 

σ Stefan-Boltzmann constant, which is 5.670 10-8  [J/K4.m2.s] 

ϵ surface total Hemispherical emissivity, which is  0.91 [-] 

C  correction factor due to the impact of indoor furniture [-]  

 

Convection from horizontal plates facing downward when heated (or upward when cooled) is a 

special case Therefore, there are two parts for convection, named natural and forced, respectively  

(ASHRAE, 2009).  

 _ _ 2.31| _ |
.  (3.23) 

 

 
0.037 . Pr .  

 

(3.24) 

where  

 Nusselt number  

Pr Prandtl number  

Re Reynolds number  

 Fluid conductivity 

 Characteristic length 
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3.3.1.2 Model of Tankless Water Heater 

Ideally, when the energy provided by the solar thermal collector system is not adequate to heat 

the water for the radiant floor system, an electric instantaneous (tankless) hot water heater 

provides the additional temperature rise. In this study, the solar collector is not in operation. 

Hence, this tankless water heater is the only hot water heat source.  

Figure 3.11 shows the performance curve of temperature rise vs. flow rate (GPM). The data is 

from manufacture data sets. The cubic polynomial equation is found to be the best fit for these 

data with R2 of 0.985. The curve shows, at the fixed power rate, the slower the water flow, the 

higher the temperature rise.  

 
Figure 3.11  Water heater temperature rise vs. flow rate 

The total energy to heat the water at each time step is calculated as: 

 , ,  (3.25) 

y = ‐3.240x3 + 29.04x2 ‐ 87.63x + 98.60
R² = 0.985
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where ,   and ,  are the supply and return water temperature of tankless water heater, 

respectively.  is the total water flow rate.  

The heater efficiency (Effheater) is defined as the ratio of the hot water energy to the electric input 

energy  

 
 (3.26) 

 , ,
 (3.27) 

 

3.3.2 Heat Pump Cooling 

The cooling equipment in the solar house is provided by a multi-spit fan coil unit from 

Mitsubishi Electric Inc. It is a refrigerant cooling with outside air to air heat pump. Hence, the 

total amount of cooling energy into the space can be represented by:  

 , – _  (3.28) 

 
 (3.29) 

where 

 Air mass flow rate [m3/s] 

,   Supply air temperature [°C] 

 Coefficient of performance of heat pump [-] 

 Correction factor for heat pump energy consumption [-] 

 Fan coil cooling load [W] 

 Cooling energy consumption [W] 
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Based on the onsite measurement, the supply air temperature is observed to be constant at certain 

flow rate which is shown in Table 3.2 below.  

Table 3.2 Measured cooling supply air flow rate and temperature 

Flow Rate (m3/s) Temperature (°C) 

0.08 15.5 

0.12 13.5 

0.19 11.5 

 

3.4 Parameter Identification 

It is important to investigate how the onsite data logger can help to identify the material thermal 

properties when it is difficult to find out existing building construction materials, although the 

materials properties could be reached by manufactures if the materials were known. Hence, 

identification of wall thermal properties is presented below. The assumptions for this calculation 

are:  a) wall surface temperature, indoor air temperature and radiative heat gain on the inside 

surface of the wall are uniformly distributed; b) indoor convective heat transfer coefficient is not 

changing with time.  

There are several parameter identification methods in the literature and can be divided into two 

main categories: black-box and grey-box. Mechaqrance and Zouak (2002) developed a neural 

network auto regressive with exogenous input (NNARX) model to predict the indoor 

temperature of a residential building. The summed square error is close to 0.9. Recently, Jimenez, 

Madsen and Andersen (2008) presented the application of the IDENT Graphical User Interface 

of MATLAB to estimate thermal properties of building thermal components from outdoor 

dynamic testing, imposing appropriate physical constraints and assuming linear and time 

invariant parametric models. A follow-up study by Jimenez et al. (2009) presented different 

system identification approaches to find the U value of a given building component. However, 

this black-box approach requires a long period of training to improve the performance accuracy. 
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In addition, the black-box may have more complex model structure than lower-order models 

such as gray-box models, which make the model analysis difficult.  

With these disadvantages of the black-box model, there are some other studies on developing 

and validating grey-box model. Braun and Chaturvedi (2002) developed a thermal network 

model for transient building load prediction. This inverse grey-box model needs one week of 

data to train with rich zone temperature variations or two to three weeks of data to train with 

limited zone temperatures variations. The model error can be limited within 2% with simulation 

data and 9% with on-site data. Wang and Xu (2006) developed a simplified model of the 

building thermal load on heat transfer of building envelope and internal mass. The parameters of 

building thermal network models for building envelope are determined by frequency 

characteristic analysis; the parameters of thermal network models for lumped internal mass are 

identified with generic algorithm. McKinley and Aleyne (2008) presented an alternative 

approach using optimization search process (hill climbing algorithm) to identify building thermal 

model parameters and loads based on site measurement.  

In this study, considering this problem as a constrained nonlinear optimization, the subspace trust 

region solver based on the interior-reflective Newton method (Coleman and Li, 1996) is chosen. 

It is available in the MATLAB 2009b Optimization Toolbox.   

3.4.1 Objective Function of Optimization 

The simulated indoor and wall surface temperatures from the above equations are used to 

compare with the measured temperature. The optimized parameters are the resistances, 

capacitances and coefficients of infiltration and solar radiation.  The objective function  is 

defined as (Neuman, C., personal communication, March 13, 2009):  

 
J    min‖f x ‖ min

…
 (3.30) 

                                                                S.T.  
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where  

  (3.31) 

 

n Number of measured data points [-] 

 Predicted air temperature [°C] 

 Measured air temperature [°C] 

X Vector of unknown parameters [-] 

X  Lower bound of unknown parameters [-] 

X  Upper bound of unknown parameters [-] 

 

Since most of the parameters are physical parameters which should be bounded in certain ranges, 

the lower and upper bound are based on their initial engineering guess values. Table 3.3 below 

shows the scale factor for different type of physical parameters.  

Table 3.3 Scale Factor Limits for Optimization Search Space 

Parameters Minimum Maximum 

Cout 0.5 Cinitial 2Cinitial 

Cin 0.1 Cinitial 0.5Cinitial 

R 0.5Rinitial  1.5Rinitial 

 0.01 1 

 0.01 1 

 0.01 1 

 0.01 1 

 

3.4.2 Identification Process   

The parameter estimation process (PEP) is shown in Figure 3.12. The process starts from the 

wall and roof heat transfer PEP. Measured wall and roof surface temperature, indoor, outdoor 

temperature and solar radiation on the surface are the inputs. Wall and roof thermal properties 
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are the outputs.  The estimated wall and roof parameters with measured zone temperature and 

solar radiation will be the inputs for Meeting Room and Office Room PEP. The uncertain 

parameters of radiant floor heating system include floor slab thermal properties, floor absorbed 

solar radiation and surface radiant and convective heat transfer coefficients.  

 

Figure 3.12 Parameter estimation process 

3.5 Validation of the Building Model  

3.5.1 Data Collection 

The data is continuously collected every one minute or one and half minutes (depending on the 

network legacy) since April 28, 2009. The minimum training and testing days are five days and 

one day, respectively.   
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3.5.2 Validation Criteria 

The evaluation function for the accuracy of model validation in this study is the Root Mean 

Square Error (RMSE). RMSE quantifies the deviations of predicted values from measured values 

over the whole measurement period. It is defined as 

 
1

 
(3.32) 

where 

    n Total number of data points 

 Measured data points 

 Predicted data points.  

 

3.5.3 Results and Discussion 

3.5.3.1 Building thermal properties 

a. Overview 

Figure 3.13 and 3.14 show model predicted indoor air temperature for two continuous months 

from October 1 to November 28, 2009, in Meeting Room and Office Room, respectively. The 

overall RMSEs are 0.55 and 0.76, respectively. There are weeks which have smaller RMSE than 

the average value, called scenario one, and higher RMSE, called scenario two. Each week is 

selected to represent each scenario and discussed later. In addition, some days do not have data at 

all due to the failure of the data acquisition system.   
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Figure 3.13 Model predicted meeting room indoor temperature profile from October 1 to November 29, 2009 

 
Figure 3.14 Model predicted office room indoor temperature profile from October 1 to November 29, 2009 
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b. Scenario One 

 
Figure 3.15 Model predicted meeting room indoor air temperature profile from October 13 to October 18, 

2009 

 
Figure 3.16 Model predicted office room indoor air temperature profile from October 13 to October 18, 2009 
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Figure 3.17 Model predicted meeting room and office indoor air temperature profile on October 18, 2009 

Figures 3.15 to 3.16 show Scenario One where the RMSEs of model predicted indoor air 

temperature are 0.22 and 0.19 for Meeting Room and Office Room, respectively.  The predicted 

temperature tracks well with the measured one.  In addition, the predicted daily temperature 

shows that the prediction performance is better at night than during day time because of less 

disturbances such as solar radiation as shown in Figure 3.17.    

c. Scenario Two 

 
Figure 3.18 Model predicted meeting room indoor air temperature profile from October 1 to October 7, 2009 
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Figure 3.19 Model predicted office indoor air temperature profile from October 1 to October 7, 2009 

Figures 3.18 to 3.19 show Scenario Two where the RMSEs of model predicted indoor air 

temperature are 0.96 and 1.3 for meeting and office room, respectively.  The prediction did not 

perform well, possibly because this week is during the seasonal transition period, where the daily 

temperature has a huge difference (30%~40%) with night temperature, particularly for the office 

space. In addition, during the middle of some days, the measured temperature raised much higher 

than predicted one. The previous learned solar radiation coefficients may not be applied in this 

case. Figure 3.18 also shows a sudden temperature decreases on October 6 in meeting room, 

while office room does not. This could be a failure of temperature sensor in meeting room. 

In conclusion, the building zone model predicts the indoor air temperature with RMSE of 0.55 

when the temperature is relatively stable and does not change more than 8 °C  from day time to 

night time.  
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d. Sensitivity Analysis  

Table 3.4 Results of sensitivity analysis on identified building thermal properties 

Parameters Identified Parameters Identified 

 Mean  Deviation  Mean  Deviation 

_ , _  0.5 [K.m2/W] 0.0618 _  1.2355·106 [J/m3.K] 1.182·103 

_  0.3 [K.m2/W] 0.1 _  7.4106·107 [J/m3.K] 1.42·103 

_  0.28 [K.m2/W] 0.1 _  1.0475·106 [J/m3.K] 2.15·104 

_   0.1 [K.m2/W] 0.046 _  1.0475·107[J/m3.K] 3.04·103 

_   0.2 [K.m2/W]  0.15 _ _  1.7781·105 [J/m3.K] 1.40·103 

_ _   0.03 [K.m2/W] 0.01 _ _  4.627·104 [J/m3.K] 3.10·102 

 

Table 3.4 shows the sensitivity analysis of identified parameters. The most sensitive parameter is 

the one with the largest deviation from the mean value. The physical parameters, such as the wall 

thermal resistances and capacitances, change only within 10% of the mean value. The overall 

heat transfer coefficients for room air, floor to room air and wall to room air change more than 

30% from the mean value. It means that these coefficients are sensitive to the response of the 

model. When input training data changes, they need to be re-identified.  
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3.5.3.2 Radiant floor system 

Thermal Properties   

a. Overview  

Table 3.5 shows the different flow rates for different valve opening options. In the system 

identification study, the flow rate for both meeting room and office room are fixed at highest 

position. The actual measured flow rate is highest at 7.8 gpm.    

Table 3.5 Flow Rate Corresponding to Valve Opening 

Stage Speed Flow Rate Power Current 

1 Low 1.87 gpm 60 W .55 A 

2 Medium 5.80 gpm 80 W .66 A 

3 High 8.79 gpm 87 W .75 A 

 
Figure 3.20 Model predicted floor surface temperature profile from October 1 to November 29, 2009 
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Figure 3.20 shows the model predicted floor surface temperature profile from October 1 to 

November 29, 2009, with RMSE of 0.98. Two scenarios are selected to present different model 

prediction accuracies.  

b. Scenario One 

Figure 3.21 shows the results of a week testing with RMSE of 0.8. The floor surface temperature 

follows the measured one well, whether the pump is at on or off status. Figure 3.22 shows a one 

day result of predicted floor surface temperature compared to measured ones. The RMSE of 

predicted surface temperature is 0.25, although the pump remains on and off all the time and 

creates a lot of variations.  

 
Figure 3.21 Meeting room floor surface temperature profile and water flow rate from October 12 to October 

18, 2009 
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Figure 3.22 Meeting room floor surface temperature profile and water flow rate from October 17 to October 

18, 2009 

b. Scenario Two 

In this scenario, the heating activities only happen on three days. When there is no heating 

activity, the prediction accuracy of the floor surface temperature is with relatively high RMSE of 

1.2. The reason could be the assumption that the energy loss from the water tube through 

insulation slab to the ground is 0. When there is no heating activity for more than one day, the 

measured temperature decreases faster than the predicted one.  

In conclusion, the radiant floor heating model predicts the floor surface temperature with RMSE 

of 0.8 when there are continuous heating activities. The prediction accuracy of the model starts 

degrading when there is no heating activity for more than one day.  
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Figure 3.23 Meeting room floor surface temperature profile and water flow rate from October 21 to October 

27, 2009 

d. Sensitivity Analysis  

Table 3.6 Results of sensitivity analysis on identified radiant floor thermal properties 

Parameters Identified Parameters Identified 

 Mean  Deviation  Mean  Deviation 

 30 [W/K.m2] 10  1.5[-] 0.06 

_  1.98·105 [J/m3·K] 2.03·103  0.35[-] 0.01 

_  0.13 [K·m2/W] 0.01  0.3[-] 0.004 

 

Table 3.6 shows the sensitivity analysis of identified radiant floor thermal properties. The 

coefficients of absorbed solar radiation and internal heat gain are relatively stable compared to 
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air temperature, amount of solar radiation into the space and absorbed internal heat gain by slabs. 

 has to be identified once a new set of training data is available.  

Tankless water heater power consumption 

Figure 3.21 shows the validation of tankless water heater energy consumption model on one 

week measured data including water flow rate, supply and return water temperature. It is found 

that the RMSE is 0.38 and the predicted energy consumption tracks well with the measured one. 

The efficiency of the water heater is found to be 90%.  

 

Figure 3.24 Results of tankless water heater power consumption validation for one week heating testing 
period  
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3.5.3.3 Heat pump system  

Indoor air terminal units  

The modeling of indoor air terminal units is simplified as an evaporative cooling process. Figure 

3.25 shows during one week of cooling period, the mode predicted indoor air temperature tracks 

well with measured temperature. However, the result in terms of RMSE is not as good as the one 

during heating season. This is because the indoor temperatures response more quickly to the 

HVAC system during cooling season.  

 

Figure 3.25 Meeting room indoor temperature profile during one week cooling testing period 
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Figure 3.26 Meeting room cooling energy consumption prediction from July 5 to July 10, 2010 

Heat pump energy consumption  

Figure 3.26 shows the predicted and measured cooling energy consumption for one week. The 

identified parameter is coefficient of performance of heat pump (COP), which is 2.5 in this 

study.  The manufacture data shows the COP is 3.1. Considering this unit has been installed and 

used for 5 years, a COP of 2.5 should be a good estimate.  Figure 3.26 suggests that the model 

prediction performs weak when the system started, stopped and when the fan speed changed.   
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system is modeled as a typical evaporative cooling process. The validation results show that the 

predicted room air temperature in both heating and cooling season is within RMSE of 0.8 

compared to measured data. During the heating season transition period, the RMSE from the 

model prediction ranges from 0.98 to 1.3. Surface temperature prediction of the concrete slab 

from radiant floor model is within RMSE of 1.  When there is no heating activity for more than 

one day, the radiant floor heating model predicts higher temperature than measured ones, with 

RMSE of 1.2. The water heater energy consumption is with RMSE of 0.38. The heat pump 

energy consumption is with RMSE of 0.5. Based on the results above, the baseline model for the 

whole building including zone and system models is accurate and applicable to the integrated 

building control in Chapter 4. 
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Chapter 4 

 

 Integrated Building Control 
Design and Implementation 

 

4.1 Optimal Control Design 

4.1.1 Problem Formulation 

 
The optimization of building energy consumption has been studied both based on well 

established simulation tools such as EnergyPlus and TRNSYS with BuildOpt  (Wetter, 2005) for 

building early design stage and ASHRAE simplified heat balance models (Wang, et al. 2001 and 

Henze, et al. 2004 ) for real time optimal control implementation. However, very few studies 

show the integration of real-time weather information into the real time implementation (Ma, et 

al. 2009). Almost no previous study shows the integration of the real-time occupancy 

information to the HVAC control. In this thesis, the real-time weather and occupancy 

information are integrated into the traditional optimal control for building HVAC systems.   

4.1.1.1 Non‐linear Model Predictive Control 

The general optimization problem in continuous time is (Camacho, et al. 2003):  

                                                                 

            , , ,  (4.1) 

       , , ,  (4.2) 

    (4.3) 
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     (4.4) 

    (4.5) 

  (4.6) 

  (4.7) 

 ∈ ,  (4.8) 

where φ is the cost function of electricity and gas. f x t  is a function based on the heat transfer 

and thermal dynamics of building space and HVAC systems which can be referred in Chapter 3 , 

x t ∈  is the vector of state variables, X  is a vector of initial values and X  is a vector of 

final values; u t ∈  is the vector of control variables; y t   ∈  is the vector of algebraic 

variables. x ,  u  and y  are lower bounds of u and x, while x , u  and y  are upper bounds; 

d t  is the vector of disturbances.  

In this thesis, a non-linear model predictive control (NMPC) is designed following Magni, et al. 

(2003) and implemented in the test bed. The optimization problem becomes: 

               , , ,  (4.9) 

            , , , 1… ,  (4.10) 

                        1… ,  (4.11) 

                           1… ,  (4.12) 

                       1 … ,  (4.13) 

                         1… ,  (4.14) 

  (4.15) 

 

The specific problem  presented above is a discrete time formulation of the general 

problem defined in Equation (4.1).  Figure 4.1 below further illustrates the NMPC applied in this 

thesis. The general problem for HVAC control is an infinite time horizon control problem. It is 

converted into a finite time control problem with a moving horizon h at each time step. At 

current time t, the initial conditions  x x  are obtained as inputs into the plant model. At the 
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same time, the optimization problem defined by Equations. (4.9)-(4.15) is solved. The results are 

the optimal control profile |  for HVAC systems and corresponding room temperature set-

point | . However, only the first step from t to t+1 of calculated  is actually executed, 

which is defined in ∗ . Once    is known at the next time step, the prediction horizon is 

shifted forward by one time step and problem  is solved again to find . The new 

1| 1  is in principle different from 1|  because of the additional new 

information available. During the heating season, the moving time horizon h is defined as 24 

hours because the response time of radiant floor heating system is slow. However, during the 

cooling season, the moving horizon h is defined as 3 hours (Coffey, 2008) because heat pump 

cooling is air-based system and responds much faster than the radiant floor system.  

 

Figure 4.1 Illustration of NMPC moving horizon control 

Figure 4.2 shows the overall NMPC design. The plant model are building thermal zone model 

and building HVAC system model which are defined in Chapter 3. The disturbances are from 

real-time outdoor weather condition and indoor occupancy activities. X  is a vector of initial 

values and X  is a vector of final values. The NMPC is constructed based on plant model and 

disturbances model and solved by dynamic programming. The output control signals are ideally 
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implemented through a local PID controller, where the control signal should be tuned based on 

disturbances received in real-time and track the optimized control set-point as close as possible.  

In this study, the controller design is in MATLAB and implemented through LabVIEW to local 

actuators directly on the relays of pumps. 

 

Figure 4.2 Overview of the NMPC Design 
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optimal control problem. Particularly during modeling, the control variables are water 

temperature rise and water flow rate for heating, while supply air flow rate for cooling in the 

model. During the actual implementation, the control variables are different because of the 
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provided in Chapter 3.   
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Table 4.1 Definitions for State, Control Variables and Disturbances 

Name Definition Name Definition 

State Variables x t  

TMR_in ,  _  Meeting room and office 
indoor air temperature _ _  , _ _  

Meeting room and office 
floor surface 
temperature 

_ _  , _ _  
Meeting room and office 

wall inside surface 
temperature  

_ _ , _ _  
Meeting room and office 

floor window surface 
temperature 

_ ,  _  Hot water tube’s surface 
temperature , , ,  

Supply and return water 
temperature 

Model Control Variables u t  

Δ  Hot water temperature rise ,  Supply air temperature 

 Water flow rate  Air flow rate of fan coil 
unit 

Implemented Control Variables 

, Δ  
Indoor heating 

temperature set-point 

, ,  Indoor cooling 
temperature set-point 

 Air flow rate of fan coil 
unit 

Disturbances D t  

,  Internal heat gain  Solar radiation 

,  Infiltration heat gain/loss  Outside temperature 

 

4.1.1.2 Characteristics of Proposed NMPC   

Before solving this problem, the analysis of the nature of this problem is necessary. Figure 4.3 

shows an example of the measured outputs, disturbances and control signal. Although the indoor 

air temperature fluctuates, the wall surface temperature tends to be constant. To model and 

design a controller for such kind of system is a challenge task. As Underwood (1999) pointed out, 

the main characteristics of such a complex system are:  
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Figure 4.3 Nature of the optimal control problem 

 Stiffness 

The response time of indoor temperature and wall surface temperature could be in a different 

time magnitude.  

 Nonlinear Differential  Algebra Equations (DAE) equations (>50) 

The heat balance equations for indoor/outdoor environment, heating, cooling and ventilation are 

nonlinear DAEs. Particularly, heat exchange in the form of convection and radiation are 

commonly described as nonlinear DAEs.  

 Mixed On/Off and continuous control signal 

Some of the given control equipment only accept on/off control signals such as motor controller 

operable windows. Some accept continuous signals such as variable frequency drive pump to 

control water flow.  

 Disturbances are dynamic 

The disturbances to the system come from the outside temperature, wind, solar, inside electrical 

equipment, occupancy and lights. Most of these disturbances vary from time to time. As shown 

in Figure 4.10, solar radiation could vary from 0 to 120w/m2 in a day time with an overcast sky.  
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4.1.2 Optimization Algorithm 

In Chapter 2, a detailed literature review is conducted on optimization methods. Based on the 

nature of this problem described in Section 4.1.1.2, genetic algorithm and dynamic programming 

are the two most suitable optimization algorithms, which are further illustrated and discussed in 

this section, to solve the NMPC problem,.  

4.1.2.1. Genetic Algorithm 

The genetic algorithm is based on natural evolution and selection of species. It starts with a 

population with a certain number of individuals with different states in the search space. In each 

generation, the individuals are evaluated with the fittest reproducing and continue with the next 

generations through fitness-based selection.  The selection and/or invention of genetic operators 

are problem-specific and heavily depend on experience. As the process continues, the population 

converges to better individuals, which gives a higher likelihood of achieving global optimum. 

GA has been applied widely in building energy optimizations because of two reasons (Xing, 

2004; Wetter, 2005): 

1) The optimization does not require a smooth cost function which makes the discontinuity 

in controller parameters possible;   

2) It is a population-based search which makes the multi-objective optimization possible; 

However, GA also requires a huge number of function evaluation which causes high 

computation time and memory. In this thesis, the Genetic Algorithm Solver in Global 

Optimization Toolbox 3.0 in MATLAB 2009b (The MathWorks, 2010a) is used.  An evaluation 

function and several other parameters such as creation, fitness scaling, selection, crossover and 

mutation have to be provided. Since the building model is constructed in Simulink, the 

MATLAB modifies the inputs into Simulink and get outputs such as total heating energy 

consumption from the Simulink model as the fitness value for further optimization iterations. 
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The schema of the GA used in this thesis in described in Figure 4.4. The number of generations 

is set dynamically based on different optimization time horizons. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1.2.2 Dynamic Programming 

Dynamic Programming (DP) is a very powerful algorithmic paradigm in which a problem is 

solved by identifying a collection of sub-problems and tackling them one by one, smallest (one 

time step) first, using the answers to small problems to help to figure out larger ones, until the 

whole time horizon is solved. It comes from Bellman’s principle of optimality (Bellman and 

Kalaba, 1965). It has been widely implemented in building HVAC real time controls (Rink and 

Li, 1995; Chen, 2001; Braun, 2003; Yu and Dexter, 2009).  The optimization problem defined in 

Equation (4.9) can be re-constructed as below:  

Initial Population (Initial Values for Control 

Parameters) 

Evaluate Current Fitness Function 
Simulink 
Building 
Model 

Generation Selection 

Crossover and Mutation 

Check the New Generation 

Last 

Generation? 

NO

Yes

Optimal Solution 

Figure 4.4 Schema of GA process in MATLAB/Simulink 
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∗ , , 1 , ,

∗ 1 , 1  
(4.16) 

 

Where ∗ ,  is the minimum energy consumption at time t based on sequence of optimal 

control profile defined in ∗ ∗ 1 , ∗ , … , ∗ 1   .  

The above DP equation shows that the future decision is determined indirectly through the future 

system states 1 . Figure 4.5 illustrates the implementation of DP-based optimal control. 

The current minimum energy consumption ∗ ,  at time t can be determined by the current 

cost function  , 1 , ,  and future optimal cost function ∗ 1 , 1 , 

which is determined at time t+1. This also brings an important computational feature of dynamic 

programming. The calculation of the cost function ∗ ,  and all possible control actions at 

time t should be stored until the last time step t+h in order to find out the optimal cost profile. 

This will increase a significant amount of computer storage. Finally, the problem becomes find a 

shortest energy consumption path and is solved based on Dijkstra's algorithm (Weiss, 2007).   

 
Figure 4.5 Dynamic programming based optimal control 
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4.1.3 Comparisons of Computational Time  

 
The computational dimension depends on the number of time steps and the constraints. In this 

study, the prediction time horizon during the heating season is 24 hours and 3 hours for cooling 

season. The time step is 1 hour and 15 minutes, respectively. For each temperature set-point, 

considering ranges 15~21 ⁰C for heating and 24~30 ⁰C for cooling, there are 7 possible values. 

Over the whole prediction horizon, there are 724 possible configurations during heating season 

and 712 during cooling season. This is a challenge for the real time implementation of NMPC.  

The computational time of evolutional algorithms (EA) including GA has been studied in a few 

simple cases (Ejeben, et al. 1999; Droste, et al. 2002; Wegener, et al. 2002). Rudolph (1998)  

gave a comprehensive survey of the theoretical work up to 1997 and provided an  

upper bound for the (1 + 1) EA using the 1-bit-flip mutation for ONE-MAX problem. (1 + 1) EA 

means the population size is 1. Only recently, He and Yao (2001; 2002) made one of the first 

attempts toward analyzing EAs with recombination and with a population size greater than 1. 

That study provided a general framework for the computational complexity of EAs considering 

mutation, crossover and selection. The computational time is either polynomial or exponential 

depending on the nature of the problem.  Based on the optimization problem defined in 4.2.1, the 

size of the problem spanning the whole time horizon is , assuming  is the optimization time 

horizon. Obviously, it is exponential, with . Hence, the computational time of GA in this 

study is exponential as well (He and Yao, 2002).  

The complexity of DP has been discussed by Papadimitriou and Tsitsiklis (1987). Their results 

show that for a finite horizon problem, the complexity to find the optimal policy is in polynomial 

time. In this study, it is . Apparently, it is much less complexity than the one from GA. 
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4.1.4 Comparisons of Optimization Results   

Since DP has computational time in polynomial comparing to exponential time of GA and GA is 

global optimization by its nature, it is interesting to compare the optimization results from both.  

These two algorithms are tested on October 16. 2009, for heating energy optimizations.  The 

prediction horizon is 16 hours with 1 hour control time step.  Figure 4.6 shows the comparison 

results between DP and GA.  The energy consumption from DP is 36.4 kWh, while GA is 35.6 

kWh. The absolute difference is only 2%, which is considered small.  Hence, DP has the similar 

optimization result compared with GA, while much less computational time step.  

 
Figure 4.6 Results of energy optimization comparisons between DP and GA 
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4.2 Optimal Control Implementation 

4.2.1 Overview 

 

Figure 4.7 Overview of optimal control implementation schema  

(Note: S.W. means software, H.W. means hardware.) 

Figure 4.7 shows the overview of optimal control implementation schema in this study. Starting 

from the sensor network inside the house, the raw sensor data are as inputs into occupancy 

pattern prediction algorithms discussed in Chapter 2. At the same time, the weather forecasting 

model makes predictions of outdoor temperature, solar radiation and wind speed for the next 

time horizon (Jiang and Dong, 2010). The resultant weather and occupancy information are then 

used as inputs into the virtual model in MATLAB/Simulink. The virtual thermal model is the 

dynamic heat transfer model developed in Chapter 3. The optimal control results from the virtual 

model are then implemented through LabVIEW on local HVAC actuators for pumps, water 

heater and fans.  
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4.2.2 Heating Season 

4.2.2.1 Experiment Setup  

The heating season experiment is first setup on a day of October, 2009 and then setup through 

the first week of February, 2010. During the experiment period, the windows are all closed 

because outside temperature is range from -20 0C to 10 0C. Building occupants include staff from 

Remaking City Institute, visitors from outside of campus and students of School of Architecture. 

The training data set for occupancy and weather prediction is previous one month continuously 

collected data. The heating set-point while occupied is 21 0C at day time.  

4.2.2.2 Results and Discussion  

The results have three parts: weather prediction, occupant behavior pattern prediction and 

measured energy consumption profile from integrated control.  

Weather prediction 

The evaluation criteria for weather prediction accuracy are based on RMSE defined in section 

3.5.2 and Mean Absolute Percentage Error (MAPE).  MAPE defined the deviation of errors from 

measured value. It is defined as: 

 1
| |  

(4.17) 

   

where 

    n Total number of data points 

 Measured data points 

 Predicted data points.  
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1) Outdoor temperature prediction: 

a. Overview 

 
Figure 4.8 Results of hourly local outdoor air temperature prediction from January 18 to March 19, 2010
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Figure 4.8 shows the results of outdoor air temperature prediction from January 18 to March 19, 

2010. The overall prediction accuracy is with RMSE of 0.82. Two scenarios are selected: one has 

higher prediction accuracy than the average value; another one is during the lowest temperature 

period in winter. There is also a period from February 28 to March 1, when there is no data 

recorded.  

b. Scenario One 

 

 

Figure 4.9 Results of hourly local outdoor air temperature prediction from February 1 to February 7, 2010 

Figure 4.9 shows the results of outdoor air temperature prediction. The RMSE is 0.75 and MAPE 

is 12%.  The maximum point difference is 2.4 0C and minimum is 0.2 0C. Overall, the prediction 

tracks the measured data quite well. The hourly prediction is implemented in real time and the 

training data is the previous one month hourly measured data.   
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c. Scenario Two 

 
Figure 4.10 Results of hourly local outdoor air temperature prediction from February 6 to February 11, 2010 

Figure 4.10 shows that during the coldest period, the predicted outdoor temperature has an 

average of 2 degree difference from the measure one. The prediction on February 8 seems better 

than February 7 and February 6. This is could be that once the new training data set is available 

the prediction algorithm can learn from the low temperature data.  

2)  Solar radiation prediction 

a. Overview 

Figure 4.11 shows the results of hourly global solar radiation prediction from January 18 to 

March 19. The average prediction accuracy is with RMSE of 97.79. Two scenarios are selected, 
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Figure 4.11 Results of hourly local global horizontal solar radiation prediction from January 18 to March 19, 2010 
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b. Scenario One 

Figure 4.12 shows the results of hourly global horizontal solar radiation prediction for the whole 

week. The RMSE is 50.15 and MAPE is 20%.  

 

Figure 4.12 Results of hourly local global horizontal solar radiation prediction from February 1 to February 
7, 2010 

b. Scenario Two 

Figure 4.13 shows the solar radiation prediction during the snow storm period. On the night of 

February 6, Pittsburgh had a snow storm and the sensor is covered by snow. The sensor then did 
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Figure 4. 13 Results of hourly local global horizontal solar radiation prediction from February 7 to February 
12, 2010 

3)  Wind speed prediction 

a. Overview  

Figure 4.14 shows results of hourly local wind speed prediction from January 18 to March 19, 

2010, with RMSE 0.85. The wind speed changes faster than outdoor air temperature and solar 

radiation, which makes the prediction difficult. Overall, the prediction algorithm correctly 

predicts 80% of the experimental time. Two scenarios are selected to further illustrate the results 

of wind speed prediction.  
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Figure 4.14 Results of hourly local wind speed prediction from January 18 to March 19, 2010
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b. Scenario One 

 
Figure 4.15 Results of hourly local wind speed prediction from February 1 to February 7, 2010 

Figure 4.15 shows the results of hourly prediction of wind speed from February 1 to February 7, 

2010. The accuracy is with RMSE of 0.6 and MAPE of 15%.  The hourly wind speed value 

changes quite often and the maximum wind speed is 5 m/s. The difficult part for the prediction is 

when the wind speed changes by 150% in just one hour, for example, from 0.7 m/s to 1.9 m/s on 

February 1.  
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b. Scenario Two 

 
Figure 4.16 Results of hourly local global horizontal solar radiation prediction from March 7 to March 14, 

2010 
 

In scenario two, the wind speed has large changes in short time period on March 10, when the 
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Occupant behavior pattern prediction 

 

Figure 4.17 Results of occupancy pattern prediction from January 18 to March 20, 2010  
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Figure 4.17 shows the results of occupant pattern prediction from February 1 to February 7, 2010. 

As described in Chapter 2, the occupancy pattern prediction includes occupancy number and 

duration:  

1) Occupant number estimation 

The number of occupants during the testing period time ranges from 0 to 14. 

a. Scenario one  

When integrated with scheduled meetings and classes, the accuracy for the week of scenario is 

88%, as shown in Figure 4.18. The selected feature CO2 has a delay effect of 15 to 20 minutes. 

However, acoustics and motion does not. Hence, one strategy is to compensate the time CO2 

concentration building up with motion and acoustics data. Figure 4.19  shows one day prediction 

to further investigate the prediction accuracy. It is found that when the occupants stay in the 

room for a short time such as 10 minutes, the prediction cannot catch it.  
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Figure 4.18 Results of occupancy pattern prediction from February 1 to February 7, 2010  

 

Figure 4.19 Results of occupant pattern prediction on February 1, 2010 
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b. Scenario two 

The number of occupant detection failed when the occupant pattern never happened before. 

Figure 4.20 shows the results of occupant pattern prediction from February 7 to February 14, 

2010. The whole week prediction accuracy is 0.65, which is lower than the average. On February 

11, the number of occupants is 7. However, those numbers of occupants did not appear in the 

training data sets. For example, Figure 4.21 further illustrates the prediction algorithm chooses 

the possible closest number of occupants, 10, instead of 7 on February 11, 2010.  

 

Figure 4.20 Results of occupant pattern prediction from February 7 to February 14, 2010 
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Figure 4.21 Results of occupant pattern prediction on February 11, 2010 

c. Special Scenario: Window Open 

 

Figure 4.22 Results of occupant pattern prediction from March 16 to March 19, 2010 
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In some cases, when the window is open, the occupant pattern prediction does not work at all 

because the level CO2 is not as reprehensive as closed space. Figure 4.22 shows the results of 

occupant pattern prediction from March 16 to March 18.  All these three days have window open 

for certain amount of time. When the window is open, the prediction algorithm would predict 

nobody in the space. This is because one of the important features for occupant pattern prediction 

is the differences of CO2 level between indoor and outdoor.  

2) Occupancy duration prediction 

The duration prediction is to find out daily occupancy patterns, based on Hidden Semi Markov 

model and estimation of duration as an Exponential function. For the whole testing period, the 

prediction accuracy is 78%±16 minutes. This means the method developed in this thesis can 

predict correctly 78% of the time, while with an offset of 16 minutes.   

Since the found patterns are developed from the same training data sets for all testing data, the 

results from Scenario 1 is shown below. Figure 4.23 shows daily event patterns on February 1, 

2010, discovered in this study.  Event code letters are as defined in Chapter 2, Table 2.4. On that 

day, there are four occupancy durations happened. Figure 4.23 shows a standard Markov model 

with numbers on the arcs indicating the transition probability between states, Transitions with 

relatively low probabilities (less than 15%) are not shown. Parentheses indicate number of 

occurrences of the pattern in the training period. As an example, state “bef” has a 25% transition 

probability to state “eb” and a 20% probability to state “bef”, with “bef” occurring 22 times, “eb” 

37 times and “bef” 15 times during the month. Figure 4.23 also shows the results of including 

duration in the model. Each duration distribution is denoted as X~(time), where time is the 

expected duration for the exponential model.  For example, “bef” has an expected duration of 30 

minutes before it transitions to state “eb” and 10 minutes before transiting to state “bef”. The red-

dotted line in Figure 4.23 a) indicates a typical 98 minute meeting scenario where an occupant 

enters the room, triggers the motion sensor “e”, triggering sound on “b”, and sits down, 

triggering the motion off “f”. The occupant continues to stay in the room, generating acoustics “b” 

and moving around generating motion “e”. Upon leaving, the occupant moves towards the door 

“e” and departs “f”. 
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a) Actual: 110(min); Predicted: 98(min) 

 

b) Actual: 50(min); Predicted: 60(min) 

 
c) Actual: 121(min); Predicted: 105(min) 

 
d) Actual: 153(min); Predicted: 150(min) 

Figure 4.23  Markov model of discovered patterns on 10 minutes maximal window 
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Energy consumption from NMPC  

a. Two months’ continuous data  

 

Figure 4.24 shows the comparison of energy profile between NMPC and scheduled temperature 

set-point for the whole heating testing period. The overall energy saving is 26.2% as shown in 

Table 4.2. The set-point not met by NMPC for the occupied time is 15 hours for the two months, 

which is only 6% of the total occupied time. 
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Figure 4.24 Comparison of energy profile between NMPC and scheduled temperature set-points from January 18 to March 20, 2010 
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Two scenarios are selected to represent “Most Energy Saving” and “Least Energy Saving” 

periods. There is also a period from March 14 to March 15 when the data is missing due to the 

failure of the sensors.  

 
Figure 4.25 Temperature profile from February 1 to February 7, 2010 

Table 4.2 Comparison of total heating energy consumption and set-point not met hours 

Energy Consumption (kWh) Energy Saving (%) 

Scheduled Set-points 2752 
26.2 

NMPC Optimization 2032 

Temperature Set-point not met while occupied 
(Hrs) 

Improved Set-point 
Met Time (%) 

Scheduled Set-points 40 
62.5 

NMPC Optimization 15 
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b. Scenario one  

 

Figure 4.26 Comparison of energy profile between NMPC and scheduled temperature set-points of scenario 
one 

Figure 4.26 shows the measured results of energy consumption profile of NMPC, which 

integrates the weather forecasting and occupant behavior pattern prediction. Due to the thermal 

mass effect of the concrete floor slab, there is often no need for additional heating during day 

time, while maintaining the set-point temperature band (21oC±2) as shown in Figure 4.27. In 

addition, the occupancy prediction can provide the information on the occupant’s arrival time on 

the next day. This information helps to predict an optimized energy profile of the next day.  
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Figure 4.27 Temperature profile from February 1 to February 7, 2010 

Table 4.3 Comparison of heating energy consumption and set-point not met hours in scenario one 

Energy Consumption (kWh) Energy Saving (%) 

Scheduled Temperature Set-points 343 
30.1 

NMPC Optimization 240 

Temperature Set-point not met while occupied 
(Hrs) 

Improved Set-point 
Met Time (%) 

Scheduled Temperature Set-points 8 
75 

NMPC Optimization 2 

 

Figure 4.26 also compares the energy profile between NMPC and scheduled set-points. The 

scheduled temperature set-point normally has a night setback, which is 17oC in this study. The 

heating system remains off until the indoor temperature falls below the setback temperature. 

Hence, the heating system often starts after the mid-night and at its full capacity to reach the set-

point in the morning.  In addition, the predicted occupant arrival time is often not within the 

range of scheduled daily temperature set-point period. This results in more energy consumption.  

Feb/01 Feb/02 Feb/03 Feb/04 Feb/05 Feb/06 Feb/07

-5

0

5

10

15

20

25

30

 Time (15 minutes)

T
e

m
p

e
ra

tu
re

(C
)

 

 

Indoor Temperature (NMPC)
Outdoor Temperature
Indoor Temperature(Scheduled)



121 
 

The energy saving from the NMPC compared to scheduled set point is further illustrated in 

dashed boxes in Figure 4.26.  Table 4.3 Comparison of heating energy consumptionshows the 

comparison of total energy consumption for the whole week. The NMPC can save 30.1% of 

energy compared with the scheduled start.  Furthermore, the NMPC does not meet the 

temperature set-point for 2 hours, compared to 8 hours from schedule temperature set-point 

control. This is because during some cold nights, if the indoor air temperature is around the night 

set-back (17 oC), the daily set-point in the morning cannot be met. Instead, the NMPC keeps the 

indoor air temperature warm enough at night to meet the set-point in the morning.     

 

Figure 4.28 Comparison of energy profile between NMPC and scheduled temperature set-points on February 
2, 2010 

Figure 4.29 shows the results from the one day test on February 2, 2010. The major energy 

saving from NMPC is heating control at night where it dynamically adjusts the set-points, while 

reaching the set-point temperature when the occupant arrived. NMPC maintains the indoor air 

temperature at a certain level after the occupant leaves. In this case, the instant water heater does 

not need to operate at the maximum power. 
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c. Scenario Two 

 

Figure 4.29 Comparison of energy profile between NMPC and scheduled temperature set-points of scenario 
two 

Figure 4.29 compares the energy consumption between NMPC and schedule temperature set-

points of scenario two. The outdoor temperature reaches the coldest point (-17 oC) in this winter. 

The heating is on all the time from NMPC. Hence, the energy consumption from these two 

control methods is almost the same as shown in Table 4.4. In other words, dynamic occupancy 

schedules do not impact the heating energy consumption in this scenario. Table 4.4 also shows in 

such cold period, scheduled temperature set-point control is difficult to meet daily set-points. 
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Figure 4.30 Temperature profile from February 7 to February 13, 2010 

 

Table 4.4 Comparison of total heating energy consumption of scenario two 

Energy Consumption (kWh) Energy Saving (%) 

Scheduled Set-points 482 
2 

NMPC Optimization 473 

Temperature Set-point not met while occupied 
(Hrs) 

Improved Set-point 
Met Time (%) 

Scheduled Set-points 20 
70 

NMPC Optimization 6 
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4.2.2.3 Sensitivity Analysis of Heating Controls  

Figures 4.31 to 4.33 show the heating energy consumption for different levels of occupancy 

changes as defined in Table 4.5. The heating energy consumption does change much with the 

occupancy level change. Instead, the outdoor air temperature becomes the dominant factor for 

the energy consumption. For example, the daytime temperature profiles on February 4 and 

February 5 are similar as shown in Figure 4.23 and 4.24. However, on the February 5 night, the 

temperature suddenly dropped 10 degrees, which caused high heating energy consumption 

during the evening in order to meet the temperature set-point on the morning of February 6.   

 

Figure 4.31 Heating energy profile of high occupancy changes on February 5, 2010 
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Figure 4.32 Heating energy profile of moderate occupancy changes on February 4, 2010 

 

 

Figure 4.33 Heating energy profile of low occupancy changes on March 5, 2010 
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Table 4.5 Heating energy consumption and daily occupancy changes 

Energy Consumption (kWh) Differences (%) 

Low Occupancy Changes (1 change) 24 Baseline 

Moderate Occupancy Changes (2~3 changes) 25 4% 

High Occupancy Changes (>3 changes) 35 45% 

 

4.2.3 Cooling Season 

4.2.3.1 Experiment Setup  

The cooling season experiment is setup through the week from July 5 to July 10, 2010. Since 

there is no automatic control for the cooling equipment, this is just a demonstrative experiment 

based on a short period of data and availability. During this experiment period, the windows are 

all closed because outside temperature ranges from 25 0C to 35 0C. Occupants are visitors from 

outside of campus and students of the School of Architecture. The occupant activities include 

meetings, lunch break and normal office hours. The training data set for occupancy and weather 

prediction uses continuous data collected from the previous month data. During the cooling 

season, the time step for control is 15 minutes because the heat pump system can cool down the 

space from 29 0C to 25 0C in 15 minutes. The cooling setpoint while occupied is 25 0C in the day 

time.  

4.2.3.2 Results and Discussion  

Weather prediction 

 

Figure 4.34 to Figure 4.36 show the 15-minute prediction results of outdoor air temperature, 

global horizontal solar radiation and wind speed.  As shown in the Figures, the RMSEs are 0.62, 

60.02 and 0.37 respectively, which are all as low as the results for the heating season. The 

MAPEs are 8%, 25% and 12%. Only the solar radiation prediction is worse than the 60-minute 
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time step during the heating season. This is because the cloud coverage has only hourly data and 

the values within the hour are assumed to be constant.  

 
Figure 4.34 Results of 15-minute local outdoor air temperature prediction from July 5 to July 10, 2010 

 

Figure 4.35 Results of 15-minute local global horizontal solar radiation prediction from July 5 to July 10, 
2010 
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Figure 4.36 Results of 15-minute local wind speed prediction from July 5 to July 10, 2010 

Occupant behavior pattern prediction  

As described in heating season, the occupancy pattern prediction during cooling also includes 

two parts: (1) occupant number estimation; (2) occupancy duration prediction.  Figure 4.37 

shows the results of occupancy pattern prediction from July 5 to 10, 2010. The number of 

occupants during the testing period ranges between 0 and 7. The prediction accuracy for the 

whole week is 92%. During this testing period, 15 minutes moving average of CO2 is changed to 

5 minutes as one of the training features. As shown in Figure 4.38, the daily profile of predicted 

occupancy shows a prediction delay. In addition, a sudden change of occupancy number within 5 

minutes cannot be detected.  
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Figure 4.37 Results of occupancy pattern prediction from July 5 to July 10, 2010 

 

Figure 4.38 Results of occupancy pattern prediction on July 6, 2010 
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a) Actual: 90(min); Predicted: 98(min) 

 

b) Actual: 60(min); Predicted: 60(min) 

Figure 4.39  Markov model of discovered patterns on 10 minutes maximal window 

Figure 4.39 shows the daily event patterns on July 5, 2010. There are two patterns representing 

the durations of 90 minutes and 60 minutes. The overall prediction accuracy is 90%±10 minutes. 

Supply air flow rate 

Figure 4.40 shows cooling supply air flow rates with different levels of occupancy.  In this study, 

these values are 0.19 m3/s, 0.12 m3/s and 0.08 m3/s. According to ASHRAE 62.1 (ASHRAE, 

2004), a flow rate of 0.08 m3/s is enough for 10 people. Hence, the supply air flow rate is 

working together with return and supply air temperature to have minimum energy consumption.  

One interesting finding is that the system turns on only one time step (15 minutes) before the 

occupant’s arrival and with maximum supply air flow rate. This is because the cooling system is 

oversized and it only takes 15 minutes to cool down the space to set-point.  
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Figure 4.40 Supply air flow rate with different occupancy levels 

 

Energy consumption from NMPC  

Figure 4.40 compares the energy profile between NMPC and scheduled set points on July 1, 

2010. The scheduled set-point maintains the indoor temperature at the 25 °C set-point. The 

NMPC dynamically controls the temperature based on the actual occupancy level. In addition, 

the scheduled set-point assumes the occupant leaves at 7:00pm, while the predicted departure is 

at 5:30pm. The NMPC cools down the space in two time steps (30 minutes) before the occupants 

arrive. The energy saving comes from the difference between the predicted schedule and fixed 

schedule.  
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Figure 4.41 Comparison of energy profile between NMPC and scheduled temperature set-points on July 1, 
2010 

 

Figure 4.42 Energy consumption profile of NMPC from July 5 to July 10, 2010 
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Figure 4.43 Comparison of energy profile between NMPC and scheduled set-point 

Figure 4.42 shows the measured results of cooling energy consumption based on the predicted 

dynamic occupancy schedule. The cooling energy fluctuates with the level of occupancy during 

day time. This demonstrates the robustness of the control that it can track the changes of 

occupant numbers and meet the temperature set-point while the space is occupied. Figure 4.43 

compares the energy consumption between NMPC and scheduled set-points. The energy saving 

mainly comes from the dynamic occupancy scheduling, while the scheduled control set-point 

method tries to maintain the set-point regardless of whether there is any occupant in the space. 
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Figure 4.44 Indoor temperature profile based on NMPC from July 5 to July 10, 2010 

Table 4.6 Comparison of total cooling energy consumption 

Energy Consumption (kWh) Energy Saving (%) 

Scheduled Temperature Set-points 96.83 

NMPC Optimization 79.62 17.8 

Simulated NMPC Optimization 
with Less Infiltration  

77.3 20.2 

Temperature Set-point not met while occupied 
(Hrs) 

Improved Set-point 
Met Time (%) 

Scheduled Set-points 3 

NMPC Optimization 2 33% 

Simulated NMPC Optimization 
with Less Infiltration 

1 66% 

 

Figure 4.44 shows the indoor air temperature changes under NMPC control. When the space is 

not occupied, the indoor temperature does not maintain at the 25 0C set point. Table 4.6 

Jul/05 Jul/06 Jul/07 Jul/08 Jul/09 Jul/10
20

25

30

35

 Time (15 minutes)

T
e

m
p

e
ra

tu
re

(C
)

 

 

Indoor Temperature (NMPC)

Outdoor Temperature
Indoor Temperature(Scheduled)



135 
 

compares the simulated energy consumption of schedule set-points and measured NMPC 

optimization. The total cooling energy saving for one week is 17.8%.  Although the dynamic 

occupancy schedule varies with cooling set points in the space, the temperature of the space 

changes quickly so that the energy saving is only realized over a short duration of about an hour 

(four 15-minute time-steps). 

 

Figure 4.45 Comparison of energy profile between NMPC and simulated energy from better envelope 

In order to investigate the further saving possibilities, a model with better insulation value is 

conducted. As mentioned in Chapter 3, the indentified air infiltration rate for meeting room is 0.6 

ACH. However, the benchmark models from EnegyPlus states that a tight envelope should have 

0.3 ACH. Hence, 0.3 is used and the whole week is optimized again. Figure 4.45 compares the 

simulated results with measured NMPC results. With less air infiltration, the pre-cooling time 

became longer with 3 to 4 time step ahead of occupant’s morning arrival instead of 1 time step. 

In addition, the cooling system shut down several time steps earlier over leaving time of the 

occupancy.  
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4.2.3.3 Sensitivity Analysis of Cooling Controls  

 

Figure 4.46 Cooling energy profile of high occupancy changes on July 6, 2010 

 

Figure 4.47 Cooling energy profile of moderate occupancy changes on July 8, 2010 
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Figure 4.46 and Figure 4.47 show the cooling energy consumption profiles with high and 

moderate occupancy changes, respectively. The cooling energy consumption changes while the 

occupancy level changes. This is because the cooling system is an air -based system, which can 

provide almost instant cooling into the space. Figure 4.46 shows that cooling energy 

consumption changes with the changes of level of occupancy. However, between 15:00 and 

16:00 in the afternoon, although the occupant number does not change, the cooling energy 

consumption increases. This is because the outdoor temperature increases and the cooling system 

tries to meet the temperature set-point in the next few hours. Figure 4.47 shows that when the 

occupancy level is constant, the cooling energy consumption is also constant to maintain the 

indoor temperature set-point.  

4.3 Summary 

In this chapter, a nonlinear model predictive control is designed and implemented in the Solar 

Decathlon House test bed in real time. This NMPC integrates weather forecasting model and 

occupant behavior pattern models. . Both predictions have within 80% of accuracy. The real time 

optimization is solved based on the dynamic programming algorithm. The outputs are then 

implemented through LabVIEW in the test-bed. The results show that the heating energy 

consumption is saved by 26% compared with usual daily set-point and night setback temperature 

control strategy, while cooling energy is saved by 17.8%. The saving during the heating season 

are mainly from the thermal lag effects of radiant floor heating system while estimating the 

morning arrival time of occupants. The heating energy is not sensitive to the occupancy level 

changes. The saving during the cooling season are from the fast dynamic set-points’ changes 

from the cooling system while estimating the duration of the occupants in the space. The cooling 

energy is sensitive to the occupancy level changes. The measured indoor temperatures for both 

cases are within set-point temperature bands.  
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Chapter 5 
 

 Conclusion 

 

5. 1 Contributions  

The major contribution of this thesis is the introduction of an HVAC real time control strategy 

which integrates real time weather forecasting and dynamic occupant behavior pattern 

predictions based on environmental sensors.  

Based on this approach, the conventional HVAC system control changes in two fundamental 

ways: 

First, the control of NMPC-based HVAC systems becomes active instead of passive, where the 

conventional HVAC system only responds to the scheduled indoor set-point temperature without 

knowing any other information. The integrated HVAC control can actively predict the control 

profile and state variables (e.g., indoor air temperature) based on the validated building HVAC 

models and weather forecasting information. Thus, with the predicted information, the energy 

consumption of HVAC system can be optimized.  

Second, the real time occupant behavior patterns are integrated with HVAC controls, which 

change the conventional control from a single set-point temperature to a dynamic occupancy 

based schedule. Thus, when the space is unoccupied, there is no need to maintain the 

conventional temperature set-point. In addition, the operation of HVAC at night is also 

integrated with the prediction of occupants’ arrival time of the second day. Furthermore, the 

ventilation rate can be adjusted according to the number of occupants in the space. Thus, such 

control can operate the HVAC system dynamically and result in energy saving while maintaining 

desirable set-point temperature.  The new features of the integrated HVAC control contributes to 
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the next generation of building energy management systems in both residential and commercial 

buildings.  

5.2 Summary of Findings  

This study presents an HVAC control strategy integrating weather forecasting and occupant 

behavior pattern predictions.  In this approach, a comprehensive heat transfer and thermal 

dynamic model for the test-bed is developed. The occupancy pattern models are developed based 

on Hidden Markov Models and Hidden Semi Markov Model to estimate both number of 

occupants and occupancy duration in the space. The real-time local weather forecasting models 

are developed as well to have future weather information as inputs for the building model. A 

nonlinear model predictive controller is designed for the HVAC systems based on dynamic 

programming.  

The feasible implementation of the proposed HVAC control is proven through a two-month 

heating, and a week of cooling and ventilation experiment in a Solar Decathlon House test bed. 

A large scale sensor network is setup to measure environmental parameters including 

temperature, humidity, CO2, lighting, motion and acoustics and power consumptions from plugs, 

computers, HVAC equipment and appliances.  The building model is then validated through 

measured data. The occupancy data is collected through paper-based time logs. The occupancy 

models are also calibrated and validated through almost half of year data collection.  

Finally, the implementation of the HVAC control is through LabVIEW and its DAQ control 

board for the heating season and manually programmed in the remote controller for the cooling 

season. Following is a summary of the findings in this study:  

1) The most important sensors for the accurate occupant behavior pattern prediction are CO2, 

acoustics and motion. However, there is always a time delay for the number of occupancy 

estimation because indoor CO2 level takes time to build up. Thus, the abrupt changes of 

occupancy cannot be estimated. The overall accuracy achieves up to 90% in a closed space. In 

addition, when the window is open, the developed algorithm for occupancy detection does not 
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work because indoor CO2 is mixed up with outdoor CO2 and no longer an important feature to 

indicate number of occupant in the space. Hence, the developed occupant behavior pattern 

algorithm only works for a closed space. 

2) The sensitivity analysis of system identifications of building zone and system models shows 

that the overall heat transfer coefficients between indoor air and building internal surfaces such 

as internal walls and concrete slab vary from 30% to 50% with different training and test data 

sets. Building material properties such as resistances and capacitances are relatively constant.    

3) During the heating season, the result from NMPC shows a 26% energy reduction compared to 

the scheduled temperature set-point control. This saving is mainly from the predicted occupancy 

arrival time on the next day compared with the pre-defined schedules. It is interesting to find that 

the NMPC maintains the indoor temperature at certain level without turning off the heating 

system at night, which saves energy, instead of maintaining a night set-back. Since the response 

of radiant floor heating system is slow, the sensitivity analysis shows that the predicted daily 

dynamic occupancy schedule does not impact on the heating energy consumption significantly. 

In addition, when the outdoor temperature is below -10 °C, the heating has to be on all the time 

to meet the temperature set-point. In that case, NMPC performs similarly as the schedule 

temperature set-point control.  

4) During the cooling season, the result from NMPC shows a 17.8% energy saving. Since the 

cooling system is over-sized and brings down the temperature very quickly, the pre-cooling 

period is normally one time step (15 minutes). The saving is mainly from the dynamic control of 

cooling set-point based on the real-time occupancy schedules. In addition, the ventilation rate for 

different occupancy level is also contributed.  

5.3 Future Work  

This research contributes to the next generation of the HVAC control to further save energy 

consumption in buildings. The developed NMPC based on dynamic occupant patterns have 
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demonstrated its benefits through actual implementations in a single zone of one building. The 

research findings of this study point to the further research directions:  

a. Multi-zone full-scale implementation  

In this study, only one zone in the Solar Decathlon test bed is controlled. The developed NMPC 

can be further implemented in a multi-zone building fully equipped with necessary sensors, with 

more varied levels of occupancy. The algorithms developed in this study can then be tested to 

catch the dynamics of occupancy as much as possible in a whole building level.  

b. Integration with mix-mode operation  

This current study does not consider the interaction between occupancy and window opening to 

take advantage of passive design. Those interactions will generate another control problem 

within the so-called mix-mode building operation which requires further investigation.  

c. Development of a fast global optimization algorithm  

In this study, a dynamic programming algorithm is implemented. However, dynamic 

programming still cannot guarantee a global optimal point all the time. A new fast global 

optimization algorithm should be developed. There are some pioneering studies of dynamic 

optimization applied in building energy studies (Zava, et al. 2010). However, there is no 

demonstration case study which actually implements this in real buildings.  
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