

Carnegie Mellon University
Department of Mathematical Sciences

Doctoral Dissertation
Integrating Relaxations for
Combinatorial Optimization

Marla Rebecca Slusky

May 4th, 2015

Submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Algorithms, Combinatorics, and Optimization.

Dissertation Committee:
Willem-Jan van Hoeve (Chair)

Alan Frieze
Gérard Cornuéjols

Louis-Martin Rousseau

Acknowledgements

I have many people to thank for helping me finish this dissertation.
Firstly, thank you to my advisor, Willem-Jan van Hoeve, for all of his advice,

guidance, unwavering support, and for keeping me on track to graduate.
Thank you to Andre Cire for lending me his codebase, and for answering all

my questions about it.
Thank you to all my friends who helped me through the program: Emily

Allen, Susie Backscheider, Deepak Bal, Patrick Bennett, Jacob Davis, Lisa Es-
pig, Will Gunther, Jenny Iglesias, Brian Kell, Chris Lambie-Hanson, Misha
Lavrov, Paul McKenney, Clive Newstead, Brendan Sullivan, and Spencer and
Erin Unger.

Thanks especially to Brian for helping me talk through ideas and algorithms,
for his advice on my writing, and for taking the time to give me valuable feed-
back on my presentation and thesis; to Will for answering all my Perl and
LATEXquestions; and to Chris for helping me cultivate a hobby outside graduate
school.

Thank you to Bob and Laura Zimmermann and to Samantha Gross. Your
perspective from outside the department helped me see the big picture and stay
focused on finishing.

Thank you to my family, Susan Slusky, Ron Slusky, Joanna and David
Slusky, and Ben Slusky and Reha Sterbin for all the support and encouragement
you’ve given me through graduate school and before.

Lastly, thank you to Jason Rute for encouraging me and helping me stay
motivated all the way through graduate school, but especially for the final push
at the end.

i

ii

To Havi and Jake.

iii

iv

Abstract

In this thesis we explore two methods of computing lower bounds. We first
discuss the Lagrangian Relaxation as it applies to the Golomb ruler problem, and
then we explore adding multi-valued decision diagrams to an additive bounding
scheme.

The Golomb Ruler Problem asks to position n integer marks on a ruler such
that all pairwise distances between the marks are distinct and the ruler has
minimum total length. It is a notoriously challenging combinatorial problem,
and provably optimal rulers are only known for n up to 27. Lower bounds can
be obtained using linear programming (LP) formulations, but these are com-
putationally expensive for large n. In Chapter 2 of this thesis, we propose a
new method for finding lower bounds based on a Lagrangian relaxation. We
apply a subgradient optimization scheme to find good bounds quickly, and we
show experimentally that our method can find bounds that are very close to the
optimal LP bound in a fraction of the time that is needed to compute the LP
bound. We furthermore embed our Lagrangian bounds into a constraint pro-
gramming search procedure, and show that these can help reduce the constraint
programming search tree considerably.

Additive bounding is a method of taking several algorithms for computing
lower bounds, each of which typically exploits a different substructure of the
problem, and combining them to produce a single lower bound which is larger
than the lower bound that any of the individual algorithms can produce alone.
Approximate multi-valued decision diagrams (MDDs) have recently been used to
compute upper and lower bounds on several optimization problems. In Chapter
3 of this thesis, we show how we can integrate MDDs into an addivite bounding
scheme.

v

vi

Contents

1 Introduction 1

2 Lagrangian Bounds for Golomb Rulers 3
2.1 Introduction . 3
2.2 Exact Models for the Golomb Ruler Problem 5
2.3 Lagrangian Relaxation . 6

2.3.1 Formulation . 6
2.3.2 A Combinatorial Algorithm for Solving the Relaxation . . 8
2.3.3 Subgradient Optimization Method 9

2.4 Relationship with Other Formulations 9
2.4.1 Permutation Formulation 10
2.4.2 Equation Sums Bound . 12

2.5 Results for Approximating the LP Bound 14
2.5.1 Subset Formulation . 14
2.5.2 Implementation and Results 15

2.6 Lagrangian Bounds for Ruler Segments 18
2.7 Embedding in Exact CP Search 19

2.7.1 Constraint Programming Representation and Search . . . 20
2.7.2 Adding the Lagrangian Relaxation 22
2.7.3 Adding Bounds on Ruler Segments 23

2.8 Conclusion . 26

3 Residual Costs from Relaxed MDDs 29
3.1 Introduction . 29

3.1.1 Multi-valued Decision Diagrams 30
3.1.2 Using MDDs to Solve an Optimization Problem 32
3.1.3 Additive Bounding . 34

3.2 Extracting Residual Costs from an MDD 35
3.2.1 Sequential Ordering Problem 37
3.2.2 Other Methods of Obtaining Potentials 39

3.3 Experiments . 44
3.3.1 Other Additive Bounding Algorithms Used 44
3.3.2 Data sets . 44
3.3.3 Results . 46

vii

viii CONTENTS

3.4 Conclusion . 49

4 Conclusion 51

A Search Procedure for Ruler Segment Bound 53

Chapter 1

Introduction

Modern industry relies heavily on optimization. It can be used to find optimal
shipping routes, facility placement, or production levels. It can be applied to
any problem in which one wants to minimize or maximize an objective function,
like cost or profit, subject to some constraints.

Often the variables in such problems are constrained to take on integer val-
ues. For example, one can only make use of an integer number of factories.
Often such problems are NP-hard.

When a problem is NP-hard, it is often easier to find approximate solutions
using upper and lower bounds. For examples of computing upper and lower
bounds, consider the traveling salesperson problem. In this problem, we are
given a network of N cities connected by roads. Each road has a cost associated
with traversing it. The traveling salesperson problem asks to find a route that
takes the salesperson from home, to each of the other cities, and back home.
For N = 30, the number of possible routes is

4, 420, 880, 996, 869, 850, 977, 271, 808, 000, 000

or 4.4× 1030, which is too many for a computer to exhaustively check.
We can use a heuristic, (e.g., from each city, visit the cheapest city that has

not yet been visited) to get a feasible solution. The cost of this, or any, feasible
solution gives an upper bound on the optimal objective value.

We can use a relaxation of the problem to get a lower bound. A relaxation
is a problem with fewer constraints, which is often easier to solve. Since all
solutions to the original problem are feasible in the relaxation, and we are taking
a minimum over all feasible solutions, the optimal solution to the relaxation
provides a lower bound on the original problem.

In the example of the traveling salesperson, one relaxation is the problem
in which we are allowed any number of salespeople, each starting in a different
city, visiting at least one other city, and then returning home. This problem
can be solved in polynomial time, specifically, O(N3) [1].

One common method for producing good solutions is called branch and
bound which finds a sequence of solutions converging to the optimal solution.

1

2 CHAPTER 1. INTRODUCTION

The main idea in branch and bound is to branch on cases, for example the
case in which the salesperson visits Pittsburgh immediately after New York,
and the case in which they do not. From each of these cases, we branch further
creating a tree of cases. At each node, we can use a relaxation to compute a
lower bound on the objective function and if any case leads to a lower bound
greater than some known upper bound, we can prune that branch of the tree,
since no solutions on that branch can be optimal. For this reason it is important
to have relaxations that can be used to efficiently compute lower bounds.

In this dissertation, we explore methods of computing lower bounds. In
chapter 2 we explore the Lagrangian relaxation, in which we allow a constraint
to be violated, but add a penalty to the objective function when it is. We
show that applying the Lagrangian relaxation to the Golomb ruler problem can
considerably speed up the computation of lower bounds — enough that it is
practical to embed in a search procedure.

In chapter 3 we explore additive bounding, a technique for chaining together
several algorithms which produce lower bounds. This is particularly useful when
the different relaxations exploit different structures of the problem. We intro-
duce the idea of using multi-valued decision diagrams for a discrete relaxation
in an additive bounding scheme.

Decision diagrams were originally used for verification of switching circuits
[2, 10, 33], and have more recently been applied to optimization (e.g., [3]). We
show the effectiveness of our methods by combining the MDD relaxation with
other relaxations from the literature. We apply this procedure to the sequential
ordering problem, which is a variation of the traveling salesperson problem.

Chapter 2

Lagrangian Bounds for
Golomb Rulers

2.1 Introduction

For some positive integer n, let x1, . . . , xn represent the integer positions of n
marks on a ruler. We can assume that xi < xj for all 1 ≤ i < j ≤ n and that
x1 = 0. A Golomb ruler has pairwise distinct distances between the marks, i.e.,
xj − xi for all 1 ≤ i < j ≤ n are distinct. Given n, the Golomb ruler problem
asks to find a Golomb ruler with minimum length xn. For example, an optimal
ruler for n = 5 is presented in Figure 2.1.

Practical applications of the Golomb ruler problem include radio communica-
tions, X-ray crystallography, coding theory, and radio astronomy [9, 17, 38, 42].
The problem continues to be very difficult to solve in practice, although it is
still unknown whether it is NP-hard. Optimal Golomb rulers are only known
up to n = 27. The optimality of rulers of 24, 25, 26 and 27 marks was proven by
a massively parallel search coordinated by distributed.net/ogr. The search
for the provably optimal 27 mark ruler lasted almost 5 years.1

The Golomb ruler problem is also a popular benchmark for discrete opti-
mization methods, such as constraint programming methods [18, 51], algebraic
methods (affine and projective plane constructions, [15, 49]), evolutionary algo-
rithms [52], and hybrid methods combining constraint programming and local
search [14, 40].

A crucial component of exact solution methods is producing lower bounds,
which appears to be more challenging than providing upper bounds that cor-
respond to feasible rulers. Lower bounds can help to dramatically prune an
exhaustive search, but only if they can be found quickly enough. Lower bounds
based on linear programming (LP) formulations were proposed by Lorentzen and
Nilsen [35], Hansen et al. [22] and Shearer [48]. These three formulations were
proved equivalent by Meyer and Jaumard [37]. A shortcoming of the LP bound

1See http://stats.distributed.net/projects.php?project_id=27

3

4 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

x
1

0 1 4 9 11

x
2

x
3

x
5

x
4

Figure 2.1: An optimal Golomb ruler with n = 5 marks.

is that direct LP formulations grow too large to fit in memory, and iterative
methods are computationally expensive. Therefore, the practical applicability
of the LP bound inside exact methods is limited. Another bound was discussed
by Galinier et al. [18] and applied within a constraint programming approach
for solving the problem. This bound is weaker than the LP bound, but it can
be computed more quickly.

In this chapter, we propose a new method for producing lower bounds, based
on a Lagrangian relaxation of the problem. We show that our relaxation gen-
eralizes the bounds proposed in Galinier et al. [18], and can produce a bound
that is equivalent to the LP bound. We also show how we can extend our ap-
proach to provide bounds on segments of the ruler. Furthermore, we present
an algorithm that solves the relaxation in O(n2 log n) time for fixed Lagrangian
multipliers. This allows us to efficiently approximate the LP bound using a sub-
gradient optimization method. We experimentally demonstrate that in practice
our method can produce bounds almost as strong as the LP bound, much faster
than existing methods. Because this algorithm is much faster to compute than
existing methods for the LP bound, we can apply our bounds within a constraint
programming search procedure. We will demonstrate that it can decrease the
constraint programming search tree size up to 91% in certain cases, which trans-
lates into a solving time reduction of up to 78%. We note that the performance
heavily depends on the quality of the LP bound that we approximate. If the
LP bound is too weak, our method is naturally also less effective.

The rest of the chapter is organized as follows. In Section 2.2 we present
formal models of the Golomb ruler problem. In Section 2.3 we present the La-
grangian formulation, our efficient algorithm to solve the relaxation, and the
subgradient optimization method. Section 2.4 discusses exact methods to solve
the Lagrangian relaxation and relates our formulation to the formulations in
[22], [37], and [18]. Section 2.5 contains the computational results comparing
our new formulation to the formulations in [22] and [48], the current state of the
art. We then introduce Lagrangian bounds for ruler segments in Section 2.6.
Section 2.7 describes how we embed the Lagrangian bounds on the ruler and
on ruler segments in a constraint programming search procedure, and discusses
the benefits of introducing the bounds. Lastly, we provide a conclusion in Sec-
tion 2.8.

2.2. EXACT MODELS FOR THE GOLOMB RULER PROBLEM 5

d15

d14

d13

d12

x1

d25

d24

d23

x2

d35

d34

x3

d45

x4 x5

11

9

4

1

0

10

8

3

1

7

5

4

2

9 11

Figure 2.2: Distances associated with the Golomb ruler from Figure 2.1.

2.2 Exact Models for the Golomb Ruler Prob-
lem

We first present a formal model of the Golomb ruler problem. In the following,
we will assume that the marks take their position from a range {0, 1, . . . , L} for
some appropriate upper bound L.

Rather than taking the marks x1, . . . , xn to be our variables, we will take the(
n
2

)
-many segment lengths dij := xj−xi to be our variables (Figure 2.2 provides

an illustration for the ruler in Figure 2.1). Then the Golomb ruler problem can
be expressed as the following constraint programming (CP) model:2

min

n−1∑
k=1

dk,k+1

s.t. AllDifferent({dij})

dij =

j−1∑
k=i

dk,k+1 for all 2 ≤ i+ 1 < j ≤ n.

(2.1)

We can alternatively express this CP model as an integer programming (IP)
model, by representing the alldifferent constraint explicitly as a bipartite
matching problem. That is, we introduce a vertex set corresponding to the pairs
of marks {(i, j) | 1 ≤ i < j ≤ n}, a vertex set corresponding to the possible
lengths {1, 2, . . . , L}, and we define the complete bipartite graph between these
two vertex sets. Clearly, a maximum matching in this graph corresponds to a
solution to alldifferent [41].

For our IP model, we introduce binary ‘edge’ variables such that eijv = 1
when the pair (i, j) induces a distance v ∈ {1, . . . , L} and eijv = 0 otherwise.
The model thus becomes:

2The symbolic (or global) constraint alldifferent(X) on a set of variables X with finite
domains specifies that the variables in X take distinct values [26].

6 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

min

n−1∑
k=1

dk,k+1

s.t.

L∑
v=1

eijv = 1 for all 1 ≤ i < j ≤ n,∑
i<j

eijv ≤ 1 for all v = 1, . . . , L,

L∑
v=1

v · eijv = dij for all 1 ≤ i < j ≤ n,

j−1∑
k=i

dk,k+1 = dij for all 2 ≤ i+ 1 < j ≤ n,

eijv ∈ {0, 1} for all 1 ≤ i < j ≤ n, v = 1, . . . , L.

(2.2)

In this model, the first two constraints represent the bipartite matching. The
third constraint establishes the relationship between the variables eijv and dij .
The fourth is the requirement that each larger segment is made up of the smaller
segments it contains. We note that model (2.2) corresponds to the formulation
suggested by Lorentzen and Nilsen [35]. We will refer to it as the matching
formulation and to the objective value of its linear programming relaxation (in
which 0 ≤ eijv ≤ 1) as zmatching. We will derive our Lagrangian relaxation from
this model.

2.3 Lagrangian Relaxation

In this section, we first present the Lagrangian formulation, which provides a
relaxation for any fixed set of Lagrangian multipliers. We then show that each
such relaxation can be solved efficiently. In order to find the best relaxation
(corresponding to the LP lower bound), we lastly present a subgradient opti-
mization method that approximates the optimal Lagrangian multipliers.

2.3.1 Formulation

We create a Lagrangian relaxation from model (2.2) as follows. For every pair
of non-consecutive marks, that is, for all i, j such that 2 ≤ i + 1 < j ≤ n, we
choose a coefficient λij ∈ R and consider the LP resulting from moving the last
constraint of the matching formulation to the objective function:

2.3. LAGRANGIAN RELAXATION 7

min

n−1∑
k=1

dk,k+1 +
∑
i+1<j

λij

(
dij −

j−1∑
k=i

dk,k+1

)

s.t.

L∑
v=1

eijv = 1 for all 1 ≤ i < j ≤ n,∑
i<j

eijv ≤ 1 for all v = 1, . . . , L,

dij =

L∑
v=1

v · eijv for all 1 ≤ i < j ≤ n,

eijv ≥ 0 for all 1 ≤ i < j ≤ n, v = 1, . . . , L.

(2.3)

In this formulation we do not enforce
∑j−1
k=i dk,k+1 = dij , but we do incur a

penalty, weighted by λij , if we do not satisfy that constraint. Note that the
optimal solution for the matching formulation is still feasible in this relaxation,
and gives the same objective value. Therefore, the optimal value here is at most
zmatching, and therefore the optimal value is a lower bound for (2.2).

We can simplify our model further by rearranging the objective function to
become ∑

i+1<j

λijdij +

n−1∑
k=1

dk,k+1

1−
∑
i≤k<j
i+16=j

λij

 . (2.4)

Also, recall that we did not choose λk,k+1 for any k earlier, so let us take

λk,k+1 := 1−
∑
i≤k<j
i+16=j

λij . (2.5)

Then for any fixed (λij) satisfying equation (2.5), we have the simpler LP:

min
∑
i<j

λijdij

s.t.

L∑
v=1

eijv = 1 for all 1 ≤ i < j ≤ n,∑
i<j

eijv ≤ 1 for all v = 1, . . . , L,

dij =

L∑
v=1

v · eijv for all 1 ≤ i < j ≤ n,

eijv ≥ 0 for all 1 ≤ i < j ≤ n, v = 1, . . . , L.

(2.6)

This is the LP we will refer to as the Lagrangian relaxation, and we will
refer to its objective value as zLR. Note that the dij variables are simply an

8 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

intermediate calculation. If we replace the dij in the objective function with∑L
v=1 v · eijv, then we can eliminate the third constraint, and so this LP rep-

resents a matching problem. Together with the linear objective function, this
ensures that model (2.6) has an integer optimal solution, if a solution exists [43].

Proposition 1. For any fixed (λij) we have zLR ≤ zmatching, and there exists
(λij) for which zLR = zmatching.

Proof. The proposition follows from choosing (λij) to be the dual variables of
the last equation in (2.2). (See, e.g., [39]).

Proposition 2. If (λij) gives zLR = zmatching, then λij ≥ 0 for all i, j.

Proof. We refer the reader to [37] for the proof of this.

2.3.2 A Combinatorial Algorithm for Solving the Relax-
ation

Since we will repeatedly solve the Lagrangian relaxation to obtain better bounds
in a subgradient optimization scheme, it is important that model (2.6) be solved
efficiently. As it reflects a bipartite matching problem, we can for example apply
the Hungarian algorithm to find a solution in polynomial time [12, 32]. However,
because of the quadratic number of nodes in the bipartite graph the associated
time complexity would be O(n6) for a ruler with n marks, which is too high for
our purposes. Instead, we present next a combinatorial algorithm that solves
model (2.6) more efficiently.

Proposition 3. For any fixed (λij), the Lagrangian relaxation can be solved in
O(n2 log n) time for a Golomb ruler with n marks.

Proof. The Lagrangian relaxation represents a bipartite matching problem in
which we are matching each λij with a number in {1, . . . , L}, and we are trying
to minimize the sum of the products of the pairs. It is clear that if λij ≥ 0
for all i < j, then to minimize the objective value we must match the largest
λij with 1, the next largest λij with 2, etc. Thus our method for solving the
Lagrangian relaxation will be as follows.

Algorithm 1 Solve the Lagrangian Relaxation

1: Sort (λij) into decreasing order.
2: Let dij be the location of λij in the sorted list.

Since our algorithm for solving the Lagrangian relaxation reduces to sorting(
n
2

)
elements, we can solve it in O(n2 log n) time.

We remark that Hansen et al. [22] use a similar sorting procedure for solving
the subproblems in their scheme for computing the ‘quasi-positive lower bound’.
This equivalence will be further detailed in Section 2.4.1.

2.4. RELATIONSHIP WITH OTHER FORMULATIONS 9

2.3.3 Subgradient Optimization Method

In order to find (near-)optimal values for (λij), we apply an iterative subgradient
optimization method similar in spirit as those developed for the 1-tree relaxation
in [23, 24]. To approximate good values for (λij), recall that λij is a penalty

for not satisfying the constraint
∑j−1
k=i dk,k+1 = dij . Therefore, if we solve the

Lagrangian relaxation and do not satisfy the constraint for pair (i, j), we should
increase the penalty λij . This process is repeated until some stopping criterion
is met (either a time, iteration, or relative improvement limit).

Algorithm 2 Subgradient optimization scheme for finding (near-)optimal La-
grangian multipliers.

1: Choose initial stepsize
2: Choose initial values for λij with i+ 1 < j (for example, all 0)
3: while Some stopping criterion is not met do
4: Set λk,k+1 := 1−

∑
i≤k<j
i+1 6=j

λij for all k ∈ {1, . . . , n− 1}

5: Solve the Lagrangian relaxation
6: for all i+ 1 < j do

7: λij := λij +

(
dij −

j−1∑
k=i

dk,k+1

)
stepsize

n2

8: end for
9: Adjust stepsize if necessary

10: end while

The algorithm is presented in Algorithm 2. The performance of this algo-
rithm highly depends on the choice and adjustment of the stepsize parameter.
In our implementation, we start with a stepsize of 1 (in line 1). When an iter-
ation results in negative values for some λij , we divide the stepsize in half to
refine the search. Otherwise, after each 5 iterations of decreasing values for zLR,
we multiply the stepsize by 0.999 (line 9).

We remark that the algorithm does not have a natural stopping condition
based on optimality of the solution, in contrast with standard subgradient opti-
mization algorithms [34]. In fact, even if we use the optimal (λij) as initial data,
one iteration will return different values. Nevertheless, this algorithm produces
very good approximations of zmatching very quickly, as we will see in Section 2.5.

2.4 Relationship with Other Formulations

In this section we investigate the relationship of our Lagrangian relaxation with
other, existing, formulations for obtaining lower bounds. Throughout this sec-

tion we will use λ to mean (λij) ∈ R(n
2); S(n

2)
to be the set of all permutations of

the numbers {1, 2, . . . ,
(
n
2

)
} indexed by pairs (i, j) with i < j; σ = (σij) ∈ S(n

2)
;

and λ · σ =
∑

1≤i<j≤n λijσij .

10 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

2.4.1 Permutation Formulation

One consequence of Proposition 3 is that out of the elements in {1, 2, . . . , L} we
will use only the smallest

(
n
2

)
elements so as to minimize our objective function.

In other words, for fixed λ, the sorting procedure can also be viewed as finding
a permutation σ of the elements {1, 2, . . . ,

(
n
2

)
} such that λ · σ is minimized:

min
σ
λ · σ

Our overall goal, however, is to find the best possible bound, that is

max
λ

min
σ
λ · σ. (2.7)

We can formulate problem (2.7) as a linear program by introducing λij as a
variable for each pair i < j. If we let z represent the objective function to be
maximized, we can introduce a constraint for each possible permutation σ to
bound z:

z ≤
∑
i<j

λij · σij for all σ ∈ S(n
2)
.

From the previous section there are no restrictions put on λ, other than condition
(2.5) which can be rewritten as

∑
i≤k<j

λij = 1.

The overall linear program thus becomes:

max z

s.t.
∑
i≤k<j

λij = 1 for all k = 1, . . . , n− 1,

z ≤
∑
i<j

λij · σij for all σ ∈ S(n
2)
.

(2.8)

We will refer to this model as the permutation formulation. This model was
also given by Hansen et al. [22] (as ‘quasi-positive lower bound’) and Meyer and
Jaumard [37] (as (HJM99-B)), albeit in a different form. Using our notation λ
for the variables and σ for the permutations, formulation (HJM99-B) from [37]

2.4. RELATIONSHIP WITH OTHER FORMULATIONS 11

is:
max z

s.t.

n∑
j=2

λ1j = 1

k−1∑
i=1

λik −
n∑

j=k+1

λkj = 0 for all k = 2, . . . , n− 1

n−1∑
i=1

λin = 1

z ≤
∑
i<j

λijσij for all σ ∈ S(n
2)

λ ≥ 0
λ1n = 0.

(2.9)

Proposition 4. Formulation (2.8) is equivalent to formulation (2.9).

Proof. We show that condition (2.5) can be reformulated into the first three
constraints of model (2.9). Consider condition (2.5) for a given k ≥ 2 and k−1,
i.e.,

∑
i≤k−1<j λij = 1 and

∑
i≤k<j λij = 1. We have

k−1∑
i=1

n∑
j=k

λij −
k∑
i=1

n∑
j=k+1

λij = 0.

We can reformulate this equation ask−1∑
i=1

n∑
j=k+1

λij +

k−1∑
i=1

λik

−
k−1∑
i=1

n∑
j=k+1

λij +

n∑
j=k+1

λkj

 = 0,

or
k−1∑
i=1

λik −
n∑

j=k+1

λkj = 0,

which is the second set of constraints in our model (2.9). The constraints∑n
j=2 λ1j = 1 and

∑n−1
i=1 λ1j = 1 follow from considering condition (2.5) with

respect to k = 1 and k = n− 1, respectively.

The correspondence between model (2.8) and our Lagrangian relaxation is
that by solving model (2.8) we obtain optimal values for λ with respect to the
Lagrangian relaxation, and both models will provide the same objective value.
Unfortunately, solving the permutation model directly is non-trivial since we
have about

(
n
2

)
! constraints. Therefore, Hansen et al. [22] introduced an scheme

that iteratively solves the permutation model (2.8) for a subset of constraints
C ⊂ S(n

2)
:

12 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

max z

s.t.
∑
i≤k<j

λij = 1 for all k = 1, . . . ,m− 1,

z ≤
∑
i<j

λij · σij for all σ ∈ C.

(2.10)

Algorithm 3 Iterative algorithm for solving the permutation formulation.

1: Choose any initial C
2: Solve (2.10) and let z be the objective value
3: Sort λ into non-increasing order
4: For i < j let σij = (the position of λij in sorted order)
5: if z = λ · σ then
6: terminate
7: else
8: C := C ∪ {σ}
9: Goto 2

10: end if

The associated algorithm is presented in Algorithm 3. For a given set C,
we solve model 2.10 and obtain objective value z together with optimal values
for λ (lines 1-2). We then apply Proposition 3 and consider the values of λ in
non-increasing order to define the permutation σ by setting σij to the ordered
position of λij (lines 3-4). We note that Hansen et al. [22] use the same sorting
procedure to solve the subproblem. Observe that z provides a lower bound on
the ruler, whereas the product λ · σ provides an upper bound. If these bounds
meet optimality is proved (lines 5-6). Otherwise, we add the permutation σ to
C and continue (lines 7-10). This algorithm not only provides a procedure for
solving the permutation formulation (2.8), but it can also serve as a systematic
alternative approach to our subgradient method for finding optimal values for
λ.

2.4.2 Equation Sums Bound

We next study the relationship of the Lagrangian relaxation with the lower
bounds proposed by Galinier et al. [18]. We first recall these lower bounds by
illustration with an example.

Let n = 5, for which the length of the ruler is given by d15. If we want to
bound d15, we can first divide this segment into sub-segments in different ways:

d15 = d12 + d23 + d34 + d45

d15 = d13 + d35

d15 = d12 + d24 + d45

2.4. RELATIONSHIP WITH OTHER FORMULATIONS 13

Multiplying each equation by 1
3 and adding them together gives

d15 =
2

3
(d12 + d45) +

1

3
(d23 + d34 + d13 + d24 + d35) .

Since all these numbers will be distinct naturals, we get

d15 ≥
2

3
(1 + 2) +

1

3
(3 + 4 + 5 + 6 + 7)

d15 ≥ 10.333

(Recall that the optimal length of a Golomb ruler with 5 marks is 11, so after
rounding this bound is tight.)

There are, of course, many ways we can write out d1n as a sum of smaller
segments, and [18] discuss several options. We will refer to bounds of this form
as equation sums bounds. Another option we have is to weight the equations
differently. For example, we could have given the first two equations weights of
0.4 and the last equation a weight of 0.2 instead of giving them all a weight of
1
3 . This would result in the equation

d15 = 0.6(d12 + d45) + 0.4(d23 + d34 + d13 + d35) + 0.2(d24)

and the corresponding bound

d15 ≥ 0.6(1 + 2) + 0.4(3 + 4 + 5 + 6) + 0.2(7)

d15 ≥ 10.4

We will refer to bounds of this form as generalized equation sums bounds.

Proposition 5. The generalized equation sums bounds are equivalent to zLR
for an appropriate choice of λ.

Proof. The weights of the equations in the generalized equation sums bound
must always be distributed so that they sum to 1. This way d1n always gets a
coefficient of 1, and we always end up with a bound of the form d1n ≥

∑
µijdij

for some coefficients µij . Note that in each equation for each k = 1, . . . , n − 1,
there is some term that encapsulates the segment (k, k + 1). That is, there is
some dij such that i ≤ k < j. Since the weights on each equation sum to one,
the coefficients that encapsulate the pair (k, k + 1) should sum to 1. That is:∑
i≤k<j µij = 1. Then to find the minimum value of

∑
i<j dijµij we simply sort

(µ) into decreasing order and assign each dij the corresponding value. This is
precisely what we did in Proposition 3.

This shows that although the bound from [18] is weaker than the LP bound,
it can be generalized to be as strong as the LP bound, and it gives a nice
intuition for our constraint on λ.

14 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

2.5 Computational Results for Approximating
the LP Bound

The purpose of the computational experiments in this section is twofold. First,
we wish to obtain insight into the performance of our subgradient optimization
scheme relative to the systematic iterative scheme based on the permutation
formulation for solving the Lagrangian relaxation. Second, we wish to evaluate
our Lagrangian relaxation with the state of the art for solving the LP relaxation.

2.5.1 Subset Formulation

The current fastest method for solving the LP relaxation for the Golomb ruler
problem was proposed by [37]. It is based on the following formulation of the
lower bound, proposed in [48]. Let S = {(i, j) : i < j} and let P(S) be the
power set of S.

min d1n

s.t.

j−1∑
k=i

dk,k+1 = dij for all 1 ≤ i < j ≤ n,

∑
(i,j)∈R

dij ≥
1

2
|R| · (|R|+ 1) for all R ∈ P(S).

(2.11)

We will call this the subset formulation. Again, this LP is too big to solve

as stated since it has O(2(n
2)) constraints. However, [37] proposes an iterative

solving method in which we only include the second constraint above for some
subset T ⊂ P(S). The associated algorithm is presented in Algorithm 5. Since
this approach is the currently best known algorithm for finding the LP bound,
we will compare our methods to this.

Algorithm 5 Iterative algorithm for solving the subset formulation.

1: Let T = {{(i, i+ 1)} : 1 ≤ i < n} ∪ {{(i, i+ 1) : 1 ≤ i < n}}
2: Solve (2.11)
3: Sort (dij)
4: for 1 ≤ k ≤

(
n
2

)
do

5: Let T = {(i, j) : dij is within the first k positions}
6: if

∑
(i,j)∈T dij <

(
k
2

)
then

7: T := T ∪ {T}
8: end if
9: end for

10: if T has changed then
11: goto Line 2
12: end if

2.5. RESULTS FOR APPROXIMATING THE LP BOUND 15

 400

 450

 500

 550

 600

 650

 700

 0 0.5 1 1.5 2

B
e
st

 L
o
w

e
r

B
o
u
n
d
 F

o
u
n
d

Time (s)

n = 30

y=UB
y=LB

Lagrangian
Subset (CPLEX)

Permutation (CPLEX)

Figure 2.3: Performance comparison between the permutation, subset, and La-
grangian formulations, for n = 30. The best known upper bound and LP lower
bound are also depicted.

2.5.2 Implementation and Results

We implemented the Lagrangian relaxation and the subgradient method in
C++, following the description in Section 2.3.3. It was run using C++ on
an Intel core i3 processor (2.13 GHz). The times reported are the number of
seconds elapsed between when the program started running and when that lower
bound was found.

We implemented the solving schemes for the subset formulation and the
permutation formulation in AIMMS, using CPLEX 12.4 as linear programming
solver. The AIMMS implementations were run on the same Intel core i3 pro-
cessor. The times reported are the sums of the solving times for each call to
CPLEX, i.e., we eliminate the overhead that AIMMS may add. We apply all
methods to find bounds for n = 30, 40, 50, and 60 and 130. The exact LP
bound could be computed within a time limit of 600 seconds for n up to 60.

We report a comparison of the performance between the three methods in
Figures 2.3, 2.4, and 2.5. In each figure, we report the bound obtained by each
method over time. We also report the best known upper bound and LP lower
bound (if known).3 The permutation formulation did not provide meaningful
bounds for n larger than 30, and is not depicted for n = 40 up to 130. From the
figures we can see that even though the Lagrangian bound may not precisely
attain the LP bound, it finds bounds that are near the optimal LP bound, much

3See http://www.research.ibm.com/people/s/shearer/grtab.html for the list of shortest
known rulers.

16 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

 800

 900

 1000

 1100

 1200

 1300

 0 2 4 6 8 10

B
e
st

 L
o
w

e
r

B
o
u
n
d
 F

o
u
n
d

Time (s)

n = 40

y=UB
y=LB

Lagrangian
Subset (CPLEX)

 1200

 1400

 1600

 1800

 2000

 2200

 0 5 10 15 20 25 30 35 40

B
e
st

 L
o
w

e
r

B
o
u
n
d
 F

o
u
n
d

Time (s)

n = 50

y=UB
y=LB

Lagrangian
Subset (CPLEX)

Figure 2.4: Performance comparison between the subset and Lagrangian formu-
lations, for n = 40, 50. The best known upper bound and LP lower bound are
also depicted.

2.5. RESULTS FOR APPROXIMATING THE LP BOUND 17

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 10 20 30 40 50 60

B
e
st

 L
o
w

e
r

B
o
u
n
d
 F

o
u
n
d

Time (s)

n = 60

y=UB
y=LB

Lagrangian
Subset (CPLEX)

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 0 100 200 300 400 500 600

B
e
st

 L
o
w

e
r

B
o
u
n
d
 F

o
u
n
d

Time (s)

n = 130, run for 600 seconds

y=UB
Lagrangian

Subset (CPLEX)

Figure 2.5: Performance comparison between the subset and Lagrangian formu-
lations, for n = 60, 130. The best known upper bound (and LP lower bound for
n = 60) is also depicted.

18 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

n initial stepsize running time lower bound

1,000 1 1 hour 698,743
2,000 10−6 1 hour 2,589,350
5,000 10−6 1 hour 10,749,700

10,000 10−7 3 hours 59,417,700

Table 2.1: Lagrangian bounds for large Golomb rulers.

faster than the scheme for the subset formulation does.

We also applied our scheme to obtain lower bounds for Golomb rulers of size
1,000, 2,000, 5,000 and 10,000. At this scale, we needed to adapt the initial
stepsize of our algorithm with respect to the earlier experiments. Our results
are summarized in Table 2.1. For each size, we report the initial stepsize, the
running time, and the Lagrangian bound we obtained. For these instances, we
could not obtain meaningful LP-based lower bounds using the existing schemes,
including the subset formulation.

2.6 Lagrangian Bounds for Ruler Segments

We can apply our methodology to bound not just the length of the ruler, d1n,
but also the lengths of the other segments, dij . Observe that in a Golomb ruler
the way to minimize dij is to make the segments between marks i and j follow
an optimal ruler of j − i + 1 marks, and make the other distances as large as
they need to be.

Recall that our problem statement takes as input n marks and an upper
bound L. For the purpose of producing a lower bound on a ruler segment, we
consider in this section the satisfiability problem, “does there exist a Golomb
ruler of n marks of length L?”

Our first step towards producing a lower bound for dij is to minimize the
following objective

j−1∑
k=i

dk,k+1 +

n−1∑
k=1

dk,k+1

subject to the constraints in our original matching formulation (2.2). Let z∗ be
the result of solving this LP. Then, for any Golomb ruler, we have

dij + d1n =

j−1∑
k=i

dk,k+1 +

n−1∑
k=1

dk,k+1 ≥ dz∗e.

Since we are assuming d1n = L, we obtain the following bound on the segment:

dij ≥ dz∗e − L.

2.7. EMBEDDING IN EXACT CP SEARCH 19

Using a similar argument, we can get a bound on dij by minimizing

z(a, b) := a

j−1∑
k=i

dk,k+1 + b

n−1∑
k=1

dk,k+1

for any a, b ∈ N. Letting z∗(a, b) be the optimal objective value, this yields the
lower bound

dij ≥
⌈
dz∗(a, b)e − bL

a

⌉
. (2.12)

To compute z∗(a, b), we modify Algorithm 2 by replacing line 4 with

λk,k+1 := (a+ b)−
∑
i≤k<j
i+1 6=j

λij for k ∈ {i, . . . , j − 1},

λk,k+1 := b−
∑
i≤k<j
i+16=j

λij for k ∈ {1, . . . , i− 1} ∪ {j, . . . , k − 1}.

This approach can be extended to bound arbitrary linear combinations of seg-
ments as well, for example dij + di′j′ . In our implementation we only consider
segments of the form di,n−i+1 in order to exploit symmetry.

The quality of the bound from equation (2.12) depends on the choice of a
and b. Since we do not have access to a closed-form solution for z∗(a, b) we apply
a search procedure to find appropriate values. The details of this procedure are
presented in AppendixA.

2.7 Embedding in Exact Constraint Program-
ming Search

An important motivation for our work is that existing methods for comput-
ing the LP bound are too expensive to be applied in an enumerative search
scheme such as LP-based branch-and-bound to find provably optimal solutions.
To assess the application of our method in this context, we embedded our La-
grangian relaxations into an exact systematic search procedure. Instead of LP-
based branch-and-bound, we chose to develop a constraint programming (CP)
search procedure. The main reason for this is the combinatorial nature of the
Golomb ruler problem. Especially for highly combinatorial problems, the ef-
ficient constraint propagation techniques of CP may outperform conventional
integer programming technology based on LP relaxations; we refer to Hooker
[27] for a comparison of CP and conventional LP-based optimization technol-
ogy as well as integrated approaches. In particular, Lagrangian relaxations
have been successfully applied before in CP to improve the optimization rea-
soning [5, 11, 36, 45, 46].

20 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

2.7.1 Constraint Programming Representation and Search

We implemented a CP search program that, given n and L, finds all n-mark
Golomb rulers of length L. It is implemented as a constraint satisfaction problem
with ‘set variables’ [19]. A set variable will be assigned a set of values in a
solution. In our case, we introduce two set variables: X, the set of marks in the
ruler, and D, the set of distances measured by the ruler.

The domain of possible sets for each set variable is maintained via a ‘lower
bound’ of mandatory elements (denoted by X− and D−) and an ‘upper bound’
of possible elements (denoted by X+ and D+). In addition, we require the sets
to be of a given cardinality.4 Our constraints are as follows:

X = {x1, x2, . . . , xn} ∈ [{0, L}, {0, . . . , L}]
|X| = n
D ∈ [{L}, {1, . . . , L}]
|D| =

(
n
2

)
d ∈ D ⇐⇒ ∃xi, xj ∈ X s.t. xj − xi = d
x2 − x1 < xn − xn−1

(2.13)

We use the notation [A,B] where A and B are sets to mean {U : A ⊂ U ⊂ B}.
The first five constraints represent the conditions for the Golomb ruler, while
the last constraint is added to break symmetry (we require the first distance d12
to be smaller than the last distance dn−1,n).

Our search procedure is described in Algorithm 6, and initially called with
‘branch({0, L}, {0, . . . , L}, {L}, {1, . . . , L})’. The procedure is called recur-
sively (lines 25, 30, and 33), and either returns a solution (line 3) or reports that
no solution exists (line 6). Note that infeasibility can be detected by inspecting
whether |D+| <

(
n
2

)
(line 5).

Lines 9-20 implement the domain filtering rules that reflect the fifth con-
straint in model (2.13). Lines 9-17 remove possible elements from X+ based on
the current state of mandatory elements in X− and D−. Lines 18-20 in addition
remove from X+ the midpoint of two values x, y ∈ X− such that x ≡ y mod 2.
Namely, the midpoint (x+ y)/2 would create an equal distance to x and y.

Lines 22-33 implement the search strategy. We note that line 23 ensures
that between any ruler and its mirror image only one is found by this program,
reflecting the last constraint in model (2.13). The search strategy considers each
distance d ∈ {1, . . . , L} in decreasing order and decides if and where d will be
measured in the ruler. This strategy is based on the following result.

Proposition 6. If we have already decided if and where to measure the lengths
{d + 1, . . . , L}, and we have not decided if and where to place d, then the only
place d can be measured is from 0 to d or from L− d to L.

Proof. For the sake of contradiction, suppose there are x, x + d ∈ X+ with
0 < x < L− d. Then since we have decided if and where to place the distance

4This domain representation for set variables is referred to as the ‘subset+cardinality’
domain ordering in the literature [19].

2.7. EMBEDDING IN EXACT CP SEARCH 21

Algorithm 6 Our branching algorithm for finding Golomb Rulers

1: procedure branch(X−, X+, D−, D+)
2: if |X−| = n then
3: output X− and terminate
4: end if
5: if |D+| <

(
n
2

)
then

6: return
7: end if
8:

9: D− := {xj − xi : xi, xj ∈ X−}
10: for x ∈ X− and d ∈ D− do
11: if x− d ∈ X+ \X− then
12: X+ := X+ \ {x− d}
13: end if
14: if x+ d ∈ X+ \X− then
15: X+ := X+ \ {x+ d}
16: end if
17: end for
18: for x, y ∈ X− with x ≡ y mod 2 do
19: X+ := X+ \ {x+y2 }
20: end for
21:

22: d+ := max(D+ \D−)
23: if |X−| > 2 then
24: if d+ ∈ X+ \X− then
25: branch(X− ∪ {d+}, X+, D−, D+)
26: X+ := X+ \ {d+}
27: end if
28: end if
29: if L− d+ ∈ X+ \X− then
30: branch(X− ∪ {L− d+}, X+, D−, D+)
31: X+ := X+ \ {L− d+}
32: end if
33: branch(X−, X+, D−, D+ \ {d+})
34: end procedure

22 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

x+ d, and we know 0 will be a mark in our ruler, we already know whether we
are including the mark x+d. Similarly, since d < L−x, we already know if and
where we are including the distance L− x and since we are including the mark
L, we also know whether we are including the mark x. If we had decided to
include both x and x+ d, then we would not need to decide on the distance d.
Thus if d is the largest distance we have not decided whether or not to include,
we only need to consider three possibilities: the mark d is in the ruler, the mark
L− d is in the ruler, or the distance d is not measured by the ruler.

Thus every search node has at most 3 children: Either we add a mark at
d+ (line 25), add a mark at L − d+ (line 30), or remove d+ from the possible
measurable distances (line 33). The third branch drives us closer to pruning at
lines 5-6.

Throughout our search, we maintain the invariant that the unknown marks
are consecutive, and therefore when we add a mark to X− (lines 20 and 23), we
know its index. This is useful as we will see in section 2.7.3, when we incorporate
bounds on segments.

2.7.2 Adding the Lagrangian Relaxation

A direct application of our Lagrangian relaxation into the CP search procedure
is to re-evaluate the relaxation at each node of the search tree (to be added
in line 8 of Algorithm 6). If the value of the Lagrangian bound exceeds L we
return 0 and prune the associated search node.

We note that we compute the Lagrangian multipliers once at the root node,
and these remain fixed during the remainder of the CP search. Recomputing the
multipliers during search proved to be too computationally expensive. Further-
more, we experimented with applying the Lagrangian multipliers for variable
fixing during search (which has been done successfully before in CP), but found
that the impact on the overall solution time was marginal.

The computational results of this first experiment are summarized in Ta-
ble 2.2—more details can be found in [50]. The table lists results for Golomb
ruler instances with n = 10, . . . , 13 marks. For each mark we report the time
to find a corresponding optimal ruler of length L (feasible), or to prove no ruler
exists for length L− 1 (infeasible) – this is listed in the third column as ‘F’ for
feasible and ‘I’ for infeasible. In addition to the solution time for each method
we report the number of search nodes. The fourth column LB

UB represents the
strength of the LP lower bound for each instance.

We can observe that in all cases the Lagrangian relaxation reduces the num-
ber of search nodes, sometimes by as much as 90% (for n = 10, L = 54). The
Lagrangian relaxation does not appear to speed up the algorithm when we are
searching for a ruler, but it can speed up the algorithm when we are trying to
prove a ruler does not exist. Note also that the impact highly depends on the
strength of the LP bound. When the LP bound is weak, the computational over-
head can be too large to reduce the overall computation time (e.g., for n = 11,
L = 71).

2.7. EMBEDDING IN EXACT CP SEARCH 23

CP CP+LR
n L F/I LB

UB
nodes time (s) nodes time (s)

10 54 I 98% 60,554 0.51 4,984 0.11
10 55 F 98% 4,492 0.04 3,512 0.07

11 71 I 93% 2,993,876 27.09 2,055,429 37.29
11 72 F 93% 5,581 0.05 5,343 0.11

12 84 I 96% 10,298,716 103.62 2,773,734 59.04
12 85 F 96% 7,103,301 70.84 4,698,798 96.17

13 105 I 92% 445,341,835 4,782 273,340,407 6,618
13 106 F 92% 205,714,305 2,187 177,429,879 4,278

Table 2.2: The performance of the CP search without (CP) and with the La-
grangian relaxation applied at each search node (CP+LR). For each instance
with n marks and upper bound L, F stands for ‘feasible’, while I stands for
‘infeasible’. We also report the strength of the LP lower bound over the best
known upper bound as LB

UB for each instance. For each method, we report the
total number of search nodes and the solving time in seconds.

2.7.3 Adding Bounds on Ruler Segments

We next consider the impact of adding bounds on different segment lengths,
as described in Section 2.6. To apply a bound on the segment from mark i to
n− i+ 1, we pre-compute the segment bound Bi before we start the search. We
can apply as many of these segment bounds as we like for segment (i, n− i+ 1),
i = 2, . . . , n/2. Recall from Section 7.1 that at each search state we have fixed
(defined) marks 1, . . . , k and j, . . . , n. We can then consider the largest possible
distance d+ = max(D+ D−) to be added to the ruler. If this distance is smaller
than any pre-computed lower bound Bi, we inspect the endpoints of i and
n − i + 1. If either mark has not yet been defined, we are unable to complete
the ruler since Bi > d+. If both endpoints xi and xn−i+1 are defined but their
distance is smaller than Bi we again reach a conflict, and backtrack. Note that
this last case can only occur directly after a new mark has been defined and D−

has not yet been updated.
We can add a bound of the form di,n−i+1 ≥ Bi in Algorithm 6 after line 8

as follows.

8.1 d+ = max(D+ \D−)

8.2 if (d+ < Bi)

8.3 if (xi undefined

8.4 or xn−i+1 undefined

8.5 or xn−i+1 − xi < Bi)

8.6 return 0

We now consider the impact of adding bounds of sums of segments. In

24 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

particular, on d2,n−1 + . . .+di,n−i+1. We can apply as many such bounds as we
like. For each one, we pre-compute the bound on this sum, Ci. At some point
in the algorithm, we will have fixed marks for 1, . . . , i and n − i + 1, . . . , n. At
this point, we test if the bound d2,n−1 + . . . + di,n−i+1 ≥ Ci is satisfied, and if
it is not we reach a conflict and backtrack.

We apply a sum bound of the form d2,n−1 + . . . + di,n−i+1 ≥ Ci after the
Lagrangian relaxation in line 8 of Algorithm 6, as follows.

8.7 if (xi and xn−i+1 are defined)

8.8 if ((xn−1 − x2) + . . . + (xn−i+1 − xi) < Ci)

8.9 return 0

We evaluated the impact on the search procedure using bounds on various
segments. We refer to our tests by the number of segments that we bound. In
these tests we computed bounds for and filtered on the following segments.

• Baseline: None

• Bound 1: d2,n−1

• Bound 2: d2,n−1, d3,n−2

• Bound 3: d2,n−1, d3,n−2, d4,n−3

• Bound all: d2,n−1, . . . , dn/2,n/2+1

The results are presented in Figure 2.6. We compare the impact with respect
to the baseline CP search procedure that does not apply any bounding.

We found that in the range L ≤ 120, the bounds on d2,n−1 and d3,n−2 are
helpful in that they reduce both the size of the search tree and also the search
time. However adding in the third bound, d4,n−3 and adding the rest of them
did not improve the size of the search tree and thus only hindered our time
because we still had to compute the relevant bounds.

We tested our search procedure on n = 12, 82 ≤ L ≤ 84, n = 13, 98 ≤ L ≤
103, and n = 14, 116 ≤ L ≤ 120. These are all infeasible instances. In Figure
2.6 we report the number of nodes in the search tree and number of seconds
to prove infeasibility respectively. In Figure 2.6a, “bound 2”, “bound 3”, and
“bound all” are directly on top of one another showing that the search tree size
does not improve when we add more bounds than bound 2.

We also used bounds on sums of the form sk =
∑k
`=2 d`,n−`+1. Since segment

bounds on d2,n−1 and d3,n−2 proved to be useful, we continued using them in
our tests. The graphs in Figure 2.7 show our results in computing bounds for
and filtering on the following.

• baseline: d2,n−1, d3,n−2

• 1 sum bound: d2,n−1, d3,n−2, C3

2.7. EMBEDDING IN EXACT CP SEARCH 25

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 82 83 84 98 99 100 101 102 103 104 105 116 117 118 119 120

N
o
d
e
s

L

bound 0,1,2,3,all: Nodes

n=12

n=13

n=14

baseline
bound 1
bound 2
bound 3

bound all

(a) Impact with respect to search nodes.

 10

 100

 1000

 10000

 82 83 84 98 99 100 101 102 103 104 105 116 117 118 119 120

Ti
m

e

L

bound 0,1,2,3,all: Time

n=12

n=13

n=14

baseline
bound 1
bound 2
bound 3

bound all

(b) Impact with respect to solution time

Figure 2.6: Evaluating the impact of ruler segment bounds in terms of search
nodes (a) and time (b), when bounding d2,n−1, bounding d2,n−1 and d3,n−2,
bounding d2,n−1, d3,n−2 and d4,n−3, and bounding all segments of the form
di,n−i+1. Tested are infeasible Golomb ruler instances with n = 12, 13, 14 marks
and varying lengths L.

26 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

• 2 sum bounds: d2,n−1, d3,n−2, C3, C4

• 3 sum bounds: d2,n−1, d3,n−2, C3, C4, C5

• 4 sum bounds: d2,n−1, d3,n−2, C3, C4, C5, C6

• 5 (all) sum bounds: d2,n−1, d3,n−2, C3, C4, C5, C6, C7

For these “sum bounds”, we found that s3 and s4 significantly prune the size
of the search tree, and beyond that, we do not save enough time in the search
to justify the computation of the bounds.

Figure 2.7 is the analog of Figure 2.6 for these tests.

2.8 Conclusion

We have presented a new way to approximate the LP bound for Golomb Rulers.
We have demonstrated its relationship to existing methods, and shown that we
can compute the LP bound much faster using combinatorial methods.

We then used this fast computation in a search procedure, demonstrating
that we can use this bound to reduce the size of the search tree and, in cases
where the LP bound is strong enough, reduce the search time as well.

2.8. CONCLUSION 27

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 82 83 84 98 99 100 101 102 103 104 105 116 117 118 119 120

N
o
d

e
s

L

Sum Bounds - Nodes

n=12

n=13

n=14

baseline
1 sum bound

2 sum bounds
3 sum bounds
4 sum bounds

5 (all) sum bounds

(a) Impact with respect to search nodes.

 10

 100

 1000

 10000

 82 83 84 98 99 100 101 102 103 104 105 116 117 118 119 120

Ti
m

e

L

Sum Bounds - Time

n=12

n=13

n=14

baseline
1 sum bound

2 sum bounds
3 sum bounds
4 sum bounds

5 (all) sum bounds

(b) Impact with respect to solution time (in seconds)

Figure 2.7: Evaluating the impact of ruler segment bounds in terms of search
nodes (a) and time (b), when bounding d2,n−1 + d3,n−2, bounding d2,n−1 +
d3,n−2 + d4,n−3, d2,n−1 + d3,n−2 + d4,n−3 + d5,n−4 etc. Tested are infeasible
Golomb ruler instances with n = 12, 13, 14 marks and varying lengths L.

28 CHAPTER 2. LAGRANGIAN BOUNDS FOR GOLOMB RULERS

Chapter 3

Residual Costs from
Relaxed Decision Diagrams

3.1 Introduction

In 1938, Shannon [47] introduced boolean algebra to the field of switching cir-
cuits as a way to represent and evaluate them more formally. Lee introduced
binary decision programs in 1958 as a more procedural alternative [33]. He
showed that binary-decision programs have smaller representations and allow
for faster computation, since each variable only needs to be considered once.

The phrase “binary decision diagrams,” or BDDs, was coined by Akers [2]
who first considered them as graphical structures. He showed how to construct
them from a truth table, how to represent them as a data structure in a com-
puter, and how they can be used to test Boolean circuits.

Binary decision diagrams gained popularity after Bryant’s seminal paper
[10] which proved that for a given variable ordering, there is a unique reduced
BDD. Using this he showed how to combine BDDs together. Specifically, given
BDDs for functions f1 and f2, he showed how to construct BDDs for f1 ∧ f2
and f1 ∨ f2. This provides a method for building a BDD for a Boolean function
based on its algebraic representation. He also showed that although BDDs can
theoretically be exponential in size, most functions that are used in practice
have much smaller BDD representations.

In this chapter, we discuss multi-valued decision diagrams (MDDs). In con-
trast with BDDs, MDD represent functions of variables whose variables and
output can take on values from any set (rather than just {0, 1}). The idea of
MDDs was introduced in [53]. This paper extends Bryant’s results about BDDs
including the uniqueness of an reduced MDD with a given variable ordering.

Since then, MDDs have been used for combinatorial optimization. They
have been used for generating cutting planes in a branch and cut algorithm,
computing max flow, counting solutions to a constraint program, and learning
in genetic programming [4, 54]. They have also been used for post-optimality

29

30 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

analysis [20].
Approximate MDDs are MDDs which represent a superset or subset of the

solutions to a given problem but which use less memory. The idea was first
proposed in [3], in which they use approximation MDDs to efficiently represent
constraint stores in constraint programming.

Since then much work has been done on approximate MDDs. A refinement
algorithm for MDDs is presented in [21], where it is applied to interactive con-
figuration. In [25], it is shown how to use MDDs to propagate constraints in
constraint programming. In [13], MDDs are applied to the traveling salesperson
problem with time windows, and used to solve some instances from the standard
library of traveling salesperson instances which had been open. MDDs have also
been applied to propagation of the sequence constraint [7], the maximum inde-
pendent set packing and set covering problems in [6, 8], the bin packing problem
[29], and clause generation for the SAT problem [30]

Additive bounding was first introduced in [16]. It is a method of taking
several algorithms for finding a lower bound and combining them, resulting in
a bound that is stronger than any of the component algorithms could have
come up with individually. It uses residual costs, which measure the increase in
the objective function when variable is forced into a solution. In [31], additive
bounding was used to combine approximate MDDs with linear programming.
However, the methodology did not employ residual costs from the MDD.

In this chapter, we show how to integrate Cire’s decision diagram algorithm
[13] into an additive bounding scheme, how we can extract residual costs, from
an MDD, and we apply it to the sequential ordering problem.

3.1.1 Multi-valued Decision Diagrams

Let P be an optimization problem in the variables x1, . . . , xn, each with a finite
domain. A multivalued decision diagram (MDD) for P is a directed acyclic
multigraph whose nodes can be partitioned into n + 1 levels, L1, . . . , Ln+1, so
that L0 and Ln have one node (the “source” and “sink” respectively), and so
that every edge goes from a node in some level Li to a node in the next level,
Li+1. Each arc, a, going from level Li to level Li+1 corresponds to a value va
in the domain of xi. This way, a path from the source to the sink represents an
assignment of values to the variables.

An exact MDD for an optimization problem, P , is one in which the paths
correspond exactly to the feasible solutions to P .

Example 1. The minimum vertex cover problem asks, given a graph G = (V,E),
what is the minimum subset U ⊂ V such that every edge is incident to a vertex
of U? The variables are the 0/1 variables xi for i ∈ V with xi = 1 iff i ∈ U .

Let G be the graph in Figure 3.1. Then an exact MDD for this problem is as
in Figure 3.2, where a solid line in layer i corresponds to xi = 1, and a dashed
line corresponds to xi = 0.

We say two nodes in an MDD are equivalent if the sequences of labels from
the two nodes to the sink are the same. We can contract equivalent nodes

3.1. INTRODUCTION 31

B

A C E

D

Figure 3.1: A graph for the minimum vertex cover example.

A

B

C

D

E

Figure 3.2: An exact MDD for the minimum vertex cover problem. The solid
edges represent a value of 1; dashed lines represent a value of 0.

32 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

A

B

C

D

E

Figure 3.3: An exact MDD for the minimum vertex cover problem with 3 nodes
contracted.

without changing the set of paths from the source to the sink.

Example 2. Continuing the example above, the shaded nodes in Figure 3.2 are
equivalent since the sequences of labels from all shaded nodes are (xD = 1, xE =
1) and (xD = 0, xE = 1). The MDD in Figure 3.3 is equivalent to the MDD in
Figure 3.2.

A reduced MDD is one in which there are no equivalent vertices. It is known
[10] that every MDD has a unique equivalent reduced MDD.

Example 3. The reduced MDD for the MDD in Figure 3.2 is shown in Figure
3.4

A relaxed decision diagram is an MDD whose paths form a superset of the
feasible solutions to the given problem. In our case, we will obtain relaxed
decision diagrams by contracting vertices that are not equivalent.

Example 4. If we contract the two shaded nodes in Figure 3.4, we get the MDD
in Figure 3.5. This MDD contains the path (xA = 0, xB = 1, xC = 1, xD =
0, xE = 1) which corresponds to the set of vertices {B,C,E}. This set does not
form a vertex cover as {A,D} is an edge in our original graph. However, this
MDD does contain all feasible vertex covers, so it is a relaxation.

3.1.2 Using MDDs to Solve an Optimization Problem

Let P be an optimization problem in the variables x1, . . . , xL with an objective
function that can be expressed as min

∑
fi(xi) (e.g., a linear or integer pro-

gram), and let M be an exact MDD for P . We can use M to find an optimal
solution to P as follows. For each arc a, in level i, let va be the associated value,
and assign edge weight of fi(va) to arc a. Now to solve P , we simply need to

3.1. INTRODUCTION 33

A

B

C

D

E

Figure 3.4: A reduced MDD for the minimum vertex cover problem.

A

B

C

D

E

Figure 3.5: A relaxed MDD for the minimum vertex cover problem.

34 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

find a shortest path through M . If we follow the same procedure for a relaxed
MDD M , we would get a lower bound.

3.1.3 Additive Bounding

The idea of additive bounding was introduced in [16].
Given a minimization problem,

min z(x) = cT · x
subject to [some constraints],

(3.1)

we would like to find a strong lower bound. There may be several algorithms
that produce lower bounds which each take advantage of a different substruc-
ture of the problem. We could run each algorithm individually and take the
maximum, but to exploit all the different substructures, we will use these algo-
rithms together, resulting in a lower bound that is stronger than any algorithm
can get individually.

An algorithm can be used for additive bounding if it solves a relaxation of
(3.1) and outputs a solution vector, x∗, a lower bound, z(x∗) and a residual cost
vector cT such that for any x that is feasible in (3.1) we have

z(x) ≥ z(x∗) + cT · x. (3.2)

Intuitively, a residual cost is a lower bound on the amount by which the
objective function increases if we force a particular variable into the solution.
If we force several variables into the solution, the sum of the corresponding
residual costs gives a lower bound on the increase of the objective function.

Taking a minimum of (3.2) gives us

min z(x) ≥ z(x∗) + min(cT · x).

This means that if we solve a relaxation of (3.1) using the objective value
z1(x) = cT ·x and get out x∗1, z1(x∗1) and c1

T , and then solve another relaxation
of (3.1) using the objective value z2(x) = c1

T · x, getting out x∗2, and z2(x∗2),
then z1(x∗1) + z2(x∗2) is a valid lower bound for the original problem (3.1).

By chaining several such algorithms together, we get several lower bounds
z1(x∗1), z2(x∗2), . . . , zn(x∗n), and summing them gives a lower bound on the orig-
inal problem:

z(x) ≥
∑
i

zi(x
∗
i)

As an example of such an algorithm, if we relax (3.1) to a linear problem, we
can solve it and use the reduced costs from the linear program as the residual
costs, cT .

In practice, additive bounding works best when the different algorithms take
advantage of different structures within the problem. For example, in the travel-
ing salesperson problem, one algorithm might take advantage of the connectivity
constraint, and one algorithm might take advantage of the degree constraints.

3.2. EXTRACTING RESIDUAL COSTS FROM AN MDD 35

Since approximate MDDs are a new relaxation, we would like to see if they
exploit a different structure that can be used in additive bounding. In order
to do this, we need a way to extract residual costs from the MDD that satisfy
(3.2).

In Section 3.2 we show how to do this for the minimum vertex cover problem
and the sequential ordering problem. In Section 3.3 we show experimental
results from applying this method to the sequential ordering problem.

3.2 Extracting Residual Costs from an MDD

The problem of finding the shortest path through an MDD is itself an optimiza-
tion problem, and the method of getting residual costs for the individual arcs
is well known ([1]).

Proposition 7. Let G = (V,E) be a directed graph with a source and sink (s
and t resp.), with edge weights wij for (i, j) ∈ E, and let ` be the length of the
shortest path. If we assign a potential un to each node n so that us = 0 and
ut = `, and each arc gets a residual cost of wij := wij − (uj − ui), then for any
path from p = (s = n0, n1, n2, . . . , nL−1, nL = t), we have

L−1∑
i=0

wni,ni+1 = `+

L−1∑
i=0

wni,ni+1

Proof.

L−1∑
i=0

wni,ni+1
=

L−1∑
i=0

wni,ni+1
+ (uni+1

− uni
)

=

L−1∑
i=0

wni,ni+1
+

L∑
i=1

uni
−
L−1∑
i=0

uni

=

L−1∑
i=0

wni,ni+1
+ unL

− un0

= `+

L−1∑
i=0

wni,ni+1

This procedure gives us a way to extract residual costs from the MDD. In
principle, if an arc, a, at level i associated with value va, has residual cost wa,
then the residual cost of xi should be wa

va
(if va = 0, then the residual cost has

no effect on the objective function). However, since there are multiple arcs for
each variable xi, we need a way to decide which to use.

36 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

Proposition 8. Let P be an optimization problem in the variables x1, . . . , xL

which have finite numeric domains, with objective function min

L∑
i=1

cixi. Let M

be an MDD for P with shortest path length `, and let Ai be the set of arcs in
M at level i. For each arc a in M , let va be the value associated with a, wa
be the cost associated with a, and wa be the residual cost of a for the shortest

path through M . Then taking ci = min
a∈Ai

wa
va

(where wa

0 is defined to be some

sufficiently large value), we have that for any feasible solution {xi} to P ,

L∑
i=1

cixi ≥ `+

L∑
i=1

cixi

Proof. Let {xi} be any feasible solution to P . Then there is some path in M ,
(s = n0, n1, . . . , nL−1, t) such that the value associated with ai is vai = xi for
all i in the path. Then

`+

L∑
i=1

cixi ≤ `+

L∑
i=1

wai
vai

xi

= `+

L∑
i=1

wai

=

L∑
i=1

wa

=

L∑
i=1

civa

=

L∑
i=1

cixi

When choosing values for the node potentials, it is desirable to enforce that
on all arcs a = (n, n′), wa − (un′ − un) ≥ 0 so that all residual costs wa are
non-negative. This ensures that all ci ≥ 0, which ensures that later additive
bounding algorithms will output non-negative objective values. Taking un to
be the length of the shortest path from the source to n is one way to achieve
this.

Example 5. Consider the minimum vertex problem on the graph in Figure 3.1.
In Figure 3.6 we present an exact MDD for this problem. We have labeled each
node n with the shortest path from the source to n, un, and each arc a = (n, n′)
with its residual cost wa = wa − (un′ − un).

The shortest path through the MDD has length 2, corresponding to the
minimum vertex cover {A,E}. Taking a minimum as in Proposition 8, we get

3.2. EXTRACTING RESIDUAL COSTS FROM AN MDD 37

0

1 0

2 0

2 1

2 2

2

A

E

B

C

D

0 0

0 1 1 0

1 0

1 0

1
0

0

0

1

Figure 3.6: Exact MDD for the vertex cover problem with the shortest path
labeled at each node, and the residual cost labeled at each arc.

cA = cE = cB = cC = 0, but cD = 1. This means that any cover has size at
least 2 + xD (where xD is the 0/1 variable representing whether D is in the
vertex cover).

3.2.1 Sequential Ordering Problem

The sequential ordering problem is as follows: Given a set of jobs, J to be ex-
ecuted in series, a cost matrix (cj,j′)j,j′∈J , and a set of precedence constraints
of the form j � j′ requiring that job j must be executed before job j′, find
a permutation σ : {1, . . . , L} → J where L = |J |, such that for each prece-
dence constraint j � j′ we have σ−1(j) < σ−1(j′) and so that

∑
cσ(i),σ(i+1) is

minimized.
Since the sequential ordering problem is a generalization of the traveling

salesperson problem, it is NP-hard.
We express the problem as a constraint program in the variables yi for i =

1, . . . , n where the domain of yi is J and yi = j means that j is the ith job
executed.

min
∑
cyi,yi+1

s.t. yi ∈ J
AllDifferent({yi})

(yi = j and yi′ = j′) =⇒ i < i′ forj � j′

For the sequential ordering problem, we cannot compute the shortest path
and residual costs as before, since it is pairs of variables (yi, yi+1) that determine
the objective function. To deal with this issue we will alter the theoretical

38 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

A B

C B A D

B C D A

DD C

Figure 3.7: An exact MDD for the sequential ordering problem with J =
{A,B,C,D} and constraints A � C and B � D. The variables are yi=[The
ith job executed].

construction of the MDD. (In practice we will see that we can do the same
computations on the MDD defined earlier.)

We construct an expanded MDD M ′ from M as follows. For each node n
and each arc a coming into n, we create a node (n, a) in M ′. For each arc a in
M going from n′ to n, we create an arc in M ′ from (n′, a′) to (n, a) for each a′

entering n′. We also create a new sink t′ and edges from all nodes (t, a) to t′

where t is the sink in M .

Example 6. Consider the sequential ordering problem with J = {A,B,C,D},
and the precedence constraints A� C and B � D. Then the exact MDD is as
in Figure 3.7 and the expanded MDD is as in Figure 3.8.

In the expanded MDD the variables are yi with a domain of pairs of jobs,
and the meaning yi = (j, j′) means that we execute job j at time i− 1 and job
j′ at time i.

We compute the shortest path and residual costs on the arcs as before.
Since our costs are associated with pairs of jobs j, j′, we should like to have our
variables be xjj′ which is 1 if we go from job j to job j′. Our arcs represent “we
go from job j to job j′ at time i.” So in order to get a single residual cost, let
Ajj′ be the set of arcs in M ′ that represent going from job j to job j′ and take

cjj′ := min
Ajj′

wa. (3.3)

Although the variables we started out with have non-numeric values, (the
domain was J) by using the expanded MDD we changed the variables to be
Booleans, and so we are able to extract residual costs.

Proposition 9. If σ is a feasible ordering of the jobs, and ` is the length of the
shortest path through the expanded MDD, then

L−1∑
i=1

cσ(i)σ(i+1) ≥ `+

L−1∑
i=1

cσ(i)σ(i+1) (3.4)

3.2. EXTRACTING RESIDUAL COSTS FROM AN MDD 39

s

A B

C B A D

B C D A

D C

t′

Figure 3.8: The expanded MDD for the MDD in Figure 3.7.

Proof. There is a path, p = (s, n1, . . . , nL−1, t) through M ′ with length ` so
that the value associated with ai := (ni−1, ni) is (σ(i− 1), σ(i)). So the length
of the path is

L−1∑
i=1

cσ(i)σ(i+1) = `+

L−1∑
i=1

wa ≥ `+

L−1∑
i=1

cσ(i)σ(i+1)

Note that the nodes in the expanded MDD M ′ other than the source and
sink are in one-to-one correspondence with the edges in M , and that we have
no data associated with the arcs of M ′. This means that in implementation,
we can use M instead of M ′ and do all the computations on the arcs. This is
advantageous because M uses less memory.

3.2.2 Other Methods of Obtaining Potentials

Note that following equation (3.3), if any arc a associated with value (j, j′) has
wa = 0, then the residual cost cjj′ will be 0. If this happens for too many
edges, it becomes very likely that a tour of cost 0 will be formed in the residual
cost graph, and so further additive bounding algorithms will produce a lower
bound of 0. We found this to be the case when taking un to be the length of the
shortest path from s to n, so we would like to find a better way of generating
un.

Since we require wnn′ ≥ u′n−un, and since us = 0 and ut = ` where ` is the
length of the shortest path from s to t, every arc on a shortest path will have
wnn′ = un′ − un, so wnn′ = 0.

It seems likely that we can fix this issue using a different method of choosing
un. If (n, n′) has value (j, j′), then wmm′ for any other arc with value (j, j′) will

40 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

be ignored. It seems reasonable then to move the residual cost off that arc onto
the one above by decreasing um as much as possible without making wmm′′ go
negative for any node m′′. Similar cost modifications were proposed in [28].

If m is a node with only one incoming and one outgoing edge, then following
the procedure above will result in the incoming edge having a higher residual
cost than the original cost. While this is legal, it seems likely that there are
other arcs with the same value that do not have this property, so we will move
the residual cost upward in that situation as well.

Algorithm 7 starts from the bottom of the MDD and works upward to achieve
this.

Algorithm 7 An algorithm that produces node potentials un
1: for all nodes n ∈M do
2: Initialize un to the length of the shortest path from s to n
3: end for
4: Let B = {va : a is on a shortest path through M}
5: for i = L, . . . , 1 do
6: for a ∈ Ai do
7: if va ∈ B or a has only one incoming and one outgoing edge then
8: Let n be the start of a
9: un := min

(n,n′)∈Ai+1

(wnn′ − u′n)

10: end if
11: end for
12: end for

This effectively means that if a has value (j, j′) and is part of some short-
est path, then we make wa as small as possible since we already know that

min
a′:va′=(j,j′)

wa′s = 0, and move the residual cost somewhere else.

Example 7. Consider the sequential ordering problem on J = {A,B,C,D} with
the precedence constraints A� C and B � D and the symmetric setup times
as in Figure 3.9. We show artificial start and end nodes as well whose incident
edges have cost 0. Note that the shortest path is (A,C,B,D) with total setup
time 70.

A relaxed MDD for this problem is in Figure 3.10, and the corresponding
expanded MDD is in Figure 3.11.

Using this MDD and these values for the potentials, we get a lower bound
of 10, and residual costs as pictured in Figure 3.12. Note that this graph has a
0-cost path, (B,A,C,D), so any other algorithm that takes these residual costs
as input will output 0 as the lower bound.

However, if we apply the algorithm to move the residual costs, we get the
MDD in Figure 3.13, in which the edge from A to C now has residual cost 50.
In this graph, the shortest path is still (B,A,C,D), but this path now has a
cost of 50, giving us a lower bound of 10 + 50 = 60.

3.2. EXTRACTING RESIDUAL COSTS FROM AN MDD 41

start

A D

CB

end

100

50

100 0

10

10

0

0

0

0

Figure 3.9: Setup times for an instance of the sequential ordering problem.

A B

C B A D

D AB C

D C

Figure 3.10: A reduced MDD for the sequential ordering problem in Figure 3.9.

42 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

0

A, 0 B, 0

C, 50 B, 100A, 100 D, 10

B, 60 C, 10 D, 110A, 110

D, 10 C, 110

10

Figure 3.11: The expanded MDD of Figure 3.10. Each node is labeled with the
length of the shortest path from the source to that node.

start

A D

CB

end0

0

90

0

100

0

0

0

0

0

0

100

Figure 3.12: Residual costs when using un as the length of the shortest path to
n.

3.2. EXTRACTING RESIDUAL COSTS FROM AN MDD 43

0

A, 0 B, 0

C,−10 B, 100A, 100 D, 10

B, 0 C, 10 D, 110A, 110

D, 10 C, 110

10

Figure 3.13: The expanded MDD of Figure 3.10. Each node is labeled with the
un as output by Algorithm 7.

start

A D

CB

end0

50

90

0

100

0

0

0

0

0

0

100

Figure 3.14: Residual costs when using un as the output of Algorithm 7.

44 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

3.3 Experiments

3.3.1 Other Additive Bounding Algorithms Used

For our experiments, we used three algorithms for solving relaxations: the Hun-
garian algorithm for solving the assignment problem (AP), the Held-Karp al-
gorithm (HK), and the shortest path MDD problem described in Section 3.2
(MDD).

The code we use for the Hungarian Algorithm comes from
http://www.assignmentproblems.com/APC APS.htm. The code for the Held-
Karp algorithm was written following the algorithm in [44]. The code for the
MDD algorithm comes from Andre Cire, and follows the algorithm in [13]. We
restricted the width of the MDD to 512.

The assignment problem is the unimodular LP in variables xjj′

min cT · x
s.t.

∑
j∈J

xjj′ = 1 ∀j ∈ J∑
j′∈J

xjj′ = 1 ∀j ∈ J

0 ≤ xjj′ ≤ 1 ∀j, j′ ∈ J

(3.5)

which outputs a subgraph in which each vertex has one incoming edge and one
outgoing edge, but may not be connected.

For the Held-Karp algorithm we work on a graph G = (V,E) with a special
vertex, v0 ∈ V . We define a v0-tree as a spanning tree on V \{v0} together with
two edges from v0. In other words, it is a connected graph whose one and only
cycle includes v0. Note that a Hamiltonian cycle is a special case of a v0-tree.
The Held-Karp algorithm iteratively finds a minimum spanning v0-tree, and
then for every vertex v that does not have in-degree and out-degree 1, increases
or decreases the weight of the incoming and outgoing edges. The specifics are
presented in Algorithm 8.

3.3.2 Data sets

We randomly generated sequential ordering problem instances on which to test
our additive bounding scheme. For each of 20 data sets, we generated 100 points
in the unit square, and computed the distance as b100× [Euclidean distance]c.
We then randomly selected ρ

(
100
2

)
precedence constraints for constraint density

ρ ∈ {0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18}, resulting in 9 instances per
dataset, and 180 instances total.

For each instance we computed an upper bound using by running the MDD
algorithm from [13] for 3 hours.

3.3. EXPERIMENTS 45

Algorithm 8 The Held-Karp algorithm for finding a lower bound on the se-
quential ordering problem.

1: while stepsize > ε do
2: Let T be the edges in an undirected minimum spanning tree on V \{v0}
3: Let e+ be the minimum incoming edge to v0
4: Let e− be the minimum outgoing edge to v0
5: T := T ∪ {e+, e−}
6: for all v ∈ V do
7: wvu += stepsize(degT (v)− 2)∀u ∈ V
8: wuv += stepsize(degT (v)− 2)∀u ∈ V
9: end for

10: Adjust stepsize
11: end while
12:

13: Let T be the set of edges in an undirected minimum spanning tree on V \{v0}
14: for all u, v ∈ V \ {v0} do
15: if (u, v) ∈ T then
16: wuv := 0
17: else
18: Let C be the unique cycle consisting of (u, v) and edges from T
19: Let (x, y) be the highest weight edge in that cycle
20: wuv := wuv − wxy
21: end if
22: end for
23: Let e+ be the minimum incoming edge to v0
24: Let e− be the minimum outgoing edge to v0
25: for v ∈ V \ {v0} do
26: wv,v0 := wv,v0 − we+
27: wv0,v := wv0,v − we−
28: end for

46 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

S
tr

e
n
g
th

 o
f

Lo
w

e
r

B
o
u
n
d

density of precedence constraints

Strength of AP+HK+MDD

AP+HK+MDD
MDD

AP+HK

Figure 3.15: Results of running AP, then HK, then MDD.

3.3.3 Results

We ran all 180 instances through all 6 permutations of {AP, HK, MDD}. For
each one, we compute the strength of the lower bound as lowerbound

upperbound . We present
the average strength of the lower bound for each value of ρ in Figures 3.15-
3.20. To explain our naming scheme through an example, the graph labeled
“AP+HK+MDD” shows the results of running the AP, then HK, then MDD.

In each of these figures, we look at the strength of the combination of three
versus the MDD alone and versus the AP and HK together.

We can see from these that the MDD performs better when there are more
precedence constraints. This is because when there are more constraints, the
exact MDD is smaller and so the relaxed MDD that we store in memory is more
similar to the exact MDD.

We can also see that AP and HK together (in either order) perform better
when there are fewer precedence constraints. This is because these algorithms
ignore the precedence constraints, so in instances with fewer of them, these
algorithms are using more of the instance data.

We can see in Figures 3.15, 3.16, 3.18, and 3.19 that when the constraint
density is around 0.06-0.08, the combination of all three performs the best.

In figures 3.17 and 3.20, we see that running the assignment problem or
Held-Karp with respect to the MDD residual costs had no affect on the bound.
This is because the residual costs from the MDD were largely zero. In Figure
3.21 we show the average percentage of the edges that had residual cost 0 when
we use the shortest path as the potentials and when we use Algorithm 7 for the
potentials. We can see that in either case, the fraction is significant (20%-60%),

3.3. EXPERIMENTS 47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

S
tr

e
n
g
th

 o
f

Lo
w

e
r

B
o
u
n
d

density of precedence constraints

Strength of AP+MDD+HK

AP+MDD+HK
MDD

AP+HK

Figure 3.16: Results of running AP, then MDD, then HK.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

S
tr

e
n
g
th

 o
f

Lo
w

e
r

B
o
u
n
d

density of precedence constraints

Strength of MDD+AP+HK

MDD+AP+HK
MDD

AP+HK

Figure 3.17: Results of running MDD, then AP, then HK.

48 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

S
tr

e
n
g
th

 o
f

Lo
w

e
r

B
o
u
n
d

density of precedence constraints

Strength of HK+AP+MDD

HK+AP+MDD
MDD

HK+AP

Figure 3.18: Results of running HK, then AP, then MDD.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

S
tr

e
n
g
th

 o
f

Lo
w

e
r

B
o
u
n
d

density of precedence constraints

Strength of HK+MDD+AP

HK+MDD+AP
MDD

HK+AP

Figure 3.19: Results of running HK, then MDD, then AP.

3.4. CONCLUSION 49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

S
tr

e
n
g
th

 o
f

Lo
w

e
r

B
o
u
n
d

density of precedence constraints

Strength of MDD+HK+AP

MDD+HK+AP
MDD

HK+AP

Figure 3.20: Results of running MDD, then HK, then AP.

which is why we cannot improve our bounds though additive bounding.
In Figure 3.22 we show the reduction in the fraction of the edges with 0

residual cost that algorithm 8 gets us. We can see that although it does reduce
the number of zeros for ρ ≤ 0.14, it only reduces it by a maximum of 4%, and
increases it for ρ ≥ 0.16.

3.4 Conclusion

We have shown a method of incorporating MDDs into an additive bounding
scheme. We can see that these methods can outperform pre-existing methods
when the MDD is the final step of the additive bounding process. It is possible
that through a better assignment of potentials to the edges, the MDD could
output a residual cost matrix that has fewer zeros and could then be used
anywhere in the additive bounding process.

50 CHAPTER 3. RESIDUAL COSTS FROM RELAXED MDDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Pe
rc

e
n
t

density of precedence constraints

Average percent of edges with zero residual cost

Shortest Path
Redistribution Algorithm

Figure 3.21: The fraction of 0 residual costs output by the MDD algorithm.

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

D
iff

e
re

n
ce

 i
n
 p

e
rc

e
n
t

density of precedence constraints

Reduction in percent of zeros from redistribution algorithm

Figure 3.22: The reduction in the fraction of 0 residual costs when we redis-
tribute the residual costs.

Chapter 4

Conclusion

In Chapter 2, we presented a new way to approximate the LP bound for Golomb
rulers. We demonstrated its relationship to existing methods, and showed that
we can compute the LP bound much faster using combinatorial methods. We
then used this fast computation in a search procedure, demonstrating that we
can use this bound to reduce the size of the search tree and, in cases where the
LP bound is strong enough, reduce the search time as well.

In Section 2.6, we showed how bounding ruler segments can further reduce
the search time and search tree size. We only considered bounding the segments
di,n−i+1 and sums of such segments. It is left open whether bounding other seg-
ments or linear combinations of segments can improve the search even further,
and what heuristics should be used for this.

We saw that although we can approximate the LP bounds very quickly, the
LP bound itself is somewhat weak. To push this idea further, we would need to
develop stronger lower bounds.

The Golomb ruler problem is closely related to the graceful graph problem.
A graph is graceful if all vertices v, can be assigned labels xv so that the |xv−xv′ |
are distinct for all edges (v, v′). There is no known way to efficiently test whether
a given graph is graceful. In particular, it is an open conjecture whether all
trees are graceful. It may be that applying a Lagrangian relaxation is helpful
for problems such as this.

In Chapter 3, we showed a method of incorporating MDDs into an addi-
tive bounding scheme. We showed these methods can outperform pre-existing
methods when the MDD is the final step of the additive bounding process.

Future research in this area could focus on finding a better assignment of
potentials to the edges, so that the MDD would output a residual cost matrix
that has fewer zeros. This way the MDD could then be used anywhere in the
additive bounding process, instead of strictly at the end.

It is left open whether these methods can be applied to other problems, such
as other variations of the traveling salesperson problem, set packing and set
covering problems, or bin-packing problems.

51

52 CHAPTER 4. CONCLUSION

Appendix A

Search Procedure for Ruler
Segment Bound

Let `a/(a+b) :=
⌈
dz(a,b)∗e−bL

a

⌉
as in equation (2.12), so that dij ≥ `a/(a+b) for

all a, b ∈ N.
We apply a procedure inspired by binary search to find values for a and b,

as depicted in Algorithm 9. The procedure is called with
‘FindBestBound(1, 5, 6)’ to search the interval a

a+b ∈ [0, 1].

Algorithm 9 Search procedure to find appropriate values for a and b that
determine the bound on the ruler segment.

1: procedure FindBestBound(numerator-start, numerator-end, denomina-
tor)

2: for i = numerator-start .. numerator-end do
3: calculate ` i

denominator

4: end for
5: Let M :=

{
k : ` k

denominator
= maxi ` i

denominator

}
.

6: if |M | = 1 then
7: Let k be such that M = {k}
8: return FindBestBound(3k − 2, 3k + 2, 3 · denominator)
9: else if |M | = 2 then

10: Let k be such that M = {k, k + 1}
11: return FindBestBound(6k + 1, 6k + 5, 6 · denominator)
12: else|M | ≥ 3, k ∈M
13: return ` k

denominator

14: end if
15: end procedure

53

54APPENDIX A. SEARCH PROCEDURE FOR RULER SEGMENT BOUND

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[2] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
C-27(6):509–516, 1978.

[3] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint
store based on multivalued decision diagrams. In Principles and Practice
of Constraint Programming–CP 2007, pages 118–132. Springer, 2007.

[4] M. Behle. Binary Decision Diagrams and Integer Programming. PhD thesis,
Universität des Saarlandes, 2007.

[5] P. Benchimol, W.-J. van Hoeve, J.-C. Régin, L.-M. Rousseau, and M. Rue-
her. Improved filtering for weighted circuit constraints. Constraints, 17(3):
205–233, 2012.

[6] D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes. BDD-based
heuristics for binary optimization. Journal of Heuristics, 20(2):211–234,
2014.

[7] D. Bergman, A. A. Cire, and W.-J. van Hoeve. MDD propagation for
sequence constraints. Journal of Artificial Intelligence Research, 50:697–
722, 2014.

[8] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Optimization
bounds from binary decision diagrams. INFORMS Journal on Computing,
26(2):253–268, 2014.

[9] G. S. Bloom and S. W. Golomb. Applications of numbered undirected
graphs. Proceedings of the IEEE, 65(4):562–570, 1977.

[10] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, Aug 1986.

[11] H. Cambazard, E. O’Mahony, and B. O’Sullivan. Hybrid methods for the
multileaf collimator sequencing problem. In Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Prob-
lems, pages 56–70. Springer, 2010.

55

56 BIBLIOGRAPHY

[12] G. Carpaneto, S. Martello, and P. Toth. Algorithms and codes for the
assignment problem. Annals of Operations Research, 13:191–223, 1988.

[13] A. A. Cire and W.-J. van Hoeve. Multivalued decision diagrams for se-
quencing problems. Operations Research, 61(6):1411–1428, 2013.

[14] I. Dotú and P. Van Hentenryck. A simple hybrid evolutionary algorithm
for finding Golomb rulers. In The IEEE Congress on Evolutionary Com-
putation, pages 2018–2023. IEEE, 2005.

[15] K. Drakakis, R. Gow, and L. O’Carroll. On some properties of costas arrays
generated via finite fields. In 2006 40th Annual Conference on Information
Sciences and Systems, pages 801–805. IEEE, 2006.

[16] M. Fischetti and P. Toth. An additive bounding procedure for combinato-
rial optimization problems. Operations Research, 37(2):319–328, 1989.

[17] R. Gagliardi, J. Robbins, and H. Taylor. Acquisition sequences in PPM
communications. IEEE Transactions on Information Theory, IT-33(5):
738–744, 1987.

[18] P. Galinier, B. Jaumard, R. Morales, and G. Pesant. A constraint-based
approach to the Golomb ruler problem. In Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Prob-
lems, 2001. A more recent version (June 11, 2007) can be downloaded from
http://www.crt.umontreal.ca/~quosseca/pdf/41-golomb.pdf.

[19] C. Gervet. Constraints over structured domains. Handbook of Constraint
Programming, pages 605–638, 2006.

[20] T. Hadzic and J. N. Hooker. Postoptimality analysis for integer program-
ming using binary decision diagrams. Technical report, Carnegie Mellon
University, 2008.

[21] T. Hadzic, J. N. Hooker, B. O’Sullivan, and P. Tiedemann. Approximate
compilation of constraints into multivalued decision diagrams. In Principles
and Practice of Constraint Programming, volume 5202 of Lecture Notes in
Computer Science, pages 448–462. Springer Berlin Heidelberg, 2008.

[22] P. Hansen, B. Jaumard, and C. Meyer. On lower bounds for numbered
complete graphs. Discrete Applied Mathematics, 94(13):205 – 225, 1999.

[23] M. Held and R. M. Karp. The traveling salesman problem and minimum
spanning trees. Operations Research, 18:1138–1162, 1970.

[24] M. Held, P. Wolfe, and H. P. Crowder. Validation of subgradient optimiza-
tion. Mathematical Programming, 6:62–88, 1974.

BIBLIOGRAPHY 57

[25] S. Hoda, W.-J. van Hoeve, and J. N. Hooker. A systematic approach to
MDD-based constraint programming. In Principles and Practice of Con-
straint Programming CP 2010, volume 6308 of Lecture Notes in Computer
Science, pages 266–280. Springer Berlin Heidelberg, 2010.

[26] W.-J. van Hoeve and I. Katriel. Global constraints. Handbook of constraint
programming, pages 169–208, 2006.

[27] J. N. Hooker. Integrated Methods for Optimization. Springer, 2007.

[28] J. N. Hooker. Decision diagrams and dynamic programming. In Integration
of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 94–110. Springer Berlin Heidelberg, 2013.

[29] B. Kell and W.-J. van Hoeve. An MDD approach to multidimensional bin-
packing. In Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, pages 128–143. Springer
Berlin Heidelberg, 2013.

[30] B. Kell, A. Sabharwal, and W.-J. van Hoeve. BDD-guided clause genera-
tion. In Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, pages 215–230. Springer Inter-
national Publishing, 2015.

[31] J. Kinable. Decomposition Approaches for Optimization Problems. PhD
thesis, KU Leuven, 2014.

[32] H. W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97, 1955.

[33] C. Y. Lee. Representation of switching circuits by binary-decision pro-
grams. Bell System Technical Journal, 38(4):985–999, 1959.

[34] C. Lemaréchal. Lagrangian relaxation. In Computational Combinatorial
Optimization, Optimal or Provably Near-Optimal Solutions [Based on a
Spring School], pages 112–156, London, UK, UK, 2001. Springer-Verlag.

[35] R. Lorentzen and R. Nilsen. Application of linear programming to the
optimal difference triangle set problem. IEEE Trans. Inf. Theor., 37(5):
1486–1488, 2006.

[36] J. Menana and S. Demassey. Sequencing and counting with the multicost-
regular constraint. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, volume 5547 of
Lecture Notes in Computer Science, pages 178–192. Springer, 2009.

[37] C. Meyer and B. Jaumard. Equivalence of some LP-based lower bounds for
the Golomb ruler problem. Discrete Appl. Math., 154(1):120–144, 2006.

[38] A. T. Moffet. Minimum-redundancy linear arrays. IEEE Transactions on
Anntennas and Propagation, AP-16(2):172–175, 1968.

58 BIBLIOGRAPHY

[39] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. Wiley, 1988.

[40] S. Prestwich. Trading completeness for scalability: Hybrid search for cliques
and rulers. In Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, 2001.

[41] J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of AAAI, pages 362–367. AAAI Press, 1994.

[42] J. P. Robinson and A. J. Bernstein. A class of binary recurrent codes with
limited error propagation. IEEE Transactions on Information Theory, IT-
13(1):106–113, 1967.

[43] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[44] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, vol-
ume 24. Springer Science & Business Media, 2003.

[45] M. Sellmann. Theoretical foundations of CP-based Lagrangian relaxation.
In Proceedings of CP, volume 3258 of Lecture Notes in Computer Science,
pages 634–647. Springer, 2004.

[46] M. Sellmann and T. Fahle. Constraint programming based Lagrangian
relaxation for the automatic recording problem. Annals of Operations Re-
search, 118(1–4):17–33, 2003.

[47] C. E. Shannon. A symbolic analysis of relay and switching circuits. Trans-
actions of the American Institute of Electrical Engineers, 57(12):713–723,
1938.

[48] J. B. Shearer. Improved LP lower bounds for difference triangle sets. Jour-
nal of Combinatorics, 6, 1999.

[49] J. Singer. A theorem in finite projective geometry and some applications
to number theory. Transactions of the American Mathematical Society, 43
(3):377–385, 1938.

[50] M. R. Slusky and W.-J. van Hoeve. A Lagrangian relaxation for Golomb
rulers. In Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, pages 251–267. Springer, 2013.

[51] B. M. Smith, K. Stergiou, and T. Walsh. Modelling the Golomb ruler
problem. In IJCAI Workshop on Non-binary Constraints, 1999.

[52] S. W. Soliday, A. Homaifar, and G. L. Lebby. Genetic algorithm approach
to the search for Golomb rulers. In 6th International Conference on Genetic
Algorithms (ICGA95, pages 528–535. Morgan Kaufmann, 1995.

BIBLIOGRAPHY 59

[53] A. Srinivasan, T. Ham, S. Malik, and R. K. Brayton. Algorithms for dis-
crete function manipulation. In Computer-Aided Design, 1990. ICCAD-90.
Digest of Technical Papers., 1990 IEEE International Conference on, pages
92–95. IEEE, 1990.

[54] I. Wegener. Branching programs and binary decision diagrams: theory and
applications, volume 4. SIAM, 2000.

