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Abstract

This thesis study focuses on the development of model-based optimization strategies for

the integration of process scheduling and dynamic optimization, and applications of the

integrated approaches to industrial polymerization processes. The integrated decision-

making approaches seek to explore the synergy between production schedule design and

process unit control to improve process performance. The integration problem has re-

ceived much attention from both the academia and industry since the past decade. For

scheduling, we adopt two formulation approaches based on the state equipment net-

work and resource task network, respectively. For dynamic optimization, we rely on the

simultaneous collocation strategy to discretize the differential-algebraic equations. Two

integrated formulations are proposed that result in mixed discrete/dynamic models, and

solution methods based on decomposition approaches are addressed.

A class of ring-opening polymerization processes are used for our industrial case studies.

We develop rigorous dynamic reactor models for both semi-batch homopolymerization

and copolymerization operations. The reactor models are based on first-principles such

as mass and heat balances, reaction kinetics and vapor-liquid equilibria. We derive re-

actor models with both the population balance method and method of moments. The

obtained reactor models are validated using historical plant data. Polymerization recipes

are optimized with dynamic optimization algorithms to reduce polymerization times by

modifying operating conditions such as the reactor temperature and monomer feed rates
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over time. Next, we study scheduling methods that involve multiple process units and

products. The resource task network scheduling model is reformulated to the state space

form that offers a good platform for incorporating dynamic models. Lastly for the in-

tegration study, we investigate a process with two parallel polymerization reactors and

downstream storage and purification units. The dynamic behaviors of the two reactors

are coupled through shared cooling resources. We formulate the integration problem by

combining the state space resource task network model with the moment reactor model.

The case study results indicate promising improvements of process performances by ap-

plying dynamic optimization and scheduling optimization separately, and more impor-

tantly, the integration of the two.
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Chapter 1

Introduction

Scheduling and dynamic optimization are middle layers in the decision-making hierarchy

of chemical processes, bridging between strategic and operational level decisions. Model

based optimization methods for these decision-making processes have great potential to

improve plant performance. Vertical integration of different layers in the hierarchy offers

additional economic advantages. In this chapter, we present the background information

and motivation of the integration problem for scheduling and dynamic optimization for

chemical production processes.

1.1 Hierarchical Process Operations

The classic decision-making hierarchy consists of five decision layers as shown in Fig. 1.1:

planning, scheduling, (dynamic) real time optimization, model predictive control, and

regulatory control. The problem scope becomes narrower by traveling downward the

pyramid, while the decision-making frequency increases. At the top, planning and schedul-

ing are long-term decisions. Planning is used to create enterprise-wide production, distri-

bution, sales and inventory plans based on customer and market information [1]. Schedul-

1



ing assigns limited resources (process units, materials, utilities, etc.) in a given produc-

tion facility to create manufacturing sequences for products [2]. Decision frequency varies

with respect to different processes. But typically, planning is performed yearly or monthly

and scheduling is carried out monthly or weekly. The three layers at the bottom are re-

lated to operational decisions that focus on one/several specific process unit/units. Real

time optimization (RTO) is used to update process operating conditions constantly to

ensure successful execution of production plans made by top layers. RTO was first de-

veloped to deal with continuous processes using steady-state process models [3]. More

recently, process dynamics have been directly incorporated into RTO problems to obtain

solutions that give better economic benefit and operation flexibility [4]. The extended

technology is termed as dynamic real time optimization (DRTO), which is able to opti-

mize continuous processes with transit behaviors and batch processes, where operating

steady-states do not exist by nature. Model Predictive Control (MPC) is a class of control

algorithms that use explicit process models to update plant control inputs in real time.

The objective of the MPC layer is to track the reference set-points/trajectories given by

(D)RTO under process disturbances [5]. Regulatory control often refers to traditional PID

controllers that directly interact with process units based on feedback mechanisms [6].

These controllers can be subsystems of an MPC structure.

1.2 Model Based Optimization of Process Operations

Increased energy cost, global competition, and stringent environment regulations are all

driving forces for optimized decision-making in the chemical process industry. Model

based optimization methods find their way into all layers of the decision hierarchy. These

optimization approaches exploit equation based description of a process system, and

translate an optimization task to a mathematical programming problem. The optimal

decision is obtained as solving the corresponding math program to satisfy its optimal-
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Figure 1.1: Decision-making hierarchy of chemical processes

ity condition. Model based optimization methods have been extensively studied in the

academia, which become the core of the process systems engineering (PSE) discipline [7].

There is also a strong trend in the process industry to adopt these systematic problem

solving tools to replace traditional methods that heavily rely on personal knowledge and

expertise.

The process model structure and the type of algorithms used for optimization are dif-

ferent across different decision layers. Planning and scheduling involve many discrete

decisions such as whether to built a new warehouse, which product to produce, how to

sequence a group of products, etc. These give rise to discrete/binary variables in planning

and scheduling problem formulations. In addition, these models often assume predeter-

mined operating conditions such that process systems can be modeled with basic linear

equations that roughly represent their behavior (e.g., mass balance, capacity limits). As

a result, optimization of planning and scheduling is often posed as mixed-integer lin-

ear programs (MILPs). RTO employs detailed process models that explicitly consider the

input-output relations of process units the interactions among them. These models can be
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Planning and scheduling Shapiro [8], Grossmann [9], Floudas and Lin [10]
Méndez et al. [2], Harjunkoski et al. [11],
Maravelias and Sung [12], Verderame et al. [13]

RTO and DRTO Marlin and Hrymak [3], Srinivasan et al. [14, 15]
Biegler [16], Kameswaran and Biegler [17]

MPC Garcı́a et al. [18], Morari and Lee [19]
Rawlings [20], Qin and Badgwell [5]

Regulatory control Bequette [21]

Table 1.1: Literature on model based optimization for decision-making

developed either from fundamental first-principles (conservation laws, thermodynamic

relations) or data driven approaches (nonlinear regression). Both ways lead to continuous

nonlinear algebraic models if the steady-state operation condition is assumed. The result-

ing continuous optimization problem can be solved by a number of nonlinear program-

ming (NLP) algorithms. DRTO overcomes the limit of the steady-state assumption, and

incorporates dynamic models that consist of differential algebraic equations (DAEs). This

requires solving optimization problems with DAE constraints (a.k.a. dynamic optimiza-

tion or optimal control problems). Dynamic optimization also applies to optimization

problems in the MPC layer, as well as some of the regulatory control problems.

There is a vast body of literature on model based optimization approaches for chemi-

cal, petrochemical, and pharmaceutical processes. A number of well known references

that summarize the developments and advances from the PSE community are listed in

Tab. 1.1. These research studies make significant use of applied computational meth-

ods, especially math programming techniques, to model, analyze, and solve engineering

problems that arise in the hierarchy.
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1.3 Vertical Integration in the Decision-making Hierarchy

Conventionally, the decision-making process is one-directional, starting from the top to

the bottom of the hierarchy. Therefore, decisions in each layer are optimized sequentially,

and the complexity of the resulting optimization problems is well managed. However,

two major disadvantages of this top-down decision-making approach are: first, degrees

of freedom in lower-level decisions cannot be not fully explored by upper layer prob-

lems; second, top layer decisions cannot respond to disruptions that occur in the bot-

tom. These lead to deteriorated plant performance in both profitability and reliability. A

natural solution to that is to break the boundaries between the layers, and integrate the

decision-making process. In fact, integration of production planning and scheduling has

been investigated by many research groups over the past decade. The integrated formu-

lations are posed as large-scale MILP problems that are often solved by decomposition

algorithms [22, 23, 24, 25, 26]. Research studies on integrating RTO with process con-

trol are also reported [27, 28, 29]. Nonlinear model predictive control (NMPC) strategies

are used to merge economic optimization and dynamic control functions into a unified

dynamic optimization problem [30].

To finally integrate the strategic and operational decisions, work has to be done to tie

process scheduling and DRTO technologies together (RTO can be viewed as simplified

DRTO). An essential step towards this goal is to integrate process scheduling methods

with dynamic optimization algorithms, which gives a combined optimization formula-

tion that can design production schedules in conjunction with set-points/trajectories for

process control. This is the main objective of the thesis study. A problem overview and

literature review for integration of scheduling and dynamic optimization are discussed

in the following section.
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1.4 Integration of Scheduling and Dynamic Optimization

A single optimization formulation that can perform scheduling and dynamic optimiza-

tion simultaneously is desirable to fulfill the task of integration. A number of major ad-

vantages of the integrated approach are noted by Engell and Harjunkoski [31]:

1. Improve production sequences such that reduce set-up and changeover costs, as

well as lost during transitions.

2. Reduce maintenance needs and improve equipment life-time.

3. Improve the feasibility of schedules for operation.

4. Exploit the degrees of freedom of control in scheduling designs.

5. Use more precise and timely information in scheduling.

Similar perspectives are also given by Bassett et al. [32], Shobrys and White [33], and

Harjunkoski et al. [34]. Although the integrated approach is favorable in terms of perfor-

mance, its application has been rather limited. An integrated optimization formulation

needs to deal with the discrete elements of scheduling and the dynamic characteristics of

unit operation models. Moreover, the difference in time scale of scheduling and control

needs to be handled. In terms of numerical optimization, this gives rise to mixed-integer

dynamic optimization (MIDO) problems [35, 36] with multiple time periods. The compu-

tational complexity of such problems is quite high even for some small-size problems.

However, developments in optimization algorithms [37, 38] and computing power have

enabled advances in this area over the last two decades. A number of successful research

studies were first reported for continuous processes, especially commercial polymeriza-

tion reactors. For example, Nyström et al. studied a grade sequencing and transition

optimization problem of a polymerization process, where the transition trajectories, op-

erating points, and sequencing of grades are determined all-at-once with a MIDO for-
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mulation. Cost minimization is achieved by reducing raw material use and off-spec

products [39]. Integrated optimization problems for continuous processes have been also

studied by Flores-Tlacuahuac and Grossmann [40], Terrazas-Moreno et al. [41], Prata et

al. [42], Busch et al. [43], Chu and You [44], and Zhuge and Ierapetritou [45]. Integra-

tion of batch processes was less often studied in the past, compared with continuous

processes. Batch processes have more complicated scheduling environments, as assign-

ments of processing tasks to process units are product-specific and time-dependent. The

work by Bhatia and Biegler [46] was among the first to incorporate rigorous dynamic

models into batch scheduling problems. Although the scheduling problem was restricted

to flowshop plants with a special class of material transfer polices, this work suggested

great potential of the integrated optimization approach to improve plant profitability in

general. Recently, integration of batch processes starts to gain more attention. Mishra

et al. [47] carried out a comparative study between two scheduling methods. The first

was the standard approach with predetermined unit control recipes, while the other con-

tained dynamic models of process units and recipes were generated together with sched-

ules. The latter approach results in optimization problems with significantly larger sizes

but higher overall profits. This indicates potential economic benefits in embedding rigor-

ous process dynamic models into scheduling formulations, but also challenges in solving

the resulting optimization problems. Research work along this line includes Romero et

al. [48], Chu and You [49, 50], and Capón-Garcı́a et al. [51]. These studies have adopted

a top-down integration strategy, where the problem is viewed as enriching the higher

level scheduling optimization formulation by replacing fixed task recipe parameters with

detailed dynamic models. In a different vein, the integration problem can also be for-

mulated from a bottom-up perspective, which is categorized as optimal control of hybrid

discrete/continuous systems in control literature [52]. The guiding methodology is (hy-

brid) MPC algorithms . Task recipes are determined by optimizing the continuous control

variables, while production schedules are represented by the discrete control variables in-
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dicating task switch signals. Example studies are reported by Gallestey et al. [53] and de

Prada et al. [54].

1.5 Research Statement and Thesis Outline

Integration of scheduling and dynamic optimization is an important research topic that is

open to challenges in both problem formulation and model solution. This thesis work fo-

cuses on the development of such integrated optimization methods as well as their appli-

cations to industrial processes. The proposed integrated methods incorporate the recent

advances in process scheduling and dynamic optimization, and extend them to explore

the synergy between the two decision layers. It is desired to carry out a thoroughgoing

research in this area, from methodology development to successful real-world implemen-

tations.

The remainder of the thesis is divided to two parts. In the first part, we review the op-

timization algorithms that are related to the solution of an integrated scheduling and

dynamic optimization problem (we use the short note “the integrated problem” in later

discussions for convenience). This part also includes a proof-of-concept study that aims at

identifying the economic potential of the integration. In the second part, we apply and

extend the optimization methods described in the first part to develop an integrate opti-

mization strategy for an industrial polymerization process. The study covers topics such

as reactor modeling, polymerization recipe optimization, process scheduling, and lastly

integration.
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Part I

Optimization Methodology
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Chapter 2

Computational Methods

In this chapter, we present modeling and solution methods that are related to the inte-

grated optimization problem. There is a great variety of methods developed for schedul-

ing and dynamic optimization problems, respectively. We discuss these algorithms in

comparison, including their advantages and disadvantages for the integrated problem.

Also, we show available algorithms to solve integrated formulations.

2.1 Process Scheduling

Process scheduling is very diverse research area that has been studied by many different

disciplines. Although heuristic/rule-based scheduling methods are efficient for certain

problem types [55], we are interested in methods relying on mathematical programming

that are generic and systematic. Optimization models for chemical production schedul-

ing problems have very different structures, and systematic classification of them can

be based on a number of criteria such as process type (batch and continuous), model-

ing of time (discrete and continuous), and process typology (sequential and network).

For detailed description of scheduling model classification, refer to the review by Mar-
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Discrete time grid

Continuous time grid

Time horizon

Figure 2.1: Discrete and continuous time representations

avelias [56]. In this section, we review a number of important concepts and solution

approaches developed for scheduling optimization.

2.1.1 Time Representation

Time representation is a term that has been extensively used in PSE literature to refer to

how time is modeled in a scheduling optimization formulation. Two well-known types

are the discrete and continuous time representations. Fig. 2.1 is a simple illustration of

the two modeling approaches. The discrete time approach divides the scheduling time

horizon into a number of uniform time intervals of fixed lengths, and processing task

lengths are integer multiples of the unit slot duration. The beginning and end of a discrete

event (such as task start or end) must lie on the interval boundaries. In contrast, the

continuous time approach introduces a moving time grid such that events can be placed

at arbitrary time points. Usually, the continuous time representation requires fewer grid

periods (time intervals/slots) compared with the discrete time approach.

Scheduling optimization formulations based on both time representations have discrete

variables to model the state of a processing task in a time slot. For example, a binary

variable is equal to one if a certain task starts at the beginning of a slot, and equal to zero

otherwise. These discrete variables are often termed as task assignment variables. Contin-

uous variables are also employed in scheduling models to represent continuous entries

such as the (batch) size of a task. Additionally in continuous time models, continuous

timing variables are incorporated to denote the lengths of time intervals.. The advan-
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tages and disadvantages of the two time representations are compared in Tab. 2.1. The

continuous and discrete time representations are applicable to the same model instances

in general, but their computational performances are highly problem dependent.

Note that the continuous time representation has a number of variations. Global time

grid models adopt a unique time grid for all process units [57, 58], while unit-specific

time models introduce multiple asynchronized time grids for every unit [59, 60]. There

are also scheduling models that focus on the precedence relationship among tasks rather

than matching tasks with time intervals, for example, the general precedence models [61]

and intermediate precedence models [62].

2.1.2 Process Representation

We are interested in scheduling problems with general network structures. Process repre-

sentation methods are used as systematic tools to translate scheduling problems to math

programming formulations. Two prevailing methodologies have been developed in the

90s, known as the state task network (STN) [63] and resource task network (RTN) [64]

representations, respectively.

In STN models, states represent process materials including feeds, intermediates and fi-

nal products and tasks are process operations that transform one/several input state(s)

to output state(s). In a typical STN graph, state nodes are depicted with circles and task

nodes with rectangles. The arcs that connect the two types of nodes represent possible

interaction routes between states and tasks. The RTN framework extends the concept of

states to resources. RTN models regard process equipment, material, and utility equiva-

lently as resources that are consumed/generated by the execution of tasks. As a result,

a RTN model has a more concise structure than its STN counterpart. Both the STN and

RTN models are based on the discrete time representation initially, and continuous time

models are developed in later studies [57, 65].
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Model accuracy Continuous: high, continuous timing variables
Discrete: low, round-up errors in task lengths

Model size Continuous: small, sparse time grids
Discrete: large, dense time grids

Formulation tightness Continuous: low, big M terms in timing constraint
Discrete: high, low integrality gap

Consistency Continuous: low, customization for different applications
Discrete: high, concise and consistent structure

Time-dependent event Continuous: indirect, additional constraints needed
Discrete: direct, known time grid point positions

Table 2.1: Pros and cons for the two time representation approaches

Alternative process representation approaches for scheduling problems have also been

studied in the PSE community, such as the state sequence network [66]. In addition, the

state equipment network (SEN) [67, 68] has been applied in process synthesis and design

problems that share similarities with scheduling problems (a unit switches between dif-

ferent operating modes). SEN models employ an equipment-oriented modeling perspec-

tive, focusing on the connectivity between process units rather than tasks. One advantage

of SEN models is that tasks performed by the same unit can be described in a compact and

consistent way, which is favorable for problems with rigorous unit models. As a result,

the SEN method can be carried over to integrated scheduling and dynamic optimization

problems, where process units are described with detailed dynamic models. We discuss

the SEN based integration in the next chapter.
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2.1.3 Solution Algorithms for Scheduling Models

Most of the process scheduling models are formulated as MILPs, which can be written in

a generic way as:

min aTx+ bTw

s.t. Ax+Bw 6 d,

x 2 Rn
x , w 2 {0, 1}nw .

(2.1)

Equation (2.1) uses binary discrete variables w and continuous variables x. MILP prob-

lems are NP-complete in terms of computational complexity [69], thus the problem com-

plexity grows dramatically with an increasing number of discrete variables. Two major

classes of algorithms for solving MILPs are the branch and bound method and cutting

plane approach [70]. The branch and bound method adopts a divide-and-conquer strategy.

The original MILP problem is solved through a sequence of restricted problems that com-

prises a tree structure. The tree is constructed by branching on the elements of discrete

variables w recursively. At each node of the branch and bound tree, a linear program (LP)

relaxation of the original MILP problem is solved (dropping the integrality requirement

on w). If a LP solution happens to have integral w values, it is recorded as a candidate

solution giving the upper bound of the MILP problem. Meanwhile, the lower bound is

obtained via solving the root note relaxation, and updated through the branching proce-

dure. The algorithm converges when the best upper bound coincides with the current

lower bound. The cutting plane methods are based on the valid inequalities that recur-

sively refine the feasible set of a MILP by eliminating regions that are only feasible for

its LP relaxations. Accumulation of these valid inequalities allows the relaxed solution to

approach the optimal solution of the MILP problem. Well known cutting plane methods

include Gomory’s cut [71], lift-and-project cut [72], etc. Modern MILP algorithms often

combine the cutting planes with branch and bound procedures, which give the branch-

and-cut methods [73]. Current commercial MILP solvers mostly implement the branch-
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and-cut strategy such as CPLEX [74] and Gurobi [75].

2.2 Dynamic Optimization

Dynamic optimization finds many applications in chemical processes, including off-line

problems such as batch recipe optimization and transition operation optimization, as well

as on-line implementations such as predictive control [76]. Usually the embedded DAEs

in a dynamic optimization problem are couched in the continuous time domain. Equa-

tion (2.2) gives a general form of dynamic optimization problems:

min
u(t),p

�(z(tf ))

s.t. ż(t) = f(z(t), y(t), u(t), p), z(t0) = z0,

g(z(t), y(t), u(t), p) = 0,

he(z(t), y(t), u(t), p) = 0,

hi(z(t), y(t), u(t), p) 6 0,

z 2 Rn
z , y 2 Rn

y , u 2 Rn
u , p 2 Rn

p .

(2.2)

Here, the problem is defined from time t0 to tf . For variable notation, z and y are the

differential and algebraic state variables, respectively, u represents the control variables,

and p is time independent decision variables. The objective function �(·) is written in

the Mayer form as an end-cost function of differential states. In process optimization

problems, the functions f(·) and g(·) note the DAE system that represents process models,

which can be either first-principles or data-driven. The initial condition of the differential

states is known as parameter z0. It is also possible that initial conditions are replaced by

boundary conditions in certain circumstances. The equalities he(·) and inequalities hi(·)
denote the optimization constraints that come from process safety regulations, product

quality requirements, etc. Note that the bounds on the state and control variables are also
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included in hi(·). The constraints can be enforced either at final time by restricting t = tf

(end-point constraints) or within the whole time horizon t 2 [t0, tf ] (path constraints).

2.2.1 Solution Approaches for Dynamic Optimization

Analytical solution of the dynamic optimization problem requires applying Pontryagin’s

maximum principle or solving Hamilton-Jacobi-Bellman equations, which are quite dif-

ficult for realistic problems and they cannot handle inequality constraints. Therefore,

numerical solution techniques are favored to obtain approximated optimal solutions.

Numerical solution methods for dynamic optimization problems are generally separated

into two classes, known as the sequential [77, 78, 79, 80] and simultaneous [81, 82, 83] ap-

proaches. In both methods, the decision variable (control policy) is parameterized by

using an appropriate function approximation (e.g., piecewise constant parameterization).

This procedure is often called as control vector parameterization in literature. The difference

between the two classes is due to the treatment of the embedding DAEs.

Sequential Approach

The sequential approach formulates a reduced size NLP that treats the DAE system as an

extrinsic black box, where the state trajectories and sensitivities required in optimization

search are provided by external numerical integration packages for DAEs. The sensitivi-

ties are derivative information of the DAE system with respect to the decision variables,

and the sensitivity equations are also a group of DAEs that can be solved simultaneously

with the original system. Two types of sensitivities are often used. Direct sensitivities [84]

are defined with respect to state variables, and adjoint sensitivities [85] are defined over

objective and constraint equations. A schematic of the sequential method (also termed as

single shooting) is depicted in Fig. 2.2. The sequential method relies on repeated integra-

tion of DAEs so that optimization is subject to failure for unstable systems, where DAE
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integrators cannot converge. Moreover, path constraints and inequality constraints can-

not be directly handled in sensitivity analysis. Reformulation is needed to convert them

to either end-point constraints or penalty terms in the objective function.

z, y
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Decision
variables

u, p
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Nonlinear optimizerminΦ(z)
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ż = f(z, y, u, p)

g(z, y, u, p) = 0

he(z, y, u, p) = 0

hi(z, y, u, p) ! 0 State profiles

Figure 2.2: Schematic diagram of the sequential method

Simultaneous Approach

The simultaneous approaches include multiple shooting [81] and simultaneous collocation [82]

methods. In multiple shooting, the time horizon of interest is divided into several seg-

ments, and the sequential approach is applied to each time slot. This method provides

potential of handling unstable systems while increasing the size of resulting problems.

The simultaneous collocation approach (or direct transcription) is motivated by avoiding

explicit integration of DAEs that is required by the two shooting approaches. The state

variables are parameterized via orthogonal collocation over finite elements (OCFE) [86].

In the collocation method, the time domain is divided into a finite number of finite el-

ements, and several collocation points are placed in each element. Orthogonal polyno-

mials are introduced at collocation points, and the state profiles are approximated by

a weighted summation of the orthogonal polynomials (illustrated in Fig. 2.3). The ap-

proach corresponds to a particular implicit Runge-Kutta method with high order accuracy

and excellent stability properties [16].

The collocation equation for differential state variables in a finite element can be stated as
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Figure 2.3: Illustrative example of OCFE

below, if the Runge-Kutta basis is used:

z(t) = z0j + hj

KX

k=1

⌦k(⌧)żj,k, j = 1, ..., J. (2.3)

Here, j is the index of finite elements from 1 up to J and k is the index for collocation

points from 1 to K, hj is the length of finite element j, ⌧ 2 [0, 1] is the normalized time

coordinate within an element and t = t0j + hj⌧ (t0j denotes the starting time of element j),

z0j is the value of the differential state at the beginning of element j, żj,k is the value of the

first derivatives at collocation points, and ⌦k is a polynomial of ⌧ of order K, defined as

⌦k =

Z ⌧

0

`k(⌧
0)d⌧ 0, k = 1, ..., K. (2.4)

Here, `k is an orthogonal basis function. Lagrange interpolation polynomials are often

favored owing to their exactness at collocation points, which are shown as:

`k(⌧) =
KY

k0=1, 6=k

⌧ � ⌧k0

⌧k � ⌧k0
, k = 1, ..., K. (2.5)

In addition, the continuity condition across finite element boundaries is preserved:

z0j+1 = z0j + hj

KX

k=1

⌦k(1)żj,k, j = 1, ..., J � 1. (2.6)
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The algebraic states y can be treated similarly with the orthogonal polynomials:

y(t) =
KX

k=1

`k(⌧)yj,k, j = 1, ..., J. (2.7)

However, the continuity condition is not necessarily enforced for algebraic states. The

equations of the DAE system and process constraints (constraints in formulation (2.2))

are only enforced at collocation points, and the equation form remains the same. By this

means, the dynamic optimization formulation (2.2) is translated to a NLP problem:

min
u(t),p

�(zj,k)

s.t. zj,k = z0j + hj

KX

k=1

⌦k(⌧k)żj,k,

z0j+1 = z0j + hj

KX

k=1

⌦k(1)żj,k, z01 = z0,

żj,k = f(zj,k, yj,k, uj,k, p),

g(zj,k, yj,k, uj,k, p) = 0,

he(zj,k, yj,k, uj,k, p) = 0,

hi(zj,k, yj,k, uj,k, p) 6 0.

(2.8)

The simultaneous collocation method has a number of significant advantages for pro-

cess optimization problems. First, it is able to handle dynamic systems with unstable

modes. The optimality condition of the dynamic optimization formulation (2.2) can be

cast into a boundary value problem (BVP) [87], and the optimality condition of the trans-

lated NLP (2.8) ((known as Karush-Kuhn-Tucker (KKT) condition [88])) is equivalent to

applying collocation on the BVP. The NLP benefits from the dichotomy property of BVPs

that can pin down the unstable modes [89, 90]. Meanwhile, NLP problems after colloca-

tion have sparse structures that can be efficiently exploit by NLP algorithms, which offers

an edge particularly for on-line applications [91]. Last but not least, process constraints
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can be treated directly within the discretized scheme without the burden of reformula-

tion.

2.2.2 Nonlinear Programming Methods

All dynamic optimization approaches rely on NLP solvers to conduct optimization searches

on the decision variables. Newton type solvers are generally preferred due to their fast

convergence properties [76, 92]. A number of popular NLP algorithms are listed in Tab. 2.2,

together with available code implementations. The sequential quadratic programming

(SQP) method solves a sequence of quadratic programs (QP) to guide the search. The

QPs are constructed by using the variable value and derivative information at each itera-

tion. SQP solvers are favored by the sequential method for dynamic optimization. First,

the NLP problem size is relatively small in the sequential approach; also, second order

derivatives are very expensive to compute via sensitivity analysis, but SQP methods gen-

erally perform well with approximated derivatives. The generalized reduced gradient

(GRG) method partitions the variables in a NLP into basic, nonbasic, and superbasic vari-

ables. The basic variables are used to solve equality constraints, nonbasic variables are

fixed at either their upper or lower bounds, and superbasic variables are used to drive the

optimization search. The interior point method reformulates the inequality constraints as

barrier (penalty) terms to the objective function, and solves a series of NLP problems

with decreasing barrier parameters to recover the optimal solution of the original prob-

lem. The method has advantages dealing with large-scale problems with many degrees

of freedom. Therefore, it is often used to solve the NLP problems resulting from the si-

multaneous collocation method.
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Algorithm class Solver and reference

Sequential quadratic programming SNOPT [93], filterSQP [94, 95]
Generalized reduced gradient CONOPT [96, 97], MINOS [98]
Interior point method IPOPT [99], KINTRO [100]
⇤ Listed solvers are examples for each algorithm class (not exhaustive).

Table 2.2: NLP algorithms and solvers

2.3 Integrated Scheduling and Dynamic Optimization

Integration of scheduling and dynamic optimization results in optimization problems

with both discrete decision variables and differential constraint equations, which can be

formulated as MIDO problems. Given the combined complexity of discrete decision vari-

ables and differential equation constraints, MIDOs cannot be solved directly, and most

solution strategies are designed to tackle the discrete and dynamic components in a sepa-

rate manner. Reformulation is needed to convert MIDOs to a form that can be handled by

existing optimization solvers. The two viable approaches for dynamic optimization, the

sequential and simultaneous methods, can carry out this task. Barton and coworkers have

proposed a series of approaches that apply the sequential method to MIDOs [35, 101, 102].

In this manner, a MIDO problem is decomposed similarly as suggest in Fig. 2.2, except

for the optimization search involves MINLP algorithms instead of NLPs. The authors

have also investigated global optimization methods for MIDOs that rely on convex func-

tion relaxations [103, 104]. On the other hand, the simultaneous collocation method has

been adopted in many recent research studies dealing with MIDOs [41, 51, 105]. This

approach translates a MIDO problem to a purely algebraic MINLP that is nonconvex. In

addition, a list of MINLP algorithms and solvers is given in Tab. 2.3. These algorithms

guarantee global optimality for convex MINLPs, and can be applied to find good feasible

solutions for nonconvex ones. Decomposition methods for MIDOs have also been stud-

ied, for example, by Terrazas-Moreno et al. [115] and Bansal et al. [36]. The main idea for

these decomposition methods is to separate the discrete decisions and dynamic process
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Algorithm class Solver
SBB [106] DICOPT [107] BONMIN [108] Alpha-ECP [109]

NLP-based branch and bound [110] ⇥ ⇥
Generalized Benders decomposition [111] ⇥
Outer Approximation [112] ⇥ ⇥
Extended cutting plane [113] ⇥
LP/NLP-based branch and bound [114]
⇤ Listed solvers are examples for each algorithm class (not exhaustive).

Table 2.3: MINLP algorithms and solvers

models, while exploring the synergy between the two by solving the separated problems

in certain iterative procedures. In Chapter 7, we discuss a solution method based the

generalized Benders decomposition. Lastly, it is also worth noting that a MIDO formula-

tion can be equivalently stated as a mixed-logic dynamic optimization problem [116] by

replacing the discrete variables with logical disjunctions [117]. This logic based represen-

tation method is used in our proof-of-concept study for integration, which is presented in

the following chapter.
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Chapter 3

Integration Using State Equipment

Networks

This chapter presents a proof-of-concept study for the integration of process scheduling and

dynamic optimization to identify its potential in improving the economic performance of

chemical batch processes. The state equipment network (SEN) is used to represent a pro-

cess system. Modeling based on the SEN framework invokes both logical disjunctions

and operational dynamics; thus the integrated formulation leads to a mixed-logic dy-

namic optimization (MLDO) problem. The MLDO problem is translated into a MINLP for

model solution, using the Big M reformulation and the simultaneous collocation method.

Two case studies are demonstrated to show the advantages of the integrated approach

over the conventional recipe-based scheduling method.

3.1 Problem Statement

The integrated approach aims at improving the overall performance of a batch process by

simultaneously optimizing its production schedule and corresponding control profiles of
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the process units involved. The problem can be stated as follows:

Given:

Plant configuration

? a set of process units and their uses

? feed materials, intermediates and final products and their constituents

? information on production sequences or steps

Scheduling preknowledge

? a fixed scheduling time horizon (except for makespan problems)

? target performance index, e.g., maximum profitability, minimum makespan or earliness

? transfer policy for each material

? procurement price of raw materials

? market price, demand and quality requirements of final products

? market price of utilities consumed in batch operations

Process dynamics

? dynamic (or simplified) models of process operations

? bounds on state and control variables corresponding to possible process operations

? additional constraints regarding safety and quality issues

Determine:

? optimal production sequences and timings of all batch units

? optimal control profiles of batch units

? optimal performance index value

A desired comprehensive scheduling formulation is expected to handle many aspects

of manufacturing considerations: order fulfillment, product transitions and shared re-

sources, to name a few. Albeit simplified, we will restrict our problem to a more concise

status, where the objective is to maximize the net profit at the end of scheduling horizon

with no change-over delays and fulfillment deadlines, while the unlimited intermediate

CHAPTER 3. INTEGRATION USING STATE EQUIPMENT NETWORKS 24



storage (UIS) policy is assumed. Nonetheless, extensions can be carried out within the

SEN infrastructure, using similar techniques developed for the STN and the RTN [118].

3.2 The State Equipment Network

The original SEN framework for process synthesis and design [67, 119] adopts a directed

graph with two basic types of nodes to represent a batch process. These nodes are namely,

the state nodes, including all sorts of materials involved in the process, and the equipment

nodes, containing all processing units in the plant. However, a striking feature of batch

plants is their capability of flexible manufacturing, which invokes discrete time-varying

behavior of process units, such as switching between different operations and turning

on and off. As a result, the mathematical description of an equipment node is subject to

change over time as well as the connectivity of a SEN graph. Therefore, an additional

temporal dimension of combinatorial decisions has to be incorporated into the original

SEN in order to designate the status of equipment nodes over time. As equipment and

material state nodes are connected by directed edges alternatively, a scheduling problem

can be reinterpreted as routing material flows through the network. Last but not least,

since a batch unit may accommodate multiple operations, the term state here can also be

defined as an operational status of the unit. To avoid ambiguity, we will use the term

operating state to indicate operation and the term material to refer to material state.

To better interpret how the SEN tackles a batch scheduling problem, a simple instance

of a single-stage batch plant is depicted in Fig. 3.1. The unit serves for two different

manufacturing purposes. It converts the corresponding feed material to the product, if

switched to a particular operating state. This plant has three possible setups, shown in

Figs. 3.1(a)-3.1(c). The SEN representation drawn in Fig. 3.1(d) is able to capture all these

three potential configurations of the system and postulate them together with disjunctive
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Figure 3.1: An illustrative example of applying the state equipment network

propositions (the idle state is included implicitly).

By definition, the SEN disaggregates a process flowsheet into materials and equipment

with time variant operating modes to attack batch scheduling problems. Therefore, de-

signing a schedule can be also conceived as managing the sequence of equipment oper-

ating states along with material distribution. As a result, a production schedule declares

when and how to switch unit operating states while material transportation is executed

instantaneously as an accompaniment of state transitions. In certain occasions where the

executing times for material transfers cannot be neglected, the transfer operations can be

treated explicitly as unit operating states.

3.2.1 Scheduling Using the SEN

To better suit the equipment control perspective, the scheduling model adopts the unit-

specific event-based continuous-time representation [10], where a scheduling horizon is

divided up into a finite number of event slots for each unit. These slots can be asyn-

chronous from one unit to another, thus the scheduling formulation asks for a group of

sequencing constraints to adjust the global sequencing behavior among different pieces
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of equipment. Moreover, for each process unit, its operating states in event slots are la-

beled with a series of binary variables. The remainder of this section will take the reader

through the five major aspects of scheduling considerations in the SEN. Variable notation

used in this chapter is listed in Sec. 3.5 (page 51).

Assignment Constraints

Assignment constraints allocate operating states in both units and time horizon:

X

s2S
j

wj,s,t 6 1 8j 2 J , t 2 T . (3.1)

In Eq. (3.1), binary variable wj,s,t indicates unit j is in operating state s in current time slot

t, if equal to 1. In the SEN representation, operating states of the same unit are exclusive

of each other because equipment cannot be shared. In addition, it is also possible that the

unit is not occupied by any operating states during certain periods of time such that all

binaries are equal to 0. In short, the assignment of operating states allows at most one

operating state to be active in a unit per event slot.

Material Balance

An event point is defined as the time point where an event slot starts (t is used as the

index for both the slot and point). At such a point, balance equations are enforced for

every material r to keep track of its available amount, before moving into the next time

interval. Moreover, at event point t, materials that are not used by any process operation

CHAPTER 3. INTEGRATION USING STATE EQUIPMENT NETWORKS 27



executed in event slot t are termed as excess materials Rr,t.

Rr,t = Rr,t�1 +
X

j2J p

r

Rp
j,r,t�1 �

X

j2J c

r

Rc
j,r,t, 8r 2 R, t 2 T , t > 1; (3.2a)

Rr,1 = Rr,0 �
X

j2J c

r

Rc
j,r,1, 8r 2 R; (3.2b)

Rr,0 = Rr, 8r 2 R0 ✓ R. (3.2c)

Equation (3.2a) states that the amount of excess material r at event point t equals its value

at the previous event point t � 1 adjusted by the amount consumed within slot t, and

produced within slot t � 1; however, at the first event point, no production has been

obtained yet (Eq. (3.2b)). A process material can be generated or consumed by one or

several units, denoted as subsets J p
r and J c

r , respectively. The initial amount of material

r (Rr,0) may be specified accordingly as stated in Eq. (3.2c). Usually, the initial amounts

of intermediate and final materials are assigned to the given parameters Rr, while the

amounts of raw materials of procurement cost remain variables, i.e., in Eq. (3.2c) set R0 =

R \Rraw.

Capacity Constraints

Typically, the extent of a batch operation is limited by the vessel size of the equipment

used and also pertinent process safety considerations. Equation (3.3) helps enforce these

restrictions on the batch size bj,t.

X

s2S
j

wj,s,tB
min
j 6 bj,t 6

X

s2S
j

wj,s,tB
max
j , 8j 2 J , t 2 T . (3.3)

Meanwhile, the amount of excess material Rr must stay within a certain range that is

stipulated by regulations such as safety stock, storage limit and so forth (Eq. (3.4)). Like

other unit-specific formulations, Rr does not necessarily agree with the material inventory
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in real time, since event points of units are most likely asynchronized. In this formulation,

we avoid this problem by assuming the UIS policy. Nevertheless, rigorous treatment of

other operational philosophies can be amended at the cost of additional variables and

constraints [120].

Rmin
r 6 Rr,t 6 Rmax

r , 8r 2 R, t 2 T . (3.4)

Timing Constraints

In this continuous-time formulation, the tth event point of batch unit j is denoted as Tj,t

and the associated processing time of the unit is called Tpj,t. Since the number of these

timing variables is proportional to the number of batch units, the SEN generally leads

to smaller size models compared to the conventional task-oriented formulations. To se-

quence operations, Eq. (3.5) is first applied to individual units. Here, no overlapping is

allowed for any neighboring pair of event slots of a unit, i.e., the starting time of an event

slot cannot be earlier than the time when its precedent slot ends.

Tj,t+1 > Tj,t + Tpj,t, 8j 2 J , t 2 T , t < |T | . (3.5)

Besides, to obtain appropriate alignments of event slots of different units that use the

same intermediate material, a second group of constraints is introduced. For instance, if

material r is produced by unit j at the end of time slot t, and another unit j0 has active

operating state s0 in event slot t0 (t < t0) that consumes the material, then event point t0 of

unit j0 should be placed after the end of slot t of unit j in real time.

Tj0,t0 > Tj,t + Tpj,t �H(2�
X

s2S
j

\Sp

r

wj,s,t �
X

s02S
j

0\Sc

r

wj0,s0,t0),

8r 2 R, j 2 J p
r , j

0 2 J c
r , j 6= j0, t, t0 2 T , t < t0 6 t < |T |

(3.6)
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This constraint is only enforced when both the production and consumption actions take

place, thus it is relaxed by a big M parameter H , which is the given scheduling horizon.

Also, all processing operations should be completed within the specified time horizon

for a valid schedule. For this reason, a group of bounding constraints are introduced as

Eq. (3.7).

Tj,t 6 H, 8j 2 J , t 2 T . (3.7a)

Tj,t + Tpj,t 6 H, 8j 2 J , t = |T | . (3.7b)

Quality Measurement

This set of variables and constraints does not appear in conventional batch scheduling

models, due to the assumption of well-executed recipes. Under this assumption, no qual-

ity giveaways will occur after running a batch for multiple times, and therefore there is no

need to retain quality information. However, when operational strategy varies in time, it

consequently results in variations in material quality, such as concentration distribution

in a mixture. To account for this in the integrated scheme, we define ⌘r,c,t as the fraction

of component c in excess compound material r (noted as Cr) at event point t, as well as

its counterpart �j,r,c,t for material r produced by unit j at the end of event slot t. Material

flows coming from different sources are likely to have nonidentical composition distri-

butions. A way to deal with this is to assume a blending-before-using regulation, that is,

newly produced materials are fully blended with inventories before they are used in the

next processing stage. Under this circumstance, an excess mixture after blending has the

averaged composition of all source flows, and the quality of the materials is measured by

the mean value as shown in Eq. (3.8).
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⌘r,c,t = (⌘r,c,t�1Rr,t�1 +
X

j2J p

r

�j,r,c,t�1R
p
j,r,t�1)/(Rr,t�1 +

X

j2J p

r

Rp
j,r,t�1),

8r 2 R, c 2 Cr, t 2 T , t > 1.

(3.8)

On the other hand, in order to ensure specific requirements of material quality, especially

for final products, additional constraints are enforced to restrict ⌘r,c,n. These constraints

can be generally written as Eq. (3.9).

H(⌘r,c,t, ⌘r,c) > 0, 8r 2 R, c 2 Cr, t 2 T . (3.9)

Here, ⌘r,c denotes the target product purity levels. Without a doubt, many other quality

targets can be applied, such as physical and mechanical properties. This is permissible

through the use of the SEN, because the quality of a (final or intermediate) product can be

essentially related back to the operating condition of associated operating states. Math-

ematically, the quality can be written as a function of the state and control variables of a

dynamic process model, which we discuss in the following section.

3.2.2 Dynamic Optimization in the SEN

The SEN-based framework offers a great opportunity to model hybrid discrete/continuous

systems. For an operation, the dynamic model is couched in continuous time with a finite

time length. In terms of process scheduling, the discrete decisions are represented via

discrete events taking place at distinct time points. Logical disjunctions are applied to tie

the discrete and the continuous parts together.
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Dynamic Models of Operating States

The residence time of a batch operation is finite but unknown in advance, which means,

dynamic optimization of an active operation state is performed within a receding time

horizon of a variable length. Transforming the time coordinate into unit length includes

normalizing the integration time to ⌧ 2 [0, 1] and applying the chain rule to all time

derivatives. With this, we can further write the dynamic model of an operating state as a

generic DAE system with bounded states, controls and processing times.

dz
j,t

(⌧)
d⌧ = fj,s(zj,t(⌧), yj,t(⌧), uj,t(⌧))Tpj,t

gj,s(zj,t(⌧), yj,t(⌧), uj,t(⌧)) = 0

zmin
j,s 6 zj,t(⌧) 6 zmax

j,s

ymin
j,s 6 yj,t(⌧) 6 ymax

j,s

umin
j,s 6 uj,t(⌧) 6 umax

j,s

Tpmin
j,s 6 Tpj,t(⌧) 6 Tpmax

j,s

8j 2 J , s 2 Sj, t 2 T (3.10)

In Eq. (3.10), all the variables are defined over unit j. However for different operating

states of the unit, the dynamic models are constructed in dissimilar manners. Further-

more, the dynamic DAEs used here are preferred to be of index one and reformulation

is recommended for higher index systems, so as to guarantee solution uniqueness and

numerical robustness. In addition to Eq. (3.10), the initial condition of the differential

state variable zj,n must be specified. Both the batch size and the inlet material quality are

considered as the input variables to the dynamic system, given in Eq. (3.11).

zj,t(0) = Zj,s(bj,t, ⌘r,c,t), 8j 2 J , s 2 Sj, r 2 Rc
s, c 2 Cr, t 2 T . (3.11)

Material production and consumption are important variables that link the intrinsic dy-

namic system of a batch unit to external plant environment. Often in practice, input
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materials are considered to be consumed at the beginning (⌧ = 0) while output products

become available when an operation ends (⌧ = 1). And over the time interval, the batch

unit is occupied. Here, material inputs and outputs are described via functions of state

variables as shown in Eq. (3.12). However, for semi-batch operations where feed materi-

als are continuously transferred into a unit, the consumption functions can be integrals

over the residence time.

Rp
j,r,t = Rp

j,s(zj,t(1), yj,t(1)), 8j 2 J , s 2 Sj, r 2 Rp
s, t 2 T ; (3.12a)

Rc
j,r,t = Rc

j,s(zj,t(0), yj,t(0)), 8j 2 J , s 2 Sj, r 2 Rc
s, t 2 T . (3.12b)

Likewise, product quality can be written as functions of state variables as well. Moreover,

a quality measurement function may be path dependent, i.e., in the form of an integral

over time ⌧ = [0, 1]. In general, Eq. (3.13) is able to represent product quality with proper

definitions of state variables.

�j,r,c,t = �j,s(zj,t(⌧), yj,t(⌧)), 8j 2 J , s 2 Sj, r 2 Rp
s, c 2 Cr, t 2 T , ⌧ 2 [0, 1]. (3.13)

Similar to excess materials, a product material of an operation may also be subject to cer-

tain quality standards, given by parameter �j,r,c. Usually, quality giveaways are allowed

only within a tolerance and quality restrictions are enforced:

�j,s(�j,r,c,t,�j,r,c) 6 0, 8j 2 J , s 2 Sj, r 2 Rp
s, c 2 Cr, t 2 T . (3.14)

Taking the operating cost of an operation into account is also important for the integrated

formulation, since it is one of the major concerns in running a batch plant. In particular,

utility charges possess a dominant percentage of the total cost, so that in this study we

consider them as the main subject. In a deterministic scenario without price fluctuation,

the cost of running unit j within slot t (Fj,t) depends on the operational conditions: the
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active operating state, process control inputs, execution times and batch size.

Fj,t = Fj,s(uj,t(⌧), T pj,t, bj,t), 8j 2 J , s 2 Sj, t 2 T , ⌧ 2 [0, 1]. (3.15)

Disjunctions of Batch Units

As we described earlier, in contrast to task-oriented networks, the SEN regards differ-

ent operating states as individual dynamic systems inside disjuncts but with a consistent

variable definition. Therefore, the disjunction for a unit comprises the disjuncts of the

operating states that the unit can perform. Besides, one additional disjunct is added to ac-

count for equipment idling. In the idle state, no dynamic equations are needed to describe

the behavior of the unit, and all of the interfacing variables such as material production

and consumption are fixed to zero. The modeling approach is usually addressed as gen-

eralized disjunctive programming (GDP) [121]. It recasts discrete optimization problems

into logic-based models, offering structural advantages both in model formulation and

solution [122]. In the context of the SEN, a disjunction captures the essence of exclusive

choices between operating states with the assistance of assignment constraints. With this

approach, dynamic models of operating states are organized by disjunctions as Eq. (3.16)

states.
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8j 2 J , t 2 T , ⌧ 2 [0, 1]. (3.16)

3.2.3 Integration with SEN

In the integrated formulation, the objective function is to maximize the revenue for a

given scheduling horizon, which is equal to product sales minus raw materials and op-

erating costs. The total amount of products are counted at the end of the last event slot.

Meanwhile feedstock is purchased in advance and cost of unit operations is accumulated

along the time horizon. The constraints of the integrated formulation come from both the
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scheduling and unit operation respects. In sum, the problem can be stated as follows:

max
X

r2R
prod

Pr(Rr,T +
X

j2J p

r

Rp
j,r,T )�

X

r2R
raw

PrRr,0 �
X

j2J ,T2T

Fj,t

s.t.

Assignment constraints Eq.(3.1)

Material balance Eq.(3.2)

Capacity constraints Eqs.(3.3)(3.4)

Timing constraints Eqs.(3.5)(3.6)(3.7)

Material quality Eqs.(3.8)(3.9)

Unit operation Eq.(3.16)

(3.17)

Tightening Constraints

A good lower bound from solving relaxed problems is always preferable for solving a

mixed-integer program. For this reason, a number of redundant constraints are recom-

mended to be added to the foregoing formulation. These auxiliary constraints help im-

prove the tightness of the formulation and therefore accelerate optimization search.

Tightening timing constraints

As studied in the context of conventional batch scheduling problems in linear form,

timing constraints are a critical determinant of the tightness of the corresponding

relaxed linear programs [120]. We keep the use of a good tightening constraint,

which states that the summation of processing times of any unit over all event slots

needs to be less or equal than the length of the scheduling horizon.

X

t2T

Tpj,t 6 H, 8j 2 J . (3.18)

Mass balance of a unit

Although the production and consumption of materials are (generally nonlinear)
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functions of state variables, the linear mass balance relationship still holds for each

process unit. The rationale for preserving the mass balance equations is to assure

the material conservation law for the relaxed problem, where the integrality require-

ment on binary variables is dismissed. In Eq. (3.19), balance equations are written

with respect to individual units.

X

r2Rp

j

Rp
j,r,t =

X

r2Rc

j

Rc
j,r,t, 8j 2 J , t 2 T . (3.19)

Overall Formulation

With all the elements at hand, the overall formulation is ready to be demonstrated. It

presents as an MLDO problem, including Eqs. (3.17)-(3.19). There are two important

factors that need attention when applying this formulation. First, as pointed out by Li and

Floudas [123], a proper number of event points is conducive to balance between the model

optimality and the computational complexity of an event-based scheduling formulation.

Second, the scale of dynamic models employed in the formulation is of equal importance

in determining its performance.

Reduced Models of Recipe-based Operating States

For batch units that do not require dynamic optimization in the SEN, the recipe-oriented

strategy can still be accommodated by reducing dynamic models. As the process control

inputs and processing times are fixed according to recipes, state profiles are only functions

of initial conditions of differential variables. Therefore for a dynamic model of an oper-

ating state, its performance indices such as production, consumption and operating cost

can be reduced to functions of the batch size and quality variables. These functions are

often in simple algebraic form. Furthermore, quality measurements of materials become

constants and constraints on quality measurements can be simplified or even discarded,
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when all operation sequences are restricted by recipes. Under this circumstance, the batch

size variables are the only ones left to quantify the performance of operating states, where

linear equations are frequently encountered. This gives rise to a reduced problem with-

out dynamic and quality variables. The reduced problem can be conceived as a typical

recipe-based batch scheduling problem and recast as an MILP. It is also worth to note that

any solution of the reduced problem completed with the constant values of the dynamic

and quality variables is still a feasible solution of the corresponding full space problem.

In fact, the best of these solutions is often a good initial guess to start with for solving the

full problem.

3.2.4 Solution Strategy

The problem is solved with two steps. First, we reformulate MLDOs to MIDOs. There

exist two ways to reformulate logical disjunctions, namely, the Big M method and the

convex hull relaxation (CHR). The convex hull relaxation generally leads to a tighter re-

laxed problem at cost of a larger problem size, compared with the Big M method. Hence,

the performance of these two approaches is problem dependent. In the integrated SEN

formulation, however, dynamic models of operating states are generally nonlinear and

nonconvex, such that applying the CHR is risky at cutting off the feasible region of an

MLDO. The Big M method can avoid disaggregating continuous variables that mainly

consist of the states and controls of dynamic models. Furthermore, we choose an en-

hanced version of the Big M method called the Multi-M reformulation. In this approach,

nonidentical Ms are allowed to be associated with different equations in a disjunct, and

they are set to values as small as possible, while being sufficiently large to preserve equiv-

alent feasibility. This technique provides a tighter reformulation than the conventional

Big M approach without increasing the size of a problem [124]. Next, we convert the

MIDO problem to the MINLP form using the simultaneous collocation strategy. In this
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study, we accept good feasible solutions identified by local algorithms within reasonable

solution times. Because the integrated formulation (3.17) has a relatively small number of

binary variables but many highly nonlinear equations, we choose the NLP-based branch

and bound approach (see Tab. 2.3). In addition, we develop an initialization phase to

accelerate the optimization algorithm: it first starts with obtaining the optimal solution

of the recipe-based case (often MILP), then a continuous nonlinear optimization of the

integrated model is carried out via fixing production sequences (binary variables) to the

recipe solutions. Finally, the integrated model is solved departing from the solution gen-

erated by the previous step that is consistent with dynamic models with controls fixed.

3.3 Case Studies

We test the integrated formulation in comparison with the recipe-based approach to show

the benefits of incorporating dynamics into scheduling. In the recipe-based approach,

batch recipes are given in advance which contain fixed values of control inputs and pro-

cessing times of operating states. With these, we reduce the integrated models to their

equivalent linear counterparts. The reduced models are recast and solved as MILPs (see

Appendix A) to determine the corresponding optimal schedules for the recipe-based case.

Nonetheless, the integrated models maintain full degrees of freedom in control, covering

detailed dynamic and quality information. In this work, we create all the models in the

GAMS [125] environment and apply CPLEX as the MILP solver, while SBB is used to

solve MINLPs employing CONOPT as the nonlinear subsolver. These two examples are

typical batch processes and the models are based on typical batch unit models such as

in Bhatia and Biegler [46], as well as other literature references. For detailed information

including scheduling parameters and unit dynamic models, please refer to Appendix A.
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Figure 3.2: State equipment network for the flowshop plant

3.3.1 A Flowshop Plant

The flowshop plant in this case study consists of a batch reactor, a filter and a distillation

column. Two species of products that differ only in purity are produced following the

same three-stage procedure described by the following material and operating states:

FeedA
Reaction�����! IntABC

Filtration������!
99KWasteC

IntAB
Distillation1�������!
99KRecycle1

Product1

FeedA
Reaction�����! IntABC

Filtration������!
99KWasteC

IntAB
Distillation2�������!
99KRecycle2

Product2

To represent the flow shop using the SEN framework, there needs to be three units (Re-

actor, Filter, Distillation Column) with four operating states (Reaction, Filtration, Distillation

1, Distillation 2) and eight material states (FeedA, IntABC, IntAB, WstC, Rcy1, Rcy2, Prod1,

Prod2) in the graph as shown in Fig. 3.2. For the two distillation states, Distillation 1 lasts

longer with a smaller constant reflux ratio. Thus, distillate Product 2 is purer than Product

1. As a typical reaction-separation process, reaction and distillation states are recognized

as the key stages where process dynamics can expect considerable benefits, so we embed

dynamic models for all these stages and operate the filter without optimization of con-

trol. The time horizon of interest lasts for 7.5 hours, and Product 1 and 2 are produced

once for each within the time window. The number of event slots are determined by run-

ning the recipe-based MILP model, where the total number of event slots increases from

a small value until no improvement on the objective can been achieved by adding more
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slots. In the integrated formulation, the same number of slots is used to align with the

recipe-based model, though a larger number may improve the optimum. In order to ap-

proximate the dynamics accurately, eight finite elements are used inside each event slot,

further with a two-point Radau collocation scheme.

We solve both the integrated and the recipe-based formulations and draw the optimal

schedules as Gantt charts in Fig. 3.3 for comparison. Active operating states are depicted

as patterned slots. In each slot, the number within brackets indicates the corresponding

event number, and the following number is the batch size. In this example, the sequences

of operations are the same for both formulations, but the timings are dissimilar. In both

optimal schedules, the reaction and the distillation states are executed twice. However

in the integrated case, the processing times show run-to-run variability in both dynamic

operating states. In addition, the optimal control profiles of the two dynamic units are

drawn in Figs. 3.4-3.5. The dotted lines sketch for the simple operating strategy specified

by the recipe, while the solid lines represent the optimal dynamic curves obtained from

the integrated model. It can be seen that an operating state may be executed differently

in its individual appearances in the integrated model, such that the degrees of freedom in

unit operations are fully explored by this method.

Some important data from the model statistics and solution are listed in Tab. 3.1. Because

the same number of event slots is used, the two models have equal numbers of binary

variables. However, the integrated model requires an additional group of continuous

variables and constraints to account for the process dynamics that the recipe model does

not take into account. These variables and constraints consequently increase the problem

size and bring in nonlinearity and nonconvexity. Since the scale of this example is rather

small, both models can be solved fully such that the gap between the original problem

and its relaxation is closed. In the recipe case, the optimum is even found at the presolve

stage by CPLEX. On the other hand, SBB explores 88 nodes and finds the best solution
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Figure 3.3: Gantt charts of the flowshop plant
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Figure 3.5: Optimal operating profiles for Distillation Column (flowshop)

at node 64 for the integrated model. In terms of the objective value, the net profit gained

by the integrated approach is 36.0% higher. This improvement of profitability is very

promising. As an outcome of the integrated decision-making approach, the reactor and

the column are operated cooperatively. For instance, in the manufacturing sequence of

Product 2, the reactor prepares a purer intermediate material compared with that of the

recipe-based model by using a longer processing time (2.24(hr) versus 2(hr)1) and a dy-

namic temperature curve (Fig. 3.4). To be more specific, after removing waste component

C by the filter, the purity levels of intermediate product IntAB are 90.7% and 89.5% (the

concentration of component B) for the integrated and the recipe-based approaches, re-

spectively. As a consequence, the distillation column is able to run with a 17.3% longer

processing time and a reflux profile that has a smaller average value than the recipe value

(see Fig. 3.5), but the products still meet the quality requirement on purity, which is at
1The former value comes from the integrated solution and the latter is from the recipe-based solution,

and the following pairs follow the same order.
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Table 3.1: Comparison of results for the flowshop example

Model Statistics
Type Var.(Discrete) # Nonlinear Var. # Cons. #

Recipe-based MILP 153(16) 0 499
Integrated MINLP 1789(16) 1240 4338

Model Solution
Profit(MU) CPU time (s) Node(Best) # Gap(%)

Recipe-based 407 0.11 0(0) 0.0
Integrated 554 46.92 88(64) 0.0

least 99.7% for both cases. In the integrated solution, more Product 2 can be obtained from

the distillation (26.3(kg) versus 21.3(kg)), though the batch size of the distillation oper-

ation is slightly less than that of the recipe-based schedule (see Fig. 3.3). To account for

the manufacturing costs, the same amount of raw materials are consumed in both cases,

while the operating costs are higher in the integrated case (512(MU) versus 457(MU)2).

In this example however, the increment in product sales is more than compensates for

the increased cost. There are probably other opportunities for trade-offs between prod-

uct sales and manufacturing costs by adjusting operational level and scheduling level

decisions. The integrated approach is able to take advantage of these opportunities, and

therefore improves the profitability of the overall process considerably.

3.3.2 A Jobshop Plant

In a jobshop plant, products follow dissimilar routes of processing steps such that se-

quencing is no longer trivial for a scheduler. In this example, the set of units in the plant

contains one heat exchanger, two reactors, two filters, one distillation column, and two

packaging lines. Three different varieties of products are produced via procedures de-

scribed by the following material and operating states.
2These numbers are the total operating costs for the production sequence.
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Both reactors operate Reaction 1 and 2, and similarly, the packaging lines and the distil-

lation column work for multiple purposes, but the heater and the filters have dedicated

functions. Again, we embed dynamic models for the reaction and distillation states. The

SEN representation of this problem is shown in Fig. 3.6. In this figure, parallel units that

share the same set of operating states are depicted in a combined manner, since the pos-

sible connections are the same. In this example, schedules are designed to predict a time

horizon of 10 hours, within which six event points are defined. The optimal schedules

of the recipe-based and the integrated approaches are compared in Fig. 3.7. The optimal

operating profiles of the three dynamic units are depicted in Figs. 3.8-3.10, and impor-

tant data are listed in Tab. 3.2. In the Gantt charts (Fig. 3.7), it can be seen that a larger

number of operations are executed in the integrated case, e.g., one more slot for Reaction

2 of Reactor 1. In the recipe-based schedule, Packaging 2 occurs only once and Packaging 3

takes place twice; but it is the opposite in the integrated schedule so that the production

of Product 2 is much higher in this case. As described earlier, the production sequence of

Product 2 requires an additional distillation operation than that of Product 3. As a result,

Product 2 is purer (Product 2 : 99.3% versus Product 3 : 74.0%) and of a higher market

price (Product 2 : 50(MU/kg) versus Product 3 : 20(MU/kg)). The integrated schedule leads to a

better production of Product 2 that consequently contributes to the increase of profit (see

Tab. 3.2), and one should notice that this schedule is not optimal nor even feasible for the

recipe scheme. The result here shows when controls are allowed to vary, the design of

batch schedules becomes more flexible. For this reason, one may obtain a product portfo-

lio that differs from the recipe-based method, and the portfolio can be more profitable as

well.
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Figure 3.6: State equipment network for the jobshop plant
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Figure 3.7: Gantt charts of the jobshop plant
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Figure 3.8: Optimal operating profiles for Reactor 1 (jobshop)
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Figure 3.10: Optimal operating profiles for Distillation Column (jobshop)

Table 3.2: Comparison of results for the jobshop example

Model Statistics
Type Var.(Discrete) # Nonlinear Var. # Cons. #

Recipe-based MILP 676(90) 0 1079
Integrated MINLP 4978(90) 2292 12507

Model Solution
Profit(MU) CPU time (s) Node(Best) # Gap(%)

Recipe-based 1374 0.366 288(199) 0.0
Integrated 1935 9564 5000(1602) 67.9
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There are three units that operate with dynamic operating states in this example: Reactor

1, Reactor 2 and Distillation Column. In the optimal integrated schedule, Reactor 1 conducts

Reaction 1 once and Reaction 2 three times consecutively in its first four event slots. For

these four active operating states, the temperature profiles vary with time but stay within

different feasible regions due to different restrictions of operations. Again, the integrated

model is much larger in size and better in profitability. In this more complex example, we

observe significant increase of computational times for the integrated model as the num-

ber of discrete variables grows. Moreover, it becomes prohibitively expensive to reduce

the remaining gap to a small value. Because during the branch and bound procedure,

integral feasible incumbents are only discovered at or just above the leaf nodes, the im-

provement of the lower bound is rather slow and pruning large size subtrees is hardly

observed. However, SBB is able to discover good feasible solutions in reasonable times

with its default tree search algorithm. For instance, in the result of this example, it finds a

good solution at node 1602 after 3022 seconds search, and spends the rest of time closing

the gap until the maximum node limit 5000 is exceeded. From the objective function, the

net profit of the integrated approach is 40.8% higher than the recipe-based model, which

is even more promising than the previous flowshop case.

3.4 Concluding Remarks

The integrated formulation for scheduling and dynamic optimization has been developed

within the state equipment network framework that serves for multiproduct and multi-

purpose batch plants. The basic elements of the SEN we use in this work are identified

as material state, equipment and operating state. With this definition, we focus on the allo-

cation of operating states over the scheduling horizon and process units to design batch

schedules and provide optimal control strategies of active operating states. The proposed

formulation is tested on flowshop and jobshop case studies and shows advantages over
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the recipe-based approach, because dynamic optimization of unit operations leads to bet-

ter overall performance of batch units.

This study shows strong evidence of economic benefits that the integration strategy is

able to deliver to chemical plant operations. This motivates us to investigate industrial

problems that represent the current practice in the chemical industry. The task is challeng-

ing due to additional complexity coming from more realistic scheduling constraints and

sophisticated dynamic modes. However, we expect advanced optimization strategies are

able to make improvements to current practice in the industry.
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3.5 SEN Model Notation

Indices

j j 2 J units
r r 2 R materials
s s 2 S operating states
t t 2 T event slots/points (staring points of event slots)
c c 2 C components
k k 2 K finite elements
q q 2 Q collocation points

Sets

J units
R materials
Rprod final products
Rraw raw materials
S operating states
T event slots
Js units that have operating state s

J p
r units that produce resource r

J c
r units that consume resource r

Rp
s materials produced in operating state s

Rc
s materials consumed in operating state s

Rp
j materials produced in unit j

Rc
j materials consumed in unit j

Sj operating states that appear in unit j
Sp
r operating states that produce material r

Sc
r operating states that consume material r

Cr components of material r

Parameters

T cardinality of set T
Pr price of material r
H scheduling horizon
Bmax

j , Bmin
j upper and lower bound of batch size for unit j

Emax
r , Emin

r upper and lower bound of excess material r
Er initial amount of material r
⌘r,c,1 initial concentration distribution of r
⌘r,c quality requirement for excess material r
�j,r,c quality requirement for material r produced by unit j
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Variables

wj,s,t binary variable indicate state of unit j within event slot t
Fj,t operating cost of unit j within event slot t
Er,t amount of excess material at event point t
Er,0 amount of material r at the beginning of time horizon
Rp

j,r,t production of r by unit j at the end of slot t
Rc

j,r,t consumption of r by unit j at event point t
bj,t batch size of unit j in state s within event slot t
Tj,t beginning time of event slot t
Tpj,t processing times of unit j within event slot t
⌧ normalized time
⌘r,c,t fraction of component c in r at event point t
�j,r,c,t fraction of component c in r produced by j at the end of t

Superscripts

min minimum
max maximum
p production
c consumption
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Part II

Industrial Applications on

Polymerization Processes
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A Short Disclaimer

This study aims at developing a systematic optimization framework

for real-world processes, following the concept of integrated schedul-

ing and dynamic optimization. Therefore, it includes basic components

such as polymerization reactor modeling and scheduling algorithm de-

velopment, as well as the integrated optimization method. The work

in collaboration with The Dow Chemical Company. The example pro-

cesses used in the following chapters are modified from one of Dow

Chemical’s polymer processes for optimization method development,

and they do not represent actual operation practice.
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Chapter 4

Reactor Model Development and

Homopolymerization Recipe

Optimization

In this chapter, we develop rigorous first-principles models for semi-batch polyether

polyol reactors, and also perform dynamic optimization to optimize the reactor opera-

tion. The scope of the problem is limited at the unit operation level: a single reactor with

individual polymerization runs. The development of dynamic reactor models pave the

way for the future development of integrated optimization strategies. The reactor model

is based on first-principles including the mass and population balances, reaction kinetics

and vapor-liquid equilibria. Next, the obtained differential algebraic model is reformu-

lated by applying a nullspace projection method that results in an equivalent dynamic

system with better computational performance. The reactor model is validated against

plant data by adjusting model parameters. In the recipe optimization dynamic optimiza-

tion problem, the polymerization time is minimized, given a target product molecular

weight as well as other requirements on product quality and process safety. The dynamic
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optimization problem is solved by using the simultaneous collocation strategy and the

interior point method. A case study example for polypropylene glycol polymerization is

discussed. The result shows a good match between the model prediction and real plant

data for process simulation, and the optimization approach is able to significantly reduce

the batch time by 47%.

4.1 Background Information

Polyether polyols serve as important raw materials in the urethane industry, which repre-

sents roughly five percent of the worldwide polymer consumption [126]. Around ninety

percent of all flexible foams produced today are made from polyether type polyols [127].

Other important applications of polyether polyols include polyglycols and surfactants.

Similar to other commodity polymers, product quality is measured in many aspects and

quantified in indices such as molecular weight (MW) and polydispersity index (PDI).

Commercial alkoxylation processes are usually conducted through the reaction of alky-

lene oxides (e.g. ethylene oxide (EO) and/or propylene oxide (PO)) with starters (a.k.a.

initiators) containing active hydrogen atoms (e.g. alcohols, amines, or even water). In

practice, the polymerization process is catalyzed by a basic catalyst such as potassium

hydroxide (KOH) at temperatures above 100 �C. A typical example is the anionic poly-

merization reaction of PO, the modeling of which has been extensively studied from both

academic and industrial [127] perspectives. Guibert et al. [128] and Di Serio et al. [129]

studied the kinetics of propoxylation processes catalyzed by KOH. In the latter, a kinetic

model addressing the initiation, propagation and cation exchange reactions was devel-

oped as well as vapor-liquid equilibrium (VLE) relations based on modified Raoult’s law

and Wilson equations. However, both works have not considered the effect of the proton

transfer reaction, which gives rise to a small amount of unsaturated (unsat) monofunc-

tional polymer chains with allyl and propenyl end groups. This reaction leads to im-
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purity in the product polyols that is detrimental for further synthesis of polyurethanes.

The transfer reaction was investigated in 1960 by Simons and Verbanc [130] and more

recently by Heatley et al. [131]. Their research shows that the transfer reaction is typi-

cally two orders of magnitude slower than the propagation reaction and is suppressed

by hydrogen bonding of hydroxyl groups to active ion pairs. From the industrial point

of view, Wegener et al. [132] discussed the use of alternative catalyst systems to reduce

the concentration of unsaturated chains and proposed a formula for estimating the ac-

tual functionality of polyether polyols taking into account the catalyst type. In addition,

Di Serio et al. [133] compared different reactor types commonly adopted in industry for

ethoxylation and/or propoxylation and the key factors examined included productivity,

energy efficiency and safety. Although widely practiced in experimental research and

industrial manufacturing, a comprehensive dynamic reactor model of the propoxylation

process, especially with accurate quantitative description of the unsat chain population,

is desired for process analysis and technology improvement. We first develop a com-

prehensive first-principles process model in terms of conservation laws, reaction kinetics

and phase equilibria, which results in a system of DAEs. Using the developed model,

mathematical programming techniques can be conveniently carried over to optimize the

process performance. However, detailed modeling of polymerization processes gener-

ally leads to large-scale models, for which the computational issue should be carefully

addressed, particularly for the sake of optimization. Owing to the advance of dynamic

optimization techniques, many successful applications haven been reported to improve

various polymer product categories, e.g., low-density polyethylene [134], high-impact

polystyrene [90], gas-phase polyolefin [135, 136], polyurethane [137], and seeded suspen-

sion styrene polymerization [138]. The underlying principle of these research studies is

to use mechanistic models based on first principles to predict the dynamic behavior of

the process and optimize the process performance by adjusting process control decisions

guided by solving associated dynamic optimization problems.

CHAPTER 4. REACTOR MODEL DEVELOPMENT AND HOMOPOLYMERIZATION . . . 57



4.2 Reactor Model Development

The propoxylation process is a semi-batch process that can be carried out in a conven-

tional stirred-tank reactor equipped with heat exchangers for heating and cooling. The

starter is formed by mixing the alcohol and catalyst in an appropriate ratio; and in cer-

tain applications, water is also added which causes hydrolysis of alkylene oxides to form

additional alcohols. After the starter is generated, the monomer is fed into the reactor

continuously to grow polymers. External heat is required in the start-up stage and soon

after the polymerization reactions have been kicked off, a significant amount of heat is

released from the reactions and needs to be removed from the tank.

4.2.1 Reaction Mechanism

During the anionic polymerization process, each polymer chain undertakes the initiation,

propagation, cation exchange and proton transfer reactions. A chain is started when an

alkaline anion first reacts with PO, and then the resulting oxy-propylene anion can un-

dertake propagation steps by successively adding monomers through the propagation re-

action. The reactivities of chains are affected by the functional end groups; that is, chains

ended by hydroxyl groups become dormant while chains with potassium ion can pre-

serve high activity. During polymerization, exchanges of the end groups between species

are observed and it is well known that these reversible reactions are very fast, such that

the equilibrium does not influence the polymerization, beyond ensuring that all hydroxyl

groups in the system serve as equivalent sites of propagation [131]. Lastly, unsaturated

byproducts are formed due to the tendency for rearrangement of PO to allyl alcohol. The

process can be classified as a living polymerization system, since the transfer reaction

does not terminate chain growth and each chain retains the ability to undertake infinite

propagation owing to the presence of the exchange reactions. However, it is worth noting
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that the transfer reaction creates new chains that live for different but shorter periods than

the initial ones.

The following notation is used in the remainder of the article. Let M denote the monomer

PO. Let Pn denote the chain CH3(PO)n, which comprises one of the branches of a poly-

meric alcohol and n indicates the number of the repeating unit. Meanwhile, Un represents

the unsat chains with double-bond end groups CH2 = CHCH2(PO)n. In addition, W is

introduced to account for the presence of water in the initial charge. Furthermore, de-

pending on the different functional end groups, we define:

Gn to denote the growing product chains of length n (PnO�K+);

Dn to denote the dormant product chains of length n (PnOH);

Qn to denote the growing unsat chains of length n (UnO�K+);

Rn to denote the dormant unsat chains of length n (UnOH).

The reaction schemes can be therefore summarized in Tab. 4.1. In this work, the kinetic

parameters for the product and unsat chains are assumed to be identical for all reactions.

Moreover, the asymmetric characteristic of the PO molecule may produce both primary

and secondary alcohols in the initiation step, but the latter are found to be dominant [139].

Next in the propagation reaction, the ring-opening insertion of PO can be conducted by ei-

ther head-to-head, head-to-tail, or tail-to-tail additions (here head refers to CH(CH3) group

and tail refers to CH2 group). It is also shown by Heatley et al. [140] that the head-to-tail

placement prevails and its proportion is normally above ninety percent. In this study, the

minor reactions stated above are ignored for simplicity. For the transfer reaction, note

that the isomerization of allyl end groups to propenyl end groups is not discussed in this

work. Finally the acid-base proton exchange reactions take place within and across the

major and minor populations, and these reactions are reversible and approach equilib-

rium states. They are the fastest reactions in anionic alkoxylation, and their equilibrium

constants are around unity since the acidity of the participating species is similar [141].

Furthermore, the exchange reaction between G and D is expressed with a single reaction
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Hydrolysis:
W+M

kh�! 2D0

Initiation:
G0 +M

ki�! G1

Q0 +M
ki�! Q1

Propagation:
Gn +M

kp�! Gn+1 (n > 1)

Qn +M
kp�! Qn+1 (n > 1)

Transfer:
Gn +M

kt�! Dn +Q0 (n > 0)

Qn +M
kt�! Rn +Q0 (n > 0)

Exchange:
Gn +Dm

ke�! Dn +Gm (n,m > 0)

Qn + Rm
ke�! Rn +Qm (n,m > 0)

Gn + Rm
k
e�*)�
k
e

Dn +Qm (n,m > 0)

Table 4.1: Reactions in anionic PO polymerization

rate, because the reactants and products are symmetric, which also applies for Q and R.

However, the cross-population exchange reaction needs two rates to describe it.

4.2.2 First-principles Model

The first-principles model consists of population balance equations of polymer chains

and monomers, overall mass balances and liquid density correlations, as well as VLE

equations. Reactor temperature and monomer feed rate are time-dependent operating

decisions, rendering degrees of freedom for process recipe design. According to the re-

action schemes described earlier, the population balance equations for individual species
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can be established as follows:

d(V [W])

dt
=� V kh[W][M], (4.1a)

d(V [G0])

dt
=� V ki[G0][M]� V kt[G0][M]� V ke[G0]

NX

m=0

([Dm] + [Rm])

+ V ke[D0]
NX

m=0

([Gm] + [Qm]),

(4.1b)

d(V [G1])

dt
=V (ki[G0]� kp[G1])[M]� V kt[G1][M]� V ke[G1]

NX

m=0

([Dm] + [Rm])

+ V ke[D1]
NX

m=0

([Gm] + [Qm]),

(4.1c)

d(V [Gn])

dt
=V kp([Gn�1]� [Gn])[M]� V kt[Gn][M]� V ke[Gn]

NX

m=0

([Dm] + [Rm])

+ V ke[Dn]
NX

m=0

([Gm] + [Qm]), n = 2, . . . N � 1,

(4.1d)

d(V [GN])

dt
=V kp([GN�1])[M]� V kt[GN][M]� V ke[GN]

NX

m=0

([Dm] + [Rm])

+ V ke[DN]
NX

m=0

([Gm] + [Qm]),

(4.1e)

d(V [D0])

dt
=V 2kh[W][M] + V kt[G0][M] + V ke[G0]

NX

m=0

([Dm] + [Rm])

� V ke[D0]
NX

m=0

([Gm] + [Qm]),

(4.1f)

d(V [Dn])

dt
=V kt[Gn][M] + V ke[Gn]

NX

m=0

([Dm] + [Rm])

� V ke[Dn]
NX

m=0

([Gm] + [Qm]), n = 1, . . . N,

(4.1g)

d(V [Q0])

dt
=� V ki[Q0][M] + V kt

NX

n=0

([Gn] + [Qn])[M]� V kt[Q0][M]

� V ke[Q0]
NX

m=0

([Dm] + [Rm]) + V ke[R0]
NX

m=0

([Gm] + [Qm]),

(4.1h)
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d(V [Q1])

dt
=V (ki[Q0]� kp[Q1])[M]� V kt[Q1][M]� V ke[Q1]

NX

m=0

([Dm] + [Rm])

+ V kb[R1]
NX

m=0

([Gm] + [Qm]),

(4.1i)

d(V [Qn])

dt
=V kp([Qn�1]� [Qn])[M]� V kt[Qn][M]� V ke[Qn]

NX

m=0

([Dm] + [Rm])

+ V ke[Rn]
NX

m=0

([Gm] + [Qm]), n = 2, . . . , N � 1,

(4.1j)

d(V [QN])

dt
=V kp([QN�1])[M]� V kt[QN][M]� V ke[QN]

NX

m=0

([Dm] + [Rm])

+ V ke[RN]
NX

m=0

([Gm] + [Qm]),

(4.1k)

d(V [Rn])

dt
=V kt[Qn][M] + V ke[Qn]

NX

m=0

([Dm] + [Rm])

� V ke[Rn]
NX

m=0

([Gm] + [Qm]), n = 0, 1, . . . N.

(4.1l)

Here, V is the volume of the liquid in the reactor and [ · ] denotes the liquid phase con-

centration. Moreover, to make computation tractable, a sufficiently large number N is

chosen to denote the length of the longest chains that are recorded in the model and

chains beyond N are ignored. In addition, chains with N repeating units are assumed not

to undertake propagation reactions. Commercial polyether type polyols typically have

chain lengths less than 100 [142] so that the resultant model sizes remain manageable

even when the detailed population spectrum is calculated. For the monomer balance, the

external feed is entering the reactor at rate F , and the monomers are consumed by all four

reactions (hydrolysis, initiation, propagation and transfer):

d(V [M])

dt
= F�V (kh[W]+ki([G0]+[Q0])+kp

N�1X

n=1

([Gn]+[Qn])+kt

NX

n=0

([Gn]+[Qn]))[M] (4.2)
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For the total mass balance, as the monomer enters the system, we have:

dm

dt
= FMWPO, (4.3)

where MWPO denotes the molecular weight of PO and m is the total mass of the polymer-

ization system. The liquid density is solely dependent on the reactor temperature since

the effects of molecular weight on density are found to be minor. Therefore, the liquid

volume is calculated by [143]:

V = m(10�6 + 7.576⇥ 10�10(T � 298.15)). (4.4)

Although the polymerization reactions occur only in the liquid phase, a faithful VLE

model is still important for the purpose of process monitoring in manufacturing prac-

tice. Reactor pressure measures are often convenient to obtain, and can be used to imply

the unreacted PO concentration in the liquid, which is difficult and also risky to measure

directly. For a dummy volatile component i, the basic equation of the vapor-liquid phase

equilibrium is written as

Pi = aiP
sat
i , (4.5)

where, Pi, ai and P sat
i are the partial pressure, liquid phase activity and saturated vapor

pressure of component i, respectively. The total pressure of the reactor P can be obtained

by

P =
X

i

Pi. (4.6)

Typically, PO is considered to be volatile, and other possible volatile components include

water and starters. However, propylene oxide polyols are liquids in the molecular weight

range of 200-6000 [143]. It follows the assumption that no polymers exist in the vapor

phase. In addition, Eq. (4.6) may be adjusted in the presence of nitrogen in the reactor by

also including the partial pressure over this non-volatile component. The vapor pressure
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can be calculated by using the Antoine equation:

log10 P
sat
i = Ai � Bi

T + Ci
. (4.7)

For the polymer-solvent equilibrium, the Flory-Huggins theory [144] provides a rational

method to develop an expression for the activity of a solvent in a polymer. In this study,

the liquid mixture contains multi-component solvents that complicates the calculation.

A simple yet effective approximation is to treat the system as a pseudo binary mixture,

where the solvent is PO (denoted in index s) and the other components are assumed to

be the polymer (denoted in index p). The simplification is reasonable since by the time

polyols are present in sufficient amounts to dominate VLE, both initiator and water have

been almost fully reacted. Hence, the activity of PO is equal to:

ln as = ln�s + (1� 1

l
)�p + ��2

p. (4.8)

In Eq. (4.8), rather than using mole fractions, the fractions of lattice sites occupied by

the solvent molecule �s and polymer �p are applied. The interaction parameter � is

non-dimensional and accounts for the energy of interdispersing polymer and solvent

molecules. While polyols are small polymers compared to many other commercial ones,

the effect of the number average chain length l still needs to be taken into account when

calculating the lattice fraction, shown as below:

�s =
ns

ns + npl
; (4.9a)

�p =
npl

ns + npl
. (4.9b)
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Here, ns and np represent the numbers of molecules of the solvent (PO) and the polymer,

respectively, calculated as

ns = V [M]; (4.10a)

np = V ([W] +
NX

n=0

([Gn] + [Dn] + [Qn] + [Rn])). (4.10b)

On the other hand, the activities of other volatile components such as water can be treated

as constants for simplicity. To this end, the first-principles reactor model for describing

the propoxylation process is complete. This model comprises differential and algebraic

equations, and the involved differential and algebraic state variables can reveal detailed

information of the system. The population distribution for all species is recoded in a chain

length basis over the operation time horizon.

4.2.3 Reformulation of the Exchange Reactions

Synergistic fast and slow dynamic modes are often encountered in modeling chemical

dynamic systems and cause difficulties in their numerical solution. Therefore, a reformu-

lation procedure is required but it is often non-trivial to obtain by intuition, giving correct

asymptotic characteristics. The reformulation and model reduction of such systems have

been investigated by Daoutidis and coworkers, particularly in the context of solvent re-

cycles [145]. The underlying idea is to separate the fast and the slow components in a

DAE system by describing the fast ones with algebraic equations capturing their quasi-

steady states. As a result, the reformulated system becomes less stiff but with the same

asymptotic behavior. As noted earlier, among the polymerization reactions, the rates of

the exchange reactions are significantly higher than those of the other reactions. Model-

ing the polymerization system consequently leads to a two-time-scale model and incurs

the stiffness issue of the resulting DAE model derived in Eqs. (4.1a)-(4.1l). To address this
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challenge, a nullspace projection method is discussed in the sequel, following a similar

idea as the aforementioned one.

Nullspace Projection

We develop a systematic reformulation procedure of reaction equation systems that is

based on a nullspace projection method. Here, we consider a general reaction system

given by:

ẋ = Ar(x) + g(t), (4.11)

where x 2 Rn
x is the vector of component concentrations/populations, r(x) 2 Rn

r is the

vector of reaction rates, A 2 Rn
x ⇥ Rn

r is the coefficient matrix, and g(t) 2 Rn
x represents

the external input such that g(t) 6⌘ 0 for fed-batch reactions and g(t) ⌘ 0 for batch re-

actions. For the reactions, we partition r(x) so that reactions that reach equilibrium are

separated from those that do not, and the coefficients in matrix A are partitioned accord-

ingly, written as:

ẋ =


A1 A2

�
2

64
r1(x)

�r2(x)

3

75+ g(t). (4.12)

In the equation, �r2(x) represents the rates of equilibrium reactions, where � is a large

positive number that can approach infinity. Next, a nullspace matrix Z is introduced

such that ZTA2 = 0, and a corresponding matrix Y spanning the range space of A2 is also

defined, ensuring

Y Z

�
2 Rn

x⇥Rn
x is non-singular. Multiplying the transposed matrix


Y Z

�T
to the two sides of Eq. (4.12) gives:

YTẋ = YTA1r1(x) + �YTA2r2(x) + YTg(t), (4.13a)

ZTẋ = ZTA1r1(x) + ZTg(t). (4.13b)
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Eq. (4.13b) does not include equilibrium rates, and it is kept as a part of the reformulated

system. On the other hand, the matrices in Eq. (4.13a) can be further rearranged and

partitioned. On the right-hand-side, �YTA2r2(x) corresponds to the effect of equilibrium

rates and it can be separated into a zero and a non-zero part, and Y can be partitioned

accordingly. Let f(x) denote the non-zero elements in YTA2r2(x), and partitioning these

elements leads to

2

64
YT

a

YT
b

3

75 ẋ =

2

64
YT

a

YT
b

3

75A1r1(x) +

2

64
0

�f(x)

3

75+

2

64
YT

a

YT
b

3

75 g(t). (4.14)

When � ! 1, the rows corresponding to zeros in the second term on the right-hand-side

(zero rows in �YTA2r2(x)) remain unaffected and f(x) = 0 is required for the rest of the

rows in the equation. In fact, f(x) = 0 sketches the equilibrium manifold of the fast reac-

tion system, as a quasi-steady-state solution that should be included in the reformulated

system. In sum, the reformulated DAE system is shown as below:

YT
a ẋ = YT

a A1r1(x) + YT
a g(t), (4.15a)

f(x) = 0, (4.15b)

ZTẋ = ZTA1r1(x) + ZTg(t). (4.15c)

Reformulated Propoxylation Reactor Model

Applying the nullspace projection method, the reformulated model can be derived after

a sequence of matrix operations. For detailed information please refer to Appendix B. As

a result of the reformulation procedure, two pseudo-species X and Y are introduced:

Xn = Gn +Dn, n = 0, 1, . . . , N ;

Yn = Qn + Rn, n = 0, 1, . . . , N.

(4.16)
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In fact, X refers to the polyol product and Y the unsaturated byproduct. Following the re-

formulated system shown in Eqs. (4.15a)-(4.15c), the nullspace multiplication (Eq. (4.15c))

leads to a group of population balances that are not affected by the exchange reactions,

which can be written in the form of concentrations:

d(V [X0])

dt
= V (2kh[W]� ki[G0])[M], (4.17a)

d(V [X1])

dt
= V (ki[G0]� kp[G1])[M], (4.17b)

d(V [Xn])

dt
= V kp([Gn�1]� [Gn])[M], n = 2, . . . , N � 1, (4.17c)

d(V [XN])

dt
= V kp[GN�1][M]; (4.17d)

d(V [Y0])

dt
= �V ki[Q0][M] + V kt

NX

n=0

([Gn] + [Qn])[M], (4.17e)

d(V [Y1])

dt
= V (ki[Q0]� kp[Q1])[M], (4.17f)

d(V [Yn])

dt
= V kp([Qn�1]� [Qn])[M], n = 2, . . . , N � 1, (4.17g)

d(V [YN])

dt
= V kp[QN�1][M]. (4.17h)

In Eq. (4.13a), the range space term YTA2 has two zero rows, corresponding to the balance

equations of the water and monomer, and Eq. (4.15a) renders the same equations as stated

in Eqs. (4.1a) and (4.2). The quasi-steady-state manifolds are obtained by using Eq. (4.15b):

[Gn]
NX

m=0

([Dm] + [Rm]) = [Dn]
NX

m=0

([Gm] + [Qm]), n = 0, 1, . . . , N ; (4.18a)

[Qn]
NX

m=0

([Dm] + [Rm]) = [Rn]
NX

m=0

([Gm] + [Qm]), n = 0, 1, . . . , N. (4.18b)

To this end, the reformulation procedure is complete with Eqs. (4.16), (4.17) and (4.18).

Furthermore, the total amount of catalyst is equal to the amount of chains with K+ ions,
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denoted as:

nc = V
NX

n=0

([Gn] + [Qn]); (4.19)

and additionally, we introduce ni as the total number of moles of the initiator:

ni = V
NX

n=0

([Gn] + [Dn]); (4.20)

and the total moles of the unsaturated chains:

nu = V

NX

n=0

([Qn] + [Rn]). (4.21)

As a result, Eqs. (4.16) and (4.18) can be further reduced to:

Xnnc = Gn(ni + nu), n = 0, 1, . . . , N ;

Ynnc = Qn(ni + nu), n = 0, 1, . . . , N.

(4.22)

By using the definition of nc, the right hand side of Eq. (4.17e) can also be simplified

because nc is constant for most applications. In sum, the reformulated model consists of

Population balances Eq. (4.17)

Quasi-steady states Eq. (4.22) and definitions in Eqs. (4.19)- (4.21)

Additional equations Monomer balance (Eq. (4.2))

Volume determination (Eqs. (4.3) and (4.4))

VLE relations (Eqs. (4.5)- (4.9))

Note that although the original stiff differential systems can be numerically handled by

the Gear type methods, the nullspace projection procedure is a better solution. It gives

an open equation system for optimization purposes. Also, the reformulated model is su-

perior to the earlier one because it eliminates the fast dynamic modes in the differential

equations, such that the DAE system becomes less stiff with a reduced number of differ-

ential equations.
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4.3 Recipe Optimization Formulation

The recipe for a batch/semi-batch operation is often designed off-line based on the experi-

ence of past production runs. For many industrial processes, process recipe improvement

is only carried out manually based on laboratory experiments and process simulation

programs. However, given the dynamic model developed above, more rigorous model-

based optimization methods can be exploited, providing more insight of the process and

accurate calculation results. In this study, the optimization problem is formulated to mini-

mize the batch time by designing the optimum reactor temperature and monomer feeding

profiles. The constraints on the process deal with the final product quality and process

safety regulations, including the target product molecular weight as well as thresholds

on byproduct formation, unreacted monomer, reactor temperature, etc.

In the polyol industry, a number of quantities have been widely used to characterize the

product performance, such as the molecular weight, level of unsaturated monofunctional

chains (termed as unsat number in the remainder), functionality, hydroxyl number, and

polydispersity index. These indices are greatly influenced by the choice of the starting

alcohol and initial charge condition and are also subject to the variation of operating con-

ditions. All these quality indices can be readily calculated given the type of the starter

used and the population distribution of the polyol. In this work, we consider the target

number average molecular weight and unsat number as key quality requirements that the

optimized recipe should satisfy. To calculate the number average molecular weight, we

introduce the notation of polymer moments. By definition, the kth moment of a polymer

species (e.g. X) is written as

�k =
NX

n=1

nkXn, k = 0, 1, . . . , (4.23)

and the number average molecular weight can then be defined further as the ratio of the
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first and zeroth moment, multiplied by the molecular weight of the repeating unit:

Mn = MWPO
�1
�0

. (4.24)

Note that the ratio of the first and zeroth moment also represents the number average

chain length of the polymer. Similarly, for the weight average molecular weight Mw, we

define

Mw = MWPO
�2
�1

. (4.25)

Moreover, the ratio of the Mw over Mn defines PDI, which is an index that accounts for

the spread of the molecular distribution:

PDI =
Mw

Mn
. (4.26)

The unsat number calibrates the concentration of monofunctional chains in the final prod-

uct. It is defined as the milliequivalents of unsat chains per total mass:

unsat = 1000
nu

m
. (4.27)

The monofunctionality is undesired because it generally decreases the functionality that

in consequence strongly affects the viscosity of the product; thus, corresponding upper

bounds should be enforced with regard to specific product categories and applications.

Also, the concentration of unreacted monomer in the final polyol product should be main-

tained under proper limits. Conventionally, it is measured in parts per million (ppm), as

shown below:

unrct = MWPO
M

m
⇥ 106. (4.28)

Functionality is defined as the ratio of the total amount of hydroxyl groups from the

CHAPTER 4. REACTOR MODEL DEVELOPMENT AND HOMOPOLYMERIZATION . . . 71



initiator and monol over the total amount of all types of polymer chains:

f =
NOHni + nu

ni + nu
. (4.29)

In the definition, NOH corresponds to the number of branches of the initial alcohol molecule

(NOH = 2 for propylene glycol). And also, the hydroxyl equivalent weight (HEW) is de-

fined as the number-average molecular weight divided by the functionality:

HEW =
Mn

f
. (4.30)

Lastly, the number of hydroxyl groups (OH#) gives the hydroxyl content of a polyol,

calculated by using the equivalent weight of KOH:

OH# =
1000MWKOH

HEW
. (4.31)

In addition, process safety is always a vital concern in the polymerization reaction pro-

cess. To derive the safety constraints, we first write a simplified energy balance equation

of the reactor by only considering the propagation reaction as the source of reaction heat:

d(mHb)

dt
= F�HfMWPO + rp(��Hp)MWPO � q, (4.32)

where rp is the lumped rate of all propagation reactions, and the heat of reaction ��Hp

is assumed to be constant. Also, q denotes the heat removal rate from the heat exchanger

that can be determined by using the overall heat transfer coefficient U and area A:

q = UA(T � Tw), (4.33)

where Tw is the temperature of the water used by the heat exchanger, and it is assumed to

be constant. In Eq. (4.32), the enthalpies of the feed flow and bulk liquid are Hf and Hb,
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respectively, which are defined as:

Hi =

Z
cp idT, i = {f, b}. (4.34)

The heat capacity of the feed monomer cp f is cubic with respect to temperature, and the

bulk heat capacity cp b can be estimated by the heat capacity of the product polyol, which

is almost linear with temperature.

For the first safety constraint, the heat removal duty cannot exceed the allowed maximum

cooling capacity of the heat exchanger attached to the reactor:

rp(��Hp)MWPO 6 F (��Hf )MWPO + UA(T � Tw). (4.35)

Here, we assume the monomer feed enters at a constant temperature Tm = 25�C, which

is lower than the reactor temperature, offering extra cooling capability in addition to the

heat exchanger capacity. And the term UA represents the heat transfer efficiency that is

known as a constant. Secondly, for the polyol process, the amount of unreacted oxides

present in the reactor should be carefully controlled to prevent the plant from risks of

product decomposition, under the accidental circumstance that the plant loses its cooling

capability during operations. To carry out such a task, it is conducive to add a constraint

on the adiabatic end temperature [146], which equals the summation of the current reactor

temperature and the potential adiabatic temperature rise due to the occurrence of total loss

of cooling. When the heat exchanger breaks down at time tc with the reactor temperature

noted as Tc, it is clear that q = 0 and also reasonable to assume F = 0 after tc. Therefore,

integrating Eq. (4.32) starting from tc to the steady state (infinity) gives:

m(Hb(Tad)�Hb(Tc)) = V [M]MWPO(��Hp), (4.36)

where, Tad is the adiabatic end temperature and we assume all the monomers are con-
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sumed in the propagation reactions. For the safety limit of the adiabatic end temperature,

a sufficient safety margin is also needed to tolerate uncertainties, where a recommended

value of 250�C is reported in a patent document [147].

The process recipe is optimized to shorten the operating time demanded for polymer-

ization and the optimization model consists of the reformulated reactor model and addi-

tional process constraints; this leads to a large set of differential and algebraic equations.

The problem can be written in a general form as noted in Eq. (2.2), with the objective

function defined as the total time length.

4.4 Case Study

In the case study, the process of interest is the production of a low molecular weight

polypropylene glycol (Mn = 950 g/mol) from the polymerization of PO initiated by water

and propylene glycol (PG). The product is widely used in applications such as coating

and surfactants. For this example, the basic ingredients are given as follow:

Starter: PG and Water,

Catalyst: KOH,

Monomer: PO.

4.4.1 Model Implementation

The polymerization model is implemented in GAMS after discretization into a NLP. The

size of the model is largely determined by the discretization setting and the number of

the recorded chain length limit. A careful choice is required to balance the accuracy and

computational load of the model. In this study, we assume the controls are represented

by piecewise linear functions that preserve continuity over finite elements, and twenty-

four equidistant finite elements are used along with three Radau collocation points in
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the orthogonal collocation scheme. The chain length distribution is truncated at N = 18,

which is large enough to accommodate the long chains.

Initially, we test the fidelity of the developed first-principles model. To validate the model

against plant data, the participating model parameters such as kinetic constants and ther-

modynamic properties need to be adjusted such that the model can adequately represent

the real process, despite the imposed assumptions made and process uncertainties. The

adjustment actions are based on the understanding and experience with the process, aim-

ing to deal with deficiencies of the original process model [148]. Next, optimization is

performed over the verified model, but allowing for variations of the reactor temperature

and feed rate in certain ranges.

4.4.2 Model Validation

In this study, the reactor pressure profile is employed as the main criterion for tuning to

illustrate the validation procedure. In fact, a much more detailed validation with polymer

quality indices has been done, but proprietary considerations prevent us from presenting

more information here. To obtain the pressure, the VLE calculations from Eqs. (4.5)-(4.9)

are essential but further complicated in the presence of nitrogen and a vent system control

valve in the reactor.

First, the nitrogen inside the reactor tank contributes to the total pressure. As the polymer-

ization takes place, the nitrogen partial pressure rises over time since the liquid volume

expands and compresses the gases. Assume the initial amount of nitrogen nN2 is known,

then the real-time partial pressure over N2 can be obtained by the ideal gas law, since the

reactor pressure is not extremely high:

PN2V̄ = nN2RT. (4.37)
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Here, the gas phase volume V̄ equals the total reactor volume minus the liquid phase vol-

ume V . Note that the total reactor pressure in Eq. (4.6) also includes the partial pressure

of nitrogen. Next, the installed control valve avoids extreme pressures in the reactor tank:

once the total pressure exceeds the upper limit Pmax, the valve opens and keeps the pres-

sure below Pmax. This operation does not affect the reactions in the liquid phase, if we

assume a negligible loss of the vapor phase PO when the system is vented. In addition,

as nitrogen escapes, nN2 decreases in time. The amount of released nitrogen can be esti-

mated using Eq. (4.37) as the gas phase volume decreases and the reactor pressure stays

constant at the maximum allowed by the vent system. A base recipe from real plant data

is used for model calibration, where the batch time is normalized to unity, and the reac-

tor temperature, monomer feeding rate, and pressure are recorded during each sampling

interval. For this particular example, we consider the model prediction and real plant

pressure profiles under the same operating conditions, and the result is shown in Fig. 4.1

in comparison. The model exhibits satisfactory performance in pressure prediction, and

the discrepancy after valve relief is still acceptable, given the simplification made for gas

release. The estimated partial pressures are also depicted. Note that for the last 6% of the

operation time, the corresponding plant data are not plotted due to full reactor venting.

The major parameter adjustments are regarding reaction kinetics: all the kinetic constants

are first obtained from published articles; next the pre-exponential factors are tuned to

best fit the model predicted pressure to the plant data. Please refer to Appendix B for

details.

4.4.3 Recipe Optimization Results

Optimization is carried out with respect to the same polymerization system, with the

following constraints added:

1. The final number average MW of the polymer is no less than 950 g/mol;
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Figure 4.1: Reactor pressure profiles

2. The maximum unsaturation value is 0.033mmol/g polyol;

3. The final unreacted PO is no higher than 120 ppm;

4. The maximum heat removal duty of the heat exchange is UA(T � Tw);

5. The upper limit of the adiabatic end temperature is (Tb + 80)�C;

Here, the threshold values on product quality are obtained from simulating the base case

recipe, where the polymerization model is solved with the reaction time and controls

fixed to their recipe values. Among them, UA and Tb are constant parameters that are

specified according to the reactor configuration. The optimization problem is solved with

GAMS/IPOPT to proved local optimality with appropriate initialization of the partici-

pating variables, and all computations are performed on a laptop with a quad-core 2.80

GHz Intel R�i7 processor and 6 GB memory, installed Linux kernel 3.2.0-14. Details on the

statistics and solution of the model are tabulated in Tab. 4.2. The model can be solved

within reasonable CPU time in minutes. The optimization model is initialized by us-

ing the simulation result of the base case recipe. The optimal solution renders a batch

processing time of 0.53 (normalized time), which is 47% less than the base case recipe.

Meanwhile, the quality constraints on the product are satisfied at the end of the opera-

tion. It should be noted that the base case recipe and set of process constraints are chosen

to illustrate the use of dynamic optimization and do not necessarily reflect the true capa-
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Opt. soln MW (g/mol) Unsat (mmol/g) PO (ppm) # of var. # of con. CPU(s)

0.53 950 0.033 120 10946 11043 56

Table 4.2: Recipe optimization model statistics and results

bility or restrictions of the plant. Nevertheless, the actual potential reaction time saving

may vary, but it is still significant.

The obtained optimal operating strategy is depicted in Fig. 4.2. The optimized controls are

shown in solid lines in comparison with the plant recipe in dashed lines. In the optimized

scheme, the reactor temperature exhibits a U-shaped pattern: a high reactor temperature

at the beginning period of operation can accelerate the hydrolysis and initiation reaction

and therefore better kick off the following polymerization. And after that, the reactor tem-

perature plunges down and stays low (lower than the corresponding recipe value) due

to the process safety and product quality constraints. However, after the feeding period

is over, the reactor temperature rises up for quick monomer digestion in the last few per-

cent of the operation time horizon. The feed rate profile also starts at a high level, and

gradually decreases during most of the operation time period. An important difference

between the current plant recipe and the optimized one is that there are obviously two

periods in the plant recipe: PO feeding followed by PO digestion. On the contrary, the

optimized recipe tends to merge the two periods, and therefore the rising temperature at

the end is needed to achieve the desired final level of PO. In Fig. 4.3, we show the transi-

tion behavior of two critical constraining factors: the adiabatic end temperature and the

heat removal rate. The adiabatic end temperature constraint is not active, since it does not

reach the upper bound specified by Tad�Tb = 80 �C. The cooling capacity is the major lim-

iting factor of the process, which stays active for most of the operation time horizon. The

total capacity limit also includes a portion provided by the monomer feed. Note that here

we assume the heat exchanger is not fouled, otherwise the optimal solution may drift.

Considering heat exchanger fouling can bring additional complexity to the optimization
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Figure 4.2: Optimal control profiles of the process

problem [134], and it remains an interesting future extension to our current work.

Fig. 4.4 shows the population growth of the product and unsat polymer chains, where a

number of species of particular chain lengths is presented. Note that the upper limit of

18 repeating units is admissible since the mole number of the longest chain stays close to

zero for both types of polymers. During the polymerization, the monomers are continu-

ally added to the polymers and chains of higher lengths gradually appear and grow. A

product chain of length n can either become length n + 1 through the propagation reac-

tion or transform into a dormant chain of equal length. It is also worth noting that the

populations of the unsat chains sharply increase in the digestion period because of the

rising reactor temperature. The final time population distributions of the two polymers

are given in histograms shown in Fig. 4.5. The product polymer nearly follows the Poisson

distribution, which agrees with the fact that the main population is nearly a well-defined

living system. The maximum in the population is located at n = 7, which is also the
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Figure 4.3: Process constraint profiles

central position of the distribution. However, the distribution of the unsat chains signif-

icantly differs from the product, where the majority has less than 12 repeating units and

the distribution follows in a descending manner from short chains to long ones, except

for the initiation chains n = 0, where the initiation reaction is faster than propagation.

The MWD information is valuable for analyzing the product polyol properties, such as

viscosity.

Fig. 4.6 demonstrates the optimized number-average molecular weights and the PDI for

both the product and the unsat (in solid lines), in comparison with the profiles obtained

from the base case (in dashed lines). For the product chains, the optimized recipe reaches

the same MW and PDI as the base case. But for the unsats, the PDI is higher for the opti-

mized recipe while the MWs are very close in both cases. Note that the base case profiles

show a time period in the end that has no significant changes in all quantities, but after

optimization, those properties still change until the end of the batch. The number-average
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Figure 4.4: Population growth profiles of polymers of different chain lengths

MW of the unsat chains is of the same order of magnitude of the product polymers. A

large unsat number is particularly undesirable in this case, since it implies a considerable

amount of monomer is consumed by the byproduct. In addition, the unsat chains have

a larger PDI which indicates their distribution is more widely spread, agreeing with the

distributions shown in Fig. 4.5. Lastly, a group of commonly used quality indices are

depicted in Fig. 4.7. It can be concluded that their final-time values are in proper ranges.

4.5 Concluding Remarks

In this chapter, we have addressed the reactor modeling and dynamic optimization of

polyether polyol processes, using the production of polypropylene glycol as the exam-

ple. The first-principle reactor model has been established through applying conservation
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Figure 4.5: Molecular weight distributions in the final product

laws, reaction kinetic relations, etc. and the original model demonstrated two-time-scale

dynamic behaviors because of the presence of the fast cation exchange reactions. There-

fore, a reformulation procedure was conducted by using the nullspace projection method,

which aimed at separating the fast dynamic modes and modeling them as algebraic equa-

tions with regard to the quasi-steady states. The established model was validated against

plant data using the reactor pressure profile. A number of key kinetic parameters from

published literature has been adjusted during the model calibration process. Next, a dy-

namic optimization problem was formulated to improve the polymerization recipe de-

sign by minimizing the batch time. Several important limiting factors were introduced as

the constraints in the optimization problem, concerning the product quality and process

safety. The study results illustrate detailed information on the dynamic characteristics

of the polymerization process and show very promising performance of the optimized

recipe by significantly reducing the required polymerization time. Particularly for the
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Figure 4.6: Polymer property profiles: molecular weights and polydispersity indices

control design, the optimizer showed the trend to merge the feeding and digestion peri-

ods, which has changed the design pattern used for the base case recipe.
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Figure 4.7: Polymer property profiles: important quality indices of polyols
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4.6 Reactor Model Notation

a liquid phase activity, dimensionless
A heat transfer area, m2

Ar pre-exponential factor, m3/mol · s
cp specific heat capacity, J/g ·K
D dormant product chains
Er activation energy, J/mol

f functionality, dimensionless
F monomer feed rate, mol/s

G growing product chains
H enthalpy, J/g
�H reaction heat, J/g
k reaction rate constant, m3/mol · s
l number average chain length, dimensionless
m total mass, g
M monomer
Mn number-average molecular weight of polyol, g/mol

Mw weight-average molecular weight of polyol, g/mol

MW molecular weight, g/mol

n number of moles, mol

N maximum number of repeating units
P pressure, kPa
q heat removal rate, J/s
Q growing unsat chains
r reaction rate, mol/s

R dormant unsat chains
R universal gas constant, 8.314 J/mol ·K
t time, s
T temperature, K
Tad adiabatic end temperature, K
Tb reference temperature, K
U overall heat transfer coefficient, W/m2 ·K
V liquid volume, m3

V̄ gas volume, m3

W water
X total product chains
Y total unsat chains

� polymer moment, mol
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� lattice fraction, dimensionless
� interaction parameter, dimensionless

[·] concentration, mol/m3

Subscripts

Substances
b bulk
c catalyst
f feed
i initiator
m repeating units
n repeating units
p polymer
s solvent
u unsaturated chains
w water
Reactions
h hydrolysis
i initiation
p propagation
e exchange
t transfer
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Chapter 5

Reactor Model Development and

Copolymerization Recipe Optimization

This chapter continues our study on the modeling and recipe optimization of polymeriza-

tion reactors. We extend the homopolymerization model of polyether polyols to a broader

class that is termed as ring-opening polymerization processes. Also, the polymerization

mechanism is complicated by the addition of copolymers. Moreover, in addition to the

population balance method, we also develop the reactor model by using the method of

moments. Both reactor models are tested to match their predictions with historical plant

data. Again, we solve recipe optimization problems to minimize the polymerization time.

In the case study example, the moment model shows superiority over the population bal-

ance model in terms of computational efficiency.

5.1 Background Information

A great variety of cyclic monomers have been successfully polymerized by the ring-

opening polymerization process [149]. Many commercial polymers produced this way
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Initiation site

Intertnal block (A) External block (B)

Figure 5.1: General structure of a block copolymer

are statistical or block copolymers with molecular weights (MWs) from a few hundred to

several million. Conventionally, a block copolymer can be synthesized by a semi-batch

polymerization process by successive feeds of respective monomers [141]. For instance,

a block copolymer made from monomer A and B is shown in 5.1 with a cascade struc-

ture. The initiator has two branches, and each branch consists of a linear internal A block

and external B block in tandem. The external block may contain a small amount of A

in practice. Modeling such a polymerization process requires sufficient knowledge of

the reaction kinetics, and process safety regulations are also important considerations for

process optimization [150]. In this example, monomer B is potentially explosive such that

the reactor for making this polymer needs to be blanketed with nitrogen at the start.

Population balance equations are often used in macro-scale polymerization reactor mod-

eling, which correspond to a set of differential mole balance equations that can reveal the

evolution of the complete chain length distribution over time. The size of the resulting

balance equation system is decided by the breadth of the polymer chain length distribu-

tion, where modeling high MW polymers can lead to a considerably large-scale model

that is computationally demanding. On the contrary, the method of moments [151], as

a classical modeling approach, represents the average polymer properties based on sta-

tistical quantities, namely, moments. The moments can be applied to derive commonly

used quality indices such as number/weight average molecular weight, polydispersity

index (PDI), and monomer consumption/polymer production rates. The size of moment

models is usually small and is not influenced by the chain length of polymers. As a result,

solving a moment model requires much less computational effort than the full population
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balance model. In this study, we derive both population balance and moment models; the

population balance model is appropriate for process recipe simulation, while the moment

model facilitates recipe design optimization.

5.2 Reactor Model Development

To produce monomer blocks, monomer A is first fed into the reactor continuously to

grow the internal block. Next, monomer B is allowed to enter the reactor to form the ex-

ternal block. A degassing step can be performed to eliminate the unreacted A by vacuum

distillation before feeding B to obtain a purer external block. In the first stage of poly-

merizing A, four primary reactions are considered: the initiation, propagation, transfer

and exchange reactions, similar to the case for polyether polyols. In the secondary step,

B is added to form terminal blocks by the corresponding initiation and propagation steps

with higher reactivity than A. However, B does not participate in transfer reactions. If A

is not completely digested or degassed, then A and B coexist in the reactor in the second

stage. Under this circumstance, there are four propagation reactions, shown as follows:

Propagation scheme Rate constant

. . .A⇤ +A ! . . .A⇤ kAA
p

. . .A⇤ + B ! . . .B⇤ kAB
p

. . .B⇤ +A ! . . .A⇤ kBA
p

. . .B⇤ + B ! . . .B⇤ kBB
p

Terminal unit is designated by ⇤

Two associated reactivity ratios are defined as rA = kAA
p /kAB

p and rB = kBB
p /kBA

p .

Depending on the different functional end groups, we define:
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GnA,nB to denote the growing product chains;

DnA,nB to denote the dormant product chains;

QnA,nB to denote the growing byproduct chains;

RnA,nB to denote the dormant byproduct chains.

Moreover, superscripts are introduced to the polymer species to indicate the terminal

repeating unit or monomer type, except for the initiators that do not have any repeating

units (nA = nB = 0). The reaction scheme is summarized in Tab. 5.1.

The byproduct chains share the same set of kinetic parameters as the product chains

in chain initiation, growth, exchange and transfer. The four propagation rates are non-

identical.
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Initiation:

G0,0 +MA kAi�! GA
1,0

Q0,0 +MA kAi�! QA
1,0

G0,0 +MB kBi�! GB
0,1

Q0,0 +MB kBi�! QB
0,1

Propagation:

GA
nA,nB

+MA
kAA
p�! GA

nA+1,nB
(nA + nB > 1)

QA
nA,nB

+MA
kAA
p�! QA

nA+1,nB
(nA + nB > 1)

GA
nA,nB

+MB
kAB
p�! GB

nA,nB+1 (nA + nB > 1)

QA
nA,nB

+MB
kAB
p�! QB

nA,nB+1 (nA + nB > 1)

GB
nA,nB

+MA
kBA
p�! GA

nA+1,nB
(nA + nB > 1)

QB
nA,nB

+MA
kBA
p�! QA

nA+1,nB
(nA + nB > 1)

GB
nA,nB

+MB
kBB
p�! GB

nA,nB+1 (nA + nB > 1)

QB
nA,nB

+MB
kBB
p�! QB

nA,nB+1 (nA + nB > 1)

Transfer:
GA

nA,nB
+MA kt�! DA

nA,nB
+Q0,0 (nA, nB > 0)

GB
nA,nB

+MA kt�! DB
nA,nB

+Q0,0 (nA, nB > 0)

QA
nA,nB

+MA kt�! RA
nA,nB

+Q0,0 (nA, nB > 0)

QB
nA,nB

+MA kt�! RB
nA,nB

+Q0,0 (nA, nB > 0)

Exchange:
GA

nA,nB
+DA

mA,mB

ke�! DA
nA,nB

+GA
mA,mB

(nA, nB,mA,mB > 0)

GA
nA,nB

+DB
mA,mB

k
e�*)�
k
e

DA
nA,nB

+GB
mA,mB

(nA, nB,mA,mB > 0)

GB
nA,nB

+DB
mA,mB

ke�! DB
nA,nB

+GB
mA,mB

(nA, nB,mA,mB > 0)

QA
nA,nB

+ RA
mA,mB

ke�! RA
nA,nB

+QA
mA,mB

(nA, nB,mA,mB > 0)

QA
nA,nB

+ RB
mA,mB

k
e�*)�
k
e

RA
nA,nB

+QB
mA,mB

(nA, nB,mA,mB > 0)

QB
nA,nB

+ RB
mA,mB

ke�! RB
nA,nB

+QB
mA,mB

(nA, nB,mA,mB > 0)

GA
nA,nB

+ RA
mA,mB

k
e�*)�
k
e

DA
nA,nB

+QA
mA,mB

(nA, nB,mA,mB > 0)

GA
nA,nB

+ RB
mA,mB

k
e�*)�
k
e

DA
nA,nB

+QB
mA,mB

(nA, nB,mA,mB > 0)

GB
nA,nB

+ RA
mA,mB

k
e�*)�
k
e

DB
nA,nB

+QA
mA,mB

(nA, nB,mA,mB > 0)

GB
nA,nB

+ RB
mA,mB

k
e�*)�
k
e

DB
nA,nB

+QB
mA,mB

(nA, nB,mA,mB > 0)

Table 5.1: Reactions in anionic ring-opening copolymerization
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5.2.1 Population Balance Model Equations

The population balance equations for individual polymeric species can be established as

a set of first-order ordinary differential equations:

dG0,0

dt
=V �1[�(kA

i

MA + kB
i

MB)G0,0 � k
t

G0,0M
A � k

e

G0,0

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB )

+ k
e

D0,0

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

(5.1a)

dGA

1,0

dt
=V �1[kA

i

G0,0M
A � (kAA

p

MA + kAB

p

MB)GA

1,0 � k
t

GA

1,0M
A � k

e

GA

1,0

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB )

+ k
e

DA

1,0

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

(5.1b)

dGB

0,1

dt
=V �1[kB

i

G0,0M
B � (kBA

p

MA + kBB

p

MB)GB

0,1 � k
t

GB

0,1M
A � k

e

GB

0,1

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB )

+ k
e

DB

0,1

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

(5.1c)

dGA

nA,nB

dt
=V �1[(kAA

p

GA

nA�1,nB
+ kBA

p

GB

nA�1,nB
)MA � (kAA

p

MA + kAB

p

MB)GA

nA,nB
� k

t

GA

nA,nB
MA

� k
e

GA

nA,nB

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB ) + k
e

DA

nA,nB

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

n
A

> 2, n
B

> 0,

(5.1d)

dGB

nA,nB

dt
=V �1[(kAB

p

GA

nA,nB�1 + kBB

p

GB

nA,nB�1)M
B � (kBA

p

MA + kBB

p

MB)GB

nA,nB
� k

t

GB

nA,nB
MA

� k
e

GB

nA,nB

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB ) + k
e

DB

nA,nB

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

n
A

> 0, n
B

> 2,

(5.1e)

dDS

nA,nB

dt
=V �1[k

t

GS

nA,nB
MA + k

e

GS

nA,nB

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB )� k
e

DS

nA,nB

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

S 2 {A,B}, n
A

> 0, n
B

> 0;

(5.1f)

CHAPTER 5. REACTOR MODEL DEVELOPMENT AND COPOLYMERIZATION RECIPE . . . 92



dQ0,0

dt
=V �1[�(kB

i

MB + kA
i

MA)Q0,0 + k
t

1X

nA=0

1X

nB=0

(G
nA,nB +Q

nA,nB )M
A � k

t

Q0,0M
A

� k
e

Q0,0

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB ) + k
e

R0,0

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

(5.1g)

dQA

1,0

dt
=V �1[kA

i

Q0,0M
A � (kAA

p

MA + kAB

p

MB)QA

1,0 � k
t

QA

1,0M
A � k

e

QA

1,0

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB )

+ k
e

RA

1,0

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

(5.1h)

dQB

0,1

dt
=V �1[kB

i

Q0,0M
B � (kBA

p

MA + kBB

p

MB)QB

0,1 � k
t

QB

0,1M
A � k

e

QB

0,1

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB )

+ k
e

RB

0,1

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

(5.1i)

dQA

nA,nB

dt
=V �1[(kAA

p

QA

nA�1,nB
+ kBA

p

QB

nA�1,nB
)MA � (kAA

p

MA + kAB

p

MB)QA

nA,nB
� k

t

QA

nA,nB
MA

� k
e

QA

nA,nB

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB ) + k
e

RA

nA,nB

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

n
A

> 2, n
B

> 0,

(5.1j)

dQB

nA,nB

dt
=V �1[(kAB

p

QA

nA,nB�1 + kBB

p

QB

nA,nB�1)M
B � (kBA

p

MA + kBB

p

MB)QB

nA,nB
� k

t

QB

nA,nB
MA

� k
e

QB

nA,nB

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB ) + k
e

RB

nA,nB

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

n
A

> 0, n
B

> 2,

(5.1k)

dRS

nA,nB

dt
=V �1[k

t

QS

nA,nB
MA + k

e

QS

nA,nB

1X

mA=0

1X

mB=0

(D
mA,mB +R

mA,mB )� k
e

RS

nA,nB

1X

mA=0

1X

mB=0

(G
mA,mB +Q

mA,mB )],

S 2 {A,B}, n
A

> 0, n
B

> 0.

(5.1l)

Here the polymer species without a superscript index refer to the total population, re-

gardless of the different terminal units:

xn
A

,n
B

=
X

S2{A,B}

xS
n
A

,n
B

, x 2 {G,D,Q,R}. (5.2)
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The monomer balance equations are defined for both monomers. Monomer A is fed into

the reactor at rate FA, and consumed in the initiation, propagation, and chain transfer

reactions resulting in byproduct chains. The balance equation is similar for monomer B,

except for the different initiation and propagation rates and absence of the proton transfer

reaction term.

dMA

dt
=FA � V �1[kA

i (G0,0 +Q0,0) + kAA
p

1X

n
A

=1

1X

n
B

=0

(GA
n
A

,n
B

+QA
n
A

,n
B

)

+ kBA
p

1X

n
A

=0

1X

n
B

=1

(GB
n
A

,n
B

+QB
n
A

,n
B

) + kt

1X

n
A

=0

1X

n
B

=0

(Gn
A

,n
B

+Qn
A

,n
B

)]MA,

(5.3a)

dMB

dt
=FB � V �1[kB

i (G0,0 +Q0,0) + kAB
p

1X

n
A

=1

1X

n
B

=0

(GA
n
A

,n
B

+QA
n
A

,n
B

)

+ kBB
p

1X

n
A

=0

1X

n
B

=1

(GB
n
A

,n
B

+QB
n
A

,n
B

)]MB.

(5.3b)

For the total mass balance, as the monomers consecutively enter the polymerization sys-

tem, we have:
dm

dt
= FAMWA + FBMWB, (5.4)

where MWA and MWB denote the molecular weights of the two monomers, respectively.

The liquid volume is calculated by:

V = m[10�6 + 7.576⇥ 10�10(T � 298.15)]. (5.5)

The total reactor pressure P is calculated as the sum of the partial pressures of volatile

components, determined from the liquid phase activities and saturated vapor pressures:

P =
X

i

Pi, (5.6a)

Pi = aiP
sat
i . (5.6b)
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The vapor pressures by the Antoine equation:

log10 P
sat
i = Ai � Bi

T + Ci
. (5.7)

The activities ai are given by the Flory-Huggins theory. In the polymerization process,

possible volatile components include the monomer A, B, initiators, etc. As a result, mul-

tiple components exist in the liquid and gaseous phase simultaneously. However, as a

rational method to deal with polymer-solvent equilibrium, the Flory-Huggins theory is

in principle applicable to binary mixtures of a polymer and solvent. To manage the VLE

calculation, we make the following assumptions. First, the polymer chains are totally in

the liquid phase; secondly the polymer solution can be viewed as a ternary mixture where

A and B (denoted in index sA and sB respectively) are two types of solvents and all the

other species are treated as polymer (denoted in index p); lastly, the interaction between

the two solvent molecules is ignored. Hence, the activities of A and B are determined via:

ln as
A

= ln�s
A

+ (1� 1

l
)�A + �A�2

A; (5.8a)

ln as
B

= ln�s
B

+ (1� 1

l
)�B + �B�2

B. (5.8b)

In Eq. (5.8), the lattice fractions �s
A

, �s
B

and �p are used instead of mole fractions. The

interaction parameters �A and �B are non-dimensional. Here the interaction effect of

monomer A and B molecules is not considered for simplicity as well as the fact that a

successive feeding pattern is used for block polymers. A more rigorous treatment is pro-

posed by Favre et al. [152] at the cost of additional complexity in activity calculation with

more model parameters. The number average chain length l is taken into account when
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calculating the lattice fraction:

�s
A

=
ns

A

ns
A

+ ns
B

+ npl
; (5.9a)

�s
B

=
ns

B

ns
A

+ ns
B

+ npl
; (5.9b)

�p =
npl

ns
A

+ ns
B

+ npl
. (5.9c)

Here, ns
A

, ns
B

and np are the numbers of moles of the solvents and polymer. On the other

hand, the activities of other volatile components can be treated as constants for simplicity,

and their influence on the total reactor pressure is often found to be minor. This simplified

VLE model is valid because the dominating liquid components are monomer A, B and

polymer for the majority of time.

The reactor model developed above consists of population, monomer and total mass bal-

ances, as well as volume and VLE calculations. The size of the model becomes consider-

ably large when modeling high MW polymers, since the detailed chain length distribution

is calculated.

5.2.2 Reformulated Reactor Model

We apply the nullspace projection method to systematically reformulate the reaction equa-

tion. Two pseudo-species X and Y are introduced:

XS
n
A

,n
B

= GS
n
A

,n
B

+DS
n
A

,n
B

, S 2 {A,B}, nA, nB > 0;

Y S
n
A

,n
B

= QS
n
A

,n
B

+RS
n
A

,n
B

, S 2 {A,B}, nA, nB > 0.
(5.10)
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We introduce the following notation: first, the total amount of catalyst is equal to the

amount of chains attached with base metal ions, denoted as

nc =
1X

n
A

=0

1X

n
B

=0

(Gn
A

,n
B

+Qn
A

,n
B

); (5.11)

and additionally, we introduce ni as the total number of moles of the initiator

ni =
1X

n
A

=0

1X

n
B

=0

(Gn
A

,n
B

+Dn
A

,n
B

); (5.12)

and the total moles of the byproduct chains

nu =
1X

n
A

=0

1X

n
B

=0

(Qn
A

,n
B

+Rn
A

,n
B

). (5.13)

After reformulation, the differential population balance equations for X and Y are ex-

pressed in Eqs. (5.14), as shown below:

dX0,0

dt
= V �1(�kB

i M
B � kA

i M
A)G0,0, (5.14a)

dXA
1,0

dt
= V �1[kA

i G0,0M
A � (kAA

p MA + kAB
p MB)GA

1,0], (5.14b)

dXB
0,1

dt
= V �1[kB

i G0,0M
B � (kBA

p MA + kBB
p MB)GB

0,1], (5.14c)

dXA
1,1

dt
= V �1[kBA

p GB
0,1M

A � (kAA
p MA + kAB

p MB)GA
1,1], (5.14d)

dXB
1,1

dt
= V �1[kAB

p GA
1,0M

B � (kBA
p MA + kBB

p MB)GB
1,1], (5.14e)

dXA
n
A

,n
B

dt
= V �1[(kAA

p GA
n
A

�1,n
B

+ kBA
p GB

n
A

�1,n
B

)MA � (kAA
p MA + kAB

p MB)GA
n
A

,n
B

], nA > 2, nB > 0,

(5.14f)

dXB
n
A

,n
B

dt
= V �1[(kAB

p GA
n
A

,n
B

�1 + kBB
p GB

n
A

,n
B

�1)M
B � (kBA

p MA + kBB
p MB)GB

n
A

,n
B

], nA > 0, nB > 2;

(5.14g)
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dY0,0

dt
= V �1[�(kB

i M
B + kA

i M
A)Q0,0 + ktncM

A], (5.14h)

dY A
1,0

dt
= V �1[kA

i Q0,0M
A � (kAA

p MA + kAB
p MB)QA

1,0], (5.14i)

dY B
0,1

dt
= V �1[kB

i Q0,0M
B � (kBA

p MA + kBB
p MB)QB

0,1], (5.14j)

dY A
1,1

dt
= V �1[kBA

p QB
0,1M

A � (kAA
p MA + kAB

p MB)QA
1,1], (5.14k)

dY B
1,1

dt
= V �1[kAB

p QA
1,0M

B � (kBA
p MA + kBB

p MB)QB
1,1], (5.14l)

dY A
n
A

,n
B

dt
= V �1[(kAA

p QA
n
A

�1,n
B

+ kBA
p QB

n
A

�1,n
B

)MA � (kAA
p MA + kAB

p MB)QA
n
A

,n
B

], nA > 2, nB > 0,

(5.14m)

dY B
n
A

,n
B

dt
= V �1[(kAB

p QA
n
A

,n
B

�1 + kBB
p QB

n
A

,n
B

�1)M
B � (kBA

p MA + kBB
p MB)QB

n
A

,n
B

], nA > 0, nB > 2.

(5.14n)

Meanwhile, the algebraic equations giving the quasi-steady states of the exchange reac-

tions are shown as:

XS
n
A

,n
B

nc = GS
n
A

,n
B

(ni + nu), S 2 {A,B}, nA, nB > 0;

Y S
n
A

,n
B

nc = QS
n
A

,n
B

(ni + nu), S 2 {A,B}, nA, nB > 0.
(5.15)

In sum, the reformulated model comprises three major building blocks:

Population balances Eq. (5.14)

Quasi-steady states Eq. (5.15) and definitions in Eqs. (5.11)- (5.13)

Additional equations Monomer balance (Eq. (5.3))

Volume determination (Eqs. (5.4) and (5.5))

VLE relations (Eqs. (5.6)- (5.9))

In the context of copolymerization, appropriate upper bounds are required for both monomers.

The reformulated copolymerization model is of the same order of magnitude of the size

as the original one.
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5.2.3 Moment Model

The method of moments is a very well-known method for solving polymerization sys-

tems with very large number of individual species. The moment equations are derived

from aggregating population balances with different weights. The obtained moment

model retains information for tracking average polymer properties. The method of mo-

ments can be applied well to linear polymers. The following notation is introduced to

develop the moment model for the copolymerization process:

⇣ moment of growing product chains (G);

⌫ moment of growing byproduct chains (Q);

� moment of product chains (X);

µ moment of byproduct chains (Y).

The kth moment of a polymer species (e.g. G) is defined as

⇣k =
1X

n=1

nkGn, k = 0, 1, . . . , (5.16)

where, n represents the total number of repeating units irrespective of monomer types,

viz. n = nA + nB, and Gn is the population of living product chains of length n. The

rest of the moments can be defined analogously. In this study, the moment model for

the copolymerization of A and B needs to account for the effect of the chain-ends on

propagation. Therefore, superscripts A and B are also used for the moment notation to
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designate ending units. In Eqs. (5.17), the moment balances are derived:

dX0

dt
= V �1(�kA

i G0M
A � kB

i G0M
B), (5.17a)

d�A
0

dt
= V �1(kA

i G0M
A + kBA

p ⇣B0 M
A � kAB

p ⇣A0 M
B), (5.17b)

d�B
0

dt
= V �1(kB

i G0M
B + kAB

p ⇣A0 M
B � kBA

p ⇣B0 M
A), (5.17c)

d�A
k

dt
= V �1(kA

i G0M
A + kAA

p

k�1X

i=0

✓
k

i

◆
⇣Ai M

A + kBA
p

kX

i=0

✓
k

i

◆
⇣Bi M

A � kAB
p ⇣Ak M

B), k = 1, 2, . . . ,

(5.17d)

d�B
k

dt
= V �1(kB

i G0M
B + kBB

p

k�1X

i=0

✓
k

i

◆
⇣Bi M

A + kAB
p

kX

i=0

✓
k

i

◆
⇣Ai M

B � kBA
p ⇣Bk M

A), k = 1, 2, . . . ;

(5.17e)

dY0

dt
= V �1(�kA

i Q0M
A � kB

i Q0M
B + ktncM

A), (5.17f)

dµA
0

dt
= V �1(kA

i Q0M
A + kBA

p ⌫B
0 M

A � kAB
p ⌫A

0 M
B), (5.17g)

dµB
0

dt
= V �1(kB

i Q0M
B + kAB

p ⌫A
0 M

B � kBA
p ⌫B

0 M
A), (5.17h)

dµA
k

dt
= V �1(kA

i Q0M
A + kAA

p

k�1X

i=0

✓
k

i

◆
⌫A
i M

A + kBA
p

kX

i=0

✓
k

i

◆
⌫B
i M

A � kAB
p ⌫A

k M
B), k = 1, 2, . . . ,

(5.17i)

dµB
k

dt
= V �1(kB

i Q0M
B + kBB

p

k�1X

i=0

✓
k

i

◆
⌫B
i M

A + kAB
p

kX

i=0

✓
k

i

◆
⌫A
i M

B � kBA
p ⌫B

k M
A), k = 1, 2, . . . .

(5.17j)
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In addition, the algebraic equations for the quasi-steady states of the exchange reactions

are obtained:

X0nc = G0(ni + nu), (5.18a)

Y0nc = Q0(ni + nu), (5.18b)

�S
knc = ⇣Sk (ni + nu), S = {A,B}, k = 0, 1, . . . , (5.18c)

µS
knc = ⌫S

k (ni + nu), S = {A,B}, k = 0, 1, . . . , (5.18d)

and the definitions of the total amounts of the catalyst, initiator and byproduct are rewrit-

ten as follows:

nc = G0 +Q0 +
X

S2{A,B}

⇣S0 + ⌫S
0 , (5.19a)

ni = X0 +
X

S2{A,B}

�S
0 , (5.19b)

nu = Y0 +
X

S2{A,B}

µS
0 . (5.19c)

Lastly, the monomer balance equations for A and B are shown as:

dMA

dt
= FA � V �1[kA

i (G0 +Q0) + kAA
p (⇣A0 + ⌫A

0 ) + kBA
p (⇣B0 + ⌫B

0 ) + ktnc]M
A; (5.20a)

dMB

dt
= FB � V �1[kB

i (G0 +Q0) + kAB
p (⇣A0 + ⌫A

0 ) + kBB
p (⇣B0 + ⌫B

0 )]M
B. (5.20b)

The constructed moment model for copolymerization is capable of predicting typically

used polymer property indices. This assembles a reactor model that is significantly smaller

than the full reactor model based on species balances. Although the detailed chain length

distribution information is lost, the moment model is well suited for applications that

only require average polymer properties. This becomes especially useful when computa-

tion resources are constrained and computation times are critical, such as (on-line) process
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optimization.

5.3 Process Recipe Optimization

Similar to the previous study, we show that the developed reactor models are able to

adequately represent the polymerization process through adjustments of key kinetic and

VLE parameters for a known set of plant data in the case study example. The polymer

property indices are also similarly defined. First, the number average molecular weight

Mn and weight average molecular weight Mw can be obtained with the moments:

Mn = MW
�1

�0
; (5.21a)

Mw = MW
�2

�1
. (5.21b)

The molecular weight of the repeating units is calculated as a weighted average of the

molecular weights of A and B:

MW = wMWA + (1� w)MWB; (5.22a)

w =

R t

t0
FA(⌧)d⌧ �MA(t)

R t

t0
[FA(⌧) + FB(⌧)]d⌧ �MA(t)�MB(t)

. (5.22b)

In Eq. (5.22b), w represents the mole fraction of A in the polymer chains. This instan-

taneous copolymer composition can also be estimated by using the Mayo-Lewis equa-

tion [153], when the quasi-steady state assumption on A and B ended chains (roughly

equal rates of disappearance and formation) is valid. PDI is used as a measurement of

the heterogeneity of the polymer to characterize the spread of the polymer chain length

distribution, calculated by Mw/Mn. Narrow distribution, corresponding to low PDI, is

preferred in many applications. The byproduct chains created by the transfer reaction are
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measured in milliequivalents per total mass:

↵ = 1000
nu

m
. (5.23)

The percentage of polymer chains ending with monomer B in the external block is an

important property for the block copolymer, which can be calculated from the zeroth

moments:

✏ =
�B
0 + µB

0X

S2{A,B}

(�S
0 + µS

0 )
⇥ 100%. (5.24)

Also, the unreacted monomer in the product mixture at final time should stay below

proper upper limits:

�S = MWS
MS

m
⇥ 106, S 2 {A,B}. (5.25)

The process safety constraint regarding the heat removal duty and adiabatic end tem-

perature can be derived in a similar manner as in the homopolymerization case, the key

equations are given as follows:

d(mHb)

dt
=

X

S2{A,B}

[F S�HS
f + rSp (��HS

p )]MWS � q, (5.26)

q = UA(T � Tw), (5.27)

X

S2{A,B}

rSp (��HS
p )MWS 6

X

S2{A,B}

F S(��HS
f )MWS + UA(T � Tw). (5.28)

m[Hb(Tad)�Hb(Tc)] =
X

S2{A,B}

MS(��HS
p )MWS, (5.29)

Meanwhile, monomer B is potentially explosive in nitrogen, and a linear limit extrapola-

tion of the explosive region boundary is given by

yB 6 1.3865� 0.001764T � 0.0003568P, (5.30)
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and yB represents the vapor phase concentration of B.

The recipe optimization formulation include all constraints derived above to minimize

the polymerization time. Note that the time horizon is divided into two segments corre-

sponding to each monomer feeding period.

5.4 Case Study

We test our modeling and optimization framework with an example study of two-thousand

dalton A-B block copolymers. The internal A block is produced in tandem with the exter-

nal B block without the degassing step; but there is a specified minimum percentage of B

ended chains that needs to be met. A real-world process recipe obtained from plant data

is used as the base case in the following study. We validate the population balance model

(PBM) and moment model (MM) with the base case plant data, and recipe optimization

is performed by using both models. In the solution procedure, the discretization settings

for the two models are different: a finer mesh of forty finite elements along with a two-

point Radau collocation is applied to MM for each stage, while a coarser one of ten finite

elements with three-point Radau collocation roots is introduced for PBM due to its large

model size. In order to record the entire chain length distribution of the PBM, the upper

bounds for repeating units are specified as NA = 30 and NB = 14. It is worth noting that

a lower order collocation is used in MM, in conjunction with a larger number of finite

elements; this in general excels in handling path constraints, particularly for high index

ones, in the optimization problem.
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Figure 5.2: Reactor pressure profiles for model validation

5.4.1 Model Validation

We validate both reactor models with their pressure predictions against plant data under

the same operating conditions, and the result is shown in Fig. 5.2. The match between the

prediction curves and data trajectory is considered satisfactory. The same kinetics and

VLE parameters are used in the PBM and MM.

5.4.2 Recipe Optimization Results

The optimization problems are solved with GAMS/IPOPT to proved local optimality

with appropriate initialization of the participating variables; IPOPT runs with linear solver

MA86. All computations are performed on a desktop with an 8-core 2.80 GHz Intel R�i7

processor, 9 GB memory, and installed Linux kernel 3.2.0-34.

Optimization with Moment Models

The moment model is well suited for recipe optimization owing to its small scale and

ability to predict product properties. The optimized recipe is able to reduce the copoly-

merization processing time by 42.0%. Details on the statistics and solution of the model

can be found in Tab. 5.2. The computation load is quite manageable for optimization with
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Opt. soln # of var. # of con. CPU (s)

0.580 11, 248 11, 121 22

Table 5.2: Recipe optimization statistics and results from the moment model

MM.

The operating strategies for the copolymerization process are depicted in Fig. 5.3. For the

base case recipe, the polymerization temperature is designed to remain constant over time

for the A and B addition stages. The recipe design pattern for the monomer feed policy is

as follows: A and B are fed consecutively with a noticeable gap in between. Each feeding

window begins with a ramping period, where the feed rate increases roughly linearly, and

then the rate is kept at a desired constant level. The polymerization is continued with no

monomer feed for digestion.

The optimized recipe redesigns the temperature and feed rate profiles. The reactor tem-

perature rises sharply during the A digestion and B feeding period, reaching its upper

limit. In the feed profile, B is gradually added after A, and the digestion period of B is

almost negligible by virtue of its high reactivity. Fig. 5.4 shows the three important con-

straining factors of the process: the adiabatic end temperature, heat removal rate and B

concentration in the vapor phase. The value of the adiabatic end temperature indicates

the potential effect of the latent heat existing in unreacted monomers on the reactor tem-

perature. This constraint is not active since the monomer inventories are well controlled.

On the contrary, the reactor cooling capacity is the primary limiting factor for further im-

provement of the process performance and the corresponding constraint is active during

most of the operation time horizon, especially for the A feeding stage. The total cool-

ing capacity also includes a portion provided by the monomer feed streams that are of

a lower temperature than the reactor. Finally, we inspect the safety constraint regarding

the vapor phase composition distribution, and the system is found to be within the safety

zone predicted by Eq. (5.30).
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Figure 5.3: Optimal control profiles of the process from the moment model
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Figure 5.4: Process constraint profiles from the moment model
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Figure 5.5: Polymer properties from the moment model: molecular weights and polydis-
persity indices

To demonstrate the product properties, we first show the number average molecular

weight and PDI as functions of polymerization time in Fig. 5.5. The product polymers

produced by the optimized recipe give the same number average molecular weight and

a PDI very close to the base case products, which means the MWDs of the two cases are

rather similar. For the byproduct, the differences between the two recipes are also minor.

In addition, Fig. 5.6 shows the evolution of the two quality indices: impurity level and B

ended chain ratio. The product from the optimized recipe shares the same quality level as

the base case product. It is worth noting that the constraint on the impurity level is active

for the optimized recipe, and relaxing the limit value may further reduce the batch time.

Optimization with Population Balance Models

Recipe optimization over the PBM is a challenging task that requires significant com-

putation effort. To facilitate the optimization, we adopt the optimized recipe from the
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Figure 5.6: Polymer properties from the moment model: important quality indices

MM and start the optimizer at that solution. The initial guesses for population states are

obtained through dynamic simulation beforehand, and it can be also verified that the op-

timal recipe generated by the MM remains a good feasible solution for the PBM. By this

means, a large-scale optimization problem with the PBM is able to be solved by IPOPT,

and the detailed information is listed in Tab. 5.3. The optimal batch time is slightly worse

than the one obtained with the MM, and the end-point values of the final time process

constraints are similar to the previous case. However, there is a huge expansion of the

model scale in terms of variable and constraint numbers, in spite of a less dense dis-

cretization mesh being used. Consequently, the optimization problem becomes slow to

solve. It should be noted that the base case recipe and the set of process constraints are

chosen to illustrate the use of dynamic optimization and do not necessarily reflect the true

capability or limitations of the plant. However, the actual potential reaction time saving

can still be significant.

The optimal control recipe generated by using the PBM is very similar to the optimal
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Opt. soln (h) # of var. # of con. CPU (s)

0.588 191, 408 185, 147 5221

Table 5.3: Recipe optimization statistics and results from the population balance model
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Figure 5.7: Chain length distributions of the optimized recipe of the PBM

MM solution. In addition, the PBM model is able to reveal the chain length distribution

with three-dimensional plots shown in Fig. 5.7 for the product and byproduct chains.

The complete distribution information is helpful in predicting physical properties such

as viscosity of the polymer product.

5.5 Concluding Remarks

We have developed a modeling and optimization methodology for semi-batch ring-opening

polymerization processes for block copolymers, following two different approaches to

model the polymer species: the population balance approach and method of moments.

In the case study example, we first demonstrated that both reactor models were able

to match real plant data adequately. The following recipe optimization results showed

the potential of our modeling and optimization framework to enhance the process per-

formance by redesigning the reactor operating policy. In particular, the moment model

excelled with respect to computational performance. The population balance model can

still be appreciated for its ability to uncover the chain length distribution.
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The phase of reactor model development and recipe optimization is complete. The mo-

ment model is able to capture the dynamic characteristics of the polymerization opera-

tions with moderate computational complexity. Therefore, it is well suited for the inte-

grated scheduling and dynamic optimization problem.
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Chapter 6

Scheduling Method Development

In this chapter, we develop a scheduling optimization framework oriented for industrial

applications. The problem scope is extended to a complete production process that has

multiple units, manufacturing a variety of products. The scheduling method is based

on the discrete time resource task network (RTN) representation. A number of modifi-

cations have been made to the conventional RTN models such as multi-extent resource

balances, resource limit balances and resource slacks. The extended RTN model is further

reformulated to the state space form by incorporating lifted state variables that represent

task histories. The state space RTN model facilitates reactive schedule design, particularly

when used with the rolling horizon scheme. The method can be applied to processes with

mixed equipment types (continuous and batch) and general structures. The scheduling

method, combined with the dynamic reactor models developed in earlier chapters, opens

the gate to the integrated scheduling and dynamic optimization problem.
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6.1 Background Information

The Dow Chemical Company has successfully applied discrete time scheduling models

in optimizing many of its production facilities, especially with the resource task network

(RTN) approach [154, 155, 156]. The discrete time RTN model has a concise structure of a

few basic equations, but it is versatile enough to accommodate a wide array of different

scheduling constraints without excessive customization. It also renders a low integrabil-

ity gap in the resulting MILP that compensates the large number of binaries used [157].

Recently, a number of reformulation and solution algorithms [158, 159] have been inves-

tigated for discrete time scheduling formulations, which can dramatically improve their

computational performance for large-scale problems.

In practice, optimized production schedules need to be updated continually in response

to changes in product demands as well as process disruptions. Rescheduling capability

is therefore required to achieve reliable scheduling implementations and minimize pro-

cess performance losses in the presence of uncertainties and disruptions [160, 161]. This

rescheduling procedure often starts with partitioning the set of tasks into smaller groups

distinguished by attributes such as completeness and flexibility, and then re-optimizing

by partially modifying the current schedule. In practice, rescheduling is preferred to be

performed frequently in a periodic manner to keep the schedule up-to-date, which shares

some typical characteristics of model predictive control (MPC) strategies, particularly the

receding horizon scheme, where the optimization algorithm is constructed and solved

repeatedly within a forwarding scheduling horizon. Subramanian et al. [162] showed a

general procedure to translate well-known discrete time scheduling formulations to state

space models that are the foundation for MPC algorithms, and they highlighted the ad-

vantage of the obtained state space models in modeling typical process disruptions.
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Figure 6.1: Process flowsheet of the mixed plant

6.2 Problem Description

We consider a representative example of mixed batch/continuous processes in the chem-

ical industry, depicted in Fig. 6.1. As an example, the process consists of two batch pro-

cessing units (BU1, BU2), three buffer storage tanks (T1, T2, T3), and two continuous

processing units (CU1, CU2). The two batch units in parallel have identical processing

capabilities, and the buffer tanks and continuous units are in series. Five different prod-

ucts (Prod. A to E) are first processed by one of the batch units and then flow through

the continuous buffer tanks and processing units into product storage. An intermediate

product F is made in one batch unit and directly transferred to dedicated storage, and F

is later used as a raw material to make Prod. A, B, and E. The process is operated under

the following operating policies:

• Batch units are operated with fixed recipes (fixed task length and batch size).

• Buffer tanks have variable inlet/outlet flow rates.

• CU1 and CU2 have variable processing rates but no inventory.

• Mixing of products is not allowed in any units.

• Product transition time losses need to be considered for CU1 and CU2.

• Processing capacity of CU2 is consumable and needs to be replenished off-line.
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Challenges arise when considering modeling the mixed plant within the conventional

discrete time RTN framework. On the one hand, the number of tasks is increased. For

example, buffer tank T1 has two inlet and one outlet streams, and their flow rates are

mutually independent. This requires three separate tasks to be defined instead of a single

processing task. It also applies to the other tanks with inventories. In addition, the RTN

model requires additional storage tasks to be defined to enforce operating rules such as

non-mixing. Also, the replenishment task of CU2 involves two steps, where the unused

capacity is first discarded and then the (resource level) of the available capacity is reset

to full (e.g., changing a filter). Conventional RTN therefore requires two tasks to model

the operation. Meanwhile, the number of integer assignment variables for a task is large,

due to small time slots used to adjust processing rates frequently enough. Thus, reduc-

ing the number of tasks becomes an important issue especially for problems with long

scheduling horizon. We apply the extended RTN models to accomplish the goal, where

new continuous variables and balance equations are introduced such as task extents and

resource limit balances. The required number of tasks in the extended RTN can be much

fewer than the conventional one, e.g., single processing task for the tanks, no storage tasks

for non-mixing, and one task for CU2 replenishment. On the other hand, the conventional

RTN model is generally unsuitable for reactive scheduling as it does not track the history

of tasks nor incorporate disturbance terms. We employ the state space form RTN model

to overcome the limitation. The status of the process is captured by the state variables

over the entire scheduling horizon. The scheduling algorithm can be restarted conve-

niently with updated state measures. Disturbances such as task delays can be explicitly

modeled in the state space RTN model by defining corresponding model parameters. Re-

active scheduling with the state space RTN model is able to optimally respond to changes

in the production environment, maintaining the feasibility and optimality of production

schedules through periodic updates.
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6.3 RTN-based Scheduling Model

In discrete time RTN models, the known scheduling horizon is evenly divided to H time

slots with length �t. The duration of a task is approximated by a rounded-up integer

multiple of �t, denoted by ⌧ . In this section, we first review the basic equations used in

conventional RTN models [64, 65], followed by discussions on the RTN extensions and

transformation to state space models.

6.3.1 Conventional RTN Models

The fundamental equation of the RTN model is the balance equation on the amount of

excess resources, which are the resources not used by any currently active tasks at a given

time:

Rr,t = Rr,t�1 +
X

i2I

⌧
iX

✓=0

µi,r,✓Ni,t�✓ +
X

i2I

⌧
iX

✓=0

⌫i,r,✓⇠i,t�✓ + ⇧r,t, 8r 2 R, t 2 T . (6.1)

Here, Rr,t is the excess resource level of resource r at time t, which depends on its previous

level Rr,t�1, and interactions with tasks (two summation terms) and external influences

⇧r,t. In the first interaction term, Ni,t is an integer decision variable which represents the

number of occurrence of task i at time t, and µi,r,✓ denotes the integer interaction matrix

between tasks and resources, where the time offset index ✓ ranges from 0 to the task length

⌧i. The second interaction term represents the continuous task-resource interactions with

coefficient ⌫i,r,✓ and variable size ⇠i,t. The last participating term ⇧r,t can be used to model

external supplies or product orders transferred into or out of the system. The excess

resource levels in the resource balance equation (6.1) are constrained by resource limits:

Rmin
r,t 6 Rr,t 6 Rmax

r,t , 8r 2 R, t 2 T . (6.2)
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Finally, the batch sizes of active tasks are limited by equipment sizes, safety limits, etc.,

and this can be specified using the upper and lower limits of task sizes V max
i and V min

i :

V min
i Ni,t 6 ⇠i,t 6 V max

i Ni,t, 8i 2 I, t 2 T . (6.3)

Eqs. (6.1)-(6.3) comprise the core equations of a discrete time RTN model. An objective

function can be added to formulate an MILP for scheduling optimization. Many economic

objectives can be incorporated such as process profit maximization or cost minimization.

Other indices such as makespan can be more complex to formulate, since the discrete time

formulation requires a scheduling horizon with known length [163].

6.3.2 RTN Extensions

Wassick and Ferrio [155] have proposed a number of extensions to the conventional RTN

model to improve its modeling capability and solution efficiency in handling industrial

scheduling problems. Here we summarize a few extensions used in this study.

First, the external resource transfer variable ⇧r,t in the resource balance (6.1) can be used to

model outgoing deliveries to fulfill a product order o with known time window specified

by its early date Eo and due date Do. If there are multiple orders requiring different

products and the mapping is described by set ⌦o,r, the order fulfillment constraint can be

stated as follows:
t6D

oX

t�E
o

(�⇧r,t) = Qo,r, 8(o, r) 2 ⌦o,r,⇧r,t 6 0, (6.4)

where Qo,r is the product resource demand.

In a RTN model, a task can be defined to have multiple steps and/or resource interaction

routes. In these cases, multiple batch sizing variables need to be introduced for a sin-

gle task to determine the batch extents, where an extent refers to the processed material
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amount in a task step or resource interaction route. The resource balance equation can be

modified as

Rr,t = Rr,t�1 +
X

i2I

⌧
iX

✓=0

µi,r,✓Ni,t�✓ +
X

i2I

X

n2N

⌧
iX

✓=0

⌫i,n,r,✓⇠i,n,t�✓ + ⇧r,t, 8r 2 R, t 2 T . (6.5)

An additional summation over task extent index n is added for the continuous task-

resource interaction term, with the disaggregated interaction parameter ⌫i,n,r,✓ and vari-

able ⇠i,n,t. Consequently the batch size limit constraint (6.3) is rewritten with respect to

each extent:

V min
i,n Ni,t 6 ⇠i,n,t 6 V max

i,n Ni,t, 8i 2 I, n 2 N , t 2 T . (6.6)

The multi-extent concept may avoid defining separate tasks for a group of operations

that take place jointly. Later we show the use of multi-extents in the RTN modeling of

continuous units.

In a conventional RTN model, a task can only influence excess resource levels while the

resource limits Rmin
r,t and Rmax

r,t are given constant model parameters. However, it is ad-

vantageous for tasks to be able to interact with resource limits for material transfer and

storage operations as the resource storage limits change over time. For this purpose, two

resource limit balance equations can be constructed in analogy to the resource balance

equation (6.5):

Rmax
r,t = Rmax

r,t�1 +
X

i2I

⌧
iX

✓=0

↵i,r,✓Ni,t�✓ +
X

i2I

X

n2N

⌧
iX

✓=0

�i,n,r,✓⇠i,n,t�✓, 8r 2 R, t 2 T ; (6.7a)

Rmin
r,t = Rmin

r,t�1 +
X

i2I

⌧
iX

✓=0

↵0
i,r,✓Ni,t�✓ +

X

i2I

X

n2N

⌧
iX

✓=0

�0
i,n,r,✓⇠i,n,t�✓, 8r 2 R, t 2 T . (6.7b)

The integer and continuous interaction parameters ↵i,r,✓ (↵0
i,r,✓) and �i,n,r,✓ (�0

i,n,r,✓) are in-

troduced, similar to those defined for changing resource levels (µi,r,✓ and ⌫i,n,r,✓ in the

resource balance (6.5)).
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The excess resource limit constraint (6.2) can bring difficulties in solving RTN models in

some highly resource-constrained scenarios, and the MILP algorithm only returns a null

solution indicating problem infeasibility. A modification can be made on Eq. (6.2) to relax

the bounds on the resource limits:

Rmin
r,t � Smin

r,t 6 Rr,t 6 Rmax
r,t + Smax

r,t , 8r 2 R, t 2 T . (6.8)

By adding positive slack variables Smin
r,t and Smax

r,t , the resource level is allowed to exceed

the presumed bounds, but the violation should be penalized in the scheduling objective.

Extended RTN models with the soft resource limit constraint (6.8) can provide more in-

formative solutions for analyzing constraining resources of the process.

6.3.3 State Space RTN Model

State space models are widely used in process control literature. A state space model

represents a dynamic process system by a set of first-order differential/difference equa-

tions including three groups of variables, the input, output, and state variables. The input

variables are the decision variables and the output variables are associated with control

goals. The state of the dynamic system at any given time can be fully represented by state

variables, and the future state can be forecast by the current state and input variables of

the system. The key state evolution equations for the extended RTN model are Eqs. (6.5)

and (6.7), where the input variables are task assignment and batch size decisions, and the

state variables include resource levels and associated limits. However, these states can

be influenced by input variables at earlier steps as shown in Eqs. (6.5) and (6.7) (when

task length ⌧i > 1), which essentially represent high-order dynamics. It follows that the

current set of state variables is not sufficient to represent the entire system state. To solve

this problem, the state vector needs to be augmented through lifting, i.e., introducing new
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state variables [162]:

N̄i,t,✓ , Ni,t�✓, 8i 2 I, t 2 T , 0 6 ✓ 6 ⌧i; (6.9a)

⇠̄i,n,t,✓ , ⇠i,n,t�✓, 8i 2 I, n 2 N , t 2 T , 0 6 ✓ 6 ⌧i. (6.9b)

N̄i,t,✓ and ⇠̄i,n,t,✓ record the decision history of the system. For instance, N̄i,t,✓ = 1 means

that there is one instance of task i that has been running for ✓ time periods at time t. Or

equivalently, it can be interpreted as an active task i at time t was started ✓ slots ago. Note

that in definition (6.9) the augmenting states are equivalent to the input variables Ni,t and

⇠i,n,t when ✓ = 0. The sufficient input and state vectors can be identified as:

Inputs: task assignment Ni,t and task (extent) size ⇠i,n,t

States: resource level Rr,t, limit levels Rmax
r,t and Rmin

r,t , and task history N̄i,t,✓ and ⇠̄i,n,t,✓

The set of first-order dynamic state evolution equations can be stated as follows:

N̄i,t,✓ = N̄i,t�1,✓�1, (6.10a)

⇠̄i,n,t,✓ = ⇠̄i,n,t�1,✓�1, (6.10b)

Rr,t = Rr,t�1 +
X

i2I

⌧
iX

✓=0

µi,r,✓N̄i,t,✓ +
X

i2I

X

n2N

⌧
iX

✓=0

⌫i,n,r,✓⇠̄i,n,t,✓ + ⇧r,t, (6.10c)

Rmax
r,t = Rmax

r,t�1 +
X

i2I

⌧
iX

✓=0

↵i,r,✓N̄i,t,✓ +
X

i2I

X

n2N

⌧
iX

✓=0

�i,n,r,✓⇠̄i,n,t,✓, (6.10d)

Rmin
r,t = Rmin

r,t�1 +
X

i2I

⌧
iX

✓=0

↵0
i,r,✓N̄i,t,✓ +

X

i2I

X

n2N

⌧
iX

✓=0

�0
i,n,r,✓⇠̄i,n,t,✓. (6.10e)

Eqs. (6.10a) and (6.10b) are derived from the definitions of task history states in Eqs. (6.9).

The external resource transfer term ⇧r,t in Eq. (6.10c) can be treated as a disturbance term

to the system. The state space RTN model can be constructed after replacing Eqs. (6.5)

and (6.7) with Eqs. (6.10). The resulting state space model is inherently favorable for

recursive scheduling with the receding horizon scheme. Performing a rescheduling task
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only requires knowing the initial values of all the state variables, which can be readily

obtained from the previous scheduling optimization solution. This can be recognized as

a systematic and automatic way of carrying out task set partitioning.

Moreover, the state space RTN mode can efficiently represent process disturbances through

modifying the state evolution equations. Examples on a number of disturbance types

were studied by Subramanian et al. [162]. Here we focus on the most common disruption

source, task delays, but with a different modeling approach than that used by Subrama-

nian et al. [162]. We use a simple example to illustrate the idea. Let an arbitrary task i

of length ⌧i = 2 start at time t = 0. If no delays occur the evolution of the discrete task

history state N̄i,t,✓ is shown in Fig. 6.2(a), where the bold face ones are active. In contrast,

if the task is delayed for one time period from t = 1 to t = 2, the states at t = 2 should

be updated differently as shown in Fig. 6.2(b). Mathematically, the task delay event can

be described by a series of fixed binary disturbance parameters di,t,✓. di,t,✓ = 1 indicates

a unit time period delay of task i at time t (and task i starts at time t � ✓). For instance,

di,1,1 = 1 and others are zero in the simple example. The state space equation for the

discrete task history state (6.10a) can be modified to include task delays:

N̄i,t,✓ = (1�
✓06✓X

✓0>0

di,t�1,✓0)N̄i,t�1,✓�1 +
✓06✓X

✓0>0

di,t�1,✓0N̄i,t�1,✓, 8i 2 I, t 2 T , 1 6 ✓ 6 ⌧i. (6.11)

The evolution equations for the continuous history state can be rewritten in a consistent

way:

⇠̄i,n,t,✓ = (1�
✓06✓X

✓0>0

di,t�1,✓0)⇠̄i,n,t�1,✓�1 +
✓06✓X

✓0>0

di,t�1,✓0 ⇠̄i,n,t�1,✓, 8i 2 I, n 2 N , t 2 T , 1 6 ✓ 6 ⌧i.

(6.12)

Longer task delays that take multiple time periods (⌧d > 1) can be modeled by consecutive

disturbance parameters di,t,✓, di,t+1,✓ . . . di,t+⌧
d

�1,✓.

The state space RTN model with extensions we have developed consists of
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(b) Task delay at t = 1

Figure 6.2: Effect of task delays on the evolution of task history states

State dynamics: Eqs. (6.10c), (6.10d), (6.10e), (6.11), (6.12).

Process constraints: Eqs. (6.4), (6.6), (6.8).

These equations essentially model the linear dynamics of the scheduling system that serve

as the core constraints in scheduling optimization formulations. The form of the schedul-

ing objective can be different from one application to another, and we show the objective

function for the mixed process after explaining the process RTN representation.

6.4 Process RTN Representation

The RTN representation of the mixed batch/continuous process shown in Fig. 6.1 can

be developed by translating the associated operations to bipartite graphs of task and re-

source nodes. We illustrate this in parts: the batch processing units, buffer tanks, and

continuous processing units. No final product storage tasks are explicitly considered, be-

cause product inventory levels and capacities are modeled as excess resource levels and

corresponding limits. We use the RTN representations associated with processing Prod. A

to demonstrate the representation approach, because RTN representations of other prod-

ucts are very similar.
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Figure 6.3: RTN representation of the batch processing unit

6.4.1 Batch Processing Units

The batch units are the first process stage for all products, and they can also be used as

temporary storage facilities when a batch is made but the downsteam buffer tank is not

available (at its capacity or occupied by other products). We show the RTN representation

of one of the batch units in Fig. 6.3. Two tasks are defined, corresponding to the major

batch operation (BprocA) and the material transfer operation (TranA). Task BprocA lasts

for 14 time intervals (⌧1 = 14), consumes the batch unit BU, intermediate Int. F, and other

materials M at the beginning, and releases a filled unit BUS loaded with raw product

ABU at the end. The amount of other materials M is not accounted in resource balances

as we assume M is unlimited. Task TranA is assumed to be instantaneous (⌧2 = 0) that

corresponds to transferring the temporarily stored resource ABU to the downstream buffer

tank, and the unit is therefore cleaned and ready to start the next batch. This translates to

converting resources BUS and ABU to BU and Ao
BU in the RTN language. The values of

the resource task interaction parameters are listed in Tab. D.2 in the Appendix C. It is

worth noting that a zero-wait policy is enforced on Ao
BU by setting its upper limit equal to

zero. This guarantees the transfer task only takes place when the buffer tank is available

to store Ao
BU.

The RTN graph applies to both batch units since they are identical and representations

for making other products (B to E) are similar to Fig. 6.3, with slight differences in the

material resources consumed and generated. The transfer task is not introduced for Int. F
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since it does not go through the downstream processing stages but is stored in dedicated

tanks after the batch processing step and recycles back to the batch units as the initial

material for making other products. Fixed batch sizes of the processing and transfer tasks

are assumed, and the sizes of the two tasks are equal to ensure the transfer task empties

the batch unit. An alternative general approach to model temporary storage of batch

products is reported by Castro et al. [164], where hold-in-storage tasks are introduced in

contrast to the transfer task.

6.4.2 Buffer Tanks

The buffer tanks are simple continuous units based on mass balance, and therefore the

material transfers between its inlet flow, inventory, and outlet flow need to be described

by the RTN. Taking the first tank T1 as the example, the RTN representation is depicted

in Fig. 6.4. The buffering task spans a single time slot and seizes the equipment resource

T1 during execution. In order to model mass transfers between the two inlets Ao
BU1

and

Ao
BU2

, inventory AT1 , and outlet Ao
T1

, the multi-extent concept is applied. Three extents

are defined where Extent 1 and 2 model the streams from the batch units into the tank,

and Extent 3 represents the outgoing flow to downstream. Note that the interaction be-

tween the task and material resources are assumed to be instantaneous. More specifically,

the continuous task-resource interaction parameters ⌫i,n,t,✓ have no time offsets (✓ = 0)

on both the consumption and the generation sides. This means the material balances are

taken into account at the beginning of the buffering task even if the transfer process con-

tinues steadily within the time slot. The continuous flow rate can be back-calculated with

the extent size and time grid length if a predefined flow rate profile (piece-wise constant

for example) is assumed. The RTN representations for buffering other products are of

similar structures. In addition, the resource limit balance is used to ensure the buffer tank

can store at most one type of product at a time. In this example, the excess resource capac-
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Figure 6.4: RTN representation of buffer tank T1

ity of products other than Prod. A in the buffer tank are temporarily removed when task

BufA starts, and restored when it finishes. This is carried out by appropriately defining

↵i,r,✓ in the maximum limit balance (6.10d) for the inventory resources of other products

(analogous to AT1 , e.g., BT1 , see Fig. 6.4). The other buffer tank T2 can be modeled with a

similar task with two extents, which eventually converts Ao
T1

to Ao
T2

.

6.4.3 Continuous Processing Units

We show the RTN representation of the two continuous processing units CU1 and CU2

together with the buffer tank T3 in Fig. 6.5. The first continuous processing unit CU1

processes the material flow at desired rates by task C1procA, and the material interactions

are also assumed to be instantaneous. Only one task extent is needed since CU1 allows no

inventory. Next, the buffer tank T3 has very similar RTN structure to that of T1. For CU2,

a material resource CAP is defined to represent its consumable processing capacity. Task

C2procA consumes both Ao
T3

and CAP to produce the final Prod. A. When the remaining

processing capacity becomes low, the replenishment task C2repln is performed. This task

lasts for two time periods, and the two task extents involved take place at the beginning

and end of the task, respectively. The first extent empties the remaining unused resource

level of CAP at ✓ = 0, which is achieved via forcing the upper bound of CAP to 0 in
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Figure 6.6: RTN representation of the changeover tasks for CU1

the resource limit balance. This allows for a variable amount of remaining CAP to be

removed, and the threshold value for admissible replenishment actions can be set by

specifying the batch extent limit. For example, the extent limit can be set to 25% of the

maximum resource level of CAP, which renders degrees of flexibility for scheduling the

replenishment task. The second extent restores the resource level of CAP to its maximum

along with the resource level upper bound when task ends at ✓ = 2. This task also seizes

CU2 to ensure the unit is offline during capacity restoration.

However, the continuous processing units CU1 and CU2 have discrete behaviors when

transition time losses are considered. For this mixed process, three different product fam-
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ilies require equipment cleaning for changeovers. A way to address this modeling chal-

lenge is to introduce changeover tasks along with associated dummy equipment resources.

For the example of the first continuous processing unit, the original equipment resource

CU1 in Fig. 6.5 can be replaced with three dummy ones CU1F1 , CU1F2 , and CU1F3 for

the three different product families, respectively. The processing task for a product be-

longing to a particular product family needs to consume and generate the corresponding

dummy equipment resource. The unit is alternatively represented by the three dummy

equipment resources, and the summation of their resource levels is no greater than one

within the scheduling horizon. Then six changeover tasks are defined to toggle the unit

between the three states for producing products in different categories, shown in Fig. 6.6.

The lengths of the changeover tasks indicate the transition time loss matrix. Although in

this case, the time losses are the same for all changeovers, the method is able to handle

sequence-dependent changeovers with asymmetric transition matrices. Operation cost

for performing changeover tasks can be explicitly considered in the scheduling objective

function if necessary. The changeover tasks for CU2 transitions can be similarly defined,

while the equipment resource CU2 is retained for scheduling the replenishment task.

6.5 Optimal Scheduling Formulation

6.5.1 Scheduling Objectives

The optimal scheduling algorithm is expected to deliver optimized schedules best satis-

fying multiple manufacturing targets. The objective function varies with different scenar-

ios. However, a number of basic elements are essential in most scheduling applications,

such as order fulfillment and safety stock maintenance. If we assume an order must be

delivered within a particular time window as Eq. (6.4) states, an economic value func-

tion can be associated with the filling amount term �⇧r,t, and the value function can be
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time dependent to encourage early order retrievals. For managing product inventories,

the slack variables Smin
r,t in Eq. (6.8) are used at t = H , which allows mild violations on

the product safety stock. However, the final time product resource levels are desired

to stay within/close to the unrelaxed feasible region. This is achieved by penalizing

the slack variable corresponding to the last time interval in the objective. An objective

function combining the scores on order filling and resource level might be sufficient for

driving a conventional batch scheduling problem for profit maximization/cost minimiza-

tion. However, as continuous units are involved, further considerations are required. For

instance, the processing rate profiles of the continuous units can be oscillatory as all the

continuous processing tasks are narrowed down to a unit length in time such that the rate

decision in a time slot is isolated from its neighbors. A comprehensive objective function

should also take such issues into account, and resolve them by penalizing problematic

operation postures.

6.5.2 Treatment of Flow Rate Profiles

Oscillatory flow rate profiles can occur when continuous processing units are operated

under capacity. For example, when tank T2 is required to empty its current inventory

AT2 within 4 time periods, a flow rate profile may occur as shown in Fig. 6.7(a) (T2 max.

output capacity = 15⇥ 4 = 60 and current inventory = 40). This profile is “optimal” from

the scheduling perspective, since the material transfer objective is achieved in time. How-

ever, the flow rate control leads to unnecessary switches that are undesirable in practice.

This oscillatory profile is non-optimal from the equipment control point of view and it

also propagates to the first continuous unit CU1. In this case, a schedule can have multi-

ple flow rate profile solutions even in a local part of the complete schedule (see Fig. 6.7(a))

because the problem is under-constrained. A possible way to overcome this problem is to

carry out post-optimization amendments. However, it can be a cumbersome process for
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(a) A possible “optimal” profile
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(b) Regularized optimal profile

Figure 6.7: Comparison of different “optimal” flow rate profiles

plant schedulers to identify gaps between one flow after another. An alternative approach

is to regularize the flow by penalizing the inventory resource levels in the buffer tanks

over time. The inventory penalties force the material flow to go through the continuous

processing stages as fast as possible, which can lead to steadier flow rate shapes. Here,

the area under the inventory curve is minimized by the regularized flow in Fig. 6.7(b) for

the illustrative example. The penalty coefficients should be small to reduce their effect on

production scheduling decisions.

6.5.3 Mathematical Formulation

A comprehensive objective function used for the mixed process scheduling problem can

be constructed as follows:

max� =
X

(o,r)2⌦
o,r

tD
oX

t�E
o

cordero,r,t (�⇧r,t)�
X

i2I

X

t2T

ctri Ni,t �
X

r2R

X

t2T

cinvr Rr,t �
X

r2R

cslr S
min
r,H . (6.13)

All the economic coefficients are positive, where cordero,r,t represents the order value, ctri is the

economic cost of product transition tasks, cinvr indicates the inventory resource penalty

in the buffer tanks, and cslr represents the safety stock violation penalty for product re-
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sources. We use the state space RTN model as the model constraints. The developed

scheduling formulation is a standard MILP problem.

6.6 Case Study

For the mixed process in this study, a long scheduling prediction horizon is generally

preferred to manage product sequences and transitions, while small discretized time in-

tervals are needed to capture the flow rate variations of the continuous units. These easily

lead to a large number of integer variables in the scheduling formulation, and therefore

solving the model to global optimality becomes difficult. However, reasonably good fea-

sible solutions (say less than five percent optimality gap) are often acceptable for practical

scheduling problems. Moreover, solution speed becomes more important than optimality

when rescheduling in response to unscheduled process disruptions. For this reason, we

allow a five percent optimality gap for our case study problems, which keeps the solu-

tion time within ten CPU minutes or less. We illustrate the scheduling algorithm with the

rolling horizon scheme, where a nominal schedule is first designed and then rescheduling

is performed with the shifted time window dealing with revealed unexpected events.

6.6.1 Nominal Schedule Design

For the first part, an optimal three-day schedule with one-hour time slots is obtained via

solving the scheduling formulation to meet the customer demand of Day 1-3. In addition,

the plant starts with initial inventories of Prod. A in T2 and Prod. B in T3 (RT2A,0 = 70 and

RT3B,0 = 70). The model and solution statistics are given in Tab. 6.1. Gurobi finds a good

feasible schedule with ⇠ 3% optimality gap and times out after 600s. The process Gantt

chart is shown in Fig. 6.8, where the task rectangles are colored with respect to prod-

ucts/events and their widths represent task lengths. For the batch units BU1 and BU2,
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Opt. obj. Gap (%) Var. (Discrete) # Con. # Solver CPU(s)

563.0 2.6 134,148(4,380) 140,382 Gurobi 5.5.0 600

Table 6.1: Model and solution statistics of the nominal case
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Figure 6.8: Optimal schedule for the mixed plant for Day 1-3

two batches of Prod. A and C, and one batch of Prod. D and E are scheduled. Split rect-

angles are employed to show the schedule of buffer tanks as their inlet and outlet flows

are mutually independent in time. Note that short bars are used to record the appearance

of T1 inlet flows, whose material transfer time is assumed to be zero. Prod. transitions are

observed in both schedules of CU1 and CU2 (gray rectangles), while CU2 replenishment

task is scheduled within the second day (black rectangles).

Besides the schedule, the model solution also includes operating details of the continuous

units, such as the operating policies of CU1 and CU2 and the inventory profiles of T1, T2,

and T3, shown in Fig. 6.9(a) and Fig. 6.9(b), respectively. These profiles can be set as

the reference trajectories for process monitoring and control purposes. Finally, Fig. 6.10

shows the evolution of the intermediate and final product (A to F) inventories. All of the

final product inventory levels are well maintained around their initial levels at the end of

the third day, and the level of the Int. F decreases as it is used to produce Prod. A, B, and

E in the batch units.
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Figure 6.9: Operating details of the continuous processing units and buffer tanks
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Figure 6.10: Product inventory profiles

6.6.2 Reactive Schedule Design

We illustrate the rescheduling capability within a rolling horizon scheme, where the schedul-

ing time window is shifted forward by 24 hours. If the schedule in Fig. 6.8 has been exe-

cuted without any upsets, the scheduling algorithm can be restarted by the end of Day 1,

by solving a new iteration that incorporates the product demands of Day 2-4. The unfin-

ished tasks by the end of Day 1 such as those in the batch units can be easily carried over

to the new scheduling iteration within the initialization of the task history states. Three

different scenarios are considered: 1). no process disruptions, 2). task delay in batch

unit BU1, and 3). maintenance of buffer tank T3. The optimized schedules are shown in

Figs. 6.11 in comparison and solution statistics are given in Tab. 6.2.

Scenario 1: no process disruptions

Fig. 6.11(a) gives the updated Gantt chart of the plant schedule from Day 2 to Day 4 with

no disruptions. The scheduling algorithm has made a number of modifications to the

previous schedule, such as adding batches of Prod. A and D as well as Int. F, due to the

newly obtained knowledge of product demands of Day 4. Also, the transition from the

previous schedule is smooth such that no drastic changes need to be made for the first

couple of hours of Day 2.
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Scenario 2: task delay in BU1

More interestingly, Fig. 6.11(b) shows the optimal schedule designed given the notice of

task delay in BU1 for 11 hours. The optimal schedule now assigns the task of producing

Int. F to BU2 in working order. Note that an additional batch is scheduled in Day 4 to

produce Prod. E that is on back order. However, the demand for Prod. E is only one

batch. The over-production is due to a modification made to safety stock constraint for

the product resources. For example, the final time inventory of Prod. E used in the safety

stock constraint accounts not only for the current actual stock level, but also the “raw

products” that exist in T1, T2, and T3. The effective resource level can be calculated as a

weighted summation of all Prod. E inventories, where the weights are noted as discount

factors fr 2 [0, 1]. Here, fE = 1 for the final products, and fT1E < fT2E < fT3E < 1 for the

raw products. The effective resource level is used to encourage upstream tasks that are

not available to deliver final products before the end of the current scheduling time hori-

zon, but their corresponding downstream operations can be finished in the immediate

future. Nevertheless, the over-production may later be adjusted at the next scheduling

iteration within the rolling horizon scheme, depending on the newly revealed demand

information.

Scenario 3: maintenance of T3

In the third case, a 13-hour maintenance of T3 needs to be performed in Day 3 from t = 60

to 73. This maintenance constraint can be readily specified in the RTN model by letting

the upper resource limit of buffer tank T3 equal zero during corresponding time periods.

The maintenance plan becomes known at t = 24, the scheduling algorithm is able to take

advantage of the knowledge, and design an optimal schedule as shown in Fig. 6.11(c).

The most significant change is that the production of Prod. D is brought forward, where

the product transitions in CU1 and CU2 are carried out while T3 is not available.
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(c) Optimal schedule with T3 maintenance

Figure 6.11: Optimal schedules of the mixed plant for Day 2-4 in different scenarios
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Scenario Opt. obj. Gap (%) Var. (Discrete) # Con. # Solver CPU(s)

1.(Fig. 6.11(a)) 635.2 4.6 134,148(4,380) 140,382 Gurobi 5.5.0 600
2.(Fig. 6.11(b)) 634.8 4.7 134,148(4,380) 140,382 Gurobi 5.5.0 600
3.(Fig. 6.11(c)) 633.5 4.9 134,148(4,380) 140,382 Gurobi 5.5.0 600

Table 6.2: Model and solution statistics of the reactive cases

Under all three circumstances, the plant is able to fulfill customer orders and maintain

product inventory levels, except for Prod. E in the second case (but it is expected to be

recovered in the near future). Note that we illustrate the rolling horizon scheme by con-

sidering rescheduling per day, but in reality it can be invoked at a much higher frequency.

The model size remains the same for all cases. The computation times are 600 CPU sec-

onds, where the solutions have optimality gaps smaller than 5%.

6.7 Concluding Remarks

An optimal scheduling formulation based on the extended discrete time RTN representa-

tion has been developed. The extended RTN model is versatile enough to capture many

detailed features of the plant operation, such as modeling mixed batch/continuous units,

product changeovers, and consumable processing capacity replenishment. Moreover, the

scheduling model is converted to the state space form to carry out reactive scheduling

tasks, working in conjunction with the rolling horizon scheme. The state space model in-

corporates lifted state variables to record task histories, which can be efficiently exploited

in defining rescheduling problems and modeling process disruptions. In the case study,

we have tested the scheduling formulation in different scenarios, especially in the context

of responding to process disruptions. The formulation is able to address these problems

as it successfully designs reasonably good schedules within short computation time lim-

its. Such a scheduling model, utilizing a rolling horizon scheme, is desirable to handle

practical scheduling problems, where frequent and rapid responses to process disrup-
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tions are required. Also, the state space model provides opportunities to conduct stability

analysis of the closed-loop scheduling method, analogous to those for MPC algorithms.

More importantly, the state space RTN model can also be potentially used in integrated

scheduling and control problems, as the lower layer control models are described in a

consistent manner.
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6.8 RTN Model Notation

Indices/Sets

i/I tasks
n/N task extents
o/O orders
r/R resources
t/T time slots
✓ time shift index
⌦o,r map between order o and resource r

Parameters

cordero,r,t order value coefficient
ctri cost coefficient of transition tasks
cinvr inventory penalty coefficients of buffer tanks
cslr cost coefficients for violating safety stock levels
di,r,✓ binary task delay indicator
Do due date of order o
Eo early date of order o
fr discount factor of product resource r

H total time horizon length
Qo,r demand of product resource r in order o
�t unit time slot length
V max
i,n , V min

i,n upper and lower bounds of extent n of task i

↵i,r,✓,↵
0
i,r,✓ discrete task resource limit interaction parameters

�i,r,✓, �
0
i,r,✓ continuous task resource limit interaction parameters

µi,r,✓, µ
0
i,r,✓ discrete task resource interaction parameters

⌫i,r,✓, ⌫
0
i,r,✓ continuous task resource interaction parameters

⌧i task length

Discrete variables

Ni,t number of task i starts at time t

N̄i,t,✓ discrete task history state

Continuous variables

Rr,t excess resource level of resource r at time t

Rmax
r,t , Rmin

r,t upper and lower excess resource level limits of resource r at time t

Smax
r,t , Smin

r,t resource slack variables
⇠i,n,t size of batch extent n of task i starts at time t

⇠̄i,n,t,✓ continuous task history state
⇧r,t external resource transfer of resource r at time t
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Chapter 7

Integrated Optimization Strategy

This chapter presents an integrated optimization for industrial polymerization processes,

incorporating the developments from the previous chapters on reactor modeling and pro-

duction scheduling. The method introduce a discrete time formulation for simultane-

ous optimization of the scheduling and operation decisions. The process is described by

the resource task network (RTN) representation coupled with detailed dynamic models.

General complications in scheduling and control can be fully represented in this model-

ing framework, such as customer orders, transfer policy, and requirements on product

quality and process safety. The scheduling and operation layers are linked with the task

history state variables in the state space RTN model. A tailored generalized Benders de-

composition (GBD) algorithm is applied to efficiently solve the resulting large nonconvex

mixed-integer nonlinear program by exploring the particular model structure. We ap-

ply the integrated optimization approach to a polymerization process that borrows a lot

of features from the previous studies. The process has two parallel semi-batch reactors

for ring-opening polymerization, continuous storage tanks, and purification units. The

two polymerization reactors share cooling utility from the same source, and the utility

price depends on the consumption rate. The optimization objective is to design the pro-
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cess schedule and reactor control policies simultaneously to maximize the overall pro-

cess profit. The case study results suggest improvements in plant profitability for the

integrated approach, in contrast to the conventional approach, where recipes of the poly-

merization tasks are individually optimized and the interactions among process units are

overlooked.

7.1 Model Formulation

We first demonstrate the key equations for process scheduling based on the RTN repre-

sentation, and then deal with dynamic process models. We use the state space RTN model

in Chapter 6 and the moment model for polymerization reactors in Chapter 5.

7.1.1 Scheduling with RTN

The linear state space RTN model equations can be carried over to the integrated prob-

lem, with a few modification. An important difference is the task mode index m, which

is added to enable different operation strategies for the same task. For example, the task

length can vary by modes, product quality constraints can be set to different threshold

values, etc. This provides opportunities for dynamic optimization to have influence on

the schedule design by altering execution modes, though the resource transform relation-

ship remains the same for all modes of the same task from the scheduling point of view.

Also, binary task assignment variables are used instead of integer ones, as one occurrence

of a task can be operated differently than another.

First, the resource balance equation is as follows:

Rr,t = Rr,t�1+
X

i2I

X

m2M

⌧
i,mX

✓=0

µi,m,r,✓w̄i,m,t,✓+
X

i2I

X

m2M

X

n2N

⌧
i,mX

✓=0

⌫i,m,n,r,✓⇠̄i,m,n,t,✓+⇧r,t, 8r 2 R, t 2 T .

(7.1)
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For variables names, R is the resource level, w̄ and ⇠̄ are the discrete and continuous task

history states, µ and ⌫ are the corresponding task resource interaction parameters, and ⇧

is used to represent external transfer events. For the indices, r is resource, t is time, i is

task, m is task mode, n is task extent, and ✓ is a dummy index used for time shift. Next,

the lifting equations for the task assignment and batch sizing variables are obtained:

w̄i,m,t,✓ , wi,m,t�✓, 8i 2 I,m 2 M, t 2 T , 0 6 ✓ 6 ⌧i,m; (7.2a)

⇠̄i,m,n,t,✓ , ⇠i,m,n,t�✓, 8i 2 I,m 2 M, n 2 N , t 2 T , 0 6 ✓ 6 ⌧i,m. (7.2b)

The change of the task history states over time is described by the state evolution equa-

tions:

w̄i,m,t,✓ = w̄i,m,t�1,✓�1, 8i 2 I,m 2 M, t 2 T , 1 6 ✓ 6 ⌧i,m; (7.3a)

⇠̄i,m,n,t,✓ = ⇠̄i,m,n,t�1,✓�1, 8i 2 I,m 2 M, n 2 N , t 2 T , 1 6 ✓ 6 ⌧i,m. (7.3b)

For resource limit balance relations:

Rmax
r,t = Rmax

r,t�1 +
X

i2I

X

m2M

⌧
i,mX

✓=0

↵i,m,r,✓w̄i,m,t,✓ +
X

i2I

X

m2M

X

n2N

⌧
i,mX

✓=0

�i,m,n,r,✓⇠̄i,m,n,t,✓, 8r 2 R, t 2 T ;

(7.4a)

Rmin
r,t = Rmin

r,t�1 +
X

i2I

X

m2M

⌧
i,mX

✓=0

↵0
i,m,r,✓w̄i,m,t,✓ +

X

i2I

X

m2M

X

n2N

⌧
i,mX

✓=0

�0
i,m,n,r,✓⇠̄i,m,n,t,✓, 8r 2 R, t 2 T .

(7.4b)

Lastly, inequality constraints for resource levels and task extent sizes:

Rmin
r,t  Rr,t  Rmax

r,t , 8r 2 R, t 2 T . (7.5)

V min
i,m,nw̄i,m,t,✓  ⇠̄i,m,n,t,✓  V max

i,m,nw̄i,m,t,✓, 8i 2 I,m 2 M, n 2 N , t 2 T , 0 6 ✓ 6 ⌧i,m. (7.6)
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7.1.2 Operation Optimization with Reactor Models

Moment models are used to model the two polymerization reactors. Here, we consider

homopolymer products that are polymerized via ring-opening. For detailed equations

please refer to Appendix D. Nevertheless, the reactor models are DAE systems that can

be can be written in a generic form as follows:

ż = f(z(s), y(s), u(s)), z(0) = z0; (7.7a)

g(z(s), y(s), u(s)) = 0. (7.7b)

The differential equations are defined for the differential states z in semi-explicit form,

and the algebraic states are y. The initial condition of the differential states is known as

z0. Process control variables are u. We use s to denote the continuous time coordinate

in contrast to t that is used for the discrete time grid. Without loss of generality, process

constraints for optimization are expressed as:

h(z(s), y(s), u(s)) 6 0. (7.8)

7.1.3 Integrated Formulation

The integrated formulation ties the RTN scheduling model and process dynamic mod-

els together. First, time representation needs to be considered, as a means to coordinate

scheduling time slots, finite elements, and collocation points. A unified time grid is de-

fined as shown in Fig. 7.1. In this example, the entire scheduling time horizon t 2 [0, H]

is filled with H discrete time slots of unit length. A time slot contains two finite ele-

ments with three collocation points inside each element. The arrangement is adjustable

for specific applications, e.g., the number of finite elements in a time slot and the type and

number of collocation points used. Note that the starting point of a scheduling time slot is
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t = 0 t = H

Figure 7.1: Time representation of the integrated formulation

aligned with a finite element. By this means, task switching events can be simultaneously

addressed in both the scheduling and dynamic control equations.

Task switching events are described by the task assignment/history variables in the RTN

scheduling model. In the lower layer dynamic optimization problem, process dynamic

models are influenced by switching tasks. This may correspond to changes in the model

parameters or structure, as well as different specifications on the process constraints.

Therefore, the dynamic system and constraints are also functions of the task history states

in the integrated model. In a time slot t, we obtain

żt = f(zt, yt, ut, w̄i,m,t,✓, ⇠̄i,m,n,t,✓), z0t = Z(zft�1, w̄i,m,t,✓, ⇠̄i,m,n,t,✓); (7.9a)

g(zt, yt, ut, w̄i,m,t,✓, ⇠̄i,m,n,t,✓) = 0; (7.9b)

h(zt, yt, ut, w̄i,m,t,✓, ⇠̄i,m,n,t,✓) 6 0. (7.9c)

The equations are in the continuous form for notational convenience, and the discretized

version can be obtained through the simultaneous collocation method. Note that the

states and controls are defined with respect to the entire process such that they do not

have indices for task or task mode dependency. Moreover, the initial conditions of the

differential states are no longer known parameters but a function of its value at the end of

the previous slot (zft�1) and task assignment variables. If no task switch occurs, z0t and zft�1

are equal to ensure the continuity of the differential states; otherwise, sudden jumps may

occur due to the start or finish of operations. This discrete switching behavior is described

by Z(·), which is a balance equation of zt across the discrete time slot boundaries, similar
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to the resource balance equation (Eq (7.1)).

For the objective function, profit maximization is a common choice for the integrated

scheduling and dynamic optimization problem, since it accounts for the trade-offs be-

tween product sales and manufacturing costs in a natural way. Product sales are decided

by the scheduling level decisions such as batch numbers, while manufacturing costs are

calculated using the detailed dynamic models.

To summarize, the integrated formulation for scheduling and dynamic optimization can

be described as follows:

max �(Rr,t, zt, yt, ut, w̄i,m,t,✓, ⇠̄i,m,n,t,✓)| {z }
Overall profit

= �sch(Rr,t, w̄i,m,t,✓, ⇠̄i,m,n,t,✓)| {z }
Product sales

��dyn(zt, yt, ut, w̄i,m,t,✓, ⇠̄i,m,n,t,✓)| {z }
Manufacturing cost

s.t.

F sch(Rr,t, R
min
r,t , Rmax

r,t , w̄i,m,t,✓, ⇠̄i,m,n,t,✓) = 0 Scheduling equalities: Eqs. (7.1), (7.3), (7.4)

Gsch(Rr,t, R
min
r,t , Rmax

r,t , w̄i,m,t,✓, ⇠̄i,m,n,t,✓) 6 0 Scheduling inequalities: Eqs. (7.5), (7.6)

F dyn(zt, yt, ut, w̄i,m,t,✓, ⇠̄i,m,n,t,✓) = 0 Dynamic equalities: Eqs. (7.9a), (7.9b) (discretized)

Gdyn(zt, yt, ut, w̄i,m,t,✓, ⇠̄i,m,n,t,✓) 6 0 Dynamic inequalities: Eq. (7.9c) (discretized)
(7.10)

Here, the overall objective function �(·) is written as a linear combination of two sub-

objectives �sch and �dyn, depending on the scheduling and dynamic optimization vari-

ables respectively. Also, the constraints can be separated into scheduling and dynamic

optimization groups.

7.2 Solution Strategy

The integrated formulation is posed as a nonconvex MINLP problem, and the direct so-

lution of which is time-consuming or even computationally intractable for large-scale
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problems. However, the model structure (Eq. (7.10)) can be efficiently explored with de-

composition algorithms. The scheduling equations and dynamic models are only linked

by the task history state variables, and the remaining parts are isolated from each other.

The GBD method is well suited for this type of problem. In this method, the original

model is decoupled to a primal problem and a master problem. In the primal problem,

the linking variables (also termed as complicating variables) are temporarily fixed to some

value such that the remaining parameterized problem has a more tractable size and struc-

ture. The master problem is a projection of the original problem to a restricted variable

space, i.e., the variables in the subproblem (except for the complicating variables) are not

explicitly included in the master problem. Alternatively, the master problem includes cut-

ting planes which are constructed from the solution and dual information of the primal

problem. The optimal solution of the original problem is bounded by the best primal and

master problem solutions. For this section we discuss the main components of the GBD

method in the context of integrated scheduling and dynamic optimization.

7.2.1 Primal Problem

The primal problem for the integrated formulation is the dynamic optimization problem

(Eq. (7.9)) with fixed task history states. Because all discrete variables are fixed, the prob-

lem is reduced to a continuous NLP:

min
u
t

�dyn(zt, yt, ut, w̄
p
i,m,t,✓, ⇠̄

p
i,m,n,t,✓)

s.t.
F dyn(zt, yt, ut, w̄

p
i,m,t,✓, ⇠̄

p
i,m,n,t,✓) = 0;

Gdyn(zt, yt, ut, w̄
p
i,m,t,✓, ⇠̄

p
i,m,n,t,✓) 6 0.

(7.11)

The superscript p of w̄ and ⇠̄ indicates that they are fixed parameters. The objective func-

tion considers only the manufacturing cost �dyn(·), and it is rewritten as a minimization

problem following the convention of the GBD method. Assuming the primal problem
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is solved to optimality by NLP algorithms with given history state values, the Lagrange

function L can be constructed as follows:

L(w̄i,m,t,✓, ⇠̄i,m,n,t,✓) = �dyn⇤ + �⇤TF dyn(z⇤t , y
⇤
t , u

⇤
t , w̄i,m,t,✓, ⇠̄i,m,n,t,✓)

+ ⇠⇤TGdyn(z⇤t , y
⇤
t , u

⇤
t , w̄i,m,t,✓, ⇠̄i,m,n,t,✓);

0 6 ⇠⇤ ?Gdyn(z⇤t , y
⇤
t , u

⇤
t , w̄

p
i,m,t,✓, ⇠̄

p
i,m,n,t,✓) > 0.

(7.12)

Here, � and ⇠ are the vectors of optimal Lagrange multipliers for F dyn(·) and Gdyn(·) ob-

tained at the optimal solution, and the optimal objective and variable values are noted

with ⇤. The complementarity condition of the inequalities needs is satisfied between ⇠⇤

and Gdyn(z⇤t , y
⇤
t , u

⇤
t , w̄

p
i,m,t,✓, ⇠̄

p
i,m,n,t,✓). The structure of the Lagrange function can be com-

plex as the number of equations in F dyn(·) and Gdyn(·) are often very large after collo-

cation. An alternative approach that constructs a more concise Lagrange function is to

introduce duplicated complicating variables in Eq. (7.11):

min
u
t

�dyn(zt, yt, ut, w̄
p
i,m,t,✓, ⇠̄

p
i,m,n,t,✓)

s.t.

F dyn(zt, yt, ut, w̄
p
i,m,t,✓, ⇠̄

p
i,m,n,t,✓) = 0,

Gdyn(zt, yt, ut, w̄
p
i,m,t,✓, ⇠̄

p
i,m,n,t,✓) 6 0,

w̄p
i,m,t,✓ = w̄d

i,m,t,✓,

⇠̄pi,m,n,t,✓ = ⇠̄di,m,n,t,✓.

(7.13)

To derive the Lagrange function, we obtain

L(w̄d
i,m,t,✓, ⇠̄

d
i,m,n,t,✓) = �dyn⇤ + �⇤TF dyn(z⇤t , y

⇤
t , u

⇤
t , w̄

p
i,n,t,✓, ⇠̄

p
i,m,n,t,✓)

+ ⇠⇤TGdyn(z⇤t , y
⇤
t , u

⇤
t , w̄

p
i,m,t,✓, ⇠̄

p
i,m,n,t,✓)

+ �⇤T(w̄p
i,m,t,✓ � w̄d

i,m,t,✓) + !⇤T(⇠̄pi,m,n,t,✓ � ⇠̄di,m,n,t,✓)

= �dyn⇤ + �⇤T(w̄p
i,m,t,✓ � w̄d

i,m,t,✓) + !⇤T(⇠̄pi,m,n,t,✓ � ⇠̄di,m,n,t,✓).

(7.14)
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Here, � and ! are the corresponding Lagrange multipliers for the duplication equations.

The simplification is due to the fact that the discretized dynamic equations are not a func-

tion of the duplicated variables, and

�⇤TF dyn(z⇤t , y
⇤
t , u

⇤
t , w̄

p
i,n,t,✓, ⇠̄

p
i,m,n,t,✓) = 0

⇠⇤TGdyn(z⇤t , y
⇤
t , u

⇤
t , w̄

p
i,m,t,✓, ⇠̄

p
i,m,n,t,✓) = 0

at the primal optimum. This concise Lagrange function is equivalent to the one in Eq. (7.12)

and computationally more favorable [36]. The Lagrange function is used to form the cut-

ting plane constraints (a.k.a. Benders cuts) in the master problem.

7.2.2 Master Problem

The master problem contains the scheduling equations used in the linear RTN model

(Eqs. (7.1), (7.3), (7.4), (7.5), (7.6)), as well as the cutting plane constraints, which can be

stated as:

min ��sch(Rr,t, w̄i,m,t,✓, ⇠̄i,m,n,t,✓) + ⌘ (7.15a)

s.t.

F sch(w̄i,m,t,✓, ⇠̄i,m,n,t,✓, Rr,t, R
min
r,t , Rmax

r,t ) = 0,

Gsch(w̄i,m,t,✓, ⇠̄i,m,n,t,✓, Rr,t, R
min
r,t , Rmax

r,t ) 6 0,

L(w̄i,m,t,✓, ⇠̄i,m,n,t,✓) 6 ⌘.

(7.15b)

There is an infinite number of cutting planes that can be constructed by the Lagrange

function. A typical strategy is to replace the master problem with its relaxation, where
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only a finite collection of the cutting planes are included:

min ��sch(Rr,t, w̄i,m,t,✓, ⇠̄i,m,n,t,✓) + ⌘ (7.16a)

s.t.

F sch(w̄i,m,t,✓, ⇠̄i,m,n,t,✓, Rr,t, R
min
r,t , Rmax

r,t ) = 0,

Gsch(w̄i,m,t,✓, ⇠̄i,m,n,t,✓, Rr,t, R
min
r,t , Rmax

r,t ) 6 0,

Lb(w̄i,m,t,✓, ⇠̄i,m,n,t,✓) 6 ⌘, b 2 B.

(7.16b)

Here, the set of valid cutting planes are denoted by b 2 B. The cuts can be collected at

different primal optimal solutions.

7.2.3 GBD Algorithm

The GBD method applies an iterative procedure to obtain the optimal solution of the

original problem, where the primal and relaxed master problems are solved in a loop,

as depicted in Fig. 7.2. The algorithm often starts with solving the primal problem with

the complicating variables fixed to an initial point, and the master problem is then con-

structed with the obtained Benders cut at the primal optimum. The master problem is

solved to update the complicating variable, and triggers the next GBD iteration. The

primal solution gives the upper bound of the optimal objective value, while the relaxed

master problem calculates the lower bound. As Benders cuts are accumulated in the mas-

ter problem, the lower bound is non-decreasing through the iterations. The algorithm

converges when the two bounds fall in a close neighborhood specified by optimality tol-

erances [165]. It is worth noting that global optimality is only guaranteed when convexity

condition holds in both the primal and master problems. This is usually not satisfied by

the integrated scheduling and dynamic optimization problem. Also, integer cuts can be
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Figure 7.2: GBD iteration scheme

added to the relaxed master problem to avoid cyclic integer assignments:

X

Wb

1

w̄b
i,m,t,0 �

X

Wb

0

w̄b
i,m,t,0 6 |Wb

1|� 1;

{w̄b
i,m,t,0 2 Wb

1|w̄b
i,m,t,0 = 1}, {w̄b

i,m,t,0 2 Wb
0|w̄b

i,m,t,0 = 0}.
(7.17)

The cut are defined with the binary task history state variables w̄b
i,n,t,0. An integer cut

obtained at iteration b is added to the next master problem at b+ 1.

7.3 Case Study

We illustrate the discrete time integrated formulation with a polymerization process. The

process flowsheet is shown in Fig. 7.3. The plant has two polymerization reactors (Rxr1,

Rxr2) of identical processing capacity in parallel, and they both connect to the down-

stream buffer tank (T) followed by the purification unit (PU). Raw polymer products are

made in the reactors, and PU removes the catalyst in the raw products to give final prod-

ucts. The polymerization reactors are semi-batch units, and both the tank and PU are

continuous units. Three types of products are made from the process (A, B, C) with dif-

ferent specs on molecular weight (MW) and byproduct ratio. Rigorous dynamic models

are developed for the polymerization reactors, while the other continuous units are mod-

eled by the linear resource balance in the RTN representation. For details on the reactor
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Tank Purification Unit
Prod A,B,C

Figure 7.3: Process flowsheet of the polymerization process

model equations and process RTN representation please refer to the Appendix D.

The polymerization reactors demand large amounts of cooling capacity as the reactions

are highly exothermic. An interesting feature of the plant is that the two reactors share

cooling utility from the same source, and the utility price p is a function of its consumption

rate r:

p =

8
>><

>>:

1, 0 6 r 6 r0;

1 + 1
r0
(r � r0), r0 6 r 6 3r0.

(7.18)

The utility price equals one money unit (MU) when the total utility consumption rate

of the reactors is below a basis value r0, and the price rises linearly beyond r0 till the

maximum rate 3r0, where the price reaches 3 MU. Other complexities come from both the

scheduling and dynamic optimization decisions. For scheduling considerations, Product

A is made-to-order while Product B and C are made-to-stock. The optimized schedule is

required to produce the exact amount of Product A according to customer orders, while

extra Product B and C can be made in addition to ordered amounts. Product A and C are

in the same family and Product B is an orphan product. Equipment cleaning is required

for PU during transition between different product families. Also, PU needs to carry out

off-line maintenance after processing a certain amount of raw polymers. In other words,

the processing capacity is consumable, and the maintenance can replenish it after it drops
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below a threshold value. Finally, mixing of different products is not allowed in any units.

For the reactors, a one-hour set-up time is needed before starting any polymerization

operations. Main constraints considered are the number-average MW, byproduct ratio,

unreacted monomer concentration, and maximum cooling duty. Other minor constraints

are also included such as limits on the variation of reactor temperature.

The decision variables are the task assignments for scheduling, and the control strategy of

the reactors that include the temperature trajectory and the monomer feed policy. There

are two modes for the polymerization of Product B and C with different task lengths but

the same quality specs. Product A has only one polymerization mode. PU has a maxi-

mum processing rate that is product dependent. The goal of the integrated optimization

is to maximize the plant profit within a 3-day scheduling time horizon, which is calcu-

lated by the product sales minus the total manufacturing cost. The cost consists of the

cooling utility cost, fixed cost for polymerization operations and PU maintenance, as well

as penalties for monomer flow rate and temperature fluctuations.

We solve the integrated optimization problem with the GBD decomposition approach.

The primal problem is defined as dynamic optimization of the polymerization operations

in the two reactors to minimize the manufacturing cost, and the master problem deals

with the complete process as a linear scheduling problem without the dynamic reactor

models. The complicating variables are the task history states associated with the poly-

merization reactors. We use one-hour scheduling time slots, and only one finite element is

included for a time slot. Three Radau collocation points are employed in a finite element.

The model is built in GAMS, and we use Gurobi to solve the master MILP problems and

Conopt to solve the primal NLP problems.

We compare the integrated optimization approach with the conventional approach, where

polymerization recipes are optimized individually and the schedule is determined with

the fixed recipe parameters. This requires solving separate dynamic optimization prob-
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lems for recipe optimization and a discrete optimization problem for schedule design.

The scheduling problem is a mixed-integer quadratic program (MIQP) because it includes

a quadratic term for the cooling utility cost in its objective function, despite all model

constraints are linear. The model and solution statistics for the conventional approach is

given in Tab. 7.1. Five recipe optimization problems are solved for the five polymerization

modes (See Tab.D.1), where the objective function is the manufacturing cost. All five cases

result in small scale NLPs that are solved within seconds. The reactor model has the same

structure for the five cases (see the Appendix D), but model parameters may vary such as

the initial charge condition, kinetic constants, and product specs. The difference in model

sizes is mainly due to the number of finite elements used in each problem. Longer tasks

require more finite elements, as one-hour element is used in this case study. The schedul-

ing problem are solved within 1200 seconds limit and the optimality gap ⇠ 5%. The MIQP

problem is difficult to solve not only because its large size but also the degenerate nature

of scheduling problems, where many different schedules (typically different in task tim-

ing) give the same objective value [166]. Note that the number of continuous variables

in these RTN scheduling problems are significantly larger than that in the conventional

RTN models. This is due to the inclusion of the lifted task state variables.

For the integrated formulation, the GBD algorithm is able to solve the problem with three

iterations, and model and solution statistics are shown in Tab. 7.2. The algorithm starts

with the so-called zeroth primal problem, which is the first dynamic optimization prob-

lem with given task states. These initial values of the task states are obtained at the op-

timal solution of the conventional scheduling problem (MIQP). Then the GBD algorithm

iterates between the master MILP problem and the primal NLP problem. The major per-

centage of CPU time is spent on the primal problems, given that NLPs suffer from their

large sizes and degenerate structure. It is worthing noting that the NLP problems need

careful initialization in order to be solved successfully at each iteration. The fixed recipes

can be used to carry out simulation once the schedule is determined, and this offers good
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Recipe optimization

Product Type Model solution Model size
(mode) Obj. (MU) CPU time (s) Var. # Cons . #

A NLP 5.04 3.3 1200 1239
B(1) NLP 7.46 3.7 832 859
B(2) NLP 6.99 2.5 924 954
C(1) NLP 10.86 4.0 648 669
C(2) NLP 8.76 2.4 740 764

Schedule optimization

Type Model solution Model size
Obj. (MU) CPU time (s) Var. #(/dis.) Cons . #

MIQP 82.56 1200.0 30779(1825) 30823

Table 7.1: Model and solution statistics for the case study: conventional approach

Iteration Type Model solution Model size GBD algorithm
Obj.(MU) Time (s) Var.#(/dis.) Cons .# Upper Lower Gap (%)

0th primal NLP 68.17 53.6 14820 16570 85.16
1st master MILP 120.94 4.8 30561(1825) 30666 120.94 85.16 29.58
1st primal NLP 72.23 199.2 14820 16570 120.94 89.04 26.38
2nd master MILP 104.22 10.4 30561(1825) 30668 104.22 89.04 14.57
2nd primal NLP 79.10 120.4 14820 16570 104.22 92.26 11.48
3rd master MILP 92.26 4.5 30561(1825) 30670 92.26 92.26 0.00

Table 7.2: Model and solution statistics for the case study: integrated approach

starting points for the primal NLPs. The master problems are solved to zero optimality

gap, where the solution speed is fast in contrast to the MIQP problem for the conven-

tional approach, although the size of models are very close. This is due to the inclusion of

the Benders cuts that helps to eliminate the degeneracy of the scheduling problem. The

optimizer is able to evaluate schedules with different timings with the assistance of the

multiplier values for the task history states (� and ! in Eq. (7.14)). As a maximization

problem, the upper and lower bounds of the optimal objective are given by the primal

and master problems, respectively. The optimality gap is reduced to zero after the third

master problem.
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The maximal plant profit is 92.26 MU for the integrated optimization approach, which is

10.5% higher than that of the conventional approach. The optimized schedules are shown

in Fig. 7.4 in comparison. Task rectangles are colored to denote different products. Also,

different polymerization tasks modes have different fill patterns. For the buffer tank, the

upper small rectangles represent the material transfer operations that load the reactor

products to the buffer tank, while the lower rectangles represent the outgoing flows from

the tank to PU. It is worth noting that the reactors can be used as temporary storage units

to hold batches when the buffer tank is not immediately available. In fact, polymerization

carries on in the interim, because the catalyst is still effective as the reactor temperature is

maintained in the allowable range. PU processes different products, carries out transition

cleaning, and off-line maintenance to replenish its processing capacity. In the schedule of

the conventional approach (Fig. 7.4(a)), two batches of Product A, four batches of Product

B, and three batches of Product C are produced. Also, different task modes are observed

for Product B and C. One additional batch of Product C is observed in the schedule of

the integrated approach (Fig. 7.4(b)). This is because the polymerization recipes are fixed

in the conventional approach, and running two batches of Product C in parallel is unde-

sirable that leads to very expensive utility prices (see Fig. 7.9). However, the operating

flexibility can be efficiently explored in the integrated approach, such that the utility price

can be brought down to a level where the additional batch is profitable. The main dis-

advantage of the conventional method is that it overlooks the interaction between the

two reactors. More specifically, dynamic optimization for individual recipes is performed

with respect to a single reactor, while the actual utility price is determined by the summa-

tion of the utility consumption rates of the two reactors. However, this synergy cannot

be considered by the conventional approach since no production schedules are given in

advance.

The inventory profiles of the intermediate tank is shown in Fig. 7.5(a) and the process

rates of PU is shown in Fig. 7.5(b). For the details of reactor operations, we show the
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Figure 7.4: Optimal production schedules

results of the integrated formulation in comparison with a base case. The base case adopts

the optimal schedule from the integrated optimization problem (Fig. 7.4(a)), but fixes

the reactor control profiles to the recipe values obtained in the conventional approach.

Fig. 7.6 gives the optimal reactor temperature and monomer feeding profiles over the

entire time horizon. The optimal solution from the integrated formulation is depicted

in red solid lines and the blue dotted lines sketch the base case profiles. The plotted

temperature data is in Celsius and calibrated with respect a basis level value Tb; and the

monomer flow rates are scaled. Since the variation of reactor temperature is penalized,

gradual transitions in the temperature curves are observed from one batch to another. The

monomer is allowed to enter the reactors one hour after the polymerization tasks start,

due to the set-up requirements. It is worth noting that the feed profiles tend to minimize

the overlaps between two reactors. Particularly for the integrated solution, it gives flow

shapes such that the summation of the rates of the two reactors are reduced compared to
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Figure 7.5: Operating profiles for the downstream units

the base case. This is due to the fact that the feed speed is positively related to the heat

generation rates in the reactors, and therefore, small total feed rates lead to lower cooling

duty which comes with lower utility prices.

The maximum cooling capacity and product quality constraints (specs on the byproduct

ratio, number-average MW, and unreacted monomer concentrations) are important con-

straints that should be satisfied for all polymerization batches. We show these constraint

profiles of Rxr1. The utility consumption profiles are plotted together with the maximum

cooling capacity limits for both cases in Fig. 7.7. We measure the rate with r0 as the base

unit. The cooling capacity limit is depended on the temperature of the reactors so that it

varies in time. The constraint on cooling capacity is active for most of the operation peri-

ods. In Fig. 7.8, the byproduct ratio should stay below its spec limits, while the polymer
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(b) Optimal monomer feed profiles

Figure 7.6: Comparison of the optimal control recipes
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Figure 7.8: Process constraint on the product quality indices

MW should be no less at the end of polymerization. In the plots, the target spec values

are noted with cross markers. The byproduct ratio and MW have product dependent

target values. The unreacted monomer concentration also reaches desired levels for all

polymerization runs. These quality constraints are only effective at the grid points when

raw polymers are transferred to the buffer tank, and otherwise relaxed by using big M

terms in the model formulation (Z(·) in Eq. (7.9a)).

In Fig. 7.9, the cooling utility price, total consumption, and total cost are plotted over

time. In the price plot, high price periods occur in the first half of the time horizon,
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Figure 7.9: Comparison of the cooling utility consumption and cost

especially at the beginning when polymerizing Product C. The optimized recipe is able

to reduce the peak values of the high price segments and also their occurrence frequency.

The middle graph shows the accumulated total utility consumption of the two reactors.

The amounts of consumption are equal for the two cases at the final time, as the same

amount of products is made. However, we see a lower cost for the integrated solution in

the utility cost curve because it takes advantage of lower prices.

7.4 Concluding Remarks

We have developed a general framework for the integration of production scheduling and

dynamic optimization decision-making. The method combines the state space RTN rep-
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resentation with rigorous process dynamic models to formulate the integration problem

as MIDOs. The scheduling and control layers are linked through the lifted task history

state variables, which provide opportunities to apply the GBD decomposition method

for efficient problem solution. The GBD algorithm decouples the problem into the linear

master scheduling problem and continuous primal dynamic optimization problem. The

two problems are solved in a loop and Benders cuts are derived to close the optimality

gap between the two. We have applied our method to a polymerization process with

networked structure and multiple polymer products. The polymerization reactors are

described by first-principles models. The objective is to maximize the plant profitability.

The cooling utility cost brings in interactions between the two reactors, and we show the

integrated approach has advantages over the conventional approach, where the control

recipes are determined separately.
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Chapter 8

Conclusions

Model-based optimization strategies are powerful tools that improve chemical plant op-

erations. Integrated optimization methods offer further advantages by fully exploring

the degrees of freedoms in decision-making. In particular, we have investigated the in-

tegration of process scheduling and dynamic optimization algorithms that links between

discrete tactical and dynamic operational decisions. The industrial case studies are cen-

tered on ring-opening polymerization processes, and we address the problems in reactor

modeling, polymerization recipe optimization, production scheduling, and integrated

scheduling and dynamic optimization in a sequential way. This chapter concludes the

thesis work by summarizing the main contributions and recommended future directions.

8.1 Thesis Summary and Contributions

In Chapter 3, we have developed an integrated optimization formulation for batch pro-

cesses with general network structures. The method uses the unit-specific continuous

time representation, and the state equipment network (SEN) representation is carried

over to scheduling problems. The SEN representation method well accommodates dy-
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namic process models with switching behaviors. The overall problem is posed as a

mixed logic dynamic optimization (MLDO) problem to maximize plant profits in a given

scheduling time horizon. A solution procedure for MLDO problems is discussed. The

big M method is employed to reformulate logic disjunctions to mixed-integer constraints,

and differential equations are discretized by using the simultaneous collocation method.

By this means, a MLDO problem is converted to a nonconvex mixed-integer nonlinear

program (MINLP). The resulting nonconvex MINLP has a relatively small number of dis-

crete variables and many highly nonlinear constraints, thus we use nonlinear branch and

bound solvers to obtain good solutions. Two case study examples are considered, cor-

responding to a flowshop and a jobshop plant. We compare the integrated optimization

approach with a base case approach, where the control recipes are predetermined and

schedules are designed by solving mixed-integer linear programs (MILPs). In both cases,

dynamic optimization of unit operations has enabled significant changes in production

schedule. The optimized results strongly vouch for the integration method in process

profit improvement.

In Chapters 4 and 5, dynamic reactor models have been developed for a class of semi-

batch ring-opening polymerization reactors including polyether polyols. These rigorous

models are based on fundamental first-principles such as mass and heat balances, poly-

merization reaction kinetics, phase equilibriums, etc. They enjoy high accuracies with

respect to real plants. In the modeling phase, we have applied the null space projec-

tion method to deal with stiffness issues of equilibrium reaction systems with synergistic

fast and slow reactions. The null space method introduces linear transformations to iso-

late fast equilibrium reactions, and models them as algebraic equations that describe their

quasi-steady states. Also, reactor models based on the method of moments are developed

besides the population balance models. Population balance models record the complete

chain length distribution, which lead to large-scale models, especially for high molecular

weight polymers. Moment models introduce principle moments of the distributions, and
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track average polymer properties by moment balances that are relatively small-scale and

independent of chain lengths. Validation of the developed reactor models is performed

by comparing reactor pressure predictions with historical plant data. Satisfactory matches

are obtained in all cases. Next, polymerization recipes are optimized to minimize poly-

merization time lengths by adjusting the reactor temperature and monomer feed policy

over time. The model constraints in the recipe optimization problems consist of the re-

actor models, as well as equations for process safety and product quality requirements.

For model solution, the reactor models are discretized by using the collocation method

and the recipe optimization problems are solved as NLPs. Case studies are carried out for

both homopolymerization and copolymerization, and considerable savings in polymer-

ization times are achieved. In addition, we compare the population balance model with

the moment model for copolymerization recipe optimization. The two models result in

very close optimal solutions, but the moment model is more efficient in computation.

Therefore, the moment model is preferred to be used in integrated problems.

In Chapter 6, we study scheduling formulations based on the discrete time resource task

network (RTN). A number of extensions have been added to the conventional RTN model

to enhance its modeling capability and solution efficiency, including multi-extent resource

balance, resource limit balance, etc. Next, the extended RTN model is reformulated into

the state space form via introducing lifted task history state variables. In a state space

RTN model, process status is fully recorded by the task history states and process distur-

bances can be explicitly addressed in the task history evolution equation. The state space

RTN model can be used for on-line scheduling applications, coupled with the rolling hori-

zon scheme. In the case study, we show regular and reactive schedule designs with the

state space RTN model. Also, the state space model has a coherent structure with lower

level control models, which is advantageous in the context of integrated optimization

problems.
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Chapter 7 presents a discrete time optimization formulation for the integration of schedul-

ing and dynamic optimization of general continuous/batch chemical processes. The

method combines the state space RTN model with dynamic process unit models. The

formulation gives a special structure that is exploited by the generalized Benders de-

composition (GBD) method for efficient model solution. More specifically, the integrated

formulation can be decomposed to a master scheduling problem and a primal dynamic

optimization problem. The linking variables between the two sub-problems are the task

history state variables. The integrated formulation is applied to a polymerization process

including two parallel semi-batch reactors for ring-opening polymerization, continuous

tanks and purification units. The two polymerization reactors share cooling utilities from

the same source, and the price depends on the total consumption rate. Three different

homopolymer products are made by the process. The optimization objective is to design

the process schedule and reactor control profiles simultaneously to maximize the overall

process profit. The moment reactor models are introduced to describe the polymerization

dynamics. The case study results suggest improvements in plant profitability for the inte-

grated approach, in contrast to the conventional approach, where polymerization recipes

are individually optimized.
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8.2 Recommendations for Future Work

8.2.1 Polymerization Recipe Optimization

We have developed vapor-liquid equilibrium (VLE) equations based on the Flory-Huggins

theory for polymerization reactors in Chapters 4 and 5, but this part of equations is not

included in the recipe optimization problems. However, certain polymerization systems

may have more specific constraints on the vapor phase composition or reactor pressure,

thus require VLE equations to be added to the optimization formulation. Under this

circumstance, the reactor venting event also needs to be modeled with equation-based

methods. Introducing binary on/off variables is certainly able to meet this requirement,

but it will significantly increase the model solution complexity. Another way for mod-

eling this type of discontinuous elements in process systems is using complementary

constraints. The problem remains continuous, once the complementary constraints are

reformulated [170, 171].

Another interesting topic is to address uncertainties in recipe optimization. The optimal

recipes obtained by deterministic optimization algorithms tend to drive the operating

conditions very close to constraint boundaries to maximumly explore processing capa-

bilities (for example, see the heat removal constraints in Figs. 4.3 on page 80 and 5.4 on

page 107). However, these recipes may fail when considering the effect of process distur-

bances. A good strategy is to design a recipe that provides enough back-offs from the con-
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straint boundaries, even if the worst-case disturbance occur. This research topic has been

studied by Ma and Braatz [172], and Diehl et al. [173]. Sensitivity analysis techniques for

differential-algebraic equations are used to estimate the effect of disturbances on process

constraints. In addition, to further consider implementing the optimized recipes on-line,

nonlinear model predictive control (NMPC) algorithms are required. A recent study by

Mayne et al. has proposed a tube-based NMPC method [174]. The NMPC has a two-

layer structure. The outer layer controller designs reference trajectories for the inner layer

controller to track. This NMPC framework can be potentially coupled with the sensitiv-

ity analysis for disturbances, and therefore leads to a unified on-line recipe optimization

approach.

8.2.2 Integrated Formulation

We have proposed integration formulations based on the continuous time and the dis-

crete time representation in Chapter 3 and Chapter 7, respectively. Continuous time

models have fewer discrete variables but additional timing constraints than discrete for-

mulations. Optimizing task lengths is more straightforward with continuous time for-

mulations, while discrete time models are easier to include details for process control. A

hybrid grid [175] that take the complementary strength of the two time representations

can be advantageous in the context of integration. For modeling process dynamics, re-

duced order models [176] are good alternatives to first-principles models, at least for the

purpose of interfacing with scheduling equations. A possible dual-model structure can

be employed in the integrated formulation, where scheduling decisions such as sequenc-

ing and timing are made with reduced order models and control policies are later refined

by detailed first-principles models.
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8.2.3 Decomposition Method

In Chapter 7 we apply the generalized Benders decomposition (GBD) methods to solve

the integrated problem. It is also worth investigating the GBD method for the continu-

ous time model in Chapter 3. Moreover, the Benders cuts are derived from solving dis-

cretized NLPs that have many degenerate constraints from the scheduling equations. The

Lagrangian multipliers are in fact non-unique. It could be helpful to examine the effect of

these non-unique multipliers on the tightness of the Benders cuts. Also, applying Benders

cuts to non-convex problems takes the risk of cutting off feasible regions. Deriving cuts

from relaxed convex NLPs can be a safer strategy to adopt.

8.2.4 On-line Implementation

The ultimate goal is to implement an on-line system that performs the integrated opti-

mization in real time. So far, the computation bottleneck still remains a serious barrier.

Progress has been made in nonlinear model predictive control algorithms that have en-

abled on-line implementation of dynamic optimization [177, 178]. Fast updates to control

polices are realized by using NLP sensitivities [179]. However, methods for quick updates

to production schedules are not currently available. A viable approach can be established

by shifting the computational work from on-line to off-line. The off-line method derives

rules for the on-line optimizer to adapt to disruptions occurred in schedule executions.

Multi-parametric optimization approaches can be employed for this goal [180]. Also, nec-

essary components for on-line optimizers such as state estimation and data reconciliation

need to be considered.
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Appendix A

Supplementary Information for Chapter
3

A.1 The Flowshop Plant Example

A.1.1 Models of Operations

Reaction

The description of reaction kinetics is based on Arrhenius equation. For simplicity, all the
subscripts are neglected.

Material state transition:
FeedA �! IntABC

Reaction formula:
A

k1�! B

B
k2�! C

DAE system:
dcA
dt

= �uc2A cA(0) = 1

dcB
dt

= uc2A � �u↵cB cB(0) = 0

dcC
dt

= �u↵cB cc(0) = 0

(A.1.1)

where scaled temperature u is defined to substitute rate constants k1, and k2, and the
unit used here is m3/(kg · hr). While there is no energy balance equation, the differences
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in activation energy can largely affect the trends of the operating temperature as we can
observe from the case study results. The costs of reactions come from the usage of heating
utility of unit price p. The cost function of reactors can be described as Eq. (A.1.2).

F = pb

Z Tp

0

u(t)dt (A.1.2)

Important parameters are tabulated as follows

Reaction
p ↵ � Tpmin Tpmax Tprecipe umin umax urecipe

(MU/kg) (hr) m3/(kg·hr)

0.3 2 3.875⇥ 10�3 1.5 3 2 1.8 7.9 5

Distillation

Material state transitions:

Dis1 : IntAB �! RawProd1 +Recycle1

Dis2 : IntAB �! RawProd2 +Recycle2

The dynamic models of the distillation states are based on a simplified tray-type binary
distillation column model (4 trays in our study), which has been set up by making fol-
lowing assumptions:

? Binary distillation

? Negligible tray holdup

? Tray equilibrium with constant relative volatility ↵

? Equimolar overflow (constant vapor rate V )

Differential equations:
Ṡ = L� V S(0) = b

ẋb =
V (xb � xd)

(R + 1)S
xb(0) = ⌘

(A.1.3)

Constant vapor flow:
V = kb (A.1.4)
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Composition balance for each tray:

Lxi + V yi = Lxi+1 + V yi�1 8i = 2 . . . NT � 1

LxN + V yN = Lxd + V yN�1

Lx1 + V y1 = Lx2 + V yb

(A.1.5)

Phase equilibrium:
yi =

↵xi

1 + (↵� 1)xi
8i = 1 . . . NT

yb =
↵xb

1 + (↵� 1)xb

(A.1.6)

At the top of the column:

R =
L

D

L+D = V
(A.1.7)

Average purity:

x̄d

Z t

0

Ddt = S0x0 � S(t)xb(t) (A.1.8)

Requirements for manufacturing:

Rmin 6 R 6 Rmax

x̄d > x̄d
min

(A.1.9)

The cost function is defined as below:

F = pV Tp (A.1.10)

According to this model, xb is always decreasing with time. Hence, to maintain a high
product purity, the reflux ratio profiles are generally increasing with time as we can see
in the case study results. The differences between the two operating state models lie in
some process indices listed in the following table.

Distillation
p ↵ k Tpmin Tpmax Tprecipe Rmin Rmax Rrecipe

MU/(m3·hr) m3/kg (hr)

1 1.5 2.46 1.646 1.5 3 2 2 7 4

2 1.5 2.46 1.646 1.125 2.5 1.5 2 7 5
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Filtration

The goal of a filtration operation is to completely remove waste components from the
resultants of its antecedent reaction operation. We assume the filter is operated on the ba-
sis of established recipes, where processing times are approximated as linear functions of
batch sizes. Besides, productions and consumptions are algebraic functions of the amount
and the composition of feed materials. If the preceding reaction is operated identically,
then the feed composition can be treated as a constant, otherwise, it remains a variable
and the filtration model is nondynamic but nonlinear.

Material state transitions:

IntABC �! IntAB +WasteC

Production and consumption:

Rp
IntAB = (1� ⌘IntABC,C)b

Rp
WstC = ⌘IntABC,Cb

Rc
IntABC = b

(A.1.11)

Operating cost:
F = Rp

IntAB + 4Rp
WstC (A.1.12)

Reduced MILP Formulation

The recipe-based models we use to compare with the integrated formulation are linear
without dynamic and quality variables and constraints. The reduced problem can be
reformulated as an MILP and solved for the same objective function as the integrated
formulation. Here, instead of the original disjunctive DAEs, unit operations are described
through Eq. (A.1.13).

· · ·

2

6666666664

wj,s,n = 1

Rp
j,r,n = µp

j,sbj,n (8r 2 Rp
s)

Rc
j,r,n = µc

j,sbj,n (8r 2 Rc
s)

Rp
j,r,n = 0 (8r 62 Rp

s)

Rc
j,r,n = 0 (8r 62 Rc

s)

Tpj,n = ↵j,s + �j,sbj,n
Fj,n = �j,sbj,n

3

7777777775

s2S
j

· · ·
_

2

66666664

X

s2S
j

wj,s,n = 0

Rp
j,r,n = 0

Rc
j,r,n = 0

Tpj,n = 0

Fj,n = 0

3

77777775

8j 2 J , n 2 N (A.1.13)

The parameters (↵, �, �, µp, µc) are obtained via simulation based on predefined recipes

APPENDIX A. SUPPLEMENTARY INFORMATION FOR CHAPTER 3 195



which in this study we determine manually. For each sequence of operations to make a
product, we start with simulating the first stage with known controls, processing times
and initial conditions according to the recipe of the operation. Then the procedure is re-
peated for the subsequent stages, using the information from the recipe and the calculated
precedent stage. Parameters for this example are listed as follows.

↵(hr) Rct F il Dis1 Dis2

Reactor 2

Filter 0.8

Column 2 1.5

�(hr/kg) Rct F il Dis1 Dis2

Reactor 0

Filter 0.02

Column 0 0

�(MU/kg) Rct F il Dis1 Dis2

Reactor 3

Filter 1.405

Column 4.938 3.704

µp/c
(+/�) Rct F il Dis1 Dis2

FeedA �1

IntABC 1 �1

IntAB 0.865 �1 �1

WstC 0.135

Rcy1 0.342

Rcy2 0.589

Prod1 0.658

Prod2 0.411

A.1.2 Scheduling Parameters

Material information:
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Material
Component Parameter
A B C ⌘ P (MU/kg) E0(kg) Emax

(kg) Emin
(kg)

FeedA X 5 var 400 0

IntABC X X X 0 0 400 0

IntAB X X 0 0 400 0

WstC X 0 0 400 0

Prod1 X X B > 99.5% 30 0 400 0

Prod2 X X B > 99.7% 45 0 400 0

Rcy1 X X 0 0 400 0

Rcy2 X X 0 0 400 0

Equipment information:

Unit Operating states Bmax
(kg) Bmin

(kg)

Reactor Rct 60 30

Filter F il 60 30

Column Dis1, Dis2 60 30

A.2 The Jobshop Plant Example

A.2.1 Models of Operations

Reaction

In this jobshop example, Reaction 1 is the same as the reaction operation in the flowshop
case, and dynamic model for Reaction 2 can be written out similarly, wherein the unit of
rate constants is /hr.

Material state transition:
HotA �! IntADE

Reaction formula:
A

k3�! D

A
k4�! E
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DAE system:
dcA
dt

= �(u+ �u↵)cA cA(0) = 1

dcD
dt

= ucA cD(0) = 0

dcE
dt

= �u↵cA cE(0) = 0

(A.2.1)

Important process data:

Reaction 2
p ↵ � Tpmin Tpmax Tprecipe umin umax urecipe

(MU/kg) (hr) (/hr)

3 2 0.5 1.5 3 2 0.3 1.5 0.7

Distillation

The dynamic models are in the same form as the flowshop case with different constituents
of the binary mixtures, and parameters for Distillation 1 and 2 are listed as follows.

Distillation
p ↵ k Tpmin Tpmax Tprecipe Rmin Rmax Rrecipe

MU/(m3·hr) m3/kg (hr)

1 1.5 2.46 1.646 1.5 3 2 2 7 4

2 1.5 3.20 1.646 1.125 2.5 1.5 2 7 3

Filtration

Filtration 1 is the same as the flowshop case. For Filtration 2:

Material state transition:

IntADE �! IntDE +WasteA

Production and consumption:

Rp
IntDE = (1� ⌘IntADE,A)b

Rp
WstA = ⌘IntADE,Ab

Rc
IntADE = b;

(A.2.2)

Operating cost:
F = Rp

IntDE + 4Rp
WstA (A.2.3)
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Heating and Packaging

These operations are described via linear equations based on mass balance. Information
on determining processing times and operating costs can be found in the reduced MILP
formulation, discussed in the following section.

Reduced MILP Formulation

Unit operations are described through Eq. (A.1.13), where the parameters are listed as
follows.

Hting Rct1 Rct2 Fil1 Fil2 Dis1 Dis2 Pck1 Pck2 Pck3

↵(hr)

Heater 1

Reactor1 2 2

Reactor2 2 2

Filter1 1

Filter2 1

Column 2 1.5

Line1 0.667 0.667 0.667

Line2 0.667 0.667 0.667

�(hr/kg)

Heater 0.0125

Reactor1 0 0

Reactor2 0 0

Filter1 0.0125

Filter2 0.0125

Column 0 0

Line1 0.0167 0.0167 0.0167

Line2 0.0223 0.0223 0.0223

�(MU/kg)

Heater 1

Reactor1 3 4.2

Reactor2 3 4.2

Filter1 1.405

Filter2 1.453

Column 4.938 3.704
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Line1 1 1 1

Line2 0.9 0.9 0.9

µp/c
(+/�)

FeedA �1 �1

HotA 1 �1

IntABC 1 �1

IntADE 1 �1

IntAB 0.865 �1

IntDE 0.849 �1 �1

WstC 0.135

WstA 0.151

RProd1 0.658 �1

RProd2 0.617 �1

Rcy1 0.342

Rcy2 0.383

Prod1 1

Prod2 1

Prod3 1

A.2.2 Scheduling Parameters

Material information:
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Material
Component Parameter

A B C D E ⌘ P (MU/kg) E0(kg) Emax
(kg) Emin

(kg)

FeedA X 5 var 400 0

HotA X 0 0 400 0

IntABC X X X 0 0 400 0

IntAB X X 0 0 400 0

IntADE X X X 0 0 400 0

IntDE X X 0 0 400 0

WstA X 0 0 400 0

WstC X 0 0 400 0

Rprod1 X X 0 0 400 0

Rcy1 X X 0 0 400 0

Rprod2 X X 0 0 400 0

Rcy2 X X 0 0 400 0

Prod1 X X B > 99.5% 30 0 400 0

Prod2 X X D > 99.3% 50 0 400 0

Prod3 X X D > 74.0% 20 0 400 0

Equipment information:

Unit Operating states Bmax
(kg) Bmin

(kg)

Heater Hting 80 40

Reactor1 Rct1, Rct2 35 17.5

Reactor2 Rct1, Rct2 45 22.5

Filter1 Fil1 80 40

Filter2 Fil2 80 40

Column Dis1, Dis2 60 30

Line1 Pck1, P ck2, P ck3 50 25

Line2 Pck1, P ck2, P ck3 60 30
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Appendix B

Supplementary Information for Chapter
4

B.1 Reformulation of the Propoxylation Model

The nullspace projection method is applied to reformulate the propoxylation model. First,
the population balance equations involving the exchange reactions are converted into a
matrix representation, and then the reformulation method can be systematically carried
out.

B.1.1 Model Matrix Representation

For each adduct set, the population is defined as the product of its concentration and the
liquid volume, i.e.,

xn = [xn]V, x = {G,D,Q,R}, n = 0, 1, . . . , N. (B.1.1)

Similar definitions can be introduced for the monomer (M) and water (W). According to
the form in Eq. (4.11), the state vector can be defined as

xT =
⇥
W M GT DT QT RT

⇤
. (B.1.2)

Here, G represents the vector of population
⇥
G0 G1 · · · GN

⇤T
, and similarly for the

other polymeric species. Meanwhile, the reaction rate vector r(x) consists of eight seg-
ments with regard to the hydrolysis reaction, as well as the initiation, propagation, trans-
fer and exchange reactions of both the normal and unsat chains. Mathematically, it reads:
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rT =
⇥
rT1 rT2 · · · rT8

⇤
; (B.1.3a)

r1 =
⇥
V �1khWM

⇤
, (B.1.3b)

r2 =
⇥
V �1kiG0M

⇤
, (B.1.3c)

r3 =
⇥
V �1kpG1M · · · V �1kpGN�1M

⇤T
, (B.1.3d)

r4 =
⇥
V �1kiQ0M

⇤
, (B.1.3e)

r5 =
⇥
V �1kpQ1M · · · V �1kpQN�1M

⇤T
, (B.1.3f)

r6 =
⇥
V �1ktG0M · · · V �1ktGNM

⇤T
, (B.1.3g)

r7 =
⇥
V �1ktQ0M · · · V �1ktQNM

⇤T
, (B.1.3h)

r8 =
⇥
V �1keGnDm V �1keGnRm V �1keQnDm V �1keQnRm

⇤T
, n,m = 0, 1, . . . , N.

(B.1.3i)

The equation system can be written in a comprehensive manner as shown below:

d

dt

2

66666664

W

M

G

D

Q

R

3

77777775

=

2

666664

A11

A12

A21

�A21

A22

�A22

3

777775

2

6666664

r1
r2
...
r7
r8

3

7777775
+
⇥
B

⇤
F (B.1.4)

In the partitioned coefficient matrix, A11 corresponds to the reaction rates for water and
monomers. For the polymers, A12 represents the non-equilibrium reaction coefficients,
from r1 to r7; A21 includes the terms from the equilibrium (exchange) reactions for G, and
the sub-matrix for D is �A21 since the population of D changes reversely; similarly, A22

and �A22 are defined for Q and R respectively. The input matrix B =
⇥
0 1 0 . . . 0

⇤T

as the feed contains only the monomer.

B.1.2 Reformulated Model

The particular structure of Eq. (B.1.4) allows us to define the range Y and the null space
matrix Z as:

⇥ Y Z ⇤
=

2

666664

I2
IN+1 IN+1

�IN+1 IN+1

IN+1 IN+1

�IN+1 IN+1

3

777775
. (B.1.5)

APPENDIX B. SUPPLEMENTARY INFORMATION FOR CHAPTER 4 203



A B C D Reference

Feed (f ) 0.92 8.87⇥ 10�3 �3.10⇥ 10�5 4.78⇥ 10�8 Yaws [182]
Bulk (b) 1.10 2.72⇥ 10�3 0 0 Beaumont et al. [183]

cp i = Ai +BiT + CiT
2 +DiT

3, i = {f, b}
Table B.1: Heat capacity coefficients

It can be verified that ZTA2 = 0, and the reformulated system is obtained as stated in
Eqs (4.16)- (4.18).

B.2 Model Parameters

Heat capacities for enthalpy calculations are listed in Tab. B.1. The Antoine equation
coefficients for vapor pressure calculations are tabulated in Tab. B.2. Other important
parameters used are listed as below:

Universal gas constant R = 8.314 J/mol ·K;
Initial amount of nitrogen nN2 ;
Maximum reactor pressure Pmax;
Total reactor volume V + V̄ ;
Interaction parameter � (in the Flory-Huggins theory);
Liquid phase activity of water aH2O;
Liquid phase activity of propylene glycol aPG.

The initial amount of nitrogen charged in the reactor, the maximum pressure and the
reactor volume are given by the associated process specification. The interaction param-
eter is decided on our experience with the alkoxylation system. The liquid phase activ-
ities of water and propylene glycol are obtained from the technical report [181]. These
parameters are adjusted to match the pressure profile from plant data. Moreover, in
Tab. B.3, the kinetic constants are expressed with the Arrhenius temperature dependence
kr = Arexp(� E

r

RT ), r = {h, i, p, t}. The parameter values are obtained from published liter-
ature as noted in the last column, and some of them are adjusted to fit the plant pressure
profile in our case study.
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A B C Reference

Water 7.18 1723.64 -40.07 Yaws et al. [184]

PO 6.28 1158.00 -36.93 Yaws et al. [184]

PG 8.08 2692.19 -14.97 Stull [185]

Table B.2: Antoine equation coefficients

Model parameter Unit Reference

Ah = 240420 m3/mol · s Di Serio et al. [129]
Eh = 82425 J/mol Di Serio et al. [129]
Ai = 396400 m3/mol · s Di Serio et al. [129]
Ei = 77822 J/mol Di Serio et al. [129]
Ap = 8504 m3/mol · s Guibert et al. [128]
Ep = 69172 J/mol Guibert et al. [128]
At = 950410 m3/mol · s ⇤
Et = 105018 J/mol Gee et al. [139]
(��Hp) = 92048 J/mol Herrington and Hock [127]

⇤ Calculated by using k
p

= 800k
t

, when T = 105 �C

Table B.3: Kinetic parameters of KOH catalyzed propoxylation
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Appendix C

Supplementary Information for Chapter
6

C.1 Model Parameters

The order information used in the case study is given in Tab. C.1. The model parameters
for the products and units of the mixed plant example is given in Tabs. D.1 and C.3. The
task resource interaction parameters used in the RTN representations in Figs. 6.3- 6.6 are
listed in Tab. D.2. The order value coefficients cordero,r,t is calculated by

cordero,r,t = 1 +
1

10

t� Eo

Do � Eo
, 8(o, r) 2 ⌦o,r, Eo  t  Do.

The orders are processed daily, where the earliest time Eo and latest time Do are the first
and last hour of each day, respectively. Finally, the penalty coefficients for violating the
safety stock limits at the final time are 0.5 for Prod. A to E.

PPPPPPPPPDay
Prod. A B C D E

1 70
2 70 70 70
3 70 70 70 70
4 70 70

Table C.1: Product order data for the case study examples
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Prod. Product
family

Int. F
comp.

Batch
size/time

T1 rate
max/min

T2 rate
max/min

T3/CU1/2 rate
max/min

Inventory level
initial/safety/max.

A F1 0.05 70/14 35/35 35/9.5 15/9.5 300/300/860
B F2 0.01 70/14 35/35 35/9.5 15/9.5 108/108/310
C F1 0.02 70/14 35/35 35/9.5 13/9.5 210/210/600
D F1 70/14 35/35 35/9.5 15/9.5 108/108/310
E F3 70/14 35/35 35/9.5 12/9.5 108/108/310
F 40/14 10/ 0/100

⇤ Time and processing rates in hours

Table C.2: Scheduling model parameters of the mixed plant: product information

Unit. Inventory
lim.(/cost cinvr )

Changeover
time/cost ctri

Processing
capcity

Repln.
time/thld

Discount
factor fr

BU1/2 70
T1 140/0.005 0
T2 140/0.005 0.3
CU1 0 6/5
T3 80/0.005 0.4
CU2 0 10/5 280 2/25%
⇤ Time in hours
⇤ The discount factors of different products are the same in the same buffer tank

Table C.3: Scheduling model parameters of the mixed plant: equipment
information
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Batch processing unit (Fig. 6.3)

µ1,BU,0 = �1 ⌫1,F,0 = �0.05 µ1,BU
s

,14 = 1 ⌫1,A
BU

,14 = 1
⌫2,Ao

BU

,0 = 1 µ2,BU
s

,0 = �1 ⌫2,A
BU

,0 = �1 µ2,BU,0 = 1

Buffer tank T1 (Fig. 6.4)

µ1,T1,0 = �1 ⌫1,1,Ao

1,BU1
,0 = �1 ⌫1,2,Ao

BU2
,0 = �1 ⌫1,3,A

T1 ,0
= �1

µ1,T1,1 = 1 ⌫1,1,A
T1 ,0

= 1 ⌫1,2,A
T1 ,0

= 1 ⌫1,3,Ao

T1
,0 = 1

↵1,B
T1 ,0

= �140 ↵1,C
T1 ,0

= �140 ↵1,D
T1 ,0

= �140 ↵1,E
T1 ,0

= �140
↵1,B

T1 ,1
= 140 ↵1,C

T1 ,1
= 140 ↵1,D

T1 ,1
= 140 ↵1,E

T1 ,1
= 140

Continuous processing units (Fig. 6.5)

µ1,CU1,0 = �1 ⌫1,Ao

T2
,0 = �1 µ1,CU1,1 = 1 ⌫1,Ao

CU1
,0 = 1

µ2,T3,0 = �1 ⌫2,1,Ao

CU1
,0 = �1 ⌫2,2,A

T3 ,0
= �1 µ2,T3,1 = 1

⌫2,1,A
T3 ,0

= 1 ⌫2,2,Ao

T3
,0 = 1 µ3,CU2,0 = �1 ⌫3,1,Ao

T3
,0 = �1

⌫3,2,CAP,0 = �1 µ3,CU2,1 = 1 ⌫3,1,A,0 = 1 µ4,CU2,0 = �1
⌫4,CAP,0 = �1 µ4,CU2,2 = 1 µ4,CAP,2 = 280 ↵4,CAP,0 = �280
↵4,CAP,2 = 280

Changeover tasks of CU1 (Fig. 6.6)

µ1,CU1F1 ,0
= �1 µ1,CU1F2 ,6

= 1 µ2,CU1F2 ,0
= �1 µ2,CU1F1 ,6

= 1
µ3,CU1F2 ,0

= �1 µ3,CU1F3 ,6
= 1 µ4,CU1F3 ,0

= �1 µ4,CU1F2 ,6
= 1

µ5,CU1F1 ,0
= �1 µ5,CU1F3 ,6

= 1 µ6,CU1F3 ,0
= �1 µ6,CU1F1 ,6

= 1

⇤ Index of µ and ↵: {task,resource,time}
⇤ Index ⌫: {task,extent,resource,time} (extent index omitted for tasks with single

extent)

Table C.4: Task resource interaction parameters
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Appendix D

Supplementary Information for Chapter
7

D.1 Reactor Model Equations

The polymerization mechanism is the same for the three homopolymer products, which is
similar to the polyol model shown in Tab. 4.1. Using the notation developed for moment
models in Sec. 5.2.3, the moment balance equations are shown as follows:

dX0

dt
= �V �kiG0M, (D.1.1a)

d�0

dt
= V �kiG0M, (D.1.1b)

d�1

dt
= V �(kiG0 + kp⇣0)M (D.1.1c)

d�2

dt
= V �(kiG0 + kp(2⇣1 + ⇣0))M, (D.1.1d)

dY0

dt
= �V �(kiQ0 + ktnc)M, (D.1.1e)

dµ0

dt
= V �kiQ0M, (D.1.1f)

dµ1

dt
= V �(kiQ0 + kp⌫0)M, (D.1.1g)

dµ2

dt
= V �(kiQ0 + kp(2⌫1 + ⌫0))M. (D.1.1h)
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M

Rxr1

CAT

PolyA1

τ1 = 14

ν1,M,1

µ1,Rxr1,0

µ1,CAT,1

Rxr1s

ARxr1

T

ν1,ARxr1,14

µ1,Rxr1s,14 µ2,Rxr1,1

ν2,Ao

Rxr1,1

TranA1

τ2 = 1

µ2,Rxr1s,0

ν2,ARxr1,0

µ2,T,0 µ2,T,1

Rxr1

Ao
Rxr1

T

zero-wait:

Rmax
Ao

Rxr1,t
= 0

Figure D.1: RTN representation of Rxr1

For the algebraic equations, we obtain

X0nc = G0(X0 +Y0 + �0 + µ0),

Y0nc = Q0(X0 +Y0 + �0 + µ0),

�knc = ⇣k(X0 +Y0 + �0 + µ0), k = {0, 1},
µknc = ⌫k(X0 +Y0 + �0 + µ0), k = {0, 1}.

(D.1.2)

In this model, only the zeroth and first moments are computed. The rest of the reactor
model equations and the optimization constraints are also similar to those developed in
Sec. 5.2.3, except for only one monomer type is considered.

D.2 RTN Representation of the Polymerization Process

The RTN representation of the process is similar to the RTN networks in Sec. 6.4. We
show RTN network of Product A as an example.

D.2.1 Polymerizaiton Reactors

The RTN representation of Rxr1 is shown in Fig. D.1. Two tasks are defined, corre-
sponding to the polymerization operation (PolyA1) and the material transfer operation
(TranA1). The values of the resource task interaction parameters are listed in Tab. D.2.

D.2.2 Buffer Tank

the RTN representation for the intermediate storage tank is depicted in Fig. D.2. The
buffering task spans a single time slot and seizes the equipment resource T during execu-
tion.
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T

Ao
Rxr2

Ao
Rxr1

ν1,1,Ao

Rxr1
,0

BufA

τ1 = 1

µ1,T,0

ν1,2,Ao

Rxr2
,0

E
xt
en
t
1
an
d
2

E
xtent

3

T

Ao
T

µ1,T,1

ν1,3,Ao

T
,0

AT

ν1,1,AT ,0
ν1,2,AT ,0

ν1,3,AT ,0

α1,BT ,0
α1,CT ,0

α1,BT ,1
α1,CT ,1

Figure D.2: RTN representation of the buffer tank

Ao
T PUprocA

τ1 = 1

PU

ν1,1,Ao

T
,0

PU

A

µ1,PU,0 µ1,PU,1

ν1,1,A,0

CAP

ν1,2,CAP,0

PUrepln

τ2 = 2

µ2,PU,0 µ2,PU,2

ν2,CAP,0

µ2,CAP,2

α2,CAP,2

α2,CAP,0

(a) Process tasks

PUF2

PUF1

PUF1to2

τ1 = 6

PUF2to1

τ2 = 6

µ1,PUF2
,6 µ2,PUF2

,0

µ1,PUF1
,0 µ2,PUF1

,6

PU PUF1 PUF2→ +

(b) Changeover tasks

Figure D.3: RTN representation of the purification unit

D.2.3 Purification Unit

We show the RTN representation of the continuous purification unit PU in Fig. D.3(a).
Then two changeover tasks are defined to toggle the unit between the two states for pro-
ducing products in different categories, shown in Fig. D.3(b).
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Prod.
type

Batch
size

Task length Rxr
setup Purification rate

max/min
PU CAP Price Order Product

m = 1 m = 2 time cons. (MU) amount family
A 70 14 1 17.5/5 1 0.3 140 F1
B 70 10 11 1 17.5/5 1 0.3 280 F2
C 70 8 9 1 23.3/5 1 0.3 140 F1

⇤ Time and processing rates in hours

Table D.1: Model parameters for the case study example: scheduling parameters

Polymerization reactors (Fig. D.1)

µ1,Rxr1,0 = �1 ⌫1,M,1 = �1 µ1,Rxr1
s

,14 = 1 ⌫1,A
Rxr1,14 = 1

⌫2,A
Rxr1,0 = �1 µ2,Rxr

s

,0 = �1 µ2,T,0 = �1 ⌫2,Ao

Rxr1,1
= 1

µ2,Rxr1,1 = 1 µ2,T,1 = 1

Buffer tank (Fig. D.2)

µ1,T,0 = �1 ⌫1,1,Ao

1,Rxr1,0
= �1 ⌫1,2,Ao

Rxr2,0
= �1 ⌫1,3,A

T

,0 = �1
µ1,T,1 = 1 ⌫1,1,A

T

,0 = 1 ⌫1,2,A
T

,0 = 1 ⌫1,3,Ao

T

,0 = 1
↵1,B

T

,0 = �140 ↵1,C
T

,0 = �140 ↵1,B
T

,1 = 140 ↵1,C
T

,1 = 140

Purification unit (Fig. D.3(a))

µ1,PU,0 = �1 ⌫1,1,Ao

T

,0 = �1 ⌫1,2,CAP,0 = �1 µ1,PU,1 = 1
⌫1,1,A,0 = 1 µ2,PU,0 = �1 ⌫2,CAP,0 = �1 µ2,PU,2 = 1
µ2,CAP,2 = 280 ↵2,CAP,0 = �280 ↵2,CAP,2 = 280

Changeover tasks of PU (Fig. D.3(b))

µ1,PU
F1 ,0

= �1 µ1,PU
F2 ,6

= 1 µ2,PU
F2 ,0

= �1 µ2,PU
F1 ,6

= 1

⇤ Index of µ and ↵: {task,resource,time} (task mode index not included for Prod-
uct A)

⇤ Index ⌫: {task,extent,resource,time} (extent index omitted for tasks with single
extent)

Table D.2: Task resource interaction parameters
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