Carnegie Mellon University

CARNEGIE INSTITUTE OF TECHNOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE oF Doctor of Philosophy

TITLE Interactions of Uncertainty and Optimization: Theory, Algorithms,

and Applications to Chemical Site Operations

PRESENTED BY Satyajith Amaran

ACCEPTED BY THE DEPARTMENT OF

Chemical Engineering

NIKOLAOS SAHINIDIS 9/19/14
NIKOLAOS SAHINIDIS, ADVISOR DATE
LORENZ BIEGLER 9/19/14
LORENZ BIEGLER, DEPARTMENT HEAD DATE
APPROVED BY THE COLLEGE COUNCIL
VIJAYAKUMAR BHAGAVATULA 9/19/14

DEAN DATE

INTERACTIONS OF UNCERTAINTY AND
OPTIMIZATION: THEORY, ALGORITHMS, AND
APPLICATIONS TO CHEMICAL SITE OPERATIONS

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy
mn

Chemical Engineering

Satyajith Amaran

M.S., Chemical Engineering, Carnegie Mellon University
B.Tech., Chemical Engineering, National Institute of Technology Karnataka

Carnegie Mellon University
Pittsburgh PA

September 2014

Interactions of Uncertainty and Optimization: Theory, Algorithms, and Applications
to Chemical Site Operations, Ph.D. Thesis
© 2014 Satyajith Amaran

To Akka, Mom, Dad, and Riteja

ABSTRACT

This thesis explores different paradigms for incorporating uncertainty with optimiza-
tion frameworks for applications in chemical engineering and site-wide operations.
First, we address the simulation optimization problem, which deals with the search
for optimal input parameters to black-box stochastic simulations which are poten-
tially expensive to evaluate. We include a comprehensive literature survey of the
state-of-the-art in the area, propose a new provably convergent trust region-based
algorithm, and discuss implementation details along with extensive computational
experience, including examples for chemical engineering applications.

Next, we look at the problem of long-term site-wide maintenance turnaround
planning. Turnarounds involve the disruption of production for significant periods
of time, and may incur enormous costs in terms of maintenance manpower as well as
lost sales. The problem involves (1) the simulation of profit deterioration due to wear
and tear followed by the determination of how frequently a particular turnaround
should take place; and (2) the consideration of site network structure and turnaround
frequencies to determine how turnarounds of different plants may be coordinated
over a long-term horizon. We investigate two mixed-integer models, the first of
which determines optimal frequencies of individual plant turnarounds, while the
second considers maximizing long-term profit through coordination of turnarounds
across the site.

We then turn to more conventional methods of dealing with optimization under
uncertainty, and make use of a combined robust optimization and stochastic pro-
gramming approach to medium-term maintenance planning in integrated chemical
sites. The nature of the uncertainty considered affects two aspects of maintenance
planning, one of which is most suitably addressed through a robust optimization
framework, while the other is better handled with stochastic programming models.

In summary, we highlight the importance of considering uncertainty in optimiza-
tion as well as the choice of approach or paradigm used through chemical engineering

applications that span varied domains and time scales.

iv

There is one more thing. It’s been emotional.
— Big Chris, Lock, Stock, and Two Smoking Barrels (1998)

ACKNOWLEDGMENTS

I have been influenced in profound ways over the last six years with regard to
research, culture and language, and ways of life by many people.

I am deeply indebted to Prof. Nick Sahinidis, my research advisor through
both my Masters and Doctorate programs. Nick, you gave me the opportunity to
work on some very interesting, open-ended, and wide-ranging problems, and have
actively supported my professional exposure through conferences and internships. 1
am privileged to have seen your domain expertise, computing mastery, and amazing
intuition up close. Your work ethic, responsiveness, communication, and efficiency
are qualities that I aspire to. I appreciate the research freedom you gave me and
have enjoyed working in your group very, very much.

I would like to thank the members of my doctoral committee—Prof. Lorenz T.
Biegler, Prof. Ignacio E. Grossmann, Prof. Geoffrey J. Gordon, Dr. Bikram Sharda,
and Dr. Scott J. Bury. They provided valuable comments that helped both in the
evolution of this work, as well as in the quality of the final manuscript. Professors
Grossmann and Biegler have been academic role models to me in more ways than
one.

I would like to thank NSF award 1033661 and The Dow Chemical Company for
supporting my research. I am grateful to Bikram Sharda, John Wassick, and Alex
Kalos for providing me with the opportunity to complete a summer internship with
The Dow Chemical Company. I really enjoyed working with the dynamic research
team at Freeport, Texas.

A number of others have enabled this research. Anshul Agarwal and Max
Fahrenkopf were extremely helpful in providing code and data for case studies. Prof.
Ted Allen and Prof. K.-H. Chang were kind in sharing their implementations. I am
very thankful to Tong Zhang (who hails from a part of China close to Mongolia)
who is a collaborator for the work on medium-term turnaround planning. Good

luck in your future endeavors, Tong!

I’'ve had some great conversations relating to optimization and PSE with Qj,
John Eason, Alison, Max, Pedro Amorim, Pablo, Bruno, Apurva, Yash, Sree, Fran-
cisco, Rob, and Luis Miguel—thank you for being willing trampolines for my ideas
and questions. I've also consulted on many occasions the resident TEXperts Tor
Aksel, Erik Esche, and Siddarth Raman; presentation pundit Alison Cozad; and
Linux gurus Arvind Mukundan and Simon Markowski. You introduced and helped
me become comfortable with the primary non-programming tools that I use on an

everyday basis.

My journey was incredibly smooth thanks to Cindy, Janet, Julie, Justin, Laura,
Shannon and Toni, the stalwarts at CMU. You have been the most helpful, efficient,
and friendly staff I could have asked for.

I am grateful for having been a part of a very close-knit department. Linlin,
German and Tor, I've spent pretty much the entire length of my stay at CMU with
the three of you and what a great time it’s been. Now I will always need coffee
at 3pm. A shout out to Aida, Alison, Deepak, Fernando, Haoqi, Keith, Mustafa,
(small) Nick, Panos, Sree, Tong, Yan, Yash, and Zach—my fellow Sahinidis group
members for some good times together—be it the mid-afternoon office prattle, the
late nights on the upper floors of Doherty Hall, or expeditions to local bars and
restaurants ... you know, nothing too far way. Alejandra, Annia, Axel, Bethany,
Edna, Ellis, Francisco, Ines, Irene, Jake, Javier (aka J-Law), Jens, John Eason, Juan
Morinelly, Jun, Mariano, Markus, Martijn, Max, Monica, Pablo, Qi, Ricardo, Rob,
Sumit, Svenja, Vijay, Xue, Zixi, and the rest of the PSE gang—I will always have

lots of fantastic memories of my time with you. Salut!

A hat tip to Fuego FC, foosball and table tennis @ happy hour, and my tennis
buddies Nick, Pedro, and Takshak. I always had the perfect respite from research

through these interactions.

My home away from home was at the Youth Hostel and the Quiz Club@CMU.
Full-time residents Varun, Utsav, and Supreeth and part-time residents Aranya,
Harini, Samrat, and Erle—you have been brilliant roommates. I've grown, learned,
and thoroughly enjoyed living in Pittsburgh because of your company. An attempt
to précis all we’ve been through would be an exercise in futility but for the convenient
four-word reduction, quod non interficet firmat. Hugs and high-fives to Ajit, Apurva,

Arti, Ashwati, Budling, Chitra, Harsha, Janani, Keshav, Lavanya, Maddali, Nishtha,

vi

Ramya, Sandeep, Siddharth Garg, SL, Suha, Suyash, Uday, Vinod, and the rest of
the gang. Friday nights will never be the same without you guys.

Anand, Ashwin, Bhavya, Shamitha, Vig, and Vinayak—I am lucky to have
friends like you; thank you for all the support.

I am very grateful to Prof. N Krishnamurthy who provided me with immense
support, both during my Masters and my PhD. Dear Uncle K., I would not have
been able to start, let alone complete this journey without your support.

Riteja, this adventure through my doctorate has coincided with our adventure
together. If I am a better person than when I started, it is because of you. This
thesis represents a lot of what I have learned in the past few years; yet, it is a
piddling amount compared with what I’ve learned from you. Now that I am finally
Ph.inisheD., I can’t wait to start the next chapter together.

Akka, Mom, and Dad, none of these experiences that I have enjoyed and will
treasure could have happened but for your sustained belief in me. I am most grateful

for your prayers, support, patience, and love.

vii

CONTENTS

I

II

INTRODUCTION 1
1.1 Introduction 2
1.2 Optimization over stochastic simulations 5

1.3 Strategies for optimization under uncertainty 6

OPTIMIZATION OVER STOCHASTIC SIMULATIONS: THEORY, AL-

GORITHMS, AND APPLICATIONS 8
LITERATURE REVIEW 9
2.1 Introduction 9

2.1.1 Prior reviews of simulation optimization 11

2.1.2 A note on terminology and scope 13
2.1.3 Relationship to other fields 15
2.2 Applications 17
2.3 Algorithms 18
2.3.1 Discrete optimization via simulation 21
2.3.2 Response surface methodology 25
2.3.3 Gradient-based methods 27
2.3.4 Sample path optimization 28
2.3.5 Direct search methods 29
2.3.6 Random search methods 30
2.3.7 Model-based methods 32
2.3.8 Lipschitzian optimization 35
2.4 Software 36
2.4.1 Simulation optimization in commercial simulation software 36
2.4.2 Academic implementations of simulation optimization 36
2.5 Comparison of algorithms 36
2.6 Conclusions 40
THEORY FOR TRUST REGION-BASED SIMULATION OPTIMIZATION 42
3.1 Introduction 42

viii

II1

CONTENTS

3.1.1 Problem definition 42
3.1.2 Prior work and contributions of our work 43
3.2 Mathematical Preliminaries 45
3.2.1 Fully linear models 45
3.2.2 Gaussian process regression 46
3.2.3 Hypothesis tests 50
3.3 Algorithm 50
3.4 Convergence analysis 53
3.5 Conclusions 69
SO-LVIT: SIMULATION OPTIMIZATION—LEARNING VIA TRUST
REGIONS 70
4.1 Introduction 70
4.2 Implementation details 71
4.2.1 Selection of points and maintenance of geometry for interpo-
lation and regression models 73
4.2.2 GP regression 74
4.2.3 Hypothesis test significance-level 7
4.3 Algorithmic enhancements 78
4.3.1 Variance learning 78
4.3.2 Global optimization of TRSP 80
4.3.3 Stopping criteria 82
4.4 Results and applications 83
4.4.1 Comparisons on large test sets 83
4.4.2 Global vs. local optimization for TRSP 87
4.4.3 Identification of reorder points in chemical supply chains 88
4.4.4 Optimum obstacle sizing in length-based DNA separation via
post arrays 90

4.5 Conclusions 93

SEQUENTIAL AND SIMULTANEOUS STRATEGIES FOR OPTIMIZA-
TION UNDER UNCERTAINTY: MODELS AND APPLICATIONS FOR
SITE-WIDE MAINTENANCE 94

LONG-TERM TURNAROUND PLANNING FOR INTEGRATED SITES 95

5.1 Introduction 95

v

5.2

5.3
5.4
5.5

5.6

CONTENTS

5.1.1 Definition, concepts, and significance of maintenance schedul-
ing 97

5.1.2 Literature Review 99

Problem description 102

5.2.1 The ideal solution and scope of current work 102

5.2.2 Problem setup 104

MILP model for determining optimal turnaround frequencies 106

MILP model for integrated turnaround planning 111

Results and Analysis 116

5.5.1 Study 1: Fixed cyclic schedule 116

5.5.2 Study 2: Rolling horizon framework 122

Conclusions 133

MEDIUM-TERM TURNAROUND PLANNING FOR INTEGRATED CHEM-

ICAL SITES 134

6.1
6.2
6.3

6.4

6.5

Introduction 134

Motivation and problem description 135

Model formulations 140

6.3.1 Sequential robust scheduling and production planning 140
6.3.2 Simultaneous robust scheduling and production planning 149
Results 151

6.4.1 Robust solution 153

6.4.2 Comparison of sequential and simultaneous approaches 153
6.4.3 Computational experience 158

6.4.4 Analysis of inventory policy and demand satisfaction levels 160

Conclusions 161

CONCLUSIONS 163

7.1
7.2

7.3

Conclusions 164

Key contributions 164

7.2.1 Simulation optimization 164
7.2.2 Turnaround planning 165
Future Work 166

BIBLIOGRAPHY 169

LIST OF FIGURES AND ILLUSTRATIONS

Figure 1.1
Figure 1.2
Figure 1.3

Figure 4.1

Figure 4.2

Figure 4.3
Figure 4.4

Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1

Figure 5.2

Figure 5.3

Interactions of uncertainty and optimization 2

Example of an integrated chemical site network 4

Value and number of North American maintenance turnarounds
in the chemical processing industry for 2008 (http://www.
industrialinfo.com/media/downloadMedia.jsp?mediald=
344733, accessed February 21, 2014) 5

The four key steps in an iteration of the SO-LVIT algorithm
are shown above. The black surface is the underlying expec-
tation function of the simulation. 72

Two different regression surfaces for twenty samples taken

2

from the function f(z) = 50 + xsinx ~ 100 81

A breakdown of problem types in the 502-problem test set 85

Relative fraction of problems solved vs. Number of simula-
tions for seven solvers 86

Impact of global and local optimization of the TRSP on over-

all performance 88

Supply chain network structure 89

Total inventory volume vs. iteration count 90

Mean difference in elution times vs. algorithm iterations 92

Example site network abstracted at the plant level for turnaround
scheduling purposes 104

Illustration of interactions and interdependencies in a sub-
network 106

Ilustration of coordination of subtasks in different scenarios
(rate of profit decline (units/month); production decline dur-

ing maintenance (%); recommended turnaround policy) 110

xi

http://www.industrialinfo.com/media/downloadMedia.jsp?mediaId=344733
http://www.industrialinfo.com/media/downloadMedia.jsp?mediaId=344733
http://www.industrialinfo.com/media/downloadMedia.jsp?mediaId=344733

LIST OF FIGURES AND ILLUSTRATIONS

Figure 5.4 Sample schedule output from optimization model. A Gantt
chart shows the turnaround schedule for each unit. The man-
power utilization chart shows what fraction of the available
manpower is engaged at each point in the time horizon. The
site network shown below is color-coded by product envelope
to emphasize the relationship between position of units in
the network, and their relative turnaround schedules. 119

Figure 5.5 Weekly and quarterly financial performance of an optimal
schedule 121

Figure 5.6 Schedule when no import of intermediate material is possi-
ble 122

Figure 5.7 A potential rolling horizon scheme 123

Figure 5.8 A Pareto curve that trades off overall profit vs. coefficient

in Eq 5.29, A. The numbers above each data point represent
the standard deviations in profit over the horizon. The bar
graph above each data point denotes the least peak man-
power achievable for each of the scenarios. This is repre-
sented as a percentage increase from the lower bound on peak
manpower. 126

Figure 5.9 Example network highlighting which flows were modified to
improve big-M constraints 128

Figure 5.10 Ilustration of inability of cyclic schedules in dealing with
seasonal constraints 132

Figure 6.1 The effect of the manner of consideration of uncertainty on
scheduling decisions and manpower requirement 137

Figure 6.2 Proposed approaches for combined robust optimization and
stochastic programming 139

Figure 6.3 Mlustration of the units being considered for the medium-
term case study 152

Figure 6.4 Schedule illustrating the effectiveness of the robust schedul-
ing constraints 154

Figure 6.5 Schedule resulting in best objective with corresponding man-
power requirement for the sequential robust optimization and

multi-stage stochastic programming approach 155

xii

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9
Figure 6.10

LIST OF FIGURES AND ILLUSTRATIONS

Schedule resulting in worst objective with corresponding man-
power requirement for the sequential robust optimization and
multi-stage stochastic programming approach 156
Manpower usage for best schedule from the simultaneous ap-
proach, that corresponds to a makespan that is not the small-
est possible 157

Implicit and explicit representations of scenario tree for the
medium-term turnaround scheduling case study 159
Demand level and demands catered to for Unit 13 161

Inventory levels for downstream storage tank of Unit 13 161

xiii

LIST OF TABLES

Table 2.1
Table 2.2

Table 2.3
Table 2.4

Table 2.5
Table 3.1

Table 4.1
Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 6.1

Table 6.2

Table 6.3

Terminology of optimization problems 14

Partial list of published works that apply simulation opti-
mization 19

Classification of simulation optimization algorithms 20
Simulation optimization packages in commercial simulation
software 37

Academic simulation optimization implementations 41
List of initialization parameters to simulation optimization
algorithm 53

List of algorithms compared against 84

Industries and associated literature in maintenance schedul-
ing 102

Set, parameter and variable notation for the turnaround fre-
quency determination model 108

Set notation for the long-term scheduling model 111
Parameter notation for the long-term scheduling model 112
Variable notation for the long-term scheduling model 112
Comparison of profit from cyclic schedule and rolling horizon
schedule 125

Cumulative effect of updated big-M constraints on solution
time 128

Set, parameter and variable notation for robust scheduling
model 141

Set, parameter and variable notation for multi-stage stochas-
tic programming model 146

Solution times and problem sizes of sequential and simulta-

neous strategies 159

xiv

LIST OF ALGORITHMS

Algorithm 2.1
Algorithm 2.2
Algorithm 2.3
Algorithm 2.4
Algorithm 2.5
Algorithm 2.6

Algorithm 3.1
Algorithm 3.2
Algorithm 3.3

Algorithm 4.1
Algorithm 4.2

Basic ranking and selection procedure for SO 23
Basic RSM procedure 25
Basic gradient-based procedure 28

Basic Nelder-Mead simplex procedure for SO 30
Basic scatter search procedure for SO 32

Pseudocode for a simple cross-entropy implementation

Trust region-based simulation optimization framework
Trust region update scheme 55

=

Criticality step algorithm 56

Construction of interpolation/regression model 75

Model-building and Model-improving algorithm 76

XV

33

Part I

INTRODUCTION

1.1 INTRODUCTION

I just sit at my typewriter and curse a bit.

— P. G. Wodehouse, when asked about his writing technique

1.1 INTRODUCTION

The goal of this thesis is to contribute to the process systems engineering area
through novel theory and methods, and their application to domains of relevance
in the field. The broad theme of the thesis involves the development of mathemat-
ical approaches that consider uncertainty in the context of optimization, and the
investigation of both model-free and model-based approaches for various problems

in chemical engineering.

The interaction of uncertainty with optimization can take place in multiple ways,

three of which are illustrated in Figure 1.1.

. Uncertainty
Optimization quantification Optimization
- under

Stochastic | uncertainty

simulation Optimization
Paradigm 1: Optimization Paradigm 2: Sequential Paradigm 3: Consideration
with simulation-based uncertainty quantification of uncertainty within
iterations and optimization optimization formulation

Figure 1.1: Interactions of uncertainty and optimization

The first paradigm illustrates the case of stochastic black-box optimization,
where we would like to optimize directly over a stochastic simulation. Here, the
simulation model is not available to the optimization routine, and therefore the
optimizer has to progress through simulation-based iterations. In addition, many
applications require the use of high-fidelity simulations that have embedded uncer-
tainty, describe underlying phenomena in detail, and may be expensive to evaluate,
thus necessitating a model-free optimization approach. The adjustment of input pa-
rameters to the simulation affects the outputs, and these are typically tied to some
sort of performance or economic measure. The goal in this context is to identify

optimal input parameter values.

1.1 INTRODUCTION

A common way to combine uncertainty and optimization is to perform uncer-
tainty quantification as a pre-processing step to optimization, and this is illustrated
through the second paradigm. Outputs from optimization routines are affected by
both the parameters as well as the assumptions made in the model. Here, the un-
certainty quantification complements the optimization routine by supplying it with
good parameter values. In our context, uncertainty quantification may involve an-
alyzing production, reliability, and forecast data in a production network through
simulations to determine suitable estimates of cost coefficients, demands, or other

parameters.

When we make use of an algebraic description of the model for optimization,
an optimizer is typically concerned with manipulating the decision variables to min-
imize, for example, some objective, while satisfying some feasibility conditions. The
constants and parameters that go into the model, however, may have a significant ef-
fect on optimality, sensitivity of solution, and feasibility. The third paradigm shown
in Figure 1.1 involves robust optimization and stochastic programming approaches,
both of which simultaneously consider parameter uncertainty as well as optimization

within a single modeling framework.

To motivate the need to incorporate various kinds of uncertainties in chemical
engineering optimization problems, we consider integrated chemical site operations.

Figure 1.2 illustrates the structure of a large integrated site.

A large-scale integrated chemical site constitutes a number of individual produc-
tion units that are either connected to each other directly or through buffer storage
capacities. These production units supply raw material to other units and produce
final products that are ready to be shipped to end users. The tight integration
of this network of plants provides synergistic opportunities for sharing raw materi-
als, products, process and business information, domain knowledge, energy, utilities,

manpower, safety infrastructure, and transportation.

In addition, integrated sites may also benefit from holistic, long-term, medium-
term and short-term maintenance turnaround planning. Maintenance tasks repre-
sent disruptions in production, and necessitate intelligent decision-making for pro-

duction planning, demand satisfaction, and manpower availability.

Maintenance turnarounds involve shutting down plants for inspection, moni-

toring, cleaning, structural reinforcement and overhaul, and last 1-8 weeks. They

1.1 INTRODUCTION

Intermediate products] [Final products]

Unit 10

Unit 14

Market interaction] [Storage tanks]

Figure 1.2: Example of an integrated chemical site network

incur substantial costs, and Figure 1.3 shows that in 2008, 408 turnarounds in active
projects in the chemical process industry in North America were valued at a cumu-
lative amount of around $1,034MM (North American Chemical Processing Industry
Maintenance Turnarounds 2014). Thus, maintenance optimization has potential for
substantially reducing operating costs for a chemical plant, and increasing profit by
increasing availability, reliability, and production.

On a short-term time-scale, there may be several minor maintenance or upkeep
functions that cause production levels to fluctuate on an hourly or daily basis, and
this leads to the need for buffer storage to hedge against this uncertainty in produc-
tion. This production variability may be modeled through a stochastic simulation
framework, and a key decision may involve the determination of base stock levels
in the buffer inventory tanks. Black-box simulation optimization methods may be
used to make such decisions (Section 1.2).

On a medium-term time-scale, planning of maintenance tasks and arranging for
maintenance manpower is done several months prior to a turnaround. As observed
by Lenahan (1999) and Narayan (2004), a large portion of the turnaround work
scope is hidden due to inaccessibility to plant equipment, and the major uncertainty
is in the duration of the turnaround. Production planning decisions are commonly

addressed by mixed-integer programming formulations, and extensions to these, in

1.2 OPTIMIZATION OVER STOCHASTIC SIMULATIONS

Investment (MM)
200 ~

150 A
100
50
O 4

1 2 3 4 5 6 7 8 9 10 11 12
Month

Figure 1.3: Value and number of North American maintenance turnarounds in the chem-
ical processing industry for 2008 (http://www.industrialinfo.com/media/
downloadMedia.jsp?mediald=344733, accessed February 21, 2014)

terms of robust optimization (Ben-Tal et al. 2009) and stochastic programming
(Birge & Louveaux 2011), may be used to handle parametric uncertainty suitably
(Section 1.3).

Turnarounds take place once every few years, and their coordination in an inte-
grated site requires the consideration of a long-term time scale. The frequency with
which turnarounds on a particular plant must be performed is a complex issue. The
determination of this may require the performance of simulations to characterize
rates of wear and tear and the analysis of historical data, in an uncertainty quantifi-
cation step. Bounds on the frequency of turnarounds can then be used as inputs to
a turnaround planning optimization model (Section 1.3).

With this background, we describe the organization of the thesis.

1.2 OPTIMIZATION OVER STOCHASTIC SIMULATIONS: THEORY, ALGO-

RITHMS, AND APPLICATIONS

The first part of the thesis addresses simulation optimization—an area still very
much in its nascency. Simulation Optimization (SO) refers to the optimization
of an objective function subject to constraints, both of which can only be evalu-
ated through a stochastic simulation. To address specific features of a particular
simulation—discrete or continuous decisions, expensive or cheap simulations, single
or multiple outputs, homogeneous or heterogeneous noise—various algorithms have

been proposed in the literature. As one can imagine, there exist several competing

http://www.industrialinfo.com/media/downloadMedia.jsp?mediaId=344733
http://www.industrialinfo.com/media/downloadMedia.jsp?mediaId=344733

1.3 STRATEGIES FOR OPTIMIZATION UNDER UNCERTAINTY

algorithms for each of these classes of problems. We provide an extensive literature

review of the area in Chapter 2.

In Chapter 3, we develop an algorithm for Continuous Optimization via Simu-
lation (COvS) in an unconstrained setting. As the simulation may only be available
as a black-box with stochastic outputs, we do not have access to derivative informa-
tion, making the search for optimal parameters challenging. In addition, having a
limited knowledge of the underlying distributions, and dealing simulations that are
expensive to evaluate further complicate the problem. We extend prototypical trust
region methods for derivative-free optimization (DFO) to the stochastic context,

while providing guarantees of global convergence to stationary points.

We discuss our particular implementation of this strategy in Chapter 4. We
provide computational experience with this framework, demonstrate that it is com-
petitive with other algorithms on a large test set, and discuss two examples involving

inventory optimization and DNA separations.

1.3 SEQUENTIAL AND SIMULTANEOUS STRATEGIES FOR OPTIMIZATION
UNDER UNCERTAINTY: MODELS AND APPLICATIONS FOR SITE-WIDE

MAINTENANCE

As mentioned earlier, individual plants in an integrated site interact closely, are
dependent on each other for raw materials and demand for their products, and have
the provision of intermediate storage tanks to help manage inventory at strategic
points in the network. Disruptions in the operation of these plants can drastically
affect flow of material in the site network. As a result, the choice of sequence and
timing of planned periodic turnarounds, which are major disruptions, is important

in order to minimize effects on profits and production.

In terms of time scales, a turnaround schedule over a multi-year horizon would
be required along with a more detailed schedule for decisions over shorter time
scales. An optimal long-term turnaround scheme is needed to plan for required
manpower, to schedule turnarounds around seasonal constraints, and to maximize
long-term profit margins while balancing financial performance. On the other hand,
a fine-grained schedule over a shorter time scale would help manage short-term

and medium-term production and inventory decisions and resolve resource (e.g.,

1.3 STRATEGIES FOR OPTIMIZATION UNDER UNCERTAINTY

manpower, utilities) conflicts for a set of plants or units that are being maintained
around the same time.

In the long-term context, we investigate a discrete-time mixed-integer linear
programming (MILP) model to perform turnaround optimization. The objective
is to recommend potential schedules in order to minimize losses while satisfying
network, resource, turnaround, demand, financial and other practical constraints.
We propose general formulations to tackle this problem and study an industrial-size
site network under various scenarios over a long-term horizon in Chapter 5.

For the medium-term consideration of turnaround tasks, planning begins 6-9
months prior to the turnaround in order to plan downstream inventory build-up,
and to plan for maintenance manpower and equipment. We consider a particular
set of turnarounds that occur together, as recommended by a solution to the long-
term turnaround planning problem. As mentioned earlier, the key uncertainty lies
in the duration of the turnaround. Two aspects that are most affected by this are
manpower availability and production planning. Manpower is a scarce resource, and
it is important to ensure manpower availability at all times. Production planning is
also affected by uncertainty in the duration of turnarounds due to the highly cou-
pled nature of plants in an integrated site. In Chapter 6, we address the manpower
issue through a robust optimization formulation, and production planning problem
through the consideration of scenarios in a stochastic programming framework. The
goal is to maximize site-wide profit margins by coordinating turnarounds and pro-

duction through sequential and simultaneous strategies.

We summarize the contributions of the thesis in Section 7.1, where we discuss
directions for future work in both simulation optimization, the key methodological
contribution of the thesis, as well as in turnaround planning and coordination, which

is the main application focus in our work.

Part 11

OPTIMIZATION OVER STOCHASTIC SIMULATIONS:
THEORY, ALGORITHMS, AND APPLICATIONS

Simulation optimization involves the optimization over stochastic sim-
ulations such as discrete-event simulations and stochastic differential
equation systems. We provide a comprehensive review of current tech-
niques in both discrete and continuous settings, and then develop a novel
provably convergent trust region-based method for simulation optimiza-
tion. We also demonstrate the practical use of the method through the
description of an implementation, its success on a large test bed, and
its application to two problems from chemical engineering, namely in-
ventory optimization in chemical supply chains, and optimal sizing of

obstructions for DNA separation.

LITERATURE REVIEW

2.1 INTRODUCTION

Advances in modeling and availability of cheap computational power have enabled
the science, engineering, and business research communities to make use of simu-
lations to model phenomena and systems. It is only natural that there be a great

interest in manipulating degrees of freedom in the simulations to optimize them.

The term Simulation Optimization (SO) is an umbrella term for techniques used
to optimize stochastic simulations. Simulation Optimization involves the search for
those specific settings of the input parameters to a stochastic simulation such that
a target objective, which is a function of the simulation output, is, without loss of

generality, minimized.

As opposed to mathematical programming, SO does not assume that an alge-
braic description of the simulation is available—the simulation may be available as
a black box that only allows the evaluation of the objective and constraints for a
particular input. In fact, many SO algorithmic approaches solely depend on such

input-output data from the simulation in their search for optimal input settings.

In addition, many large-scale and/or detailed simulations may be expensive to
run, in terms of time, money, or resources. As a result, there is also a need to
perform few simulations in this search for optimal parameters. Outputs from these
stochastic simulations are not deterministic, and usually follow some output distri-
bution, which may or may not vary across the parametric space. This uncertainty
or variability in output also adds to the challenge of optimization, as it becomes
harder to discern the quality of the parametric input in the presence of this output

noise. In addition, when an algebraic description of the simulation is not accessi-

2.1 INTRODUCTION

ble, derivative information is usually unavailable, and the estimation of derivatives
from the use of finite differences may not be suitable due to noisy outputs and the
expensive nature of simulations.

The nature of the stochastic simulations under study will determine the specific
technique chosen to optimize them. The simulations, which are often discrete-event
simulations, may be partially accessible to us in algebraic form, or may be purely
available as an input-output model (as a black box); they may have single or multiple
outputs; they may have deterministic or stochastic output(s); they may involve
discrete or continuous parameters; and they may or may not involve explicit, or

even implicit/hidden constraints.

A very general Simulation Optimization problem can be represented by (P1).

min E,[f(z,y,w)]
st. Plg(z,y,w) <0)>1—«
h(z,y) <0 (P1)

T <x <@y
reR" yeD™

The function f can be evaluated through simulation for a particular instance of
the continuous inputs z, discrete inputs y, and a realization of the random variables
in the simulation, the vector w (which may or may not be a function of the inputs,
x and y). Similarly, the constraints defined by the vector-valued function g are also
evaluated with each simulation run. In this formulation, expected values for these
stochastic functions are used. There may be other constraints (represented by h)
that do not involve random variables, as well as bound constraints on the decision
variables.

The relaxation of any of these conditions would constitute a problem that would
fall under the purview of SO. Most algorithms focus on problems that either have
solely discrete choices, or solely continuous decisions to make. Each constraint may
be thought of as representing additional outputs from the simulation that need to
be taken into consideration. In addition, there may be bound constraints imposed
on decision variables, that may either be available or obtained from domain-specific
knowledge. Relatively few existing algorithms attempt to address both discrete

and continuous choices simultaneously, although some broad classes of approaches

10

2.1 INTRODUCTION

naturally lend themselves to be applicable in either, and therefore both, settings.
Further, the discrete variables may either be binary, integer-ordered, or categorical
and lie in some discrete space ID.

As can be seen, the formulation P1 is extremely general, and therefore a wide
variety of applications fall under the scope of simulation optimization. Various
applications of simulation optimization in diverse research fields are tabulated in
Section 2.2.

Another common assumption is that f is a real-valued function and g is a real
vector-valued function, both of whose expected values may or may not be smooth or
continuous functions. The most common objective in SO is to optimize the expected
value of some performance metric, but other objective functions may be appropriate
depending on the application. For instance, an objective that minimizes risk could
be a possible alternative, in which case one would incorporate some sort of variance
measure as well into the objective.

This paper is meant to be a survey of available techniques as well as recent
advances in simulation optimization. The remainder of the introduction section
provides a literature survey of prior reviews, and elaborates on the relationship of
simulation optimization to mathematical programming, derivative-free optimization,
and machine learning. Section 2.2 provides a glimpse into the wide variety of ap-
plications of simulation optimization that have appeared in the literature. Section
2.3 focuses on various algorithms for discrete and continuous simulation optimiza-
tion, provides basic pseudocode for major categories of algorithms, and provides
comprehensive references for each type of algorithm. Section 2.4 provides a listing
of available software for simulation optimization and Section 2.5 discusses means to
compare their performance. Section 2.6 summarizes the progress of the field, and

outlines some current and future topics for research.

2.1.1 Prior reviews of simulation optimization

Several review papers (e.g., Meketon (1987); Jacobson & Schruben (1989); Safizadeh
(1990); Azadivar (1992); Fu (1994); Carson & Maria (1997); Andradottir (1998);
Azadivar (1999); Swisher et al. (2000); Fu et al. (2000); Fu (2002); Tekin & Sabun-
cuoglu (2004); Fu et al. (2005); Hong & Nelson (2009); Ammeri et al. (2011); Pa-
supathy & Ghosh (2013)), books and research monographs (e.g., Spall (2003b);

11

2.1 INTRODUCTION

Rubinstein & Kroese (2004); Kleijnen (2008); Chen & Lee (2010)), and theses (e.g.,
Angiin (2004); Driessen (2006); Deng (2007); Chang (2008); Frazier (2009); Kabirian
(2009)) have traced the development of Simulation Optimization.

Meketon (1987) provides a classification of algorithmic approaches for optimiza-
tion over simulations based on how much information or structure about the under-
lying model is known. The paper surveys the progress of the field between 1975
and 1987, and focuses on continuous simulation optimization. Andradéttir (1998)
provides a tutorial on gradient-based procedures for continuous problems. Carson
& Maria (1997) and Azadivar (1999) also give brief outlines of and pointers to

prevailing simulation optimization algorithms.

Fu et al. (2000) contains several position statements of eminent researchers and
practitioners in the field of simulation, where the integration of simulation with op-
timization is discussed. The issues addressed include generality vs. specificity of
an algorithm, the wider scope of problems that simulation optimization methodolo-
gies have the potential to address, and the need for integrating provably convergent
algorithms proposed by the research community with metaheuristics often used by

commercial simulation software packages.

Of the more recent surveys, Fu (1994) provides an excellent tutorial on simu-
lation optimization, and focuses on continuous optimization problems more than
discrete optimization problems. The paper focuses specifically on discrete-event
simulations. Fu (2002) provides a comprehensive survey of the field and its scope—
the paper outlines the different ways in which optimization and simulation interact,
gives examples of real-world applications, introduces simulation software and the
optimization routines that each of them use, provides a very basic tutorial on simula-
tion output analysis and convergence theory for simulation optimization, elaborates
on algorithms for both continuous and discrete problems, and provides pointers to
many useful sources. Fu et al. (2005) provide a concise, updated version of all of

this, and also talk about estimation of distribution algorithms.

Tekin & Sabuncuoglu (2004) provide a table that analyzes past review papers
and the techniques they focus on. Apart from providing detailed updates on ad-
vances in approaches and algorithms, the paper also lists references that attempt
to compare different SO techniques. Hong & Nelson (2009) classify simulation opti-
mization problems into those with (1) a finite number of solutions; (2) continuous

decision variables; and (3) discrete variables that are integer-ordered. The paper

12

2.1 INTRODUCTION

describes procedures for each of these classes. Perhaps the most recent survey by
Ammeri et al. (2011) classifies simulation optimization algorithms and provides a
survey of methods as well as applications appearing in the literature between 1995
and 2010.

This work provides an overview of techniques, and briefly outlines well-established
methods with pointers to more detailed surveys, while expounding on more recent
methods in a concise manner. Though several reviews exist, we catalog the most
recent developments—the emergence of derivative-free optimization and its rela-
tionship with simulation optimization, the appearance of simulation test-beds for
comparing algorithms, the recent application of simulation optimization in diverse
fields, the development of and interest in related techniques and theory by the ma-
chine learning community and the optimization community, as well as the sheer
unprecedented nature of recent interest in optimizing over simulations. A reflection
of a surge in recent interest is evidenced by the fact that more than half of the
works we reference were published in the last decade. The intent is to not only
trace the progress of the field, but to provide an update on state-of-the-art methods
and implementations, point the familiar as well as the uninitiated reader to relevant

sources in the literature, and to speculate on future directions in the field.

2.1.2 A note on terminology and scope

As simulation optimization involves the use of algorithms that arose from widely
differing fields (Section 2.3), has relationships to many diverse disciplines (Section
2.1.3), and has been applied to many different practical applications from biology to
engineering to logistics (Section 2.2), it is not surprising that it is known by various
names in different fields. It has also been referred to as simulation-based optimiza-
tion, stochastic optimization, parametric optimization, black-box optimization, and
Optimization via Simulation (OvS), where the continuous and discrete versions are
accordingly known as Continuous Optimization via Simulation (COvS) and Discrete
Optimization via Simulation (DOvS). Each algorithmic technique may also go by
different names, and we attempt to reconcile these in Section 2.3.

Inputs to the simulation may be variously referred to as parameter settings,
input settings, variables, controls, solutions, designs, experiments (or experimental

designs), factors, or configurations. Outputs from the simulation are called mea-

13

2.1 INTRODUCTION

surements, responses, performance metrics, objective values, simulation replications,
realizations, or results. The performance of a simulation may also be referred to as
an experiment, an objective function evaluation, or simply a function evaluation.
We will use the term ‘iteration’ to refer to a fixed number of function evaluations

(usually one) performed by a simulation optimization algorithm.

A note of caution while using SO methods is to incorporate as much domain
specific knowledge as possible in the use of an SO algorithm. This may be in terms
of (1) screening relevant input variables, (2) scaling and range reduction of decision
variables, (3) providing good initial guesses for the algorithm; and (4) gleaning
information from known problem structure, such as derivative estimates.

Table 2.1 classifies the techniques that are usually most suitable in practice for
different scenarios in the universe of optimization problems. Certain broad classes
of algorithms, such as random search methods, may be applicable to all of these
types of problems, but they are often most suitable when dealing with pathological
problems (e.g., problems with discontinuities, nonsmoothness) and are often used

because they are relatively easy to implement.

Table 2.1: Terminology of optimization problems

Algebraic model available Unknown/complex
problem structure

Deterministic Traditional math program- | Derivative-free
ming (linear, integer, and | optimization
nonlinear programming)
Uncertainty present | Stochastic programming, ro-| Simulation
bust optimization optimization

The possibilities of combining simulation and optimization procedures are vast:
simulation with optimization-based iterations; optimization with simulation-based
iterations; sequential simulation and optimization; and alternate simulation and op-
timization are four such paradigms. A recent paper by Figueira & Almada-Lobo
(2014) delves into the taxonomy of such problems, and provides a guide to choosing
an appropriate approach for a given problem. As detailed by Meketon (1987), differ-
ent techniques may be applicable or more suitable depending on how much is known

about the underlying simulation, such as its structure or associated probability dis-

14

2.1 INTRODUCTION

tributions. We focus on approaches that are applicable in situations where all the
optimization scheme has to work with are evaluations of f(z,y,w) and g(z,y,w),

or simply, observations with noise.

2.1.3 Relationship to other fields

Mathematical Programming As mentioned earlier, most mathematical program-
ming methods rely on the presence of an algebraic model. The availability of an
algebraic model has many obvious implications to a mathematical programming
expert, including the ability to evaluate a function quickly, the availability of deriva-
tive information, and the possibility of formulating a dual problem. None of these

may be possible to do/obtain in an SO setting.

In the case with continuous decisions, derivative information is often hard to
estimate accurately through finite differences, either due to the stochastic noise as-
sociated with objective function evaluations, or due to the large expense associated
with obtaining function evaluations, or both. The inherent stochasticity in out-
put also renders automatic differentiation (AD) (Rall 1981; Griewank & Walther
2008) tools not directly applicable. Moreover, automatic differentiation may not
be used when one has no access to source code, does not possess an AD inter-
face to proprietary simulation software, and, of course, when one is dealing with a
physical experiment. The lack of availability of derivative information has further
implications—it complicates the search for descent directions, proofs of convergence,

and the characterization of optimal points.

Simulation Optimization, like stochastic programming, also attempts to opti-
mize under uncertainty. However, stochastic programming differs in that it makes
heavy use of the model structure itself (Birge & Louveaux 2011). Optimization
under uncertainty techniques that make heavy use of mathematical programming

are reviewed in Sahinidis (2004).

Derivative-Free Optimization Both Simulation Optimization and Derivative-Free
Optimization (DFO) are referred to in the literature as black-box optimization meth-
ods. Output variability is the key factor that distinguishes SO from DFO, where the

output from the simulation is deterministic. However, there are many approaches to

15

2.1 INTRODUCTION

DFO that have analogs in SO as well (e.g., response surfaces, direct search methods,

metaheuristics), cf. Section 2.3.

Another distinction is that most algorithms in DFO are specifically designed
keeping in mind that function evaluations or simulations are expensive. This is not

necessarily the case with SO algorithms.

With regard to rates of convergence, SO algorithms are generally inefficient and
convergence rates are typically very slow. In general, one would expect SO to have a
slower convergence rate than DFO algorithms simply because of the additional com-
plication of uncertainty in function evaluations. As explained in Conn et al. (2009),
some DFO algorithms, under certain assumptions, expect rates that are closer to lin-
ear than quadratic, and therefore early termination may be suitable. As described in
some detail by Fu (1994), the best possible convergence rates for SO algorithms are
generally O(1/+vk), where k is the number of samples. This is true from the central
limit theorem that tells us the rate at which the best possible estimator converges
to the true expected function value at a point. This implies that though one would
ideally incorporate rigorous termination criteria in algorithm implementations, most
practical applications have a fixed simulation or function evaluation budget that is

reached first.

Machine Learning Several sub-communities in the machine learning community
address problems closely related to simulation optimization. Traditional machine
learning settings assume the availability of a fixed data set. Active learning methods
(Cohn et al. 1996; Settles 2010) extend machine learning algorithms to the case
where the algorithms are allowed to query an oracle for additional data to infer
better statistical models. Active learning is closely related in that this choice of
sampling occurs at every iteration in a simulation optimization setting as well. The
focus of active learning is usually to learn better predictive models rather than to

perform optimization.

Reinforcement learning (Stephens & Baritompa 1998) is broadly concerned with
what set of actions to take in an environment to maximize some notion of cumulative
reward. Reinforcement learning methods have strong connections to information
theory, optimal control, and statistics. The similarity with simulation optimization

is that the common problem of exploration of the search space vs. exploitation of

16

2.2 APPLICATIONS

known structure of the cost function arises. However, in the reinforcement learning
setting, each action usually also incurs a cost, and the task is to maximize the
accumulated rewards from all actions—as opposed to finding a good point in the

parameter space eventually.

Policy gradient methods (Peters et al. 2003) are a sub-field of reinforcement
learning, where the set of all possible sequences of actions form the policy space,
and a gradient in this policy space is estimated and a gradient ascent-type method
is then used to move to a local optimum. Bandit optimization (Gittins 1989) is
another sub-field of reinforcement learning that involves methods for the solution to
the multi-armed bandit problem. The canonical example involves a certain number
of slot machines, and a certain total budget to play them. Here, each choice of sam-
ple corresponds to which slot machine to play. Each play on a slot machine results
in random winnings. This setting is analogous to discrete simulation optimization
(DOVS) over finite sets, although with a different objective (Powell & Ryzhov 2012).
Again, in DOvS over finite sets, we are only concerned with finding the best alterna-
tive eventually, whereas the cumulative winnings is the concern in the multi-armed

bandit problem.

Relationship to other communities Most, if not all, simulation optimization pro-
cedures have elements that are derived from or highly related to several other fields.
Direct search procedures and response surface methodologies (RSM) have strong
relationships with the field of experimental design. RSM, sample path optimization
procedures, and gradient-based methods heavily incorporate ideas from mathemati-
cal programming. RSM also involves the use of nonparametric and Bayesian regres-
sion techniques, whereas estimation of distribution algorithms involves probabilistic
inference, and therefore these techniques are related to statistics and machine learn-
ing. Simulation Optimization has been described as being part of a larger field
called computational stochastic optimization. More information is available at Pow-
ell (2013).

2.2 APPLICATIONS

SO techniques are most commonly applied to either (1) discrete-event simulations,

or (2) systems of stochastic nonlinear and/or differential equations.

17

2.3 ALGORITHMS

As mentioned in Fu (1994), discrete event simulations can be used to model
many real-world systems such as queues, operations, and networks. Here, the simu-
lation of a system usually involves switching or jumping from one state to another
at discrete points in time as events occur. The occurrence of events is modeled using

probability distributions to model the randomness involved.

Stochastic differential equations may be used to model phenomena ranging from
financial risk (Merton 1974) to the control of nonlinear systems (Song & Grizzle

1995) to the electrophoretic separation of DNA molecules (Cho & Dorfman 2010).

With both discrete-event simulations and stochastic differential equation sys-
tems, there may be several parameters that one controls that affect some perfor-
mance measure of the system under consideration, which are essentially degrees of
freedom that may be optimized through SO techniques. Several applications of SO
from diverse areas have been addressed in the literature and we list some of them
in Table 2.2.

2.3 ALGORITHMS

Algorithms for SO are diverse, and their applicability may be highly dependent on
the particular application. For instance, algorithms may (1) attempt to find local or
global solutions; (2) address discrete or continuous variables; (3) incorporate random
elements or not; (4) be tailored for cases where function evaluations are expensive;
(5) emphasize exploration or exploitation to different extents; (6) assume that the
uncertainty in simulation output is homoscedastic or that it comes from a certain
probability distribution; or (7) rely on underlying continuity or differentiability of
the expectation (or some function of a chosen moment) of the simulation output.
The sheer diversity of these algorithms also makes it somewhat difficult to assert
which one is better than another in general, and also makes it hard to compare

between algorithms or their implementations.

As mentioned in Section 2.1.3, many algorithms that are available for contin-
uous simulation optimization have analogs in derivative-based optimization and in
derivative-free optimization, where function evaluations are deterministic. In any
case, the key lies in the statistics of how noise is handled, and how it is integrated

into the optimization scheme. We will provide pointers to references that are appli-

18

2.3 ALGORITHMS

Table 2.2: Partial list of published works that apply simulation optimization

Domain of applica-
tion

Application and citations

Operations

Manufacturing

Medicine and biology

Engineering

Computer science,
networks, electronics

Transportation and
logistics

Buffer location (Lutz et al. 1998), nurse scheduling
(Tein & Ramli 2010), inventory management (Kochel
& Nielander 2005; Schwartz et al. 2006), health care
(de Angelis et al. 2003), queuing networks (Fu & Hill
1997; Bhatnagar 2005; Mishra et al. 2007)

PCB production (Dengiz & Akbay 2000), engine
manufacturing (Syberfeldt & Lidberg 2012), produc-
tion planning (Kenne & Gharbi 2001; Kleijnen 1993),
manufacturing-cell design (Irizarry et al. 2001), kanban
sizing (Hall et al. 1996)

Protein engineering (Romero et al. 2013), cardiovascu-
lar surgery (Xie et al. 2012), breast cancer epidemiology
(Ferris et al. 2005), bioprocess control (Vande Wouwer
et al. 2001; Renotte & Vande Wouwer 2003), ECG anal-
ysis (Gerencsér et al. 2002), medical image analysis
(Merhof et al. 2007)

Welded beam design (Yang & Deb 2010), solid waste
management (Yeomans 2007), pollution source identi-
fication (Ayvaz 2010), chemical supply chains (Jung
et al. 2004), antenna design (Prakash et al. 2008), aero-
dynamic design (Xing & Damodaran 2002; 2005b;a;
Kothandaraman & Rotea 2005), distillation column op-
timization (Ramanathan et al. 2001), well placement
(Bangerth et al. 2005), servo system control (Radac
et al. 2011), power systems (Ernst et al. 2007), radar
analysis (Khan et al. 2006)

Server assignment (Kulturel-Konak & Konak 2010),
wireless sensor networks (Dhivya et al. 2011), circuit de-
sign (Li 2009), network reliability (Kroese et al. 2007)

Traffic control and simulation (Yun & Park 2010; Bal-
akrishna et al. 2007; Osorio & Bierlaire 2010), metro/-
transit travel times (Hill & Fu 1995; O. Yalcinkaya
2009), air traffic control (Kleinman et al. 1997; Hutchi-
son & Hill 2001)

19

2.3 ALGORITHMS

cable to simulation optimization in particular. A comprehensive review of methods

for derivative-free optimization is available in Rios & Sahinidis (2013).

FEach major subsection below is accompanied by pseudocode to give researchers
and practitioners unfamiliar with the field an idea of the general approach taken
by each of these algorithms. Many of the sections include pointers to convergence
proofs for individual algorithms. Optimality in simulation optimization is harder to
establish than in mathematical programming or derivative-free optimization due to
the presence of output variability. Notions of optimality for simulation optimization
are explored in Fu (1994); for the discrete case, Xu et al. (2010), for instance,
establishes conditions for local convergence, where a point being ‘better’ than its
2m 4+ 1 neighboring solutions is said to be locally optimal. There has also been
some work in establishing Karush-Kuhn-Tucker (KKT) optimality conditions for
multiresponse simulation optimization (Bettonvil et al. 2009). Globally convergent
algorithms will locate the global optimal solution eventually, but assuring this would
require all feasible solutions to be evaluated through infinite observations; in practice,
a convergence property that translates to a practical stopping criterion may make

more sense (Hong & Nelson 2009).

Based on their scope, the broad classes of algorithms are classified in Table 2.3.
Algorithms are classified based on whether they are applicable to problems with
discrete/continuous variables, and whether they focus on global or local optimization.
However, there may be specific algorithms that have been tweaked to make them

applicable to a different class as well, which may not be captured by this table.

Table 2.3: Classification of simulation optimization algorithms

Algorithm class Discrete Continuous | Local Global

Ranking and Selection
Metaheuristics

Response Surface Methodology
Gradient-based methods
Direct search

Model-based methods

Lipschitzian optimization

X X X X X X
X X X X

20

2.3 ALGORITHMS

2.3.1 Discrete optimization via simulation

Discrete optimization via simulation is involved with finding optimal settings for
input variables that can only take discrete values. This may be in the form of
integer-ordered variables or categorical variables (Pasupathy & Henderson 2011).
Integer-ordered variables are allowed to take on integer or discrete values within
a finite interval, where the order of these values translates to some physical inter-
pretation. For example, this could be the number of trucks available for vehicle
routing, or the set of standard pipe diameters that are available for the construc-
tion of a manufacturing plant. Categorical variables refer to more general kinds
of discrete decisions, ranging from conventional on-off (0-1 or binary) variables to
more abstract decisions such as the sequence of actions to take given a finite set
of actions. It should be noted that though integer-ordered variables, for instance,
may be logically represented using binary variables, it may be beneficial to retain
them as integer-ordered to exploit correlations in objective function values between
adjacent integer values.

A rich literature in DOvS has developed over the last 50 years, and the specific
methods developed are tailored to the specific problem setting. Broadly, methods

are tailored for finite or for very large/potentially infinite parameter spaces.

2.3.1.1 Finite parameter spaces

In the finite case, where the number of alternatives is small and fixed, the primary
goal is to decide how to allocate the simulation runs among the alternatives. In this
setting, there is no emphasis on ‘search’, as the candidate solution pool is small and
known; each iteration is used to infer the best, in some statistical sense, simulation
run(s) to be performed subsequently.

The optimization that is desired may differ depending on the situation, and

could involve:
1. The selection of the best candidate solution from a finite set of alternatives;

2. The comparison of simulation performance measures of each alternative to a

known standard or control; or

3. The pairwise comparison between all solution candidates.

21

2.3 ALGORITHMS

Item (1) is referred to as the ranking and selection problem. Items (2) and (3)
are addressed under literature on multiple comparison procedures, with the former

referred to as multiple comparisons with a control.

Ranking and Selection ~ In traditional ranking and selection, the task is to minimize
the number of simulation replications while ensuring a certain probability of correct
selection of alternatives. Most procedures try to guarantee that the design ultimately
selected is better than all competing alternatives by § with a probability at least
1 — . ¢ is called the indifference zone, and is the value deemed to be sufficient to

distinguish between expected performance among solution candidates.

Conventional procedures make use of the Bonferroni inequality which relates
probabilities of the occurrence of multiple events with probabilities of each event.
Other approaches involve the incorporation of covariance induced by, for example,
the use of common random numbers to expedite the algorithmic performance over
the more conservative Bonferroni approach. Kim & Nelson (2006; 2007) provide a
detailed review and provide algorithms and procedures for this setting. Extensions
of fully sequential ranking and selection procedures to the constrained case have
been explored as well, e.g., Andradéttir & Kim (2010).

An alternative formulation of the ranking and selection of the problem would
be to try to do the best within a specified computational budget, called the optimal
computing budget allocation formulation (Chen 1995). Chen et al. (2009) present
more recent work, while the stochastically constrained case is considered in Lee et al.
(2012).

Recent work (Hunter & Pasupathy 2013) in the area of DOvS over finite sets
provides a quick overview of the field of ranking and selection, and considers general
probability distributions and the presence of stochastic constraints simultaneously.

A basic ranking and selection procedure (Kim & Nelson 2007) is outlined in
Algorithm 2.1, where it is assumed that independent data comes from normal dis-

tributions with unknown, different variances.

Multiple comparison procedures Here, a number of simulation replications are
performed on all the potential designs, and conclusions are made by constructing
confidence intervals on the performance metric. The main ideas and techniques for

multiple comparisons in the context of pairwise comparisons, or against a known

22

2.3 ALGORITHMS

Algorithm 2.1 Basic ranking and selection procedure for SO

Require: Confidence level 1 — «, indifference zone parameter §
1: Take ng samples from each of the 1,..., K potential designs
2: Compute sample means, fj ,, and sample variances, Sy, for each of the designs

2qQ2
3: Determine how many new samples, Vi := max {no, V 65 ’“-‘ }, to take from each

system, where the Rinott constant ¢ is obtained from Bechhofer et al. (1995)
4: Select the system with the best new sample mean, £i v, 11, -

standard are presented in Hochberg & Tamhane (1987), Fu (1994), and Hsu (1996).
Recent work in multiple comparisons with a control include Kim (2005) and Nelson
& Goldsman (2001), which provide fully sequential and two-stage frequentist proce-
dures respectively; and Xie & Frazier (2013), which addresses the problem using a

Bayesian approach.

Comprehensive treatment of ranking and selection and multiple comparison pro-
cedures may be found in Goldsman & Nelson (1998) and Bechhofer et al. (1995). A
detailed survey that traces the development of techniques in simulation optimization

over finite sets is available in Tekin & Sabuncuoglu (2004).

2.3.1.2 Large/Infinite parameter spaces

To address DOvS problems with a large number of potential alternatives, algo-
rithms that have a search component are required. Many of the algorithms that
are applicable to the continuous optimization via simulation case are, with suitable
modifications, applicable to the case with large/infinite parameter spaces. These
include (1) ordinal optimization (2) random search methods and (3) direct search

methods.

Ordinal optimization methods (Ho 1999) are suitable when the number of alter-
natives is too large to find the globally optimal design in the discrete-event simula-
tion context. Instead, the task is to find a satisfactory solution with some guarantees
on quality (called alignment probability) (Lau & Ho 1997). Here, the focus is on
sampling a chosen subset of the solutions and evaluating them to determine the best
among them. The key lies in choosing this subset such that it contains a subset of

satisfactory solutions. The quality or satisfaction level of this selected subset can

23

2.3 ALGORITHMS

be quantified (Chen 1996). A comparison of subset selection rules is presented in

Jia et al. (2006) and the multi-objective case is treated in Teng et al. (2007).

Random search methods, include techniques such as simulated annealing (e.g.,
Alrefaei & Andradéttir (1999)), genetic algorithms, stochastic ruler methods (e.g.,
Yan & Mukai (1992)), stochastic comparison (e.g., Gong et al. (49)), nested parti-
tions (e.g., Shi & Olafsson (2000)), ant colony optimization (e.g., Dorigo & Stiitzle
(2004); Dorigo & Blum (2005)), and tabu search (e.g., Glover & Hanafi (2002)).
Some of these—simulated annealing, genetic algorithms, and tabu search—are de-
scribed in Section 2.3.6). Ant colony optimization is described under model-based
methods (cf. Section 2.3.7.2). Proofs of global convergence, i.e., convergence to the
global solution, or local convergence are available for most of these algorithms (Hong
& Nelson 2009) (note that these definitions differ from mathematical programming
where global convergence properties ensure convergence to a local optimum regardless

of the starting point).
Nested partition methods (Shi & Olafsson 2007) attempt to adaptively sample

from the feasible region. The feasible region is then partitioned, and sampling is
concentrated in regions adjudged to be the most promising by the algorithm from a
pre-determined collection of nested sets. Hong and Nelson propose the COMPASS al-
gorithm (Hong & Nelson 2006) which uses a unique neighborhood structure, defined
as the most promising region that is fully adaptive rather than pre-determined; a
most promising ‘index’ is defined that classifies each candidate solution based on a
nearest neighbor metric. More recently, the Adaptive Hyberbox Algorithm (Xu et al.
2013) claims to have superior performance on high-dimensional problems (problems
with more than ten or fifteen variables); and the R-SPLINE algorithm (Wang et al.
2012), which alternates between a continuous search on a continuous piecewise-linear

interpolation and a discrete neighborhood search, compares favorably as well.

A review of random search methods is presented in Andradéttir (2006); Olafs-
son (2006). Recent progress, outlines of basic algorithms, and pointers to specific
references for some of these methods are presented in Bianchi et al. (2009), Hong &
Nelson (2009), and Nelson (2010).

Direct search methods such as pattern search and Nelder-Mead simplex meth-

ods are elaborated on in Section 2.3.5.

24

2.3 ALGORITHMS

2.3.2 Response surface methodology

Response surface methodology (RSM) is typically useful in the context of contin-
uous optimization problems and focuses on learning input-output relationships to
approximate the underlying simulation by a surface (also known as a metamodel
or surrogate model) for which we define a functional form. This functional form
can then be made use of by leveraging powerful derivative-based optimization tech-
niques. The literature in RSM is vast and equivalent approaches have variously
been referred to as multi-disciplinary design optimization, metamodel-based opti-
mization, and sequential parameter optimization. RSM was originally developed in
the context of experimental design for physical processes (Box & Wilson 1951), but
has since been applied to computer experiments. Metamodel-based optimization
is a currently popular technique for addressing simulation optimization problems
(Barton & Meckesheimer 2006; Kleijnen 2008).

Algorithm 2.2 Basic RSM procedure

Require: Initial region of approximation &', choice of regression surface r

1: while not converged or under simulation budget do

2 Perform a design of experiments in relevant region, using k data points

3: t; < simulate(z;), i={1,...,k} {Evaluate noisy function f(z;,w)}

4 N = argminy S (¢ — (w5, \))? {Fit regression surface r through points
using squared loss function}

5: * + {argmin, r(z, *) : z € X'} {Optimize surface}

6: Update set of available data points and region of approximation

7: end while

Different response surface algorithms differ in the choice between regression and
interpolation; the nature of the functional form used for approximation (polynomials,
splines, Kriging, radial basis functions, neural networks); the choice of how many

and where new samples must be taken; and how they update the response surface.

RSM approaches can either (1) build surrogate models that are effective in local
regions, and sequentially use these models to guide the search, or; (2) build surrogate
models for the entire parameter space from space-filling designs, and then use them
to choose samples in areas of interest, i.e., where the likelihood of finding better
solutions is good according to a specified metric. A generic framework for RSM is

presented in Algorithm 2.2.

25

2.3 ALGORITHMS

Classical sequential RSM Originally, RSM consisted of a Phase I, where first order
models were built using samples from a design of experiments. A steepest descent
rule was used to move in a certain direction, and this would continue iteratively until
the estimated gradient would be close to zero. Then, a Phase II procedure that built
a more detailed quadratic model would be used for verifying the optimality of the
experimental design. A thorough introduction to response surface methodology is
available in Myers et al. (2009). Recent work in the field includes automating RSM
(Neddermeijer et al. 2000; Nicolai & Dekker 2009) and the capability to handle
stochastic constraints (Angiin et al. 2009).

Bayesian global optimization These methods seek to build a global response sur-
face, commonly using techniques such as Kriging/Gaussian process regression (Sacks
et al. 1989; Rasmussen & Williams 2006). Subsequent samples chosen based on some
sort of improvement metric may balance exploitation and exploration. The seminal
paper by Jones et al. (1998) which introduced the EGO algorithm for simulations
with deterministic output, uses Kriging to interpolate between function values, and
chooses future samples based on an expected improvement metric (Mockus et al.
1978). Examples of analogs to this for simulation optimization are provided in
Huang et al. (2006); Kleijnen et al. (2012). The use of Kriging for simulation meta-
modeling is explored in van Beers & Kleijnen (2004); Kleijnen & van Beers (2005);
Kleijnen (2009). Other criteria that have been used to choose samples are most
probable improvement (Mockus 1989), knowledge gradient for continuous parame-

ters (Scott et al. 2011), and maximum information gain (Srinivas et al. 2012).

Trust region methods Trust region methods (Conn et al. 2000) can be used to
implement sequential RSM. Trust regions provide a means of controlling the region
of approximation, providing update criteria for surrogate models, and are useful in
analyzing convergence properties. Once a metamodel or response surface, g, is built
around a trust region center x;, trust region algorithms involve the solution of the
trust-region subproblem (ming g(z; + s) : s € B(x;,A)), where B is a ball defined
by the center-radius pair (z;, A). There are well-defined criteria to update the trust
region center and radius (Conn et al. 2000) that will define the subsequent region

of approximation.

26

2.3 ALGORITHMS

The use of trust regions in simulation optimization is relatively recent, and has
been investigated to some extent (Deng & Ferris 2006; Chang et al. 2013). Trust-
region algorithms have been used, for example, to optimize simulations of urban
traffic networks (Osorio & Bierlaire 2010).

2.3.3 Gradient-based methods

Stochastic approximation methods or gradient-based approaches are those that at-
tempt to descend using estimated gradient information. Stochastic approximation
techniques are one of the oldest methods for simulation optimization. Robbins &
Monro (1951) and Kiefer & Wolfowitz (1952) were the first to develop stochastic
approximation schemes in the early 1950s. These procedures initially were meant to
be used under very restrictive conditions, but much progress has been made since
then.

These methods can be thought of being analogous to steepest descent methods
in derivative-based optimization. One may obtain direct gradients or may estimate
gradients using some finite difference scheme. Direct gradients may be calculated by
a number of methods: (1) Perturbation Analysis (specifically, Infinitesimal Pertur-
bation Analysis) (PA or IPA), (2) Likelihood Ratio/Score Function (LR/SF), and
(3) Frequency Domain Analysis (FDA). Detailed books on these methods are avail-
able in the literature (Ho & Cao 1991; Glasserman 1991; Rubinstein & Shapiro 1993;
Pflug 1996; Fu & Hu 1997) and more high-level descriptions are available in papers
(Tekin & Sabuncuoglu 2004; Fu 2002). Most of these direct methods, however, are
either applicable to specific kinds of problems, need some information about under-
lying distributions, or are difficult to apply. Fu (2002) outlines which methods are
applicable in which situations, and Tekin & Sabuncuoglu (2004) discuss a number
of applications that have used these methods.

Stochastic approximation schemes attempt to estimate a gradient by means of
finite differences. Typically, a forward difference estimate would involve sampling
at least n + 1 distinct points, but superior performance has been observed by si-
multaneous perturbation estimates that require samples at just two points (Spall
2003a), a method referred to as Simultaneous Perturbation Stochastic Approxima-

tion (SPSA). The advantage gained in SPSA is that the samples required are now

27

2.3 ALGORITHMS

independent of the problem size, and, interestingly, this has been shown to have the
same asymptotic convergence rate as the naive method that requires n + 1 points

(Spall 1992). A typical gradient-based scheme is outlined in Algorithm 2.3.

Algorithm 2.3 Basic gradient-based procedure

Require: Specify initial point, xg. Define initial parameters such as step size («),
distances between points for performing finite difference, etc.
1: 140
2: while not converged or under simulation budget do
: Perform required simulations, ¢' < simulate(z;), with j; replications to
estimate gradient, J, using either IPA, LR/SF, FDA or finite differences
4: Tipl < Ty — Oéj
11+ 1
6: end while

Recent extensions of the SPSA method include introducing a global search com-
ponent to the algorithm by injecting Monte Carlo noise during the update step
(Maryak & Chin 2008), and using it to solve combined discrete/continuous optimiza-
tion problems (Wang & Spall 2011). Recent work also addresses improving Jacobian
as well as Hessian estimates in the context of the SPSA algorithm (Spall 2009). A re-
cent review of stochastic approximation methods is available in Spall (2012). Much
of the progress in stochastic approximation has been cataloged in the proceedings of
the Winter Simulation Conference over the years (http://informs-sim.org/). A
recent review of stochastic approximation methods is available in Spall (2012), and
an excellent tutorial and review of results in stochastic approximation is presented
in Pasupathy & Kim (2011).

2.3.4 Sample path optimization

Sample path optimization involves working with an estimate of the underlying un-
known function, as opposed to the function itself. The estimate is usually a con-
sistent estimator such as the sample mean of independent function evaluations at
a point, or replications. For instance, one may work with F,, = % Pz y,wi),
instead of the underlying function E[f(z,y,w)] itself. It should be noted that the
functional form of F;, is still unknown, it is just that Fj, can be observed or evalu-
ated at a point in the search space visited by an algorithm iteration. The alternative

name of sample average approximation reflects this use of an estimator.

28

2.3 ALGORITHMS

As the algorithm now has to work with an estimator, a deterministic realiza-
tion of the underlying stochastic function, sophisticated techniques from traditional
mathematical programming can now be leveraged. Sample path methods can be
viewed as the use of deterministic optimization techniques within a well-defined
stochastic setting. Yet another name for them is stochastic counterpart. Some
of the first papers using sample path methods are Healy & Schruben (1991) and
Shapiro (1991). Several papers (Rubinstein & Shapiro 1993; Chen & Schmeiser
1994; Giirkan et al. 1994; Shapiro 1996) discuss convergence results and algorithms

in this context.

2.3.5 Direct search methods

Direct search can be defined as the sequential examination of trial solutions gen-
erated by a certain strategy (Hooke & Jeeves 1961). As opposed to stochastic
approximation, direct search methods rely on direct comparison of function values
without attempting to approximate derivatives. Direct search methods typically

rely on some sort of ranking of quality of points, rather than on function values.

Most direct search algorithms developed for simulation optimization are exten-
sions of ideas for derivative-free optimization. A comprehensive review of classical
and modern methods is provided in Kolda et al. (2003). A formal theory of direct
search methods for stochastic optimization is developed in Trosset (2000). Direct
search methods can be tailored for both discrete and continuous optimization set-
tings. Pattern search and Nelder-Mead simplex procedures are the most popular
direct search methods. There is some classical as well as relatively recent work done
on investigating both pattern search methods (Trosset 2000; Anderson & Ferris 2001;
Lucidi & Sciandrone 2002) and Nelder-Mead simplex algorithms (Nelder & Mead
1965; Barton & Ivey, Jr. 1996; Humphrey & Wilson 2000; Chang 2012) and their

convergence in the context of simulation optimization.

These methods remain attractive as they are relatively easy to describe and
implement, and are not affected if a gradient does not exist everywhere, as they do
not rely on gradient information. Since conventional procedures can be affected by
noise, effective sampling schemes to control the noise are required. A basic Nelder-

Mead procedure is outlined in Algorithm 2.4.

29

2.3 ALGORITHMS

Algorithm 2.4 Basic Nelder-Mead simplex procedure for SO

Require: A set of n — 1 points in the parameter space to form the initial simplex
1: while not satisfied prespecified convergence criterion or under simulation budget
do
2: Generate a new candidate solution, x;, through simplex centroid reflections,
contractions or other means
3t « simulate(x;), i={i—n+1,...,i},5 ={1,...,N;} {Evaluate
noisy function f(z,w) N; times, where N; is determined by some sampling

scheme}
i
4: Calculate]J\}Z —, or some similar metric to determine which point (i.e., with
the highest metric value) should be eliminated

5. end while

2.3.6 Random search methods

2.3.6.1 Genetic algorithms

Genetic algorithms use concepts of mutation and selection from theory of evolution
(Reeves 1997; Whitley 1994). In general, The genetic algorithm works by creating
a population of strings and each of these strings are called chromosomes. Each of
these chromosome strings is basically a vector of point in the search space. New
chromosomes are created by using selection, mutation and crossover functions. The
selection process is guided by evaluating the fitness (or objective function) of each
chromosome and selecting the chromosomes according to their fitness values (using
methods such as mapping onto Roulette Wheel). Additional chromosomes are then
generated using crossover and mutation functions. The cross over and mutation
functions ensures that a diversity of solutions is maintained. Genetic algorithms
are popular as they are easy to implement and are used in several commercial
simulation optimization software packages (Table 2.4). The GECccoO (Genetic and
Evolutionary Computation Conference) catalogs progress in genetic algorithms and

implementations.

2.3.6.2 Simulated annealing

Simulated Annealing uses a probabilistic method that is derived from the annealing
process in which the material is slowly cooled so that its structure is frozen and

it reaches a minimum energy state (Kirkpatrick et al. 1983; Bertsimas & Tsitsiklis

30

2.3 ALGORITHMS

1993). Starting with a current point ¢ in a state j, a neighborhood point i’ of the
point ¢ is generated. The algorithm moves from point 7 to i’ using a probabilistic
criteria that is dependent on the ‘temperature’ in state j. This temperature is
analogous to that in physical annealing, and serves here as a control parameter. If
the solution at 7’ is better than the existing solution, then this new point is accepted.
If the new solution is worse than existing solution, then the probability of accepting
the point is defined as exp(—(f(¢') — f(4))/T(j)), where f(.) is the value of objective
function at a given point, and T'(j) is temperature at the state j. After a certain
number of neighborhood points are evaluated, the temperature is decreased and new
state is j + 1 is created. Due to the exponential form, the probability of acceptance
of a neighborhood point is higher at high temperature, and is lower as temperature
is reduced. In this way, the algorithm searches for a large number of neighborhood
points in the beginning, but a lower number of points as temperature is reduced.
Implementation of simulated annealing procedures require choosing parameters
such as the initial and final temperatures, the rate of cooling, and number of func-
tion evaluations at each temperature. A variety of cooling ‘schedules’ have been
suggested in Collins et al. (1988) and Hajek (1988). Though simulated annealing
was originally meant for optimizing deterministic functions, the framework has been
extended to the case of stochastic simulations (Alkhamis et al. 1999). The ease of
implementing a simulated annealing procedure is high and it remains a popular

technique used by several commercial simulation optimization packages.

2.3.6.3 Tabu search

Tabu search (Glover 1990) uses special memory structures (short-term and long-
term) during the search process that allow the method to go beyond local optimality
to explore promising regions of the search space. The basic form of tabu search
consists of a modified neighborhood search procedure that employs adaptive memory
to keep track of relevant solution history, together with strategies for exploiting this
memory (Gendreau & Potvin 2010). More advanced forms of tabu search and its

applications are described in Glover & Laguna (1997).

2.3.6.4 Scatter search

Scatter search and its generalized form, path relinking, were originally introduced by

Glover & Laguna (2000). Scatter search differs from other evolutionary approaches

31

2.3 ALGORITHMS

(such as Genetic Algorithms (GA)) by using strategic designs and search path con-
struction from a population of solutions as compared to randomization (by crossover
and mutation in GA). Similar to Tabu search, Scatter Search also utilize adaptive
memory in storing best solutions (Glover & Laguna 2000; Marti et al. 2006). Algo-

rithm 2.5 provides the scatter search algorithm.

Algorithm 2.5 Basic scatter search procedure for SO

Require: An initial set of trial points x € P, chosen to be diversified according to
a pre-specified metric
1: tj < simulate(z;), where j =1,...,|P]
2: k<0
3: Use a comparison procedure (such as ranking and selection) to gather the best b
solutions (based on objective value or diversity) from the current set of solutions
P, called the reference set, Ry

4: R 1 =0

5: while under simulation budget and Ry # Ri_1 do

6: k+k+1

7 Choose S; C R, where ¢ = 1,...,r {Use a subset generation procedure to

select r subsets of set R, to be used as a basis for generating new solution points}

8: for i =1 tor do

9 Combine the points in S;, to form new solution points, x;, where j €
J =|P|+1,...,|P|+ J, using weighted linear combinations, for example

10: tj < simulate(x;), j € J {sample the objective function at new trial
solutions}

11: Update sets Ry, P

12: end for

13: end while

2.3.7 Model-based methods

Model-based simulation optimization methods attempt to build a probability distri-

bution over the space of solutions and use it to guide the search process.

2.3.7.1 Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) (Larranaga & Lozano 2002) are model-
based methods that belong to the evolutionary computation field. However, gener-
ation of new candidate solutions is done by sampling from the inferred probability

distribution over the space of solutions, rather than, say, a genetic operator such as

32

2.3 ALGORITHMS

crossover or mutation. A comprehensive review of estimation of distribution algo-
rithms is presented in Fu et al. (1996). EDAs usually consider interactions between

the problem variables and exploit them through different probability models.

Cross-entropy methods and Model Reference Adaptive Search (MRAS) are dis-

cussed next and can be seen as specific instances of EDAs.

Cross-Entropy Methods Cross-entropy methods first sample randomly from a cho-
sen probability distribution over the space of decision variables. For each sample,
which is a vector defining a point in decision space, a corresponding function eval-
uation is obtained. Based on the function values observed, a pre-defined percentile
of the best samples are picked. A new distribution is built around this ‘elite set’
of points via maximum likelihood estimation or some other fitting method, and the
process is repeated. One possible method that implements cross-entropy is formally

described in Algorithm 2.6.

Algorithm 2.6 Pseudocode for a simple cross-entropy implementation

Require: 6, an initial set of parameters for a pre-chosen distribution p(z;6) over
the set of decision variables; k, a number of simulations to be performed; e, the
number of elite samples representing the top § percentile of the & samples

1: while not converged or under simulation budget do

2 fori=1—kdo

3 sample x; from p(x;0)

4 t; < simulate(x;)

5: end for

6 E <«

7 fori=1—edo

8 Ej < argmax;gp t;

9: end for

10: p(x;0) « fit(zg)

11: end while

The method is guaranteed (probabilistically) to converge to a local optimum, but
it also incorporates an exploration step as random samples are obtained at each step.
However, the intuition behind the selection of subsequent samples can be shown to
be analogous to minimizing the Kullback-Leibler divergence (KL-divergence) be-
tween the optimal importance sampling distribution and the distribution used in

the current iterate (Rubinstein & Kroese 2004).

33

2.3 ALGORITHMS

There exist variants of the cross-entropy method to address both continuous
(Kroese et al. 2006) and discrete optimization (Rubinstein 1999) problems. A pos-
sible modification is to use mixtures of distributions from current and previous
iterations, with the current distribution weighted higher. This can be done by lin-
early interpolating the mean covariance in the case of Gaussian distributions. This
also helps in avoiding singular covariance matrices. Cross-entropy can also deal
with noisy function evaluations, with irrelevant decision variables, and constraints
(Kroese et al. 2006). If decision variables are correlated, the covariance of the distri-

bution will reflect this.

The immediately apparent merits of cross-entropy methods are that they are
easy to implement, require few algorithmic parameters, are based on fundamental
principles such as KL-divergence and maximum likelihood, and give consistently
accurate results (Kroese et al. 2006). A potential drawback is that cross-entropy
may require a significant number of new samples at every iteration. It is not clear
as to how this would affect performance if samples were expensive to obtain. The
cross-entropy method has analogs in simulated annealing, genetic algorithms, and
ant colony optimization, but differs from each of these in important ways (de Boer
et al. 2005).

More detailed information on the use of cross-entropy methods for optimization
can be found in de Boer et al. (2005), a tutorial on cross-entropy and in Rubinstein
& Kroese (2004), a monograph. The cross-entropy webpage provides up-to-date
information on progress in the field (http://iew3.technion.ac.il/CE/).

Model reference adaptive search (MRAS) The MRAS method (Hu et al. 2005;
2007) is closely related to the cross-entropy method. It also works by minimizing
the Kullback-Leibler divergence to update the parameters of the inferred probability
distribution. However, the parameter update step involves the use of a sequence of
implicit probability distributions. In other words, while the cross-entropy method
uses the optimal importance sampling distribution for parameter updates, MRAS
minimizes the KL-divergence with respect to the distribution in the current iteration,

called the reference model.

Covariance Matriz Adaptation—FEvolution Strategy (CMA-ES) In the CMA-ES

algorithm (Hansen 2006), new samples are sampled from a multivariate normal

34

2.3 ALGORITHMS

distribution, and inter-variable dependencies are encoded in the covariance matrix.
The CMA-ES method provides a way to update the covariance matrix. Updating
the covariance matrix is analogous to learning an approximate inverse Hessian, as is
used in Quasi-Newton methods in mathematical programming. The update of the
mean and covariance is done by maximizing the likelihood of previously successful
candidate solutions and search steps, respectively. This is in contrast to other EDAs
and the cross-entropy method, where the covariance is updated by maximizing the
likelihood of the successful points. Other sophistications such as step-size control,
and weighting of candidate solutions are part of modern implementations (Hansen
2011).

2.3.7.2 Ant colony optimization

Ant colony optimization methods (Dorigo & Stiitzle 2004; Dorigo & Blum 2005)
are heuristic methods that have been used for combinatorial optimization problems.
Conceptually, they mimic the behavior of ants to find shortest paths between their
colony and food sources. Ants deposit pheromones as they walk; and are more
likely to choose paths with higher concentration of pheromones. This phenomenon
is incorporated in a pheromone update rule, which increases the pheromone content
in components of high-quality solutions, and causes evaporation of pheromones in
less favorable regions. Probability distributions are used to make the transition
between each iteration. These methods differ from EDAs in that they use an iterative
construction of solutions.

This and other algorithms that incorporate self-organization in biological sys-

tems are said to use the concept of ‘swarm intelligence’.

2.3.8 Lipschitzian optimization

Lipschitzian optimization is a class of space-partitioning algorithms for performing
global optimization, where the Lipschitz constant is pre-specified. This enables the
construction of global search algorithms with convergence guarantees. The caveat
of having prior knowledge of the Lipschitz constant is overcome by the DIRECT

(DIviding RECTangles) algorithm (Jones et al. 1993) for deterministic continuous

35

2.4 SOFTWARE

optimization problems. An adaptation of this for noisy problems is provided in Deng
& Ferris (2007).

2.4 SOFTWARE

2.4.1 Simulation optimization in commercial simulation software

Many discrete-event simulation packages incorporate some methodology for perform-
ing optimization. A comprehensive listing of simulation software, the corresponding
vendors, and the optimization packages and techniques they use can be found in
Table 2.4. More details on the specific optimization routines can be found in Law &
Kelton (2000). OR/MS-Today, the online magazine of INFORMS, conducts a biennial
survey of simulation software packages, the latest of which is available at OR/MS
today 2013 survey (2013). The survey lists 43 simulation software packages, and 31
of these have some sort of optimization routine; fewer still have black-box optimizers

that interact with the simulation.

2.4.2 Academic implementations of simulation optimization

Table 4.1 contains a small subset of academic implementations of SO algorithms,
and classifies them by type. Some of these are available for download from the web,
some have code with suggested parameters in corresponding papers themselves, and

others are available upon request from the authors.

2.5 COMPARISON OF ALGORITHMS

As far as comparisons between algorithms are concerned, the literature does not
yet provide a comprehensive survey of the performance of different implementations
and approaches on large test beds. In this regard, simulation optimization lags be-
hind other optimization fields such as linear, integer, and nonlinear programming,
global optimization and even derivative-free optimization, where the first compre-
hensive comparison appeared in 2013 (Rios & Sahinidis 2013). A study of prior

comparisons in simulation optimization is provided by (Tekin & Sabuncuoglu 2004),

36

2.5 COMPARISON OF ALGORITHMS

Table 2.4: Simulation optimization packages in commercial simulation software

Optimization Vendor Simulation Optimization
package software sup- methodology
ported
AutoStat Applied Mate- AutoMod Evolutionary
rials, Inc. strategy
Evolutionary Imagine That, ExtendSim Evolutionary
Optimizer Inc. strategy
OptQuest OptTek Sys- FlexSim, @QRISK, Scatter search,
tems, Inc. Simul8, Simio, tabu search, neural
Arena, SIMPRO- networks, integer
CESS, Crystal programming
Ball, AnyLogic,
Enterprise
Dynamics, Mod-
elRisk
SimRunner ProModel ProModel, Med- Genetic algorithms
Corp. Model, Service- and evolutionary
Model strategies
RISKOptimizer Palisade Corp. @QRISK Genetic algorithm
WITNESS Opti- Lanner Group, WITNESS Simulated anneal-
mizer Inc. ing, tabu search,
hill climbing
GoldSim GoldSim Tech- GoldSim Box’s complex
Optimizer nology Group method
Plant Siemens AG Siemens PLM Genetic algorithm
Simulation software
Optimizer
ChaStrobeGA N/A Stroboscope Genetic algorithm
Global The Math- SimEvents (Mat- Genetic algorithms,
Optimization Works lab) simulated anneal-
toolbox ing,

pattern search

37

2.5 COMPARISON OF ALGORITHMS

but these comparisons are fairly dated, are inconclusive about which algorithms
perform better in different situations, and compare only a small subset of available
algorithms. One difficulty lies in the inherent difficulty of comparing solutions be-
tween algorithms over true black-box simulations, as one does not usually know the
true optimal point and can only compare between noisy estimates observed by the
solvers. Less impeding difficulties, but difficulties nonetheless, include the need to
interface algorithms to a common wrapper, the objective comparison with solvers
that incorporate random elements as their results may not be reproducible, and lack

of standard test simulations for purposes of benchmarking.

The benchmarking of algorithms in mathematical programming is usually done
by performance profiles (Dolan & Moré 2002), where the graphs show the fraction
of problems solved after a certain time. For derivative-free algorithms, data profiles
are commonly used (Moré & Wild 2009), where the fraction of problems solved
after a certain number of iterations (function evaluations) or ‘simplex gradients’ is
shown. The definition of when a problem is ‘solved’ may vary—when the true global
optimum is known, the solutions found within a certain tolerance of this optimal
value may be called solutions, but when this optimum is not known, the solvers that
find the best solution (within a tolerance) for a problem, with respect to the other
solvers being compared, may be said to have solved the problem. The latter metric
may also be used when function evaluations are expensive, and no solver is able to

reach within this tolerance given the limited simulation budget.

In both of these cases, the output of the simulations are deterministic, and so
it is clear as to which algorithms have performed better than others on a particular
problem. In simulation optimization, however, usually one does not know the true
solution for the black box system, nor does one see deterministic output. All that
one possesses are mean values and sample variances obtained from sample paths
at different points. There does not exist a standard method to compare simulation
optimization algorithms on large test beds. Many papers perform several macrorepli-
cations and report the macroreplicate average of the best sample means (along with
the associated sample variance) at the end of the simulation budget. The issue with
this is that the performance of the algorithms with different simulation budgets
is not seen, as in the case of performance or data profiles. Other papers report
the average number of evaluations taken to find a sample mean that is within the

global tolerance for each problem. Here, results are listed for each problem and one

38

2.5 COMPARISON OF ALGORITHMS

does not get an idea of overall performance. In addition, the difference in sample
variance estimates is not highlighted. As simulation optimization develops, there is
also a need for methods of comparison of algorithms on test beds with statistically

significant number of problems.

With regard to standardized simulation testbeds, to our knowledge, the only
testbed that provides practical simulations for testing simulation optimization algo-
rithms is available at www.simopt.org (Pasupathy & Henderson 2011). At the point
of writing this paper, just 20 continuous optimization problems were available from
this repository. Most testing and comparisons happen with classical test problems
in nonlinear optimization (many of which have been compiled in Rios & Sahinidis
(2013) and available at http://archimedes.cheme.cmu.edu/?q=dfocomp), to which
stochastic noise has been added. There is a need for more such repositories, not
only for testing of algorithms over statistically significant sizes of problem sets, but
for comparison between different classes of algorithms. The need for comparison is
evident, given the sheer number of available approaches to solving simulation opti-
mization problems, and the lack of clarity and lack of consensus on which types of

algorithms are suitable in which contexts.

As observed by several papers (Fu et al. 2000; Tekin & Sabuncuoglu 2004; Hong
& Nelson 2009), there continues to exist a significant gap between research and
practice in terms of algorithmic approaches. Optimizers bundled with simulation
software, as observed in Section 2.4, tend to make use of algorithms which seem
to work well but do not come with provable statistical properties or guarantees of
local or global convergence. Academic papers, on the other hand, emphasize meth-
ods that are more sophisticated and prove convergence properties. One reason that
may contribute to this is that very few simulation optimization algorithms arising
from the research community are easily accessible. We wholeheartedly encourage
researchers to post their executable files, if not their source code. This could not
only encourage practitioners to use these techniques in practice, but allow for com-
parisons between methods and the development of standardized interfaces between

simulations and simulation optimization software.

39

2.6 CONCLUSIONS

2.6 CONCLUSIONS

The field of simulation optimization has progressed significantly in the last decade,
with several new algorithms, implementations, and applications. Contributions to
the field arise from researchers and practitioners in the industrial engineering/op-
erations research, mathematical programming, statistics and machine learning, as
well as the computer science communities. The use of simulation to model complex,
dynamic, and stochastic systems has only increased with computing power and avail-
ability of a wide variety of simulation languages. This increased use is reflected in
the identification and application of simulation and simulation optimization meth-
ods to diverse fields in science, engineering, and business. There also exist strong
analogies between, and ideas that may be borrowed from recent progress in related
fields. All of these factors, along with the ever increasing number of publications
and rich literature in this area, clearly indicate the interest in the field of simulation
optimization, and we have tried to capture this in this paper.

With increased growth and interest in the field, there are also arise opportunities.
Potential directions for the field of simulation optimization are almost immediately
apparent. Apart from the ability to handle simulation outputs from any well-defined
probability distribution, the effective use of variance reduction techniques when pos-
sible, and the improvement in theory and algorithms, there is a requirement to
address (1) large-scale problems with combined discrete/continuous variables; (2)
the ability to effectively handle stochastic and deterministic constraints of various
kinds; (2) the effective utilization of parallel computing at the linear algebra level,
sample replication level, iteration level, as well as at the algorithmic level; (3) the ef-
fective handling of multiple simulation outputs; (4) the incorporation of performance
measures other than expected values, such as risk; (5) the continued consolidation
of various techniques and their potential synergy in hybrid algorithms; (6) the use
of automatic differentiation techniques in the estimation of simulation derivatives
when possible; (7) the continued emphasis on providing guarantees of convergence
to optima for local and global optimization routines in general settings; (8) the
availability and ease of comparison of the performance of available approaches on
different applications; and (9) the continued reflection of sophisticated methodology

arising from the literature in commercial simulation packages.

40

2.6 CONCLUSIONS

Table 2.5: Academic simulation optimization implementations

Algorithm Type Citation
Continuous
SPSA Stochastic Approximation Spall (2003a)
SPSA 2nd Stochastic Approximation Spall (2003a)
Order
SKO Global response surface Huang et al. (2006)
CE method Cross-entropy Kroese et al. (2006)
APS Nested partitioning Kabirian & Olafsson (2007)
SNOBFIT Multi-start local response surface ~ Huyer & Neumaier (2008)
CMA-ES Evolutionary strategy Hansen (2011)
KGCP Global response surface Scott et al. (2011)
STRONG Local response surface, trust region Chang et al. (2013)
GR Golden Region search Kabirian & Olafsson (2011)
SNM Direct search (Nelder-Mead) Chang (2012)
DiceOptim Global response surface Roustant et al. (2012)
Discrete
KG Global response surface Frazier et al. (2009)
COMPASS Neighborhood search (integer- Xu et al. (2010)
ordered problems)
R-SPLINE Neighborhood search (integer- Wang et al. (2012)

ordered problems)

Discrete and

continuous
MRAS Estimation of distribution Hu et al. (2005; 2007)
NOMADm Mesh adaptive direct search Abramson (2007)

41

THEORETICAL ANALYSIS OF TRUST REGION-BASED
SIMULATION OPTIMIZATION

3.1 INTRODUCTION
3.1.1 Problem definition

The general problem addressed by this chapter is the unconstrained minimization

of the expectation of a stochastic function, formulated as

iy B[(2, (€))] (P1)
This is also known as the Continuous Optimization via Simulation (COvS) prob-
lem, where the objective is to minimize the defined performance metric, f(x) :=
E,[F(z,w)]. Here F : R? x RP involves a set of controls as well as the realization
of random variables w.

This problem may also be described as zeroth-order stochastic smooth noncon-
vex optimization for expensive stochastic functions. This implies that (1) deriva-
tives of the objective function f are not known; (2) the F' in the objective function
is corrupted by stochastic noise; (3) no assumptions on convexity are made, but
f is assumed to be continuously differentiable; and (4) the objective function is
costly—in terms of time, money, or resources—to evaluate. The expense of evalua-
tion necessitates judicious sampling, and implies that we may not be able to afford

to determine good derivative estimates through sampling.

42

3.1 INTRODUCTION

3.1.2 Prior work and contributions of our work

We will focus on algorithms based on trust regions, as our framework also relies on
trust region concepts. The basic idea is to use a regression and/or interpolation
surface as a surrogate model and control its region and quality of approximation
using trust region iterates. The development that follows this section is most closely
related to the work by papers in the DFO area such as those by Powell (2002); Wild
et al. (2008), and stochastic extensions to this by Deng & Ferris (2006; 2009), Chang
et al. (2007; 2013), and Larson (2012); Larson & Billups (2014).

Deng & Ferris (2006) use a quadratic interpolation model over averaged func-
tion values through replications at points. This work is inspired by the UOBYQA
algorithm (Powell 2002). The algorithm makes the decision of where to dedicate
sampling effort based on which coefficients in the model affect the variability the
most, and consequently which sample site is responsible for this.

The work of Deng & Ferris (2009) is also based on the UOBYQA algorithm, and in-
tegrates a Bayesian variable-number sample-path scheme. This builds on traditional
sample-path methods which deal with fixed sample-paths, by reducing simulation
effort in earlier iterations while still guaranteeing convergence. In the sample-path
method, also known as sample path optimization, a fixed set of sample paths is used
for sampling in the decision space (Healy & Schruben 1991; Shapiro 1991). As a
result, for problems where the distribution of sample paths is allowed to vary across
the variable space, this method may not be applicable. The analysis also assumes
that simulation outputs follow a normal distribution. The sampling technique used
to ensure sufficient decrease with high probability is based on a frequentist criterion
by Monte-Carlo sampling from the estimated posterior distribution of the gradient.
We do not make use of sample paths or the assumption of normality, and provide a
different sampling scheme.

The above methods both build quadratic models within the trust regions. Unique
quadratic models require a number of function evaluations that are quadratic in the
dimension of the problem, namely (‘HI)QM.

The works by Chang et al. (2007; 2013) combine ideas from traditional response
surface methodology and from trust region methods. The idea is to sample with
replication at points that are recommended by an experimental design and to use this

to fit a linear or quadratic model, and add a hypothesis test step to the trust region

43

3.1 INTRODUCTION

update process. The above methods require that linear and quadratic polynomials
are built around specific experimental design points. Convergence guarantees are
provided for the case when reliable gradient estimates are available. The algorithm
is designed for use when function evaluations are cheap.

Further, the work of Chang et al. (2007) and Chang et al. (2013) rely on exper-
imental design points for interpolation within the trust region, and this approach
does not make effective use of previously sampled points that may lie within the trust
region but are not part of the experimental design. This adds to the computational
burden of the method, especially when samples are expensive to obtain.

Larson & Billups (2014) provide a method that converges almost surely to a
stationary point for Problem P1, and prove this without having to perform sample
replications or being limited by fixed experimental designs. Though the possibility
of convergence without resorting to sample replications is appealing, this also means
that a post-optimization clean-up phase needs to be performed in order to determine
the incumbent or best found solution, especially in cases where the computational
budget is exhausted. The analysis provided is limited to the case when the surrogate
models used are first-order polynomials. In addition, as acknowledged by the paper,
convergence has been shown for the particular case of uniform additive Gaussian

noise, and the use of previously sampled points is limited.

The work we present makes use of Gaussian process (GP) regression and in-
terpolation models within an iterative trust-region framework. The use of a GP
framework allows us to reduce the number of sample points that we require to build
our models uniquely. We require a number of sample points that are linear in the
dimension of the problem (as in Powell (2009); Wild et al. (2008)).

The method we propose makes use of replications to (1) ensure descent with
high probability through hypothesis tests; to (2) improve the regression models
by pinning down the intrinsic variance parameter (Section 4.3.1); and to (3) to
build regression models satisfy the fully linear property (Section 3.2.1) with high
probability. The choice of using replication allows the identification of an incumbent
solution when the algorithm is terminated early. In this way, the use of replications
allows us to include within the algorithmic procedure the validation of a solution—
a common practice in discrete-event simulation. In addition, parallelization can

facilitate replication through multiple simultaneous simulations.

44

3.2 MATHEMATICAL PRELIMINARIES

In summary, the algorithmic framework we provide tackles the limitations in
existing literature by providing a global convergence guarantee to stationary points
in more general noise settings, without the availability of gradient estimates, while

making effective use of previously sampled points. The approach is described below.

We begin by providing a background to the key algorithmic elements in Sec-
tion 3.2. We discuss in detail the algorithmic structure in Section 3.3. Theory
regarding the convergence of the method is pursued in Section 3.4. Chapter 4 ex-
tends this framework to a practical implementation we call SO-LVIT (or Simulation

Optimization—Learning Via Trust regions).

3.2 MATHEMATICAL PRELIMINARIES

In this section we introduce three concepts, namely Gaussian process regression,
fully linear models, and hypothesis tests. These concepts underpin the algorithm
and all of the theory that we develop in subsequent sections.

First, we specify the class of functions that we consider in this framework.

Assumption 3.1. The underlying function f is continuously differentiable and has

a Lipschitz continuous gradient everywhere in its domain:

IVi(z) =V I{y)l
[z —yll

=

Assumption 3.2. The underlying function f is bounded from below and has a

compact domain.

The above two assumptions are standard assumptions made in the derivative-
free optimization literature and are essential for our proof of convergence to a sta-

tionary point, which we develop in the following sections.

3.2.1 Fully linear models

In order to show that derivative-free trust region-based algorithms converge, we

need to bound the deviation of the function or gradient values of the model we use

45

3.2 MATHEMATICAL PRELIMINARIES

from the true surface. Conn et al. (2009) define this deviation through so-called

fully linear models, which we restate.

Definition 3.1. Let a function f : R? — R that satisfies Assumption 3.1 be given.
A class of models M = {m : R? — R} is called fully linear if the following hold

1. There exist positive constants k¢y and key such that for any point z in the
domain of f and A € (0, Apax], there exists a model function m € M, such
that the error between the gradient of the function and the gradient of the

model satisfies
o |Vf(z+s)—Vm(z+s)| < kegA forall s e B(0,A), and
o |f(z+5s)—m(z+s)| <repA? forall s € B(0,A).

2. For this class M there exists an algorithm, called a ‘model-improvement’ algo-
rithm, that in a finite, uniformly bounded (with respect to z and A) number

of steps can

o either provide a certificate that a given model m € M is fully linear on
B(z,A), or

o find a model 7 € M that is fully linear on B(z, A).

As mentioned in Section 3.2.2, we will be working with Gaussian Process re-
gression and interpolation models. For the class of interpolating Gaussian Process
models (Kriging models), Wild & Shoemaker (2011) have established that they are
fully linear for some categories of covariance functions.

In the analysis through this chapter, we will refer to the building of a fully linear
model as the assimilation of interpolation points in the variable space with appro-
priate geometry, such that corresponding interpolation models would be fully linear
if there were no error between model values and function values at the interpolation

points.

3.2.2 Gaussian process regression

For the choice of a surrogate model, we look to those other than the quadratic
models that have traditionally been used in trust-region methods.
Gaussian Process (GP) regression models provide a way of approximating a

function from a set of multivariate data. There are many interpretations of GP

46

3.2 MATHEMATICAL PRELIMINARIES

regression models. The basic idea is to treat the regressed function as a very long
vector, and then perform statistical inference on the distribution over this vector
conditioned on the observations at the points corresponding to the available data.
The inference is done in a Bayesian manner, by assuming a prior distribution over
functions—this is necessary in practice, otherwise the models would allow arbitrary
variation in the function—and then performing kernelized linear regression (Bishop
2006; Rasmussen & Williams 2006).

GP regression starts by assuming that observations are made from the underly-
ing function with additive Gaussian noise with a constant, but unknown variance,
w. This induces a joint Gaussian distribution over the observations, F', conditioned
on the true values, f, assuming that the observations are independent. The prior on
the distribution of the f vector is given as Gaussian with zero mean, and a chosen
covariance function that embeds some notion of smoothness on the model. The co-
variance function ® involves a distance measure that increases correlation between
points that are closer to each other in the input space.

From the two distributions of the prior, p(f) and the conditional distribution
p(F|f), it is straightforward to derive the marginal distribution p(F), which has
a covariance function given by C, where C(z;,z;) = ¢(xi, x;) + wl;j, where Z;;
is 1 if ¢ = j and 0 otherwise. What we are interested is the mean when this
marginal distribution is conditioned on a new observation, Fiy11. The mean gives

us a prediction of the model value at this new point, and is given by

m(zy+1) = ¢TOF'F, (3.1)

where N is the number of points included in the regression/interpolation. This
can be interpreted either as a linear combination of observations F', or a linear

combination of the basis functions ¢, which may be written as
N
m(rni1) = Y vid(Tni1, 7)), (3.2)
i=1

where v; is the ¢th component of C’;,lﬁ Here, ¢ may take a number of forms, one
of which could be ¢(zn11,7;) = exp(—||zn11 — z4][?/6?), known as the isotropic
Gaussian covariance function. If ¢ involve this sort of distance metric, the model

can be seen as an expansion in radial basis functions. The primary task in GP

47

3.2 MATHEMATICAL PRELIMINARIES

regression is to choose the model ¢ and to estimate the coefficients § and w. Here,
0 and w are called hyperparameters and they may be estimated by maximizing the

log-likelihood which is formulated as
- 1 1. ~ N
Inp(F|0,w) = D) In |Cn| — §FTC’]§1F Y In(27). (3.3)

Note that w is set to zero when GPs are used for interpolation.

These GP models are attractive as they are capable of modeling multi-modality
(as the predictive model is composed of linear combinations of log-concave basis func-
tions) and need relatively few function evaluations (on the order of the dimension
of the data) to build uniquely.

The following lemma (proved in Wild & Shoemaker (2011)) will be useful to us

in the following sections.

Lemma 3.1. Assuming that the mazimum sampled function value is finite and that
the hyperparameters are appropriately bounded, an interpolating model of the form
m defined in Equation 3.2 is twice continuously differentiable in a region B = {x €
RY : ||z — x3|| < A < o0}, where xy, are the interpolation points that satisfy the

geometric condition for full linearity (Lemma 3.3), with

max Hvzmk(as)H < kg < 00.
xeB

In particular, Lemma 4.2 and Theorem 4.5 from Wild & Shoemaker (2011) show
that Lemma 3.1 holds if we (1) use one of the recommended basis functions (such as
the Gaussian RBF mentioned above); and (2) maintain the fully linear condition, by
ensuring that a metric related to the geometry of the interpolation points is bounded
(Lemma 3.3). Lemma 3.1 also implies that the gradient of the interpolating model,
Vm, is Lipschitz continuous on Byax, which is the ball containing the interpolation
points and having a radius not greater than some constant factor of Ap.x. We
denote the corresponding Lipschitz constant as 7,,. We expect that Lemma 3.1 will
hold for the regression models we use as well, although we do not explicitly prove
this.

Assumption 3.3. The sample points chosen in an iteration in Algorithm 3.1 can

be exactly interpolated by the GP regression model.

48

3.2 MATHEMATICAL PRELIMINARIES

This assumption is hardly restrictive, as GP regression models are very flexible
(Rasmussen & Williams 2006).

3.2.2.1 Trust region subproblem

Trust region subproblems involve the minimization of the surrogate model being
used—whether it is a Taylor-expansion based model as in nonlinear programming,
or an interpolation or regression model in DFO—within the trust region radius. The

related trust region subproblem in our context is

Y]
min Vi ®(Sk, Yi
sneRd ; z¢(k yz)
st [lskll < Ax (P2)

where the trust region is in the ball defined by B(z, Ax). For notational convenience,
we use the trust region center x; as a reference point. Here, s denotes the step
from the the trust region center xj, and Y is the matrix of interpolation/regression
points {y1,..., y‘y‘}, which also correspond to displacements from x;.

The trust region subproblem (TRSP), described in P2, involves the minimiza-
tion of the surrogate model within the trust region. Traditional nonlinear program-
ming algorithms make use of a quadratic model, where exact gradients and Hessians
are available. Specialized algorithms to quickly compute a solution to the TRSP
are described in Nocedal & Wright (1999) and Conn et al. (2000). Similar methods
may be used for derivative-free optimization problems that use a quadratic model
built by interpolation or regression. For general models, Conn et al. (2000) develop
a method to find a step that provides a guaranteed decrease in the model, as stated

below.

Lemma 3.2. For any kg € (0,1), there exists an s € By, — xy, that satisfies

||mG(ﬂfk)\|’Ak}’

my(zr) — mi(ze +8) > B = % Vg (x| min{
KH

for some kg > 0 and this can be done using a backtracking line search along the

direction of steepest descent.

49

3.3 ALGORITHM
3.2.3 Hypothesis tests

We use hypothesis tests to guarantee descent with high probability at each iteration.
The idea to use hypothesis tests in trust region optimization was put forth in Chang
et al. (2011). The test is set up to make statements about the difference in means at
two of the points within the trust region. The null hypothesis is that the sufficient
decrease condition is not achieved, and the alternative is that it is, and is formulated
as a one-sided two-sample test.

The null and alternative hypotheses are
Ho : fak) — f(5) < 0Bk,

Hy: f(g) — f(x}) > 5B

Depending on the knowledge of the underlying distribution, we can choose an
appropriate test. For the case where the noise is Gaussian and the variance is
unequal, it is called the Behrens-Fisher problem. For the case when the distributions
are unknown but the variances are equal, one may use a nonparametric permutation
test, for example. In these and in more general cases, there exist several tests
that one may use based on knowledge of the underlying distribution (symmetry,
normality, equal variances, and so on) (Lehmann & Romano 2005). At each iteration

k in the algorithm, we test the null hypothesis against a ag-significance level.

Assumption 3.4. The underlying distribution at any point z, has a finite expected

value and a bounded nonzero variance o, i.e., 0 < 0%(z) < oo for all € R%.

Assumption 3.5. The sample mean estimator f(z) := £ 27, F(z,w;) of f(z) for

n

any z € R? satisfies sup,cga | f(z) — f(z)] = 0 w.p.1 as n — co.

These assumptions provide regularity conditions on the underlying distribution
at any point in the domain of f, and Assumption 3.5 requires that the estimator

follows the uniform law of large numbers.

3.3 ALGORITHM

The algorithm we use makes use of trust-region methods in combination with non-

parametric statistics. The basic idea is to use a nonparametric interpolation/re-

50

3.3 ALGORITHM

gression model (Gaussian Process regression) within a trust region, and embed a
hypothesis test in the trust region update step. Algorithm 3.1 provides details.

When the trust region is relatively large, we employ a GP regression model
as we use only a few sample replications at each point. Another reason we use
GP regression is that it is possible, in the case of homoscedasticity or when the
variance does not vary too much across the decision space, to estimate the variance
through samples at different locations (Chapter 4) and embed this information in
the regression model. When the trust region is smaller, we switch to an interpolating
model where we manage the number of replications carefully. This is discussed in
more detail at the end of this section.

Once a model is built, we evaluate the gradient of the model at the incumbent
solution. If this is smaller than a pre-defined value €., then we investigate whether
this estimate is accurate, and we enter what is called the criticality step in the
literature. The purpose of this step is to maintain the trust region radius comparable
to this estimate of the gradient, while building fully linear models to retain accuracy.
This is done so that when the gradient estimate is close to zero, so is the trust region
radius—thus leading to an accurate model and therefore an accurate estimate of the
true gradient as well. Algorithm 3.3 provides the relevant implementation details.
We show in Section 3.4 that Algorithm 3.3 will eventually terminate if the incumbent
solution is not a stationary point. The aspect that differs from the traditional
criticality step is the requirement on the number of samples at the interpolation
points whenever the trust region decreases. Replication, in addition to maintaining
a fully linear model, is used to ensure the accuracy of the model.

After the criticality step, an improvement step is sought by finding a solution to
the trust region subproblem (Problem P2). An approximate solution that ensures
a certain sufficient decrease can be guaranteed (Lemma 3.2).

For the trust region updates, we use two criteria—a traditional ratio test and a
hypothesis test, to ensure decrease with high probability. The ratio test computes
the ratio of estimated decrease in function between the incumbent solution and the
step recommended from the trust region subproblem, to the decrease in model value
between the same two points. The hypothesis test sets up the null hypothesis to
be that the incumbent is better than the step being investigated. The trust region
update moves the trust region center to this point if enough evidence is collected to

reject the null hypothesis.

o1

3.3 ALGORITHM

The trust region management also involves updating the size of the trust re-
gion. We increase and decrease the trust region cautiously. In traditional nonlinear
programming, the trust region radius becomes bounded away from zero as the algo-
rithm converges to a stationary point. We do not want this to happen, as the radius
provides a dual purpose—to restrict the step of the optimization, and to provide a
region where the model is accurate. We do not decrease it too hastily because the
smaller the trust region radius gets, the harder it is to distinguish between points
due to noise. Therefore, we ensure through replications that an unfavorable p; value
results from the step size being too large, and not due to poor model accuracy.

Having said this, we would like to minimize simulation replications as much
as possible. We do not exceed the xg, x1 simulation replication budget when the
trust region radius is ‘large’, thus attributing the trust region step failures to poor
models due to the large radius, and decrease the trust region accordingly. When
trust regions are smaller, we not only want to ensure that the models are more
accurate (through replications), but also want to prevent further shrinking of the
trust region, as mentioned in the previous paragraph. To control what we consider
‘large’ or ‘small’, we use the threshold parameter A., below which we rigorously
improve the model quality both through model geometry improvements, as well
as through an increase in simulation replications according to the formula derived
in Lemma 3.5. The rules involving the trust region management are detailed in
Algorithm 3.2. Note that our algorithmic framework requires that the result of the
ratio test has to be strictly positive (79 > 0) to consider a new solution to be the
incumbent solution.

Similar to prevailing DFO algorithms, we make use of a model-improvement
step if the ratio test does not have the ideal outcome (pr > m1). This involves
certifying that the model is fully linear in the current iteration, and, if not, building
one that is. In this way, we are not required to build fully linear models at every
iteration.

The iteration count is incremented and we return to the model building step.
Section 3.4 is devoted to proving that the above scheme guarantees convergence to
a stationary point. Relevant parameters for the algorithm are listed in Table 3.1.

Using analogous terminology of Conn et al. (2009), we call a step successful
if both the ratio test and the hypothesis test are passed. Any step that results in

a decrease in trust region radius is called unsuccessful. A step that requires a

52

3.4 CONVERGENCE ANALYSIS

call to the model-improving algorithm is called model-improving, and all other

situations are deemed acceptable steps.

Table 3.1: List of initialization parameters to simulation optimization algorithm

Trust region parameters

Initial trust region size and maximum size Ao, Amax
Control of trust region performance O<nm<m<l1
Update of trust region size 0<Ad<l< N

Threshold parameters

Threshold trust region radius 0 < Ar < Anax
Threshold model gradient to enter criticality step €. >0

Trust region radius reduction factor in criticality step 7. € (0,1)
Criticality step threshold parameters w>¢>0
Model-building threshold parameters o > 1,91 € (0,vy 1]

Sampling and statistical parameters

Maximum no. of points in interpolation/regression set Tmax
Number of samples at TR center for Ag > A, X0
Number of samples at non-TR center points for Ay > A, x1

Initial a-level for hypothesis test Qg

3.4 CONVERGENCE ANALYSIS

We address the quality of general interpolation models in the presence of stochastic
noise. First, we state a geometric condition on fully linear models, one that may be
satisfied using Algorithm 4.2 through -thresholding of the chosen interpolation
points. We state Lemma 4.2 from Wild et al. (2008),

Lemma 3.3. Ifd+1 affinely independent points are found as per the 11 -thresholding
in Algorithm 4.2 and included in Yy,

dld—1)/2 _ Ay,
AYRUZ Ay’

1Y, 1] <
where 0 < i §po_1 <1.

53

3.4 CONVERGENCE ANALYSIS

Algorithm 3.1 Trust region-based simulation optimization framework

Require Initialization parameters listed in Table 3.1, and an initial point zq € R%.
Set iteration counter k < 0. Set i < 0, a counter that keeps track of the number
of consecutive steps when Ap < A..

Step 1: Locate d + 1 affinely independent points that lie within a distance Ay from
xo and perform x replications at xg, the trust region center and x; replications at
the other points. Using these points, build a GP regression model if Ag > A, and
a GP interpolation model otherwise, using the scheme described in Section 3.2.2
and denote the model my.

Step 2: (criticality step)
if || Vmyg(zr)|| < € then
if my(z) is not fully linear in By (xg, Ag) or Ag > p||[Vmy(z)| then
Assign Ay < Ay,
Call criticality step (Algorithm 3.3).
my mg), and Ay min{max{TgAinC, C||Vm§€])(:nk)H}, Ainc}-
end if
end if

Step 3: (step calculation) solve trust-region subproblem (cf. Problem (P2),
Lemma 3.2) to obtain a step s;. Evaluate the function f at zj + sx with g
replications if Ay > A, and n; replications otherwise.

Step 4: (trust region update) Compute a defined measure of fidelity

 flaw) = flae+)

 m(xg) —m(xy +)’

and update trust-region parameters using Algorithm 3.2. If the trust region
center is moved in this step, update aj according to Equation 4.1.

Step 5: (model building) Construct model my; using Algorithm 4.1.

Step 6: Iterate k «+ k + 1, and return to Step 2.

54

3.4 CONVERGENCE ANALYSIS

Algorithm 3.2 Trust region update scheme

1: if py > 1o, then

2 perform hypothesis test according to Equation 3.46 (for example)

3 if hypothesis test is passed then xy.1 < xp + s*

4 if pr > n1 then

5: if Ap <A, then Apyq + Ajpe,i <0

6: else Ak+1 — MAg

7 end if

8 else

9: if A, < A, then Ak+1 < Ajpe, i+ 0

10: else Ak+1 — Ap

11: end if

12: end if

13: else

14: Th41 < Tk

15: if A, <A, then

16: Api1 At —1+1

17: Call Algorithm 4.2 in model-improvement mode with the current

set of interpolation points Y} as argument. This will improve the
current model m if it is not fully linear in B(z, Ag)

18: else

19: if The current model m is not fully linear within B(z, Ag) then

20: Apy1 < Ag. Call Algorithm 4.2 in model-improvement mode

with current set of regression data points Y3 as argument.

21: else

22: Ak+1 — Aoy, If Ak+1 < AC, assign Ajpe < Ag.

23: end if

24: end if

25: end if

26: else if pp < 1p, then

27: Tpyl < Tk

28: Call Algorithm 4.2 in model-improvement mode to determine if model
m if fully linear, and improve it if it is not.

29: if The current model m is fully linear within B(zg, A;) then

30: Apiq < AoAg.

31: if Ay < Ac then

32: if i = 0 then

33: Aine +— Ap

34: end if

35: 1+ i+1

36: end if

37 else Ay + Ag.

38: end if

39: end if

55

3.4 CONVERGENCE ANALYSIS

Algorithm 3.3 Criticality step algorithm

1: Initialize counter j < 0. Assign ml(€0) (z) < mi(xk) and Iy < xo if i = 0 and

lg < n; if i > 0.

2: repeat

3: Increment j < j+1

4: if model mU=1) is not fully linear in B(zx, 77~ ' Ajnc) then

5: Call model-improvement algorithm to identify points for building a
fully linear model

6: Perform replications according to Lemma 3.5, i.e., until the number
of replications at the required points is I; < [l;_17, 4] +1

e Build the model m() using Algorithm 4.1 with ¢y = 1.

8: end if 4

9: Compute model gradient le(f) (zx)

10: until 777 A < p HVm,(f)(xk)H

Even though Algorithm 4.2 does not guarantee that d + 1 points satisfying this
property are returned, the overall scheme in Algorithm 3.1, through the evaluation
of model-improving points, can provide this guarantee in a finite number of steps.
Note that the bound in Lemma 3.3 is important for Lemma 3.4.

Next, we characterize the discrepancy between the model and the true function,
as well as the gradients of the model and the true underlying function. The develop-
ment follows that presented in Wild (2009), but extends it to the case of stochastic

functions.

Lemma 3.4. We can bound the error in the model as

2
s+ 5) — f(ai+)| <5 (o +9m) (GAv, Vi +1)

+ \/gAYdU.A(wk ‘|’yp) - f(xk + yp)‘
+ (VdAy, +)| f(zx) = f ()],

and the error in the gradient as

5
[Vm(ek +5) = V(@ + 5) | <507,V dBK(ym +)

dA ~
VN (a4 o)

~

+1f(wx) = f(@x)]),

+

56

3.4 CONVERGENCE ANALYSIS

where y, is any point contained in a subset of the interpolation points Yg, s €

B(zk, Ax), and Ay, is a finite constant that satisfies HYdle < Ay, /.
Proof. Let the error between the model and the true underlying function be
e™(s) :=m(xg +s) — flzg +5), (3.4)

where) is a base point (which corresponds to the incumbent solution and trust
region center in our algorithm), and s is a displacement from this base point (which
corresponds to a step from the trust region center in our algorithm). Let the error

in the gradient be
eI(s) == Vm(zg +s) — Vf(z + s). (3.5)
We perform a Taylor expansion of the model around the interpolation points,

m(zk +yp) = m(zr + s+ (yp — 5))

1 (3.6)
=m(zp+s) + / Vm(xy, + s+ t(yy, —)" (yp — 5) dt,
0
where Y = {y1,...,yr} is the set of displacements from the trust region center that
correspond to interpolation points. Similarly, we do this for the function f,
! T
flzk+yp) = flzr +5) +/0 V(zp+s+typ—s))" (yp —s)dt. (3.7)

The task is to provide bounds on the quantities e, as well as e;. We start by taking
the inner product of the error in the gradient at a point s with the displacement of

the interpolation points from s,

e?(5)" (yp — 5) = [Vm(xr + s) = Vf(zx +)] (yp —)
= Vm(zg +5) (yp —8) — Vf(zp +5) (y, — s) (3.8)
+e"(s) —e"(s),

for all y, € Y, where we have added and subtracted the term e™(s).

57

3.4 CONVERGENCE ANALYSIS

Substituting for e (s) using Equations 3.4, 3.6 and 3.7, we get for each y, € Y,
9(5) (yp — 5) =Vim(as +)7 (g —) = V(i +)7 (g —) — " (5)
1
- / V(x4 s+ t(yp —5) 7 (yp —) dt +m(zy +yp)
0

1
[t s+t = 9) (=) = o+).
(3.9)
We consolidate the terms to get
1
(5) (p = 5) = [[Vt s+t = 5)) = Vi ai+)] (o= 5)
1
- /0 [Vm(zg + 5+ t(yp —5)) — Vm(ag, +5)]7 (yp — 5) dt

+ M(l’k ‘|’yp) - f(xk +Z/p) - em(s)a

(3.10)
for all y, € Y. Now, for the trust region center, where y; = 0, this becomes
1
e9(5)" (—s) :/ [V f(zn 45— ts) — V f(an +)T (—s) dt
0
1
—/ (Vim(an + 5 — ts) — Vin(ag +)]7 (—s) dt (3.11)
0

+m(zg) — f(ox) —e™(s).

We can now subtract Equation 3.11 from Equation 3.10 to get an expression that
is purely dependent on the error in the gradient and the set of interpolation points
on the left-hand side:

() gy = [1V +5-+ tup —) = Vi en)] (o~ 5)
~ [Gt s+t~ 9) ~ Vet 5] (o - 5)
—/()I[Vf(:zk+s—ts)—Vf(xk—i—s)]T(yp—s) dt (3.12)
+ /Ol[Vm(xk +5—ts) — Vm(zg +)7 (—s)dt

+m(zy +yp) — flar +yp) —m(zy) + f(zr).

58

3.4 CONVERGENCE ANALYSIS

Now, we attempt to bound the left-hand side of Equation 3.12 by individually
bounding each term on the right-hand side. We start with the first term, where

H/ol[w(xk =) = Vo (9] (=)

) (3.13)
< IVt sty =) = TGt 5) (=)],

due to the Cauchy-Schwarz inequality. Further, due to Assumption 3.1, this is

1
< / s 1t —)|l lyp — 51| dt
1
2/0 it llyp — s dt (3.14)

1
< [vt 2] at,

where the last inequality is due to the fact that both s and y, are within the trust

region of radius Ag. Then, we can state

H/ [V f(wx+ 5+ t(yp = 5) = VS (ax+5)] (g — 5) dt”

911 (3.15)
] :2fyfA%.

L t
gzmAi/O tdt = 4y, A7 l
0

2
We can perform an identical procedure for the second, third, and fourth terms in

Equation 3.12, using the relevant Lipschitz constant v, or v; to get

[Vin(an+5) = Vo +5)]7 (o) < 0200) + Im(ew) =)

(3.16)
+ (a4 yp) — f(zr +yp)l.
Now, since our model m interpolates f,
m(ze +yp) = f(2 + yp) for all y, € Y. (3.17)
Therefore,
[Vim(zy +) =V f(ar +)] () < gAQ(w +ym) + (@) = f(zn)] (3.18)

~

+ |f(xk+yp) _f(xk: +yp)|-

59

3.4 CONVERGENCE ANALYSIS

Now, while we may interpolate at more than d + 1 points, we restrict our attention
to any d of these points barring the trust region center, and call this interpolation
submatrix as Y;. Now as Yy is square and nonsingular by construction (Lemma 3.3),

we may write,
le¢(s)]l = [y ¥d es(s)| < [|vi || v eo(s)] (3.19)

Further,

feo(s)ll < 3 [y es(s)]|. (3.20)

k

using the bound on HYd*TH from the statement of this lemma. The enforcement of
this bound is described in Lemma 3.3 and Algorithm 4.2. Now, from the equivalence
of norms, ||, < V|||,

e sval¥ie|

<Vd <2A2('7f+’7m) + [F (2 +yp) — f ok +up)l (3.21)

+ 1) = £,
for some y, € Y;. Therefore, using Equations 3.20 and 3.21,

YA F) — Pt)

5
ed(s)|| <=A VdA m
[ed ()l 5\ k(Ym +) AL (3.22)

~

+ 1 f(wr) = f(2n)])-

Now, rearranging Equation 3.11,

e™(s) :/Ol[vf(xk +s—ts) = Vf(xy+ 8)]T(—3) da
_ /Ol[Vm(:IJk +s—ts) — Vm(zy + S)]T(_S) dt (3.23)

+m(xy) — flap) +e9(s)T(s).

60

3.4 CONVERGENCE ANALYSIS

Using the bounds on the first two terms with the triangle inequality, and subse-

quently substituting for ||e9(s)]|| from Equation 3.22,

A? A2
le™(s)] S’yfT + ’YT +m(xr) — fzr)| + [[e?(s)]| A
2 -~
S%(w + vm) + [(z) — f(2n)| + gMAYd\/g(W Fym) (3.24)

+ VA, | f(zk + yp) — @k + yp)| + VAAy, | F () — f(zi)]-
In summary,
A2
[l +5) = f(wr+)| < (97 +m) (BAY, Vd + 1)

+ \/gAYd f(xk + yp) - f(xk + yp)' (3'25)
+ (VdAy, +1) [F(ar) = f(ar)] -

Algorithm 3.1 defines a threshold A., below which, every time the trust region
is forced to decrease through Algorithm 3.2, the number of samples increases. This
is required in order to ensure that the function value estimates converge to the true
value faster than the trust region shrinks. We provide a modified version of the
lemma from Chang et al. (2013), where we do not provide a bound for the gradient

estimate, as we do not make assumptions of its availability.

Lemma 3.5. If Assumption 3.4 holds, for any x; € R%, where i is the ith consecutive

iteration where the trust region radius is decreased (or maintained) below A,
P (tim | Fwi+y) — fai)| > 82) =0,
1— 00

if the sampling scheme used is such that n; 41 > (nl-)\aﬂ +1.

Proof. If z; +y € Y;, the interpolation set at iteration ¢, then by Chebyshev’s

inequality,

~ o?(x; + sup, o?(x
P(If(:ci+y)—f(:ci+y)| >A$) < (nM v) < 2“324 (), (3.26)

61

3.4 CONVERGENCE ANALYSIS

where n; is the minimum number of replications at each of the interpolation points

Y;. If we can show that

o0 2
Z w < 00, (3.27)
i— niAi

Then we will have completed the proof due to the first Borel-Cantelli lemma. We
can achieve the desired target by enforcing, say, the series ratio test to hold (Rudin

1976), namely that

-1

SUD R Z‘Q(.r)‘ SUD, R ;‘2(@ “1, (3.28)
ni+18;4 4 niA;
or that
A4
Nit1 > 214) . (329)
it1

Since the failed step update rule for the trust region radius is A;41 = AgA;, this
implies n; 11 > n;Ag 4. We can ensure this by assigning n;4; > iy 41 + 1. This

completes the proof. m

We note that this sample update requirement is marginally different from the
one proposed in Chang et al. (2013).

In the previous lemma, we have chosen to bound the error between the estimates
and the true function by A2. The reason for this will become apparent in the
following lemma, where we bound the difference between the predicted value at a

point and the observed value by a similar quantity.

Lemma 3.6. For any x; € R%, where i is as defined in Lemma 3.5,

P (llim Imi(z*) — f(z*)| > c-A?) =0,

1—00

where ¢ = W%(E)Ayd\/g—i— 1)+ 2Ayd\/a—i— 2.

Proof. Now, Lemma 3.5 can also be applied to points other than the interpolation

points, i.e., at a point z*. So, P (limiﬁoo |f(m*) — f(a*)]| > Af) =0.

62

3.4 CONVERGENCE ANALYSIS

From the triangle inequality,

~ ~

Imi(2®) = f(a)] <[mq(2®) = f(a®)[+ [f(=7) = f(")]. (3.30)
Inserting the result from Lemma 3.4,
N 2
mile®) = F@)| <5 (o7 + 3m) (5Av, Vi + 1)
VA, | Flwk + gp) — Flon+)] (3.31)
+ (VAAy, + 1)|f(2x) = f(ax)| + [f(2*) = f(2")].

We assign ¢ = L0 (5Ay,v/d + 1) + 2Ay,v/d + 2 to complete the proof. .

Lemma 3.7. For any x; € R?, where i is as in Lemma 3.5, if |V f(x;)| > 0,

Algorithm 3.1 can always find a new satisfactory solution.

Proof. We assume that |V f(z;)| = € > 0. We first consider the ratio comparison

test, where

_ my(z*) — f(z%)

: (3.32)

o~

as f(z;) = m;(z;) due to the fact that xz; is an interpolation point. Taking the

absolute value of this quantity,

[mi(a) — f ()]

[m (@) —mg(a*)|

i —1] = (3.33)

Let us assume, for contradiction, that this test fails for infinite consecutive steps,

which means P(lim; oo A; > 0) = 0, for any 6 > 0. Also,

IVf(z)ll =V f(@i) — Vmi(@i) + V()|

(3.34)
€ |V (i) — Vg (@) | + [V (i) || -
Recall, from Lemma 3.4,
5 VdAy, -~
le9 ()| <5 Ay, VdAg (ym +75) + (| Fn + yp) — f @+ yp)]
2 Ag (3.35)

o~

+ | f (r) = f(ae))-

63

3.4 CONVERGENCE ANALYSIS

This, along with Lemma 3.5, implies that
P(lim [|[Vm;(z;)| < e/2) =0. (3.36)
1—00

As P(lim; 00 A; > 0) = 0 for any 6 > 0. Therefore, for sufficiently large i,
A; < W, and therefore,

min {HVm(m)H Ai} = A (3.37)
KH

Now, from Lemma 3.6,
P <,lim imi(z*) — f(z)] > ¢- Af) =0, (3.38)
1—00

or when divided through by a constant,

() = f(a)] c- A7 _
P <hm > i Aj) = 0. (3.39)

i—voo B ||Vmy ()| A T 5 || Vimy (s

We can then replace the constants |[Vm;(z;)|| and A; on the right-hand side by €/2

and 9§ respectively, giving

P <hm mi(a*) = ()| > 465) = 0. (3.40)

1—00 % ||va<Il)” Az Kd€

We use the sufficient decrease condition to replace the denominator on the left-hand

side of the inequality to yield

(%) = f(a*)| _ 4ed
p [t I @O Ay (3.41)
i—oo [my(x;) —my(x*)| ~ Kge
or
4
’ <hm e Cd) - (3.42)
71— 00 l‘{de
Choosing § = (1%00)@67
P <,1im lpi— 1] >1— 770) =0, (3.43)
71— 00

64

3.4 CONVERGENCE ANALYSIS

or

P (llim pi < 770> =0, (3.44)
1— 00

which is a contradiction. Therefore, the ratio test will be passed with probability 1.
Next, we consider the hypothesis test. The algorithm we propose performs the

hypothesis test if the ratio test is passed, so

o~ ~

f(xi) = f(2) = no(mi(x;) —mi(x*)) > nofi. (3.45)

The proposed test statistic in the Behrens-Fisher case (normally distributed random

variables with unequal variances Lehmann & Romano (2005)) is

F@) = fla*) —ndB; S no(1 —no)Bi

o
t; = ,
' S; - S;

(3.46)

where S; is the sample standard deviation, and is computed by S? = S%(z;,n;) /n; +
S%(z*,n})/nt.

Now, assume for contradiction that the hypothesis test is failed infinitely consec-
utively often, or t; < t1_q, 4 for all 2 = 1,2,.... Then, according to the algorithm,
both n; — oo and nf — oo, thus S? — 0 w.p.1. Since ||V f(z;)|| = ¢ > 0 and the

ratio test is passed for sufficiently large i, A; is bounded away from zero, and thus

6= S (e min {020) (3.47)

is also bounded away from zero w.p.1 for sufficiently large ¢ (using Equation 3.36).
Therefore, from Equation 3.46, lim; ,t; — oo and therefore ¢; > t;_,, 4, and
therefore the hypothesis test passes, which contradicts our initial assumption. Note
that for other hypothesis tests, the corresponding test statistic will fall in the re-
jection region with high probability (if the null hypothesis is false) as sample sizes
increase, which is the case with the above scheme. The above Behrens-Fisher test

only serves as an example. n

We now show that the criticality step will terminate if the incumbent solution

is not a first-order point.

Lemma 3.8. If Vf(xzy) # 0, Algorithm 3.3 will terminate w.p.1.

65

3.4 CONVERGENCE ANALYSIS

Proof. Suppose V f(zr) =€ > 0.
Initially, either the model m(®) := my, is not fully linear in B(zk, Ag) or the
radius is above p ||Vmg(xg)||. The model is then improved using one iteration

of Algorithm 3.3 and the new model which we call mW is built and it’s gradient

computed at xg. If, now, Ajpe < p HVm(l)(xk) , then we stop the procedure. If this
is not the case, we scale the radius by 7., increment the algorithm loop counter j,
and repeat the procedure.

The only way that Algorithm 3.3 does not terminate is in the case
[V ()| < 727 A, (3.48)

for all j > 1. This implies that lim;_, HVm,(j)(:ck)H = 0. Since we ensure that the
error between gradients of the model and the true function converges (Lemmas 3.4
and 3.6) to zero as Ay — 0, and because ||V f(xy)|| =€ < HVf(xk) — Vm,(gj)(xk)H +
|vm ()

I

P <lim Hle(j)(azk)H < E) = 0. (3.49)
j—o0 2
This is a contradiction, and therefore Algorithm 3.3 will terminate w.p.1 if the

incumbent solution is not a stationary point. n

Lemma 3.9. If the number of successful iterations is finite, then

Jim (|77 ()| = 0.
Proof. After the last successful iteration, the trust region radius is never increased
(Algorithms 3.1 and 3.2). If Ay > A., then trust region radius is reduced at least
every D steps, where D is a finite number of steps required to make a model fully
linear. This will continue until A, < A..

If Ap < A, Lemma 3.7 ensures that we will always be able to find a successful
step if |V f(x)|| > 0. Since we have already passed the last successful iteration,

this implies that the incumbent solution is a stationary point, and therefore that
IV f(zx)|| = 0.

66

3.4 CONVERGENCE ANALYSIS

The following development will focus on the case when the number of successful
iterations is infinite. We proceed to prove a series of statements in order to show
convergence of the algorithm, results that typically appear in the context of trust
region-based DFO algorithms (Conn et al. 2009).

Lemma 3.10. If we enforce >} oy < 00,
k—o0

Proof. Let the set of successful iterations be denoted by S. For k € 5,

~

Fan) = Flzner) > mo(m(zw) — m(ze + si). (3.50)
For each such iteration,
P(f(an) = flan) < mo(m(ax) = mlax+ st))) < . (3.51)

Since), oy < oo holds for k € S,
P <leHSO fzr) — f(zgs1) < no(m(zg) — m(zy + Sk>)) = 0. (3.52)

due to the first Borel-Cantelli lemma which says that if for an event Ag, >, P(Ax) <
00, then the probability of Ax happening infinitely often is 0. This can be rewritten

as

P (khjgo flzk) = f(@ri1) = mo(mlzy) —m(zg + Sk))) =1 (3.53)

Now, using Lemma 3.2,

P (kILIgO Flax) = Fopgn) > (3.54)

o |52 19ma im0 ATy . (3.55)

67

3.4 CONVERGENCE ANALYSIS

Since Algorithm 3.1 ensures that | Vmy(z)| > min{e., p= Ak},
P (Jim (o) ~ flan) 2 (3.56)

. . 71A
Mo [/;d min{e., x 1A} min {mm{6 e k},Ak}]> =1 (3.57)

KH

If the right-hand side does not converge to zero, we can achieve infinite decrease.
Since we know that f is bounded from below, we cannot achieve this decrease,
implying that limges A = 0. For the iterations k ¢ S, we know from Algorithms 3.1
and 3.2 that A, < M A, , where s;, is the index of the last successful iteration before
k. Since Ag, — 0, then Ay, — 0 for k ¢ S. "

Lemma 3.11.
lim inf ||Vmy(zg)| = 0.
k—ro0

Proof. From Algorithm 3.1, Ag > min{¢ [|[Vmy(zx)|| , Ainc}- I |V (k)] > k1 >0
for all k, then Ay > 0 (from Lemma 3.7). But this is a contradiction, as we proved

in Lemma 3.10 that limy_,.o A = 0. n

Lemma 3.12. For any subsequence {k;} such that

lim ||V (zx,)| =0, (3.58)

Jj—00

it also holds that

lim HVf(ka)

Jj—00

‘:0.

Proof. From Equation 3.58,

Vmy, (:L‘k])H < €. for j sufficiently large. The criticality
step in Algorithm 3.1 ensures that the model is fully linear on B(xy,, Ax;), where
Ag, < HmGj (ka)H for j sufficiently large, and V f(xy,) # 0. From Equation 3.22,

< VdAy,

HVf(ka) — mGj (Z'kj) ‘ =T, (’ A(afk + yp) - f(xk + yp)|

~

1) — F@)) + 2 Av, Vabk(+)
(3.59)

68

3.5 CONCLUSIONS

From Lemmas 3.5 and 3.10, which apply to the right-hand side of Equation 3.59,

we get

lim va(xkj) = Vmy, ()

j—00

‘ —0. (3.60)
We also have the triangle inequality which states

|V i) | < |V ar) = Vi ()

‘ + vak] (:Bk])

‘ . (3.61)

From Lemma 3.11 and Equation 3.60, we get the desired result.]
Lemmas 3.11 and 3.12 immediately give

Theorem 3.1.

liminf V f(zy) = 0.
k—ro0

3.5 CONCLUSIONS

In this work, we have extended the theory regarding fully linear models to the case
when there is stochastic noise associated with the black-box evaluations. We handle
this noise through careful trust region management and sampling schemes. Though
we maintain full linearity regularly in terms of model point geometry, the models
become closer and closer to the deterministic definition of full linearity in terms of
the discrepancy between true function value and estimated value as the algorithm
progresses and the sample replications increase. In this way we simultaneously build
a true fully linear model while converging to a stationary point. This helps with
significantly reducing simulation effort in the initial iterations of the algorithm.

In summary, the algorithm we propose does not require gradient estimates,
makes few assumptions on the underlying distributions, and deals with expensive
function evaluations by judicious sampling (both in terms of model-building as well
as replications), all while providing a guarantee of global convergence to a stationary

point.

69

SO-LVIT: SIMULATION OPTIMIZATION—LEARNING VIA
TRUST REGIONS

4.1 INTRODUCTION

In this chapter, we propose extensions and enhancements to individual algorithmic
elements presented in Chapter 3, and justify each of these choices. In particular, we
discuss the choice of the surrogate model that we use, the manner of sampling and
construction of this model, the estimation of underlying variance, stopping criteria,
and the effect of globally optimizing the trust region subproblem. Through this, we
outline the development of the theory into a practical implementation, which we

call SO-LVIT, or Simulation Optimization—Learning Via Trust regions.

We follow this discussion with comparative testing of the algorithm on a large
test bed against other available implementations. We first compile a 500-problem
test set to assess the performance of the implementation within a pre-specified
computational budget. With these promising results, we experiment with differ-
ent applications from chemical engineering to demonstrate the applicability of such
techniques in practical settings.

The first example we investigate relates to a classical problem in the supply
chain and operations literature, which has to do with inventory optimization. The
system of interest is modeled using a discrete-event simulation that incorporates
uncertain customer demands, lead times, and other system dynamics.

The second example involves the optimization of the design of a DNA separation
device. The movement of a DNA strand under electrophoretic forces has been
modeled using Brownian dynamic simulations, where the progress of the DNA strand

may be impeded using obstructions in the device. The sizing of these obstructions

70

4.2 IMPLEMENTATION DETAILS

affects the movement of different lengths of DNA differently, and therefore, the
problem is posed as finding the optimal obstruction size in order to maximize the

separation between two pre-specified lengths of DNA.

We then summarize the results of the chapter, and discuss future directions
for implementations and comparisons, potential new applications, and extensions to

current applications in simulation optimization for engineers.

4.2 IMPLEMENTATION DETAILS

Figure 4.1 shows a 1-D schematic of an iteration of the SO-LvIT algorithm. Fig-
ure 4.1a illustrates the expected value of the true underlying function in solid black;
the portion of the variable space that is within the trust region radius; a confidence
interval on each of the sample points, one of which corresponds to the trust region
center. Section 4.2.1 provides implementation details on the selection of these points

for model-building.

Figure 4.1b illustrates the GP regression model that fits these samples using a
dashed red line, and the schematic only shows this regression function within the
trust region, to show that we are only concerned about its predictive performance
within this region. The implementation of the GP regression scheme is described in
Section 4.2.2.

Figure 4.1c illustrates the globally optimal solution to the trust region subprob-
lem in red, which is the point that minimizes the GP regression model within the
trust region radius. In general, it is very difficult to find the global optimum of the
regression function, but it may be worth it if the underlying simulation is expensive
to evaluate. Sections 4.3.2 and 4.4.2 provide more details on the benefits of using

global search for the TRSP.

Figure 4.1d illustrates that the black-box simulation has been sampled at this
global optimum, and is a candidate for being the next trust region center. The figure
illustrates that the upper confidence level for the candidate point is still below the
sample mean of the incumbent, indicating a high probability that the candidate point
may indeed be a better point. This comparison is formally performed between the
sample means, and if the null hypothesis (i.e., incumbent is better than candidate)

is rejected at the ay-significance level, and the trust region center and radius may

71

4.2 IMPLEMENTATION DETAILS

[Expected Objective] [Trust region] [GP regression model]

1 < >

F

:

|

|

I

|
A4

i

[Global Optimum] [Trust region update]

(¢) Globally optimize trust-region subproblem (d) Update trust region center and radius

Legend: o Trust region center ® Other sample points T Confidence region

Figure 4.1: The four key steps in an iteration of the SO-LVIT algorithm are shown above.
The black surface is the underlying expectation function of the simulation.

be updated as shown in the figure. The management of the «y-significance level is
provided in Section 4.2.3 and Algorithm 3.1.
To quote Fu et al. (2005), some of the key issues in an implementation of an SO

algorithm are:

13

1. neighborhood definition;

2. mechanism for exploring/sampling (search), especially how previously gener-

ated (sampled) solutions are incorporated;

3. determining which candidate solution(s) to declare the best (or “good”); sta-

tistical statements?

72

4.2 IMPLEMENTATION DETAILS

4. the computational burden of each function estimate (obtained through simu-

lation replications) relative to search (the optimization algorithm). ”

We have addressed each of these issues in SO-LvIT. The neighborhood defini-
tion is carefully controlled by a trust-region framework. The mechanism for explor-
ing/sampling is done through the trust region subproblem, while previously sampled
points may be used to build our surrogate model at each iteration. Hypothesis test-
ing along with careful control of the a-significance level are used to provide ‘good’
statistical statements. Finally, we spend effort on simulation replications purely

when necessary in order to ensure descent with high probability.

4.2.1 Selection of points and maintenance of geometry for interpolation and re-

gression models

Algorithms 4.1 and 4.2 outline the procedure we use to choose points for our inter-
polation and regression models. To represent the underlying function accurately we
need to consider the number of sample replications as well as the geometry of se-
lected points (Lemma 3.4). Algorithm 4.1 focuses on the sample replication aspect,
while Algorithm 4.2 on the geometric aspect.

Algorithm 4.2 provides a sequential procedure to select points for interpola-
tion/regression. The construction of a fully linear model involves satisfying the
geometric condition imposed by Lemma 3.3. Given a set of points that have already
been selected for model-building (the trust region center is always included), we find
a basis to the nullspace of the space spanned by this set. Then, we cycle through a
sequence of given candidate (previously sampled) points, and project them onto this
nullspace. If this projected point is far enough away from the space spanned by the
set of included points (via the i-thresholding), we include the candidate point in
our model. We continue until we get d 4+ 1 points, which are now sufficiently affinely
independent. If we are unable to find d 4 1 such points, the columns that form the
basis of the nullspace at the end of the procedure, scaled by the trust region radius,
provide potential points that may be chosen for sampling and to be included in the
model. This is a fairly standard procedure for DFO algorithms, and it is easy to see
that this procedure requires a finite number of steps.

Algorithm 4.1 provides the sequence of candidate points to Algorithm 4.2. By

sorting candidate points within an enlarged trust region by the number of sample

73

4.2 IMPLEMENTATION DETAILS

replications, candidate points with more replications are considered first. Though
this is not guaranteed to give you a set of sufficiently affinely independent points
with the highest number of cumulative replications, it provides an effective way to
include points which have been sampled more,

It is natural to want points with higher replications, as the sample mean at each
would be closer to the true value with high probability, and it requires fewer further
replications at each of these points to satisfy the sampling criteria as in Step 4 of
the algorithm (from Lemma 3.5).

The notation used in the two algorithms is from Table 3.1.

4.2.2 GP regression

We choose to use Gaussian Process (GP) regression for multiple reasons. When trust
regions are larger, we only require x; (a small number of) replications. As sample
mean estimates may not be very accurate, we choose to use regression in this case.
However, when the trust regions are smaller (below A.), we require a larger number
of replications, and perform interpolation using GPs.

GP regression allows the flexibility of incorporating many points in the regres-
sion (as opposed to a fixed number of points, or points on a fixed grid in space
as used in the response surface literature). This allows the use of previously sam-
pled points very effectively. GPs are also attractive as they automatically provide a
trade-off between model accuracy and model complexity, without having to specify
an explicit parameter to control this (Rasmussen & Williams 2006). GP regres-
sion is also capable of handling discrete inputs—potentially a major generalization
compared to other response surface methods.

In addition, the multiple simulation replications we perform at each sample site
allow us to build, as described in Section 4.3.1, an estimate for the variance in the
stochasticity of the underlying response surface, and this estimate can be easily
incorporated within the GP framework. A concern that sometimes arises with GP
regression relates to its expense, but we assume that the time it takes to perform is
insignificant in the case of expensive stochastic simulations.

Aside from the above features, as mentioned in Chapter 3, GP regression tech-
niques that incorporate radial basis function kernels have been shown to fall into

the fully linear framework, and we make use of this.

74

4.2 IMPLEMENTATION DETAILS

Algorithm 4.1 Construction of interpolation/regression model

Step 1: Collect previously sampled points within the enlarged trust region with
radius 1Ay, where ¢ > 1. Form the set IT = {y1 = 0,y2,...,y 1}, where y,, is
a displacement from the trust region center xy.

Step 2: Sort points by number of sample replications, from largest to smallest.
If more than d + 1 of these points have been sampled (1) more than n; times if
A < Ag, or (2) greater than or equal to x; times otherwise, then move points
within main trust region A to the front of the list.

Step 3: Call Algorithm 4.2 in model-building mode with the set of candidate
points IT as an argument, and retrieve a set of interpolation points Y.

Step 4:
if A, <A. then
if ¢ = 0 then

Sample such that the number of replications at each of the chosen points
in Yy is np = [xoAg 41 +1, as recommended in Section 3.4, Lemma 3.5.
else
Sample such that the number of replications at each of the chosen points
inY,isn; = [ni,l)\aﬁ + 1, as recommended in Section 3.4, Lemma 3.5
(only if n; has not already been defined).
end if
Add up t0 Tmax — (d+ 1) from the remaining points in IT to Yy, if they have
been sampled at at least 1on; times, where 0 < 19 < 1.

Build model my, that interpolates all points in Yj, using the GP interpolation
scheme described in Section 3.2.2.

else
Add up to Tmax — (d+ 1) from the remaining points in IT to Yy, if they have
been sampled at at least y; times.

Build a regression model my over the points in Yz using the GP regression

scheme described in Section 3.2.2.
end if

75

4.2 IMPLEMENTATION DETAILS

Algorithm 4.2 Model-building and Model-improving algorithm

Step 1:

if Algorithm was called in model-building mode then
Initialize the set of points chosen for interpolation/regression, Y3 = {y; = 0}.
Initialize Z = 1.

else if algorithm called in model-improvement mode then
Initialize Z as a basis of the nullspace of the given set of points Yj. Denote
I1=Y;.

end if

Step 2: Initialize p = 1.
while y, € Il do
if ||ZZT(1/(Axvbo))yp|| > 1, i.e., the projection of the candidate point onto
the nullspace of Y}, is greater than 1, then
Include y, in set of interpolation points Y.
Update Z to be an orthonormal basis for the nullspace of Y. Update
p+p+1.
end if
end while

Step 3
If called in model-building mode and [II| < d+ 1, evaluate f(xj + zp) for all
columns of Z y; times, and add these points to Y.
if |Yx| < d+ 1 deem model as not fully linear. then
If called in model-improvement mode, use the first column of Z to be the
model-improving direction, and evaluate it n; times if A < A., or xo times

otherwise.
else

If |Yy| = d+ 1, deem model as fully linear.
end if

76

4.2 IMPLEMENTATION DETAILS

Though there are readily available packages for GP regression (The Gaussian
Processes Website 2014), getting them to work in practice often requires a lot of
experience. The choice of hyperparameters and their optimization, the method of
inference, and the choice of covariance (basis) functions can be very important. A
bad choice of these can lead to a completely flat regression surface with a few spikes
at the data points. As a consequence, poor models affect the progress of the trust

region algorithm.

Leave-one-out likelihood ~ The most common way to optimize the hyperparameters
for GP regression is through maximizing the log-marginal likelihood (Equation 3.3).
Rather than using this, we use the recommendation of Sundararajan & Keerthi
(2001) and find that maximizing the leave-one-out (LOO) likelihood provides bet-
ter results in terms of reducing overfitting. This LOO-likelihood is computed by
maximizing the sum of log-likelihoods, where each log-likelihood is constructed by

leaving one of the training data (sample) points out.

Model selection and starting points ~ We also find that choosing an appropriate
covariance function and relevant hyperparameters can aid in model fit. As noted
in Chapter 3, there are many possible basis functions that may be used that fall
into the fully linear framework. At the outset, we cycle through a set of covari-
ance or basis functions and optimize the LOO-likelihood for each to find the best
hyperparameters. The corresponding covariance function is used along with the rec-
ommended hyperparameter values. Rasmussen & Nickisch (2011) provides a BFGS
routine to optimize this likelihood function, and we use several rounds of starting
points in the search for the best hyperparameters. We then retain the best found
basis function as well as hyperparameters as initial starting points for subsequent

iterations of the algorithm.

4.2.3 Hypothesis test significance-level

In order to satisfy the requirement that >"72; a; < oo (from Lemma 3.10), we apply
the rule that

ar =a-(b)F, (4.1)

7

4.3 ALGORITHMIC ENHANCEMENTS

where k is the kth trust region center. We also require 0 < a < 0.5, 0 < b < 1, so

that « is always less than 0.5, and that the series ratio test is always satisfied.

4.3 ALGORITHMIC ENHANCEMENTS
4.3.1 Variance learning

As outlined in Chapter 3, the algorithmic framework we use depends on simulation
replications at every point. The algorithmic scheme made use of replications not
only to regress over averaged values, but in hypothesis tests to determine when to
move the trust region center.

Here we show that these replications can, in addition, be used to make GP
regression even more accurate. In particular, we first show that these replications
can be used to build a consistent estimator of the underlying variance in the case
of uniform Gaussian noise, one that will grow ever more accurate with the progress
of the algorithm. This estimator can then be used to provide good bounds on
the parameter that represents the intrinsic noise in the Gaussian process regression
model, w, as defined in Section 3.2.2. For this, we need at least two samples at every

data point.

Lemma 4.1. If F(z;,w) ~ N(f(x;),02), an unbiased estimator for o? is

&2 — Zk’EK al?;
K[

where k € K means that we have sampled at some points with k replications, ny is

the number of such points, and
Sy Rt
i=17=1)

Proof. We begin by introducing an estimator that uses all points that have been

sampled k times, and the size of this set is ny,

)2
o7 = Z Z (4.2)

i=1j5=1

78

4.3 ALGORITHMIC ENHANCEMENTS

This estimator makes intuitive sense, as the numerator represents a squared de-
viation from some mean, and this deviation is averaged out over the knj total

data points. Next, we investigate the consistency of this estimator. We assign

o~k (Fi—Fi)? o 1
Xrb = j=1 A . SO, k= a

verges in probability to

>k X, and we know that this estimator con-

—S x5 EB(x)) (4.3)

k = k 2 —
Z(Fij_Fi)z _ ZFZZJ—}—Fl —2FijFi
— k k

J=1 J=1
j=1
2
_ Z]:l f(Fzg) E(Ff)

From the identity F(X?) = V(X) + E?(X), this becomes

E(X;) =

S

k
D (V(Fy) + B*(Fy)) = V(Fi) - B*(F))

Sk Fy Sk Fy
:U2+E2(Fij>V<Jk] *EZ JT] ,

which for independent random samples is

E(X;) =0® + E*(Fy) — % zk:V(Fl-j) — (E <m>)

4.6
k—1

= 0'2.

k

79

4.3 ALGORITHMIC ENHANCEMENTS

This shows that the estimator we considered is biased, but is easily fixed by mul-
tiplying through by k—fl Now we compute the corresponding metric for all such

k € K, and use the sample average

/\2
- > o
0_2 _ keK Yk

- o ?h (47)

which is clearly an unbiased, consistent estimator of o2. n

Once we have an estimator for the variance, we can use confidence bounds
on the estimator as bounds on the intrinsic variance hyperparameter during the
hyperparameter estimation step. This bounding of the variance can help to improve
the quality of the regression significantly. We illustrate this in Figure 4.2, where the
black line is the true underlying function. The red points are the data, the red line
is the mean of the regression, and the pink band includes the fitted variance of the
Gaussian Process as well as the uncertainty in function value at points away from
data points. Figure 4.2a clearly underfits the data, whereas Figure 4.2b seems to fit
the data much better.

The restriction of the variance helps help focus the multi-start optimization of
the likelihood to a more realistic range of values. In some cases, this just helps in
finding a better local solution to the problem, and, in other cases, it cuts off a global
solution to the maximum likelihood problem that corresponds to an underfit due to
some artifact of the data.

We can use these confidence intervals to bound the variance in the GP regression
directly. In addition, even if the nature of the underlying stochasticity is not uniform
Gaussian, we can make use of this estimate using points that are only within the
current trust region, assuming that the variance does not change significantly in this

region.

4.3.2 Global optimization of TRSP

Lemma 3.2 in Chapter 3 involves a backtracking line search scheme to achieve a
sufficient decrease condition when solving the trust region subproblem (TRSP). In
other words, this decrease suffices to show global convergence to stationary points.
Traditional trust region methods for nonlinear programming focus on ways to update

the solution of the TRSP by performing fast linear algebra. In our context, however,

80

4.3 ALGORITHMIC ENHANCEMENTS

53

46 T T T T T T T T T

o
o
—
o
[N}
o
w
(=]
e~
o
ot
o
D
o
~
o
(o]
o
Ne)
—

(a) Unbounded intrinsic variance; underfit to data

53 1

47

46 T T T T T T T T

(=)
o
—_
o
no
[=)
w
[=]
=
o
ot
o
[=2]
o
~
(=]
oo
o
e
—_

(b) Bounded intrinsic variance; good fit to data

Figure 4.2: Two different regression surfaces for twenty samples taken from the function
2

f(.’E) =50+ msinac o %

4.3 ALGORITHMIC ENHANCEMENTS

function evaluations are expensive, and we assume that any time taken algorithmic

computations are insignificant in comparison.

In this situation we hypothesize that solving the TRSP to optimality, or even
global optimality, may be worth it, especially if the surrogate models we construct
are of good quality. The form of the GP interpolation functions we use are expressed
by the difference of sums of functions, where the functions are in general nonconvex
(log-concave in the case of a Gaussian RBF). Therefore, in order to find a global
solution to such a surface, we make use of the BARON software (Tawarmalani &
Sahinidis 2005; Sahinidis 2013) which performs deterministic global optimization
through a spatial branch-and-bound procedure. We omit the details of the imple-
mentation, but show that we gain some benefit as compared with a local search, as

illustrated in Section 4.4.

4.3.3 Stopping criteria

In the fields of derivative-free optimization and simulation optimization, expensive
function evaluations are often the bottleneck for algorithmic iterations. This neces-
sitates the enforcement of a computational budget for most practical applications.
This is common as convergence rates are slower than derivative-based methods, and

so it reasonable to run the algorithm until the computational budget is exhausted.

Trust region methods incorporating fully linear models provide a natural stop-
ping criterion in the derivative-free optimization case. If, during the search proce-
dure, the algorithm enters the criticality step, and stays in the criticality step until
A <

,::g, then from the triangle inequality,

IV (@)l < [(IVmg(zp)l] + IV f (1) — Vg (z)]] < e + Hegﬁic = 2¢., (4.8)

€9

and this can be used as a stopping criterion.

Similarly, for simulation optimization, we look at the case when

cj_lAinc S 260)
5Av,Vd(vf + vm)

(4.9)

82

4.4 RESULTS AND APPLICATIONS

in accordance with Lemma 3.4. We see that at this stage in the criticality step

algorithm that

IV £ (i)l] < [IVm (@) + |V £ () — Vmi (24)]|

AN (10 0 +4) — o+)|+ 179 02) =)

k

< 2e.+

(4.10)
and since, with high probability, |f(z; +) — f(zi + yp)| < (A,(j))2, we also have

[V £ ()] < 2e0 + 2VdAy,AY

2€
< 2¢. + 2VdAy =
“5Av,Vd(vp + Ym) (411)
% + 4e,.
= 4Z€¢ YR
5(7f +vm)

with high probability. From Lemma 3.5, this probability is

) 2
SUP g) 7 ()

(o))

P(1f(wi+y) = flai+y)| <A2) > 1- (4.12)

We can approximate sup__ . (2.4 o?(z) with the variance estimate in Lemma 4.1.
kB

The algorithm would then be terminated when the trust region radius falls below

the threshold in Equation 4.9, and the probability from Equation 4.12 is more than

some high value (say, 0.99).

In practice, one may also simply terminate when more than some pre-defined
number of criticality step iterations have taken place (i.e., j is greater than some

value).

4.4 RESULTS AND APPLICATIONS
4.4.1 Comparisons on large test sets

To benchmark the performance of our algorithm, we selected six different algorithms
from the literature to compare against, and developed a problem test set derived

from the one used in Rios & Sahinidis (2013). The six algorithms that we bench-

83

4.4 RESULTS AND APPLICATIONS

marked against are listed in Table 4.1. The algorithms we chose to compare include
those that use response surfaces (as we relied on these as well), local search methods
such as Nelder-Mead simplex procedures (as our method has a local scope as well),

and those that use trust regions.

Table 4.1: List of algorithms compared against

Algorithm Type Citation

SKO Global response surface Huang et al. (2006)

SNM Direct search (Nelder-Mead) Chang (2012)

SNOBFIT Multi-start local response surface Huyer & Neumaier (2008)
SPSA Stochastic Approximation Spall (2003a)

SPSA 27 Order Stochastic Approximation Spall (2003a)

STRONG Local response surface Chang et al. (2011)

Both versions of the SPSA (Simultaneous Perturbation Stochastic Approxima-
tion) algorithm follow a stochastic approximation scheme. The idea behind SPSA-
Basic is to gain some measure of the gradient by using just two function evaluations,
as opposed to the more common n + 1 function evaluations. This is done by simulta-
neously perturbing a point in all dimensions, as opposed to one dimension at a time.
The estimate now becomes independent of the dimension of the problem. SPSA-2nd

Order also uses some estimate of second-order information in this process.

SNOBFIT (Stable Noisy Optimization by Branch and Fit) uses a multi-start
method, where it builds quadratic regression models in an iterative trust-region
framework. SKO (Sequential Kriging Optimization) is a modification of the EGO
algorithm Jones et al. (1998) for the stochastic case, where a global response surface
is built via a Kriging model over an initial design of experiments, and subsequent
samples are chosen via the maximization of a measure of expected improvement.
SNM (Stochastic Nelder-Mead) is a version of the Nelder-Mead algorithm that uses
an effec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>