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ABSTRACT

This thesis explores different paradigms for incorporating uncertainty with optimiza-
tion frameworks for applications in chemical engineering and site-wide operations.
First, we address the simulation optimization problem, which deals with the search
for optimal input parameters to black-box stochastic simulations which are poten-
tially expensive to evaluate. We include a comprehensive literature survey of the
state-of-the-art in the area, propose a new provably convergent trust region-based
algorithm, and discuss implementation details along with extensive computational
experience, including examples for chemical engineering applications.

Next, we look at the problem of long-term site-wide maintenance turnaround
planning. Turnarounds involve the disruption of production for significant periods
of time, and may incur enormous costs in terms of maintenance manpower as well as
lost sales. The problem involves (1) the simulation of profit deterioration due to wear
and tear followed by the determination of how frequently a particular turnaround
should take place; and (2) the consideration of site network structure and turnaround
frequencies to determine how turnarounds of different plants may be coordinated
over a long-term horizon. We investigate two mixed-integer models, the first of
which determines optimal frequencies of individual plant turnarounds, while the
second considers maximizing long-term profit through coordination of turnarounds
across the site.

We then turn to more conventional methods of dealing with optimization under
uncertainty, and make use of a combined robust optimization and stochastic pro-
gramming approach to medium-term maintenance planning in integrated chemical
sites. The nature of the uncertainty considered affects two aspects of maintenance
planning, one of which is most suitably addressed through a robust optimization
framework, while the other is better handled with stochastic programming models.

In summary, we highlight the importance of considering uncertainty in optimiza-
tion as well as the choice of approach or paradigm used through chemical engineering
applications that span varied domains and time scales.
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There is one more thing. It’s been emotional.
— Big Chris, Lock, Stock, and Two Smoking Barrels (1998)
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Part I

I N T RO D U C T I O N



1.1 introduction

I just sit at my typewriter and curse a bit.
— P. G. Wodehouse, when asked about his writing technique

1.1 introduction

The goal of this thesis is to contribute to the process systems engineering area
through novel theory and methods, and their application to domains of relevance
in the field. The broad theme of the thesis involves the development of mathemat-
ical approaches that consider uncertainty in the context of optimization, and the
investigation of both model-free and model-based approaches for various problems
in chemical engineering.

The interaction of uncertainty with optimization can take place in multiple ways,
three of which are illustrated in Figure 1.1.

Optimization 
 
 
 

Optimization 

Uncertainty 
quantification 

Stochastic 
simulation 

 
 
 

Optimization 
under  

uncertainty 
 
 
 Paradigm 1: Optimization 

with simulation-based 
iterations 

Paradigm 2: Sequential 
uncertainty quantification 
and optimization 

Paradigm 3: Consideration  
of uncertainty within 
optimization formulation 

Figure 1.1: Interactions of uncertainty and optimization

The first paradigm illustrates the case of stochastic black-box optimization,
where we would like to optimize directly over a stochastic simulation. Here, the
simulation model is not available to the optimization routine, and therefore the
optimizer has to progress through simulation-based iterations. In addition, many
applications require the use of high-fidelity simulations that have embedded uncer-
tainty, describe underlying phenomena in detail, and may be expensive to evaluate,
thus necessitating a model-free optimization approach. The adjustment of input pa-
rameters to the simulation affects the outputs, and these are typically tied to some
sort of performance or economic measure. The goal in this context is to identify
optimal input parameter values.
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1.1 introduction

A common way to combine uncertainty and optimization is to perform uncer-
tainty quantification as a pre-processing step to optimization, and this is illustrated
through the second paradigm. Outputs from optimization routines are affected by
both the parameters as well as the assumptions made in the model. Here, the un-
certainty quantification complements the optimization routine by supplying it with
good parameter values. In our context, uncertainty quantification may involve an-
alyzing production, reliability, and forecast data in a production network through
simulations to determine suitable estimates of cost coefficients, demands, or other
parameters.

When we make use of an algebraic description of the model for optimization,
an optimizer is typically concerned with manipulating the decision variables to min-
imize, for example, some objective, while satisfying some feasibility conditions. The
constants and parameters that go into the model, however, may have a significant ef-
fect on optimality, sensitivity of solution, and feasibility. The third paradigm shown
in Figure 1.1 involves robust optimization and stochastic programming approaches,
both of which simultaneously consider parameter uncertainty as well as optimization
within a single modeling framework.

To motivate the need to incorporate various kinds of uncertainties in chemical
engineering optimization problems, we consider integrated chemical site operations.
Figure 1.2 illustrates the structure of a large integrated site.

A large-scale integrated chemical site constitutes a number of individual produc-
tion units that are either connected to each other directly or through buffer storage
capacities. These production units supply raw material to other units and produce
final products that are ready to be shipped to end users. The tight integration
of this network of plants provides synergistic opportunities for sharing raw materi-
als, products, process and business information, domain knowledge, energy, utilities,
manpower, safety infrastructure, and transportation.

In addition, integrated sites may also benefit from holistic, long-term, medium-
term and short-term maintenance turnaround planning. Maintenance tasks repre-
sent disruptions in production, and necessitate intelligent decision-making for pro-
duction planning, demand satisfaction, and manpower availability.

Maintenance turnarounds involve shutting down plants for inspection, moni-
toring, cleaning, structural reinforcement and overhaul, and last 1–8 weeks. They

3



1.1 introduction
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Unit 15
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Unit 8
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Intermediate products Final products

Market interaction Storage tanks

Figure 1.2: Example of an integrated chemical site network

incur substantial costs, and Figure 1.3 shows that in 2008, 408 turnarounds in active
projects in the chemical process industry in North America were valued at a cumu-
lative amount of around $1,034MM (North American Chemical Processing Industry
Maintenance Turnarounds 2014). Thus, maintenance optimization has potential for
substantially reducing operating costs for a chemical plant, and increasing profit by
increasing availability, reliability, and production.

On a short-term time-scale, there may be several minor maintenance or upkeep
functions that cause production levels to fluctuate on an hourly or daily basis, and
this leads to the need for buffer storage to hedge against this uncertainty in produc-
tion. This production variability may be modeled through a stochastic simulation
framework, and a key decision may involve the determination of base stock levels
in the buffer inventory tanks. Black-box simulation optimization methods may be
used to make such decisions (Section 1.2).

On a medium-term time-scale, planning of maintenance tasks and arranging for
maintenance manpower is done several months prior to a turnaround. As observed
by Lenahan (1999) and Narayan (2004), a large portion of the turnaround work
scope is hidden due to inaccessibility to plant equipment, and the major uncertainty
is in the duration of the turnaround. Production planning decisions are commonly
addressed by mixed-integer programming formulations, and extensions to these, in

4



1.2 optimization over stochastic simulations
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Figure 1.3: Value and number of North American maintenance turnarounds in the chem-
ical processing industry for 2008 (http://www.industrialinfo.com/media/
downloadMedia.jsp?mediaId=344733, accessed February 21, 2014)

terms of robust optimization (Ben-Tal et al. 2009) and stochastic programming
(Birge & Louveaux 2011), may be used to handle parametric uncertainty suitably
(Section 1.3).

Turnarounds take place once every few years, and their coordination in an inte-
grated site requires the consideration of a long-term time scale. The frequency with
which turnarounds on a particular plant must be performed is a complex issue. The
determination of this may require the performance of simulations to characterize
rates of wear and tear and the analysis of historical data, in an uncertainty quantifi-
cation step. Bounds on the frequency of turnarounds can then be used as inputs to
a turnaround planning optimization model (Section 1.3).

With this background, we describe the organization of the thesis.

1.2 optimization over stochastic simulations: theory, algo-
rithms, and applications

The first part of the thesis addresses simulation optimization—an area still very
much in its nascency. Simulation Optimization (SO) refers to the optimization
of an objective function subject to constraints, both of which can only be evalu-
ated through a stochastic simulation. To address specific features of a particular
simulation—discrete or continuous decisions, expensive or cheap simulations, single
or multiple outputs, homogeneous or heterogeneous noise—various algorithms have
been proposed in the literature. As one can imagine, there exist several competing

5
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1.3 strategies for optimization under uncertainty

algorithms for each of these classes of problems. We provide an extensive literature
review of the area in Chapter 2.

In Chapter 3, we develop an algorithm for Continuous Optimization via Simu-
lation (COvS) in an unconstrained setting. As the simulation may only be available
as a black-box with stochastic outputs, we do not have access to derivative informa-
tion, making the search for optimal parameters challenging. In addition, having a
limited knowledge of the underlying distributions, and dealing simulations that are
expensive to evaluate further complicate the problem. We extend prototypical trust
region methods for derivative-free optimization (DFO) to the stochastic context,
while providing guarantees of global convergence to stationary points.

We discuss our particular implementation of this strategy in Chapter 4. We
provide computational experience with this framework, demonstrate that it is com-
petitive with other algorithms on a large test set, and discuss two examples involving
inventory optimization and DNA separations.

1.3 sequential and simultaneous strategies for optimization
under uncertainty: models and applications for site-wide
maintenance

As mentioned earlier, individual plants in an integrated site interact closely, are
dependent on each other for raw materials and demand for their products, and have
the provision of intermediate storage tanks to help manage inventory at strategic
points in the network. Disruptions in the operation of these plants can drastically
affect flow of material in the site network. As a result, the choice of sequence and
timing of planned periodic turnarounds, which are major disruptions, is important
in order to minimize effects on profits and production.

In terms of time scales, a turnaround schedule over a multi-year horizon would
be required along with a more detailed schedule for decisions over shorter time
scales. An optimal long-term turnaround scheme is needed to plan for required
manpower, to schedule turnarounds around seasonal constraints, and to maximize
long-term profit margins while balancing financial performance. On the other hand,
a fine-grained schedule over a shorter time scale would help manage short-term
and medium-term production and inventory decisions and resolve resource (e.g.,

6



1.3 strategies for optimization under uncertainty

manpower, utilities) conflicts for a set of plants or units that are being maintained
around the same time.

In the long-term context, we investigate a discrete-time mixed-integer linear
programming (MILP) model to perform turnaround optimization. The objective
is to recommend potential schedules in order to minimize losses while satisfying
network, resource, turnaround, demand, financial and other practical constraints.
We propose general formulations to tackle this problem and study an industrial-size
site network under various scenarios over a long-term horizon in Chapter 5.

For the medium-term consideration of turnaround tasks, planning begins 6–9
months prior to the turnaround in order to plan downstream inventory build-up,
and to plan for maintenance manpower and equipment. We consider a particular
set of turnarounds that occur together, as recommended by a solution to the long-
term turnaround planning problem. As mentioned earlier, the key uncertainty lies
in the duration of the turnaround. Two aspects that are most affected by this are
manpower availability and production planning. Manpower is a scarce resource, and
it is important to ensure manpower availability at all times. Production planning is
also affected by uncertainty in the duration of turnarounds due to the highly cou-
pled nature of plants in an integrated site. In Chapter 6, we address the manpower
issue through a robust optimization formulation, and production planning problem
through the consideration of scenarios in a stochastic programming framework. The
goal is to maximize site-wide profit margins by coordinating turnarounds and pro-
duction through sequential and simultaneous strategies.

We summarize the contributions of the thesis in Section 7.1, where we discuss
directions for future work in both simulation optimization, the key methodological
contribution of the thesis, as well as in turnaround planning and coordination, which
is the main application focus in our work.

7



Part II

O P T I M I Z AT I O N OV E R S T O C H A S T I C S I M U L AT I O N S :
T H E O RY , A L G O R I T H M S , A N D A P P L I C AT I O N S

Simulation optimization involves the optimization over stochastic sim-
ulations such as discrete-event simulations and stochastic differential
equation systems. We provide a comprehensive review of current tech-
niques in both discrete and continuous settings, and then develop a novel
provably convergent trust region-based method for simulation optimiza-
tion. We also demonstrate the practical use of the method through the
description of an implementation, its success on a large test bed, and
its application to two problems from chemical engineering, namely in-
ventory optimization in chemical supply chains, and optimal sizing of
obstructions for DNA separation.



2
L ITERATURE REVIEW

2.1 introduction

Advances in modeling and availability of cheap computational power have enabled
the science, engineering, and business research communities to make use of simu-
lations to model phenomena and systems. It is only natural that there be a great
interest in manipulating degrees of freedom in the simulations to optimize them.

The term Simulation Optimization (SO) is an umbrella term for techniques used
to optimize stochastic simulations. Simulation Optimization involves the search for
those specific settings of the input parameters to a stochastic simulation such that
a target objective, which is a function of the simulation output, is, without loss of
generality, minimized.

As opposed to mathematical programming, SO does not assume that an alge-
braic description of the simulation is available—the simulation may be available as
a black box that only allows the evaluation of the objective and constraints for a
particular input. In fact, many SO algorithmic approaches solely depend on such
input-output data from the simulation in their search for optimal input settings.

In addition, many large-scale and/or detailed simulations may be expensive to
run, in terms of time, money, or resources. As a result, there is also a need to
perform few simulations in this search for optimal parameters. Outputs from these
stochastic simulations are not deterministic, and usually follow some output distri-
bution, which may or may not vary across the parametric space. This uncertainty
or variability in output also adds to the challenge of optimization, as it becomes
harder to discern the quality of the parametric input in the presence of this output
noise. In addition, when an algebraic description of the simulation is not accessi-
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ble, derivative information is usually unavailable, and the estimation of derivatives
from the use of finite differences may not be suitable due to noisy outputs and the
expensive nature of simulations.

The nature of the stochastic simulations under study will determine the specific
technique chosen to optimize them. The simulations, which are often discrete-event
simulations, may be partially accessible to us in algebraic form, or may be purely
available as an input-output model (as a black box); they may have single or multiple
outputs; they may have deterministic or stochastic output(s); they may involve
discrete or continuous parameters; and they may or may not involve explicit, or
even implicit/hidden constraints.

A very general Simulation Optimization problem can be represented by (P1).

min Eω[f(x, y,ω)]

s.t. P (g(x, y,ω) ≤ 0) ≥ 1− α

h(x, y) ≤ 0

xl ≤ x ≤ xu
x ∈ Rn, y ∈ Dm.

(P1)

The function f can be evaluated through simulation for a particular instance of
the continuous inputs x, discrete inputs y, and a realization of the random variables
in the simulation, the vector ω (which may or may not be a function of the inputs,
x and y). Similarly, the constraints defined by the vector-valued function g are also
evaluated with each simulation run. In this formulation, expected values for these
stochastic functions are used. There may be other constraints (represented by h)
that do not involve random variables, as well as bound constraints on the decision
variables.

The relaxation of any of these conditions would constitute a problem that would
fall under the purview of SO. Most algorithms focus on problems that either have
solely discrete choices, or solely continuous decisions to make. Each constraint may
be thought of as representing additional outputs from the simulation that need to
be taken into consideration. In addition, there may be bound constraints imposed
on decision variables, that may either be available or obtained from domain-specific
knowledge. Relatively few existing algorithms attempt to address both discrete
and continuous choices simultaneously, although some broad classes of approaches
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naturally lend themselves to be applicable in either, and therefore both, settings.
Further, the discrete variables may either be binary, integer-ordered, or categorical
and lie in some discrete space D.

As can be seen, the formulation P1 is extremely general, and therefore a wide
variety of applications fall under the scope of simulation optimization. Various
applications of simulation optimization in diverse research fields are tabulated in
Section 2.2.

Another common assumption is that f is a real-valued function and g is a real
vector-valued function, both of whose expected values may or may not be smooth or
continuous functions. The most common objective in SO is to optimize the expected
value of some performance metric, but other objective functions may be appropriate
depending on the application. For instance, an objective that minimizes risk could
be a possible alternative, in which case one would incorporate some sort of variance
measure as well into the objective.

This paper is meant to be a survey of available techniques as well as recent
advances in simulation optimization. The remainder of the introduction section
provides a literature survey of prior reviews, and elaborates on the relationship of
simulation optimization to mathematical programming, derivative-free optimization,
and machine learning. Section 2.2 provides a glimpse into the wide variety of ap-
plications of simulation optimization that have appeared in the literature. Section
2.3 focuses on various algorithms for discrete and continuous simulation optimiza-
tion, provides basic pseudocode for major categories of algorithms, and provides
comprehensive references for each type of algorithm. Section 2.4 provides a listing
of available software for simulation optimization and Section 2.5 discusses means to
compare their performance. Section 2.6 summarizes the progress of the field, and
outlines some current and future topics for research.

2.1.1 Prior reviews of simulation optimization

Several review papers (e.g., Meketon (1987); Jacobson & Schruben (1989); Safizadeh
(1990); Azadivar (1992); Fu (1994); Carson & Maria (1997); Andradóttir (1998);
Azadivar (1999); Swisher et al. (2000); Fu et al. (2000); Fu (2002); Tekin & Sabun-
cuoglu (2004); Fu et al. (2005); Hong & Nelson (2009); Ammeri et al. (2011); Pa-
supathy & Ghosh (2013)), books and research monographs (e.g., Spall (2003b);
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Rubinstein & Kroese (2004); Kleijnen (2008); Chen & Lee (2010)), and theses (e.g.,
Angün (2004); Driessen (2006); Deng (2007); Chang (2008); Frazier (2009); Kabirian
(2009)) have traced the development of Simulation Optimization.

Meketon (1987) provides a classification of algorithmic approaches for optimiza-
tion over simulations based on how much information or structure about the under-
lying model is known. The paper surveys the progress of the field between 1975
and 1987, and focuses on continuous simulation optimization. Andradóttir (1998)
provides a tutorial on gradient-based procedures for continuous problems. Carson
& Maria (1997) and Azadivar (1999) also give brief outlines of and pointers to
prevailing simulation optimization algorithms.

Fu et al. (2000) contains several position statements of eminent researchers and
practitioners in the field of simulation, where the integration of simulation with op-
timization is discussed. The issues addressed include generality vs. specificity of
an algorithm, the wider scope of problems that simulation optimization methodolo-
gies have the potential to address, and the need for integrating provably convergent
algorithms proposed by the research community with metaheuristics often used by
commercial simulation software packages.

Of the more recent surveys, Fu (1994) provides an excellent tutorial on simu-
lation optimization, and focuses on continuous optimization problems more than
discrete optimization problems. The paper focuses specifically on discrete-event
simulations. Fu (2002) provides a comprehensive survey of the field and its scope—
the paper outlines the different ways in which optimization and simulation interact,
gives examples of real-world applications, introduces simulation software and the
optimization routines that each of them use, provides a very basic tutorial on simula-
tion output analysis and convergence theory for simulation optimization, elaborates
on algorithms for both continuous and discrete problems, and provides pointers to
many useful sources. Fu et al. (2005) provide a concise, updated version of all of
this, and also talk about estimation of distribution algorithms.

Tekin & Sabuncuoglu (2004) provide a table that analyzes past review papers
and the techniques they focus on. Apart from providing detailed updates on ad-
vances in approaches and algorithms, the paper also lists references that attempt
to compare different SO techniques. Hong & Nelson (2009) classify simulation opti-
mization problems into those with (1) a finite number of solutions; (2) continuous
decision variables; and (3) discrete variables that are integer-ordered. The paper
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describes procedures for each of these classes. Perhaps the most recent survey by
Ammeri et al. (2011) classifies simulation optimization algorithms and provides a
survey of methods as well as applications appearing in the literature between 1995
and 2010.

This work provides an overview of techniques, and briefly outlines well-established
methods with pointers to more detailed surveys, while expounding on more recent
methods in a concise manner. Though several reviews exist, we catalog the most
recent developments—the emergence of derivative-free optimization and its rela-
tionship with simulation optimization, the appearance of simulation test-beds for
comparing algorithms, the recent application of simulation optimization in diverse
fields, the development of and interest in related techniques and theory by the ma-
chine learning community and the optimization community, as well as the sheer
unprecedented nature of recent interest in optimizing over simulations. A reflection
of a surge in recent interest is evidenced by the fact that more than half of the
works we reference were published in the last decade. The intent is to not only
trace the progress of the field, but to provide an update on state-of-the-art methods
and implementations, point the familiar as well as the uninitiated reader to relevant
sources in the literature, and to speculate on future directions in the field.

2.1.2 A note on terminology and scope

As simulation optimization involves the use of algorithms that arose from widely
differing fields (Section 2.3), has relationships to many diverse disciplines (Section
2.1.3), and has been applied to many different practical applications from biology to
engineering to logistics (Section 2.2), it is not surprising that it is known by various
names in different fields. It has also been referred to as simulation-based optimiza-
tion, stochastic optimization, parametric optimization, black-box optimization, and
Optimization via Simulation (OvS), where the continuous and discrete versions are
accordingly known as Continuous Optimization via Simulation (COvS) and Discrete
Optimization via Simulation (DOvS). Each algorithmic technique may also go by
different names, and we attempt to reconcile these in Section 2.3.

Inputs to the simulation may be variously referred to as parameter settings,
input settings, variables, controls, solutions, designs, experiments (or experimental
designs), factors, or configurations. Outputs from the simulation are called mea-
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surements, responses, performance metrics, objective values, simulation replications,
realizations, or results. The performance of a simulation may also be referred to as
an experiment, an objective function evaluation, or simply a function evaluation.
We will use the term ‘iteration’ to refer to a fixed number of function evaluations
(usually one) performed by a simulation optimization algorithm.

A note of caution while using SO methods is to incorporate as much domain
specific knowledge as possible in the use of an SO algorithm. This may be in terms
of (1) screening relevant input variables, (2) scaling and range reduction of decision
variables, (3) providing good initial guesses for the algorithm; and (4) gleaning
information from known problem structure, such as derivative estimates.

Table 2.1 classifies the techniques that are usually most suitable in practice for
different scenarios in the universe of optimization problems. Certain broad classes
of algorithms, such as random search methods, may be applicable to all of these
types of problems, but they are often most suitable when dealing with pathological
problems (e.g., problems with discontinuities, nonsmoothness) and are often used
because they are relatively easy to implement.

Table 2.1: Terminology of optimization problems

Algebraic model available Unknown/complex
problem structure

Deterministic Traditional math program-
ming (linear, integer, and
nonlinear programming)

Derivative-free
optimization

Uncertainty present Stochastic programming, ro-
bust optimization

Simulation
optimization

The possibilities of combining simulation and optimization procedures are vast:
simulation with optimization-based iterations; optimization with simulation-based
iterations; sequential simulation and optimization; and alternate simulation and op-
timization are four such paradigms. A recent paper by Figueira & Almada-Lobo
(2014) delves into the taxonomy of such problems, and provides a guide to choosing
an appropriate approach for a given problem. As detailed by Meketon (1987), differ-
ent techniques may be applicable or more suitable depending on how much is known
about the underlying simulation, such as its structure or associated probability dis-
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tributions. We focus on approaches that are applicable in situations where all the
optimization scheme has to work with are evaluations of f(x, y,ω) and g(x, y,ω),
or simply, observations with noise.

2.1.3 Relationship to other fields

Mathematical Programming As mentioned earlier, most mathematical program-
ming methods rely on the presence of an algebraic model. The availability of an
algebraic model has many obvious implications to a mathematical programming
expert, including the ability to evaluate a function quickly, the availability of deriva-
tive information, and the possibility of formulating a dual problem. None of these
may be possible to do/obtain in an SO setting.

In the case with continuous decisions, derivative information is often hard to
estimate accurately through finite differences, either due to the stochastic noise as-
sociated with objective function evaluations, or due to the large expense associated
with obtaining function evaluations, or both. The inherent stochasticity in out-
put also renders automatic differentiation (AD) (Rall 1981; Griewank & Walther
2008) tools not directly applicable. Moreover, automatic differentiation may not
be used when one has no access to source code, does not possess an AD inter-
face to proprietary simulation software, and, of course, when one is dealing with a
physical experiment. The lack of availability of derivative information has further
implications—it complicates the search for descent directions, proofs of convergence,
and the characterization of optimal points.

Simulation Optimization, like stochastic programming, also attempts to opti-
mize under uncertainty. However, stochastic programming differs in that it makes
heavy use of the model structure itself (Birge & Louveaux 2011). Optimization
under uncertainty techniques that make heavy use of mathematical programming
are reviewed in Sahinidis (2004).

Derivative-Free Optimization Both Simulation Optimization and Derivative-Free
Optimization (DFO) are referred to in the literature as black-box optimization meth-
ods. Output variability is the key factor that distinguishes SO from DFO, where the
output from the simulation is deterministic. However, there are many approaches to
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DFO that have analogs in SO as well (e.g., response surfaces, direct search methods,
metaheuristics), cf. Section 2.3.

Another distinction is that most algorithms in DFO are specifically designed
keeping in mind that function evaluations or simulations are expensive. This is not
necessarily the case with SO algorithms.

With regard to rates of convergence, SO algorithms are generally inefficient and
convergence rates are typically very slow. In general, one would expect SO to have a
slower convergence rate than DFO algorithms simply because of the additional com-
plication of uncertainty in function evaluations. As explained in Conn et al. (2009),
some DFO algorithms, under certain assumptions, expect rates that are closer to lin-
ear than quadratic, and therefore early termination may be suitable. As described in
some detail by Fu (1994), the best possible convergence rates for SO algorithms are
generally O(1/

√
k), where k is the number of samples. This is true from the central

limit theorem that tells us the rate at which the best possible estimator converges
to the true expected function value at a point. This implies that though one would
ideally incorporate rigorous termination criteria in algorithm implementations, most
practical applications have a fixed simulation or function evaluation budget that is
reached first.

Machine Learning Several sub-communities in the machine learning community
address problems closely related to simulation optimization. Traditional machine
learning settings assume the availability of a fixed data set. Active learning methods
(Cohn et al. 1996; Settles 2010) extend machine learning algorithms to the case
where the algorithms are allowed to query an oracle for additional data to infer
better statistical models. Active learning is closely related in that this choice of
sampling occurs at every iteration in a simulation optimization setting as well. The
focus of active learning is usually to learn better predictive models rather than to
perform optimization.

Reinforcement learning (Stephens & Baritompa 1998) is broadly concerned with
what set of actions to take in an environment to maximize some notion of cumulative
reward. Reinforcement learning methods have strong connections to information
theory, optimal control, and statistics. The similarity with simulation optimization
is that the common problem of exploration of the search space vs. exploitation of

16



2.2 applications

known structure of the cost function arises. However, in the reinforcement learning
setting, each action usually also incurs a cost, and the task is to maximize the
accumulated rewards from all actions—as opposed to finding a good point in the
parameter space eventually.

Policy gradient methods (Peters et al. 2003) are a sub-field of reinforcement
learning, where the set of all possible sequences of actions form the policy space,
and a gradient in this policy space is estimated and a gradient ascent-type method
is then used to move to a local optimum. Bandit optimization (Gittins 1989) is
another sub-field of reinforcement learning that involves methods for the solution to
the multi-armed bandit problem. The canonical example involves a certain number
of slot machines, and a certain total budget to play them. Here, each choice of sam-
ple corresponds to which slot machine to play. Each play on a slot machine results
in random winnings. This setting is analogous to discrete simulation optimization
(DOvS) over finite sets, although with a different objective (Powell & Ryzhov 2012).
Again, in DOvS over finite sets, we are only concerned with finding the best alterna-
tive eventually, whereas the cumulative winnings is the concern in the multi-armed
bandit problem.

Relationship to other communities Most, if not all, simulation optimization pro-
cedures have elements that are derived from or highly related to several other fields.
Direct search procedures and response surface methodologies (RSM) have strong
relationships with the field of experimental design. RSM, sample path optimization
procedures, and gradient-based methods heavily incorporate ideas from mathemati-
cal programming. RSM also involves the use of nonparametric and Bayesian regres-
sion techniques, whereas estimation of distribution algorithms involves probabilistic
inference, and therefore these techniques are related to statistics and machine learn-
ing. Simulation Optimization has been described as being part of a larger field
called computational stochastic optimization. More information is available at Pow-
ell (2013).

2.2 applications

SO techniques are most commonly applied to either (1) discrete-event simulations,
or (2) systems of stochastic nonlinear and/or differential equations.
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As mentioned in Fu (1994), discrete event simulations can be used to model
many real-world systems such as queues, operations, and networks. Here, the simu-
lation of a system usually involves switching or jumping from one state to another
at discrete points in time as events occur. The occurrence of events is modeled using
probability distributions to model the randomness involved.

Stochastic differential equations may be used to model phenomena ranging from
financial risk (Merton 1974) to the control of nonlinear systems (Song & Grizzle
1995) to the electrophoretic separation of DNA molecules (Cho & Dorfman 2010).

With both discrete-event simulations and stochastic differential equation sys-
tems, there may be several parameters that one controls that affect some perfor-
mance measure of the system under consideration, which are essentially degrees of
freedom that may be optimized through SO techniques. Several applications of SO
from diverse areas have been addressed in the literature and we list some of them
in Table 2.2.

2.3 algorithms

Algorithms for SO are diverse, and their applicability may be highly dependent on
the particular application. For instance, algorithms may (1) attempt to find local or
global solutions; (2) address discrete or continuous variables; (3) incorporate random
elements or not; (4) be tailored for cases where function evaluations are expensive;
(5) emphasize exploration or exploitation to different extents; (6) assume that the
uncertainty in simulation output is homoscedastic or that it comes from a certain
probability distribution; or (7) rely on underlying continuity or differentiability of
the expectation (or some function of a chosen moment) of the simulation output.
The sheer diversity of these algorithms also makes it somewhat difficult to assert
which one is better than another in general, and also makes it hard to compare
between algorithms or their implementations.

As mentioned in Section 2.1.3, many algorithms that are available for contin-
uous simulation optimization have analogs in derivative-based optimization and in
derivative-free optimization, where function evaluations are deterministic. In any
case, the key lies in the statistics of how noise is handled, and how it is integrated
into the optimization scheme. We will provide pointers to references that are appli-
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Table 2.2: Partial list of published works that apply simulation optimization

Domain of applica-
tion

Application and citations

Operations Buffer location (Lutz et al. 1998), nurse scheduling
(Tein & Ramli 2010), inventory management (Köchel
& Nieländer 2005; Schwartz et al. 2006), health care
(de Angelis et al. 2003), queuing networks (Fu & Hill
1997; Bhatnagar 2005; Mishra et al. 2007)

Manufacturing PCB production (Dengiz & Akbay 2000), engine
manufacturing (Syberfeldt & Lidberg 2012), produc-
tion planning (Kenne & Gharbi 2001; Kleijnen 1993),
manufacturing-cell design (Irizarry et al. 2001), kanban
sizing (Hall et al. 1996)

Medicine and biology Protein engineering (Romero et al. 2013), cardiovascu-
lar surgery (Xie et al. 2012), breast cancer epidemiology
(Ferris et al. 2005), bioprocess control (Vande Wouwer
et al. 2001; Renotte & Vande Wouwer 2003), ECG anal-
ysis (Gerencsér et al. 2002), medical image analysis
(Merhof et al. 2007)

Engineering Welded beam design (Yang & Deb 2010), solid waste
management (Yeomans 2007), pollution source identi-
fication (Ayvaz 2010), chemical supply chains (Jung
et al. 2004), antenna design (Prakash et al. 2008), aero-
dynamic design (Xing & Damodaran 2002; 2005b;a;
Kothandaraman & Rotea 2005), distillation column op-
timization (Ramanathan et al. 2001), well placement
(Bangerth et al. 2005), servo system control (Radac
et al. 2011), power systems (Ernst et al. 2007), radar
analysis (Khan et al. 2006)

Computer science,
networks, electronics

Server assignment (Kulturel-Konak & Konak 2010),
wireless sensor networks (Dhivya et al. 2011), circuit de-
sign (Li 2009), network reliability (Kroese et al. 2007)

Transportation and
logistics

Traffic control and simulation (Yun & Park 2010; Bal-
akrishna et al. 2007; Osorio & Bierlaire 2010), metro/-
transit travel times (Hill & Fu 1995; Ö. Yalçinkaya
2009), air traffic control (Kleinman et al. 1997; Hutchi-
son & Hill 2001)
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cable to simulation optimization in particular. A comprehensive review of methods
for derivative-free optimization is available in Rios & Sahinidis (2013).

Each major subsection below is accompanied by pseudocode to give researchers
and practitioners unfamiliar with the field an idea of the general approach taken
by each of these algorithms. Many of the sections include pointers to convergence
proofs for individual algorithms. Optimality in simulation optimization is harder to
establish than in mathematical programming or derivative-free optimization due to
the presence of output variability. Notions of optimality for simulation optimization
are explored in Fu (1994); for the discrete case, Xu et al. (2010), for instance,
establishes conditions for local convergence, where a point being ‘better’ than its
2m + 1 neighboring solutions is said to be locally optimal. There has also been
some work in establishing Karush-Kuhn-Tucker (KKT) optimality conditions for
multiresponse simulation optimization (Bettonvil et al. 2009). Globally convergent
algorithms will locate the global optimal solution eventually, but assuring this would
require all feasible solutions to be evaluated through infinite observations; in practice,
a convergence property that translates to a practical stopping criterion may make
more sense (Hong & Nelson 2009).

Based on their scope, the broad classes of algorithms are classified in Table 2.3.
Algorithms are classified based on whether they are applicable to problems with
discrete/continuous variables, and whether they focus on global or local optimization.
However, there may be specific algorithms that have been tweaked to make them
applicable to a different class as well, which may not be captured by this table.

Table 2.3: Classification of simulation optimization algorithms

Algorithm class Discrete Continuous Local Global

Ranking and Selection × ×
Metaheuristics × × ×
Response Surface Methodology × × ×
Gradient-based methods × ×
Direct search × × ×
Model-based methods × × × ×
Lipschitzian optimization × ×
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2.3.1 Discrete optimization via simulation

Discrete optimization via simulation is involved with finding optimal settings for
input variables that can only take discrete values. This may be in the form of
integer-ordered variables or categorical variables (Pasupathy & Henderson 2011).
Integer-ordered variables are allowed to take on integer or discrete values within
a finite interval, where the order of these values translates to some physical inter-
pretation. For example, this could be the number of trucks available for vehicle
routing, or the set of standard pipe diameters that are available for the construc-
tion of a manufacturing plant. Categorical variables refer to more general kinds
of discrete decisions, ranging from conventional on-off (0-1 or binary) variables to
more abstract decisions such as the sequence of actions to take given a finite set
of actions. It should be noted that though integer-ordered variables, for instance,
may be logically represented using binary variables, it may be beneficial to retain
them as integer-ordered to exploit correlations in objective function values between
adjacent integer values.

A rich literature in DOvS has developed over the last 50 years, and the specific
methods developed are tailored to the specific problem setting. Broadly, methods
are tailored for finite or for very large/potentially infinite parameter spaces.

2.3.1.1 Finite parameter spaces

In the finite case, where the number of alternatives is small and fixed, the primary
goal is to decide how to allocate the simulation runs among the alternatives. In this
setting, there is no emphasis on ‘search’, as the candidate solution pool is small and
known; each iteration is used to infer the best, in some statistical sense, simulation
run(s) to be performed subsequently.

The optimization that is desired may differ depending on the situation, and
could involve:

1. The selection of the best candidate solution from a finite set of alternatives;

2. The comparison of simulation performance measures of each alternative to a
known standard or control; or

3. The pairwise comparison between all solution candidates.
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Item (1) is referred to as the ranking and selection problem. Items (2) and (3)
are addressed under literature on multiple comparison procedures, with the former
referred to as multiple comparisons with a control.

Ranking and Selection In traditional ranking and selection, the task is to minimize
the number of simulation replications while ensuring a certain probability of correct
selection of alternatives. Most procedures try to guarantee that the design ultimately
selected is better than all competing alternatives by δ with a probability at least
1− α. δ is called the indifference zone, and is the value deemed to be sufficient to
distinguish between expected performance among solution candidates.

Conventional procedures make use of the Bonferroni inequality which relates
probabilities of the occurrence of multiple events with probabilities of each event.
Other approaches involve the incorporation of covariance induced by, for example,
the use of common random numbers to expedite the algorithmic performance over
the more conservative Bonferroni approach. Kim & Nelson (2006; 2007) provide a
detailed review and provide algorithms and procedures for this setting. Extensions
of fully sequential ranking and selection procedures to the constrained case have
been explored as well, e.g., Andradóttir & Kim (2010).

An alternative formulation of the ranking and selection of the problem would
be to try to do the best within a specified computational budget, called the optimal
computing budget allocation formulation (Chen 1995). Chen et al. (2009) present
more recent work, while the stochastically constrained case is considered in Lee et al.
(2012).

Recent work (Hunter & Pasupathy 2013) in the area of DOvS over finite sets
provides a quick overview of the field of ranking and selection, and considers general
probability distributions and the presence of stochastic constraints simultaneously.

A basic ranking and selection procedure (Kim & Nelson 2007) is outlined in
Algorithm 2.1, where it is assumed that independent data comes from normal dis-
tributions with unknown, different variances.

Multiple comparison procedures Here, a number of simulation replications are
performed on all the potential designs, and conclusions are made by constructing
confidence intervals on the performance metric. The main ideas and techniques for
multiple comparisons in the context of pairwise comparisons, or against a known
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Algorithm 2.1 Basic ranking and selection procedure for SO
Require: Confidence level 1− α, indifference zone parameter δ
1: Take n0 samples from each of the 1, . . . ,K potential designs
2: Compute sample means, t̄k,n0 and sample variances, Sk, for each of the designs

3: Determine how many new samples, Nk := max
{
n0,

⌈
ψ2S2

k
δ2

⌉}
, to take from each

system, where the Rinott constant ψ is obtained from Bechhofer et al. (1995)
4: Select the system with the best new sample mean, t̄k,Nk+n0 .

standard are presented in Hochberg & Tamhane (1987), Fu (1994), and Hsu (1996).
Recent work in multiple comparisons with a control include Kim (2005) and Nelson
& Goldsman (2001), which provide fully sequential and two-stage frequentist proce-
dures respectively; and Xie & Frazier (2013), which addresses the problem using a
Bayesian approach.

Comprehensive treatment of ranking and selection and multiple comparison pro-
cedures may be found in Goldsman & Nelson (1998) and Bechhofer et al. (1995). A
detailed survey that traces the development of techniques in simulation optimization
over finite sets is available in Tekin & Sabuncuoglu (2004).

2.3.1.2 Large/Infinite parameter spaces

To address DOvS problems with a large number of potential alternatives, algo-
rithms that have a search component are required. Many of the algorithms that
are applicable to the continuous optimization via simulation case are, with suitable
modifications, applicable to the case with large/infinite parameter spaces. These
include (1) ordinal optimization (2) random search methods and (3) direct search
methods.

Ordinal optimization methods (Ho 1999) are suitable when the number of alter-
natives is too large to find the globally optimal design in the discrete-event simula-
tion context. Instead, the task is to find a satisfactory solution with some guarantees
on quality (called alignment probability) (Lau & Ho 1997). Here, the focus is on
sampling a chosen subset of the solutions and evaluating them to determine the best
among them. The key lies in choosing this subset such that it contains a subset of
satisfactory solutions. The quality or satisfaction level of this selected subset can
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be quantified (Chen 1996). A comparison of subset selection rules is presented in
Jia et al. (2006) and the multi-objective case is treated in Teng et al. (2007).

Random search methods, include techniques such as simulated annealing (e.g.,
Alrefaei & Andradóttir (1999)), genetic algorithms, stochastic ruler methods (e.g.,
Yan & Mukai (1992)), stochastic comparison (e.g., Gong et al. (49)), nested parti-
tions (e.g., Shi & Ólafsson (2000)), ant colony optimization (e.g., Dorigo & Stützle
(2004); Dorigo & Blum (2005)), and tabu search (e.g., Glover & Hanafi (2002)).
Some of these—simulated annealing, genetic algorithms, and tabu search—are de-
scribed in Section 2.3.6). Ant colony optimization is described under model-based
methods (cf. Section 2.3.7.2). Proofs of global convergence, i.e., convergence to the
global solution, or local convergence are available for most of these algorithms (Hong
& Nelson 2009) (note that these definitions differ from mathematical programming
where global convergence properties ensure convergence to a local optimum regardless
of the starting point).

Nested partition methods (Shi & Ólafsson 2007) attempt to adaptively sample
from the feasible region. The feasible region is then partitioned, and sampling is
concentrated in regions adjudged to be the most promising by the algorithm from a
pre-determined collection of nested sets. Hong and Nelson propose the compass al-
gorithm (Hong & Nelson 2006) which uses a unique neighborhood structure, defined
as the most promising region that is fully adaptive rather than pre-determined; a
most promising ‘index’ is defined that classifies each candidate solution based on a
nearest neighbor metric. More recently, the Adaptive Hyberbox Algorithm (Xu et al.
2013) claims to have superior performance on high-dimensional problems (problems
with more than ten or fifteen variables); and the r-spline algorithm (Wang et al.
2012), which alternates between a continuous search on a continuous piecewise-linear
interpolation and a discrete neighborhood search, compares favorably as well.

A review of random search methods is presented in Andradóttir (2006); Ólafs-
son (2006). Recent progress, outlines of basic algorithms, and pointers to specific
references for some of these methods are presented in Bianchi et al. (2009), Hong &
Nelson (2009), and Nelson (2010).

Direct search methods such as pattern search and Nelder-Mead simplex meth-
ods are elaborated on in Section 2.3.5.
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2.3.2 Response surface methodology

Response surface methodology (RSM) is typically useful in the context of contin-
uous optimization problems and focuses on learning input-output relationships to
approximate the underlying simulation by a surface (also known as a metamodel
or surrogate model) for which we define a functional form. This functional form
can then be made use of by leveraging powerful derivative-based optimization tech-
niques. The literature in RSM is vast and equivalent approaches have variously
been referred to as multi-disciplinary design optimization, metamodel-based opti-
mization, and sequential parameter optimization. RSM was originally developed in
the context of experimental design for physical processes (Box & Wilson 1951), but
has since been applied to computer experiments. Metamodel-based optimization
is a currently popular technique for addressing simulation optimization problems
(Barton & Meckesheimer 2006; Kleijnen 2008).

Algorithm 2.2 Basic RSM procedure
Require: Initial region of approximation X , choice of regression surface r
1: while not converged or under simulation budget do
2: Perform a design of experiments in relevant region, using k data points
3: ti ← simulate(xi), i = {1, . . . , k} {Evaluate noisy function f(xi,ω)}
4: λ∗ ← arg minλ

∑
(ti− r(xi,λ))2 {Fit regression surface r through points

using squared loss function}
5: x∗ ← {arg minx r(x,λ∗) : x ∈ X} {Optimize surface}
6: Update set of available data points and region of approximation
7: end while

Different response surface algorithms differ in the choice between regression and
interpolation; the nature of the functional form used for approximation (polynomials,
splines, Kriging, radial basis functions, neural networks); the choice of how many
and where new samples must be taken; and how they update the response surface.

RSM approaches can either (1) build surrogate models that are effective in local
regions, and sequentially use these models to guide the search, or; (2) build surrogate
models for the entire parameter space from space-filling designs, and then use them
to choose samples in areas of interest, i.e., where the likelihood of finding better
solutions is good according to a specified metric. A generic framework for RSM is
presented in Algorithm 2.2.
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Classical sequential RSM Originally, RSM consisted of a Phase I, where first order
models were built using samples from a design of experiments. A steepest descent
rule was used to move in a certain direction, and this would continue iteratively until
the estimated gradient would be close to zero. Then, a Phase II procedure that built
a more detailed quadratic model would be used for verifying the optimality of the
experimental design. A thorough introduction to response surface methodology is
available in Myers et al. (2009). Recent work in the field includes automating RSM
(Neddermeijer et al. 2000; Nicolai & Dekker 2009) and the capability to handle
stochastic constraints (Angün et al. 2009).

Bayesian global optimization These methods seek to build a global response sur-
face, commonly using techniques such as Kriging/Gaussian process regression (Sacks
et al. 1989; Rasmussen &Williams 2006). Subsequent samples chosen based on some
sort of improvement metric may balance exploitation and exploration. The seminal
paper by Jones et al. (1998) which introduced the ego algorithm for simulations
with deterministic output, uses Kriging to interpolate between function values, and
chooses future samples based on an expected improvement metric (Mockus et al.
1978). Examples of analogs to this for simulation optimization are provided in
Huang et al. (2006); Kleijnen et al. (2012). The use of Kriging for simulation meta-
modeling is explored in van Beers & Kleijnen (2004); Kleijnen & van Beers (2005);
Kleijnen (2009). Other criteria that have been used to choose samples are most
probable improvement (Mockus 1989), knowledge gradient for continuous parame-
ters (Scott et al. 2011), and maximum information gain (Srinivas et al. 2012).

Trust region methods Trust region methods (Conn et al. 2000) can be used to
implement sequential RSM. Trust regions provide a means of controlling the region
of approximation, providing update criteria for surrogate models, and are useful in
analyzing convergence properties. Once a metamodel or response surface, g, is built
around a trust region center xi, trust region algorithms involve the solution of the
trust-region subproblem (mins g(xi + s) : s ∈ B(xi, ∆)), where B is a ball defined
by the center-radius pair (xi, ∆). There are well-defined criteria to update the trust
region center and radius (Conn et al. 2000) that will define the subsequent region
of approximation.
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The use of trust regions in simulation optimization is relatively recent, and has
been investigated to some extent (Deng & Ferris 2006; Chang et al. 2013). Trust-
region algorithms have been used, for example, to optimize simulations of urban
traffic networks (Osorio & Bierlaire 2010).

2.3.3 Gradient-based methods

Stochastic approximation methods or gradient-based approaches are those that at-
tempt to descend using estimated gradient information. Stochastic approximation
techniques are one of the oldest methods for simulation optimization. Robbins &
Monro (1951) and Kiefer & Wolfowitz (1952) were the first to develop stochastic
approximation schemes in the early 1950s. These procedures initially were meant to
be used under very restrictive conditions, but much progress has been made since
then.

These methods can be thought of being analogous to steepest descent methods
in derivative-based optimization. One may obtain direct gradients or may estimate
gradients using some finite difference scheme. Direct gradients may be calculated by
a number of methods: (1) Perturbation Analysis (specifically, Infinitesimal Pertur-
bation Analysis) (PA or IPA), (2) Likelihood Ratio/Score Function (LR/SF), and
(3) Frequency Domain Analysis (FDA). Detailed books on these methods are avail-
able in the literature (Ho & Cao 1991; Glasserman 1991; Rubinstein & Shapiro 1993;
Pflug 1996; Fu & Hu 1997) and more high-level descriptions are available in papers
(Tekin & Sabuncuoglu 2004; Fu 2002). Most of these direct methods, however, are
either applicable to specific kinds of problems, need some information about under-
lying distributions, or are difficult to apply. Fu (2002) outlines which methods are
applicable in which situations, and Tekin & Sabuncuoglu (2004) discuss a number
of applications that have used these methods.

Stochastic approximation schemes attempt to estimate a gradient by means of
finite differences. Typically, a forward difference estimate would involve sampling
at least n+ 1 distinct points, but superior performance has been observed by si-
multaneous perturbation estimates that require samples at just two points (Spall
2003a), a method referred to as Simultaneous Perturbation Stochastic Approxima-
tion (SPSA). The advantage gained in SPSA is that the samples required are now
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independent of the problem size, and, interestingly, this has been shown to have the
same asymptotic convergence rate as the naive method that requires n+ 1 points
(Spall 1992). A typical gradient-based scheme is outlined in Algorithm 2.3.

Algorithm 2.3 Basic gradient-based procedure
Require: Specify initial point, x0. Define initial parameters such as step size (α),

distances between points for performing finite difference, etc.
1: i← 0
2: while not converged or under simulation budget do
3: Perform required simulations, tjii ← simulate(xi), with ji replications to

estimate gradient, Ĵ , using either IPA, LR/SF, FDA or finite differences
4: xi+1 ← xi − αĴ
5: i← i+ 1
6: end while

Recent extensions of the SPSA method include introducing a global search com-
ponent to the algorithm by injecting Monte Carlo noise during the update step
(Maryak & Chin 2008), and using it to solve combined discrete/continuous optimiza-
tion problems (Wang & Spall 2011). Recent work also addresses improving Jacobian
as well as Hessian estimates in the context of the SPSA algorithm (Spall 2009). A re-
cent review of stochastic approximation methods is available in Spall (2012). Much
of the progress in stochastic approximation has been cataloged in the proceedings of
the Winter Simulation Conference over the years (http://informs-sim.org/). A
recent review of stochastic approximation methods is available in Spall (2012), and
an excellent tutorial and review of results in stochastic approximation is presented
in Pasupathy & Kim (2011).

2.3.4 Sample path optimization

Sample path optimization involves working with an estimate of the underlying un-
known function, as opposed to the function itself. The estimate is usually a con-
sistent estimator such as the sample mean of independent function evaluations at
a point, or replications. For instance, one may work with Fn = 1

n

∑n
i=1 f(x, y,ωi),

instead of the underlying function E[f(x, y,ω)] itself. It should be noted that the
functional form of Fn is still unknown, it is just that Fn can be observed or evalu-
ated at a point in the search space visited by an algorithm iteration. The alternative
name of sample average approximation reflects this use of an estimator.
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As the algorithm now has to work with an estimator, a deterministic realiza-
tion of the underlying stochastic function, sophisticated techniques from traditional
mathematical programming can now be leveraged. Sample path methods can be
viewed as the use of deterministic optimization techniques within a well-defined
stochastic setting. Yet another name for them is stochastic counterpart. Some
of the first papers using sample path methods are Healy & Schruben (1991) and
Shapiro (1991). Several papers (Rubinstein & Shapiro 1993; Chen & Schmeiser
1994; Gürkan et al. 1994; Shapiro 1996) discuss convergence results and algorithms
in this context.

2.3.5 Direct search methods

Direct search can be defined as the sequential examination of trial solutions gen-
erated by a certain strategy (Hooke & Jeeves 1961). As opposed to stochastic
approximation, direct search methods rely on direct comparison of function values
without attempting to approximate derivatives. Direct search methods typically
rely on some sort of ranking of quality of points, rather than on function values.

Most direct search algorithms developed for simulation optimization are exten-
sions of ideas for derivative-free optimization. A comprehensive review of classical
and modern methods is provided in Kolda et al. (2003). A formal theory of direct
search methods for stochastic optimization is developed in Trosset (2000). Direct
search methods can be tailored for both discrete and continuous optimization set-
tings. Pattern search and Nelder-Mead simplex procedures are the most popular
direct search methods. There is some classical as well as relatively recent work done
on investigating both pattern search methods (Trosset 2000; Anderson & Ferris 2001;
Lucidi & Sciandrone 2002) and Nelder-Mead simplex algorithms (Nelder & Mead
1965; Barton & Ivey, Jr. 1996; Humphrey & Wilson 2000; Chang 2012) and their
convergence in the context of simulation optimization.

These methods remain attractive as they are relatively easy to describe and
implement, and are not affected if a gradient does not exist everywhere, as they do
not rely on gradient information. Since conventional procedures can be affected by
noise, effective sampling schemes to control the noise are required. A basic Nelder-
Mead procedure is outlined in Algorithm 2.4.
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Algorithm 2.4 Basic Nelder-Mead simplex procedure for SO
Require: A set of n− 1 points in the parameter space to form the initial simplex
1: while not satisfied prespecified convergence criterion or under simulation budget

do
2: Generate a new candidate solution, xi, through simplex centroid reflections,

contractions or other means
3: tjii ← simulate(xi), i = {i− n+ 1, . . . , i}, ji = {1, . . . ,Ni} {Evaluate

noisy function f(x,ω) Ni times, where Ni is determined by some sampling
scheme}

4: Calculate
∑

ji
t
ji
i

Ni
, or some similar metric to determine which point (i.e., with

the highest metric value) should be eliminated
5: end while

2.3.6 Random search methods

2.3.6.1 Genetic algorithms

Genetic algorithms use concepts of mutation and selection from theory of evolution
(Reeves 1997; Whitley 1994). In general, The genetic algorithm works by creating
a population of strings and each of these strings are called chromosomes. Each of
these chromosome strings is basically a vector of point in the search space. New
chromosomes are created by using selection, mutation and crossover functions. The
selection process is guided by evaluating the fitness (or objective function) of each
chromosome and selecting the chromosomes according to their fitness values (using
methods such as mapping onto Roulette Wheel). Additional chromosomes are then
generated using crossover and mutation functions. The cross over and mutation
functions ensures that a diversity of solutions is maintained. Genetic algorithms
are popular as they are easy to implement and are used in several commercial
simulation optimization software packages (Table 2.4). The gecco (Genetic and
Evolutionary Computation Conference) catalogs progress in genetic algorithms and
implementations.

2.3.6.2 Simulated annealing

Simulated Annealing uses a probabilistic method that is derived from the annealing
process in which the material is slowly cooled so that its structure is frozen and
it reaches a minimum energy state (Kirkpatrick et al. 1983; Bertsimas & Tsitsiklis
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1993). Starting with a current point i in a state j, a neighborhood point i′ of the
point i is generated. The algorithm moves from point i to i′ using a probabilistic
criteria that is dependent on the ‘temperature’ in state j. This temperature is
analogous to that in physical annealing, and serves here as a control parameter. If
the solution at i′ is better than the existing solution, then this new point is accepted.
If the new solution is worse than existing solution, then the probability of accepting
the point is defined as exp(−(f(i′)−f(i))/T (j)), where f(.) is the value of objective
function at a given point, and T (j) is temperature at the state j. After a certain
number of neighborhood points are evaluated, the temperature is decreased and new
state is j + 1 is created. Due to the exponential form, the probability of acceptance
of a neighborhood point is higher at high temperature, and is lower as temperature
is reduced. In this way, the algorithm searches for a large number of neighborhood
points in the beginning, but a lower number of points as temperature is reduced.

Implementation of simulated annealing procedures require choosing parameters
such as the initial and final temperatures, the rate of cooling, and number of func-
tion evaluations at each temperature. A variety of cooling ‘schedules’ have been
suggested in Collins et al. (1988) and Hajek (1988). Though simulated annealing
was originally meant for optimizing deterministic functions, the framework has been
extended to the case of stochastic simulations (Alkhamis et al. 1999). The ease of
implementing a simulated annealing procedure is high and it remains a popular
technique used by several commercial simulation optimization packages.

2.3.6.3 Tabu search

Tabu search (Glover 1990) uses special memory structures (short-term and long-
term) during the search process that allow the method to go beyond local optimality
to explore promising regions of the search space. The basic form of tabu search
consists of a modified neighborhood search procedure that employs adaptive memory
to keep track of relevant solution history, together with strategies for exploiting this
memory (Gendreau & Potvin 2010). More advanced forms of tabu search and its
applications are described in Glover & Laguna (1997).

2.3.6.4 Scatter search

Scatter search and its generalized form, path relinking, were originally introduced by
Glover & Laguna (2000). Scatter search differs from other evolutionary approaches
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(such as Genetic Algorithms (GA)) by using strategic designs and search path con-
struction from a population of solutions as compared to randomization (by crossover
and mutation in GA). Similar to Tabu search, Scatter Search also utilize adaptive
memory in storing best solutions (Glover & Laguna 2000; Martí et al. 2006). Algo-
rithm 2.5 provides the scatter search algorithm.

Algorithm 2.5 Basic scatter search procedure for SO
Require: An initial set of trial points x ∈ P , chosen to be diversified according to

a pre-specified metric
1: tj ← simulate(xj), where j = 1, . . . , |P |
2: k ← 0
3: Use a comparison procedure (such as ranking and selection) to gather the best b

solutions (based on objective value or diversity) from the current set of solutions
P , called the reference set, Rk

4: R−1 = ∅
5: while under simulation budget and Rk 6= Rk−1 do
6: k ← k+ 1
7: Choose Si ⊂ R, where i = 1, . . . , r {Use a subset generation procedure to

select r subsets of set R, to be used as a basis for generating new solution points}
8: for i = 1 to r do
9: Combine the points in Si, to form new solution points, xj , where j ∈
J = |P |+ 1, . . . , |P |+ J , using weighted linear combinations, for example

10: tj ← simulate(xj), j ∈ J {sample the objective function at new trial
solutions}

11: Update sets Rk, P
12: end for
13: end while

2.3.7 Model-based methods

Model-based simulation optimization methods attempt to build a probability distri-
bution over the space of solutions and use it to guide the search process.

2.3.7.1 Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) (Larrañaga & Lozano 2002) are model-
based methods that belong to the evolutionary computation field. However, gener-
ation of new candidate solutions is done by sampling from the inferred probability
distribution over the space of solutions, rather than, say, a genetic operator such as
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crossover or mutation. A comprehensive review of estimation of distribution algo-
rithms is presented in Fu et al. (1996). EDAs usually consider interactions between
the problem variables and exploit them through different probability models.

Cross-entropy methods and Model Reference Adaptive Search (MRAS) are dis-
cussed next and can be seen as specific instances of EDAs.

Cross-Entropy Methods Cross-entropy methods first sample randomly from a cho-
sen probability distribution over the space of decision variables. For each sample,
which is a vector defining a point in decision space, a corresponding function eval-
uation is obtained. Based on the function values observed, a pre-defined percentile
of the best samples are picked. A new distribution is built around this ‘elite set’
of points via maximum likelihood estimation or some other fitting method, and the
process is repeated. One possible method that implements cross-entropy is formally
described in Algorithm 2.6.

Algorithm 2.6 Pseudocode for a simple cross-entropy implementation
Require: θ, an initial set of parameters for a pre-chosen distribution p(x; θ) over

the set of decision variables; k, a number of simulations to be performed; e, the
number of elite samples representing the top δ percentile of the k samples

1: while not converged or under simulation budget do
2: for i = 1→ k do
3: sample xi from p(x; θ)
4: ti ← simulate(xi)
5: end for
6: E ← ∅
7: for i = 1→ e do
8: Ej ← arg maxi/∈E ti
9: end for

10: p(x; θ)← fit(xE)
11: end while

The method is guaranteed (probabilistically) to converge to a local optimum, but
it also incorporates an exploration step as random samples are obtained at each step.
However, the intuition behind the selection of subsequent samples can be shown to
be analogous to minimizing the Kullback-Leibler divergence (KL-divergence) be-
tween the optimal importance sampling distribution and the distribution used in
the current iterate (Rubinstein & Kroese 2004).
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There exist variants of the cross-entropy method to address both continuous
(Kroese et al. 2006) and discrete optimization (Rubinstein 1999) problems. A pos-
sible modification is to use mixtures of distributions from current and previous
iterations, with the current distribution weighted higher. This can be done by lin-
early interpolating the mean covariance in the case of Gaussian distributions. This
also helps in avoiding singular covariance matrices. Cross-entropy can also deal
with noisy function evaluations, with irrelevant decision variables, and constraints
(Kroese et al. 2006). If decision variables are correlated, the covariance of the distri-
bution will reflect this.

The immediately apparent merits of cross-entropy methods are that they are
easy to implement, require few algorithmic parameters, are based on fundamental
principles such as KL-divergence and maximum likelihood, and give consistently
accurate results (Kroese et al. 2006). A potential drawback is that cross-entropy
may require a significant number of new samples at every iteration. It is not clear
as to how this would affect performance if samples were expensive to obtain. The
cross-entropy method has analogs in simulated annealing, genetic algorithms, and
ant colony optimization, but differs from each of these in important ways (de Boer
et al. 2005).

More detailed information on the use of cross-entropy methods for optimization
can be found in de Boer et al. (2005), a tutorial on cross-entropy and in Rubinstein
& Kroese (2004), a monograph. The cross-entropy webpage provides up-to-date
information on progress in the field (http://iew3.technion.ac.il/CE/).

Model reference adaptive search (MRAS) The MRAS method (Hu et al. 2005;
2007) is closely related to the cross-entropy method. It also works by minimizing
the Kullback-Leibler divergence to update the parameters of the inferred probability
distribution. However, the parameter update step involves the use of a sequence of
implicit probability distributions. In other words, while the cross-entropy method
uses the optimal importance sampling distribution for parameter updates, MRAS
minimizes the KL-divergence with respect to the distribution in the current iteration,
called the reference model.

Covariance Matrix Adaptation–Evolution Strategy (CMA-ES) In the CMA-ES
algorithm (Hansen 2006), new samples are sampled from a multivariate normal
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distribution, and inter-variable dependencies are encoded in the covariance matrix.
The CMA-ES method provides a way to update the covariance matrix. Updating
the covariance matrix is analogous to learning an approximate inverse Hessian, as is
used in Quasi-Newton methods in mathematical programming. The update of the
mean and covariance is done by maximizing the likelihood of previously successful
candidate solutions and search steps, respectively. This is in contrast to other EDAs
and the cross-entropy method, where the covariance is updated by maximizing the
likelihood of the successful points. Other sophistications such as step-size control,
and weighting of candidate solutions are part of modern implementations (Hansen
2011).

2.3.7.2 Ant colony optimization

Ant colony optimization methods (Dorigo & Stützle 2004; Dorigo & Blum 2005)
are heuristic methods that have been used for combinatorial optimization problems.
Conceptually, they mimic the behavior of ants to find shortest paths between their
colony and food sources. Ants deposit pheromones as they walk; and are more
likely to choose paths with higher concentration of pheromones. This phenomenon
is incorporated in a pheromone update rule, which increases the pheromone content
in components of high-quality solutions, and causes evaporation of pheromones in
less favorable regions. Probability distributions are used to make the transition
between each iteration. These methods differ from EDAs in that they use an iterative
construction of solutions.

This and other algorithms that incorporate self-organization in biological sys-
tems are said to use the concept of ‘swarm intelligence’.

2.3.8 Lipschitzian optimization

Lipschitzian optimization is a class of space-partitioning algorithms for performing
global optimization, where the Lipschitz constant is pre-specified. This enables the
construction of global search algorithms with convergence guarantees. The caveat
of having prior knowledge of the Lipschitz constant is overcome by the direct
(DIviding RECTangles) algorithm (Jones et al. 1993) for deterministic continuous
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optimization problems. An adaptation of this for noisy problems is provided in Deng
& Ferris (2007).

2.4 software

2.4.1 Simulation optimization in commercial simulation software

Many discrete-event simulation packages incorporate some methodology for perform-
ing optimization. A comprehensive listing of simulation software, the corresponding
vendors, and the optimization packages and techniques they use can be found in
Table 2.4. More details on the specific optimization routines can be found in Law &
Kelton (2000). OR/MS-Today, the online magazine of informs, conducts a biennial
survey of simulation software packages, the latest of which is available at OR/MS
today 2013 survey (2013). The survey lists 43 simulation software packages, and 31
of these have some sort of optimization routine; fewer still have black-box optimizers
that interact with the simulation.

2.4.2 Academic implementations of simulation optimization

Table 4.1 contains a small subset of academic implementations of SO algorithms,
and classifies them by type. Some of these are available for download from the web,
some have code with suggested parameters in corresponding papers themselves, and
others are available upon request from the authors.

2.5 comparison of algorithms

As far as comparisons between algorithms are concerned, the literature does not
yet provide a comprehensive survey of the performance of different implementations
and approaches on large test beds. In this regard, simulation optimization lags be-
hind other optimization fields such as linear, integer, and nonlinear programming,
global optimization and even derivative-free optimization, where the first compre-
hensive comparison appeared in 2013 (Rios & Sahinidis 2013). A study of prior
comparisons in simulation optimization is provided by (Tekin & Sabuncuoglu 2004),
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Table 2.4: Simulation optimization packages in commercial simulation software

Optimization
package

Vendor Simulation
software sup-
ported

Optimization
methodology

AutoStat Applied Mate-
rials, Inc.

AutoMod Evolutionary
strategy

Evolutionary
Optimizer

Imagine That,
Inc.

ExtendSim Evolutionary
strategy

OptQuest OptTek Sys-
tems, Inc.

FlexSim, @risk,
Simul8, Simio,
Arena, simpro-
cess, Crystal
Ball, AnyLogic,
Enterprise
Dynamics, Mod-
elRisk

Scatter search,
tabu search, neural
networks, integer
programming

SimRunner ProModel
Corp.

ProModel, Med-
Model, Service-
Model

Genetic algorithms
and evolutionary
strategies

RISKOptimizer Palisade Corp. @risk Genetic algorithm

witness Opti-
mizer

Lanner Group,
Inc.

WITNESS Simulated anneal-
ing, tabu search,
hill climbing

GoldSim
Optimizer

GoldSim Tech-
nology Group

GoldSim Box’s complex
method

Plant
Simulation
Optimizer

Siemens AG Siemens PLM
software

Genetic algorithm

ChaStrobeGA N/A Stroboscope Genetic algorithm

Global
Optimization
toolbox

The Math-
Works

SimEvents (Mat-
lab)

Genetic algorithms,
simulated anneal-
ing,
pattern search
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but these comparisons are fairly dated, are inconclusive about which algorithms
perform better in different situations, and compare only a small subset of available
algorithms. One difficulty lies in the inherent difficulty of comparing solutions be-
tween algorithms over true black-box simulations, as one does not usually know the
true optimal point and can only compare between noisy estimates observed by the
solvers. Less impeding difficulties, but difficulties nonetheless, include the need to
interface algorithms to a common wrapper, the objective comparison with solvers
that incorporate random elements as their results may not be reproducible, and lack
of standard test simulations for purposes of benchmarking.

The benchmarking of algorithms in mathematical programming is usually done
by performance profiles (Dolan & Moré 2002), where the graphs show the fraction
of problems solved after a certain time. For derivative-free algorithms, data profiles
are commonly used (Moré & Wild 2009), where the fraction of problems solved
after a certain number of iterations (function evaluations) or ‘simplex gradients’ is
shown. The definition of when a problem is ‘solved’ may vary—when the true global
optimum is known, the solutions found within a certain tolerance of this optimal
value may be called solutions, but when this optimum is not known, the solvers that
find the best solution (within a tolerance) for a problem, with respect to the other
solvers being compared, may be said to have solved the problem. The latter metric
may also be used when function evaluations are expensive, and no solver is able to
reach within this tolerance given the limited simulation budget.

In both of these cases, the output of the simulations are deterministic, and so
it is clear as to which algorithms have performed better than others on a particular
problem. In simulation optimization, however, usually one does not know the true
solution for the black box system, nor does one see deterministic output. All that
one possesses are mean values and sample variances obtained from sample paths
at different points. There does not exist a standard method to compare simulation
optimization algorithms on large test beds. Many papers perform several macrorepli-
cations and report the macroreplicate average of the best sample means (along with
the associated sample variance) at the end of the simulation budget. The issue with
this is that the performance of the algorithms with different simulation budgets
is not seen, as in the case of performance or data profiles. Other papers report
the average number of evaluations taken to find a sample mean that is within the
global tolerance for each problem. Here, results are listed for each problem and one
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does not get an idea of overall performance. In addition, the difference in sample
variance estimates is not highlighted. As simulation optimization develops, there is
also a need for methods of comparison of algorithms on test beds with statistically
significant number of problems.

With regard to standardized simulation testbeds, to our knowledge, the only
testbed that provides practical simulations for testing simulation optimization algo-
rithms is available at www.simopt.org (Pasupathy & Henderson 2011). At the point
of writing this paper, just 20 continuous optimization problems were available from
this repository. Most testing and comparisons happen with classical test problems
in nonlinear optimization (many of which have been compiled in Rios & Sahinidis
(2013) and available at http://archimedes.cheme.cmu.edu/?q=dfocomp), to which
stochastic noise has been added. There is a need for more such repositories, not
only for testing of algorithms over statistically significant sizes of problem sets, but
for comparison between different classes of algorithms. The need for comparison is
evident, given the sheer number of available approaches to solving simulation opti-
mization problems, and the lack of clarity and lack of consensus on which types of
algorithms are suitable in which contexts.

As observed by several papers (Fu et al. 2000; Tekin & Sabuncuoglu 2004; Hong
& Nelson 2009), there continues to exist a significant gap between research and
practice in terms of algorithmic approaches. Optimizers bundled with simulation
software, as observed in Section 2.4, tend to make use of algorithms which seem
to work well but do not come with provable statistical properties or guarantees of
local or global convergence. Academic papers, on the other hand, emphasize meth-
ods that are more sophisticated and prove convergence properties. One reason that
may contribute to this is that very few simulation optimization algorithms arising
from the research community are easily accessible. We wholeheartedly encourage
researchers to post their executable files, if not their source code. This could not
only encourage practitioners to use these techniques in practice, but allow for com-
parisons between methods and the development of standardized interfaces between
simulations and simulation optimization software.
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2.6 conclusions

The field of simulation optimization has progressed significantly in the last decade,
with several new algorithms, implementations, and applications. Contributions to
the field arise from researchers and practitioners in the industrial engineering/op-
erations research, mathematical programming, statistics and machine learning, as
well as the computer science communities. The use of simulation to model complex,
dynamic, and stochastic systems has only increased with computing power and avail-
ability of a wide variety of simulation languages. This increased use is reflected in
the identification and application of simulation and simulation optimization meth-
ods to diverse fields in science, engineering, and business. There also exist strong
analogies between, and ideas that may be borrowed from recent progress in related
fields. All of these factors, along with the ever increasing number of publications
and rich literature in this area, clearly indicate the interest in the field of simulation
optimization, and we have tried to capture this in this paper.

With increased growth and interest in the field, there are also arise opportunities.
Potential directions for the field of simulation optimization are almost immediately
apparent. Apart from the ability to handle simulation outputs from any well-defined
probability distribution, the effective use of variance reduction techniques when pos-
sible, and the improvement in theory and algorithms, there is a requirement to
address (1) large-scale problems with combined discrete/continuous variables; (2)
the ability to effectively handle stochastic and deterministic constraints of various
kinds; (2) the effective utilization of parallel computing at the linear algebra level,
sample replication level, iteration level, as well as at the algorithmic level; (3) the ef-
fective handling of multiple simulation outputs; (4) the incorporation of performance
measures other than expected values, such as risk; (5) the continued consolidation
of various techniques and their potential synergy in hybrid algorithms; (6) the use
of automatic differentiation techniques in the estimation of simulation derivatives
when possible; (7) the continued emphasis on providing guarantees of convergence
to optima for local and global optimization routines in general settings; (8) the
availability and ease of comparison of the performance of available approaches on
different applications; and (9) the continued reflection of sophisticated methodology
arising from the literature in commercial simulation packages.
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2.6 conclusions

Table 2.5: Academic simulation optimization implementations

Algorithm Type Citation

Continuous

SPSA Stochastic Approximation Spall (2003a)
SPSA 2nd
Order

Stochastic Approximation Spall (2003a)

SKO Global response surface Huang et al. (2006)
CE method Cross-entropy Kroese et al. (2006)
APS Nested partitioning Kabirian & Ólafsson (2007)
snobfit Multi-start local response surface Huyer & Neumaier (2008)
CMA-ES Evolutionary strategy Hansen (2011)
KGCP Global response surface Scott et al. (2011)
strong Local response surface, trust region Chang et al. (2013)
GR Golden Region search Kabirian & Ólafsson (2011)
SNM Direct search (Nelder-Mead) Chang (2012)
DiceOptim Global response surface Roustant et al. (2012)

Discrete

KG Global response surface Frazier et al. (2009)
compass Neighborhood search (integer-

ordered problems)
Xu et al. (2010)

r-spline Neighborhood search (integer-
ordered problems)

Wang et al. (2012)

Discrete and
continuous

MRAS Estimation of distribution Hu et al. (2005; 2007)
NOMADm Mesh adaptive direct search Abramson (2007)
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3
THEORETICAL ANALYS I S OF TRUST REGION -BASED
S IMULATION OPTIMIZAT ION

3.1 introduction

3.1.1 Problem definition

The general problem addressed by this chapter is the unconstrained minimization
of the expectation of a stochastic function, formulated as

min
x∈Rd

Eω[F (x,ω(ξ))] (P1)

This is also known as the Continuous Optimization via Simulation (COvS) prob-
lem, where the objective is to minimize the defined performance metric, f(x) :=

Eω[F (x,ω)]. Here F : Rd×Rp involves a set of controls x as well as the realization
of random variables ω.

This problem may also be described as zeroth-order stochastic smooth noncon-
vex optimization for expensive stochastic functions. This implies that (1) deriva-
tives of the objective function f are not known; (2) the F in the objective function
is corrupted by stochastic noise; (3) no assumptions on convexity are made, but
f is assumed to be continuously differentiable; and (4) the objective function is
costly—in terms of time, money, or resources—to evaluate. The expense of evalua-
tion necessitates judicious sampling, and implies that we may not be able to afford
to determine good derivative estimates through sampling.
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3.1 introduction

3.1.2 Prior work and contributions of our work

We will focus on algorithms based on trust regions, as our framework also relies on
trust region concepts. The basic idea is to use a regression and/or interpolation
surface as a surrogate model and control its region and quality of approximation
using trust region iterates. The development that follows this section is most closely
related to the work by papers in the DFO area such as those by Powell (2002); Wild
et al. (2008), and stochastic extensions to this by Deng & Ferris (2006; 2009), Chang
et al. (2007; 2013), and Larson (2012); Larson & Billups (2014).

Deng & Ferris (2006) use a quadratic interpolation model over averaged func-
tion values through replications at points. This work is inspired by the uobyqa
algorithm (Powell 2002). The algorithm makes the decision of where to dedicate
sampling effort based on which coefficients in the model affect the variability the
most, and consequently which sample site is responsible for this.

The work of Deng & Ferris (2009) is also based on the uobyqa algorithm, and in-
tegrates a Bayesian variable-number sample-path scheme. This builds on traditional
sample-path methods which deal with fixed sample-paths, by reducing simulation
effort in earlier iterations while still guaranteeing convergence. In the sample-path
method, also known as sample path optimization, a fixed set of sample paths is used
for sampling in the decision space (Healy & Schruben 1991; Shapiro 1991). As a
result, for problems where the distribution of sample paths is allowed to vary across
the variable space, this method may not be applicable. The analysis also assumes
that simulation outputs follow a normal distribution. The sampling technique used
to ensure sufficient decrease with high probability is based on a frequentist criterion
by Monte-Carlo sampling from the estimated posterior distribution of the gradient.
We do not make use of sample paths or the assumption of normality, and provide a
different sampling scheme.

The above methods both build quadratic models within the trust regions. Unique
quadratic models require a number of function evaluations that are quadratic in the
dimension of the problem, namely (d+1)(d+2)

2 .
The works by Chang et al. (2007; 2013) combine ideas from traditional response

surface methodology and from trust region methods. The idea is to sample with
replication at points that are recommended by an experimental design and to use this
to fit a linear or quadratic model, and add a hypothesis test step to the trust region
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3.1 introduction

update process. The above methods require that linear and quadratic polynomials
are built around specific experimental design points. Convergence guarantees are
provided for the case when reliable gradient estimates are available. The algorithm
is designed for use when function evaluations are cheap.

Further, the work of Chang et al. (2007) and Chang et al. (2013) rely on exper-
imental design points for interpolation within the trust region, and this approach
does not make effective use of previously sampled points that may lie within the trust
region but are not part of the experimental design. This adds to the computational
burden of the method, especially when samples are expensive to obtain.

Larson & Billups (2014) provide a method that converges almost surely to a
stationary point for Problem P1, and prove this without having to perform sample
replications or being limited by fixed experimental designs. Though the possibility
of convergence without resorting to sample replications is appealing, this also means
that a post-optimization clean-up phase needs to be performed in order to determine
the incumbent or best found solution, especially in cases where the computational
budget is exhausted. The analysis provided is limited to the case when the surrogate
models used are first-order polynomials. In addition, as acknowledged by the paper,
convergence has been shown for the particular case of uniform additive Gaussian
noise, and the use of previously sampled points is limited.

The work we present makes use of Gaussian process (GP) regression and in-
terpolation models within an iterative trust-region framework. The use of a GP
framework allows us to reduce the number of sample points that we require to build
our models uniquely. We require a number of sample points that are linear in the
dimension of the problem (as in Powell (2009); Wild et al. (2008)).

The method we propose makes use of replications to (1) ensure descent with
high probability through hypothesis tests; to (2) improve the regression models
by pinning down the intrinsic variance parameter (Section 4.3.1); and to (3) to
build regression models satisfy the fully linear property (Section 3.2.1) with high
probability. The choice of using replication allows the identification of an incumbent
solution when the algorithm is terminated early. In this way, the use of replications
allows us to include within the algorithmic procedure the validation of a solution—
a common practice in discrete-event simulation. In addition, parallelization can
facilitate replication through multiple simultaneous simulations.
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3.2 mathematical preliminaries

In summary, the algorithmic framework we provide tackles the limitations in
existing literature by providing a global convergence guarantee to stationary points
in more general noise settings, without the availability of gradient estimates, while
making effective use of previously sampled points. The approach is described below.

We begin by providing a background to the key algorithmic elements in Sec-
tion 3.2. We discuss in detail the algorithmic structure in Section 3.3. Theory
regarding the convergence of the method is pursued in Section 3.4. Chapter 4 ex-
tends this framework to a practical implementation we call so-lvit (or Simulation
Optimization—Learning Via Trust regions).

3.2 mathematical preliminaries

In this section we introduce three concepts, namely Gaussian process regression,
fully linear models, and hypothesis tests. These concepts underpin the algorithm
and all of the theory that we develop in subsequent sections.

First, we specify the class of functions that we consider in this framework.

Assumption 3.1. The underlying function f is continuously differentiable and has
a Lipschitz continuous gradient everywhere in its domain:

|∇f(x)−∇f(y)|
‖x− y‖

≤ γf .

Assumption 3.2. The underlying function f is bounded from below and has a
compact domain.

The above two assumptions are standard assumptions made in the derivative-
free optimization literature and are essential for our proof of convergence to a sta-
tionary point, which we develop in the following sections.

3.2.1 Fully linear models

In order to show that derivative-free trust region-based algorithms converge, we
need to bound the deviation of the function or gradient values of the model we use
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3.2 mathematical preliminaries

from the true surface. Conn et al. (2009) define this deviation through so-called
fully linear models, which we restate.

Definition 3.1. Let a function f : Rd → R that satisfies Assumption 3.1 be given.
A class of models M = {m : Rd → R} is called fully linear if the following hold

1. There exist positive constants κeg and κef such that for any point x in the
domain of f and ∆ ∈ (0, ∆max], there exists a model function m ∈ M, such
that the error between the gradient of the function and the gradient of the
model satisfies

• ‖∇f(x+ s)−∇m(x+ s)‖ ≤ κeg∆ for all s ∈ B(0, ∆), and

• |f(x+ s)−m(x+ s)| ≤ κef∆2 for all s ∈ B(0, ∆).

2. For this classM there exists an algorithm, called a ‘model-improvement’ algo-
rithm, that in a finite, uniformly bounded (with respect to x and ∆) number
of steps can

• either provide a certificate that a given model m ∈ M is fully linear on
B(x, ∆), or

• find a model m̃ ∈M that is fully linear on B(x, ∆).

As mentioned in Section 3.2.2, we will be working with Gaussian Process re-
gression and interpolation models. For the class of interpolating Gaussian Process
models (Kriging models), Wild & Shoemaker (2011) have established that they are
fully linear for some categories of covariance functions.

In the analysis through this chapter, we will refer to the building of a fully linear
model as the assimilation of interpolation points in the variable space with appro-
priate geometry, such that corresponding interpolation models would be fully linear
if there were no error between model values and function values at the interpolation
points.

3.2.2 Gaussian process regression

For the choice of a surrogate model, we look to those other than the quadratic
models that have traditionally been used in trust-region methods.

Gaussian Process (GP) regression models provide a way of approximating a
function from a set of multivariate data. There are many interpretations of GP
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3.2 mathematical preliminaries

regression models. The basic idea is to treat the regressed function as a very long
vector, and then perform statistical inference on the distribution over this vector
conditioned on the observations at the points corresponding to the available data.
The inference is done in a Bayesian manner, by assuming a prior distribution over
functions—this is necessary in practice, otherwise the models would allow arbitrary
variation in the function—and then performing kernelized linear regression (Bishop
2006; Rasmussen & Williams 2006).

GP regression starts by assuming that observations are made from the underly-
ing function with additive Gaussian noise with a constant, but unknown variance,
ω. This induces a joint Gaussian distribution over the observations, F̃ , conditioned
on the true values, f̃ , assuming that the observations are independent. The prior on
the distribution of the f̃ vector is given as Gaussian with zero mean, and a chosen
covariance function that embeds some notion of smoothness on the model. The co-
variance function Φ involves a distance measure that increases correlation between
points that are closer to each other in the input space.

From the two distributions of the prior, p(f̃) and the conditional distribution
p(F̃ |f̃), it is straightforward to derive the marginal distribution p(F̃ ), which has
a covariance function given by C, where C(xi,xj) = φ(xi,xj) + ωIij , where Iij
is 1 if i = j and 0 otherwise. What we are interested is the mean when this
marginal distribution is conditioned on a new observation, FN+1. The mean gives
us a prediction of the model value at this new point, and is given by

m(xN+1) = φTC−1
N F̃ , (3.1)

where N is the number of points included in the regression/interpolation. This
can be interpreted either as a linear combination of observations F , or a linear
combination of the basis functions φ, which may be written as

m(xN+1) =
N∑
i=1

νiφ(xN+1,xi), (3.2)

where νi is the ith component of C−1
N F̃ Here, φ may take a number of forms, one

of which could be φ(xN+1,xi) = exp(−||xN+1 − xi||2/θ2), known as the isotropic
Gaussian covariance function. If φ involve this sort of distance metric, the model
can be seen as an expansion in radial basis functions. The primary task in GP
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3.2 mathematical preliminaries

regression is to choose the model φ and to estimate the coefficients θ and ω. Here,
θ and ω are called hyperparameters and they may be estimated by maximizing the
log-likelihood which is formulated as

ln p(F̃ |θ,ω) = −1
2 ln |CN | −

1
2 F̃

TC−1
N F̃ − N

2 ln(2π). (3.3)

Note that ω is set to zero when GPs are used for interpolation.
These GP models are attractive as they are capable of modeling multi-modality

(as the predictive model is composed of linear combinations of log-concave basis func-
tions) and need relatively few function evaluations (on the order of the dimension
of the data) to build uniquely.

The following lemma (proved in Wild & Shoemaker (2011)) will be useful to us
in the following sections.

Lemma 3.1. Assuming that the maximum sampled function value is finite and that
the hyperparameters are appropriately bounded, an interpolating model of the form
m defined in Equation 3.2 is twice continuously differentiable in a region B = {x ∈
Rd : ||x− xb|| ≤ ∆ < ∞}, where xb are the interpolation points that satisfy the
geometric condition for full linearity (Lemma 3.3), with

max
x∈B

∥∥∥∇2mk(x)
∥∥∥ ≤ κH <∞.

In particular, Lemma 4.2 and Theorem 4.5 from Wild & Shoemaker (2011) show
that Lemma 3.1 holds if we (1) use one of the recommended basis functions (such as
the Gaussian RBF mentioned above); and (2) maintain the fully linear condition, by
ensuring that a metric related to the geometry of the interpolation points is bounded
(Lemma 3.3). Lemma 3.1 also implies that the gradient of the interpolating model,
∇m, is Lipschitz continuous on Bmax, which is the ball containing the interpolation
points and having a radius not greater than some constant factor of ∆max. We
denote the corresponding Lipschitz constant as γm. We expect that Lemma 3.1 will
hold for the regression models we use as well, although we do not explicitly prove
this.

Assumption 3.3. The sample points chosen in an iteration in Algorithm 3.1 can
be exactly interpolated by the GP regression model.

48



3.2 mathematical preliminaries

This assumption is hardly restrictive, as GP regression models are very flexible
(Rasmussen & Williams 2006).

3.2.2.1 Trust region subproblem

Trust region subproblems involve the minimization of the surrogate model being
used—whether it is a Taylor-expansion based model as in nonlinear programming,
or an interpolation or regression model in DFO—within the trust region radius. The
related trust region subproblem in our context is

min
sk∈Rd

|Y |∑
i=1

νiφ(sk, yi)

s.t. ||sk|| ≤ ∆k (P2)

where the trust region is in the ball defined by B(xk, ∆k). For notational convenience,
we use the trust region center xk as a reference point. Here, sk denotes the step
from the the trust region center xk, and Y is the matrix of interpolation/regression
points {y1, . . . , y|Y |}, which also correspond to displacements from xk.

The trust region subproblem (TRSP), described in P2, involves the minimiza-
tion of the surrogate model within the trust region. Traditional nonlinear program-
ming algorithms make use of a quadratic model, where exact gradients and Hessians
are available. Specialized algorithms to quickly compute a solution to the TRSP
are described in Nocedal & Wright (1999) and Conn et al. (2000). Similar methods
may be used for derivative-free optimization problems that use a quadratic model
built by interpolation or regression. For general models, Conn et al. (2000) develop
a method to find a step that provides a guaranteed decrease in the model, as stated
below.

Lemma 3.2. For any κd ∈ (0, 1), there exists an s ∈ Bk − xk that satisfies

mk(xk)−mk(xk + s) ≥ βk :=
κd
2 ‖∇mk(xk)‖min

{‖∇mk(xk)‖
κH

, ∆k
}

,

for some κd > 0 and this can be done using a backtracking line search along the
direction of steepest descent.
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3.2.3 Hypothesis tests

We use hypothesis tests to guarantee descent with high probability at each iteration.
The idea to use hypothesis tests in trust region optimization was put forth in Chang
et al. (2011). The test is set up to make statements about the difference in means at
two of the points within the trust region. The null hypothesis is that the sufficient
decrease condition is not achieved, and the alternative is that it is, and is formulated
as a one-sided two-sample test.

The null and alternative hypotheses are

H0 : f(xk)− f(x∗k) ≤ η2
0βk,

H1 : f(xk)− f(x∗k) > η2
0βk.

Depending on the knowledge of the underlying distribution, we can choose an
appropriate test. For the case where the noise is Gaussian and the variance is
unequal, it is called the Behrens-Fisher problem. For the case when the distributions
are unknown but the variances are equal, one may use a nonparametric permutation
test, for example. In these and in more general cases, there exist several tests
that one may use based on knowledge of the underlying distribution (symmetry,
normality, equal variances, and so on) (Lehmann & Romano 2005). At each iteration
k in the algorithm, we test the null hypothesis against a αk-significance level.

Assumption 3.4. The underlying distribution at any point x, has a finite expected
value and a bounded nonzero variance σ, i.e., 0 < σ2(x) <∞ for all x ∈ Rd.

Assumption 3.5. The sample mean estimator f̂(x) := 1
n

∑n
i=1 F (x,ωi) of f(x) for

any x ∈ Rd satisfies supx∈Rd |f̂(x)− f(x)| → 0 w.p.1 as n→∞.

These assumptions provide regularity conditions on the underlying distribution
at any point in the domain of f , and Assumption 3.5 requires that the estimator
follows the uniform law of large numbers.

3.3 algorithm

The algorithm we use makes use of trust-region methods in combination with non-
parametric statistics. The basic idea is to use a nonparametric interpolation/re-
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gression model (Gaussian Process regression) within a trust region, and embed a
hypothesis test in the trust region update step. Algorithm 3.1 provides details.

When the trust region is relatively large, we employ a GP regression model
as we use only a few sample replications at each point. Another reason we use
GP regression is that it is possible, in the case of homoscedasticity or when the
variance does not vary too much across the decision space, to estimate the variance
through samples at different locations (Chapter 4) and embed this information in
the regression model. When the trust region is smaller, we switch to an interpolating
model where we manage the number of replications carefully. This is discussed in
more detail at the end of this section.

Once a model is built, we evaluate the gradient of the model at the incumbent
solution. If this is smaller than a pre-defined value εc, then we investigate whether
this estimate is accurate, and we enter what is called the criticality step in the
literature. The purpose of this step is to maintain the trust region radius comparable
to this estimate of the gradient, while building fully linear models to retain accuracy.
This is done so that when the gradient estimate is close to zero, so is the trust region
radius—thus leading to an accurate model and therefore an accurate estimate of the
true gradient as well. Algorithm 3.3 provides the relevant implementation details.
We show in Section 3.4 that Algorithm 3.3 will eventually terminate if the incumbent
solution is not a stationary point. The aspect that differs from the traditional
criticality step is the requirement on the number of samples at the interpolation
points whenever the trust region decreases. Replication, in addition to maintaining
a fully linear model, is used to ensure the accuracy of the model.

After the criticality step, an improvement step is sought by finding a solution to
the trust region subproblem (Problem P2). An approximate solution that ensures
a certain sufficient decrease can be guaranteed (Lemma 3.2).

For the trust region updates, we use two criteria—a traditional ratio test and a
hypothesis test, to ensure decrease with high probability. The ratio test computes
the ratio of estimated decrease in function between the incumbent solution and the
step recommended from the trust region subproblem, to the decrease in model value
between the same two points. The hypothesis test sets up the null hypothesis to
be that the incumbent is better than the step being investigated. The trust region
update moves the trust region center to this point if enough evidence is collected to
reject the null hypothesis.
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The trust region management also involves updating the size of the trust re-
gion. We increase and decrease the trust region cautiously. In traditional nonlinear
programming, the trust region radius becomes bounded away from zero as the algo-
rithm converges to a stationary point. We do not want this to happen, as the radius
provides a dual purpose—to restrict the step of the optimization, and to provide a
region where the model is accurate. We do not decrease it too hastily because the
smaller the trust region radius gets, the harder it is to distinguish between points
due to noise. Therefore, we ensure through replications that an unfavorable ρk value
results from the step size being too large, and not due to poor model accuracy.

Having said this, we would like to minimize simulation replications as much
as possible. We do not exceed the χ0,χ1 simulation replication budget when the
trust region radius is ‘large’, thus attributing the trust region step failures to poor
models due to the large radius, and decrease the trust region accordingly. When
trust regions are smaller, we not only want to ensure that the models are more
accurate (through replications), but also want to prevent further shrinking of the
trust region, as mentioned in the previous paragraph. To control what we consider
‘large’ or ‘small’, we use the threshold parameter ∆c, below which we rigorously
improve the model quality both through model geometry improvements, as well
as through an increase in simulation replications according to the formula derived
in Lemma 3.5. The rules involving the trust region management are detailed in
Algorithm 3.2. Note that our algorithmic framework requires that the result of the
ratio test has to be strictly positive (η0 > 0) to consider a new solution to be the
incumbent solution.

Similar to prevailing DFO algorithms, we make use of a model-improvement
step if the ratio test does not have the ideal outcome (ρk ≥ η1). This involves
certifying that the model is fully linear in the current iteration, and, if not, building
one that is. In this way, we are not required to build fully linear models at every
iteration.

The iteration count is incremented and we return to the model building step.
Section 3.4 is devoted to proving that the above scheme guarantees convergence to
a stationary point. Relevant parameters for the algorithm are listed in Table 3.1.

Using analogous terminology of Conn et al. (2009), we call a step successful
if both the ratio test and the hypothesis test are passed. Any step that results in
a decrease in trust region radius is called unsuccessful. A step that requires a
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call to the model-improving algorithm is called model-improving, and all other
situations are deemed acceptable steps.

Table 3.1: List of initialization parameters to simulation optimization algorithm

Trust region parameters

Initial trust region size and maximum size ∆0, ∆max

Control of trust region performance 0 < η0 < η1 < 1
Update of trust region size 0 < λ0 < 1 < λ1

Threshold parameters

Threshold trust region radius 0 < ∆c < ∆max

Threshold model gradient to enter criticality step εc > 0
Trust region radius reduction factor in criticality step τc ∈ (0, 1)
Criticality step threshold parameters µ > ζ > 0
Model-building threshold parameters ψ0 ≥ 1,ψ1 ∈ (0,ψ−1

0 ]

Sampling and statistical parameters

Maximum no. of points in interpolation/regression set πmax

Number of samples at TR center for ∆k > ∆c χ0

Number of samples at non-TR center points for ∆k > ∆c χ1

Initial α-level for hypothesis test α0

3.4 convergence analysis

We address the quality of general interpolation models in the presence of stochastic
noise. First, we state a geometric condition on fully linear models, one that may be
satisfied using Algorithm 4.2 through ψ1-thresholding of the chosen interpolation
points. We state Lemma 4.2 from Wild et al. (2008),

Lemma 3.3. If d+ 1 affinely independent points are found as per the ψ1-thresholding
in Algorithm 4.2 and included in Yd,

||Y −1
d || ≤

d(d−1)/2

∆kψ1
=

ΛYd

∆k
,

where 0 < ψ1 ≤ ψ−1
0 ≤ 1.
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Algorithm 3.1 Trust region-based simulation optimization framework
Require Initialization parameters listed in Table 3.1, and an initial point x0 ∈ Rd.

Set iteration counter k ← 0. Set i← 0, a counter that keeps track of the number
of consecutive steps when ∆k ≤ ∆c.

Step 1: Locate d+ 1 affinely independent points that lie within a distance ∆0 from
x0 and perform χ0 replications at x0, the trust region center and χ1 replications at
the other points. Using these points, build a GP regression model if ∆0 ≥ ∆c and
a GP interpolation model otherwise, using the scheme described in Section 3.2.2
and denote the model m0.

Step 2: (criticality step)
if ‖∇mk(xk)‖ < εc then

if mk(xk) is not fully linear in Bk(xk, ∆k) or ∆k > µ ‖∇mk(xk)‖ then
Assign ∆inc ← ∆k.

Call criticality step (Algorithm 3.3).

mk ← m
(j)
k , and ∆k ← min{max{τ jc ∆inc, ζ‖∇m(j)

k (xk)‖}, ∆inc}.
end if

end if

Step 3: (step calculation) solve trust-region subproblem (cf. Problem (P2),
Lemma 3.2) to obtain a step sk. Evaluate the function f at xk + sk with χ0
replications if ∆k ≥ ∆c and ni replications otherwise.

Step 4: (trust region update) Compute a defined measure of fidelity

ρk :=
f̂(xk)− f̂(xk + sk)

m(xk)−m(xk + sk)
,

and update trust-region parameters using Algorithm 3.2. If the trust region
center is moved in this step, update αk according to Equation 4.1.

Step 5: (model building) Construct model mk+1 using Algorithm 4.1.

Step 6: Iterate k ← k+ 1, and return to Step 2.
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Algorithm 3.2 Trust region update scheme
1: if ρk ≥ η0, then
2: perform hypothesis test according to Equation 3.46 (for example)
3: if hypothesis test is passed then xk+1 ← xk + s∗

4: if ρk ≥ η1 then
5: if ∆k < ∆c then ∆k+1 ← ∆inc, i← 0
6: else ∆k+1 ← λ1∆k
7: end if
8: else
9: if ∆k < ∆c then ∆k+1 ← ∆inc, i← 0

10: else ∆k+1 ← ∆k
11: end if
12: end if
13: else
14: xk+1 ← xk
15: if ∆k < ∆c then
16: ∆k+1 ← ∆k; i← i+ 1
17: Call Algorithm 4.2 in model-improvement mode with the current

set of interpolation points Yk as argument. This will improve the
current model m if it is not fully linear in B(xk, ∆k)

18: else
19: if The current model m is not fully linear within B(xk, ∆k) then
20: ∆k+1 ← ∆k. Call Algorithm 4.2 in model-improvement mode

with current set of regression data points Yk as argument.
21: else
22: ∆k+1 ← λ0∆k. If ∆k+1 < ∆c, assign ∆inc ← ∆k.
23: end if
24: end if
25: end if
26: else if ρk < η0, then
27: xk+1 ← xk
28: Call Algorithm 4.2 in model-improvement mode to determine if model

m if fully linear, and improve it if it is not.
29: if The current model m is fully linear within B(xk, ∆k) then
30: ∆k+1 ← λ0∆k.
31: if ∆k+1 < ∆c then
32: if i = 0 then
33: ∆inc ← ∆k
34: end if
35: i← i+ 1
36: end if
37: else ∆k+1 ← ∆k.
38: end if
39: end if
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Algorithm 3.3 Criticality step algorithm

1: Initialize counter j ← 0. Assign m(0)
k (xk) ← mk(xk) and l0 ← χ0 if i = 0 and

l0 ← ni if i > 0.
2: repeat
3: Increment j ← j + 1
4: if model m(j−1) is not fully linear in B(xk, τ j−1

c ∆inc) then
5: Call model-improvement algorithm to identify points for building a

fully linear model
6: Perform replications according to Lemma 3.5, i.e., until the number

of replications at the required points is lj ← dlj−1τ
−4
c e+ 1

7: Build the model m(j) using Algorithm 4.1 with ψ0 = 1.
8: end if
9: Compute model gradient ∇m(j)

k (xk)

10: until τ j−1
c ∆inc ≤ µ

∥∥∥∇m(j)
k (xk)

∥∥∥
Even though Algorithm 4.2 does not guarantee that d+ 1 points satisfying this

property are returned, the overall scheme in Algorithm 3.1, through the evaluation
of model-improving points, can provide this guarantee in a finite number of steps.
Note that the bound in Lemma 3.3 is important for Lemma 3.4.

Next, we characterize the discrepancy between the model and the true function,
as well as the gradients of the model and the true underlying function. The develop-
ment follows that presented in Wild (2009), but extends it to the case of stochastic
functions.

Lemma 3.4. We can bound the error in the model as

|m(xk + s)− f(xk + s)| ≤∆2
k

2 (γf + γm)(5ΛYd

√
d+ 1)

+
√
dΛYd |f̂(xk + yp)− f(xk + yp)|

+ (
√
dΛYd + 1)|f̂(xk)− f(xk)|,

and the error in the gradient as

‖∇m(xk + s)−∇f(xk + s)‖ ≤5
2ΛYd

√
d∆k(γm + γf )

+

√
dΛYd

∆k
(|f̂(xk + yp)− f(xk + yp)|

+ |f̂(xk)− f(xk)|),
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where yp is any point contained in a subset of the interpolation points Yd, s ∈
B(xk, ∆k), and ΛYd is a finite constant that satisfies

∥∥∥Y −1
d

∥∥∥ ≤ ΛYd/∆k.

Proof. Let the error between the model and the true underlying function be

em(s) := m(xk + s)− f(xk + s), (3.4)

where xk is a base point (which corresponds to the incumbent solution and trust
region center in our algorithm), and s is a displacement from this base point (which
corresponds to a step from the trust region center in our algorithm). Let the error
in the gradient be

eg(s) := ∇m(xk + s)−∇f(xk + s). (3.5)

We perform a Taylor expansion of the model around the interpolation points,

m(xk + yp) = m(xk + s+ (yp − s))

= m(xk + s) +
∫ 1

0
∇m(xk + s+ t(yp − s))T (yp − s) dt,

(3.6)

where Y = {y1, . . . , yπ} is the set of displacements from the trust region center that
correspond to interpolation points. Similarly, we do this for the function f ,

f(xk + yp) = f(xk + s) +
∫ 1

0
∇f(xk + s+ t(yp − s))T (yp − s) dt. (3.7)

The task is to provide bounds on the quantities em as well as eg. We start by taking
the inner product of the error in the gradient at a point s with the displacement of
the interpolation points from s,

eg(s)T (yp − s) = [∇m(xk + s)−∇f(xk + s)]T (yp − s)

= ∇m(xk + s)T (yp − s)−∇f(xk + s)T (yp − s)

+ em(s)− em(s),

(3.8)

for all yp ∈ Y , where we have added and subtracted the term em(s).
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3.4 convergence analysis

Substituting for em(s) using Equations 3.4, 3.6 and 3.7, we get for each yp ∈ Y ,

eg(s)T (yp − s) =∇m(xk + s)T (yp − s)−∇f(xk + s)T (yp − s)− em(s)

−
∫ 1

0
∇m(xk + s+ t(yp − s))T (yp − s) dt+m(xk + yp)

+
∫ 1

0
∇f(xk + s+ t(yp − s))T (yp − s) dt− f(xk + yp).

(3.9)

We consolidate the terms to get

eg(s)T (yp − s) =
∫ 1

0
[∇f(xk + s+ t(yp − s))−∇f(xk + s)]T (yp − s) dt

−
∫ 1

0
[∇m(xk + s+ t(yp − s))−∇m(xk + s)]T (yp − s) dt

+m(xk + yp)− f(xk + yp)− em(s),
(3.10)

for all yp ∈ Y . Now, for the trust region center, where y1 = 0, this becomes

eg(s)T (−s) =
∫ 1

0
[∇f(xk + s− ts)−∇f(xk + s)]T (−s) dt

−
∫ 1

0
[∇m(xk + s− ts)−∇m(xk + s)]T (−s) dt

+m(xk)− f(xk)− em(s).

(3.11)

We can now subtract Equation 3.11 from Equation 3.10 to get an expression that
is purely dependent on the error in the gradient and the set of interpolation points
on the left-hand side:

eg(s)T yp =
∫ 1

0
[∇f(xk + s+ t(yp − s))−∇f(xk + s)]T (yp − s) dt

−
∫ 1

0
[∇m(xk + s+ t(yp − s))−∇m(xk + s)]T (yp − s) dt

−
∫ 1

0
[∇f(xk + s− ts)−∇f(xk + s)]T (yp − s) dt

+
∫ 1

0
[∇m(xk + s− ts)−∇m(xk + s)]T (−s) dt

+m(xk + yp)− f(xk + yp)−m(xk) + f(xk).

(3.12)
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Now, we attempt to bound the left-hand side of Equation 3.12 by individually
bounding each term on the right-hand side. We start with the first term, where∥∥∥∥∥

∫ 1

0
[∇f(xk + s+ t(yp − s))−∇f(xk + s)]T (yp − s) dt

∥∥∥∥∥
≤
∫ 1

0
‖∇f(xk + s+ t(yp − s))−∇f(xk + s)‖ ‖(yp − s)‖ dt,

(3.13)

due to the Cauchy-Schwarz inequality. Further, due to Assumption 3.1, this is

≤
∫ 1

0
γf ‖t(yp − s)‖ ‖yp − s‖dt

=
∫ 1

0
γf t ‖yp − s‖2 dt

≤
∫ 1

0
γf t ‖2∆k‖2 dt,

(3.14)

where the last inequality is due to the fact that both s and yp are within the trust
region of radius ∆k. Then, we can state∥∥∥∥∫ 1

0
[∇f(xk + s+ t(yp − s))−∇f(xk + s)]T (yp − s) dt

∥∥∥∥
≤ 4γf∆2

k

∫ 1

0
tdt = 4γf∆2

k

[
t2

2

]1

0
= 2γf∆2

k.
(3.15)

We can perform an identical procedure for the second, third, and fourth terms in
Equation 3.12, using the relevant Lipschitz constant γm or γf to get

[∇m(xk + s)−∇f(xk + s)]T (yp) ≤
5
2∆2(γf + γm) + |m(xk)− f(xk)|

+ |m(xk + yp)− f(xk + yp)|.
(3.16)

Now, since our model m interpolates f̂ ,

m(xk + yp) = f̂(xk + yp) for all yp ∈ Y . (3.17)

Therefore,

[∇m(xk + s)−∇f(xk + s)]T (yp) ≤
5
2∆2(γf + γm) + |f̂(xk)− f(xk)|

+ |f̂(xk + yp)− f(xk + yp)|.
(3.18)
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Now, while we may interpolate at more than d+ 1 points, we restrict our attention
to any d of these points barring the trust region center, and call this interpolation
submatrix as Yd. Now as Yd is square and nonsingular by construction (Lemma 3.3),
we may write,

‖eg(s)‖ =
∥∥∥Y −Td Y T

d e
g(s)

∥∥∥ ≤ ∥∥∥Y −Td

∥∥∥ ∥∥∥Y T
d e

g(s)
∥∥∥ . (3.19)

Further,

‖eg(s)‖ ≤ ΛYd

∆k

∥∥∥Y T
d e

g(s)
∥∥∥ . (3.20)

using the bound on
∥∥∥Y −Td

∥∥∥ from the statement of this lemma. The enforcement of
this bound is described in Lemma 3.3 and Algorithm 4.2. Now, from the equivalence
of norms, ‖·‖2 ≤

√
d ‖·‖∞,

∥∥∥Y T
d e

g(s)
∥∥∥ ≤√d ∥∥∥Y T

d e
g(s)

∥∥∥
∞

≤
√
d

(5
2∆2(γf + γm) + |f̂(xk + yp)− f(xk + yp)|

+ |f̂(xk)− f(xk)|
)

,

(3.21)

for some yp ∈ Yd. Therefore, using Equations 3.20 and 3.21,

‖eg(s)‖ ≤5
2ΛYd

√
d∆k(γm + γf ) +

√
dΛYd

∆k
(|f̂(xk + yp)− f(xk + yp)|

+ |f̂(xk)− f(xk)|).
(3.22)

Now, rearranging Equation 3.11,

em(s) =
∫ 1

0
[∇f(xk + s− ts)−∇f(xk + s)]T (−s) dt

−
∫ 1

0
[∇m(xk + s− ts)−∇m(xk + s)]T (−s) dt

+m(xk)− f(xk) + eg(s)T (s).

(3.23)
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Using the bounds on the first two terms with the triangle inequality, and subse-
quently substituting for ‖eg(s)‖ from Equation 3.22,

|em(s)| ≤γf∆2

2 +
γm∆2

2 + |m(xk)− f(xk)|+ ‖eg(s)‖∆

≤∆2

2 (γf + γm) + |f̂(xk)− f(xk)|+
5
2∆2ΛYd

√
d(γf + γm)

+
√
dΛYd |f̂(xk + yp)− f(xk + yp)|+

√
dΛYd |f̂(xk)− f(xk)|.

(3.24)

In summary,

|m(xk + s)− f(xk + s)| ≤∆2

2 (γf + γm)(5ΛYd

√
d+ 1)

+
√
dΛYd

∣∣∣f̂(xk + yp)− f(xk + yp)
∣∣∣

+ (
√
dΛYd + 1)

∣∣∣f̂(xk)− f(xk)∣∣∣ .
(3.25)

�

Algorithm 3.1 defines a threshold ∆c, below which, every time the trust region
is forced to decrease through Algorithm 3.2, the number of samples increases. This
is required in order to ensure that the function value estimates converge to the true
value faster than the trust region shrinks. We provide a modified version of the
lemma from Chang et al. (2013), where we do not provide a bound for the gradient
estimate, as we do not make assumptions of its availability.

Lemma 3.5. If Assumption 3.4 holds, for any xi ∈ Rd, where i is the ith consecutive
iteration where the trust region radius is decreased (or maintained) below ∆c,

P

(
lim
i→∞
|f̂(xi + y)− f(xi + y)| > ∆2

i

)
= 0,

if the sampling scheme used is such that ni+1 ≥ dniλ−4
0 e+ 1.

Proof. If xi + y ∈ Yi, the interpolation set at iteration i, then by Chebyshev’s
inequality,

P
(
|f̂(xi + y)− f(xi + y)| > ∆2

i

)
≤ σ2(xi + y)

ni∆4
i

≤ supx∈Rd σ
2(x)

ni∆4
i

, (3.26)
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3.4 convergence analysis

where ni is the minimum number of replications at each of the interpolation points
Yi. If we can show that

∞∑
i=1

supx∈Rd σ
2(x)

ni∆4
i

<∞, (3.27)

Then we will have completed the proof due to the first Borel-Cantelli lemma. We
can achieve the desired target by enforcing, say, the series ratio test to hold (Rudin
1976), namely that

supx∈Rd σ
2(x)

ni+1∆4
i+1

·
[

supx∈Rd σ
2(x)

ni∆2
i

]−1

< 1, (3.28)

or that

ni+1 >
ni∆4

i

∆4
i+1

. (3.29)

Since the failed step update rule for the trust region radius is ∆i+1 = λ0∆i, this
implies ni+1 > niλ

−4
0 . We can ensure this by assigning ni+1 ≥ dniλ−4

0 e+ 1. This
completes the proof. �

We note that this sample update requirement is marginally different from the
one proposed in Chang et al. (2013).

In the previous lemma, we have chosen to bound the error between the estimates
and the true function by ∆2. The reason for this will become apparent in the
following lemma, where we bound the difference between the predicted value at a
point and the observed value by a similar quantity.

Lemma 3.6. For any xi ∈ Rd, where i is as defined in Lemma 3.5,

P

(
lim
i→∞
|mi(x

∗)− f̂(x∗)| > c · ∆2
i

)
= 0,

where c = γf+γm
2 (5ΛYd

√
d+ 1) + 2ΛYd

√
d+ 2.

Proof. Now, Lemma 3.5 can also be applied to points other than the interpolation
points, i.e., at a point x∗. So, P

(
limi→∞ |f̂(x∗)− f(x∗)| > ∆2

i

)
= 0.
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From the triangle inequality,

|mi(x
∗)− f̂(x∗)| ≤ |mi(x

∗)− f(x∗)|+ |f̂(x∗)− f(x∗)|. (3.30)

Inserting the result from Lemma 3.4,

|mi(x
∗)− f̂(x∗)| ≤∆2

2 (γf + γm)(5ΛYd

√
d+ 1)

+
√
dΛYd |f̂(xk + yp)− f(xk + yp)|

+ (
√
dΛYd + 1)|f̂(xk)− f(xk)|+ |f̂(x∗)− f(x∗)|.

(3.31)

We assign c = γf+γm
2 (5ΛYd

√
d+ 1) + 2ΛYd

√
d+ 2 to complete the proof. �

Lemma 3.7. For any xi ∈ Rd, where i is as in Lemma 3.5, if ‖∇f(xi)‖ > 0,
Algorithm 3.1 can always find a new satisfactory solution.

Proof. We assume that ‖∇f(xi)‖ = ε > 0. We first consider the ratio comparison
test, where

ρi − 1 =
f̂(xi)− f̂(x∗)
mi(xi)−mi(x∗)

− 1 =
mi(x∗)− f̂(x∗)
mi(xi)−mi(x∗)

, (3.32)

as f̂(xi) = mi(xi) due to the fact that xi is an interpolation point. Taking the
absolute value of this quantity,

|ρi − 1| = |mi(x∗)− f̂(x∗)|
|mi(xi)−mi(x∗)|

. (3.33)

Let us assume, for contradiction, that this test fails for infinite consecutive steps,
which means P (limi→∞ ∆i > δ) = 0, for any δ > 0. Also,

‖∇f(xi)‖ = ‖∇f(xi)−∇mi(xi) +∇mi(xi)‖

ε ≤‖∇f(xi)−∇mi(xi)‖+ ‖∇mi(xi)‖ .
(3.34)

Recall, from Lemma 3.4,

‖eg(s)‖ ≤5
2ΛYd

√
d∆k(γm + γf ) +

√
dΛYd

∆k
(|f̂(xk + yp)− f(xk + yp)|

+ |f̂(xk)− f(xk)|).
(3.35)
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This, along with Lemma 3.5, implies that

P ( lim
i→∞
‖∇mi(xi)‖ < ε/2) = 0. (3.36)

As P (limi→∞ ∆i > δ) = 0 for any δ > 0. Therefore, for sufficiently large i,
∆i ≤ ‖∇mi(xi)‖κH

, and therefore,

min
{‖∇mi(xi)‖

κH
, ∆i

}
= ∆i. (3.37)

Now, from Lemma 3.6,

P

(
lim
i→∞
|mi(x

∗)− f̂(x∗)| > c · ∆2
i

)
= 0, (3.38)

or when divided through by a constant,

P

(
lim
i→∞

|mi(x∗)− f̂(x∗)|
κd
2 ‖∇mi(xi)‖∆i

>
c · ∆2

i
κd
2 ‖∇mi(xi)‖∆i

)
= 0. (3.39)

We can then replace the constants ‖∇mi(xi)‖ and ∆i on the right-hand side by ε/2
and δ respectively, giving

P

(
lim
i→∞

|mi(x∗)− f̂(x∗)|
κd
2 ‖∇mi(xi)‖∆i

>
4cδ
κdε

)
= 0. (3.40)

We use the sufficient decrease condition to replace the denominator on the left-hand
side of the inequality to yield

P

(
lim
i→∞

|mi(x∗)− f̂(x∗)|
|mi(xi)−mi(x∗)|

>
4cδ
κdε

)
= 0, (3.41)

or

P

(
lim
i→∞
|ρi − 1| > 4cδ

κdε

)
= 0. (3.42)

Choosing δ = (1−η0)κdε
4c ,

P

(
lim
i→∞
|ρi − 1| > 1− η0

)
= 0, (3.43)
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or

P

(
lim
i→∞

ρi < η0

)
= 0, (3.44)

which is a contradiction. Therefore, the ratio test will be passed with probability 1.
Next, we consider the hypothesis test. The algorithm we propose performs the

hypothesis test if the ratio test is passed, so

f̂(xi)− f̂(x∗) ≥ η0(mi(xi)−mi(x
∗)) ≥ η0βi. (3.45)

The proposed test statistic in the Behrens-Fisher case (normally distributed random
variables with unequal variances Lehmann & Romano (2005)) is

ti =
f̂(xi)− f̂(x∗)− η2

0βi
Si

≥ η0(1− η0)βi
Si

, (3.46)

where Si is the sample standard deviation, and is computed by S2
i = S2(xi,ni)/ni+

S2(x∗,n∗i )/n∗i .
Now, assume for contradiction that the hypothesis test is failed infinitely consec-

utively often, or ti ≤ t1−αk,df for all i = 1, 2, . . .. Then, according to the algorithm,
both ni → ∞ and n∗i → ∞, thus S2

i → 0 w.p.1. Since ‖∇f(xi)‖ = ε > 0 and the
ratio test is passed for sufficiently large i, ∆i is bounded away from zero, and thus

βi =
κd
2 ‖∇mi(xi)‖min

{‖∇mi(xi)‖
κH

, ∆i
}

(3.47)

is also bounded away from zero w.p.1 for sufficiently large i (using Equation 3.36).
Therefore, from Equation 3.46, limi→∞ ti → ∞ and therefore ti > t1−αk,df , and
therefore the hypothesis test passes, which contradicts our initial assumption. Note
that for other hypothesis tests, the corresponding test statistic will fall in the re-
jection region with high probability (if the null hypothesis is false) as sample sizes
increase, which is the case with the above scheme. The above Behrens-Fisher test
only serves as an example. �

We now show that the criticality step will terminate if the incumbent solution
is not a first-order point.

Lemma 3.8. If ∇f(xk) 6= 0, Algorithm 3.3 will terminate w.p.1.
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Proof. Suppose ∇f(xk) = ε > 0.
Initially, either the model m(0) := mk is not fully linear in B(xk, ∆k) or the

radius is above µ ‖∇mk(xk)‖. The model is then improved using one iteration
of Algorithm 3.3 and the new model which we call m(1) is built and it’s gradient
computed at xk. If, now, ∆inc ≤ µ

∥∥∥∇m(1)(xk)
∥∥∥, then we stop the procedure. If this

is not the case, we scale the radius by τc, increment the algorithm loop counter j,
and repeat the procedure.

The only way that Algorithm 3.3 does not terminate is in the case

µ
∥∥∥∇m(j)

k (xk)
∥∥∥ < τ j−1

c ∆inc, (3.48)

for all j ≥ 1. This implies that limj→∞
∥∥∥∇m(j)

k (xk)
∥∥∥ = 0. Since we ensure that the

error between gradients of the model and the true function converges (Lemmas 3.4
and 3.6) to zero as ∆k → 0, and because ‖∇f(xk)‖ = ε ≤

∥∥∥∇f(xk)−∇m(j)
k (xk)

∥∥∥+∥∥∥∇m(j)
k (xk)

∥∥∥,
P

(
lim
j→∞

∥∥∥∇m(j)
k (xk)

∥∥∥ < ε

2

)
= 0. (3.49)

This is a contradiction, and therefore Algorithm 3.3 will terminate w.p.1 if the
incumbent solution is not a stationary point. �

Lemma 3.9. If the number of successful iterations is finite, then

lim
k→∞

‖∇f(xk)‖ = 0.

Proof. After the last successful iteration, the trust region radius is never increased
(Algorithms 3.1 and 3.2). If ∆k ≥ ∆c, then trust region radius is reduced at least
every D steps, where D is a finite number of steps required to make a model fully
linear. This will continue until ∆k < ∆c.

If ∆k < ∆c, Lemma 3.7 ensures that we will always be able to find a successful
step if ‖∇f(xk)‖ > 0. Since we have already passed the last successful iteration,
this implies that the incumbent solution is a stationary point, and therefore that
‖∇f(xk)‖ = 0.

�

66



3.4 convergence analysis

The following development will focus on the case when the number of successful
iterations is infinite. We proceed to prove a series of statements in order to show
convergence of the algorithm, results that typically appear in the context of trust
region-based DFO algorithms (Conn et al. 2009).

Lemma 3.10. If we enforce
∑
k αk <∞,

lim
k→∞

∆k = 0.

Proof. Let the set of successful iterations be denoted by S. For k ∈ S,

f̂(xk)− f̂(xk+1) ≥ η0(m(xk)−m(xk + sk)). (3.50)

For each such iteration,

P
(
f(xk)− f(xk+1) < η0(m(xk)−m(xk + sk))

)
≤ αk. (3.51)

Since
∑
k αk <∞ holds for k ∈ S,

P

(
lim
k→∞

f(xk)− f(xk+1) < η0(m(xk)−m(xk + sk))

)
= 0. (3.52)

due to the first Borel-Cantelli lemma which says that if for an event Ak,
∑
k P (Ak) <

∞, then the probability of Ak happening infinitely often is 0. This can be rewritten
as

P

(
lim
k→∞

f(xk)− f(xk+1) ≥ η0(m(xk)−m(xk + sk))

)
= 1. (3.53)

Now, using Lemma 3.2,

P

(
lim
k→∞

f(xk)− f(xk+1) ≥ (3.54)

η0

[
κd
2 ‖∇mk(xk)‖min

{‖∇mk(xk)‖
κH

, ∆k
}])

= 1. (3.55)
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Since Algorithm 3.1 ensures that ‖∇mk(xk)‖ ≥ min{εc,µ−1∆k},

P

(
lim
k→∞

f(xk)− f(xk+1) ≥ (3.56)

η0

[
κd
2 min{εc,µ−1∆k}min

{
min{εc,µ−1∆k}

κH
, ∆k

}])
= 1. (3.57)

If the right-hand side does not converge to zero, we can achieve infinite decrease.
Since we know that f is bounded from below, we cannot achieve this decrease,
implying that limk∈S ∆k = 0. For the iterations k /∈ S, we know from Algorithms 3.1
and 3.2 that ∆k ≤ λ1∆sk , where sk is the index of the last successful iteration before
k. Since ∆sk → 0, then ∆k → 0 for k /∈ S. �

Lemma 3.11.

lim inf
k→∞

‖∇mk(xk)‖ = 0.

Proof. From Algorithm 3.1, ∆k ≥ min{ζ ‖∇mk(xk)‖ , ∆inc}. If ‖∇mk(xk)‖ > κ1 > 0
for all k, then ∆k > 0 (from Lemma 3.7). But this is a contradiction, as we proved
in Lemma 3.10 that limk→∞ ∆k = 0. �

Lemma 3.12. For any subsequence {kj} such that

lim
j→∞

∥∥∥∇mk(xkj )
∥∥∥ = 0, (3.58)

it also holds that

lim
j→∞

∥∥∥∇f(xkj )∥∥∥ = 0.

Proof. From Equation 3.58,
∥∥∥∇mkj (xkj )

∥∥∥ ≤ εc for j sufficiently large. The criticality
step in Algorithm 3.1 ensures that the model is fully linear on B(xkj , ∆kj ), where
∆kj ≤ µ

∥∥∥∇mkj (xkj )
∥∥∥ for j sufficiently large, and ∇f(xkj ) 6= 0. From Equation 3.22,

∥∥∥∇f(xkj )−∇mkj (xkj )
∥∥∥ ≤√dΛYd

∆k

(
|f̂(xk + yp)− f(xk + yp)|

+ |f̂(xk)− f(xk)|
)
+

5
2ΛYd

√
d∆k(γm + γf ).

(3.59)
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From Lemmas 3.5 and 3.10, which apply to the right-hand side of Equation 3.59,
we get

lim
j→∞

∥∥∥∇f(xkj )−∇mkj (xkj )
∥∥∥ = 0. (3.60)

We also have the triangle inequality which states

∥∥∥∇f(xkj )∥∥∥ ≤ ∥∥∥∇f(xkj )−∇mkj (xkj )
∥∥∥+ ∥∥∥∇mkj (xkj )

∥∥∥ . (3.61)

From Lemma 3.11 and Equation 3.60, we get the desired result. �

Lemmas 3.11 and 3.12 immediately give

Theorem 3.1.

lim inf
k→∞

∇f(xk) = 0.

3.5 conclusions

In this work, we have extended the theory regarding fully linear models to the case
when there is stochastic noise associated with the black-box evaluations. We handle
this noise through careful trust region management and sampling schemes. Though
we maintain full linearity regularly in terms of model point geometry, the models
become closer and closer to the deterministic definition of full linearity in terms of
the discrepancy between true function value and estimated value as the algorithm
progresses and the sample replications increase. In this way we simultaneously build
a true fully linear model while converging to a stationary point. This helps with
significantly reducing simulation effort in the initial iterations of the algorithm.

In summary, the algorithm we propose does not require gradient estimates,
makes few assumptions on the underlying distributions, and deals with expensive
function evaluations by judicious sampling (both in terms of model-building as well
as replications), all while providing a guarantee of global convergence to a stationary
point.
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4
SO -LV IT : S IMULATION OPTIMIZAT ION—LEARNING VIA
TRUST REGIONS

4.1 introduction

In this chapter, we propose extensions and enhancements to individual algorithmic
elements presented in Chapter 3, and justify each of these choices. In particular, we
discuss the choice of the surrogate model that we use, the manner of sampling and
construction of this model, the estimation of underlying variance, stopping criteria,
and the effect of globally optimizing the trust region subproblem. Through this, we
outline the development of the theory into a practical implementation, which we
call so-lvit, or Simulation Optimization—Learning Via Trust regions.

We follow this discussion with comparative testing of the algorithm on a large
test bed against other available implementations. We first compile a 500-problem
test set to assess the performance of the implementation within a pre-specified
computational budget. With these promising results, we experiment with differ-
ent applications from chemical engineering to demonstrate the applicability of such
techniques in practical settings.

The first example we investigate relates to a classical problem in the supply
chain and operations literature, which has to do with inventory optimization. The
system of interest is modeled using a discrete-event simulation that incorporates
uncertain customer demands, lead times, and other system dynamics.

The second example involves the optimization of the design of a DNA separation
device. The movement of a DNA strand under electrophoretic forces has been
modeled using Brownian dynamic simulations, where the progress of the DNA strand
may be impeded using obstructions in the device. The sizing of these obstructions
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4.2 implementation details

affects the movement of different lengths of DNA differently, and therefore, the
problem is posed as finding the optimal obstruction size in order to maximize the
separation between two pre-specified lengths of DNA.

We then summarize the results of the chapter, and discuss future directions
for implementations and comparisons, potential new applications, and extensions to
current applications in simulation optimization for engineers.

4.2 implementation details

Figure 4.1 shows a 1-D schematic of an iteration of the so-lvit algorithm. Fig-
ure 4.1a illustrates the expected value of the true underlying function in solid black;
the portion of the variable space that is within the trust region radius; a confidence
interval on each of the sample points, one of which corresponds to the trust region
center. Section 4.2.1 provides implementation details on the selection of these points
for model-building.

Figure 4.1b illustrates the GP regression model that fits these samples using a
dashed red line, and the schematic only shows this regression function within the
trust region, to show that we are only concerned about its predictive performance
within this region. The implementation of the GP regression scheme is described in
Section 4.2.2.

Figure 4.1c illustrates the globally optimal solution to the trust region subprob-
lem in red, which is the point that minimizes the GP regression model within the
trust region radius. In general, it is very difficult to find the global optimum of the
regression function, but it may be worth it if the underlying simulation is expensive
to evaluate. Sections 4.3.2 and 4.4.2 provide more details on the benefits of using
global search for the TRSP.

Figure 4.1d illustrates that the black-box simulation has been sampled at this
global optimum, and is a candidate for being the next trust region center. The figure
illustrates that the upper confidence level for the candidate point is still below the
sample mean of the incumbent, indicating a high probability that the candidate point
may indeed be a better point. This comparison is formally performed between the
sample means, and if the null hypothesis (i.e., incumbent is better than candidate)
is rejected at the αk-significance level, and the trust region center and radius may
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Expected Objective GP regression modelTrust region

Global OptimumTrust region update

Trust region center Other sample points Confidence regionLegend:

(a) Sample points within trust region

Expected Objective GP regression modelTrust region

Global OptimumTrust region update

Trust region center Other sample points Confidence regionLegend:

(b) Construct GP regression model

Expected Objective GP regression modelTrust region

Global OptimumTrust region update

Trust region center Other sample points Confidence regionLegend:
(c) Globally optimize trust-region subproblem

Expected Objective GP regression modelTrust region

Global OptimumTrust region update

Trust region center Other sample points Confidence regionLegend:
(d) Update trust region center and radius

Expected Objective GP regression modelTrust region

Global OptimumTrust region update

Trust region center Other sample points Confidence regionLegend:

Figure 4.1: The four key steps in an iteration of the so-lvit algorithm are shown above.
The black surface is the underlying expectation function of the simulation.

be updated as shown in the figure. The management of the αk-significance level is
provided in Section 4.2.3 and Algorithm 3.1.

To quote Fu et al. (2005), some of the key issues in an implementation of an SO
algorithm are:
“

1. neighborhood definition;

2. mechanism for exploring/sampling (search), especially how previously gener-
ated (sampled) solutions are incorporated;

3. determining which candidate solution(s) to declare the best (or “good”); sta-
tistical statements?
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4.2 implementation details

4. the computational burden of each function estimate (obtained through simu-
lation replications) relative to search (the optimization algorithm). ”

We have addressed each of these issues in so-lvit. The neighborhood defini-
tion is carefully controlled by a trust-region framework. The mechanism for explor-
ing/sampling is done through the trust region subproblem, while previously sampled
points may be used to build our surrogate model at each iteration. Hypothesis test-
ing along with careful control of the α-significance level are used to provide ‘good’
statistical statements. Finally, we spend effort on simulation replications purely
when necessary in order to ensure descent with high probability.

4.2.1 Selection of points and maintenance of geometry for interpolation and re-
gression models

Algorithms 4.1 and 4.2 outline the procedure we use to choose points for our inter-
polation and regression models. To represent the underlying function accurately we
need to consider the number of sample replications as well as the geometry of se-
lected points (Lemma 3.4). Algorithm 4.1 focuses on the sample replication aspect,
while Algorithm 4.2 on the geometric aspect.

Algorithm 4.2 provides a sequential procedure to select points for interpola-
tion/regression. The construction of a fully linear model involves satisfying the
geometric condition imposed by Lemma 3.3. Given a set of points that have already
been selected for model-building (the trust region center is always included), we find
a basis to the nullspace of the space spanned by this set. Then, we cycle through a
sequence of given candidate (previously sampled) points, and project them onto this
nullspace. If this projected point is far enough away from the space spanned by the
set of included points (via the ψ-thresholding), we include the candidate point in
our model. We continue until we get d+ 1 points, which are now sufficiently affinely
independent. If we are unable to find d+ 1 such points, the columns that form the
basis of the nullspace at the end of the procedure, scaled by the trust region radius,
provide potential points that may be chosen for sampling and to be included in the
model. This is a fairly standard procedure for DFO algorithms, and it is easy to see
that this procedure requires a finite number of steps.

Algorithm 4.1 provides the sequence of candidate points to Algorithm 4.2. By
sorting candidate points within an enlarged trust region by the number of sample

73



4.2 implementation details

replications, candidate points with more replications are considered first. Though
this is not guaranteed to give you a set of sufficiently affinely independent points
with the highest number of cumulative replications, it provides an effective way to
include points which have been sampled more,

It is natural to want points with higher replications, as the sample mean at each
would be closer to the true value with high probability, and it requires fewer further
replications at each of these points to satisfy the sampling criteria as in Step 4 of
the algorithm (from Lemma 3.5).

The notation used in the two algorithms is from Table 3.1.

4.2.2 GP regression

We choose to use Gaussian Process (GP) regression for multiple reasons. When trust
regions are larger, we only require χ1 (a small number of) replications. As sample
mean estimates may not be very accurate, we choose to use regression in this case.
However, when the trust regions are smaller (below ∆c), we require a larger number
of replications, and perform interpolation using GPs.

GP regression allows the flexibility of incorporating many points in the regres-
sion (as opposed to a fixed number of points, or points on a fixed grid in space
as used in the response surface literature). This allows the use of previously sam-
pled points very effectively. GPs are also attractive as they automatically provide a
trade-off between model accuracy and model complexity, without having to specify
an explicit parameter to control this (Rasmussen & Williams 2006). GP regres-
sion is also capable of handling discrete inputs—potentially a major generalization
compared to other response surface methods.

In addition, the multiple simulation replications we perform at each sample site
allow us to build, as described in Section 4.3.1, an estimate for the variance in the
stochasticity of the underlying response surface, and this estimate can be easily
incorporated within the GP framework. A concern that sometimes arises with GP
regression relates to its expense, but we assume that the time it takes to perform is
insignificant in the case of expensive stochastic simulations.

Aside from the above features, as mentioned in Chapter 3, GP regression tech-
niques that incorporate radial basis function kernels have been shown to fall into
the fully linear framework, and we make use of this.
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Algorithm 4.1 Construction of interpolation/regression model
Step 1: Collect previously sampled points within the enlarged trust region with
radius ψ0∆k, where ψ0 ≥ 1. Form the set Π = {y1 = 0, y2, . . . , y|Π|}, where yp is
a displacement from the trust region center xk.

Step 2: Sort points by number of sample replications, from largest to smallest.
If more than d+ 1 of these points have been sampled (1) more than n1 times if
∆k < ∆c, or (2) greater than or equal to χ1 times otherwise, then move points
within main trust region ∆k to the front of the list.

Step 3: Call Algorithm 4.2 in model-building mode with the set of candidate
points Π as an argument, and retrieve a set of interpolation points Yk.

Step 4:
if ∆k ≤ ∆c then

if i = 0 then
Sample such that the number of replications at each of the chosen points
in Yk is n0 = dχ0λ

−4
0 e+ 1, as recommended in Section 3.4, Lemma 3.5.

else
Sample such that the number of replications at each of the chosen points
in Yk is ni = dni−1λ

−4
0 e+ 1, as recommended in Section 3.4, Lemma 3.5

(only if ni has not already been defined).
end if
Add up to πmax− (d+ 1) from the remaining points in Π to Yk, if they have
been sampled at at least ψ2ni times, where 0 < ψ2 < 1.
Build modelmk that interpolates all points in Yk using the GP interpolation
scheme described in Section 3.2.2.

else
Add up to πmax− (d+ 1) from the remaining points in Π to Yk, if they have
been sampled at at least χ1 times.
Build a regression model mk over the points in Yk using the GP regression
scheme described in Section 3.2.2.

end if
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Algorithm 4.2 Model-building and Model-improving algorithm
Step 1:
if Algorithm was called in model-building mode then

Initialize the set of points chosen for interpolation/regression, Yk = {y1 = 0}.
Initialize Z = Id.

else if algorithm called in model-improvement mode then
Initialize Z as a basis of the nullspace of the given set of points Yk. Denote
Π = Yk.

end if

Step 2: Initialize p = 1.
while yp ∈ Π do

if ||ZZT (1/(∆kψ0))yp|| ≥ ψ1, i.e., the projection of the candidate point onto
the nullspace of Yk is greater than ψ1, then

Include yp in set of interpolation points Yk.
Update Z to be an orthonormal basis for the nullspace of Yk. Update

p← p+ 1.
end if

end while

Step 3
If called in model-building mode and |Π| < d + 1, evaluate f(xk + zp) for all
columns of Z χ1 times, and add these points to Yk.
if |Yk| < d+ 1 deem model as not fully linear. then

If called in model-improvement mode, use the first column of Z to be the
model-improving direction, and evaluate it ni times if ∆k < ∆c, or χ0 times
otherwise.

else
If |Yk| = d+ 1, deem model as fully linear.

end if
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Though there are readily available packages for GP regression (The Gaussian
Processes Website 2014), getting them to work in practice often requires a lot of
experience. The choice of hyperparameters and their optimization, the method of
inference, and the choice of covariance (basis) functions can be very important. A
bad choice of these can lead to a completely flat regression surface with a few spikes
at the data points. As a consequence, poor models affect the progress of the trust
region algorithm.

Leave-one-out likelihood The most common way to optimize the hyperparameters
for GP regression is through maximizing the log-marginal likelihood (Equation 3.3).
Rather than using this, we use the recommendation of Sundararajan & Keerthi
(2001) and find that maximizing the leave-one-out (LOO) likelihood provides bet-
ter results in terms of reducing overfitting. This LOO-likelihood is computed by
maximizing the sum of log-likelihoods, where each log-likelihood is constructed by
leaving one of the training data (sample) points out.

Model selection and starting points We also find that choosing an appropriate
covariance function and relevant hyperparameters can aid in model fit. As noted
in Chapter 3, there are many possible basis functions that may be used that fall
into the fully linear framework. At the outset, we cycle through a set of covari-
ance or basis functions and optimize the LOO-likelihood for each to find the best
hyperparameters. The corresponding covariance function is used along with the rec-
ommended hyperparameter values. Rasmussen & Nickisch (2011) provides a BFGS
routine to optimize this likelihood function, and we use several rounds of starting
points in the search for the best hyperparameters. We then retain the best found
basis function as well as hyperparameters as initial starting points for subsequent
iterations of the algorithm.

4.2.3 Hypothesis test significance-level

In order to satisfy the requirement that
∑∞
k=1 αk <∞ (from Lemma 3.10), we apply

the rule that

αk = a · (b)k, (4.1)
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where k is the kth trust region center. We also require 0 < a ≤ 0.5, 0 < b < 1, so
that α is always less than 0.5, and that the series ratio test is always satisfied.

4.3 algorithmic enhancements

4.3.1 Variance learning

As outlined in Chapter 3, the algorithmic framework we use depends on simulation
replications at every point. The algorithmic scheme made use of replications not
only to regress over averaged values, but in hypothesis tests to determine when to
move the trust region center.

Here we show that these replications can, in addition, be used to make GP
regression even more accurate. In particular, we first show that these replications
can be used to build a consistent estimator of the underlying variance in the case
of uniform Gaussian noise, one that will grow ever more accurate with the progress
of the algorithm. This estimator can then be used to provide good bounds on
the parameter that represents the intrinsic noise in the Gaussian process regression
model, ω, as defined in Section 3.2.2. For this, we need at least two samples at every
data point.

Lemma 4.1. If F (xi,ω) ∼ N (f(xi),σ2), an unbiased estimator for σ2 is

σ̂2 =

∑
k∈K σ̂

2
k

|K|
,

where k ∈ K means that we have sampled at some points with k replications, nk is
the number of such points, and

σ̂2
k =

nk∑
i=1

k∑
j=1

(Fij − F i)2

(k− 1)nk
.

Proof. We begin by introducing an estimator that uses all points that have been
sampled k times, and the size of this set is nk,

σ̂2
k =

nk∑
i=1

k∑
j=1

(Fij − F i)2

knk
. (4.2)
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This estimator makes intuitive sense, as the numerator represents a squared de-
viation from some mean, and this deviation is averaged out over the knk total
data points. Next, we investigate the consistency of this estimator. We assign
Xi =

∑k
j=1

(Fij−F i)2

k . So, σ̂2
k = 1

nk

∑nk
i=1Xi, and we know that this estimator con-

verges in probability to

1
nk

nk∑
i=1

Xi
P−→ E(Xi) (4.3)

from the law of large numbers. Now,

E(Xi) =E

 k∑
j=1

(Fij − F i)2

k

 = E

 k∑
j=1

F 2
ij + F

2
i − 2FijF i
k


=E

 k∑
j=1

F 2
ij

k
− F 2

i

 = E

(∑k
j=1 F

2
ij

k

)
−E(F 2

i )

=

∑
j=1E(F

2
ij)

k
−E(F 2

i ).

(4.4)

From the identity E(X2) = V (X) +E2(X), this becomes

E(Xi) =
1
k

k∑
j=1

(V (Fij) +E2(Fij))− V (F i)−E2(F i)

= σ2 +E2(Fij)− V
(∑k

j=1 Fij

k

)
−E2

(∑k
j=1 Fij

k

)
,

(4.5)

which for independent random samples is

E(Xi) = σ2 +E2(Fij)−
1
k2

k∑
i=1

V (Fij)−
(
E

(∑k
j=1 Fij

k

))2

= σ2 +E2(Fij)−
σ2

k
−E2(Fij)

=
k− 1
k

σ2.

(4.6)
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This shows that the estimator we considered is biased, but is easily fixed by mul-
tiplying through by k

k−1 . Now we compute the corresponding metric for all such
k ∈ K, and use the sample average

σ̂2 =

∑
k∈K σ̂

2
k

|K|
, (4.7)

which is clearly an unbiased, consistent estimator of σ2. �

Once we have an estimator for the variance, we can use confidence bounds
on the estimator as bounds on the intrinsic variance hyperparameter during the
hyperparameter estimation step. This bounding of the variance can help to improve
the quality of the regression significantly. We illustrate this in Figure 4.2, where the
black line is the true underlying function. The red points are the data, the red line
is the mean of the regression, and the pink band includes the fitted variance of the
Gaussian Process as well as the uncertainty in function value at points away from
data points. Figure 4.2a clearly underfits the data, whereas Figure 4.2b seems to fit
the data much better.

The restriction of the variance helps help focus the multi-start optimization of
the likelihood to a more realistic range of values. In some cases, this just helps in
finding a better local solution to the problem, and, in other cases, it cuts off a global
solution to the maximum likelihood problem that corresponds to an underfit due to
some artifact of the data.

We can use these confidence intervals to bound the variance in the GP regression
directly. In addition, even if the nature of the underlying stochasticity is not uniform
Gaussian, we can make use of this estimate using points that are only within the
current trust region, assuming that the variance does not change significantly in this
region.

4.3.2 Global optimization of TRSP

Lemma 3.2 in Chapter 3 involves a backtracking line search scheme to achieve a
sufficient decrease condition when solving the trust region subproblem (TRSP). In
other words, this decrease suffices to show global convergence to stationary points.
Traditional trust region methods for nonlinear programming focus on ways to update
the solution of the TRSP by performing fast linear algebra. In our context, however,
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Figure 4.2: Two different regression surfaces for twenty samples taken from the function
f(x) = 50 + x sinx
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function evaluations are expensive, and we assume that any time taken algorithmic
computations are insignificant in comparison.

In this situation we hypothesize that solving the TRSP to optimality, or even
global optimality, may be worth it, especially if the surrogate models we construct
are of good quality. The form of the GP interpolation functions we use are expressed
by the difference of sums of functions, where the functions are in general nonconvex
(log-concave in the case of a Gaussian RBF). Therefore, in order to find a global
solution to such a surface, we make use of the baron software (Tawarmalani &
Sahinidis 2005; Sahinidis 2013) which performs deterministic global optimization
through a spatial branch-and-bound procedure. We omit the details of the imple-
mentation, but show that we gain some benefit as compared with a local search, as
illustrated in Section 4.4.

4.3.3 Stopping criteria

In the fields of derivative-free optimization and simulation optimization, expensive
function evaluations are often the bottleneck for algorithmic iterations. This neces-
sitates the enforcement of a computational budget for most practical applications.
This is common as convergence rates are slower than derivative-based methods, and
so it reasonable to run the algorithm until the computational budget is exhausted.

Trust region methods incorporating fully linear models provide a natural stop-
ping criterion in the derivative-free optimization case. If, during the search proce-
dure, the algorithm enters the criticality step, and stays in the criticality step until
∆k ≤ εc

κeg
, then from the triangle inequality,

||∇f(xk)|| ≤ ||∇mk(xk)||+ ||∇f(xk)−∇mk(xk)|| ≤ εc + κeg
εc
κeg

= 2εc, (4.8)

and this can be used as a stopping criterion.

Similarly, for simulation optimization, we look at the case when

∆(j)
k := τ j−1

c ∆inc ≤
2εc

5ΛYd

√
d(γf + γm)

, (4.9)
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in accordance with Lemma 3.4. We see that at this stage in the criticality step
algorithm that

||∇f(xk)|| ≤ ||∇m
(j)
k (xk)||+ ||∇f(xk)−∇m

(j)
k (xk)||

≤ 2εc +
√
dΛYd

∆(j)
k

(|f̂ (j)(xk + yp)− f(xk + yp)|+ |f̂ (j)(xk)− f(xk)|),

(4.10)

and since, with high probability, |f̂(xi + yp)− f(xi + yp)| ≤ (∆(j)
k )2, we also have

||∇f(xk)|| ≤ 2εc + 2
√
dΛYd∆(j)

k

≤ 2εc + 2
√
dΛYd

2εc
5ΛYd

√
d(γf + γm)

= 2εc +
4εc

5(γf + γm)
,

(4.11)

with high probability. From Lemma 3.5, this probability is

P
(
|f̂(xi + y)− f(xi + y)| ≤ ∆2

i

)
≥ 1−

sup
x∈B(xk,∆(j)

k
)
σ2(x)

lj(∆
(j)
k )4

. (4.12)

We can approximate sup
x∈B(xk,∆(j)

k
)
σ2(x) with the variance estimate in Lemma 4.1.

The algorithm would then be terminated when the trust region radius falls below
the threshold in Equation 4.9, and the probability from Equation 4.12 is more than
some high value (say, 0.99).

In practice, one may also simply terminate when more than some pre-defined
number of criticality step iterations have taken place (i.e., j is greater than some
value).

4.4 results and applications

4.4.1 Comparisons on large test sets

To benchmark the performance of our algorithm, we selected six different algorithms
from the literature to compare against, and developed a problem test set derived
from the one used in Rios & Sahinidis (2013). The six algorithms that we bench-
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marked against are listed in Table 4.1. The algorithms we chose to compare include
those that use response surfaces (as we relied on these as well), local search methods
such as Nelder-Mead simplex procedures (as our method has a local scope as well),
and those that use trust regions.

Table 4.1: List of algorithms compared against

Algorithm Type Citation

SKO Global response surface Huang et al. (2006)
SNM Direct search (Nelder-Mead) Chang (2012)
snobfit Multi-start local response surface Huyer & Neumaier (2008)
SPSA Stochastic Approximation Spall (2003a)
SPSA 2nd Order Stochastic Approximation Spall (2003a)
strong Local response surface Chang et al. (2011)

Both versions of the SPSA (Simultaneous Perturbation Stochastic Approxima-
tion) algorithm follow a stochastic approximation scheme. The idea behind SPSA-
Basic is to gain some measure of the gradient by using just two function evaluations,
as opposed to the more common n+ 1 function evaluations. This is done by simulta-
neously perturbing a point in all dimensions, as opposed to one dimension at a time.
The estimate now becomes independent of the dimension of the problem. SPSA-2nd
Order also uses some estimate of second-order information in this process.

snobfit (Stable Noisy Optimization by Branch and Fit) uses a multi-start
method, where it builds quadratic regression models in an iterative trust-region
framework. SKO (Sequential Kriging Optimization) is a modification of the EGO
algorithm Jones et al. (1998) for the stochastic case, where a global response surface
is built via a Kriging model over an initial design of experiments, and subsequent
samples are chosen via the maximization of a measure of expected improvement.
SNM (Stochastic Nelder-Mead) is a version of the Nelder-Mead algorithm that uses
an effective sample size scheme to control noise. strong (Stochastic Trust Region
Response-Surface Method) is a trust-region based algorithm that also builds linear
and quadratic models and uses replications to characterize output uncertainty.

The test set that was used involved 502 deterministic black-box real-valued
functions (from Rios & Sahinidis (2013)), whose output value was perturbed by
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a predetermined level of random Gaussian noise to represent stochasticity in the
output. The types of problems in the test set are listed in Figure 4.3.

0 50 100 150

1-2 (1.9)

3-9 (5.1)

10-30 (18.5)

31-300 (104.6)

Number of problems 

Variables (average) 

Convex smooth
Convex Nonsmooth
Nonconvex smooth
Nonconvex Nonsmooth

Figure 4.3: A breakdown of problem types in the 502-problem test set

To add noise to the deterministic results, ten random points were sampled from
each function, and their average, A, was taken. For each sample, independent noisy
observations were obtained by sampling from ε ∼ N (0,σ2), with σ = 0.1, and
this was multiplied by the average A, and added to the deterministic output at the
sampled points. The idea behind this was to add a level of noise on the order of the
range of variation in function value.

The reason that we use underlying deterministic functions is so that it gives us
a basis for comparison. The solvers considered query the simulation at a number
of points, and record and use the output values from the simulation. All of the
solvers don’t necessarily report the point that they believe is the ‘best’ point (or the
incumbent solution). Since we know the underlying functional form, we are able to
evaluate the black boxes to determine the true function value. We give the benefit
of doubt to the solvers, and assume the true best point that was evaluated is also
recorded as the incumbent solution by the solvers.

The algorithms mentioned in Table 4.1 and our algorithm, so-lvit, were run on
the 502-problem test set. As we are interested in solving problems where simulation
replications are expensive to obtain, a limit of 300 iterations (i.e., simulations) was
fixed for this study. The purpose is to assess the performance of the algorithms
under this strict budget of simulations.

The results we obtained are summarized in Figure 4.4. The vertical axis denotes
the relative fraction of problems solved. By this, we mean that an algorithm is said
to have ‘solved’ a particular problem if, within a certain tolerance, it is the best-
performing algorithm on that problem. Two algorithms are said to have solved a
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problem if they both find objective values that are within a pre-specified tolerance
of each other. The tolerance used for this study is 10−3 of the best solution found.

Relative fraction of problems solved

Iterations

Figure 4.4: Relative fraction of problems solved vs. Number of simulations for seven solvers

In Figure 4.4, each point represents the number of simulations needed by a
solver to find a solution that is better than any other point found by any other
solver over the entire simulation budget for a certain fraction of problems. As we
know that true underlying functions, we can actually judge whether one solution
is better than the other. So, for example, the yellow square point in Figure 4.4
at (120, 0.4) indicates that the solver SKO finds the best solution for 40% of the
problems within a budget of 120 simulations. In general, graphs that are higher and
more to the left are the ones that perform better on the test set.

From Figure 4.4, we see that SKO and so-lvit outperform the other algorithms.
SKO is able to find good solutions early to a significant fraction of problems, but
is not able to improve on the other problems with increased simulations. so-lvit
is able to solve a larger fraction of problems at around the 60 iteration mark, and
continues to find better solutions than other algorithms. This is not to say that the
other solvers do not progress on a large fraction of the problems—but only indicates
that they find the best solution only in a small number of problems.
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We believe that the reason that so-lvit performs better is that it is able to build
surrogate regression models with fewer function evaluations, is able to optimize
these models to global optimality, ensures descent with high probability for each
subsequent trust region, and handles noise in an effective manner through hypothesis
tests.

The other surrogate-based algorithms—SKO, strong and snobfit—each have
their own shortcomings. SKO performs an initial design of experiments, which seems
to help it find good solutions for many problems, but it seems unable to build on
these and continue to refine solutions. strong, which is designed to refine solutions
to local optimality, suffers as it attempts to build full quadratic models at every
iteration below a certain threshold trust region radius. These require a number of
points that is quadratic in the dimension of the problem, a number that grows rapidly
with larger problem sizes. strong also does not effectively use previously sampled
points. Though snobfit refines solutions locally and has a global component to it
in the form of multi-starts, it seems unable to negotiate highly noisy conditions in
an effective manner during descent.

For applications, it is not clear how to compare the performance between two
competing algorithms due to the noise. This is true especially for applications with
expensive function evaluations. One of the reasons to do a comparative testing
between algorithms on a large test set is to be able to pick the best one and then
use it for applications. Thus, we use the so-lvit algorithm for the applications that
follow.

4.4.2 Global vs. local optimization for TRSP

In Section 4.3.2, we proposed to solve the TRSP using global optimization, as we
may be able to afford this when function evaluations are expensive. To test this hy-
pothesis, we ran a deterministic version of the so-lvit algorithm on the 500-problem
test set described in the previous subsection, and compared the performance when
we use a backtracking line search versus the global optimizer baron to recommend
search directions at each iteration. Figure 4.5 shows the relative performance of
the two when τ = 10−3 for a limit of 100 iterations. We see that the version using
baron outperforms the version using a backtracking line search by about 10%. Note
that we enforce a 60 second time limit on baron for the subproblems.
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Relative fraction of problems solved

Iterations

Global (.92)

Local (0.8)

Figure 4.5: Impact of global and local optimization of the TRSP on overall performance

4.4.3 Identification of reorder points in chemical supply chains

Inventory planning is a fundamental problem in supply chain management (Cachon
& Terwiesch 2008). In supply chain networks, it is commonly desired to keep in-
ventory levels as low as possible for various reasons (holding costs, safety, product
perishability, etc.). This minimization is traded off with some metric that incor-
porates demand satisfaction, such as customer satisfaction level of the event-based
(alpha) or quantity-based (beta) type.

Many decisions are involved in the inventory planning process including loca-
tion of inventory points in the network, sizing of inventory tanks/warehouses, and,
depending on the inventory policy used, other parameters such as base stock levels
and re-order points. Straightforward solutions may be derived for simple situations
that may involve a single echelons with normally distributed uncertainties. The anal-
ysis of such networks, however, becomes increasingly complicated in networks with
non-normally distributed and correlated uncertainties in demands, lead times and
production times, multiple echelons, and other system-specific constraints. Chemi-
cal supply chains may pose additional differences from conventional supply chains,
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such as inventory levels that may continuously change, or if the tanks are part of a
complex process network structure in a chemical site.

As the inventory planning problem is a fairly general one, many approaches
tackle this problem in the literature. A survey of the inventory literature is pro-
vided in Graves et al. (1992). However, few approaches focus on chemical supply
chains, and fewer still are able to incorporate some or all of the features mentioned
in the previous paragraph for performing inventory optimization. Further, it is
very straightforward to incorporate rule-based inventory policies, complex proba-
bility distributions and non-trivial network structures within a discrete-event sim-
ulation framework. Due to this complexity, recommended policies from current
optimization-based frameworks perform quite poorly when validated through such
simulations.

Our motivation is to show that the simulation optimization techniques we have
developed may help in optimizing directly over the simulations, especially when
dealing with continuous parameters. We now introduce an example problem on
which to test our algorithm. The example involves a multi-echelon system with
one intermediate storage tank/warehouse and seven downstream warehouses. The
task is to determine optimal re-order points for each of the warehouses, given the
inventory policy being used. The network studied is shown in Figure 4.6.

Plant 

WH1 

WH2 

WH3 

WH4 

WH5 

WH6 

WH7 

Customers 

Inventory 

Warehouses 

Figure 4.6: Supply chain network structure
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This problem consists of 8 decision variables. However, the situation is not the
same unconstrained case as investigated in Chapter 3. There are also constraints
involved—for instance, we are required to satisfy a 95% quantity-based customer
satisfaction level. The simulation we work with not only outputs an estimate of
the profit, but also gives a measure of the customer satisfaction levels for each
customer. To deal with this additional requirement, we use an exact penalty function
to penalize our objective function.

Fig 4.7 shows the progress of the so-lvit algorithm on a 700-simulation budget
limit for three different runs. We see that the solver is able to reduce the total
inventory volume from the initial point by about 80% within this simulation budget.

Figure 4.7: Total inventory volume vs. iteration count

4.4.4 Optimum obstacle sizing in length-based DNA separation via post arrays

Separation of different lengths of DNA strands is a fundamental problem in the
biological and engineering sciences, and is an essential step in many types of DNA
analyses, including DNA sequencing (Sanger et al. 1977; Albrecht et al. 2011) and
mutation detection for cancer diagnosis (Wu et al. 1997; Albrecht et al. 2013).

One fast technique that attempts to resolve different lengths of DNA is the gel-
free end-labeled free-solution electrophoresis separation (ELFSE) method (Ren et al.
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1999; Meagher et al. 2008). Separation of DNA by electrophoresis is very common,
though the electrophoretic mobility of DNA is length-independent. Electrophoretic
mobility is the ratio of charge to friction, and since DNA strands have one charge
per base pair, and since the friction on the strands also increases with length, this
results in length-independent scaling. To break this length-independence, DNA
strands are made to navigate through obstacle courses in order to deform them
from their native randomly coiled state and introduce additional friction on each
strand. Then, separation occurs by a combination of differing electrophoretic mobil-
ities, and the different times taken to drape around, hook and slide off around the
post obstacles. Thus, end-labeled DNA separation may be integrated with modern
separation techniques that employ micro-fabricated obstacle courses, such as those
comprising of nano-post arrays (Volkmuth & Austin 1992; Doyle et al. 2002; Ou
et al. 2009). Such systems can offer significant speed up of separation, but are hard
to tune. An illustration of a micro-fabricated device to achieve this can be found at
http://www.cchem.berkeley.edu/sjmgrp/people/nerayo/nerayo.htm.

The phenomena described above may be simulated using Brownian dynamics
simulations to gain insights for designing such devices (Kim & Doyle 2007; Patel &
Shaqfeh 2003; Cho & Dorfman 2010; Olson et al. 2011), but they are usually very
expensive to simulate (on the order of several hours). The simulation we use models
polymers as sections that are lumped together and represented as a spring connected
to beads. The Brownian motion of each bead follows from the stochastic collisions
with bulk solvent water molecules. Realistic spring force laws and wall interactions
have been modeled in the implementation that we work with (Fahrenkopf 2014).
The solution of the model involves integrating the system of stochastic differential
equations (SDEs) that describe the system using principles from Itō calculus. We
avoid going into further details of the simulation.

The design problem is of sizing the post radius to optimally separate two spe-
cific lengths of DNA. As we have access to a stochastic simulation that models
the phenomenon, we use the simulation optimization algorithm so-lvit developed
in Chapter 3 and in this chapter to optimize this radius. The simulations model
the movement of the DNA molecules around a single post. In practice, the DNA
molecule could theoretically hook around hundreds of posts in its path. This re-
peated negotiation around obstacles further resolves the separation, as would mul-
tiple replications of the simulation.
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The simulation output consists of the time difference (in centi-seconds) between
the two strands crossing a certain point (i.e., a detector), and the individual times
they take to elute.

Figure 4.8 illustrates the progress of the algorithm with the objective function.
The optimization is transformed to a minimization problem in the figure. The
problem illustrated here is the separation of two lengths of DNA, one that has
about 23, 400 base pairs, and another that has about 31, 800 base pairs. We run the
algorithm until we have run out of a pre-specified computational budget of 2, 500
iterations.

Figure 4.8: Mean difference in elution times vs. algorithm iterations

Each color in the plot corresponds to a different trust region center. Even though
we are dealing with a one-dimensional problem, the noise levels are very high, and
a large number of replications are required to tell one point from another. The
estimates of the mean at the trust region centers change with increased iterations,
and this is reflected by the different objective function values for the same trust
region center. Of course, as replications increase, the variation in the estimate of
the mean decreases, and the confidence in the true value increases, and this is seen
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with the yellow-colored trust-region center, which is the center from iterations 800
to 2,100. We start with a post radius of about 2.5µm and after 2,500 iterations, the
incumbent solution is about 1.67µm.

4.5 conclusions

In this chapter, we provide implementation details and algorithmic enhancements
to the theory developed in Chapter 3 in form of a package we call so-lvit. The
implementation is then tested against other available implementations from the
literature, with promising results. Then, examples from two different areas of engi-
neering, namely inventory planning and DNA separations, are investigated through
the simulation optimization framework that we propose in the previous chapters.

The first example comes from chemical production operations and supply chains,
where the simulation is a discrete-event simulation and the objective is to maximize
profit subject to customer satisfaction considerations. The evaluations here are rel-
atively cheap, the variance in the output moderate with regard to curvature of the
underlying surface. The decision variables are around 8–10 in number. The chal-
lenge here involves the presence of stochastic inequality constraints which required
us to satisfy a certain customer satisfaction level. These constraints were addressed
naturally using an exact penalty method within the simulation optimization frame-
work which guarantees convergence at a pre-specified level of probability.

The second example came from the biomolecular engineering domain within
chemical engineering, where the underlying phenomena were modeled using a sys-
tem of stochastic differential equations. The objective is to identify an optimal
design parameter that would expedite DNA separations through a particular elec-
trophoretic method. Here, even though we were dealing with essentially one decision
variable, the simulations are extremely expensive, and the variance in the output is
extremely high compared with the curvature of the surface.

In addition to the above examples, this framework may also be used within a
response surface methodology framework when optimizing over experiments. In the
future, we would like to include examples that involve real experiments which clearly
take time.
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Part III

S E Q U E N T I A L A N D S I M U LTA N E O U S S T R AT E G I E S FO R
O P T I M I Z AT I O N U N D E R U N C E RTA I N T Y : M O D E L S A N D

A P P L I C AT I O N S FO R S I T E - W I D E M A I N T E N A N C E

Maintenance turnarounds of plants in integrated sites represent large
costs and major disruptions. This part addresses (1) long-term mainte-
nance planning via two discrete-time MILP models to determine optimal
turnaround frequency and to maximize long-term profit through syner-
gistic coordination of maintenance turnarounds; and (2) medium-term
maintenance scheduling under duration uncertainty via models that are
robust to variable manpower availability requirements while maximizing
expected profits through consideration of possible recourse actions in
production decisions.



5
LONG-TERM TURNAROUND PLANNING FOR INTEGRATED
S ITES

5.1 introduction

Plant turnarounds are periodic, necessary disruptions in material flow through chem-
ical production sites that involve multiple tasks that help to improve plant reliability,
arrest failure rates, and to boost productivity and profits. However, they not only
incur enormous costs and consume resources, but also result in lost sales. As a result,
turnarounds significantly affect demand and supply of materials within a chemical
site network and are tightly coupled to production planning, resource planning and
inventory management decisions.

The purpose of this work is to present modeling approaches to optimize mainte-
nance turnaround frequencies as well as site-wide long-term turnaround schedules,
while accounting for these practical considerations and constraints. We demonstrate
the effectiveness of the models by applying them to a representative industrial-size
chemical site network, and analyzing optimized schedules. Of particular interest is
that the resulting schedules often lend themselves to the rational justification of the
sequences and alignment of tasks, based on basic network structure and economic
arguments. This gives further insight into the behavior of the network, a feature
that will appeal to practitioners in the area.

Optimal turnaround scheduling of integrated chemical sites is a challenging
combinatorial problem due to the following factors:

• Operational constraints: Due to complex flow relationships between produc-
tion units, a turnaround performed on one of the units can result in blocking
of upstream operations or starving of downstream operations. Typically these
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relationships require involved analysis because of the availability of buffer stor-
age capacities, as well as priority rules for allocation of raw material under
limited supply.

• Timing of turnarounds: Each production unit in an integrated site has its own
turnaround frequency and duration. In addition, depending upon the location
of the site, turnarounds cannot be carried out during certain time periods in
a year to ensure safety of the workforce. For example, for a site located in
Northern Canada, it might not be appropriate to carry out the turnaround in
winter months due to extreme weather conditions.

• Resource constraints: Turnarounds for a production envelope (a subset of
plants that interact, are concerned with the same family of products, and are
typically aligned with a specific business) within a site can require a large
workforce of a few hundred personnel with different skill sets (such as welders,
assembly workers, supervisors). Management and allocation of maintenance
personnel in a site requires efficient planning and coordination. For instance,
the sporadic requirement of a large workforce for a short interval can be diffi-
cult, as it is typical for such workers to be hired on contract. It may be difficult
to ensure their hire if there are turnarounds being carried out by competitors,
if the site is in a remote location, or if the logistics associated with a large
workforce descending upon a site is cause for safety concerns.

• Financial impact: Turnarounds can have a significant impact on the revenue
of the company. For a large integrated site, these turnarounds can lead to
significant reduction in production rates and thus a reduction in short-term
revenues. In order to reduce the impact on financial results, the turnarounds
must be appropriately scattered over the planning horizon.

This work contributes to literature by (1) extending existing models for de-
termining process unit maintenance frequencies from profit and failure rate rela-
tionships to determining turnaround frequencies of a plant unit with multiple sub-
units; (2) developing mixed-integer programming (MILP) formulations for long-term
maintenance planning of integrated sites with continuous chemical plants; (3) in-
corporating financial performance, timing constraints, and manpower availability—
considerations that require looking at a time and size scale not studied previously;
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and (4) demonstrating the real-world applicability of potential schedules that have
been optimized under various scenarios.

The remainder of Section 5.1 provides a brief background on turnaround schedul-
ing and a literature review on maintenance planning in various industries, including
the process industry. Section 5.2 provides an example network structure, the associ-
ated unit information required for optimization, and uses a small network example
to motivate the potential for optimization. Section 5.3 provides a mixed-integer
model for determining optimal turnaround frequencies, and provides a framework
for deciding whether a plant needs one or multiple kinds of turnarounds. Section 5.4
outlines the solution approach, and provides details of the MILP model. Section 5.5
provides results, and a detailed analysis of them along with financial and sensitivity
studies, and alternative formulations and results for other scenarios. Finally, Sec-
tion 5.6 summarizes the work and discusses possible extensions and directions for
future study.

5.1.1 Definition, concepts, and significance of maintenance scheduling

Maintenance can be defined as all actions appropriate for retaining an item/part/e-
quipment in, or restoring it to a given condition (Dhillon 2002). A maintenance
turnaround is the periodic shutdown of chemical plants for overhaul. A turnaround
may be required to (1) prevent unplanned shutdowns due to equipment failures or
wear and tear (e.g., in the case of pumps and compressors), (2) replace aging parts
and instrumentation, (3) perform cleaning of pipes and equipment, (4) replace cat-
alysts, and (5) perform welding or other structural reinforcement tasks.

Approaches to maintenance scheduling vary widely and depend on (1) whether
the maintenance is preventive, corrective, or opportunistic; (2) what the sources of
uncertainty in the operations are; (3) whether operations are multipurpose batch
processes or continuous plants; and (4) whether maintenance planning is short-term
or long-term.

The American National Standards Institute definition of preventive maintenance
(2014) is the planned maintenance of plant infrastructure and equipment with the
goal of improving equipment life by preventing excess depreciation and impairment.
On the other hand, planned corrective maintenance is the maintenance carried out
after a failure has occurred and intended to restore the item to a state in which it
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can perform its required function. Opportunistic maintenance is the exploitation of
failure events to plan other maintenance activities in conjunction, and the altering
of future maintenance schedules based on this.

Long-term maintenance planning uses information such as equipment reliability,
usage, and maintenance histories and manufacturers recommendations to determine
the approximate moments or frequencies of preventive maintenance. The solution to
this problem may result in a list of equipment items that are due to be maintained
over the next short-term scheduling period.

The primary task in short-term maintenance scheduling is to develop a scheme
with detailed timing of maintenance activities that allots resources (maintenance
crews, workers, and equipment) to tasks (machines or units) and satisfying certain
constraints (such as crew availability, network constraints, or shift constraints), while
not only maintaining regular production or operation to satisfy customer demand,
but to do it in an optimal fashion so as to minimize losses, down-times, customer
dissatisfaction, or some other metric. On many occasions, if a production schedule
is also required, it is done side-by-side (either simultaneously or in a sequential-
iterative manner) with the maintenance scheduling.

According to Christer & Whitelaw (1983), annual expenditure on maintenance
by a medium-sized company at the time exceeded GBP 1 million. Tan & Kramer
(1997) provide extensive references for costs from production losses due to equip-
ment down-time. They estimate that lost production costs in a chemical plant
may range from $500-$100,000 per hour; and that refineries experience about 10
days of down-time every year, with losses of up to $30,000 per hour. Grievink
et al. (1993) estimate that about 50% of operating cost variability comes from main-
tenance. Large chemical companies budget annually for spending on the order of
hundreds of millions of dollars on maintenance, just for parts and manpower and not
including the value of lost sales. According to a more recent estimate by Industrial
Info Resources (2014), a global marketing intelligence agency, major ethylene plants
commonly schedule turnarounds once every few years, where the average duration
is 25 days at an average cost of $15MM or more (Global Ethylene Database 2014).
Figure 1.3 in Chapter 1.1 illustrates that cumulative expenditure on maintenance
turnarounds in the chemical process industry exceeded USD 1 billion in 2008, not
including lost sales. Thus, the optimization of maintenance turnaround operations
and the associated production planning could significantly improve profit margins.
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5.1.2 Literature Review

5.1.2.1 Maintenance scheduling in chemical engineering

Formulations of maintenance scheduling models in chemical engineering depend on
whether the plants are continuous or batch, whether it is for a single process or
site-wide, and approaches taken (Monte Carlo with genetic algorithms or MILP
models).

Dedopoulos & Shah (1995a) investigate the short-term maintenance scheduling
problem for multipurpose batch plants. The task is to generate detailed timing of
maintenance activities simultaneously with a production schedule. The task involves
the allotment of crews to various tasks. The study performed in the paper is that of a
lubricant plant, with three grades, two blenders, seven storage tanks, five packaging
lines and three warehouses. The problem is formulated as an MILP with 2000 binary
variables, 2000 continuous variables and about 5000 constraints. Uncertainty in
intermediate stages of operation is not incorporated in the proposed formulation,
and the number and allotment of maintenance tasks is predetermined.

Sanmartí et al. (1997) deal with production and maintenance scheduling for
multipurpose batch plants under equipment failure uncertainty. Uncertainty anal-
ysis of failure is performed prior to production scheduling to mitigate disruptions,
and to use the fixed maintenance schedule as long as possible without changing it.
The number of production tasks and, hence, the number of maintenance tasks de-
pend on the production requirements of the corresponding time period. The work
also introduces certain reliability metrics, for both equipment as well as the entire
schedule to reduce occurrences of equipment failure and to increase robustness in
the case of equipment failure.

Tan & Kramer (1997) discuss the economics of maintenance, several approaches
to maintenance (including preventive, corrective, and opportunistic) and a number
of issues regarding modeling of equipment failure in their process of developing a
general framework for maintenance scheduling. They use a combination of Monte
Carlo simulation and a genetic algorithm to generate the maintenance schedule.

Pistikopoulos et al. (2001) formulate an MILP to perform production scheduling
and exploit idle times in equipment utilization to perform preventive maintenance.
Piecewise-constant failure rates of equipment are assumed, and these are incorpo-
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rated in a multi-period planning model. Explicit up-time constraints are included
to quantify availability of equipment.

Cheung & Hui (2001) formulate an MILP to perform long-term maintenance
scheduling for a chemical complex with eight plants and associated utility plants.
The planning horizon considered is two years, with monthly planning periods. A
cyclic schedule is built, assuming that each unit needs to be shut down for mainte-
nance once a year. Scenarios including availability of intermediate storage, and the
import of electricity and intermediate products are considered.

Cheung et al. (2004) formulate a multi-period MILP to perform site-wide short-
term maintenance scheduling. The task is to decide which plants to shut down in
each planning period subject to a site model (that contains information about plant
material balances and utilities). The model, although built with deterministic times
for maintenance, accommodates varying electricity prices and demands over time
periods.

Laggoune et al. (2009) propose a method for opportunistic maintenance for con-
tinuous plants, in a situation where different units in the process interact with each
other. The task is to decide which units have to be taken down, and hence which
items are to be replaced/maintained in which time period. Here, the breakdown of a
particular unit or piece of equipment is seen as an opportunity to replace/maintain
other parts that are also taken down by the event, and the decision to do this is based
on a trade-off between the cost associated with the possible breakdown of associated
units before the next maintenance cycle and the cost involved in performing mainte-
nance at that juncture. A Monte Carlo scheme is used to simulate the breakdowns
using failure distributions, and an algorithm is outlined to choose the maintenance
schedule (the frequency of maintenance for each component, and which components
undergo maintenance together) based on the simulated breakdowns. The case study
investigated is that of a refinery centrifugal compressor.

Megow et al. (2011) also consider turnaround scheduling in the chemical indus-
try, specifically in continuous plants. The task is to minimize the cost of maintenance
with respect to the resources used, which are manpower and maintenance equipment.
This minimization is subject to pre-set precedence rules for maintenance tasks and
resource scheduling constraints that involve shift calendars for maintenance work-
ers. The assignment constraint, which assigns maintenance resources to jobs in each
time period, gives the detailed maintenance schedule. The interesting trade-off is
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the time-cost trade-off, where more expensive external resources can be availed of,
in order to perform a certain task in reduced time.

Castro et al. (2014) consider the maintenance scheduling of a gas engine power
plant, where a single maintenance crew is available for maintenance. The task is to
schedule the shutdown of parallel units so as to minimize idle time and shutdowns
in high-tariff periods assuming seasonal variation in electricity prices. In addition,
the model allows for staggering the duration of shutdowns in the case of low power
demands. A continuous-time formulation is proposed, and a general disjunctive
programming scheme is used to solve the problem efficiently.

From this literature survey, it is apparent that most work focuses on performing
short-term maintenance scheduling with only brief mentions as to how one might
tackle the long-term planning problem. Ideally, one would like to reconcile long-
term and short-term schemes; incorporate uncertainty in operations; and address
enterprise-wide maintenance scheduling rather than just single process or plant main-
tenance, while maintaining production schedules and demand satisfaction criteria.
Other details in the model would depend on the specifics of the plants under con-
sideration, the economics involved, and the priorities and targets of the company.

5.1.2.2 Maintenance scheduling in other fields

Academic literature on maintenance scheduling and related areas appears in the
fields of airline scheduling and logistics, electrical power generation and distribution,
and in the manufacturing and the chemical industries. A list of industries and a
sample of associated papers from the literature is available in Table 5.1.

Certain features from these fields may be relevant in the chemical industry.
For instance, the power generation literature addresses maintenance scheduling for
continuous plants, where the task is to perform preventive maintenance on some
plants while satisfying electrical power demand to all customers at the required
level. Maintenance problems in the airline industry involve assigning maintenance
crews to different tasks and may involve the cost of transporting maintenance crew—
a feature that may be relevant when tackling enterprise-wide maintenance problems
in the chemical industry.
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Table 5.1: Industries and associated literature in maintenance scheduling

Industry Papers

Airlines
Moudani & Mora-Camino (2000), Sriram & Haghani
(2003), Feo & Bard (1989), Cohn & Barnhart (2003)

Chemical industry
Tan & Kramer (1997), Sanmartí et al. (1997), Pis-
tikopoulos et al. (2001), Laggoune et al. (2009)

Manufacturing
Yao (2004), Sloan & Shanthikumar (2000), Gharbi &
Kenné (2005), Yang et al. (2008)

Electrical Power
Yamayee (1982), Satoh & Nara (1991), Mukerji
(1991), Volkanovski et al. (2008)

5.2 problem description

5.2.1 The ideal solution and scope of current work

The most general and detailed solution to turnaround optimization involves address-
ing a multi-faceted problem. This chapter addresses turnaround optimization on a
multi-year time scale and Chapter 6 focuses on a medium-term time scale of several
months.

As is the case with any operations problem, there are several uncertainties
that one may consider, including demands for products, raw material price and
availability, failure rates of components, reliabilities in production, and lengths
of turnarounds. These kinds of uncertainties can be incorporated to some extent
by the use of historical data. In practice, these effects are coupled with evolving
business strategy, new process integration, infrastructure investments, and capacity
expansion—effects that are difficult to capture and quantify.

It may be the case that individual envelopes or businesses within the integrated
site optimize their respective operations separately. The challenge is to demonstrate
the benefits of synergistic decisions across the entire site through holistic modeling
and optimization, which is one of the aims of this work.
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Given the issues of scale and uncertainty, it is impossible to determine the perfect
decisions for turnarounds (and other operational decisions, as they are invariably
tightly coupled). However, as the previous sections elaborate, turnaround decisions
can have a large financial impact, and there is still immense potential to make better,
more informed decisions to improve asset utilization as well as financial performance.
The choice of solution approach is important in order to decide the right scale of
problem—both in terms of process detail, as well as time scale—to consider.

Uncertainties arising from component failures may be modeled and studied in or-
der to decide the frequency of turnaround for each unit. The uncertainty associated
with production reliability and demands and supply of products and raw materials
within the site are short term effects, and the study of these may result in defin-
ing base stock levels for inventory tanks. In Section 5.3, we show how turnaround
frequencies and policies may be determined, assuming that data corresponding to
the deterioration of profit over time is given. We assume that inventory base stock
levels are available to us. Uncertainty in length of turnarounds due to discovery
work requires analysis on a shorter time scale as well, as this affects the manpower
resource availability and ability to satisfy demand in the required time. Accounting
for the effect of discovery work is addressed in Chapter 6.

Uncertainty in external demands is a significant factor for production planning
problems on a six-month to one-year horizon for the bulk chemical industry. In
the turnaround optimization setting, we deem it sufficient to consider aggregate
demands from each plant rather than individual demands of multiple products in a
plant, as plant turnarounds interrupt all production. The variability in aggregate
demands is less, and we choose to avoid explicitly considering demand variability in
our formulation.

The scope of the current chapter is primarily to focus on providing long-term
plans for turnarounds, while modeling production and inventories in sufficient de-
tail without delving into short-term effects. To this end, we look at a plant-level
abstraction and a time horizon of several years. Emphasis is placed on incorporat-
ing practical, real-world constraints and considerations as outlined in Section 5.1
such as seasonal constraints, purchase of intermediate inventory from the market,
financial performance, peak manpower reduction, and general models that allow for
transitioning into new schedules and responding to disruptions. We use a sample
industrial-size integrated site network to study the tractability of mixed-integer op-
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timization models under these constraints, interpret the applicability of resulting
schedules, and present the first work that demonstrates the value of optimizing
integrated site turnarounds at this scale.

5.2.2 Problem setup

The chemical site network used as a running example for this study is illustrated
in Figure 5.1. The red units with the black outline indicate final products, the
white units process intermediate products and the green cylinders indicate inventory
capacity. The solid arrows between units and storage tanks represent connecting
pipes that impose flow restrictions in the network. Dotted blue arrows close to
certain storage tanks indicate the ability to sell and purchase intermediate product
to and from the market.

Each unit in the site network represents an entire plant, which is typically
taken down in its entirety during a turnaround. As can be seen, the site is tightly
integrated, and the shutdown of a plant will affect the production of plants upstream
and downstream to it.

Unit 1

Unit 2

Unit 12

Unit 3

S1 Unit 5

Unit 4

Unit 6

Unit 7

Unit 11 Unit 13

Unit 9

Unit 14

Unit 10

Unit 17

Unit 15

Unit 16

Unit 8

S3 S2

S6

S5

S4

S7

Intermediate products Final products

Market interaction Storage tanks

Figure 5.1: Example site network abstracted at the plant level for turnaround scheduling
purposes
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The inventory tanks between units represent capacity to deal with both planned
and unexpected disruptions. Inventory management is especially important within
chemical and petrochemical plants as compared with other manufacturing sites, as
inventory capacity is expensive—intermediate products typically require cryogenic
storage or special measures for storing hazardous substances—and storage tanks can
cost on the order of tens of millions of dollars. Inventory level set points provide
a buffer to deal with short-term fluctuations in production, and consequently in
supply and demand. Larger storage tanks provide for longer outages as well, such
as turnarounds.

Different plants require turnarounds that are estimated to last a certain amount
of time (usually on the order of weeks), and these turnarounds are done at a certain
frequency. The frequencies are estimated from historical data, reliability studies
for various components, and other practical considerations using, for example, the
scheme developed in Section 5.3.

Each turnaround is associated with a manpower requirement, which represents
the primary cost of a turnaround. To minimize lost sales from turnarounds, it is
usually beneficial to take down certain combinations of plants together.

Figure 5.2 reveals some of the decisions that have to be made. Here, f indicates
the time period (1/frequency) of turnarounds, and T indicates the number of weeks
to perform the turnaround. The margins represent the relative profit margins of
the final products from the corresponding units. First, the choice of implementing
a cyclic schedule or a rolling horizon schedule must be made. If we seek a cyclic
schedule, the time periods of all the units need to be aligned and a least common
multiple of the time periods is chosen to represent the length of the cycle. So, one
may choose to maintain Unit A every five years and Unit C every two-and-a-half
years, or improve reliability to make Unit B require maintenance once every three
years. Next, if the capacity of S cannot hold more than, say, 3 weeks of inventory,
then it may be a good idea to take down Units B and C for maintenance along with
Unit A.

On the other hand, as the downstream units require maintenance twice as fre-
quently as the upstream unit, it may be more economical to line up, say, Unit A’s
turnaround with Unit B’s turnaround, while using inventory to feed Unit C in the
mean time; and take Unit C down asynchronously and build up inventory when only
Unit A and Unit B are running.
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A third situation may involve the inventory capacity being big enough, or im-
port/export capability to the intermediate storage, which may allow all turnarounds
to be decoupled. Of course, if turnarounds occur together, then the decision of how
to stagger them needs to be made as well. Which of these scenarios is optimal de-
pends on the several, specific numbers involved—the pipe capacities, minimum flows
for units, relative profit margins of products, frequencies, inventory set points and
capacities, and times for maintenance. All of these factors along with the potential
number of scenarios present an opportunity for an optimization-based analysis of
the network. Tight coupling of this small network to the larger site network, the
presence of units requiring multiple inputs or producing multiple outputs, and the
existence of recycle loops further complicate the optimization of these turnarounds.

Unit A S

Unit B

Unit C

Figure 5.2: Illustration of interactions and interdependencies in a subnetwork

From a long-term perspective, it is typically more economical to minimize overall
lost sales by taking down the entire site at once. This is, in practice, not a viable
alternative. One limitation is that on peak manpower, and the other is economics.
Competition for manpower, diminishing marginal manpower utility, and upper limits
on available manpower in the nearby geographic region make it important to keep
peak manpower as low as possible. In addition, shutting down an entire site for
maintenance at once severely impacts short-term cashflow due to reduced production
levels. These considerations indicate the need for a more involved study to determine
turnaround schedules.

5.3 mixed-integer linear programming model for determining
optimal turnaround frequencies

In this section, we provide an extension to the mixed-integer model proposed in
Dedopoulos & Shah (1995b) for determining a preventive maintenance policy for a
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particular plant unit. The paper proposes a long-term maintenance model to deter-
mine frequencies of maintenance for a particular process unit or piece of equipment
within a plant. The model assumes that we have data for expected profit over time.
Such information may be determined by analyzing failure rates and reliabilities of
individual equipment and their effect on production levels, and hence profit. This
can be done, for instance, by a modification of the model proposed by Kondili et al.
(1993) to a multi-stage stochastic program to account for the possibility of equipment
failure at each time interval. In general, it is common in practice to perform exten-
sive analyses on failure rates and their effect on productivity, and we too assume
that these relationships are available for our purposes.

The problem we focus on is to decide, given the profit over time relationship
from reliability analysis for individual pieces of equipment or a groups of process
units, what type of turnaround policy should be implemented for a particular plant
and how frequently it should be performed.

Note that we use the term expected profit to be consistent with notation in
Dedopoulos & Shah (1995b). In practice, this may actually correspond to (nega-
tive) costs of operation for each unit group considered. In this case, we assume
to have relationships of costs over time for each unit group. These costs may be
associated with utility costs, operating costs, and minor maintenance/upkeep costs.
For instance, increased fouling over time in a heat exchanger may result in increased
utility costs.

The objective function is to maximize expected profit earnings,

max
∑

t∈T\{0}
Et, (5.1)

where the individual earnings over discrete time intervals are accumulated to calcu-
late the long-term expected profit.

Next, we assume that the expected profit in a time period can be approximated
by an average of the profits from each of the groups of process units. For instance,
each term corresponds to the expected profit of the plant when each individual
group has a given current state of productivity and the rest of the units are in
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Table 5.2: Set, parameter and variable notation for the turnaround frequency determination
model

Entity Set

Set of unit groupings K

Time period T

Parameter Notation

Expected profit in a maintenance period ρmk
Big-M parameter for expected profit Mbig

Expected profit over time for a particular unit group Rcalc
t,k

Variable Notation

True expected profit per period Et

Expected profit for a particular unit group Rt,k

Binary representing a maintenance period zt,k

Binary for representing time since last maintenance qt,t,k

perfect condition. However, the profit in a particular period drops if maintenance
is taking place. These conditions are modeled through

Et ≤
1
|K|

∑
k∈K

Rt,k ∀ t ∈ T\{0}, k ∈ K, (5.2)

to represent the profit in a period when no maintenance is taking place, and

Et ≤ (1− zt,k)Mbig + ρmk ∀ t ∈ T\{0}, k ∈ K, (5.3)

which bounds the expected profit in a period based on whether maintenance takes
place in the period or not.

The remainder of the formulation mirrors the development in Dedopoulos &
Shah (1995b). First we compute the profit in a period with no maintenance through

Rt,k =
∑
τ∈T

qt,τ ,kR
calc
τ ,k ∀ t ∈ T\{0}, k ∈ K, (5.4)

where qt,τ ,k assumes the value 1 if, at time t, maintenance was performed for the
kth unit group τ time periods ago. Then we ensure that either preventive mainte-
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nance occurs or the binary variable representing the time since the last preventive
maintenance is nonzero by

∑
τ∈T

qt,τ ,k + zt,k = 1 ∀ t ∈ T\{0}, k ∈ K. (5.5)

We also enforce that if the binary variable representing the time since the last
maintenance takes the value 1, the corresponding binary variable in the next time
period also does, unless preventive maintenance takes place through

qt+1,τ ,k ≥ qt,τ−1,k − zt+1,k ∀ t ∈ T , |T | > t ≥ τ > 0, k ∈ K, (5.6)

and

qt−1,|T |,k ≤ qt,|T |,k + zt,k ∀ t ∈ T\{0, 1}, k ∈ K. (5.7)

We prevent maintenance from taking place in two consecutive time periods,

qt+1,0,k = zt,k ∀ t ∈ T\{0}. (5.8)

We also assume that maintenance has just taken place at the first time period

z1,0 = 1. (5.9)

Test cases We now investigate some examples, where the aim is to determine
whether (1) the different sets of units considered should be taken down together as
one turnaround; (2) the different sets of units undergo major and minor turnarounds;
or (3) the turnarounds are decoupled, and each has its respective turnaround fre-
quency.

We consider a 60-month (5-year) horizon with monthly discretizations, and
look at two sets of units within a particular plant to see how their turnarounds may
be coordinated. The formulation accommodates situations with more such sets as
well. This results in models with about 7, 500 continuous variables, 7, 500 discrete
variables, and about 4, 500 constraints.

For the expected profit vs. time relationship that we assume given, we use a
linear degradation in expected profit scenario for illustration. We illustrate the find-
ings in Figure 5.3. The figure illustrates the turnaround policy recommended by the
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model for different scenarios. In the first and second examples, we see that the opt-
mizer recommends that both unit groups undergo synchronized maintenance every
20 months, and every 30 months. In the next two example, the recommendation is
to perform turnarounds on the two groups at different frequencies, but to sync the
two when suitable for a major turnaround, and have minor turnarounds at the other
time points. In the last example, it seems most favourable to completely decouple
the two turnarounds.

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

Unit group 1 Unit group 2 

(a) (1): 200; 100%; (2): 100; 100%; Result: synced turnarounds0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

Unit group 1 Unit group 2 

(b) (1): 200; 100%; (2): 500; 100%; Result: synced turnarounds

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

Unit group 1 Unit group 2 

(c) (1): 200; 100%; (2): 500; 60%; Result: major and minor turnarounds

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

Unit group 1 Unit group 2 

(d) (1): 200; 100%; (2): 1000; 40%; Result: major and minor turnarounds

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

Unit group 1 Unit group 2 
(e) (1): 500; 60%; (2) 1000; 40%; Result: decoupled turnarounds

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

0 1 2 3 4 5 Year 

Unit group 1 Unit group 2 

Figure 5.3: Illustration of coordination of subtasks in different scenarios (rate of profit de-
cline (units/month); production decline during maintenance (%); recommended
turnaround policy)

The model was solved by cplex 12.5 under gams 24.3, and each scenario was
solved to a zero optimality gap, given a 1000-second budget. Formulations for han-
dling the different turnarounds policies, namely (1) synced turnarounds; (2) major
and minor turnarounds; and (3) decoupled turnarounds are described in later part
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of Section 5.5.2. In summary, we now have a mechanism to determine turnaround
frequencies, and these serve as inputs to the models described from Section 5.4 on-
wards. Exact turnaround frequencies may not be used, but a bound on the time
between turnarounds may be used instead to allow for flexibility, as in Section 5.5.2.

5.4 mixed-integer linear programming model for integrated
turnaround planning

The approach taken in this work is to develop a deterministic, discrete-time mixed-
integer programming model that abstracts the process site network to a level that
balances inclusion of relevant detail with tractability. Relevant constraints are added
for mass balances, unit ratios, turnarounds, demands, and manpower. The abstrac-
tions and assumptions made for the mixed-integer model are detailed in the follow-
ing section for each case but, in general, the validity of these will depend on the
particular site.

In this section, we formulate the MILP scheduling model to recommend a po-
tential cyclic schedule for performing turnarounds over a multi-year horizon. We
work with this formulation initially, and explore alternative scenarios, extensions,
and assumptions in subsequent sections. Relevant notation is listed in Tables 5.3,
5.4, and 5.5.

Table 5.3: Set notation for the long-term scheduling model

Entity Set

Process or storage unit, or external interaction I

Units requiring inputs to be in a certain ratio Iin

Units requiring outputs to be in a certain ratio Iout

Unit with flow F

Time period T

Unit requiring turnaround M

Final product P

Unit allowing import of raw material from market B
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Table 5.4: Parameter notation for the long-term scheduling model

Parameter Notation

Turnarounds

Number of turnarounds for ith unit ui

Number of time periods between turnarounds of ith unit fi

Manpower required for maintenance of ith unit mi

Number of time periods to perform turnaround of ith unit ni

Manpower limit mmax

Flows

Upper bounds on flows xUi,j

Lower bounds on flows xLi,j

Inventories

Lower inventory limit sLi
Upper inventory limit sUi
Initial inventory s0

i

Costs/prices

Price of product from unit i pi,t

Cost of manpower cmi,t

Cost of imported material i cri,t

Holding cost in inventory tank hi,t

Demands on final products δi,t

Table 5.5: Variable notation for the long-term scheduling model

Variable Notation

Flow between units i and j at time period t xi,j,t

Inventory at time t of unit i si,t

Binary representing start of maintenance for unit i at time t yi,t
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Objective function The objective

max
∑
t∈T

∑
i∈P

pi,t xi,∞,t −
∑
i∈M

mi yi,t

t+ni−1∑
τ=t

cmi,τ

−
∑
i∈B

cri,tx0,i,t −
∑
i∈I\F

hi,tsi,t

 (5.10)

represents the maximization of net present value (NPV). The relative margin, pi,t,
reflects the prices that final products are sold at, as well as raw material, processing
and production costs per unit of final product. Here, product, manpower, and
intermediate import prices vary with time. Manpower costs are a function of the
unit, as each unit may require different ratios of workers with different skill sets.
The coefficient cmi,t then represents the average cost. The subscripts 0 ∈ I and
∞ ∈ I indicate material sourced from outside the network and material exiting the
network, respectively.

Network flow constraints The first constraint represents a standard mass balance
constraint, which accounts for flows in and out of nodes in the network (plants or
inventory tanks), and links inventory levels across time periods in the case of storage
units. The constraint may be formulated as

∑
i∈I

xi,j,t + sj,t−1 = sj,t +
∑
i∈I

xj,i,t j ∈ I, t ∈ T , (5.11)

where

sj,t = 0 j ∈ F , t ∈ T (5.12)

is used to distinguish between inventory units and process units, and disallows in-
ventory storage in process units.

As chemical plants typically involve the chemical transformation of feed streams
into final products, network flow constraints between plants include maintaining a
certain prespecified ratio between streams entering the plants (e.g., the stoichiomet-
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ric ratio), rin
i,j , or, analogously, between product streams, rout

i,j , if there are multiple
products, as in

xk,i,t = rin
k,j xj,i,t ∀ t ∈ T , i ∈ Iin, j, k ∈ I,

where xUj,i,xUk,i 6= 0, j < k,
(5.13)

xi,j,t = rout
j,k xi,k,t ∀ t ∈ T , i ∈ Iout, j, k ∈ I,

where xUi,j ,xUi,k 6= 0, j < k,
(5.14)

In reality, plants may use different ratios of raw materials for different product
grades, and though different feed qualities may result in different output ratios, we
assume these unit ratios are fixed and we use the time-averaged values.

In terms of inventory capacity constraints, there are

sj,t ≥ smin
j j ∈ I\F , t ∈ T (5.15)

sj,t ≤ smax
j j ∈ I\F , t ∈ T (5.16)

which ensure that the inventory level of a tank does not exceed its storage capacity at
any time. Similarly, there is a constraint on the lower limit on the storage tank levels,
and is set at a predefined base stock level. There are also standard nonnegativity
constraints on all of the flows in the network,

xi,j,t ≥ 0 i, j ∈ I, t ∈ T . (5.17)

In some cases, certain production plants cannot run below a minimum operation
level, and we formulate this level as a fraction µi,j of the maximum operating capac-
ity,

xi,j,t ≥ µi,j xUi,j

1−
t∑

τ=t−ni+1
yi,τ

 i ∈ F , t ∈ T , (5.18)

where the summation is required as the binary represents only the starting time
period of the turnaround for each unit.

It should be noted that the flow levels and inventory levels are coarse estimates,
as the time discretization we use is on the order of weeks. As the inventory tanks
are not capable of holding a week’s worth of production, a study on a shorter time
scale is warranted if we want to focus on inventory and daily production decisions.

114



5.4 milp model for integrated turnaround planning

Turnaround constraints The next constraints enforce the turnaround constraints
in the case of a fixed cyclic schedule. Here the length of the cycle is a multiple of
each unit’s turnaround time period (1/frequency). The constraint

∑
t∈T

yi,t = ui i ∈M , (5.19)

enforces the number of times a unit has to go down for a turnaround in each cycle.
The performance of a turnarounds at time period intervals are enforced by equating
the corresponding binaries, as in

yi,t = yi,t+fi i ∈M , t ∈ T . (5.20)

To ensure that flows out of a unit are zero during maintenance, we write the big-M
constraint

xj,i,t ≤ xUj,i

1−
t∑

τ=t−ni+1
yi,τ

 t ∈ T , i ∈M , j ∈ I. (5.21)

Manpower resource constraints As far as resource constraints are concerned, the
primary concern is with manpower availability. This is a major consideration in
turnaround scheduling, as (1) maintenance manpower is typically hired on contract;
(2) chemical sites are always competing for manpower and, as a result, manpower
requirements must be determined well in advance; (3) accommodating and trans-
porting a large number of maintenance personnel to remote site locations may be
difficult; and (4) a significant increase in the workforce at a site may cause safety
concerns. The following constraint ensures that a hard limit on the peak available
manpower is respected.

∑
i∈M

t∑
τ=t−ni+1

yi,τmi ≤ mmax t ∈ T . (5.22)

Finally, we define binary variables, which are turned “on” to simulate the start-
ing time period of a maintenance turnaround.

yi,t ∈ {0, 1} i ∈M , t ∈ T . (5.23)
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Demand constraints To model demand in general, one should consider tank farms
that may be available downstream to final product lines, in order to model inventory
build up to satisfy customer demands during turnaround periods. However, with
the weekly timescale that we focus on, modeling this build up of inventory with
accuracy is beyond the scope of this work. To model demand, one may include
constraints of the form

∑
t∈Dt

xi,∞,t ≤ δi,t i ∈ P , Dt = {t, . . . , t+ dt}, (5.24)

where Dt denotes the set of time periods included in the demand period starting
at time t, and dt denotes the length of the demand period. Some sort of penalty
(proportional to the quantity by which demand is not satisfied, or the number of
times it is not satisfied) may be incurred if demand is not satisfied (e.g., Jung et al.
(2004)). Typically monthly demand forecasts may be known to sufficient accuracy
for six months into the future, and beyond that estimates may be used for quarterly
demands based on historical data. In the case of turnarounds, if it is known well
ahead of time when a turnaround is taking place, it may be possible to negotiate
with a customer regarding reduced supply during the corresponding period. In this
study, we do not focus on how to model penalties on unmet demand, and assume
that either there is some prior negotiation with a customer or that intermediate
raw materials may be purchased from the market during known periods of reduced
supply (turnarounds).

The above objective and constraints constitute the major part of the mixed-
integer programming model. Extensions to this are discussed in Sections 5.5.1 and
5.5.2.

5.5 results and analysis

5.5.1 Study 1: Fixed cyclic schedule

The previous section proposed a maintenance scheduling formulation considering a
fixed cyclic schedule that may be reused (every five years, in the example consid-
ered), assuming that the parameters and relevant network remain the same. This
is usually not the case—commodity prices, cost and availability of manpower, reli-
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abilities of equipment, and capacity expansion or business restructuring effects on
site network structure form the primary reasons for this. However, the analysis of
this particular model, along with an example network and a corresponding optimal
schedule in this section provide valuable insights into maintenance operations. Sub-
sequent sections elaborate on appropriate modifications under relaxed assumptions,
and more realistic conditions.

The scheduling model described in Section 5.4 used a time discretization of
one week, and was aimed at finding a five-year horizon cyclic turnaround schedule.
This was found to be a suitable horizon, as this was an approximate least common
multiple of turnaround frequencies for all units that required maintenance. This
resulted in a discrete-time model with close to 200,000 variables (∼ 4, 500 binary
variables).

The model was built in gams 24.1.3, and was solved using the mixed-integer
solver cplex 12.5. Most scenarios that were run were solved in under 200 seconds
and achieved convergence within a < 3% relative gap. This result is satisfactory in
the current context, as the confidence in the data is estimated to be of the same
order. The achieved gap and solution time justify the formulation. The formulation
is a discrete-time, material flow-based model.

The model is designed to serve as a tool to compare schedules under differ-
ent scenarios—changes in network configuration, prices, availability of manpower,
availability of intermediate products through imports, and so on.

For the case study that we present, we do not consider demands and assume
that third party contracts exist whereby all material produced is sold. Thus, the
optimizer drives the model towards the maximization of profit through the maxi-
mization of production volumes.

A sample output from the model is shown in Figure 5.4. The figure consists
of a Gantt chart above and a bar graph below. The Gantt chart shows a schedule
of which units are to be maintained in which weeks, and plots colored bars that
denote the week in which turnarounds start and their widths denote the length of
turnarounds. The bars corresponding to each unit on the Gantt chart are color-
coded by the product envelope that the unit belongs to. The bar chart below plots
how much manpower is used as a fraction of the total manpower availability, and
the stacked bars are color-coded by how much of the available manpower units of a
certain product envelope are using in each week. The two graphs are grouped as they
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have a common time axis, which makes it easier to visualize the interaction between
unit shutdown and the corresponding manpower resource usage. The thick vertical
lines divide the time axis by year, and the faint dotted lines represent quarters in
each year. Below these two charts is a network diagram, with identical network
structure to that in Figure 5.1, with units belonging to the same product envelope
colored similarly.

Figure 5.4 represents a potential schedule that is based on realistic data. For
the potential schedule to be considered for transfer to practice, it must represent
realistic and justifiable results. This is valuable both for validating the optimization
framework and modeling approach, as well as to convince decision-makers of the
capability of the tool.

The following points justify the potential schedule from Figure 5.4:

1. Most units belonging to the same envelope are scheduled for maintenance at
around the same time—this is observed for blue (units 1–3), orange (units
9–11, 13, 14), and yellow (units 12, 15–17) envelopes. This makes sense as
these units are close together in the plant network, and heavily depend on
each other for raw material supply and product consumption. The perfor-
mance of turnarounds on any one of these plants offers the opportunity to
couple turnarounds with adjacent plants in the network, and the optimizer
recommends which of these units could be coupled for better economics, all
other factors considered.

2. The turnarounds of most units belonging to the red envelope (units 4–7) seem
to be decoupled. This may be explained by two effects—significant inventory
buffers relative to turnaround times, and the potential to buy and sell interme-
diate product from and to the market. These two features allow turnarounds
on units in the envelope to take place without affecting upstream and down-
stream units.

3. Units 10 and 14 require the same raw materials and are adjacent in the
plant network structure, but their turnarounds are decoupled. This can be
attributed to the use of upstream raw material—when one of the units is
undergoing a turnaround, the other may be able to take advantage of raw
material supply without affecting upstream units.
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Figure 5.4: Sample schedule output from optimization model. A Gantt chart shows the
turnaround schedule for each unit. The manpower utilization chart shows what
fraction of the available manpower is engaged at each point in the time horizon.
The site network shown below is color-coded by product envelope to emphasize
the relationship between position of units in the network, and their relative
turnaround schedules.

119



5.5 results and analysis

4. Unit 17 requires a large amount of manpower, and so its turnaround is de-
coupled from the main yellow envelope turnaround in Year 1, Quarter 3 in
order to respect the maximum available peak manpower. In this case, the op-
timizer recommends performing maintenance on Unit 17 when Unit 12 from
the yellow envelope undergoes its second turnaround in the five-year cycle. An
intuitive explanation for this is to ensure that Unit 17 undergoes maintenance
when some other part of the yellow envelope has to undergo maintenance as
well (Unit 12’s second turnaround), so as to make opportunistic use of the
disruption in the site network caused by Unit 12’s maintenance.

5. The particular scenario that was run included increased feedstock prices during
Q1 of each year, a situation commonly seen in practice with some raw materials.
We choose to decrease relative margins by 10% to simulate this scenario. The
schedule responds to this by recommending a large number of the turnarounds
to be performed in Q1 as seen in the case of the red, blue, yellow as well as
orange envelopes. In this way, feedstock is preferentially purchased in Q2, Q3,
and Q4 when prices are lower and most units are running.

6. The different envelopes have their turnarounds scheduled in different quarters,
and in different years as well. From a manpower availability as well as a
financial viewpoint, this is favorable. In terms of the site reliability, this is
favorable as well—it may not be desirable to have most turnarounds happening
in a short span of time, as individual plant reliability, and more significantly,
average plant reliability, would be at its lowest across the board just prior
to these turnarounds. The financial performance over the five-year schedule
shown in Figure 5.4 is illustrated in Figure 5.5. In the figure, the left vertical
axis corresponds to weekly profits, and the right vertical axis corresponds to
quarterly profits. The top horizontal axis denotes time by quarters, while the
bottom axis does it by weeks. As can be seen, turnarounds can increase the
variability of profit margins over time. Specifically, the sets of turnarounds
around week 30 and week 162 have an effect of the smoothness of the profit
profile. The fact that these sets are in different years helps to some extent,
and it is intuitive that the appropriate spreading of turnarounds over the time
horizon is important in order to reduce the variability in profits over time. A
systematic way to do this is elaborated on in Section 5.5.2.
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Figure 5.5: Weekly and quarterly financial performance of an optimal schedule

Lack of import capability of intermediate products The model proposed assumes
that some intermediate storage tanks are able to interact with the market, and
import raw materials when required. As we see with the analysis of the schedule
proposed in the first part of the Results section, this allows us to decouple the
turnarounds in the red unit envelope, when the price of these intermediate products
is favorable. When there is inability to import or buy raw materials from the
market, one can see that this may in turn affect the best choice of turnaround
coordination. This is illustrated in the optimal schedule without import in Figure 5.6.
The optimizer recommends that the turnarounds of Units 4, 5 and 7 now be aligned.
Unit 6 is able to draw from the inventory in S3 when Unit 4 is down. This choice
of alignment is intuitive, as there is no longer the possibility to import intermediate
product and use this to decouple the turnarounds of the red envelope.

What we see here is the effect of supply of raw material on the optimal schedule,
and this sort of analysis is important to do when one is not completely sure of being
able to import or buy raw material whenever required. The use of one or the other
schedule can be traded off using the difference in estimated profits from the two
scenarios.

The discussion so far has been on the analysis of a specific schedule, under
a given set of assumptions and constraints. The following subsections describe
the generation of multiple possible schedules and analyze solutions in alternative
scenarios.
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Figure 5.6: Schedule when no import of intermediate material is possible

5.5.2 Study 2: Rolling horizon framework

The cyclic scheduling model serves to illustrate (1) the nature of the schedules
generated from which we can gain some insight into network behavior; and (2)
the tractability of an industrial-size problem under such a framework. However,
there are several limitations of the cyclic scheduling framework in the context of
maintenance scheduling with a chemical site network over long-term horizon. In
this study, we pose the scheduling problem within a rolling horizon framework rather
than using a fixed cyclic schedule. We investigate each of the limitations of the cyclic
scheduling framework, and demonstrate that the rolling horizon framework provides
a natural way to address them.

A rolling horizon framework respects the regular network and turnaround con-
straints, but is solved to a much longer horizon, say 15 years, called the planning
horizon (Stadtler 2000). However, only the decisions that correspond to an initial
horizon called the decision horizon, say 5 years, are implemented (Figure 5.7). Then,
the relevant information from the ending state (gathered from the period denoted
by the thicker red line) which involves inventory levels and the time since the last
maintenance of each of the units is used as the starting state for this next iteration.
In this way, the rolling horizon scheme attempts to incorporate the effect of both
future turnaround decisions as well as demand and price forecasts on short-term
decisions.
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Figure 5.7: A potential rolling horizon scheme

The horizon for the cyclic schedule forms the natural cycle. We use the sugges-
tion by Baker (1977) that the planning horizon be at least as long as the natural
cycle.

The horizon for the fixed cyclic schedule is determined by the least common mul-
tiple of all the turnaround frequencies for the units, so that each unit is maintained
exactly fi time periods after it was maintained before. To determine a suitable hori-
zon for a moving horizon problem in this context, apart from choosing a horizon that
is tractable and for one which there are reasonable forecasts, one has to consider the
situation where the turnaround for a unit that is maintained only once in a cycle
gets pushed to the end of the horizon and include the costs incurred for the mainte-
nance beyond the time period as well. To include these considerations, we consider a
horizon of 15 years and three months (61 quarters, 793 time periods)—about thrice
the length of the original horizon.

In terms of constraints, instead of Equations 5.19 and 5.20, which enforce that
a unit undergoes maintenance exactly once between two time intervals that span its
turnaround time period. Instead, we write

t+fi−1∑
τ=t

yi,τ ≥ 1 t ∈ T , i ∈M . (5.25)

This equation says that between any two time periods that span the turnaround
time period of Unit i, the unit has to undergo at least one turnaround.
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Another consideration is the last time each of the Units underwent maintenance.
To account for this, a constraint of the form

t+fi−Li,t−1∑
τ=t

yi,τ ≥ 1 i ∈M , t ∈ T , (5.26)

is added, where t here is the current time, and Li,t(= Li,0 + t) is the number of
weeks that have elapsed since the last turnaround that took place prior to the time
span considered in the model of Unit i at time t. Note that Equation 5.26 becomes
inactive for fi ≤ Li,t and makes Equation 5.25 redundant when fi −Li,t > 0, which
may correspond to the first few time periods in the horizon. The corresponding
redundant equations may be removed.

To ensure that the binary variables that represent the time periods just after the
start of a turnaround are turned off for the length of the corresponding turnaround,
we enforce

t+ni−1∑
τ=t

yi,τ ≤ 1 t ∈ T , i ∈M . (5.27)

This represents a tight formulation of the required condition.

In principle, the longer the horizon one is able to solve for, the better the incor-
poration of this information. As solving an infinite horizon is intractable, one needs
a way of obtaining near-optimal short-term scheduling decisions by approximating
the infinite horizon by a ‘long enough’ horizon. In this situation, one typically has
to be concerned with end effects, or terminal constraints. We enforce that final
inventories in tanks be the same as the initial inventories. In the current context,
we anticipate that a fifteen year horizon, apart from being subject to uncertainties
that are unaccounted for, is long enough to plan around a reduced supply at the
tail end of the moving horizon.

To compare the rolling horizon formulation with the cyclic schedule, we run the
rolling horizon formulation for four iterations to obtain 20 years of estimated profit
and calculate the average profit over five years using the scheme in Figure 5.7. We
assume that raw material and product prices vary on an annual cycle for purposes
of comparison in Table 5.6. We expect the rolling horizon schedule to be at least
as good as the cyclic schedule under the above assumptions, and we see a 1.36%
improvement in profit with the rolling horizon schedule. Even though we do not
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report zero-gap solutions, we are able to find a rolling horizon solution that is 0.6%
better than the best possible solution for the cyclic schedule. A 0.6% improvement
in profit is significant, given the scale of the problem that we are looking at, and this
comparison further justifies the use of the rolling horizon formulation in the current
context.

Table 5.6: Comparison of profit from cyclic schedule and rolling horizon schedule

Schedule Avg. profit units Relative gap Time to solve (s)

Cyclic 2,564,801 0.7% 36
Rolling horizon 2,599,788 0.4% 1219 (4 iterations)

Improvement = 1.36%

For the network studied, the rolling horizon formulation had approximately
16, 000 binary variables and 600, 000 continuous variables at each iteration. We
are able to solve the problem to within a 1% relative gap without changing the
granularity of modeling detail for all time periods.

Peak manpower availability and financial performance As mentioned in the pre-
vious section, the effect of turnarounds on financial performance is significant. So,
as long as long-term profit estimates are not affected very much, there is a trade-off
to be made between a balanced financial performance and identifying synergistic op-
portunities to perform maintenance across multiple plants simultaneously. In fact,
one may formalize this importance by explicitly requiring that profits do not fluctu-
ate greatly across time periods. One way to do this would be to enforce that profit
in each time period is greater than some fraction (say 90%) of the average profit
estimate across periods. If we consider Qtot periods, the profit estimate is given by

zj =
∑
t∈Qj

∑
i∈P

pi,t xi,∞,t −
∑
i∈M

mi yi,t

t+ni−1∑
τ=t

cmi,τ

−
∑
i∈B

cri,t x0,i,t −
∑
i∈I\F

hi,tsi,t

 j ∈ NQ,

(5.28)
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where NQ = {1, 2, . . . ,Qtot} is the set of periods and Qj represents the set of time
intervals in the jth period. We add the constraint

zj ≥
λ

Qtot

∑
i∈NQ

zi j ∈ NQ, (5.29)

which ensures that the profit in each period is at least some fraction λ of the average
profit across periods. For the particular instance we study, we vary λ from 0.93 to
0.99 and provide the results in Figure 5.8. We see that beyond λ = 0.96, the
overall profit estimate begins to decrease. This means that beyond this point, we
have no way to further smooth out the profit profile without decreasing the overall
profit, i.e., causing some scale-backs in production to ensure this. This emphasis on
balancing financial performance may be thought of as a secondary objective, and
the corresponding constraint as an ε-constraint that is useful for trading off the two
objectives.
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Figure 5.8: A Pareto curve that trades off overall profit vs. coefficient in Eq 5.29, λ. The
numbers above each data point represent the standard deviations in profit over
the horizon. The bar graph above each data point denotes the least peak man-
power achievable for each of the scenarios. This is represented as a percentage
increase from the lower bound on peak manpower.

An additional objective is to try and reduce peak manpower. As mentioned
in Section 5.4, the ability to reduce peak manpower, i.e., the highest manpower
requirement at any time period in the horizon, without affecting long-term profit
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margins not only allows for greater bargaining power with firms that hire out man-
power, but gives the opportunity to bid for the more productive and skilled fraction
of the available manpower. We consider balancing financial performance as higher
priority than reducing peak manpower. So, for each λ that signifies a different level
of requirement on financial performance, we try and reduce the peak manpower. We
see that the solution for which λ = 0.96, the least peak manpower acheived is 20%
higher than the lower bound on peak manpower. The lowest possible manpower
requirement corresponds to the unit that requires the largest workforce at all times
during its turnaround.

Calculation of big-M parameters The big-M constraints in Equation 5.21 derive
the big-M value in a natural way, i.e., from the upper bounds on flowrates in the
given network structure. However, on closer examination, one may see that these
may not necessarily be the tightest valid upper bound that one could supply. This
is observed in two ways: (1) The upper bound on the flow out of a unit may be
greater than the upper bound on the flow into it; and (2) The stoichiometric ratio
of inputs/outputs of a unit may not be accurately reflected by the corresponding
upper bounds. This is illustrated in Figure 5.9. For instance, a maximum of 24.36
units enter Unit 9, but a maximum of 25.16 is allowed to exit it, which is clearly a
loose bound. Another example is the input streams to Unit 5; the ratio constraint
enforces xS1,5,t = 3.53xS3,5,t. The physical maximum flow rate throught the pipe
connections is xUS1,5 = 17.18, whereas the ratio constraint will allow only a maximum
of 3.53xUS3,5 = 3.53× 3.43 = 12.10 units. The inclusion of these updated upper
bounds in the big-M constraints is useful in improving the LP relaxation, and the
effect of this is illustrated in Table 5.7. The solver we experiment with, cplex, has
the capability of identifying and improving such bounds, but we observe that their
explicit inclusion helps to speed up the solution by up to 45%.

The observation that reducing the ‘big-M’ in the flow constraints motivates us
to look for a systematic way to discover all such connections in the network. One
straightforward method to do this is to solve a linear program for each arc—where
we maximize the flow through the arc subject to unit ratio constraints, nonnega-
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Figure 5.9: Example network highlighting which flows were modified to improve big-M con-
straints

Table 5.7: Cumulative effect of updated big-M constraints on solution time

Original network 354

Modifications Solve time(s) % improvement

xU3,S4
, xU12,S7

315 11.0
xUS1,5, xU9,S6

235 33.6
xU11,S5 194 45.2
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tivity constraints, valid upper bounds on all the other arcs, and modified inventory
balances,

∑
i∈I

xi,j ≤ s∆
j +

∑
i∈I

xj,i j ∈ I, (5.30)

∑
i∈I

xj,i ≤ s∆
j +

∑
i∈I

xi,j j ∈ I, (5.31)

where s∆
j = sUj − sLj . If the flow does not reach the current upper bound, we see

that there is potential to tighten the big-M for the corresponding flow constraint in
the mixed-integer scheduling formulation. The number of arcs in such a network
would not exceed a few hundred, at most, and the solution of one LP per arc is
is a relatively inexpensive procedure. The procedure guarantees that the tightest
possible upper bounds are found for each arc as the LPs respect all of the other
network flow considerations, and is used to generate tighter bounds on the flows
(Table 5.7).

Rescheduling under disruptions An essential part of maintenance activities is the
effect of disruptions on turnaround schedules. Discovery work from taking down
a plant for a turnaround may yield the information that the shutdown may take
several weeks more than originally anticipated. In this scenario, one may consider
reconstructing the schedule from that point in time going forward, to see whether
there may be other opportunistic benefits of performing other maintenance tasks
at that time. Other major reasons to reschedule would be to potential savings
from using a new schedule that takes into account the current state of inventory
and maintenance, updated cost and price estimates, changes in the site network
structure, and the site reliability situation.

Multiple kinds of turnarounds on a plant In some situations, a plant may need
to undergo different kinds of turnarounds. The first kind of multiple turnaround
scenario we address is when every second or every third turnaround on a particular
plant possibly requires a different duration of shutdown and a different resource
requirement. As a hypothetical situation, Unit 1 may need to undergo complete
overhaul for six weeks and requiring 1000 personnel every five years. However,
between two major turnarounds, it may require a smaller three-week turnaround
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requiring 300 personnel. To model this, we use Yi,t as the Boolean variable that
signals the start of a major turnaround, and the associated binary variable yi,t.
Similarly, we use Wi,t and wi,t for the minor turnaround. The logic

Yi,t =⇒ Wi,t ∨Wi,t+1 ∨ · · · ∨Wi,t+fi−1,

ensures that there is a minor turnaround within fi time periods of a major turnaround,
and this is enforced for all t. This logic is easily converted into the inequality con-
straints

t+fi−1∑
τ=t

wi,τ ≥ yi,t t ∈ T , i ∈M , (5.32)

where wi,t ∈ {0, 1}. Similarly, we enforce a major turnaround following a minor
turnaround through

t+fi−1∑
τ=t

yi,τ ≥ wi,t t ∈ T , i ∈M . (5.33)

The constraint

t+2fi−1∑
τ=t

yi,τ ≥ 1, t ∈ T , i ∈M (5.34)

ensures that major turnarounds have to take place at least once every 2fi periods.

The other multiple turnaround scenario we consider is when there is a secondary
turnaround, which is completely decoupled from the primary one (i.e., there is no
requirement that this turnaround is to take place within some time of the primary
turnaround). This may happen, for instance, when some parts of a plant need to be
maintained at a completely different frequency from those parts undergoing mainte-
nance through the primary turnaround. This is modeled by adding the constraints

t+fM2i−1∑
τ=t

vi,τ ≥ 1 t ∈ T , i ∈M2, (5.35)

where M2 is the set of units that have a secondary turnaround and vi,t ∈ {0, 1}
represents the binary variable that represents when the unit is shut down for the
secondary turnaround.
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The corresponding big-M, manpower, and minimum operation level constraints
as well as the objective function can be modified accordingly. Constraints on
turnarounds similar to 5.27 can be written for the cases described by Equations 5.32–
5.35.

Transitioning into a schedule A significant concern when implementing a schedule
over a long term horizon as is the case in this paper, is the question of how to put
it into motion. In the case of a brand new starting state, one may use the cyclic
schedule formulation to begin with. In this case, a natural desire is to push the
turnarounds of each of the units as much as possible to take advantage of the fact
that the equipment have undergone relatively less wear and tear. For example, units
that have to be maintained just once in the five year horizon have their turnaround at
the end of the cycle. Figure 5.6 illustrates a schedule that follows this to some extent.
Unit 1 undergoes maintenance only in Week 247, and Unit 8 in Week 62. Fewer
turnarounds are scheduled for the entire first year, with just the units that have
a turnaround time period of less than one year undergoing maintenance. However,
one may also choose to use the rolling horizon formulation in this context.

In the case of an existing site transitioning into a new schedule, the rolling
horizon formulation would apply directly. The setting is almost the same—the
formulation accounts for the last time a unit was maintained along with current
inventory levels, and plans its future turnarounds accordingly.

Seasonal constraints An important practical concern for turnaround scheduling
is the productivity of manpower. For sites in locations which can have particularly
harsh weather, there may be an entire season where it is desired that no turnarounds
occur. This is a situation where a cyclic schedule may be particularly restrictive.
In the cyclic schedule illustrated in Figure 5.10, for instance, the fourth quarter is
constrained to have no turnarounds. However, if Unit A is scheduled to undergo a
maintenance turnaround once every 1.25 years, or four times in the five year horizon
at fixed intervals in a cyclic schedule, it is clear from the figure that its scheduled
turnaround (which would occur within the intervals shown in red) would occur in
the fourth quarter of one of the years in the horizon.
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Year 1 Year 2 Year 3 Year 4 Year 5

1.25 yrs Turnaround of Unit X Winter quarter

Figure 5.10: Illustration of inability of cyclic schedules in dealing with seasonal constraints

The rolling horizon formulation would face no such difficulties (assuming that
no turnaround needed to occur more than once a quarter in the example above),
and one would simply enforce

yi,t = 0 i ∈M , t ∈ Γ, (5.36)

where Γ is the set of time periods where turnarounds must not occur.

Approximation of turnaround time periods In the cyclic schedule, it can be ob-
served the the least common multiple of all the units turnaround time periods turned
out to be five years. If, for instance, a unit had to be maintained every 1.5 years
and we still wanted to retain a five-year horizon, then we rounded down this number
to 1.25 years, so as to enforce four turnarounds every five years. This is a signif-
icant change, as each turnaround incurs a large cost. This approximation can be
completely dispensed with in the rolling horizon formulation by ensuring that the
horizon one solves for at each iteration is just a big enough multiple of the largest
turnaround time period among the units.

As can be seen from the formulation, the main disadvantage of the rolling hori-
zon approach is primarily from a computational standpoint, in that there is a sig-
nificant growth in the complexity of the model. This results from both a direct
increase due to the consideration of a much larger number of time periods, as well
as the transition to flexibility in time between turnarounds on each unit as opposed
to a fixed difference for the cyclic schedule, i.e., moving from equality to inequal-
ity constraints. However, the significant benefits from considering a rolling horizon
schedule are clear from the above discussion.
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5.6 conclusions

The work demonstrated in this paper outlines a methodology for performing long-
term turnaround optimization of continuous chemical plants that are part of a large
integrated site. The problem is first motivated by discussing the large financial
impact that maintenance tasks induce on integrated sites, and then the potential
for optimization is illustrated using an industrial-size example site network.

We demonstrate the generation of potential schedules using mixed-integer pro-
gramming technology through both cyclic and rolling horizon scheduling formula-
tions. A thorough analysis of an output schedule is performed to reflect domain
knowledge, and a number of potential analyses, including financial and sensitivity
studies, are presented as capabilities of the modeling framework. The three major
decisions that fall out of the framework are the: (1) maximization of net present
value; (2) balancing of financial performance; and (3) reduction in peak manpower.
Real-world issues such as the incorporation of seasonal constraints and the possibil-
ity to import intermediate products are discussed. Practical ways to screen input
data to tighten the formulation, as well as a framework for modeling multiple kinds
of turnarounds is put forth.

A potential extension of the work includes integrating this long-term mainte-
nance strategy with a short-term scheduling model that considers production and
inventory planning, and models maintenance tasks such as ramping up and down
of plants and different kinds of manpower for different tasks. Another possible
extension of this work is to complement the optimization model with a discrete
event simulation. The simulation could be built to include variation in production,
length of maintenance, failure rates of components, and could be used to validate
the optimization solutions obtained through the mixed-integer model.
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6
MEDIUM-TERM TURNAROUND PLANNING FOR
INTEGRATED CHEMICAL S ITES

6.1 introduction

Chapter 5 introduced the turnaround planning problem, and illustrated the benefits
from considering site-wide maintenance in an integrated manner. In this chapter,
we deal with the problem of medium-term turnaround planning under uncertainty
for integrated chemical sites.

With regard to turnarounds, there is uncertainty in what tasks need to happen,
in the delivery of materials, as well as in weather conditions. Due to this, a major
portion of the uncertainty lies in the duration of the turnaround, which affects the
availability of maintenance manpower as well.

To quote Lenahan (1999), there are only two types of work on a turnaround,
routine and unexpected. If the routine is under control there is time to deal with
the unexpected but if the routine becomes unexpected the unexpected may become
catastrophic.

In some sense, Chapter 5 addressed the weather condition issue by providing
schedules that worked around specific undesirable times of the year due to weather
conditions. Further, when plant units are taken off-line for maintenance turnarounds,
a more accurate assessment of the state of the equipment is performed, which is
termed as ‘discovery work’. Discovery work may reveal that certain pieces of equip-
ment are damaged worse than expected, resulting in an increase in maintenance
duration that could even be on the order of weeks. Uncertainty in the delivery of
materials also leads to a delay in the duration of a turnaround. Consequently, main-
tenance personnel, who are typically hired on contract several months in advance,
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and the duration for which they are required to be made available is an important
issue.

As far as we know, no prior work appearing in the literature addresses what we
call the medium-term turnaround problem for integrated chemical sites, let alone
include the consideration of uncertainty in this context. As mentioned in Chapter 5,
most prior work deals with short-term scheduling of production and maintenance
(for example, Dedopoulos & Shah (1995a); Sanmartí et al. (1997); Pistikopoulos
et al. (2001); Megow et al. (2011)).

Very few papers exist on process scheduling under uncertainty (Lin et al. 2004;
Li et al. 2012; Wittmann-Hohlbein & Pistikopoulos 2013), and fewer still where
discrete-time formulations are considered, or on maintenance considerations under
uncertainty. Vujanic et al. (2012) address the robust optimization of cement plant
operation, where the uncertain parameter is in the time of required reserve dispatch
in the context of energy storage. A review of work in the process scheduling under
uncertainty area is covered by Li & Ierapetritou (2008).

In Section 6.2 we motivate the need for medium-term maintenance scheduling,
and the nature of the uncertainty considered in the problem. Section 6.3 intro-
duces two different modeling approaches to handle the uncertainty, in order to make
scheduling and production planning decisions. Section 6.4 compares and contrasts
the two approaches in terms of solution quality and solution time. In addition,
several aspects of the production and inventory plan, turnaround schedule, and
manpower utilization and availability are analyzed.

6.2 motivation and problem description

Chapter 5 considers maintenance scheduling over a time period that spanned mul-
tiple years, and recommended solutions usually involved a set of plant units under-
going their turnarounds with or close to each other. The medium-term scheduling
problem deals with refining schedules recommended by the long-term scheduling
model 6–9 months in advance of a particular set of unit turnarounds. There are
two primary reasons that considering the problem on such a time scale is desirable:
(1) Maintenance personnel are typically hired on contract, and contract negotiation
for quantity, type, and duration of manpower requirement typically begins several
months prior to turnarounds; and (2) the build-up of downstream inventory, to deal
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with the satisfaction of product demand during the extended periods of interrupted
production that turnarounds create, is known to take several weeks or even months.
This provides motivation to investigate the medium-term maintenance scheduling
problem, to simultaneously perform turnaround scheduling while ensuring availabil-
ity of manpower of different skill sets and perform production planning across the
integrated site network in preparation for disruptions in flow.

In summary, the main decisions to be made are the start times of each of the
turnarounds, and the production and inventory decisions within the network. When
considering these factors, we would like to incorporate the effect of uncertainty in
our models. In this work, we focus on uncertainty in the duration of turnarounds.

From a planning perspective, several issues arise when maintenance turnarounds
take longer than the nominal duration. The main issues we consider are the avail-
ability of maintenance manpower as well as the production and inventory levels over
time across the entire site network. These two issues affect planning in two quite
different ways.

As mentioned above, maintenance personnel are typically hired on contract
several months in advance for a specific time period. If maintenance exceeds the
nominal duration and maintenance personnel are not available, maintenance could
be extended indefinitely and could have severe impacts on production, especially in
a tightly integrated site. Replacement or on-demand manpower is usually not an
option due to scarcity, so there is no immediate recourse action that can be effected.
As a result, the availability of manpower for the nominal duration as well as for
an extended duration is paramount. Having said this, it is extremely unlikely that
all the turnarounds occurring in the time window concerned are affected. These
characteristics indicate that we would like to have a model that is robust (Ben-Tal
et al. 2009) to uncertain turnaround durations with respect to manpower availability.
This is discussed further in Section 6.3.1.1.

An example of the need for analyzing this uncertainty more closely is illustrated
below in Figure 6.1. From the point of view of production levels and demand satis-
faction, the ideal situation may be, for example, to perform all of the maintenance
work in the shortest time span possible in order to restore the site to normal oper-
ation quickly. However, from a robust perspective, possible delays and consequent
manpower scarcity indicate that a provision for buffer time between scheduling tasks
may result in more reliable maintenance turnaround times.
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upper
limit

                        (1) Nominal solution                                                (2) Uncertainty in duration

 
                        (3) Worst-case solution                                            (4) Robust solution

Time

1 1

11

2 2

22

3 3

33

4 4

44

Potential delay

Gantt 
Chart

Manpower
usage

5 5

55

Figure 6.1: The effect of the manner of consideration of uncertainty on scheduling decisions
and manpower requirement

Here, case (1) corresponds to when the assumption of exact maintenance dura-
tions is made. The optimal solution is illustrated, which keeps maximum manpower
utilization at 100% of the available manpower while minimizing the total duration.
Case (2) shows that delays are possible in Units 1 and 3, resulting in a potentially
infeasible schedule where delays could force the available manpower limit to be ex-
ceeded. The worst-case solution is illustrated in case (3), where we just assume that
all tasks take the upper bound on maintenance duration, and the figure shows that
the schedule is feasible in this case, although we have increased the total duration of
the turnarounds. Case (4) makes the argument that case (3) is too conservative, and
that all random variables taking their worst case realizations is not realistic. Case
(4) attempts to make a trade-off by allowing a certain number of tasks to exceed
their expected duration time (here this is one task). Here, the schedule reflects this
by rearranging the tasks to retain a good total duration, while allowing for either
Unit 1 or Unit 3 to take longer than expected maintenance durations.

The other factor being affected is the set of production and inventory decisions
to be made over time. Production down-time due to turnarounds can be managed by
making use of production and inventory capacity to plan around turnaround periods.
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Turnarounds are also often scheduled to take place during periods of lower demand,
and this helps to alleviate the demand satisfaction issue as well. Uncertainty in
the duration of a turnaround directly affects production and inventory levels, and
appropriate planning of these is required to maximize some sort of profit objective,
be it risk-neutral (expected value) or risk-adjusted (Rockafellar & Uryasev 2002).
Unlike maintenance manpower, recourse actions may be taken on production and
inventory once uncertainty has been realized. These characteristics suggest that
stochastic programming (Birge & Louveaux 2011) may be a suitable approach from
a profit maximization point of view.

The following sections investigate two approaches to reconciling these two as-
pects of the uncertainty. The first approach involves a sequential two-step proce-
dure. First, a robust scheduling formulation is built which minimizes the makespan
of the entire set of turnarounds, and all such solutions are found. Next, these rec-
ommended schedules are fixed, and a multi-stage stochastic linear programming
model is solved that performs production planning, where each stage corresponds
to the time interval between the start of adjacent turnarounds. For example, the
first stage decisions are production planning decisions for the first six months. The
first turnaround occurs at the six-month time point, and indicates the start of the
second stage.

The second approach we look at involves a combined robust and two-stage
mixed-integer stochastic program, which simultaneously schedules the turnarounds
and performs production planning. The first-stage decisions consist of scheduling
the turnarounds, which actually occur in subsequent stages, and the production
planning decisions for the first stage (the first six months, for example). Here, an
approximation is made, in that the duration of all turnarounds is assumed to be
revealed at the start of the second stage. Following this, the recommended solution
is embedded in the multi-stage stochastic linear program to refine the production
plan.

The two schemes are shown in Figure 6.2.

Treatment of manpower Manpower may be grouped by craft, or by which con-
tractor hires them out.

Manpower may also be classified based on tasks, where they may be grouped
as a crew set with complementary skills. Three types of jobs normally occur during
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Robust Optimization (MILP) 
[Min. makespan] 

  

Determine schedule that is robust to 
uncertainty in duration w.r.t. manpower 

Combined Robust and 2-stage 
Stochastic Programming (MILP) 

[Max. profit] 
  

Determine robust schedule and optimal 
inventory and production schedule 

Multi-stage stochastic programming 
(LP) 

  

Determine optimal production  
and inventory decisions  

Pass scheduling 
decisions 

Pass scheduling  
decisions 

Approach 1 (Sequential) Approach 2 (Simultaneous) 

Figure 6.2: Proposed approaches for combined robust optimization and stochastic program-
ming

a turnaround—major tasks, minor tasks, and bulk work. Major tasks may include
time-consuming items such as distillation column re-traying, or project work such as
installing a new control system, and these are usually planned up to the last detail,
although progress can be beset by delays in delivery of equipment, for instance.
Here, manpower with specialized training may be required.

Minor tasks involve items such as cleaning of heat exchangers, or inspection
and repair of process vessels. Bulk work consists of the overhaul of a large number
of equipment such as valves and small pumps. In both these cases, maintenance
personnel may have transferable skill sets that allow them to work on miscellaneous
minor tasks and bulk work. Here, delays may happen due to discovery work, or
underestimation of variation in task duration during the planning phase.

We assume that an appropriate classification of manpower has been made, and
that the different types of manpower considered are required through the nominal
duration of the turnaround. Minor tasks and bulk work comprise of monitoring,
testing, and attending to various pieces of plant equipment, each taking a portion
of the entire turnaround time. Even if subtasks, and hence manpower requirements,
are sequential for each piece of equipment, there are several such equipment units,
and therefore the manpower is required more or less through the entire turnaround.
Any remaining down-time due to other maintenance tasks being completed may
be capitalized on to perform additional tasks. Short-term maintenance scheduling
deals with details of specific crews and their respective shift scheduling, and this is
beyond our current scope.
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Note that as we focus on weekly time scales, we do not consider start-up and
shutdown times, which typically take on the order of 2–3 days.

In the following sections, we discuss the formulations involved, the solution
times, compare the solutions we obtain from the two approaches, and illustrate the
various analyses that the model outputs enable.

6.3 model formulations

6.3.1 Sequential robust scheduling and production planning

6.3.1.1 Model formulation for robust maintenance schedule generation

This section deals with formulating a model to determine robust turnaround sched-
ules. As mentioned above, it is typical to hire manpower on contract, and we assume
that manpower requirements—which involves the quantity, skill, and specific time
window of requirement—are required to be fixed six months ahead of time. How-
ever, the exact duration of a maintenance task may not be known ahead of time.
This duration is often revealed only when plants are taken down for maintenance,
through discovery work or an update on equipment delivery time. This may also
be termed corrective maintenance, as it is not a task that is scheduled to be under
the planned maintenance, but an item that may be acted upon due to unexpected
deterioration in the equipment or other delays.

Through prior analysis, historical data, or expert opinion, one may ascertain a
reasonably accurate window within which this uncertainty in duration may fall. In
addition to the fact that it may be very unlikely in practice that all turnarounds
occurring in the considered time window require corrective maintenance through
discovery work, a maintenance policy may be enforced where only a pre-defined
number of tasks deemed as most urgent or resource-intensive are put in as work
orders. The remaining tasks may be deferred to future preventive maintenance,
or may not affect operation as much and it may be preferred to run them down
to breakdown maintenance. The nature of these considerations allow us to use
the concept of budget uncertainty (Bertsimas & Sim 2004; 2003), where we ensure
manpower availability for up to a pre-defined number of extended turnarounds.

For the formulation we use, notation is listed in Table 6.1.
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6.3 model formulations

Table 6.1: Set, parameter and variable notation for robust scheduling model

Entity Set

Set of units to be maintained M

Set of time periods T

Set of different manpower skill types K

Parameter Notation

Nominal turnaround duration di

Maximum extension of turnaround duration pi

Maximum number of turnarounds allowed to exceed nominal
duration

Γt

Maximum number of units requiring manpower type k for
the extended duration (≤ Γt)

γt,k

Manpower requirement during nominal duration qi,k

Manpower requirement during extended duration qei,k

Maximum available manpower of type k m̂max
k,t

Maximum total allowable manpower mmax
t

Variable Notation

End time period of last turnaround Tend

Binary representing start of maintenance zi,t

Binary for maintenance during nominal duration yi,t

Binary for maintenance during extended duration ui,t
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An objective that attempts to minimize makespan may be most suitable, as
we would like to restore the site to full working condition in the minimum possible
time. Another reason for this may be that the remoteness of the site location may
require that maintenance crews be transported there. In this case, the crew may
incur a cost for the entire duration of travel, which one may approximate to be the
makespan of all the tasks.

min Tend, (6.1)

where Tend represents the time at which the last maintenance ends. We assume,
without loss of generality, that maintenance starts at time t = 1.

Here, it is interesting to note that the uncertain parameter is the duration of the
turnaround, a parameter that has the unit of time, an entity that normally appears
as an index in a discrete-time formulation. However, the framework of Bertsimas
& Sim (2004; 2003) is geared to handle parameter uncertainty in the left-hand side
coefficients and right-hand sides of the constraints. We describe how we transform
this into an uncertain parameter in the sense of Bertsimas & Sim (2004) below.

We have a binary variable zi,t representing the starting turnaround period
for unit i. We also introduce binary variables yi,t that represent the fact that a
turnaround is taking place on unit i at time period t. Further, we introduce another
binary variable ui,t that represents the period spanning the extended duration for a
particular unit.

To ensure that maintenance for a particular unit takes place only once in the
duration under consideration, we have

∑
t

zi,t = 1 ∀i ∈M . (6.2)

We then enforce that the variables yi,t and ui,t take the appropriate values, we
have

zi,t ≤ yi,t+ki ∀i ∈M , t ∈ T , ki = {0, . . . , di − 1}, (6.3)

zi,t ≤ ui,t+ki ∀ i ∈M , t ∈ T , ki = {di, di + 1, . . . , di + pi − 1}. (6.4)
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Further, to prevent yi,t and ui,t that are outside the correspondent time interval of
zi,t from taking the value one,

∑
t

yi,t = di ∀ i ∈M , (6.5)

∑
t

ui,t = pi ∀ i ∈M . (6.6)

Note that the value of ui,t, which represents the extended turnaround duration,
takes the value 1 if any of the zi,τ = 1 where τ ∈ {t− di− pi+ 1, . . . , t− di}. This is
true even if the particular unit’s turnaround is not extended. The reason we model
it in this way is that we can now think of the uncertainty as a parameter, namely the
manpower requirement when we model the manpower resource constraint according
to the framework of Bertsimas & Sim (2003) as

∑
k∈K

∑
i∈M

qi,kyi,t

+ sup
{St∪{τt}|St⊆M ,
|St|=bΓtc,τt∈M\St}

{∑
k∈K

(∑
i∈St

qei,kui,t + (Γt − bΓtc)qeτt,kui,t)
)}
≤ mmax

t ∀ t ∈ T .

(6.7)

This enforces that only a subset of the units undergo an extended turnaround in
any given time period.

The function that protects the tth constraint from the uncertainty is

βt(u
∗, Γt) = sup

{St∪{τt}|St⊆M ,
|St|=bΓtc,τt∈M\St}

∑
k∈K

∑
i∈St

qei,ku
∗
i,t + (Γt − bΓtc)qeτt,ku

∗
i,t)

 ,

which may be represented by the problem

βt(u
∗, Γt) =max

∑
i∈M

u∗i,tvi,t
∑
k∈K

qei,k

s.t.
∑
i∈M

vi,t ≤ Γt

0 ≤ vi,t ≤ 1 ∀ i ∈M . (P1)
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Writing the dual of Problem P1, we get

min
∑
i∈M

wi,t + Γtrt

s.t.wi,t + Γt ≥ u∗i,t
∑
k∈K

qei,k ∀ i ∈M

wi,t ≥ 0 ∀ i ∈M

rt ≥ 0, (P2)

where wi,t and rt are dual variables.
We then directly replace the protection function βt(u∗, Γt) in Equation 6.7 by

the objective of Problem P2 and tag on the other constraints to the original problem.
We repeat this procedure for each t ∈ T , and for each manpower skill type k ∈ K, as
each is bounded by m̂max

k,t , and the usage of each is affected by turnaround durations.
The constraints for the overall manpower limit are derived from Problem P2 and
Equation 6.7, and can be written as

∑
k∈K

∑
i∈M

qi,kyi,t +
∑
i∈M

wi,t + Γtrt ≤ mmax
t ∀ t ∈ T (6.8)

wi,t + Γt ≥ u∗i,t
∑
k∈K

qei,k ∀ i ∈M , t ∈ T (6.9)

wi,t ≥ 0 ∀ i ∈M , t ∈ T (6.10)

rt ≥ 0 ∀ t ∈ T . (6.11)

Similarly, we can do this for each type of manpower, through

∑
i∈M

qi,kyi,t +
∑
i∈M

ŵi,t,k + γt,kr̂t,k ≤ m̂max
k,t ∀ t ∈ T , k ∈ K (6.12)

ŵi,t,k + γt,k ≥ u∗i,tqei,k ∀ i ∈M , t ∈ T , k ∈ K (6.13)

ŵi,t,k ≥ 0 ∀ i ∈M , t ∈ T , k ∈ K (6.14)

r̂t,k ≥ 0 ∀ t ∈ T , k ∈ K. (6.15)

Finally, to capture the makespan,

Tend ≥ t ui,t ∀ i ∈M , t ∈ T . (6.16)
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The entire robust optimization formulation consists of Equations 6.1–6.6, 6.8–
6.15, and 6.16. Note that the robust formulation does not use any information from
the site network structure, and hence the flows and inventory levels.

6.3.1.2 Model formulation for multi-stage stochastic programming

Once the above formulation is solved, we get a feasible robust schedule, which we
then fix in the site network model that has inventory and mass balances, and unit ra-
tio constraints. The problem is formulated as a multi-stage stochastic linear program
for a time span of 9–10 months, where the first 6 months are devoted to production
planning, and the first turnaround is scheduled to take place at the 6-month mark.
This represents the start of the second stage, and appropriate flows are set to zero
for the corresponding scenarios. The start of each subsequent turnaround represents
the start of a stage, as uncertainty in turnaround duration is revealed at this point.

The stochastic programming formulation also includes holding costs and de-
mand penalties and constraints. However, it is not concerned any longer with main-
tenance manpower, as the robust scheduling formulation specifies the manpower
requirement at each time period and is no longer a variable.

The objective for the multi-stage stochastic program is to maximize expected
profit through

max
∑
t∈T1

(∑
i∈P

ci,tx
1
i,∞,t −

∑
i∈S

his
1
i,t

)
−
∑
i∈P

∑
δ:δ∈∆,

Dδ∩T1 6=∅

ρiδ`
1
i,δ

+
∑
a∈A

πa
 ∑
t∈T\T1

(∑
i∈P

ci,txi,∞,t,a −
∑
i∈S

hisi,t,a

)
−
∑
i∈P

∑
δ:δ∈∆,

Dδ∩T1=∅

ρi,δ`i,δ,a


 ,

(6.17)

where T1 corresponds to the time periods in the first stage and the terms xi,∞,t

correspond to quantity sold to market from storage tank i in time period t. The
objective function considers relative margins for sold product, holding costs, and
demand penalties. Note that we consider quantity-based demand penalties, although
event-based penalties may be added as well. The demand periods δ ∈ ∆ may
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Table 6.2: Set, parameter and variable notation for multi-stage stochastic programming
model

Entity Set

Set of inventory tanks that store final products P

Set of time periods T

Set of first stage time periods T1

Set of producing and inventory units I

Set of inventory tanks S

Set of units that undergo a turnaround M

Set of alternative scenarios A

Set of demand periods ∆
Set of time periods belonging to a demand period δ ∈ ∆ Dδ

Parameter Notation

Holding cost hi

Relative profit margin of product ci,t

Probability of scenario alternative a πa

Maximum extension of turnaround duration pi

Demand for product i in a demand period δ µiδ

Demand penalty for product i for demand period δ ρiδ

Binary parameter denoting start of turnaround ξi,t

Duration of turnaround for unit i in scenario a ηia

Variable Notation

Storage level in scenario a si,t,a

Storage level for first stage s1
i,t

Flow rate from unit i to j in scenario a xi,j,t,a

Flow rate from unit i to j in first stage x1
i,j,t

Unmet demand `i,δ,a

Unmet demand in first stage `1i,δ

146



6.3 model formulations

correspond to a particular set of four weeks, for instance, and Dδ are the individual
time periods in those four weeks.

We then have a number of constraints relating to network flows. First, we have
the mass and inventory balance for the first stage

∑
i∈I

x1
i,j,t + s1

j,t−1 = s1
j,t +

∑
i∈I

x1
jit ∀ t ∈ T1, j ∈ I, (6.18)

and, for the subsequent stages,

∑
i∈I

xi,j,t,a + sj,t−1,a = sj,t,a +
∑
i∈I

xjita ∀ t ∈ T\T1, j ∈ I, a ∈ A. (6.19)

For units that do not store material,

sj,t,a = 0, ∀ j ∈ I\S, t ∈ T , a ∈ A. (6.20)

Next we have the unit ratio constraints, which constrain the ratio of inputs or
outputs to a particular unit due to stoichiometric considerations.

xk,i,t,a = rin
k,j xj,i,t,a ∀ a ∈ A, t ∈ T , i ∈ Iin, j, k ∈ I,

where xUj,i,xUk,i 6= 0, j < k,
(6.21)

xi,j,t,a = rout
j,k,a xi,k,t,a ∀ a ∈ A, t ∈ T , i ∈ Iout, j, k ∈ I,

where xUi,j ,xUi,k 6= 0, j < k,
(6.22)

We have similar constraints for the first stage inventory level and flow variables.
In terms of inventory capacity constraints, there are

sj,t,a ≥ smin
j a ∈ A, j ∈ S, t ∈ T (6.23)

sj,t,a ≤ smax
j a ∈ A, j ∈ S, t ∈ T . (6.24)

There are also standard nonnegativity constraints on all of the flows in the
network,

xi,j,t,a ≥ 0 i, j ∈ I, t ∈ T , a ∈ A. (6.25)
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We have minimum flow constraints on the flows, which is given by

xi,j,t,a ≥ xLi,j,t,a ∀ i, j ∈ I, t ∈ T , a ∈ A, (6.26)

where the lower bound on the flows is time-dependent only because we define the
lower limit to be zero during maintenance.

Flows are forced to go to zero for the duration of the turnaround via

xi,j,t,a ≤ xUij

1−
t+ηia−1∑
τ=t

ξi,t

 ∀ i ∈M , j ∈ I, t ∈ T\T1, a ∈ A, (6.27)

where we know the values of ξi,t from the robust formulation.
Next, we enforce non-anticipativity constraints that make scenarios equivalent

before the uncertainty is revealed, i.e., before they are distinguishable, by

xi,j,t,a = xi,j,t,a′ ∀ i, j ∈ I, a < a′, t = αaa′ , (6.28)

where αaa′ is a two-dimensional parameter table that specifies at what time two sce-
narios become distinguishable from each other, and can be determined by examining
the scenario tree. Similarly, we do the same for the inventory levels

si,t,a = si,t,a′ ∀ i ∈ S, a < a′, t = αaa′ . (6.29)

The demand constraints for the first stage may be modeled as

∑
t∈Dδ

x1
i,∞,t + `1i,δ = µi,δ ∀ i ∈ P , {δ : δ ∈ ∆,Dδ ∩ T1 6= ∅}, (6.30)

and for subsequent stages as

∑
t∈Dδ

xi,∞,ta + `i,δ,a = µi,δ ∀ i ∈ P , a ∈ A, {δ : δ ∈ ∆,Dδ ∩ T1 = ∅}. (6.31)

We enforce nonnegativity constraints on `1i,δ and `i,δ,a.
Once we solve the multi-stage model for all the robust schedules with minimum

makespan, it is then straightforward to judge which of the schedules corresponds to
the highest expected profit, once manpower costs are added on.
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6.3.2 Simultaneous robust scheduling and production planning

In this section, we formulate a two-stage stochastic MILP for simultaneously finding
a schedule robust to duration uncertainty for the turnarounds, while making pro-
duction planning decisions. The first stage variables include binary variables for the
scheduling as well as the inventory and production decisions for the first six months
of the horizon considered. The second stage comprises of production decisions for
the scenarios for all realizations of the uncertain parameters (the duration of each
of the turnarounds).

This two-stage approximation assumes knowledge of all the turnaround dura-
tions at the start of the second stage. Although this is an approximation, the hope
is that the simultaneous decision-making for scheduling and production may either
(1) be easier to solve in one shot, rather than solving robust and multi-stage linear
problems for all possible minimum makespan schedules; or (2) reveal different solu-
tions that result in higher expected profits. To do this comparison, we can inject the
schedule recommended by this two-stage MILP into the multi-stage linear program.
The notation we use is similar to that used in Sections 6.3.1.1 and 6.3.1.2.

The objective is formulated as the maximization of the expected profit, and
its formulation is identical to the multi-stage objective in Equation 6.17 with the
addition of a manpower cost. This cost is added as even though the manpower
cost is fixed for the nominal duration of each of the turnarounds, the manpower
guaranteed for the extended duration will change, depending on the schedule. Since
the two-stage formulation has a cost-based objective and also tries to determine a
schedule, we can add this cost to the objective function. We compute this cost by
using the left-hand side from Equation 6.12 as

bk,t =
∑
i∈M

qi,kyi,t +
∑
i∈M

ŵi,t,k + γt,kr̂t,k t ∈ T\T1, k ∈ K. (6.32)
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The modified objective becomes

max
∑
t∈T1

(∑
i∈P

ci,tx
1
i,∞,t −

∑
i∈S

his
1
i,t

)
−
∑
i∈P

∑
δ:δ∈∆,

Dδ∩T1 6=∅

ρiδ`
1
i,δ −

∑
k∈K

∑
t∈T\T1

λk,tbk,t

+
∑
a∈A

πa
 ∑
t∈T\T1

(∑
i∈P

ci,txi,∞,t,a −
∑
i∈S

hisi,t,a

)
−
∑
i∈P

∑
δ:δ∈∆,

Dδ∩T1=∅

ρi,δ`i,δ,a


 ,

(6.33)

where λk,t is the price per unit of manpower of type k at time t.
For the scheduling decisions, the equations representing the robust counterpart

are identical to those given in Section 6.3.1.1, namely Equations 6.1–6.6, 6.8–6.15,
except that we control the set T to be restricted to the time periods beyond the first
stage, i.e., T\T1.

Similar to the multi-stage formulation in Section 6.3.1.2, we have the typical
inventory and mass balance constraints for the first stage.

∑
i∈I

x1
i,j,t + s1

j,t−1 = s1
j,t +

∑
i∈I

x1
j,i,t ∀ t ∈ T1, j ∈ I, (6.34)

and, for the second stage,

∑
i∈I

xi,j,t,a + sj,t−1,a = sj,t,a +
∑
i∈I

xj,i,t,a

∀ t ∈ T\{T1 ∪ {|T1|+ 1}}, j ∈ I, a ∈ A.
(6.35)

We connect the inventories across the stages through

∑
i∈I

xij,|T1|+1,a + s1
j,|T1| = sj,|T1|+1,a +

∑
i∈I

xj,i|T1|+1,a ∀ j ∈ I, a ∈ A. (6.36)

We also include the unit ratio constraints from Equations 6.21, 6.22, inventory
bounds from Equations 6.20, 6.23, 6.24, flow bounds from Equation 6.27 (albeit with
ξi,t now being a binary variable rather than a parameter), and demand constraints
from Equations 6.30, 6.31. Minimum flow constraints as in Equation 6.26 are en-
forced only for the first stage time periods. These comprise the entire two-stage
formulation.
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The solution of this two-stage formulation provides a schedule, which we can
then fix in the multi-stage formulation to better plan production.

The difference here is that we do not have the non-anticipativity constraints
for the variables beyond the first stage since we are approximating the multi-stage
situation with two stages. The reason we do this is because we can no longer
formulate the problem as a multi-stage mixed-integer program as we do not know
the structure of the scenario tree, which depends on when the maintenance decisions
are made. To more accurately formulate this, we could treat this as a problem with
endogenous uncertainty, and use formulations such as those proposed in Goel &
Grossmann (2006). This is beyond the scope of the current study.

6.4 results

As a case study, we use one of the results obtained in Chapter 5, illustrated in
Figure 6.3. We consider the set of units that have scheduled turnarounds in the first
quarter of the second year, namely Units 4, 5, 9, 10, 11, and 13. These units have
been highlighted in the network as well as in the Gantt chart.

We retain a weekly discretization scheme for the discrete-time mixed-integer
formulations as (1) the inventory capacities in the network are able to accommodate
a week’s worth of production or more; (2) demands are considered to be monthly;
and (3) turnaround durations are on the order of weeks.

We classify manpower by skill and assume that each unit requires a certain
number of each type. We have a cap on the manpower of each skill type, as well
as a cap on the total manpower allowed at any particular time at the site, due to
safety considerations.

The base case that we consider is where we allow up to two turnarounds to ex-
ceed their nominal duration at any particular time period, and assume that demand
is 90% of production capacity for all the products. We assume that the probability
that turnarounds take the nominal duration is 80% and the probability that they
take the full extended duration is 20%.

We compare schedules and discuss inventory levels, manpower usage in more
detail for the base case for both the schemes described in Section 6.3. Further, we
compare expected profits, problem sizes and solution times for the two approaches.

151



6.4 results

1
2
3
4
5
6
7
9

10
11
13
14

8
12
15
16
17

U
ni

t 

Unit 1 

Unit 2 

Unit 12 

Unit 3 

S1 Unit 5 

Unit 4 

Unit 6 

Unit 7 

Unit 11 Unit 13 

Unit 9 

Unit 14 

Unit 10 

Unit 17 

Unit 15 

Unit 16 

Unit 8 

S3 S2 

S6 

S5 

S4 

S7 

Year 1 Year 2 Year 3 Year 4 Year 5 
Q1 Q2 Q3 Q4 

14 

11 

Subject of medium-term study 

Figure 6.3: Illustration of the units being considered for the medium-term case study
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For the base case, we first solve the robust scheduling problem and obtain all
schedules with the minimum makespan, which is 11 weeks. We find 12 different solu-
tions that correspond to this makespan. The problem sizes for the robust scheduling
problem are small and solution is very quick (∼ 1 s). The recommended schedules
are then inserted into the multi-stage stochastic linear program, where the first stage
lasts six months. Subsequent stages may be lumped together or separated, based
on when units are shut down for maintenance.

6.4.1 Robust solution

Figure 6.4 illustrates a case where the robust scheduling formulation effectively
avoids having to guarantee manpower availability for all units through the bud-
get uncertainty concept. The figure shows a Gantt chart and the corresponding
manpower utilization chart, broken down by each type of manpower. The hollow
parts of bars indicate the manpower that would need to be provided if we considered
the absolute worst case in the sense of Soyster (1973). At week 28, the worst case
still does not violate the bounds, but still we need to guarantee availability of a
fewer number of maintenance personnel than the worst case. At week 29, the worst
case requirement actually violates the bounds on each type of manpower. However,
the budget uncertainty constraint allows this schedule to be feasible, and we see
that the constraints are not violated for a budget of two. Note that this is just an
example schedule, and does not correspond to the cost-optimal schedule that we
find.

6.4.2 Comparison of sequential and simultaneous approaches

We first discuss the quality of the schedules recommended by the sequential ap-
proach, and then compare the best one with the schedule obtained from the simul-
taneous approach.

Figure 6.5 illustrates the schedule that corresponds to the highest profit when
used in the multi-stage production planning model. The figure recommends that the
pairs of Units 4 and 5, Units 9 and 13, and Units 10 and 11 undergo their respective
turnarounds together. An examination of the site network (Figure 6.3) shows that
Units 4 and 5 are adjacent in the site network, and so are Units 9 and 13. If Units 9
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Figure 6.4: Schedule illustrating the effectiveness of the robust scheduling constraints

and 13 had their turnarounds decoupled, it would have meant that the inventory in
storage tank S6 would have to supply Units 10, 13, 14, 15, and 17 with raw material
when Unit 9 was undergoing a turnaround. Coupling the turnaround of Unit 9 with
Unit 13 alleviates this burden on S6 to some extent.

Figure 6.6 corresponds to the schedule corresponding to the worst objective
value when used in the multi-stage production planning model. The figure recom-
mends performing turnarounds on Units 4, 9, and 10 together, and Units 5, 11, and
13 together. This is clearly less suitable for the site network, as Units 5 and 13
are decoupled in the network and do not have much effect on each others produc-
tion. Similarly, Units 4 and 10 are decoupled. In addition, 4 and 9 both receive
raw material from storage tank S1, and performing turnaround on both of these
at once does not seem optimal, and this is vindicated by the fact that this is the
worst-performing schedule.

The manpower chart shows the peak manpower limit, which is 900 personnel in
the case studied. It also categorizes the manpower, where the orange part indicates
the required manpower is accounted for during the nominal turnaround duration,
and the blue indicates the manpower required to be available if at most two of the
units have an extended turnaround. The pattern indicates the type of manpower
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for the sequential robust optimization and multi-stage stochastic programming
approach
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involved. The number within the stacked bars indicate what percentage of the peak
available manpower of a particular type is required to be made available in each
week.
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Figure 6.6: Schedule resulting in worst objective with corresponding manpower requirement
for the sequential robust optimization and multi-stage stochastic programming
approach

Although the difference in objective values is only about 2% in value, one must
note that the objective measures profit over a 9-month horizon from a large inte-
grated site and can, therefore, be significant.

Note that the robust optimization model has no access to the site network
structure, and the ultimate performance of the stochastic programming model is
at the mercy of the schedule recommended to it by the robust schedule solution.
The combined robust and two-stage stochastic programming formulation does have
access to the site network structure, and also contains the information to create
a robust schedule. The solution for the combined two-stage formulation followed
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Figure 6.7: Manpower usage for best schedule from the simultaneous approach, that corre-
sponds to a makespan that is not the smallest possible

by multi-stage stochastic program is illustrated in Figure 6.7. We see that this
formulation is able to do better than the best solution offered by the sequential
robust and stochastic programming formulations, again by about 2%. The solution
offered by this formulation recommends a schedule whose duration is greater than
the minimum makespan. This indicates that the best solution does not necessarily
correspond to the minimum makespan solution, and the two-stage model makes use
of the knowledge of the network structure to exploit this.

Note that in the objective values reported in Figures 6.5, 6.6 and 6.7, we do not
include the cost of manpower. The cost of manpower is the same for the nominal
duration, as all the Units considered have to undergo a turnaround, and each has a
certain requirement for manpower. However, they each differ in the total amount of
manpower they are required to make available across periods. This is because of the
budget uncertainty, where the manpower required to be made available in a certain
time period depends on which units may have an extended turnaround occurring in
that time period, and on the corresponding manpower requirements.
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For instance, if one computes the area under the graph in Figure 6.6, one can see
that 3250 additional man-weeks are required to hedge against the uncertainty. If we
do a similar computation for Figure 6.7, we see that 3100 additional man-weeks have
to be guaranteed. This is interesting, as not only does the two-stage formulation
give a better answer in terms of expected profit, but also has a reduced cumula-
tive requirement for additional manpower. This translates into further savings, the
amount of which is determined by the manpower costs, as reflected in Equation 6.33.

We do not need to include the cost of this additional manpower in the sequential
robust and stochastic formulation, because once the schedule is fixed (by the robust
formulation), we know how much additional manpower needs to be provided for. As
discussed above, this cost is easily added to the two-stage simultaneous formulation,
as can be seen in Equation 6.33. The two-stage formulation considers this cost when
making scheduling decisions.

6.4.3 Computational experience

As far as modeling is concerned, we can use one of the two representations of the
scenario tree, namely the explicit or implicit form. It should be noted that we work
with the implicit form of the scenario tree, in that we do not formulate explicit non-
anticipativity constraints. Instead, the non-anticipativity constraints are implicit,
which means that variables corresponding to a certain stage are created only from
the point when the scenarios become distinguishable. Given that there are six
units undergoing a turnaround around the same time, we are now dealing with a
seven-stage problem. An illustration of the two trees for our problem is shown in
Figure 6.8.

If we assume two possibilities of turnaround duration for each unit and create
variables for each of the 26 = 64 scenarios and enforce relevant non-anticipativity
constraints, we find that our model is too large to be loaded into memory. The largest
problem we are able to solve is a four-stage problem in explicit form (Table 6.3). An
alternative is to use a column generation technique to solve the problem. Instead, an
implicit representation significantly cuts down on the number of variables created,
and we are able to solve the seven-stage problem in an average of 20 s.

For the example case study we consider, this totals approximately 20× 12 =

240 s. We simply pick the schedule which corresponds to the best expected profit.
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24 weeks 
(Stage 1) 

  12 weeks 
(Stages 2-7) 

Explicit form of tree Implicit form of tree 

Figure 6.8: Implicit and explicit representations of scenario tree for the medium-term
turnaround scheduling case study

Figure 6.5 shows the best schedule and the corresponding manpower utilization. Fig-
ure 6.6 corresponds to the worst schedule and corresponding manpower utilization.

Table 6.3 illustrates the solution times and sizes of the (1) robust optimization
MILP; (2) multi-stage LP; and (3) combined robust optimization and two-stage
stochastic MILP problems. All problems were solved using cplex 12.6 in gams
24.3. For comparison, the table also shows the size and solution time for the largest
problem in explicit form that we are able to solve directly.

Table 6.3: Solution times and problem sizes of sequential and simultaneous strategies

RO MILP Multi-stage LP
(implicit form)

RO+2-
stage MILP

Multi-stage LP
(explicit form;
4 stages)

Avg. Time (s) < 0.1 19.4 2, 714 33.32

Size

Equations 2243 87, 409 120, 212 4, 601, 645
Continuous vars 1900 42, 736 65, 032 712, 485
Binary vars 252 - 277 -

Two measures that illustrate the impact of uncertainty in a stochastic optimiza-
tion problem are the value of stochastic solution (VSS) and the expected value of
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perfect information (EVPI). The VSS provides a measure of how valuable it is to ac-
count for uncertainty in the optimization. It is harder to interpret in the multi-stage
case, and there are multiple ways of computing this (Chiralaksanakul &Morton 2004;
Maggioni et al. 2012). Another reason we avoid this is that the expected values of
the uncertain parameter are fractional weeks, which does not allow us to evaluate
this with our weekly discretized formulation. However, we focus on the EVPI mea-
sure here. The EVPI measures how different the expected profit is from performing
stochastic optimization under uncertainty from when we have exact estimates of the
uncertain parameters, or

EVPI =Recourse problem objective−Wait-and-see objective

= 338, 282.4− 351, 336.74 = −13, 054.34

6.4.4 Analysis of inventory policy and demand satisfaction levels

We use Unit 13 as an example to illustrate the nature of inventory policy and
demand satisfaction that arises from our case study. According to Figure 6.7, Unit
13 undergoes its turnaround from Weeks 25–28. Figure 6.9a illustrates that first
stage demands for product from Unit 13 can be satisfied.

In the second stage, as shown in Figure 6.9b, this is not always possible, even
though we attempt to build downstream inventory in the time leading up to the
turnaround. As demands are monthly, we show aggregated monthly demands in
the figures. The demand that would be satisfied is illustrated for four scenarios.
In scenario 1, all turnarounds achieve the nominal duration, and the recommended
solution shows that demand satisfaction levels are far higher in Weeks 29–32 than
for the other scenarios. In the worst case, when all turnarounds are assumed to
take the extended duration, Scenario 64 (the most unlikely case) shows that we
cannot satisfy the demands even in Weeks 33–36, even though Unit 13 undergoes
its turnaround in Weeks 25–29.

Figure 6.10 shows how inventory build-up is planned for the downstream storage
tank of Unit 13. As the inventory capacity for the storage tank is 2500, we see that
it takes about 2.5 months to build up this inventory in the first stage. The entire
inventory storage is only able to satisfy about 28% of the demands in Weeks 25–28.
The demand is assumed to be 90% of the total capacity in this case. This result
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Figure 6.9: Demand level and demands catered to for Unit 13

shows that, at least from the point of view of Unit 13’s products, it may be better
to schedule the set of turnarounds when demands are lower.

The reason for the step-wise build up of the inventory is that demands are
assumed to be monthly, and therefore only the excess production in the final week
of the month gets stored in inventory.
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Figure 6.10: Inventory levels for downstream storage tank of Unit 13

6.5 conclusions

In this chapter, we investigate the medium-term turnaround planning problem,
which addresses both inventory build-up in storage tanks across the entire site in
anticipation of a set of turnarounds, as well as maintenance personnel planning
decisions while considering uncertainty in duration of turnarounds.
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Two approaches were proposed to handle the uncertainty in turnaround dura-
tion. The first involved a sequential robust optimization to minimize the turnaround
‘makespan’ and multi-stage stochastic programming approach to maximize profit.
The former determined the turnaround schedule, and the latter made production
decisions. We then investigated a combined robust optimization and two-stage
stochastic programming formulation to simultaneously make scheduling as well as
production decisions. The scheduling decisions were then fixed in the multi-stage
stochastic linear program to optimize for production planning.

We observe that the two-stage formulation, though an approximation, considers
schedules that are not necessarily of the minimum makespan and also considers
manpower costs for the additional manpower that needs to be guaranteed. The
trade-off is that solutions are very quick to obtain from the sequential approach,
but may not recommend the best performing schedules in terms of profit. The
simultaneous approach is able to find superior results, but is also significantly more
expensive to perform.

An advantage that the sequential approach has is that one may choose to en-
hance the manpower and subtask model with more detail, in which case the expense
of the simultaneous approach may significantly increase.

A study was then performed on demand satisfaction and inventory planning,
and the trends were explained through an analysis of the site network structure and
relevant costs.

In summary, the consideration of uncertainty in turnaround duration signif-
icantly affects production, inventory, and manpower availability decisions. The
consideration of medium-term turnaround planning under uncertainty is thus an
important one, and we propose schemes to address this in this chapter.

It should also be noted that part from the specific problem we consider in this
chapter, the modeling framework and the sequential and simultaneous solution meth-
ods we propose may be used in more general contexts of planning under uncertainty.
In particular, it may be applicable in cases where the uncertain parameter affects
different aspects of the problem differently, as it affected manpower (no recourse,
requiring robust solution) and production decisions (full recourse) differently in the
current context. We also demonstrate how the appearance of uncertainty in a pa-
rameter appearing as an index may be transformed into left-hand side parameter
uncertainty—this may be relevant for other problems as well.
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7.1 conclusions

Other people can talk about how to expand
the destiny of mankind. I just want to talk

about how to fix a motorcycle.
— Robert M. Pirsig

7.1 conclusions

In this thesis, we explore the consideration of uncertainty in various optimization
problems through different paradigms. The first part of the thesis addresses the
simulation optimization problem, where we optimize directly over stochastic simu-
lations. The second part of the thesis looks at uncertainty quantification for op-
timization, along with combined robust optimization and stochastic programming
formulations. Connections between these different paradigms may run deeper. For
instance, simulation optimization (Part II) may be linked with stochastic program-
ming (addressed in Part III) through the sample path optimization technique, where
a simulator is used to generate a number of sample paths that manifest as scenarios
in the stochastic programming context.

In short, the various interactions of uncertainty and optimization lead to a rich
class of problem-solving paradigms; we focus on the three particular approaches
mentioned above, justify their suitability for certain contexts, and demonstrate their
use through applications in chemical engineering and operations.

We outline the key contributions made in this thesis, as well as directions for
potential future research in both simulation optimization as well as in maintenance
turnaround planning under uncertainty.

7.2 key contributions

7.2.1 Simulation optimization

• We contribute a comprehensive literature review of the simulation optimiza-
tion area, where we provide an introduction to the field, discuss its relationship
to other fields, and outline existing algorithms. The work serves as an extensive
reference to relevant and recent literature in methods as well as applications,
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and it compiles a list of academic as well as commercial software for simulation
optimization. No other existing literature provides such an encyclopedic and
current treatment of the area.

• We outline a trust region-based simulation optimization algorithm that pro-
vides guarantees of global convergence to a stationary point. The extension
of traditional DFO methods involving fully linear models to the stochastic
context has not been done before, and our development extends the purview
of DFO methods to a new class of problems. In this way, the development
helps to bridge the derivative-free optimization literature with the simulation
optimization literature.

• We demonstrate that the implementation of our algorithm, which is augmented
by using nonparametric regression and global optimization techniques, outper-
forms existing codes in the academic literature.

• We foray into two application domains—one of which relates to a chemical
supply chain problem from our industrial collaborators—to demonstrate the
applicability of such methods.

7.2.2 Turnaround planning

• Although several prior papers in the process systems engineering literature
consider both maintenance and production planning, none really addresses
the planning of turnaround maintenance on long or medium-term scales. In
this regard, we identify an application not addressed before in turnaround
optimization for integrated chemical sites.

• We provide a long-term turnaround optimization formulation that we use to
coordinate turnarounds across the site network over a multi-year horizon, while
maximizing profit, balancing financial performance across time periods, and
respecting peak manpower limits. We also provide a model to determine both
turnaround frequencies and turnaround policies for a particular plant.

• We address the medium-term turnaround planning problem under uncertainty.
In this regard, we address the uncertainty in the duration of the turnaround
through a combined robust optimization and stochastic programming approach.
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Robust optimization is used for the manpower planning decisions that have
no recourse actions, and stochastic programming ideas are used as we allow
full recourse for the production decisions in the network.

7.3 future work

With regard to simulation optimization, there are several directions that may be
explored beyond this thesis, as listed below:

• Constraints, both stochastic and deterministic, appear in many applications
in simulation optimization. The consideration of convergence and implemen-
tation issues in this case is a natural next step.

• The convergence proofs in Chapter 3 considered interpolation models, and
these involved quantifying the discrepancy between model and function values,
and model and function gradients (in the context of fully linear models). This,
along with the sample replication scheme, was proposed with the intention of
designing a descent-based algorithm using the concept of fully linear models.

It may be interesting to investigate regression models, rather than interpola-
tion models, as regression models naturally account for noise in observed val-
ues. However, the analysis becomes more complicated as one has to not only
quantify the discrepancy between the observation (e.g., sample mean) and the
true function value, but also between the regressed value and the observation.
One path to explore would be to not necessarily guarantee descent at every
iteration, not require sample replications, and, therefore, move away from re-
lying on fully linear models. Proofs of probabilistic guarantees of convergence
may be possible, and may lead to improved practical implementations.

• Another assumption that we make in Chapters 3 and 4 is that the expected
or true response has a Lipschitz continuous derivative. In reality, we may not
know the smoothness properties of the underlying function. Future research
directions may look at dispensing with this assumption, while providing guar-
antees of convergence.

• In terms of applications, Chapter 4 identifies different applications for simula-
tion optimization across various domains in chemical engineering. We use these
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example problems to illustrate the performance of our algorithm in practical
situations, but we do not pursue full-scale studies, nor tailor the algorithm
for these sub-domain applications. We believe that further investigation of
these examples will shed light on the effectiveness of simulation optimization
in simultaneously considering uncertainty while providing better designs, op-
erating decisions, and parameter estimates. In addition, the use of stochastic
models to describe phenomena in engineering systems, such as stochastic ki-
netic models (Srivastava & Rawlings 2014), provides impetus to continue the
development of relevant simulation optimization methods.

The so-lvit algorithm described in Chapter 4 is designed for black-box opti-
mization. For an application, if additional knowledge is known regarding the
nature of the underlying simulations, this may be embedded through the use
of appropriate hypothesis tests and choice of Gaussian Process kernel.

A further consideration is the ability to tackle problems where maximizing the
expectation alone may not be the objective, but perhaps some notion of risk
which may require the estimation of the variance at a point.

• Another endeavor that we recommend is to encourage the development of sim-
ulation optimization methodologies by making available real-world examples
from engineering through problem testbeds. In addition, we would like to con-
tinue to maintain suites of algorithms from the literature in an optimization
toolbox, along the lines of Rios & Sahinidis (2012).

• Finally, as we see in Chapter 4, our implementation performs well, but is not
able to perform a global search and is therefore not competitive with global
solvers for certain classes of problems. The integration of a global optimiza-
tion routine with this local search is another promising direction for research.
For instance, we could optimize an improvement metric (cf. Section 2.3.2) to
determine sample points, and in this sense trade-off exploitation and explo-
ration. This would extend the paradigm of optimization under uncertainty, as
this would represent an optimization over an estimate of the uncertainty in
our surrogate model.

With regard to turnaround management and optimization, we also see several
avenues through which one may extend the current work:
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• The model for determining turnaround frequencies was developed to demon-
strate how one may determine a turnaround policy for an entire plant, whether
it be one type of turnaround, major and minor types of turnarounds, or decou-
pled turnarounds. We presented a case study involving simple cost functions,
and two sets of process equipment, and this was used to illustrate the idea. It
would be beneficial to look at this problem in more detail, i.e., with a more
realistic set of turnarounds and cost functions, in order to better determine
an optimal turnaround policy for a plant.

• A major concern for chemical companies is the management of financial risk
associated with turnarounds. Future work should involve the quantification of
risk of plant breakdown and its impact on profits, in the case when turnarounds
are delayed by several months due to unfavorable market conditions, or other
external factors.

• On the other end of the time-scale, it would be worth considering contract
negotiations and other practical details while planning for maintenance man-
power and spare equipment for a particular turnaround or set of turnarounds.
This may be of significance, due to the knock-on effect that unplanned main-
tenance may have on an integrated site. Extended maintenance durations
could impact manpower availability, which in turn further effects the dura-
tion of shutdown, the plant productivity, and consequently, the productivity
of the entire site. Therefore, a more careful and detailed optimization model
for planning for both manpower and replacement/spare parts is an interesting
direction that may be pursued.

• It may also be worth considering the medium-term turnaround planning prob-
lem through a combined turnaround scheduling and multi-stage production
planning framework. In this case, the structure of the scenario tree would
depend on the scheduling decisions, and would require the consideration of
optimization under endogenous uncertainty.
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