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Abstract

The analysis of microstructural shapes is an underutilized tool in the field of materials

science. Typical observations of morphology are qualitative, rather than quantitative, which

prevents the identification of relationships between shape and the mechanical properties of

a material. Recent advances in the fields of computer vision and high-dimensional analysis

have made computer-based shape characterization feasible on a variety of materials.

In this work, the relationship between microstructural shapes, and the properties and

function of the material as a whole, is explored using moment invariants as global shape

descriptors. A different relationship is examined in each of three material systems: how

the three-dimensional shapes of cells in the cotyledons of the plant Arabidopsis Thaliana

can be used to identify cell function; the two-dimensional shapes of additive manufacturing

feedstock powder and the ability to distinguish between images of powders from different

samples; and the two-dimensional shapes of γ’ precipitates and their influence on the creep

resistance of single crystal nickel-base superalloys.

In the case of Arabidopsis Thaliana cotyledon cells, three-dimensional Zernike and Carte-

sian moment invariants were used to quantify morphology, and combined with size and

orientation information. These feature sets were then analyzed using unsupervised and

supervised machine learning methods. Moderate success was found using unsupervised

methods, indicating that natural delineations in the data correlate to cell roles to some de-

gree. Using supervised methods, a success rate of 90% was possible, indicating that these

features can be used to identify cell function.

The ability of two-dimensional Cartesian moment invariants to distinguish meaningful

features in particles of additive manufacturing feedstock was tested by using these features

to classify images of feedstock. Ultimately, simple histogram matching methods were un-

successful, likely because they rely on the most common particles to draw conclusions. A

bag-of-words method was used, which uses high-dimensional visualization and clustering

techniques to classify individual particles by common features. Histograms of particle clus-

ters are then used to represent each image. This method was far more successful, and a

correct classification rate of up to 90% was found, and comparable rates were discovered
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using invariants which describe the shapes only broadly. This indicates that moment in-

variants are an effective measure of the morphologies of these types of particles, and can

be used to classify powder shapes, which control many properties which are relevant to the

additive manufacturing process.

In the case of the superalloys, it has been shown that the shape distribution of γ’

precipitates can be tracked using second order moment invariants. In addition, several low-

order moment invariants are shown to correlate to creep resistance in four alloys examined,

which supports the idea that the shape of precipitates plays role in determining creep

resistance in these alloys.
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CHAPTER I

Introduction

1.1 Motivation

The relationships and interdependencies between the processing, structure, and properties

of a material comprise what is commonly referred to as the materials science paradigm.

Processing refers to the conditions under, and methods by which, a material is synthesized

or manipulated. It is through processing that influence is exerted on the structure of the

material in question. Structure describes the physical state of the matter being investigated.

Properties of the material are quantifications of the way in which the material reacts to or is

influenced by the world around it. Knowledge of all parts of the paradigm allows a material

to be optimally utilized by identifying a desirable property or set of properties, determining

the structure that will lead to these properties, and implementing the proper processing to

lead to this structure. Without knowledge of structure, it is impossible to know why or

from where these properties originate.

Characterization is the toolbox through which knowledge of structure is built. Over

the past seven decades, the desire for greater understanding of the structure/property re-

lationship has driven an explosion in the number of characterization techniques available

to the materials scientist, and equivalently, the different ways of quantifying a material.

There have been advancements in understanding and measurement of nearly every aspect

of a material’s structure, including crystallographic orientation, physical structure through

improved microscope resolution, topography, composition, atomic organization, and three

dimensional spatial information.

While shape characterization has been utilized in materials science in the past, especially

1



1.1. MOTIVATION 2

in two-dimensions, shape has remained an infrequently examined facet of microstructure.

This may be because shape has been commonly used in a qualitative way, generally pre-

venting any kind of statistical analysis. Over the history of the field, the vast majority of

morphological information has been noted by using poorly defined qualitative descriptors

such as “acicular”, “lamellar”, and “circular”. This is especially true with regard to mi-

crostructural analysis in metallurgy. While these labels may be sufficient in the context of

the work in which they appear, especially if morphology is not the primary subject of exam-

ination, they stymie any further investigation into shape and shape/property relationships

in the material. These qualitative descriptors can even mask subtle variations in shape.

When an investigator identifies a subset of the microstructure by this type of label, differ-

ences in aspect ratio, complexity, or other less obvious morphological information are often

ignored. This is counterproductive to an investigation into a material which seeks to fully

understand the nature of the material being investigated.

When shape is measured quantitatively, it is primarily through constructed parameters

which may have no meaning outside of the current system, or a certain subset of expected

morphologies. A typical example of this is the comparison of the perimeter to area ratio

of a shape in question to that of an reference shape such as a square or circle. For de-

scriptors such as these, it is possible to generate identical values using shapes which differ

dramatically. These values may be sufficient for studying a basic range of shapes, but lose

the ability to discriminate between shapes when they deviate from the expected morpholo-

gies. At best, these types of quantifiers capture only one aspect of a particle’s shape. At

worst, they obfuscate information and encourage investigators to focus on and only measure

expected morphologies within the material. These types of parameters will be more com-

pletely discussed later in Chapter II, along with other methods of measuring and quantifying

morphology.

A likely factor behind the lack of detailed and complete shape analysis in materials

science is the difficulty in gathering shape information on large numbers of particles. Even

in recent publications, many measurements are taken by hand. Manual measurements

dramatically reduce the number of measured shapes which can be observed per sample

due to the time it takes to perform the measurements. In addition, manual measurement
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reduces the variety of shape information that can be captured. Properties such as Feret

diameter are measured relatively easily, but even simple values like area or perimeter can

become difficult to measure for more irregular shapes.

Despite the many issues with manual measurements, it has remained popular due to

the difficulty associated with implementing computer based solutions. The most appealing

feature of manual measurement may be that the individual doing the measuring is free

to identify the boundaries of regions of interest, in effect segmenting the object by eye.

The process of performing an automatic segmentation has remained a difficult problem

since the implementation of computer-based graphics in the 60s [13]. However, relatively

recent advances in computer science, especially in the fields of computer vision and machine

learning have improved the reliability and accuracy of the segmentation process [14–16], and

opened the way for computer based shape analysis of images in materials science.

Solving the second problem of manual measurements: limited shape information, relies

on using a morphology metric that captures many aspects of an object’s shape. Moment

invariants are a useful tool in this regard. They can be calculated up to any desired order,

each of which contains information regarding finer and finer details of an object’s shape

[17]. In addition, lower order moment invariants can be used to capture intuitive shape

information that allows for easy interpretability. Calculating moment invariants up to a

large degree of accuracy for a large number of shapes can be resource intensive. However,

with modern equipment, including the capacity for parallelization, the time required can

be reduced and these calculations made possible on a relatively large scale.

Shape analysis utilizing a large number of moment invariants, while generally being

more accurate, necessarily occurs in high dimensional spaces. These types of spaces are

inherently difficult to visualize, and even more difficult to work in. Even relatively simple

measurements such as distance become unreliable. However, high dimensional visualization

and clustering techniques are becoming more sophisticated with time. These advancements

have made the creation of two- and three- dimensional projections of high dimensional

spaces more accurate by allowing the structure of the data to survive the process [18, 19].

Combined with improvements in clustering algorithms, these techniques have improved the

quality of information gleaned from high dimensional spaces, and allow improvements in
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shape analysis through the analysis of many aspects of shape at once.

Moment invariants can also be expanded into three dimensions. Three dimensional ma-

terials analysis has recently come to the fore with advances in characterization tools. Tech-

niques such as plasma focused ion beam SEM microscopy, femtosecond laser ablation, and

advances in tomography have dramatically increased the size of three-dimensional regions

which can be analyzed, and reduced the time necessary to gather information [20,21]. Three

dimensional moment invariants can take advantage of these improved techniques while also

providing an analogue to their 2D counterparts. A full discussion of shape parameters is

given in Chapter II.

With advances in technologies and techniques over the last few decades, particularly in

computer science, the way has been cleared for a more advanced and nuanced quantification

of shape than ever before. The goal of this work is therefore to present the use of this kind

of shape analysis in materials science, both in two and three dimensions, and to illustrate

how this knowledge can provide another dimension through which the structure/properties

relationship can be viewed and understood.

1.2 Hypothesis

Shapes of subregions in a material are typically the result of complicated interactions be-

tween a variety of invisible or difficult to observe factors, such as stress fields or composition

gradients. These shapes can therefore serve as a visible indicator of the state of these prop-

erties, and also exert their own influence on the material. In order to explore the interactions

between shape and properties, a number material systems are examined, with the morpholo-

gies of different microstructural features on different scales being measured and compared

to material function for each. Measured features and systems include: two dimensional γ’

precipitate shapes in experimental single-crystal nickel-base superalloys, and their correla-

tion to creep resistance of the bulk material; three dimensional cell shapes in cotyledons

of Arabidopsis Thaliana, and the identification of cell function; and powder feedstock mor-

phology in two and three dimensions prior to use, and final bulk material properties for a

number of different alloy powders for additive manufacturing.

The hypothesis of the research presented in this document is: Shapes of microstruc-
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tural subregions in embryonic Arabidopsis Thaliana leaves, additive manufacturing feed-

stock powders, and single-crystal nickel-base superalloys, as quantified by Cartesian and

Zernike moment invariants, correlate to the overall properties or function of the material

as a whole. This hypothesis will be explored in the following material systems under the

given conditions:

1. The three-dimensional shapes of cells in Arabidopsis Thaliana cotyledons, quantified

through three-dimensional Cartesian and Zernike moment invariants, can be used to

identify cell function. This can be achieved through both unsupervised and supervised

machine learning methods.

2. Two-dimensional Cartesian moment invariants up to the 12th order quantify relevant

morphological information of additive manufacturing feedstock particles. This will

be examined through identification of powder images by matching moment invariant

distributions to known images, indicating if moment invariants are capable of making

meaningful distinctions between the classes of shapes present in these materials.

3. The two-dimensional shapes of γ’ precipitates in single crystal nickel-base superalloys,

quantified with Cartesian moment invariants up to the 4th order, can be correlated to

the creep resistance of the alloy.

Utilizing a variety of material systems serves multiple purposes with regard to proving

this hypothesis. The first is that it shows that shape analysis by moment invariants is a

useful tool that can be applied across materials systems. Given the diversity of systems, it

is likely that any shape/property relationships found here do not share the same underlying

mechanisms; shape can influence properties in a number of different ways which must be

taken on a case by case basis.

Examining a variety of shapes also says something about the shape descriptors them-

selves. There is no guarantee that moment invariants are appropriate for every class of

shapes, or that they are capable of quantifying relevant shape features for every examined

system. However, by working with many material systems the full extent to which moment

invariants can quantify relevant shapes can be explored.
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1.3 Structure of this document

Chapter II contains an discussion of shape, categories of shape descriptors, and their relative

strengths and weaknesses in terms of object identification, as well as examples of each.

Chapter III provides information on moments and moment invariants of the type used in

this work, with a focus on the underlying mathematics.

Chapters V, IV, and VI detail the specific experiments undertaken to prove the hypoth-

esis. Each chapter contains a brief introduction which provides specific information relevant

to the problem at hand, followed by the methodology undertaken for the given experiment.

This is followed by results, and a discussion of the implications of what has been found.

Each of these chapters is concluded with a summary of the results, their relationship to the

hypothesis and a statement of the future work which may be necessary to further explore

additional questions. Finally, Chapter VII reiterates the main points of this entire work,

how they relate to the hypothesis, and summarizes additional future work which may help

further explore and illuminate questions regarding the hypothesis.
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CHAPTER II

Shape and shape descriptors

Shape is the form of an object; the relative location of all of its component area or volume

elements. According to Kendall [22], shape can also be thought of as what it is not: it is

what is left when ”location, orientation, and scale” information are removed from an object.

Two subsets of Euclidean space have the same shape if they can be rotated, translated and

scaled to be identical to each other. At first glance, shape appears to be a simple concept,

and human beings are able to identify shapes that are similar or dissimilar from an early

age. However, this understanding seems to be more instinctual than analytical and begins to

break down when pushed to describe greater level of detail. When asked if shape A is more

or less similar to shape B or C, the response is likely to be, “In what way?” This question

demonstrates the need for numerical shape descriptors and simultaneously illustrates their

usefulness. Not only do they provide a way to quantify shape, and provide an answer

to which shapes are more similar than others, they also supply a method to break the

morphology of an object into different aspects. By utilizing these descriptors, the relevant

facets of shape can be determined and analyzed, and conclusions can be drawn about each

descriptor separately from each other.

The most commonly used shape descriptors are simple qualitative descriptions. More-

over, these qualitative descriptions are typically applied to entire collections of shapes.

Grains in a material which have different morphologies will be labeled as ”plate-like”, or

precipitates which span a range of aspect ratios will be deemed ”circular” without any ad-

ditional analysis. This qualitative method is quick and allows simple visual identification,

but it is prone to error and can falsely label shapes that are dissimilar as identical. Be-
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cause it provides only a single value as a measurement, this technique also prevents any

dissection of the various aspects of morphology. When shape is not the primary property

in question, this analysis can be useful for the purposes of drawing simple conclusions, but

it obviously prevents any kind of deeper statistical analysis into the effects that shape can

have over the behavior of a material. Descriptors are needed that address the weaknesses

of these common labels.

2.1 Shape descriptor criteria

There is no such thing as an ideal shape descriptor, what is clear is that a good parameter

should be a similarity measure: it should not only quantify the morphology of an object,

but also proscribe similar values to shapes which share similar features. In addition, a

useful shape descriptor should have several other properties. The first is that the descriptor

should be capable of measuring multiple aspects of a shape, for example, aspect ratio and

circularity. By separating different facets of shape, it makes determination of similarity

more obvious. Ideally these various aspects correspond to properties of morphology which

are, at least at gross levels of examination, clear to human perception. This may help to

ensure that the shapes which are perceived as similar to the naked eye can be classed as

similar by the similarity measures as well.

To calculate similarity, it is important that the space defined by the quantifiers is a

metric space. A metric space is an ordered pair (X, d) where X is any set and d is a metric

where, d : X ×X → R. The metric must also satisfy the following four conditions as listed

in Biasotti et al., where x, y, z ∈ X:

d(x, y) ≥ 0 (non-negativity) (2.1a)

d(x, y) = 0 if and only if x = y (identity) (2.1b)

d(x, y) = d(y, x) (symmetry) (2.1c)

d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality) (2.1d)

These conditions ensure that the space being utilized behaves similarly to Euclidean space,

a metric being the generalization of the behavior of Euclidean distance. Equation 2.1a
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ensures that any distance measured in this space is positive. Equation 2.1b implies that

if two points occupy the same location, they are identical. Equation 2.1c asserts that the

distance measure is not a one-way measurement, while equation 2.1d enforces that the

shortest distance between two points is a straight line.

Marr and Nishihara [23] identified three criteria by which to measure the usefulness

of a shape representation. These are accessibility, scope and uniqueness, and stability and

sensitivity. Accessibility refers to the ease of extracting a shape descriptor from a given

image. This includes computation time as well as limitations of the descriptor or the

data, such as resolution. Scope and uniqueness indicates the range of shapes which can be

accurately represented by the descriptor. For a descriptor designed to measure cuboidal

cross-sections, a square or circle would be within its scope, but not a triangle. uniqueness

is the ability of a descriptor to give the same value for the same shape, regardless of its

coordinate system. Finally, stability and sensitivity represents two competing but important

concepts. Stability is used to indicate the way a descriptor should give two similar shapes

similar values, while sensitivity refers to the ability of the descriptor to differentiate subtle

differences between similar shapes.

Brady [24] proposed three additional criteria to those of Marr. First, a representation

should be information preserving, meaning that no shape information is lost during its

computation. It should also be computed locally: on a scale less than that of the shape

as a whole. Together these are referred to as rich local support. Descriptors which display

smooth extension and subsumption are those which can be used to create global descriptors

(descriptors which capture aspects of the object as a whole.Finally, propagation implies

that visually identifiable subparts of the shape which are captured locally are also captured

globally.

Similar criteria is given in Zhang and Lu [4], who identify as desirable the features

of: invariance to transformations of the object, insensitivity to noise or distortion of the

object, a hierarchical nature which allows finer or coarser details to be quantified, application

independence (the capability to represent many shapes meaningfully), and low computation

complexity. Woodham [25], Binford [26], and Mokhtarian et al. [27] also conduct analyses

on shape descriptors and give ideal properties similar to the other discussed here.
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Based upon this information, necessary properties for an effective shape descriptor to

be utilized in this work must include:

1. Application to a wide variety, if not all, two or three dimensional shapes

2. Invariance to translation, rotation and scaling

3. Returns similar values for similar shapes while still retaining the ability to discriminate

between like objects

4. Has a hierarchical structure which allows for the analysis of broader or more narrow

shape information

5. Values which reflect visual shape information

6. Generates a metric space

With these qualities in mind, what follows is an overview of the types of shape descriptors

that are commonly used to quantify shape. It is not meant to be an exhaustive list, but

instead a representative cross-section of the categories of techniques that are available to

use when quantifying shape in a number of different fields. Not all descriptors discussed

here necessarily fulfill all of the requirements above.

2.2 Two-dimensional shape descriptors

Two dimensional shape analysis is the most common kind of shape analysis performed,

primarily due to the fact that the only input data necessary to perform this kind of analysis

is a two-dimensional image. Digital images are easy to store, simple to work with, and

reflect how humans see the world: as a two-dimensional projection of a three-dimensional

space. The relative ease of capturing 2D images as compared to full three-dimensional

representations also contributes to an asymmetry in the types of available data. Two

dimensional shape analysis has also garnered attention in the past decade because of its

importance in computer vision, which is contributing to current advances in the automation

of a number of industries.

In their review of two-dimensional shape descriptors, Zhang and Lu identified two major

categories of these quantities: region-based descriptors, which capture information regard-

ing the region contained by the shape, and contour-based descriptors, which only utilize
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the boundary of the object. They further categorized these descriptors by identifying either

global, or structural quantities. Global indicates that the value measures the entire shape

as a whole, while a structural parameter breaks the object into component parts prior to

evaluation [4]. In addition to these categories, Loncaric [28] describes two additional dis-

tinctions: the first between scalar transform techniques which return scalar or vector values,

and space-domain techniques which return other images; the second distinction is between

information preserving methods, which allow for complete reconstruction of the generat-

ing object, and non-preserving techniques, where information is lost and reconstruction is

impossible.

2.2.1 Contour-based structural descriptors

Contour-based structural descriptors decompose the boundary of the object into sub-boundaries

or primitives, which, when taken together, recreate the entire boundary as closely as possi-

ble. The shape can then be represented as a string of primitives. A common and popular

example is chain code, first introduced by Freeman [2]. With chain code, the boundary is

represented by a number of vectors of a fixed length, and only a small number of predefined

directions. These vectors, represented by a number, make up a single string of numbers

which defines the boundary of the shape. Starting from an arbitrary location, continue to

follow the direction of the next vector, which defines an enclosed shape or a line. Figure 2.1

(a) Square grid structure (b) Hexagonal grid structure

Figure 2.1: Allowed grid points and relative vector labels and directions for two different chain code schemes.
From [2].

shows two possible vector conventions. The square convention shown in Figure 2.1a uses
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eight vectors each corresponding to directions, starting at horizontally to the right, and

moving counterclockwise 45◦ at a time. An alternate convention shown in Figure 2.1b uses

60◦ steps, which reduces the possible resolution of the final shape.

The chain code representation of a shape has a number of interesting properties. First,

in order to increase the size of the shape represented, one simply needs to copy each number

in the string of vectors. For example, using the scheme shown in Figure 2.1a, a rectangle

can be represented by the string: 0246. In order to double the side length of the square,

one changes this string to: 00224466. Another interesting property is that to rotate a

shape by the smallest angle allowed, one just adds the number 1 to the chain code. So a

rectangle 022466 would rotate to: 133577. This rotation actually illustrates one of the flaws

of this method of shape representation: without a predefined condition, it is not rotationally

invariant. In addition, one must determine where on the contour of the shape the starting

point will be. The issues can be addressed by utilizing some specific conventions [29,30].

Despite these problems, chain code remains a popular method of shape representation,

and has been improved upon in a number of ways since its first implementation, including

basing the chain code on enclosed cell vertices to draw relations between enclosed area and

the chain code [31], creating histograms of chain codes to generate invariant features [32],

combined with invariant-moment descriptors for improved image registration [33], among

others. Also, a wide variety of shape information can be extracted from chain codes, in-

cluding other shape descriptors, such as moments [34–37].

Bribiesca and Guzman [38] suggest the use of the derivative chain code, where two

successive links are represented by a 2, a convex corner by a 1, and a concave corner by a

three. If an arbitrary starting point is chosen and a shape code generated for a given object,

one can then find a unique representation, invariant to rotation, by identifying all cyclic

permutations of the chain code and selecting the one which has the lowest value when read

as an integer. There are also a number of different methods to create similarity measures

for chain codes, three of which are detailed in Mehtre et al. [39]

Overall, chain codes offer a method of shape representation which satisfies several of

the criteria laid out in Section 2.1. They are applicable to all two-dimensional shapes, are

capable of being rendered translation, rotation, and scale invariant, and have a similarity
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measure. However, these descriptors fail to map visual shape information in an intuitive

way, and also lack a hierarchical structure as discussed in Section 2.1.

A different approach to contour structural shape description is that of Grosky and

Mehrotra [3] and Grosky et al. [40]. Inspired by database management systems, the primi-

tives used are the vertices of polygons which are matched to shape boundaries using polygon

approximation [41]. For each vertex, the internal angle, distance to the next clockwise ver-

tex point, and the x and y coordinates are used to create a four-dimensional feature vector.

For a given set of object, five features are selected, which are usually those with the sharpest

angles, as these are considered most representative of the given shape.

(a) Input data for feature index tree. (b) Polygonal approximations of shapes input data.

(c) Feature tree generated by features gathered from polygonal approximations.

Figure 2.2: Input data, features, and feature index tree from [3]

These sets of features are then converted into feature index trees, which are binary or

m-nary trees with features as the leaf nodes. Each interior node contains a feature which

is either an observed feature or an artificial feature and the members of a subtree are more

similar to the root of that subtree than to the root of the sibling subtree. The entire process
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is shown in Figure 2.2.

Object identification is performed in two stages. The first involves feature matching. In

this stage, a test feature is selected from the object to be identified and is compared to those

in the feature index tree. Starting with the first entry in the tree, the algorithm follows

branches of the tree, checking if the similarity of the test feature to that of the current

node. If the similarity is above a certain threshold, all shapes associated with that feature

are returned. In the next stage, the full set of object features is compared to those of the

returned shape, and the shape which minimizes some distance function is returned as the

matched shape.

The distance function d(s1, s2) for two strings of features (si) is measured as the cost of

converting one feature vector to another. This is detailed in [42] and is based on four separate

cost calculations: removing the corners of s1, inserting corners of s2 into s1, changing corners

of s1 to corresponding corners of s2, and smoothing corners in either string. Except for the

smoothing, the other costs are based on Levenshtein distance [43]. Despite the fact that

the Levenshtein distance is a metric, the cost function d(s1, s2) is not because it is not

symmetric.

Because it was inspired by and developed as a database searching technique for shapes,

the polygonal approximation and feature index tree approach is only capable of identifying

shapes which have previously been identified and testing of this technique was only done

through object identification. However, that does not mean that it cannot identify the most

similar shapes through its similarity measure. A potential source of error in this method

is the polygonal approximation. The quality of a polygonal representation of a shape is

completely dependent on the number of vertices defined by the approximation algorithm.

While a number of algorithms exist which can minimize errors due to the approximation,

there can never be a completely accurate polygonal approximation, because this would

consist of all points on the boundary. Therefore there will always be a trade off between

having a string of vertex vectors which is of a workable length and accurately representing

the actual, observed boundary.

Taken altogether, the system devised by Grosky and Mehrotra, combines a shape de-

scriptor: strings of feature vectors; with a system to identify and match similar shapes:

Material Properties and Microstructural Shapes R.K.S. Harrison



2.2. TWO-DIMENSIONAL SHAPE DESCRIPTORS 15

the feature index tree and associated search methods. The descriptors themselves satisfy a

number of the previously discussed shape descriptor criteria of Section 2.1. This method

can be applied to any two dimensional shape which can be described through polygonal ap-

proximation, although there are limits. Shapes with holes cannot be described using this

method, because it can only be calculated for object boundaries. These descriptors are

starting point invariant, but because the feature vectors include x,y coordinates and dis-

tance to the next point, the total descriptor string is not invariant to translation, rotation

or scaling. The string structure of these descriptors also means that they cannot not have

a hierarchical structure, so it is only useful for determining shape similarity. Extracting

additional information is difficult because of this as well.

Both the chain code and Grosky’s method have the primary benefit of structural meth-

ods, which is that it is much easier to identify occluded shapes. This is due to the string

nature of the shape descriptors. If a shape is described as a string of identifiers which repre-

sent boundary points, an occluded shape will not have an identical string, but a consecutive

subset of points will still be present, unless the entire shape is completely obscured.

These methods do have a number of drawbacks. Because they only capture boundary

information, they cannot capture information regarding the bulk of the shape, especially

any holes. In addition, while information can be extracted from the strings of features, it

is usually difficult to get intuitive information regarding the nature of the shape through

simple observation of the descriptor. Closely related to these issues is the fact that these

descriptors cannot capture any global information. It may be possible for a subset, or a

large number of subsets of a feature string to match between two shapes, which would

indicate similar or identical shapes, however, it is still possible for the overall nature of the

two objects to remain dissimilar. This is because the string of features approach is only

capable of looking at features individually: it can match them, or groups of them, but it

cannot get an overall view of the nature of the original object without using an another

method to extract this information from the boundary. Also, the collection of features can

be sensitive to noise.

Finally, the matching presents its own set of difficulties. In order to make a successful

match, the measured features must already be stored in a database. Therefore, in order to
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know what features should be focused on in the observed object, it is necessary to know

what features are already stored. It also presents difficulty in building a shape database,

because it is impossible to gather every possible useful feature for every class of shape. The

difficulty in matching is compounded by the fact that many times the distance measure is

not necessarily a metric, which makes interpretation of similarity difficult.

2.2.2 Contour-based global descriptors

Similar to contour-based structural descriptors, contour-based global descriptors utilize the

perimeter of the object in question to quantify the shape. However, unlike the structural

descriptors, these values capture information regarding the entire boundary in a single value.

A number of relatively simple forms of these descriptors are common knowledge, including

perimeter, compactness, and convexity.

Perimeter is a well known measure of the total length of the object boundary. Com-

pactness, C, is typically measured as P 2/A. Because the circle is the two dimensional shape

which contains the largest area, when compactness is measured, a comparison is being made

to a circle with equal area. The compactness for a circle is equal to 4π, so commonly com-

pactness is normalized by this value and called ”circularity”. Much more information on

compactness and circularity can be read in Montero and Bribiesca [44]. Convexity is fre-

quently given as: c = Pch
Ps

, where Pch is the perimeter of the convex hull of the shape in

question and ps is the perimeter of the shape in question. Convexity can be used to mea-

sure the relative smoothness of the perimeter of the given object. A value of 1 indicates

that the shape is perfectly convex, while a lower value indicates increasing concavity.

A commonly referenced measure of shape similarity which is calculated using the object

boundary is the Hausdorff distance [45]. However, this measure is not a shape descriptor,

and can only be used to compare sets of points. For two finite sets of points A = {a1...ap}

and B = {b1...bq} , the Hausdorff distance is defined as:

H(A,B) = max(h(A,B), h(B,A)) (2.2)
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where

h(A,B) = max
a∈A

min
b∈B
||a− b|| (2.3)

and || · || represents the norm on the points of A and B (in this case the Euclidean norm).

h(A,B) is known as the directed Hausdorff distance. For each point in A it finds the

closest point in B, and the distance between them, and then returns the largest distance.

Effectively, it gives the distance between the point a which is farthest from the nearest point

b. The Hausdorff distance calculates this, both h(A,B) and h(B,A) and returns the value

which is the largest. It therefore finds the maximum distance between nearest neighbors of

the other set.

Hausdorff distance can therefore be taken as a measure of the similarity of a set of

points. If these points are the boundaries of two objects, one can use this as a measure of

the similarities of the objects. Hausdorff distance has been used to for object matching in

a variety of applications [46–48], but in all cases, some adjustment has to be made to make

up for the sensitivity of this method to basic transformations, such as translation, rotation,

and scaling, as well as to noise.

A more complex set of descriptors of this type is are what are known as shape signa-

tures. Sometimes referred to as time series, these are one dimensional functions or signals

that represent a particular measure as the boundary is traveled. Measured values include

centroidal profile, centroid distance (Figure 2.3), and cumulative angle, just to name sev-

eral [49]. These functions, regardless of measured quantity, are necessarily periodic for a

closed object, so rotational invariance can be achieved by translating the function to some

arbitrary but pre-defined orientation, which is equivalent to moving the starting point to a

pre-defined location. Scale invariance can be achieved through a variety of methods depend-

ing on the measure being tracked. For angular measurements, no adjustment is necessary,

but for distance-based functions, it is required. In order to calculate the centroid distance

shape signature shown in Figure 2.3, the centroid is first identified, and the boundary found

through edge detection. For each point along the boundary, the distance to the centroid

is found, and plotted. This type of one dimensional function is a simple concept but can

be used in a number of interesting ways to identify relevant shape information. Usually,
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Figure 2.3: Apple silhouette and resulting centroid distance shape signature. From [4]

shape similarity is then computed by some distance measurement that is computed between

two shape signatures. The majority of these in the literature are the Euclidean distance,

dynamic time warping [50], and Longest Common Subsequence [51].

Traditionally, rotational invariance is achieved in two major ways: brute force matching,

and landmarking. Landmarking is based upon finding one (preferably) or more features

from which to start the time series conversion. Landmarking can be effective, but the main

problem is that it requires feature extraction prior to the actual analysis. This usually

requires a deep enough prior knowledge of the class of shapes being examined to identify

these features ahead of time. In addition, it could be the case that damage to a real-world

shape could change the features present at the boundary, and eliminate these previously

determined locations. In some cases, the shape may be oriented to its primary axis, but

this is only effective in shapes which have well defined axes. Additionally, primary axis

detection can be sensitive to noise or, once again, to damage.

With brute force matching, the problem of rotational invariance is solved by circularly

rotating the shape signature to all possible orientations, and subsequently measuring the

similarity to each other signature. While this has shown to be the most effective method

of achieving rotational invariance [52, 53], it is very computationally expensive. Its success

may be due to the fact that while other methods try to extract information and match

accordingly, which could result in the loss of information, the brute force method uses the

entire shape profile and therefore no information is lost [5].

In Keogh et al. [5], the researchers present a method for implementing fast rotational

invariance and demonstrate its effectiveness on a number of real world problems. The

method is primarily based around early abandonment and a hierarchical shape signature

comparison approach. When utilizing early abandonment and using some threshold, r,

Material Properties and Microstructural Shapes R.K.S. Harrison



2.2. TWO-DIMENSIONAL SHAPE DESCRIPTORS 19

during the computation of the Euclidean distance, if the current sum of distances between

the two sets of data points exceeds r2 then the actual distance between the two signatures

will be less than r and so matching can cease.

Figure 2.4: Ape skulls, resulting shape signatures, and resulting
hierarchy of similarities. From [5]

In addition to the early aban-

don, Keogh et al. implemented a

method of shape signature storage

which allows rapid comparisons

between shapes to be matched and

those already stored. This is com-

bined with a function known as

LB Keogh. While the details of

this function are beyond the scope

of this work, it allows for the quick

comparison of stored shape sig-

natures to those which are being

tested. Utilizing the entire method, it is possible to quickly draw conclusions regarding the

similarity of shapes, and even construct hierarchies of similarity as shown in Figure 2.4.

From observation it is clear that the quality of the similarity matching is good, which was

achieved using only the Euclidean distance between time series.

The shape signature techniques described here generally satisfy a large number of the

shape criteria laid out in Section 2.1. They are applicable to any 2D shape, can be rendered

invariant to translations, rotations and scalings, and also provide a similarity measure with

a wide degree of discrimination ability. While not all methods are insensitive to noise,

implementation of dynamic time warping and longest common subsequence have largely

eliminated these issues.

Another commonly used method for global boundary quantification are Fourier descrip-

tors (FDs). As described by Zahn and Roskies [54], these descriptors are calculated by first

considering the closed and clockwise boundary of some shape, Z(l) as a parametric curve,

where l is the length along the boundary and 0 ≤ l ≤ L. If the angular direction of the curve

at a location is given by the function θ(l), then the cumulative angular function, the total
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angular change between l and 0 is given by: φ(l) = θ(l)− θ(0). Finally, φ∗(t) = φ(LT2π ) + t,

where 0 ≤ t ≤ 2π. θ∗(t) is invariant to rotation, translation, and scaling of the original

boundary. If it is expanded into a Fourier series:

φ∗(t) = µ0 +
∞∑
k=1

Ak cos(kt− αk) (2.4)

then every set of {Ak, αk} represents a single curve and there is no redundancy in the infor-

mation contained. For these FDs, some disadvantages are that some sequences of {Ak, αk}

do not represent closed curves, that for discontinuities generated by shape boundaries with

sharp angles, Ak will decrease slowly, and that reconstruction requires numerical integra-

tion.

The FDs described by Granlund [55] are defined differently, which slightly changes their

properties. First, again the clockwise shape boundary is defined as a parametric curve Z(l).

A point moving around the boundary generates a complex function u(l) = x(l)+iy(l) which

is periodic with a period of L. The FDs are now:

an =
1

L

∫ L

0
u(l)ein(2π/L)nldl (2.5)

with

u(l) =
∞∑
−∞

ane
jn(2π/L)l (2.6)

With these FDs, the advantages are that for a sequence of an for which (2.6) converges and

describes a closed curve, |an| decreases quickly as n → ∞, and reconstruction is relatively

simple. However because of the definition of u(l), there are some restrictions on an.

Using both the FDs described here, Persoon and Fu [56] matched handwritten symbols

from (φ,1-9), which were stored as 24x24 binary images. There are a total of 49 x 3 x 10

of these numerals, each handwritten by a different person. Two sets of these were used for

training and another for testing. Distance between two FDs is calculated as:

d(α, β) = [

M∑
n=−M

|an − bn|2]1/2 (2.7)
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with n 6= 0 in order to make the values translation invariant. In addition to handwritten

numerals, a series of machine parts were photographed, and the images binarized into images

of 60 x 60 pixels.

In the case of the handwritten characters, some preprocessing was necessary. Each nu-

meral was normalized for scaling rotation, position, and descriptor starting point. Utilizing

all the harmonics up to a value of n = 15 led to an error rate 10.6%. In the case of the ma-

chine parts, the training set consisted of 10 different parts, with only one orientation, scale,

and position recorded. Machine parts were correctly assigned to proper classes.

Fourier descriptors have been utilized in a variety of different studies and have been

modified and improved upon in a number of ways [57–60]. There are several advantages to

these descriptors. The first is that they allow reconstruction of the boundary in question,

which means that they contain all of the shape information of the original outline. In

addition, this feature means the nature of the shape contained in each set of the series of

descriptors can be determined by performing a reconstruction using only up to that value of

n. These descriptors are also easy to compute, simple to normalize, and the many different

values of n mean that both local and global features are captured. When measured against

the criteria in Section 2.1, properly implemented FDs fulfill nearly all of the criteria and

provide a good method of shape quantification overall.

Global boundary descriptors, including shape signatures and Fourier descriptors, provide

a number of advantages in the evaluation and quantification of shape. Because they are

global descriptors, they can quantify the overall nature of a boundary. Additionally, with

these descriptors, the fineness or coarseness of an analysis can be modified to examine

more global or local information at will. They also are more intuitive to work with and in

many cases relate well to visual shape information that can be observed by the human eye.

Because the features are global, noise cannot influence the quantified features to the degree

that it can with local features.

Despite the fact that these descriptors are generally quite effective in measuring shape,

they have a few downsides. First among these is that they do not apply well to occluded

shapes. While partial matching can ameliorate this to some degree, it typically involves the

use of more and more local features which must be identified by some other means, which
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has its own potential for error.

2.2.3 Region-based structural descriptors

Region-based structural descriptors function similarly to boundary-based structural de-

scriptors. The primary difference between the two is region-based descriptors utilize shape

information from the entire bounded area, whereas boundary-based descriptors limit infor-

mation to the edge of the shape. Region-based descriptors can benefit from an increase

in total available shape information and often times more accurately describe shape that

contain voids. However, methods of breaking up a region into its components for use in a

structural descriptor are more unclear than methods to break up a one dimensional bound-

ary.

The medial axis transform (MAT) is a commonly utilized descriptor of this type, and

also provides an example of what Loncaric calls space-domain descriptors, which, instead of

returning a scalar value, returns another image. The previously mentioned shape signature

descriptors also fit this description [28]. The MAT was first introduced by Blum as a

method to describe shape which could help further understand how shape is perceived by

organisms [61].

Blum illustrates the formation of a medial axis construction by first considering only

the boundary of a given shape. If this shape is dropped into a field which propagates waves,

not unlike a pool of water, the waves move inward. Where these waves meet, lines are

drawn, which represent the medial axis of the shape. This process is shown in Figure 2.5.

A transform to generate these axes proposed by Blum and now referred to as the grassfire

transform, does so by assigning each pixel in the contained region the minimum distance

to the boundary. The most intense values within the region make up the medial axis. The

actual implication of this process is that each point on the line of the medial axis is the

center of a circle which is tangent to the given surface at two or more locations.

As long as holes are included in the set of boundaries being examined, the grassfire

transform, and thus the medial axes, are capable of reflecting these inconsistencies in the

bounded region. A radius function defines a radius of a circle for every point along the

skeleton, although Calabi refers to this as a quench function [62]. When combined, the
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(a) Original binary image of silhouette of Scottish
terrier.

(b) Grassfire transform of Figure 2.5a. The brightest
lines represent the medial axes of the shape.

Figure 2.5: Formation of medial axes using grassfire transform

radius function and medial axes are capable of complete recreation of the shape in ques-

tion [63]. The medial axis representation is related to the idea of shock graphs which have

been used to compare shapes in a number of ways [6,64–67]. The basis of this technique is

shocks, which effectively label regions of the medial axis transform of an object by the way

in which the radius function behaves over that section of the axis. More specifically, where

the medial axes were created in a thought experiment in which the medial axes represented

the meeting of wavefronts, shocks are literally treated as these meetings of wavefronts: they

have a position((x, y), a time of formation, related to the size of the radius function (dis-

tance to the generating portion of the boundary), and a direction. In Siddiqi, shocks are

also given a label based on the properties of the radius function on their location: a 1-shock

is where the radius function varies monotonically as in the case of a protrusion. A 2-shock

describes an axis where the radius function reaches a local minimum as in the case of a

neck. A 3-shock describes a radius function of constant value. A 4-shock describes an axis

where the radius function reaches a local maximum. Utilizing shocks allows the problem of

shape similarity to be accomplished through graph matching. First, each set of connected

shocks for both the model and unmatched objects are deconstructed into a shock tree. This

allows the for a hierarchical view of the set of shocks which make up the object. The trees
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are generated in a such a way that the shock tree has as few tiers as possible. Next, the dis-

tance between matching branches and nodes is computed by first following the two branches

which are closest to each other. Distance between nodes is a function of the four proper-

ties discussed in the previous paragraph: position (x, y), time of formation, and direction.

Branches are matched until they reach a termination. The use of the trees ensures a match-

ing that is based on the topological features of each graph while also requiring a distance

to be calculated as well.

Figure 2.6: Matching shock graphs despite occlusion or missing
regions. Same color shocks represent matches. From
[6].

Overall, matching using these

features provides some distinct

advantages. Medial axes and

the matching provided by shock

graphs allow topological informa-

tion about the constituent parts of

the shape to be preserved. This

allows for classes of shapes to be

matched, even if they have been

distorted to a degree. In Figure

2.6 from Sebastian et al. [6] for

example, missing regions of the

jet are picked up by the descrip-

tors, but due to the topological

and structural nature of the fea-

tures, a match remains possible. This is true for the occluded shapes as well, primarily

because features remain which can be matched.

These descriptors, which use shape boundaries to gather structural information regard-

ing the bulk object, are sensitive to boundary noise. Distortions along the boundary can

result in medial axes which do not match the reality of the shape. While this should not

affect the matching, as can be seen from above, it still alters the measured shape.

Region-based structural descriptors, as represented by medial axis transforms and shock

graphs, provide a relatively unique way to examine shape. By breaking up the shape into
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components, one extracts a more topological view of shape than one can get from other

methods. In addition, because these descriptors are structural, they are less affected by

occlusion or missing regions than others. They are hierarchical in that one can get coarse

information from the axes such as the primary axis or the aspect ratio, or one can go to

more detail and completely reconstruct the shape. Another advantage that these descriptors

offer is that they very clearly reflect visual aspects of the shape because they return another

image.

However, the fact that the information is returned in the form of an image often leads

to more complicated comparison methods such as the previously discussed shock trees.

Sensitivity to noise is another issue that requires relatively sophisticated methods to resolve.

2.2.4 Region-based global descriptors

Region-based global descriptors capture information on the morphology of the object by

using the entire area contained within the object boundary. Similar to boundary-based

global techniques, these are more suited toward object reconstruction, and tend to be more

robust to noise. Moment based descriptors such as Cartesian and Zernike moment invariants

are of this type, but will be discussed in more detail in Chapter III.

The grid-based method of Lu and Sajjanhar [68] is a non-moment invariant based way to

obtain global shape information from a 2D object. This technique is based upon representing

a shape by a series of 1s and 0s. Each is a point on a grid which is either filled and represented

by a 1, or empty and represented by a 0. The resulting series of digits is treated as a vector,

and similarity measured through comparing distances between these.

The size of the grid is selected so that it just covers the shape in question. The grid cells

are square and in the case of the work by Lu, set to be 24x24 pixels. However the authors

recommend between 10 and 20 pixels to a side as a good compromise between accuracy and

computation time. Next, any cell which is covered at least 15% by the object is considered

filled and represented by a 1. The cells are moved along, left to right, top to bottom, and

turned into a string of 1s and 0s.

While the grid method is inherently translation invariant, the shapes have to be normal-

ized beforehand to render them rotation and scale invariant. The normalization methods
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are based around finding the major axis of the shape in question. In this case, the ma-

jor axis is defined as the line connecting the two most distant points on the boundary of

the object. Scale normalization is achieved by scaling the major axis to a fixed length. In

the case of Lu’s work, this was to 192 pixels. Rotational invariance is achieved by align-

ing the major axis so that it is parallel with the x-axis of the grid. There are actually two

possible orientations which are 180◦ apart from each other. In order to address this, both

orientations are stored to be matched against.

The size of the grid is based upon the shape being examined. Because all shapes should

have the same length, the number of cells in the x direction can be fixed. However, the

number of cells in the y direction is based on the size of the minor axis. The minor axis is

perpendicular to the major axis and just long enough so that a rectangle constructed from

the major and minor axes would completely cover the shape. Therefore, the lengths of the

binary strings will change based upon the aspect ratios of the shapes being examined.

The distance between these strings, and therefore the similarity between shapes, is then

based upon simple calculations. If the string lengths are very different, the shapes are

assumed to have a different aspect ratio and therefore be different shapes. If however,

the string lengths are within some predefined threshold, in this case within 24 characters,

the shorter string is padded with zeros and then the similarity calculated as if they were

the same length. This distance calculation is simply the total number of unlike positions

between the strings.

This method proved effective in shape recall for a number of different geometries and

outperformed a Fourier descriptor (FD) based method (previously discussed). Lu suggests

this is because these descriptors are much less sensitive to noise, as any small changes

to pixels around the object boundary will push an individual cell over or under the 15%

threshold.

This grid-based approach has been examined in several different works [69–71]. Chakrabarti

et al. improved the method with an adaptive resolution (AR) approach. AR increases the

resolution of the grid used to capture shape where it improves the quality of the represen-

tation, but reduces it where it does not. This allows for a finer detail where necessary while

also increasing the efficiency of the representation.
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Grid-based descriptors are generally insensitive to noise and provide a very simple sim-

ilarity measure and, as such, satisfy several of the criteria set out in Section 2.1. They can

be applied to any two dimensional shape, and use a similarity measure which allows for

the determination of degrees of similarity. However, they also lack several of the benefits

that have been observed as properties of other descriptors. First, unless using the adap-

tive resolution approach, resolution is fixed, so the level of detail is dependent on grid size.

Rotation invariance is based on implementing multiple comparisons to transformed model

shapes, which may necessitate the storage of additional reference information. Also, the

strings that are generated using grid-based descriptors do not necessarily correlate to any

kind of perceptual information unless used to reconstruct the data in some way. Finally,

the resulting data isn’t hierarchical, meaning that resulting detail is limited to that of the

data initially collected.

These drawbacks are not present in other region-based global descriptors, like moment

invariants which are discussed in Chapter III. Overall, descriptors of this type tend to be

more hierarchical, and, at least at the more general level of description, tend to reflect

general and intuitive shape information such as circularity or aspect ratio. These shape

measures are also relatively insensitive to noise. To a certain degree, they cannot replicate

the kind of topological preservation of information that is present in structural descriptors,

but the hierarchical nature does allow for the containment of very specific information in

each aspect of the descriptor. For these reasons, region-based global descriptors among the

most popular in the shape analysis community.

2.2.5 Summary

For overview purposes, descriptors of two-dimensional shapes have been classified as boundary-

based and region-based, with each further classified as structural or global in focus. Boundary-

based descriptors can be used to draw very specific comparisons between two objects, due

to the very simple ways in which a one-dimensional boundary can be represented and com-

pared. Region-based techniques provide a more complete picture of the object as a whole

and are less sensitive to noise. Topology can also be preserved. Structural techniques allow

a preservation of the local information of the object, and given that a shape is represented
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using string of features, similarity measure and shape representation is simpler. Global

methods preserve information regarding the entire shape as a whole, which can be lost

otherwise. They are less sensitive to noise. Depending on the application, the inherent ad-

vantages and shortcomings of each approach lends it to be a more or less suitable shape

descriptor of two-dimensional objects.

2.3 Three-dimensional shape descriptors

Three-dimensional (3D) shapes are more difficult to quantify than their two-dimensional

(2D) counterparts. The previously established categories begin to break down in 3D. Bound-

ary based descriptors are less useful in this case because instead of simple one-dimensional

lines, the boundaries are 2D surfaces, which are much more difficult to compare to one an-

other. Structural descriptors also begin to be more difficult to calculate because criteria for

feature selection becomes more complex.

In a 2008 survey of 3D shape retrieval methods, Tangelder and Veltkamp categorized

the most common 3D shape representations into three groups: feature based, graph based

and geometry based [72]. In the interest of brevity, an example here will be given of each,

and the advantages and disadvantages discussed.The discussion is meant to highlight a

representative slice of the types of 3D shape quantifiers that are currently in use.

2.3.1 Feature based methods

Feature based three-dimensional shape representations either use extracted local features,

similar to the structural methods from Subsection 2.2, or global features, which include 3D

moment based techniques which will be discussed in more detail in Chapter III.

In Sipiran et al. [73], a method is put forth which combines global and local feature

extraction in order to create an effective object retrieval system. The method is primarily

built around three steps: interest point detection, clustering of interest points, cluster-based

partition. Points on the surface of an object are automatically selected as being of interest

and then clustered. The entire object is then represented as a collection of these clusters

which is used to calculate a similarity value.

Automated region of interest location is found through use of the Harris 3D method,
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which was developed by Sipiran and Bustos [74] and based upon the Harris operator [75].

For a vertex point on a 3D mesh, the Harris 3D operator at that point is found by first

fitting a plane to the surface of the object. Using principal component analysis (PCA) the

points are rotated so that their z-axis lies on the normal of this plane. A quadratic surface

is then fit to the set of transformed points. This allows for derivatives of the surface to be

calculated, and using these values, the Harris operator can be found at this point. Selected

interest points are those that represent a local maximum for this operator.

There are three parameters which determine how the interest point clustering is per-

formed: S: the intra-cluster constraint; R: the inter-cluster constraint; and Nm: the mini-

mum number of points per cluster. The set of selected interest points are then reviewed and

assigned to clusters in such a way that S defines the maximum distance between a point

and its cluster centroid, and R defines the minimum cluster centroid distance. Finally, if

after clustering, the number of points in a cluster is less than Nm, the cluster is discarded.

Partitioning occurs for each cluster by forming the smallest sphere with a center on

the cluster centroid and containing all points within that cluster. The region of the mesh

contained within that sphere is then extracted and used as a feature for the object. The

distance between feature lists is found by comparing individual components of partitions

and determining if they match. Sipiran et al. were able to improve retrieval effectiveness

in object classes which had common distinctive parts, but where common distinctive parts

were not present, little improvement was seen.

Feature based methods, including global descriptors tend to be the most commonly used

in 3D object recognition because they correlate to visual shape information, are generally

easy to understand, and are simple to calculate. While not obvious from the previous

example, these values, especially global ones, are also more numerical in nature, making

them easier to work with when compared with the graphed based methods discussed below.

However, by extracting pieces of information regarding morphology and examining them

outside of the context of the morphology of the shape, these methods can fail to fully capture

the topological nature of the object in question.
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2.3.2 Graph based methods

Graph based methods include model graph [76] and skeleton based [77] methods. These

techniques are effective in preserving topological information and, as has been shown in

two dimensions with medial axes and shock graph approaches, allow effective matching of

classes of shapes even in the presence of distortion. However, extending these to three

dimensions can be difficult due to a high computational cost and sensitivity to noise on the

boundaries [7].

To address these problems, Shinagawa et al. utilized both Morse theory [78] and work by

Reeb [79] to create what they called the extended Morse method, which allows for the encod-

ing of 3D surfaces as two dimensional graphs. This method, now commonly referred to Reeb

graphs is considered the most popular graph based approach to 3D shape representation.

In order to generate a Reeb graph, a continuous function, µ, is defined on a manifold.

A simple and common definition for µ is the z position. From this, two points on the

manifold, x1 and x2, are considered equivalent if µ(x1) = µ(x2) and if x1 and x2 are in

the same connected component of µ−1(µ(x1)). An example of this is shown in Figure 2.7,

where µ is the height of the point on the torus surface, represented by color.

Figure 2.7: Example of Reeb graphed based on height along z
axis for a torus. From [7].

Because height is not rotation-

ally invariant, Hilaga et al. [7] pro-

posed the utilization of geodesic

distance as µ. However, because

a constant source point to serve as

a reference for this distance could

prove sensitive to small deforma-

tions, µ(x) was defined as the sum

of geodesic distances from x to all

other points on the surface, where x represents a given vertex of a mesh. This value there-

fore represents the degree to which the object is near the center of a surface and is stable

across shapes within the same class.

Hilaga et al. also introduced the idea of the multi-resolutional Reeb graph (MRG). This
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graph is actually a collection of Reeb graphs which are calculated for increasingly coarse

thresholds of µ(x). First, a Reeb graph is constructed using a fine threshold for similar

µ values. Values that are within this threshold are considered equivalent and generate an

R-node which is simply a representation of a collection of equivalent vertices, which are

connected by lines representing topological connection. The combination of R-nodes and

lines constitutes a Reeb graph. The threshold is increased, the R-nodes recalculated, and

this is repeated until there is only one node remaining, representing the entire shape. The

result is a series of Reeb graphs which represent the topological nature of the shape at a

variety of resolutions.

Similarity between shapes is determined by moving through these increasingly fine repre-

sentations and determining the similarity between nodes by calculating a similarity measure

that is based upon the normalized area of the represented mesh, and the maximum value

of µ(x1)−µ(x2) for each R-node. By iteratively moving from coarse to fine representations

and moving node to node, the topological information of the object is preserved.

The MRG method and its variations have proven to be effective in matching deformed

and transformed shapes as well as shapes within classes. Hilaga et al. showed that the

method is effective in matching similar shapes in a 230 object database that only included

different shapes, not those that were transformed.

Bespalov et al. used three separate test sets of 3D objects to examine the effectiveness

of the MRG method. The method proved effective in determining similar shapes on a set of

cubes with holes, a set of brick-shaped models with holes, a set of basic primitives (spheres,

cylinders, cubes, and tori), and on complicated CAD models. The method performs less well

on 3D modeled LEGO parts, where plate shapes and axles with x-shaped cross sections were

conflated [80]. The Reeb graph method has also been extended to clouds of points for body

scanning [81] and to partial object matching for rigid and non-rigid transformations [82],

among others.

Graph based methods provide a level of topological information that cannot be matched

by other methods, but lack the global information that can be determined from feature based

methods. Overall, these methods can be applied to any 3D shape, can be made invariant to

rigid 3D transformations as well as robust to some non-rigid ones, and provide a hierarchical
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view of the shape, especially with the MRG based techniques. However, in many cases, the

way in which the measured similarity relates to perceptual shape information is not obvious.

2.3.3 Geometry based methods

Geometry based methods include view based techniques, volumetric error, and weighted

point set. These methods generally analyze shape similarity as a series of transformations.

The fewer the number of transformations required to make one shape identical to another,

the more similar the two objects are. The volumetric error method described by Sánches-

Cruz and Bribiesca [83] views each object as a collection of voxels and transformations

are the required movements of these. Besl and McKay’s weighted point set method [84]

represents a shape as a collection of points, polylines, parametric curves, or some other rep-

resentation, and determines the transformations which will result in the minimum distance

between a measured shape and a model shape.

View based techniques attempt to emulate how shape is perceived by representing a

3D shape as a number of 2D projects or views. If two objects are similar, they should

have similar 2D projections. Funkhouser et al. developed a method of sketch queries which

allows a user to draw an object, and similar 3D models will be returned [85]. A similar

method was utilized by Nayar and Murase [86], although many more views of the 3D object

were employed.

In the sketch queries method, thirteen contours are generated for each 3D object from

a set of thirteen orthographic projections. These views are compared to the user sketched

image using a similarity metric, and the model with the highest total similarity using every

possible view is selected as most similar. As the sketches cannot be guaranteed to be closed

contours, the Hausdorff distance or other similar metrics can be used. Ultimately, the sketch

method was found to be complimentary to text-based image searches, with text being most

discriminating across classes while the sketches improved precision within them [85].

Blanz et al. utilized the view based method with support vector machines (SVM) to

identify 3D models of chairs and achieved an error rate as low as 1%. Roobaert and Hulle

found that a SVM approach to shape recognition utilizing color and shape could operate

effectively with as few as eight views of the object before losing retrieval power, and that
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the method proved effective for unseen views [87]. Cootes et al. treat each view as a Markov

Chain and find the maximum a posteriori probability which will determine the object to

be returned.

Geometry based methods, particularly view based ones, are becoming much more pop-

ular as machine learning is becoming more powerful. They can be applied to any 3D shape,

and similarity measures are intuitive. However, in general, the descriptors do not correlate

to perceptual aspects of shape and are not hierarchical.

2.3.4 Summary

Like 2D descriptors, the variety of 3D shape representations allows for many different and

nuanced approaches to shape. While feature based methods allow for a more intuitive

matching process, they become difficult to calculate automatically in three dimensions.

Topological connectivity can be preserved with graph based methods, but these are sen-

sitive to noise, can miss global information, and can be computationally intensive to cal-

culate. View based methods allow simple feature representation as a collection of 2D pro-

jections, but they do not allow global information extraction and are highly reliant on the

type of matching method used. As with two-dimensional descriptors, descriptors of three-

dimensional shapes are more or less reliable depending on the particular application, with

any one potentially being superior depending on the context of the shape description.
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CHAPTER III

Moments and moment invariants in shape classification

Moment invariants have been a significant method of shape classification since Ming-Kuei

Hu published his work on seven position, orientation, and scale invariant combinations of

Cartesian moments in 1962 [88]. Moments values represent a mapping of a shape onto

a basis function which controls the nature of the shape information contained. Moment

invariants are combinations of these moments which are invariant to simple transformations

of the object and therefore contain only shape information. They provide a global shape

descriptor which has the potential to satisfy a large number of the criteria of an effective

shape descriptor laid out in Section 2.1. Moments can be applied to any two- or three-

dimensional shape. They provide a similarity metric that, due to a hierarchical structure,

can identify similar shapes while still identifying their differences, and they relate to visual

shape information. Utilizing invariant combinations of these moments renders the result

insensitive to changes in location, orientation, and size, and in some cases, other kinds of

transformations. These factors make moment invariants one of the most commonly used

shape descriptors in many applications across a number of fields.

Moments of one dimension have long been used to gain important information regard-

ing a probability function. For any random variable X, the general statistical, or one-

dimensional, moment function is:

mp =

∫ ∞
−∞

xpf(x)dx (3.1)

where f(x) is the probability function of X and p is the order of the given moment.

The order controls the information that is returned by the statistical moment. Using
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a value of p = 1, the moment represents the average value of the probability function. A

value of p = 2 gives a moment value that represents the variance, or the spread of the

distribution. p = 3 returns a moment value that is equal to the skewness of the function,

which describes the symmetry of the distribution, with a negative value indicating left-

skewed, a positive value indicating right skew, and a value of 0 indicating no skewness. A

value of p = 4 returns the kurtosis of the function, which is a measure of the weight of the

tail [89]. A higher value represents more influence of the tails in the variance, while lower

values indicate less, which is typically the case in distributions which are bounded.

Figure 3.1: Weight function for basis function xp with increasing
values of p.

The above depends on a distri-

bution is centered about the ori-

gin. Without this, variance, skew-

ness, kurtosis, and statistical mo-

ments of higher orders become less

meaningful because the interaction

with the basis functions shown in

Figure 3.1. In order to center the

distribution at the origin, the gen-

eral moment equation changed to:

mp =

∫ ∞
−∞

(x−m1)
pP (x)dx (3.2)

which renders any moments of order p > 1 invariant to the x position of a distribution.

Which is to say that regardless of the location of the function, as long as it has the same

shape, it will have the same set of moments as well.

With increasing order comes increasingly more complicated interpretations of the mean-

ing of the resulting moment value. This is a problem with statistical moments, as well as for

the other moments that are discussed further in this chapter. While lower order moments

correspond to intuitive values, increasing the order changes the weighting of the x values

in a way which makes their influence more and more subtle. This is clear from Figure 3.1,

which illustrates these functions for −1 ≤ x ≤ 1. As p increases, the weight of basis func-
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tions is moved progressively more and more away from the origin and the degree to which

they vary moments of order p− 2 decreases.

Due to the symmetry of functions with an even value of p, the value for any odd order

of statistical moment will be positive. This same effect leads to negative or positive values

for mp. However, for a symmetric function which is centered around the origin, this also

means that odd orders of mp are equivalent to zero. This needs to be kept in mind when

attempting to calculate statistical moments for functions.

The above holds true not only for continuous functions of x but for discrete functions

as well. In this case, P (x) can be represented as a sum of delta functions. This leads to one

dimensional moment functions of the form:

mp =

∞∑
i=0

xpP{x = xi} (3.3)

mp =
∞∑
i=0

(x−m1)
pP{x = xi} (3.4)

If the probability of any one value of x is equal to either one or some fixed value, the

discrete function begins to mirror that of a single line of pixels. Utilizing a set of moments,

increasingly complex information about the distribution of these ”pixels” can be gathered

by collecting moments of increasing order. Making the leap from applying moments in

the context of statistical analysis to the discussion of an image requires an adjustment to

the function being utilized. The discrete probability function is replaced with an indicator

function, and the limits of the summation are adjusted:

mp =
∞∑

i=−∞
xpf(x) (3.5)

where

f(x) =


1 if on relevant pixel

0 if not on relevant pixel

(3.6)

By restricting the value of a pixel to either ”off” or ”on”, it is possible to obtain relevant

information from the moment values. m0 is equal to the number of pixels which are equal
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to 1 in the given system. When divided by m0, m1 is the average location of the ”on”

pixels, which is equivalent to the centroid of the system. Similar to equation 3.4, if µ1 is

subtracted from equation 3.5, one renders the distribution of pixels invariant to changes in

location. With increasing order, more and more information regarding the pixel distribution

is obtained, and through the use of enough moments, the distribution of pixels can be

completely reconstructed.

This is exactly equivalent to the construction and use of two-dimensional moments.

The transition is simple to make and only requires the addition of the other dimension and

variable:

mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dxdy (3.7)

where in this case, the order of the moment is now quantified as: p + q. This is true for a

continuous indicator function, but with digital images, it is easier to use:

mpq =
X−1∑
x=0

Y−1∑
y=0

xpyqf(x, y) (3.8)

where X represents the number of pixels in the x direction and Y the number of pixels in

the y direction.

The general structure of any 2D moment is the same: a basis function and the indicator

function. For any fixed shape, the indicator function remains the same, and carries the

shape information which will be encoded in the moments. The basis function determines

which information is stored in each moment. By using different basis functions, the nature of

the moments, including the quality and interpretability of the information can be changed.

3.1 Cartesian moments and invariants

Cartesian moments, sometimes referred to as geometric moments, utilize the basic xpyq

monomial, or xpyqzr in three dimensions. These moments have been the most commonly

used, primarily because of their simplicity in construction and the significant amount of

study they have engendered. However, the simple nature of the basis function often leads

to undesirable consequences which will be discussed.
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3.1.1 Two-dimensional Cartesian moments

The two-dimensional Cartesian moment equations (3.7 and 3.8) are relatively simple and

encode intuitive information into the first several orders of these moments. Given these

desirable attributes, they have been used for a number of different applications [90–94].

The values of the basis functions up to the second order are shown in Figure 3.2. These

illustrate the relative weighting of the locations within the unit cell, and also mirror the

basis functions shown in Figure 3.1, which can be thought of as a cross section through the

contours of Figure 3.2 along either the x- or the y-axis.

Figure 3.2: The relative values of the basis function xpyq for the given (p, q). Values shown for −1 ≤ x ≤ 1
and −1 ≤ y ≤ 1.

It should be evident that basis functions of increasing order are not orthogonal [95].

The definition of orthogonal functions for two equations f(x) and g(x) with a weighting

function of w(x) over the interval a ≤ x ≤ b are as follows:

〈f(x)|g(x)〉 ≡
∫ b

a
f(x)g(x)w(x)dx = 0 (3.9)

According to Teague [96], the nonorthogonality of these functions means that moments of

different orders contain redundant information regarding the nature of the shape. While

this does not mean that these values are useless, it means that each additional moment
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added to a set adds less information than would be the case were they orthogonal.

This has implications for the reconstruction of shapes. As discussed in Chapter II,

and according to Brady [24], shape descriptors are either information preserving or non-

preserving. Moments are information preserving, because, with a complete set of moments,

the entire object can be reconstructed [96]. However, by using a set of nonorthogonal

basis functions, the reconstructions are less efficient and require more moments. As seen

in Figure 3.3, sufficient detail to determine which letter is being reconstructed only occurs

at approximately the 40th or 50th order. This can be reduced by using orthogonal basis

functions. While this work does not focus on reconstruction, it provides a powerful tool for

the visualization of precisely what information is stored in each moment. More information

on Cartesian moment reconstruction can be found in Gorbel et al.

Figure 3.3: Reconstruction of the letter ”E” using geometric moments. From [8].

2D moments contain information regarding the relative distribution of pixels in the

image. Inserting p = 0 and q = 0 into equation 3.7 returns the definition of area. m10

and m01, when scaled by 1
m00

, give the x and y coordinates of the centroid of the shape

in question respectively. Utilizing these values, the moments can be made invariant to two

types of basic transformations which will be encountered: translation and scaling.

3.1.2 Cartesian Moment Invariants

A primary attribute of quality shape descriptors discussed in Section 2.1 is invariance to

basic transformations, which include translation, rotation, and scaling. Primarily, this seeks

to isolate shape from location and orientation information, which would otherwise affect the

values of the moments. Simple translation invariance can be achieved through the method

for 1D moments in equation 3.4. This simply involves subtracting the centroid coordinates
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from equation 3.7 as follows:

µpq =

∫ ∞
−∞

∫ ∞
−∞

(x− x̄)p(y − ȳ)qf(x, y)dxdy (3.10)

where x̄ = m10
m00

and ȳ = m01
m00

. µpq are known as central moments and are completely

translation invariant. The result of the subtraction of the central moments in equation 3.10

is equivalent to shifting the centroid of the shape to the origin. By utilizing these moments

in all future calculations, all resulting values are also translation independent.

A relatively simple way to attain scale independence is to utilize the 0th order moment

as described by Hu [88]:

µpq

µ
p+q
2

+1

00

(3.11)

This normalization forces the given moment to return the same value for a shape regardless

of its area. This is only true for isotropic scaling.

In addition to location and size invariance, rotational invariance was addressed by Hu

as well. The first method is referred to as the method of principal axes. In this method,

a unique axis of the object is determined with second order moments. The shape is then

rotated so that this axis coincides with the x-axis. In this case, the principal axis is defined as

the eigenvector corresponding to the largest eigenvalue of the second order central moment

matrix, more commonly referred to as the structure matrix [97]:

µ′20 µ′11

µ′11 µ′02

 (3.12)

where µ′pq =
µpq
µ00

.

The two resulting eigenvectors, largest and smallest, of this matrix represent the major

and minor axes of the image, respectively. These are essentially the long and short axes of

the object. The angle corresponding to a major axis parallel to the x-axis also corresponds

to a µ11 value equal to zero. This angle θ is given by:

θ =
1

2
arctan

( 2µ11
µ20 − µ02

)
(3.13)
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This angle is not necessarily unique, however, and so would be unsuitable for complete

rotational invariance. Apply the additional constraints that µ20 > µ02 and µ30 > 0 after

rotation, the angle can be uniquely determined [88].

Manually rotating the image in question can be a less than ideal solution. When per-

formed on digital images, it can result in a loss of information or the addition of noise along

the borders. Using θ, Teague suggested a virtual rotation according to the following [96]:

µrpq =

j∑
r=0

k∑
s=0

(−1)k−s
(
j

r

)(
k

s

)
(cos θ)j−r+s(sin θ)k+r−s(µj+k−r−s,r+s) (3.14)

which avoids the problems associated with the rotation of the digital image.

The second method suggested by Hu for rotation independence is a combination of

central and scale invariant moments [88]:

I1 = µ20 + µ02

I2 = (µ20 − µ02)2 + 4µ211

I3 = (µ30 − 3µ12)2 + (3µ21 − µ03)2

I4 = (µ30 + µ12)
2 + (µ21 + µ03)

2

I5 = (µ30 − 3µ12)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2]

+ (3µ21 − µ03)(µ21 + µ03)[3(µ30 + µ12)
2 − (µ21 + µ03)

2]

I6 = (µ20 − µ02)[(µ30 + µ12)
2 − (µ21 + µ03)

2]

+ 4µ11(µ30 + µ12)(µ21 + µ03)

I7 = (3µ31 − µ03)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2]

− (µ30 − 3µ12)(µ21 + µ03)[3(µ30 + µ12)
2 − (µ21 + µ03)

2]

(3.15)

The primary benefits of using invariants like this is that they do not require any manipu-

lation of the original image, and, when calculated using scale and translationally invariant

values, they are invariant to translation, rotation, and scaling. I7 is also invariant to mir-

roring of the image.

Since their discovery, Hu’s seven invariants have shown their usefulness in a number of
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different applications, including aircraft [98], palmprint [99], and plant leaf [100] identifica-

tion. However, Flusser [101] has shown that these seven invariants are not independent or

complete. He achieved this by first detailing a method of generating rotationally invariant

moments of any order which are based around complex moments: moments created by us-

ing a complex basis function. It was then shown that Hu’s invariants were combinations of

these more basic moments. Flusser’s moments will be used later in this work.

Based on what is called the generalized fundamental theorem of moment invariants

(GFTMI) [102], Mamistvalov constructs a number of different moment invariants based on

affine transformations and their subgroups [103]. Affine transformations are those which

preserve straight lines. These invariants which were constructed include a parameter shown

in equation 3.16. MacSleyne et al. [104] found that combining one of Hu’s moments with this

value of Mamistvalov’s results in two quantifiers which are especially suited to quantifying

2D shapes and are used extensively in this work:

Ω1 ≡
A2

µ20 + µ02
(3.16a)

Ω2 ≡
A4

µ20µ02 − µ211
(3.16b)

It was noted that Ω1 is representative of the aspect ratio of the shape, with larger values

indicating a ratio closer to one, while Ω2 is indicative of the complexity of the shape. Shapes

with a smaller perimeter to area ratio will have larger values. For both of these values the

maximum is generated by a circle. The implications and use of these values with special

attention to their use in superalloy precipitate shape measurement will be discussed in

Chapter VI.

Callahan et al. also noted that, when plotted against each other, these values generate

a second order moment invariant map (SOMIM) [9], which is shown in Figure 3.4. Because

ω1 is sensitive to affine transformations, shapes which generate points which are on the

same horizontal line on the SOMIM differ in aspect ratio, but are of the same class. ω2 is

invariant to affine transformations, so as one moves vertically top to bottom, the complexity

of the shapes increases. Below the line indicating triangles, the classes of shapes becomes

less identifiable from the ω2 value alone. Shapes of note are marked in the figure, and the
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Figure 3.4: Second order moment invariant map (SOMIM) generated from plotting ω1 against ω2 normalized
by the values of the cirlce. From [9].

gray region indicates possible locations for shapes. No shapes exist which would generate

points in this space outside of this region.

These moments only utilize moments up to the second order. It can be shown that

the moments up to the second order only allow reconstruction of a shape to its equivalent

ellipse. Any information not contained in this ellipse is lost. This includes information like

area, aspect ratio, and relative perimeter length. More complex shape information can be

captured using moments of a higher order.

Similar to the ω parameters, but of higher order, are those of τ1, τ2, and τ3, which were

first described by Flusser and Suk [105] and modified and adjusted by Callahan et al. [9]

for use in 2D γ’ precipitate analysis. These values are as follows and based upon moments

up to the 4th order, with normalizations to set the maximum value to 1:

τ1 ≡
µ300
3π2

(µ40 + 2µ22 + µ04)
−1 (3.17a)

τ2 ≡
µ600

48π4
(µ40µ04 − µ31µ13 + 3µ222)

−1 (3.17b)

τ3 ≡
µ900

1728π6
(µ40µ22µ04 − µ40µ213 − µ04µ231 + 2µ31µ13µ22 − µ322)−1 (3.17c)

Utilizing these values gives a more detailed picture of shape changes near the exterior of
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the shapes. In addition, both τ2 and τ3 are affine invariants. Once again, the maximum for

each of these values is generated by the circle.

Beyond the fourth order, Suk and Flusser [106] have developed a method for calculating

affine moment invariants of arbitrary order, which allow for even further detail to be quan-

tified. However, with increasing order comes the requirement for increased computational

resources. In addition, higher order moments are more sensitive to noise, which must be

balanced against the increased detail that can be achieved through these descriptors.

3.1.3 Three-dimensional Cartesian moments

As discussed in Section 2.3, three dimensional shape analysis provides a more complete view

of the nature of an object, but can drastically increase the complexity of shape measure-

ment and descriptor calculation. Fortunately 3D Cartesian moments are not much more

complicated than their 2D counterparts, but typically require more resources for calculation.

Methods for calculation and the forcing of translation invariance are very similar to

those for 2D moments. This includes the general formula for 3D Cartesian moments:

mpqr =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

xpyqzrf(x, y, z)dxdydz (3.18)

and the calculation of central moments:

mpqr =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(x− x̄)p(y − ȳ)q(z − z̄)rf(x, y, z)dxdydz (3.19)

where x̄ = m100
m000

, ȳ = m010
m000

, z̄ = m001
m000

.

While rotational invariance can be achieved in a somewhat similar way to the principal

axis method which was suggested by Hu for 2D, this is again undesirable, as the rotation of

the 3D object can lead to distortion at the boundaries, which play a larger and larger role

in the values of the moments of increasing order.
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Invariants

Utilizing moments of the second order, the moment of inertia tensor, I, can be generated:

I =


µ020 + µ002 −µ110 −µ101

−µ110 µ200 + µ002 −µ011

−µ101 −µ011 µ200 + µ020

 (3.20)

Utilizing the invariants of this tensor, and normalizing by the volume of the object for scale

independence, MacSleyne et al. identified the following three invariants:

Ω1 ≡ 3V 5/3(µ200 + µ020 + µ002)
−1 (3.21a)

Ω2 ≡ 3V 10/3(µ200µ020 + µ200µ002 + µ020µ002 − µ2110 − µ2101 − µ2011)−1 (3.21b)

Ω3 ≡ V 5(µ200µ020µ002 + 2µ110µ101µ011 − µ200µ0112 − µ020µ2101 − µ002µ2110)−1 (3.21c)

MacSleyne et al. also noted that the maximum value for these invariants is generated by

the sphere. These values generate a 3D space which is not dissimilar to the SOMIM shown

in Figure 3.4. Shapes are restricted to a smaller region within what, in this case, is a unit

cube, with regular shapes restricted to a curve through the space. Boundaries of this region

represent certain morphological extremes.

Suk and Flusser [107] describes a generalization of the 2D method used in [106] that

is used to generate 3D moment invariants up to the 16th order. Although not all of these

are independent, they provide a way to capture a large degree of shape information in a

manner that is invariant to basic transformations which allow improved object recognition.

3.2 Zernike moments and invariants

3.2.1 Two-dimensional Zernike moments

In order to address the issue of redundancy (non-orthogonality) in the different orders

of Cartesian moments, Khotanzad and Hong [95] introduced the idea of using Zernike

polynomials as basis functions for moment generation. These moments would share the

properties of the polynomials, which were formulated for their orthogonality over the unit
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circle. Zernike polynomials have the form:

Vnm(x, y) = Vnm(ρ, θ) = Rnm(ρ)eimθ (3.22)

where n ≥ 0 and is an integer , m is all integers which satisfy (n−|m|) is even and |m| ≤ n,

ρ =
√
x2 − y2, and θ is the angle in radians from the vector (x, y) to the x-axis, in the

counterclockwise direction.

Rnm(ρ) is the radial component of this polynomial, as it only contains information

regarding the radial distance to the point (x, y). This function is defined as:

Rnm(ρ) =

n−|m|
2∑

s=0

(−1)s
(n− s)!

s!(n+|m|2 − s)!(n−|m|2 − s)!
ρn−2s (3.23)

Using these polynomials, Zernike moments take the form:

Znm =
n+ 1

π

∫∫
C
V ∗nm(ρ, θ)f(x, y)dxdy (3.24)

where C is the unit circle. It should also be noted that Z∗nm = Zn,−m. Because of this,

it is sometimes specified that m ≥ 0. This is because for shape description, it is only the

magnitude of the moments which is relevant.

In analysis of five separate types of 2D moments, including Cartesian, complex, Zernike,

pseudo-Zernike, and Legendre moments, Teh and Chin noted that the Cartesian and com-

plex, which do not have orthogonal bases, performed the worst in image reconstruction,

requiring more orders to achieve the same quality of image. They also noted that Zernike

and pseudo-Zernike performed best overall in terms of showing the least sensitivity to noise

and in reconstruction [108].

Comparing the radial portion of the Zernike basis function (Figure 3.5) to that of the

Cartesian moments (Figure 3.2) illustrates an advantage of Zernike moments which con-

tributes to their improved image representation as well. The difference between functions of

increasing order is more pronounced for Zernike moments and the values for some of these

functions at coordinates closer to zero is larger, resulting in more information about the
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center of the object. This is less important for regular shapes, but improves shape repre-

sentation for more irregular shapes with boundaries that may lay near the centroid. Other

moments, such as orthogonal Fourier-Mellin moments (OFFMs) have been proposed based

on improved coverage of this region and general behavior of the basis functions [109].

Figure 3.5: Radial function (Rnm) for first ten Zernike polyno-
mials.

Because Zernike moments are

restricted to the unit circle, the

shape in question must be scaled

to fit within the circle, and trans-

lated to the origin as well. This ne-

cessitates the calculation of Carte-

sian moments for the shape prior

to the calculation of Zernike mo-

ments.

Invariants

Khotanzad and Hong [95] also

noted that, for some object rota-

tion, α, with a given Zernike mo-

ment Znm, the resulting Zernike moment is given as Znme
−jmα. Therefore the magnitude

of a given moment, |Znm| is rotationally invariant. When computed for five separate rota-

tions, it was found that the resulting magnitudes of the moments only varied by a maximum

of 0.9% for Z22, which was attributed to the discrete nature of the image and distortion at

the edges due to changes in pixels.

Belkasim et al. established a method of selecting Zernike moments as invariant descrip-

tors that prevents the use of dependent values. A normalization scheme is also suggested,

as well as a method of calculating these normalized Zernike moments from central Carte-

sian moments. This provides an advantage because it avoids any discrepancies which can

be brought about from the translation and scaling required for initial Zernike moment cal-

culation.
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3.2.2 Three-dimensional Zernike moments and invariants

Novotni and Klein [10], working with the 3D Zernike moments first established by Canterakis

[110], compare the properties of these descriptors with others in terms of shape retrieval

and calculation resource intensity. The derivation is complex and will not be described here,

however it are based upon spherical harmonics and Legendre functions. The final form of

the 3D Zernike moments are:

Zmn l(r) =

n−l
2∑

ν=0

ν∑
κ

m∑
α=0

| l−m
2
|∑

µ=0

κ+µ∑
β=0

(−1)m+µ

2m+2µ
qνnlc

m
l i

m−α
(
ν

κ

)(
m

α

)(
κ+ α

β

)(
l

µ

)(
l − µ
m+ µ

)
× x2β+αy2(κ+µ−β)+m−αz2(ν−κ−µ)+l−m

(3.25)

Novotni and Klein conducted reconstruction using these descriptors and found that by

the 20th order, the shape was reconstructed to a good level of fidelity. This is shown in

Figure 3.6. They also found that 3D Zernike descriptors outperformed similar descriptors

based entirely upon spherical harmonics for object retrieval.

Figure 3.6: Reconstruction of of a spaceship model using 3D Zernike moments. From [10].
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CHAPTER IV

Cell function identification in Arabidopsis Thaliana

cotyledon through 3D shape analysis

4.1 Background

The British metallurgist, scientific historian, and Manhattan Project researcher Cyril Stan-

ley Smith wrote in his essay “The shape of things” in volume 190, issue 1 of the Scientific

American: “Statistical studies...have shown that the shapes of soap bubbles match closely

those of vegetable cells, metal grains and animal cells.” He goes on to say, “In sum, the

structure of any aggregate of matter - whether organic or inorganic, biological, natural or

artificial - depends not only on the interplay of forces but also on the very simple but in-

escapable mathematical requirements of space-filling” [111]. In this work, and others like

it [112], Smith remarked on how similar shapes reappear again and again in nature.

This work attempts to analyze how three-dimensional shape can be used to identify the

function of cells in the embryonic leaves, or cotyledons, of the plant Arabidopsis Thaliana.

By analyzing feature sets and establishing methods by which form and function can be

linked in a system with clearly delineated classes such as these leaves, it is hoped that, as

Smith suggests, what is learned here can be extended to animal cells, or metal grains.

4.1.1 Shape analysis in cell and tissue analysis

Shape is powerful tool for the analysis of cells. It is well known that cell morphology and

function are linked. According to Pincus and Theriot [113], who conducted a survey and

comparison of 2D cell morphology descriptors, “Cell shape is a large-scale expression of

many organizing, competing and highly regulated biological processes . . . ” To use the old
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adage, form follows function. By quantifying cell shape, the investigator can hope to gain

insight into the function of the cell through its form.

Because of this relationship between these two aspects of cells, shape has become a com-

monly included feature in image cytometry, a fundamental method of cell characterization.

Over the past fifty years, an extensive amount of work has been focused on automating

the cytometry process, driven by the obvious benefits of computer-based analysis: speed

and precision. These characteristics are particularly important when dealing with the large

numbers of cells that are usually involved in such an analysis. Automated analysis also pro-

vides solutions to a number of potential problems with a human-based analysis, primarily:

reduced quantity and quality of gathered information and speed of analysis.

In general, automated analysis can be preferable to manual analysis, especially in sit-

uations where large amounts of data can be made available for processing by computer

systems. However, the most basic kind of data in these fields, images, does not lend itself

to automated analysis. While a scientist may be able to visually identify regions of inter-

est and perform measurements on them, creating an algorithm or a set of rules by which

to do so automatically is much more difficult. Human judgment cannot easily be coded

into a program. Given the prevalence of image-based data and the desire to take advantage

of ever more capable computer systems, significant amounts of work have focused on im-

proving the performance of automated image analysis. In the last decade, machine learning

techniques have dramatically improved the quality of segmentations and allowed for better

identification of meaningful features.

Automated analysis in the context of biological materials can be undertaken in two

or three dimensions, although 2D images are by far the most common. 2D images are

favored because of the difficulty in capturing 3D data for softer biological materials, and

because an entire class of images, that of cells on microscope slides, only exists in two

dimensions. Typical features examined include 2D shape descriptors such as aspect ratio or

circularity, as well as global descriptors like moment invariants or boundary descriptors like

Fourier descriptors (discussed in Chapter II). While the materials scientist usually works

with electron micrographs which lack any variability in color, this is not true in this context,

so color and texture are commonly utilized as well. In three-dimensional analysis, the typical

Material Properties and Microstructural Shapes R.K.S. Harrison



4.1. BACKGROUND 51

descriptor is a global shape descriptor, although once again this kind of analysis is typically

difficult to conduct due to the nature of the samples.

Shape provides a window into these interactions and allows for the differentiation of

cell based on their function. To this end, Pincus and Theriot analyzed three representative

cell shapes, those of a bacterium, kidney cells, and keratocyte cells. Shape descriptors

examined were Fourier descriptors and Zernike moments, although raw distance maps,

binarized images, and outlines were utilized also. Principal component analysis was also

used as a method of improving reconstructions by maximizing the value of the first several

parameters in a reconstruction. It was found that signed distance maps, combined with

PCA analysis to pull out the most relevant aspects of the data, perform the best.

In 1966, Prewitt and Mendelsohn [13] conducted one of the first experiments on au-

tomated cell classification. Four of the most visually distinct white blood cell types were

examined. These were neutrophils, eosinophils, lymphocytes, and monocytes. These cells

were extracted from human blood and stained. Then, by rastering light through the eye-

piece of an optical microscope, optical density measurements were taken every 0.25 microns,

which, when scaled over the range of 0-255, took the form of 200×200 pixel images. A large

number of features were calculated for each cell, and then the range of features analyzed

for maximum power of discrimination. It was found that a three dimensional space formed

by the area of the nucleus, the area of the cytoplasm, and the contrast a the outer diam-

eter allows for sufficient discriminatory power to automatically identify these cells. It was

noted that shape analysis would be a useful additional tool.

Similar work in white blood cell analysis was undertaken by Ongun et al. [114], who

utilized features based upon basic shape information, affine Cartesian moment invariants,

CIE L*a*b* color space, and texture of the images to generate a total of 57 features from

which to draw upon. Using four different classification methods and by treating each cell

as a single 57 dimensional vector, it was found that support vector machines (SVMs) were

the most effective method with 91% accuracy on the test set.

Aside from blood cells, shape descriptors have been used to conduct automated identi-

fication of breast cancer tissue. Tahmasbi et al. [115] set out to improve computer-assisted

diagnosis (CAD) systems through the application of 2D Zernike moments to a set of mam-
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mograms with unidentified masses present. For each mass, Zernike moments from order 3

to 17 were calculated for both the entire mass and the margin alone, resulting in 64 individ-

ual moments, and 128 features overall. Using a multilayer perceptron (MLP) as a classifier,

the authors were able to achieve an accuracy of 96% while maintaining a false negative rate

of 0%. This was particularly important, because a false negative in medicine is particularly

harmful. Segmentation in this case was manually performed, so it cannot be considered a

truly automated process.

Sharma and Khanna [116] attempted to further improve the ability of a CAD system to

identify cancerous masses in mammograms while also fully automating the process. To this

end, each mammogram is preprocessed by first applying histogram equalization to normalize

the contrast across the image. The pixels of the mammogram are then partitioned to three

grey-levels using the k-means algorithm, which effectively performs a tri-level segmentation

of the image with dynamic threshold values for each image. This separates pixels into low,

medium and high density values. Patches of the mammogram are then extracted and the

entropy calculated for each. Regions with large entropy have the most texture information,

and these are further tested for malignancies. This testing is performed using Zernike

moments up to order 20 with SVMs as the classifier. The result showed 99% sensitivity and

99% specificity.

Three dimensional cell analysis is relatively rare. Although observations regarding 3D

morphologies, and their change with regard to a number of different interior and exterior

factors are noted, there are very few studies which involve the quantification of three di-

mensional cell shapes. Khairy et al. [117] utilized spherical harmonics as basis functions

for the quantification of blood cell morphology and found that the membrane cytoskeleton

”can account quantitatively for a wide range of RBC [red blood cell] morphologies...” El-

liott utilized [118] a combination of graph based methods, surface curvature analysis, and

the formulation of an invariant intra-cell coordinate system to measure three dimensional

shape of cells undergoing migration and to correlate them to fluorescence signals originating

within the cell.

The lack of focus on three-dimensional information is a direct result of the difficulties

in gathering this type of information. However, recent advances in cell data acquisition are
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making 3D image data easier to collect [119,120]. This is important because cells are three-

dimensional objects which occupy and operate within a three-dimensional environment.

Establishing features and methods for the analysis of cell shape in this context is important

for the future of cellular analysis.

This work attempts to answer some of these questions by focusing on the use of Carte-

sian and Zernike moment invariants as descriptors of cell shape. By exploring these features

in three dimensions, we hope to establish the extent to which shape can be used to differen-

tiate healthy Arabidopsis Thaliana cotyledon cells (epidermal, spongy mesophyll, pallisade

mesophyll, and vascular) from each other. Distinguishing healthy cells from a system with

distinct categories allows for the better establishment of a ground truth and provides a step-

ping stone to the identification of irregular cells, the development of a general classifier for

an entire species, and eventually the application of this method to other systems.

4.1.2 Arabidopsis Thaliana

The plant Arabidopsis Thaliana, also known as thale cress or simply arabidopsis, is a small

flowering plant which is considered a weed.The first mutant of this species was recorded in

1873, and in 1943 its use as a model organism was proposed. It was the first plant to have

its genome sequenced in 2000 by the Arabidopsis Genome Initiative [121], and has one of

the smallest genomes among plants.

The data analyzed in this study are image stacks from two A. Thaliana cotyledons.

Cotyledons are the embryonic leaves which exist within the seed. Upon germination, they

form the first visible leaves of the plant. Cotyledons consist of five major types of cells.

Epidermal cells make up the outer layer and form a protective barrier, they are more

irregular in shape and are most visible in Figure 4.1c and 4.2a. There are mesophyll cells

of two types, palisade and spongy, which comprise the majority of the tissue and act as

the primary photosynthetic cells in the plant. Palisade cells are more cylindrical in shape

and appear along the edges of the leaf in Figures 4.1a, 4.1b, and 4.2b. Spongy mesophyll

are more spherical and make up the majority of the cells. They are especially prevalent in

Figures 4.1a, 4.1b, 4.2b, and 4.2c. Stoma facilitate gas exchange, tend to be more spherical,

are visible in between epidermal cells. Finally, proto-vascular or protophloem cells allow for
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(a) (b) (c)

(d)

Figure 4.1: Examples of 7x series images. (a-c) example images from along the z-axis. (d) shows a image
taken along the x-axis with more cylindrical palisade mesophyll visible along the bottom of the
cotyledon.

the movement of liquid into to and out of the plant, carrying water and sugar. These are

the distinctly long cells in Figures 4.1b and 4.2b.

(a) (b) (c)

Figure 4.2: Examples of 8x series images.
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4.2 High dimensional analysis

Large feature vectors, like the kind used here, necessitate a method of analysis that is

more adapted to handling the problems that occur in these unintuitive, high dimensional

spaces. Bellman coined the phrase ”curse of dimensionality” [122] to refer to the problems

that arise when operating with data in high dimensional spaces that do not occur in more

intuitive, lower dimensional spaces. One of the central problems, and the one that is most

troublesome when attempting to determine similarity or dissimilarity of objects in shape

space, is the loss of meaning that occurs for the Euclidean distance function as the number

of dimensions grows.

To illustrate this point, Zimek et al. [123] describe how the variance of the ratio length

of any point vector (||Xd||) to the mean point vector E[||Xd||]] converges to zero with

increasing dimension, which implies the following:

If lim
d→∞

var
( ||Xd||
E[||Xd||]]

)
= 0, then

Dmax −Dmin

Dmin
→ 0 (4.1)

where Dmax is the maximum distance between two points of a set, and Dmin is the minimum

distance. This applies to any Lp norm with p ≥ 1. So, picturing a set of d-dimensional

points as they are embedded in higher and higher dimensional spaces, the Lp norm between

any two points will decrease with increasing n, even if the points themselves do not change

relative to each other. Essentially, as the number of dimensions increases, the distances

between any two points become more and more similar.

Because the shape-data generated through calculating moment invariants of a range

of orders is high-dimensional, it is necessary to employ analysis techniques which can help

address the issues inherent in these types of spaces. A tremendous amount of work has been

done in the field of machine learning to develop methods for these situations. A primary

application of machine learning is the assignment of class labels to individual points of data.

Two different techniques, considered supervised and unsupervised respectively, were chosen

and are detailed in this section.
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4.2.1 Supervised machine learning

Supervised machine learning is a broad field, but with respect to data classification can be

described as the generation and application of a model for the assignment of class labels for a

given data set based on an example, or training, set which has be pre-classified through some

other process (although usually done by hand by an observer). There are a wide variety

of supervised machine learning algorithms available, each with a variety of advantages

and disadvantages. These include decision trees [124], support vector machines [125], and

neural networks [126]. For an overview of the relative strengths of each method, the reader

is directed to Kotsiantis [127]. Support vector machines were utilized in this work because

of their simplicity, relative accuracy, and ease of implementation.

Support vector machines

Support vector machines (SVMs) were first developed by Vapnik and Chervonenkis in 1964

and detailed in their book [128]. They addressed the problem of identifying the optimal

separating hyperplane for two separable classes of data in an p-dimensional space where

these classes are known. Given a set of data:

(y1, x1), . . . , (yn, xn) (4.2)

where xn represents a point in a p-dimensional space, and yn its class with y ∈ {−1, 1}.

Two parallel hyperplanes can be constructed, each touching one class of the data as:

w · x− b = 1

w · x− b = −1

(4.3)

The distance between these two planes:

d =
2

‖ w ‖2
(4.4)

is maximized when ‖ w ‖2 is minimized. The single optimal hyperplane will therefore exist
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at

w · x− b = 0 (4.5)

with the minimal ‖ w ‖2 subject to the constraint:

yi(w · xi + b) ≥ 1, i = 1, . . . , n (4.6)

which ensures that no points are misclassified. This system is then optimized using Lagrange

multipliers. A full derivation and discussion of the optimization can be found in [125].

SVMs ultimately reach their modern form in 1995 with Cortes and Vapnik [129]. Here,

the authors did not assume that the two classes were separable, but instead implemented a

cost function which was equal to zero in the case of correctly classified points but otherwise

proportional to the distance of a misclassified point from the given hyperplane. Identifying

the optimal hyperplane is then a matter of minimizing equation 4.4 combined with the value

of the cost function.

SVMs have proven to be one of the best-performing supervised learning methods, nearly

as good as neural networks in many applications and in some cases surpass them [130]. They

also have the benefit of being much faster to implement and easier to understand.

4.2.2 Unsupervised machine learning

In contrast to supervised methods, unsupervised machine learning does not rely on pre-

classified training sets in order to develop models. Instead, the algorithms are constructed

to find underlying characteristics of the data without any input from the user (with the

exception of parameters). This provides a number of benefits, the first and most obvious of

which is the user need not construct a training set. This saves time in the initial setup of the

algorithm and also prevents the user from inadvertently influencing the results. This can

be beneficial in that it can prevent errors from improper training or biases of the user which

can be passed to the model. However, without user input, the model may not generate

expected results. The unsupervised machine learning method described below was utilized

to determine what could be learned regarding the nature of the cells from shape and the

other feature values utilized alone.
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In this work, the unsupervised method was performed in two steps. The first is a

dimensionality reduction method, which serves to map the high-dimensional data into a

more workable space while attempting to retain the most important spatial aspects of the

data. This is done by either finding directions in the original space which better describe

the data than the original axes, or by mapping data points in high-dimensional space to

positions in a lower-dimensional space. The next step is a clustering technique, which groups

points that are nearby each other in this new space, with the underlying assumption that

proximity indicates similarity. These methods are described in detail below.

Dimensionality reduction

The first method used to achieve a reduction in dimensionality is principal component

analysis (PCA). This method is relatively simple, but allows for reduction to an arbitrary

degree and provides a good first step in any kind of dimensionality reduction scheme and is

the first step in the technique discussed here. PCA works by identifying the n orthogonal

directions (or principal components) within an d-dimensional data-space which account

for the highest variability within the data. These directions are ranked according to the

amount of variability accounted for by each. The data is then projected onto these axes,

and by selecting the first x directions, allows for the projection of the d dimensional space

to one which can be visualized while preserving as much variability as possible. This implies

that the direction with the highest variability is inherently the most informative, and that

correlations between dimensions are linear.

Practically speaking, PCA is performed on an m dimensional data set with n number of

points (m× n). First, the data is translated so that the mean of each column is coincident

with the origin. This facilitates the calculation of the correlation or covariance matrices,

which captures the relationship between dimensions of the data and gives a rough idea

of the orientation of the point cloud generated in data-space. Traditional PCA uses the

covariance matrix, but in most cases, the correlation matrix is utilized for the calculation

of the principal components in order to standardize the values. The eigenvectors are then

calculated for the resulting m × m matrix and sorted by decreasing eigenvalue. With

m eigenvalues (λi) the fraction of the variability accounted for by the ith eigenvector is:
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λi
λ1+λ2...+λm

.

PCA is a simple linear projection, and can miss some of the more complex structures

the data can form in a high-dimensional space. In order to address these issues and provide

a method which preserves this information through dimensionality reduction, Maaten and

Hinton [131] developed a method known as t-distributed stochastic neighbor embedding or

t-SNE. This method is based upon stochastic neighbor embedding developed by Hinton and

Roweis [132]. This method necessarily has to be nonlinear in order to capture the nature

of the data distribution.

Once again for an m × n dataset, t-SNE works by fitting an m-dimensional Gaussian

with a fixed variance to each data point. The value for point j of the Gaussian centered

at point i is the conditional probability (pj|i) that j is similar to i. Using this method an

n× n similarity matrix can be constructed containing this probability for every point. The

use of a Gaussian implies that the value will exist for every point but will be very small

for points far away. The same thing can be done in a low dimensional space with the same

data, giving a matrix qj|i, except in this case, the distribution used is not a Gaussian but a

t-distribution with heavy tails to reduce crowding in the final map.

The goal is then to distribute the points in the low dimensional space in such a way

that pj|i is as close to qj|i as possible. The cost function used to minimize the differences

between these distributions is the Kullback-Leibler divergence. This function is minimized

through gradient descent to render the final map. The primary parameter that must be

passed into this is the perplexity, which controls the spreads of the probability matching

functions and effectively controls the degree of influence that each point exerts on all other

points. t-SNE combined with machine learning has been used extensively in a wide variety

of fields over the last decade [133–137].

Feature clustering

Once the application of t-SNE has generated a map, the resulting points in two-dimensions

can then be clustered using proximity on the resulting 2D map to indicate shape similarity.

t-SNE is a powerful tool that preserves the structure of the high-dimensional data, but that

structure is not always as expected. Using traditional clustering methods such as k-means
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clustering assumes Gaussian or globular cluster shapes which is not always the case. In

addition k-means is more of a partitioning algorithm, rather than a clustering technique,

the difference being that k-means partitions the entire space into k number of clusters, but

is incapable of identifying outliers. Because the final goal of this work is to identify cell

function through morphology, it would be desirable if irregular or underrepresented cells,

such as malformed, mutated, or cells mid-mitosis could be automatically identified. These

irregular shapes should not belong to any cluster, so a method is needed that can pick them

out.

Hierarchical density-based spatial clustering of applications with noise, or HDBSCAN,

is such a technique [138]. HDBSCAN works by utilizing mutual reachability distance rather

than Euclidean distance. This is defined as: dmreach, k(a, b) = max{corek(a), corek(b), d(a, b)},

where corek(a) is the radius of a circle centered on point a that contains k other points,

or alternatively, the distance to the kth nearest neighbor. dmreach, k is calculated for every

point and essentially moves outlying points even farther away, accentuating the closeness

of the other points.

Next, a minimum spanning tree is created by adding points to the tree, always adding

the shortest length edge that connects a non-member point to the tree. The edges are

then ranked in order of length to create a hierarchy. This is iterated through, shortest to

largest, and each edge and the clusters it links together are compiled. Finally, utilizing a

user-provided parameter: minimum cluster size, the edges combining clusters are iterated

through, longest to shortest, and only those which connect clusters greater than this pa-

rameter are retained. The final list of edges is then searched for those which existed longest

and these are selected as final clusters. This method is powerful and provides noise identifi-

cation, which is ideal for the purposes of this work. A tutorial on HDBSCAN can be found

at [19].

4.3 Materials and methods

4.3.1 Arabidopsis Thaliana cotyledons

Two sets of cross-sectional images, one from each of the two samples (henceforth referred

to as the 7x series and 8x series) were provided by Dr. J.C. Palauqui of the National
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Institute of Agricultural Research (INRA), Paris, France. Details regarding the method of

the collection of this data are given in [120] and are summarized here. The primary imaging

method for these two samples is confocal laser scanning microscopy (CLSM). This technique

is popular in the analysis of biological specimens for a number of reasons. CLSM requires

the relevant tissue to be fluorescently labeled. That is, the regions to be imaged must

first be stained with a dye that fluoresces under a given wavelength of light. Identifying a

proper dye is an entirely different problem which can be difficult to solve in its own right.

Truernit et al. utilized a modified pseudo-Schiff propidium iodide staining technique (mPS-

PI), which provides superior staining ability to previously employed methods and allows for

better resolution when combined with CLSM.

The primary benefit of CLSM is it allows the imaging of material within the bulk of

the sample. This is due to the fluorescence of the material being imaged. Problematically,

the cotyledons being observed here have evolved to reduce the propagation of radiation

into the bulk material, which is to be imaged. However, the mPS-PI technique implements

a clearing solution which makes these regions less opaque. Not only is CLSM capable

of imaging interior regions, but these may be selectively viewed through a process called

optical sectioning. CLSM works by rastering a laser beam across the sample. The depth

from which fluorescent light is captured can be selected by using a spatial filter, such as a

slit or pinhole. This blocks out unwanted fluorescence from other z levels and from general

fluorescence of the specimen. This allows very precise visualization of specific levels within

the sample, without any mechanical sectioning whatsoever. Vertical resolutions of 0.23µm

can be achieved under optimal conditions [139].

4.3.2 Images and image processing

Three sets of representative example images are shown in Figure 4.2 along with the indicated

z level. Each one represents an upper, lower, and middle region, and in each, examples of

the five different cell types are indicated. Sample set 7x has dimensions 256×256×100µm3,

while sample set 8x has dimensions 256× 256× 96.25µm3.

Individual images were segmented using ilastik, described in Section 6.2.2. This program

utilizes decision trees to determine to which class each pixel of the image belongs. Using
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ilastik results in segmentations with an average out of bag error of less than 1%. This error

is, and can only be, based upon the training set. Estimating total segmentation effectiveness

would require a ground truth which does not exist.

After segmentation, each two-dimensional slice was opened (image erosion followed by

dilation) by a small, 3× 3 kernel in order to improve final segmentation by removing small

pixels connecting two regions which should be separate. Despite the quality of the initial

segmentation, this is necessary due to inconsistencies in cell wall contrast and because even

a single connecting pixel between two regions is enough to merge two regions and add error

to the analysis. Shapes with a volume of less than 50 voxels were excluded from the analysis

in an effort to avoid introducing errors into the t-SNE mapping.

Similar to the methods described in 6.2.2, Interactive Data Language, IDL, was used to

calculate the shape descriptors used in this analysis. First, each shape was labeled with an

individual value. Then the shape was extracted from the bulk and analyzed. The shape

quantities were calculated using the method of Novotni and Klein [10], where first the

central moments were calculated for each shape, and normalized according to the volume of

the object. Finally, they are converted into the relevant shape values, as described below.

4.3.3 Ground truth and scoring

A ground truth was established by simple manual identification of cells chosen at random

from the set of all cells. These cells were either labeled as epidermal, vascular, spongy

mesophyll, and palisade mesophyll. For both the 7x and 8x cotyledons, the size of the truth

set was 1251 cells, roughly equal to 1/3 of the size of the entire set (3585 for 7x and 3712

for 8x).

Calculating the success of an unsupervised classification method requires a metric that

is capable of quantifying the similarity of two sets that satisfies two conditions: the metric

must be successful when labels do not match and the metric must be interpretable. The

first point is particularly important in the case of unsupervised machine learning, where

labels may conform to the known class labels but may be of different values (i.e. all points

of class 1 being assigned a value of 2). The metric must also handle two problematic cases:

a classification that gives a different label to each cell and a classification that assigns a
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single class to the entire set. In the case of the first, a metric which measures the purity of

each assigned class will give a false perfect result, when obviously this is not useful. In the

second case, a purity metric on the truth labels fails, and can return a perfect result.

One metric which satisfies these requirements is the normalized mutual information

(NMI) shown in equation 4.7.

NMI(X;Y ) =
2I(X;Y )

H(X) +H(Y )
(4.7)

where I(X;Y ) is the mutual information of set X given Y , and H(X) is the entropy of

set X. This value can be interpreted as the amount of information learned about set Y

by knowing set X and has a minimum value of zero and a maximum value of one. NMI

balances the two problematic cases identified above. In the case of each point being assigned

its own class, the entropy of the assigned labels is increased, reducing the NMI. In the case

of a single label being assigned to the entire set, the mutual information in the denominator

is reduced, also reducing the NMI.

While NMI is slightly less understandable than a simple percentage score, it is a well-

performing metric for unsupervised machine learning classification. In the case of supervised

learning NMI is unnecessary since the resultant classifications are based on, and assigned

labels, that exist in the truth or learning set. This allows the use of percentage scores.

4.3.4 Feature sets

In order to explore the limits of shape in this context, and to allow comparison to other

calculable properties of these cells, four aspects of the cell were quantified using five sets of

features. These are shown in Table 4.1, along with the number of dimensions utilized, the

property being quantified, and whether or not the features are local or nonlocal. A local

feature is one that is a property of a given cell alone. A nonlocal feature is one which can

only be calculated in the context of the given cell’s position with respect to other cells and

the entire cotyledon as a whole.

The irreducible affine Cartesian moment invariants are calculated using moments up to

the 4th order, as described in [107] and defined in [140]. The Zernike moment invariants are
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calculated from the central Cartesian moments as described in Equation 3.25 from Chapter

III. The Zernike invariants are calculated using moments up to the 20th order and therefore

capture more complete level of information about the shape of each cell when compared to

the Cartesian invariants.

The volume metric represents the size of each cell and is measured in simple voxels. The

volume-normalized second order moments capture orientation information of each cell, but

are volume invariant. Nearest neighbors measures the number of cells in close proximity to

a given cell. This feature set was calculated for a given cell by dilating the cell through a

simple convolution with a spherical kernel of radius 20 voxels and counting the number of

cells which come into contact with the dilated region.

Feature set Abbrev. Dimensionality Quantified
property

Local/nonlocal

irreducible affine Carte-
sian moment invariants

C 242 shape local

Zernike moment invari-
ants

Z 121 shape local

volume V 1 size local

nearest neighbors N 1 number of
nearby cells

nonlocal

volume-normalized sec-
ond order moments

S 6 orientation nonlocal

Table 4.1: Properties of feature sets

Every combination of feature sets in Table 4.1, with the exception of those which contain

both Zernike and Cartesian invariants, were tested for a total of 23 datasets. In this chapter,

datasets will be referred to by a short abbreviation indicating the data present in each.

For example, the dataset consisting of the Cartesian moment invariants, the volume, and

the number of nearest neighbors for each cell would be referred to as CVN, and have a

dimensionality of 244. This data is organized into matrices of size m × n where m is the

number of dimensions or features utilized for each cell and n is the number of examined

cells.

In order to place equal importance on varying dimensions of the data, each feature set

is normalized prior to analysis. This is important due to the large scale differences present

in the data. While volume can be on the scale of 103 voxels, while some moment invariants
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are on the order of 10−5. In both unsupervised and supervised analysis, this normalization

takes place on the entire data set prior to processing. Initially, two normalization methods

were utilized, that of equation 4.8, a simple normalization with results lying between 0 and

1, and that of equation 4.9, which is the Z-score of the data. No significant differences were

found between the results of analyses utilizing the two methods, so the latter method, that

represented by equation 4.9, was utilized since preprocessing of the data to this form can

often improve PCA results, thus facilitating unsupervised analysis.

N(X) =
X −min(X)

max(X)−min(X)
(4.8)

Z(X) =
X − µ(X)

σ(X)
(4.9)

4.3.5 Unsupervised machine learning

Data processing and flow

In order to determine parameters of the t-SNE and HDBSCAN algorithms that result in the

best performance, a grid-search method was utilized. The perplexity values for t-SNE were

restricted to 10, 30, and 50, which represent the recommended minimum, and maximum

values from the author of the algorithm [131] as well as a central value. For HDBSCAN,

minimum cluster size values were restricted (somewhat arbitrarily after finding that lower

values on the scale of 102 tended to perform better) to the set {25,50,75,100,125}, and

minimum number of samples to {10,35,60}, once again based on minimums and maximums

from the originator of the method [138]. Because t-SNE is not a deterministic algorithm,

this was repeated for five iterations. Average and maximum values are reported below.

The success of these methods is scored using the normalized mutual information metric

discussed in Section 4.3.3. In some cases a percentage score may also be reported but for

reasons also discussed in 4.3.3, the percentage is inherently difficult to calculate, and is only

shown as a rough estimate. Any comparisons of success should be made using NMI alone.
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4.3.6 Supervised machine learning

Data processing and flow

In this work, linear SVM, as discussed in 4.2.1 was utilized. As such, only a single param-

eter, the error penalty parameter (C), was required to be optimized. Based upon [141], a

grid-search technique was undertaken over the range C = {2−5, 2−4 . . . 220}. Success was

quantified using five-fold cross validation. Using this method, the training data is randomly

separated into five subsets, and then, to prevent overtraining, for each subset an SVM model

is trained on the other four and then tested on the given subset. The classification of each

subset is compiled into an overall set and the percentage correct classification is measured.

4.4 Results

4.4.1 Mapping and clustering

Success of clustering

Table 4.2 lists the results of the mapping and clustering procedure on data set 7x and 8x

respectively. For each feature set, the included subsets are listed with an ’X’ and those

excluded with a ’-’. The mean NMI is listed, as calculated over five iterations of the

algorithm and with every combination of t-SNE and HDBSCAN parameters. Maximum

NMI is the single largest NMI value calculated from the data set with any combination of

algorithm parameters. The standard deviation of NMI for each cotyledon is listed in the

final two columns.

The top five performing feature sets in terms of mean NMI for dataset 7x are, in de-

scending order, CVNS, CNS, VNS, CS, and CN. These feature sets for 8x are CS, CNS,

CVNS, VS, and CVS. In both cases, the Cartesian invariants and the second order moments

are the most common, indicating that these features capture aspects of the data that allow

better differentiation along the lines of cell identity. In terms of maximum NMI, the top

feature sets for 7x are CVNS, CNS, CS, ZS, and CVN; for 8x: CVNS, CNS, VS, NS, and

CVS. Once again, the Cartesian features and orientation have have the largest success rate

in both cases. In both specimens, it appears that the Cartesian invariants out performed

the Zernike invariants, and that, at least in the case of the average NMI, comparable re-
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Feature
set

Cart Zern Vol NN Sec NMI
(mean)
7x

NMI
(max)
7x

NMI
(mean)
8x

NMI
(max)
8x

NMI σ
7x

NMI σ
8x

C X - - - - 0.141 0.315 0.192 0.276 0.037 0.045

CV X - X - - 0.202 0.324 0.167 0.291 0.016 0.087

CN X - - X - 0.271 0.372 0.178 0.308 0.069 0.042

CS X - - - X 0.283 0.415 0.326 0.449 0.015 0.044

CVN X - X X - 0.240 0.374 0.262 0.357 0.024 0.055

CVS X - X - X 0.234 0.360 0.296 0.412 0.019 0.063

CNS X - - X X 0.303 0.497 0.322 0.461 0.034 0.104

CVNS X - X X X 0.353 0.627 0.319 0.508 0.035 0.141

Z - X - - - 0.076 0.324 0.135 0.314 0.043 0.085

ZV - X X - - 0.073 0.324 0.102 0.309 0.005 0.080

ZN - X - X - 0.060 0.335 0.065 0.333 0.033 0.029

ZS - X - - X 0.162 0.388 0.080 0.321 0.041 0.030

ZVN - X X X - 0.055 0.330 0.052 0.283 0.088 0.024

ZVS - X X - X 0.168 0.373 0.061 0.304 0.045 0.033

ZNS - X - X X 0.095 0.372 0.094 0.332 0.008 0.139

ZVNS - X X X X 0.079 0.341 0.055 0.333 0.073 0.119

V - - X - - 0.127 0.203 0.124 0.201 0.011 0.017

N - - - X - 0.134 0.174 0.161 0.189 <
0.001

<
0.001

S - - - - X 0.139 0.245 0.220 0.359 0.089 0.049

VN - - X X - 0.215 0.347 0.181 0.306 0.024 0.052

VS - - X - X 0.246 0.340 0.302 0.444 0.061 0.032

NS - - - X X 0.237 0.316 0.258 0.439 0.061 0.014

VNS - - X X X 0.288 0.350 0.247 0.301 0.003 0.025

Table 4.2: Results of unsupervised clustering on both cotyledon data sets. Standard deviation of NMI
calculated over five iterations for each feature set for the set of clustering parameters with highest
average NMI.

sults were obtained by the VNS feature set in sample 7x and the VS data set in 8x, which

exclude shape information in the form of moment invariants, to those of CVNS

Examining the standard deviation of the NMI, it should be noted that values are rela-

tively large in the case of the best performing 7x feature sets, CVNS, and CNS with values

of 0.14 and 0.10 respectively. This is also true for the lower performing feature sets of ZNS

and ZVNS. Standard deviations values in the 8x set are somewhat less, with the largest

values belonging to the feature sets S, ZVN, ZVNS, and CN, having values of 0.090, 0.088,

0.073, 0.07, respectively. None of these feature sets are among the best performing for the

8x dataset.
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The observed standard deviations indicate that there is a large degree of variation in

the results of t-SNE mapping and HDBSCAN clustering, especially in the case of specimen

7x. In order to examine the relative influence of algorithm parameters and feature sets on

the success rate, analysis of variance (ANOVA) [142] and multiple linear regression were

performed..

ANOVA

The results of ANOVA tests are shown in Figures 4.3 and 4.4. The ANOVA table for the 7x

data set of 4.3, has large F values and correspondingly low p-values for the main effects of

all feature sets and algorithm parameters, with the exception of the volume feature set and

the min clust parameter for HDBSCAN. If an α value of 0.05 is utilized as the cutoff for

statistical significance, it can be concluded from this evidence that the null hypothesis: the

levels of the given feature have no influence on the result of the clustering, can be rejected in

all instances except for those previously mentioned. There are several statistically significant

interactions. The above holds true in the case of the 8x cotyledon as well, except that the

volume term, the effects of which were insignificant in the 7x cotyledon, has statistical

significance in this case. The histograms of residuals in Figures 4.3 and 4.4 are very similar

in shape for both data sets. The distribution appears to be bimodal, with a sharp peak in

the negative region which cuts off at zero, and a lower peak in the positive region.
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  Source               Sum Sq.   d.f.    Mean Sq.     F      Prob>F

-------------------------------------------------------------------

  Cart                   1.84        1   1.83962    259.06   0     

  Zern                   8.81       18   0.48943     68.92   0     

  vol                    0.009       1   0.00903      1.27   0.2595

  NN                     1.01        1   1.01048    142.3    0     

  sec                    4.359       1   4.35908    613.85   0     

  perp                   0.655       2   0.32768     46.14   0     

  min_clust              0.016       2   0.0079       1.11   0.3288

  min_samp               0.321       2   0.16064     22.62   0     

  Cart*vol               0.001       1   0.00127      0.18   0.6718

  Cart*NN                1.566       1   1.56645    220.59   0     

  Cart*sec               0.188       1   0.1882      26.5    0     

  Cart*perp              0.065       2   0.03268      4.6    0.01  

  Cart*min_clust         0.009       2   0.00448      0.63   0.5324

  Cart*min_samp          0.042       2   0.02098      2.95   0.0521

  Zern*perp              3.438      36   0.09549     13.45   0     

  Zern*min_clust         0.253      36   0.00702      0.99   0.4891

  Zern*min_samp          3.428      36   0.09521     13.41   0     

  vol*NN                 0.001       1   0.0006       0.08   0.7709

  vol*sec                0.166       1   0.1656      23.32   0     

  vol*perp               0.131       2   0.06558      9.23   0.0001

  vol*min_clust          0.006       2   0.00294      0.41   0.6608

  vol*min_samp           0.022       2   0.01107      1.56   0.2104

  NN*sec                 0.027       1   0.02663      3.75   0.0528

  NN*perp                0.006       2   0.00301      0.42   0.6541

  NN*min_clust           0.002       2   0.00107      0.15   0.8599

  NN*min_samp            0.173       2   0.08666     12.2    0     

  sec*perp               0.048       2   0.02406      3.39   0.0338

  sec*min_clust          0.027       2   0.01339      1.88   0.1519

  sec*min_samp           0.014       2   0.007        0.99   0.3734

  perp*min_clust         0.068       4   0.01697      2.39   0.0486

  perp*min_samp          3.397       4   0.84922    119.59   0     

  min_clust*min_samp     0.557       4   0.13926     19.61   0     

  Error                151.158   21286   0.0071                    

  Total                242.015   21464                             

Analysis of Variance

Constrained (Type III) sums of squares.

Residuals
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Figure 4.3: ANOVA table and histogram of residuals for the influence of feature sets and algorithm parameters on unsupervised clustering results on 7x data set.
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  Source               Sum Sq.   d.f.    Mean Sq.     F      Prob>F

-------------------------------------------------------------------

  Cart                   0.865       1   0.86484    149.16   0     

  Zern                  17.504      18   0.97244    167.71   0     

  vol                    0.037       1   0.03712      6.4    0.0114

  NN                     0.235       1   0.23523     40.57   0     

  sec                    4.958       1   4.95799    855.09   0     

  perp                   0.651       2   0.32568     56.17   0     

  min_clust              0           2   0.00014      0.02   0.9755

  min_samp               0.563       2   0.2813      48.52   0     

  Cart*vol               0.001       1   0.00136      0.24   0.6278

  Cart*NN                0.006       1   0.00578      1      0.3181

  Cart*sec               0.682       1   0.68176    117.58   0     

  Cart*perp              0           2   0.00018      0.03   0.9691

  Cart*min_clust         0.002       2   0.00092      0.16   0.8529

  Cart*min_samp          0.171       2   0.08551     14.75   0     

  Zern*perp              8.219      36   0.22829     39.37   0     

  Zern*min_clust         0.075      36   0.00209      0.36   0.9998

  Zern*min_samp          1.619      36   0.04498      7.76   0     

  vol*NN                 0.043       1   0.04295      7.41   0.0065

  vol*sec                0.021       1   0.02059      3.55   0.0595

  vol*perp               0.078       2   0.03899      6.73   0.0012

  vol*min_clust          0.007       2   0.00344      0.59   0.5528

  vol*min_samp           0.058       2   0.02922      5.04   0.0065

  NN*sec                 0.115       1   0.11521     19.87   0     

  NN*perp                0.059       2   0.02928      5.05   0.0064

  NN*min_clust           0           2   0.00019      0.03   0.9679

  NN*min_samp            0.069       2   0.03445      5.94   0.0026

  sec*perp               0.012       2   0.00604      1.04   0.353 

  sec*min_clust          0           2   0.00005      0.01   0.9917

  sec*min_samp           0.046       2   0.02285      3.94   0.0195

  perp*min_clust         0.025       4   0.00619      1.07   0.3704

  perp*min_samp          1.018       4   0.25457     43.9    0     

  min_clust*min_samp     0.097       4   0.02419      4.17   0.0022

  Error                123.421   21286   0.0058                    

  Total                202.151   21464                             

Analysis of Variance

Constrained (Type III) sums of squares.

Residuals
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

F
re

q
u
e
n
c
y

0

500

1000

1500

2000

2500
8x ANOVA residuals histogram

Figure 4.4: ANOVA table and histogram of residuals for the influence of feature sets and algorithm parameters on unsupervised clustering results on 8x data set.
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Multiple linear regression

Table 4.3 shows the results of multiple linear regression conducted on the full set of features

and algorithm parameters to the unsupervised analysis. The coefficient of multiple regres-

sion is 0.459 and 0.350 for datasets 7x and 8x respectively, indicating that the variance in

the independent variables accounts for about this proportion of variance in the result [143].

The F-value for the linear models is 454 and 288 respectively, far above the F-value of

significance: approximately 3.5 for both specimens [144].

In data set 7x, the correlation coefficients for Cartesian invariants and the second order

moments is positive, while the other values are negative. In the 8x data set, the correlation

coefficient for the second order moments is negative, indicating that the quality of the

clustering results in the different cotyledons may be influenced differently by the same

feature sets. In order to measure the relative importance of these feature sets, a ∆R2
m value

is given in each table for each parameter. This value is the squared semipartial correlation

and is the amount by which R2
m decreases when these features are removed from the multiple

linear correlation analysis [145]. This value is largest for the second order moments and

Cartesian invariants and smallest for volume for the 7x cotyledon. For the 8x cotyledon the

largest squared semipartial correlation is that of the Cartesian invariants while the second

order moments has the smallest value.

The analysis summarized in Table 4.3 also includes the influence of t-SNE and HDB-

SCAN parameters. The linear correlation coefficients for individual parameters indicate

a negative correlation for all three values: perplexity, minimum number of clusters, and

minimum number of samples, suggesting that the lower these values are, the better the al-

gorithm performs. The semipartial correlation coefficient for these parameters is the largest

in the case of perplexity, which indicates that out of these values, perplexity has the great-

est influence over the final results, although compared overall to the feature values, this

influence is small.
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MLR Dataset 7x Cartesian Zernike Volume NN secord perp min clust min samp const R2
m

coefficient 0.0789 -0.0060 -0.0130 0.0078 0.1163 -0.0009 >-0.0001 -0.0003 0.139 0.276

Rl 0.2978 -0.0552 -0.0260 -0.1082 0.3489 -0.1394 -0.0332 -0.0586

∆R2
m 0.0164 0.0302 0.0030 0.0008 0.1297 0.0194 0.0011 0.0034

F-value 1025.69

MLR Dataset 8x Cartesian Zernike Volume NN secord perp min clust min samp const R2
m

coefficient 0.0469 -0.0097 0.0061 0.0300 0.0642 -0.0010 > -
0.0001

-0.0002 0.1743 0.2676

Rl 0.3457 -0.3778 -0.1192 -0.0967 -0.0203 -0.1644 -0.0050 -0.0517

∆R2
m 0.0069 0.0944 0.0008 0.0143 0.0473 0.0270 <0.0001 0.0027

F-value 979.91

Table 4.3: Results of multiple linear correlation analysis performed on variables affecting clustering results. Dependent variable is the mean mutual information
for five iterations. rl is the linear correlation coefficient for the given parameter, while R2

m is the multiple linear correlation coefficient. ∆R2
m is the

squared semipartial correlation for the given feature.
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Figure 4.5: Residual plots for 7x and 8x respectively after interaction-free multiple linear regression. There is a clear bimodal distribution of points and a negative
trend, indicating that some factor not listed is likely at play, or interactions, which have not been included, are having an effect.
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Cluster identification

Figure 4.6 illustrates a typical set of mapped data after application of t-SNE and HDB-

SCAN. In this case, the feature sets used were Cartesian invariants, volume, nearest neigh-

bors, and the second order moments. Perplexity was set at 30, with a minimum cluster size

of 50 and a minimum sample size of 35. In this specific example, the number of cell clusters

was larger than the number of cell classes. In order to account for this discrepancy, clusters

were merged by combining two clusters which shared the two closest points of data. This

was repeated until the desired number of clusters was achieved. This merging mimics the

behavior of HDBSCAN and performs better than merging by nearest centers of mass for

each cluster. This process resulted in the second set of mapped data in Figure 4.6.

3D representations of cotyledons, colored by assigned class, are shown in Figure 4.8.

Because clusters are assigned arbitrary labels by the HDBSCAN, it is difficult to quantita-

tively compare identified clusters with specific classes of cells. However, it is clear that in

this instance the algorithm has made a distinction between epidermal cells (red), vascular

cells and surrounding spongy mesophyll (purple), spongy mesophyll (yellow) and palisade

mesophyll (green). However, it is evident that the number of mislabeled cells is significant,

which corresponds to the NMI for this clustering of 0.42.

Figure 4.7 displays the results of a different instance of t-SNE mapping and HDBSCAN

clustering undertaken with the same feature sets as Figure 4.6, but with a perplexity of 10,

minimum cluster size of 50 and a minimum sample size of 35. This generated four total

clusters with an NMI of 0.346. Despite the use of identical features, the identified clusters

differ to a large degree, as shown in Figure 4.9. The purple and red clusters comprise

the vascular system of the cell, with the primary differentiating feature possibly being

orientation. The yellow cluster is primary composed of the top layer of the epidermis. The

final green cluster contains all of the mesophyll, and the bottom layer of the epidermis.
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Figure 4.6: Similar cells identified after initial t-SNE and HDBSCAN clustering (left) and tree merging
(right) of 7x dataset with CVNS feature set, perplexity of 30, min clust of 50, and min samp of
35. Clustering shown has an NMI 0f 0.420.
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Figure 4.7: Generated t-SNE mapping and HDBSCAN clustering on 7x dataset with CVNS features, per-
plexity of 10, min clusts of 50, and min samples of 10. Clustering shown has an NMI 0f 0.346.
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Figure 4.8: Identified clusters based upon t-SNE mapping and HDBSCAN clustering of Figure 4.6.
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Figure 4.9: Identified clusters based upon t-SNE mapping and HDBSCAN clustering of Figure 4.7.
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4.4.2 Support vector machine analysis

A summary of support vector machine analysis described in Section 4.2.1 is shown in Table

4.4. The feature sets with the largest values of percentage correct classification for the 7x

data set are VNS, CVNS, ZVNS, CNS, and ZNS, while the worse performing feature sets

were V, N, and C. Similar feature sets scored well in the 8x data set, with the highest values

belonging to CVNS, ZVNS, VNS, ZNS, and CNS, while the feature sets which performed

the worse were V, N, and C, as with the 7x set.

Three line plots illustrating the full results of the grid-search over values of the error

penalty parameter (C) are shown in Figure 4.10. The general shape of these plots, regard-

less whether they include Cartesian or Zernike invariants or exclude them all together, are

similar. In addition, the slopes of the lines from C = 2−5 to about C = 212 are roughly hor-

izontal, indicating that there is little variation in the results with changing error parameter,

although the poorer-performing feature sets showed some improvement with increasing C.

Greater variation in the success rate in the region beyond this parameter indicates that the

results are variable and possibly dependent on random initialization of the SVM algorithm.
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Feature
set

Cartesian Zernike Volume NN 2nd

ord
7x % 7x

NMI
8x % 8x

NMI

C X - - - - 65.31 0.373 60.64 0.388

CV X - X - - 66.97 0.362 63.05 0.370

CN X - - X - 76.21 0.458 75.81 0.452

CS X - - - X 81.53 0.592 80.50 0.585

CVN X - X X - 77.15 0.481 77.99 0.503

CVS X - X - X 84.75 0.627 84.60 0.608

CNS X - - X X 89.62 0.699 91.29 0.723

CVNS X - X X X 90.60 0.720 92.55 0.758

Z - X - - - 71.06 0.393 67.96 0.388

ZV - X X - - 70.62 0.394 68.42 0.396

ZN - X - X - 80.91 0.519 78.82 0.494

ZS - X - - X 83.12 0.601 84.32 0.617

ZVN - X X X - 81.22 0.525 78.75 0.501

ZVS - X X - X 83.37 0.604 84.65 0.627

ZNS - X - X X 90.49 0.715 92.18 0.736

ZVNS - X X X X 90.30 0.711 92.12 0.751

V - - X - - 44.86 0.196 46.89 0.219

N - - - X - 51.35 0.218 50.71 0.221

S - - - - X 80.56 0.564 81.06 0.580

VN - - X X - 56.74 0.288 57.71 0.312

VS - - X - X 84.08 0.609 85.52 0.627

NS - - - X X 89.16 0.684 91.57 0.711

VNS - - X X X 90.52 0.717 92.68 0.752

Table 4.4: Summary of support vector machine analysis of 7x and 8x datasets via five-fold cross validation.
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Cartesian SVM parameter search − 7x
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Zernike SVM parameter search − 7x
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Invariant free SVM parameter search − 7x
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Figure 4.10: Results of SVM grid search as measured by five-fold cross validation percentage for 7x data set.
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  Source         Sum Sq.   d.f.   Mean Sq.      F       Prob>F

--------------------------------------------------------------

  Cart            1653       1    1652.96    16854.41   0     

  Zern            2367.4     1    2367.36    24138.79   0     

  vol               14.1     1      14.09      143.66   0     

  NN              1521.1     1    1521.12    15510.18   0     

  sec             3401.6     1    3401.65    34684.98   0     

  Cart*vol          16.7     1      16.65      169.78   0     

  Cart*NN            3.7     1       3.73       38.07   0     

  Cart*sec        1505.9     1    1505.87    15354.58   0     

  Zern*vol          48.8     1      48.8       497.57   0     

  Zern*NN            4.2     1       4.22       43.01   0     

  Zern*sec        2130.4     1    2130.36    21722.26   0     

  vol*NN             2.2     1       2.2        22.44   0     

  vol*sec            1       1       1          10.22   0.0019

  NN*sec            55.3     1      55.29      563.76   0     

  Cart*vol*NN        0       1       0           0      1     

  Cart*vol*sec      12.2     1      12.25      124.87   0     

  Cart*NN*sec        1       1       1          10.19   0.0019

  Zern*vol*NN        1.9     1       1.9        19.37   0     

  Zern*vol*sec       8.5     1       8.52       86.85   0     

  Zern*NN*sec        2       1       2.01       20.52   0     

  vol*NN*sec         2.3     1       2.31       23.54   0     

  Error              9.1    93       0.1                      

  Total          18506.8   114                                

Analysis of Variance

Constrained (Type III) sums of squares.
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Figure 4.11: ANOVA table and histogram of residuals for the influence of feature sets supervised, SVM classifier on 7x data set.
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  Source         Sum Sq.   d.f.   Mean Sq.      F       Prob>F

--------------------------------------------------------------

  Cart            1215.9     1    1215.93    10148.04   0     

  Zern            1906.2     1    1906.16    15908.58   0     

  vol               35.3     1      35.32      294.79   0     

  NN              2276.7     1    2276.75    19001.51   0     

  sec             5343.1     1    5343.13    44593.21   0     

  Cart*vol          24.6     1      24.56      204.94   0     

  Cart*NN            9.8     1       9.76       81.48   0     

  Cart*sec        1329.7     1    1329.67    11097.25   0     

  Zern*vol          78.9     1      78.86      658.19   0     

  Zern*NN            4.3     1       4.34       36.25   0     

  Zern*sec        1729.9     1    1729.92    14437.7    0     

  vol*NN             5       1       5.03       42      0     

  vol*sec            0.1     1       0.13        1.12   0.2925

  NN*sec            92.6     1      92.65      773.21   0     

  Cart*vol*NN        1       1       1.02        8.51   0.0044

  Cart*vol*sec      23       1      22.98      191.75   0     

  Cart*NN*sec        5       1       4.99       41.61   0     

  Zern*vol*NN        3.7     1       3.69       30.83   0     

  Zern*vol*sec      19.4     1      19.43      162.18   0     

  Zern*NN*sec        0       1       0.01        0.08   0.7778

  vol*NN*sec         1.9     1       1.92       16.02   0.0001

  Error             11.1    93       0.12                     

  Total          21142.3   114                                

Analysis of Variance

Constrained (Type III) sums of squares.

Residuals
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Figure 4.12: ANOVA table and histogram of residuals for the influence of feature sets supervised, SVM classifier on 7x data set.
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MLR 7x Cartesian Zernike Volume NN secord const R2
m

coefficient 10.01 12.38 0.59 7.77 20.08 54.79 0.806

Rl 0.092 0.227 -0.053 0.242 0.749

∆R2
m 0.100 0.153 0.001 0.093 0.619

F-value 90.52

MLR 8x Cartesian Zernike Volume NN secord const R2
m

coefficient 8.39 10.99 1.41 9.28 22.76 53.19 0.852

Rl 0.028 0.173 0.002 0.286 0.827

∆R2
m 0.061 0.105 0.003 0.116 0.696

F-value 125.48

Table 4.5: Results of multiple linear correlation analysis performed on indicated feature sets for SVM. De-
pendent variable is the percent success from five-fold cross validation over five iterations. “secord”
indicates second order moments (orientation). rl is the linear correlation coefficient for the given
parameter, while R2

m is the multiple linear correlation coefficient. ∆R2
m is the squared semipartial

correlation for the given feature.
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Figure 4.13: Residual plots for the multiple linear regression analysis of Table 4.5

Figure 4.17 shows the result of application of the SVM model for the CVNS feature set

from the 7x cotyledon applied to the same cotyledon. Figures 4.11 and 4.12 show ANOVA

tables with and without interaction terms. Table 4.5 shows the results of multiple linear

correlation on the results of five-fold cross validation SVM. In this model the dependent

variable was the maximum percentage found over all searched C values, (i.e. the maximum

value from a line from Figure 4.10). Figures 4.15 and 4.16 show confusion matrices from

various SVM classifiers generated by the indicated feature sets in the 7x and 8x data sets

respectively.

Table 4.6 breaks down the generalizability of a model developed on one cotyledon, as
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Figure 4.14: Example of confusion matrix, shown here larger to illustrate the position of the categories and
axis titles.

tested on the other. It is clear that simple application of a model generated from one

cotyledon to another is nearly as successful as the application of one to itself. The final

column of the table lists the five-fold cross validation success percentage when a model

trained on both cotyledons is applied to both.
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(f) ZV feature set
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(g) ZVN feature set
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(h) ZVNS feature set
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(k) S feature set
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(l) VNS feature set

Figure 4.15: Set of confusion matrices for SVM of 7x data set
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(g) ZVN feature set
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(h) ZVNS feature set
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Figure 4.16: Set of confusion matrices for SVM of 8x data set
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Figure 4.17: Identified clusters based upon SVM classifier for 7x dataset generated by CVNS feature set.
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Feature
set

Cartesian Zernike Volume NN 2nd

ord
7x to
8x %

7x
to 8x
NMI

8x to
7x %

8x
to 7x
NMI

C X - - - - 51.24 0.368 60.56 0.343

CV X - X - - 53.96 0.289 64.68 0.351

CN X - - X - 69.38 0.402 75.65 0.440

CS X - - - X 73.7 0.570 78.63 0.542

CVN X - X X - 68.35 0.398 76.37 0.471

CVS X - X - X 74.18 0.522 82.74 0.578

CNS X - - X X 88.33 0.672 87.98 0.659

CVNS X - X X X 85.45 0.625 89.52 0.695

Z - X - - - 67.87 0.409 71.69 0.394

ZV - X X - - 68.19 0.419 72.18 0.408

ZN - X - X - 78.82 0.500 80.56 0.513

ZS - X - - X 76.74 0.551 83.47 0.591

ZVN - X X X - 78.58 0.496 80.40 0.513

ZVS - X X - X 77.38 0.552 83.55 0.594

ZNS - X - X X 90.17 0.709 89.44 0.692

ZVNS - X X X X 89.77 0.697 89.76 0.700

V - - X - - 48.76 0.236 47.5 0.234

N - - - X - 45.24 0.2590 44.35 0.265

S - - - - X 81.14 0.5879 80.81 0.564

VN - - X X - 57.39 0.323 58.06 0.335

VS - - X - X 83.69 0.612 84.03 0.620

NS - - - X X 89.77 0.704 89.76 0.700

VNS - - X X X 90.49 0.718 89.92 0.722

Table 4.6: Summary of cross-cotyledon application of models
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4.5 Discussion

As expected, the results of the two clustering schemes, supervised and unsupervised are

quite different. An unsupervised approach allows natural groupings present in the data to

emerge and be identified, while a supervised method utilizes the data points to create a

classifier that can enforce user-defined groupings upon new points of data. What follows is

a discussion of what can be learned from the results of both approaches with regards to the

degree of information about a cell’s class that can be gained from its shape.

4.5.1 Unsupervised analysis

The tables of features and scores for the 7x and 8x cotyledons (Table 4.2) give an at-a-glance

view of the relative strengths of each feature set at achieving a clustering that is close to

replicating the groupings of cell type. The mean results are summarized in Figure 4.18.

Ultimately, the method was not capable of consistently generating a set of clusterings that

closely followed the delineations of epidermal, spongy and palisade mesophyll, and vascular

cells against which they were scored: no feature set had an average NMI value of greater

than 0.4. However, maximum values of 0.627 and 0.508 were achieved for the 7x and 8x

cotyledons respectively. These maximum values match those of some of the trained models,

indicating that, at least on occasion, the mapping and clustering method does find natural

clusters in the data which correspond to cell identity.

In general, the 7x and 8x cotyledons responded similarly to the feature sets used: feature

sets which included Cartesian invariants outperformed similar sets with Zernike invariants

or without invariant features. In fact, by comparing feature sets with and without Zernike

invariants, such as V and ZV, the addition of these invariants appears to actually decrease

the quality of the classification. This will be discussed in more detail below, but it may be

due to the way in which dimensions are treated during t-SNE and the orthogonal nature of

the Zernike invariants.

Statistical analysis

ANOVA tables for the unsupervised analysis are shown in Figures 4.3 and 4.4. The ANOVA

tables illustrate the significance of the listed feature sets and their interactions. P-values
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Mean success rate - unsupervised

0.0

0.1

0.2

0.3

0.4

0.5

m
ea

n 
NM

I

C CV CN CS
CVN

CVS
CNS

CVNS Z ZV ZN ZS
ZVN

ZVS
ZNS

ZVNS V N S VN VS NS
VNS

7x
8x

Figure 4.18: Comparison of cross validation success between cotyledons in t-SNE mapping and HDBSCAN
clustering with indicated feature sets.Values taken from Table 4.2

less than the α value of 0.05 indicate that at least one combination of the listed features

generate mean success rates that are significantly different, statistically, than not including

them at all. Put another way, for an interaction A*B*C, if the p-value is larger than 0.05,

there is no evidence that the combination of features influences the results in a way that

cannot be explained by an interaction of A*B, B*C, or A, B, and C alone.

The accompanying residual histograms do not follow a normal distribution. The bimodal

distributions indicate that there may be some underlying relationship in the data that has

yet to be captured. The large peak just to the negative side of zero in both Figures 4.3 and

4.4 indicates that the model generated by ANOVA is predicting values that are consistently

slightly larger than the actual NMI results. It is unclear at this time why this is the case.

Overall, the ANOVA tables indicate that the inclusion of the volume feature in the anal-

ysis of the 7x cotyledon had no statistically significant effect on the success of the analysis.

In addition, the minimum cluster size, which in this search was limited to {25, 75, 125}, had

no effect on the overall success either. In future analyses, it may be expedient to exclude

volume from an analysis. It is also likely that minimum cluster size had no effect in the
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given range because even the maximum value is likely less than the number of cells in the

smallest sized class. Again, in the 7x cotyledon, many of the interaction terms which lack

significance are those interactions with main effects that also lack significance.

Comparing ANOVA tables between the 7x and 8x cotyledon can give an idea of the way

in which the cell data is distributed in data space. The volume feature is significant in the

8x cotyledon, in contrast to the 7x data set. This indicates that, at least to some degree, the

difference in volume between the classes of cells in the 8x cotyledon may be larger than in

the 7x cotyledon. This would lead to this feature contributing more in the t-SNE mapping

and subsequent clustering.

The multiple linear regression tables of Table 4.5 and the accompanying residual plots

of Figure 4.13 show the results of MLR applied to the mean NMI values resulting from the

unsupervised analysis. The coefficients of multiple regression R2
m for both 7x and 8x cotyle-

dons indicate that the linear models generated here can only account for approximately 27%

of the variation in the data, and thus may be missing a factor which influences the data,

similar to the ANOVA model. This is further supported by the residual plots which dis-

play some negative correlation, when, if all variables influencing the data would have been

accounted for, they would show none.

Nevertheless, these results are somewhat expected. The final NMI values are a scalar

quantity which are used to quantify the result of a dimensionality reduction method which is

randomly initiated [131] and can result in visually distinct mappings of identical data. Ad-

ditionally, as previously stated, an unsupervised machine learning method can only identify

natural clusters within the data and is not constructed in such a way to deliver a result with

any sort of final goal in mind. Similar to the ANOVA tables, there is still some important

information that can be gleaned from the MLR analysis.

The F-values are far above the critical F values of 2.01 [144], indicating that the linear

model used here is at least better than the mean of the response [146]. The squared

semipartial correlation values can be used as a measurement of variable importance, as they

quantify the fraction of the variance in the response variable due to the given independent

variable [147]. Listing the feature sets in ascending order of importance for the 7x cotyledon

gives: nearest neighbors, volume, Cartesian invariants, Zernike invariants, and the second
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order moments. The same list for the 8x cotyledon is: volume, Cartesian invariants, nearest

neighbors, second order moments and the Zernike invariants.

The MLR tables display some interesting results. For example, in some cases, the

nearest neighbors in the 7x table or the second order moments in the 8x table have positive

coefficient values, but negative correlation values. The coefficient values indicate the increase

in the response variable (mean NMI) with the inclusion of that feature set, all else being

constant. This suggests that the inclusion of these features improves the analysis. However,

the correlation values are negative, indicating that the inclusion of this feature correlates

negatively with the overall results. This is known as Simpson’s Paradox [148], and can occur

for a couple of reasons. First, the coefficient is calculated with all other variables being held

constant, while the correlation is not. If a variable is correlated strongly with another,

it could lead to this effect when the variable is excluded for calculation of the coefficient.

Alternatively, if there is an underlying variable that is not considered but is also correlated

with the variable in question, this effect could be seen as well. It is difficult to say for sure,

but there is likely some correlation among the independent variables here. The trend in the

residuals also indicates that some other effect may be at play.

However, in the end, the negative coefficients, calculated by holding all other variables

constant, suggests that the success of the method is reduced in both data sets with the

introduction of the Zernike invariants, which was remarked upon above and can be observed

in Figure 4.18. A positive coefficient for the second order moments in the 8x cotyledon is

supported by Figure 4.18 and the differences between ZN and ZNS, V and VS, and C and

CS. The effects of volume and nearest neighbors are less clear. The inclusion of volume

decreases average NMI from C to CV in 7x but decreases NMI in the other cotyledon.

Similar effects can be seen with nearest neighbors. Ultimately, the single feature with the

greatest positive effect for the 7x data set was the second order moments followed by the

Cartesian invariants. In the 8x cotyledon, this was true as well.

The two constructed 3D volumes shown in Figures 4.8 and 4.9 were generated from

the same data set, with different perplexity values. It is clear from the differences in the

clustering what kind of effect a single change of parameter can elicit. While the first set of

clusters has a higher score which more closely matches the cell functions, there are some
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errors. The red cluster has only the upper layer of the epidermis, while the lower portion

is contained in the yellow cluster. Most obvious is the fact that the purple cluster, which

contains the vascular cells, also contains all of the nearby spongy mesophyll cells as well.

These mesophyll cells must have slightly distinct morphologies to allow the passage of the

vascular cells and these subtle differences were highlighted in this clustering.

The second clustering of Figure 4.9, has clearly isolated the vascular system, but in

two separate clusters: the red and purple. It is likely that the second order moments,

which contain orientation information were used to make the distinction between these two

clusters, as the red cells are all oriented along the long axis of the cotyledon, and the purple

are perpendicular. Once again, the epidermal cells of the yellow cluster are strictly limited

to the upper region, while the lower region is contained in the same cluster as all of the

mesophyll.

In total, the unsupervised analysis shows that there are clear delineations in the data

which correspond to the cell identities and therefore the cell functions. Ultimately, the

second order moment shape features, which contain shape and orientation information are

likely the single most important feature in this mapping and clustering. However, the

Cartesian invariants play an important role as well. In both cotyledons the Cartesian

moment invariants are positively correlated with the success of the method. Overall, a

quantitative measure of the total importance of shape features is difficult to determine with

the unsupervised machine learning method described here, due to the high variability of

the results.

4.5.2 Supervised analysis

The support vector machine analysis gives an idea not of the natural groupings of the data

but instead address the question of whether there is enough differences between classes in

the training data to be able to create a classifier that can effectively identify future points.

The data presented in Table 4.4 seems to indicate that this is the case with the feature sets

utilized here. This table indicates the maximum percentage that a classifier was capable of

achieving based upon five-fold cross validation over the range of C values investigated and

shown in 4.10.
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The maximum percentage was for the CVNS data set, containing the Cartesian invari-

ants, volume, number of nearest neighbors and volume-normalized second order moments

for each cell. Interestingly, it was this data set that scored best for both the 7x and 8x

cotyledon datasets. Looking at a comparison of the success of classification by feature set

in Figure 4.19, one can see the overall shape of the response to the inclusion of different

features does not vary greatly from the 7x to the 8x cotyledon. Overall, it seems to be

that moment invariant shape features such as the Cartesian and Zernike invariants can

only achieve between 60% and 70% accuracy. As additional features are added, the overall

classification power of the model increases, up to a maximum of around 91%.
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Figure 4.19: Comparison of cross validation success between cotyledons in SVM with indicated feature
sets.Values taken from Table 4.4

From Figure 4.19 as well, it can be observed that the volume feature does not appear

to play a large role in improving the success of the classifier. Aside from having the worst

single-feature classification percentage at between 44-47% for either cotyledon, it also does

not improve classification much when combined with other features. When comparing C

against CV, CN against CVN, and CVS against CVNS, one may note that the improvements

in the percentage success of the classifier are quite low and somewhere on the order of one
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to three percent. In fact, this improvement due to the inclusion of the volume feature is

reduced to nearly zero with the inclusion of the Zernike features, indicating that there may

be some correlation between these two feature sets. However, in the absence of moment

invariants, the volume feature alone does not dramatically impact the success rate, with

the change from N to VN being approximately 5%, and only about 3% from NS to VNS.

It is also clear from both Figure 4.19 and Table 4.4 that the volume-normalized sec-

ond order moments (S), which contain orientation and aspect ratio information, are quite

successful at generating a good classification model. In fact, based upon the maximum clas-

sification percentage by single features, they are the best, with a success rate of between

80-81% for both the 7x and 8x cotyledons.

Nearest neighbors also contributes to the correct identification of cells. While the clas-

sification percentage based on nearest neighbor values alone is quite low compared to the

shape-based features (Cartesian, Zernike, and second order moments at slightly above 50%),

the NN feature set clearly interacts well with others, as can be seen when comparing C

against CN, Z against ZN, CVS against CVNS, and ZVS against ZVNS. In these cases,

inclusion of the NN set improve classification by between 6-15%.

Examining just the moment invariants, both Cartesian and Zernike performed relatively

well alone, at roughly 63% and 70% success rates respectively. These features contribute

to the overall success rate when combined with volume or nearest neighbors, as can been

seen when comparing V with CV or CVN with VN, but in the presence of the second order

invariants, these features seem to contribute little, as can be seen between CNS and NS or

CVNS and VNS.

Statistical analysis

Simple numeric comparisons or examinations of bar plots may suggest the relative impor-

tance of feature sets, but they do not provide enough information to make any definitive

statements. The results of multiple linear regression in Table 4.5 and the results of ANOVA

shown in Figures 4.11 and 4.12 give some more insight into what are the important features

and interactions between these features and how they contribute to the overall accuracy of

the generated SVM classifier.
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The histograms of residuals from ANOVA testing for both cotyledons show a much

healthier state of affairs than those for the unsupervised analysis in Figures 4.3 and 4.4.

Even with the inclusion of fewer data points representing the results of SVM classification,

it is clear that the residuals have distributions that are much closer to normal, indicating

that there are few if any underlying effects that have yet to be captured by the model.

The ANOVA table for the 7x cotyledon indicates that most feature sets have some kind of

an impact on the success of the resulting SVM classifier. In the case of the 7x cotyledon, all

listed features, either main effects or their interactions are statistically significant, with the

exception of the interaction between Cartesian invariants, volume, and nearest neighbors. In

the case of the 8x cotyledon, all main effects and their interactions are significant except the

interaction of volume and second order moments, and the interaction of Zernike invariants,

nearest neighbors and second order moments.

Every main features has a statistically significant effect on the results of the SVM

classification. This indicates that the classes of cells between which a distinction has been

drawn do differ with respect to these features, and that these differences are being captured

by the classifiers. This is true even with a classifier constructed using the worst performing

feature set, volume, which even so, succeeds at a rate almost twice that of random ( 46%

versus 25%), and this being achieved in a one-dimensional data space.

The fact that many interactions are statistically significant is somewhat indicative of

what is already known, that each feature set quantifies an aspect of the cell which is not

quantified in the other features, although there may be correlation between these features in

the given system. As these features are added to and analyzed by the algorithm, they open

up additional dimensionality for the SVM algorithm to work in, as well as expose natural

groupings or delineations in the data space which can be exploited by the algorithm.

The multiple linear regression table (Table 4.5) for the SVM is utilized, as in the case

of the unsupervised analysis, to quantify the effect of each feature set on the final cluster-

ing/classifier, and the relative importance of each feature set in the analysis. In this case,

the generated model has a correlation coefficient (R2
m) of 0.81 and 0.85 for the 7x and 8x

cotyledons respectively. This is much larger than in the case of the unsupervised analysis,

which indicates that the linear SVM model is more appropriate overall in this case. As pre-

Material Properties and Microstructural Shapes R.K.S. Harrison



4.5. DISCUSSION 96

viously stated, this value can be interpreted as the fraction of the variation in the overall

data that is explained by the linear model [149].

The residual plots in Figure 4.13 are also have much less linear correlation than those

of Figure 4.5. However, there is clearly an inverted, possibly parabolic relationship between

the predicted success rate and the residuals, indicating that there may be underlying rela-

tionships that are not fully captured using the MLR model. The F-value for these MLR

models is also quite high at 90.5 and 125.5 for 7x and 8x, respectively, above the critical

F-values [144], indicating that the linear model is at least a better predictor than the total

overall average success rate [146].

Looking exclusively at Table 4.5, there are positive correlations (Rt) in all features

except for volume for both data sets. Using the squared semipartial correlation coefficient

for each feature set as a measure of the relative importance of each feature [147], the most

important features for the 7x data set are, in descending order, second order moments,

Zernike invariants, Cartesian invariants, nearest neighbors, and volume. In the case of the

8x data set, important features ranked in order are second order moments, nearest neighbors,

Zernike invariants, Cartesian invariants, and volume. In both cases, nearest neighbors and

an invariant feature have very similar values, indicating that each has a similar influence

on the SVM success rate.

In the case of the volume feature, the correlation is negative for cotyledon 7x, and in

both data sets, has the smallest correlation value. The ”coefficient” value gives a measure

of the average increase in the SVM success rate with the inclusion of that particular feature.

Volume has the lowest value among these, supporting what could have been guessed from

the bar plot of Figure 4.19: volume has only a little (but still statistically significant) effect

on the overall quality of a generated classification model in the cotyledons examined here.

This fact has some interesting implications with respect to the generalizability of the

models developed. If a model has good success regardless of the volume of the cells being

quantified, then the magnification of the images used to construct the 3D volume is of little

importance, as long as a sufficient magnification is maintained to capture the details needed

to obtain measurements of the other features. Any model developed on one cotyledon, if

the models do prove to be applicable across individual specimens, would not require an
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investigator to do additional work to either match acquisition parameters or transform the

data afterwards. Instead, a model could be applied on any data, regardless of the relative

sizes of cells.

The confusion matrices shown for the 7x and 8x data sets in Figures 4.15 and 4.16

display actual cell labels, and assigned cell labels for a single SVM classifier generated

using the indicated feature sets. It appears that for both data sets, the moment invariant

features were most successful in the identification of spongy mesophyll cells, while at the

same time being particularly poor in the identification of epidermal cells. There are clear

differences between the Zernike and Cartesian invariants as well, which is to be expected,

as they quantify shape differently, due to their basis functions. The best shape feature, the

second order moments, displayed a relative consistency at identifying all cell classes with

the exception of the epidermal cells, which were once again problematic. Ultimately, it

requires a combination of features which quantify a variety of aspects of a cell to create a

classifier which is similarly effective on all classes.

The supervised analysis makes it clear that all of the features utilized had an effect on the

classification success of generated SVM classifiers. It is also clear that their interactions were

significant, as the most successful classifiers were generated using several feature sets that

quantified a variety of cell information. Finally, the most important features appeared to

be the volume-normalized second order moments, which quantifies shape, primarily aspect

ratio, and orientation. The second most important features were either the Zernike moment

invariants or the nearest neighbors value. The least important feature was volume.

4.5.3 Comparing the approaches

When compared to the MLR analysis of the unsupervised machine learning method, the

support vector machine analysis is far more capable of describing the variability of its results

through a linear model which lends itself to determining the overall importance of feature

sets.

While the Cartesian invariants played a larger and more positive role in the mapping

and clustering method, the Zernike invariants tended to contribute more to the success

of the SVM method. This is likely due to the fact that the Cartesian invariants contain
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redundant information. There are 242 of these values but they only serve to quantify shape

up to the 4th order. By way of comparison, the Zernike invariants use fewer dimensions,

121, to describe much more of the shape up to the 20th order. In the unsupervised method,

the redundancy and lack of detail of the Cartesian invariants is an advantage. On the other

hand, the Zernike invariants may capture minute details of the shape which are not as

important for the purpose of making a distinction between classes as more general details

that are contained in lower order invariants. However, in the unsupervised method, all

dimensions are given equal weight and importance; meaning that these small details can

mask the general shape. This is not a problem with the Cartesian invariants.

The support vector machine technique treats the high-dimensional space differently

than t-SNE. Instead of giving each dimension equal weight, it identifies hyperplanes which

optimally separate the data. If a dimension is not helpful in creating a classifier, the

generated hyperplane will be parallel to that dimension, which prevents unhelpful data

from confusing the classifier.

For both methods, the volume-normalized second order moments, which contain aspect

ratio information and orientation information in six values proved to be the most important

feature. While its positive influence in cell classification is not altogether unexpected,

the degree to which it outperformed the other features is remarkable. It is probable that

the reason orientation information is so powerful is that these cotyledons have evolved to

exist in a 3D environment in which orientation is an important factor. Palisade mesophyll

must support the bottom of the leaf, and must be oriented vertically to provide optimum

mechanical support. The top of the epidermis must be turned upwards to expose the

spongy mesophyll to the sunlight and allow for easier gas exchange. While the second order

moments do contain shape information, the invariants, as quantifiers of pure shape, do not

contribute to the success of the classifier as much as orientation does. This is not to say

that any single feature is enough. It takes a variety of information to generate a classifier

that is over 90% successful.

Utilizing purely local features, those which are properties of the cell itself and divorced

from the overall cotyledon, classifiers can be constructed that are capable of achieving

approximately 70% success (utilizing SVM and the ZV feature set). A very popular method
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of cell cytometry, flow cytometry, flows cells in solution through a channel, one at a time,

to allow measurement of the cell. Recently, a method of 3D shape reconstruction has

been developed that would allow the reconstruction of a cell’s shape based upon wavefront

analysis of the fluid in the channel generated by the random rolling of the cell [119]. If

a more successful SVM classifier could be constructed using moment invariants and size

as described here, one could perform automated cell identification based on shape in flow

cytometry.

4.5.4 Generalized classifiers

Table 4.6 summarizes the results of training a classifier on one cotyledon and applying it

to another. The method was quite successful, with the best classifiers achieving over 90%

success. The best feature sets worked both ways, from 7x to 8x and from 8x to 7x, and

were ZNS, VNS, and ZVNS. It is interesting to note that when training a model on the 7x

data with Cartesian invariants, it applies less well to the 8x than one trained on the 8x data

with Cartesian invariants applied to the 7x model.

The success of this generalization of the SVM classifiers indicates that it may be pos-

sible to construct a general SVM classifier for the species. If this is possible in cotyledons

of Arabidopsis Thaliana, then it could potentially be extended to other systems where au-

tomated identification in 3D is useful, such as human blood or other tissue, allowing for

identification of irregular or diseased cells.

4.6 Conclusions

This chapter has shown to what extent shape, as quantified through moment invariants,

plays a role in the identification of cell function in cotyledons of A. Thaliana. Utilizing unsu-

pervised machine learning methods, it was shown that there are natural delineations in the

data which allow the clustering of vascular, epidermal, spongy mesophyll, and palisade mes-

ophyll cells together without any identification from a user. The success of this method was

shown to be due primarily to orientation information stored in volume-normalized second

order moments, and shape information in the Cartesian moment invariants. However, due

to the stochastic nature of some algorithms, and the sensitivity of the success of this method
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to input parameters, it is difficult to draw quantitative conclusions from the unsupervised

machine learning data.

Using a support vector machine classifier trained with user-identified cells, it was possible

to classify cells correctly with a success rate of up to 92%. Multiple linear correlation showed

that Cartesian and Zernike invariants were responsible for between six and fifteen percent of

the total variation in the success of these classifiers, with the most important features being

the second order moments at 60-70% of the variance. With all other features held constant,

the success of these classifiers improved between eight and twelve percent with the inclusion

of moment invariants. No one feature could achieve the best success rate, which utilized a

variety of features including those pointed out earlier and nearest neighbors and volume.

Finally, it was shown that SVM classifiers could be applied across specimens, indicating

that a general classifier for the cotyledons of the species may be possible. Therefore, the

hypothesis is quantitatively supported by the SVM analysis of this chapter.
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CHAPTER V

Shape-based classification of metal powders for additive

manufacturing

5.1 Background

5.1.1 Additive manufacturing

Additive manufacturing (AM), the fabrication of a three-dimensional part through the

addition of layers of material, usually done by a computer driven mechanism based on a

CAD file, has been of interest to researchers since the 1980s, although its roots go back

far further [150]. Early methods of AM (also known as 3D printing and, erroneously, rapid

prototyping, among other names) were based on photopolymers [151, 152]. Approaches

utilizing polymer powders and selective laser sintering (SLS) quickly followed [153–155].

A distinction should be made between selective laser sintering and selective laser melting

(SLM). As the name suggests, with SLM, the material is fully melted, creating a part of

higher density with less post-processing required.

The additive manufacturing of metal components has been an area of interest for re-

searchers since the early 1990s [156–159] although patents exist from earlier [160]. These

early methods, like those that are used today, utilize metal powders as the feedstock, and

a high-powered laser as the heat source.

There are enormous and obvious advantages to additive manufacturing that set it apart

from more traditional methods that require the removal of material. The first is that a nearly

or fully finished part can be fabricated very quickly, needing minimal post-fabrication ma-

chining to finalize the process. Second, due to the layer-by-layer nature of the construction,

it is possible to construct parts with features that would be impossible with conventional
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machining processes. Finally, the overall process is, by its nature, much more efficient with

material and generates less waste than other methods.

There are drawbacks to the SLM and SLS techniques. The speed at which it is possible

to fabricate a component, along with the nature of the laser used as heat source, also means

that the material is subjected to extreme temperature gradients, as well as fluctuations and

inhomogeneities in the distribution of heat, which lead to the majority of problems with

the method. The rapid heating and cooling leads to tension and compression within the

material, the overall effect of which is a buildup of a large degree of internal stresses within a

part. In some cases, the stress can meet or exceed the yield stress of the material [161–163].

The rapid melting and solidification of the material, along with the powder nature of the

feedstock also leads to another primary problem: porosity. This can dramatically influence

the mechanical properties of the finished part [1, 164, 165]. Further defects include oxide

inclusions, unmelted particles, and cracking [166]

There are a large number of parameters that play a role in influencing the formation

of the above defects, and in affecting the bulk mechanical properties of the final part as a

whole. These are illustrated in Table 5.1. Ultimately, the purpose of this chapter is to prove

the usefulness of moment invariants as a metric by which the powder-related property of

particle shape can be more fully understood. A number of published works have noted a

correlation between the shape distributions of powders and the final properties of the bulk

material (as discussed in Section 5.1.2), but without a method of shape quantification that

can completely capture the details of a full shape, this connection cannot be fully explored.

Laser-related Scan-related Powder-related Temperature-related

Laser power Scan speed Particle size Powder bed temperature
Spot size Scan spacing Particle shape & distribution Powder feeder temperature
Pulse duration Scan pattern Powder bed density Temperature uniformity
Pulse frequency Layer thickness

Material properties

Table 5.1: Parameters of SLS/SLM that affect the final properties and the presence of defects in a final part.
Modified from [1].
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5.1.2 Particle shape and material properties and defects

In the selective laser sintering and selective laser melting processes, the primary interaction

is between the laser and the powder to be melted. In this system it is the properties of the

feedstock that control what the optimal laser-related, scan-related and temperature-related

parameters are. In particular, bulk material properties, such has the melting temperature

and thermal conductivity, control the flow of heat through the powder and allow for the

particles to achieve melting temperature. However, the particle nature of the material means

that heat can be transferred either radially through the gaps between individual grains of

powder, or conductively where the particles are touching. This means that the density of

the powder, which is closely tied to the morphology, plays a large role in determining the

way heat moves through the material [167,168].

In a study of particle shape on the properties of a Ti-TiB composite material produced

by SLM, Attar et al. noted a significant difference in density and performance of two sam-

ples fabricated with powder of differing morphologies [169]. A specimen constructed with

particles of ”irregular” morphology displayed a relative density of 95.1%, and an ultimate

compression strength and strain of 883 MPa and 5.5% respectively. Another sample built

using spherical particles had a density of 99.5%, and nearly twice the compressive strength

at 1421 MPa. The authors suggested that the improvement was due to the improved flowa-

bility and packing density of spherical particles.

Similar results were found by Niu et al. in the selective laser sintering of high speed

steel (HSS) powders [170]. Four particle classes were examined: gas atomized of roughly

spherical shape, and water atomized of more irregular morphology. It was found that

the gas atomized powders with more regular morphologies generated more homogeneous

microstructures overall, while the irregular water atomized powders formed agglomerates

and porous surfaces.

Olakanmi found similar results in aluminum powders [171], with more irregular partic-

ulate shapes leading to an increase in agglomerates and the formation of pores. Spherical

particles tended to correlate with more dense and homogenous regions.

One of the major advantages to powder bed additive manufacturing, in which a layer
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of powder is deposited in the working area, is selectively bonded by the laser, and then

another layer of powder applied, is that the powder that is unused to create a bulk part can

be reused. Tang et al. found that in the case of Ti-6Al-4V powders, the oxygen content

and the morphology of the feedstock slowly changes with repeated reuses [172]. It was

also found that particles became less spherical with increasing reuse times, and that fewer

satellite particles (small attached particles) were observed as well. The authors also noted

that flowability increased, which, although possibly reduced by the reduction in sphericity,

was most likely influenced by the reduction in satellite particles.

5.1.3 Powder characterization

While some attention has been paid to the impact of powder morphology on the properties of

a manufactured material, as listed above, the majority of these studies have failed to quantify

this morphology in any way, but instead resort to qualitative analyses. Recently, more

attention has been focused on quantifying the shapes of additive manufacturing feedstock

using a variety of methods. Some of these are summarized here.

Slotwinski et al. utilized a wide variety of methods to characterize nearly all aspects

of commercial stainless steel and cobalt chrome powders, in order to obtain quantitative

measures of variance between batches of nominally identical feedstock [173] . Following

previous work on concrete particles [174], Slotwinski et al. matched three-dimensional

reconstructions of individual particles, obtained through X-ray computed tomography, to

spherical harmonics series. The coefficients of the harmonics were stored and used as shape

descriptors. In the end, these spherical harmonics series coefficients were used to calculate

more basic shape information, such as volume, surface area, width, thickness, and even the

moment of inertia tensor, coming very close to the shape descriptors used in this work. It

was found that there was little to no variation between samples.

As an aside, there has been a significant amount of work in the field of morphological

analysis as applied to aggregates used in concrete. A variety of shape quantifiers have been

used, including the moment of inertia tensor (a second order moment tensor, previously

mentioned in Section 3.1.3 [175]). However, recently, the focus has shifted toward using

spherical harmonics [176–178]. The spherical harmonic approach is similar to that of 3D
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moment invariants, but suffers from the fact that the shapes that are quantified are limited

to those to which one can draw a line from the center of mass to every point on the surface

without exiting the object, referred to as “star shaped”.

Strondl et al. quantified morphology through the use of a commercial system (Camsizer

XT; Retsch Technology GmbH, Haan, Germany). The features measured were the size and

the aspect ratio of particles. No significant difference was found between fresh and recycled

powder via these methods. Correlations between size and morphology to particle flow rates

were noted but correlations to final build properties were negligible. Markusson [179] utilized

a shape factor value, related to the particle perimeter to area-equivalent circle perimeter.

Some correlation was found between shape factor and flowability for Inconel 718 powder.

Tan et al. noted the prevalence of simple aspect ratio and Feret diameter measurements in

the field [180].

An alternative method of powder analysis based on computer vision and machine learn-

ing techniques was conducted by DeCost et al. [181]. For eight different feedstock pow-

ders, approximately twenty backscatter micrographs were taken from a random sample of

each. Corner and blob interest points were identified, and scale-invariant feature transform

(SIFT, [182]) was applied at each to generate a vector of 128 values describing that point.

Some of these values were then clustered into 32 groups using k-means clustering. The dis-

tance from each SIFT value was calculated to the centroid of its cluster, generating a 4096

dimensional vector, reduced to 32 dimensions using PCA. From here, an SVM classifier is

created which classifies images as being of one type of powder. The resulting classification

was over 95% effective, indicating that important and distinguishing features of the images

were being quantified.

The purpose of this chapter is to split the difference between the more simple and

human-selected measures described above, such as aspect ratio, and the machine learning

methods of DeCost et al.. The advantages of the quantities that are selected by hand is

that their relation to physical shape is more direct and intuitive, while the machine learning

methods have the advantage of being selected by an algorithm in an automated fashion and

in a way that optimizes the capture of important aspects of the feedstock. The use of

moment invariants, which can describe the morphology in a way that is more related in a
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one-to-one way with the shape of the powder, combined with machine learning methods,

can be used to identify and quantify powders comprehensively and in a way that can, in

the future, be related to powder properties. This work shows how moment invariants can

quantify important features of the types of shapes displayed by these particles and can make

meaningful distinctions between these classes of shapes.

5.2 Materials and methods

Data sets

The backscatter SEM micrographs used in this chapter and which were the primary data

sets, were provided by, along with the advice and help of, Dr. Brian DeCost. Details of

their collection are given in [181], but are summarized for completeness.

Data sets consisted of backscatter SEM micrographs of eight separate types of additive

manufacturing feedstock powder. Of these eight samples, five were designed for use with

an EOS machine (EOS GmbH, Krailling, Germany). These materials (and their shortened

identifiers) are AlSi10Mg (Al-EOS), Inconel 718 (In-718), maraging steel (Mar-steel), type

316 stainless steel (SS-316), and Ti-6Al-4V (Ti64-EOS). The remaining powders were de-

signed for use with an Arcam machine (Arcam AB, Mölndal, Sweden), however, two of these

were manufactured by other companies (AMETEK Inc., Berwyn, PA), (Starmet Corpora-

tion, Concord, MA). These materials are both Ti-6Al-4V (Ti64-Ametek), (Ti64-Starmet).

These powders were mixed to ensure an even distribution of particle sizes, and then

blown across carbon adhesive tabs on SEM stubs using compressed air. Images were taken

on an SEM using backscattered electrons, and attempts were made to compensate for dif-

ferences in density and particle size by adjusting the magnification. Between 23 and 41

images were taken of each powder, and care was taken to ensure that no two images over-

lapped, including key-point matching with RANSAC filtering, which is capable of detecting

regions of images that are related to each other by translation [183].

Examples of these images are given in 5.1. It may be noticed that no scale bars are

present. Because moment invariants are invariant to size, the magnification of the image is

irrelevant to the analysis. This has the advantage of not requiring any sort of preprocessing

in order to conduct this analysis.
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Figure 5.1: Examples of powder images used in this analysis. Courtesy of the Holm Group, Carnegie Mellon University. Degree of magnification and therefore
particle size was not included in this analysis.
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5.2.1 Segmentation and feature extraction

The methodology for image analysis and the extraction of shape information used here is

similar to that of Chapter IV, but in two dimensions. First, it is necessary to segment

each image. For this, as with the cross-sections of the cotyledons, ilastik was utilized due

to its excellent flexibility and robustness to variations in the images. For each material, a

classifier was trained, using selected subregions from several images. These classifiers were

then applied to the entire set of images to label the background (values of zero) from the

individual powder particles (values of one). This portion of the data analysis may be the

most important, due to the nature of the shape feature extraction. In order to quantify the

shape of an individual particle, the moment invariant calculating algorithm looks at regions

of adjoining pixels with a value of one. If even a single pixel is out of place and connects

two nearby particles which should not be connected, the new agglomerated region will be

erroneously considered a single shape and quantified as such.

From here, the central moments of identified regions were calculated according to the

method of Novotni and Klein [10], and were subsequently used to calculate the two ω and

three τ invariants as described in Section 3.1.2. In addition, using equations developed

by Suk and Flusser [106], the eighty affine Cartesian invariants up to the 12th order were

calculated for each particle as well. These sets were stored in data arrays which contained

material identity, image identifiers, and a vector of shape values for each particle.

5.2.2 Data analysis

In order to explore the ability of moment invariants to make meaningful distinctions be-

tween the classes of shapes displayed by AM powder feedstock, it is necessary to use a

method of analysis that can quantify differences between distributions. In this work, each

particle is quantified separately, and an image of the powder is treated as a distribution of

the properties of this powder. If the shape of each individual particle can be reduced to ei-

ther five (ω/τ invariants) or eighty (affine Cartesian invariants) continuous values, then the

morphology of each particle can be thought of as a point in a five- or eighty-dimensional

shape-space. Any collection of particles and any sample of powder therefore can be rep-

resented as a distribution within that shape-space. Drawing conclusions regarding powder
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morphology, be it the similarity, degree of difference, or the identity, for a sample of powder

is then a matter of comparing distributions.

Several methods were utilized in this work to attempt to quantify the differences between

the shape distributions of individual powder samples. One of the problems encountered

early on was the way in which the dimensionality of the space directly impeded the ability

to relate distributions. If one treats the space as a histogram, even a five-dimensional

histogram with 100 bins in each dimension has 1010 individual bins. If one reduces the

number of bins to attempt to correct for this, even a reduction to 10 bins leads to 105 bins,

and this comes with a dramatic decrease in the degree of discriminatory power the analysis

is capable of. With 259 images, it is easy to see how sparse even a small histogram of this

dimensionality will be.

The first attempt to get around this problem was the modification of previously utilized

methods that have already been shown to be capable of the identification of 3D objects by

the analysis of the shapes of random 2D cross-sections through these objects [9]. In this

approach, second order moment invariant maps (SOMIMs) and projected moment invariant

maps (PMIMs) are generated for each image, the details of which are described in Section

3.1.2 . Both maps are essentially a 2D histogram of a shape distribution. In the case of the

SOMIM, the x and y axes are the values of the ω1 and ω2 invariants respectively. As the

name suggests, the PMIM is a projection from a five-dimensional space defined by the five

invariants: {ω1, ω1, τ1, τ2, τ3}. This projection places the average ω value on the x axis and

the average τ value on the y.

In order to determine from which material each image originated, the Hellinger distances

between a test image’s SOMIM and PMIM were calculated. The material to which the

Hellinger distance was shortest was reported as the identified material. The Hellinger

distance between two PDFs is given by:

H(p, q) =

√
1− β(p, q)√

2
(5.1)
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Figure 5.2: Example moment invariant maps with identified shape regions.

where β(p, q) is the Bhattacharyya coefficient, given by:

β(p, q) =
N∑
i=1

√
p(i)q(i) with

N∑
i=1

p(i) =
N∑
i=1

q(i) = 1 (5.2)

While the Bhattacharyya coefficient is not a metric, the Hellinger distance is. A met-

ric utilizing the combined distance between both two SOMIMs and two PMIMs was also

used, following [9], the metric being:
√
HS(p, q)2 +HP(p, q)2, with HS being the Hellinger

distance between SOMIMs and HP the Hellinger distance between PMIMs.

Another attempt at circumventing the dimensionality problem was directly inspired by

DeCost et al. [181] and the use of a bag-of-words approach [184]. In this method, the values

of a distribution are not directly quantified by generating a histogram of the quantifying

feature, but instead clustered to identify (in this case) particles that are similar. Because

the clustering is done in a moment invariant space, the clusters should identify particles

which have commonalities of morphology. As seen in Chapter IV, the clustering of these

shape features can lead to similar shaped objects being placed together.

To use AM powder as an example, each image is represented as a distribution of points

representing particles in an m-dimensional shape space. These points are then clustered,

each cluster representing some underlying feature or collection of features which are shared
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among particles. With the bag-of-words approach, these clusters, or words, are now used as

the identifying features, rather than the underlying moment invariant values. If there are

n words, then an image, instead of being represented as an m-dimensional histogram, can

be represented as a one-dimensional histogram with n number of bins. This method both

works to reduce dimensionality, and ensures that the features being measured are relevant

to the question at hand.

Clustering here was performed using t-SNE and HDBSCAN, as described previously

in Chapter IV. This method, while not generating a predefined number of clusters, has

advantages over a simple clustering technique such as the k-means algorithm. First of

all, utilizing Cartesian moments generates an 80 dimensional space, which is quite large

and leads to problems related to the curse of dimensionality (mentioned in Section 4.2),

meaning that some kind of dimensionality reduction is necessary prior to clustering. t-

SNE is advantageous when dealing with moment invariants, as these values tend to be very

continuous, and show a large degree of variation in a large number of directions. t-SNE

manages to maintain a large degree of the structure of the data, while a more common and

simple method, principle component analysis, does not.

To illustrate this point, Figure 5.3 displays two mappings of the entire set of points

examined in this work. The first is a mapping using PCA, and the second is one which

utilized t-SNE. Identifying natural clusters from the PCA plot is nearly impossible, while

there is clear structure in the t-SNE mapping. The PCA mapping likely failed due to

extreme outliers. These particles displayed extreme morphologies which led to large moment

invariant values in two dimensions. It is probable that the differences in the morphologies

between these particles is subtle, and during PCA, the small variations which matter when

observing particles with the eye, such as number of satellite particles or subtle differences in

the roundness of the object, get washed out in the large variations between a particle that

is a large agglomerate of several smaller spheres and the more common rounder particles.

t-SNE is so successful at this mapping, probably because it is not so much concerned with

variation, but instead with retaining the proximity of points as the dimensionality is reduced.

t-SNE is therefore performed on the particles from the remaining images not selected as

testing samples. This generates a map similar to that in Figure 5.3. A perplexity value of
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Figure 5.3: PCA versus t-SNE mapping, from 80-dimensional Cartesian moment invariant space to two-
dimensions, of the over 50,000 particles analyzed in this chapter.

50 was determined through trial and error. HDBSCAN is utilized to identify these clusters

in an automated way. HDBSCAN allows for the number of clusters naturally present to

be determined, rather than forcing a number not necessarily supported by the structure

on it. In addition, k-means favors round clusters, which are not necessarily always present

in a t-SNE map. The clusters generated by HDBSCAN are the words to be used in the

bag-of-words representation.

Both individual training images, and the materials as a whole can now be represented

as a histogram of the clusters to which its particles are assigned, which allows matching to

the testing images. However, the testing images do not have a bag-of-words representation,

and because t-SNE is a stochastic algorithm, the process cannot be repeated to cluster the

testing particles. Instead, each particle is related to the particles around it using a k-nearest

neighbors (kNN) classification: the k nearest particles in shape-space are used to identify

to which cluster the new particle belongs, by simple voting. In this work, a k value of

five was chosen arbitrarily. In addition, a distance-based voting scheme was also employed

simultaneously and the results compared. In this method, the vote of each neighbor particle

is weighted by the inverse of the distance to the particle to be classified.

Using this k-NN classifier, it is possible to generate a bag-of-words representation for

every test image. These histograms can then be measured for similarity against the material

histograms or the training image histograms via the Hellinger distance. The material of the
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image with the smallest distance, or the overall histogram belonging to the material with

the smallest distance, being assigned to the test image.

In this work, for each material, twenty random images were chosen and each of the

previously described methods were tested over twenty iterations. In each iteration, one

image per material was selected as a test image, and the remaining images were used as

a training set for each classifier. The resulting classification was saved and compiled into

confusion matrices, which are included below. The choice of twenty images per material

was an attempt to allow for balanced classification. The smallest number of images for a

material is 24 for the maraging steel. By using twenty, nearly the entire set of images of

maraging steel are analyzed. Overall there are 267 images, which means that approximately

30% of the images were tested in the above manner.

5.3 Results

5.3.1 SOMIM and PMIM matching

Second order and projected moment invariant maps (SOMIMs) for each material are shown

in Figure 5.4. These illustrate the differences between particle morphologies on the level

of detail capable of being quantified by second order moments, which are essentially the

amount of detail in the equivalent ellipse of each particle. The most obvious commonality

between these distributions is the location of the peak. Referring to the SOMIM map in

Section 3.1.2, the peaks of these distributions all lie near the point that corresponds to the

value of the circle. This is to be expected based upon the micrographs of Figure 5.1. It is

clear that the majority of the shapes are circular or close to it.

Of the non-titanium materials, Al-EOS shows the greatest degree of irregularity. For

the titanium-based alloys, the powder intended for the EOS machine has a greater spread

of shapes. The remaining Ti64 materials, intended for use with an Arcam device, show

much more concentrated peaks, indicating little variation in their shapes.

The PMIMs of Figure 5.5 emphasize the spread of morphologies in these samples. The

fourth order τ moments, the mean of which is plotted on the y axis, are much more sensitive

to changes in shape at the exterior regions of an object. This is because with increasing

p and q values, the Cartesian basis function, xpyq, grows much more quickly as one moves
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from the centroid of the object. The PMIMs therefore paint a clearer picture regarding the

variety of shapes present in these materials. It is made even more obvious that the Al-EOS

samples has the most extreme variation in the shape of its particles. The Inconel, maraging

steel, and stainless steel all shown similar degrees of variation, with subtle differences: the

peak in the case of maraging steel is more spread out, for example. In the case of the Ti64

alloys, the PMIM magnifies the variation of shapes in the EOS powder. The remaining

titanium powders show a high level of similarity, with very tight peaks.
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Figure 5.4: Master SOMIMs for each class of powder material.
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Figure 5.5: Master PMIMs for each class of powder material.
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Confusion matrices for the SOMIM, PMIM, and the combined metric are shown in

Figures 5.6, 5.7, and 5.8. The SOMIM matching method displayed an overall success rate

of 54.37%, better than randomly guessing. This near-half success rate is matched by the

success on the materials: in general, only half of them could be matched with a high degree

of success. The materials which were most correctly identified were Al-EOS, Mar-steel,

Ti64-Ametek, and Ti64-EOS. The method seems to have completely failed in the case of

In-718, SS-316, Ti64-Arcam, and Ti64-Starmet.

The success rate of the PMIM-based matching is slightly higher at 55.88%. However,

this increased success appears to have been achieved by an overall reduced success of the

maraging steel classification, and slightly improved success rates for In-718 and SS-316. So

if success is measured by the number of materials for which there is a large success rate,

the PMIM-based approach may actually be considered less effective than the SOMIM based

method. Finally, the confusion matrix for the combined metric shows success and failure in

similar materials to that of the SOMIM metric.

5.3.2 Bag-of-words

The bag-of-words model, as described previously, takes clustered data and treats the dis-

tribution of points within those clusters as features. In order to achieve this in the case of

these powder micrographs, all of the particles in the training data were mapped to two di-

mensions using t-SNE, and subsequently clustered using HDBSCAN. An example of this

mapping and clustering is shown in Figure 5.9 and Figure 5.10. This also illustrates how

this mapping and clustering for the ω/τ invariant space has grouped similar particles to-

gether, by placing the particles corresponding to the points on the t-SNE map in their

proper location, colored by their cluster.

Figure 5.10a and 5.10b illustrate how similar features tend to be grouped together.

The green cluster in the first image clearly consists of nearly perfect circles. The teal

particles have large aspect ratios but are otherwise close to elliptical. The blue particles

are agglomerates of particles, they have either several small satellites, or consist of several

joined particles. In the second image, another portion of the blue region is visible, with

similar shapes to particles in the blue region of the first. The red regions displays particles
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Figure 5.6: Confusion matrix for Hellinger distance mapping of test image SOMIMs to overall material
SOMIMs

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 1.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.100

 0.250

 0.000

 0.000

 0.000

 0.000

 0.000

 0.150

 0.650

 0.300

 0.000

 0.000

 0.000

 0.000

 0.000

 0.300

 0.200

 0.350

 0.000

 0.350

 0.000

 0.850

 1.000

 0.000

 0.000

 0.000

 0.000

 0.450

 0.000

 0.150

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 1.000

 0.000

 0.000

 0.550

 0.050

 0.100

 0.000

 0.200

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

Al
EOS

In
718

Mar
steel

SS
316

Ti64
Ametek

Ti64
Arcam

Ti64
EOS

Ti64
Starmet

Tr
ue

 la
be

ls
Ti

64
St

ar
m

et
Ti

64 EO
S

Ti
64

Ar
ca

m
Ti

64
Am

et
ek

SS 31
6

M
ar

st
ee

l
In 71

8
Al EO

S

Assigned labels

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

co
rr

ec
tly

 c
la

ss
ifi

ed

 56.88% correctly classified

Figure 5.7: Confusion matrix for Hellinger distance mapping of test image PMIMs to overall material PMIMs
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Figure 5.8: Confusion matrix for Hellinger distance mapping of both SOMIM and PMIMs

that are close to circular with some subtle deviations. The last figure, Figure 5.10c shows

particles from a single cluster. However, the methodology has apparently failed, as some

near circular particles are included along with ones which show extreme deviations from

circular.

Figure 5.11 shows the result of a t-SNE mapping from the eighty-dimensional affine

Cartesian invariant space to two dimensions for the training set of particles. Three regions

are shown, and the particles related to these points in Figure 5.12a through Figure 5.12c.

The t-SNE mapping shows somewhat different results than the ω-space mapping. Primarily,

there are a number of separate clusters with circular particles. The red, pink, orange

and yellow clusters all contain similarly shaped particles. However, the clusters are more

coherent than in the ω-based mapping. Clusters show clear similarities. The green cluster

in Figure 5.12a shown small numbers of satellite particles, moving the shapes away from

circular, but in a relatively small way. The light-blue particles in Figures 5.12a and 5.12b

have more extreme morphologies indicative of joined particles.
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Figure 5.9: t-SNE map. Perplexity of 50.
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(a) Particle example, red bordered region. (b) Particle example, blue bordered region.

(c) Particle example, orange bordered region.

Figure 5.10: Example of results from t-SNE mapping from five-dimensional ω-space to two-dimensions.
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Figure 5.11: t-SNE map. Perplexity of 50.

M
a
teria

l
P

ro
perties

a
n

d
M

icro
stru

ctu
ra

l
S

h
a
pes

R
.K

.S
.

H
a
rriso

n



5.3. RESULTS 123

Confusion matrices for the results of the k-NN generated bag-of-words matching are

shown for the ω-based methods in Figures 5.13 through 5.16. It appears that matching to

overall bag-of-words histograms for a material is more successful than matching to individual

training images, with relative success rates of approximately 86% to 80% respectively. In

addition, it appears that distance-based voting for the k-nearest neighbors classifier does

not improve the classification. This method appears to have particular difficulty with the

classification of maraging steel powder images, with the highest success rate only being

70%.

Similar confusion matrices for the Cartesian invariants are shown in Figures 5.17 through

5.20. These methods showed the best performance of all methods examined here. Once

again, matching to entire material histograms appears to be more successful than matching

to individual training images. In this case, distance voting had an impact in improving

the results of the classification for the matching to bulk materials, but not in the case of

matching to individual images. Finally, the maraging steel once again showed that it was

the most difficult to classify, commonly being misidentified as In-718.
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(a) Particle example, red bordered region. (b) Particle example, blue bordered region.

(c) Particle example, orange bordered region.

Figure 5.12: Example of results from t-SNE mapping from eighty-dimensional Cartesian moment invariant-
space to two-dimensions.
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Figure 5.13: Confusion matrix for ω invariants, matching image histograms to material histograms.
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Figure 5.14: Confusion matrix for ω invariants, matching image histograms to material histograms, with
distance-based voting for the k-NN classifiers.
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Figure 5.15: Confusion matrix for ω invariants, matching image histograms to training image histograms.
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Figure 5.16: Confusion matrix for ω invariants, matching image histograms to training image histograms,
with distance-based voting for the k-NN classifier.
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Figure 5.17: Confusion matrix for Cartesian invariants, matching image histograms to material histograms.
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Figure 5.18: Confusion matrix for Cartesian invariants, matching image histograms to material histograms,
with distance-based voting for the k-NN classifiers.

Material Properties and Microstructural Shapes R.K.S. Harrison



5.3. RESULTS 128

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.050

 1.000

 0.000

 0.000

 0.000

 0.000

 0.100

 0.300

 0.750

 0.000

 0.000

 0.000

 0.000

 0.000

 0.250

 0.700

 0.200

 0.000

 0.000

 0.000

 0.000

 0.000

 0.450

 0.000

 0.000

 0.000

 0.000

 0.000

 0.250

 0.900

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.750

 0.100

 0.000

 0.000

 0.000

 0.000

 0.000

 1.000

 0.000

 0.000

 0.200

 0.000

 0.000

 0.000

 1.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

Al
EOS

In
718

Mar
steel

SS
316

Ti64
Ametek

Ti64
Arcam

Ti64
EOS

Ti64
Starmet

Tr
ue

 la
be

ls
Ti

64
St

ar
m

et
Ti

64 EO
S

Ti
64

Ar
ca

m
Ti

64
Am

et
ek

SS 31
6

M
ar

st
ee

l
In 71

8
Al EO

S

Assigned labels

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

co
rr

ec
tly

 c
la

ss
ifi

ed

 81.88% correctly classified

Figure 5.19: Confusion matrix for Cartesian invariants, matching image histograms to training image his-
tograms.
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Figure 5.20: Confusion matrix for Cartesian invariants, matching image histograms to training image his-
tograms, with distance-based voting for the k-NN classifier.
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5.4 Discussion

5.4.1 Map matching

The success of SOMIM and PMIM matching was clearly only partially successful. The

materials which were most successfully classified using the method were Al-EOS, Ti64-

Ametek, and Ti64-EOS. Referring to the SOMIM and PMIM for Al-EOS in Figures 5.4a

and 5.5a and the micrograph in Figure 5.1a, it is clear that this material has the most

extreme variation and morphology between particles. It is likely this extreme spread that

makes the map matching method so successful for this material.

Ultimately, the maps, but especially the PMIMs, don’t show much difference between

each other in two-dimensions. The spreads only seem to differ along a single curve. Because

of this, the materials appear to be being classified only according to their relative spread

along that single direction. There are three clear delineations: Al-EOS has a large spread;

In-718, Mar-steel, SS-316, and Ti64-EOS have intermediate spreads; and the remaining

Ti64 powders have relatively tight spreads of shape morphology.

These three levels make themselves obvious in the confusion matrices for this method in

Figures 5.6 through 5.8. Al-EOS is classified successfully, due to its uniquely large variance

in particle morphology. The intermediate materials show a common degree of misclassi-

fication between themselves, with some of the titanium-free materials being classified as

Ti64-EOS, another material with an intermediate spread. The three remaining titanium

samples are commonly misclassified as one another as well.

The exceptions to these misclassifications are Ti64-Ametek and Ti64-EOS, which both

had high success rates. Both of these powders also showed a relatively high degree of having

other powder images misattributed to them. Looking at the SOMIMs and PMIMs for these

materials makes it somewhat clear as to why. Ti64-Ametek shows the tightest peak with

little to no noise: the cross-sections of the particles are all circular or very close to it. The

other titanium materials have slight deviations away from this near-perfect peak, which

were likely caused by outlier particles, so when the Hellinger distance is calculated between

a Ti64 test image with nearly all spherical particles, the master SOMIMs or PMIMs which

have deviations will generate a slightly higher distance than those of the Ti64-Ametek
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materials. Only for those images which contain outlier particles, which are more rare, that

directly match those in the training set, will the distances be lower.

This effect is likely at play in the case of misattributed particles to the Ti64-EOS mate-

rial. It has a tighter spread near the peak, so test images for In-718, Mar-steel, and SS-316

which have more spherical particles than average can show a closer relation to the slightly

better Ti64-EOS than the correct material.

It is clear that the way in which Hellinger distance is calculated directly impacted the

results of this test. Hellinger distance is affected by the location of peaks of large numbers

of particles. However, by definition, these clusters do not contain outliers, and it is likely in

the nature of the outliers that any major distinguishing features of these powders lie. The

location of the peaks in these materials is all the same, close to the value of the circle, so

there isn’t enough distinguishing information in the peaks alone. This is likely why methods

which utilize mean moment invariant information, previously attempted and not described

here, were ineffective.

5.4.2 Bag-of-words

In contrast to the SOMIM and PMIM matching models, the models which utilized a bag-

of-words type classifier were far more successful in the classification task at hand. In gen-

eral, the classifiers utilizing the more complete descriptors of shape, the affine Cartesian

invariants, outperformed those which worked with the lower order ω and τ invariants. Nev-

ertheless, ω invariants were capable of performing with up to 80% success on the 160 test

images examined here.

Clustering

The results of the t-SNE mapping from ω/τ space, and HDBSCAN clusterings, visible in

Figure 5.9 and, in part, in Figure 5.10, illustrate the effectiveness of t-SNE with the data

at hand. Based upon a qualitative examination of the particles separated into their respec-

tive clusters, particles are, in general, clustered with those that are visually similar. The

teal/light blue region contains particles with elongated major axes. The blue cluster in

the center of Figure 5.10a and the top of 5.10b have more extreme morphologies, indicat-
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ing either several small satellites, or fewer large ones. The red cluster in the right side of

Figure 5.10b are have slight deviations from circular. Looking at the affine Cartesian invari-

ant clusterings in Figures 5.12a,5.12b and, 5.12c, the algorithm separates visually distinct

particles.

With both feature sets, however, there is a common effect which ultimately is the result

of the nature of t-SNE: several clusters contain circular shapes which, upon visual inspection,

appear nearly identical. The t-SNE algorithm attempts to balance global structure with

local structure. The choice of a relatively high perplexity value of 50 means that the

algorithm considers many more neighbors than it would with a low value. This favors

global structure, leading to some distortions and moving some similar particles away from

each other and into their own clusters. Distance can be misleading in a t-SNE plot, but

ultimately, it is proximity, indicating similarity that is most important [185].

In the case of the ω and τ invariant clusterings, circular particles have been misclustered

with particles of more irregular morphologies. This is obvious in Figure 5.10c. While the

majority of the indigo cluster is comprised of particles with irregular morphologies, there

is a region of circular particles. Its unclear what led to a breakdown of the clustering in

this particular region, although it may just be due to the way the algorithm has balanced

global and local points in its optimization.

Classification

With respect to the ω and τ invariants, looking at figures 5.13 through 5.16, the majority

of the materials were successfully classified using the bag-of-words method. The method

which involved matching test image bag of word histograms to the overall histograms for

the entire material, rather than to individual training images, also seemed to result in more

successful classifications.

Figures 5.13 and 5.14 show the result of the bag-of-words method applied to ω and τ

invariants, matching to overall materials, and with and without distance-based voting in

the assigning of words/clusters to test image particles. Here, it is clear that the maraging

steel still creates some difficulty for the method. While the majority of the mar-steel images

were correctly identified, between 25 and 40% were misclassified as Inconel 718. There was a
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significant increase in the misclassification when the method was switched to distance-based

voting, and it was this change that led to a reduction in overall classification percentage,

even though other materials, such as Ti64-Ametek saw improvements with the switch. This

suggests that the bag-of-words histograms for In-718 and mar-steel are very similar. Some

of the test image particles, with the addition of distance voting, are switching clusters,

changing the test image histograms just enough to lead to an incorrect classification. This

is also likely in the slight reduction of the success in the classification of Ti64-Starmet. This

is supported by the overall similarity in the SOMIMs and PMIMs of these materials.

Matching to individual training images actually causes a reduction in the success of the

method, with noticeable reductions in the case of the stainless steel alloy and Ti64-Ametek

in Figure 5.15. The reduction in the success of SS-316 is primarily due to an increase in

misattribution to mar-steel and In-718. Ti64-Ametek sees an increase in misattribution to

Ti64-Ametek, but this is ameliorated somewhat by the addition of distance-based voting

in test particle cluster identification in Figure 5.16. This reduced success suggests that the

histograms of some test images for SS-316 match those of individual training images of

mar-steel and In-718 more closely than others of their own materials. The close similarities

between the overall SOMIMs and PMIMs for these materials (Figures 5.4 and 5.5), further

support that this is the case. Many of the individual images of these materials are so similar

that it is only when matching to entire set of images as a whole is there enough information,

statistically, to make a correct classification.

The most successful classifications were performed with the affine Cartesian invari-

ants. When matching to bulk material histograms (Figures 5.17 and 5.18), these invariants

outperformed the ω and τ invariants of Figures 5.13 and 5.14 only with the inclusion of

distance-based k-NN particle classification. It appears that the addition of this distance-

based weighting of votes in the algorithm increased the classification percentage of In-718

by 25%, and that of mar-steel by 10%. With the ω and τ invariants, distance-based voting

reduced the correct classification of these materials. Improvement implies that the particle

cluster assignments for test images more closely match those of the overall material with

the addition of distance weighting. This suggests that the higher dimensionality of the

Cartesian space and the greater details of particle morphology which are captured by these
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invariants allow for distance to play a much more important role than in the smaller, less

detailed ω and τ space.

Finally, once again, matching to individual images reduces the effectiveness, especially

among the group of In-718, mar-steel, and SS-316. These materials have very similar mor-

phological distributions, and it is frequently the case that a match to the bulk material is

necessary, simply because the full histogram for the entire material contains more informa-

tion that allows for a better match. In a way, the matching to individual training images is

similar to a k nearest neighbor classifier with a k of 1. However, these classifiers, especially

those with a low k value are sensitive to noise [127], and variations in cluster assignment,

especially in the case of the circular particles which have been shown to be split among

multiple classes, could prove difficult for this type of classifier.

5.4.3 Comparing approaches

It is clear that the histogram matching method was far less successful than the bag-of-

words method in this approach, with the BoW model outperforming the histogram method

by 25%-30%. The SOMIM and PMIM matching method is limited in the amount of shape

information that it quantifies. However, based upon the relative success of the BoW model

using this classifier, the reduced success of the map matching isn’t due to the reduced levels

of shape information. The ω and τ invariants do have enough shape information to make

meaningful distinctions between the shapes in question. The breakdown must therefore be

in the method.

Ultimately, as previously mentioned, the weakness of the map matching algorithm is

responsible for the success of the bag-of-words model. The primary distinguishing features

between these powders are the outliers. The average shape of these particles is somewhat

close to circular, which is clear from observing the SOMIMs or PMIMs. The big advantage of

the BoW model is that the generation of the words puts added emphasis on the outliers. As

seen in the particle images of Figures 5.10 and 5.12, the irregular particles, statistical outliers

in all of the materials, get broken up into particles which display similar morphological

features. These clusters are then directly used in the determination of similarity. It is this

that drives the success of the BoW model in this situation.
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Figure 5.21: Mapping t-SNE and HDBSCAN clusters back to a PCA mapping, giving an idea of the location
of these clusters.

As previously mentioned, it is therefore the ability of the t-SNE algorithm to take an

apparently continuous distribution of points, such as the distribution of particle morpholo-

gies in the ω/τ space, and from that find underlying structure in the data, that is the source

of the success of this method. Figure 5.21a illustrates a PCA-reduced 2D mapping of the

distribution of particle morphologies in ω/τ space. The density of points appears to in-

crease monotonically as one moves away from the sharp corner in the bottom left, showed

magnified in Figure 5.21b. The particles have been colored according to the t-SNE and

HDBSCAN mapping of the data in Figure 5.21d.

As shown in figure 5.21a and 5.21b, the t-SNE algorithm generates many clusters that
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have long axes close to perpendicular to the curve that marks the bottom of the data.

Looking at Figure 5.21b, the density of points falls off rapidly moving away from this line,

indicating that this most likely corresponds to the long curves that define the PMIM plots of

these materials. The clusters, therefore, separate the data into increasingly more irregular

shapes.

The tip of this plot, which corresponds to the most dense region, where the most cir-

cular particles lie, is clustered into many small regions with t-SNE but not in the k-means

clustering. This allows subtle differences in circularity to also drive some of the matching.

Overall, there may be too many of these small clusters, which shows in the particle maps

with many separate clusters of apparent identical circularities, but overall the method is

successful.

5.4.4 Comparisons and applications

Compared to the work of DeCost et al., which applied image features to the BoW classifier,

this method was less successful. The use of image features allowed for a success rate in excess

of 95% on the same data [181]. The success rate of the image feature method against the

moment invariant method suggests that there is data that is not being captured by moment

invariants. The segmentation of the particles eliminates all of the texture information for the

particles, which is stored in the greyscale values across the 2D cross-section of the particle.

Image features can use these properties, but moment invariants can only really analyze

those surface features which are right at the edge of the particle and change the shape of

the border of particle. It is likely that using three-dimensional image with 3D moment

invariants would allow for better classification, because all of this information would be

captured by the shape features. However, this is unlikely to occur in the near future due to

difficulties in gathering 3D information for such a large number of particles.

Generally speaking, the methodology described in this chapter likely succeeded due to

the capturing of shape of outlier particles. However, it is clear that it is the most numerically

prevalent particles that are going to have the greatest impact on the overall behavior of the

powder when it is utilized in an additive manufacturing process. Therefore, despite the fact

that this classifier has been shown to be effective, perhaps the lesson of largest importance
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to be learned from this work is that the ω and τ invariants contain enough information to

make meaningful distinctions between particles of the type that are seen here.

For a technician wanting to manufacture an AM part, they are less likely to be concerned

about BoW classifiers or t-SNE or perplexity, and more interested in knowing if a powder

is either “good” or “bad”. Knowing that the ω and τ invariants are capable of measuring

necessary morphological properties, the use of these five quantities, all of which range over

(0, 1] (a value of one, in each case, corresponds to a circle), provide a good basis for making

morphological measurements of these materials, and are easily interpreted as well. Looking

forward, more work must be done on the implications of the value of these quantities on

the rheological behavior of particles and their influence on final properties of manufactured

parts.

5.5 Conclusions and future work

In this chapter, it has been shown that both the ω and τ invariants, as well as affine

Cartesian invariants, are capable of making the kind of distinctions in morphology required

to distinguish between similar, and dissimilar, powders for additive manufacturing. In

making these distinctions, the most effective shape descriptors were the more complete

affine Cartesian invariants up to the 12th order. However, the combination of ω and τ

invariants, containing only information to the 4th order, were nearly as effective. A bag-of-

words classifier was most effective because it emphasized outliers, primarily driven by the

capabilities of t-SNE mapping.

The effectiveness of moment invariants in quantifying powder morphology illustrates

their usefulness in this system. Powder morphology has been shown to be linked to the

behavior of the particles prior to, and during, the AM process [169–171] and to the pack-

ing density of particles, influencing their thermal characteristics [167, 168]. This supports

the hypothesis: shapes of microstructural subregions, as quantified by moment invariants,

correlate to the overall properties or function of the material as a whole.

Looking ahead, more work should be focused on developing a metric, using the two ω

values and three τ values, to relate the morphology of AM feedstock to the behavior of the

powder during processing and the properties of a final manufactured part. These five values
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are easy to understand and have been shown to capture a large degree of necessary shape

information.
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CHAPTER VI

γ’ precipitate shape and creep resistance in single-crystal

nickel-base superalloys

6.1 Background

Nickel-base alloys have been the material of choice for high temperature components of jet

engines since their creation in the 1940s. However, it was in the 1950s and 60s that the

full exploration of the γ’ phase, which would become the main source of high temperature

performance in modern day superalloys, began in earnest [186]. From the beginning, re-

searchers noticed the distinctive cuboidal shape of γ’ precipitates, and in the 1980s, analysis

of the evolution of these shapes during aging began for a number of different alloys [187].

While the mechanisms behind the morphology of the precipitates were established at this

time, researchers were limited to qualitative observations of particle shapes. This naturally

restricted the kinds of conclusions that could be drawn from the data, and prevented the

establishment of numerical/quantitative relationships between precipitate morphology and

other properties of the superalloy.

6.1.1 Nickel-base single crystal superalloy microstructure and properties

γ matrix

In single crystal nickel-base superalloys, the γ phase forms a continuous matrix. This phase

consists of face centered cubic nickel and benefits most from the presence of elements which

improve its properties through solid solution strengthening. The elements which are closer

in size to nickel tend to concentrate in the γ phase [11]. These are the d-block transition

metals. For the samples examined here, the elements are Cr, Co, Hf, Re, W, Mo, and Ru.
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These elements have two primary effects on the FCC phase. The first is to improve

strength through solid solution strengthening. Local elastic stress fields created by the size

discrepancies between the solvent and the solute atoms hinders the motion of dislocations.

The strengthening of nickel through the addition of these elements has been shown both

experimentally and through atomistic simulations [188,189]. The presence of an additional

strengthening effect with the addition of d block elements has also been noted [188,190,191].

This effect is thought to be rooted in the interactions between the valence electrons of the

solvent and solute atoms, and this effect is increased with increasing valence as the periodic

table is traversed to the right [188]. These elements also cause a slight change in the lattice

parameter of the γ phase, which can contribute to lattice mismatch, or a difference between

the lattice parameter of the matrix phase and that of the γ’ precipitates.

γ’ precipitates

In contrast to the γ phase, the γ’ phase is an ordered intermetallic phase which follows

the formula Ni3Al or Ni3Ti and has the L12 structure, as shown in Figure 6.1. The L12

structure is similar to FCC in that there are four atoms per unit cell, however, in this

case nickel atoms occupy face centered positions while aluminum atoms occupy the corners.

This structure has been confirmed in several different studies through the use of atom

probe tomography [192, 193]. The γ’ phase is the primary source of the high temperature

performance of these alloys, and as such, this phase typically occupies greater than 50%

of the volume fraction of the material. It has been shown that the greatest levels of creep

resistance occur in single crystal superalloys with γ’ volume fractions near 70%, at least

with second and third generation alloys [194,195]. While the d-block elements preferentially

segregate to the γ phase, these elements can still be present in the γ’ phase and substitute

according to size. Larger elements such as Ta, Hf, W, and Mo substitute for Al, while

smaller elements such as Co will replace Ni [11, 192, 196]. Precipitates of this phase are

coherent with the surrounding γ matrix until they reach a maximum size, at which point

they lose this coherency. The boundaries between the γ and γ’ phase are sharp, on the

order of one interplanar spacing [192].

Substitutions on any of the lattice points in either γ or γ’ will have an effect on the
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Figure 6.1: The L12 structure, shown for Ni3Al. From [11]

lattice parameters of these phases and result in varying levels of misfit (δ):

δ = 2

(
aγ′ − aγ
aγ′ + aγ

)
(6.1)

where aγ′ is the lattice parameter of the γ’ precipitate and aγ is that of the surrounding

matrix. Changes to the misfit can have a large effect on the nature of the precipitates which

form.

The degree of misfit plays an important role in determining γ’ morphology. The greater

the misfit, the more quickly elastic forces drive the evolution of the precipitate shape [187].

During aging, the γ’ precipitates undergo an evolution from spherical to cuboidal to cubic

to ”octocubic”, and finally dendritic, as shown in Figure 6.2. This shape evolution is caused

by a balancing of interfacial energy at the surface of the precipitates, and the total elastic

strain caused by the misfit between the precipitates and the surrounding matrix. If one

assumes misfit between the particles and the matrix remains the same throughout growth,

then the total elastic strain is controlled by the volume of the particle. At low volumes, the

elastic strain energy is low, so the shape of the particle is controlled by the surface area.

The particle forms as a sphere to minimize the surface area to volume ratio.

As the radius of the particle increases, the interfacial energy increases with r2 while

the elastic strain energy increases with r3. At a particular radius, the elastic strain energy

surpasses the interfacial energy and the particle develops a shape that minimizes the energy.

The Young’s modulus of an FCC material is at its minimum in the 〈100〉 directions, so by

growing in these directions, the total strain energy is minimized. With each face growing
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Figure 6.2: The growth of γ’ precipitates. From [12]

along these directions, the net effect is growth along the 〈111〉 directions, and the shapes

grow at first cuboidal and then fully assume a cubic morphology. Diffusion is accelerated

at the sharp corners of the cube, which promotes the growth of spherical lobes. These

lobes begin to grow until they are affected by the same elastic restrictions and form cubes.

The transition to the more dentritic shapes is thought to occur due to a loss of coherency

between γ’ and γ [187]. This is intuitive, because the transition from a sphere to a cube

is only due to an increase in elastic energy, which can only be generated by the misfit that

occurs across a coherent interface. When this coherency is lost, so is elastic energy, and

surface energy minimization becomes the driving force behind shape evolution [197].

Mechanical behavior

The two primary properties which engineers and scientists try to maintain at high tem-

peratures in these superalloys are strength and resistance to creep. Strength is simply the

maximum stress a material can withstand while not yielding plastically or failing. Creep

occurs when a material is placed under a load that is lower than its ultimate strength at

elevated temperature. Over time the material will experience deformation in the direction

of applied stress. When discussing mechanical performance, it is important to understand

the deformation mechanisms in these materials, because the two topics are inextricably

connected. Both strength and creep resistance are influenced by the motion of disloca-
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tions in the material. By understanding how this motion occurs, it can be understood how

superalloys achieve such remarkable high temperature performance.

As previously discussed, the γ phase is face centered cubic, similar to the L12 structure

shown in Figure 6.1, except with nickel atoms at every lattice point. In the FCC crystal

structure, the slip system is a
2 〈11̄0〉{111}, which indicates that dislocations prefer to move

in the 〈11̄0〉 family of directions within the {111} family of planes. The magnitude of one

of these burgers vectors is equal to a√
2
, which defines the distance which a dislocation will

move in one step, where a is the lattice parameter of the structure in question (in the γ

phase this is equal to 0.3517nm [11]). It is well known that the energy attributed to the

presence of a dislocation is proportional to the square of the magnitude of the burgers

vector. Because of this, in some structures, single dislocations are known to decompose into

two dislocations with smaller burgers vectors, known as Shockley partial dislocations. In

the FCC structure, this takes place according to the following reaction:

a

2
〈11̄0〉{111} =

a

6
〈21̄1̄〉{111}+

a

6
〈12̄1〉{111} (6.2)

When the squares of the magnitudes of the burgers vector above are calculated, the

left side comes to a2

2 , while the right is equal to a2

6 . Therefore it is energetically favorable

to assume the two partial dislocations configuration. Also, the magnitude of the burgers

vector of each individual partial dislocation is equal to the spacing between close packed

planes in the FCC lattice.

The closest packed planes in the FCC structure are the {111} planes which stack in the

〈111〉 directions. The previously discussed partial dislocations move within the {111} planes

creating discontinuities in the stacking order, known as stacking faults, by adding planes

(an ”intrinsic” stacking fault) or removing them (an ”extrinsic” stacking fault). Because

these defects are a deviation from the tightest possible planar stacking, they have an energy

penalty attributed to them. As the two partial dislocation move away from each other, the

size of the stacking fault increases, and thus the total energy associated with it increases as

well.

It has been shown that the spacing between two partial dislocations is inversely propor-
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tional to the energy of the stacking fault between them, as given by [11]:

d =
Ga2

48πγSF

(2 + ν

1− ν

)
(6.3)

Where d is the spacing between the dislocations, G is the shear modulus of the material, γSF

is the energy per unit area of the stacking fault, and ν is poisson’s ratio for the material.

This is because any dislocation, when disassociated, takes on some screw character and

some edge character. Depending on the nature of the dislocations in question, they will

generate a combination of positive and negative elastic stresses in the lattice, which can

attract or repel other dislocations. Equation 6.3 was found by balancing these forces in the

disassociated dislocations with the energy of the stacking fault generated between them. In

a material that is under a load, moving dislocations create plastic deformation. A screw

dislocation which encounters a hindrance to its motion is capable of cross-slipping onto

a different slip plane, thereby avoiding the obstacle. If the γSF is low enough, then the

partial dislocations generated will be spread far apart, and thus are unlikely to recombine

into a screw dislocation which would be capable of cross-slipping. The alloying elements in

superalloys tend to reduce the stacking fault energy and thus work to prevent this method

of dislocation motion.

Although the differences between the γ and γ’ structure appear to be somewhat insignif-

icant, the presence of aluminum on one fourth of the lattice sites has a significant effect on

the nature of the bonds and the deformation of this phase. Unlike in the γ phase, where

the order of the atoms on the lattice had no effect on the motion of dislocations, in the γ’

phase, maintaining Ni-Al bonds and avoiding Al-Al and Ni-Ni bonds becomes very impor-

tant. Because of this, if a dislocation passes through a precipitate along a specific direction,

it can disorder the lattice in such a way as to add additional energy to the system through

what are known as anti-phase boundaries (APBs). When a dislocation enters the γ’ phase,

the number of Ni-Al bonds decreases, and the number of Ni-Ni and Al-Al bonds increases.

This is not energetically favorable. When a perfect dislocation in the γ phase (a2 〈11̄0〉{111})

passes through a γ’ precipitate, it leaves an APB in its path, which increases the energy

of the system. However, if a dislocation with twice the magnitude (a〈11̄0〉{111}) were to
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pass through, the ordering would be maintained and no APB generated. This also implies

that regular perfect dislocations can pass through the γ’ precipitates if they move through

in pairs.

In the γ phase, the primary consideration when determining the nature of dislocations

is minimizing the lengths of the burgers vectors in order to minimize the energy of the

dislocations. In γ’, this is only part of the equation. In addition to burgers vector length,

there is also the consideration of the types of previously discussed planar defects which will

be generated by the motion of the dislocations. As it turns out, the active slip system in

γ’ is a〈11̄0〉{111} [198]. This is twice as large as the system in the γ, and contributes to

the complexity of the dislocation decompositions. A number of disassociations have been

suggested, and the most common are as follows (on the {111} family of planes):

a[1̄01] =
a

6
[1̄1̄2] +

a

6
[2̄11] +

a

6
[1̄1̄2] +

a

6
[2̄11] (6.4a)

a[1̄01] =
a

2
[1̄01] +

a

2
[1̄01] (6.4b)

a[1̄01] =
a

3
[2̄11] +

a

3
[1̄1̄2] (6.4c)

Disassociation 6.4a creates two regions known as complex stacking faults (CSF), as well as

a length of APB. Disassociation 6.4b creates an APB between the resulting dislocations,

and disassociation 6.4c creates an superlattice intrinsic stacking fault (SISF), between the

two partials. According to Yamaguchi et al. [199], who performed an energy analysis, 6.4a

is most common when APB energy on {111} planes is low. When APB energy is high, 6.4b

or 6.4c are more common. However, even more complicated disassociations are possible at

high temperatures.

It is obvious, based on previous discussion, that moving a dislocation through a γ’

precipitate requires much more energy than moving it through the surrounding matrix due

to the ordered nature of the γ’ lattice. Estimates of the γ’ disordering temperature are

above the melting point of the material [200]. This contributes to the remarkable high

temperature performance of superalloys. However, it has been observed that the yield

strength of these alloys increases with temperature. This effect can be at least partially
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explained by the trapping of dislocations in what are known as Kear-Wilsdorf locks. These

locks occur when at high temperatures disassociated superpartial dislocations slip onto the

cubic planes of the γ’ phase. On the {001} planes, these partials would trail APBs, and

thus tend not to move and are locked in place [201].

The previously discussed mechanisms make it very difficult for dislocations to move in

the γ’ phase. In general, a number of experiments have shown that during primary and

secondary creep, dislocations tend to move in the matrix phase only, and not in the γ’

precipitates [202–204]. These dislocations are primarily of screw character (thus allowing

cross-slip), and leave edge character dislocations on the interfaces of the γ and γ’ phases.

Precipitates with negative misfit generate compressive stresses on their interfaces with the

matrix, while the opposite is true of those alloys with positive misfit. These stresses are

partially relieved by the presence of these dislocations.

In high temperature creep, creep at or above 950◦, precipitates also begin to raft during

primary creep. This is the preferential growth of precipitates in one direction over another.

The degree of rafting is proportional to the misfit of the alloy [205]. In alloys with negative

misfit, as most commercial alloys are, the rafts form perpendicular to tensile axis. These

rafts close off matrix channels through which dislocation move, increasing creep resistance

even more [206]. In alloys with positive misfit, the rafts tend to form parallel to the tensile

axis. This is complicated somewhat by the fact that misfit can change with temperature,

so it is important to be considering the misfit at the operating temperature, rather than

room temperature. Dislocation networks which form at the γ/γ’ interfaces stabilize these

rafts by relieving stresses and remain in place as a stable configuration [207].

In work by Harada et al. [193], the researchers showed that the optimum creep perfor-

mance in a number of single crystal superalloys increased with increasing volume fraction

of γ’, but only to a point. At roughly 70%, a peak was reached beyond which creep per-

formance was reduced [193]. This indicates that it is not purely the presence of γ’ which

influences creep resistance, but the interface between the two phases.

Taken all together, the γ’ phase is integral to the performance of these alloys. The mor-

phology of these precipitates is either influenced by factors which also influence mechanical

performance, or plays a role in influencing the performance directly. The morphology is
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controlled by the amount of misfit, which also determines elastic stresses on the γ/γ’ in-

terfaces, and influences dislocation motion. The morphology determines the shape of the

γ channels, which allow for tertiary creep in these materials, and controls the geometry of

the interfaces through which dislocations interact with the γ’ precipitates.

6.1.2 Shape descriptors in superalloy analysis

A number of studies have been performed on the evolution of γ’ precipitate morphology in

nickel-base superalloys since their invention six decades ago. The first major work illustrat-

ing the transition from spherical to cubic to irregular arrays of cubes was qualitative [187].

Soon after, however, more quantitative work was undertaken. These studies utilized shape

descriptors which were created by the authors and primarily focused on cuboid cross sec-

tions: shapes which were most likely to exist in fully heat treated alloys as prepared for use

in turbine engines. Due to the well understood nature of these precipitates, and the single

grain structure of the samples, two dimensional analysis is typically all that is necessary for

these materials.

Fährmann et al. [208] developed and utilized the parameter Sster in their analysis of the

influence of the sign and magnitude of misfit strain on γ’ precipitates:

Sster =
Pi − Pc
Ps − Pc

(6.5)

where Pi is the perimeter of the precipitate in question, Pc is the perimeter of the circle with

equivalent area, and Ps is the perimeter of the square with equivalent area. In addition to

this parameter, particle aspect ratio was measured as the ratio of the lengths of the primary

to secondary axis of the best-fit ellipse. In addition to Sster, the value SSAXS was calculated

from small angle X-ray scattering microscopy. This value functions very similarly to Sster

in that it measures the particle’s shape as its cross section transitions from a circle to

a square, however, instead of using visual images, it is calculated from X-ray diffraction

patterns. Utilizing Sster, SSAXS, aspect ratio, and measurements of γ/γ’ misfit in five

Ni-Al-Mo alloys, the authors were able to track morphology changes with aging time. The

relationships between aspect ratio and aging time, as well as Sster and aging time were found
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to be linear, with the rate of change correlating to the degree of lattice misfit. SSAXS also

behaved as expected, with shape evolution behavior being controlled by precipitate/matrix

misfit. When plotted against a dimensionless ratio of the elastic energy generated by the

precipitate in the matrix and the interfacial energy, Sster increases, indicating an elastically-

induced shape change.

When utilized effectively, Sster proves to be a useful quantity, but it has limitations.

First, as discussed by Färhmann, both Sster and SSAXS only provide valuable information

on the sphere to cube transition when the aspect ratio of the shapes is close to 1. If this

value is exceeded, one needs to change the method of calculation of Sster by replacing the

perimeters of the equivalent square and circle with those of the equivalent rectangle and

ellipse respectively. This somewhat complicates the calculations, but not to a large degree.

When the aspect ratio exceeds 1.5, however, both shape parameters begin to cease giving

useful information. This is due partially to the nature of the parameter which becomes more

sensitive to perimeter changes as aspect ratio increases, and partially due to the fact that the

shapes with large aspect ratios also tend to be more irregular and may have fluctuations in

curvature along their perimeters. These can change the value of Sster and make precipitates

which seem similar to the eye have different values.

Overall, the parameters presented in Fährmann et al. illustrate both the utility and po-

tential pitfalls of using constructed shape parameters. If the user is aware of the limitations

of these parameters, they can be useful and allow for the drawing of conclusions regarding

morphology. However, if these descriptors are applied to shapes which are outside of their

effective range, they not only become useless but risk being misleading.

Prikhodko and Ardell [209] utilized shape descriptors to measure the influence of low

applied stress on the evolution of γ’ precipitates in nickel-base superalloys. Specifically,

the goal was to track shape evolution of individual precipitates to quantify the influence of

applied stress on the spherical to cuboidal transition and the coalescence of particles. In

order to achieve this, the primary shape descriptor used, Σ was developed:

Σ =
Ap −A4

0.5708(A4)
(6.6)
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where Ap is the area of the particle in question, and A4 is the area of the largest four-sided

polygon that can be contained within the particle. The number 0.5708, equal to π
2 − 1,

serves to normalize the value of Σ, rendering it equal to 0 for a square and 1 for a circle.

Utilizing a descriptor based on area and the area of the largest circumscribed quadrilateral

renders Σ invariant to changes in aspect ratio. This is advantageous in the case of this study

because it allows for the quick detection of changes in edge curvature in the precipitates.

Prikhodko and Ardell primarily tracked shape evolution in Nickel-base alloys by com-

paring Σ values and aspect ratios of particles to their average equivalent radius. They found

that applied stress tended to drive formation and growth of precipitates with larger aspect

ratios and more square cross-sections. They also found that, with increased average ra-

dius comes a lower value of Σ, corresponding to more square, rather than circular, shapes,

which is supported by what is known about the interaction of precipitate volume and elastic

stress.

Morphology and properties

Despite the previously mentioned efforts to quantify precipitate morphology, these studies

have remained relatively few and far between, and have primarily focussed on tracking shape

change rather than correlating it to mechanical properties. As mentioned in this section, γ’

precipitates are the primary source of the strength of these alloys. In the process of creep

deformation, propagating dislocations are restricted to the regions between precipitates,

and deform to conform to these regions. Because of these, it is suspected that precipitate

morphology plays a role in determining the creep resistance in these alloys [210].

Van Sluytman and Pollock [211] tracked precipitate shapes using the value of η which

is derived from the shape parameter ω2 discussed in subsection 3.1.2. Using this shape

parameter, it was found that, while a large variety of shapes on the square-to-circle spectrum

were observed, a peak in η was observed at a lattice misfit value |δ| ≈ 0.4%. It was suggested

that this specific shape which generates the given value of η is optimal for achieve the high-

temperature mechanical properties required of these types of alloys.

In her thesis [206], Rowland noted a relationship between precipitate morphology and

the creep resistance of ruthenium-containing nickel-base single crystal superalloys. However,
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all the observations of γ’ shapes were qualitative. Caron and Khan also noted a qualitative

relation, between these properties, with more square-shaped precipitates contributing to

creep resistance [212].

6.2 Materials and methods

The purpose of this chapter is to explore the relationships between creep resistance in these

materials by quantifying the shape of precipitates in several alloys and comparing these

measurements to creep properties. In order to do this, aging tests were conducted to see

if shape could be quantified accurately in these materials using the planned method of

backscattered electron imaging in a scanning electron microscope. This also allowed for the

identification of heat treatment times for the final samples that could equalize the size of

the precipitates. Ultimately, due to time constraints, only a subsection of the alloys could

be fully examined through creep testing.

6.2.1 Sample preparation

Superalloys were provided by Prof. T. Pollock at the University of California, Santa Bar-

bara. The superalloy identifiers and compositions are as shown in Table 6.1 and the details

of their casting given in [213] and [214]. Summarizing the casting process, the ME alloys

were cast into 15.9mm diameter cylindrical bars by Professor Tresa Pollock’s group in an in-

vestment cluster mold developed by PCC Airfoils. They were withdrawn from the mold at

a constant rate of 20cm/hr. The two UMF alloys were formed as 15.9 mm diameter cylin-

ders in a 50-kW ALD directional solidification furnace. In both cases, traditional helical

grain selectors were used in order to achieve single grains in the body of the cylinders.

Alloy Al Cr Co Hf Re Ta W Mo C Ni

CE-2 5.50 7.00 7.50 0.00 2.80 8.10 4.30 1.50 0.00 63.30

CE-4 5.80 7.00 7.50 0.31 3.10 3.90 4.70 1.50 0.00 66.19

CE-5 5.80 7.00 7.50 0.00 3.00 3.90 4.80 1.50 0.14 66.36

CE-7 5.50 7.00 7.50 0.27 2.80 8.20 4.50 1.50 0.12 62.61

ME-1 6.80 7.00 7.00 0.14 4.60 6.10 2.40 1.50 0.00 63.96

ME-15 7.10 7.00 2.40 0.15 1.50 6.20 2.40 1.50 0.14 66.51

Table 6.1: Alloys used and compositions of each (weight percent).
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Alloys

CE-2, 5, 7 2 hours, 1232◦C → 2 hours, 1322◦C → 2 hours, 1342◦C → 2 hours, 1347◦C →
2 hours, 1352◦C → 18 hours, 1357◦C

CE-4 2 hours, 1261◦C → 2 hours, 1291◦C → 2 hours, 1321◦C → 2 hours, 1341◦C →
2 hours, 1351◦C → 2 hours, 1361◦C → 18 hours, 13666◦C

ME-1 2 hours, 1232◦C → 2 hours, 1300◦C → 2 hours, 1305◦C → 2 hours, 1310◦C →
2 hours, 1315◦C → 18 hours, 1321◦C

ME-15 2 hours, 1232◦C → 2 hours, 1305◦C → 2 hours, 1315◦C → 2 hours, 1322◦C →
2 hours, 1329◦C → 2 hours, 1336◦C → 18 hours, 1340◦C

Table 6.2: Heat treatments for all alloys examined in this study.

To prepare samples, fifteen millimeter long sections were removed from each of the

bulk cylinders using an abrasive cutoff wheel. Samples were further divided using a low-

speed diamond saw and subsequently encapsulated in quartz backfilled with argon. Samples

were then heat treated according to Table 6.2 and then water quenched followed by aging at

1000◦C. Heat treatments were conducted in a Lindberg/Blue high-temperature box furnace.

The samples were ground using increasingly fine grit paper, before a final polish with a

suspension of 0.5µm alumina, and then five hours on a VibroMet 2 automatic polisher with

0.06µm colloidal silica. Samples were cleaned with soap, followed by ultrasonic cleaning in

acetone, and finally by rinsing with ethanol.

Samples were cut in such a way that a 〈001〉 type direction was perpendicular to the

sample surface. All samples were observed in a Tescan Mira3 field emission electron micro-

scope at an accelerating voltage of 20kV and a working distance between eight and nine

millimeters. While achieving some contrast between the γ and γ’ phases is possible using

secondary electrons, much better contrast was found using backscattered electrons. Large

image sizes were used in order to facilitate analysis of as many γ’ precipitates as possible.

At least two large images were taken per sample.

6.2.2 Image processing and segmentation

Gathered images are then preprocessed for segmentation by removing all parts of the image

which are not of the material (scale bars, etc) and then leveled. Leveling is necessary

because of the long scan times, approaching 20 minutes, that were required to obtain the

desired large, high quality images. Over the course of such a long scan, fluctuations in
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the microscope which affect the intensity across an image can be expected. Leveling is

done by treating the intensity levels of each pixel as a z value and fitting a one or two

degree polynomial to this surface, effectively returning a plane or a surface which roughly

matches the average intensity of the image. This is then subtracted from the original to

return an image which has a level image intensity. This dramatically improves the quality

of segmentations. In some cases, average image intensity can change from line to line. In

this case, each row of pixels is set to have an average value equal to that of the entire image.

In order to effectively gather shape information across a large number of images, qual-

ity automated segmentation is required. To accomplish this, the ilastik toolkit software was

used [15]. ilastik takes a machine learning approach to pixel classification starting with a

classifier, decision trees which are combined into random forests [215] which helps prevent

overtraining. Initially, the user must manually indicate pixels which are “class 0” or back-

ground and pixels which are “class 1” or relevant, although any number of classes may be

indicated. This software provides accurate segmentations of the data, as shown in Figure

6.3.

The performance of the ilastik algorithm is compared to a previously utilized method of

expectation maximization and minimization of posterior marginals (EM/MPM) described

in [216]. The results are shown in Figure 6.4. Although the EM/MPM method matches

the hand-drawn “truth” up to 91.5%, the location of the most errors are in the matrix

regions between particles. The ilastik method has a pixel match percentage of 93.2%, a

small difference, but it is correct in the right places and matches the truth much better,

with less fuzzy edges and properly identified precipitates.

Individual precipitates are identified as connected regions of pixels with a value of 1.Pre-

cipitate size can be measured by examining data files which are generated along with each

image as it is captured. This data, in the form of area per pixel in square meters, allows for

size calculation by simply adding up the number of pixels per region. Moment values are

calculated using the algorithm suggested by Novotni and Klein [10]. These moment values

are then used to calculate all invariants necessary from each shape. SOMIMs are gener-

ated by placing a small Gaussian peak at the location (ω1, ω2) for a given shape. These

peaks are added up, and then the image normalized, so the brightest region corresponds to
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(a) CE-4 alloy at 2 hours of aging, prior to segmen-
tation.

(b) Image from Figure 6.3a, after segmentation.

(c) ME-15 alloy at 16 hours of aging, prior to seg-
mentation.

(d) Image from Figure 6.3c, after segmentation.

Figure 6.3: Segmentation examples using ilastik software.
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(a) Original test region. (b) Hand-drawn truth.

(c) EM/MPM segmentation. (d) ilastik segmentation.

Figure 6.4: Segmentation comparison of EM/MPM algorithm and ilastik segmentation method.
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locations with more shapes in that local area.

6.2.3 Creep sample preparation

Due to the length of time necessary for creep testing, only four alloys were selected for

this analysis. CE4 and CE7 were not subjected to creep tests because of their similarity of

composition and final shape to CE2 and CE5. Based upon results from the aging study,

described above and results shown below in Figure 6.9, heat treatments were chosen for

these alloys. Alloys were solution treated, for 18 hours at 1250◦C, and then aged at 1000◦C

for the following times: CE2: 12.25 hours, CE5: 8.5 hours, ME1: 8.5 hours, ME15: 32

hours.

Due to error on the part of the investigator, samples intended for creep tests were air-

cooled rather than water quenched. This lead to precipitate sizes and morphologies that

differed from expected values. The implications of this are discussed below, however, there

was only a significant change in precipitate morphology for one of the alloys.

These samples were then machined by Metcut Research Inc. (Cincinnati, OH) to a

standard creep test specimen with a gauge length of one inch and diameter of 0.145 inches.

These were then tested with a stress of 290MPa, at 960◦C by Dr. Patrick Callahan of

Professor Tresa Pollock’s group at The University of California, Santa Barbara.

6.3 Results

6.3.1 Heat treatments and precipitate growth

Images

Figure 6.5 shows the evolution of the microstructure of each alloy with increasing aging

time. In the interest of preserving space, only segmented images are shown. Each picture

was arbitrarily chosen as a representative from several images taken for each sample and

for each heat treatment. Every image of Figure 6.5 is normalized so that the width of the

image is the same at 5.18µm.

Visual examination of these images indicates the most obvious influence of aging time

on an alloy is precipitate growth and, in the heat treatments after sixteen hours, precipi-

tate coalescence. This is clear from the apparent increase in irregularly shaped particles,
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especially those with larger aspect ratios. Aside from the increase in the prevalence of less

regular shapes, some general change in shape is also observable, as the shapes appear to

become more square with increased aging time. However, based on visual examination, the

degree of the transformation is difficult to measure.

Across samples, it is clear that the ME alloys are much more square than the CE alloys,

which tend to display more circular or elliptical shapes. Based upon what is known about

the influence of elastic and surface energies upon these alloys, this is likely due to the degree

of misfit present in these alloys [197].

Precipitate evolution

Second order moment invariant maps (SOMIMs), detailed in Section 3.1.2 and illustrated

in Figure 3.4, help to visualize the evolution of the shapes across each heat treatment, and

the subtle differences between the shapes present in each alloy. SOMIMs for each alloy

and heat treatment are shown in Figure 6.6. It is clear that what is observed visually in

the segmented images of Figure 6.5 is supported by the shape analysis. That is that the

precipitates of CE type alloys progress toward elliptical or circular shapes, and those of the

ME alloys tend to have more square-like cross-sections.

There appears to be a tendency for the peaks on these SOMIMs to become smaller with

increased aging times, which indicates an overall increase in the similarity of the shapes in

terms of both aspect ratio, and complexity. This does not universally hold, however. In

the case of both CE-2 and ME-15, there appears to be a small increase in the spread of the

peak. In many cases, the peaks are smeared to the left at higher aging times, indicating that

the shapes, while similar in terms of type location along the cuboidal spectrum (square to

circle), tend to differ in aspect ratio. Overall, these SOMIMs provide a way to get a snapshot

of the shape distribution of a large number of precipitates in a small, easy to understand

visualization.

Figure 6.7 and 6.8 present box plots for the data. The shape of the boxes strongly

indicate a distributions of shapes with long tails toward irregular shapes (lower ω values).

It is probable that these shapes were caused by errors in segmentation. In order to correct

for these extreme distributions, trends are drawn between median values, rather than mean
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(a) CE-2

(b) CE-4

(c) CE-5

(d) CE-7

(e) ME-1

(f) ME-15

Figure 6.5: Segmented microstructural evolution of γ’ precipitates for indicated aging times, in hours. All
images are 5.18µm across.
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values. The median tends to be more robust against outliers. In general, the materials

appear to start with more irregular values and over the course of the first one to four hours

approached a fixed shape, indicated by a horizontal line with larger aging times.
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(a) CE-2

(b) CE-4

(c) CE-5

(d) CE-7

(e) ME-1

(f) ME-15

Figure 6.6: Second order moment invariant maps for indicated aging times, in hours.
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Figure 6.7: Box plots of ω1 for all measured precipitates. Asterisks indicate mean.
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Figure 6.8: Box plots of ω2 for all measured precipitates. Asterisks indicate mean
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Figure 6.9 shows the equivalent volume of precipitates, plotted against aging time. Lif-

shitz, Slyozov and Wagner (LSW) theory predicts a linear relationship between these val-

ues [217]. A best fit line is plotted for each alloy accompanied by the correlation coefficient.

It is clear that these best fit lines closely fit the data. In addition, blue horizontal and ver-

tical lines indicate how heat treatments were chosen for the alloys subjected to creep tests.

Where these lines intersect the x-axis indicates the time to heat treat the alloy, with the

goal of precipitates of the same size, matching where the blue lines intersect the y-axis.

6.3.2 Creep results

Micrographs for the four selected alloys are shown in Figures 6.10. The width of all of

these images is 15µm. The most obvious difference between these alloys is that alloy ME1

appears to have precipitates which have cross sections which are much closer to square than

the other alloys. In addition, the precipitates of ME15 are considerably larger than those

of the other alloys. This difference is likely explained by the air-cooling of the samples,

which allowed for precipitate growth in these alloys that differed from that of the quenched

samples.

SOMIMs and PMIMs for the four selected and heat treated alloys are shown in Figure

6.11 and Figure 6.12. These make the shape distributions more clear. Both the SOMIM

and the PMIM of alloy ME1 have peaks that are close to the value of the square. The

remaining alloys have peaks that are much closer to the value of the circle.

The kernel density estimates (KDEs) of Figure 6.13, calculated with an Epanechnikov

kernel [218], display an estimated PDF of the data, essentially a smoothed histogram. The

area under each sums to unity. Above each set of KDEs are four bars, centered on a diamond

symbol. The diamond is the location of the overall mean for each alloy for the given shape

feature. The bars extend to one standard deviation, positive and negative. The square

symbol indicates the mean value for cuboidal shapes for the material. Vertical dashed lines

indicate the median of the data.

Figure 6.14 shows the strain versus time curves for the creep tests conducted on the four

alloys. A summary of the results of this test and the shapes of the γ’ precipitates is given in

Table 6.3. This includes the location of the overall mean shape values and the mean shape
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Alloy ω1 ω2 τ1 τ2 τ3 γ’/γ ε̇min (s−1) TTF (hrs)

CE-2 Mean 0.879 0.903 0.743 0.782 0.745 0.605 8.58e-08 157.9

Mode 0.966 0.974 0.919 0.921 0.914

CE-5 Mean 0.898 0.925 0.775 0.819 0.793 0.611 2.02e-06 14.9

Mode 0.972 0.977 0.923 0.923 0.924

ME-1 Mean 0.841 0.870 0.672 0.687 0.702 0.714 3.58e-11 414.4

Mode 0.943 0.931 0.859 0.769 0.834

ME-15 Mean 0.844 0.862 0.684 0.707 0.673 0.746 1.59e-07 83.1

Mode 0.949 0.958 0.879 0.876 0.887

Table 6.3: Summary of mean shape values and creep results for the examined alloys.

values for those precipitates with morphologies between those of the square and the circle.

Area fraction is listed, as well as minimum creep rate, and time to failure (TTF) for each

alloy in hours.

Figures 6.15, 6.16, and 6.17 show the results of linear regression for the natural log of

the minimum creep rate of each alloy, and the mean, median, and mode of indicated shape

features respectively. The mean values are accompanied by a set of bars indicating ± the

standard error of the mean. The correlation coefficient is also shown. Between the figures,

it is clear that the size of the particles has the lowest correlation to creep performance.

The remaining features all show higher levels of correlation, suggesting that there may be

a relationship. Overall, the median and mode show increasing levels of correlation. This

may be explained by the increasing robustness of these values to outliers [219].

Figure 6.18 shows post-creep images of the four samples. The stress axis is normal to

the image. The two alloys containing carbon, CE5 and ME15, are particularly difficult

to image using BSEs. The contrast does not allow for good imaging of the precipitates.

However, it is clear from these images that the two alloys which performed best in creep,

CE2 and ME1 both exhibited dramatic shape evolution during creep, but in two divergent

ways. CE2 shows a rafted structure while ME1 has precipitates that have coalesced into

large irregular arrays.
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(a) CE2 (b) CE5

(c) ME1 (d) ME15

Figure 6.10: Micrographs of superalloy microstructures prior to creep testing. All images have a width of
15µm.
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(a) CE2 (b) CE5

(c) ME1 (d) ME15

Figure 6.11: SOMIMs for creep-tested alloys.
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(a) CE2 (b) CE5

(c) ME1 (d) ME15

Figure 6.12: PMIMs for creep-tested alloys.
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Figure 6.13: Kernel density estimates for the four examined materials and the indicated properties. Bars
above the plot indicate overall mean as a diamond, plus or minus the standard deviation of the
data. The square symbols indicate the position of the mean of shapes which have a cuboidal
morphology. Vertical dashed lines indicate the median of the data.
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Figure 6.14: Stress versus time in seconds for the alloys examined here. ME1 showed the greatest time to
failure and overall creep resistance while CE5 showed the least.
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Figure 6.15: Best fit line for overall mean of the features plotted against the natural logarithm of the mini-
mum creep rate for each alloy. Colors of symbols indicate the alloy, matching those of Figure
6.14.
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Figure 6.16: Best fit line for the median values of the features plotted against the natural logarithm of the
minimum creep rate for each alloy. Colors of symbols indicate the alloy, matching those of
Figure 6.14.
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Figure 6.17: Best fit line for the mode values, taken from KDEs of Figure 6.13 of the features plotted against
the natural logarithm of the minimum creep rate for each alloy. Colors of symbols indicate the
alloy, matching those of Figure 6.14.
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(a) CE2 (b) CE5

(c) ME1 (d) ME15

Figure 6.18: Post-creep micrographs. Stress axis is normal to the images. Lighter phase is γ’.
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6.4 Discussion

6.4.1 Aging

Analysis of the combination of SOMIM maps and individual ω plots reveals the nature of

the shape evolution with aging. The SOMIMs of Figure 6.6 and the shape descriptor plots

of Figures 6.7 and 6.8 support the idea that at low aging times the precipitates tend to have

more irregular shapes and larger aspect ratios. This is indicated by a larger spread of the

peaks in the maps, and the relatively lower values of both ω1 and ω2 in the ω/time plots.

This kind of behavior is not expected. As discussed in Section 6.1.1, it is generally

understood that γ’ precipitates in these materials begin as spherical particles with low

volumes, and only after some growth begin to display the more cuboidal shapes which

minimize elastic energy. Prikhadko and Ardell observed similar behavior when tracking

their shape descriptor, Σ, against precipitate size [209]. It was noted that as particles grow,

they become more circular, followed by a slow return to a less circular shape parameter.

This period of increasing regularity and decreasing aspect ratio is observed in Figures 6.7

and 6.8 for most alloys for treatment times < 10 hours.

It is possible that these effects are due to difficulties in the segmentation of SEM images

at extremely high magnification. In the case of these materials, at one hour of aging, the

distance between precipitates can be as low as 20nm, which borders on the resolution limit

for SEMs. This could lead to incorrectly merged precipitates during segmentation, which

would increase the aspect ratio and the irregularity of the measured shapes and lower the

average values of both ω descriptors. At higher aging times and precipitate sizes, this effect

disappears and the precipitates assume the more expected behavior.

Van Sluytman and Pollock [211] and Prikhodko and Ardell [209] both observed a slowing

in the change of shape class (square to circle) with aging time and the approach of precip-

itates to some final shape. This same effect is visible in the alloys examined here. Once

through the initial period of rapid precipitate shape change, the alloys here appear to hit

a region of constant precipitate morphology. This is most obvious from the plots of Figure

6.8. Every alloy, with the exception of perhaps ME1, appears to have a very slow moving

or perhaps unchanging ω2 value after approximately 16 hours of aging. This is despite the
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fact that the precipitates are continuing to grow in size as seen in Figure 6.9.

All of this indicates that, in the absence of applied stress and at the aging times examined

here, the precipitates quickly assume a stable shape and aspect ratio and maintain it for

extended lengths of aging, despite continued precipitate growth. It would require continued

heat treatments in order to see if the precipitates in these alloys will continue this trend or

at some point enter another region of morphological change.

Figure 6.7, showing trends in ω1 and therefore aspect ratio, shows almost no discernible

relationship between its shape parameter, ω1 and aging time. This agrees with the work

of Prikhadko and Ardell who found no relationship in unstressed alloys, but is in contrast

to that of Fährmann et al., who found increasing aspect ratios in higher misfit alloys with

aging [208]. The reasons for this behavior are not clear. In unstressed alloys, precipitate

coalescence, which is expected with continued precipitate growth, cannot be predicted to

favor any one direction. However, because ω1 is rotationally invariant, any increase in

aspect ratio, regardless of direction, would contribute to a decrease in this value. It is

possible that, because no direction is favored, a precipitates will be likely to merge in two

orthogonal directions at once, which maintains aspect ratio but has the potential to lower

ω2.

Figure 6.9 was created primarily as a check of the segmentation quality. LSW theory

predicts a linear relationship, which is confirmed by the quality of the match of the best fit

lines. The major differences between the alloys is the slope of this line, which is typically

described in the literature as a function of volume fraction. The average volume fraction for

each alloy, calculated from the segmented images, is as follows: CE2: 57.0%, CE4: 53.5%,

CE5: 51.1%, CE7: 53.3%, ME1: 68.6%, ME15: 69.10%. There is no obvious relationship

here, as the alloy with the largest slope: ME1, and the alloy with the smallest, ME15, have

very similar volume fractions. In addition, at low aging times, one may observe that there

are greater deviations from the best fit lines, supporting the idea that there are segmentation

problems at lower aging times.
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6.4.2 Creep and precipitate morphology

Size differences

It is clear that the erroneous introduction of air-cooling over water quenching affected

the samples to some degree. Example micrographs in Figure 6.10 were all taken at the

same magnification, with image widths of 15µm. Alloy ME15 has precipitates that are

considerably larger than the others. Kernel density estimations (KDEs) of the size of

precipitates, shown in Figure 6.13, clearly show that the distribution of the size of γ’ particles

in ME15 does not only have a significantly higher mean value, but is also dramatically wider

as well. The width of the distribution suggests that some of the precipitates of the ME15

alloy have either begun to coalesce, or to develop the more irregular particle morphologies

associated with a loss of coherence [12].

In contrast to ME15, the remaining alloys had much more similar precipitates in terms

of cross-sectional area. Again, from Figure 6.13, both CE5 and ME1 show very similar,

almost identical, size distributions, with very similar mean and median values. CE5 has a

larger spread than these alloys and a larger overall particle size, with a larger mean and

median size as well.

ME15 shows such a dramatically different range of precipitate sizes, most likely due

to the air-cooling of the samples, rather than quenching, as should have been done. It is

interesting to note that despite the change in heat treatment cooling rates, the other three

alloys display similar sizes but ME15 does not. This is probably caused by compositional

differences, and the impact of the longer aging time for this alloy combined with the change

in heat treatment. Regardless, as will be discussed below, it does not appear that precipitate

size played a large role in influencing the creep resistances of these materials, at least in

this study.

Precipitate shapes

The SOMIMs and PMIMs of Figure 6.11 and 6.12 for the creep-tested alloys highlight

what is suggested by the micrographs of Figure 6.10. The precipitates of ME1 display a

morphology is that is significantly different than the other alloys. The precipitates appear

much more square, and this is supported by the SOMIM, which has a peak right above the
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location of the square. Both CE2 and CE5 have precipitates that are closer to circular. The

precipitates of ME15 appear to be somewhere between those of the CE alloys and ME1,

however, the SOMIMs and PMIMs make it clear that the morphology of these particles

is closer to the CE alloys. The tail of the distribution of ME15 also has a more spotted

appearance. This is a result of the precipitate sizes, which reduced the number of particles

that were measured from roughly 5000 for the other alloys to 1000.

The kernel density estimates (KDEs) of Figure 6.13 show essentially smoothed his-

tograms of the data, normalized so that the area under the curve is equal to unity. The

bars along the top indicate ± one standard deviation from the mean, indicated by a dia-

mond shape. The square shape indicates the mean of the indicated shape feature in each

alloy for particles that have ω2 values greater than or equal to 0.91. This allows for the

quantification of only the regular shapes which have morphologies between the circle and

the square. Dotted vertical lines indicate the median of the data, and the peak of each

KDE is the mode.

It is clear from the shape of the KDEs that ME15 has the largest spread for each

shape feature. This is suggested by the fact that ME15 has the lowest peak in each KDE,

indicating more particles are farther away from the mode than in any other alloy. This

is particularly true looking at ω2, τ2 and τ3. This suggests that ME15 has many more

irregular shapes and is therefore further along in particle growth than the other alloys; its

precipitates either beginning to coalesce or lose coherency, which occurred prior to creep

testing, reducing its creep properties.

Another notable feature of these plots is the difference between the means, medians and

modes of these data sets. The long-tailed skewed distributions that are displayed indicate

the presence of many outliers. Out of the three measurements, the mean is most sensitive to

these, followed by median, and then mode [220]. When looking at mean values, the alloys

tend to be grouped by their type: ME alloys nearest to each other and CE alloys together.

This is true in the case of all the shape descriptors, with the exception of τ3, which has a

more evenly distributed set of means.

Looking at medians, this is only the case with ω1, τ1, and τ3. The medians of the ω2,

and τ2 values are more evenly spread. The modes of these values, indicated by the peaks
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of the KDEs are either evenly spaced over a small range, as in the case of ω1 or τ1, or

distributed in such a way that the mode of ME1 is clearly separate, as in the case of τ2 and

τ3.

The implications of parameter choice are important and should reflect the expected

behavior of the properties being examined. If the relevant property, in this case creep

resistance, is expected to be influenced only by the most common particles, then mode

should be used. Mean may be a good choice if outliers are expected to have an effect, but

it may be that the mean value itself is influenced by the outliers to a larger degree than

the affected property. It is unclear what is the case with these particular alloys. Regression

analyses are therefore presented using all three parameters.

Creep resistance

The strain-time curves presented in Figure 6.14 show the results of the creep tests on

these alloys. The best performing alloy was ME1, followed by CE2, ME15, and CE5. The

quantification of creep resistance was done by calculating the minimum creep rate, the

results of which are shown in Table 6.3. Minimum creep rate was calculated by fitting a

series of functions of the form y = axb + c to each line. The minimum creep rate was taken

as the minimum slope of these fitted curves. Table 6.3 also presents the time to failure in

hours as an alternative measure, but these values were not used here. Best fit lines for the

shape features and natural log of the creep resistances of each alloy are presented in Figures

6.15, 6.16, and 6.17 for the mean, median and modes of the data, respectively.

Looking at the mean plots of Figure 6.15, there appears to be some relation between

some shape features and the creep resistance. The relationship is strongest in the cases of

ω1, τ1, and τ2. These all display correlation coefficients greater than 0.5, indicating that

over half of the variance in creep resistance can be attributed to variance in these shape

values. However, the correlation coefficient of ω2 is low at 0.35. Previously mentioned work

by Van Sluytman et al. [211] utilized values directly related to ω2 and found indications of

correlation.

With the use of median values, the strength of all the correlations increases. The r2

values of ω2 increases to 0.75, and the same value for τ2 increases to nearly 0.8. These
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values indicate a strong relationship, and suggest that the presence of outliers is masking

the overall effect of shape upon creep resistance. Finally, using the mode of the shape

features increases the correlations once again to 0.87 in the case of ω2 and nearly 0.9 in the

case of τ1 and τ2.

The fact that, even when changing the quantifier of the distribution from mean to median

to mode, the correlation between creep resistance and size did not grow significantly suggests

that the increased correlations are not the result of simple data manipulation, but instead

are revealing relationships between these properties which were disguised by the presence

of outliers.

The improved correlation with increasingly more robust distribution measures suggests

that the outlier particles, whose influence is being reduced, have less of an effect on the

overall creep resistance than the shape of the majority of the particles represented by the

mode. This is compatible with what is known regarding high temperature creep deforma-

tion. Dislocations travel through the matrix and form networks which are restricted to the

surface of the precipitates. Rowland noted that spherical precipitates do not form interfa-

cial dislocation networks [221]. In addition, less cubical particles with lower lattice misfits

do not create rafts which inhibit dislocation motion. The question may be analogous to

percolation. If the majority of the particles are of the ideal morphology then they will in-

hibit dislocation motion and improve creep resistance. If this is the case, then the mode of

the data is the proper quantifier. However, to fully explore this, much more analysis is nec-

essary, including imaging and testing of more samples with a variety of shapes and shape

distributions.

Some care should be taken in trying to draw too many conclusions from this data. For

example, lower ω1 values are correlated, up to an r2 value of 0.6, with improved creep

resistance. This would indicate that increased γ’ aspect ratios improve the performance of

the material. However the trend is primarily drawn between ME1 and the CE alloys. While

it is true that ME1 has particles with larger aspect ratios, the alloy also has precipitates of

a much more rectangular nature which is a completely separate quality that is measured by

ω2. This correlation between ω values in the samples examined here may mask underlying

effects, or suggest effects that are not present. There are not enough data points to make
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distinctions between these effects as of yet, but with additional tests of more alloys, more

subtle details can be uncovered.

Additionally, there is likely a large degree of other correlations between these shape

descriptors. It is possible that for the classes of shapes that are present in these alloys,

many of the τ values are so strongly correlated with the ω values that measuring the shapes

to the increased degree of detail provided by the fourth order τ values is unnecessary.

However, at this point in time, without looking at more samples, it is difficult to know

for sure. Regardless, as previously described in Section 6.1.2, interactions between particle

morphology and creep resistance has been observed in the past, so these observations are

consistent with previously noted qualitative relationships.

The correlations that are described here are all based upon an assumption of a linear

relationship between the shape features and the creep resistances of these alloys. While

there are strong correlations present, there is no reason why the relationships suggested by

this data should necessarily be linear. A larger number of alloys with a wider variety of

precipitate shapes would allow for a more detailed and complete analysis.

Looking at the micrographs of Figure 6.18, it is clear that the best performing alloys,

ME1 and CE2, have undergone a significant degree of precipitate evolution, while the other

two alloys have not. This may indicate, as discussed in Section 6.1.1, that both ME1 and

CE2 have a higher degree of misfit at the creep temperature than the other alloys. This

increased misfit would drive rafting and contribute to the creep resistances of the materials.

The variations in particle morphology between ME1 and CE2 may be due to a difference

in the sign of the lattice misfit. The stress axis is perpendicular to the images of Figure 6.18.

CE2 has therefore formed rafts parallel to this axis, indicating positive misfit. It is difficult

to tell for ME1, but the extended conglomerations of γ’ strongly indicate rafts which have

formed close to the plane of the image, similar to microstructures shown elsewhere [205].

This indicates perpendicular rafting, suggesting negative misfit. These rafts are thought

to inhibit dislocation motion and contribute to strengthening of the alloy in creep. This is

consistent with the superior creep resistance of this alloy.

From all of the plots, it is clear that the ME15 alloy is the most significant outlier

and therefore has a lower creep resistance than would be suggested by the shape features
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present. The most obvious difference between ME15 and the other alloys is the large size

of the precipitates. Creep resistance is affected by the size of precipitates. Nie et al. used

finite element analysis to predict such an effect in similar superalloy materials and then

observed corroborating evidence from experiments [222]. However, Figures 6.15, 6.16, and

6.17 all show very little correlation, suggesting that the influence of size between these alloys

is small. Statistically speaking, by using four alloys, three of which with similar precipitate

volumes, the effect could be masked. Further examination of a wider array of alloys with

an increased variation in precipitate sizes would allow for more subtle effects to be noted.

6.5 Conclusions and future work

The work described in this chapter provides a stepping stone toward fully understanding

the influence of precipitate shape on the creep resistances of single-crystal nickel-base su-

peralloys. While relationships had been noted in the base, they were primarily based upon

qualitative observations of shape. This work utilizes quantitative methods to describe the

shape of precipitates to a high degree of detail. In addition, examines multiple aspects of

γ’ precipitate shape separately.

Prior to this work, it was unclear if automated methods would provide the quality of

segmentation and analysis necessary to allow for an accurate measurement of precipitate

morphology. The above results demonstrate the effectiveness of the current approach in

measuring superalloy precipitates sizes and shapes utilizing an automated method relying

on Cartesian moment invariants as the shape descriptors. Size measurements closely match

the LSW model of growth. Shape measurements indicate no obvious effect of aging on

aspect ratio, except for a mild effect on those alloys with precipitates of more square cross-

section. Precipitate shapes tend to start more irregular or square, and move toward more

regular, circular cross-sections up until about four to eight hours of aging. This transition

does not match expected behavior but may be due to imaging difficulties at small sizes.

After this region, the behavior does match what is expected.

While the distributions of shapes were strongly affected by outliers, this is mitigated

to some extent through using more robust quantifiers of these shape distributions, such

as the medians or modes of the data sets. Ultimately, strong correlations between ω2, τ2,
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and τ3 with the minimum creep rate were shown. However, the number of alloys examined

do not allow for the full extent of the relationship to be made clear. Nevertheless, this

work supports the hypothesis, and shows that moment invariants can be an effective tool in

drawing quantitative relationships between microstructural shapes and material properties

in single-crystal nickel-base superalloys.

6.5.1 Future work

Continued examination of these materials and the shapes of their precipitates should focus

on extending the analysis to a greater number of alloys to improve the statistical support

for the presence of a relationship, and to more fully explore the shape of this relationship

as well.
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CHAPTER VII

Summary and Conclusions

7.1 Summary

The goal of this work is to explore the relationship between microstructural shapes and

the properties or function of the material. Using advanced segmentation methods, and

high-dimensional visualization and clustering techniques, this analysis can be performed

across a wide variety of materials and on large numbers of shapes automatically. This

type of characterization is an under-explored aspect of materials science, and quantitative

correlations between morphology and material performance serves to illustrate that showing

that these types of links exist and are meaningful while simultaneously illustrating the

effectiveness of the techniques described here.

The hypothesis of this work is as follows: Shapes of microstructural subregions in em-

bryonic Arabidopsis Thaliana leaves, additive manufacturing feedstock powders, and single-

crystal nickel-base superalloys, as quantified by Cartesian and Zernike moment invariants,

correlate to the overall properties or function of the material as a whole. This hypothesis

was explored in the following material systems under the given conditions:

1. The three-dimensional shapes of cells in Arabidopsis Thaliana cotyledons used to

identify cell function.

2. The two-dimensional shapes of a subset of additive manufacturing powder feedstock

used to identify the material and manufacturer of the feedstock.

3. The two-dimensional shapes of γ’ precipitates in single crystal nickel-base superalloys

correlated to the creep resistance of the alloy.
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In the case of the Arabidopsis Thaliana cotyledon cells, this work has shown the efficacy

of the segmentation, dimensionality reduction, and clustering methods of the unsupervised

machine learning methods described previously, as well as the success of a trainable support

vector machine classifier. The best success rate utilizing unsupervised methods has a mutual

information value of 0.627, and based upon qualitative analyses of clusterings is it clear that

3D moment invariants quantify relevant shape information of these cells which correlate to

cell role and function. The use of unsupervised methods show that cells of similar function

group naturally in the shape data.

Using supervised methods, a maximum success rate of above 90% was achievable, but

this was done utilizing features which include shape, volume, nearest neighbor count, and

orientation. When restricted to shape alone, success rates of 60-70% were achievable. The

success of supervised methods show that these features can be used to artificially separate

the classes of cell.

Work with superalloy feedstock has shown that two-dimensional Cartesian moment in-

variants are capable of quantifying subtle differences between particles. Utilizing a bag of

words approach to image classification allows for a success rate of 90% in the identifica-

tion of 80 test images pulled from a collection of images of eight different material powders.

Using five lower order moment invariants allows for nearly the same success rate of approxi-

mately 86%. Initially, work which focused on simple histogram matching proved ineffective,

but the use of a bag of words model, which allowed for greater influence of irregular shapes

which made up the minority of the particles, improved matching significantly. In addi-

tion, t-distributed stochastic neighbor embedding (t-SNE), provides a way to reduce the

dimensionality of the data while still retaining a large degree of structure. This algorithm,

coupled with a density based clustering method, allows for the clustering of circular and

near circular particles by subtle morphological features which also improves clustering.

In the case of the superalloys, the work here has shown that there is correlation be-

tween several shape quantifiers and the creep resistances of four experimental superalloys

as measured by the minimum creep rate. It appears that with regard to all five shape pa-

rameters examined (ω1, ω2, τ1, τ2, τ3), reduced values, indicating values closer to square,

correlate with improved performance in high temperature creep. This matches qualitative
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observations, but there are a number of caveats. The first is that with only four examined

alloys, it is difficult to fully examine the full nature of the relationship. Correlations shown

in this work are linear but there may be a more complex interaction between shape values

and creep resistance. Also, with only four examined alloys, correlations between shape val-

ues may be masking underlying effects. Finally, without post-creep imaging, it is difficult

to determine the true nature of dislocation-precipitate interactions during testing.

7.2 Conclusions

It is clear that in the three systems examined here that the shape of microstructural sub-

regions either reflects material function and properties, or influences them directly. Classi-

fying shape is therefore a powerful tool when it comes to understanding the relationships

between material structure and material function. Moment invariants provide a way to

quantify shape that is complete, able to be tuned to an arbitrary level of detail, and capa-

ble of quantifying information that is relevant to the materials scientist.

The three material systems examined here are not the only ones in which shape is an im-

portant factor. Extending the methods described here to other systems only gets easier with

time. Methods for segmentation are becoming more and more effective, and improvements

to machine learning algorithms allow more interesting and subtle relationships between fea-

tures to be examined. Hopefully, shape will become an increasingly investigated property

of material microstructures in the future.

In closing, this quote from Dr. Cyril Stanley Smith is particularly applicable and sums

up the motivation for four years of work spent “examining the background”:

“As science matures, attention is focused more on forces, and shape tends to be

taken for granted... Nevertheless, it is desirable from time to time to examine

the background and to attempt to deduce relationships of greater complexity

and utility than those that are immediately obvious” [112].
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