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ABSTRACT. Markov Chain Monte Carlo (MCMC) is a technique for sampling from a tar-

get probability distribution, and has risen in importance as faster computing hardware has

made possible the exploration of hitherto difficult distributions. Unfortunately, this pow-

erful technique is often misapplied by poor selection of transition kernel for the Markov

chain that is generated by the simulation.

Some kernels are used without being checked against the convergence requirements for

MCMC (total balance and ergodicity), but in this work we prove the existence of a simple

proxy for total balance that is not as demanding as detailed balance, the most widely used

standard. We show that, for discrete-state MCMC, that if a transition kernel is equivalent

when it is “reversed” and applied to data which is also “reversed”, then it satisfies total

balance. We go on to prove that the sequential single-variable update Metropolis kernel,

where variables are simply updated in order, does indeed satisfy total balance for many

discrete target distributions, such as the Ising model with uniform exchange constant.

Also, two well-known papers by Gelman, Roberts, and Gilks (GRG)[1, 2] have proposed

the application of the results of an interesting mathematical proof to the realistic optimiza-

tion of Markov Chain Monte Carlo computer simulations. In particular, they advocated

tuning the simulation parameters to select an acceptance ratio of 0.234 .

In this paper, we point out that although the proof is valid, its result’s application to prac-

tical computations is not advisable, as the simulation algorithm considered in the proof is

so inefficient that it produces very poor results under all circumstances. The algorithm used

by Gelman, Roberts, and Gilks is also shown to introduce subtle time-dependent correla-

tions into the simulation of intrinsically independent variables. These correlations are of

particular interest since they will be present in all simulations that use multi-dimensional

MCMC moves.
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Preface

Markov Chain Monte Carlo (MCMC) is an indirect method for generating random val-

ues from a probability distribution Π which is difficult to sample from directly. This is

accomplished by generating a Markov chain, a sequence of values (called terms) with each

term depending the value of its predecessor according to some probabilistic rule, called a

stochastic kernel. The behavior of a Markov chain is completely determined by the choice

of stochastic kernel, so the kernel must be selected so that the terms of the chain have the

correct probability distribution Π . This is the concern of guaranteeing convergence.

In practice, we would also like the Markov chain to visit many areas of the sample

space in as few terms as possible. Doing so would allow us to estimate statistics for the

distribution using a small amount of computer time. It is in this way that we optimize

efficiency. As computer simulations using MCMC have found extremely broad uses that

go far beyond the original physics applications proposed by Metropolis, et al.[12], the

optimization of MCMC has become an important practical issue, as well as an interesting

subject of research.

After some preliminary background material in Part 1, we discuss the properties that

a kernel must have if it is to produce a Markov chain with the correct distribution. The

bare minimum is total balance, a condition which is difficult to verify directly. A stronger

condition, called detailed balance, is widely used as a proxy for total balance, but is un-

necessarily strict in some cases. The heavily cited work of Manousiouthakis and Deem

[17] shows that there is an alternative proxy for total balance; however, this alternative

is inapplicable to several stochastic kernels which are commonly used in MCMC, such

as the sequential update for the Ising model. In Part 2, we show that under fairly broad

conditions, a kernel can satisfy total balance without satisfying detailed balance. We show

that this is true for the sequential update and other important kernels. As the sequential

update is simpler to program and generally results in faster code than other more compli-

cated update schemes, this result should have wide application in MCMC.
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On the topic of MCMC optimization, widely cited papers by Gelman, Roberts, and

Gilks[1, 2] have claimed that for MCMC simulations of models with a large number of

independent variables, a kernel should be selected which produces an acceptance ratio (an

important parameter for an MCMC simulation) with the numerical value of 0.234 . The

elegant simplicity of the GRG result, as well as the fact that it is based on a mathematical

proof, has brought it a great deal of attention. However, in Part 3, we show that the 0.234

rule is of little use for practical applications; the mathematical proof behind it is only valid

for an inherently inefficient class of kernels, the global updates, which in practice result in

very small changes between successive states in a large number of dimensions, inhibiting

the chain’s ability to spread quickly through the possible states. Using the 0.234 rule with

a global update kernel is valid but inadvisable, while using the rule with other kernels is

simply incorrect; there are different “optimal acceptance ratios” for other kernels, as has

been shown by previous work [4, 5].

On the other hand, the algorithm considered by Gelman and co-workers[1, 2] does have

interesting properties that provide a cautionary tale for commonly-used algorithms. Chief

among these properties is the existence of time-shifted cross-correlations. In this phenom-

enon, variables which are supposed to be independent under the distribution Π are in-

deed independent from each other within each term of the Markov chain. However, the

values of these variables taken from terms separated by a fixed number of time steps may

be correlated. We verify the existence of this bizarre and previously unseen phenomenon

in Part 3, and offer a likely explanation for its occurrence in an MCMC simulation using

the global update kernel.

Finally, in Part 4, we broaden the applicability of a result by Chan and Geyer [10] which

addresses the guaranteeing of convergence. Our proof applies to some combinations of

distributions Π and choices of stochastic kernels which the previous result did not, chief

among these the single-variable update Metropolis kernel using uniform distributions to

propose moves.
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Part 1. Preliminaries

1.1. MEASURE THEORY

Definition 1. A collection A ⊆ P(Ω) is called a σ -algebra on Ω provided that

(1) ∅ ∈ A

(2) For any A ∈ A , we have Ω\A ∈ A

(3) For any sequence {An}∞
n=1 ⊆ A , we have

⋃∞
n=1 An ∈ A

This definition implies also that Ω ∈ A , and for any sequence {An}∞
n=1 ⊆ A , we have⋂∞

n=1 An ∈ A . An important example of a σ -algebra is the Borel σ -algebra on Ω , which

contains all open and closed sets in Ω , along with the other sets necessary to produce a

σ -algebra.

Definition 2. Given a set Ω and σ -algebra A on Ω , a function µ : A → [0, ∞] is called

a measure provided that

(1) For A, B ∈ A with A ⊆ B , we have µ(A) ≤ µ(B)

(2) For any sequence {An}∞
n=1 ⊆ A with Am ∩ An = ∅ if m 6= n , we have

µ

(
∞⋃

n=1

An

)
=

∞

∑
n=1

µ (An) (1.1.1)

Note that a measure µ may take the value ∞ , and we abide by the convention that for

any a ∈ [0, ∞] , we have a ≤ ∞ and a + ∞ = ∞ . A set in the domain A is said to

be µ -measurable. A measure space (Ω,A, Π) is said to be a probability space, and Π a

probability measure (or distribution) provided Π(Ω) = 1 .

Example 3. An important measure is the counting measure Card (for cardinality). For

any Ω , the value Card(A) is defined for every A ∈ P(Ω) to be equal to the number of

members of A .
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Definition 4. Given a measure space (Ω,A, µ) and a set A ⊆ Ω , we say a logical state-

ment P(x) is true for µ -almost every x ∈ A , provided that the set

F := {x ∈ A : P(x) is false} (1.1.2)

has µ(F) = 0 .

Definition 5. Given a measure space (Ω,A, µ) , we define the completion
(
Ω, Ā, µ̄

)
by

letting

Ā := A∪ {B ∈ P(Ω) : B ⊆ A for some A ∈ A with µ(A) = 0} (1.1.3)

and

µ̄(A) :=


µ(A), A ∈ A

0, A ∈ Ā\A
(1.1.4)

The measurable space (Ω,A, µ) is said to be complete provided Ā = A .

Note that this also means that µ is complete if and only if, for every A, B ∈ A and

C ∈ P(Ω) with A ⊆ C ⊆ B and µ(A) = µ(B) < ∞ , we have C ∈ A and µ(C) = µ(B) =

µ(A) . That is, a set between two sets of equal finite measure must be measurable and

have the same measure as the others.

An important complete measure is the Lebesgue measure on R , denoted by L1 , de-

fined for the collection of Lebesgue-measurable sets M1 , which includes all the Borel sets

along with some (but not all) other subsets of R . For “visualizable” sets, the Lebesgue

measure corresponds to the length of a set on the real line. A more rigorous definition for

A ∈ M1 is

L1(A) := inf

{
∞

∑
n=1

sn : {xn}∞
n=1 ∈ RN, {sn}∞

n=1 ∈ (0, ∞)N, A ⊆
∞⋃

n=1

(xn, xn + sn)

}
(1.1.5)

that is, the largest number which is always smaller than the sum of the lengths of open

intervals which cover the set A .
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Definition 6. Given measure spaces (Ω,A, µ) and (Ψ,B, ν) , we can define the product

space (Ω×Ψ,A×B, µ× ν) by

(µ× ν)(A× B) := µ(A)ν(B) (1.1.6)

for A ∈ A and B ∈ B .

Another important measurable space is that of the N -dimensional Lebesgue measure(
RN,MN,LN) . This is, roughly speaking, the area of a set in the plane for N = 2 ,

volume for N = 3 , and so on. It is rigorously defined recursively to be the completion of

the product measurable space
(
RN,MN−1 ×M1,LN−1 ×L1) for N > 1 .

Definition 7. Given a measure space (Ω,A, µ) and a topology τ for Ω , we define the

support of the measure µ by

suppτ(µ) := {x ∈ Ω : µ(A) > 0 for every set A open in τ with x ∈ A} (1.1.7)

(Usually we will omit the subscript when the topology is obvious.) Note that the sup-

port is always closed. For a separable metric space (such as RN ), every open cover has a

countable subcover, so

µ (Ω\supp(µ)) = 0 (1.1.8)

since the complement of the support is the union of countably many open sets with mea-

sure zero. Thus µ(Ω) = µ (supp(µ)) .

Definition 8. Given a measure space (Ω,A, µ) , we say the measure µ is σ -finite provided

that there is some sequence {An}∞
n=1 of µ -measurable sets with µ (An) < ∞ for every

n ∈N , such that

Ω =
∞⋃

n=1

An (1.1.9)

Example 9. If Ω = R , the counting measure Card is not σ -finite, since the union of

countably many finite sets is always countable, and R is uncountable. However, the
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Lebesgue measure L1 is σ -finite since

R =
∞⋃

n=1

([−n,−n + 1] ∪ [n− 1, n]) (1.1.10)

and each of the unioned sets has Lebesgue measure 2.

Definition 10. Given a measure space (Ω,A, µ) and a measure ν on A , we say that µ is

absolutely continuous with respect to ν , and write µ � ν , provided that for any A ∈ A

with ν(A) = 0 , we also have µ(A) = 0 .

Example 11. Given a measure space (Ω,A, µ) and a set A ∈ A with µ(A) > 0 , the

uniform distribution on A is a probability measure defined for B ∈ A by

UnifA(B) :=
µ(A ∩ B)

µ(A)
(1.1.11)

Clearly we always have UnifA � µ .

Theorem 12. (Radon-Nikodym) Let a measure space (Ω,A, µ) be given, along with another

measure ν on A . If µ and ν are σ -finite and µ � ν , then there is some function m : Ω → R ,

called the density function of µ with respect to the basis measure ν , such that

µ(A) =

ˆ
A

m(x)ν(dx) (1.1.12)

Note that since, for any B ⊆ A with ν(B) = 0 we have

µ(A) =

ˆ
A\B

m(x)ν(dx) +
ˆ

B
m(x)ν(dx) =

ˆ
A\B

m(x)ν(dx) (1.1.13)

regardless of the values of m(x) for x ∈ B , the density function is well-defined only

for sets with strictly positive ν -measure. If the basis measure is LN , for example, it is

impossible to specify the value of the density function at a single point in isolation.
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Definition 13. Given a measure space (Ω,A, µ) and a measure ν on A , we say that µ is

singular with respect to ν , and write µ ⊥ ν , provided that there is some A ⊆ Ω such that

µ(B) = 0 for every B ∈ A ∩P(A) , and ν(C) = 0 for every C ∈ A ∩P(Ω\A) .

Theorem 14. (Lebesgue decomposition) Let a measure space (Ω,A, µ) be given, along with

another measure ν on A . If µ and ν are σ -finite, then there are unique signed measures µAC

and µsing on A such that

µ = µAC + µsing (1.1.14)

and µAC � ν and µsing ⊥ ν .

1.2. MARKOV CHAIN MONTE CARLO

In most practical situations, MCMC is used to produce a sequence of samples from

a state space Ω distributed according to a distribution Π from which it is difficult to

generate samples directly. This is accomplished by producing a Markov process with Π as

its equilibrium distribution. For a probability space with A the collection of measurable

sets, a discrete-time Markov process consists of a sequence of states X(t) ∈ Ω for time

steps t ∈N0 := N∪ {0} , satisfying

Pr [X(t + 1) ∈ A|X(t)] = Pr[X(t + 1) ∈ A|X(t), X(t− 1), . . . , X(0)] (1.2.1)

for every set A ∈ A . That is, the distribution of X(t + 1) depends solely on the value

of X(t) , and information about the values of earlier states in the chain does not alter the

distribution of X(t + 1) . This is termed the Markov property.

1.2.1. Notation. The dependence of X(t+ 1) on X(t) can be characterized by a stochastic

kernel, which represents the probability of moving from a state x to some state in a mea-

surable set A in one time step. In general, a mapping K : Ω×A → [0, 1] is a stochastic

kernel provided that

• K(x, ·) is a measure on the collection A for all x ∈ Ω ,

• K(·, A) is a measurable function for all A ∈ A ,
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• K(x, Ω) = 1 for all x ∈ Ω .

The product of kernels K1 and K2 represents the probability of moving from state x to a

state in the set A by applying the kernel K1 and then K2 . This is denoted by K1K2 and

defined formally as

(K1K2) (x, A) :=
ˆ

y∈Ω
K1(x, dy)K2(y, A) (1.2.2)

for continuous state spaces Ω , and

(K1K2) (x, A) := ∑
y∈Ω

K1(x, y)K2(y, A) (1.2.3)

for discrete spaces Ω . (For the remainder of this section, we will assume continuous state

spaces; the definitions for discrete state spaces are analogous, replacing integrals with

sums.)

We define for n ∈ N0 the n th iterate of the kernel K , denoted by Kn(x, A) , which

represents the probability of moving from x to some state in A by applying the kernel K

exactly n times. For n ∈N∩ [2, ∞) , we define

Kn(x, A) :=
ˆ

y1∈Ω
K (x, dy1)K (yn−1, A)

n−1

∏
i=2

K (yi−1, dyi) (1.2.4)

and by convention set K1(x, A) := K(x, A) and K0(x, A) := 1A(x) , the characteristic

function of A .

Supposing H is another probability measure on A , we also define a notation for the

probability of a random variable distributed according to H taking a value in the set A

after the application of the kernel K . This is defined formally as

(HK)(A) :=
ˆ

Ω
K(x, A) H(dx) (1.2.5)

For a Markov chain X , we can formulate the dependence of X(t + 1) on its immediate

predecessor X(t) using a stochastic kernel Pt , called the transition kernel at time step t .
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For all t ∈N0 , x ∈ Ω , and A ∈ A , we have

Pr[X(t + 1) ∈ A|X(t) = x] = Pt(x, A) (1.2.6)

If Pt = P0 for all t ∈ N0 , so that the transition kernel is independent of time step, we say

the process X is time-homogeneous (or stationary) and denote the transition kernel as P .

We can then write

Pr[X(t + n) ∈ A|X(t) = x] = Pn(x, A) (1.2.7)

for any n ∈ N0 . Finally, we denote the distribution of a Markov process at time t ∈ N0

by Ht , so that

Ht(A) := Pr[X(t) ∈ A] (1.2.8)

We define the total variation of the probability measures G and H defined on the collec-

tion A by

δ(G, H) :=
1
2

sup
A∈A
|G(A)− H(A)| (1.2.9)

1.2.2. Discrete-state process. If supp(Π) is countable, then the target distribution Π is

considered discrete, regardless of the cardinality of Ω . For example, if Ω = R and A =

P(R) , a valid probability measure on A is defined by

Π(A) :=


∑n∈A∩N 2−n, A ∩N 6= ∅

0, A ∩N = ∅
(1.2.10)

for all A ∈ A , and we would consider this a discrete distribution even though Ω is

uncountable. Of course, it would be more natural to define this probability measure for

Ω = N and A = P(N) by

Π(A) := ∑
n∈A

2−n (1.2.11)

for all A ∈ A , so we will assume for discrete distributions that our sample space is Ω+ :=

supp(Π) . Note that this means Π({x}) > 0 for all x ∈ Ω+ .
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1.2.2.1. Definition. If the distribution Π is discrete, then for each t ∈ N0 and A ∈ A , we

have

Pt(x, A) = ∑
y∈A

Pt (x, {y}) (1.2.12)

so the transition kernel is completely determined by the values of Pt (x, {y}) for x, y ∈ Ω .

It seems sensible in the discrete-state case to define the mass kernel and mass function

pt(x, y) := Pt (x, {y}) (1.2.13)

ht(x) := Ht ({x}) (1.2.14)

We then have

Pr[X(t + 1) = x] = (HtPt) ({x})

= ∑
y∈Ω

ht(y)pt(x, y)

= ht(x)

1− ∑
y∈Ω\{x}

pt(x, y)

+ ∑
y∈Ω\{x}

ht(y)pt(x, y)

= Ht ({x}) + ∑
y∈Ω\{x}

[ht(y)pt(y, x)− ht(x)pt(x, y)] (1.2.15)

This leads to the discrete-state master equation

Pr[X(t + 1) = x]− Pr[X(t) = x] = ∑
y∈Ω\{x}

[ht(y)pt(y, x)− ht(x)pt(x, y)] (1.2.16)

1.2.2.2. Conditions for convergence to equilibrium distribution Π . Let Π be the discrete target

distribution which we wish to sample from. Suppose that X is a time-homogeneous, that

is Pt = P0 for all t ∈N0 . Then define p := p0 and π(x) := Π({x}) . In this discrete case,
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it is sensible to work with the mass functions ht and π rather than the distributions Ht

and Π .

We seek to guarantee the convergence of ht to π in the sense of total variation, that

is, δ (Ht, Π) → 0 as t → ∞ . It is sufficient to show that p is ergodic and has π as an

equilibrium mass function. By Theorem 2 in Tierney [9], since Ω is countable, we have p

ergodic if it is π -irreducible and has an aperiodic state with positive π -probability. For

p to be π -irreducible requires that, for any x, y ∈ Ω with π(y) > 0 , we must have some

n ∈ N0 such that Pn(x, {y}) > 0 . This means that for any pair of states it is possible to

travel from one to the other in some finite time.

If a state x ∈ Ω can only occur during time steps exactly d ∈N apart, we say that x is

periodic with period d . Formally, this requires that for all c ∈N∩ [1, d) ,

Pr[X(t + d) = x|X(t) = x] > 0 (1.2.17)

Pr[X(t + c) = x|X(t) = x] = 0 (1.2.18)

A state is said to be aperiodic if it is not periodic with respect to any period d .

For p to have π as an equilibrium distribution, we need to ensure that if ht0 = π for

some t0 ∈ N0 , then ht = π for all t ≥ t0 . That is, the distribution of X(t) does not

change once it matches the target distribution π . From the master equation (1.2.16) this

will be satisfied if and only if

0 = ∑
y∈Ω\{x}

[π(y)p(y, x)− π(x)p(x, y)] (1.2.19)

for each x ∈ Ω . This condition is total balance, and may be cumbersome to verify. A

stronger condition, which is often easier to verify, is detailed balance, which requires that

each term of the sum vanish. That is,

π(y)p(y, x) = π(x)p(x, y) (1.2.20)
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for all x, y ∈ Ω .

1.2.3. Continuous-state process. In contrast to the discrete distributions, we have the

continuous (or diffuse) distributions where Π({x}) = 0 for all x ∈ Ω . If Π is to be

a probability measure, this obviously requires that the sample space Ω and supp(Π) be

uncountable. The most common continuous distributions in applications have Ω ⊆ RN

and Π� LN , but other situations are easily constructed, for example the Cantor measure

on R which is not only not absolutely continuous with respect to LN but singular. The

following applies to the more general situations as well.

1.2.3.1. Definition. Suppose the sample space Ω ⊆ RN and we have a vector-valued

Markov process X . Then for any A ∈ A we have

Pr[X(t + 1) ∈ A] =

ˆ
Ω

Pt(x, A)Ht(dx)

=

ˆ
A
[1− Pt(x, Ω\A)] Ht(dx) +

ˆ
Ω\A

Pt(y, A)Ht(dy)

= Ht(A) +

ˆ
Ω\A

Pt(y, A)Ht(dy)−
ˆ

A
Pt(x, Ω\A)Ht(dx)(1.2.21)

where Ht again represents the instantaneous distribution of X(t) . This gives rise to the

continuous-state master equation:

Pr[X(t + 1) ∈ A]− Pr[X(t) ∈ A] =

ˆ
Ω\A

Pt(y, A)Ht(dy)−
ˆ

A
Pt(x, Ω\A)Ht(dx) (1.2.22)

The master equation can be thought of as representing the net “probability flow” into the

set A ∈ A .

1.2.3.2. Convergence to equilibrium distribution Π . Suppose X is time-homogeneous. The

process X converges to an equilibrium distribution Π as t → ∞ , in the sense of total

variation on (Ω,A) , that is if P is ergodic and Π is an invariant measure for P . From

Theorem 1 in Tierney [9], if the latter condition holds, we can guarantee ergodicity as well

if P is Π -irreducible and aperiodic.
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Irreducibility. The kernel P is Π -irreducible if, for any x ∈ Ω , and A ∈ A with Π(A) > 0 ,

there is some n = n(x, A) ∈ N for which Pn(x, A) > 0 . Essentially, Π -irreducibility

means that it is possible to enter any positive-probability set at some fixed time later in

the process, regardless of the current state.

Aperiodicity. We say P is periodic if, there is some d ∈N0 and disjoint sets A1, A2, . . . , Ad ∈

A for which P
(
x, Ω\Aj+1

)
= 0 whenever x ∈ Aj . That is, the process may return to each

set Aj once in every d time steps, but not at other time steps. If P is not periodic we say

it is aperiodic. A sufficient condition for aperiodicity is that, for every A ∈ A and x ∈ A

there exists t0 = t0(x, A) ∈N0 for which Pt(x, A) > 0 for all t ≥ t0 .

Invariant measure. For the distribution Π to be an invariant measure for P , we must ensure

that, if there is some t0 ∈ N0 for which X (t0) has distribution Π , then X(t) must have

distribution Π for all t ≥ t0 . That is, Π = ΠP . From the master equation (1.2.22) we see

that this will be the case if and only if

ˆ
Ω\A

P(y, A)Π(dy) =
ˆ

A
P(x, Ω\A)Π(dx) (1.2.23)

for all A ∈ A . This condition is total balance, but can be cumbersome to ensure in practice.

Detailed balance. As in the discrete case, it may be useful to find a criterion sufficient to

guarantee total balance as in (1.2.23), but which only depends on the localized behavior

of P and Π . Suppose Π � µ for some σ -finite measure µ on A . Then by the Radon-

Nikodym Theorem, we can find a density function π such that

Π(A) =

ˆ
A

π(x) µ(dx) (1.2.24)

for all A ∈ A .1 We would like to proceed analogously to the discrete-state case above to

obtain an equation similar to (1.2.20). Unfortunately, if P (x, {x}) > 0 for some x ∈ Ω , as

will be the case for the Metropolis kernel discussed later, we know that P is not absolutely

1In the common continuous case where Π � LN , we can replace µ(dx) with dx and this is just ordinary
Lebesgue integration.
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continuous with respect to µ and thus does not have a density function with respect to µ .

However, there is a relatively painless workaround.

Suppose that the process is never trapped in its current state, that is, P(x, {x}) < 1

for all x ∈ Ω . This is certainly the case for a continuous distribution Π , if P is Π -

irreducible.2 Then define the off-diagonal transition kernel as

P◦(x, A) := P(x, A\{x}) (1.2.25)

for A ∈ A . This is technically a substochastic kernel, not stochastic, since we may have

P◦(x, Ω) < 1 for some x ∈ Ω . The difference is not important for our applications,

however.

This allows us to write

P(x, A) = P◦(x, A) + 1A(x)P(x, {x}) (1.2.26)

where 1A is the characteristic function of A . If P◦(x, ·) � µ for every x ∈ Ω , then we

can find a density function p(x, ·) such that

P◦(x, A) =

ˆ
A

p(x, y) µ(dy) (1.2.27)

for all A ∈ A . Note that while π is a probability density function, p(x, ·) is not, unless

P(x, {x}) = 0 .

Since the second term in (1.2.26) will vanish for x /∈ A , this allows us to write the total

balance relation (1.2.23) as

ˆ
Ω\A

ˆ
A

p(y, x)π(y) µ(dx) µ(dy) =

ˆ
A

ˆ
Ω\A

p(x, y)π(x) µ(dy) µ(dx) (1.2.28)

=

ˆ
Ω\A

ˆ
A

p(x, y)π(x) µ(dx) µ(dy) (1.2.29)

2If Π(Ω\{x}) = 0 for some x ∈ Ω , then Π is discrete.
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where we have used Fubini’s theorem in the second line. A sufficient condition for (1.2.29)

to hold is that the two integrands be equal, that is,

π(y)p(y, x) = π(x)p(x, y) (1.2.30)

for µ almost every x, y ∈ Ω . This condition is detailed balance, which implies total

balance. It is often used to show that Π is an invariant measure for P since it is usually

easier to verify in practice.

Thus, irreducibility, aperiodicity, and detailed balance are sufficient to guarantee con-

vergence of the process X to a unique equilibrium distribution Π as t→ ∞ , for Π almost

every X(0) ∈ Ω .
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1.3. METROPOLIS ALGORITHM

A common class of algorithms for producing a Markov process with equilibrium distri-

bution Π are the Metropolis algorithms, the first variant of which was described in [12].

For the continuous state case, the algorithm assumes that we have a measurable space

(Ω,A, µ) with the measure µ being σ -finite, and Π � µ . In this case we have a density

function as defined in (1.2.24).

1.3.1. Algorithm definition. Let us assume that a measurable space (Ω,A, µ) has already

been given with µ being a σ -finite measure, and our target distribution Π satisfies Π�

µ .

In the case of a discrete distribution Π , we can use µ = Card (the counting measure),

and the density π will just be the probability mass function

π(x) := Π({x}) (1.3.1)

for x ∈ Ω . We also have, for any function f : Ω→ R and A ⊆ Ω ,

ˆ
A

f (x)Card(dx) = ∑
x∈A

f (x) (1.3.2)

so the reader is encouraged to mentally substitute masses and sums in the following when

Π is a discrete distribution.

1.3.1.1. Metropolis kernel. In the basic kernel of the Metropolis algorithm, we select for

each x ∈ Ω a proposal distribution Q(x, ·) on A and define an acceptance probability

function for x, y ∈ Ω
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a(x, y) :=


1, π(x) ≤ π(y)

π(y)
π(x) , π(x) > π(y)

(1.3.3)

=


min

{
1, π(y)

π(x)

}
, π(x) > 0

1, π(x) = 0
(1.3.4)

where π is the density function of Π with respect to basis µ . We then define the Metrop-

olis transition kernel

P(x, A) :=
ˆ

A
a(x, y) Q(x, dy) + 1A(x)

ˆ
Ω
[1− a(x, w)]Q(x, dw)

=


´

A a(x, y) Q(x, dy), x /∈ A

1−
´

Ω\A a(x, w) Q(x, dw), x ∈ A
(1.3.5)

Note that π is only well-defined for sets of positive µ -measure. In isolation, π(x) and

π(y) can take any real value, and thus so can a(x, y) . If Q(x, ·) 6� µ , this fact can create

ambiguity about the meanings of the integrals in (1.3.5). If µ(A) = 0 and Q(x, A) > 0 ,

then the values of a(x, y) are totally arbitrary for all y ∈ A and the value of the integral

is not well-defined. Thus we will insist that Q(x, ·)� µ .

This also implies that the off-diagonal kernel P◦(x, ·) as defined in (1.2.25) will be abso-

lutely continuous with respect to µ . We denote by p(x, ·) and q(x, ·) the density functions

of P◦(x, ·) and Q(x, ·) with respect to basis µ . Under these restrictions, we will have

p(x, y) = q(x, y)a(x, y) (1.3.6)
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In many cases, we choose a probability measure Q∗ on A and define the proposal

distribution Q by

Q(x, A) := Q∗(A− x) (1.3.7)

for all x ∈ Ω and A ∈ A . The resulting kernel is called a random-walk Metropolis kernel,

and is by far the most common type of proposal distribution in practice, with Q∗ usually

being either a Gaussian distribution, or a uniform distribution on some useful kind of set

in the space (for example, an interval in R or a hypersphere or rectangle in RN ).

1.3.1.2. Subset updates.

Single-variable mixture kernel. If we are to achieve Π -irreducibility for a kernel P , that ker-

nel must be able to propose changes to every variable in the system. A common, simple

approach is to combine several “subkernels”, each of which proposes a change to one

variable.

Define for j ∈ N ∩ [1, N] the subkernel Pj , which can change only the variable xj ,

Denoting by pj the density (or mass, in the discrete case) function for Pj , we can write

this condition as

pj(x, y) > 0 =⇒ xk = yk whenever k 6= j (1.3.8)

During each time step, we apply a randomly-chosen subkernel, with the probability of

applying the kernel Pj during any time step being equal to some fixed ζ j ∈ [0, 1] . This

produces the single-variable mixture kernel

P =
N

∑
j=1

ζ jPj (1.3.9)

If Pj is a Metropolis kernel, P satisfies detailed balance as in (1.2.30). If, for every j ∈

Z ∩ [1, N] , there is some rj > 0 for which Qj

(
x, x + δe(j)

)
> 0 whenever |δ| < rj for all

x ∈ Ω , then this kernel is Π -irreducible as well. [9] The very weak conditions necessary

to guarantee convergence of the time-varying distribution Ht to the target distribution

Π make this a popular and simple approach to Markov Chain Monte Carlo. However, it
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also has drawbacks. First, it requires the generation of an extra random number on each

step. Second, the existence of long durations in the process X where a particular variable

is not updated at all may cause the efficiency to suffer. Third, under some distributions

Π , there are groups of variables highly correlated with one another, and it would be more

natural to update these variables together, rather than separately. Other kinds of updates

have been developed to address these drawbacks.

General Metropolis subkernels. A general way of producing combinations of kernels is to

define several proposal distributions, each of which only affect a subset of the system

variables, an update set. In the single-variable update described above, the update sets are

singletons. In general, we have ` update sets Ui ⊆ N ∩ [1, N] , with i ∈ N ∩ [1, `] . We

define for each i the subspace

Vi =
{

z ∈ Ω|zj = 0 for all j /∈ Ui
}

(1.3.10)

and select a proposal distribution Qi such that

Qi(x, A) = Qi (x, A ∩ (Vi + x)) (1.3.11)

for each x ∈ Ω and A ∈ A . We also define the measures νi on A , with νi(A) equal to

the |Ui| -dimensional Lebesgue measure of A ∩Vi .

For each i , we can define a Metropolis subkernel Pi(x, ·) by

Pi(x, A) =

ˆ
(Vi+x)∩A

a(x, y) Qi(x, dy) + 1A(x)
ˆ
(Vi+x)\A

[1− a(x, w)]Qi(x, dw)

=


´
(Vi+x)∩A a(x, y) Qi(x, dy), x /∈ A

1−
´
(Vi+x)\A a(x, w) Qi(x, dw), x ∈ A

(1.3.12)
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If Qi(x, ·) � νi(x, ·) , then we can find a density function for Qi(x, ·) with respect to

νi(x, ·) . We will denote it by qi(x, ·) . In this case, we can satisfy (1.3.11) by requiring that

qi(x, y) = 0 for y /∈ Vi(x) . Then

P◦i (x, A) = Pi(x, A\{x}) =
ˆ

Vi(x)∩A\{x}
a(x, y)qi(x, y) (1.3.13)

so the off-diagonal density is

pi(x, y) = a(x, y)qi(x, y) (1.3.14)

Independence sampler kernels. It is also possible to combine Metropolis transition kernels

with independence samplers (also known as heat bath or Gibbs samplers). The indepen-

dence sampler is so named because the change to the variables in its update set does not

depend on the current values of those variables. Formally, if Pi is an independence sam-

pler kernel, then for any x, y ∈ Ω we have

x− y ∈ Vi =⇒ Pi(x, ·) = Pi(y, ·) (1.3.15)

This property makes the independence sampler useful for escaping from regions of con-

centrated probability, where a random walk kernel may spend an inordinate number of

time steps.

Suppose we define the subset kernel Pi to have density function equal to the conditional

density for Π , given the values of all variables outside the i th update set. That is

pi(x, y) :=


π(y)/Zi(x), y− x ∈ Vi

0, otherwise
(1.3.16)

with the normalizing “constant”
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Zi(x) :=
ˆ

Vi

π(x + z)νi(dz) (1.3.17)

Then Pi is an independence sampler kernel, and for all x, y ∈ Ω we have

π(x)pi(x, y) =


π(x)π(y)/Zi(x), y− x ∈ Vi

0, otherwise
(1.3.18)

= π(y)pi(y, x) (1.3.19)

so Pi satisfies detailed balance with respect to Π .

Combining the kernels. Suppose that the Ui cover the set N∩ [1, `] , so that each variable xj

is updated by at least one of the subkernels. A subset update is defined by a set of k finite

sequences of members of N ∩ [1, `] , with the sequences denoted by s1, s2, . . . , sk , and the

length of the sequence sj denoted by rj , and a corresponding sequence of probabilities

ζ1, ζ2, . . . , ζk ∈ [0, 1] adding to 1. During each time step, we select one sequence sj with

probability ζ j , and apply the subkernels in the order specified by the sequence sj . Thus

the full transition kernel becomes

P(x, A) :=
k

∑
j=1

ζ j

(
P

sj
1
P

sj
2
· · · P

sj
rj

)
(x, A) (1.3.20)

using the kernel product defined in (1.2.2). In the continuous-state case, the off-diagonal

density becomes

p(x, y) =
k

∑
j=1

ζ j

ˆ
Ω
· · ·
ˆ

Ω
p

sj
1

(
x, z(1)

)
p

sj
rj−1

(
z(rj−2), y

)
dz(1)

rj−2

∏
i=2

p
sj

i

(
z(i−1), z(i)

)
dz(i)

(1.3.21)
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while in the discrete-state case we have

p(x, y) =
k

∑
j=1

ζ j ∑
z(rj−2)∈Ω

· · · ∑
z(1)∈Ω

p
sj

1

(
x, z(1)

)
p

sj
rj−1

(
z(rj−2), y

) rj−2

∏
i=2

p
sj

i

(
z(i−1), z(i)

)
(1.3.22)

There are some important classes of subset updates that Tierney analyzes in [9]. If we

have k = 1 then the subset update is a fixed cycle, which applies each subkernel in a fixed

order, given by s1 , during each time step. If rj = 1 for all j , then this is a mixture, where

for each time step, one subkernel is selected at random and applied. The kernel in (1.3.9)

is a mixture. If the sequences sj include every possible permutation of N∩ [1, `] , then we

have a mixed cycle.

If the Ui are disjoint, that is, if each variable xj is affected by exactly one of the Pi

transition kernels, then we say the transition kernel P is a partition update. A partition

update with ` = N must have a singleton for each update set; in this case we have a

single-variable update (sometimes called variable-at-a-time Metropolis). We call a parti-

tion update that is not a single-variable update a joint update.

One special case is where k = 1 and r0 = 1 , that is, there is only one subkernel, and

it is applied during each time step. This is a mixture, a mixed cycle, and a fixed cycle all

at once. This approach is called the global update, as the lone subkernel is able to update

every variable in the system. It has fairly nice properties on paper, but its efficiency in

practice is extremely poor, and as we shall see in Part (3.2), it quickly becomes poorer as

the system size increases. The global update is assumed for GRG’s proof of 0.234 as the

optimal acceptance ratio as N → ∞ , giving this result limited relevance to realistic Monte

Carlo simulations.

1.3.2. Use with systems of independent degrees of freedom.

1.3.2.1. Mutually independent variables. For certain combinations of Π and the qi proposal

densities, the cycle type of subset update may produce a Markov chain X which does

not satisfy detailed balance. Since the target distribution Π is usually dictated by the
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problem under consideration, care must be taken in choosing the proposal distributions

qi , and detailed balance must be examined for each case separately. However, there is one

simple case where detailed balance of the Metropolis algorithm is guaranteed: a system

of independent variables with a partition update kernel, that is, with disjoint update sets.

Theorem 15. Suppose the target density π is the joint density of mutually independent variables,

that is,

π(x) =
N

∏
j=1

πj
(
xj
)

(1.3.23)

and P is a partition update kernel with k = 1 (that is, a fixed cycle). Suppose the proposal

densities have the form

qi(z, y) =


0, zk 6= yk for some k /∈ Ui

∏j∈Ui
q(j)

i
(
zj, yj

)
, otherwise

(1.3.24)

where each q(j)
i is symmetric. Then detailed balance as in (1.2.30) holds.

Proof. Since the update sets are disjoint, there is exactly one sequence of intermediate

states z(i) which leads from x to y .

z(i)j =


xj, j ∈ Ur and r ≥ i

yj, j ∈ Ur and r < i
(1.3.25)

for each 1 ≤ j ≤ N . So we have

p(x, y) =
`−1

∏
i=0

pi

(
z(i), z(i+1)

)
(1.3.26)
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By the symmetry of the qi , we also have

π(x)p(x, y) = π
(

z(0)
)

p1

(
z(0), z(1)

) `−1

∏
i=1

pi

(
z(i), z(i+1)

)
= π

(
z(1)

)
p1

(
z(1), z(0)

) `−1

∏
i=1

pi

(
z(i), z(i+1)

)
= p1

(
z(1), z(0)

)
π
(

z(2)
)

p2

(
z(2), z(1)

) `−1

∏
i=2

pi

(
z(i), z(i+1)

)
...

=

[
`−1

∏
i=0

pi

(
z(i+1), z(i)

)]
π
(

z(`)
)

= π(y)p(y, x) (1.3.27)

�

1.3.2.2. Alternatives to Monte Carlo. The proof of GRG is valid only for systems of inde-

pendent degrees of freedom3, whose target distribution is of the form

π(x) =
N

∏
j=1

πj
(
xj
)

(1.3.28)

Thus for any random variable

X(x) =
N

∑
i=1

Xi (xi) (1.3.29)

we have

E[X] =
N

∑
i=1

E [Xi] (1.3.30)

so that the expectation for sum random variables can be computed by evaluating an ex-

pectation over each degree of freedom separately. This consists merely of evaluating N

3Indeed, the hypotheses of GRG’s proof are even more restrictive, requiring not merely independent but
also identically distributed variables.
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single-variable integrals. Thus an MCMC simulation would produce much poorer accu-

racy than standard numerical integration algorithms using the same amount of computer

time. However, the existence of an independent means of computing expectations makes

these systems useful for testing new MCMC algorithms and an important teaching tool.

In fact, in this paper we will use just such a technique in Section 3 to verify the time-shifted

cross-correlation development in joint updating simulations.

1.3.2.3. Behavior of updating scheme. In the special case of a system of independent degrees

of freedom as in (1.3.28), the probability of the j th degree of freedom being changed dur-

ing a joint updating sweep is

Pj = min

1, ∏
k∈Ui

πk

(
xk + y(i)k

)
πk (xk)

 (1.3.31)

where Ui is the updating set containing j . In this case, the presence of the product over

k means we do not have formal independence of update probability of one degree of

freedom from the other m− 1 degrees of freedom in its updating set. The acceptance of

each degree of freedom’s proposed move depends on the values of, and proposed moves

for, every degree of freedom in the updating set. However, this does not affect the detailed

balance or ergodicity of the system, so it remains a reversible Markov process, and thus

the sampled values of xk and xj (for k 6= j ) at the same time are statistically independent,

as the process at equilibrium faithfully replicates the target distribution of independent

degrees of freedom at each time step.

In the case of the system of independent degrees of freedom, the single updating scheme

causes (1.3.31) to reduce to

Pj = min

1,
πj

(
xj + y(j)

j

)
πj
(
xj
)

 (1.3.32)

so the single updating of each degree of freedom is formally independent from the current

values of and proposed moves for the other degrees of freedom.
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1.3.2.4. Updating scheme used by GRG. The paper of GRG assumes a global update ker-

nel. In their two papers in 1996 and 1997, Gelman et al. considered the optimization of

an MCMC algorithm with this type of transition kernel as the total number of degrees of

freedom N → ∞ .[1, 2] While in certain types of simulations, there may be significant ad-

vantages to grouping certain variables into update sets, joint update kernels with update

sets larger than 4 variables are rarely used.[5] The most common reason one would prefer

a joint update for a particular system is the existence of significant correlations among

certain groups of variables under the target distribution Π , so the GRG hypothesis of in-

dependence is far from being satisfied for these distributions. In addition, we will see in

Section 3.2.2.1 (and can be seen in GRG’s data tables despite their lack of comment) that

for large m , a joint update kernel (of which global update is a special case with m = N )

requires more sweeps by a factor of m to produce the same level of accuracy as a single-

variable update kernel on the same system. A single-variable update sweep consumes at

most twice the computer time of a joint updating sweep.4Thus the use of a global update

kernel as N → ∞ , even with the optimal acceptance ratio favored by GRG, is inferior in

terms of computer time when compared to single-variable update kernels.

1.3.3. Applicability to mixed distributions. In the foregoing, we discussed approaches

to guaranteeing convergence for discrete distributions and for continuous distributions;

we did not discuss the situation where Π is a mixed distribution, that is, where Π({x}) =

0 for some, but not all, x ∈ supp(Π) . The Metropolis algorithm cannot directly deal with

such cases since it requires a consistent density function π with respect to a single basis

measure. However, in applications of MCMC we are usually interested only in computing

statistics for the distribution Π , so all we really need to do is find a way to compute

expectation values.

4In practice, random numbers for deciding acceptance are drawn from a uniform distribution, which is
much more efficient to sample from than the Gaussian distribution. We must sample the proposed moves
from the Gaussian distribution if GRG’s proof is to be valid for our simulation. So the time penalty factor for
a single updating sweep is actually closer to 1+γ , where γ is the ratio of time for uniform sampling to time
for Gaussian sampling. This is usually far less than the theoretical maximum factor of 2 in a GRG-friendly
simulation.
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If we can write Π as

Π =
n

∑
i=1

Πi (1.3.33)

with none of the Πi being the zero measure, then we can normalize these measures to

produce n probability measures

Π∗i (A) :=
Πi(A)

Πi(Ω)
(1.3.34)

for all A ∈ A . If each distribution Π∗i is separately treatable with the Metropolis algo-

rithm, then we have

EΠ[X] =

ˆ
Ω

X(ω)Π(dω) (1.3.35)

=
n

∑
i=1

Πi(Ω)

ˆ
Ω

X(ω)Π∗i (dω) (1.3.36)

=
n

∑
i=1

Πi(Ω)EΠ∗i
[X] (1.3.37)

For a mixed distribution Π , we can define the set of points with positive probability as

Ω+ := {x ∈ Ω : Π({x}) > 0} (1.3.38)

and

Πdisc(A) :=


∑x∈A∩Ω+

Π({x}), A ∩Ω+ 6= ∅

0, A ∩Ω+ = ∅
(1.3.39)

which is a discrete distribution forming the probability space (Ω+,P (Ω+) , Πdisc) . Then

Πcont := Π−Πdisc (1.3.40)

is necessarily a continuous distribution.
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In most applications where mixed distributions occur, we have Πcont � LN . If this is

not the case, another problem can arise at this point: Πcont may not be absolutely con-

tinuous with respect to a σ -finite measure on A , and thus will not be treatable using

Metropolis directly. By the Lebesgue Decomposition Theorem, we have

Πcont = ΠAC + ΠSC (1.3.41)

with ΠAC � LN and ΠSC ⊥ LN . It may also be possible to further decompose the

“singular continuous” part of the measure as

ΠSC = ΠFD + ΠLD (1.3.42)

where ΠLD (lower dimension) is a measure whose support has dimension N− 1 or lower.

Such measures would be singular with respect to LN but may be the push-forward of a

measure which is absolutely continuous with respect to Ln for some n ∈ N ∩ [1, N) ;

this part of the probability is treatable using Metropolis and Gibbs sampling on the lower-

dimensional space. If the remaining part of the measure, ΠFD (full dimension), is nonzero,

using the Metropolis algorithm would require finding a more obscure sequence of σ -

finite measures singular with respect to LN along with methods for sampling from these

distributions. The Cantor measure discussed in [14] would be one example of a σ -finite

measure on R which is singular with respect to L1 , and it may be sampled from using

the transformation method [15], as its cumulative distribution function is fairly simple.5

This is not typical for singular-continuous distributions, however.

1.3.4. Criterion for minimizing error. The most important criterion for efficient MCMC

simulations was derived by Müller-Krubmhaar and Binder[3] in 1973. They proved that if

the purpose of the simulation was to estimate a variable X over T discrete MCMC steps,

5There would be a potential for bias if using the transformation method, since values of the Cantor function
in [0, 1] with terminating binary representations (which includes all IEEE-standard representations) always
correspond to members of the Cantor set that are at the endpoint of one of the excluded intervals. Such
numbers form a countable subset of the uncountable Cantor set, and are thus atypical.
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the simulation should be designed to minimize the correlation time τY , which is defined

through the autocorrelation function

φY(s) :=
Covt[Y(X(t)), Y(X(t + s))]

Vart[Y(X(t))]
(1.3.43)

The correlation time is then defined6 as

τY :=
1
2
+

∞

∑
s=1

φY(s) (1.3.44)

Müller-Krubmhaar and Binder[3] showed that the variance of Ȳ , the estimate of Y from

the MCMC simulation of T time steps, is related linearly to the ratio τY/T for large T .

We present a proof here as MKB’s proof is geared toward a different purpose.

Theorem 16. (Binder, Muller-Krumbhaar) Suppose X(t) is a Markov chain with the distribu-

tion of X(t) constant with respect to t . Let Y be a random variable on Ω whose mean is estimated

by

Ȳ :=
1
T

T

∑
t=1

Y(X(t)) (1.3.45)

for each particular simulation of X(t) for T time steps. Then

Var [Ȳ] = 2
(τY

T

)
VarΠ[Y] + O

[
T−2

]
(1.3.46)

where the variance of Ȳ is taken over possible simulations.

6Muller-Krumbhaar and Binder do not add 1/2 to the sum; we do so here to simplify the variance relation
(1.3.52).
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Proof. We have

Var [Ȳ] =
1

T2Var

[
T

∑
t=1

Y(X(t))

]
(1.3.47)

=
1

T2

[
T

∑
t=1

(
Var[Y(X(t))] + 2

T−t

∑
s=1

Cov[Y(X(t)), Y(X(t + s))]

)]
(1.3.48)

=
Var[Y]

T

(
1
T

T

∑
t=1

(
1 + 2

T−t

∑
s=1

Cov[Y(X(0)), Y(X(s))]
Var[Y]

))
(1.3.49)

=
Var[Y]

T

(
1 +

2
T

T

∑
s=1

T−s

∑
t=1

φY(s)

)
(1.3.50)

=
Var[Y]

T

(
1 + 2

T

∑
s=1

(
1− s

T

)
φY(s)

)
(1.3.51)

since there are T terms in the sum over t in (1.3.49) and T− s terms in the sum over t in

(1.3.50). Since

2τY = 1 + 2
∞

∑
s=1

φY(s) (1.3.52)

we have for T > 1

∣∣∣Var [Ȳ]− 2
(τY

T

)
Var[Y]

∣∣∣ =
2Var[Y]

T2

[
T

∑
s=1

sφY(s) +
∞

∑
s=T+1

φY(s)

]
(1.3.53)

=
2Var[Y]

T2

[
∞

∑
s=1

sφY(s) +
∞

∑
s=T+1

(1− s)φY(s)

]
(1.3.54)

≤ 2Var[Y]
T2

∞

∑
s=1

sφY(s) (1.3.55)

�

Thus the correlation time is linearly related to the number of time steps necessary for the

simulation estimate’s variance to equal the variance of the random variable itself. Since

the correlation time depends on the individual behavior of the autocorrelation function for
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the variable Y , a single simulation is likely to have different correlation times for different

measured variables.

While they do not cite the work of Muller-Krubmhaar and Binder, GRG do define the

reciprocal of this correlation time as the “efficiency” of a simulation in their numerical

experiments.
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Part 2. Balance theorems for Sequential and Checkerboard Update

2.1. SEQUENTIAL UPDATE FOR THE ISING MODEL

Working with the discrete case only, that is

Ω =
∞⋃

n=1
{xi} (2.1.1)

Manousthakis and Deem [17] prove that there is some invariant measure Π for a transi-

tion kernel P if we assume a few properties for the transition matrix T defined by

Tij := p
(
xi, xj

)
(2.1.2)

In order to have a valid chain, we must have the transition probabilities from a given

state to all the other states add up to 1. Thus we require that the transition matrix T be

stochastic, that is,

∑
j

Tij = 1 (2.1.3)

for all states i = 1, . . . , |Ω| . In [17] they additionally require that T> be stochastic, that is,

∑
i

Tij = 1 (2.1.4)

for all states j = 1, . . . , |Ω| . The latter condition demands that the transition probabilities

into a given state from all the other states add up to 1. This is hardly an “obvious feature”

of an update scheme, and indeed is not satisfied for some simple and common schemes,

including the sequential update which the authors of [17] seek to rehabilitate.

2.1.1. Sequential Metropolis. Consider the one-dimensional Ising model with N ≥ 3

spins and periodic boundary conditions, simulated with a sequential single-variable up-

date Metropolis algorithm. Here we have Ω = {−1, 1}N , for 2N possible states, and

π(x) := Z−1e−βE(x) (2.1.5)
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where Z is a normalizing constant, β is a parameter related to temperature, and the

energy is defined as

E(x) := −J

(
xNx1 +

N

∑
i=2

xi−1xi

)
(2.1.6)

for some constant J ∈ R . The transition kernel density for the update of the k th spin will

be

pk(x, y) =


0, x` 6= y` for some ` 6= k

1, E(y) ≤ E(x)

exp [β(E(x)− E(y))] , E(y) > E(x)

(2.1.7)

2.1.1.1. Failure of detailed balance. Let βJ = 1/4 . Consider the state x where xj = 1 for

all 1 ≤ j ≤ N and the state y where y1 = 1 and yj = −1 for 2 ≤ j ≤ N . Note that

π(x) = Z−1e and π(y) = Z−1 .

The transition from x to y requires a hold in the first position, a conditional flip in the

second, and automatic flips in all the rest. Thus p(x, y) = e−1 (1− e−1) . However, the

transition from y to x is impossible, since the first position in y will always be flipped.

So p(y, x) = 0 and thus detailed balance as in (1.2.20) cannot be satisfied.

2.1.1.2. Failure of stochastic transpose. Let k = 2, ..., N − 1 be given. As in M-D we will

denote the transition matrix for updating the k th position by B(k) . Suppose a state with

up spins in the k − 1, k, k + 1 positions is labeled j . The k th kernel will automatically

move to state j from any state that has a down spin in the k th position and either (a) two

up spins or (b) an up spin and a down spin as its two neighbors. There are 2N−3 states

satisfying (a), and 2N−2 states satisfying (b), so the transition matrix B(k) must have

2N

∑
i=1

B(k)
ij ≥ 2N−3 + 2N−2 > 1 (2.1.8)

which means
(

B(k)
)>

is not stochastic.
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Nor does the full transition matrix

T =
N

∏
k=1

B(k) (2.1.9)

have a stochastic transpose. For example, let βJ = 1/4 . For each integer 0 ≤ ` ≤ N , let

j` be the label of the state with the first N − ` spins down and the remaining ` spins up.

We consider the transition probabilities from the various j` to jN which has all spins up.

We obtain Tj0 jN = e−1 and Tj` jN =
(
1− e−1)` , so that

2N

∑
i=1

TijN ≥ e−1 +
N

∑
`=1

(
1− e−1

)`
(2.1.10)

= e−1 + (e− 1)
[

1−
(

1− e−1
)N
]

(2.1.11)

where we have used the geometric sum formula. This expression is strictly increasing

with N , and has a value of 1 when N = 1 , so the full kernel’s transition matrix does not

have a stochastic transpose for N > 1 .

2.1.2. Sequential Gibbs sampler. For a one-dimensional Ising model with N ≥ 3 spins,

the single-variable Gibbs sampler has transition kernel

pk(x, y) =


0, x` 6= y` for some ` 6= k

π(y)
π(x)+π(x′) , otherwise

(2.1.12)

where x′ := x − 2xke(k) is the result of flipping the k th spin in x . Let 1 < k < N be

given. Suppose j is the label for the state x′ . Then

∑
i

B(k)
ij = pk(x, x′) + pk(x′, x′) =

2π(x′)
π(x) + π(x′)

(2.1.13)

and this will only be equal to 1 if π(x) = π(x′) . This does indeed occur if the spins in

positions k − 1 and k + 1 are opposite. However, if (xk−1, xk, xk+1) = (1, 1, 1) , then we
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have
(
x′k−1, x′k, x′k+1

)
= (1,−1, 1) and thus

π(x′)
π(x)

= e−2βJ (2.1.14)

and thus B(k) can only have a stochastic transpose if βJ = 0 , which only happens if

temperature is infinite or there is no interaction between spins. Thus, the result of M-D

is irrelevant when dealing with this common probability distribution and the sequential

application of the two most common samplers for it.

2.2. THE CHECKERBOARD DECOMPOSITION

A common substitute for the sequential update Metropolis algorithm is the checker-

board decomposition update. In general, this decomposition produces m disjoint sets

Cj ⊆ Z∩ [0, N) , such that for any j ∈ Z∩ [0, m) and a, b ∈ Cj , we have xa and xb condi-

tionally independent with respect to Π given the values of all variables xc with c /∈ Cj .

A useful theorem for checkerboard updating is the following

Theorem 17. Let (Pi)
k−1
i=0 be a sequence of subset kernels of the form (1.3.20), with each satisfying

the detailed balance condition (2.3.1). Suppose that C ⊆ Z ∩ [0, k) has the properties that the

update sets Ui1 and Ui2 are disjoint for any distinct i1, i2 ∈ C , and variables xj with j ∈ ⋃i∈C Ui

are conditionally independent given the values of all variables x` with ` /∈ ⋃i∈C Ui . Then any

composition of the subset kernels Pi for i ∈ C , in which each subset kernel is applied once, satisfies

detailed balance, regardless of the order in which the subset kernels are applied.

Proof. Let (im)
|C|−1
m=0 be a permutation of C . Define a composition kernel P to be the kernel

resulting from applying the subset updates Pi in the order specified by (im)
|C|−1
m=0 . Given

x, y ∈ Ω , there is only one sequence of intermediate states
(

z(m)
)|C|−1

m=1
which leads from

x to y , and this is given by

z(m)
j =


xj, j ∈ Uin with n > m

yj, otherwise
(2.2.1)
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that is, z(m) matches x in positions updated by a kernel after Pim , matches y in posi-

tions updated by Pim or a previous kernel, and matches both x and y in positions not

updated by any of the kernels. Since the update sets are conditionally independent, the

off-diagonal density (or mass if Π is discrete) is given by

p(x, y) = pi0

(
x, z(1)

)
pi|C|−1

(
z(|C|−1, y

) |C|−1

∏
m=1

pim

(
z(m), z(m+1)

)
(2.2.2)

By repeatedly applying (2.3.1) for each subset kernel Pim , we obtain

π(x)p(x, y) = π(x)pi0

(
x, z(1)

)
pi|C|−1

(
z(|C|−1), y

) |C|−2

∏
m=1

pim

(
z(m), z(m+1)

)

= pi0

(
z(1), x

)
pi|C|−1

(
z(|C|−1), y

)
π
(

z(1)
) |C|−2

∏
m=1

pim

(
z(m), z(m+1)

)

= pi0

(
z(1), x

)
pi|C|−1

(
z(|C|−1), y

)
pi1

(
z(2), z(1)

)
π
(

z(2)
) |C|−2

∏
m=2

pim

(
z(m), z(m+1)

)
...

= pi0

(
z(1), x

)
π
(

z(|C|−1)
)

pi|C|−1

(
z(|C|−1), y

) |C|−2

∏
m=1

pim

(
z(m+1), z(m)

)

= π(y)pi0

(
z(1), x

)
pi|C|−1

(
y, z(|C|−1)

)
π
(

z(1)
) |C|−2

∏
m=1

pim

(
z(m), z(m+1)

)
= π(y)p(y, x) (2.2.3)

�

Thus the updating of all variables in Cj , while holding the rest of the variables con-

stant, satisfies detailed balance. However, we will see that a sequence of such updates of

C0, C1, . . . , Cm need not satisfy detailed balance.
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2.2.1. Application to Ising model. The “checkerboard” name arises from its application

to the two-dimensional Ising model, where we have a state space of matrices

Ω := {−1, 1}L×L (2.2.4)

and Π defined by

Π(X) = Z−1 exp (−βE(X)) (2.2.5)

with β and Z defined as in (2.1.5). The notation for the energy function is much neater

if we define [[n]] to be the positive remainder of n divided by L , that is, it satisfies 0 ≤

[[n]] < L and n = cL + [[n]] for some c ∈ Z . Then the energy function is

E(X) := −J ∑
〈(a,b),(c,d)〉

XabXcd (2.2.6)

= −J ∑
i,j

Xij

[
X[[i+1]],j + Xi,[[j+1]]

]
(2.2.7)

where 〈(a, b), (c, d)〉 holds if the positions (a, b) and (c, d) are “nearest neighbors” in the

lattice, with periodic boundary conditions taken into account. That is, the 0th row and the

(L− 1) th row are considered adjacent, and likewise with the columns. If L is even, the

checkerboard decomposition is accomplished by defining

C0 := {(i, j)|i + j is even} (2.2.8)

C1 := {(i, j)|i + j is odd} (2.2.9)
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The nearest neighbors of any position in C0 are all in C1 , and vice versa. We think of C0

as the red squares of the checkerboard and C1 as the black squares (or vice versa). Thus

E(X) = −J ∑
(i,j)∈C0

Xij ∑
〈(a,b),(i,j)〉

Xab

 (2.2.10)

=: −J ∑
(i,j)∈C0

E(i,j)

(
Xij, X[[i+1]],j, X[[i−1]],j, Xi,[[j+1]], Xi,[[j−1]]

)
(2.2.11)

and

Π(X) = Z−1 ∏
(i,j)∈C0

exp
[
−βE(i,j)

(
Xij, X[[i+1]],j, X[[i−1]],j, Xi,[[j+1]], Xi,[[j−1]]

)]
(2.2.12)

so the Xij with (i, j) ∈ C0 are conditionally independent given all Xab with (a, b) ∈ C1 ,

since the only non-given variable in each factor in the product is Xij .

The checkerboard decomposition update is usually implemented as a fixed cycle, where

we update all the positions in C0 and then update all the positions in C1 . This gives the

sole update sequence

s0 := {(0, 0), (0, 2), . . . , (0, L− 2), (1, 1), (1, 3), . . . , (L− 1, L− 1), (0, 1), (0, 3), . . . , (L− 1, L− 2)}

(2.2.13)

This update scheme is often claimed to satisfy detailed balance, but this is not so. Let L× L

matrices X and Y be defined by Xij = 1 and Yij = (−1)i+j for all i, j ∈ Z∩ [0, L) . Under

the checkerboard update we have P(X, Y) =
(
1− e−8J)L2/2 e−4JL2

, which is produced by

first leaving unchanged all the L2/2 spins in C0 , and then flipping each of the L2/2 spins

in C1 . However, P(Y, X) = 0 , as the first spin Y0,0 must flip from +1 to -1 since this leads

to a more probable state, making it impossible to reach X . Thus we cannot have detailed

balance.
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2.3. GUARANTEEING DETAILED BALANCE FOR SUBSET UPDATES

We now introduce a few methods by which an update scheme satisfying detailed bal-

ance can be constructed from subset kernels. Let the notation j � u indicate that sj and

su are reverse sequences; that is, rj = ru and sj
i = su

ru−i for i ∈ Z ∩ [0, ru − 1] . Then we

have the following.

Theorem 18. Suppose P is a subset update kernel of the form (1.3.20) and each subset kernel Pi

satisfies

π(x)pi(x, y) = π(y)pi(y, x) (2.3.1)

for all x, y ∈ Ω . Suppose that for every sequence sj ∈ S , there is su ∈ S such that j � u and

ζu = ζ j . Then P satisfies detailed balance.

Proof. Suppose Π is a continuous distribution with Ω ⊆ RN . Let j ∈ Z∩ [0, k) be given,

and find u ∈ Z∩ [0, k) such that j� u . Then
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π(x)psj(x, y) =π(x)
ˆ

Ω
· · ·
ˆ

Ω
p

sj
1

(
x, z(1)

)
p

sj
rj−1

(
z(rj−2), y

)
dz(1)

rj−2

∏
i=2

p
sj

i

(
z(i−1), z(i)

)
dz(i)

(2.3.2)

=

ˆ
Ω
· · ·
ˆ

Ω
π
(

z(1)
)

p
sj

1

(
z(1), x

)
p

sj
rj−1

(
z(rj−2), y

)
dz(1)

rj−2

∏
i=2

p
sj

i

(
z(i−1), z(i)

)
dz(i)

(2.3.3)

... (2.3.4)

=

ˆ
Ω
· · ·
ˆ

Ω
p

sj
1

(
z(1), x

)
π(y)p

sj
rj−1

(
y, z(rj−2)

)
dz(1)

rj−2

∏
i=2

p
sj

i

(
z(i), z(i−1)

)
dz(i)

(2.3.5)

=π(y)
ˆ

Ω
· · ·
ˆ

Ω
psu

ru−1

(
z(1), x

)
psu

1

(
y, z(ru−2)

)
dz(1)

ru−2

∏
i=2

psu
ru−i

(
z(i−1), z(i)

)
dz(i)

(2.3.6)

=π(y)psu(y, x) (2.3.7)

Similarly we have

π(x)psu(x, y) = π(y)psj(y, x) (2.3.8)

If j� j for all j , this means

π(x)p(x, y) = π(x)
k−1

∑
j=0

ζ j psj(x, y)

= π(y)
k−1

∑
j=0

ζ j psj(y, x)

= π(y)p(y, x) (2.3.9)
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which gives detailed balance. Otherwise, we have

π(x)p(x, y) =
k−1

∑
j=0

ζ jπ(x)psj(x, y)

= ∑
j<u
j�u

ζ jπ(x) [psj(x, y) + psu(x, y)] + ∑
j�j

ζ jπ(x)psj(x, y)

= ∑
j<u
j�u

ζ jπ(y) [psu(y, x) + psj(y, x)] + ∑
j�j

ζ jπ(y)psj(y, x)

= π(y)p(y, x) (2.3.10)

If Π is a discrete distribution, replace the integrals in (2.3.2) with sums over Ω and the

rest of the proof follows. �

Corollary 19. Let P be a subset update kernel of the form (1.3.20) with each subset kernel Pi

satisfying (2.3.1). Then P satisfies detailed balance provided that at least one of the following

conditions hold:

(1) (mixture) rj = 1 for each j ∈ Z∩ [0, `)

(2) (mixed cycle) S is the set of all permutations of Z∩ [0, `) and ζ j = 1/`! for all j .

(3) (palindrome cycle) k = 1 and 0� 0

Proof. If condition 1 holds, each sequence sj has length 1 and thus j � j for all j . If con-

dition 3 holds, there is only one sequence sj and j � j for that sequence. If condition 2

holds, note that the reverse sequence of a permutation of Z∩ [0, `) is just another permu-

tation, so reverse sequences will both be in S with equal selection probability 1/`! . Thus,

in each case we can apply Proposition 5. �

Mixtures of subset kernels satisfying detailed balance have long been known to satisfy

detailed balance, which is why mixtures are commonly used in practical MCMC simula-

tions. The other two conditions have not been linked to balance until now. Mixed cycles

are less common because they require more random numbers to be generated per time

step.
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Fixed cycles in general do not satisfy detailed balance. However, condition 3 shows

that this can be remedied by appending the cycle steps in reverse order to produce a

palindrome cycle. This workaround would appear to come at the cost of doubling the

amount of variable-updating per sample, as the cycle now has length 2N , but this is

actually not so. Let a collection of subset update kernels {Pi}`−1
i=0 be given. Suppose that

we produce one fixed palindrome cycle with the sole updating sequence of length 2N :

s0 = {0, 1, . . . , N − 2, N − 1, N − 1, N − 2, . . . , 1, 0} (2.3.11)

and another with the sole updating sequence of length 2N :

ŝ0 = {N − 1, N − 2, . . . , 1, 0, 0, 1, . . . , N − 2, N − 1} (2.3.12)

Note that these two fixed cycle updates prescribe exactly the same sequence of variable

updates, merely shifted by N time steps. The only difference is that in the first sequence

we sample between updates of x0 , while in the second we sample between the updates

of xN−1 . Since sampling from either sequence (after equilibration) will produce the same

averages for all random variables, we can actually sample both between the x0 updates

and between the xN−1 updates to obtain more precise averages.

Note that this double-sampling trick will not work if we produce a fixed palindrome

cycle with the following updating sequence of length 2N − 1 :

s0 = {0, 1, . . . , N − 2, N − 1, N − 2, . . . , 1, 0} (2.3.13)

though the resulting chain will still satisfy detailed balance as it is a palindrome cycle.

2.3.1. Recovering detailed balance. Using Corrolary 19 and Theorem 18, we can recover

detailed balance for the checkerboard decomposition. This can be accomplished in several

ways.
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• Mixture: randomly select whether to update spins in C0 or to update spins in C1

and then sample.

• Mixed cycle: update both C0 and C1 during each time step and then sample, but

randomly select (with equal probability) which update is done first.

• Palindrome cycle, length 3: update all spins in C0 , then all spins in C1 , then all

spins in C0 , then sample.

• Palindrome cycle, length 4: update all spins in C0 , then all spins in C1 , then all

spins in C1 again and finally all spins in C0 again. In this case we can use the

double-sampling trick to sample after the first C1 update as well as after the second

C0 update.

Note that interchanging C0 and C1 in any of the above methods will still preserve detailed

balance.

2.4. GUARANTEEING TOTAL BALANCE FOR SUBSET UPDATES

If we only seek a fixed cycle update kernel P which satisfies total balance, the restric-

tions can be loosened somewhat. To simplify notation, we will define the “reverse” of a

state z ∈ Ω . Let f : N ∩ [1, N] → N ∩ [1, N] be a bijection such that f (j) ∈ U`−i if

j ∈ Ui . Then the reverse of z with respect to f and P is denoted z̄ and defined so that

z̄j := z f (j) .

Lemma 20. Suppose P = ∏`
i=1 Pi and each Pi satisfies detailed balance with respect to Π as in

(2.3.1), the update sets Ui are of equal size, and

pi(x, y) = p`−i(x̄, ȳ) (2.4.1)

for all i ∈N∩ [1, `] and x, y ∈ Ω . Then

π(x)p(x, y) = π(y)p(ȳ, x̄) (2.4.2)



KERNEL SELECTION FOR CONVERGENCE AND EFFICIENCY IN MARKOV CHAIN MONTE CARLO 42

Proof. From (2.3.6) in Theorem 18 we have that

π(x)p(x, y) = π(y)
ˆ

Ω
· · ·
ˆ

Ω
p1

(
z(1), x

) [`−1

∏
i=2

pi

(
z(i), z(i−1)

)
dz(i)

]
p`−1

(
y, z(`−1)

)
dz(1)

= π(y)
ˆ

Ω
· · ·
ˆ

Ω
p`−1

(
z(1), x̄

) [`−1

∏
i=2

p`−i

(
z(i), z(i−1)

)
dz(i)

]
p1

(
ȳ, z(`−1)

)
dz(1)

= π(y)p(ȳ, x̄) (2.4.3)

�

This leads to the following theorem.

Theorem 21. Suppose Π is a discrete probability measure. Suppose P = ∏`
i=1 Pi and each Pi

satisfies detailed balance with respect to Π as in (2.3.1), the update sets Ui are of equal size, and

pi(x, y) = p`−i(x̄, ȳ) (2.4.4)

for all i ∈N∩ [1, `] and x, y ∈ Ω . Then P satisfies total balance with respect to Π .

Proof. Suppose the target distribution is continuous. Let x ∈ Ω be given. Aiming to

satisfy the expression (1.2.23) of total balance, in view of Lemma 20 we have

∑
y∈Ω

[π(y)p(y, x)− π(x)p(x, y)] = ∑
y∈Ω

π(x) [p(x̄, ȳ)− p(x, y)] (2.4.5)

= π(x)

[
∑

y∈Ω
p(x̄, ȳ)− ∑

y∈Ω
p(x, y)

]
(2.4.6)

= π(x)

[
∑

y∈Ω
p(x̄, y)− ∑

y∈Ω
p(x, y)

]
(2.4.7)

= 0 (2.4.8)

since the “reverse” map z 7→ z̄ is a bijection, and thus both sums in the third line are

equal to 1. �



KERNEL SELECTION FOR CONVERGENCE AND EFFICIENCY IN MARKOV CHAIN MONTE CARLO 43

The hypotheses of Theorem 21 are not difficult to satisfy for many target distributions

Π . For example, suppose the target distribution is of the form

π(x, y) =
N

∏
j=1

πj(x, y) (2.4.9)

where we define (with [[n]] again representing the positive remainder of n when divided

by the system size N )

πj(x) := π∗
(

xj, x[[j+d1]]
, x[[j−d1]]

, . . . , x[[j+ds]], x[[j−ds]]

)
(2.4.10)

for some fixed d1, . . . , ds . Suppose further that

π∗
(

xj, x[[j−d1]]
, x[[j+d1]]

, . . . , x[[j−ds]], x[[j+ds]]

)
= π∗

(
xj, x[[j+d1]]

, x[[j−d1]]
, . . . , x[[j+ds]], x[[j−ds]]

)
(2.4.11)

for all x ∈ Ω . Each of these statements is true for the Ising model in any number of

dimensions, so long as we index the spin variables in a natural way, ie in spatial order

for the one dimensional model, by rows then columns (or columns then rows) for the two

dimensional model, etc. For the d -dimensional model, with L sites in each row, column,

etc, we would then have s = d and dm = Lm−1 and

πj(x) = Z−1/N exp

[
−1

2
Jβxj

d−1

∑
m=0

(
x[[j−Lm]] + x[[j+Lm]]

)]
(2.4.12)

for all i . Then we can satisfy total balance with the sequential update consisting of single-

variable Metropolis subkernels, so long as we have symmetric proposal densities qi(x, ·)

such that qN−i(x, y) = qi(x̄, ȳ) for all i . To see this, define the reverse of x in the natural

way, that is x̄j := xN−j . Then we have

πN−i(x) = πi(x̄) (2.4.13)
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Thus we also have

pN−i(x, y) = qN−i (x, y)min
{

1,
π(y)
π(x)

}

= qN−i(x, y)min

{
1,

πN−i(y)
πN−i(x)

s

∏
m=1

πN−i+dm(y)πN−i−dm(y)
πN−i+dm(x)πN−i−dm(x)

}

= qi(x̄, ȳ)min

{
1,

πi(ȳ)
πi(x̄)

s

∏
m=1

πi−dm(ȳ)πi+dm(ȳ)
πi−dm(x̄)πi+dm(x̄)

}
= pi(x̄, ȳ) (2.4.14)

so we can apply Theorem 21 in this case. The checkerboard decomposition for the Ising

model will also have total balance. This is shown by defining the reverse of x to satisfy

x̄j = xj−1 for all j , that is, the “circular left shift”.

2.4.1. Efficiency of kernels having total balance. We tested the efficiency of various tech-

niques satisfying total balance on a two-dimensional Ising model with L = 32 rows and

columns. From the results in Table 2.1 for estimating the expectation value of magnetiza-

tion

M :=
1
L2 ∑

i,j
σij (2.4.15)

we see that the best correlation times are produced by the mixed cycle of single-variable

updates, where we update each site in a randomly-selected order during each time step.

When computer time on this machine is taken into account, however, the shortest fixed-

cycle updates (sequential and checkerboard), where the sites are simply updated in the

same order during every time step, are more efficient. This is due to the need to generate

L2 − 1 extra random numbers to determine the order for a mixed cycle during each step.
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kernel Var [M̄] τM τM * comp time (ns)
sitewise mixture 5.98e-4 49.29 1613

sitewise mixed cycle 4.69e-4 27.48 1755
sequential forward 5.82e-4 38.62 1261

sequential forward-backward 4.90e-4 31.67 2025
checkerboard mixture 3.84e-3 328.52 5561

checkerboard mixed cycle 1.61e-3 105.53 3438
checkerboard 0-1 9.20e-4 39.74 1289

checkerboard 0-1-0 1.75e-3 187.23 9016
checkerboard 0-1-1-0 2.80e-3 397.54 25347

TABLE 2.1. Performance of various kernels for estimating E[M] on two-
dimensional Ising model with L = 32 and T = 640000 sampled time steps,
with β−1 = 2.32 (that is, near critical temperature). The computer times are
per time step in nanoseconds, with the simulation run on a 2010 model Mac
Mini.

Part 3. Effects of Joint Update Schemes

3.1. TIME-SHIFTED CROSS-CORRELATIONS

In the midst of the analysis of GRG’s joint updating scheme, we discovered a strange

phenomenon that this algorithm produces. While sampling from a target distribution

with independent variables, there are time-shifted cross-correlations between different

variables at different times, even though the different variables at the same time are inde-

pendent, as required by the reversibility of the Markov chain.

3.1.1. Energy-based systems. A particularly common type of probability density in ap-

plications is of the form

π(x) = Z−1 exp [−βE(x)] (3.1.1)

This occurs frequently in thermodynamic simulations for fixed temperature, where E(x)

represents the energy of a system, β is a constant related to the temperature, and Z is a

normalizing constant. If the energy function can be expressed as a sum of single-variable

energies Ej
(
xj
)

, the density becomes
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π(x) =
N

∏
j=1

Z−1
j e−βEj(xj) (3.1.2)

The system’s probability distribution is then simply the joint distribution of N indepen-

dent degrees of freedom.

While we do not intend to explore the physics of such systems in this paper, this tem-

plate provides a simple method of generating probability distributions with varied prop-

erties. To make the degrees of freedom both independent and identically distributed, we

need to also require that all the Ej are the same function. With these fairly strong restric-

tions in place, GRG’s proof will hold.

3.1.2. Measuring efficiency.

3.1.2.1. Local and global autocorrelations. Another important fact about the analysis by GRG

is that the proof treats each degree of freedom’s evolution as a separate process, optimiz-

ing the speed of each degree of freedom’s diffusion through its own sample space. How-

ever, they do not consider the possibility of cross-correlations between degrees of freedom

at different times. For this reason, we consider not only efficiency measures for quantities

determined by the entire system, but also efficiency measures for estimating quantities

depending only on individual degrees of freedom.

Suppose the random variable X(x) is of the form of (1.3.29), that is, the sum of separate

values Xj
(
xj
)

for each degree of freedom in the system. In addition to the MKB correla-

tion functions φX for the quantity X and φXj for each quantity Xj , as defined in (1.3.43),

we define a local autocorrelation function

λX(∆t) :=
1
N

N

∑
j=1

φXj(∆t) =
1
N

N

∑
j=1

Covt
[
Xj(t), Xj(t + ∆t)

]
Vart

[
Xj
] (3.1.3)

The function λX is the mean of the autocorrelation functions φXj . If the degrees of free-

dom are independent and identically distributed, in a joint updating scheme, the true val-

ues of φXj are all equal. Thus the measured local autocorrelation function is an estimator
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of the autocorrelation function for each degree of freedom. Originally the autocorrelation

φX , which we will term the global autocorrelation function, and the local autocorrelation

function λX were considered separately due to the estimation of λX being more efficient,

as taking the sum of the Xj tends to dampen the fluctuations we are trying to measure.

This distinction turns out to have deeper significance.

3.1.2.2. Relation to cross-correlations. For N = 1 , we immediately have φX = φX1 = λX .

However, for N > 1 , we may have φX 6= λX . Indeed, we now show that the difference

between these functions is related to the time-shifted cross-correlation function we will

define, for N > 1 , as

ρX(∆t) :=
2

N(N − 1) ∑
i<j

Covt
[
Xi(t), Xj(t + ∆t)

]√
Vart [Xi]Vart

[
Xj
] (3.1.4)

which is simply the mean of correlation coefficients among pairs of distinct degrees of

freedom time-shifted by ∆t steps. Thus if Xi(t) and Xj(t + ∆t) are independent for all t ,

we should have ρ(∆t) = 0 .

Theorem 22. Let N ∈N∩ [2, ∞) be given and {Xi}N
i=1 be a collection of N stochastic processes

such that

Var [Xi] = Var
[
Xj
]
6= 0 ∀i, j ∈N∩ [1, N] (3.1.5)

Then using the definitions above, we have

φX(∆t) =
λX(∆t) + (N − 1)ρX(∆t)

1 + (N − 1)ρX(0)
(3.1.6)

Proof. Since the processes have equal variance, we have

λX(∆t) =
∑i Cov [Xi(t), Xi(t + ∆t)]

N · Var [X1]
(3.1.7)

ρX(∆t) =
2 ∑i<j Cov

[
Xi(t), Xj(t + ∆t)

]
N(N − 1) · Var [X1]

(3.1.8)
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Thus we can derive the desired relation among these functions:

φX(∆t) =
Cov [∑i Xi(t), ∑i Xi(t + ∆t)]

Var [∑i Xi]
(3.1.9)

=
∑i Cov [Xi(t), Xi(t + ∆t)] + 2 ∑i<j Cov

[
Xi(t), Xj(t + ∆t)

]
N · Var [X1] + 2 ∑i<j Cov

[
Xi, Xj

] (3.1.10)

=
NλX(∆t)Var [X1] + N(N − 1)ρX(∆t)Var [X1]

N · Var [X1] + N(N − 1)ρX(0)Var [X1]
(3.1.11)

=
λX(∆t) + (N − 1)ρX(∆t)

1 + (N − 1)ρX(0)
(3.1.12)

�

Corollary 23. Under the conditions of Theorem 22, if N > 1 and the quantities Xi(t) and Xj(t)

are independent for any t and i 6= j , then

ρX(∆t) =
φX(∆t)− λX(∆t)

N − 1
(3.1.13)

Proof. This follows immediately from (3.1.6) by substituting ρX(0) = 0 . �

Under the independence hypothesis of Corollary 23, any difference between the global

and local autocorrelation functions indicates the presence of a time-shifted cross-correlation

between the degrees of freedom.

3.1.3. Computing time-shifted correlation coefficient. Consider a bivariate Gaussian ran-

dom variable with covariance matrix 1
2 I . Its density function is

π(x) = Z−1 exp
(
−|x|2

)
(3.1.14)

This is equivalent to an isotropic simple harmonic oscillator in physics, which is the

simplest of a common class of physical simulations. Indeed, this is a case of the energy-

based system given by (3.1.2) with c = 1 and energy random variables Ej
(
xj
)
= x2

j for
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j ∈ {1, 2} and E(x) = |x|2 = E1 (x1) + E2 (x2) . Suppose that we perform a global update

Metropolis simulation with N = 2 and proposed moves drawn from a bivariate Gaussian

with covariance matrix s2I . The proposal density is

q(x, x + y) =
1

2πs2 exp
(
−|y|

2

2s2

)
(3.1.15)

The energy cross-correlation function with a time difference ∆t = 1 becomes

ρE(1) = Covt [E1 (x1, t) , E2 (x2, t + 1)]

=
1

2π2s2

¨
R2

¨
R2

x2
1

[
x2

2 + (2x2 + y2) y2a(x, x + y)
]

exp
(
−|x|2 − |y|

2

2s2

)
dy dx−Et[E]2

=
1

2π2s2

¨
R2

x2
1 exp

(
−|x|2

)¨
R2

(2x2 + y2) y2a(x, x + y) exp
(
−|y|

2

2s2

)
dy dx (3.1.16)

where a(x, z) is the acceptance probability for an already-proposed move from x to z as

given in (1.3.3).

We evaluated this integral for s ranging from 0.1 to 3, using Gauss-Hermite quadrature

for the x integrals and Gauss-Legendre quadrature over the square [x1 − 5s, x1 + 5s] ×

[x2 − 5s, x2 + 5s] for the y integrals. The correlation coefficient obtained by this classi-

cal, deterministic approximation is compared with the results recorded by our MCMC

simulation in Table 3.1 and summarized in Figure 3.1a. There is excellent agreement be-

tween these independent methods of evaluating the cross-correlation, and both show that

ρE(1) 6= 0 , indicating a cross-correlation between the energy of oscillator 1 and that of

oscillator 2 one time step later, despite the energies of the oscillators being independent

variables in the target distribution.

3.1.4. Cause of time-shifted cross-correlation. This effect seems counterintuitive at first,

since the Markov process theory guarantees that the oscillator energies are independent at

a given time once equilibrium is reached. It is also intuitive to presume that two random

variables that are positively correlated to a third must themselves be positively correlated.
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sampling acceptance quadrature Monte Carlo Monte Carlo difference of
std dev ratio ρE(1) ρE(1) std error ρE(1) ρE(1) estimates

0.8 0.506 0.0475 0.0443 0.00175 0.0032
1.0 0.422 0.0585 0.0608 0.00276 -0.0023
1.2 0.353 0.0643 0.0644 0.000474 -0.0001
1.4 0.295 0.0659 0.0681 0.00176 -0.0022
1.6 0.251 0.0646 0.0643 0.00300 0.0003
TABLE 3.1. Time-shifted correlation coefficient ρE(1) for simple harmonic
oscillator energies, as determined by quadrature and MC simulation.

A positive correlation between a degree of freedom and its future values (the well-known

autocorrelation effect) coupled with a positive correlation between a degree of freedom

and the future values of another degree of freedom (this unexpected cross-correlation ef-

fect) would then seem to force a positive correlation between the two degrees of freedom

at the same time in the future. However, there are widely-known counterexamples to this

presumption; it is even possible to have a negative correlation between two variables both

positively correlated to a third variable.[7]

Indeed, there is a sensible explanation for this phenomenon in the case of joint updating.

Consider the case with two simple harmonic oscillators and a random walk Metropolis

joint update kernel, with a symmetric proposal distribution, such as the Gaussian with

mean 0 or a uniform distribution on [−r, r] . If both oscillators have energy 0, and the

proposed moves have length δ1 and δ2 , then the expectation of the post-update energy of

the second oscillator is

E [E2(t + 1)|E1(t) = 0] = δ2
2e−∆E1−∆E2

= δ2
2e−δ2

1−δ2
2
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On the other hand, if oscillator 1 has displacement ε > 0 while oscillator 2 is at displace-

ment 0, and δ1 ≤ ε , then the expectation of E2 after the update will be

E
[

E2(t + 1)|E1(t) = ε2
]

=
δ2

2
2

(
e−(ε−δ1)

2+ε2−δ2
2 + e−(ε+δ1)

2+ε2−δ2
2

)
= δ2

2e−δ2
1−δ2

2 cosh (2εδ1)

since the update to oscillator 1 is equally likely to propose a move to ε− δ1 or ε + δ1 . The

ratio of these expectations is

E
[
E2(t + 1)|E1(t) = ε2]

E [E2(t + 1)|E1(t) = 0]
= cosh (2εδ1)

For ε > 0 this ratio will be larger than 1, so one oscillator being in a high-energy state

makes a move by the other oscillator into a high-energy state more likely, despite the fact

that the oscillators are supposed to be independent under the target distribution Π .

To test this explanation, we ran a simulation of a system with N = 2 for the simple

harmonic oscillator system with joint updating, and measured the conditional expectation

of the energy of the second oscillator given that the first oscillator had energy above its

mean value. This produced a peak of about 0.58, as seen in Table 3.2 and Figure 3.1b. This

is significantly higher than 0.50, the expectation of the oscillator energy. The effect on a

single oscillator diminishes as N increases, but from Corollary 23 and the approximately

linear increase of both global and local energy correlation times for the simple harmonic

oscillator system using global updating, it appears that the effect is constant for N > 1

when the entire system is taken into account rather than a single oscillator.

This effect does not produce cross-correlations for quantities probabilistically symmet-

ric with respect to their mean; that is, quantities X with µ = E[X] , for which Pr[µ− b <

X < µ− a] = Pr[µ + a < X < µ + b] for all 0 ≤ a < b . In that case a move to a lower

probability region is equally likely to cause an increase or decrease of the same magni-

tude in the symmetric quantity, and thus will fail to bias the quantity. The numerical
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(A)

(B)

FIGURE 3.1. In (a) we show the correlation coefficient between the energy
of different oscillators at a time difference of 1, for a system of two inde-
pendent simple harmonic oscillators updated using the global update ker-
nel. The curve is the result of numerically integrating the exact expression,
while the error bars indicate the results from compiling statistics from an
actual MCMC simulation. In (b) we show the conditional expectation of the
energy of oscillator 2 given that oscillator 1 had high energy at some fixed
number of time steps in the past. Closed circles represent N = 2 , crosses
represent N = 4 , and open circles represent N = 8 .
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∆t conditional mean of E2 standard error
1 0.5521 0.0027
2 0.5736 0.0030
3 0.5777 0.0031
4 0.5739 0.0029
6 0.5593 0.0030
8 0.5429 0.0028
10 0.5298 0.0028
12 0.5193 0.0027
16 0.5077 0.0024
20 0.5033 0.0027

TABLE 3.2. Means of oscillator 2 energy ∆t time steps after oscillator 1 had
energy above 0.5 in the simple harmonic oscillator system with N = 2 .

experiments of Gelman et al. in 1996 treated only Gaussian random variables, which are

probabilistically symmetric, so they could not have observed this cross-correlation effect.
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3.2. EFFICIENCY OF SIMULATIONS USING JOINT UPDATE SCHEME

The global update scheme assumed by GRG’s proof of 0.234 as the optimal acceptance

ratio for systems of independent variables as N → ∞ is extremely inefficient compared to

single-variable update scheme applied to the same systems. Indeed, the autocorrelation

times for important random variables of such systems increase by a factor of N when

using the global update, while the same autocorrelation times remain constant when using

a single-variable update.7 In the following analysis, note that a single-variable update for

any value of N has the same efficiency behavior as the global update with N = 1 .

3.2.1. Optimization results before GRG. In the early 1990’s, Bouzida, et al.[4, 5, 6] in-

vestigated conditions for optimization of MCMC step sizes and proposed adaptive algo-

rithms for determining them from simulation data. They found that for an MCMC sim-

ulation of a one-dimensional simple harmonic oscillator using a uniform distribution for

the trial moves, the optimal acceptance ratio at which τE is minimized is very nearly 0.5 .

This confirmed a rule of thumb that had long be used in MCMC simulations and brought

it out of the realm of “folklore,” as it was characterized five years later.[1] Other potentials

were found to have other optimal acceptance ratios, although they were close to one-half

for most single-well potentials.

As we will show below, the most efficient simulations of symmetric potentials are per-

formed with one-dimensional moves; however, there are still important reasons for us-

ing two-, three-, and even four-dimensional moves in certain applications. In particular,

models of biological molecules are characterized by highly inhomogeneous local struc-

ture. Each particle has a unique environment, which can also be highly anisotropic. It

is the anisotropic local potentials that make one-dimensional MCMC moves substantially

less efficient than well-optimized two- and three-dimensional moves that reflect the local

7For systems of independent variables, which are the only systems GRG’s proof applies to.
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anisotropy. In considering angular moves along the backbone of a protein, even four-

dimensional moves can be needed. The Acceptance Ratio Method (ARM) and Dynam-

ically Optimized Monte Carlo (DOMC) were developed to implement efficient MCMC

simulations for such problems.[4, 5, 6]

For MCMC simulations of simple harmonic oscillators in two and three dimensions, the

optimal acceptance ratio was found to decrease,[4, 5] anticipating the trend reported by

Gelman and coworkers.[1, 2]

3.2.2. Numerical results. We use essentially the same definition of efficiency as GRG used

in [1], the correlation time defined in (1.3.44). Of course, computing the exact value of

this quantity for a particular simulation, even if we accept an estimate φ̂Y(s) of the true

autocorrelation function φY(s) for each s ∈N , would require running the simulation for

infinite time steps. Even computing the finite sum ∑T
s=1 φ̂Y(s) for a simulation of T time

steps would be impractical, as the determination of the φ̂Y(s) would require, for each

1 ≤ t ≤ T , computing the product Y(t)Y(s) for 1 ≤ s ≤ T− t during the t th equilibrium

time step, increasing the complexity by a factor of T , which is typically on the order of 104

or 105 . Thus we rely on two approximation techniques, which require only determining

φ̂Y(s) for 1 ≤ s ≤ T∗ � T . The first is the truncated correlation time

τtrunc
Y :=

1
2
+

min{T−,T∗}

∑
s=1

φ̂Y(s) (3.2.1)

where

T− := min
{

s ∈N : φ̂Y(s) ≤ 0
}

(3.2.2)

Note that while the true autocorrelation function φY(s) ≥ 0 for all s ∈N0 , the simulation

estimate φ̂Y(s) may be negative if φY(s) is near zero. Thus τtrunc
Y estimates the correlation

time by ignoring the statistical noise that dominates estimates of small φY(s) . This is, of

course, a biased estimator, biased low, and only sensible to use if T− ≤ T∗ . Thus we only

use it for cases where the correlation time is low.
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Another useful estimate, which complements the truncated correlation time fairly well,

is the fitted correlation time. It uses the fact that φY(s) approaches a decaying exponential

function as s grows large [18]. Thus we define

τfit
Y :=

1
2
+

T∗

∑
s=1

φ̂Y(s) +
ˆ ∞

T∗
Ce−γsds (3.2.3)

≈1
2
+

T∗

∑
s=1

φ̂Y(s) +
φ̂Y(T∗)

γ
(3.2.4)

The exponent γ is estimated using regression for s . T∗ or some other technique. This

estimate will be more accurate when T− defined in (3.2.2) is high, giving a larger range

of s to use for regression. Thus, we use fitted correlation time for cases where correlation

time is high.

3.2.2.1. Simple harmonic oscillators. We now turn to evaluating the efficiency of joint and

single updating simulations of a system of independent and identical simple harmonic

oscillators (or a multivariate Gaussian) treated in Section 3, except now in an arbitrary

number of dimensions N . The probability density for the displacement vector x ∈ RN of

the oscillators now becomes

πsho
N (x) = Z−1 exp

(
−|x|2

)
(3.2.5)

Results obtained for simulations with global update kernels are summarized in Table

3.3. The single updating scheme occurs for N = 1 , while the joint updating scheme is

present for N > 1 . The correlation time increases roughly linearly with N for larger

N . This can also be found in Gelman et al. [1] in Table 1.1, where the inverse quantity

is termed “efficiency” and decreases as N−1 . In the case of optimizing both local corre-

lation times, the optimal acceptance ratio seems consistent with convergence to a value

near 0.234, while the optimal acceptance ratio for estimating energy as a global quantity

exhibits slower convergence.
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(A)

(B)

FIGURE 3.1. Optimal (a) acceptance ratio and (b) correlation time for energy
and displacement for a system of N (move dimension) simple harmonic os-
cillators simulated using random walk Metropolis with the global update.
GRG predict that optimal acceptance ratio for the global update approaches
0.234 as N → ∞ , which appears correct, but the correlation times increase
roughly linearly with N , indicating global update is a poor choice of kernel.
In (b), open circles represent global correlation time for energy, closed circles
represent local correlation time for energy, and asterisks represent correla-
tion time for displacement (local and global are identical).
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N acc ratio τx (local) acc ratio τE (global) acc ratio τE (local)
1 0.431 1.7 0.495 1.8 0.495 1.8
2 0.338 3.5 0.425 3.6 0.387 2.7
4 0.295 5.9 0.407 6.1 0.336 4.6
8 0.261 12.5 0.395 13.8 0.275 7.5

16 0.249 24.6 0.373 25.5 0.258 13.7
TABLE 3.3. Optimal acceptance ratio and correlation time for displacement
and energy in simple harmonic oscillators system. Global and local correla-
tion times are roughly equal for displacement. The single-variable update
for this system is equivalent to global update with N = 1 .

3.2.2.2. Symmetric anharmonic oscillators. While it was not tested by Gelman et al., another

interesting system with practical applications consists of independent, identical symmet-

ric anharmonic oscillators with single-variable energy Ej
(
xj
)
= x4

j − x2
j with x ∈ RN

again representing displacement. This is called a double-well potential due to the shape

of the graph of Ej , with local minima at xj = ±
√

2
2 and a local maximum at xj = 0 . The

density function is of the form (3.1.2), specifically:

πdw
N (x) = Z−1

N exp

(
−

N

∑
j=1

(
x4

j − x2
j

))
(3.2.6)

exhibits a double-peak with the same relevant values of xj . If the proposed move dis-

tribution favors very small moves, it is difficult for an oscillator to move from the area

of one local minimum of E to the other, as the small size of the moves would make the

displacement near 0 and are likely to be rejected due to the relatively high energy there. If

large moves are likely to be proposed, this problem is averted.

Here we focused on relaxation time rather than the correlation time. We measured how

long it takes the system to move from the local energy minimum where xj = 1/
√

2 for

each oscillator j , to a state where the mean displacement among the N oscillators reaches
√

2/4 , half the initial value. The expectation of mean displacement at equilibrium is 0,

so this is an indicator of how quickly oscillators are moved from one energy minimum

to the other. In Table 3.4, we see that this decay time of the mean displacement increases

roughly linearly with N when the simulation uses global updating. This indicates that
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N time to halve mean displacement
4 32

16 248
64 2119

256 7920
1024 29412

TABLE 3.4. Time to halve mean displacement for symmetric anharmonic
oscillators system with all oscillators initialized to displacement 1/

√
2 , us-

ing global update kernel. For each N , the acceptance ratio was the opti-
mal value for measuring displacement. While the equivalent of the single-
variable update (global update with N = 1 ) was not measured, it is clear
that the displacement-halving time is smaller for smaller values of N .

larger numbers of degrees of freedom make it more difficult to move from one well to the

other, and thus require longer simulations to accurately sample the entire distribution.

3.2.2.3. Asymmetric anharmonic oscillators. To illustrate that the displacement also can be

affected by spurious cross-correlations in the global update kernel, we considered a slightly

different anharmonic potential E(x) = 2
(
4x4 − x3 − 3x2) . This is also a double-well po-

tential with local maximum at x = 0 , with E locally minimized at x near 0.713 and -0.526.

Its density function is

πasym
N (x) = Z−1

N exp

(
−2

N

∑
j=1

(
4x4 − x3 − 3x2

))
(3.2.7)

In this system we observed a difference between the global and local correlation times

for displacement as well as energy. In Part 3 we explained that this happens because

E is no longer symmetric about x = 0 . Data for the two types of correlation time for

displacement are given in Table 3.5.

3.2.3. Effect of proposed move distribution.

3.2.3.1. Direct effect on efficiency. In all the foregoing, we used a Gaussian as the proposal

distribution, since that is the distribution that Gelman et al. worked with [2, 1]. However

it is possible, and often desirable, to use other distributions for proposed moves. Many

factors affect this decision, the foremost being the shape of the probability landscape of
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FIGURE 3.2. Time evolution of mean displacement for first 20,000 time
steps for global update Metropolis simulation of symmetric anharmonic os-
cillators, with N = 16, 64, 256, 1024 and all oscillators initialized to displace-
ment

√
2/2 . Thicker lines indicate larger N . In equilibrium this system has

an expected value of displacement equal to 0, indicating that equilibrium
is much slower to develop for larger N . A single-variable update would
behave as if N = 1 regardless of how many oscillators were present in the
system, so equilibrium is reached much more quickly for a single-variable
update.

N acc ratio τx (global) acc ratio τD (local)
1 0.482 1.75 0.467 1.49
2 0.350 3.71 0.350 3.58
4 0.251 10.9 0.251 10.4
8 0.210 30.4 0.190 29.3

16 0.195 79.6 0.195 77.7
32 0.222 187 0.205 183
64 0.225 398 0.225 396

TABLE 3.5. Displacement correlation time for asymmetric anharmonic os-
cillators system with α = 2 . The single-variable update exhibits the same
efficiency behavior for any N as the global update does with N = 1 .
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(A) (B)

(C) (D)

FIGURE 3.3. Optimal acceptance ratios for (a) displacement and (b) energy,
and optimal correlation times for (c) displacement and (d) energy in the sys-
tem of asymmetric anharmonic oscillators, using the global update as move
dimension N increases. Open circles represent global correlation times and
closed circles represent local correlation times (and their associated optimal
acceptance ratios). GRG predict that optimal acceptance ratio for the global
update approaches 0.234 as N → ∞ , and these data agree with that pre-
diction, however the correlation time of the global update increases linearly
with N making it an unattractive choice of kernel.

the problem. The most common alternative distributions are uniform in some region of

space, be it a hypercube or a hypersphere (which may be uniform in volume or uniform

in radius). Each random number sampled from the multivariate Gaussian distribution



KERNEL SELECTION FOR CONVERGENCE AND EFFICIENCY IN MARKOV CHAIN MONTE CARLO 62

requires the generation of a uniform random number and evaluation of three slow func-

tions, so there is a computer time penalty in choosing Gaussian proposed moves over

uniform. Also, our experiments summarized in Figure 3.4 indicate that sampling from

a Gaussian produces longer correlation times than sampling from a symmetric uniform

distribution even when the same updating scheme is used.

3.2.3.2. Effect on length of proposed moves. Maintaining the “optimal” acceptance ratio for

the joint updating scheme with Gaussian proposed moves requires that the sampling stan-

dard deviation sm for m -dimensional moves must decrease proportionally to
√

m . This

actually leads to proposed moves being sampled almost exclusively from the surface of a

hypersphere of constant radius as m grows large, causing the RMS length of each dimen-

sion’s proposed moves to decrease proportionally to
√

m .

Theorem 24. Suppose that for each m ∈ N , Qm is an m -dimensional Gaussian distribution

with mean 0 and covariance matrix s2
mI for some sm > 0 . Let rm be a random variable repre-

senting the length of a proposed move drawn from Qm . Then

E
[
r2

m

]
= ms2

m (3.2.8)

and for the limit of the relative width of the distribution of rm we have

lim
m→∞

Var [rm]
1/2

E [rm]
= 0 (3.2.9)

Proof. For m -dimensional moves, the probability density of the proposed move length r

generated by the multivariate Gaussian sampler with covariance matrix s2
mI is given by

fm(r) = Z−1
m rm−1 exp

(
− r2

2s2
m

)
(3.2.10)
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(A)

(B)

FIGURE 3.4. Correlation times for (a) displacement and (b) energy in sim-
ulating a single simple harmonic oscillator. The open circles represent the
results for Gaussian proposal distributions, while the closed circles repre-
sent those for uniform proposal distributions.
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with the normalization

Zm =

ˆ ∞

0
rm−1 exp

(
− r2

2s2
m

)
dr

= Γ
(m

2

)
2

m
2 −1sm

m (3.2.11)

We then see that

E
[
r2
]

= Z−1
m

ˆ ∞

0
rm+1 exp

(
− r2

2s2
m

)
dr

= ms2
m (3.2.12)

and

E[r] = Z−1
ˆ ∞

0
rm exp

(
− r2

2s2
m

)
dr (3.2.13)

=

Γ
(

m+1
2

)
Γ
(m

2

)
 sm
√

2 (3.2.14)

Using Stirling’s formula we obtain

lim
m→∞

E[r] = lim
m→∞


√

π(m− 1)
(

m−1
2

)m−1
2 e−

m−1
2√

π(m− 2)
(m−2

2

)m−2
2 e−

m−2
2

sm
√

2


= lim

m→∞

[(
1 +

1
m− 2

)m−2
2

e−
1
2

√
m− 1
m− 2

sm
√

m− 1

]
(3.2.15)
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So we have for the limit of the relative width of the distribution

lim
m→∞

Var[r]1/2

E[r]
=

[
lim

m→∞

E
[
r2]

E[r]2
− 1

]1/2

=

[
lim

m→∞

((
1 +

1
m− 2

)−(m−2)

e
(

1− 1
(m− 1)2

))
− 1

]1/2

= 0 (3.2.16)

�

Since the sampling distribution is spherically symmetric, we can conclude that for large

m , the multivariate Gaussian distribution proposes moves almost exclusively from the

surface of a hypersphere of fixed radius Rm for each m .8

In addition, our experiments confirm the results of Roberts et al. that to maintain the

acceptance ratio in the neighborhood of 0.234, we must set sm ≈ Cm−1/2 for a constant

C , so in view of (3.2.12) we have

lim
m→∞

E
[
r2

m

]
= C (3.2.17)

This is confirmed by our results summarized in Figure 3.5. Thus the proposed change for

each variable in the update set, in the sense of root mean square of the length, decreases

with m−1/2 .

3.2.3.3. Comparison to volume-uniform sampling in hypersphere. For large m , sampling pro-

posed moves uniformly in volume from a fixed hypersphere displays similar behavior to

Gaussian sampling. For fixed 0 < ε < 1 the proportion of the volume of a hypersphere

of radius (1− ε) R to that of a hypersphere of radius R is (1 − ε)−m , which of course

8Of course, the highest probability density of the multivariate Gaussian distribution always occurs at the
origin, but the region near the surface of the hypersphere of radius Rm contains an increasing share of
the proposed moves as m increases. Despite the lower probability density, the volume near this surface
increases as m increases.
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(A)

(B)

FIGURE 3.5. Behavior of (a) mean Euclidean norm and (b) relative width
of Euclidean norm as the number of dimensions in each Gaussian proposed
move increase.
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approaches 0 as m → ∞ .9 Since both distributions are spherically symmetric and heav-

ily concentrated on the surface of a hypersphere as m → ∞ , it seems plausible that an

analogous theorem to the original 0.234 proof by Gelman et al. can be investigated using

this type of uniform distribution, though the same issues with the global update scheme

would limit its direct relevance to practical calculations.

3.3. CONCLUSIONS

Although Gelman and co-workers have created an interesting mathematical proof of an

optimal acceptance ratio, the result has no practical applications that we have been able

to find. The proof assumes a global update scheme requiring that all variables be updated

together. For a system with N independent variables, the global update scheme decreases

efficiency by a factor of N compared to a single-variable update scheme. The computer

time consumed by a single sweep of the single updating scheme cannot be more than

twice that used by a sweep of the joint updating scheme on the same system, and usually

the computer time difference per sweep is negligible. So the use of a joint updating scheme

is inadvisable for large systems.

While investigating the algorithm required by GRG, we discovered an interesting side

effect of the joint update scheme, which in contrast to the above general effect is significant

even when the move dimension is small. While it can be proved that no correlations

between the simultaneous values of independent random variables are introduced by any

MCMC algorithm that satisfies detailed balance, joint updating with move dimension

m > 1 can introduce spurious correlations between the values of these random variables

at different times. This counterintuitive result is important in evaluating the efficiency

of any algorithm that uses joint updating with multi-dimensional MCMC moves. Joint

updating should be avoided in favor of the single updating scheme with m = 1 unless

there is a specific reason for their use when dealing with a particular simulation. Such

exceptions may occur when dealing with a highly anisotropic model, but even in those

9An analogous phenomenon occurs with the volume-uniform distribution on a hypercube, but there is not
spherical symmetry in that case, making it less likely that a similar proof technique to that used to arrive at
Gelman et al.’s optimal acceptance ratio would work.
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cases where joint updating is crucial the move dimension m should be kept as low as

possible.
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FIGURE 4.1. If supp(Π) � LN and is the gray area in this picture, a global
update using a Gaussian or uniform proposal distribution will be irreducible
since the support is connected. However, the single-variable update using
horizontal and vertical moves only will fail to be irreducible; moving from
one square to the other first requires moving to the edge of the square, which
has probability 0.

Part 4. Conditions for Π -irreducibility and aperiodicity

4.1. FIXED CYCLE SUBSET UPDATE

Chan and Geyer in [10] showed that the single-variable update using a fixed cycle

(which they call variable-at-a-time Metropolis) is Π -irreducible provided that every one

of the subkernels is irreducible with respect to the conditional distribution of Π given the

values of the other variables. While this is a useful result, and can be trivially extended to

our partition updates, the hypothesis can be weakened somewhat.

If Ω = RN and supp(Π) is open and connected but not convex, the result of Chan and

Geyer would require that each subset proposal distribution qi be able to “jump the gap”

between points in supp(Π) which differ only in variables in the set Ui , but are separated

by points outside supp(Π) . In practice, this would mean that the width of a uniform

proposal distribution, might have to be larger than we would like. Large widths lower the

acceptance ratio. So we will weaken the hypotheses of Chan and Geyer in the following.

Define the subspace distance function for x, y ∈ Ω by
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di(x, y) :=

[
∑

j∈Ui

(
yj − xj

)2

]1/2

(4.1.1)

and the subspace ball

Bi(x, ρ) := {y ∈ Ω|di(x, y) < ρ} (4.1.2)

To show Π -irreducibility, given x ∈ Ω and A ∈ A with Π(A) > 0 , we seek to determine

a finite sequence of sets, each with positive Π -probability, such that a fixed cycle subset

update kernel is able to move from x to some state in A by moving from one set in the

sequence to the next in a finite number of time steps.

First we require a general result about product measures.

Lemma 25. Let (µ, U,U ) and (ν, V,V) be measure spaces and let A ⊆ U × V be measurable

with respect to the product measure µ× ν . Define

Au := {(u, v) ∈ A|v ∈ V} (4.1.3)

Av := {(u, v) ∈ A|u ∈ U} (4.1.4)

and

AU := {u ∈ U|ν (Au) > 0} (4.1.5)

AV := {v ∈ V|µ (Av) > 0} (4.1.6)

Then if µ (AU) = 0 or ν (AV) = 0 , we must have (µ× ν)(A) = 0 .

Proof. The product measure µ× ν can be written as

(µ× ν)(A) =

ˆ
U

ν (Au) µ(du) =
ˆ

V
µ (Av) ν(dv) (4.1.7)
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Suppose WoLoG that µ (AU) = 0 . By the hypothesis of the theorem we have

(µ× ν)(A) =

ˆ
U

ν (Au) µ(du) =
ˆ

AU

ν (Au) µ(du) = 0 (4.1.8)

�

Armed with this result, we can now approach the main Π -irreducibility results. Sup-

pose that, for some ρ > 0 , each proposal distribution Qi has Bi(x, ρ) ⊆ supp (Qi(x, ·)) for

all x ∈ Ω . Suppose also that Π � LN and Π(int(supp(Π))) = 1 . Then we prove that

for any x ∈ Ω and set A ∈ A with Π(A) > 0 , the set A is accessible from x in a finite

number of time steps

• when x and A are both inside a “small” rectangle inside the support of Π ,

• when x and A are both inside an open connected set inside the support of Π ,

• for any A ∈ A with Π(A) > 0 .

Note that the condition on the support’s interior does exclude some distributions with

Π � LN . If Ω = RN , Π � LN , and the boundary of supp(Π) is of dimension N −

1 or less, then we immediately have that Π(int(supp(Π))) = Π(supp(Π)) = 1 , so this

condition is violated only for supports with fractal boundaries. Let F ⊆ R be a set with

L1(F) > 0 and int(cl(F)) = ∅ , that is, a nowhere-dense set with positive measure, such

as the “Fat Cantor set” discussed in [19]. Then the uniform distribution for F , as defined

in (1.1.11), has UnifF � L1 and supp (UnifF) ⊆ cl(F) . But F is nowhere-dense, so

UnifF (int (supp (UnifF))) = UnifF(∅) = 0 (4.1.9)

Fortunately, such distributions do not often arise in physical applications.

Lemma 26. Suppose Π � LN . Suppose that for every i ∈ N ∩ [1, `] , there is some ρi > 0

such that for every x ∈ Ω we have qi(x, z) > 0 for all z ∈ Bi (x, ρi) . Let R ⊆ supp(Π) be a
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rectangle with side length sj in the j th dimension for j ∈N∩ [1, N] . Define

s := max
j

sj (4.1.10)

ρ := min
i

ρi (4.1.11)

If s
√

N < ρ , then for any y ∈ R and any set A ∈ A with A ⊆ R and Π(A) > 0 , we have

P(y, A) > 0 (4.1.12)

Proof. We can define for i ∈N∩ [1, `]

µi := ν1 × ν2 × · · · × νi (4.1.13)

Wi := V1 ×V2 × · · · ×Vi (4.1.14)

and then write for i ∈N∩ [1, `]

0 < LN(A) = (µ`−1 × ν`) (A) (4.1.15)

From the contrapositive of Lemma 25, we see that

µ`−1
(

AW`−1

)
> 0 (4.1.16)

and we have that P`(z, A) > 0 for z ∈ AW`−1 .

Analogously, let i ∈N∩ [1, `− 2] be given. Write

µi+1
(

AWi+1

)
= (µi × νi+1)

([
AWi+1

]
Wi

)
(4.1.17)

so by the contrapositive of Lemma 25, if µi+1
(

AWi+1

)
> 0 , we have that Pi

(
z, AWi+1

)
> 0

for all z ∈ AWi and i ∈N∩ [1, `− 1] . Thus P(y, A) > 0 . �
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Theorem 27. Suppose Π � LN . Let C ⊆ supp(Π) be an open connected set. Suppose that for

some ρ > 0 , we have qi(z, y) > 0 for all i ∈ Z∩ [0, `), y ∈ Bi(z, ρ) and z ∈ Ω . Then there is

some n ∈N0 for which

Pn(x, A) > 0 (4.1.18)

for any t ∈N0 , x ∈ C , and A ⊆ C with Π(A) > 0 .

Proof. Let x ∈ C and A ⊆ C with Π(A) > 0 be given. Find an open rectangle R∗ ⊆ C

with side length smaller than ρ , and Π(R∗ ∩ A) > 0 . Let y be the centroid of R∗ .

Since C is open and connected, it is pathwise connected. Find a continuous path function

γ : [0, 1]→ C such that γ(0) = x and γ(1) = y .

The details of the proof from this point are a bit tedious, but this is the general outline

(and we also refer the reader to Figure 4.2): we cover the path from x to y in C with open

rectangles small enough for Lemma 26 to apply, and which are entirely inside the open set

C . The path is compact as it is the image of a compact set under a continuous function, so

we find a finite subset of these open rectangles which still cover the path, and order them

according to the largest value in [0, 1] which is mapped into the rectangle by γ . Since

these are open sets they must overlap with some other member of the subset, and these

intersections (if nonempty) must have positive measure. In this way we can use Lemma

26 to guarantee a positive probability of moving from one rectangle to another without

repetition. Thus we can eventually reach a rectangle which contains y in a finite number

of steps. From there we apply Lemma 26 to R∗ to ensure positive probability of moving

from the final rectangle in the cover to the destination set A .

For each u ∈ [0, 1] , let Ru ⊆ C be an open rectangle containing γ(u) and with side

length less than ρ . This is possible because C is open. The image set Γ = γ([0, 1]) is

compact and covered by {Ru}u∈[0,1] , so we can find a finite sequence {us}k
s=1 among

[0, 1] such that Γ is covered by
⋃k

s=1 Rus . For each s , let vs be the least upper bound of

the parameter which is mapped into the rectangle Rus by γ . That is,

vs := sup {u ∈ [0, 1]|γ(u) ∈ Rus} (4.1.19)
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WoLoG assume that vs is nondecreasing with respect to s (this can be ensured by reorder-

ing the rectangles’ indices). For any s ∈ Z ∩ [1, k) with vs < 1 , we have γ (vs) ∈ Ruw

for some ws with s < ws ≤ k and Rus ∩ Ruws 6= ∅ . The fact that these open rectan-

gles intersect inside supp(Π) means that Π
(

Rus ∩ Ruws

)
> 0 , so by Lemma 26 we have

P
(
z, Ruws

)
> 0 for any z ∈ Rus . Now we have one of two possibilities.

Case 1: v1 = 1 . In this case, x, y ∈ Ru1 and thus Ru1 ∩ R∗ 6= ∅ . Then

P2(x, A) ≥P2 (x, A ∩ R∗) (4.1.20)

≥
ˆ

Ru)

P(x, dz)P (z, A ∩ R∗) (4.1.21)

>0 (4.1.22)

Case 2: v1 < 1 . Then we can construct a finite sequence in the following manner: let

t1 := 1 , and if vtw < 1 , let tw+1 satisfy tw < tw+1 ≤ k and Rutw ∩ Rutw+1
6= ∅ . That is,

tw+1 is the index of a rectangle containing part of the image curve with higher parameter

values which intersects Rtw . Since vk = 1 , we know that there will be some b ∈ Z∩ [1, k] ,

with vtb = 1 and thus y ∈ Rtb . This implies that P
(

z(b), A ∩ R∗
)
> 0 in view of Lemma

26. Then

Pb+1(x, A) ≥Pb+1 (x, A ∩ R∗) (4.1.23)

≥
ˆ

Rtb

ˆ
Rtb−1

· · ·
ˆ

Rt1

P
(

x, z(1)
) [ b

∏
w=2

P
(

z(w−1), dz(w)
)]

P
(

z(b), A ∩ R∗
)

(4.1.24)

>0 (4.1.25)

�

Since supp(Π) has finite Π -measure, it can have only countably many connected com-

ponents with positive Π -measure. Thus to have irreducibility, we only need Theorem 27



KERNEL SELECTION FOR CONVERGENCE AND EFFICIENCY IN MARKOV CHAIN MONTE CARLO 75

FIGURE 4.2. Illustration of the proof of Theorem 27. It is possible to move
from the point x to a rectangle R∗ containing both part of the set A and the
point y by moving through the rectangles covering the path between those
points in succession. Once that rectangle is reached, Lemma 26 guarantees
we can reach the intersection A ∩ R∗ ⊆ A .

to hold for each connected component, and to have the various subkernels able to jump

from one connected component to another. This gives the following.

Theorem 28. Suppose Π � LN , with Π(int(supp(Π))) = 1 and density π(x) = 0 for all

x ∈ Ω\supp(Π) , and there is a sequence
{

Cj
}

j∈N
of connected components of int(supp(Π))

including each. Suppose there are sequences
{

Dj
}

j∈N
,
{

Ej
}

j∈N
of sets in A ,

{
ij
}

j∈N
with

ij ∈ N0 ∩ [0, `) , and ρ > 0 such that, for each j ∈ N , we have Dj ⊆ Cj, Ej ⊆ Cj, LN (Dj
)
>
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0, LN (Ej
)
> 0 and dij(x, y) < ρ for all x ∈ Dj, y ∈ Ej+1 . Suppose also that we have

qi(x, y) > 0 for all y ∈ Bi(x, ρ) . Then P is Π -irreducible.

Proof. Let x ∈ Ω with π(x) > 0 and A ∈ A with Π(A) > 0 be given. We seek to show

that Pn(x, A) > 0 for some n ∈ N0 . First a bit of a roadmap for the proof (and we refer

the reader to Figure 4.3). We will construct a sequence of sets forming a path from x to

somewhere in A . Every transition in the path will be either between subsets of the same

connected component, or from connected component Cj to Cj+1 , and specifically from

the departure region Dj ⊆ Cj to the entrance region Ej+1 ⊆ Cj+1 .

Since Π (B ∩ supp(Π)) = Π(B) for any B ∈ A , we can find sA ∈N such that Π (A ∩ CsA) >

0 . We must have x ∈ supp(Π) by hypothesis, so we can find sx ∈ N such that x ∈ Csx .

Note that sx is the index of the connected component containing x and sA is that of a

connected component including A . If sx = sA , then they are in the same connected com-

ponent. By Theorem 27 we would then have Pn(x, A) > 0 for some n ∈ N0 and be

done.

So suppose WoLoG that sx < sA . Let s ∈ N1 ∩ [sx, sA) be given. Let z ∈ Ds be given

with π(z) > 0 . Then

P (z, Es+1) =

ˆ
Es+1∩Vi

qis(z, z + y)min
{

1,
π(z + y)

π(z)

}
νi(dy) > 0 (4.1.26)

and thus P (Ds, Es+1) > 0 for all i ∈N . From Theorem 27 we know that Pns (Es, Ds) > 0

for some ns ∈N0 and PnA (EsA , A ∩ CsA) > 0 for some nsA ∈N0 . Thus

Pn(x, A) ≥Pnsx (x, Dsx) PnsA (EsA , A ∩ CsA)
sA−1

∏
s=sx+1

P (Ds−1, Es) Pns (Es, Ds) (4.1.27)

>0 (4.1.28)

for n := sA − sx + ∑sA
s=sx ns . �
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FIGURE 4.3. Illustration of the proof of Theorem 28. The light gray regions
are the connected components Ci of supp(Π) . Moving from the point x
to the set A requires jumping (using horizontal or vertical moves only) be-
tween the departure regions Di and the entrance regions Ei , in dark gray.
Theorem 28 guarantees that we can move from the entrance region to the
next departure region through the open, connected set Ci .

Next we move on to show aperiodicity of a fixed cycle subset update kernel. Recall that

it is sufficient to show that there is some n0 ∈N for which

Pr [X(t + n) ∈ A|X(t) ∈ A] > 0 (4.1.29)

for any n ∈N∩ [n0, ∞] .
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Theorem 29. Suppose P(x, ·) � LN for every x ∈ Ω and there is ρ > 0 such that, for each

0 ≤ i < ` , we have qi(x, x + y) > 0 for all y ∈ Bi(0, ρ) . If P is Π -irreducible, then P is

aperiodic.

Proof. Let A ⊆ Ω be given such that Π(A) > 0 . Let x ∈ A be given.

Case 1: Suppose A has a region of positive Lebesgue measure within a distance ρ of x ,

that is, νi (Bi(x, ρ) ∩ A) > 0 .

Pi(x, A) = 1−
ˆ

Vi\(A−x)
qi(x, x + y)a(x, y)νi(dy)

≥ 1−
ˆ

Vi\(A−x)
qi(x, x + y)νi(dy)

=

ˆ
A−x

qi(x, x + y)νi(dy)

≥
ˆ
(A−x)∩Bi(0,ρ)

qi(x, x + y)νi(dy) (4.1.30)

> 0 (4.1.31)

and

P(x, A) =

ˆ
A

ˆ
Ω
· · ·
ˆ

Ω
P1

(
x, dz(1)

) [`−1

∏
i=2

Pi

(
z(i−1), dz(i)

)]
P`
(

z(`−1), dy
)

≥
ˆ

A

ˆ
A
· · ·
ˆ

A
P1

(
x, dz(1)

) [`−1

∏
i=2

Pi

(
z(i−1), dz(i)

)]
P`
(

z(`−1), dy
)

> 0 (4.1.32)

so for any n ≥ 1 , we have Pn(x, A) > 0 .

Case 2: Suppose νi (x, Bi(x, ρ) ∩ A) = 0 . Since Π(A) > 0 , we can find a point y ∈ A

such that Π(B(y, ρ) ∩ A) > 0 . By Π -irreducibility, we know that there is some n ∈ N

such that

Pn (x, B(y, ρ)) > 0 (4.1.33)

and Case 1 applies to y . So for any k ≥ n , we have Pk(x, A) > 0 . �
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4.2. GLOBAL UPDATE AND MIXTURE OR MIXED CYCLE SUBSET UPDATE

Ergodicity of the global update Metropolis algorithm is shown in [9] to require only

that the proposal distribution Q(x, ·) � LN and Q(x, A) be positive on every open set

A with x ∈ A . For mixtures, we know from Chan and Geyer [10] that Π -irreducibility

and aperiodicity of each Pi(x, ·) on the translated subspace Vi + x is sufficient to prove

Π -irreducibility and aperiodicity for the full mixture updating algorithm.
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� (absolutely continuous), 4

� (reverse), 37

⊥ (singular), 5

[[·]] (positive modulus), 35

A

absolutely continuous, 4

almost every, 2

aperiodic, 9, 11

autocorrelation function, 27

global, 47

local, 46

B

basis measure, 4

C

complete, 2

completion, 2

correlation time, 27

counting measure, 1

D

density function, 4

detailed balance, 9, 13

E

equilibrium distribution, 9

ergodic, 9

G

global update, 20

H

Ht , 7

I

invariant measure, 11

irreducible, 9, 11

J

joint update, 20

K

kernel

off-diagonal, 12

product of, 6

stochastic, 5

substochastic, 12

transition, 6

L

Lebesgue measure, 2, 3

M

master equation, 8, 10

measurable, 1

measure, 1

probability, 1

N

N0 (natural numbers with 0), 5

nowhere-dense, 71

P

partition update, 20

probability space, 1
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product space, 3

S

σ -algebra, 1

σ -finite, 3

singular, 5

subset update, 19

support, 3

T

time-homogeneous, 7

total balance, 9, 11

total variation, 7

U

uniform distribution, 4

update set, 17


