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Abstract

Maps of the large-scale structure of the Universe at redshifts 2 < z < 4 can
be made with the Lyα forest, which are complementary to low-redshift galaxy sur-
veys. We apply the Wiener interpolation method of Caucci et al. to construct
three-dimensional maps from sets of Lyman α forest spectra, evaluating its perfor-
mance with cosmological hydrodynamic simulations and also applying these methods
to BOSS DR12 data. We discuss local smoothing and also show that the simulated
map resolutions are accessible to current observational surveys. We find from the sim-
ulation study that both the density field and the statistical properties of the IGM are
recovered well enough that the resulting IGM maps can be meaningfully considered to
represent large-scale maps of the universe, in agreement with Caucci et al., on larger
scales and for sparser sightlines than had been tested previously. Quantitatively, for
sightline parameters comparable to current and near future surveys, the correlation
coefficient between true and reconstructed fields is r > 0.9 on scales > 30h−1Mpc.
The properties of the maps are relatively insensitive to the precise form of the co-
variance matrix used. The final BOSS quasar Lyman α forest sample allows us to
make maps with a resolution of ∼ 60h−1Mpc over a volume of ∼ 15h−3Gpc3 between
redshifts 1.9 and 2.3. We make large maps of the BOSS DR12 IGM field and study
global statistical properties of the maps with auto–correlation, slice plots, local peaks,
probability density functions, point-by-point scatter, and percolation techniques to
identify individual structures.
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Chapter 1

Introduction

1.1 Cosmology

Throughout the history of mankind, there have been two main stages to unfolding
the mysteries of nature: Obtaining data and interpreting it correctly. Cosmology,
the study of the origin and structural evolution of the Universe, is unique in that
regard, as the data have always been readily available. Tycho Brahe proved, before
telescopes were invented, that the Sun is much more distant than the Moon from the
Earth, by measuring the position of stars and planets. Johannes Kepler, a student of
Brahe, improved on his mentor’s work by using elliptical planetary orbits instead of
circular ones and formulating the laws of planetary motion. Isaac Newton expanded
Galileo’s ideas, describing the motion of celestial objects within a more rigorous scien-
tific framework in late 17th century. In his cosmological model, space had Euclidean
geometry and was infinite in all four dimensions, however, it was neither expanding
nor contracting.

In early 20th century, the Newtonian static Universe was still the widely accepted
model, which Einstein used for his work on general relativity. In his work between
1914–1917, he mentions various limitations of the Newtonian theory (e.g. the incon-
sistencies associated with the Newtonian boundary conditions of the Universe: ”the
field equations of gravitation which I have championed hitherto still need a slight
modification, so that on the basis of the general theory of relativity those fundamen-
tal difficulties may be avoided ... as confronting the Newtonian theory.” (zur all-
gemeinen Relativitätstheorie, 1917). Hence, although not initially present, Einstein
also included a cosmological constant (Λ) in his field equations in order to balance
out the attractive nature of gravity and hence allow for a static Universe:

Gµν + Λgµν = 8πTµν (1.1)

whereGµν is the Einstein tensor, gµν is the metric tensor, Tµν is the energy–momentum
tensor, and G = c = 1. In principle, it describes the relation between the geometry
of spacetime and the distribution and movement of energy and matter.
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Edwin Hubble’s discovery that the Universe is expanding (Hubble, 1929) suggested
that the cosmological constant may be unnecessary: An expanding universe indicated
by general relativity was seemingly correct. Although Einstein subsequently regretted
introducing the idea of the cosmological constant and discarded it from his field equa-
tions, it was eventually discovered that Λ is small, but not zero: Examining Type Ia
supernovae, two independent groups (Riess et al., 1998; Perlmutter et al., 1999) came
to the conclusion that the expansion of the Universe is accelerating (for a review
on the discovery of dark energy (DE) and the accelerating Universe, see (Frieman
et al., 2008)). Since gravity alone could only slow down the expansion of the Uni-
verse, this marked the birth of new physics and subsequently dark energy, associated
with negative pressure. The origins of dark energy still remain a mystery, however,
independent observations from the cosmic microwave background (CMB), galaxies
and the large–scale structure (LSS) support its existence. Furthermore, studying the
motions of galaxies near the edge within the Coma cluster, the existence of another
type of matter was proven (Zwicky, 1933), which only interacts gravitationally. Full–
mission Planck observations (Ade et al., 2015, 2016) yield current relative density
values as ΩΛ = 0.68 for dark energy, Ωc = 0.27 for dark matter (DM) and Ωm = 0.05
for baryonic matter (Figure 1.1).

The standard model of cosmology (Lambda Cold Dark Matter Model, or ΛCDM)
provides a sufficiently good explanation for the accelerating expansion of the Universe,
as well as the cosmic microwave background, big bang nucleosynthesis (light element
abundances) and the large–scale structure. Temperature, the cosmic scale factor a or
the redshift z are the three commonly used means of measuring time since the Big
Bang:

a =
1

1 + z
=
λemit
λobs

(1.2)

where z is the redshift, also defined with the ratio of the emitted and elongated
wavelengths of an electromagnetic wave as it propagates with the expanding Universe,
e.g. a redshift of 2 means that electromagnetic waves had only a third of their
wavelengths compared to what is observed today, or equivalently, the Universe was
a third of its current size. The value of the dimensionless scale factor a is defined as
unity for today.

This thesis is about studying the large–scale structure at very big scales, but
first we need to understand how the different cosmic eras throughout the history of
the Universe are interconnected before the LSS started evolving. While the ΛCDM
cosmology can answer many aspects that have to do with the history of the Universe,
there are still many mysteries that we cannot fully solve.
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Figure 1.1: Relative densities of dark energy, dark matter and ordinary matter ac-
cording to Planck observations (figure obtained from ESA / Planck).

1.1.1 Inflation

Inflation refers to the very short period at the beginning of the Big Bang, during
which the Universe grew at a tremendous rate, to 1030 of its original size, within
10−32 seconds. The idea of inflation is that the Universe was dominated by vacuum
energy with an equation of state p < −ρ/3. In view of the scaling of the radiation
energy density ρr with the inverse fourth power of the scale factor, the condition
required by general relativity, ρν > ρr, is trivially satisfied.

In principle, it is a viable method examine findings about the later Universe and
go back in time to study earlier eras of the Universe, those that are closer in time
to the Big Bang. This is how the inflation theory was introduced (Guth, 1981; Guth
and Pi, 1982; Linde, 1982; Albrecht and Steinhardt, 1982; Hawking, 1982), in order
to explain the fact that the anisotropies seen in the CMB are small (about one in
105) within regions that are not necessarily in causal contact, commonly known as the
horizon problem (Figure 1.2). Attempts to enlarge the cone within an inflationary
solution seem to suggest that inflation should be driven not by ordinary matter or
radiation, but negative pressure, which means a form of dark energy (for a discussion,
see Dodelson (2003)). According to Einstein’s relativity, regions within the same light
cone are connected causally, in other words, events forward in time (upwards in the
light cone) can only be affected by events located below it, within the cone. The
comoving horizon of the cone, η, is related to the cosmic scale factor a, which explains
the proper distance between objects moving with the Hubble flow.

The flatness problem is yet another issue that the ΛCDM model fails to fully solve.
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Figure 1.2: Horizon problem: causality connections between different epochs of the
Universe (figure obtained from Yi (2014)).

After the introduction of the inflation theory, it was realized that it could also explain
primordial density fluctuations. The spatial curvature of the Universe is very nearly
zero, suggested by the CMB anisotropy and type Ia supernova observations. This
is not necessarily preferred by Friedmann equations, and inflation tries to explain
this phenomenon also (Berera et al., 1999). Inflation predicts a power law for the
primordial power spectrum, describing the different length scale behavior:

P (s) ∝ kns−1 (1.3)

The Planck survey gives the spectral index of curvature perturbations to be nS =
0.968±0.006, meaning a nearly scale–invariant power spectrum. The reader is referred
to (Yi, 2014) for a review of different inflation models.

1.1.2 Cosmic Microwave Background

Shortly after the Big Bang, the Universe was a hot and dense ionized opaque soup of
baryons, coupled with photons. When the Universe cooled down sufficiently, Thomson
scattering stopped and neutral hydrogen atoms were formed. The photons decoupled
from baryons, their mean free path became effectively infinite, thus the Universe be-
came transparent for the first time. These first free photons make up the cosmic
microwave background (CMB). Tracing them back, the last time the CMB photons
interacted with baryonic matter was the last scattering surface, during the recombi-
nation epoch. This was at a redshift of about z = 1100, when the scale factor a had
a value of about 10−3. Since a lot of information is lost due to scattering, it is not
possible to use CMB photons directly to study the Universe prior to recombination.
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Figure 1.3: Planck CMB Temperature Map showing mild anisotropies of the order of
10−5 (figure obtained from ESA / Planck).

A snapshot of the earliest moments of recombination can be detected today in
the mostly uniform infrared black-body radiation of the CMB. The latest and highest
fidelity map was made with the Planck mission, using the SMICA semi–blind spectral–
matching algorithm (Adam et al. (2016), see Figure 1.3). The temperature of the
Universe was about 4000 K at z = 1100 at the last scattering surface, but due
to cosmic expansion, the energy of the CMB photons decreased as they traveled
for more than 13 billion years and are now detected at T0 = 2.725 K. The first
accurate detection of the black–body curve of the CMB, a successful prediction of
the ΛCDM cosmology, was by the FIRAS instrument on the Cosmic Background
Explorer (COBE) satellite in 1989 (Mather et al. (1990), see Figure 1.4). This is the
most precise cosmological black body spectrum ever measured.

As a blackbody, the energy density of CMB photons is proportional to T 4, as can
be shown by integrating the Planck formula, describing the energy density:

u(ν)dν =
8πh

c3

ν3

ehν/kT − 1
dν (1.4)

where h is the Planck constant, c is speed of light and ν is frequency. The T 4

dependence can be derived from the fact that the CMB energy density is a product
of the number density and the energy per photon, which have a redshift dependence
of (1 + z)3 and (1 + z), respectively, and keeping mind that the temperature also
scales as 1+z. A straightforward calculation shows that the energy of a typical CMB
photon today is several 10−4 eV.

An interesting feature of the CMB map is that it is very uniform, as mentioned
in §1.1.1. The mild temperature anisotropies (about 10−5K) are now a well defined
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Figure 1.4: Cosmic Background Explorer (COBE) accurately detected the blackbody
curve of the CMB (figure obtained from Mather et al. (1990)).

subject (White et al., 1994). The observations for these temperature fluctuations in
the CMB, first accurately measured by COBE, improved in fidelity with every major
experiment. Wilkinson Microwave Anisotropy Probe (WMAP) observations (Bennett
et al., 2013; Hinshaw et al., 2013) made it possible to observe much finer features.
Particularly, the noise levels of the CMB map from Planck are much lower than those
of WMAP, thus adding valuable information.

1.2 Large Scale Structure

The CMB provides a window to the early Universe, where there are no galaxies,
stars, or any form of large–scale structure. Gravity alone is the driving force that
eventually evolved the initial Gaussian fluctuations into the tremendously complex
filamentary cosmic web that we observe today. According to ΛCDM cosmology, cold
dark matter haloes dominate the formation of structures. Since baryonic matter traces
the total matter potential, studies on large–scale structure can constrain dark matter
formation. Dark matter being cold refers to non–relativistic thermal velocities, first
introduced in (Bond et al., 1984; Blumenthal et al., 1984). While the first N–body
simulations had low resolutions (e.g. Davis et al. (1985)), the addition of the Press–
Schlecter theory (Press and Schechter, 1974), which was modified to better estimate
the number of dark matter halos and resolve galaxies (Mo and White, 1996) and
the highly increased computing power since then have allowed recent successful DM
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simulations, having Lbox sizes reaching hundreds of h−1Mpc and following more than
20003 particles from z = 127 to the present (Springel, 2005; Springel et al., 2005;
Boylan-Kolchin et al., 2009).

Hot DM comprises of weakly interacting particles like neutrinos, which were trav-
eling at nearly the speed of light at high redshifts. By itself, hot DM is not enough
to describe the density fluctuations in the distributions of galaxies (sizes of kpc scales
and masses of about 1011M�), the free streaming would have smoothed out the ini-
tial fluctuations. The Universe we observe today supports the existence of DE and is
compatible with dark matter being mostly cold (Ade et al., 2016).

In order to identify the large–scale structure of the Universe, one can either ob-
serve structures directly with galaxy surveys, as we will examine in the following
section, or indirectly, using absorption features. However, direct observation cannot
continue indefinitely with increasing redshift, due to the scaling of galaxy surface
brightness with redshift as (1 + z)−4. Therefore, complementary methods are re-
quired for medium to high redshifts. Luminous red galaxies (LRGs) have a narrow
interval of wavelength and luminosity and they can be observed to distances greater
than those of regular galaxies, due to their greater luminosity (Postman and Lauer,
1995; Tegmark et al., 2006). As the redshift is increased, quasar (QSO) clustering
and the absorption features of 21 cm and the Lyman alpha forest (Lyα) are the most
common means of investigating the LSS, which will be explained in the following
sections. A few examples of observational surveys that investigate the large scale
structure at high redshifts are the Baryon Oscillation Spectroscopic Survey (BOSS),
Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) (Adams et al., 2010)
and Joint Dark Energy Mission (JDEM), currently replaced by Wide Field Infrared
Survey Telescope (WFIRST) (Green et al., 2012).

1.2.1 Intergalactic Medium

The bulk of the mass of the Universe exists as a dilute medium in the void between
galaxies, the intergalactic medium (IGM). Roughly half of the dark matter is thought
to reside in the IGM volume, whereas for baryonic matter, the fraction located in the
IGM is probably much higher. While there is no clear distinction for the boundaries of
the IGM, the general understanding is that it is not bound to any galaxy as virialized
matter. However, since the first galaxies started forming at redshifts 10 < z < 15,
this definition is limited to the epoch after the beginning of reionization. Earlier,
in the absence of galaxies, the cosmic gas temperature was coupled to the CMB
temperature, until z ∼ 147, when the free electron ratio became too low to sustain
the coupling any longer. The cosmic gas cooled adiabatically to ∼ 2 K at z = 10.
(Kulkarni et al., 2015). As the first galaxies in the Universe started to form, this
affected the IGM with metal enrichment and their radiative backgrounds, ionizing
almost all of it. This also heated the gas to several 104 K, which is the characteristic
temperature for Lyα studies, smoothing the distribution of the IGM and affecting all
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subsequent galaxy formation (Ostriker and Ikeuchi, 1983). Therefore, there is close
interplay between galaxy formation and the IGM. In general, the IGM is modeled
well in the typical Lyα redshift range of 2 < z < 4.

IGM studies yield many different insights into the history of the Universe, e.g.,
peak density analysis suggests that the first stars in the Universe formed most likely
at z ∼ 65 (Naoz et al., 2006). One can study the implications of galaxy formation
on CMB anisotropies (Ostriker and Vishniac, 1986), test our models of structure
formation and inflation (Seljak et al., 2005), impose limits on the mass of warm dark
matter candidates (Viel et al., 2005), examine the filamentary topology (Sousbie et al.,
2008; Caucci et al., 2008), and study the heights and the density of the peaks in the
IGM to reveal information about the initial conditions of the Universe, specifically
the linear matter power spectrum (Croft and Gaztañaga, 1998; Croft et al., 1999; De
and Croft, 2007, 2010), the ionizing radiation and the large scale structure (Croft
et al., 2002), and also the coldness of dark matter (Viel et al., 2013).

The optical depth, in general, is defined as the natural logarithm of the ratio of
the incident to the transmitted intensity through a material. Flux is mapped to the
optical depth of the IGM as F = e−τ , which is related to redshift as (McQuinn, 2015):

τLyα(z) ≈ 1.3 ∆b

( xHI
10−5

) (1 + z

4

)3/2

(1.5)

where the fluctuating Gunn–Peterson approximation is used: Lyα absorbers are as-
sumed to trace the dark matter distribution and in a photoionization equilibrium
with the UV background radiation, and peculiar velocities are ignored (Weinberg
et al., 1997). ∆b is the baryonic density in units of the cosmic mean (ρ/ 〈ρ〉), often
referred to as overdensity or density contrast. Typical overdensities are mild (δ ≤ 10)
at high redshifts (z > 2), although in the Warm Hot Intergalactic Medium (WHIM)
at z ∼ 0, it is moderately higher (δ < 100) because of the highly evolved structure,
and the temperature is up to three orders of magnitude greater (Klar and Mücket,
2010). Evaluating Equation 1.5 at z = 3, the neutral hydrogen fraction is found
to be xHI ∼ 10−5, which translates to an HI number density of nHI ∼ 10−10cm−3.
Again under the Gunn–Peterson approximation, temperature and density are related
through the equation of state

T = T0

(
ρ

〈ρ〉

)γ−1

(1.6)

where T0 is the temperature at the mean density. If the IGM is reionized quickly
compared to the cosmic expansion, then the index γ is close to unity, i.e., the gas is
isothermal. During HeII reionization at z ∼ 3, the gas was nearly isothermal (Mc-
Quinn et al., 2009). Away from reionization, due to the expansion of the Universe,
the mean temperature T0 decreases and the index γ increases from near unity imme-
diately after reionization to ∼ 1.5 at lower redshifts (Hui and Gnedin, 1997; Fang and
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White, 2004), although a contradictory ”inverted” temperature–density relation has
also been proposed (Bolton et al., 2008; Garzilli et al., 2012).

At large scales (> 1 Mpc) and low densities, baryons in the IGM follow the total
matter potential, therefore it is a tracer of dark matter. However, at characteristic
scales smaller than ∼ 100 kpc and high densities, pressure forces effectively result in
smoothing of the gas, preventing it from tracing the collisionless dark matter. This
exact scale for pressure smoothing, analogous to the classic Jeans length scale, is a
function of the gas temperature and it depends on the entire thermal history (Binney
and Tremaine, 1998). It is the scale under which the outward pressure is greater
than the inward gravitational forces, regulating gas perturbations hydrodynamically.
Furthermore, galaxy formation physics needs to be taken into account at these scales,
as they affect the baryon distribution in the IGM. In this thesis, since we deal with
smoothing scales as large as ∼ 40 Mpc, we need not consider pressure smoothing in
our analysis. However, it is important to be aware of small scale behavior, which
may be important, for example, in future peak density studies, provided the spatial
resolution is sufficiently high to observe sub–Mpc scales.

1.2.2 Galaxy Surveys

Dark matter halos form by the hierarchical aggregation or collapse of massive systems
(Lacey and Cole, 1993, 1994; Springel et al., 2006), characterized by their large over-
densities. The gravitational interaction within the DM halos retain the gas heated
to temperatures Tvirial & 104 K, photoheated due to ionizing background ration
(Mesinger and Dijkstra, 2008). As the gas cools and fragments, galaxies start form-
ing as concentrated luminous clumps within them (White and Rees, 1978; Bromm
and Yoshida, 2011). Dwarf galaxies eventually evolve into the galaxies we see today,
forming towards the end of the reionization epoch, between the redshifts 6 < z < 15
(for a study on the redshift constraints for reionization, see Pritchard et al. (2010)).
According to recent observations, the star formation rate within galaxies seems to
have peaked at z ∼ 1 − 2, while the vast majority of the stars in our Universe has
formed from z = 3 to present (Baugh et al., 1998).

On scales smaller than 10 h−1Mpc, galaxy distribution can be modeled with a
power law ξ(r) = (r0/r)

γ, with the correlation length r0 ∼ 5h−1Mpc. The angular
galaxy correlation function can also be described by a power law: w(θ) = Awθ

1−γ,
where γ ∼ 1.7 at angular scales less than about 10 degrees, after which it declines
rapidly (Peebles (1980), for a recent study on angular correlations, see Connolly et al.
(2002)).

Fundamentally, there is no reason to assume that the observed light from galaxy
surveys shows the mass distribution of galaxies in the Universe exactly. Kaiser (1984)
showed that galaxies should have a large bias due to being rare objects forming at
the highest density peaks above a threshold. In general, the galaxy distribution is
expected to be non–local and a tracer of the underlying dark–matter density in a
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stochastic manner. On large scales, the mean overdensity of galaxies can be related
to the mean overdensity of mass with a linear bias:

b = δg/δm (1.7)

where δg denotes the overdensity of galaxies, δm is the overdensity of the underlying
total mass and b is the linear bias. The respective power spectra (or equivalently, the
corresponding two–point correlation functions) can be related as Pg(k) = b2Pm(k).
This bias is shown to be scale dependent from simulations and observations, for
example, 2dFGRS found a linear bias close to unity on large scales (Verde et al.,
2002; Gaztañaga et al., 2005).

Recent galaxy surveys have been able to map out the galaxy distribution up to
z ∼ 0.3, although Sloan Sky Digital Survey (SDSS) has observed galaxies at redshifts
as high as 0.8. Until now, the most important galaxy surveys have been The Las
Campanas Redshift Survey (Shectman et al., 1996), The Center For Astrophysics
Redshift Survey (Falco et al., 1999), The CNOC2 Field Galaxy Redshift Survey (Yee
et al., 2000), The 2dF Galaxy Redshift Survey (Colless et al., 2003), AGES: The AGN
And Galaxy Evolution Survey (Kochanek et al., 2012) and DEEP2 Redshift Survey
(Davis et al., 2003; Newman et al., 2013). The power spectrum of galaxy clustering
on scales up to 300 h−1Mpc has been measured with the 2dFGRS survey (Percival
et al., 2001) and BOSS (Anderson et al., 2014), which is found to be compatible with
the filamentary structure predicted by a CDM Universe (Colberg et al., 2005).

As mentioned before, it is difficult to observe objects at higher redshifts due to
rapidly decreasing brightness, especially beyond z > 1. Furthermore, galaxy spectra
between 1.5 < z < 3 do not have observable features which correspond to the most
sensitive part of optical wavelengths of observational equipments. For example, the
wavelengths accessible to the BOSS experiment of the SDSS are between 3600 and
10000 Å, which would correspond to original galaxy spectra between 1500 and 3000
Åbetween 1.5 < z < 3, but there are no clear features to be observed in this range. It
should be noted that spectra at shorter wavelengths can be examined with telescopes
above the atmosphere. Hydrogen absorption at 912 Å makes it possible to observe
distant galaxies at z > 3 with ground–based telescopes. However, due to the low
surface brightness of these distant objects, it is necessary to rely on other methods
such as 21 cm intensity mapping and the Lyα forest.

1.2.3 21 cm Intensity Mapping

21 cm intensity mapping is observed as an emission line, related to the splitting in
the hyperfine structure of the ground state of neutral hydrogen. First thought to
be noise due to the Sun, it was first detected using a microwave radiometer built
specifically for this purpose (Ewen and Purcell, 1951). The term intensity mapping
refers to translating the received redshifted frequency to comoving distance and the
amplitude of the signal to mass density.
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Since the 21 cm signal only originates from neutral hydrogen, a natural choice of
redshift interval is before the end of reionization at z ∼ 6, with the highest signal–to–
noise ratio expected at z = 9 – 10 (Pritchard and Loeb, 2012). For example, James
Webb Space Telescope (JWST) will potentially image some of the early galaxies at
10 < z < 15, launching in 2018. Neutral gas shielded within spiral galaxies can also
be studied with 21 cm methods (Scodeggio and Gavazzi, 1993). While most such
structures are observed at z < 0.1 (Peterson and Suarez, 2012), some studies extend
this range to intermediate redshifts (Gupta et al., 2009a,b). Furthermore, the neutral
gas and ionization fractions can be studied at redshifts as high as z ∼ 10 and thus
obtain information about the reionization epoch (Santos et al., 2008).

In the Lyα forest redshift range of 2 < z < 4, the low neutral hydrogen ratio of
xH ∼ 10−5 makes it a less attractive choice for 21 cm intensity mapping, in view of the
21 cm signal being much weaker a signal than galactic and extragalactic foregrounds
(Curran and Whiting, 2012). From this perspective, 21 cm intensity mapping and
the Lyα forest are complementary methods. Furthermore, studying the two methods
together means looking at both HI emission and absorption, hence gaining information
about the location and the amount. In terms of the strength of the signal, the Lyα
forest is a much more sensitive method, since the absorptional cross section is about
105 larger for Lyα absorption compared to that of 21 cm. Combining the results
of the two methods, better maps can be made by cross–correlating the two. The
power spectrum calculated with simulations at z = 2.4 are already suggesting good
agreement for modes with wavenumbers k < 0.2 hMpc−1 (Carucci et al., 2016).
In particular, it is possible to enhance our understanding of the reionization era
by constraining cosmological variables (Pritchard et al., 2010), keeping in mind the
complementary nature of the redshift ranges available to the two methods mentioned
above.

1.2.4 The Lyman Alpha Forest

The Lyman Alpha Forest (Lyα) refers to the imprints of the intervening HI clouds
along lines of sight (LOS) as absorption lines in quasar spectra, observed in the
ultraviolet (UV) and optical wavelength range. As discussed in §1.2.2, galaxy sur-
veys are limited to low redshifts and the 21 cm intensity mapping method requires
a relatively high neutral hydrogen fraction, therefore, other probes such as the Lyα
forest are necessary to obtain quantitative information at high redshifts. The comov-
ing space density of tracer objects in current large–scale maps of the Universe is ∼
3.6 × 10−4h3Mpc−3 at z ∼ 0.5, which declines rapidly with increasing redshift. At
high redshifts (z > 2), quasars are the only tracers that can be used to make such
maps, where the space density of objects is about two orders of magnitude lower:
∼ 10−6h3Mpc−3. This highlights another feature of studying the large scale structure
in the IGM: It probes mild overdensities, while galaxy surveys do not.

Quasars (quasi-stellar radio sources, or QSOs) are extremely luminous objects in
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the proximity of a black hole within a galaxy, falling into its accretion disk. QSOs are a
type of active galactic nuclei (AGNs). Unlike the relatively narrower spectra of stellar
populations, QSOs have mostly flat spectra, making them a useful cosmological tool.
The first absorption lines in QSO spectra were seen in 1960s, independently by several
groups (Scheuer 1965; Gunn and Peterson 1965; Shklovskii 1965). Gunn & Peterson
also predicted a trough, which is when the absorption lines are showing complete
saturation due to the amount of intervening HI being above a certain threshold.
In 1970, Roger Lynds also observed prominent absorption lines blueward (shorter
wavelength side) of the Lyα emission line in the furthest quasar observed to date,
QSO 4C 05.34 at z = 2.88 (Lynds, 1971). He attributed the regularity of these lines
to a preferred transition, happening at many different redshifts along the line of sight
from the particular quasar, now known as the Lyα forest.

On their path from a QSO to the Earth, photons are absorbed by intervening
neutral hydrogen atoms at ground state, thus providing the required energy for the
transition to the first excited state (1s→ 2p), which happens at a rest wavelength of
λLyα = 1215.67 Å. Due to the expansion of the Universe, the wavelength of photons
are stretched by a factor of 1 + z. Therefore, along the LOS from the QSO to
the Earth, wavelengths of photons that are smaller than λLyα will be stretched to
it eventually, and some of these photons will be absorbed within neutral hydrogen
clouds at redshifts lower than that of the particular quasar. The absorption line
wavelength, as observed from the Earth, provides redshift (distance) information,
while the strength of the dip provides the amount of matter (density) information
at that location along the skewer. This is the Lyα forest (Figure 1.5, top panel), a
collection of absorption lines blueward of the strong Lyα emission line of the quasar.
The region redward of it are absorbed due to other chemical transitions (metal lines).
The redshift information of the QSO can be read off immediately by simply dividing
the QSO Lyα emission wavelength (∼ 5600 Å) by the Lyα transition wavelength
(1215.7 Å), which yields 1 + z ≈ 4.6. Therefore, the QSO is found to be at a redshift
of z ≈ 3.6. The bottom panel is a zoomed–in portion of the Lyα forest in order to
see finer features in a selected narrow redshift range. The absorption in flux and the
density is inversely correlated: The middle panel of Figure 1.5 shows how neutral
hydrogen density information can be inferred from observed flux (Springel et al.,
2006).

When one has saturation in the Lyman-α forest, the Lyman-β transition should
provide information due to its lower cross section, which makes it a potentially better
probe at high overdensities as high as 10 times the mean density at z = 2− 3 (Shull
et al., 2000). Since the Lyman-β absorption occurs at a lower rest wavelength of
1026 Å, the Lyman-α forest overlaps the Lyman-β forest, and therefore, statistical
techniques are needed to make use of the Lyman-β information (Dijkstra et al., 2003;
Iršič et al., 2013). In principle, higher order transitions could be used together with
the Lyman-α forest in mapmaking also.

The Lyα forest consists of mild overdensities, typically between 0.1 and 10 times
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Figure 1.5: High resolution spectrum of a quasar at z = 3.62. The absorption lines
blueward of the emission line make up the Lyα forest (top panel). The corresponding
intervening large–scale structure, the neutral hydrogen clouds, is shown in the middle
panel (figure obtained from Springel et al. (2006)).

the cosmic mean. Baryons and dark matter trace each other well. For most of the
volume, it is possible to relate the previously defined optical depth, column density,
temperature and baryon density via

τ ∝ nHI ∝ ρ2
bT
−0.7Γ−1 (1.8)

where T−0.7 accounts for the temperature dependence of the recombination rate and
Γ describes the rate of ionization of HI clouds due to the UV background (Weinberg
et al., 2003). With the assumption that the IGM is in ionization equilibrium, the Γ
term can be ignored. To a good approximation, the baryonic density and the optical
depth follow the relation τ ∝ A(ρ/ρ̄)β, where A is a redshift dependent term and
β ∼ 1.6. This is commonly referred to as the fluctuating Gunn–Peterson approxi-
mation (Rauch, 1998). Although this theoretical picture neglects effects like peculiar
velocities, collisional ionization and thermal broadening, simulations with all of these
effects are shown to obey the relation between the optical depth and the underlying
mass density as mentioned above (Croft et al., 1997).

The absorber density along Lyα skewers is mostly uniform, except in the vicinity of
a QSO, they are seen to decrease. This can interpreted as QSOs ionizing nearby clouds
due to their huge ultraviolet (UV) flux. A common statistic for absorbers is column
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density, the number of absorbers per unit length per unit area, often expressed in
cm−2. Absorption systems with a column density of NHI < 1017cm−2 are available to
the Lyα forest. Those with 1017 < NHI < 1020cm−2 are Lyman limit systems, which
are optically thick to ionizing radiation. The general topology of the IGM seems to
be sheet–like for NHI < 1014cm−2, filamentary for NHI ∼ 1015cm−2 and clouds for
NHI > 1016cm−2. Finally, the densest absorption systems are DLAs (damped Lyα
systems) with NHI > 1020cm−2, self–shielded and mostly neutral, with damping wings
due to Gaussian thermal and Lorenztian pressure broadening. Since DLAs contain
most of the neutral gas mass in the Universe, it is suggested that these gas clumps
are closely related to galaxy formation (Maller et al., 2001, 2003). As an example, in
the bottom panel of Fig 1.5, it appears that at there are two DLAs at λ = 4920 Å and
4970 Å, easily recognized due to the deep trough and damping wings, corresponding
to z = 3.05 and z = 3.09, respectively.

It is important to consider the number evolution of the hydrogen clouds and the
relevant observational methods available. From the present to z ∼ 1, the comoving
number of clouds does not change in a noticeable manner. A power law (1 + z)γ

with 2 < γ < 3 describes the trend becoming sharper in 1 < z < 2. This becomes
even more steep as the redshift approaches z ∼ 4. The Lyα forest becomes more
transmissive due to cosmological expansion and the probable consumption of gas into
stars as the large scale structure evolves. For example, the mean optical depth is
τeff = 0.016(1+z)1.1 over 0 < z < 1.2, much lower than it is in the typical Lyα range
2 < z < 4, where τeff = 0.00211(1 + z)3.7 shows a much sharper dependence of the
optical depth on the redshift (Meiksin, 2006). It is worth noting that the sparse Lyα
forest at low redshifts does not contribute significantly to the fact that we cannot
detect most of the baryons z ∼ 0 (the missing baryon problem, Bregman (2007)). In
any case, only limited wavelengths are available to ground surveys, therefore limiting
the redshift ranges available to Lyα forest studies. For example, the lower limit of
wavelength for the BOSS spectrograph is 3600 Å, therefore the structures at lower
redshifts such as z < 2 are impossible to observe.

1.2.4.1 Observational Surveys

The Lyα forest has shed light on many cosmological unknowns within the last two
decades. Prior to the late 80s, the two major limiting factors in Lyα studies were
the low spectral resolution and signal–to–noise (S/N) ratio. In 1994, the 10 m Keck
telescope with the High Resolution Spectrograph (HIRES) was a breakthrough, with
a high spectral resolution of up to 67000 and signal–to–noise ratios of ∼ 100 (Vogt
et al., 1994). UVES on the Very Large Telescope, and later SDSS further improved
on Keck, which will be discussed in §1.3.2.

As the observational sky surveys advanced, new analytical and numerical methods
appeared. The evolution of the observed Lyα forest was shown to be consistent via
numerical simulations with photo–ionization, and the two–point correlation agrees
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with that of the galaxy distribution (Mücket et al., 1995). The findings showed that
the sharp neutral hydrogen limit imposed by Gunn & Peterson should be altered to
the continuous absorption features seen in the Lyα forest due to the uniform medium
at high redshifts (Reisenegger and Miralda-Escude, 1995). The HeII Gunn–Peterson
absorption effect is predicted, however, with fiducial CDM models (Miralda-Escude
et al., 1996; Croft et al., 1997). This is due to the relative strength of the HeII
transition at 304 Å, which may be an even better probe than HI. Linear power
spectrum of mass fluctuations was recovered using hydrodynamic simulations and
the same method was also applied to a QSO spectrum from Keck HIRES (Croft
et al., 1998). The baryon acoustic oscillations (BAO) signal, which results from
the interplay between gravity and pressure in primordial anisotropies, and with the
photonic pressure removed after decoupling, sets a standard cosmic comoving length
of ∼ 150 Mpc. The Lyα forest of BOSS quasars provide BOA information in the three
dimensional correlation function of the transmitted flux for 2.1 < z < 3.5 (Busca
et al., 2013). These results all follow from absorption lines, but it is also possible to
study the large scale structure with Lyα emission lines of QSOs by examining cross–
correlations with galaxy spectra at high redshifts (2 < z < 3.5) and calculating the
contribution to star formation rate, using SDSS and BOSS data (Croft et al., 2016).

Besides the many aspects of Lyα forest cosmology already discussed, it also acts as
a probe of large scale structure at high redshifts. The quality of the density inference
from QSO spectra depends heavily on the observed QSO density in observational sky
surveys. Before recent large-scale structure surveys such as BOSS (Dawson et al.,
2013), the sky density of known background quasars in this redshift range over most
of the sky was of the order of 1 per square degree (e.g., from the 2dF quasar survey
(Miller et al., 2002; Outram et al., 2003; Croom et al., 2004; Miller et al., 2004) and
from SDSS I and II (Schneider et al., 2002, 2003, 2005; Richards et al., 2006). Except
for some small areas with higher observed densities of objects (e.g., Rollinde et al.
2003) the Lyman-α forest was treated as a collection of discrete 1D individual quasar
sightlines.

Recently, however, the increasing number of discovered quasars with suitable red-
shifts (z > 2) for ground based study has made it possible to correlate information
over large scales in three dimensions. BOSS features a high QSO density of∼ 15 deg−2

(∼ 180, 000 QSOs in the redshift range 2.15 < z < 4 over 10,000 deg2). Each QSO
typically provides Lyman-α forest information along a skewer of length∼ 400 h−1Mpc,
and the typical mean separation for spectra in BOSS is ∼ 20 comoving h−1Mpc (Lee
et al., 2013). This is what has enabled clustering statistics of the Lyman-α forest to
be measured in three dimensions as mentioned above. In the future, one can expect
yet higher densities of sightlines and more precise measurements, in view of the fact
that even more quasars will be available for analysis (e.g., 45 deg−2 proposed for
Mid–Scale Dark Energy Spectroscopic Instrument (MS–DESI; (Levi et al., 2013), see
Table 2.1).

Despite the developments with the recent surveys, the QSO field is still sparse in
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the Lyα forest range 2 < z < 4, and due to their sharply decreasing luminosity with
redshift, QSOs are increasingly more difficult to observe at even higher redshifts.
It took more than 30 years to observe a quasar far enough to prove the existence
of the complete Gunn–Peterson trough by observing a spectrum at z = 6.28 from
Sloan Digital Sky Survey data (Becker et al., 2001). This also suggests that epoch
of reionization is ending at z ∼ 6. Recent observations show that the observed QSO
distribution reaches the maximum at z ∼ 2.25, rapidly decreasing after this peak
with very few QSO observations for redshifts greater than 4 (Pâris et al. (2016), see
Figure 1.6). The highest redshift quasar observed is at z = 6.440.

Figure 1.7 shows the projected areal sky density of quasars in MS–DESI. The
observational data set we will use in §4, which is taken from SDSS–III BOSS, was
multiplied by a factor of 5.25 to extrapolate from the true count of observed BOSS
QSOs (black curve). This also shows a peak at z ∼ 2.25, similar to the one in Figure
1.6. For purposes of recovering the IGM, however, the red curve shows a more realistic
density of probes: At each redshift bin, all quasars up to ∆z ∼ 0.5 further than that
bin are taken into account, in view of the fact that a quasar illuminates about 400
h−1Mpc along a skewer, starting from about 100 h−1Mpc in front of it (in order to
avoid having to model the Lyα emission line of the QSO). However, this must be
treated as an upper bound, as quasars can be located far away from each other, not
contributing to the red curve. For the redshift range of interest (2 < z < 2.5), the
number of probing quasars for MS–DESI are as high as 70. This makes IGM topology
with the Lyα forest a suitable choice when the MS–DESI data will be available.

1.3 Data

This thesis consists mainly of two sections: First we evaluate the performance of our
map making with hydrodynamical simulations, followed by applying our methods to
observational data for Sloan Digital Sky Survey in order to create real maps of the
IGM at Gpc scales. In this section, we describe the details of the data used.

1.3.1 Smoothed Particle Hydrodynamics

The simulation used to test our IGM map making methods was run with the highly
parallelized GADGET–2 code, a smoothed particle hydrodynamics (SPH) implemen-
tation with the N–body method (Springel, 2005; Di Matteo et al., 2012). It improves
on the first version of GADGET (Springel et al., 2001) with more accuracy, speed of
computation and better memory efficiency. Amongst the many possible uses of SPH
applications, difficult problems posed in cosmology are solved successfully with the
flexibility it allows.

SPH is a local interaction with an adaptive smoothing length. Naturally, the res-
olution depends on the local density. In the limit of infinitely many particles, it can
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Figure 1.6: The evolution of the redshift distribution of QSOs from SDSS-III through
several data releases. There is a sharp peak at z ∼ 2.25, followed by a rapid decline
(figure obtained from Pâris et al. (2016)).

be proven that the SPH method solves Euler’s equations. The fluid dynamics equa-
tions reflect conservation laws as partial differential equations, which are transferred
to integral equations through interpolation with a suitable kernel (Allahdadi et al.,
1993). Energy and mass are explicitly conserved within these continuum equations.
As it appeared in the original calculations (Gingold and Monaghan, 1977), it is best
to assume a Gaussian kernel for the physical interpretation of the local smoothing,
although many different kernels can be used with a necessity for normalization and a
preference for compact support and vanishing first and second moments in order to
make computations more tractable (Monaghan, 1992). The kernel typically encom-
passes at least 20 – 50 particles. The SPH method has the advantage that the kernel
can be included separately in a subroutine or a table, and it can be changed later
trivially if the need arises.

In the SPH formulation, calculations are carried out based on particle separations
only. The absence of a mesh (used in Eulerian methods) makes it possible to compute
large deformations easily, hence making it a valuable computational tool. In principle,
the Lagrangian calculation, as used in GADGET–2, comprises a moving frame, which
yields more accurate results, compared to the Eulerian formulation. However, the
Eulerian calculation generally has better applicability. Being a Lagrangian method,
the SPH approach comprises full time derivatives in the equations explaining fluid
properties of the particles such as density, the specific internal energy and the velocity
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Figure 1.7: The projected quasar distribution per square degree as a function of
redshift for the survey MS–DESI is shown by black color. The red curve shows the
quasar density probing the flux field as a function of redshift, taking all quasars with
∆z ∼ 0.5 into account.

components, compared to partial derivatives in the Eulerian treatment.

SPH simulations make it possible for baryonic gas particles and dark matter to be
tagged separately, as it was for the simulation used in this thesis. As an example, the
Millenium simulation (Springel et al., 2005; Bett et al., 2007; Overzier et al., 2012)
used 10 billion dark matter particles (and no baryonic matter), which were evolved
in the ΛCDM cosmology in a cube over 2 billion light–years (500 h−1Mpc) on a side,
with high resolution. This cube size and the number of particles used in Millenium
simulation are similar to those of the simulation we used in this thesis.
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1.3.2 Sloan Digital Sky Survey

Prior to SDSS–III and SDSS-IV, the first two generations of SDSS (York et al., 2000)
had been the largest redshift survey, providing redshifts of over one million galaxies in
spectroscopic observations between 2000 and 2008 over a sky coverage of about 8000
square degrees. Located at the Apache Point Observatory (APO), Sunspot, New
Mexico, it uses a dedicated 2.5 m telescope with a mosaic CCD camera operating in
five optical bands. The continuous wavelength coverage is approximately 3800 Å to
9200 Å and the wavelength resolution (λ/∆λ = c/∆v) was 1800. Most of the sky
was observed once or twice, with the exception of ”Stripe 82” over 300 deg2, observed
between 70 and 90 times in order to look for high quality supernovae and improve
photometric calibration (Frieman et al., 2007; Jiang et al., 2014).

Since the goal of obtaining the spectra of ∼ 106 galaxies and ∼ 105 QSOs was not
entirely fulfilled in the first iteration of the survey, SDSS–II continued the observa-
tions, while also adding Sloan Extension for Galactic Understanding and Exploration
(SEGUE) for a star survey (Abazajian et al., 2009). The third generation of the Sloan
Digital Sky Survey (SDSS–III) used the same 2.5 m telescope (Eisenstein et al., 2011),
taking data from 2008 to 2014 and catalogued more than 4 million unique spectra
(Alam et al., 2015), with an extended sky coverage of over 10000 square degrees. It
consisted of four separate surveys: Baryon Oscillation Spectroscopic Survey (BOSS)
(see Dawson et al. (2013), BOSS will be explained in detail in §1.3.2.1), Sloan Ex-
tension for Galactic Understanding and Exploration (SEGUE–2), which surveyed
119000 unique stars (Yanny et al., 2009; Bond et al., 2010; Deason et al., 2011;
Gómez et al., 2012), The APO Galactic Evolution Experiment (APOGEE), (Frinch-
aboy et al., 2013; Anders et al., 2014) and The Multi-object APO Radial Velocity
Exoplanet Large-area Survey (MARVELS), which used a new technique to observe
60 stars at the same time to observe radial velocity variations. Until the original
SDSS spectrographs were decommissioned in 2009, 860836 galaxies, 116003 quasars
and 521990 stars were observed (Albareti et al., 2016).

All of the cumulative data that have been observed with the Sloan Digital Sky
Survey are made public. In this thesis, we use Data Release 12 (DR12), which contains
all the data that have been taken until 2014, and it also contains the first spectra of
MARVELS. The sky coverage is almost completely within the Northern Hemisphere,
within the right ascension (RA) and the declination (DEC) range 0◦ < DEC < 30◦

and 120◦ < RA < 240◦, although it also covered a relatively small area in the southern
galactic cap. Figure 1.8 shows the sky coverage evolution of data releases 9 through
12.

SDSS–IV’s latest and final release is Data Release 13 (DR13), which consists
of three main programs: APOGEE–2, MaNGA and eBOSS. SDSS–IV observations
began in July 2014 and they are planned to continue until 2020. For a technical
explanation on what is included in DR13, the reader is referred to (Albareti et al.,
2016).

The power spectrum of galaxy clustering on scales up to 300 h−1Mpc has been
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Figure 1.8: Footprints of BOSS Data Releases DR9 through DR12 (figure obtained
from Alam et al. (2016)).
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measured with the 2dFGRS survey (Percival et al., 2001) and BOSS (Anderson et al.,
2014), found to be in accordance with the filamentary structure as predicted by a
ΛCDM Universe (Colberg et al., 2005). The BAO signal shows up as a bump in
the galaxy correlation function (Eisenstein et al., 2005), measured with a galaxy
sample between 0.16 < z < 0.47, and (Anderson et al., 2014), where the range was
0.43 < z < 0.57). Since galaxies become fainter rapidly with increasing redshift,
scaling as (1 + z)−4, one has to rely on other methods to detect the BAO feature
at higher redshifts, and to study the large–scale structure, which can be done with
quasar spectra. The Lyman-α forest of BOSS quasars provide BOA information in
the three dimensional correlation function of the transmitted flux for 2.1 < z < 3.5
(Busca et al., 2013).

Since the Lyα absorption features of the IGM are imprinted in on QSO spectra,
it is possible to map the large scale structure at high redshifts by interpolating the
Lyα skewers. Naturally, the sky density of observed QSOs, illuminating 1–D skewers
along the LOS for ∼ 400 h−1Mpc in the typical Lyα forest redshift range, directly
affect the fidelity and the resolution of the resulting inferred map, as will be explained
in §2.1. While most QSOs observed to date fall in the Lyα forest redshift range (Lee
et al., 2013), there also exist studies which examine quasar absorption spectra at
higher redshifts (Perrotta et al., 2016).

In earlier studies, the correlation in the Lyα absorption skewers could only be
measured along individual lines of sight due to the sparse nature of quasar density
(e.g. Kaiser and Peacock (1991)). The only way of analysing the transverse cor-
relation of the IGM was with the absorption spectra of high–redshift quasar pairs
(Coppolani et al., 2006). While the QSO areal density was ∼ 1 deg−2 in previous
surveys such as 2df (Miller et al., 2002; Outram et al., 2003; Miller et al., 2004) and
SDSS I and II (Schneider et al., 2002, 2003, 2005), the current SDSS–III has reached
a significantly higher QSO density of ∼ 15 deg−2, with 175000 QSOs in the redshift
range 2.1 < z < 3.5, making it possible to correlate the Lyα absorption skewers in
three dimensions and enabling the study of large–scale structure at high redshifts.
The three–dimensional correlation function of the Lyα forest was first measured in
(Slosar et al., 2011). Using COSMOS Lyman-Alpha Mapping And Tomography Ob-
servations (CLAMATO survey), it was possible to create density maps of the IGM at
Mpc resolutions for the first time (Lee et al., 2014a). For a study about the exposure
time necessary in order to reach certain map resolutions, the reader is referred to (Lee
et al., 2014b).

1.3.2.1 BOSS and eBOSS

The successful detection of the baryon acoustic oscillations imprint in luminous red
galaxies from SDSS data (Eisenstein et al., 2005) paved the way for an upgraded ver-
sion of the original spectrographs in order to improve on the previous results. Shortly
after the end of SDSS–II phase, in 2009, the capabilities of the SDSS equipment were
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enhanced with new CCDs (charged–coupled device detectors) having smaller pixels
(15 µm), less noise, better quantum efficiency and 500 fibers feeding the two spectro-
graphs. The wavelength coverage was also extended slightly to 3560 Å < λ < 10400
Å. Until this change, the SEGUE–2 survey used the original spectrographs within the
first year of SDSS–III.

The BOSS spectrographs have surveyed an additional 1,372,737 galaxies (Ander-
son et al., 2014; Sánchez et al., 2017), 294,512 quasars (Pâris et al., 2016) and 247,216
stars (Albareti et al., 2016). APOGEE has observed 156,393 high resolution IR spec-
tra and MARVELS contributed with 3233 stars with radial velocity measurements.
For purposes of large scale structure studies, which is the focus of this thesis, the
highly increased BOSS sky quasar density enabled the three dimensional interpola-
tion of Lyα skewers and made it possible to create the IGM maps we present here.

The fourth phase of the Sloan Digital Sky Survey (SDSS–IV) is made possible due
to the success and significance of the previous phases (Blanton et al., in preparation).
The fourth phase includes surveys spanning new redshift intervals, new galaxies, and
the parts of the Milky Way and dwarf galaxies that are only observable from the
Southern Hemisphere (Figure 1.9).

Figure 1.9: Redshift coverage of BOSS and eBOSS large scale structure with
galaxies and the Lyα forest (figure obtained from the SDSS eBOSS web page:
www.sdss.org/surveys/eboss).

22



The main purpose of Extended Baryon Oscillation Spectroscopic Survey (eBOSS)
(Dawson et al., 2016), one of the main surveys of SDSS–IV, is to improve the BAO
measurement obtained by BOSS in the clustering of matter within a relatively larger
redshift range 0.6 < z < 2.2. Spectroscopic redshifts of more than 400,000 LRGs and
about 200,000 Emission–Line Galaxies (ELGs) are going to be targeted to provide
two novel ways of BAO clustering measurements over the interval 0.6 < z < 1.1.

In total, 500,000 quasars will be observed between 0.9 < z < 2.2. As an addi-
tion to the 180,000 Lyα QSOs BOSS has already observed, eBOSS will contribute
with 120,000 new QSO spectra. The new Lyα forest sample will allow more precise
measurements, improving BOSS constraints by a factor of 1.4. Furthermore, new
redshift space distortion measurements will be possible, as well as non–Gaussianity
in the primordial field and the total mass of neutrino species will be examined. The
future of quasar surveys is going to allow almost doubling of the number of quasars
known to date: a quasar sky density of ∼ 45 deg−2 is proposed for the the Mid–Scale
Dark Energy Spectroscopic Instrument (MS–DESI, see Levi et al. (2013)), launching
in 2018 with the 4m Mayall telescope, covering 14000 square degrees of the sky.

1.4 Reconstructing the flux field

As discussed in the previous chapter, the increasing density of quasars makes it possi-
ble to interpolate the Lyα skewers in three dimensions. In principle, different filtering
methods can be considered to make big maps of the Universe at high redshifts. In
this thesis, we employ Wiener interpolation for this task, although other methods are
also possible, such as local polynomial smoothing (Cisewski et al., 2014).

1.4.1 Wiener Interpolation

Norbert Wiener introduced the idea of the Wiener filter in the 1940s with his work on
interpolation, extrapolation and smoothing of stationary time series (Wiener, 1949).
The Wiener theory forms the foundation of interpolation methods that minimize the
mean squared error between a filter output and the desired signal at the same location.
The noise is assumed to be additive.

The Wiener filter offers great flexibility for different kinds of data sets. The data
can be continuous or discrete and arbitrarily spaced. By adjusting the correlation
function, the filter can be made local or as global as desired. In physics applications,
weights of data points located further than a certain smoothing length scale are
often negligible, e.g. for a Gaussian filter. The interpolation can also be oscillatory,
negative at certain distances, and can be freely adjusted as desired. However, there
are two main drawbacks of using this filter. The most important one is that the
filtering process requires matrix inversions with dimensions having the same as the
data. For large data sets, this can also be computationally expensive. As a remedy,
the interpolation can be parallelized if the interpolation is sufficiently local. Also,
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smooth correlation functions can result in singular processes, making matrix inversion
a different task. The other disadvantage of this method is the necessity to know, or
correctly estimate the correlation function of the data.

The filter estimates the signal at a given location by averaging the values of nearby
points, with the weighting given by the coefficient vector w. The output signal is
computed as

x̂(m) =
P−1∑
k=0

wky(m− k)

= wTy (1.9)

where m is the discrete index, yT = [y(m), y(m − 1), ..., y(m − P − 1)] is the filter
input signal and the Wiener filter coefficient vector is wT = [w0, w1, ..., wP−1] (Vaseghi,
2000). The Wiener filter error signal e(m) is the difference between the desired signal
x(m) and the filter output signal x̂(m):

e(m) = x(m)− x̂(m)

= x(m)−wTy (1.10)

In vector form, Equation 1.10 can be expressed as


e0

e1

e2

...
eN−1

 =


x0

x1

x2

...
xN−1

−


y0 y−1 y−2 ... y1−P
y1 y0 y−1 ... y2−P
y2 y1 y0 ... y3−P
... ... ... ... ...
yN−1 yN−2 yN−3 ... yN−P




w0

w1

w2

...
wP−1

 (1.11)

e = x−Yw (1.12)

where e is the error vector, x is the output signal, and Yw = x̂ is the input. Here,
the number of signal samples N must be greater than the filter size P for obtaining
a unique solution. If not, the matrix equation in Equation 1.11 is said to be under-
determined, with an infinite number of solutions with zero estimation error. When
N > P , the matrix equation is overdetermined with a unique solution, which usually
yields non–zero error. Under this condition, Wiener filter coefficients are calculated
in such a way that the mean squared error is minimized. From Equation 1.10, the
mean squared error is given by

E[e2(m)] = E[(x(m)−wTy)2]

= E[x2(m)]− 2wTE[yx(m)] + wTE[yyT]w (1.13)

= rxx(0)− 2wTryx + wTRyyw
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where E is the expectation operator, rxy = E[x(m)y(m)] is the cross–correlation
vector of the input and the desired signals and Ryy = E[y(m)yT(m)] is the auto–
correlation matrix of the input signal. Equation 1.13 is a function of the filter coeffi-
cient vector w and the only extremum is the minimum point. Taking the derivative
of this equation yields

∂

∂w
E[e2(m)] = −2E[x(m)y(m)] + 2wTE[y(m)yT(m)]

= −2ryx + 2wTRyy (1.14)

where the gradient vector is defined as

∂

∂w
=

[
∂

∂w0

,
∂

∂w1

,
∂

∂w2

, ...,
∂

∂wP−1

]T
(1.15)

Setting Equation 1.15 to zero gives the Wiener filter coefficient vectors, minimizing
the mean squared error:

w = R−1
yy ryx (1.16)

Alternatively, to calculate w, one can also use the fact that the squared error is
minimized when the expectation of the product of the error and the data is zero, due
to orthogonality. Combining Equations 1.9 and 1.16, the desired signal x̂(m) with
the Wiener filter, in terms of the input y is then

x̂(m) = [R−1
yy ryx]Ty

= rT
yx [R−1

yy ]Ty (1.17)

If the input y can be expressed with a signal component and additive random noise,
the Wiener filter can be trivially optimized for noise reduction. In view of the Ryy

term in Equation 1.17, it is necessary to know, or estimate how the input data is
correlated. The cross–correlation vector of the input and the output, rxy, also needs
to be known. For the case where the noise in the input signal is uncorrelated (Ryy =
Ry′y′ + Rnn), Equation 1.17 becomes

x̂(m) = rT
yx [(Ry′y′ + Rnn)−1]Ty (1.18)

where Rnn is the auto–correlation matrix of the noise and the primed y variable
denotes the input without noise.

1.4.2 Inverting the flux field

In this thesis, the optical depth (τ) data along lines of sight from SDSS DR12 (and
the simulations) is the main observable. As we will describe in §2, we choose to work
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with flux (e−τ ) directly to study the large scale structure. Therefore, it should be
established that this is equivalent to making maps of the actual IGM density field.

The relation between the optical depth τ`(w) along the LOS ` at position x⊥,` =
(y`, z`) and the neutral hydrogen density nHI in velocity space w is given by

τ`(w) =
cσ0

H(z̄)
√
π

∫ ∫ (∫ ∞
−∞

nHI(x,x⊥)

b(x,x⊥)
exp−

{
− [w − x− vp(x,x⊥)]2

b(x,x⊥)2

}
dx

)
δD(x⊥ − x⊥,`)d

2x⊥ (1.19)

where σ0 is the effective cross–section for resonant line scattering, H(z̄) is the Hubble
constant at mean redshift z̄ and vp(x) is the projection of the peculiar velocity along
the LOS (Pichon et al., 2001). The double integration over x⊥ is along the two
directions perpendicular to the parallel lines of sight. δD is the two dimensional Dirac
delta function. As τ is known, the task at hand is to invert Equation 1.19 to obtain
nHI .

We have already mentioned the relation between the neutral hydrogen density,
the dark matter density and the temperature in Equation 1.8. Equations of state
(Hui and Gnedin, 1997) are given by

T (x) = T̄

(
ρDM(x)

ρ̄DM

)2β

(1.20)

nHI(x) = n̄HI

(
ρDM(x)

ρ̄DM

)α
(1.21)

b(x) = 13 kms−1

√
T̄

104K

(
ρDM(x)

ρ̄DM

)β
(1.22)

where the parameter β is in the range 0 < β < 0.31 (the upper bound comes from
the asymptotic value at z = 0) and the dark matter scaling parameter is α = 2 −
1.4β. Variables with a horizontal bar are mean values along the LOS. The Doppler
parameter b(x) is a function of the local temperature of the IGM at a given point
and x is the real space coordinate. For the length scales of interest in this work,
the thermal broadening due to Equation 1.22 can be ignored. Hence, Equation 1.19
becomes

τ`(w) = A(z̄)

∫ ∫ (
ρDM [w − vp(x(w,x⊥),x⊥)]

ρ̄DM

)α
δD(x⊥ − x⊥,`)d

2x⊥, (1.23)

A(z̄) = ¯nHI
cσ0

H(z̄)
(1.24)

The equations above are evaluated for all LOS independently. Since we are work-
ing in redshift space, vp = 0. Redshift distortion at large scales do not change the
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topology and statistics of the field significantly, at mildly non–linear scales. There-
fore, to constrain the 3D field in Equation 1.23, appropriate values are chosen for α
and β, thus deciding the equations of state.

In the original work where this inversion method was introduced, the authors
tested it with N–body simulations (Figure 1.10) and shortly after the original work,
with a z = 2.4 quasar spectrum from Ultraviolet Visual Echelle Spectrograph (UVES)
to constrain parameters and study the small–scale structure (Rollinde et al., 2001).

Figure 1.10: Different lines correspond to inversion of the Lyα forest with different
equations of state. The top panel shows the flux along the simulation skewer. Black
dots at the bottom panel correspond to the simulated density. Equation 1.20 is
evaluated with T̄ = 104K and β = 0.2. Peculiar velocities are ignored. Other curves
correspond to different T̄ values at β = 0.2 (figure obtained from Pichon et al. (2001)).
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1.5 Thesis Overview

1.5.1 Motivation

The Wiener interpolation method has proven to be a useful tool for reconstructing
the large scale structure with sparse and noisy data (Zaroubi et al., 1994; Fisher et al.,
1995; Pichon et al., 2001; Rollinde et al., 2001; Caucci et al., 2008).

The general idea for making 3D density maps in a big volume is to first carry out
the inversion along LOSs to obtain the underlying density field, followed by inter-
polating between them with the Wiener filter. A usual scenario, showing the LOSs
and the underlying density field for simulated fields is depicted in Figure 1.11, where
although the methods are the same, the authors were able to introduce additional
constraints from the Lyman-β forest (Petitjean et al., 2001). It is worth noting that
for simulations, LOSs are parallel to each other, resulting in a uniform spatial res-
olution for the resulting maps. However, the fact that the quasar distribution in
observational surveys is heavily dependent on redshift introduces the necessity for
adjustments to the method. In principle, only volumes with a sufficient LOS density
should be chosen for reconstructing the IGM field. This can also be seen from the
condition N > P in Equation 1.11, which if violated, can potentially lead to singu-
lar processes during matrix inversion. A natural choice for the redshift interval for
making maps, given the quasar distribution (Figure 1.6), is 2 < z < 2.5.

In this thesis, we improve on the previous work, first with a cosmological hydro-
dynamical simulation, using a larger box size and sparser sightline densities which
mimic those of observational surveys, in order to evaluate the performance of our
methods. Then, we apply the same procedure to SDSS–III BOSS DR12 data to make
big observational maps of the IGM at 2 < z < 2.5 and examine global and local
statistical properties of the field. 3D maps of the IGM at such large scales at high
redshifts have never been made before, making our work unprecedented.

1.5.2 Thesis Plan

In the next section, we describe our peer reviewed and published work with recovering
the simulated fields and studying statistics of the field, which is based on (Ozbek et al.,
2016). Observational requirements for obtaining certain map resolutions, as well as
an alternative local polynomial interpolation technique are discussed in §3. In §4, we
apply the Wiener interpolation method to observational data from SDSS-III BOSS
QSO spectra to make big maps of the Universe at high redshifts. We focus on local
statistics in §5, discussing percolation techniques to find superclusters in the map.
Finally, in §6, we end our work with a summary and concluding remarks.
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Figure 1.11: This figure shows a general picture of the LOS distribution and the
underlying density field (figure obtained from Petitjean et al. (2001)). Darker colors
show areas that are denser.
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Chapter 2

3D Mapping of the Intergalactic
Medium with Simulations

The work in this chapter has been published as Ozbek, Croft and Khandai (2016).

2.1 Introduction

In order to evaluate the expected performance of map-making reconstruction on
Lyman-α forest data from BOSS and other observational surveys, we make use of
a large hydrodynamic cosmological simulation of the ΛCDM model. We use the
smoothed particle hydrodynamics code P–GADGET (see Springel 2005; Di Matteo
et al. 2012) to evolve a distribution of 2 × 40962 = 137 billion particles in a cubical
periodic volume of side length 400 h−1Mpc. The simulation cosmological parameters
were h = 0.702, ΩΛ = 0.725, Ωm = 0.275, Ωb = 0.046, ns = 0.968 and σ8 = 0.82.
The mass per particle was 1.19× 107 h−1M� (gas) and 5.92× 107 h−1M� (dark mat-
ter). A gravitational force resolution of 3.25 kpc/h comoving was used. The power
spectrum of the simulation initial conditions was taken from CAMB (Lewis et al.,
2000). The simulation was run with an ultraviolet background radiation field con-
sistent with Haardt and Madau (1995). Cooling and star formation were included.
However the latter used a lower density threshold than usual (for example in Springel
and Hernquist 2002) so that gas particles are rapidly converted to collisionless gas
particles. This was done to speed up execution of the simulation. As a result the
stellar properties of galaxies in the simulation are not predicted reliably but this has
no significant effect on the diffuse IGM that gives rise to the Lyman-α forest. Black
hole formation and feedback from stars were also switched off in the simulation.

2.1.1 Data

We use two simulation snapshots at redshifts of z = 2 and z = 3 to generate two
sets of Lyman-α spectra using information from the particle distribution (Hernquist
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Figure 2.1: NLOS passing through our simulation volume at different redshifts accord-
ing to BOSS, eBOSS and MS–DESI (assuming the other two experiments have the
same distribution of QSOs with respect to redshift as BOSS). The red markers show
the fiducial choices for our work with simulation data. The BOSS quasar catalog in-
dicates that the number of quasars peaks at z ∼ 2.25 and decreases rapidly at higher
redshifts.
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BOSS eBOSS MS–DESI

nLOS/ deg2 16 25 45
Sky coverage (deg2) 10400 7500 14000
Lyα QSOs (thousands) 180 250 1000
Spectral Resolution ∼ 2000 ∼ 2000 ∼ 3500

Table 2.1: LOS density, sky coverage, targeted Lyman-α QSOs and spectral resolution
parameters for three sky surveys

et al., 1996). We make spectra set out on a grid with 1762 = 30, 976 evenly spaced
sightlines, resulting in 2.27 h−1Mpc spacing. This can be compared in the line of sight
direction with BOSS pixels of width ∆v = 69.02 km s−1 (Lee et al., 2013), which is ∼
0.6 h−1Mpc at z = 3. Each simulation sightline was generated with high resolution,
10,560 pixels, in order to resolve the thermal broadening when computing the optical
depth. The spectra were then downsampled (by averaging the transmitted flux over
60 pixels) to 176 pixels. The full set of simulation data sets therefore consist of 1763

data values each.

In order to roughly approximate the noise which will be expected in observational
data, we add random uncorrelated Gaussian pixel noise to the data sets with a signal
to noise ratio S/N = 1 or 2 per unit simulation pixel in 176 pixels per 400 h−1Mpc
sightline. This is similar to BOSS which has S/N of order unity (Lee et al., 2015). If
BOSS Lyman-α data were binned to 9.3 h−1Mpc pixels, the mean S/N ratio would
be 2.5. Similarly, the simulation data with S/N = 1, when binned to pixels of the
same size results in an S/N ratio of 4. Therefore, we use the S/N = 1 case as a
close match for the BOSS noise level, whereas the other noise level, S/N = 2, is
given as an example with less noise. A random subset of the 1762 sightlines was
chosen, according to LOS area densities from the experiments BOSS (Alam et al.,
2015), eBOSS (Raichoor et al., 2015) and MS–DESI (Levi et al., 2013) from our
simulation box to carry out the reconstruction (see Table 2.1 and Figure 2.1). For
example, at z = 2, NLOS ∼ 400 LOS passing through the simulation volume mimics
the LOS density for BOSS, while NLOS ∼ 1000 mimics that of MS–DESI. Since most
of our conclusions are inferred from data sets with NLOS = 200, one should expect
observational results with BOSS data to be of even higher fidelity. We define NLOS as
the number of lines of sight chosen to reconstruct the entire volume in the simulation
box, whereas nLOS (see, e.g., Table 2.1) denotes the total number of sightlines along
the entire redshift range from the observer to quasars.

Our data points derived from the simulation are optical depths, (τ = − loge F/F0),
where F is the flux received at a certain location in space and F0 is the unabsorbed
flux. The data are convolved with the peculiar velocity, therefore we work in redshift
space. In (Caucci et al., 2008) the authors worked with the density field directly. We
will however work with the flux, and our maps will be reconstructions of the three
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Sample Redshift NLOS Noise 〈dLOS〉(h−1Mpc)
z2 N200 2 200 Noiseless 28.28
z2 N200 SN2 2 200 S/N=2 28.28
z2 N200 SN1 2 200 S/N=1 28.28
z2 N400 2 400 Noiseless 20.00
z2 N400 SN2 2 400 S/N=2 20.00
z2 N400 SN1 2 400 S/N=1 20.00
z2 N1000 2 1000 Noiseless 12.65
z2 N1000 SN2 2 1000 S/N=2 12.65
z2 N1000 SN1 2 1000 S/N=1 12.65
z3 N60 3 60 Noiseless 51.64
z3 N200 3 200 Noiseless 28.28
z3 N200 SN2 3 200 S/N=2 28.28

Table 2.2: Our choices of simulated data sets at redshifts 2 and 3 with different LOS
density and noise levels.

dimensional flux field, in redshift space. The relation between the gas density and
the optical depth is

δ(x) =
1

α
log(

τ(x)

A(z̄)
) (2.1)

where δ(x) ≈ ρ−ρ̄
ρ̄

is the density contrast, and α and A(z̄) are redshift dependent

factors. We present our results in terms of flux contrast, δF = (F/ 〈F 〉) − 1, where
〈F 〉 is the mean transmitted flux computed from all spectra.

2.1.2 Simulated datasets

We have made 12 simulated data sets with different sightline densities and noise
levels. These are summarised in Table 2.2. Sightline density choices were made to
mimic those of current or future observational surveys, as shown in Figure 2.1 with
red markers. Some data sets have a LOS density that is even lower than that of
BOSS (e.g. the data set labelled ”z2 N200”) but still allow an accurate recovery
of the flux field, as we will see in §2.2. Data sets with higher sightline densities
(e.g. ”z2 N1000”, which is comparable to that of MS-DESI) result in an even better
inference of the field. Therefore, as observational surveys find more quasars, even
more accurate density maps will be available with the Lyα forest.
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2.1.3 Wiener Interpolation

There are several methods which can be used to interpolate between the sparse ab-
sorption skewers in the Lyman-α forest. For example, recent work by Cisewski et al.
(2014) used local polynomial smoothing for this purpose. The method we choose
in this thesis is Wiener filtering, pioneered in this context by Pichon et al. (2001),
and used by Caucci et al. (2008), and Lee et al. (2014b) to make maps from sim-
ulated data, and by Lee et al. (2014a) to make the first 3 dimensional maps from
observations.

We consider the values of the flux contrast in the reconstructed field to be entries
in a column vector M, and the values of the flux contrast in the absorption skewer
data to be entries in a column vector D. In general the entries of M will represent
values on a uniform grid of voxels as we are constructing a map which covers all space
within the map boundary. In our simulation tests, they will be covering the cubical
simulation volume uniformly. We choose not to make use of the simulation periodic
boundary conditions, in order to mimic some aspects of real data. Using Wiener
filtering, the reconstructed 3D field M can be inferred from the absorption skewer
data D by computing

M = CMD · (CDD + N)−1 · D (2.2)

where CMD and CDD are the map–data and data–data covariance matrices and N
is the diagonal noise matrix. In the present work, we assume the noise to be uncor-
related, so that the entries of N are inversely proportional to the square root of the
number of pixels in each cell. The covariance matrices encode the expected corre-
lation structure of the field. In most of our work we use the following simple form
advocated by Pichon et al. (2001) and Caucci et al. (2008):

C(x1, x2,x1⊥,x2⊥) = σ2 × exp
(
− (x1 − x2)2

L2
||

)
×

exp
(
− |x1⊥ − x2⊥|2

L2
⊥

)
(2.3)

where (x1 − x2) and |x1⊥ − x2⊥| represent the distances between two pixels, par-
allel and perpendicular to the LOSs respectively, L|| and L⊥ are correlation lengths
parallel and perpendicular to the LOSs, while the variance σ2 is calculated directly
from the field. The CDD covariance matrix contains correlation information between
the initial data points only (the D array), whereas CMD contains information of the
3D pixel locations of the map to be inferred and the D array. The similarity between
Equations 1.18 and 2.2 are obvious. As previously mentioned in §1, the covariance of
the input data CDD needs to be known.
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In order to test how well the reconstruction works as a function of line of sight
density, we make several different data samples by choosing a subset of our lines of
sight at random. The areal density of the sightlines are those that correspond to some
current and planned experiments, e.g. BOSS (Dawson et al., 2013) and DESI (Levi
et al., 2013) (see Table 2.1 and Figure 2.1).

Our numerical code to carry out the reconstruction splits the simulation volume
into ”subcubes”. The interpolation is then carried out separately for each subcube
in parallel with the others and in the final step the results are combined to form
the whole reconstructed simulation cube. In order to make the calculations more
computationally tractable, we decrease the resolution of the field from 1763 to 443

pixels.

We introduce a buffer volume on the edges of the subcubes, allowing them to over-
lap, in order to avoid edge artifacts. In our fiducial reconstruction of the simulation
we use 64 subcubes overall and a buffer of 40 h−1Mpc on each side for each subcube.
Each subcube therefore has a side length of 180 h−1Mpc, including the buffer regions.
We have tested and checked that adjusting the number of subcubes or changing the
number of pixels does not significantly alter the results.

The code used does not take into account the periodic boundary conditions of
the whole simulation box, in order to approximate the situation which will occur for
observational data. This means that the reconstruction will be less accurate near the
edges of the cubical simulation volume. For this reason, when choosing slice images to
compare real and reconstructed fields, we choose the middle planes of the cube rather
than the edges. We find by visual inspection that there is no significant difference in
the quality of reconstructions when increasing the separation from the box edge by
greater than 50 h−1Mpc. We repeat some statistical calculations after truncating the
cube by 50 h−1Mpc from each edge in order to test the importance of edge artifacts.

The resolution of the maps is determined by the mean separation between quasar
lines of sight:

〈dLOS〉 =
LBox√
NLOS

(2.4)

For NLOS = 200, 〈dLOS〉 is equal to 28.28 h−1Mpc. For a study of the map resolution
as a function of exposure time, the reader is referred to Lee et al. (2014b). Pichon
et al. (2001) have shown that typical values for the correlation lengths L|| and L⊥
should be of the order of 〈dLOS〉 in order to avoid numerical instabilities in the matrix
inversion leading to spurious structures. We smooth both true and reconstructed
fields with an isotropic Gaussian filter with a standard deviation σS = 1.4〈dLOS〉, in
the latter case after carrying out the reconstruction.
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2.2 Analysis

After the reconstruction of the field we analyze the relationship between the true and
reconstructed fields, bearing in mind that both have been smoothed, as stated above.

2.2.1 Scatter Plots

We first show point by point scatter plots in Figure 2.2. We plot the reconstructed
flux contrast, δrecon against the true flux contrast, δorig. The results of the point to
point comparison of the fields are summarised in Table 2.3.

Throughout the thesis, we use ”original field” (or ”true field”) with the meaning
that we keep all of the Lyman-α skewers in the cube, while ”recovered field” or
”reconstructed field” means the flux field inferred with the given LOS density with
the quasars located at redshift 2 or 3. In the top left panel of Figure 2.2, we show
the results for the the NLOS = 200 dataset with no noise. We can see the slope of the
relation between δrecon and δorig is biased (this was also found by Lee et al. 2014a),
in the sense that the recovered field has more contrast than the original field. After
fitting a linear regression we find that the slope is 1.73, whereas the y–intercept is
consistent with zero. This bias depends on the interplay between the Wiener filter
smoothing scales and fluctuations in the field that are missed in the sparse sampling.
The bias is larger when the number density of sightlines is low (compare the top left
panel of Figure 2.2 which has a fitted slope of 1.73 and a sightline density 5 times
less than the bottom left panel, which has a fitted slope of 1.35). Any correction
for this bias is likely to be empirical, and therefore in the rest of our analysis we
apply the simplest correction, by renormalizing the δrecon according to the slope of
the regression.

In order to quantitatively test the quality of the reconstruction, we compute the
error by calculating the ratio of the root mean square (RMS) of the pixel by pixel
difference to the RMS of the true field (δorig) which only includes 95 per cent of the
true pixels (±2σ from the mean, which is normalized to zero), therefore avoiding
outlier points:

e% = 100

√∑
(δorig − δrecon)2

4
√∑

δ2
orig

(2.5)

From Figure 2.2, we can see from the top row of panels that the addition of noise
to the input field does affect the reconstruction. The RMS error (after bias correction)
is 20.4 per cent for the noiseless case and 37.0 per cent and 57.3 per cent for the cases
with S/N=2 and S/N=1 respectively in the pixels of size 9.30 h−1Mpc used in our
analysis. We remind the reader that the BOSS Lyα forest data when rebinned in this
way has a mean S/N ratio of 2.5. Therefore, we estimate that the RMS error for the
reconstructed BOSS data will be 36.7 per cent.
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We also provide the Pearson coefficient (r) as a measure of the linear correlation
between δorig and δrecon. Total positive correlation between the original field and the
reconstruction would correspond to r = 1, while no correlation would be r = 0 and
total negative correlation would be r = −1. At redshift z = 2 with NLOS = 200, r =
0.783, and it is even higher when the number of sightlines is increased, as expected.

Increasing the number of sightlines, as shown in the bottom left panel of Figure
2.2 allows the smoothing scale to be reduced and the resolution of finer features in
the flux contrast field. The RMS flux contrast fluctuations increase to 0.0193 for this
sample (z2 N1000, see Table 2.3) and the percentage error on the reconstruction stays
approximately the same as the lower resolution reconstruction in the top left panel.

Finally we show results for the higher redshift, z = 3 in the bottom right panel of
Figure 2.2. For the sample z3 N200, we use the same number of sightlines, as the top
left (z = 2) panel, but the RMS accuracy of the reconstruction is lower by a factor of
0.75. The quality of the reconstruction is low for the sample z3 N60, as can be seen
in Figure 2.11. However, the percentage error in Table 2.3 is comparable to those
from other samples due to the fact that the dynamic range in the true field is low
because of the much higher σS value for that sample. The flux contrast fluctuations
are larger at the higher redshift, because of the greater overall optical depth in the
Lyα forest, but this does not translate into a better reconstruction.

2.2.2 Cross Correlation

In the previous section we have seen how the true and reconstructed fields compare
on a point–by–point basis for one specific value of the smoothing scale, given by
σ =

√
2〈dLOS〉. We can also study how similar the fields are at different scales.

Instead of using different filter scales, we make use of the correlation functions of the
field, measuring the correlation between points separated within a distance r. This
translates to a probability which is in excess of a random distribution.

We compute the auto–correlation of the true field, the cross correlation and the
standardized cross correlation between the true and the recovered fields. In general,
the correlation function of two fields 1 and 2 is defined by:

ξ12(r) =< δ1(x)δ2(x+ r) > (2.6)

This denotes the excess probability of finding pairs separated by a distance r. For the
auto–correlation, 1 and 2 represent the same fields. Due to the periodic boundary
conditions of the simulation cube, flux values are wrapped around over the edges
when calculating correlations. In the top row of Figure 2.3, correlations tend to zero
rapidly after the smoothing scale. The standardized cross–correlation is defined by:

C12(r) = ξ12(r)/
√
ξ11(r) · ξ22(r), (2.7)

where ξ12 is the cross-correlation and ξ11 and ξ22 are the auto–correlations. C12

enables us to quantify the accuracy of the reconstruction as a function of scale, with
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(a) z = 2, NLOS = 200, Noiseless (b) z = 2, NLOS = 200, S/N=2

(c) z = 2, NLOS = 200, S/N=1 (d) z = 2, NLOS = 1000, Noiseless
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(e) z = 3, NLOS = 200, Noiseless

Figure 2.2: Scatter plots of the true flux contrast (δorig) in the simulated maps com-
pared to the reconstructed flux contrast (δrecon). We show reconstructions at different
redshifts, sightline densities and signal to noise ratios, as follows: The top row, which
is from an analysis at z = 2 with NLOS = 200, demonstrates the effect of adding noise
to our data and carrying out the reconstruction in order to mimic observational data.
From left to right, the analyses for data which are noiseless, S/N=2 and S/N=1 are
shown. The bottom left is from an analysis at z = 2 with NLOS = 1000. Bottom
right plot shows our results at z = 3 with NLOS = 200. The black lines indicate linear
regression fits and the red dashed lines show the y = x line. colors show the density
of the points, with red being the densest and blue denoting the most sparse. For each
plot, the red area contains 68 per cent of the data points.

a value of unity indicating perfect fidelity. It should be noted that we do not expect
good agreement for scales smaller than the fiducial smoothing length, the natural
resolution of the map. According to Equation 2.4, the fields with NLOS = 200 are
smoothed with σS = 39.6 h−1Mpc, while those with NLOS = 1000 are smoothed with
σS = 17.7 h−1Mpc.

If we look at the case of low sampling density, NLOS = 200, we see that C12 can
be as low as 0.45 on scales which are approximately 1.5–2 times the smoothing scale.
Repeating the same analysis for unsmoothed fields with this LOS density does give
better agreement at low scales – clearly, some structure is erased due to smoothing.
For larger values of NLOS, on the other hand, we get good agreement despite the
smoothing (Figure 2.3, bottom row). After smoothing both fields with the fiducial
smoothing length, the recovery improves with distance until very large distances,
where it decreases again. This decrease is due to edge effects, as on large scales (close
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to ∼ 200 h−1Mpc), much of the volume is close to an edge. In panel (d) of Figure
2.3 we restrict the measurements of ξ12 to the volume of the simulation cube left
after eliminating all regions within 50 h−1Mpc of an edge, which alleviates the issue
completely. Comparing with panel (c) of Figure 2.3, we can see that the agreement
on small scales has also been improved, showing the positive effects of getting rid of
the edge artifacts. In a large survey such as BOSS which spans a contiguous volume
of several gigaparsecs, most of the volume will be much further from an edge than 50
h−1Mpc, so that edge effects should be a small issue.

When the edge effects have been removed, we can see that the C12 measurement
is close to 1 for all scales greater than the smoothing filter scale at z = 2, indicating
essentially perfect statistical agreement. At redshift z = 3, C12 is never greater
than 0.8, which may indicate that the less evolved structures at higher redshift make
accurate reconstruction more difficult.

2.2.3 Non–Gaussianity

The density field probed by the Lyα forest is expected to be in the mildly non-linear
regime. When smoothed on large scales, which we necessarily must do in order to
construct our interpolated maps, we expect that the flux probability distribution
should be quite close to Gaussian. Indeed this Gaussian assumption underlies the
reconstruction carried out with the Wiener filter in Equation 2.3. It is therefore of
interest to compare the reconstructed and true flux probability density functions with
each other and with a normal distribution.

2.2.3.1 Probability Density Functions

Before we examine the distributions quantitatively with Kolmogorov–Smirnov tests,
it is useful to study them visually (Figure 2.4) with probability density functions
(PDFs). The solid grey line and the area under it shows the distribution of the
original field, while the solid black line indicates the distribution of the recovered
field. The red dotted line is a Gaussian fit, centered at zero and having the standard
deviation which is equal to that of the original field. The areas under all curves
are normalized to unity. In the top row, from left to right, the recovered field is
recognizably more Gaussian as the LOS density is doubled. This behavior can also
be seen in the Kolmogorov–Smirnov analysis (Table 2.4, rows 1 and 4). The reason
for the horizontal spread being narrower in panel (a) relative to panel (b) is the
difference in smoothing lengths: The size of the kernel for the data set with the
lower LOS density (NLOS = 200) is 40 per cent greater than the other one (Table
2.2). Since the data is normalized to zero, more flux values are smoothed out with
values closer to zero. On the other hand, for the data set at z = 3, not only is the
recovered field markedly less Gaussian, but also, the spread in the flux contrast values
is much greater than that of the original field. This suggests that the fidelity of the
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Figure 2.3: Correlation functions of the true and reconstructed fields as a function
of scale. In each panel, the black color curves show the results for z = 2 with
NLOS = 200, the blue color z = 2 with NLOS = 1000 and green z = 3 with NLOS = 200.
Panel (a) shows the auto–correlation function of the true field and panel (b) the
cross–correlation function of the true and reconstructed fields. Panel (c) shows the
standardized cross–correlation function for the entire simulation volume computed
using the equation C12/

√
A1 · A2. Panel (d) shows the standardized cross–correlation

function computed only for the part of the simulation volume that is at least 50
h−1Mpc from an edge.
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reconstruction is not as high as in the z = 2 case. We have observed much better
recovery at z = 2 than at z = 3, a trend that is recognizable in every plot.

(a) z = 2, NLOS = 200 (b) z = 2, NLOS = 400

(c) z = 3, NLOS = 200

Figure 2.4: Probability density distributions for flux contrast for the original (grey),
reconstructed (black) field and a Gaussian centered at zero with the standard devia-
tion matching that of the real field (red). The top row indicates PDFs for the data
set at z = 2 for varying LOS densities similar to that BOSS. The bottom panel shows
the PDF for the data set at z = 3.
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2.2.3.2 Kolmogorov–Smirnov Tests

In order to look for deviations in the flux pdfs, we use the Kolmogorov–Smirnov (KS)
test. We first compute the mean and the standard deviation σ of a Gaussian fit to the
true field. We construct a cumulative probability distribution from this and compare
it to the cumulative probability distributions of the true field and the reconstructions,
for various NLOS values, redshifts and levels of noise.

With the KS test, we compute quantitative measures of the similarity of the flux
pdfs to normal distributions. The test statistic (D value) is the maximum of the
difference in the cumulative distribution functions of the particular field being tested
and the Gaussian. The closer this value is to 0, the more likely it is that the data
sets have been drawn from the same distribution. Furthermore, the p value, which
is computed from the test statistic, represents the significance level threshold below
which the null hypothesis (that the data sets come from the same distribution) will
be accepted.

When computing the flux pdfs, we would like the data points to be as independent
as possible, and so our data points should at least be separated by distances greater
than the smoothing scale, because smoothing would correlate the measurements. Be-
cause of this, we downsample each data set, picking only a 53 grid of values (i.e., data
points separated by 80 h−1Mpc in each direction in the 400 h−1Mpc volume). Our
KS test results are shown in Table 2.4, for different line of sight densities, redshifts
and signal to noise ratios.

In all cases for the true field we find high p values and low D values, which means
that the original field was approximately Gaussian to start with. The recovered field
also shows the same property as well in Table 2.4, for recovery from data samples
with no added noise. When noise was added, however, the reconstructed maps became
significantly non–Gaussian, with the p value decreasing as the signal to noise ratio
decreased. Furthermore, the fact that the D and p values between samples with
different LOS density are significantly different can be attributed to the fact that
the smoothing filter size depends on the LOS density itself. As we have mentioned
above, the noisiest data, which has S/N=1, is significantly worse than the majority
of BOSS data, for example, but the effect of noise in changing the pdf shape of the
reconstructed field should still be borne in mind in an analysis of observed data.

2.2.4 Peaks In the Density Field

Searching for local maxima in the reconstructed flux density field offers one means
of defining objects and finding them. Such peaks are likely to correspond to the
locations of forming clusters or superclusters of galaxies. The properties of these
density maxima can be used to constrain the cosmological model (Bardeen et al.,
1986; Croft and Gaztañaga, 1998; De and Croft, 2007, 2010). It is therefore of interest
to compare the peaks of the reconstructed flux density field with those in the true
flux density field in the simulation.
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DATA SET D value p value

z = 2,NLOS = 200, Noiseless
Original 0.067 0.63
Reconstruction 0.060 0.77
z = 2,NLOS = 200, S/N=2
Original 0.068 0.60
Reconstruction 0.14 0.011
z = 2,NLOS = 200, S/N=1
Original 0.058 0.81
Reconstruction 0.23 4.4×10−6

z = 2,NLOS = 400, Noiseless
Original 0.044 0.97
Reconstruction 0.069 0.57
z = 2,NLOS = 1000, Noiseless
Original 0.088 0.28
Reconstruction 0.057 0.83
z = 3,NLOS = 200, Noiseless
Original 0.065 0.68
Reconstruction 0.098 0.17

Table 2.4: Kolmogorov–Smirnov test results giving the probability (p value) of the
flux PDFs of the real and the reconstructed data being drawn from a Gaussian dis-
tribution. We show results for different numbers of quasar sightlines through our
simulation volume, NLOS, redshifts and signal to noise ratios.

We search for density peaks in the three dimensional volume of the simulation.
Density and flux are inversely related, therefore we identify a simulation 3D pixel
as a local peak if its flux value is the smallest amongst the 26 neighboring 3D pixels
surrounding it. As expected, we find that the number density of local peaks is strongly
dependent on the smoothing filter size. We find that for a filter size of 39.6 h−1Mpc,
appropriate for NLOS = 200, we find 9 local peaks in the simulation volume at z = 2
(Figure 2.5a), and for a filter size of 17.8 h−1Mpc, appropriate for NLOS = 1000,
we find 87 peaks (Figure 2.5c), where both of these figures are for the true field.
Furthermore, z = 2 and z = 3 data samples have very similar true peak locations for
the same filter size. When noise is added to mimic observational data, we discover 8
local peaks for the real simulation flux field, while the reconstructed field contains 10
local peaks for the data set z2 N200 SN1.

In Figure 2.5 we show a comparison between the true field local peaks and those
of the reconstructed field. The number of peaks in both cases match exactly for the
three different combinations of NLOS and redshift shown. The positions of the peaks
are visually a reasonable match, with better agreement for z = 2 than z = 3. The
structures traced out in the plot with NLOS = 1000 by the reconstructed peaks do
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seem visually to trace out those in the real peaks.
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(a) z = 2, NLOS = 200
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(b) z = 3, NLOS = 200
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(c) z = 2, NLOS = 1000

Figure 2.5: Coordinates of potential superclusters (local peaks) from noiseless analysis
at z = 2 and z = 3 with varying LOS densities. Black dots show the results from the
true field, while blue empty circles show the results from the recovered field. Most
black dots are enclosed by or neighboring a blue circle, indicating accurate statistics
of the recovered field – when two supercluster candidates are on top of each other.

There is not a one to one correspondence however. We can quantify the level of
agreement by counting the number of peaks in the true field which have a peak in
the reconstructed field within one smoothing length. This is 33.3 per cent for z = 2,
NLOS = 200. The expectation from randomly positioned peaks with the same number
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density (computed using 1000 Monte Carlo trials) is 11.5 per cent. This means that
the reconstruction is a factor of 2.89 better than random. The equivalent measures
for z = 3, NLOS = 200 and z = 2, NLOS = 1000 are 11.1 per cent and 32.1 per cent
peaks within 1 smoothing length respectively and factors of 1.13 and 10.4 better than
random.

This type of analysis could be potentially extended to look at the structures that
are enclosed within isodensity contours. This would reveal the morphology of the
IGM on large scales. At the scales we are probing here (smoothing scales > 10
h−1Mpc), sheet and filament-like topologies are relatively difficult to see (as we shall
see in our visualizations in the next section). On smaller scales, these characteris-
tics are readily apparent in simulated maps (e.g. Pichon et al. 2001) and the first
maps made from observational data with these techniques (Lee et al., 2014a). The
most straightforward cosmological constraints will come from the peak density, and
the reconstruction technique does very well: We get perfect agreement between the
real and reconstructed fields for noiseless comparison, and for the noisy case (with
z2 N200 SN1), the number of peaks agrees within 25 per cent.

2.2.5 Slice Images

We now turn to a visual comparison of the structures in the real and reconstructed
maps. The three-dimensional datacubes have z axes oriented parallel to the line of
sight, and x and y axes perpendicular to it. The sampling of pixels in a mock data
set is therefore different depending on the plot orientation, and this could influence
the recovery of structure. We therefore show two orientations for each plot, one in
the y − z plane (an ”x” slice) and one in the x − y plane (a ”z” slice). In our plots
we show the flux contrast in a slice of thickness one grid cell. As our volumes are 44
cells on a side, this corresponds to a thickness 400/43 = 9.3 h−1Mpc.

We have also seen in §2.2.1 that there is a bias in the reconstructed field which leads
it to have higher contrast. Changes in NLOS and adjusting the correlation lengths do
not alter this and so we follow (Lee et al., 2014a) in applying a bias correction before
visualizing the fields.

In Figures 2.6 through 2.12 we present image slices through the simulation volume.
The images show the flux contrast δF = (F/ 〈F 〉) − 1, which means that low values
correspond to high values of the matter density. The red color shows these higher
density regions and white those of lower density. The image slices are taken from the
center of the cube in directions parallel and perpendicular to the LOSs. As explained
in Section 3, the motivation for choosing to display slices through the center of the
cube is because we are not using information about the periodic boundary conditions
in the simulation when carrying out the reconstruction. The edges of each image
slice will therefore give an idea of how well the reconstruction would succeed at the
edges of a survey volume. We have checked other random slices and verified that the
reconstruction recovers the general features of the original field, even when close to
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edges of the simulation volume.

In Figure 2.6 we can see the results for our lowest density of sightlines (we have
NLOS = 200), at redshift z = 2. We can see that the general morphology of the
field is recognizably similar in the true and reconstructed maps. In detail, the maps
have some differences, but the maxima, minima and their gross shapes are fairly
well reproduced, and one could therefore expect that observational data from the
BOSS survey (which has approximately this number density of quasars) would yield
visually quite accurate maps of the large scale structure, at least when smoothed on
the relevant filter scale (a filter of 39.6 h−1Mpc was used here).

The top and bottom rows of Figure 2.6 show results for slices parallel and per-
pendicular to the line of sight. We see no obvious difference in the fidelity of recon-
struction for each, and there is no obvious sign of the discrete sampling of the field
by pixels and sightlines (which is different for the top and bottom rows). General
features of the field are recovered well, especially for mildly dense regions.

Figures 2.7 and 2.8 demonstrate the effect of adding uncorrelated Gaussian noise
to the flux field in order to better mimic observational data, and how the fidelity of the
reconstruction changes when noise is introduced. Noise levels (S/N = 1 or 2) indicate
the amount of noise for a simulation pixel (∼ 0.76 h−1Mpc) wide. Since our pixels are
rebinned to ∼ 9 h−1Mpc, the added noise is reduced by a factor of 3.4. Hence, the
difference between the true fields before and after adding noise is small. However, the
reconstruction is sensitive to the amount of noise, therefore the fidelity of the noisy
reconstruction is noticeably worse, especially for overdense and underdense regions.
Due to the sensitivity of the reconstruction, we observe recognizably greater dynamic
range in the reconstructed field when noise is added.

We increase the density of the sightlines in Figures 2.9 and 2.10. As a result,
the quality of the reconstruction is visually better. Although the reconstruction code
does not take into account the periodic boundary conditions of the simulation, the
fields are comparable even at the edges. This is likely due to lower smoothing levels,
as the smoothing level scales inversely with NLOS.

Fluctuations in the flux field are greater at higher redshifts. As Figures 2.11 and
2.12 clearly show, this results in a decrease in the fidelity of the reconstruction. It is
obvious that at redshift z = 3, the LOS density of NLOS = 60 is not good enough to
yield a comparable reconstructed field. For observational data, we naturally expect
a better map at z = 2 than at z = 3, as the LOS density is higher at z = 2. In this
study, although the LOS density is set to be the same at both redshifts, we get a
better recovery of the field at z = 2.

The recovery is accurate for scales larger than ∼ 1.4〈dLOS〉, as found in (Caucci
et al., 2008), especially for mildly dense regions (standardized correlation plots). Due
to the isotropic nature of the recovery and the smoothing, we do not notice any sig-
nificant statistical difference between the directions parallel to and perpendicular to
LOSs. If an anisotropic approach is found to be a significant improvement in future
studies, they can be implemented with different correlation lengths in Wiener interpo-
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(c) z = 2, NLOS = 200, parallel to LOS
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(d) z = 2, NLOS = 200, parallel to LOS

Figure 2.6: Slices extracted from the middle planes of the simulation cube are shown
at z = 2 with NLOS = 200, without pixel noise. The color scale indicates flux contrast,
δf . The top row shows slices perpendicular to LOSs, whereas the bottom row shows
slices in the parallel direction. True field slices are given in (a) and (c), while (b)
and (d) show reconstructed field slices. The smoothed reconstructed field recovers
the general features of the simulation.
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(a) z = 2, NLOS = 200, S/N=2,
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(c) z = 2, NLOS = 200, S/N=2, parallel to
LOS
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(d) z = 2, NLOS = 200, S/N=2, parallel to
LOS

Figure 2.7: Slices extracted from the middle planes of the simulation cube are shown
at z = 2 with NLOS = 200, with Gaussian pixel noise added (S/N = 2). The top
row shows slices perpendicular to LOSs, whereas the bottom row shows slices in
the parallel direction. True field slices are given in (a) and (c), while (b) and (d)
show reconstructed field slices. The smoothed reconstructed field recovers the general
features of the simulation.
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(a) z = 2, NLOS = 200, S/N=1,
perpendicular to LOS
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(b) z = 2, NLOS = 200, S/N=1,
perpendicular to LOS
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(c) z = 2, NLOS = 200, S/N=1, parallel to
LOS
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(d) z = 2, NLOS = 200, S/N=1, parallel to
LOS

Figure 2.8: Slices extracted from the middle planes of the simulation cube are shown
at z = 2 with NLOS = 200, with Gaussian pixel noise added (S/N = 1). The top
row shows slices perpendicular to LOSs, whereas the bottom row shows slices in
the parallel direction. True field slices are given in (a) and (c), while (b) and (d)
show reconstructed field slices. The smoothed reconstructed field recovers the general
features of the simulation.
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(a) z = 2, NLOS = 400, perpendicular to
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(b) z = 2, NLOS = 400, perpendicular to
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(c) z = 2, NLOS = 400, parallel to LOS
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(d) z = 2, NLOS = 400, parallel to LOS

Figure 2.9: Slices extracted from the middle planes of the simulation cube are shown
at z = 2 withNLOS = 400, without pixel noise. The top row shows slices perpendicular
to LOSs, whereas the bottom row shows slices in the parallel direction. True field
slices are given in (a) and (c), while (b) and (d) show reconstructed field slices. The
smoothed reconstructed field recovers the general features of the simulation.
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(a) z = 2, NLOS = 1000, perpendicular to
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(b) z = 2, NLOS = 1000, perpendicular to
LOS
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(c) z = 2, NLOS = 1000, parallel to LOS
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(d) z = 2, NLOS = 1000, parallel to LOS

Figure 2.10: Slices extracted from the middle planes of the simulation cube are shown
at z = 2 with NLOS = 1000, without pixel noise. The top row shows slices perpen-
dicular to LOSs, whereas the bottom row shows slices in the parallel direction. True
field slices are given in (a) and (c), while (b) and (d) show reconstructed field slices.
The smoothed reconstructed field recovers the general features of the simulation.

53



Original

 0  100  200  300  400

y (Mpc/h)

 0

 100

 200

 300

 400

z
 (

M
p

c
/h

)

-0.04

-0.02

0

0.02

0.04

(a) z = 3, NLOS = 60, perpendicular to LOS
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(b) z = 3, NLOS = 60, perpendicular to LOS
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(c) z = 3, NLOS = 60, parallel to LOS
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(d) z = 3, NLOS = 60, parallel to LOS

Figure 2.11: Slices extracted from the middle planes of the simulation cube are shown
at z = 3 with NLOS = 60, without pixel noise. The top row shows slices perpendicular
to LOSs, whereas the bottom row shows slices in the parallel direction. True field
slices are given in (a) and (c), while (b) and (d) show reconstructed field slices. The
smoothed reconstructed field cannot recover the general features of the simulation
well when the areal density of the absorption skewers is low.
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(a) z = 3, NLOS = 200, perpendicular to
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(b) z = 3, NLOS = 200, perpendicular to
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(c) z = 3, NLOS = 200, parallel to LOS
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(d) z = 3, NLOS = 200, parallel to LOS

Figure 2.12: Slices extracted from the middle planes of the simulation cube are shown
at z = 3 withNLOS = 200, without pixel noise. The top row shows slices perpendicular
to LOSs, whereas the bottom row shows slices in the parallel direction. True field
slices are given in (a) and (c), while (b) and (d) show reconstructed field slices. The
smoothed reconstructed field recovers the general features of the simulation, although
the quality of the reconstruction is lower than that with the z = 2 data set.
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lation and an anisotropic Gaussian filter. In our maps, as NLOS increases, naturally,
the recovery gets substantially better. This means that with future experiments like
eBOSS and MS–DESI, which have higher areal density of LOSs, a very accurate large
map of the IGM can be generated.

Adding noise to our data (pixel by pixel) and carrying out the recovery is an im-
portant step in order to better simulate real data from experiments. It is clearly seen
from the figures that adding noise makes the recovery of overdense and underdense
regions significantly worse. Furthermore, our results with the data set at z = 3 are
significantly worse than the other data set at z = 2.

2.2.6 Observed Correlations in the Covariance Matrix

Along with Caucci et al. 2008, and Lee et al., 2014, we use a simple Gaussian form for
the correlation function which appears in the Wiener interpolation covariance matrix
(Equation 2.3). This is motivated by simplicity, and the fact that it is well behaved
numerically at large separations. One might expect covariance matrices computed
from the actual correlation functions of the field to give more accurate reconstruction
results, however, and we now test this.

In (Slosar et al., 2011), the three-dimensional correlation function of the absorp-
tion in the Lyman-α forest was measured for the first time. The measurement was
extended to greater than 100h−1Mpc scales by (Busca et al., 2013) and (Slosar et al.,
2013). We use this measurement of correlation function to construct a correlation
matrix instead of the Gaussian covariances we have used (Equation 2.3).

The correlation function measured from the observational Lyα forest data is
anisotropic because of redshift distortions. We construct the correlation matrix not
from the observational data results of Slosar et al. (2011), but from the linear the-
ory CDM model consistent with the data. This redshift space model fit is given by
Equations 4.5 – 4.13 of (Slosar et al., 2011). We use these equations, along with the
linear theory correlation function from Section 2, and the following parameters: bias
factor b = 0.2, and redshift distortion factor β = 1.5 to compute ξF (r⊥, r‖), the flux
correlation function for line of sight separation r‖ and transverse separation r⊥. The
Wiener covariance (replacing Equation 2.3) is then given by

C(x1, x2,x1⊥,x2⊥) = ξF (r⊥, r‖) (2.8)

where r‖ = (x1 − x2) and r⊥ = |x1⊥ − x2⊥|.
After reconstructing the simulation field using the CDM fit to the (Slosar et al.,

2011) results in the covariance matrix, we compare the results to our fiducial recon-
struction technique (Figures 2.13, 2.14). We find that the recovery of the field with
the fiducial (Gaussian) correlation functions yields slightly better results than with
the CDM correlation function. Although the dynamic range with the Gaussian cor-
relation seems to be slightly higher, general features of the original field are recovered
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(c) CDM Correlation Function

Figure 2.13: Slice plots from the middle of the cube are shown above from a data
sample at redshift z = 2 with NLOS = 1000. We use the original Gaussian correlation
function as well as a correlation function measured from observations to recover the
field. Slices are from the middle of the cube, perpendicular to LOSs. The recovery of
the field using the Gaussian correlation function yields better results than using the
CDM correlation function obtained from observations.

better. For example, for the data set z2 N1000, instead of our original result of the
RMS percentage error 17.2, we find 20.3 with the CDM correlation function, which
is significantly worse. It is worth noting that the actual correlation function in the
simulations is probably not the same as it is estimated by Slosar et al. (2011).
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Figure 2.14: Slice plots from the middle of the cube are shown above from a data
sample at redshift z = 2 with NLOS = 1000. We use the original Gaussian correlation
function as well as a correlation function measured from observations to recover the
field. Slices are from the middle of the cube, parallel to LOSs. The recovery of the
field using the Gaussian correlation function yields better results than using the CDM
correlation function obtained from observations.

58



(a) Spectrum at (130.2, 297.7) h−1Mpc. (b) Spectrum at (176.7, 260.5) h−1Mpc.

(c) Spectrum at (186.0, 130.2) h−1Mpc. (d) Spectrum at (316.3, 353.5) h−1Mpc.

Figure 2.15: Random LOS comparisons are shown above from a data sample at
redshift z = 2 with NLOS = 200. Pixel values are compared along a single LOS at the
coordinates given in the captions. General features of individual spectra are captured
by the recovered field.
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(a) True field

(b) Reconstructed field

Figure 2.16: 3D visuals of the true and reconstructed fields show good agreement over-
all. Blue color shows denser regions. The fidelity of the reconstruction is especially
high for mildly dense regions and away from the edges.
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2.3 Conclusions

Using Wiener interpolation, we reconstruct the entire simulation box with a subset of
the Lyman–alpha absorption skewers chosen randomly. This subset of skewers, NLOS,
sets a natural resolution of our maps. The number of the skewers chosen at random is
decided by matching it with the areal LOS density of current and future spectroscopic
surveys such as BOSS and MS–DESI. Using the Lya forest with this method, one can
make maps of the large scale structure at high redshifts (2 < z < 3.5).

The standardized cross correlation plot (Figure 2.3, panel(c)) indicates that the
reconstruction is much better at z = 2 than at z = 3 using BOSS areal LOS densities.
Naturally, the fidelity of the reconstruction is better as NLOS is increased. Truncating
the cube 50 h−1Mpc from each edge, in order to remove the edge artifacts resulting
from periodic boundary conditions of the simulation and to better mimic observational
data, yields significantly better reconstruction (Figure 2.3, panel(d)).

We find that the data set at z = 2 yields clearly better results than the one at
z = 3 for the simulation, even with the same NLOS. This is most easily understood in
terms of the growth of structure through gravitational instability between z = 3 and
z = 2. For observational surveys, in view of the fact that the areal LOS density is
also much greater at z = 2 than at z = 3, one naturally expects that the large scale
structure map will be significantly better at lower redshifts.

The overall bias seen in point to point flux values in real and reconstructed fields
is an issue which does not have an easy explanation. Adjusting NLOS, the correlation
lengths and the buffer length does not change the situation, but using an empirical
bias correction allows the fields to be well-reconstructed.

In the high redshift range covered by the Lya forest, the IGM density field is
expected to be in the mildly non-linear regime, therefore, we look for non-Gaussianity
in the probability density functions of our reconstructed maps. While its behavior
is nearly Gaussian for noiseless data samples, it becomes less Gaussian as the noise
level is increased, as Table 2.4 indicates.

We provide more visualizations to study the general characteristics of the recon-
struction: In Figure 2.15, we show one–dimensional visual comparisons along four
lines of sight chosen at random using the data set z2 N200, whose source density
matches the areal LOS density of BOSS. We observe that the recovered skewers cap-
ture general features of the original ones, especially when the flux is changing slowly
along the LOS. Figure 2.16 shows 3D visuals of the true field and the reconstructed
field in the simulation volume.

Since the smoothing levels used in this study are greater than 10 h−1Mpc, it
is not possible to see the filamentary structure in the IGM topology. We remind
the reader that there are no wide-field galaxy surveys that can detect the topology
of the IGM at z > 2, as it is increasingly expensive to detect galaxies at higher
redshifts to reach a high source density, even with 8–10 m telescopes (Le Fèvre et al.,
2013). However, searching for local peaks allows us to discover the potential locations
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of the superclusters, which can be cross–correlated with galaxy surveys. Both the
number of the local peaks and their locations are reproduced reasonably well by the
interpolation.

Slice images allow a visual comparison between the original and the reconstructed
fields. General features of the flux field are well reproduced by the interpolation,
especially for mildly overdense regions.

Using a correlation matrix derived from a CDM–fit to observational data instead
of the simple Gaussian correlation matrix used in our fiducial Wiener filtering leads
to a slightly worse recovery of the field.

As an improvement, the isotropic smoothing of both fields can be altered, as one
does not necessarily expect the same statistics parallel and perpendicular to the LOSs.
Furthermore, as future surveys like eBOSS and MS–DESI discover more quasars, the
fidelity of the large scale structure maps will improve. For example, in order to reach
resolutions in the sub 10 h−1Mpc regime at z ∼ 2 to study the IGM filamentary
structure, QSO densities of over 100 deg−2 will be necessary.

Having evaluated our map making methods with simulations, we move on to
applying it on observational data to create IGM maps, using SDSS–III DR12, in §4.
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Chapter 3

Local Polynomial Smoothing and
Observational Requirements

This chapter includes my contributions to the published papers (Cisewski et al., 2014)
and (Lee et al., 2014b).

We first follow (Cisewski et al., 2014), which uses non–parametric local polynomial
smoothing to make maps of the IGM using the Lyα forest, and compare the results
with §2, where Wiener interpolation was the method of choice for interpolation. By
reconstructing an observational volume similar to the simulation, we also discuss the
feasibility and the LOS density necessary for such maps. We extend observational
requirements by studying exposure times and spatial resolutions necessary to reach
desired Lyα map resolutions from (Lee et al., 2014b).

3.1 Non–parametric 3D Map of the IGM

3.1.1 Introduction

In the previous chapter, we showed that Wiener interpolation allows using a collection
of the sparse Lyα skewers to make maps of the IGM at high redshifts (z > 2).
However, there are other interpolation methods we can use, with different advantages
and drawbacks. One such method is local polynomial smoothing (Cleveland et al.,
1992; Wasserman, 2006).

One of the disadvantages of Wiener interpolation is the necessity of knowing the
spatial distribution of the data prior to applying the filter (the CDD term in Equation
2.2), for which we had used Equation 2.3, and also the form from observed correlations
in Slosar et al. (2011). Unless the auto–correlation of the field is known well, errors
will be introduced in the resulting map. Local polynomial regression mitigates this
by using an adaptive function f , a polynomial of degree d:
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yi = f(xi) + εi (3.1)

where yi represents the measured optical depth from Lyα skewers, xi are the locations
of the voxels, εi are the independent random errors with expectation 0 and f is the
unknown map of the density field in a given region. The index i denotes individual
data points.

The estimation of the function f is local, meaning the global properties of the
field need not be known, but only information about the neighborhood of each point
i is needed. This is achieved by calculating a smoothing parameter α, which is a
value between 0 and 1 that determines the fraction of the full data set to be used
for estimating the function at a given point. Hence, a larger α value results in a
smoother map. This also has the added benefit of altering the smoothing adaptively
in the volume: Areas with a greater number of observations are assigned a lower α
value, while sparse regions use a greater neighborhood distance through a higher α
value. This can be particularly useful in making maps with QSO spectra, as the
highly clustered nature of these objects cause variation in their sky density.

The local polynomial function f at some point x is calculated by finding the
coefficients (a0, a1, ..., ad) that minimizes the squared error

n∑
i=1

(yi − px(xi; a))2K

(
xi − x
hα

)
(3.2)

where px(xi; a) = a0 + a1(xi − x)2 + ... + ad
d!

(xi − x)d is the desired polynomial and
hα is the bandwidth available in the neighborhood of that location, describing the
percentage of the full data set available for local smoothing. The choice for the kernel
K does not significantly alter the results (Fan et al., 1997). The estimate is at the
point x is simply given by f(x) = px(x, a).

We estimate the performance of local polynomial smoothing by using the same
simulated data set from §2, a cube of side length 400 h−1Mpc with 1763 data points,
where the QSOs are located at z = 2. From this data set, with the same LOS
densities used in §2, we are showing analyses with subsets of the data containing 100,
200 and 1000 LOSs chosen at random. These correspond to our data sets named
z2 N200, z2 N1000 etc., which are self explanatory. After an appropriate α is chosen
for each data set, the same smoothing level is applied to the full data set for comparing
the fidelity of the reconstructed fields. Finally, we use this method on a sample of
234 quasars from BOSS DR9 within a volume similar to that of the simulation to
reconstruct an observational volume at a redshift range of 2.2 . z . 2.3.

In order to evaluate the performance of the resulting IGM maps, we present slice
images taken from the simulation cube and the observational volume, and we provide
standardized cross–correlation analysis, drawing comparisons between the results of
§2 and §3.
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3.1.2 Analysis

The first step is to decide on the optimal smoothing parameter α for all data sets.
This is done by minimizing the predictive risk, using generalized cross–validation (Fan
and Gijbels, 1996). This sets a smoothing length, and therefore a natural resolution
for the reconstructed maps. Naturally, the map is smoother for the subsets containing
less LOSs, where we cannot expect to resolve fine features. For each reconstruction,
the corresponding ”true” maps are taken from the full data set, but smoothed with
the same α used for that particular reconstruction. We visually compare the fields
with slice images and discuss the performance of the interpolation as a function of
scale with standardized correlation plots.

3.1.3 Slice Images

3.1.3.1 Simulation

Slice images for the simulated volume are located at the same fixed z value, across a
plane that is perpendicular to the LOSs. This makes it possible to directly compare
not only the fidelity of the reconstruction, but also the effect of the smoothing levels
between different LOS densities on the resulting map.

In Figure 3.1, we plot the negative of the delta flux, hence the red color corresponds
to denser regions. Panels (a) and (c) are the reconstructions with LOS densities 1000
and 200, respectively. They can be directly compared with the true field given in
panels (b) and (d), which have similar smoothing levels due to the same α value
as the corresponding reconstruction. It is clear that the map with the higher line
of sight density in panel (a) yields better fidelity than the one in panel (c). Finer
features of the map are resolved in panel (a) and visually, and it compares well
with the corresponding map in panel (b). The inferred field with NLOS = 200 also
captures general features of the original field successfully, especially for scales larger
than ∼ 50h−1Mpc. The dynamic ranges in both instances of the reconstruction are
higher than those of the original map, despite having the same α parameter. This
may be due to the fact that the limited number of observations in reconstructed maps
cause a greater variation in the resulting flux field.

3.1.3.2 BOSS DR9 QSO Sample

After evaluating the performance of local smoothing with simulations, we apply the
same interpolation method to a subset of the Lyα forest data from BOSS SDSS–III
DR9, within a volume that is approximately the same as the simulation. This analysis
contains 234 QSOs with 24596 data points (with optical depth values) within a right
ascension (RA) range of 205 and 211, and a declination (DEC) range between -3 and
3. The redshift interval is between 2.2 and 2.3.

A slice image of the reconstructed BOSS IGM field is provided in Figure 3.2. Since
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(a) Reconstruction, NLOS = 1000 (b) True field, NLOS = 1000

(c) Reconstruction, NLOS = 200 (d) True field, NLOS = 200

Figure 3.1: Slices in the perpendicular direction with NLOS values of 200 and 1000 are
shown. Higher density regions correspond to the red color, as the negative of delta
flux (−δ) are the values in the visualization.

this observational LOS density is similar to that of the simulation with 200 LOS, it is
expected that the corresponding slice images have similar features between this figure
and Figure 3.1, panel (c). The general scale of structures are indeed comparable, as
one can observe with the number of red blobs, which show high density regions.
However, as the standardized cross–correlations will show in the next section, we
need LOS densities that are higher than 234 to expect maps with high fidelity.
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Figure 3.2: The IGM delta flux field in a volume similar to that of the simulation
is inferred using a sample of 234 BOSS DR9 QSO spectra. Higher density regions
correspond to the red color, as the negative of delta flux (−δ) are the values in the
visualization.

3.1.4 Standardized Cross–Correlation

The standard cross correlation was defined in §2.2.2 as C12(r) = ξ12(r)/
√
ξ11(r) · ξ22(r),

where C12 is the cross correlation between the true field and the inferred field, while
the other two terms are the auto–correlations of the individual fields. While slice
images provide a qualitative means of estimating the performance of the local poly-
nomial smoothing, standardized cross–correlations test the fidelity of the inference
quantitatively as a function of scale: An asymptotic value of unity represents perfect
reconstruction.

Amongst the three panels in Figure 3.3, the data set with the highest LOS density
(1000 LOS, panel (a)) is the only one that yields acceptable results. The standardized
cross–correlation value exceeds 0.7 at ∼ 40h−1Mpc, approaching values as high as
∼ 0.85 at larger scales. The other two panels show that those LOS densities of 200
and 100 are not acceptable for interpolation with local polynomial smoothing. It is
worth noting, however, that panels (b) and (c) represent data sets with LOS densities
that are below that of BOSS. Nonetheless, they are useful for setting an approximate
lower bound for the performance of this interpolation technique. We also provide
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auto–correlations of the data sets with the same LOS density levels in Figure 3.4.
For comparison, the right column contains the true field, smoothed with the same
bandwidth that is available to the corresponding reconstruction (hr corresponds to
”high resolution”, representing the true field).

Figure 3.3: Standardized cross–correlations for varying LOS densities in the simu-
lation volume. The data set with 1000 LOS performs the best, especially at scales
larger than 40h−1Mpc.

3.2 Observational Requirements

In this section, we summarize some of the relevant ideas from (Lee et al., 2014b) that
determine the spectral resolution power and areal LOS densities that are necessary
for observational surveys to obtain certain observational IGM map resolutions (∼
1− 5h−1Mpc) with the current generation of 8–10 m telescopes.

So far, we have shown that Wiener interpolation can be used to infer the un-
derlying IGM field at high redshifts with simulations. The feasibility of using this
technique with current observational surveys can be evaluated with the relation be-
tween the desired map resolution, areal LOS density and the observational spectral
power:

〈d〉 ≈
√

1/nLOS (3.3)

〈d〉 ≈
(

nLOS

4200 deg−2

)−1/2(
1 + z

3.25

)−3/2

(3.4)

R > 1300

(
1h−1Mpc

〈d〉

)(
1 + z

3.25

)−1/2

(3.5)

where we use the areal LOS density for nLOS. The ansatz that forms the basis of
this technique is that the typical LOS separation 〈d〉 sets an approximate map reso-
lution, also mentioned in (Caucci et al., 2008). Equation (3.4), expressed in h−1Mpc,
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Figure 3.4: Auto–correlations are given for varying LOS densities in the simulation
volume. Correlations of the reconstructed fields are on the left column. The figures
on the right are prepared with the original field (hr corresponds to ”high resolution”,
i.e. the original field), smoothed with the same bandwidth as the inferred field for
that specific LOS density.
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introduces a redshift dependence from the angular diameter distance. Since the areal
LOS density for BOSS is ∼ 17 deg−2, at the redshift where the quasar distribution
is maximized (z ∼ 2.25), Equation 3.4 yields 〈d〉 ≈ 16h−1Mpc. This is very nearly
our map resolution in §2, for the datasets with NLOS = 1000. Similarly, the targeted
areal quasar density for MS–DESI (∼ 45 deg−2) yields 〈d〉 ≈ 9.7h−1Mpc.

Finally, Equation 3.5 sets the minimum spectral resolution power (R = λ/∆λ)
requirement as a function of the map resolution. For 〈d〉 = 17h−1Mpc and z = 2.25,
Equation 3.5 gives R > 76, which is an order of magnitude lower than that of BOSS.
For map resolutions of several h−1Mpc, a spectral resolution power of at least R ≈
1000 is necessary, which is satisfied by current and future observational surveys such
as BOSS, eBOSS and MS–DESI.

3.3 Conclusions

As an alternative to Wiener interpolation, we use local polynomial smoothing to
interpolate both simulated Lyα skewers with the same simulation from §2, and we
also apply this method to a sample of 234 QSOs from BOSS DR9. We observe a
visual similarity between the BOSS reconstruction and the simulated inference with
comparable LOS densities.

We evaluate the performance of local polynomial smoothing qualitatively by com-
paring slice images of the true field and the reconstructed field. General features of
the field are captured well, especially for the reconstruction with 1000 LOS. However,
comparing Figure 3.1 with the slice images from §2 (Figures 2.6 through 2.12), it is
obvious that Wiener interpolation does a better job at mimicking the true field, both
in terms of general fidelity and the comparable dynamic range. This observation is
further supported by standardized cross–correlation analysis: For local smoothing,
the only acceptable inference is with the data set that contains 1000 LOS, whereas
LOS densities of 100 and 200 both yield completely unacceptable fidelity at all scales.
In §2, we had found that Wiener interpolation gives perfectly acceptable results with
NLOS = 200 and above, even when edge artifacts are still present (Figure 2.3, panels
(c) and (d)). However, for the final data release of BOSS, the LOS count for an obser-
vational volume that has the same size as the simulation is as high as 400 (Figure 2.1,
black curve), and even higher for surveys such as eBOSS and MS–DESI. Hence, we
expect that local polynomial smoothing should be an acceptable means of inferring
the observational IGM density field. The advantage of the adaptable smoothing level
due to the nature of local polynomial smoothing can be especially useful, since QSOs
are unevenly spaced. We also checked that adding random Gaussian noise does not
change the performance of the map significantly.

In order to resolve IGM maps that are close to the Jeans scale, high areal LOS
densities of the order of 1000 deg−2 will be necessary (e.g.Lee et al. (2014b), Figure
4). Currently, map resolutions of ∼ 20h−1Mpc are accessible to BOSS, due to the
high QSO density and spectral resolution. However, it is possible to increase this
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resolution locally by limiting the reconstruction to regions where the QSO counts are
relatively higher, as we will demonstrate in the next chapter.
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Chapter 4

3D mapping of the Intergalactic
Medium with the SDSS-III DR12
Lyman-α Forest

4.1 Reconstruction

We follow the Wiener interpolation method (Pichon et al., 2001; Caucci et al., 2008;
Lee et al., 2014b,a; Ozbek et al., 2016) to carry out the reconstruction of the DR 12
flux field. As an alternative to this interpolation method, a nonparametric method-
ology can also be used, e.g. local polynomial smoothing (Cisewski et al., 2014).

Lyα skewers from DR12 are placed into a grid and a data column vector D is
constructed from it, which contains the delta flux (δF ) information. In order to
negate the effects of peculiar velocities, we work in redshift space. The maps in this
study are made with the delta flux field δF = (F/〈F 〉) − 1 directly, where the flux
F is defined as follows: F/F0 = e−τ , where F is flux at a certain point in space,
F0 is unabsorbed flux, τ is the optical depth and 〈F 〉 is calculated from all spectra.
In (Caucci et al., 2008), the authors had opted to work with the density field of the
simulation, however, it is physically equivalent to use the flux field instead, as these
quantities are related:

δ =
1

α
log(

τ

A(z̄)
) (4.1)

where δ ≈ ρ−ρ̄
ρ̄

is the density contrast, and α and A(z̄) are factors that are redshift
dependent.

We place the data vector D into a cube that is 8892 comoving h−1Mpc long on a
side and contains 5003 regularly spaced voxels, which results in a cell spacing of 17.82
h−1Mpc. The three–dimensional field M, a collection of cell values which span the
whole cube volume, is inferred from D using Wiener interpolation, and the data–data
(CDD) and map–data (CMD) covariance matrices are as defined in §2.1.3:
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M = CMD · (CDD + N)−1 · D (4.2)

C(x1, x2,x1⊥,x2⊥) = σ2 × exp
(
− (x1 − x2)2

L2
||

)
× exp

(
− |x1⊥ − x2⊥|2

L2
⊥

)
(4.3)

where the noise matrix N is again assumed to be additive, diagonal and therefore
uncorrelated, since we do not include the covariant terms between different cells. The
non–zero entries of N are inversely proportional to the square root of the number of
pixels in each cell. The distances between pixels are (x1 − x2) along the direction
parallel to LOSs, and |x1⊥ − x2⊥| denote the distances that are perpendicular. L||
and L⊥ are the correlation lengths parallel and perpendicular to the LOSs, and the
variance σ2 is calculated directly from the field.

After binning the cube volume of comoving 88923 h−3Mpc3 to 5003 cells, we split it
into smaller chunks that contain 53 cells to carry out the reconstruction in parallel with
our Fortran 90 code, followed by stitching the cubes together into the original volume,
which speeds up the computation tremendously. A buffer length of 80 h−1Mpc exists
between the chunks, which is slightly greater than the effective resolution of the map
(∼ 60 h−1Mpc, explained in the next section), to diminish edge artefacts. We have
checked that changing the number of cells (e.g. to 2503, used for 3D visualizations)
does not significantly alter the fidelity of the reconstruction.

In (Caucci et al., 2008), it was shown that for scales greater than 1.4〈dLOS〉, general
features of the field can be recovered well. In order to avoid fictitious structures which
are finer than that resolution, we smooth the field with an isotropic 3D Gaussian filter
with a sigma of σS = 1.4〈dLOS〉 after the reconstruction (see Equations 4.5 and 4.6).
Evaluating these equations at z = 2.5 yields σS ∼ 60h−1Mpc, which is our fiducial
smoothing level throughout this chapter.

4.2 Quasars in DR12 and the Flux Field

For producing QSO spectra from CCD images, we follow the usual procedure of
subtracting the background noise and fitting the mean spectrum to a low order poly-
nomial (Hui et al., 2001):

N̄α
Q =

∑
a

Capaα (4.4)

where N̄α
Q is the quasar count, which is a sum of the raw count and the additive

background noise, p0, p1, p2 ... are the polynomials and the Ca coefficients are
determined with using a linear estimator from the raw quasar counts.

We use the 12th iteration of the Data Release (DR12) from SDSS–III (Pâris et al.,
2012; Alam et al., 2015). Quasars in DR12 sample the density field very sparsely. In
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Figure 4.1: Quasar distribution in our data set as a function of redshift is shown by
black color. The blue curve depicts the quasars probing the density field as a function
of redshift.

the pre-reconstruction stage, we find 217161 quasars, with the peak at z ∼ 2.25,
shown with the black color in Figure 4.1.

Quasars probe the IGM along one–dimensional Lyα skewers typically for a redshift
interval ∆z ∼ 0.5 in the range 2 . z . 3.5 along lines of sight. For example, at z = 3,
each individual spectrum contains one–dimensional density information for a ∼ 400
h−1Mpc skewer, starting about 100 h−1Mpc in front of a quasar. Accordingly, the
volume illuminated by the quasars can be calculated as a function of redshift. In
addition to the black curve which shows the true count of quasars, the blue curve in
Figure 4.1 shows the density field probed by quasars as a function of redshift for the
entire volume. This is estimated by counting all the quasars within a redshift delta
of ∆z = 0.5 further from the observer. Using this information, the areal line of sight
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Figure 4.2: 3D Quasar distribution in the reconstruction cube.

density Nareal and the mean line of sight (LOS) separation 〈dLOS〉 can be calculated:

Nareal =
nQSO × (Atotal/ADR12)

4πr2
(4.5)

〈dLOS〉 =
1√

Nareal

(4.6)

where Atotal is the total sky area (41253 square degrees), ADR12 is the DR12 sky
coverage (10400 deg2) and r is the comoving radial distance, and 〈dLOS〉 is the mean
line of sight separation, which sets a natural resolution for the resulting maps. The
number of quasars (nQSO) can be read off from Figure 4.1 as the blue curve for a
specific redshift interval.

Quasars are highly clustered objects (Croom et al., 2004; Myers et al., 2006;
Oogi et al., 2016), with similar clustering properties as galaxies at low redshifts: For
z < 2.8, the correlation function can be fit with a power law (r/r0)γ, where γ ≈ 1.8
and r0 ≈ 5h−1Mpc. Hence, during the quasar search algorithm, it is inevitable that
some pairs of quasars are binned into the same cell, thus decreasing the effective
line of sight density. By labeling the furthest non–zero pixel along a spectrum as a
quasar, we find 94876 such objects when the data were binned in a 500 cell cube. If
one increases the cell size for binning to 250 cells along a side instead (as was done for
3D visualizations for memory considerations), this number decreases to 24137 (Figure
4.2).

The line of sight direction is along z, and the observer is located at (xobs, yobs, zobs) =

75



(4446.039, 4089.707, 843.561)h−1Mpc. Following the arguments in (Caucci et al.,
2008) and using equations 4.5 and 4.6, we choose L⊥ = L‖ = 〈dLOS〉 and σS ∼
1.4〈dLOS〉, i.e., 40h−1Mpc for the isotropic correlation length and 60h−1Mpc for the
isotropic Gaussian smoothing kernel standard deviation size, respectively.

There are some minor differences between earlier work with cosmological hydro-
dynamical simulations (Caucci et al., 2008; Ozbek et al., 2016) and this study which
uses observational data, however, we believe they are not significant enough so that
the fundamental ideas are still valid. As in the previously mentioned articles, we
assume that lines of sight towards quasars are parallel to each other, given that the
quasars are sufficiently far away and the large redshift interval along the box that has
a comoving length of 8892 h−1Mpc on a side. This ”distant observer” idea is shown
to be a good approximation (White, 2014). It is also neglected that the quasars are
located at different points along the lines of sight, trivially, unlike the simulations in
(Caucci et al., 2008; Ozbek et al., 2016).

In §2, we had successfully created simulated large scale maps of the IGM using
LOS densities as low as NLOS = 200 (see Figure 1 in (Ozbek et al., 2016)). Here the
volume density NLOS simply means the number of simulated Lyα skewers in a volume
of 4003Mpc3h−3. For the observational reconstruction, although the skewers do not
probe the entire LOS direction (z), we can still calculate an effective volume density
NLOS by simply dividing the number of non–zero pixels by the number of cells on a
side. This is done in Section 4.3, for a subcube in the reconstruction box, which yields
a LOS density comparable to that of BOSS, which is NLOS = 184. A typical BOSS
pixel is about 1.5 h−1Mpc wide, and assuming a signal to noise ratio of S/N=1, which
becomes S/N ∼ 5 when rebinned to our pixel size in this chapter, and using Table 3
in (Ozbek et al., 2016), the RMS error for the present study can be estimated as ∼
28 per cent.

When making preliminary IGM maps, the redshift dependence of the field is ob-
vious (Figure 4.3). The red dashed curve shows the mean. The gradual decrease in
flux is monotonic in the comoving radial range given in the figure, which corresponds
to the redshift range 2 < z < 2.5. We remind the reader that the evolution of the
optical depth in the given range is τeff = A(1 + z)b (Meiksin, 2006), where A and
b are constants. Since the flux and the optical depth are inversely correlated, this
decreasing trend is expected.

Most flux contrast values in Figure 4.3 are in the immediate vicinity of zero, which
appears as a dark grey horizontal strip. By visual inspection, more positive values
are observed, compared to the negatives, in the outlier points. Also, positive outlier
flux values close to z ∼ 2 outnumber the ones close to z ∼ 2.5, which may explain
the decreasing mean. We bin the data into redshift bins to subtract out the redshift
evolution of the field. By subtracting the mean flux at every redshift bin, we make
sure that the flux contrast values average out to zero at every redshift, as intended,
and continue all subsequent analysis after this normalization.

Instead of using Cartesian coordinates, as mentioned earlier in this section, a more
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Figure 4.3: The mean flux at a given comoving distance from the observer is shown
with the red curve. By subtracting out this evolution, it is ensured that the average
flux is normalized to zero at every redshift bin.

natural means of studying the DR12 flux field is to analyse the redshift evolution of
it, prior to smoothing, where we apply a redshift cut as 2 < z < 2.5 while limiting the
right ascension (RA) and declination (DEC) range. The redshift interval is approx-
imately converted to a delta comoving radial distance, which varies from 0 h−1Mpc
at z = 2.0 and 464 h−1Mpc at z = 2.5. The distance coverage of the RA range in
the produced maps are also trivially calculated. Five such stripes across the North
Galactic Cap (NGC) are shown in Figure 4.6, where we bin the field using RA, DEC
and z intervals while considering only non–zero pixels: The right ascension range
is 120◦ < RA < 240◦ for all five panels, while the distance along the stripe in the
circumferential direction varies at DEC = 10◦ along the x axis in Figure 4.6. Darker
shades of red color correspond to underdense regions in the stripe graphs.

Comparing flux levels amongst varying declinations, it is observed that the mean
flux is minimized when the declination is decreased to its lowest value of 10◦, which
may mean that the overall absorption in the Lyα forest is the greatest: The mean
flux for DEC = 10◦ through DEC = 30◦: 0.00582, 0.00665 and 0.00724, respectively.
Comparing the recent BOSS footprints across new data releases from SDSS, one no-
tices that these NGC stripes were mostly not covered in the given RA range in earlier
data releases such as DR9 (Pâris et al., 2012), which had covered only 3275 deg2. A
visual inspection of the DR12 BOSS NGC stripes (Figure 1.8) shows clearly that the
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one at DEC = 10◦ is the most complete of all three, which may explain the trend in
the overall mean. Furthermore, the fact that the standard deviation also shows an
increasing trend from left to right (0.119, 0.129 and 0.132, respectively) suggests that
there exists more contrast and hence more structure at higher declination, which can
also be seen with visual inspection.

After applying the isotropic Gaussian smoothing and the linear bias to the recon-
structed DR12 flux field, we can clearly see the large–scale structure (Figure 4.4. By
visual inspection, it’s readily noticable how closely the DR12 IGM field and the quasar
distribution are related. Quantitatively, their cross–correlation was investigated with
DR11 (Font-Ribera et al., 2014) and auto–correlation of the IGM in (Slosar et al.,
2011). For the the Lyα auto–correlation graph (Figure 4.5), we only consider non–
empty pixels in the cube, apply a redshift cut for the DR12 field as 2 < z < 2.5 and
use the ngtot = 500 data set, as the one with ngtot = 250 seems to give misleading
correlation information for small scales due to binning, i.e. for scales less than 40
h−1Mpc. From our work with simulations, we know that we can expect the field to
be recovered well at large scales (Figure 2.3).

4.3 Subcube

Aside from reconstructing the delta flux field for the entire cube, we can also ”zoom-
in” on smaller sub–cubes in order to obtain a better resolution for the reconstruction
and to focus on local statistics. The volume of this sub–cube is ∼ 10000 times smaller
than that of the entire construction volume. For this sub–cube, we follow a similar
computational procedure as we did for the entire cube, by putting the observational
pixels into a grid and carrying out Wiener interpolation in order to infer the field. The
entire cube, which is 8892 h−1Mpc long on a side, contains 500 cells on a side which
results in a resolution of 17.82 h−1Mpc (or 250 cells on a side for some 3D visualiza-
tions to make it computationally tractable, with a cell spacing of 35.71 h−1Mpc). By
focusing on sub–cubes, we increase that resolution slightly to 13.62 h−1Mpc and can
study local statistics like the auto-correlation and local extrema points, and also draw
comparisons with our previous work with hydrodynamical cosmological simulations
(Ozbek et al., 2016).

The observational sub–cube, which is 422.3 h−1Mpc long on a side, has the furthest
corner from the observer at a comoving distance 3670.063 h−1Mpc away from the
observer, at a redshift of z = 1.98. The number of non–empty pixels along the cube
is 5897, which results in an effective number of LOS density of 184 NLOS, as there
are 32 cells on a side. For the 3D interpolation, we set the correlation lengths and
the isotropic Gaussian smoothing standard deviation to be 40 h−1Mpc. The mean
line of sight separation 〈dLOS〉 sets a natural size for the correlation lengths and the
smoothing length, which can be explained following the arguments in (Caucci et al.,

2008): L⊥ = L‖ = σS = 1.4〈dLOS〉subcubeeff =
Lsubcube
box√
NLOS

∼ 40h−1Mpc. Since this resolution
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Figure 4.4: Delta flux 3D distribution in the reconstructed cube. Blue color shows
overdense regions, while red denotes underdense regions in the IGM. We are showing
five isocontour surfaces at the mean, ±σ and ±2σ.
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Figure 4.5: Auto–correlation of the DR12 flux field, where we limit the pixels in the
cube between 2 < z < 2.5.

is comparable to the one obtained with the BOSS space density of sightlines and
also given the fact that the size of the simulation cube in Ozbek et al. 2016 and the
redshift is also similar (400 h−1Mpc, z = 2), it is reasonable to compare the statistical
properties of those fields (see Figure 1 in our previously mentioned simulation paper
(Ozbek et al., 2016) for a comparison of NLOS for recent surveys, and Figures 5 through
11 for maps with different LOS densities). In that paper, we had studied local extrema
statistics of the field, similar to the analysis in §5.1. In the observational sub–cube,
we find 9 local density maxima, which is in perfect agreement with the simulation
cube statistics in (Ozbek et al., 2016). Furthermore, we find 7 local density minima,
suggesting that the data distribution is slightly skewed, which is compatible with the
overall trend that will be provided in the next chapter (Table 5.1).

In Figure 2.16, we had shown 3D visualizations of the original simulation field
and its reconstruction in panels a and b. This volume has a similar value to that
of the DR12 sub–cube we analyzed, 4003 and 4223 h−3Mpc3, respectively. For the
simulation, we had noticed that the linear bias for the simulated reconstructed field
was deviating from unity slightly, and that it was approaching unity with increasing
sightline density. By comparing the NLOS values between the simulation (Ozbek et al.,
2016) and DR12, we decide on a proper linear bias and correct the inferred field with
it. In this particular case the bias is 1.5. The analysis is carried out after smoothing
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(a) Redshift evolution of the DR12 reconstructed flux field between 2 < z < 2.5, split
equally along the DEC = 10◦ NGC stripe, within the right ascension range 120◦< RA <
240◦. The x axis denotes the comoving distance along the NGC stripe, while the y axis is
along the radial direction. White color shows denser regions in the map. This panel shows
the lateral distance interval 0 < x < 1600h−1Mpc.

(b) Same as panel (a), but for the lateral distance interval 1600 < x < 3200h−1Mpc.

(c) Same as panel (a), but for the lateral distance interval 3200 < x < 4800h−1Mpc.
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(d) Same as panel (a), but for the lateral distance interval 4800 < x < 6400h−1Mpc.

(e) Same as panel (a), but for the lateral distance interval 6400 < x < 8055h−1Mpc.

Figure 4.6: IGM field along the DEC=10◦ NGC stripe.

and applying the linear bias (Figure 4.7, panel (a)). The auto–correlation of the
field quickly approaches zero (Figure 4.7, panel (b)). In general, it is not possible
to observe the BAO signal in the correlation analyses in this thesis due to the large
smoothing levels, which erases that feature. Finally, in Figures 4.7c and 4.7d, we
show slices that split the sub–cube into two equal halves. The first slice (c) is an
”x slice”, along a plane that is perpendicular to the LOS direction. The other one
is parallel to the LOS direction, a ”z slice”, given in panel (d). Due to the inverse
relation between the flux and density, red color shows underdense regions in both the
3D visuals and the slice images.
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(a) Subcube isosurfaces extracted from the whole DR12 volume.

(b) Auto–correlation of the subcube.
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(c) A slice image across the x direction.
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(d) A slice image across the z direction.

Figure 4.7: A 4223 Mpc3h−3 volume extracted from the whole DR12 reconstruction
cube. 3D flux distribution and the auto–correlation are given in panels (a) and (b).
We show slices taken from two perpendicular planes splitting the cube into two equal
halves across the center in (c) and (d): An ”x slice” and a ”z slice”, respectively. Red
color denotes underdense regions in both the 3D visuals and the 2D slice images.
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4.4 Summary and Conclusions

We have shown that using the Lyman alpha forest data from BOSS DR12, the large–
scale structure of the Universe for the redshift interval 2 < z < 2.5 can be mapped
using Wiener interpolation. Comparing the observational LOS density with the ones
used in our paper on simulated flux fields (Ozbek et al., 2016), we decide on an
empirical linear bias of 1.6 and an isotropic smoothing level of 60 h−1Mpc, which
sets a natural spatial resolution. Equations 4 and 5 show the dependence of the map
resolution on the number of quasars discovered in the survey and the survey sky
coverage.

217161 QSO spectra are placed into a 88923 h−3Mpc3 comoving volume which is
binned into 2503 cells. After subtracting out the redshift evolution, we provide the
auto–correlation of the δF field and its cross–correlation with the QSO field.

The IGM is expected to show mildly non–linear behavior in the redshift range
covered in this thesis, hence we look for non–Gaussianity by comparing local extrema
statistics between the observational flux field and a simulated Gaussian field, which
agree within 28.0 per cent. In order to obtain finer resolutions and draw quantitative
statistical comparisons with our paper (Ozbek et al., 2016), we also ”zoom–in” on
a subcube that is 422 h−1Mpc long on a side, which mimics the geometrical prop-
erties of the simulated field. The local peak statistics of the subcube are observed
to have perfect statistical agreement with that of the cosmological hydrodynamical
simulations provided in our previously mentioned paper, and we also provide the
auto–correlation of the flux field in the subcube.
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Chapter 5

Superclusters

In order to identify overdense and underdense regions in the large–scale structure,
we examine local peaks the in the flux field and carry out percolation analysis in
the following sections. We also study the filamentarity of the field and study various
statistics of the superclusters we find in the volume.

5.1 Introduction

It is predicted by inflation that the large–scale structure on scales larger than the
non–linear regime have evolved from Gaussian primordial perturbations (Bardeen
et al., 1983). The linear evolution of the cosmic baryonic matter on large scales and
its extension to the Lyα forest at reveals that the IGM is mildly non–linear in the
redshift range which is relevant for this study (Fang et al., 1993; Bi and Davidsen,
1997). Even at low redshifts, the galaxy distribution is shown to display topological
properties of a mostly Gaussian random field, at least on scales larger than 8 h−1Mpc
(Colley, 1997).

Finding local extrema points provides a means of identifying objects, and it can
be used to constrain cosmology (Bardeen et al., 1986; Croft and Gaztañaga, 1998;
De and Croft, 2007, 2010). Locations of these extrema are candidates for voids and
superclusters. We identify a local peak as a pixel that has the greatest absolute value
of the flux amongst the 26 adjacent pixels that surround it. In general, the number
of peaks can suggest how evolved a field is, as overdense regions tend to grow more
dense, while underdense regions tend to grow more underdense over time.

5.2 Comparison with a Linear Density Field

In order to test the deviation of the reconstructed DR12 IGM field from initial Gaus-
sian fields, we create a simulated linear density field with our Fortran 90 code. A
random realization of the random field on a grid is created by picking Fourier modes
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Data Smoothing Maxima Minima
DR12 None 25360 25708
DR12 σS = 40h−1Mpc 4888 5101
DR12 σS = 60h−1Mpc 1295 1645

Linear Field None 106858 106480
Linear Field σS = 40h−1Mpc 2800 2731
Linear Field σS = 60h−1Mpc 932 922

Table 5.1: Extrema points analysis for DR12 and Linear Fields flux fields. The opti-
mal level for similar statistics occurs when σS = 60h−1Mpc, the fiducial smoothing
standard deviation level.

from the CDM power spectrum and then performing a fast Fourier transform. The
cell spacing on the grid is regular and it is matched with that of the observational
field. However, the box size is much smaller. The linear field realization contains
a significantly less number of pixels than the reconstructed DR12 data: The DR12
flux field is binned to 5003 (or 2503 when computationally preferable) pixels after the
reconstruction, while the linear field only has 1283 pixels. After counting the number
of non–empty pixels in the DR12 field that were used for local extrema analysis, we
scale the numbers found from the linear density field accordingly. In Table 5.1, we
give the number of minima and maxima for the DR12 flux field for different smooth-
ing levels and we also provide the same information for linear density fields in order
to compare these statistics. In order to avoid fictitious structures at small scales, it is
important to smooth the recovered IGM field. Therefore, besides no smoothing, we
also use two additional smoothing levels: σS = 40 and σS = 60 h−1Mpc.

Clearly, the local extrema statistics of the two fields, i.e. the numbers of local
minima and maxima, are comparable when smoothed. The best agreement is observed
to be achieved when the standard deviation size for smoothing is set to 60 h−1Mpc,
especially for the number of maxima, which agrees within 30 per cent. This suggests
that at large values of the smoothing radius, the DR12 flux field is showing statistical
properties which are compatible with a Gaussian random field. The numbers we
find for the DR12 flux field are only slightly higher, which suggests that structures
have not evolved significantly, hence showing mildly non–linear field behavior. In §2,
we had already shown that simulated fields inferred with Wiener interpolation were
observed to preserve local extrema statistics.

In order to visually compare the DR12 flux field and the linear field, we also
provide probability density functions (PDFs) in Figure 5.1. The σ values correspond
to the standard deviation of the linear field. The distributions agree to a good extent,
especially around mild overdensities (negative flux values).

The local peak analysis can be extended with percolation techniques (a friends
of friends algorithm) to provide candidates for superclusters, which are analyzed in
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Figure 5.1: Probability Density Functions of the DR12 flux field and the linear field.

depth in the following section.

5.3 Percolation

5.3.1 Method

Percolation is a technique in statistical physics and mathematics which studies how
clusters are connected in a random graph. Bond percolation, introduced by Broad-
bent and Hammersley (1957), is the classical problem in percolation theory, which
describes the probability of whether an open path exists between two extreme points
in a ”medium” for a ”fluid” to flow through. Here, fluid and medium can have differ-
ent meanings, e. g., electrons migrating over an atomic lattice (Last and Thouless,
1971), molecules penetrating a porous solid, or superclusters and voids in the ΛCDM
cosmology (Shandarin et al., 2004).

The percolation technique produces a friends of friends group catalogue for super-
clusters by identifying all cell pairs that are neighbors. After setting a cutoff value
for the normalized flux field, all cells containing flux values below that threshold (i.e.,
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cells that are denser) are tested for connectedness. We only search for superclusters,
although the algorithm can also be used to examine voids. The minimum number
of cells in a group is a free parameter, which is chosen to be 100 for all subsequent
analyses. For computational tractability of the output, the data in the cube were
rebinned to 2503 pixels, resulting in a regular cell width of 35.71 h−1Mpc. In view of
this large cell spacing and the large number of minimum cells chosen, the size of the
groups we can resolve with the percolation analysis is of the order of several hundred
h−1Mpc.

5.3.2 The Search for Superclusters

We use the previously mentioned percolation algorithm to identify dense regions in the
observational volume. Aside from the minimum number of cells, the cutoff threshold
is the other major parameter in the search for structures. We notice that by varying
the threshold for flux δC , the number of superclusters changes rapidly. For greater
values of δC , a large number of cells are eliminated due to not being dense enough,
therefore discarding groups wherever they are connected, if the number of cells within
that group is less than 100. Conversely, as δC is decreased, the number of groups are
diminished for a different reason: Superclusters that are in proximity, but isolated for
higher δC values, start to merge together into larger groups, an effect which is readily
seen by visually inspecting the 3D figures of superclusters for varying δC values. We
notice that the maximum number of groups is observed when the cutoff value is
δC ∼ 2.0σ, where σ is the standard deviation of the field. Comparing this result
with that of a Gaussian linear field yields similar behavior: the number of groups is
maximized at δC = 1.5σ.

We study the statistical properties of the superclusters we find quantitatively. In
Figure 5.3, panels (a) and (b) show the RA and DEC locations of the superclusters.
Most of them are located in the range 120◦ . RA . 240◦, with a fairly random
distribution in declination, which represents the region on the right hand side in the
3D volume, with the color range blue to light yellow, in Figure 5.2. We had already
plotted some stripes of the data in this range in Figure 4.6. It is readily seen that
there are no superclusters in the range 250◦ . RA . 330◦, as this region at such low
declinations is not included in the SDSS sky coverage. This also shows up as a big
gap in Figure 4.4 between the two main blobs.

5.3.3 Morphology of Identified Superclusters

Since the theoretical prediction of pancake-like structures in (Zel’Dovich, 1970), pla-
narity vs. filamentarity of structures remain an unresolved controversy. In the perco-
lation analysis, most superclusters identified consist of several hundred cells. Visual
inspection of 3D figures of superclusters suggests that the supercluster morphology
has both filamentary and planar features (Figure 5.2). Numbers in the graph and
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the corresponding colors represent different supercluster groups, they do not contain
any other physical information. It is worth noting that we find more superclusters
with the smoothed data set than with the one with no smoothing (49 and 16, respec-
tively), and they tend to be less massive, typically by an order or magnitude. All
superclusters are detected at z ∼ 2.0.

In order to inspect the morphology of superclusters quantitatively, one can study
the correlation between the longest dimension of the supercluster and its mass (Figure
5.3, panels (c) and (d)). We identify the longest dimension in supercluster groups
by computing the separation of the centers of the two most widely separated cells
and adding one cell size to it. For the data set that has been smoothed with the
fiducial Gaussian kernel size 60 h−1Mpc, both a linear and a quadratic regression fit
are acceptable for the scaling between mass versus longest dimension, but a linear fit
yields a slightly larger overall relative error, by about 14.0 per cent. When the same
analysis is repeated with the data set that has not been smoothed after reconstruction,
however, a linear regression fit yields about 10.1 per cent less overall relative error,
suggesting that the morphology is mostly linear. Since smoothing tends to erase
filamentarity, this apparent discrepancy is actually expected. Performing a Pearson
test between the mass and the longest dimension of the superclusters yields a Pearson
correlation coefficient of 0.88 for the smoothed data set and 0.81 for the one with no
smoothing. The fact that the correlation is more than 80 per cent in both cases
supports the idea that these two quantities are mostly linearly correlated.

Naturally, the large smoothing kernel size decreases the patchiness of the field,
making it more even. While smoothing definitely does not introduce new structures
in a physical sense, it seems to erase filamentary features at small scales and it allows
more supercluster groups to pass the test of connectedness for a minimum of 100
cells required for percolation. A more detailed filamentarity analysis can be done
using shapefinders with Minkowski functionals, and it has been shown that most
SDSS superclusters have filamentarities that are larger than their planarities in DR7
(Einasto et al., 2011).

5.3.4 Masses of Superclusters

Superclusters are the largest isolated overdense regions in the Universe, with charac-
teristic dimensions from several h−1Mpc up to ∼ 100 h−1Mpc, but in this study, they
are typically hundreds of h−1Mpc wide for the longest dimension (Figure 5.3, panels
(c) and (d)). The reason for this relatively bigger scale is mainly due to the relatively
large smoothing radius and cell spacing.

Having identified the superclusters in the DR12 IGM field, we compute their
masses via
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(a) Superclusters, smoothed

(b) Superclusters, no smoothing

Figure 5.2: Panels (a) and (b), smoothed and with no smoothing, show locations
of supercluster groups in the reconstruction cube with percolation analysis, for the
smoothed case and no smoothing, respectively. Numbers show individual superclus-
ters.
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MSC = MCNC

(
1− 〈δF 〉

b

)
(5.1)

MC = mL3
C (5.2)

where m is the solar mass per cubic h−1Mpc (= 7.6 × 1010M�/0.7), LC is the cell
width, MC is the mass per cell, NC is the number of cells in a given supercluster, 〈δF 〉
is the mean delta flux in the supercluster and b is the linear bias of the forest (= 0.2,
Slosar et al. (2011)).

In Figure 5.3, panels (c) through (f) summarize our findings. We had already
discussed panels (c) and (d) in the morphology section. The relation between the
mean delta flux in a supercluster and its mass is provided in panel (e). For most
superclusters, the mean delta flux values are concentrated at δF ∼ −0.1 for the
smoothed case, following a slightly negative correlation with supercluster mass. This
is compatible with the analysis in similar studies. For example, (Mukae et al., 2016),
Figure 2 shows a similar trend for the mean flux of a quasar sightline as a function
of nearby galaxy overdensities.
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(a) DEC vs RA, smoothed (b) DEC vs RA, no smoothing

(c) Mass vs longest dimension, smoothed (d) Mass vs longest dimension, no
smoothing
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(e) Mean delta flux vs mass, smoothed (f) Mean delta flux vs mass, no smoothing

Figure 5.3: Panels (a) and (b) show the right ascension and declination of the su-
percluster locations in the sky. Supercluster mass vs longest dimension is plotted in
panels (c) and (d), smoothed and with no smoothing, respectively. The mean delta
flux values tend to accumulate around < δF > ∼ −0.10 for the smoothed case (panel
(e)).
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5.4 Conclusions

Identifying structures in the IGM field can constrain physical parameters, as shown
in previous literature. First we compare the local peak statistics of inferred DR12
IGM field with that of a Gaussian linear density field, and find that the local peak
statistics agree at all smoothing levels. The best agreement is achieved at the fiducial
smoothing of 60 h−1Mpc.

We extend the local peak analysis using percolation techniques, and identify 49
supercluster candidates at z ∼ 2.0. The large isotropic smoothing level tends to erase
the filamentary properties of the topology of the overdense regions in the Universe.
Also, the number of supercluster candidates is significantly reduced without smooth-
ing. This suggests that the map resolution, and therefore the smoothing level, has a
direct effect on the supercluster statistics.

The distribution of superclusters across the sky seem to be random, with no
preference for any RA or DEC range. We find that typical supercluster masses are of
the order of 1019 M�, due to their large sizes (Figure 5.3, panel (e) shows sizes of up
to three orders of magnitude greater than the typical protocluster length scale, e.g.
see Mukae et al. 2016). We observe a slightly negative correlation between the mean
delta flux level and supercluster mass.

A brief analysis of the morphology suggests that the observed structures have both
filamentary and pancake–like properties, with a tendency towards a more filamentary
topology, however, it is difficult to arrive at conclusive results with the current map
resolution. When the quasar density increases in future observational surveys by a
factor of ∼ 2.5, this will allow the resolution to increase to levels finer than ∼ 10
h−1Mpc, enabling a more conclusive topological analysis of the intergalactic medium
with this interpolation technique.
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Chapter 6

Discussion and Conclusions

6.1 Summary

The Lyα forest has become the primary means of studying the large scale structure
at high redshifts. We show with cosmological hydrodynamical simulations run with
the P–GADGET code that for BOSS–like QSO densities, IGM maps can be made
at redshifts greater than 2 by interpolating between the QSO skewers, using Wiener
interpolation. The resulting maps show high fidelity, especially at regions with mild
overdensities.

Local polynomial smoothing is an alternative to Wiener interpolation, however,
we find that lower LOS densities (e.g. half of the LOS density for BOSS) are not
acceptable for local smoothing, although this does not pose a problem for Wiener
interpolation.

After evaluating the performance of simulations, we apply the same methods to
the BOSS DR12 Lyα forest and create large maps of the IGM field. Since the IGM is
in the mildly non–linear regime within the redshift range 2 < z < 4, we test for non–
Gaussianity in both simulations and observational maps via Kolmogorov–Smirnov
tests with the cumulative distribution functions and local peak comparisons, finding
consistent results. In the IGM maps, it is possible to identify structures using the
percolation algorithm, which creates a friends of friends group catalog. We examine
the distribution of the identified structures and study various statistics. For the
morphology of the superclusters, we observe a mostly filamentary picture, and we
also examine various properties like the longest distance, the mass and the mean flux
of these individual structures.

6.2 Discussion

We have shown that Wiener interpolation is a feasible means of inferring the IGM
field in the Lyα forest by studying various statistics of the reconstructed simulation
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Dataset When Area (deg2) Nspectra Mean Separation
BOSS DR12 2016 10000 160,000 15 arcmin
eBOSS 2014–2018 7500 270,000 10 arcmin
CLAMATO 2014–2018 0.8 1000 1.7 arcmin
WEAVE 2018–2020 6000 400,000 7.5 arcmin
DESI 2018–2022 14000 840,000 7.5 arcmin
MSE 2025– 1000 1,000,000 1.9 arcmin

Table 6.1: Some relevant parameters for future Lyα forest observational datasets. Of
these, BOSS (Dawson et al., 2013) has been completed, eBOSS (Dawson et al., 2016)
and CLAMATO (Lee et al., 2014a) are ongoing, and WEAVE (Dalton et al., 2012)
and DESI (Aghamousa et al., 2016) are about to start. The survey labelled MSE is
a potential star forming galaxy with the proposed Mauna Kea Spectrosopic Explorer
instrument0.

field and applying our methods to the observational data set from BOSS DR12. In
general, the areal tracer density requirements for making maps using the Lyα forest
are easier to meet than the high volume requirements necessary for galaxy surveys.

There are some minor differences between the inference of the simulated field in
§2 and the observations in §3. The former has all the Lyα skewers in parallel, which
is still a good approximation for the observational case. However, the skewers do not
span the entire reconstruction cube in the observational field, unlike the simulation,
which may change the fidelity of the subsequent interpolation. We believe that this is
a minor difference and our methods should still yield observational maps of the IGM
with high fidelity, at least in regions where the LOS density is sufficiently high.

We note that both the matrix form of the auto–correlation of the sparse Lyα
skewers (CDD in Equation 2.2) and the smoothing algorithm leave room for improve-
ment. Although we tested an alternative form of the auto–correlation using observed
correlations of the field from Slosar et al. (2011), it did not improve our results. If the
correlation of the Lyα skewers is known with better accuracy, the Wiener filter may
be able to reduce the error in the resulting IGM fields, compared to our current choice
of assuming a Gaussian auto–correlation. Also, since we do not necessarily expect the
same statistics in the direction parallel and perpendicular to the LOSs, the isotropic
nature of the Gaussian smoothing can be modified to better suit the needs of the
IGM map. Furthermore, an adaptive smoothing length, depending on the local map
resolution, should depict a more accurate picture for the reconstruction.

0http://mse.cfht.hawaii.edu/
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6.3 Future Work

The findings of this thesis should be revisited, once higher LOS densities are available
with surveys such as e–BOSS and MS–DESI. This will result in an increased map
resolution and therefore an overall higher fidelity in all aspects. We are summarizing
relevant features of some future surveys in Table 6.1.

One of the main goals of BOSS, eBOSS and also future Lyα forest surveys such
as DESI is to observe the BAO signal. This has succeeded in BOSS (e.g., Busca
et al. (2013); Bautista et al. (2017)), but there is much more information that can
be extracted from this data. Map making can form part of this. For example, with
higher sightline densities, we can make higher resolution maps, resolving not only
superclusters with sizes of hundreds of Mpc as we have done with BOSS data, but
protoclusters with size of order 10 Mpc or less (Stark et al., 2015). The topology of the
intergalactic medium can be explored, for example looking at the genus (number of
holes) per unit volume as a function of smoothing scale, which was proposed decades
ago (Gott III et al., 1987) as a probe of primordial non–Gaussianity. So far, this has
only been done with low redshift galaxy data (e.g., James et al. (2007)), which involves
a lot of smoothing as the datasets are point-like, and also with the CMB (Gott et al.,
2007). Topology studies with the IGM would mean looking at a new regime, with less
gravitational non–linearity than with low redshift galaxy data, and with high LOS
density the chance to look at smaller scales as less smoothing is necessary. It has
even been suggested that the behavior of genus with smoothing scale could be used
as a standard ruler to constrain dark energy (Zunckel et al., 2011).

Three dimensional maps have been very important in the history of cosmology. For
example, slices plotted from the CfA redshift survey (De Lapparent et al., 1986), such
as the ”stickman”, were for many people the first evidence of large–scale structure
in the Universe and the first widely noted filamentary structures. With the 3D IGM
maps, we can also display the morphology of structures at higher redshifts and check
them against the expectations of theory. If surprises are out there, such as non–
Gaussian voids or unexpected structures, the Lyα maps will be a good way to find
them because the Universe has never been mapped at such high resolution at these
redshifts.

If the small–scale structure of the IGM is resolved well, it will be possible to
constrain the early dark matter power spectrum, since the baryon field is a tracer of
the underlying dark matter field, for scales larger than the Jeans smoothing length.
The space density of the local peaks in the observational IGM field can be used to
constrain the linear matter power spectrum, regardless of the tracer (De and Croft,
2007), and the neutrino mass fraction can also be constrained (De and Croft, 2010).
Furthermore, it is possible to cross–correlate the Lyα forest with other large scale
structure tracers such as weak–lensing maps (Massey et al., 2007), the Lyman β forest
(Iršič et al., 2013), quasars (Font-Ribera et al., 2014), and 21cm intensity mapping
(Carucci et al., 2016).
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Vid Iršič, Anže Slosar, Stephen Bailey, Daniel J Eisenstein, Andreu Font-Ribera,
Jean-Marc Le Goff, Britt Lundgren, Patrick McDonald, Ross O’Connell, Nathalie
Palanque-Delabrouille, et al. Detection of lyβ auto-correlations and lyα-lyβ cross-
correlations in boss data release 9. Journal of Cosmology and Astroparticle Physics,
2013(09):016, 2013.

J Berian James, Geraint F Lewis, and Matthew Colless. Topology of large-scale struc-
ture in the 2df galaxy redshift survey. Monthly Notices of the Royal Astronomical
Society, 375(1):128–136, 2007.

Linhua Jiang, Xiaohui Fan, Fuyan Bian, Ian D McGreer, Michael A Strauss, James
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