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Abstract

I present here discussion and results of large-scale simulations of cosmic reionization,
both hydrogen and helium. For hydrogen reionization, I have focused on the impact
that the light cone effect has on observables related to the 21 cm hyperfine signal, with
specific attention given to how the duration of reionization affects the results. I show
that the light cone effect can introduce significant anisotropy in the detected signal,
especially for (cosmically) brief reionization scenarios. Following this, I discuss a series
of simulations of helium reionization, focusing this time on observables related to the
Lyman-α forest. First I present a method by which dark matter halos from simulations
can be populated with quasars to match the latest quasar luminosity function and
clustering measurements. Then I discuss a suite of simulations of helium reionization
where the quasar model is modified to explore the impact on the timing and duration
of reionization, as well as related measurements of the Lyman-α forest. I show that
many of the statistical features from the H i Lyman-α forest are similar once the
global optical depth is the same across simulations. However, differences of up to a
factor of two remain, which might facilitate detection in the future. Finally, I show
that differences in the He ii Lyman-α forest are significant, and provide a promising
way forward for determining the helium reionization history of the Universe.
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very angry and been widely regarded as a bad move.

Douglas Adams, The Restaurant at the End of the Universe, 1980.
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Chapter 1

Introduction

From time immemorial, astronomy has concerned itself with the bright points in
the sky. Starting in antiquity with stars and constellations to the development of
telescopes capable of observing galaxies beyond our own, we are naturally drawn to
investigate the patches of light in the endless sea of darkness. However, this does
quite a disservice to those very oceans of darkness. These voids between galaxies,
which comprise more than 99% of the Universe by volume, can provide just as much
meaningful information as the galaxies themselves. In our quest to understand more
about the history and trajectory of our Universe, we would do well to heed the
knowledge coming from the space of outer space.

Before delving too deeply into specifics, it bears looking at the “big-picture” of
cosmology, and what the first steps in the evolution of the Universe are. In the
seconds and minutes following the big bang and inflation, the constituent parts of
the Universe were in thermal equilibrium. As the Universe continued to adiabatically
expand, the constituent components began to cool. Among these constituents was
baryonic matter, which has undergone several key transitions during the evolution
of the Universe. Initially, baryonic matter formed a “soup” of particles, in a phase
known as the quark-gluon plasma. Within a second of the big bang, this plasma
had cooled enough to form protons and neutrons, the building blocks of all matter.
After about ten minutes, big bang nucleosynthesis had occurred, fixing the primordial
abundances of hydrogen, helium, and heavier elements. By mass, baryonic matter
was composed of about three-quarters hydrogen nuclei (unbound protons) and one-
quarter helium-4 nuclei (alpha particles), with negligible amounts of other elements
or isotopes. At this point, the Universe was still hot enough that protons, alpha
particles, and electrons formed a plasma, and were not bound in neutral atoms. In
other words, during this era baryons were ionized, instead of forming neutral atoms.
During this plasma phase of baryons, the mean free path of photons was incredibly
short, making this era opaque to observation by photons.

Following additional expansion and cooling of the Universe, baryons were eventu-
ally able to form neutral atoms. This era is referred to as the Epoch of Recombination;
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however, this is something of a misnomer, since neutral matter had not been formed
earlier (although “Epoch of Combination” admittedly does not have the same ring
to it). Recombination occurred about 380,000 years after the big bang, at a redshift
of z ≈ 1100. Shortly after recombination, the Universe became transparent to pho-
tons, which lead to the emission of the cosmic microwave background (CMB). The
CMB is sometimes referred to as the “surface of last-scattering”, because observation
of the CMB requires photons travelling to Earth without further scattering off of
ions. Exquisite measurements of the CMB by the WMAP and Planck satellites has
provided a wealth of information, including the most precise determination of many
of the cosmological parameters that define our Universe. As will be discussed further
below, the CMB also serves as an important reference point for a key observational
technique of hydrogen reionization.

After recombination and last-scattering, neutral baryons evolve primarily under
the influence of gravitational attraction. The gravitational potential, sourced pri-
marily by dark matter particles, amplifies of initial inhomogeneities in the matter
distribution laid down by inflation: regions with above-average density accrete mat-
ter and become denser, while regions at below-average density become less dense over
time. Immediately following recombination, the inhomogeneities are roughly one
part in 105. Over the next 500 million years, though, the inhomogeneities continue
to grow. Eventually the density of gas is sufficient for the first stars in the Universe
to form, emitting radiation as they burn. These early proto-galaxies are relatively
isolated, and surrounded by low-density neutral gas. The radiation from these first
stars propagates outward into the space between galaxies, typically referred to as the
intergalactic medium (IGM).

As the radiation propagates outwards from stars composing proto-galaxies into
the IGM, photons with sufficient energy can ionize the neutral hydrogen atoms en-
countered. Specifically, photons with an energy hν ≥ 13.6 eV interacting with neutral
hydrogen will reionize the gas, returning the hydrogen atom to its constituent proton
and electron. Eventually, enough radiation is produced by stars to completely reion-
ize neutral hydrogen of the IGM, marking the end of hydrogen reionization. All told,
most models predict that this epoch lasts for 500–700 million years, a mere fraction
of the total lifetime of the Universe. Nevertheless, this era represents one of the most
exciting eras of development, and sets the stage for the subsequent evolution of the
Universe.

Throughout this epoch of the first stars forming, neutral helium resides in the
IGM alongside of hydrogen. However, the binding energy of helium is significantly
greater than that of hydrogen: whereas ionizing hydrogen requires a mere 13.6 eV of
energy, the first ionization of helium requires 24.6 eV of energy. The second ionization
of helium has an even steeper energy requirement, of 54.4 eV. This factor of four
may seem insignificant on first blush, but it actually means that helium reionization
happens at a dramatically different point in the Universe’s evolution compared to
hydrogen reionization.
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The first ionization of helium likely happens simultaneously with hydrogen reion-
ization. The energy requirement is greater than that of hydrogen by almost a factor
of two. The starts that are responsible for ionizing hydrogen do not produce many
photons energetic enough to ionize helium relative to the number of hydrogen atoms.
Counteracting this, there is an order of magnitude fewer helium atoms in the Uni-
verse. The fact that the mass fraction of helium is about one-quarter of the total
baryon mass means that by number density, helium composes only about 7% of the
baryons. There are therefore competing effects for the first ionization of helium: stars
produce fewer photons of energy hν ≥ 24.6 eV compared to the number of 13.6 eV
photons, but there is far less helium in the Universe to reionize. It turns out that
the latter effect wins out, and based on the stellar models for sources of hydrogen-
ionizing radiation, there is a sufficient number of helium-ionizing photons to singly
ionize helium during the reionization of hydrogen.

The second ionization of helium represents a chasm in energy space that is too
vast to cross. The radiation output from the first stars simply is not energetic enough
to doubly ionize helium. The ionization of helium is temporarily paused until sources
of higher energy photons emerge. These sources take the form of quasars, which are
the most luminous objects in the galaxy. Thought to be accretion disks surrounding
supermassive black holes, quasars can outshine their host galaxies when at their peak
luminosities. Conversely, quasars are relatively short-lived, with lifetimes lasting only
a few tens of millions of years. Nevertheless, the radiation from quasars is sufficient
to dramatically alter the gas of the IGM.

Due to their increased mass and structure requirements, quasars do not appear
until later in the timeline of the Universe compared to the stars that power hydrogen
reionization. Based on observations, it seems that a significant number density of
quasars does not appear until about 1 billion years after the big bang, following the
end of hydrogen reionization. The general picture of helium reionization also looks
different from hydrogen reionization. Singly ionized helium has a significantly lower
cross-section to photons compared to neutral hydrogen, which leads to a longer mean
free path of energetic photons from quasars. Additionally, quasars are highly biased
sources, which means that they are typically found clustered together rather than
homogeneously spread throughout a given volume. These features mean that helium
reionization was much more anisotropic than hydrogen reionization, a property that
will be discussed more below.

One additional feature of helium reionization is due to the finite lifetime of quasars,
as alluded to earlier. Rather than acting as slowly burning candles that gradually
reionize the IGM, quasars explode like fireworks out into the IGM, rapidly eating away
at the singly ionized helium. The resulting imprint on the IGM is one of a sudden
growth of doubly ionized helium, followed by the source switching off; consequently,
there may no longer be a source of radiation within this region. As a result, the doubly
ionized helium may begin to recombine with free electrons back into singly ionized
helium. The gas will then undergo subsequent ionization, which can have interesting
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implications for the thermal state of the gas in the IGM. Overall, helium reionization
contains richer interplay between the gas of the IGM and radiation sources than
hydrogen reionization, and provides a fascinating glimpse into the later evolution of
the Universe.

Now that the stage has been set regarding the main players of reionization, it can
be helpful to take a finer look at some of the physics governing the interplay of gas and
radiation. This will allow for a more detailed description of the broad brush-strokes
of reionization, allowing for a deeper treatment in further discussion.

1.1 Physics of Reionization
Surprisingly, the rich and complex world of reionization can be described using very
simple physics. At its core, reionization is a reaction between photons and neutral
atoms. In general, these physical processes fall under the category of radiative trans-
fer, which follows the absorption and emission of photons. Combined with simple
conservation laws, the process of reionization can be described incredibly accurately.
As already mentioned, the broad umbrella term of “reionization” actually encom-
passes two primary flavors: hydrogen and helium. In the discussion of the micro-
scopic physics that follows, I will discuss hydrogen reionization primarily, specifically.
Nevertheless, the relevant physics is analogous for the case of helium.

Consider a hydrogen atom in its ground state in free space. An incoming photon
with an energy of hν ≥ 13.6 eV will interact with the hydrogen atom and ionize the
neutral atom, leaving behind a proton and an electron:

H0 + γ → p+ + e−. (1.1)

This reaction is referred to photoionization. To a good approximation, any energy
remaining after overcoming the 13.6 eV ionization energy is imparted to the much less
massive electron as kinetic energy. In this ionized state, the protons and electrons are
subsequently transparent and will no longer react with additional incoming photos.

The reverse reaction is also possible, wherein a proton and an electron combine to
form a neutral hydrogen atom and a photon with an energy of 13.6 eV. This process
is known as recombination and will readily occur when protons and electrons are
found in sufficient density. The combination of photoionization and recombination
will determine the local ionization state of the gas: for highly dense regions with little
photon flux, gas will tend to be neutral. Alternatively, a large photo flux through
low density gas will lead to a highly ionized state. The degree of ionization can be
quantified with the ionization fraction xi, which is defined as the number density of
an ionized species compared to the total number. For instance, the ionization fraction
of ionized hydrogen H ii can be written as:

xHII =
nHII

nH

. (1.2)
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Broadly speaking, reionization science is concerned with determining the ionization
fields as a function of redshift for all points in space.

The process of helium reionization is quite similar to that of hydrogen described
in Equation 1.1, except that there are two such equations: a transition from He i
to He ii, and from He ii to He iii. Despite commonality in the microscopic physics,
the macroscopic picture of hydrogen and helium reionization are very different. This
difference is due in large part to the different epochs of reionization, and differences
in the sources of reionization. Before proceeding further, it helps to have a general
picture in mind for the different flavors of reionization.

1.1.1 Hydrogen Reionization

As already discussed in the introductory portion of the chapter, hydrogen reioniza-
tion was precipitated by the radiation from the first stars, early on in the history of
the Universe. Quantitatively, most models suggest that hydrogen reionization took
place during a redshift range of 20 & z & 6 (e.g., Barkana & Loeb 2001), featur-
ing a relatively gradual transition between the neutral and ionized phases. Further,
this transition proceeds in an “inside-out” fashion, in which the radiation from stellar
sources first reionizes the high-density gas near galaxies. As the Universe becomes in-
creasingly ionized, the radiation fronts propagate further outward toward low-density
gas, which is ionized later than the high-density regions. This general picture is in
large part due to the relatively large cross-section of neutral hydrogen, combined
with a sharp drop-off in the number of high-energy photons produced by the stellar
population in proto-galaxies. Hence, the photons from stars have a very short mean
free path, and virtually all of the photons that escape into the IGM are absorbed
immediately upon encountering neutral atoms. This leads to generally well-defined
ionization fronts. The initial “bubbles” of ionized gas surrounding sources eventually
grows larger, leading to ever-growing portions of ionized gas surrounded by neutral
atoms.

Thus far, most of the discussion has focused on photoionization of hydrogen.
However, this process only tells part of the story. Just as important is photoheating,
and the effect that hydrogen reionization has on the thermal state of the IGM. As
mentioned in Sec. 1.1, following photoionization, excess energy from the photon is
transferred to kinetic energy in the electron. If the kinetic energy of the electron is
greater than 13.6 eV, then secondary ionizations between these energetic electrons
and neutral hydrogen is possible (Shull, 1979). Given the spectra of radiation from
the stellar sources, though, secondary ionizations are thought to be uncommon. Ac-
cordingly, the excess kinetic energy in the electrons is eventually deposited into the
gas as heat. For low-density gas in the IGM, photoheating raises the temperature
of the gas from O(102 K) to O(104 K). Thus, the general picture of hydrogen reion-
ization is one of photons from the first stellar sources propagating outward into the
IGM, encountering initially cool gas, then ionizing and heating the gas, leaving a
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warm plasma in their wake. Eventually, these regions of ionized gas overlap, soon
after which the entire Universe has been reionized.

The modeling of hydrogen reionization is generally straightforward. For semi-
analytic calculations, one can deine simple relationships between halo properties and
the number of hydrogen-ionizing photons that can be expected to escape. Such semi-
analytic tools have been developed (e.g., 21cmfast, Mesinger et al. 2011), and gen-
erally provide a sufficient level of accuracy for forecasting the results from different
ionization histories. Nevertheless, a full numerical treatment is necessary to capture
the effect of anisotropies of the reionization process, as well as capturing the feedback
between the radiation and the gas of the IGM.

1.1.2 Helium Reionization

In general, helium reionization proceeds in a manner similar to hydrogen reioniza-
tion: radiation from quasars propagates outward into the IGM, ionizing the gas as
it travels. As the radiation ionizes the gas, a large amount of heat is deposited due
to photoheating. The regions of doubly ionized gas grow larger until eventually they
completely overlap, signaling the end of reionization. So far, so similar.

However, there are several key differences between hydrogen and helium reioniza-
tion that lead to helium reionization presenting a much more challenging problem
to treat correctly. First, due to the fact that quasars are the primary sources of
reionization, a proper understanding of quasars being hosted in dark matter halos
is required. In general, the relationship between halo mass and quasars is less well-
understood than that of halo mass and stellar content, and so this presents a difficulty
in modeling the sources of helium reionization.

Related to the fact that the sources in helium reionization are quasars rather than
galaxies, the finite lifetime features prominently in helium reionization. The regions
of doubly ionized gas grow significantly during the lifetime of quasars, growing to be
up to tens of Mpc in diameter for the most luminous sources. However, following the
end of the quasar’s lifetime, the ionized region ceases to grow, and the gas is no longer
necessarily exposed to an external radiation field. Accordingly, the gas in the denser
regions begins to recombine, allowing for additional reionization events. When the
gas is ionized again, after being exposed to radiation from a new quasar, it undergoes
further photoheating. This process has interesting ramifications on the thermal state
of the IGM, and leads to an interesting relationship between temperature and density.

As a final characteristic of reionization precipitated by quasars rather than galax-
ies, the highly biased nature of the sources implies that quasars are typically found
clustered together. This clustering leads to an earlier overlap of ionized regions com-
pared to a more homogeneous distribution of sources, and in particular compared
to hydrogen reionization. When the ionized regions begin to overlap, the propa-
gation of radiation from sources becomes highly anisotropic, which makes accurate
semi-analytical modeling difficult.
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Another important difference between helium and hydrogen reionization is the
longer mean free path of photons in the case of helium reionization. As discussed
earlier, the cross-section of helium to photons at the edge of its ionization energy
is lower than that of hydrogen’s, and so there is less absorption of photons as they
propagate. Accordingly, the ionization fronts in the case of helium reionization are not
well-defined to the same extent they are for hydrogen. There is a gradual transition
between singly ionized and doubly ionized gas in the IGM, especially far from sources
due to spectral filtering: the photons closer to the ionization energy of helium have a
higher cross-section, and so are preferentially absorbed by gas near the sources.

In summary, the process of helium reionization is tricky to properly treat using
semi-analytic methods: the early overlap of ionized regions, the gradual transition
between singly and doubly ionized regions, and the recombination of gas in dense
doubly ionized regions all argue for a more precise treatment than is possible using
semi-analytic methods. Therefore, numerical simulations of helium reionization are
necessary to properly understand the implications that reionization has on the IGM.
Further, the numerical simulations that properly examine helium reionization must
be sufficiently sophisticated to capture all of relevant features. This is no small feat,
and so it is helpful to discuss some details of numerical methods to discuss how to
implement these simulations best.

1.2 Numerical Simulations of Reionization
An important tool for better understanding reionization is numerical simulation of
the Universe on cosmological scales. By attempting to create physically accurate
models of the matter and radiation on large scales, we are able to make predictions
for what observational efforts to detect reionization should see. In general, this pro-
cess requires a tradeoff between faithfully capturing the small-scale physics relevant
to the source of radiation inside of galaxies and probing large-scale distributions of
matter for the purposes of making accurate statistical summaries of scales where the
cosmological principle applies. On the small-scale, simulations in principle must re-
solve feedback processes generated by accretion disks surrounding blackholes, which
have a physical extent of 10−4–10−3 parsecs. On the large-scale, we would like to gen-
erate a simulation with a volume comparable to the observable universe in order to
generate realistic statistics, which has an extent of 1–10 gigaparsecs (Gpc). These re-
quirements span a dynamic range of 12–15 orders of magnitude per dimension, which
is flatly computationally infeasible. Thus, approximations must be made, either by
limiting the resolution element of the simulation, or by resolving a smaller volume of
the simulated universe, or both.

In practice, simulations of reionization typically opt for sacrificing the resolution
on small scales in favor of generating a representative volume of the mock universe.
This approach employs so-called sub-grid models for physical phenomena that occur
below the resolution limit of the numerical simulation. In some incarnations of this
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approach, entire galaxies are abstracted away to individual point-sources of radiation,
and the focus of the simulation becomes the low-density gas of the IGM between point-
sources. Further computational demands are made by requiring the simultaneous
solution of relevant physical properties, such as hydrodynamics for baryonic physics
and radiative transfer for solving interactions with radiation. The compromises made
in the design and execution of numerical experiments are ultimately informed by the
purpose and focus of the current investigation. These considerations lead to decisions
about which physics and scales are most relevant for the application at hand.

For the reionization simulations discussed in the body of this work, there are
several different sets of physics involved. We will now turn to each of them, and
further discuss their relevance to the broader picture.

1. N-body methods. The large-scale structure of the universe can be explained
exceedingly well using purely gravitational interactions of collisionless dark mat-
ter particles. N -body methods refer to techniques for determining the positions
and momenta of a collection of N particles subjected to self-gravitation. One
approach is to use Newton’s Law of Universal Gravitation directly to find the
force acting on each particle due to the influence of every other particle. How-
ever, this approach scales poorly as the number of particles grows large, and
so a more sophisticated scheme must be developed. More typically in practice,
the gravitational potential is calculated at all points in a cosmological volume,
and then the resulting accelerations, positions, and momenta are found. The
large-scale structure lays down the scaffolding of sheets, filaments, and dark
matter halos, the latter of which can host high densities of baryonic matter and
ultimately stars and galaxies.

2. Hydrodynamics. In addition to the gravitational potential sourced primar-
ily by dark matter, baryonic matter is subject to self-interaction terms such
as pressure. The fundamental equations of hydrodynamics are the Euler Equa-
tions, which are applied to fluids and derived by assuming conservation of mass,
conservation of linear momentum, and conservation of energy. The local fluid
density ρ, velocities ~v, and total internal energy E are tracked for all parti-
cles composing the fluid (Lagrangian scheme) or all volumes in space (Eulerian
scheme). Computational fluid dynamics techniques have been applied to cos-
mology to incorporate baryonic effects and feedback that is important for galaxy
evolution and IGM physics.

3. Radiative transfer. The final main ingredient for simulations of the IGM
is radiative transfer. This branch of physics concerns the interactions between
matter and radiation. As has been discussed in Sec. 1.1, the processes of pho-
toionization and photoheating are crucial for studying the impact of reionization
on the IGM. Radiative transfer determines the ionization state of different gases
in the IGM, as well as the number of free electrons.
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In the most basic simulations, only N -body methods are included. These types
of simulations are the crudest representation of the observable Universe, but are
relatively straightforward to implement. For studies concerned merely with the large-
scale structure, such as the generation of mock catalogs for comparison with galaxy
surveys, N -body-only simulations are sufficient.

The inclusion of hydrodynamics in cosmological simulations has been quite fruit-
ful for our understanding of galaxy formation and baryonic feedback effects. Specific
implementations of hydrodynamics in a cosmological context have been developed us-
ing Lagrangian schemes (e.g., GADGET, Springel 2005), Eulerian ones with optional
adaptive mesh refinement (e.g., Enzo, O’shea et al. 2005), or a hybrid scheme track-
ing particles and employing a moving mesh (e.g., AREPO, Springel 2010). Although
much more computationally intensive than pure N -body schemes, these approaches
allow the user to track the gas properties during the evolution of the Universe.

Finally, radiative transfer has been applied to simulations in a variety of ways.
The most common approach is to perform what are known as post-processing simula-
tions, in which the radiative transfer equations are applied to a snapshot taken from a
hydrodynamic simulation. In this approach, the feedback effects on the gas are not in-
corporated into the solution of the hydrodynamics equations of the simulation, which
can lead to inaccuracies. Most vitally for reionization, post-processing simulations do
not incorporate the effect of photoheating on the IGM. As the gas heats up, its den-
sity and pressure can change dramatically, affecting how it interacts with nearby gas.
This outcome is clearly disfavored. On the other hand, post-processing simulations
typically implement an inhomogeneous radiation field, which is an essential feature
of the reionization process.

An alternative approach that captures the radiative feedback on the gas is to use
a uniform radiation field. In the limit that the gas is optically thin to radiation, this
approximation is not necessarily inaccurate. For instance, at late times (z . 6), the
IGM is optically thin to UV photons, and so the extragalactic background can be well
modeled as a uniform field. However, for the process of reionization, this is clearly a
poor approximation. Nevertheless, this approach incorporates the feedback effects of
radiation on the gas.

The optimal approach for radiative transfer in simulations is to incorporate an
inhomogeneous radiation field on-the-fly so that the radiation feedback is incorpo-
rated into the hydrodynamical quantities of the simulation. In most of the analysis
that follows, I will be presenting results from the RadHydro code, which features
just such a scheme. The RadHydro code includes an Eulerian approach to solving
hydrodynamics, and uses ray tracing to solve the radiative transfer equations. It
has been previously applied to hydrogen reionization simulations (Trac & Cen, 2007;
Trac et al., 2008), and below I will discuss how it has been modified for application
to helium reionization.
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1.3 Outline
The following chapters discuss work I have done in analyzing hydrogen and helium
reionization. The methods used primarily involve numerical simulations, and make
predictions for what real-world experiments might observe. Chapter 2 details the rel-
evant physics involved in connecting reionization to observations. I detail the hyper-
fine transition in neutral hydrogen, the most promising avenue for detecting hydrogen
reionization, and the Lyman-α forest, which contains invaluable information about
helium reionization. In Chapter 3, I discuss applying the patchy reionization model
of Battaglia et al. (2013b) to hydrogen reionization, and incorporating the light cone
effect when computing quantities of interest. In Chapter 4, I present a method by
which dark matter halos can be populated with quasars to reproduce an observed
quasar luminosity function (QLF) and quasar clustering. I match the QLF from the
COSMOS survey (Masters et al., 2012), and the Sloan Digital Sky Survey (SDSS;
McGreer et al. 2013; Ross et al. 2013), while matching the quasar clustering from
the Baryon Oscillation Spectroscopic Survey (BOSS; White et al. 2012). In Chap-
ter 5, I discuss a new suite of simulations which explore helium reionization. These
simulations include hydrodynamics and radiative transfer solved simultaneously, and
represent a significant step forward in helium reionization studies, improving upon
previous studies (McQuinn et al., 2009, 2011; Compostella et al., 2013, 2014) in mean-
ingful ways. In Chapter 6, I discuss some of the key impacts that helium reionization
has on the helium Lyman-α forest. This set of results from simulations shows signifi-
cant differences in certain statistical measures, and can clearly indicate the ionization
level of the helium gas. When compared with real-world observations of the helium
Lyman-α forest (Syphers et al., 2009b,a), a meaningful measurement of helium reion-
ization history should be made in future work. In Chapter 7, I discuss some general
conclusions and mention avenues for future investigation.
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Chapter 2

Observations of Reionization

In this chapter, I will briefly discuss some of the methods by which hydrogen and
helium reionization may be detected. In both cases, rather than looking directly at
the sources of reionization, it is generally more fruitful to examine the IGM, and
look for some of the effects that reionization has on it. In both cases, the general
technique involves examining a source of radiation, and measuring the amount of ab-
sorption or emission that is contributed as the radiation passes through the IGM. By
understanding how the different features of reionization manifest in the observables,
it becomes easier to make inferences regarding the processes of hydrogen and helium
reionization.

2.1 21 cm Radiation

One of the most prominent observables related to hydrogen reionization is the 21 cm
signal (e.g., Pritchard & Loeb 2012). In typical parlance, 21 cm radiation is said
to come about when the spins of the proton and electron flip relative to each other.
However, this explanation is an oversimplification, and does not accurately capture
the rich physics involved. In neutral hydrogen, the interaction between the magnetic
field created by the proton magnetic moment ~I and electron magnetic moment of
the electron spin ~S lead to the so-called “hyperfine structure” of hydrogen (Cohen-
Tannoudji et al., 2005). In the ground state 1s of hydrogen, the fine structure terms
denoted by 1s1/2 (which includes relativistic corrections, spin-orbit coupling, and the
Darwin effect) only produce an overall energy shift, and do not break the degeneracy
of the energy. However, including the interaction ~I · ~S, the so-called “contact term”,
does break this energy degeneracy.

We can write the total angular momentum of the hydrogen atom ~F as ~F = ~L +
~S+~I = ~J+~I, where ~J is the total angular momentum of orbital angular momentum
~L and spin angular momentum ~S. However, because ~L = 0 in the ground state of
hydrogen, this reduces to ~F = ~S+~I. Representing the spins of the proton and electron
as |+〉 for spin-up and |−〉 for spin-down, we note that the state F = 1 is a spin-triplet
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Figure 2.1: An energy diagram showing the energy structure of the fine and hyperfine
structure of the hydrogen atom. The ground state (1s) undergoes an overall shift
due to the fine structure (1s1/2), but does not have the degeneracy broken. Upon
including the hyperfine structure, a transition between states of F = 0 and F = 1
appears with an energy difference equal to a photon with λ = 21 cm appears. Figure
reproduced from Cohen-Tannoudji et al. (2005).

state. Using the notation of |F,mF 〉, we can write the basis vectors of F = 1 as:

|1, 1〉 = |++〉

|1, 0〉 =
1√
2

(|+−〉+ |−+〉)

|1,−1〉 = |−−〉 .

(2.1)

Meanwhile, we have a spin-singlet state for the F = 0 state:

|0, 0〉 =
1√
2

(|+−〉 − |−+〉). (2.2)

Figure 2.1 shows an energy diagram of the relative energy of the hyperfine structure.
In free space, a hydrogen atom that is in the spin triplet state can transition to

the spin singlet state, releasing a photon with frequency 1420 MHz. This frequency
corresponds to a rest-frame wavelength of 21 cm, leading to the name of the transition.
This transition is mediated by the magnetic dipole moment and is thus a “forbidden
transition.” Accordingly, the time scale of this transition is exceedingly long, on the
order of 10 million years. Nevertheless, in great enough quantities, as in the IGM,
there is still an appreciable signal at 21 cm.

Use of the 21 cm signal as a probe of neutral hydrogen has a long history in
astrophysics and cosmology. As with any radiative process, the use of this signal
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can be understood in terms of the radiative transfer equation. Given radiation of
a specific intensity Iν propagating through free space and interacting with matter,
the intensity of radiation can change through both absorption or emission processes.
Along a path length ds, the intensity can be calculated as:

dIν
ds

= jν − ανIν , (2.3)

where jν represents emission from matter along the path length, and αν represents
the absorption coefficient at the specific frequency ν.

Formally, with 21 cm radiation, we can set up an expression using the radiative
transfer equation of Equation (2.3), where the source of radiation Iν is the cosmic mi-
crowave background (CMB), which propagates toward us on Earth while potentially
interacting with matter along the way. As is customary, we express this interaction
with matter in terms of an optical depth τ ≡

∫
ds aν(s). The optical depth quantifies

the relative opacity of matter, in this case neutral hydrogen, and determines to what
extent the radiation from the CMB is enhanced (through emission) or diminished
(through absorption).

Field (1958) introduced the concept of “spin temperature” TS to quantify the
relative occupation between spin states of neutral hydrogen (the spin-triplet vs. the
spin-singlet). The spin temperature is not actually a thermodynamic temperature,
but is instead a measure of the relative occupation of the two hyperfine levels. The
occupation of the hyperfine levels is governed by the interaction between neutral
hydrogen and ambient radio radiation (characterized by a brightness temperature
of radiation of Tγ), collisional coupling to gas with a kinetic temperature TK , and
coupling to Lyman-α photons, the latter of which can affect the spin temperature via
the Wouthuysen-Field effect (Wouthuysen, 1952; Field, 1958).

The radiation from the first stars and galaxies responsible for hydrogen reioniza-
tion propagates outwards into the IGM, photoheating as it moves. As a result of
this photoheating, the kinetic temperature of the gas becomes much hotter than the
CMB. At this point TS � Tγ, and so the spin temperature is saturated. The spatial
inhomogeneities caused by differences in the local ionization fraction, gas density, and
temperature become unimportant, and globally the 21 cm signal is seen in emission
compared to the CMB. The excess radio emission compared to the background source
(in this case, the CMB) is referred to as the 21 cm brightness temperature δTb. At
this point in the Universe’s history, radiation from galaxies has sufficiently heated the
IGM such that this increase is ∼ 10 mK, which is much greater than the inherent
anisotropy of the CMB sourced by density fluctuations at the time of recombination.
This simplification allows for a straightforward expression for the brightness temper-
ature that depends only on local density fluctuations, ionization state of the gas, and
cosmological parameters.

As mentioned above in Sec. 1.1, reionization proceeds in an inside-out fashion. As
a result, regions of high density are ionized before regions at mean and low density.
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Because the 21 cm signal only appears in regions that contain neutral hydrogen, the
signal seen during reionization is anti-correlated with density fluctuations. Regions
of high density are reionized earlier, and so for these regions δTb = 0 at an earlier
redshift compared to lower density regions. As reionization proceeds, the 21 cm signal
is produced only in increasingly less dense portions of the Universe, until finally at
redshift z ∼ 6 the signal disappears entirely. Following the conclusion of reionization,
neutral hydrogen is only appreciably found inside of galaxies. As a result, the 21 cm
signal is seen only in very dense regions. In this era of z . 6, it has been proposed
to use 21 cm radiation for intensity mapping galaxies at low redshift (Peterson et al.,
2009).

From an observational point of view, the 21 cm signal is the most promising probe
of the Universe at this epoch. The typical galaxies that are thought to drive reioniza-
tion are far too faint to be seen by current or next-generation telescopes. The Hubble
Space Telescope (HST) has observed 7 . z . 9 galaxies only relatively recently
(Robertson et al., 2013), with ones from even higher redshift remaining exceedingly
rare occurrences (Oesch et al., 2016). The projected luminosity function limits for
the upcoming James Webb Space Telescope have detection limits which are signifi-
cantly fainter than the HST (Gardner et al., 2006); however, only the equivalent of
the HST Frontier Fields (i.e., magnification from gravitational lensing) will provide
the necessary sensitivity to detect first light (Windhorst et al., 2006). Additionally,
since reionization concerns the ionization state of the IGM, it is more meaningful to
make observations related to these regions. Accordingly, observing only galaxies from
this epoch gives just a part of the story.

A more complete picture is provided instead by detecting the 21 cm signal using
a radio telescope. Current generation endeavors, such as the Murchison Widefield
Array (MWA, Bowman et al. 2005), the Low Frequency Array (LOFAR, Harker
et al. 2010), and the Precision Array for Probing the Epoch of Reionization (PAPER,
Parsons et al. 2010) have placed increasingly better upper-limits on the global power
spectrum at various redshifts. Next-generation experiments, such as the Hydrogen
Epoch of Reionization Array (HERA, Pober et al. 2014) or the Square Kilometer
Array (SKA, Koopmans et al. 2015). These experiments aim to observe hydrogen
reionization through observing the 21 cm signal as opposed to the luminous sources
that drive reionization. Although the method is fraught with difficulty, most notably
the fact that foreground contaminants of the signal are several orders of magnitude
larger than the meaningful signal, the potential benefit of using the voluminous IGM
to provide information leads to a profound increase in what can be learned about
reionization.

2.2 Lyman-α forest
At later times in the Universe’s history, the gas of the IGM can be detected through
its absorption of background radiation. At redshifts below z . 6, distant quasars
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in the early universe emit sufficient radiation as to be visible from Earth. These
quasars emit radiation over a broad range of frequencies, which propagate toward
detectors on Earth. Along the way, the spectrum of the quasar becomes redshifted
due to the expansion of the Universe. As the radiation passes through gas in the
IGM, neutral hydrogen (H i) absorbs radiation at frequencies corresponding to certain
electron transitions. Microscopically, a hydrogen atom in the ground state 1s can
absorb a photon with a wavelength of 1216 Å and transition into the 2p state, due
to selection rules governed by conservation of angular momentum (i.e., ∆l = ±1
when absorbing or emitting photons). This photon is subsequently re-radiated when
the atom transitions from this excited state back to the ground state; however, from
the point of view of an observer on Earth, the radiation is generally re-radiated
in a different direction, and thus the radiation at this frequency appears as a net
absorption compared to the emitted spectrum of the distant quasar.

Macroscopically, we can again make use of the radiative transfer equation from
Equation (2.3), where we have only an absorption term. Because the absorption
coefficient, and by extension the optical depth, depends on the properties of the gas,
measuring the optical depth of the radiation along the line of sight allows for making
statistical inferences about the average state of the IGM as a function of redshift.

As mentioned above, the distant source emitting radiation is a quasar at redshift
zq, which has a very broad spectrum. As the spectrum propagates toward Earth,
it passes through neutral hydrogen from the IGM. Suppose we have a gas cloud at
redshift zg < zq. From the point of view of an observer on Earth, the intrinsic quasar
spectrum with a redshift of zq would show an absorption feature due to the Lyman-
α transition centered at a wavelength of 1216(1 + zg) Å, which will be blueward of
1216(1+zq) Å. The extent of the absorption feature in frequency space is determined
by the cross section σ(ν). Because the cross section is sharply peaked about some
particular frequency ν0, the shape of the cross section can be written as

σ(ν) = σ0φ(ν), (2.4)

where φ(ν) is the line profile of the cross section and is suitably normalized such that∫∞
0
φ(ν) dν = 1.
In a naïve approach, the line profile can be written as a simple Dirac delta function:

φ(ν) = δ(ν − ν0), (2.5)

where the atom only transitions when interacting with a photon of frequency ν0.
However, due to the Heisenberg uncertainty principle ∆E∆t ∼ ~ and the random
thermal motions of the gas, the gas at a particular frequency will interact with all
photons ν ≈ ν0. The exact width of the cross section in frequency space can be
determined by analyzing the process in greater depth.

When analyzing the interaction between photons and bound electrons, it suffices
to treat the atom quantum mechanically but the radiation field classically. Using this
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approach, the cross section of neutral atoms can be modeled as a driven harmonically
bound particle. The line profile φ(ν) is sharply peaked about the natural frequency of
the system ω0 = 2πν0. The total cross section can be written as (Rybicki & Lightman,
1986):

φ(ν) =
γ/2π

(ν − ν0)2 + (γ/2)2
, (2.6)

where γ is the rate of spontaneous decay of the atom to the target energy level. In
the case of an atom with a purely Coulomb potential (i.e., single-electron atoms such
as neutral hydrogen H i, ionized helium He ii, doubly ionized lithium Li iii, etc.), an
alternative approach to finding the line profile is to write down the wavefunction for
each quantum state, and then calculate the matrix element between the two states
assuming an electronic dipole transition. In this approach, the finite width of the
cross section is attributed to the Heisenberg uncertainty principle. The form of the
profile in Equation (2.6) is called a Lorentz profile, and is an intrinsic property of the
atom.

In addition to the natural broadening, the random thermal motions of the gas
within a cloud further broadens the width of the line profile. Microscopically, some
of the gas with velocity toward the observer will appear to absorb at a slightly higher
frequency, whereas gas moving away from the observer will appear to absorb at a lower
frequency. The shift in frequency therefore depends on the component of velocity
along the line of sight vz (taken to be the z-axis here). To lowest order in v/c, the
shift in frequency can be written as:

ν − ν0 =
ν0vz
c
. (2.7)

If the particles of gas in the cloud have a temperature T and individual mass mg, the
number of particles dNg found within a differential velocity range dvz is given by a
Maxwellian distribution:

dNg = exp

(
−mgv

2
z

2kT

)
dvz , (2.8)

where k is the Boltzmann constant. Rearranging Equation (2.7) to isolate for the
velocity leads to the relations:

vz =
c(ν − ν0)

ν0

(2.9)

dvz =
c dν

ν0

, (2.10)

which means that Equation (2.8) can be written in terms of frequency as:

dNg ∝ exp

(
−mgc

2(ν − ν0)2

2ν2
0kT

)
dν . (2.11)
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The line profile is proportional to this number, and should be properly normalized.
After normalization, the line profile can be written as:

φ(ν) =
1

∆vD
√
π

exp

(
−(ν − ν0)2

(∆vD)2

)
, (2.12)

where ∆vD is the Doppler width:

∆vD ≡
v0

c

√
2kT

mg

. (2.13)

In practice, the line profile of hydrogen in the IGM will be a convolution of the
Lorentz (Equation (2.6)) and the Doppler (Equation (2.13)) profiles. Essentially,
each atom with velocity along the line of sight vz will have its own Lorentz profile
interacting with the radiation field. The result is an integral over all possible velocities:

φ(ν) =

∫ ∞
−∞

dvz
1√

2πkT/mg

exp

( −v2
z

(2kT/mg)

)
γ/2π

(ν − ν0 − ν0vz/c)2 + (γ/2)2
. (2.14)

One can define the quantities a and u such that:

a ≡ γ

4π∆vD
; (2.15)

u ≡ ν − ν0

∆vD
. (2.16)

Including these definitions, Equation (2.14) becomes:

φ(ν) =
H(a, u)

∆vD
√
π
, (2.17)

where H(a, u) is the Voigt-Hjerting integral (Hjerting, 1938):

H(a, u) =
a

π

∫ ∞
−∞

exp(−y2)

a2 + (u− y)2
dy . (2.18)

The optical depth of the IGM to incoming radiation can then be calculated using the
properties of the gas, such as the ionization level, temperature, and peculiar velocities.
Essentially, using the Voigt profile of the gas from Equation 2.17, each parcel along
the line of a mock Lyman-α sightline contributes to every pixel along the line of sight,
in principle. In practice, the gas only contributes to nearby pixels in redshift space,
and so the proper calculation of the optical depth can be sped up by only considering
pixels for which the contribution is large. Further discussion of calculating the optical
depth from simulations can be found in Chapter 5
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Chapter 3

Predictions for the 21 cm Signal
Incorporating the Light Cone Effect

3.1 Introduction

During the cosmological dark ages, the massive components of the universe were
largely cold dark matter and neutral hydrogen. As the first stars and galaxies began
to form, the UV photons emitted into the surrounding intergalactic medium (IGM)
reionized the hydrogen. This phase transition is known as the Epoch of Reionization
(EoR, Loeb & Furlanetto 2012). During the reionization process, it is expected that
ionized hydrogen formed bubbles in the IGM surrounding stars, creating patches
of reionized gas. As the photons travelled further out into the IGM, the ionized
bubbles grew larger, until they eventually joined together. Subsequently, most of the
remaining neutral hydrogen was localized to the inside of galaxies, with the rest of
the IGM being highly ionized. For reviews of the EoR, see Furlanetto et al. (2006),
Morales & Wyithe (2010), Loeb & Furlanetto (2012), and Pritchard & Loeb (2012).

This currently accepted description is overly simplistic because the precise de-
tails of reionization are still largely unknown. From observing the Gunn-Peterson
absorption trough (Gunn & Peterson 1965) in the Lyα forest, we can infer that the
global neutral hydrogen fraction fHI was greater than 10−3 until z ∼ 6 (Fan et al.
2006). Recent probes of the cosmic microwave background radiation (CMB) such as
the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck have measured the
Thomson optical depth of the IGM, which is a measure of the integrated electron
density (Hinshaw et al., 2013; Planck Collaboration et al., 2013). WMAP -9 reports
a value of τ = 0.089 ± 0.014, which assuming an instantaneous reionization gives
zreion = 10.6 ± 1.1. Another experimental constraint comes from using the Hubble
Space Telescope Ultra Deep Field observations of the very first galaxies, which con-
tains information about the UV luminosity of star-forming galaxies at early times
(Robertson et al., 2013).

One of the most promising tools for further probing this epoch comes from the
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hyperfine transition of neutral hydrogen. The rest-frame wavelength of this transition
is λ ≈ 21 cm. The precise nature of the 21 cm signal depends on several factors, in-
cluding when the midpoint of reionization occurred, the duration of reionization, and
the dominant method by which hydrogen is reionized (e.g., ionization via UV vs. x-
ray photons). When making a measurement using the 21 cm brightness temperature,
one can observe the global signal or the power spectrum. The former is the brightness
temperature average over the entire sky, which during reionization is O(10) mK. The
power spectrum is a statistical measure of the fluctuations in the field as a function
of k-space. More information about the importance of the 21 cm signal can be found
in, for example, Loeb & Zaldarriaga (2004), Cooray (2004), and Bharadwaj & Ali
(2004).

With the advent of large radio-telescope and dipole arrays constructed specifically
to observe the EoR, there have recently been several exciting advances regarding 21
cm observations. Some of the observational probes that are currently taking EoR
data (or will be in the near future) are, for example, the Low Frequency Array (LO-
FAR1; Harker et al., 2010), the Precision Array for Probing the Epoch of Reionization
(PAPER2; Parsons et al., 2010), the Giant Metrewave Radio Telescope (GMRT3; Pen
et al., 2009), the Murchison Widefield Array (MWA4; Bowman et al., 2005), and the
Experiment to Detect the Global EoR Step (EDGES5; Bowman & Rogers, 2010).
These arrays are designed to extract the 21 cm signal over a relatively narrow fre-
quency band, targeting a particular redshift. An upcoming telescope, such as the
Square Kilometer Array (SKA6; Mellema et al., 2013), will be designed to take full
tomographic data of the EoR, and map the 21 cm signal as a function of frequency.

When performing a three dimensional measurement of the 21 cm signal, there are
several important caveats to bear in mind. Two of the major effects are the light
cone effect and redshift space distortions (RSD). The light cone effect comes purely
from the time delay of propagation of the signal to the observer. In general, different
comoving distances from an observer correspond to different points in redshift space.
For sufficiently large scales, the comoving distance spanned by the observed volume
corresponds to a large duration in redshift space. The neutral hydrogen fraction can
change significantly if the length of the observed redshift interval is comparable to or
larger than the duration of reionization. This evolution of the neutral fraction also
introduces anisotropy along the line of sight in the 3D power spectrum. The light
cone effect has been explored with respect to 21 cm observations semi-analytically
by Barkana & Loeb (2004) and numerically by Datta et al. (2012). In previous
works, the light cone was deemed to have a significant effect on the 21 cm brightness

1www.lofar.org
2eor.berkeley.edu
3gmrt.ncra.tifr.res.in
4www.mwatelescope.org
5www.haystack.mit.edu/ast/arrays/Edges
6www.skatelescope.org
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temperature two-point correlation function or power spectrum, respectively. We show
in this work that the light cone can have a similar effect for sufficiently large volumes.
Furthermore, we show that the light cone is most important around the midpoint of
reionization, where 0.4 . fHI . 0.6.

RSD are the result of peculiar velocities of the signal sources. Since the simplest
computation of the 21 cm signal assumes that the only source of velocity is the Hubble
flow, peculiar velocities lead to a correction of the predicted signal. The effect of RSD
has already been applied to 21 cm cosmology (e.g., Barkana & Loeb, 2005; Bharadwaj
& Ali, 2005; Mao et al., 2012; Jensen et al., 2013; Shapiro et al., 2013; Majumdar
et al., 2013). In general, RSD have a significant effect on the 3D 21 cm brightness
temperature power spectrum at the largest scales. The effects of RSD are thought
to be most prominent early in reionization. For example, Jensen et al. (2013) show
that RSD are most important for 0.7 . fHI . 1.0, peak at fHI ∼ 0.9, and have little
impact after the midpoint of reionization.

The light cone effect also has important implications for measurements that use
the baryon acoustic oscillation (BAO) method. The BAO method is important for
understanding the accelerating expansion of the universe, and is used to make mea-
surements of fundamental parameters such as H(z). The BAO scale is large, typically
150 comoving Mpc. As we show, the light cone effect also becomes important on these
scales. The BAO method can be subjected to the Alcock-Paczyński test (Alcock &
Paczyński, 1979), which uses spherical features and relates their angular diameter dis-
tance to their extent in redshift space to determine cosmological parameters. Proper
application of this test requires an accurate understanding of any anisotropies be-
tween perpendicular and parallel behavior of these features. As is discussed more in
the body of this chapter, the light cone effect can introduce anisotropy in the 21 cm
signal in the parallel direction. Therefore, if the 21 cm signal is to be used in BAO
methods, the light cone effect must be properly understood and included in calcula-
tions. For application of the BAO method to the 21 cm signal, see Nusser (2005) and
Barkana (2006); for discussion of the BAO theory and current implementations, see
Weinberg et al. (2012).

Our approach combines numerical simulations with semi-analytic tools. We first
perform a reionization simulation including hydrodynamics and radiative transfer
on a relatively small volume. Once a statistical measure has been devised for how
the matter overdensity field is related to the redshift of reionization, this statistical
measure is used on a matter-only simulation in a larger volume that still accurately
predicts reionization observables. In addition, different reionization histories can be
explored rapidly without rerunning computationally expensive simulations. For a
more thorough explanation of the general method outlined here, see Battaglia et al.
(2013b). For applications of this method to EoR observables related to the CMB, see
Natarajan et al. (2013) and Battaglia et al. (2013a).

The main purpose of this work is to quantify how the 21 cm power spectrum
signal changes with the inclusion of the light cone effect. In Sec. 3.2, we discuss the
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methodology behind the analysis and briefly describe the numerical techniques being
applied. In Sec. 3.3, we discuss the basic science of the 21 cm brightness temperature
power spectrum, and the types of statistical tests we perform on the data. Also in
this section, we examine the application of these tests to data which comes from
performing the analysis on a simulation box at a single redshift snapshot. (Hereafter,
we refer to this type of data as “coeval cubes.”) In Sec. 3.4, we discuss the light cone
effect on the 3D power spectrum. Then, in Sec. 3.5, we talk about specific applications
to various observational endeavors, and how this signal might appear in real-world
measurements. In Sec. 3.6, we discuss other effects and potential difficulties related
to the 21 cm signal. To conclude, in Sec. 3.7, we talk about future prospects and
outlooks. We assume a ΛCDM cosmology with ΩΛ = 0.73, Ωm = 0.27, Ωb = 0.045,
h = 0.70, and σ8 = 0.80. These values are consistent with the WMAP -9 results
(Hinshaw et al., 2013).

3.2 Methodology

In Battaglia et al. (2013b), a semi-analytic model was developed for relating the
matter content in a computational simulation cell with the redshift at which the cell
becomes 90% ionized. This approach exploits the fact that the matter overdensity
field, defined as

δm(~x) ≡ ρm(~x)− ρ̄m
ρ̄m

, (3.1)

is highly correlated with fluctuations in the redshift of reionization field (zre(~x)) de-
fined as

δz(~x) ≡ [zre(~x) + 1]− [z̄ + 1]

z̄ + 1
, (3.2)

on large scales (& 1 Mpc/h) (Battaglia et al., 2013b). To motivate this observa-
tion, note that in an “inside-out” reionization scenario, the densest regions are the
ones which form stars and galaxies capable of producing reionizing photons the ear-
liest. The difference in amplitude between the two fields can be quantified using the
bias parameter bzm(k) which is applied to the two fields in Fourier space. The bias
parameter can be written as:

b2
zm(k) ≡ 〈δ

∗
zδz〉k

〈δ∗mδm〉k
=

Pzz(k)

Pmm(k)
, (3.3)

where Pxx(k) is the auto-power spectrum of a field δx. In order to quantify how
similar two fields are, the cross-correlation coefficient r can be used. This quantity
can be defined as:

rzm(k) ≡ 〈δ∗zδm〉k√
〈δ2
z〉k〈δ2

m〉k
=

Pzm(k)√
Pzz(k)Pmm(k)

, (3.4)
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where Pxy(k) is the 3D cross-power spectrum of the fields δx and δy. The normalization
ensures that r ∈ [−1, 1]. For values where the cross-correlation coefficient becomes 1,
the fields are highly correlated, and the amplitudes of the fields differ only by their
bias factor. This is true for the matter and reionization fields during the EoR on large
scales (Battaglia et al., 2013b).

Since the matter and reionization fields are highly correlated on large scales, the
bias parameter can be used to relate their amplitude difference. In general, the bias
will change as a function of k. We have chosen a functional form of the bias defined
in Equation (3.3) in such a way to reproduce the relationship observed in simulations.
We define this bias bzm to be:

bzm =
b0(

1 + k
k0

)α . (3.5)

There are essentially three free parameters in this model: b0, k0, and α. The value of
b0 can be predicted using excursion set formalism in the limit that k → 0 (Barkana
& Loeb, 2004). We have chosen b0 to be 0.593.

In order to determine best-fit values for the parameters k0 and α, we compare
the matter overdensity and reionization-redshift fields using a RadHydro code, which
contains radiative transfer + hydrodynamics + N -body simulation (Trac et al., 2008).
These particular simulations contain 20483 dark matter particles, 20483 gas cells, and
17 billion adaptive rays in a 100 Mpc/h cubical box. We find that the best fits for
the values were α = 0.564 and k0 = 0.185 h Mpc−1. In addition to these physically
motivated “fiducial” values, two other sets of values were chosen to represent more
extreme reionization scenarios: a long and short reionization history, parameterized in
our model with the values of (α, k0) = {(1.8, 0.1), (0.2, 0.9)}, respectively. Examining
different reionization histories allows for the identification of features in the power
spectrum which may indicate how quickly reionization occurred.

Once the values in the bias relationship have been fixed, the matter overdensity
field can be used in order to construct the reionization-redshift field. Accordingly,
we performed a dark-matter-only simulation with a particle-particle-particle-mesh
(P3M) N -body code using 20483 dark matter particles in a 2 Gpc/h box. Then,
using a snapshot of the matter overdensity field at the midpoint of reionization z̄,
we apply the bias relation in Equation (3.5). For more details on this method, see
Battaglia et al. (2013b).

Figure 3.1 shows a plot of the ionization fraction of the simulation volume, both
mass- and volume-weighted. All neutral fractions reported in the rest of this work,
unless otherwise noted, are mass-weighted. The duration of reionization is measured
by finding the redshift range for when the simulation cube is 25% ionized to 75%
ionized, which measures the “50% ionization width” ∆z50. The 50% reionization
duration in redshift for the long, fiducial, and short cases (weighted by mass) are:
∆z50 = 2.11, 1.10, and 0.24. The reionization model considered here does not allow
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Figure 3.1: Left: the average neutral hydrogen fraction as a function of redshift.
Plotted are the mass-weighted average (solid lines) and the volume-weighted average
(dashed lines). In an inside-out reionization scenario, the densest regions of the uni-
verse are the first ones to reionize, so the mass-weighted neutral fraction is always
lower than the volume-weighted one. Right: the global 21 cm signal as a function of
redshift for the different reionization histories from Equation (3.6), with the simpli-
fying assumption that TS � TCMB. This approximation is only physically justifiable
for mass-weighted neutral fractions of fHI . 0.75; nevertheless, we plotted the global
temperature predicted by Equation (3.6) for higher redshifts since it is still approxi-
mately true in this redshift range. We have marked the points where fHI ∼ 0.75 by
small ticks on the lines. By construction, all of the histories have the same midpoint
of reionization of z̄ = 10, which accounts for the point of intersection.

for “exotic” reionization scenarios, such as extended reionization or recombination
before a second ionization.

3.3 Analysis

3.3.1 21 cm Theory

The 21 cm signal tracks regions of neutral hydrogen in the IGM. The application
of the radiative transfer equation to CMB photons free-streaming from the surface
of last scattering and passing through neutral hydrogen in the intergalactic medium
predicts whether the neutral hydrogen will absorb or emit radiation at 21 cm.

The difference between the brightness temperature and the temperature of the
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CMB is given as (Madau et al., 1997; Harker et al., 2010):

δTb
mK

= 38.6h(1 + δm)xHI

(
TS − TCMB

TS

)
×
(

Ωb

0.045

)[(
0.27

Ωm

)(
1 + z

10

)] 1
2

(3.6)

= T0(z)(1 + δm)xHI,

where xHI is the neutral hydrogen fraction (assumed to be 0 or 1 for an individ-
ual gas cell), and T0 is the redshift-dependent “average temperature” of the signal,
which is modulated by the spatial fluctuations of the matter overdensity field and the
ionization state. This analysis was performed in a regime where ΩΛ can be safely ig-
nored. Equation 3.6 gives the difference of the brightness temperature at a frequency
corresponding to 21 cm from the CMB as a function of redshift and spatial position.

In the following analysis, it has also been assumed that the spin temperature is
large compared to the CMB temperature, TS � TCMB. Following from the results of
Santós et al. (2008), this factor is approximately 1 for mass-weighted neutral fractions
fHI . 0.75. Once the neutral fraction has reached this value, the spin temperature is
collisionally coupled to the kinetic temperature of the gas, which is typically 2 orders
of magnitude larger than the effective CMB temperature. This assumption is applica-
ble to a large range of reionization scenarios, e.g., ones where UV photons from stars
photo-ionize and photo-heat the neutral hydrogen, so that hydrogen’s spin tempera-
ture couples to the kinetic energy of the gas particles and becomes much hotter than
the CMB. Exotic reionization scenarios, e.g., those where reionization is caused by
x-ray heating, do not necessarily meet the condition that TS � TCMB. However, these
scenarios have not been examined in this analysis, and these considerations have been
saved for future work.

Figure 3.1 shows the global 21 cm signal as a function of redshift for the different
reionization scenarios. The duration of the reionization history affects the rate at
which the global signal diminishes: the long reionization scenario drops gradually,
whereas the short reionization scenario drop rapidly. Observationally, the signal from
a shorter reionization scenario is easier to measure than a longer one (Bowman &
Rogers, 2010), since a shorter reionization scenario would appear as a sharper feature
in frequency space.

3.3.2 3D Power Spectrum

We define the 3D power spectrum as Pxx(k) = 〈δ∗xδx〉k, and the dimensionless power
spectrum ∆2(k) ≡ k3P (k)/2π2. The features of the coeval matter overdensity field
power spectrum have already been extensively explored, so we will only list some
common features. As the universe evolves over time, the amplitude of the matter
power spectrum increases monotonically. Because the 21 cm brightness temperature
(cf. Equation (3.6)) is proportional to the matter overdensity field, one might expect
the 21 cm brightness temperature power spectrum also to increase monotonically.
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Figure 3.2: Left: a plot of the 3D 21 cm brightness temperature power spectrum,
as a function of neutral hydrogen fraction. On large scales, the power peaks at
fHI ∼ 0.5, but at smaller scales it peaks for a larger neutral fraction, fHI ∼ 0.75.
The reason for this is that at a larger neutral fraction, only the densest regions are
ionized, so the 21 cm power spectrum looks more like the matter power spectrum. At
a neutral fraction of less than 50%, the differences in amplitude for different values of
fHI on large scales is roughly proportional to the difference in neutral fraction. This
phenomenon is due to the fact that the redshift evolution of the 21 cm signal after the
midpoint is dominated by the changing neutral fraction. Right: the evolution of the
power spectrum for different reionization histories. Across all reionization histories,
the power spectrum is larger near 50% ionization. The shape of the power spectrum
changes dramatically for different reionization histories, where in general, a shorter
duration of reionization implies more large-scale power and less small-scale power.

However, the 21 cm signal also incorporates the neutral hydrogen fraction, and so
as the universe becomes increasingly ionized, the signal diminishes. This evolution
causes the amplitude of the 21 cm signal to increase as the universe begins to ionize,
peak at a particular neutral fraction, and then decrease as the universe ionizes further.
The shape of the 21 cm power spectrum in the coeval case has also been examined
(e.g., Lidz et al., 2008), and the value corresponding to a peak in large scale power is
∼50% ionization fraction.

We calculate the power spectrum as a function of neutral fraction, since equal
neutral fractions between reionization scenarios capture the same physics better than
equal redshifts. We linearly interpolate between matter overdensity fields from adja-
cent snapshots in order to create a power spectrum as a function of specific neutral
fractions. The 21 cm brightness field was computed from this interpolated matter
overdensity field using Equation (3.6) where xHI was determined from zre(~x).

Figure 3.2 shows the features of the 3D power spectrum from the fiducial reioniza-
tion scenario. On large scales, the amplitude peaks near the midpoint of reionization,
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Figure 3.3: Left: the scale-dependent bias between the two fields, defined in Equa-
tion (3.3), for the fiducial reionization history. To remove the redshift dependence
between different neutral fractions, we divide the 21 cm brightness temperature by
T0(z) defined in Equation (3.6). One can see that the value is fairly constant in the
region k . 0.1 h Mpc−1, leading to the choosing of this value for the large-scale bias
parameter. The small-scale structure for large k-values changes noticeably as the uni-
verse becomes more ionized. Right: A plot of the large scale bias relationship between
the 21 cm power spectrum and matter power spectrum at different neutral fractions.
Shown are the mass-weighted neutral fraction (solid lines) and the volume-weighted
neutral fraction (dashed lines). The bias is calculated according to Equation (3.7),
which only takes into account the largest scales (k < 0.1hMpc−1). When the bias is
largest, there is the most 21 cm signal relative to the underlying matter overdensity
field. Note that as the reionization history becomes shorter, the bias becomes larger
at all neutral fractions.

fHI ∼ 0.5. On small scales, the power is largest for the highest neutral fraction,
fHI ∼ 0.75. Early on in reionization, only the densest regions have become ionized,
which means the 21 cm brightness temperature power spectrum looks very similar to
the matter power spectrum. As the universe becomes more ionized, this small-scale
power is lost due to the ionized regions growing larger.

Figure 3.2 also shows the 3D power spectrum across the different reionization
scenarios of our model. The general shape of the spectra changes dramatically as a
function of reionization history: as the duration of reionization decreases, more power
is transferred from small scales to large ones. For our model, although the underlying
matter overdensity field is identical across the simulations, the reionization history
dramatically changes the predicted shape of the 21 cm power spectrum.
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3.3.3 Bias Parameter and Average Bias

Figure 3.3 shows a plot of the bias parameter (Equation (3.3)) between the 21 cm
brightness temperature field and matter overdensity field. (The cross-correlation co-
efficient is discussed further in Sec. 3.4.2.) As already mentioned, the bias parameter
can be used to quantify the relative amplitudes between the different power spectra.
This quantity has already been applied in a number of settings (e.g., Fry & Gaztañaga
1993, Heavens et al. 1998, Croft et al. 2002, etc.). The application at hand is the bias
factor between the matter overdensity field and the 21 cm brightness temperature
field. Note that for the calculation of the bias parameter, the average temperature
T0(z) is divided out in Equation (3.6) (resulting in δ̂T b = (1 + δm)xHI), in order to
remove dependence on redshift. For high values of the neutral fraction, the bias is
flatter, meaning that the 21 cm brightness temperature field is more similar to the
matter overdensity field. As the universe becomes more ionized, the bias changes
more dramatically as a function of k. As in the case of the 3D power spectrum, the
amplitude of the bias on large scales peaks at fHI ∼ 0.5. The evolution of the matter
overdensity field is small compared to the change in the 21 cm brightness temperature.

In regions where the bias is roughly constant, an “average bias” can be defined as:

b̄21,m =

〈√
δ∗21δ21

δ∗mδm

〉
k<k?

(3.7)

where k? (0.1 h Mpc−1) is a predefined cutoff value to ensure that the selected regime
is relatively constant. For a given reionization history, the power spectrum of both the
21 cm field and the matter overdensity fields is calculated. The average of the ratio
of the two power spectra is computed for all k-values out to k? at several different
values of the neutral fraction. The large scale bias is important because it predicts
the amplitude of the 21 cm power spectrum compared to the matter power spectrum,
especially at large scales. As in the case of the scale-dependent bias, the average
temperature of the 21 cm brightness temperature field T0(z) has beed divided out.

Figure 3.3 shows the average bias for the three different reionization scenarios. As
seen in the figure, the bias peaks at an ionization fraction of roughly 50% by mass.
As already discussed in Sec. 3.3.2, this coincides with the peak in the power of the 21
cm power spectrum. A large value of the bias implies that the sources of reionization
are themselves “highly biased,” in the sense that they are larger and rarer for larger
values of the bias parameter. Figure 3.4, which shows the 21 cm brightness field in
the coeval and light cone cases, demonstrates this visually. In the coeval column on
the left, the short reionization scenario has larger but fewer ionized regions, which
implies that the sources are massive and rare. Indeed, the difference between the
large voids in the case of short reionization and the small pockets of ionized gas in
the long reionization is striking. Thus, the large scale bias parameter is important
not only because it yields valuable information about the relation between the 21 cm
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brightness temperature and the matter overdensity field, but also because it is related
to the sources of reionization.

3.4 Light Cone Effect
The light cone effect on 21 cm power spectra has been examined semi-analytically
in Barkana & Loeb (2006) and numerically in Datta et al. (2012). The previous
numerical work was concerned only with relatively small volumes, and found that the
light cone effect is a significant effect on their largest scales. We examined the impact
of the light cone effect on volumes larger than those used by Datta et al. (2012), and
we conclude that this effect is an essential consideration for 21 cm measurements.

In essence, the light cone effect is due to evolution of the signal along the line of
sight. Although the coeval power spectrum is easy to compute in a simulation volume,
it is not representative of a 3D power spectrum that would be observed. Given a flat
ΛCDM cosmology, the comoving distance from an observer today can be calculated
as a function of redshift:

r(z) =

∫ z

0

c

H(z′)
dz′ . (3.8)

As an example, if the center of the 2 Gpc/h box is placed at a comoving distance
corresponding to a redshift of z = 10 for our particular cosmology (i.e., the 21 cm
signal at the center of the box has a redshift of 10 relative to an observer), then
a signal from the far side of the box (from the perspective of the observer) has a
redshift of z ∼ 21, whereas the near side of the box has a redshift of z ∼ 6. The
duration in redshift space spanned by the box is much larger than the ∆z50 for all
of the reionization histories of our model. This means that, even for very extended
reionization scenarios, the far side of the box would correspond to a totally neutral
universe, and the near side would be completely ionized. The matter overdensity field
also evolves from z ∼ 21 to z ∼ 6. Intuitively, one would expect that such a radical
change could affect the power spectrum of 21 cm, because the signal is dependent
upon the presence of neutral hydrogen. In other words, the evolution along the line
of sight is non-negligible for these large volumes.

To produce the light cone effect, we divided the full simulation volume into a series
of cubes with smaller dimensions, since 2 Gpc/h spans a redshift range that always
exceeds the duration of reionization in our model. We treated these different sub-
boxes as fully independent, because the matter overdensity field, which generates the
reionization field, has the same statistical values (e.g., mean value, standard deviation,
σ8, etc.) in each sub-volume, with some acceptable fluctuation. Specifically, we cut
the 2 Gpc/h box into sub-volumes of 500 Mpc/h, 250 Mpc/h, and 125 Mpc/h. This
yields 64, 512, and 4096 independent cubes, respectively. We placed the center of
the sub-boxes at the redshift corresponding to 25%, 50%, or 75% neutral hydrogen
fraction by mass. For each cell in the simulation volume, the comoving distance r
from the observer is calculated along with the redshift corresponding to that distance
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Figure 3.4: A visualization of the evolution of the 21 cm brightness of the simulation
cube. Left: a coeval sub-box at 50% ionization fraction with side length of 500 Mpc/h
for long (top), fiducial (middle), and short (bottom) reionization scenarios. Right: the
corresponding light cone cube, which includes evolution of the ionization field. The x-
axis on the right shows the redshift instead of the comoving distance, with the center
of the box placed at the redshift equalling 50% ionization by mass. We notice that
the 21 cm signal initially follows the underlying matter fluctuations at the side of the
box farther from the observer where it is almost entirely neutral, then gradually fades
to zero brightness as the IGM becomes increasingly ionized. For the long reionization
scenario, the coeval case has smaller bubble sizes at 50% reionization, and the light
cone effect is not as pronounced. For the short reionization scenario, the coeval case
has very pronounced bubbles of ionized gas at 50% reionization, and the light cone
effect is quite dramatic. 29



z(r), the inverse of Equation (3.8). Then, the mass of the cell is linearly interpolated
from the snapshots of coeval mass density arrays from the bracketing redshifts, just
as is done for the coeval case. Finally, the 21 cm brightness temperature is computed
as in Sec. 3.3.2.

Figure 3.4 shows the evolution of the 21 cm signal in the simulation volume as a
function of redshift. One can see that the late-time portion (left side of the box) con-
tributes almost nothing to the signal, and the earlier times (right side) has variation
in the temperature proportional to the fluctuations in the matter overdensity field.

3.4.1 3D Power Spectrum with the Light Cone Effect

To determine the impact the light cone effect has on the 3D power spectrum, we find
the power spectrum of each individual sub-box, take the average, and then compute
the standard deviation to get the corresponding 1σ values. Because the simulation
volumes were constructed in this way, periodicity was explicitly broken which altered
the power on large scales. However, we found that this does not greatly affect the
computation of the power spectrum. Furthermore, many of these results involve ratios
between power spectra that are both affected by the problem of broken periodicity, so
the problems introduced do not significantly change the predictions. Also note that
when computing the 3D power spectrum with the light cone effect, Fourier modes
where k⊥ = 0 relative to the line of sight have been removed. The inclusion of these
modes leads to significantly more power on large scales, but they cannot be observed
by radio interferometers. (See Appendix A.1 for more discussion.)

In Figures 3.5 and 3.6 (along with Figures A.1, A.2 and A.3 in Appendix A.2),
we present the 3D power spectra with and without the light cone effect. Figure 3.5
compares the power spectra across box sizes and reionization histories, but with
constant fHI = 0.5. A general feature is that the power is suppressed at all scales.
Including the light cone effect is somewhat analogous to averaging over the duration
in redshift range spanned by the volume. For the large sub-volume size (500 Mpc/h),
this leads to an effective averaging over a significant portion of the reionization history.
This explains why there is less power on all scales: the neutral fractions where the
large- and small-scale power peak (fHI = 0.50 and fHI = 0.75, respectively) are being
averaged with other neutral fractions that contain less power. Thus, the averaging
tends to decrease power on all scales for our reionization scenarios. Note also that in
the limit where the redshift space duration is relatively small (i.e., the 125 Mpc/h
volume), there is little deviation from the coeval case.

One feature to point out is the 1σ spread of the power spectrum, represented
by a shaded region surrounding the light cone line. As discussed in Sec. 3.4, the
sub-boxes are treated as independent and identically distributed sub-samples of the
larger volume. Specifically, we treat the power spectrum from each sub-volume as the
random variable of an underlying cosmological distribution. The standard deviation
calculated here is that of the power spectra themselves, computed over the 64, 512, or

30



0.01

0.1

1

10

100

∆
2
(k

)
[m

K
2
]

500 Mpc/h

fHI = 0.500, z = 10.106

Light cone

fHI = 0.963, z = 11.970

fHI = 0.011, z = 8.659

−1.0

−0.5

0.0

0.5

(∆
2 lc
−

∆
2 co

)/
∆

2 co

250 Mpc/h

fHI = 0.500, z = 10.106

Light cone

fHI = 0.826, z = 10.967

fHI = 0.143, z = 9.345

F
id

uc
ia

l

125 Mpc/h

fHI = 0.500, z = 10.106

Light cone

fHI = 0.685, z = 10.519

fHI = 0.303, z = 9.715

0.01

0.1

1

10

100

∆
2
(k

)
[m

K
2
]

fHI = 0.500, z = 10.177

Light cone

fHI = 0.847, z = 12.060

fHI = 0.134, z = 8.717

−1.0

−0.5

0.0

0.5

(∆
2 lc
−

∆
2 co

)/
∆

2 co

fHI = 0.500, z = 10.177

Light cone

fHI = 0.697, z = 11.046

fHI = 0.296, z = 9.409

L
on

g

fHI = 0.500, z = 10.177

Light cone

fHI = 0.602, z = 10.594

fHI = 0.396, z = 9.783

0.1 1
0.01

0.1

1

10

100

∆
2
(k

)
[m

K
2
]

fHI = 0.500, z = 10.019

Light cone

fHI = 1.000, z = 11.860

fHI = 0.000, z = 8.588

0.1 1
k [h Mpc−1]

−1.0

−0.5

0.0

0.5

(∆
2 lc
−

∆
2 co

)/
∆

2 co

0.1 1

fHI = 0.500, z = 10.019

Light cone

fHI = 1.000, z = 10.869

fHI = 0.000, z = 9.267

0.1 1
k [h Mpc−1]

0.1 1

Sh
or

t

fHI = 0.500, z = 10.019

Light cone

fHI = 0.981, z = 10.427

fHI = 0.010, z = 9.633

0.1 1
k [h Mpc−1]

Figure 3.5: The light cone effect for a sub-box with side length 500 Mpc/h (left
column), 250 Mpc/h (center column), and 125 Mpc/h (right column), for the fiducial
(top row), long (middle row), and short (bottom row) reionization scenarios. The
coeval power spectrum (solid blue line) is computed at the midpoint of reionization.
The light cone effect (yellow line) has 1σ error regions shaded in. Note that these
spectra do not include modes where kx = ky = 0 (see Appendix A.1). Also shown are
coeval power spectra corresponding to the bracketing redshifts of the light cone cube
for the far side from the observer (red dashed line) and the near side (cyan dashed
line). The percent difference between the coeval and light cone lines is shown in the
bottom panel, with the same 1σ error regions shaded in. The light cone effect is most
pronounced at the largest scales. The light cone effect can also change the shape of
the power spectrum, where a shorter reionization scenario leads to more deviation
from the coeval case.
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Figure 3.6: A plot similar to Figure 3.5, but showing the power spectrum as a func-
tion of neutral fraction. All plots are for the fiducial reionization history, with rows
corresponding to fHI = 0.75 (top), 0.50 (center), and 0.25 (bottom). The columns
have their same ordering as in Figure 3.5. We can see that only the small-scale power
changes appreciably between different neutral fractions. Thus, on large scales, only
the coeval power spectrum changes shape appreciably. Compare the coeval shape
change to Figure 3.2. This implies that the shape of the light cone power spectrum
might not change as dramatically as in the coeval case, especially for large sample
volumes.
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Figure 3.7: Top: light cone power spectra, plotted at different neutral fractions across
all sub-box sizes for the fiducial reionization scenario. These spectra are the same as
in Figure 3.6, but reproduced here for more straight-forward comparison. Bottom:
percent difference of the f = 0.75, 0.25 spectra from f = 0.50 spectra. As the extent
in redshift space becomes larger with respect to the duration of reionization, the large
scale power becomes increasingly similar across neutral fractions. This effect is most
apparent in the short scenario, but also partially seen in the long scenario.

4096 sub-boxes for a particular sub-volume size. The relatively larger spread for the
smaller sub-volumes demonstrates there is more fluctuation when examining smaller
scales.

Figure 3.6 compares the 3D power spectrum across different box sizes and different
neutral fractions, but only for the fiducial reionization scenario. Similar to Figure 3.5,
the light cone enhances power at large scales and diminishes power at small scales.
Another similarity is that the deviation from the coeval case is greater for large sub-
volumes than for small ones. An interesting feature of these plots is that the shape of
the light cone power spectrum does not change as drastically for different ionization
fractions as it does for different reionization histories in our model. This implies that
differences in the shape of the power spectrum are most sensitive to the duration of
reionization, and are not as dependent on the midpoint of reionization.

Figure 3.7 shows the power spectra for the fiducial reionization scenario at different
neutral fractions. As the sub-box size becomes larger and the extent in redshift space
becomes large compared to the duration of reionization, the large-scale power of
the different neutral fractions becomes increasingly similar. This is due to how the
region of maximal contrast near fHI ∼ 0.5 relates to where the box is centered in
redshift space. Since the light cone cube is centered on the redshift corresponding
to a particular neutral fractions, longer reionization scenarios will have a greater
change in where the cubes are centered. Sub-box sizes where the region of maximal
contrast is adequately spanned for all neutral hydrogen fractions will have similar
amounts of large scale power. The Figure shows this is true for the largest sub-box
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size in the fiducial reionization scenario. As an observational implication, our model
predicts that future measurements will not be able to easily distinguish different
neutral fractions for briefer reionization scenarios.

Related to this phenomenon, the average bias (cf., Sec. 3.3.3) also behaves dif-
ferently when the light cone effect is included. In the coeval case, the average bias
is initially relatively small early in reionization, rises with increased ionization, and
then falls following the midpoint of reionization (see Figure 3.3). The inclusion of the
light cone effect flattens out this curve, so that the average bias does not change sig-
nificantly as a function of neutral fraction. Again, this phenomenon is related to the
duration of reionization compared to sub-box size, with briefer reionization scenarios
being flatter. This result further demonstrates that when the light cone effect is in-
cluded, it becomes difficult to determine the change in neutral fraction as a function
of redshift. One alternative to the 3D power spectrum would be to measure the 2D
angular power spectrum as a function of frequency, where the large scale bias would
likely rise and fall as a function of neutral fraction in a manner similar to the coeval
case.

3.4.2 Cross-correlation Coefficient with the Light Cone Effect

We examined the cross-correlation coefficient between the 21 cm brightness temper-
ature and the matter overdensity fields for the light cone effect. We computed the
cross-correlation between the two fields using Equation (3.4). Figure 3.8 shows the
cross-correlation coefficient for the light cone. In general, on large scales the fields
show less statistical correlation than in the coeval case. We can motivate this by not-
ing that when the box is completely neutral, there is perfect correlation between the
two fields. Conversely, once the box becomes totally ionized, there is no longer any
correlation between the matter overdensity and 21 cm fields, because the 21 cm signal
is zero everywhere. Because this effect is more pronounced in the short reionization
scenario (cf. Figure 3.4), the short histories (the dotted lines in Figure 3.8) deviate
the most from perfect anti-correlation. In fact, the combination of zero correlation
in ionized regions and almost perfect correlation in neutral regions accounts for why
the short reionization scenario exhibits a large degree of positive correlation on small
scales. The amount of anti-correlation grows larger for longer reionization scenarios,
and the fields tend toward perfect anti-correlation on large scales for the fiducial and
long reionization scenarios.

3.4.3 Anisotropic Power Spectrum

We are interested in quantifying any anisotropy in the power spectrum because the
light cone effect inherently alters the signal along the observer’s line of sight of the
volume, but does not affect the signal perpendicular to the line of sight. The com-
putation of an anisotropic power spectrum proceeds in a fashion similar to that of

34



the 3D power spectrum (as in Sec. 3.3.2); however, instead of binning in terms of a
single spherical magnitude k =

√
kx2 + ky2 + kz2, the binning is done in terms of two

quantities k‖ ≡ kz and k⊥ ≡
√
kx2 + ky2. When decomposing the power spectrum in

this manner, we use a “flat-sky” approximation which neglects the curvature of the
sky. In our calculations, the distance to the observer is large enough that the effects
of the flat-sky approximation are negligible. Additionally, we noticed that on small
scales, there is a significant amount of anisotropy in the Figure even in the coeval
matter power spectrum. The density field is constructed by assigning particles to a
Cartesian grid using an anisotropic cubical top hat filter. Deconvolution with this
filter is not perfect, and does not completely remove the anisotropy. The deviation
from isotropy becomes increasingly important on scales that are close to the size of a
grid cell. Accordingly, we only trust this statistic for which k . 1 h Mpc−1.

Figure 3.9 shows a pseudo-color plot in which the different k-modes k⊥ and k‖ are
on the x- and y-axes, respectively. The power spectrum P (k) is plotted as a function
of these two modes on a linear scale, so that the isotropy (or anisotropy) is apparent
in the plot. An interesting feature to point out is that the light cone introduces a
subtle deviation from the isotropy seen in the coeval case. There slightly less power
in modes where k⊥ ∼ k‖ compared to modes where k⊥ � k‖ or vice versa. Compare
this to the coeval case, where the contours are almost perfectly circular with little
deviation from isotropy. The anisotropy indicates there is more power for volumes
with small extent in redshift space or small extent in the plane of the sky, compared
to ones where the extent is almost equal.

In the case of an isotropic box with no preferred direction (e.g., a coeval cube
containing the matter overdensity field), one would expect the contours of equal power
to be roughly circular, because there should be equal contributions in all directions
without a preferred orientation. When the light cone effect is included, we find that
there is generally less power at all scales k . 1 h Mpc−1, which is consistent with
Figure 3.5. Figure 3.5 demonstrates that including the light cone effect leads to a
similar spectrum but with less power at all scales, and Figure 3.9 shows that there is
little anisotropy introduced by the effect.

3.4.4 Power Wedges

We quantify the anisotropy produced by the light cone effect using a tool we name
“power wedges,” in analogy to the “clustering wedges” tool recently introduced in BAO
analysis for the two-point correlation function (e.g., Kazin et al., 2013; Sánchez et al.,
2013). To perform the power wedges analysis, the plane of k‖ and k⊥ is bisected along
the line k‖ = k⊥. Then, the power corresponding to these combinations is binned as
a function of k. This process produces decompositions P‖ and P⊥, where k‖ > k⊥ or
vice versa. Finally, the ratio of the power spectra (χ(k)) is taken:

χ(k) ≡
〈
P‖(k)

〉
〈P⊥(k)〉 . (3.9)
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Figure 3.8: Left: the cross-correlation coefficient between the 21 cm brightness tem-
perature and the matter overdensity field, defined in Equation (3.4), for the fiducial
reionization history plotted at different neutral fractions. On very large scales, there
is almost perfect anti-correlation between the two fields. Right: cross-correlation co-
efficient including the light cone effect, across different sub-box sized and reionization
scenarios at constant fHI = 0.5. For the fiducial and long reionization scenarios, there
is generally a tendency toward −1 on large scales, though the anti-correlation is not
as pronounced as in the coeval case. However, this correlation does not exist to the
same extent for the short reionization scenario.

In the case that the k-values are equal, the contribution to the power is added to both
spectra. In a perfectly isotropic case, this parameter should be equal to 1 (with some
fluctuation). If the parameter is greater than 1, then there is more power coming
from the modes along the line of sight of the simulation box, and vice versa.

Figure 3.10 shows the results of using the power wedges analysis. One can see that
χ changes noticeably as a function of reionization history. For the fiducial and long
histories, the value is very close to 1, meaning that the signal is isotropic. However, the
short history demonstrates a moderate degree of anisotropy on large scales (almost
∼ 40%). The deviation from 1 becomes less as the sub-box size becomes smaller.
Physically, the shorter reionization scenario displays a greater change in the variance
of the 21 cm signal along the line of sight compared to the long reionization scenario.

Another interesting result evident in Figure 3.10 is how the evolution within the
volume affects χ(k). There is a much larger deviation from unity for the case of the
short reionization scenario compared to the fiducial and long ones. For a larger sub-
box size, there is more evolution of the neutral hydrogen fraction, especially for the
short reionization scenario. Because the anisotropy induced depends on this evolution,
the larger anisotropy for larger box sizes makes sense.
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Long: Short:

Figure 3.9: A plot of the anisotropic power spectrum, broken down into parallel and
perpendicular Fourier modes. Top left: the anisotropic power spectrum of the coeval
21 cm field, fHI = 0.5, fiducial reionization scenario. As with the 3D power spectrum,
the result has been averaged over the 64 independent 500 Mpc/h sub-boxes. Top right:
same plot, but including the light cone effect and all Fourier modes for the fiducial
reionization scenario. Here, k‖ is taken to be along the line of sight and coincident
with the direction of the light cone effect. Both cases appear similarly isotropic. The
anisotropy changes slightly based on the reionization history, especially in the short
case. The effect is also more pronounced for larger scales. Bottom: the long and
short reionization scenarios, respectively.

3.4.5 Comparison to Previous Work

As mentioned previously, the light cone effect has been investigated in Datta et al.
(2012). The work presented here differs from the previous one in several key aspects.
First, some of the volumes considered here are significantly larger. The simulation
volume in the previous work was 163 Mpc (≈114 Mpc/h) on a side, compared to the
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Figure 3.10: The power wedges measurement, across different sub-box size and reion-
ization histories. The fiducial and long reionization scenarios show little anisotropy.
However, for larger sub-box sizes and on large scales, the short reionization scenario
does display some anisotropy. This is due to the fact that for the short reionization
scenarios, there is greater variance in the 21 cm signal along the line of sight com-
pared to the longer reionization scenarios. Note that as the scales considered become
smaller, all of the scenarios are nearly isotropic.

light cone sub-box volumes of 500, 250, and 125 Mpc/h. In the previous work, the
light cone was predicted to deviate from the coeval signal by ∼30-40%. Additionally,
the previous work also found for the early- and mid-points of reionization, there was
an increase in power when compared to the coeval case on large scales, and a decrease
at small scales. When looking at the results for the 125 Mpc/h sub-box, we find that
the predictions presented here match the ones presented previously, but only in the
long reionization scenario early in reionization. Since our long reionization duration
is comparable to their fiducial case, there is good agreement. We also note that the
light cone effect becomes increasingly important as the scales get larger. As Figure 3.5
shows, for the 500 Mpc/h volumes, the light cone effect can deviate by more than
50% for the fiducial scenario and up to an order of magnitude for the short scenario.
To see the full effect of the light cone, larger volumes must be used.

Another difference is that the light cone cubes presented here are constructed
from a sub-volume of the entire simulation volume available. In the previous work,
the light cone volume was the same size as the total simulation volume. This leads to
pseudo-periodic boundary conditions in the perpendicular directions. Breaking the
periodicity of the FFT can have important implications on the predicted power spec-
trum, especially for large-scale modes. These considerations are especially important
for real-world data acquisition, where in general periodic boundary conditions do not
apply. So, by explicitly breaking periodicity with the light cone cubes, we present
predictions that will more readily conform to practical data processing.

The use of sub-volumes in the light cone calculation also means we are able to
eliminate much of the cosmic variance for large scales. By averaging the power spectra
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over many independent sub-volumes of the total simulation volume, we reduce the
scatter inherent in the large scale modes. Accordingly, we are able to make progress
toward a smooth power spectrum, creating an improved statistical measure of the 21
cm brightness temperature field.

3.5 Observational Comparison
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Figure 3.11: A comparison of experimental
results from PAPER (Parsons et al., 2014)
and GMRT (Paciga et al., 2013) with the-
oretical predictions incorporating the light
cone. The data from PAPER represents 2σ
upper limits. The data from GMRT also
represents 2σ upper limits of the power
spectrum. The solid curves are the pre-
dicted power spectrum of the 500 Mpc/h
sub-box for the fiducial reionization sce-
nario at 50% ionization with a midpoint of
reionization at z̄ = 8. The difference be-
tween the predictions and the data is sev-
eral orders of magnitude.

Recently, upper limits on the 21 cm sig-
nal were derived based on data from the
Precision Array for Probing the Epoch
of Reionization (PAPER) (Parsons et al.,
2010; Pober et al., 2013). Specifically, we
are interested in recent results presented
in Parsons et al. (2014), which reported
an observational upper-limit on the 21
cm power spectrum of 2700 (mK)2 at
a redshift of z = 7.7 in the neighbor-
hood of k ∼ 0.1 h Mpc−1. We com-
puted a predicted observation using the
bias model discussed in Sec. 3.2. We
considered here a prediction for the light
cone power spectrum, with a midpoint of
reionization to be z̄ = 8 for a more apt
comparison, using the 500 Mpc/h sub-
box size, measured at fHI = 0.5 by vol-
ume (which corresponds to z = 7.9).

The Giant Metrewave Radio Tele-
scope (GMRT) also has derived upper
limits on the 21 cm signal from mea-
surements (Paciga et al., 2011, 2013). In
this result, GMRT has upper limits on
the power spectrum amplitude at a red-
shift of z = 8.6 in the neighborhood of
k ≈ 0.50 h Mpc−1. The most restrictive
measurement at 2σ is (248 mK)2 at k =
0.50 h Mpc−1, with 4 singular value decomposition (SVD) modes removed to correct
for foreground contamination. (See Paciga et al. 2013 for further explanation.) One
aspect to note is that the foreground removal techniques of PAPER and GMRT are
different, and the measurements are reported for different redshift values. A direct
comparison should not be made between the two, but instead compared directly to
the theoretical prediction (solid line).

Figure 3.11 presents the 21 cm power spectrum upper-limits from PAPER (Par-
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sons et al., 2014) and GMRT (Paciga et al., 2013), compared to the reionization model
at 50% reionization for z̄ = 8 with the light cone effect. For the plot of GMRT data,
we selected the most restrictive point among the different number of SVD modes
removed. The predicted amplitude is ∼ 10 − 100 mK2, which is at least two or-
ders of magnitude smaller than the upper limits reported by PAPER and GMRT.
However, other theoretical predictions that do not include exotic reionization scenar-
ios have similar order of magnitude differences (e.g., Zahn et al., 2007; Iliev et al.,
2008). Varying the reionization history did not raise the signal to the same order of
magnitude of the upper limits.

Another important observational constraint comes from the Experiment to Detect
the Global EoR Step (EDGES) experiment (Bowman & Rogers, 2010). In this result,
the authors reported a lower limit to the duration of reionization, stating that the
total duration of reionization is ∆z50 & 0.07 with 95% confidence. We have converted
the EDGES definition of ∆z, which assumes a functional form of a hyperbolic tangent,
to the definition of ∆z50 discussed in Sec. 3.3.1. The short reionization scenario has
a 50% reionization duration of ∆z50 = 0.24. Thus, the EDGES observations do not
yet rule out any of the theoretical models presented here.

3.6 Discussion
An important observational consideration when measuring the 21 cm signal is the pro-
cess of foreground removal. 21 cm brightness temperature fluctuations are typically
3-5 orders of magnitude smaller than signals coming from foreground contamina-
tion, such as galactic synchrotron radiation and extragalactic point sources. Typical
schemes for removing these contaminants are to look at their spectra in frequency
space. The 21 cm signal is expected to vary rapidly as a function of frequency, whereas
these contaminants are expected to vary smoothly (Zaldarriaga et al., 2004; McQuinn
et al., 2006; Liu et al., 2009). By removing these smoothly varying components from
the spectrum, the true 21 cm signal emerges from the foregrounds. Unfortunately,
this technique may also remove some of the long-frequency modes of the power spec-
trum, which is also the region of interest for the light cone effect. Care must be taken
to ensure that 21 cm signal is not being discarded along with the foregrounds.

The implications of the light cone effect can also be compared to the effect of
redshift space distortions (RSD). Recent work by Jensen et al. (2013) showed that
RSD are most important at early stages of reionization (0.7 . fHI . 1.0). At these
stages, RSD contribute to a significant enhancement of the 3D power spectrum on
large scales k . 0.3 h Mpc−1. For later stages in reionization, RSD have a less
important effect, and by fHI ∼ 0.5 onwards, RSD induce only a percent-level change
on the 3D power spectrum. As Figure 3.6 demonstrates, the light cone can have a
decrement of up to ∼ 50% for scales k . 0.02 hMpc−1. Figure 3.5 shows that the light
cone effect has an important effect on large scales for the midpoint of reionization,
0.25 . fHI . 0.75. RSD also introduce an anisotropy to the 3D power spectrum,
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though the formalism presented in Jensen et al. (2013) expresses the anisotropy as an
expansion in terms of µ ≡ cos θ, the angle between the line of sight and the direction
in k-space. We plan to further investigate the different implications of the light cone
effect and RSD in future work.

3.7 Conclusions

We accomplished the following in this work:

• Using a parametrized bias factor between the redshift of reionization and the
matter overdensity field, we created a reionization field for a large (∼2 Gpc/h)
simulation volume.

• We made predictions about the global 21 cm brightness signal using this large
volume.

• We calculated the 3D power spectrum and cross-correlation coefficient for both
the coeval and light cone cases.

• We showed that including the light cone effect makes a moderate difference in
the amplitude (up to 50% for small k-modes), and can change the shape of the
spectrum at all scales.

• Using “power wedges” analysis, we showed that the anisotropy introduced by
the light cone is only present for our short reionization scenario. We also showed
this anisotropy is most sensitive to large changes in the neutral fraction of the
contained volume. Thus, the light cone effect likely will not induce significant
anisotropy in upcoming experiments.

• We compared predictions from our model to the recent results from the PAPER
and GMRT surveys, and showed that our predictions are an order of magni-
tude smaller than their upper-limits on the 3D power spectrum of the 21 cm
brightness temperature signal.

As mentioned in Sec. 3.1, the light cone effect has important implications for
measurements that use the BAO method. The BAO scale, ∼150 comoving Mpc
(k ∼ 0.06 h Mpc−1), approaches the scale where the light cone effect becomes non-
negligible. The light cone effect can have up to a ∼ 50% effect on the predicted
signal on these scales. We have also shown that the light cone effect can introduce an
anisotropy along the line of sight for short reionization scenarios. This complicates
using the Alcock-Paczyński test to determine the proper cosmological parameters of
the universe. Future applications of the BAO method to the 21 cm signal will have
to account for the light cone effect in their analyses.
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In future work, we would like to include redshift space distortions with the light
cone effect. RSD have been investigated with respect to the 21 cm signal (e.g.,
Bharadwaj & Ali, 2004; Barkana & Loeb, 2005; Bharadwaj & Ali, 2005; Mao et al.,
2012; Jensen et al., 2013; Shapiro et al., 2013; Majumdar et al., 2013). However, these
previous explorations did not include the light cone effect in their analysis. We would
like to examine both simultaneously, and determine which scales are important for the
effects, and how measurements are affected by each. As the data thus far suggests,
smaller volumes are affected less by the light cone effect; the logical conclusion of this
observation would be to analyze the 2D power spectrum, where we only examine the
signal in the plane of the sky for a very narrow redshift range. By performing the
analysis in this fashion, we are no longer plagued by the problem of disproportionate
power from along the line of sight, but we potentially lose out on valuable three
dimensional information. Thus, we hope to make predictions at different points in
redshift/frequency space and then combine the results to reconstruct the 3D signal.
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Chapter 4

Modeling Quasars as Radiation
Sources

4.1 Introduction

Helium reionization is an important epoch in the Universe’s history, and the most
recent large-scale transition of the intergalactic medium (IGM). During the epoch of
hydrogen reionization, the first stars and galaxies emitted photons capable of ionizing
hydrogen and singly ionizing helium (whose ionization energies are 13.6 and 24.6 eV,
respectively). However, the spectra of these first sources did not contain a sufficient
number of high-energy photons capable of doubly ionizing helium, which requires a
much larger ionization energy (54.4 eV). Consequently, helium was predominantly
singly ionized following hydrogen reionization until a burst of quasar activity at red-
shifts 6 & z & 2. Quasars are thought to be the first objects to emit an appreciable
number of photons capable of doubly ionizing helium. However, because the birth of
quasars requires additional time for structure to form and sufficient mass to assem-
ble inside dark matter halos, this period of evolution occurs later in the Universe’s
history.

Recent and upcoming efforts to look for quasars include the Baryon Oscillation
Spectroscopic Survey (BOSS) of SDSS-III (Dawson et al., 2013), the Hyper Suprime
Cam of the Subaru telescope (Kashikawa et al., 2015), and DESI (Schlegel et al.,
2011). There are currently about 420,000 unique quasar objects (Flesch, 2015), with
this number projected to increase by an order of magnitude after the conclusion of
the next generation of experiments. This rich set of observations allows us to char-
acterize quasars to an unprecedented level of accuracy, and better characterize their
properties. This is especially true at high redshift (z & 6), where there are currently
few observations. Determining quasar properties at high redshifts is helpful for un-
derstanding the growth of structure, as well as providing observations of reionization
through measuring their absorption spectra.

Observations have shown that quasar activity peaks between 2 . z . 3 (Warren
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et al., 1994; Schmidt et al., 1995). The Gunn–Peterson trough (Gunn & Peterson,
1965) of helium has been detected at z > 3 (Jakobsen et al., 1994; Zheng et al., 2008;
Syphers & Shull, 2014), implying that some fraction of helium was still present as
He ii at these redshifts. Helium absorption then transitions to becoming patchy, with
extended regions of absorption and transmission in the He ii Lyman-α forest (Reimers
et al., 1997), and seems to be completed by z ∼ 2.7 (Dixon & Furlanetto, 2009;
Worseck et al., 2011), which coincides with the peak in quasar activity. However,
to observe the Gunn–Peterson trough of He ii, the sight line must be free of any
intervening Lyman-limit systems. This means that the number of observations for
these measurements is rather small (of O(10)).

When discussing helium reionization, it is important to understand the properties
of the ionization sources, such as quasars’ lifetimes and light curves. On the theoretical
side of the problem, there are some predictions for quasar properties, but also a fair
degree of uncertainty. By treating quasars as accretion disks around super-massive
black holes (SMBHs), one can show that the maximal conversion efficiency ε for
converting mass to luminosity is ε ∼ 0.3 (Thorne, 1974). Further, for matter accreting
onto an SMBH at the Eddington limit (Eddington, 1926), one obtains an exponential
increase in mass and luminosity with a characteristic time scale (called the Salpeter
e-folding time) of τ = 45 Myr for ε = 0.1 (Salpeter, 1964; Wyithe & Loeb, 2003).
Cosmological simulations that seek to capture the relationship between quasars and
their galaxy hosts have treated quasar activity as being the result of a major-merger
event between two galaxies (Springel et al., 2005; Hopkins et al., 2006, 2008), or a
cold-flow accretion of gas onto the central SMBH (Di Matteo et al., 2012). However,
there is no definitive evidence that quasars accrete exclusively at the Eddington limit,
or are limited to a single episode of highly luminous activity.

Observations can also help us understand the physics of quasars, though typically
at larger scales than theory or simulation. Since the entire rise and fall of quasar
number density spans a time of roughly 109 years, the quasar lifetime must be shorter
than this (Osmer, 2004, p. 324). At the other extreme, observations of the quasar
proximity zone show that quasar lifetimes should be at least 105 years (Martini, 2004,
p. 169). This time scale corresponds to the photoionization timescale of relatively
high-density neutral hydrogen systems observed to be ionized in the IGM, and so
the lifetime of the quasar must be at least this long in order to maintain the highly
ionized level of these systems observed in the Lyman-α forest. Further constraints
are difficult to obtain, and usually rely on indirect methods such as quasar clustering
measurements (e.g., Porciani et al. 2004; Porciani & Norberg 2006; White et al. 2012).
Estimates made using these methods yield values for the quasar lifetime that are 10–
100 Myr, with most values being ∼30 Myr, which is comparable to the Salpeter
e-folding time. Further, there are few definitive constraints on quasar light curves
(though see Hopkins & Hernquist 2009).

For the universal populations of quasars, the major pieces of data are their number
density as a function of luminosity and redshift (i.e., the quasar luminosity function
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(QLF) φ(L, z), e.g., Schmidt & Green 1983; Boyle et al. 2000; Ross et al. 2013), and
their spatial clustering (Outram et al., 2003; Porciani et al., 2004; White et al., 2012).
These observations can constrain scaling relations between quasars and their hosts
(e.g., Conroy & White 2013), or used to calibrate subgrid models for simulations (e.g.,
Feng et al. 2014). However, as mentioned above, the properties of individual quasars
are difficult to extract from these observations, due to degeneracies. The imposed
constraints are typically weak, and only provide order-of-magnitude precision.

Cosmological simulations are an ideal tool for furthering our knowledge about this
portion of the universe’s history. Helium reionization leaves a lasting impression on
the thermal history of the IGM: the relative hardness of quasar spectra means that
there is a large degree of photoheating of the IGM while reionization is occurring.
Thus, it is important to include hydrodynamics in simulations, in order to include
the effects of baryonic physics. Additionally, due to the relatively long mean free path
of far-UV and soft X-ray photons when looking at helium reionization, it becomes im-
portant to include radiative transfer calculations in simulations. Thus, semi-analytic
calculations that assume a sharp reionization front are typically poor approximations
of the physical situation. Even 1D radiative transfer codes are not realistic enough to
calculate the inhomogeneous reionization process, especially when reionized regions
begin to overlap. Due to the highly biased nature of quasar sources, this is typically
early in the reionization process. Therefore, 3D radiative transfer calculations are
essential for capturing the complicated physics of helium reionization. As mentioned
earlier, the large degree of thermal heating argues for simulations in which the hydro-
dynamics calculations are coupled to the radiative transfer ones. This work builds on
and extends previous investigations of helium reionization, which either were semi-
numerical (Furlanetto & Oh, 2008b; Dixon et al., 2014) or applied radiative transfer
in post-processing (McQuinn et al., 2009, 2011; Compostella et al., 2013, 2014).

Our approach to helium reionization uses simulations, with N -body, hydrody-
namics, and radiative transfer solved simultaneously. An essential first step of this
calculation is to understand the sources of reionization, and ensure that their prop-
erties match the observations as nearly as possible. To this end, we use the observed
QLF from the SDSS and the COSMOS survey across various redshift epochs (Masters
et al. 2012; McGreer et al. 2013; Ross et al. 2013, hereafter M12, M13, and R13) and
the clustering measurements from BOSS (White et al., 2012) to inform the proper-
ties of individual quasars for our simulation input. By using these two constraints,
as well as a formalism for populating dark matter halos with quasars that we will
outline below, we are able to select simulated quasar hosts that agree well with the
latest observational constraints. Specifically, matching the QLF means that we have
an observationally accurate number of ionization sources, and matching the cluster-
ing measurements means our topology of reionization (e.g., the size and overlap of
reionized regions) will be similar to the actual reionization process. The clustering
can also have an effect on the spatial correlations present in the radiation field, which
can affect the BAO measurement from the Lyman-α forest.
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This first part of the series discusses the way in which we create sources for our
simulations of helium reionization. In Sec. 4.2, we describe our simulation strategy,
and how we construct a quasar catalog from an N -body halo catalog. In Sec. 4.3, we
explain how we modify our quasar properties in order to match recent observations.
In Sec. 4.4, we explore implications of our findings for quasar populations. In Sec. 4.5,
we discuss implications for helium reionization. Finally, in Sec. 4.6, we summarize
our presentation and lay out future directions. Throughout this work, we assume a
ΛCDM cosmology with Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.045, h = 0.7, σ8 = 0.8, and
YHe = 0.24. These values are consistent with the WMAP -9 year results (Hinshaw
et al., 2013).

4.2 Modeling Quasars as Radiation Sources

4.2.1 Radiation-hydrodynamic Simulations

When modeling helium reionization, we employ the RadHydro code, which includes
N -body, hydrodynamics, and radiative transfer calculations simultaneously. The code
includes a particle mesh (PM) solver for gravity calculations, a fixed-grid Eulerian
code for solving hydrodynamics, and radiative transfer solved by performing ray-
tracing. For more details on the hydrodynamics portion of the simulation code, see
Trac & Pen (2004). For more details regarding the RadHydro code and its application
to hydrogen reionization, see Trac & Cen (2007) or Trac et al. (2008).

The simulation strategy we employ for our exploration of helium reionization con-
sists of two steps. First, a high-resolution N -body simulation is run for a given set
of initial conditions. Halos are found on-the-fly using the friend-of-friends algorithm,
and a corresponding catalog of spherical overdensity halos are saved at even steps
in cosmological time (Trac et al., 2015). Then, using the same initial conditions, a
medium-resolution simulation using the RadHydro code is run. In order to provide
accurate sources of ionizing photons for the radiative transfer calculations, it is nec-
essary to convert the halo catalogs produced from the first simulation into quasar
catalogs for the second simulation. Since the resolution of the RadHydro simulations
is comparatively low (typically a hydro grid unit is 10-100 h−1kpc), the simulations
are not able to accurately capture the subgrid, galaxy-level physics to include quasars
directly. Thus, either a halo-level scaling relation or observational constraint is needed
in order to create a physically reliable sample. Rather than having to rely on scaling
relations that require several steps to convert between halo mass and quasar lumi-
nosity, we use abundance matching to calculate luminosity as a function of mass, and
then use observations to create a population with the proper characteristics.

In order to calibrate the proper quasar properties to use, a suite of 10 N -body
P3M simulations with L = 1 h−1 Gpc and 20483 dark matter particles were run,
which corresponds to a particle mass of mp = 8.72 × 109 h−1M�. The total volume
is thus 10 (h−1 Gpc)3; the BOSS measurement of the two-point correlation function
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in White et al. (2012) has an effective volume of 9.8 (h−1 Gpc)3, so the volumes are
comparable. Then halo finding was performed which produced the associated halo
catalog snapshot every 20 Myr between 2 ≤ z ≤ 10. Since only comparatively massive
halos serve as hosts for the bright quasars of interest, the simulations have a sufficient
resolution to capture the required number of halos.

4.2.2 Quasar Light Curves

The first step in our model construction is to define the properties of individual
quasars. The two most important of these are the light curve (i.e., L(t)) and the
quasar lifetime. The most common model found in the literature for the light curve
of quasars is the so-called lightbulb model, in which a quasar emits radiation at a
constant luminosity for a lifetime tq before turning off. Though largely unphysical,
this model has the convenience of being simple to implement in calculations. A
further simplification is typically made in which it is assumed that tq is independent
of luminosity, so that this quantity becomes a universal property.

A more realistic model of the light curve is to assume an exponential form. This
type of model can be motivated physically by noting that it corresponds to Eddington
accretion onto the central SMBH. Several variations on this version include an expo-
nential ramp-up to some peak luminosity followed by abrupt turn off, a symmetric
exponential about some peak luminosity, or an exponential ramp-up with a power-
law fall off in luminosity (Hopkins & Hernquist, 2009; McQuinn et al., 2009). While
these models are more physically motivated, they are slightly more complicated. The
approach we outline below is able to reproduce a given luminosity function for quasar
light curves of this form.

Specifically, we consider here two classes of quasar light curves: the “lightbulb”
model and “exponential” model, defined as:

Llb(t) = LpeakΘ(t+ tq/2− t0)Θ(tq/2− t+ t0), (4.1)
Lexp(t) = Lpeak exp(−|t0 − t|/τ), (4.2)

where Θ(t) is the Heaviside theta function and t0 is the time when the quasar reaches
its peak luminosity Lpeak. In the exponential case, the parameter τ can be treated as
a free parameter in a manner analogous to tq in the lightbulb case. Nevertheless, we
relate τ to tq, which we will describe in more detail in Sec. 4.2.4.

Another consideration is the quasar lifetime itself, which in general need not be a
universal property of all quasars. We have parameterized quasar lifetime as a function
of luminosity using a power-law form:

tq(L) = t0

(
L

1010L�

)γ
, (4.3)

where we vary the values of t0 and γ. We explore models in which 107 ≤ t0 ≤ 109 yr,
and −0.25 ≤ γ ≤ 0.10. Positive values of γ imply that brighter quasars have longer
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lifetimes compared to dimmer ones, and γ = 0 is the case of a universal lifetime for
all quasars.

4.2.3 Triggering Rate

We have discussed considerations for the individual quasars (i.e., light curves and
lifetimes), and we wish to connect them to the universal quasar population (i.e., the
QLF). In order to do so, we use the concept of a triggering rate ṅ(Lpeak, z), which
dictates the differential number density of quasars that reach their peak luminosity
Lpeak as a function of luminosity and redshift per unit logarithmic luminosity. Using
the formalism outlined in Hopkins et al. (2006), we distinguish between the peak
luminosity of a quasar Lpeak and the instantaneous luminosity at which it is measured
for the construction of the QLF L, and relate the two with the triggering rate ṅ.
Essentially, the triggering rate must be convolved with the light curve of the quasars,
since the measured luminosity function reflects a given quasar’s current luminosity L
rather than its intrinsic peak luminosity Lpeak. The result of this convolution is the
observed QLF from the intrinsic triggering rate:

φ(L, z) =

∫
dt(L,Lpeak)

d logL
ṅ(Lpeak, z) d logLpeak . (4.4)

As explained in Hopkins et al. (2006), φ(L) is the QLF (i.e., the comoving number den-
sity of quasars per logarithmic bin in luminosity), and the quantity dt(L,Lpeak)/d logL
is the amount of time that a quasar spends in a logarithmic luminosity bin. Essen-
tially, the triggering rate can be thought of as analogous to the halo mass function,
though with the light curve convolution to account for changes in quasar brightness.
In simple cases of the light curve the triggering rate can be solved for analytically:
for a lightbulb model, dt(L,Lpeak)/d logL is a delta function at L = Lpeak, and so
the triggering rate is proportional to the quasar luminosity function:

ṅlightbulb(L, z) =
1

tq
φ(L, z). (4.5)

In the case of an exponential light curve as defined in Equation (4.2), we have

ṅexp(L, z) =
1

2τ

dφ(L, z)

d logL

∣∣∣∣
L=Lpeak

, (4.6)

where the factor of 2 arises because a quasar will be observed at a luminosity L while
its luminosity is increasing and then decreasing. In practice, the QLF is typically
reported in magnitude units rather than luminosity. One common convention is to
report the quasar’s absolute i-band magnitude at z = 2, Mi(z = 2). This quantity
is then converted to the specific luminosity at 2500 Å, L2500 , in cgs units (erg s−1

Hz−1) by using Equation (4) of Richards et al. (2006):

log10

(
L2500

4πd2

)
= −0.4[Mi(z = 2) + 48.60 + 2.5 log10(1 + 2)], (4.7)
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where d = 10 pc = 3.08 × 1019 cm. To find the approximate bolometric luminosity,
the relation of Shen et al. (2009) can be used to convert Mi(z = 2) to luminosity in
erg/s:

Mi(z = 2) = 90− 2.5 log10(L). (4.8)

One should note that this relation is approximate, and depends on the assumed
spectral energy distribution (SED) of the quasar. Equation (4.4) is soluble for a few
classes of light curves, such as the ones explored here.

4.2.4 Abundance Matching

The technique of abundance matching has already been applied to populations of
galaxies with great success (e.g., Simha et al. 2012; Hearin et al. 2013), and has also
been discussed in the context of quasars (e.g., Martini & Weinberg 2001; Porciani
et al. 2004; Croton 2009). However, we wish to extend the techniques mentioned
above to include different quasar light curves and lifetimes. The methods we outline
below are also fairly general, and can be extended to include semi-analytic models as
well. We start with the Ansatz for abundance matching of galaxies, namely that the
most luminous galaxies are found in the most massive halos. This makes intuitive
sense: more massive halos have more dark matter and baryonic matter to eventually
convert to stars. Specifically, halo mass is highly correlated with the luminosity in
the red bands, which shows the percentage of older stellar mass.

For quasars, we have a similar situation where the most luminous quasars are
found in the most massive halos. However, in this case the situation is slightly more
complicated because quasars have a lifetime which is much shorter than the period
from the halo’s formation to the activation of the quasar. Thus, we need to introduce
a factor to account for the fact that not all halos host an active quasar. If we assume
that the fraction of halos hosting an active quasar is universal (i.e., independent of
halo mass or quasar luminosity), we can express abundance matching for quasars,
assuming a lightbulb light curve, as:

φ(> L) = fonnhalo(> M). (4.9)

Expressed this way, fon is simply the fraction of halos of a massM that host an active
quasar. Alternatively, we could define this fraction in terms of the quasar lifetime:

fcov × fon(L, z) =
tq(L)

tH(z)
, (4.10)

where in some models tH(z) is formulated as the halo lifetime (Martini & Weinberg,
2001), or the Hubble time (Conroy &White, 2013). We follow Conroy &White (2013)
and use the Hubble time. As we shall see, though, the exact choice for tH(z) does not
strongly affect the results. We have also introduced the quantity fcov, which represents
the solid angle fraction that the average quasar covers (where 4π steradians represents
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fcov = 1). Since in general, quasars likely have a finite opening angle (Borisova et al.,
2015), what is actually constrained in the product of fcov × fon. However, in the
following analysis, we assume that fcov = 1, though in future work we can explore the
impact of setting fcov to a smaller value. For the redshifts of interest, for a uniform
value of tq = 30 Myr and fcov = 1, this implies that fon ∼ 0.1− 1%.

We can generalize the procedure of abundance matching to different light curves
by using the triggering rate. In integral form, we can write abundance matching as
equating the cumulative number of quasars above a particular peak luminosity given
by the triggering rate with the cumulative number of halos given by the halo mass
function. The total number of halos which should host quasars within a time interval
∆t is:∫

∆t

∫ ∞
L

ṅ(L∗) d logL∗ dt =

∫
∆t

∫ ∞
L

dnhalo(L∗)

d logM∗
d logM∗

d logL∗
dP

dt
d logL∗ dt

=
∆t

tH

∫ ∞
M

dnhalo(M∗)

d logM∗ d logM∗ .

(4.11)

This form of our abundance matching equation becomes the central mechanism by
which we are able to equate quasar luminosity with host halo mass. In this con-
struction, we have implicitly used the mass-to-light ratio d logM/d logL to convert
halo mass to quasar luminosity. Additionally, we have introduced the factor dP/dt
to represent the probability that an individual halo will host a quasar. We have set
this quantity to be equal to 1/tH . Thus, for the case of a lightbulb light curve and
a universal quasar lifetime, this formalism reduces to Equation (4.9). Formally, this
expression is an expansion of ṅ(L∗, z) about z that is first-order accurate to ∆t/tH
(Hopkins et al., 2006). Thus, so long as the time-steps between determining the trig-
gering rate are small compared to tH (defined either as the Hubble time or the halo
lifetime, both several orders of magnitude longer than the typical quasar lifetime),
this expression should reproduce the target QLF.

In the exponential case, we are free to choose the parameter τ in any way that
we like, as long as it is constant with respect to L (though it may vary with Lpeak).
We have chosen τ such that ṅ(Lpeak) is the same between the lightbulb and expo-
nential cases for all luminosities. We accomplish this by equating Equation (4.5) and
Equation (4.6), and solving for τ in terms of tq. The expression involves the ratio of
the QLF and its derivative. This means that when we perform abundance matching,
the same implicit mass-to-light ratio is used in the two cases. Since the halo mass
function is the same between the two cases (due to the same population of halos
being used), and the functional form of ṅ is the same, we must have the same form
of d logM/d logL . This has the advantage of allowing us to apply certain intuition
from the lightbulb case to the less straightforward exponential case. The downside to
this approach is that when exploring the parameter space of quasar lifetimes tq in the
lightbulb case, it is not immediately obvious how this translates to the exponential
time constant τ , since we effectively have different values of tq for different luminosi-
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ties. For instance, even in cases where tq is independent of luminosity, τ still changes
as a function of L. However, the benefits of being able to interpret the results of
the exponential case using the intuition provided by the lightbulb case outweigh the
downsides of not exploring parameters in τ directly.

The general procedure is as follows.

1. The halo mass found from the halo catalog at redshift zcat is read and converted
to an expected number density in a particular cosmology using the universal
mass function described in Tinker et al. (2008). The fitted form of the mass
function is used rather than the empirical one from the catalog in order to
decrease the variation in number density at the high-mass end, since these
quasars are disproportionately important for the reionization process.

2. Using Equation (4.11), the halo number density is converted to an expected
quasar number density using a specified QLF.

3. The quasar magnitudes are binned into equal intervals in magnitude ∆M , such
that the expected triggering rate ṅ(M, zcat) . . . ṅ(M + ∆M, zcat) is found, which
is converted from a number density to a total number Ṅ(M) using the volume
of the simulations.

4. Within each magnitude bin, each quasar is assumed to have an equal proba-
bility of becoming active. Each quasar candidate is randomly turned on with
probability 1/Ṅbin(M).

5. To ensure that the volume self-consistently follows the merging of the underly-
ing host halos, the quasars are propagated forward using a halo merger tree. By
design, the halo catalog snapshots are made at times that are shorter than the
expected lifetimes of the quasars. This approach allows for halos hosting quasars
to be tracked throughout the simulation. In most cases, an active quasar from
time step i− 1 in a progenitor halo passes to the single descendent halo at time
step i. Additionally, this halo hosting an active quasar is not eligible to host a
new quasar. This approach covers the majority of halos for the majority of time
steps. However, there are several special cases related to merger events worth
discussing. Specifically, when two progenitor halos merge into a single descen-
dent and one of them is hosting an active quasar, the descendent halo inherits
the active quasar. If a single active progenitor halo splits to form two descen-
dent halos, the larger halo retains the quasar. In the case of a merger between
two active quasar halos, only the larger quasar survives. These cases represent
a comparatively few number of instances of our total population evolution, and
do not strongly influence our conclusions.
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Dataset z log10(φ∗) M∗
0 k1 k2 α β

R13 2.2-3.5 −5.93+0.02
−0.01 −26.57+0.04

−0.02 −0.689+0.021
−0.027 −0.809+0.033

−0.166 −1.29+0.15
−0.03 −3.51+0.09

−0.18

M12 3.2 −6.58+0.26
−0.79 −27.03± 0.68 . . . . . . −1.73± 0.11 −2.98± 0.21

M12 4 −7.12+0.62 −27.13± 2.99 . . . . . . −1.72± 0.28 −2.6± 0.63
M13 5 −8.47+0.20

−0.24 −28.70+0.27
−0.33 −0.47 . . . −2.03+0.15

−0.14 −4.00
M13 5 −7.63+0.30

−0.25 −27.34+0.60
−0.49 −0.47 . . . −1.50 −3.12+0.28

−0.41

M13 5 −7.93+0.03
−0.03 −27.88 −0.47 . . . −1.80 −3.26

Table 4.1: A list of the QLF parameters of the datasets incorporated. These data are from the QLF as reported in
Masters et al. (2012), McGreer et al. (2013), and Ross et al. (2013). In the table, the parameter φ∗ has units of Mpc−3

mag−1. As discussed in the text, the value of M∗
0 is defined such that M∗

0 = Mi(z = 2) = M1450− 1.486. The parameters
k1 and k2 are defined for models with redshift evolution in Equations (4.13)–(4.15). Note that the authors of M12 provide
a value for φ∗0 at z ∼ 4 where the reported error is greater than the value itself. Since this value must be positive, the
resulting lower-bound is unphysical. We reproduce the value and upper-bound here for completeness, but do not include
this value directly when determining the values of the QLF. See Appendix B.1 for further details. Additionally, in M13,
the authors provide three fits, each with at least one parameter held constant. Values without error ranges indicated
correspond to the parameters held fixed for a particular fit.
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4.2.5 The Quasar Luminosity Function

Throughout this work, we use a series of QLFs as determined at different epochs.
For relatively low-redshift (2 . z . 3), we use the QLFs as determined by R13 from
the BOSS survey, specifically the high-z stripe 82 sample (S82) form which includes
luminosity evolution and density evolution (LEDE). Above a redshift of 3, the QLF
has been measured at z ∼ 3.2 and z ∼ 4 by M12 using data from COSMOS. 1 At
z ∼ 5, the QLF has been measured by M13 using data from the SDSS. 2 Although
these works use slightly different values for cosmological parameters from the ones
assumed here, the impact on the reported quantities is minimal.

In order to span the different epochs over which the luminosity function has been
measured, it is necessary to combine the different data sets. All of the data sets fit
to a double power law form of the QLF, written as:

Φ(M) =
φ∗

100.4(1+α)(M−M∗) + 100.4(1+β)(M−M∗)
, (4.12)

where Φ is the comoving number density of quasars of magnitude M per unit mag-
nitude, φ∗ is the normalization of the QLF, α is the faint-end slope of the luminosity
function, β is the steep-end slope (which is reversed from the parameterizations of
M12), and M∗ is the so-called break magnitude where the luminosity function tran-
sitions from the faint-end to the steep-end. In most formulations at high-redshift,
redshift evolution is incorporated by a change in φ∗, M∗, or both, that is linear in
redshift. For the data from R13, the evolution is given by the equations:

log10 φ
∗(z) = log10 φ

∗
0 + k1(z − 2.2), (4.13)

M∗
i (z) = M∗

0 + k2(z − 2.2). (4.14)

For the data in M13, there is linear evolution in log10 φ
∗ as well, given as:

log10 φ
∗(z) = log10 φ

∗
0 + k1(z − 6). (4.15)

Table 4.1 lists the parameters that we include from the measurements of R13, M12,
and M13. The values from M12 are not included in the fitting procedure directly, and
serve primarily as a consistency check due to their comparatively large error bars. The
parameters from M13 are determined at z ∼ 5, and the ones from M12 are determined
at z ∼ 4 and z ∼ 3.2. Note that the authors of M13 provide 3 independent fits to
their data, which are all incorporated into the final QLF parameterization. (See

1Additionally, the QLF at z ∼ 4 has also been measured by Glikman et al. (2011) and Ikeda
et al. (2011). As noted in M12, the normalization of the QLF of Ikeda et al. (2011) is comparable,
whereas the normalization of Glikman et al. (2011) is larger than the others by a factor of ∼ 4. M12
notes that the difference can be caused by contamination of the faintest-magnitude bins from dwarf
stars and high-redshift galaxies. In the following analysis, we use the results from M12.

2An upper limit for the QLF at z ∼ 5 was found by Ikeda et al. (2012), which is consistent with
the results of M13.
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Appendix B.1 for more details.) For the measurements from R13, whose fiducial
LEDE model include redshift evolution in φ∗ and M∗, the model is valid over a range
of redshift, from 2.2 ≤ z ≤ 3.5. For the purposes of generating our quasar catalogs,
we are interested in exploring the QLF until z = 2. For the sake of simplicity, we
simply extend the LEDE model from R13 to this redshift. Although the LEDE fit is
ostensibly not valid below z = 2.2, we expect helium reionization to be largely finished
by this redshift, and so the precise form of the QLF at z ∼ 2 is not of fundamental
importance to our study.
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Figure 4.1: A comparison of the com-
posite quasar luminosity functions from the
SDSS+COSMOS measurements (Ross et al.,
2013; Masters et al., 2012; McGreer et al., 2013)
to our abundance matching method, plotted with
Poisson error bars. The two different quasar
models (defined in Table 4.3) are offset from each
other for visual clarity. The agreement is ex-
cellent for comparatively dim quasars which are
more common, but there is some discrepancy for
bright objects. The reason for this disagreement
is primarily due to Poisson noise, since these ob-
jects are rare even for the large (1 (h−1Gpc)3)
simulation volume. At low luminosity in the
exponential case, the completion limits of dark
matter halo hosts at this mass become notice-
able. See Sec. 4.2.4 for further discussion.

Also, for the value of M∗, it
is necessary to convert to a single
magnitude system. As explained
in Sec. 4.2.3, we use Mi(z = 2),
the absolute i-band magnitude at
z = 2. The QLF of M12 and
M13 use M1450, which is related to
Mi(z = 2) byMi(z = 2) = M1450−
1.486 (Richards et al. 2006; Ross
et al. 2013, Appendix B). Note
that this conversion assumes that
the quasar SED follows a power-
law with an effective spectral in-
dex of α = 0.5 (using the conven-
tion that fν(ν) ∝ ν−α). Modi-
fying the spectral index α changes
the magnitude conversion, so care
must be taken when converting be-
tween magnitude systems. See Ap-
pendix B.1 for further discussion.

To combine the R13, M12, and
M13 data sets into a single set of
quantities, we first assume that the
results from R13 are accurate for
redshifts z ≤ 3.5. This is the
nominal limit of the LEDE fits,
and though there are small differ-
ences between the fit QLF and the
binned data, overall the fits are ex-
cellent. To incorporate the results
at higher redshifts, we cast the four
parameters of the QLF (φ∗,M∗, α,
and β) as quantities that have lin-
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Parameter Fiducial value Parameter range
log10 φ

∗
0 −6.82 –

c1 −0.790 [−1.10,−0.536]
M∗

0 −27.6 –
c2 −0.238 [−0.716, 0.170]
α0 −1.29 –
c3 −0.324 [−0.493,−0.140]
β0 −3.51 –
c4 0.0333 [−0.327, 0.260]

Table 4.2: A list of the parameters used in Equations (4.16a-4.16d) based on the data
listed in Table 4.1.

ear evolution in redshift. We define these parameters as:

log10 φ
∗(z) = log10 φ

∗
0 + c1(z − 3.5), (4.16a)

M∗(z) = M∗
0 + c2(z − 3.5), (4.16b)

α(z) = α0 + c3(z − 3.5), (4.16c)
β(z) = β0 + c4(z − 3.5). (4.16d)

These parameterizations are applied to redshifts where z > 3.5. The constant values
are defined to be equal to the values of R13 at z = 3.5, and the values for the
slopes (c1–c4) are allowed to take on a range of values. The range is generally chosen
such that the values for the different parameters brackets the range of best-fit values
provided by the highest redshift (M13) data. The fiducial values for the slopes are
taken to be ones that reasonably reproduce the high-redshift measurements. Table 4.2
shows the fiducial values for the slopes, as well as the range of values for the parameters
at z ∼ 5 used in the parameter space exploration in Sec. 4.5. For a complete discussion
on selecting the parameters for the QLF, see Appendix B.1.

Figure 4.1 shows the combined QLF from R13, M12, and M13 (which at this
epoch is essentially that of R13), as well as two different quasar models at z ∼ 2.4.
We can see that there is generally very good agreement between the constructed
quasar catalog and the target luminosity function, as should be expected. The differ-
ences between the constructed catalogs and target luminosity function are typically
on average . 5%, which is comparable to or smaller than the uncertainties in the lu-
minosity function itself at these redshifts. At high luminosities (Mi . −28), though,
there are some comparatively large differences that can arise between the predicted
and empirical luminosity functions. This deviation is largely due to Poisson shot-noise
introduced by the rarity of the objects. For objects in this luminosity range, there are
typically only a few objects (O(10)) in the entire 1 (h−1Gpc)3 volume. At the dim end
of the QLF, there can be insufficient halos of a particular mass given the mass reso-
lution of our simulation. The minimum halo mass is Mhalo,min = 4.36× 1011 h−1M�.
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Since quasars with Mi ≤ −25 are most important for this study, this does not affect
our results significantly.

Throughout most of the following analysis, we focus our attention on several
models in particular, parameterized in terms of t0 and γ as in Equation (4.3). The first
four of these models have particularly good agreement with the BOSS measurements.
The last two are included to demonstrate how the clustering signal changes as a
function of t0 for a fixed value of γ: models L1, L3, and L4 all have the same γ value.
We summarize these models in Table 4.3.

4.3 Clustering Measurements

4.3.1 Two-point Correlation Function

By construction, our method matches the input QLF at all redshifts, regardless of
the individual properties of the underlying quasar population. However, we are not
guaranteed to match the observed clustering of quasars. Changing the implicit mass-
to-light ratio of Equation (4.11) through changing the quasar lifetimes will affect how
halos are populated with quasars. In general, longer quasar lifetimes lead to quasars
of the same luminosity being matched into hosts of larger masses. Since their hosts are
more biased, this leads to quasars of the same luminosity showing a larger clustering
signal. This is true at all luminosities. We want to match the clustering because it
can affect the topology of reionization. There can also be spatial correlations present
in the radiation field as a result of reionization, which are important for making
measurements of the baryon acoustic oscillation (BAO) from the Lyman-α forest
(e.g., White et al. 2010; Slosar et al. 2013).

Here, we explore how to include clustering measurements from the two-point cor-
relation function in our quasar catalog. Recent results from the BOSS survey for
the clustering of quasars in the redshift range of interest are presented in White
et al. (2012). The above work examines the clustering signal of quasars in both 2D-
projected and 3D-redshift-space correlation functions at intermediate scales (3 . s .
25 h−1Mpc). The authors also introduce luminosity cuts to make the results more
robust. For the purposes of this comparison, we consider their selection for which
they imposed luminosity cuts on both the bright and faint ends, so that only objects
with −25 ≥Mi ≥ −27 were considered across the entire redshift range (Sample 4 as
defined by the authors). For a fair comparison, we impose similar cuts on our object
selection. We also examine the redshift evolution of the results, and compare against
the high-z/low-z samples (Samples 5 and 6) as well. See Appendix B.2 for further
discussion of these different redshift samples.

We explore the parameter space of available quasar models by examining the
lightbulb and exponential light curves defined in Equations (4.1) and (4.2), as well

3t0 and γ as defined in Equation (4.3).
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Model Name Light curve log10(t0/yr)3 γ

L1 Lightbulb 7.75 0
L2 Lightbulb 8.25 −0.125
E1 Exponential 7.25 0
E2 Exponential 7.75 −0.15
L3 Lightbulb 7 0
L4 Lightbulb 8.5 0

Table 4.3: A list of the parameters of some quasar models considered.

as luminosity-dependent quasar lifetimes defined in Equation (4.3), parameterized
by t0 and γ. For each combination of parameters, we construct a quasar catalog in
the manner described above.4 Then, we extract from this catalog all objects that
satisfy the magnitude constraints at the central redshift of the survey z = 2.39. This
redshift represents the average redshift of quasars chosen in the BOSS sample; the
actual quasar objects span in redshift from 2.2 < z < 2.8. However, as is noted in
White et al. (2012), the redshift evolution of the signal is weak. Thus, extracting
objects from our quasar catalogs at a single redshift rather than a range should have
little effect on our overall conclusions. We measure the monopole of the two point
correlation function using the “natural estimator” ξ:

ξ(s) =
〈DD(s)〉
〈RR(s)〉 − 1, (4.17)

where 〈DD(s)〉 is the average number of quasar pairs from the quasar catalog sepa-
rated by a real-space distance of [s−∆s/2, s+ ∆s/2], and 〈RR(s)〉 is the number of
pairs of points at the same separation drawn from a distribution with Poisson noise.

4.3.2 Calculating χ2 Values

In order to quantify the statistical uncertainty in our catalog, we ran a suite of 10 N -
body simulations with different initial conditions. We then performed our abundance
matching procedure on each of the different simulations, including several realizations
for each volume. Since our abundance matching procedure stochastically determines
which halos should be hosting active quasars at a given time step, we create several

4There are several extreme models where the number of objects is significantly fewer than the
number predicted by the quasar luminosity function. This is not a failure of our methodology, but
rather instances of there being too few halo objects of a given mass to host quasar objects. In
essence, fon is so small that we reach the resolution limits of the simulation. In these cases, we
add particles from a second-order Lagrangian perturbation theory (2LPT) simulation of the same
initial conditions at the same redshift in order to define a set of “random” particles that are still
representative of the underlying matter distribution. We randomly sample from these particles
in order to fill out the catalog to the expected number. This ensures that we do not measure a
statistically significant clustering measurement when the catalog is clearly unphysical.
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quasar catalogs for each individual halo catalog, using a different initial random seed
(three realizations per volume for these results). Additionally, we have augmented the
effective number of samples by including redshift space distortions along the different
principal axes of the simulation. This strategy gives us a total of 90 samples for which
to measure the clustering signal. The best estimate for the correlation function ξ(s)
for a given radial bin si is given by averaging over all of the individual estimates ξk:

ξ̄(si) =
1

N

N∑
k=1

ξk(si) (4.18)

We then estimate the covariance between the radial bins by computing the entries
of the covariance matrix Cij. We compute the entries of the covariance matrix as
(Zehavi et al., 2005):

Cij =
1

N

N∑
k=1

(
ξk(si)− ξ̄(si)

)(
ξk(sj)− ξ̄(sj)

)
. (4.19)
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Figure 4.2: The correlation matrix for the
L1 model. Note how the matrix is domi-
nated by the diagonal entries, which is to
be expected for shot-noise dominated mea-
surements. The small off-diagonal terms
suggest that the covariance matrix has con-
verged numerically, and should be stable
when inverting. This type of structure is
seen in all models considered.

The correlation matrix entries for
our model L1 is plotted in Figure 4.2.
Notice that the diagonal entries dom-
inate, which means that the bins are
mostly independent of each other and
dominated by shot-noise (Valageas et al.,
2011; White et al., 2012). Implicitly, the
samples have been treated as being in-
dependent, and this is almost surely not
the case. Although the 10 volumes as
a whole can be treated as being statis-
tically independent, the different real-
izations based on the same halo catalog
are likely correlated. Further, the pro-
jections of peculiar velocities along dif-
ferent axes for the same realization are
also likely to produce correlated results.
However, producing a sufficient number
of independent realizations to decrease
the noise in the covariance matrix is
computationally infeasible. Further, the
variance in the clustering signal among
quasar catalog realizations for a given

(t0, γ) pair is comparable to small displacements in the t0–γ parameter space, so
it is necessary to include this source of uncertainty. Since we are interested only
in finding models that are consistent with the BOSS measurements which have their
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own set of observational uncertainties, we feel that this approach produces sufficiently
accurate results.
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Figure 4.3: The quasar two-point corre-
lation function from White et al. (2012),
compared to several models whose param-
eters are described in Table 4.3. All mea-
surements were made at the same values of
s, but are offset from each other for visual
clarity. The shaded error regions on the
measurements from BOSS are the reported
1σ error bars, and the error bars on the
models are the square root of the diagonal
elements of the covariance matrix. Note
that for the same value of γ, increasing t0
leads to a larger clustering signal (compare
L3, L1, and L4 in order of increasing t0).
See the text for additional details.

Once the entries of the covariance
matrix have been computed, the differ-
ence vector δ(si) ≡ ξmodel(si)− ξBOSS(si)
is calculated. The correlation function
ξBOSS is fit to a power law: ξBOSS(s) =
(s/s0)β, where the authors have fixed the
value of β = −2. In order to investigate
the impact this choice has on the conclu-
sions, we performed fits on the correla-
tion function measured from our quasar
catalogs using two different parameteri-
zations: one where the best-fit value of s0

was found when fixing β = −2, and an-
other where the value of s0 and β were
both fit. In the length scales used for
our analysis (3 ≤ s ≤ 25), the deviation
of β from the fiducial value of −2 was
small, typically less than 5%. Further-
more, the values for s0 were also largely
similar between a fixed slope or a varying
one, with deviations typically less than
1%. Thus, the choice to set β = −2 does
not strongly bias the results presented
here, or the values reported in ξBOSS.

When comparing one of the quasar
models with the BOSS results, the χ2

value of the model is then given by:

χ2 = δTC−1δ. (4.20)

To define the model that fits the BOSS observations best, we want to minimize the χ2

value of the model. A two-dimensional space in t0 and γ is constructed for both of the
light curves, this space is explored using regular grid points. Following the analysis
of White et al. (2012), a χ2 distribution with 9 degrees of freedom is assumed. Using
this distribution, the χ2 value for a particular model is converted to a confidence
interval. An equivalent nσ value is computed based on the confidence interval (1σ if
the enclosed probability is 0.683, 2σ if it is 0.955, etc.). This statistic demonstrates
how “consistent” a particular model is with the BOSS observations.

Figure 4.3 shows the clustering measurements for several of our well-fitting models
compared to the BOSS measurements. The values of these models are given in Ta-
ble 4.3. In general, as t0 increases at a fixed value of γ, the clustering signal increases
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as well. Compare specifically the L3, L1, and L4 models, which have the same value
of γ but have respectively increasing values of t0. Mathematically, this behavior can
be seen from the form of Equation (4.11): for the same luminosity and mass func-
tions but a larger value of fon ∝ tq, quasars of the same luminosity will shift to more
massive host halos. Since the clustering signal increases with the mass, it follows that
increasing t0 will increase the clustering signal. For similar reasons, increasing values
of γ for constant values of t0 are also associated with a stronger clustering signal,
since this also effectively increases the quasar lifetime tq.

4.3.3 Characteristic Luminosity and Lifetime

Figure 4.4 shows the χ2 values in the two-dimensional parameter space t0 and γ, as
defined by Equation (4.3), for the different light curves. The region of good agree-
ment between the BOSS measurements and our models takes on a linear relationship
between log10(t0) and γ. Such a relationship can be parameterized as:

log10(t0/yr) = log10(teff/yr) + L0γ. (4.21)

The parameters teff and L0 can be thought of as a characteristic timescale and
a characteristic luminosity, respectively. From the functional form of our power-
law for quasar lifetime in Equation (4.3), L0 can be interpreted as changing the
normalization luminosity. This is the luminosity at which all models have the same
lifetime, regardless of the value of γ. In other words, the characteristic luminosity of
the power law becomes:

log10(Leff/L�) = 10− L0, (4.22)

where L0 is defined in Equation (4.21). The parameter teff is the characteristic time
because all models have this same lifetime at the luminosity Leff .

For the lightbulb model, the best-fit values for teff and Leff are log10(teff/yr) = 7.76
and log10(Leff/L�) = 13.29. (See Table B.1 in Appendix B.2 for evolution of these
parameters with redshift.) The characteristic luminosity inferred from this value is
Leff = 1013.29 L�, which has a corresponding magnitude of Mi = −27.2. This value is
not surprising, given that quasars were selected for the clustering measurements near
this magnitude range. More interesting is the value of log10(teff/yr) = 7.77, which
gives a characteristic lifetime of 107.77 = 59 Myr. This is a quasar lifetime that is
slightly longer than those typically quoted in the literature (Yu & Tremaine, 2002;
Yu & Lu, 2004; Porciani et al., 2004; Conroy & White, 2013), which are closer to the
Salpeter e-folding time scale or shorter (∼45 Myr for a quasar accreting at Eddington
luminosity and a mass conversion efficiency of ε = 0.1). Although teff is slightly higher
than these values, it is within a factor of 2.

60



−0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05
γ

7.0

7.5

8.0

8.5

9.0

lo
g

10
(t

0
yr
−

1
)]

Lightbulb
Exp

Figure 4.4: A comparison of the parame-
ter space exploration in terms of the pa-
rameters t0 and γ from Equation (4.3).
Both the parameter space for the light-
bulb model (Equation (4.1)) and exponen-
tial model (Equation (4.2)) are shown. The
dashed lines represent the best linear fits to
the data for a particular light curve. The
class of models that are consistent with the
BOSS measurements at 1σ and 2σ corre-
spond to the darkly and lightly shaded re-
gions. In general, we find that for the ex-
ponential model, shorter lifetimes are pre-
ferred (smaller values of t0 for the same
γ). Since we abundance match against the
quasar’s peak luminosity, and the quasar
spends comparatively little time at or near
the peak luminosity, we effectively increase
the clustering signal for lower luminosity
quasars.

In the exponential model, the best
fit values for teff and Leff defined in
Eqn (4.21) are log10(teff/yr) = 7.18 and
log10(Leff/L�) = 13.05. This luminos-
ity implies a slightly dimmer character-
istic luminosity (Mi = −26.6). As dis-
cussed in Sec. 4.2.4, there is not a sin-
gle τ for all quasars for a given value
of teff : L ≈ L∗ quasars have τ ≈ teff ,
with brighter quasars having τ > teff .
However, the difference between τ and
teff does not differ by more than a fac-
tor of 2 in either direction, and so to a
good approximation τ ∼ teff , especially
for the luminosity range used to match
the clustering measurements. Compared
to the lightbulb case, the quasars with
an exponential light curve have a shorter
characteristic lifetime of 15.1 Myr. The
characteristic lifetime is smaller for the
exponential than in the lightbulb case
because quasars do not shut off entirely
after a single lifetime, so the time that a
quasar is “bright enough” to be included
within the luminosity cuts is longer than
its lifetime teff . This lifetime is about a
third of the Salpeter e-folding time scale,
which implies that if quasar light curves
are roughly exponential, the combina-
tion of the measured QLF and the clus-
tering measurements favors quasars that
either radiate at luminosities dimmer
than their Eddington ratio (L/Ledd < 1),
have a mass-conversion efficiency is less that the fiducial value (ε < 0.1), or both. Un-
fortunately, since our model does not track the underlying physics present, we are not
able to distinguish between these two cases.

The reason for the different best-fit values between the two models can be un-
derstood as follows. By construction, we have fixed the lifetime of the exponential
quasars such that their peak luminosity to mass ratio is the same as in the case of the
lightbulb for a given choice of t0 and γ. (See Sec. 4.2.4 for more details.) However, the
mass-to-light ratio for the two light curves are significantly different. This is due to
the fact that the observed luminosity for an exponential quasar can be much smaller
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than its peak luminosity. A particular luminosity range is selected for the clustering
measurements, but the clustering of these quasars is tied to their peak luminosity
rather than the observed one. Thus, quasars will tend to have higher clustering at a
given luminosity in the exponential case compared to the lightbulb, since they spend
comparatively little time at or near their peak luminosity. This luminosity selection
includes quasars with a higher peak luminosity than the chosen range (and thus a
higher clustering signal), so we must also include quasars that have lower mass hosts
to match the average clustering signal. This means that there is a larger spread in host
mass compared to the lightbulb case. This behavior explains why the characteristic
luminosity is slightly smaller for the exponential model compared to the lightbulb:
there is an increased number of low-luminosity quasars occupying high-mass hosts.
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Figure 4.5: The range of quasar lifetimes
for models with the best-fit values of t0
as a function of γ, based on the linear re-
lationship extracted in Equation (4.21).
The solid regions show the span in
quasar lifetimes, while the dashed line
shows the median value within a given
model. Note that the median value
is fairly constant across all quasar life-
times. Thus we are able to character-
ize a quasar model reasonably well us-
ing the characteristic lifetime. The com-
parative large spread in quasar lifetime
in the exponential case is due to our
method of selecting tq, rather than re-
flecting a truly large spread in the data.
See the text for additional details.

Figure 4.5 shows the range of quasar
lifetimes as a function of model parame-
ter γ. The quasar lifetime is broadly simi-
lar across different model choices. The ex-
ponential model has a lower overall value
due to the effect discussed above, i.e., that
quasars from a higher peak luminosity will
be included in the sample, bringing along a
higher clustering signal. Since this is true
for nearly all the quasars in the sample,
there is an overall decrease in the selected
lifetime of quasars. The large difference
in the span of quasar lifetimes is due to
the way that we have defined the quasar
lifetime in the exponential model. As dis-
cussed in Sec. 4.2.4, the exponential lifetime
τ is selected such that the same relationship
between host mass and quasar peak lumi-
nosity exists in the exponential case as in
the lightbulb case. Even in a model where
for the lightbulb tq is independent of L (i.e.,
when γ = 0), the exponential model param-
eter τ does have luminosity dependence. In
general, quasars with luminosities above L∗
will have a lifetime longer than an equiva-
lent luminosity in the lightbulb case for the
same choice of t0 and γ in Equation (4.3),
and those with low luminosities will have a
shorter lifetime. This choice for our model
leads to the spread in lifetimes of a factor
of ∼5, as seen in the case of γ = 0. For
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models in which γ > 0, there is a widening in the range of values. This is due to the
fact that brighter quasars live longer than dimmer ones. Since our choice of quasar
lifetime already enforces this difference, these models see an increased effect. Con-
versely, for γ < 0, there are competing effects between brighter quasars being less
long-lived due to the choice of γ, but still simultaneously living longer than their
lightbulb counterparts due to the choice for tq. The latter effect wins out, and these
quasars end up having a significantly larger spread than in the lightbulb case. Note
that the contours in this figure are smooth compared to Fig. 4.4 because these are
results lying along the best-fit line, and the figure shows the range in values rather
than a single number (i.e., the χ2 value) that fluctuates as a function of position in
t0 and γ.

4.4 Discussion

4.4.1 Mass-to-Light Ratio

The combination of the QLF and clustering measurements produces an important
set of constraints on the space of potential quasar models. Here we investigate the
implications of these models. One important implication is the mass of a typical halo
for a given quasar luminosity. It is trivial to predict this for the case of a lightbulb
model, but less straightforward for the case of the exponential model. Here the peak
luminosity Lpeak is used to define the mass-to-light ratio, since this is the quantity
used in our abundance matching approach. This ratio defines a typical mass for
quasars, which can be compared with results of previous analysis (e.g., Martini &
Weinberg 2001; Shen et al. 2007; White et al. 2012).

Figure 4.6 shows the luminosity of quasars as a function of the mass of the host
halo for the lightbulb and exponential models for all combinations of t0 and γ. This
plot shows the mass to light ratio of the entire catalog. The weight assigned to the
luminosity as a function of mass Lpeak(M) for a particular model i is given by a χ2

likelihood. We also find the ± 1 and 2 σ values that enclose 68 and 95% of the
likelihood.

Figure 4.7 shows the mass range as a function of the model parameter γ. Note
that the range is essentially constant with respect to γ. By averaging the median
mass across all values of γ, a characteristic mass for the two models can be defined.
This characteristic mass is 2.5× 1012 h−1M� for the lightbulb model, and 2.3× 1012

h−1M� for the exponential model. These values are broadly consistent with previous
studies of quasar clustering measurements (e.g., Porciani et al. 2004; Croom et al.
2005; Porciani & Norberg 2006; Lidz et al. 2006; White et al. 2012). Since in all
models the same clustering signal of the quasars is being selected, there is an implicit
requirement for the hosts to lie within a certain mass range.
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Figure 4.6: A comparison of the mass-
to-light ratio between the different quasar
models. We have computed this ratio for
each model in our parameter space, and
weighted their contribution by their cor-
responding χ2 value. The lines show the
median value by weight and the shaded re-
gions show ±1σ and 2σ. Note that for a
given luminosity, a quasar in the exponen-
tial model is found in a halo with a smaller
mass. This is due to the fact that quasars
with a peak luminosity significantly greater
than the observed one are included in the
luminosity range selected for the cluster-
ing measurements. These hosts have a
higher clustering signal than quasars with
a peak luminosity in the luminosity selec-
tion. This means we must also select lower-
mass objects as well. See the text for ad-
ditional details.

Additionally, the mass range in the
exponential case is significantly larger
than that of the lightbulb model. This is
again related to the fact that due to the
light curve, quasars with a higher clus-
tering signal are included within the lu-
minosity sample, and so there must also
be lower-mass hosts included as well to
balance the average clustering strength.
There is a significantly larger spread
above the median mass than below. The
reason for this asymmetry is due to the
difference in number density: since the
high mass objects are rarer, a compar-
atively smaller range in low-mass halos
is necessary to make the clustering sig-
nal equivalent to the light bulb case. See
Sec. 4.3.3 for further discussion.

In the case of the lightbulb model,
the halo mass that correspond to the
selected luminosity range of quasars is
relatively tightly constrained. For the
models that agree with the BOSS mea-
surements at 1σ, the average halo mass
ranges from 1.35 × 1012 h−1M� to
4.93 × 1012 h−1M� for hosts of quasars
within the magnitude cutoff. For the ex-
ponential model, there is a much larger
range in halo mass: for the collection
of models that agree at 1σ, the mass
ranges between 6.69 × 1012 h−1M� and
5.85 × 1013 h−1M�, almost an entire or-
der of magnitude (compared to about
half an order of magnitude for the lightbulb model). Also note that the mass range
is much larger than in the lightbulb case. This fact can be explained by noting that
there is evolution in the mass-to-luminosity ratio during the lifetime of the quasar.
Further, the e-folding time for these models is comparatively long, with typical val-
ues being τ ≈ 40 Myr. This means that there are high-mass hosts included in the
sample of quasars chosen for the clustering measurements whose quasars are not at
their peak luminosity. Since these hosts have a bias larger than the value preferred
by the BOSS measurements, this sample must necessarily include hosts which have a
smaller clustering signal, so that on average, the total bias agrees with BOSS.
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Figure 4.7: The selected mass range for our
different models. For the lightbulb case,
there is a relatively narrow range in mass.
Since the clustering of quasars is fixed as a
function of luminosity, there is a very tight
relationship between observed luminosity
and underlying host mass. In the exponen-
tial case, the range is much more extended.
Since the mass to light ratio is fixed to be
the same for the peak luminosity, the evo-
lution within the model means that there
will be quasars with higher peak luminos-
ity (and higher mass hosts) selected by the
evolution.

There is a systematic shift upward in
the mass of the exponential case com-
pared to the lightbulb. This shift is re-
lated to the difference in parameter space
discussed in Sec. 4.3.1. Due to their
exponential change in luminosity, the
quasars are not typically found near their
peak luminosities. Thus, even though
by construction the peak quasar lumi-
nosity as a function of halo mass is the
same for the two models, the effective
luminosity for a given mass is reduced
in the exponential case due to the light
curve evolution. In other words, quasars
of the same luminosity in the two dif-
ferent models are found in more mas-
sive hosts in the exponential case. This
leads to a systematic shift in the pre-
ferred mass range for clustering mea-
surements. To sum up: the increased
spread in halo host mass for the exponen-
tial model compared to the lightbulb is
due to inclusion of highly-biased hosts in
the measurement being balanced out by
lower-mass ones, and the systematic shift
toward higher mass is due to the effective
increase in the mass-to-luminosity ratio

related to evolution of quasar luminosity.

4.4.2 Mass Function and Duty Cycle of Halo Hosts

To observe the effect that different points in parameter space have on the halo host
properties, the mass function of halos hosting an active quasar has been calculated
for the fiducial redshift selection. (For the high- and low-redshift selections, see
Appendix B.2.) Figure 4.8 shows the total halo mass function as well as the mass
function of halos hosting quasars within the luminosity range −25 ≥ Mi ≥ −27.
From this analysis, the duty cycle of halo hosts can be extracted, i.e., the fraction of
active halos divided by the total number of halos. As discussed in Sec. 4.2.2, in the
lightbulb model the duty cycle can be directly related to the quasar lifetime at that
luminosity. However, here the duty cycle is defined simply as the active fraction of
halos.

Figure 4.8 compares the case of the lightbulb and the exponential light curves.
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When the halo mass function of active halos is examined in the two different cases,
it can be seen that the mass range of hosts spanned by an individual model is quite
different. In the lightbulb case, there is a very small range in host mass compared
to the exponential case. This difference can be explained in terms of which hosts are
included in the clustering measurements. In the lightbulb case, since the luminosity
is constant as a function of quasar lifetime, the only evolution in the relationship
between mass and luminosity comes from mass accretion, which makes up a small
fraction of total halo mass over the time scales for which quasars are active. As such,
with an essentially static relationship, there is a very strong correlation of mass to
light. For a specific model, there is only about a factor of 2 in halo mass included
for the quasars in the selected magnitude range. When looking at the duty cycle of
quasar hosts, one can see that the fraction is typically 0.5-1%, with little evolution
with mass within a model.
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Figure 4.8: The halo mass function for ha-
los hosting quasars versus the total halo
population for certain models as defined
in Table 4.3. In the case of the lightbulb
model, there is a roughly constant value of
∼1% of halos hosting quasars as a function
of halo mass. For the exponential, there is
a constant active fraction at the high mass
end, but then the fraction falls off below
the median halo mass. This is again re-
lated to the fact that there are more halos
included at low mass in order to reproduce
the average clustering signal.

Conversely, in the exponential model,
there is evolution for individual halos in
the mass to light relationship. Most im-
portantly, this implies that massive halos
will be included when selecting quasars
at a specific luminosity. Since they are
more highly clustered (and more biased),
smaller, less biased halos must also be in-
cluded in order to create an average bias
consistent with the BOSS measurements.
This has the effect of extending the mass
range of halos included in the mass func-
tion. Note that within a single model,
there is a much larger span in halo mass:
in some cases, the span is more than an
order of magnitude in halo mass. Addi-
tionally, the duty cycle is comparable in
magnitude to the lightbulb case, though
slightly smaller: the ratio of active ha-
los to total halos ranges from 0.05-1%.
There also seems to be a trend in the
evolution of the duty cycle: there is a
central “typical mass” for a given model,
and the duty cycle decreases in both di-
rections. A similar trend was found by
White et al. (2012).

Note that one result of this measure-
ment is the fact that the mass range of host halos is significantly more extended in
the exponential case than the lightbulb case. Thus, one way to break the degeneracy

66



between the lightbulb and exponential models would be to measure the mass range of
underlying host halos, perhaps through using gravitational lensing to independently
find the mass of the dark matter halo (Courbin et al., 2012). If the range of masses
for quasar hosts is extended, then there would be observational evidence favoring an
exponential model (or a model with evolution in the quasar light curve) as opposed
to the lightbulb model.

4.5 Predictions for Helium Reionization
One very important prediction that we can make from our quasar catalog is the
redshift of helium reionization. In order to understand in detail the implications
for helium reionization, we need to run full hydrodynamic plus radiative transfer
numerical simulations. However, we can perform a semi-analytic calculation in order
to find a rough estimate of the redshift of reionization by computing the fraction
of the universe’s volume that has been reionized Qi (also called the volume filling
fraction), where Qi = 1 represents a totally reionized universe (e.g., Madau et al.
1999; Furlanetto & Oh 2008b):

dQi

dt
=

∫
dL

Ṅγ

n̄He

dφ

dL
− C̄αAn̄eQi, (4.23)

where n̄He is the number density of neutral helium, n̄e is the number density of
electrons, Ṅγ is the production rate of ionizing photons for an individual quasar,
αA(T ) is the recombination coefficient, and C̄ ≡ 〈n2

e〉 / 〈ne〉2 is the clumping factor
of the ionized IGM. The minimum luminosity of the integral decreases as redshift
decreases, in keeping with modeling and observations (Richardson et al., 2012; Shen
& Kelly, 2012; Cen & Safarzadeh, 2015; Sijacki et al., 2015). The clumping factor
measures the effective distribution of gas inside the scale of volume being averaged
(or resolution in the case of simulations). Note that these calculations assume a
primordial helium mass fraction of YHe = 0.24. Following the arguments in the
appendix of Kaurov & Gnedin (2014), we choose the case A recombination coefficient,
which assumes that photons emitted from recombination are not reabsorbed by a
neutral atom, increasing the recombination rate. 5 It is assumed that initially, all of
the hydrogen in the IGM has been ionized, and all of the helium is singly ionized. To
compute the photoionization rate of an individual quasar Ṅγ, the SED of Lusso et al.
(2015) is used to convert the specific luminosity at 2500 Å to the specific luminosity
at 912 Å. It is then assumed that quasars have a spectral energy distribution (SED)

5Although the arguments presented in the cited work are in the context of hydrogen reionization,
the same arguments can be applied equally well to helium reionization. Essentially, the authors argue
that the photons redshift out of resonance with the thermally broadened spectral line before they
encounter the edge of the ionized region or a Lyman-limit system. Although the ionization fraction
of helium might be slightly lower inside an “ionized region” than a comparable hydrogen one, the
difference is not significant enough to change the overall conclusion.
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Figure 4.9: The volume filling fraction Qi of doubly ionized helium defined in Equa-
tion (4.23). In each plot, we show the fiducial values we have for volume filling
fraction Qi as a function of redshift, which has the parameters α = 1.7, C̄ = 3, and
normalizing the luminosity at 912 Å using Lusso et al. (2015). This leads to a red-
shift of reionization of z ∼ 2.5, comparable to the redshift of z ∼ 2.7 suggested by
observation of the helium Lyman-α forest. We show the change in Qi as a function
of varying these parameters. Top left: we compare the difference between using the
composite QLF of SDSS+COSMOS (see Sec. 4.2.5 for more details) and the one in
Hopkins et al. (2007). The shaded region reflects differences in ionization level due
to jointly varying the parameters over the ranges specified in Table 4.2. Top right:
we change the UV SED of the quasar, which affects the normalization at 912 Å. In
addition to the SEDs from Lusso et al. (2015) and HRH07, we show the radio-quiet
template from Shang et al. (2011). Bottom left: we allow the EUV SED spectral
index for λ < 912 Å to vary from 1.4 ≤ α ≤ 2.0. Bottom right: we vary the clumping
factor of the IGM, from 1 ≤ C̄ ≤ 5. See the text for additional details.
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that follows a power law Lν(ν) ∝ ν−α for values of λ < 912 Å. The fiducial value
chosen is α = 1.7, also based on observations of the rest-frame UV spectra of quasars
from Lusso et al. (2015). This calculation includes all photons with frequencies in
the range 54.4 eV ≤ hν ≤ 1 keV. Photons above this energy have a mean free path
of helium ionization comparable to the Hubble distance.

Although the two different quasar light curves explored above have different indi-
vidual properties, both are constrained by the global properties fixed by the QLF. We
find that if instead of the statistical calculation outlined above, we use the number of
ionizing photons computed directly from the quasar catalogs, the result differs only
by a few percent. Therefore, it is much more straightforward to use Equation (4.23).
This approach also permits the use of other QLFs in the calculation, so it is possible
to explore what effect this has on the results.

Figure 4.9 shows the ionization fraction as a function of redshift computed from
Equation (4.23). In the first panel, there is a comparison of the choice of QLF used in
the calculation. Included are the QLF used in the main body of this work, the com-
posite QLF composed of the ones from R13, M12, and M13 (the SDSS+COSMOS)
as explained in Sec. 4.2.5, and the QLF from Hopkins et al. (2007) (hereafter referred
to as HRH07). All other calculations presented use the composite QLF, but then
change various other parameters. Note that for the prediction of reionization time
using HRH07, both the QLF and the SED are different from the fiducial comparison
case. In the figure, the shaded region shows the range of predicted values for the vol-
ume filling fraction Qi at a given redshift z by jointly varying the parameters of the
QLF over the range specified by Table 4.2. Interestingly, the late-time ionization level
is less sensitive to the variation in parameters at early redshift, due to the interplay
between the source and recombination terms present in Equation (4.23). At redshifts
z ≤ 3.5, the source term becomes the same for all histories, since the QLF transitions
to that of Ross et al. Further, the recombination rate is proportional to the ionized
fraction, so histories that had higher ionization levels at z ≥ 3.5 will have higher
levels of recombination. Since the recombination time is much shorter than the total
timescale of the reionization calculation, all histories converge on a similar redshift
of total reionization (Qi = 1). Nevertheless, the variation in ionization fraction at
early times can have important implications on the topology of ionized regions and
the thermal history of the IGM, so such differences may in principle be detectable.

In the second panel of the plot, the specific luminosity of individual objects at 912
Å L912 is varied. One way to achieve this variation is the change the UV SED template
used for quasars. Once the specific luminosity L2500 is calculated from the observed
magnitude according to Equation (4.7), the quasar SED can be used to find L912.
In the fiducial approach, we use the SED template from Lusso et al. (2015), which
assumes a UV spectral index of α = 0.61 for 2500 ≥ λ ≥ 912 . An alternative choice
for an SED is one from Shang et al. (2011), which provides a composite quasar SED
template by combining observations in different frequency ranges to create a single
spectrum. The authors of Shang et al. (2011) divide the sample into radio-loud and
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radio-quiet quasars. However, radio-quiet quasars compose ∼ 90% of high-redshift
quasars found in SDSS (Shen et al., 2009). Thus, we only include the results of
the calculation using the radio-quiet template. This template provides the relative
specific luminosity at each frequency, and so can be used to convert L2500 to L912. The
effective spectral index for this wavelength range for the radio-quiet quasar template
is α = 0.867. In addition, we show the impact of using the SED from HRH07 (with
the QLF from Sec. 4.2.5). Note that the SED from HRH07 is outdated, and used
only as a point of comparison. More recent studies (e.g., Stevans et al. 2014; Lusso
et al. 2015) are largely inconsistent with the SED of HRH07, and so it is presented
here merely to emphasize the importance that using the proper SED has on helium
reionization. Given this same specific luminosity L2500, the predicted value of L912

from the SED of Lusso et al. (2015) is higher than that of HRH07 by about a factor
of 1.7, leading to the earlier reionization time. The second panel of the plot includes
these to demonstrate the difference from using different quasar templates.

In the third panel of the plot, the spectral indices are varied, ranging from 1.4 ≤
α ≤ 2.0. Recent measurements from Lusso et al. (2015) suggest that at high redshift
and bright magnitudes, the spectral index has a value of α = 1.7±0.6. This is slightly
softer than the average value of α = 1.6 from Telfer et al. (2002). In order to explore
some of the implications of changing the spectral index, we vary its value as indicated.

The final panel explores a range of clumping values, from 1 ≤ C̄ ≤ 5. The
precise value for the clumping factor for helium reionization is very uncertain, as
most studies on the clumping factor are related to hydrogen reionization (see, e.g.,
Raičević & Theuns 2011; Kaurov & Gnedin 2014). In Furlanetto & Oh (2008b),
the authors explored clumping factors of 0 ≤ C̄ ≤ 3. More recent results from
numerical simulations were calculated by Jeeson-Daniel et al. (2014), who found that
the clumping factor of helium range from 3 ≤ C̄ ≤ 8 for the redshift range of interest,
depending on the ionization level of the helium gas.

In Figure 4.9, each panel shows the fiducial evolution of Qi, which is characterized
by the values of α = 1.7, C̄ = 3, the SED of Lusso et al. (2015), and the composite
SDSS+COSMOS QLF. In this situation, the redshift of reionization (i.e., when Qi =
1) is z ∼ 2.5. This value is comparable to, though slightly later than, the redshift
suggested by recent observations of z ∼ 2.7 (Dixon & Furlanetto, 2009; Worseck
et al., 2011). However, a smaller volume-averaged clumping factor C̄ or a larger
amplitude in either the measured QLF or the specific luminosity L912 could give an
earlier redshift of reionization. Specifically, assuming the fiducial model, changing the
clumping factor to C̄ = 1.7 would give z ∼ 2.7 as the redshift of reionization. It should
be noted that this calculation is not wholly accurate for reionization, since it assumes
a single clumping factor for the entire IGM, which is almost certainly not accurate
for helium reionization, due to its very inhomogeneous nature. Furthermore, this
calculation does not include secondary ionizations from energetic electrons (e.g., Shull
1979; Furlanetto & Stoever 2010), though these interactions are likely unimportant
for helium reionization (McQuinn et al., 2009).
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When comparing to the results of Furlanetto & Oh (2008b), we notice that the
authors’ value for the redshift of reionization is significantly earlier than the one that
we have found. This is largely due to a different quasar luminosity function used, as
well as a different method for calculating a quasar’s EUV SED. The referenced paper
uses the QLF from HRH07, and assumes an SED that gives more EUV radiation.
This luminosity function has a significantly larger amplitude compared to the results
from R13, up to an order of magnitude larger for low-luminosity quasars at high
redshift. (See Fig. 16 of Ross et al. 2013.) Thus, accurate measurements and a
proper understanding of the systematics of the high-redshift QLF, as well as the
accompanying quasar SED, are essential for a proper treatment of helium reionization.

4.6 Conclusion
We have provided a technique for populating dark matter halos with quasars that
matches a quasar luminosity function by construction for various light curve models
of quasars. By using the triggering rate of Hopkins et al. (2006) with the technique of
abundance matching, we are able to match the observed quasar luminosity function
of SDSS DR9 (R13), COSMOS (M12), and high-redshift SDSS data (M13). After ap-
plying this method to dark matter halo catalogs generated from N -body simulations,
we have constrained a class of quasar models that reproduce the clustering amplitude
measured from the two-point auto-correlation function of the BOSS survey (White
et al., 2012) at a redshift of z = 2.39. The characteristic mass of the quasar hosts is
2.5× 1012 h−1M� for the lightbulb model and 2.3× 1012 h−1M� for the exponential
model. The effective lifetime as defined in Equation (4.21) of quasars is teff = 59 Myr
for the lightbulb model of quasars and teff = 15 Myr for the symmetric exponential
model.

One of the limitations of this approach is that we have constrained the class of
quasar models using a comparatively narrow span in quasar luminosity. By matching
the bias of quasars with a different magnitude range, we would have a different effec-
tive luminosity range for the bias calculation. This would lead to a different slope in
the parameter Leff , which would allow us to break the degeneracy observed in Fig. 4.4.
Having the ability to break the sample down into different luminosity intervals would
allow us to make tighter constraints on the class of allowed models.

In future work, we plan to use the quasar models explored here as sources of ion-
izing photons for studying helium reionization using simulations containing hydrody-
namics and radiative transfer. These types of simulations will allow us to accurately
capture important physical characteristics related to the IGM. Specifically, we are
interested in capturing the thermal history of the IGM as it relates to observations.
In upcoming simulations, we plan to compute the IGM equation of state and produce
synthetic Lyman-α forest fluxes. This will allow us to tap into the wealth of observa-
tions available for the Lyman-α forest, such as those currently available from BOSS
(e.g., Lee et al. 2013), and from upcoming future surveys such as DESI.
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Chapter 5

Signatures of Quasar Activity on the
IGM

5.1 Introduction

Helium reionization is a fascinating portion of the Universe’s history, and is the last
major phase change of the intergalactic medium (IGM). After hydrogen reionization
at high redshift (z & 6) from the first stars and galaxies, helium was singly ionized.
However, the second ionization of helium requires significantly more energy (54.4
eV vs. 24.6 eV for the first ionization). The stars providing photons for hydrogen
reionization did not emit a significant number of these high energy photons. Thus,
helium was not doubly ionized until later in the Universe’s evolution, when quasars
produced enough high-energy photons to significantly change the ionization level of
helium. Following the formation of quasars at redshifts 6 ≥ z ≥ 2, the helium of the
IGM became totally ionized, leaving an imprint on the IGM.

The process of helium reionization leaves important observational signatures on
the Lyman-α forest, which is a measure of the relative amount of photon absorp-
tion due to gas in the IGM. The Lyman-α forest can be observed most readily for
neutral hydrogen, and has been observed at medium resolution (e.g., the Baryon Os-
cillation Spectroscopic Survey, BOSS, McDonald et al. 2006; Lee et al. 2015) and
high resolution (e.g., Keck-HIRES and Magellan-MIKE, Lu et al. 1996; Viel et al.
2013). To date, there have been more than 150,000 Lyman-α forest spectra measured
from BOSS alone (Dawson et al., 2013), and the number of systems is expected to
increase by almost an order of magnitude after the deployment of the next generation
of telescopes (Myers et al., 2015). This rich observational data set contains much
information about the IGM, most notably the abundance of neutral hydrogen and its
temperature.

A related measurement to the hydrogen Lyman-α forest is the analogous feature
for He ii. However, to date, there have been only about 50 systems for which the
He ii measurement has been made (Syphers et al., 2009b,a, 2012). The reason for
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the comparative lack of He ii measurements is due to the presence of Lyman-limit
systems (LLS), which are optically thick and lead to large absorption features. This
absorption contaminates the signal, and makes detection of He ii signatures difficult
(Møller & Jakobsen, 1990; Zheng et al., 2005). Nevertheless, the detection of the
helium analogue of the Gunn-Peterson trough (Gunn & Peterson, 1965) offers an
indication of when helium reionization ended. Recent observations have shown a
Gunn-Peterson trough for helium at redshifts z > 3 (Jakobsen et al., 1994; Zheng
et al., 2008; Syphers & Shull, 2014), which shows the He ii volume fraction must
have been greater than fHeII & 10−3 along these sightlines. Helium absorption then
becomes patchy, with extended regions of absorption and transmission in the He ii
Lyman-α forest (Reimers et al., 1997), and seems to be completed by z ∼ 2.7 (Dixon
& Furlanetto, 2009; Worseck et al., 2011). However, the comparatively low number
of sightlines that show the Lyman-α forest signature for He ii leaves much statistical
uncertainly about the exact timing and nature of the reionization process.

In order to better explore some of the signatures that helium reionization leaves
on the IGM, we have run a new suite of simulations that include hydrodynamics and
radiative transfer solved simultaneously. These simulations represent the first efforts
to incorporate all of the relevant physics together using a spatially varying radiation
field sourced by quasars, in order to better predict the impact on observations. Pre-
vious studies have incorporated various schemes. In some cases, radiative transfer
is solved in post-processing of N -body or hydrodynamic simulations (e.g., McQuinn
et al. 2009, 2011; Compostella et al. 2013, 2014), which does not incorporate the effect
of photoheating on the IGM that accompanies reionization. Alternatively, radiative
transfer has been included through the use of a uniform ionization background (e.g.,
Theuns et al. 1998; Jena et al. 2005; Viel et al. 2013; Puchwein et al. 2015; Bolton
et al. 2016), an approach which does not capture the large-scale inhomogeneities of
the radiation field. Thus, the simulations presented here represent a step forward in
accurately modeling the reionization process, and capture the effects of heating from
sources and the inhomogeneous and anisotropic aspects of sources.

This work represents the second endeavor in a series on helium reionization simu-
lations. The work La Plante & Trac 2015 (discussed in Chapter 4) outlines a method
whereby dark matter halos from N -body simulations are populated with quasars
such that the quasar luminosity function (QLF) from the SDSS and COSMOS sur-
veys (Ross et al., 2013; Masters et al., 2012; McGreer et al., 2013) and the two-point
autocorrelation function from BOSS (White et al., 2012) are reproduced. This en-
sures that our radiation sources match the latest observational constraints in terms
of their number density and topology.

We organize the rest of this chapter as follows. In Sec. 5.2, we discuss our simu-
lation technique and describe the method by which we include sources of ionization.
In Sec. 5.3, we discuss in more detail the individual models explored here, and the
differences apparent in the helium ionization fraction. In Sec. 5.4, we explore impacts
of reionization on the thermal history of the IGM. In Sec. 5.5, we discuss generat-

73



ing synthetic Lyman-α sightlines from the simulations, and comparing with recent
observations. In Sec. 5.6, we summarize and explore avenues for future research.
Throughout this work, we assume a ΛCDM cosmology with Ωm = 0.27, ΩΛ = 0.73,
Ωb = 0.045, h = 0.7, σ8 = 0.8, and YHe = 0.24. These values are consistent with the
WMAP -9 year results (Hinshaw et al., 2013).

5.2 Radiation-Hydrodynamic Simulations
To faithfully capture helium reionization, the ideal simulations should include dark
matter, baryonic matter, and radiation coupled together. The dark matter is nec-
essary for establishing the large-scale structure of the Universe, and the baryonic
matter captures the distribution of neutral and ionized gas in the IGM. By coupling
radiation to this gas as the simulation is proceeding, a more accurate state of the
IGM is calculated. As mentioned above, due to the large degree of photoheating of
the IGM induced by the energetic photons from quasars, the thermal state of the
mean-density IGM is dominated by quasars and the reionization of helium. Further,
the clustered nature of quasars argues for simulations in which the radiation sources
are tracked explicitly, rather than incorporated as a uniform background. Thus, these
simulations are able to capture many of the features important to helium reionization,
and generate predictions which can be readily compared with observations.

5.2.1 Populating Simulations with Quasars

The simulations presented here have been run using the RadHydro code, which in-
cludesN -body, hydrodynamics, and radiative transfer calculations. The code employs
a particle mesh (PM) solver for gravity calculations, a fixed-grid Eulerian code for
solving hydrodynamics, and a ray-tracing scheme for computing radiative transfer.
The radiative transfer calculations use a non-equilibrium solver for the photoioniza-
tion balance equations, and use many time steps per hydro step to ensure accurate
calculation of the thermal state. The code has been used studying hydrogen reion-
ization (Trac & Cen, 2007; Trac et al., 2008; Battaglia et al., 2013b), and has been
modified extensively for the current application to helium reionization.

Our simulation strategy is as follows. Due to the requirement of a large box size
to capture relatively rare objects, the simulation does not resolve the galaxy-scale
physics (and by extension, quasar-scale physics). As such, it is necessary to populate
the volume with sources using an alternative method. To this end, we perform the
simulation in two steps: a first pass to generate a catalog of quasar sources, and a
second pass that uses the sources to perform full reionization simulations. We first
run a P3M N -body simulation including only dark matter (Trac et al., 2015). Initial
conditions for these simulations are generated at z = 150 using transfer functions
generated by CAMB (Lewis et al., 2000). These N -body simulations are run at
high resolution, where for our fiducial simulations we use a simulation volume of size
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L = 200 h−1Mpc with 20483 particles. This yields a particle mass of mp = 6.98× 107

h−1M�. Halo-finding is done on-the-fly using a friend-of-friends (FoF) algorithm with
mean inter-particle spacing of b = 0.08 to find halo members. This value avoids the
over-bridging problem in standard FoF with b = 0.2. The halo finder is used to
locate all halos with 50 or more members. Once the FoF halos are found, a spherical
overdensity (SO) algorithm is used to create a corresponding halo catalog. These
halo catalogs are produced every 20 Myr in cosmological time while the simulation
is running. The halos from the catalogs are then treated as candidate hosts for the
quasars to be used in our simulations.

With the halo catalogs from the high resolution simulation in hand, the halos can
be populated with quasars, the sources of helium-ionizing radiation. Following the
procedure outlined in Chapter 4, we populate these halos with quasars that reproduce
the observed quasar luminosity function and clustering measurements. Briefly, the
model uses the technique of abundance matching in order to populate potential quasar
hosts (i.e., dark matter halos) with quasars in order to reproduce a specified quasar
luminosity function (QLF). The method allows the user to specify the QLF to use, and
either a lightbulb or exponential model for the quasar light curve. By construction,
the method will reproduce the desired QLF at all redshifts (starting at z ∼ 6, the
earliest redshift at which we include quasar sources), provided the quasar lifetime
(and time between halo catalog snapshots) is small compared to the Hubble time.
The fiducial QLF used in the work presented here combines the results of several
different luminosity functions at different redshifts: at high redshift (z & 5), the QLF
reproduces the observations of McGreer et al. (2013). At intermediate redshift (z ∼
4), the QLF reproduces the observations of Masters et al. (2012). At lower redshift
(z . 3.5), the QLF parameters used are those from Ross et al. (2013). Combining the
measurements of the QLF at multiple epochs ensures that the number density sources
of helium-ionizing radiation found in the simulations are observationally accurate.
Since the timing of reionization is determined, by a large part, by the abundance of
sources, having an observationally accurate quasar number density is of the utmost
importance. The simulations run here use two slightly different methods for combining
the different measurements, which we call Q1 and Q2. See Appendix C.3 for further
discussion on the details of the QLF used in these simulations.

In addition to matching the number density of quasar sources, the method of
Chapter 4 also matches the observed clustering of quasars. Using the abundance
matching technique leaves the lifetime of quasars unconstrained, which affects the
bias of quasars. Reproducing the bias of quasars ensures that simulations reproduce
the topology of reionization: although the number of sources is fixed by the QLF, the
clustering of quasars will affect the size and shape of ionized regions. In general, since
quasars are known to be highly biased (White et al., 2012), they are found strongly
clustered, which leads to early overlap of doubly ionized regions (McQuinn et al.,
2009). In Chapter 4, we use a suite of N -body simulations to study how the lifetime
of quasars affects their clustering. We identify a set of parameters that reproduce
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the clustering as measured in White et al. (2012) at redshift z ∼ 2.4. The model
developed in Chapter 4 allows for the lifetime of quasars tq to change as a function of
luminosity following a power-law relation, parameterized as tq(L) = t0(L/L0)γ, where
L is the peak luminosity of the quasar, and t0 and γ are two parameters allowed
to vary. Unless otherwise noted, the models discussed in these simulations used an
exponential light curve, with γ = −0.1. As discussed below, in instances where the
QLF is modified to explore a different reionization history, the quasar lifetime t0 is
modified to match the clustering measurements.

5.2.2 Quasar Properties

For individual quasar objects, there are two components of the spectral energy dis-
tribution (SED) that must be specified: the normalization and the spectral index.
The QLF is typically reported in terms of magnitude, rather than luminosity. Specif-
ically, the convention used when reporting the QLF in Ross et al. (2013) is to use
the absolute i-band magnitude at z = 2. In order to determine the energy output of
a quasar, we convert from magnitude to luminosity using Equation (4) of Richards
et al. (2006):

log10

(
L2500

4πd2

)
= −0.4[Mi(z = 2) + 48.60 + 2.5 log10(1 + 2)], (5.1)

where d = 10 pc = 3.08× 1019 cm. This formula converts the magnitude of the QLF
into a specific luminosity at 2500 Å. Once this specific luminosity has been found,
the specific luminosity in the extreme ultraviolet (EUV) region must be calculated to
determine the output of radiation relevant to helium reionization. For the purposes of
this calculation, we use the quasar SED template of Lusso et al. (2015). This template
assumes a power-law form for the SED with a spectral index of α = 0.61 (fν ∝ ν−α)
for λ ≥ 912 Å and α = 1.7 for shorter wavelengths. The number of photons is then
computed in 7 different frequency bins for the radiative transfer calculation, spanning
photon energies from hν = 13.6 eV to 1 keV. At energies higher than this, the mean
free path of photons interacting with singly ionized helium becomes comparable to
the Hubble scale, and as a practical matter much larger than the box size of the
simulation.

As discussed in Chapter 4, there is a moderate degree of uncertainty in the sys-
tematic effects of the quasar population. For instance, reddening of quasars due to
dust, obscured quasars, contamination of non-quasar objects in photometric surveys,
and poor knowledge of the intrinsic colors of quasars could all systematically shift
the normalization of the QLF. In order to marginalize over some of this uncertainty,
we have conducted several simulations with the same underlying gas distribution and
large-scale structure, but with different quasar populations. Specifically, we modify
the normalization of the QLF and the normalization of the SED. These different
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simulations allow us to explore some of the effect that these systematic uncertain-
ties generate, and how they might impact different observations of the IGM. We will
further discuss all of the models explored below in Sec. 5.2.4.

5.2.3 Simulation Features

Although the main focus of this study is to understand the impact of helium reion-
ization, an accurate treatment of hydrogen reionization is nevertheless important. In
some sense, the initial conditions of helium reionization (especially with respect to
the temperature of the IGM) is set by the timing of hydrogen reionization, and the
inside-out nature of denser regions undergoing reionization earlier than less dense
ones.

In order to capture the inhomogeneous effects that hydrogen reionization has on
the IGM, the method of “patchy reionization” developed in Battaglia et al. (2013b) is
applied to the simulation volume, which predicts a redshift of reionization based on
the density field from a dark-matter-only simulation. A mean redshift of reionization
zre = 8 was used for these simulations, with the fiducial values for the other parameters
in the model which control the duration of reionization. The application of this
method better captures the thermal state of the IGM following hydrogen reionization
than using a uniform radiation background.

The radiative transfer is calculated using explicit ray tracing of photons from
quasars, using the scheme described in Trac et al. (2008). However, tracking rays
from galaxies in addition to those from quasars would be prohibitively expensive. The
stellar content of galaxies does not produce an appreciable number of photons with
hν > 54.4 eV, and are thus largely unimportant for helium reionization (Furlanetto
& Oh, 2008b). However, galaxies do produce photons that contribute to hydrogen
ionization. The ionization balance equation for hydrogen can be written as:

dnHI

dt
= −ΓtotnHI + αHIInHIIne, (5.2)

where Γtot is the total photoionization rate per atom in s−1, αHII is the recombina-
tion coefficient, and ni is the comoving number density of species i. For the case
of hydrogen, there are contributions from both quasars and galaxies, which can be
expressed as Γtot = Γqso + Γgal. The computation of Γqso is computed explicitly via
ray tracing, but the value of Γgal must be specified. For the purposes of running
the simulation, the value of Γgal is assumed to be a uniform value. For late times
(z . 6), the hydrogen in the IGM is highly ionized and hence optically thin, and so
treating the UV background as uniform is a valid approximation. One approach is
to use a value based on a semi-analytic model (e.g., Haardt & Madau 2012, hereafter
HM12). However, this approach relies on the specifics of the model chosen, and does
not account for other details in the simulation (such as the quasar contribution to
hydrogen ionization, patchy hydrogen reionization, etc.)
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In order to circumvent some of these issues, we choose to set the value of Γgal

to match the observed effective optical depth τeff measured by BOSS (Lee et al.,
2015). We generate Lyman-α sightlines on-the-fly while the simulation is running,
and modify the value of Γgal in order to match τeff(z). Instead of generating the full
number of sightlines available to us (N2

grid), we reduce the number of sightlines drawn
by a factor of four in each dimension, for a total ofN2

grid/16. In comparisons performed
between using the full sample and this reduced subset, we did not find significant
differences in the calculated value of τeff , and therefore inferred the same target value
of Γgal. By matching the value of τeff by construction, we are better able to compare
between simulations and against observation. This also avoids renormalizing the
Lyman-α forest in post-processing, which is the usual approach taken in simulations
comparing against the Lyman-α forest (e.g., Bolton et al. 2009b). Put another way,
Γgal becomes a free parameter that we adjust at every time step in the simulation in
order to match the value of τeff specified by Lee et al. (2015), such that Γgal + Γqso

reproduces the proper optical depth.
Below in Sec. 5.2.4, we discuss the simulations performed in our simulation suite.

Some of the models have an increased number of photons produced by quasars, above
the fiducial values assumed by the quasar properties as discussed in Sec. 5.2.2. For
these models with an increased number of photons, the contribution of Γqso is large
enough that even if Γgal = 0, the IGM becomes too highly ionized, and the value
of τeff is lower than that of Lee et al. (2015). Accordingly, it becomes impossible to
match the value of τeff , due to the increased radiation output of quasars.

Given the fact that τeff from simulations is lower than that of Lee et al. (2015), the
value of Γtot must be decreased in order to match the target value. As stated above,
the radiation from quasars is more than sufficient to match the value of τeff , so the
value of Γqso must be decreased. Therefore, it becomes necessary to choose a minimum
value of Γgal, below which the radiation output of quasars must be decreased to agree
with observations. We choose to have a finite value of Γgal for these simulations, since
the stellar output of galaxies still provide a contribution to the hydrogen ionization
level at these redshifts. Most models (Haardt & Madau, 1996, 2012) or measurements
that infer this value (Bolton & Haehnelt, 2007; Becker et al., 2007; Faucher-Giguère
et al., 2008; Becker & Bolton, 2013) of the UV background at these redshifts have a
contribution from galaxies of 10−13 s−1 . Γgal . 10−12 s−1.

Following the models and measurements, we require for our simulations that Γgal ≥
10−13 s−1. If τeff is still too low given this minimum value of Γgal, the value of Γqso

must be decreased. Because this value is only set indirectly by the number of photons
produced by quasars in the ray tracing scheme, the total output of radiation from
quasars is decreased to match τeff . This approach ensures that all of the simulations
match the measured value of Lee et al. (2015). As the simulation progresses, if the
ionization level needs to be increased to match the desired value, then the photon
production of quasars in increased back to its default value before increasing Γgal.

This approach of modifying the value of Γgal on-the-fly to match the values of τeff is,
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to our knowledge, unique to the simulations presented here. In addition to facilitating
the comparison between the simulations and observations, this approach has several
other benefits. For instance, by ensuring that we have the proper thermal state of
the IGM, the pressure smoothing of the gas is more accurate. This property has
implications for measurements related to the Lyman-α forest, discussed more fully in
Sec. 5.5. Observations that depend on the value of τeff are also true apples-to-apples
comparisons, and isolate the effect of the differences in the timing of reionization.
Thus, this suite of reionization simulations allows for a straightforward determination
of effects directly attributable to quasar activity as it pertains to helium reionization.

Table 5.1 summarizes the properties of the simulations examined in this paper. All
simulations are conducted with a box size of L = 200 h−1Mpc. This volume is large
enough to include several high-luminosity quasars, which are important for helium
reionization.1 Our default resolution for the gas grid uses Ng = 20483 resolution
elements. For dark matter, we use Ndm = 20483 particles as well. The grid on
which the equations of radiative transfer are solved is coarser by a factor of 4, i.e.,
Nrt = Ng/64. For all of the simulations in the suite, the same initial conditions for
the dark matter particles and the gas cells are used, so that the only difference is the
helium reionization history sourced by quasars. This allows us to isolate the impact
that varying helium reionization has on measurements from our simulations, since the
gas and matter distributions are largely the same. Indeed, the power spectra for dark
matter in the simulations is effectively identical in all of the simulations, and the gas
power spectra only show differences on small scales (k & 10 Mpc−1 h).

5.2.4 Details of the Simulation Suite

We will now discuss in detail some of the differences between the various simulations
run. All of the simulations use the same set of initial conditions for dark matter and
baryons, and as such the halo catalogs from the corresponding N -body simulation are
the same. (See Sec. 5.2.1 for more information.) Further, all of the simulations use the
patchy hydrogen reionization discussed in Sec. 5.2.3 at high redshift before helium
reionization. The one exception to this is the simulation that uses a uniform UV
background, Simulation H6, which uses the photoionization and photoheating rates
from HM12. Additionally, also as discussed in Sec. 5.2.3, the simulations feature
a dynamic renormalization of Γgal to match the reported value of τHI as provided
by Lee et al. (2015). This renormalization applies to almost all of the simulations,

1Despite this chosen volume size, the high-luminosity portion of the QLF may not be sufficiently
resolved, especially at high redshift (z & 4). Quantitatively, by integrating the product of the QLF
and the number of photons produced per quasar, we are able to see how changing the box size (and
hence the most-luminous quasar present in the volume) affects the number of photons included in
the simulations. We find that the chosen box size only captures ∼ 75% of the photons produced at
z & 4, with the captured fraction being less at higher redshifts. However, this quantity is highly
dependent on the extrapolation of the QLF to high redshift, and steeper values of the bright-end
slope mean that the discrepancy is not as large.
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Simulation Box size Ngrid z50 z99 ∆z50 ∆z90 Quasar Model t0 QLF Amplitude SED Amplitude
H1 200 20483 3.34 2.69 0.80 2.31 Q1 30.9 1 1
H2 200 20483 3.96 2.73 0.90 2.73 Q1 40 2 1
H3 200 20483 2.96 2.23 0.79 2.71 Q1 20 0.5 1
H4 200 20483 4.22 2.71 1.83 2.92 Q1 30.9 1 2
H5 200 20483 3.65 2.84 1.06 2.25 Q2 30 1.67 1.5
H6 200 20483 4.14 3.16 0.58 1.51 UVB . . . . . . . . .

Table 5.1: A list of the parameters of the simulations presented in this work. The box size is in comoving h−1 Mpc. The
redshifts z50 and z99 correspond to the redshifts when xHeIII = 0.5 or xHeIII = 0.99 by volume, as defined in Equation (5.3).
∆z50 is the duration in redshift of the central 50% change in ionization fraction (defined in Equation (5.4)). For more
information on the differences between the quasar models, see Appendix C.3 for the differences between quasar models
Q1 and Q2. The quantity t0 is defined in Equation (4.3), measured in Myr.
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including H6, where all of the photoheating and photoionization rates are scaled to
match τeff . As a point of comparison, we have run an additional simulation which
purposely does not match the functional form of τeff in order to test for features
that may appear as the result of helium reionization. We will discuss this simulation
further in Appendix C.1.

1. The simulation H1 is one which uses a QLF that is generated in the manner
discussed in Sec. 5.2.1. In general, the amplitude of the QLF is low at early
times, but has a relatively steep low-luminosity slope. This leads to a quasar
population that features a large number of low-luminosity objects. Since the
effective lifetime of quasars is generally proportional to their luminosity, these
sources are also relatively short-lived. As the Universe evolves, the amplitude
of the QLF becomes greater, and the faint-end slope becomes shallower. This
leads to a similar number of objects overall, but with larger, more luminous
sources being the primary drivers of reionization. Large objects also tend to
have larger regions of doubly ionized helium, since the longer lifetimes lead to
larger reionization regions. This evolution becomes clear when visualizing the
reionization process (see Fig. 5.4).

2. As noted in Sec. 5.1, there is some uncertainty in the overall amplitude of the
QLF. In order to explore this uncertainty, we have run simulations H2 and H3,
which use the same input QLF as H1, but with a change to the quasar lumi-
nosity function amplitude. In H2 the amplitude of the QLF is increased by a
factor of 2 at all redshifts, and in H3, the amplitude is decreased by a factor of
2. In both cases, the lifetime of quasars is modified in order to reproduce the
quasar clustering measurements of White et al. (2012), as discussed in Sec. 5.2.1.
Although the statistical uncertainty of the QLF is lower than this amount at
low redshift (i.e., the data from Ross et al. (2013) has errors that are better
than 10%), there are considerable uncertainties at high redshift. Further, there
are potential sources of systematic uncertainty (e.g., reddening of objects due
to dust, obscured sources, or mischaracterization of potential sources as stars).
By exploring changes in the amplitude of the QLF, we are better able to char-
acterize the impact that different redshifts of helium reionization can have on
observables.

3. A separate source of uncertainty related to the quasar sources is the normal-
ization of individual quasar objects given a specific luminosity. As explained
in Sec. 5.2.1, we use Equation (5.1) to convert from the observed magnitude to
the specific luminosity at 2500 Å L2500, and the SED template of Lusso et al.
(2015) to determine the EUV radiation. The statistical uncertainties of Lusso
et al. (2015) are very small for the UV portion of the SED (wavelengths where
λ > 912 Å), although differences arise when comparing the spectral indices
between different SEDs (e.g., Richards et al. 2006; Hopkins et al. 2007; Shang

81



et al. 2011). To explore some of the uncertainty associated with the SED, we
have run Simulation H4 with a quasar model that has the same QLF amplitude
as H1, but in which the photon number count has been increased by a factor
of 2. This results in a comparable number of photons being produced as in H2,
but with the same number of objects and topology as in H1. As a result, we
expect the regions of doubly ionized helium to be larger than those found in H1,
which would lead to patchier reionization. We would also expect the timing of
reionization to be similar to H2.

4. As mentioned above, an additional uncertainty related to the observed quasar
luminosity function involves the method by which observations from different
redshift ranges are incorporated into one single QLF that evolves with red-
shift. We present two alternative methods of performing this combination in
Appendix C.3. We call the two models Q1 and Q2. Simulation H5 uses a
method slightly different from the fiducial one of Simulation H1. As with the
uncertainties explored in Simulations H2 and H3, this comparison underlines
the importance of accurately determining the QLF at all redshifts to better
understand helium reionization. Note that when creating this QLF, several of
the parameters of the QLF were modified in an effort to better reproduce the
timing of the reionization found in Simulation H1.

5. Finally, as a point of comparison, we have run a simulation that does not include
explicit quasar sources, and instead features a uniform UV background. The
photoionization and photoheating rates are given by those in HM12. This allows
for a comparison with other studies which employ a uniform UV background
(Becker et al., 2011a; Puchwein et al., 2015). However, for a fair comparison with
the other simulations presented here, we have renormalized these rates to match
τeff as outlined in Sec. 5.2.3. Although only the value of ΓHI affects the observed
τeff , we apply the same renormalization to all of the photoionization and photo-
heating rates. Simulation H6 uses this uniform background, and can be thought
of as the limiting case of having many, low-luminosity (O(109 − 1010 L�)) ob-
jects drive helium reionization, rather than comparatively few high-luminosity
(O(1012 − 1013 L�)) ones.

Figure 5.1 shows the cumulative number of photons capable of ionizing helium
(hν ≥ 54.4 eV) as a function of redshift for each of the simulations presented here.
The top panel shows as a point of comparison the total number of helium atoms
in the volume. Notice that at early times, there are noticeable differences between
Simulations H2 and H4, which in principle should both have twice as many pho-
tons as Simulation H1. These variations are likely due to shot-noise introduced by
the relatively rare quasars, which becomes less extreme at later times. If all of the
photons produced by quasars were absorbed by helium atoms, and there were no re-
combinations, then helium reionization would be completed when equality is reached.
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Nevertheless, not all photons are absorbed (especially for the highest-energy frequency
bin, due to the very low cross section of helium at these frequencies), and recombina-
tion is prevalent, especially in dense regions. Thus, the actual timing of reionization
can be significantly different from when photon-helium atom equality is reached.

5.3 He iii Ionization Fraction
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Figure 5.1: A comparison of the number
of helium-ionizing photons (hν ≥ 54.4 eV)
produced by quasars in each of the simula-
tion models as a function of redshift. Top:
the cumulative number of photons in the
simulation volume relative to the number
of helium atoms. If all photons produced
ionized helium with no recombinations,
then helium reionization would be com-
pleted by the intersection with this line.
Bottom: the number of photons produced
relative to Simulation H1. The simulations
are described in detail in Sec. 5.2.4. Note
that Simulation H2 and Simulation H4 in
principle produce a comparable number of
photons as a function of redshift. Never-
theless, the two simulations have different
reionization histories, as well as different
reionization topologies.

One of the most basic results from the
simulations is the calculation of the
He iii ionization fraction as a function
of redshift. We define the ionization
fraction xHeIII as the (volume-weighted)
amount of doubly-ionized helium relative
to the total amount for all cells i in the
volume:

xHeIII ≡
1

N

∑
i

nHeIII,i

nHe,i

. (5.3)

Given a particular model for the quasar
sources, the ionization fraction reflects
the impact of these sources on the IGM.
For instance, the duration of reionization
gives some information about the impor-
tant sources: a relatively long reioniza-
tion argues for more sources that are
fainter, and a shorter reionization is
driven by a few large sources. When
comparing features in observables pro-
duced from simulations, it is usually
more important to compare results at the
same ionization fraction than redshift.
We refer to different redshifts related to
an ionization fraction with a subscript,
such that zn ⇒ xHeIII = n%. For in-
stance, z50 ⇒ xHeIII = 50% = 0.5. In ad-
dition to finding the redshift correspond-
ing to different ionization fractions, we
are also interested in quantifying the du-
ration of reionization. To this end, we define

∆z50 ≡ z25 − z75, (5.4)
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which corresponds to the duration in redshift of the central 50% change in ionization
fraction. We also define a similar quantity ∆z90, which represents the difference
between z5− z95. We report the redshifts associated with certain ionization fractions,
as well as ∆z50 and ∆z90, in Table 5.1, which summarizes the main results of the
simulations. As a reference for converting ∆z into time units, the shortest reionization
scenario, Simulation H6, has a central duration of ∆z50 = 0.58 = 252 Myr, whereas
the longest reionization scenario, Simulation H4, has a duration of ∆z50 = 1.83 = 834
Myr. These reionization scenarios take place over a relatively extended portion of the
Universe’s history, and leave a lasting impression on the IGM.

5.3.1 Ionization Fraction Evolution

Figure 5.2 shows the volume-averaged ionization fraction of the different simulations
as a function of redshift. We define the quantities ∆z50 and ∆z90 as the duration,
in redshift, for the volume to transition from 25-75% ionized (by volume) and 5-95%
ionized, respectively. Note that in general, helium reionization is a very extended
process, with ∆z90 & 2 for almost all of the reionization scenarios, with Simulation
H4 having very extended reionization times of ∆z90 ∼ 2.9. However, there is a large
variation in the timing of reionization. The earliest simulation to reach 50% ionization
is H4, which occurs at z50 ∼ 4.22. The latest simulation is H3, which occurs at
z50 ∼ 2.96. The fiducial reionization scenario, H1, is 50% ionized at z50 ∼ 3.34. As
pointed out below in Secs. 5.4 and 5.5, in general observations are more sensitive to
the end of helium reionization, when the volume becomes 90-95% doubly ionized. The
main exception to this result is Simulation H2, which reaches a maximum temperature
at z ∼ 3.41, which corresponds to an ionized fraction of 80%. The reason for the
difference is related to the method by which the quasar emission is modified to match
τeff , as outlined in Sec. 5.2.3. Nevertheless, knowing the full reionization history has
important implications on the thermal history of the IGM.

Figure 5.3 shows visualizations of Simulation H1. The four columns, from left
to right, show the He iii ionization fraction xHeIII, the gas temperature, the He ii
photoionization rate ΓHeII, and the He ii photoheating rate ΛHeII. The rows show the
same slice of the simulation at increasing values of ionization fraction, which from
top to bottom are xHeIII = 0.1, 0.25, 0.5, 0.75, and 0.99. The corresponding redshift
is shown on the right side of the panels. These slices show a segment of the yz-plane
of the simulation, with a thickness of 1 radiative transfer cell in the x-direction. This
width corresponds to a comoving distance of ∼ 400 h−1kpc. In a loose sense, the
first and second columns are integrated quantities corresponding to the third and
fourth columns, respectively. In both cases, the figure shows only photoionization
and photoheating rates, which in particular does not include collisional ionization
and heating prevalent in regions of high density. Nevertheless, the photoionization
and photoheating rates are dominated by the contribution of photons from quasars
in the volume. Further, note that for the temperature of the IGM (Column 2), the

84



Figure 5.3: A comparison of different properties in Simulation H1. Each panel shows
a 2-dimensional slice through the simulation volume with the thickness of a single
RT cell (∼400 h−1kpc). The columns, from left to right, show the He iii ionization
fraction, the gas temperature, the He iii photoionization rate ΓHeIII, and the He iii
photoheating rate ΛHeIII. Note that the third and fourth columns only include the
contribution to the photoionization and photoheating from the quasar sources, and
do not include other sources of ionization and heating (e.g., collisional ionization or
heating). The different rows show redshift snapshots corresponding to volume-average
ionization fractions of xHeIII = 0.1, 0.25, 0.5, 0.75, and 0.99, from top to bottom. Note
that early on in the reionization process, the average He iii bubble size is small (∼5
h−1Mpc), but later on in reionization, the size of ionized regions becomes much larger
(∼50 h−1Mpc in some cases). This change in bubble size is due to relatively long
lifetimes of luminous quasars.
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Figure 5.4: A similar plot to Figure 5.3, but comparing different simulations at red-
shift z ∼ 3.5. The rows, from top to bottom, show Simulation H1, H2, H3, and H4.
The value of xHeIII is shown to the right of each row. Note that in addition to the ob-
vious differences in helium ionization level morphology, the temperature of the IGM
(second column) is also very different for the different simulations. There is also an
apparent difference between the quasar models used in Simulation H2 (second row)
and Simulation H4 (fourth row), which in principle have similar photon counts but
are at different ionization levels. The reasons for these differences are discussed in
Sec. 5.3.1.
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hottest regions are found along filaments and other dense regions of cosmic structure.
Despite these regions being the hottest, photons from quasars dramatically heat the
low-density IGM by several thousand kelvin. See Sec. 5.4 for further discussion of the
IGM temperature.
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Figure 5.2: The helium ionization fraction xHeIII as a
function of redshift for the different quasar models ex-
plored in this work. The top panel shows the ionization
fraction, and the bottom panel shows the relative differ-
ence compared to the fiducial simulation (H1). The dif-
ferent models presented here are described in Sec. 5.2.3,
and summarized in Table 5.1. Among the models shown
for comparison is a simulation with a uniform UV back-
ground from Haardt & Madau (2012) (Simulation H6).
Note that most of the simulations reach a 99% ioniza-
tion fraction in the range of 2.7 . z . 3, which is con-
sistent with observational findings (Dixon & Furlanetto,
2009; Worseck et al., 2011). In all simulations, the du-
ration of helium reionization is typically 0.8 . ∆50 . 1,
with the notable exceptions of Simulations H4 and H6.
The durations for these simulations are significantly
longer and shorter, respectively, of the other ones. The
former has a long duration due to the early onset of
relatively massive quasars, while the latter assumes a
quasar emissivity that rises sharply starting at redshift
z ∼ 5. See the text in Sec. 5.3 for additional discussion.

As discussed in Chap-
ter 4, in our model the
clustering of quasars in-
directly affects their life-
times. Because the lifetimes
of quasars affects the size
of reionized regions (visi-
ble in Figures 5.3 and 5.4),
having the proper clustering
affects the coherent scale
of reionization. The size
of reionized regions also af-
fects the heating of the
IGM, as larger reionization
regions encompass regions
of moderate- to low-density
earlier than smaller regions.
The reason for this is that
the relatively fast timing of
recombination means that
moderate- to high-density
gas quickly recombines, and
requires additional radia-
tion in order to re-reionize.
For comparatively large re-
gions, more of the gas be-
ing ionized is low-density, so
there is less recombination.
Also worth nothing is that
the relatively high cluster-
ing leads to early overlap
of reionized regions, which
again reflects on the tim-
ing of ionization reaching
regions of low-density.

Figure 5.4 shows visual-
izations of Simulations H1, H2, H3, and H4, all at redshift z ∼ 3.5. Note that,
though the underlying gas and large-scale structure are largely similar (as can be

87



seen by comparing Column 2 between the different rows), the ionization and temper-
ature distribution are very different for the different simulations. The differences are
driven by the different quasar models used in the simulations. Of particular interest
is the difference between Simulations H2 and H4 (Rows 2 and 4). When performing
simple photon-counting calculations, as seen in Figure 5.1, both of these simulations
should produce a similar number: Simulation H2 has a factor of 2 increase in the
total number of quasars at a given epoch, whereas Simulation H4 has a factor of 2
increase in the number of photons produced per quasar.

Despite this similarity, there are significant differences between the simulations,
most notably the ionization fraction (Column 1). Additionally, from Columns 3 and
4, it can be seen that Simulation H2 has greater quasar activity at a given redshift.
Part of the differences between the simulations can be attributed to the method by
which quasars are populated in the volume: as explained in Sec. 5.2.1 (and more in-
depth in Paper I), quasars are placed in halos using abundance matching. Thus, when
the amplitude of the luminosity function is increased, sources of the same luminosity
are placed in lower-mass halos. In addition to making rare objects more common,
there are more sources in general. This feature leads to a greater number of photons
intersecting gas cells that have not been previously exposed to quasar radiation.

Conversely, in Simulation H4, the number of photons produced per source is in-
creased, but the total number of sources is the same as in Simulation H1. (Indeed,
the same quasar catalog is used in the two simulations, with only the normalization
of quasar radiation changed between the two. Note how the general morphology of
ionized regions in Column 1, and the instantaneous quasar activity in Columns 3 and
4, are very similar between Rows 1 and 4.) Although there are two times as many
photons being produced per source, the long mean free path of helium-reionizing
photons means that not all photons are absorbed. Further, due to spectral filtering
of the radiation from quasars, the photons with energy hν ∼ 54.4 eV will be readily
absorbed before more energetic ones, changing the effective SED of the quasar sources
(Meiksin et al., 2010). The higher energy ones typically are not absorbed, leading to
the large discrepancy in neutral fraction observed between these simulations. Thus,
although a simple semi-analytic calculation would yield the same reionization time for
these two simulations, we can see that a full treatment leads to important differences
between the two cases.

The ionization fraction observed in our simulations is worth comparing with the
results of McQuinn et al. (2009) and Compostella et al. (2013), hereafter M09 and
C13. The duration of reionization in our simulations is comparable to the models
explored in M09 (as seen in their Fig. 3). However, the reionization histories in C13
are much briefer than the ones seen here. This is largely due to the fact that the
quasar population in their fiducial reionization model does not include sources for
z > 4. The authors include an additional “extended” model which includes sources
beginning at z = 5, which shows a duration of reionization more comparable to
the ones in M09 and this work. Observations from McGreer et al. (2013) show a

88



non-negligible population of high-redshift quasars, which in Simulation H1 drives the
ionization fraction of helium to have a value of a few percent at z ∼ 5, with the
volume being nearly a quarter ionized by z ∼ 4. Thus, furutre studies should include
high-redshift quasars as an important part of helium reionization.

5.4 The Temperature History of the IGM

One important impact of helium reionization on the IGM is the temperature feedback.
Since quasars emit a hard spectrum with many energetic photons, and the IGM is in
a highly ionized state, the excess energy remaining after photoionization is converted
into heat in the gas. Though secondary ionizations are possible (e.g., Shull 1979;
Furlanetto & Stoever 2010), due to the ionization level of the IGM, their impact is
negligible for helium reionization (McQuinn et al., 2009). Photoheating from radiation
from quasars increases the average temperature of the IGM by ∼10,000 K, and as will
be seen in Secs. 5.4.1 and 5.4.2, contains important information about the history of
helium reionization.

5.4.1 Temperature-density relation

The relationship between the temperature of the IGM T and the baryon overdensity
∆ ≡ ∆b is an important measure of the state of the IGM, and is intimately related
to the reionization process. One can write the relationship between temperature and
density as a power law, and fit for the two parameters that define it (Hui & Gnedin,
1997):

T (∆) = T0∆γ−1, (5.5)

where T is the gas temperature, and T0 and γ define the power law relation be-
tween the gas density and temperature. This is the so-called temperature-density
relation, also sometimes called the equation of state of the IGM (though note that
it is not a true equation of state). Hui & Gnedin (1997) showed that at late times
following hydrogen reionization, the slope of the relation approaches γ = 1.62. In
general, this relationship should hold for the low-density gas in the IGM where adi-
abatic cooling/heating and a uniform radiation field following reionization are the
dominant sources of temperature change. However, the addition of heat from helium
reionization changes the slope of this relation, as well as the overall amplitude.

Figure 5.5 shows the temperature-density relation for the gas in the different sim-
ulations. The relationship is shown at several different redshifts, in order to demon-
strate several different effects that reionization has on the IGM temperature. In
particular, the general trend is indicative of an “inside-out” reionization scenario. In
such a scenario, the radiation from sources (quasars, in this case) propagate outward,
and are absorbed in high-density regions near sources before low-density ones, de-
positing heat as the radiation is absorbed. Because the gas is reionized at different
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Figure 5.5: A comparison of the gas temperature T as a function of baryon density
∆. The panels, from left to right, are the temperature-density relation as measured
from the simulations at z ∼ 2.5, 3, and 3.5. The gray shaded regions correspond to
the 68th and 95th percentiles of Simulation H1. Note that the overall amplitude of
the relation rises as redshift decreases, showing that the overall temperature of the
IGM increases as helium reionization heats up the volume. In addition, the slope of
the relation becomes steeper as the simulations evolve. The temperature of relatively
dense regions (∆ & 10) continues to rise even after helium reionization is largely
finished. This is due to recombination of the gas, followed by additional reionization,
adding more heat to the gas. Conversely, once ionization is finished, the low-density
regions (∆ < 1) cool adiabatically, with little heat input. The dashed black line in
each figure is the best-fit power law relation given by Equation (5.5) for Simulation
H1. This should be compared with the gray solid line, which actually follows the
relationship for each density value ∆. Note that, in general, the simple power law
does not accurately capture the relationship between density and temperature. See
the text for additional discussion.

times, and is dominated by adiabatic cooling following reionization, the relative tem-
perature between different gas densities reflects the reionization history. In particular,
the temperature of underdense regions can in fact be higher than mean-density ones,
due to the radiation from quasars tending to reach those regions at a later redshift. In
the meantime, the gas from high-density regions has additional time to adiabatically
cool. Because the amount of heat deposited in the gas from photoionization does not
depend on the density, the gas from higher density regions may be a lower tempera-
ture than the low-density gas when the low-density gas is first reionized. Thus, the
temperature-density relation can be relatively flat for medium- to low-density gas,
and even turn over such that low-density regions have a higher temperature than
mean-density ones (e.g., as in Trac et al. 2008 for hydrogen reionization). The simu-
lations presented here do not exhibit this inversion, due to both the longer mean free
path of helium ionizing photons and the relatively smaller amount of adiabatic cool-
ing experienced by gas at this redshift.2 Nevertheless, several of our simulations, and

2The adiabatic cooling of gas causes the temperature to decrease as T ∝ (1+z)2; thus, a duration
of reionization in redshift space of ∆z ∼ 1 at the higher redshift of hydrogen reionization leads to a
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Simulation H5 at z ∼ 3 in particular, show a relatively flat relation for underdense
regions.

Another feature in Figure 5.5 is the evolution of regions of high density (∆ &
10). In these regions, the density of gas is high enough that an appreciable fraction
of the doubly ionized helium can recombine with electrons to form singly ionized
helium. Once the gas has recombined, it can undergo an additional reionization
event, which will deposit additional heat into the gas. As can be seen in the Figure,
the higher density regions show higher temperatures as redshift decreases, even after
helium reionization is nominally finished. Thus, the temperature of these different
regions at the same redshift can somewhat break the degeneracy between the different
reionization scenarios. Since these differences are visible in higher density gas, it may
be possible to observe these differences in the Lyman-β forest, since these observations
saturate at higher densities than Lyman-α (Dijkstra et al., 2004; Iršič & Viel, 2014).

Figure 5.6 shows the evolution of the parameters of the temperature-density rela-
tion given in Equation (5.5) as a function of redshift for the different simulations. As
can be seen by the general structure of Figure 5.5 and noted in C13, fitting the entire
temperature-density relation to a single power law may not be the most optimal pa-
rameterization, due to the wide dispersion of temperatures at a given density value.
We should note that part of the difficulty in fitting the result to a power law comes
from the approximate nature of the relation: for large values of ∆, the approximation
breaks down. Further, the resolution of the simulations does not capture all of the
structure of the IGM, which leads to smoothing at certain scales. Nevertheless, we
present these results for the sake of comparison.

In general, we see a similar trend to Figure 5.5, where the temperature value at
mean density T0 increases as reionization proceeds, reaches a peak value, and then
decreases again. This is a general trend seen in the thermal evolution of the IGM, and
is explored more below in Sec. 5.4.2. Another general trend is the evolution of the
power law index γ which is roughly consistent between simulations. We reproduce the
observation of M09 that γ ∼ 1.3 during the bulk of helium reionization for our different
scenarios. In the lower panel of Figure 5.6 we show the value of γ = 1.62, which
is the asymptotic value of the IGM from Hui & Gnedin (1997) following hydrogen
reionization without additional sources of photoheating.

As can be seen from Figure 5.6, simulations that include a patchy hydrogen reion-
ization are not consisten with this value, though Simulation H6, which features a
significantly earlier hydrogen reionization epoch, approaches this value. However,
once helium reionization begins, there is a notable flattening of the temperature-
density relation (where γ = 1 represents the limit of an isothermal gas). As a larger
portion of the volume becomes ionized, denser regions will recombine and undergo
additional reionization events, leading to additional heat being deposited at those
densities. Conversely, low-density regions are dominated by adiabatic cooling. This
leads to an overall steepening of the slope γ, a trend seen at low redshifts following

larger relative change in temperature than the lower redshift of helium reionization.
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Figure 5.6: The parameters of the IGM power law temperature-density relation in
Equation (5.5) as a function of redshift for the different simulations. The top panel
shows the temperature parameter T0, and the bottom panel shows γ. In the panel
for γ, we have shown the line of γ = 1.62, the predicted slope from Hui & Gnedin
(1997) for the relation following hydrogen reionization. At early times, Simulation
H6 approaches this value, but then deviates from it following helium reionization.
The other simulations do not approach this value, likely due to the fact that helium
reionization begins before a steady state can be established. As discussed in the
text, the initial flattening of the slope (γ < 1.62) is due to the inside-out nature of
reionization, and the later steepening (γ ∼ 1.62) due to establishing equilibrium with
the radiation field. For the T0 parameter, the rise and fall of the value is consistent
with the rise and fall seen in Figure 5.5. See the text for further discussion.

the completion of helium reionization. These trends are also visible in Figure 5.5.
Note in particular that at z ∼ 3, most of the simulations have a comparable value
of γ. Indeed, the shape of these temperature-density relations in the central panel of
Figure 5.5 is similar, albeit with different vertical offsets.

The results of M09 and C13 are largely consistent with the findings presented
here. Before helium reionization begins, the temperature-density relation tightly fol-
lows a power law expression. Once helium reionization begins, the distribution of
temperature as a function of density becomes highly variable, with a large dispersion
forming for a given density value. This dispersion signifies the inhomogeneous reion-
ization process, and is a general feature of helium reionization. Additionally, as in
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C13, we find that the overall relation between temperature and density is ill-fit by a
single power law. C13 finds that the temperature-density relation flattens out and
begins to turn over at ∆ ∼ 10 (as can be seen in their Fig. 8). Although we do not
see a turn-over in our measurements, it is still clear that using a single power law to
characterize the relationship between temperature and density is insufficient for the
IGM following reionization.

5.4.2 Temperature at mean density
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Figure 5.7: The median temperature at
mean density (0.95 ≤ ∆ ≤ 1.05) of the
IGM as a function of redshift. The tem-
perature at mean density is significantly
higher for the patchy hydrogen reionization
scenarios than for the one with a uniform
UVB (Simulation H6), due to the signifi-
cantly earlier hydrogen reionization. Once
quasar activity begins, the temperature of
the IGM rises due to photoheating. The
peak corresponds to an ionization fraction
of xHeIII ∼ 0.90-0.95, marking the tail-end
of reionization. Following helium reioniza-
tion, the mean-density gas begins to adi-
abatically cool again, leading to the peak
structure seen in the Figure. See the text
for additional discussion.

An important marker of the progress
of helium reionization is the tempera-
ture at mean density of the simulation
(∆ ∼ 1), since the temperature in these
regions is dominated by adiabatic cool-
ing of the Universe and heating from ra-
diative transfer (Hui & Gnedin, 1997).
It is the interplay of these two factors
that determines the temperature of these
regions of average density. The aver-
age temperature of these regions show
two characteristic “bumps” as a func-
tion of redshift: one initial increase from
T ∼ 200 K to T ∼ 104 K as a result of
hydrogen reionization at 8 . z . 10,
and a subsequent increase in tempera-
ture from T ∼ 104 K to T ∼ 2×104 K at
2 . z . 3.5 as a result of helium reion-
ization (Furlanetto & Oh, 2008b; Puch-
wein et al., 2015). In between the two
epochs of reionization, and following he-
lium reionization, adiabatic cooling dom-
inates, and so the average temperature
decreases. The locations and widths of
these features can provide valuable in-
sight into the timing and duration of
reionization.

Previous studies of the mean tem-
perature of the IGM, both semi-analytic
(Furlanetto & Oh, 2008b) and using sim-
ulations with a uniform UVB (Puchwein et al., 2015; Bolton et al., 2016) have shown
the general picture of the IGM temperature should hold, and can therefore be used to
extract information about reionization. For our purposes here, we concern ourselves
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primarily with this second epoch of heating in the IGM, corresponding to helium
reionization.

Figure 5.7 shows the median temperature at mean density of the different sim-
ulations. In order to compute the temperature at mean density, at each time step
in the simulation we find the median temperature (as well as the ±68th and 95th
percentiles) of all gas cells that have 0.95 ≤ ∆ ≤ 1.05. At high redshift (z & 6),
the simulations have largely the same temperature, because the IGM temperature is
dominated by hydrogen reionization. As explained in Sec. 5.2.3, all of the simulations
with explicit quasar sources use a semi-analytic method for calculating patchy hy-
drogen reionization. The exception to this is Simulation H6, which uses the uniform
UV background of HM12 for both hydrogen and helium reionization. Notably, the
timing of hydrogen reionization is significantly earlier than for the patch hydrogen
method used (zre ∼ 13 for HM12 compared to zre ∼ 8 for the patchy hydrogen), so
the IGM has had additional time to adiabatically cool. This leads to the lower initial
temperature at z ∼ 6 seen in Figure 5.7.

Also note that in Figure 5.7, the temperature of the IGM peaks at a redshift that
corresponds to 90-95% helium ionization level. This is consistent with the idea that
the gas at mean density composes a large fraction of the volume of the simulation
volume, and so will preferentially reionize later than regions of high density. This
“inside-out” picture of reionization is similar to that of hydrogen reionization (Loeb &
Furlanetto, 2012). Following this peak in the IGM temperature, the adiabatic cooling
of the Universe becomes the dominant mechanism, because this comparatively low-
density gas generally does not recombine (due to recombination being ∝ ρ2

g, as shown
in Equation (5.2)).

5.5 Lyman-α Forest Measurements
An important observational tool used to understand helium reionization is the Lyman-
α forest. Observationally, there have been many rich data sets using the Lyman-
α forest, especially for cosmological measurements. The BOSS sample (Lee et al.,
2013) has been used to observe the baryon acoustic oscillation (BAO) feature (Busca
et al., 2013; Slosar et al., 2013), as well as generate one-dimensional power spectra
(Palanque-Delabrouille et al., 2013), which have been used to constrain neutrino
masses and other cosmological parameters (Palanque-Delabrouille et al., 2015). High-
resolution measurements from Keck-HIRES and Magellan-MIKE (Lu et al., 1996;
Becker et al., 2007, 2011b; Calverley et al., 2011) have given us information about
the temperature history of the IGM.

Synthetic Lyman-α spectra can be created for the H i and He ii densities. (See
Chapter 6 for further discussion of the He ii Lyman-α forest). In the following analysis
we have drawn the spectra along the x-axis of the simulation, though we find nearly
identical results when projecting along different axes. Once these spectra have been
calculated, they can be used to measure the effective optical depth τeff of the volume,
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compute the flux PDF, and calculate one-dimensional power spectra. To generate a
synthetic sightline, we define a set of pixels along a line of sight in the simulation
volume, such that the number of pixels is equal to the number of grid cells. For the
resolution level discussed in these simulations, this means Npix = 2048.

For each pixel i, the optical depth of the pixel τi is calculated due to the contri-
butions of every other pixel according to the formula (Bolton et al., 2009b):

τi =
cσα dR

π1/2

Npix∑
j=1

nHI(j)

bHI(j)
H(a, x), (5.6)

where σα = 4.479× 10−18 cm−2 is the cross-section of the Lyman-α transition, bHI =√
2kBT/mH is the Doppler parameter, dR is the (physical) width of the pixel, and

H(a, x) is the Voigt-Hjerting function (Hjerting, 1938):

H(a, x) =
a

π

∫ ∞
−∞

e−y
2

a2 + (x− y)2
dy , (5.7)

where x = [vH(i) − u(j)]/bHI(j) is the difference in redshift space between pixels i
and j relative to the Doppler broadening, u(j) = vH(j) + vpec(j) is the total velocity
difference of Hubble flow plus peculiar velocity, a = Λαλα/4πbHI(j) represents the gas
damping, where Λα = 6.265 × 108 s−1 is the damping constant and λα = 1215.67 Å
is the wavelength corresponding to the Lyman-α transition. In order to efficiently
compute the Voigt-Hjerting function, we use the analytic approximation provided by
Tepper-García (2006).

As can be seen from Equations (5.6-5.7), the thermal properties of the gas enter
in the form of the Doppler parameter b. This term increases as the temperature of
the gas increases, and serves to broaden the apparent width in velocity space of a
particular gas parcel. The tendency of absorption features to widen in velocity space
as the temperature increases can be used to learn about the thermal state of the IGM.
More approximately, the local optical depth of the IGM will depend on the average
temperature of the volume. We will further discuss some of the implications of this
process below in Sec. 5.5.2.

5.5.1 Effective Optical Depth

Once the optical depth for each pixel has been calculated, the corresponding flux is
given simply by Fi = exp(−τi). We can then define the effective optical depth of the
volume by averaging over all values of the flux:

〈F 〉 = exp(−τeff). (5.8)

Note that in general τeff 6= 〈τ〉. The effective optical depth as a function of redshift
has been measured to high precision as a volume-averaged quantity for the H i forest
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(Lee et al., 2015) and for individual objects of the He ii forest (Worseck et al., 2014).
In Lee et al. (2015), the BOSS survey measures more than 50,000 quasar spectra
at intermediate-to-high redshift, and has a formula for the evolution of the effective
optical depth as a function of redshift τeff(z).
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Figure 5.8: The effective optical depth of
hydrogen τeff,HI as a function of redshift
for the different simulations. The solid
black line is the observational data from
Lee et al. (2015). The linestyles for the
simulations are the same as in Fig. 5.2.
As discussed in Sec. 5.5.1, the amount of
hydrogen-ionizing radiation from galaxies
Γgal is modified while the simulation is run-
ning, so that this quantity is matched by
construction. This avoids the requirement
of renormalizing the simulations in post-
processing. Note that for the HM12 sim-
ulation, Γgal was specified by the model of
Haardt & Madau (2012) rather than being
modified to match τeff,HI, leading to the ap-
parent difference between the simulations.

In general, cosmological simulations
of the Lyman-α forest must renormal-
ize the flux level measured in order to
match the observed optical depth mea-
surements (see, e.g., Bolton et al. 2009b).
This is due to the fact that the reso-
lution of these simulations is typically
not high enough to capture the small-
scale, high-absorption Lyman-limit sys-
tems (LLSs) and damped Lyman-α sys-
tems (DLAs) that can lead to cosmolog-
ical simulations predicting too high of a
value of τeff (though see McQuinn et al.
2009 for attempts to account for these
systems in simulations). Typically, this
renormalization of Lyman-α spectra is
done in post-processing when the sight-
lines are generated.

Figure 5.8 shows τeff for all of the sim-
ulations presented in this work. As noted
in Sec. 5.2.3, this quantity is matched
by construction for all of the simula-
tions. Note that, in general, the agree-
ment is excellent. For redshifts z . 6
(the nominal end of hydrogen reioniza-
tion, after which τ . 1), all of the sim-
ulations match the observed value from
Lee et al. (2015) to within a few percent.
This matching allows for more straight-
forward comparison between the simula-
tions, as well as with observations.

As explained in Secs. 5.2.3 and 5.2.4, our simulations change the value of Γgal

on-the-fly in order to match the value of τeff as specified by Lee et al. (2015). By
ensuring that all of our simulations match the same value of τeff , we are better able
to compare them with each other and with the observations. Previous studies of
the Lyman-α forest (Theuns et al., 2002; Ciardi et al., 2003; Dall’Aglio et al., 2008;
Faucher-Giguère et al., 2008) have reported a dip in τeff at z ∼ 3.2. In some of
these works, the authors cited this dip as evidence of helium reionization, due to an
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increased IGM temperature decreasing the optical depth. By matching the τeff of Lee
et al. (2015), which does not contain this dip, it is possible that we would miss this
feature. We explore this possibility more in Appendix C.1.

When comparing against the simulations of M09 and C13, we notice that in all
cases, τeff is comparable to the most recent determinations of the H i Lyman-α forest
for the then state-of-the-art measurements. Our simulations are the only ones that
renormalize ΓHI in real time, so we are able to match the value of τeff by construction.
Nevertheless, our values of ΓHI are comparable to those in M09 and C12, as well as
HM12. We again note that the relative uncertainty on ΓHI is much larger than that
of τHI, and so to generate more realistic comparisons with measurements of the H i
forest, we advocate for matching the value of τeff by construction, as we have done
here.

5.5.2 Flux PDF

Another statistic related to the Lyman-α forest is the flux PDF. This measurement
is carried out by taking the flux value of each of the pixels in the sightlines of the
Lyman-α forest and creating a normalized PDF of their values. The result gives
additional information about the distribution of gas in the IGM. The flux PDF is
also dependent on the resolution of the measurement. For instance, compare the
results from a relatively high-resolution measurement (Calura et al., 2012) with that
of a relatively low-resolution measurement (Lee et al., 2015). In the lower resolution
case, the pixels of extreme absorption or emission become averaged, and the flux PDF
tends toward the mean. Thus, the measured PDF is resolution dependent.

From a simulation point of view, the resolution of the gas grid (and to a lesser
extent, the radiation grid) affects the resolution of the Lyman-α forest. For the
default-resolution grid at z ∼ 3, a single gas cell has an equivalent velocity width
of ∆v = 7.3 km/s. This resolution level is significantly greater than that of BOSS
(∆v ∼ 69 km/s, Lee et al. 2015), though not as good as Keck-HIRES (∆v ∼ 6.6
km/s, Lu et al. 1996).

Figure 5.9 shows the flux PDF of the H i Lyman-α forest as a function of red-
shift including the various simulations. The figure also includes the measurements of
Calura et al. (2012). Note that the spectra from Calura et al. (2012) were taken at
UVES, with a FWHM of 6.7 km/s, slightly higher than the resolution of our sim-
ulations. As a result, the different resolution may have a non-trivial impact on the
shape of the resulting flux PDF. Note that, largely, the flux PDF is identical for
different simulations at the same redshift, despite having different He iii ionization
fractions and thermal histories. This result implies that to given the same under-
lying gas structure, the flux PDF depends on having the same value of τeff . Given
the same large-scale structure and τeff , our result shows that helium reionization is
largely undetectable in the hydrogen flux PDF.

Nevertheless, there are still several trends that are visible upon closer inspection.
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Figure 5.9: A comparison of the flux PDF of the H i Lyman-α forest at z ∼ 2.5, 3,
and 3.5, from left to right. All of the simulations have the same color scheme as in
Figure 5.2. In the middle panel, the data points are taken from the results of Calura
et al. (2012), at z ∼ 2.9. Note that largely, all of the simulations show a nearly
identical distribution of fluxes. This result implies that the flux PDF is only weakly
sensitive to the temperature information of the IGM, since largely the only difference
between the simulations (besides the helium ionization fraction) is the temperature.
The flux PDF is instead more sensitive to τeff and, observationally, the continuum-
level uncertainty of the Lyman-α forest. See the text in Sec. 5.5.2 and Appendix C.2
for additional details.

Note that after helium reionization is largely completed at z ∼ 2.5, the value of
the flux PDF in the highest transmission bin of F ∼ 1 are ordered by the helium
ionization fraction: Simulation H3 has the highest value in this bin, and Simulation
H6 has the lowest. Note further that helium reionization is still ongoing for Simulation
H3, whereas for the other simulations reionization is largely over (Fig. 5.2).

We can understand this trend by employing the so-called fluctuating Gunn-Peterson
approximation (FGPA; Croft et al. 1998). The FGPA assumes that the gas of the IGM
accurately follows a temperature-density relation of the form found in Equation (5.5),
and is in photoionization equilibrium with a uniform ionization background. Under
these assumptions, the local optical depth of the IGM τHI can be expressed in terms
of the gas density, mean temperature of the IGM, and the H i photoionization rate,
along with other cosmological parameters. In particular, it can be shown that the op-
tical depth is related to the temperature as τHI ∝ T 0.7. Thus, for reionization histories
with a higher average temperature, there is an increased local value of τ , leading to
an overall lower flux value in high-density regions. Therefore, the comparatively high
value for the flux PDF in the bin where F ∼ 1 for Simulation H3 can be interpreted as
conveying information about the thermal state of the IGM. Indeed, Lee et al. (2015)
have proposed using the flux PDF to learn information about the thermal state of
the IGM at different redshifts.

One point to note is that there is a visible difference between the observations
of Calura et al. (2012) at z ∼ 2.9 and the results from the simulations at z ∼ 3,
shown in the middle panel in the plot. The flux PDF at intermediate flux values in
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the simulations is higher than that of the observations, until the highest bin (where
there is almost total flux transmission). Part of the difference can be attributed to
the fact that the simulations and the observations are normalized to different values
of τeff : the simulations use the value from Lee et al. (2015), whereas the observational
results determine the parameters for τeff(z) based on their measurements. At z ∼ 3,
the results for τeff from Lee et al. (2015) are higher than those from Calura et al.
(2012) by about 30%. This result accounts for some of the difference in the flux
PDF, but not all of it. (See Appendix C.2 for further discussion on the effect of
renormalization.) Alternatively, as noted in Calura et al. (2012), the continuum-level
estimation of the observational Lyman-α forest can significantly affect the shape of the
flux PDF. As shown in Figure 8 of Calura et al. (2012), increasing the continuum level
by 5% modifies the shape of the flux PDF to be comparable to the ones seen in the
simulations. There are also some discrepancies with previous theoretical explorations
of the predicted flux PDF that show a greater distribution of pixels with F ∼ 1
(Bolton & Haehnelt, 2007; Becker et al., 2007). However, these simulations employ
semi-analytic models similar to the FGPA to determine the optical depth as a function
of gas temperature, and so do not capture the inhomogeneous ionization field or
instantaneous ionization state of the gas. Thus, a combination of changing τeff of the
simulations and the continuum-level of the observations can bring the simulations
and observations into agreement.

5.5.3 One-dimensional flux power spectra

In addition to the statistics already discussed, the one-dimensional flux power spec-
trum can provide valuable information about underlying dark matter density distri-
butions. To calculate the one-dimensional flux pdf, we first define a “flux overdensity”
δF for each pixel:

δF ≡
F

〈F 〉 − 1, (5.9)

where 〈F 〉 is the average flux for all pixels in the volume (which is typically close to
the average flux within a given sightline, due to the length of the sightlines). Having
defined this quantity, a Fourier transform is applied to each sightline, so that we have
δF (k). The one-dimensional power spectrum P1D(k) is the average power per k-mode:
P1D(k) = 〈|δ(k)|2〉. In the following analysis, we look primarily at the dimensionless
power spectrum:

∆2
1D(k) =

k

π
P1D(k). (5.10)

Previous studies have shown that the one-dimensional power spectrum can be used
to measure the three-dimensional power spectrum (Croft et al., 1998; McDonald et al.,
2005; McDonald & Eisenstein, 2007), though here we explore only the one-dimensional
power spectrum. As with the flux PDF, the amplitude of the one-dimensional power
spectrum on large scales is largely similar between the different reionization scenarios
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Figure 5.10: A plot of the one-dimensional H i Lyman-α forest at z ∼ 2.5, 3, and 3.5,
from left to right. As with the flux PDF in Figure 5.9, the effects of helium reion-
ization are largely invisible in the hydrogen forest. Most of the differences between
simulations are visible at small scales. Specifically, simulations in which the average
temperature of the IGM is higher show less power on small scales. This is due to
the thermal motion of the gas washing out some of the small-scale structure. The
overall amplitude of the power spectrum tends to decrease with redshift, since the
total number density of hydrogen is decreasing. See the text for additional discussion.

at the same redshift. However, there are significant differences on small scales (k &
0.1 (km/s)−1). This is likely due to the differences in the thermal histories of the
IGM. Notice that, in particular at z ∼ 2.5, Simulation H6 shows a greater amplitude
than many of the other simulations, and also has a cooler temperature (see Fig. 5.7).
The cooler temperature is correlated with additional power at small scales, which is
consistent with additional structure as a result of cooler gas.

Figure 5.10 shows the one-dimensional power spectrum of the Lyman-α forest for
redshifts z ∼ 2.5, 3, and 3.5. As can be seen in Figure 5.9, most of the differences
between simulations are largely invisible in the H i Lyman-α forest. Most of the
differences between simulations are visible at small scales. In general, the simulations
that have a hotter average temperature of the IGM show less structure at small scales.
This is due to the decrease in clumping that results from the increased thermal motion
of the gas. On large scales, the differences between the simulations are typically less
than 10%.

One important point to note is that the small-scale structure of the one-dimensional
power spectrum is its dependence on the thermal history of the gas. The power spec-
trum is sensitive not only to the current temperature of the IGM, but also its past
temperature, a phenomenon first pointed out in Gnedin & Hui (1998). The power on
small scales is set by Jeans smoothing in the gas, which is caused by the propagation
of pressure waves in the gas and hence depends on the sound speed in the gas. Because
the sound speed depends on the temperature of the gas (for an ideal gas, c ∝ T 1/2),
the thermal history sets the maximum scale over which a pressure wave can travel
in the IGM. Note that in middle panel of Figure 5.10 at z ∼ 3, on small scales the
simulations with the most power are Simulation H6 and Simulation H3. According
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Figure 5.11: The three-dimensional H i Lyman-α forest flux power spectrum at
z ∼ 2.5, 3, and 3.5, from left to right. The only significant differences between
the simulations emerge on large-scales. This result is consistent with previous stud-
ies that different thermal histories have on the three-dimensional power spectrum
(McDonald, 2003). The trend on large scales may be related to the large-scale bias
of sources, leading to different biases in the radiation field. See the discussion in
Sec. 5.5.4 for further details.

to Figure 5.7, the temperature of the mean-density gas is similar between the two
simulations. However, in the case of Simulation H6, the temperature is decreasing
after having reached an earlier peak, whereas in Simulation H3, the temperature is
increasing from a relatively cool phase after hydrogen reionization. Accordingly, there
is additional power in the smallest scales for Simulation H3, which is consistent with
the findings of Gnedin & Hui (1998).

5.5.4 Three-dimensional flux power spectra

We have also made predictions for the full three-dimensional flux power spectrum
of the H i Lyman-α forest. To compute this quantity, we have generated the full
number of sightlines in the volume of N2

grid, which provides the full three-dimensional
information about the volume. Several previous studies (Croft et al., 1998) instead
differentiated the one-dimensional power spectrum to extract the three-dimensional
information. Our approach of using the full set of correlations present in the un-
derlying density field, as well as yielding the power spectrum at finer resolution in
k-space. The information contained in the three-dimensional flux power spectrum
can contain information about the state of the gas of the IGM (Pichon et al., 2001;
McDonald, 2003; Caucci et al., 2008; Cisewski et al., 2014; Ozbek et al., 2016), which
would provide an exciting window into the IGM at high redshift. Additionally, several
previous studies have started to measure the full three-dimensional power spectrum
using quasar sightlines from SDSS (Slosar et al., 2011; Lee et al., 2014), which have
provided important insight. In principle, like the one-dimensional flux power spec-
trum, the three-dimensional flux power spectrum can reveal important information
about the thermal history of the IGM (Gnedin & Hui, 1998), as well as the large-scale
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distribution of matter.
Figure 5.11 shows the three-dimensional H i Lyman-α forest flux power spectrum.

The general shape of the power spectrum is similar to that of the one-dimensional
version seen in Figure 5.10, though the drop in power at high-k is not as pronounced.
More importantly, there are observable differences on large scales between the different
reionization histories, which can differ by up to a factor of 2. Importantly, the gas
power spectrum of all of the simulations is essentially identical on large scales, so all
differences are due to the different ionization histories of the IGM rather than the
underlying matter or gas distribution.

The differences in power at large scales is likely due to correlations present in
the radiation field present in the IGM. As noted in McDonald (2003), differences
in the thermal state of the IGM (either the temperature T0 or the slope γ) only
lead to differences at the ∼ 10% level, which is consistent with the results seen in
Figure 5.11. The differences on large scales are significantly larger than this, and
further do not seem to be correlated with particular values of T0 and γ. Indeed, when
comparing with the values in Figure 5.6, the power on large scales does not seem to
be correlated with either value, further demonstrating that the thermal history alone
is not responsible for the differences on large scales.

Proper characterization of the full three-dimensional power spectrum is important
for measurements of the BAO from the Lyman-α forest (Busca et al., 2013; Slosar
et al., 2013). As can be seen in Figure 5.11, there are differences on large scales, in
some cases as large as a factor of two between the different reionization scenarios.
Thus, properly understanding the impact that the reionization of helium has on the
three-dimensional power spectrum is important for systematic errors for the BAO
measurement.

5.6 Conclusion

In this chapter, we have presented a new suite of simulations that couple N -body
methods, hydrodynamics, and radiative transfer simultaneously in order to study
helium reionization. Some of the most important observational implications that
helium reionization leaves on the low-density gas of the IGM come from the dramatic
increase in temperature from the photoheating of the gas. Using the results of the
simulations, we summarize here several conclusions that we can make:

1. In addition to changing the ionization fraction of helium as a function of redshift
xHeIII(z), helium reionization also leaves an important signature on the thermal
history of the IGM. This finding is consistent with previous studies of helium
reionization, which suggest using the temperature of the IGM to learn about
helium reionization. We show that the peak in the temperature at mean density
as a function of redshift T (z) is a relatively robust signifier of helium reioniza-
tion, occurring when the volume is 90-95% ionized by volume. The redshift
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interval over which the temperature of the IGM increases can be used to deter-
mine the duration of reionization, though this measurement is observationally
less straightforward.

2. Observations of synthetic H i Lyman-α sightlines show that many statistics con-
cerning the forest are generally similar for different ionization states of helium.
In particular, the one-dimensional power spectrum and the flux PDF are more
sensitive to the effective optical depth τeff of the volume, rather than the IGM
temperature or helium ionization. However, there are still noticeable differences
for regions of high-transmission, which becomes clear when examining the flux
PDF.

3. One exception to the previous point is the three-dimensional flux power spec-
trum, which shows differences on large scales by as much as a factor of 2.
Previous studies have attempted to measure this quantity (Slosar et al., 2011;
Lee et al., 2014), though the error bars are still significant.

In future studies, we plan to investigate the effect that anisotropic sources has on he-
lium reionization. The effect was discussed briefly in McQuinn et al. (2009), though
we plan to explore this aspect more thoroughly. In addition, we plan to look for
observational signatures in the Lyman-β and Lyman-γ forests. Because these tran-
sitions saturate at much higher neutral hydrogen densities, they can give additional
information about the thermal state of the IGM at higher densities. This type of
comparison can provide an additional observational tool for understanding helium
reionization, and provide another point of comparison with observations.
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Chapter 6

The Helium Lyman-α Forest

6.1 Introduction

In the past several decades, there has been an interest in understanding the reion-
ization of helium, using semi-analytic methods (Gleser et al., 2005; Furlanetto & Oh,
2008b,a, 2009; Dixon et al., 2014), numerical simulations (McQuinn et al., 2009, 2011;
Compostella et al., 2013, 2014; Puchwein et al., 2015; Bolton et al., 2016), and ob-
servations (Jakobsen et al., 1994; Reimers et al., 1997; Zheng et al., 2008; Dixon &
Furlanetto, 2009; Syphers & Shull, 2014; Worseck et al., 2014). Helium reionization
is thought to be driven by highly energetic photons emitted by quasars. Due to pho-
toheating of gas in the intergalactic medium (IGM) from these high-energy photons,
helium reionization leaves an important signature on the thermal state of the IGM.
However, such temperature measurements are difficult to make, and have large sys-
tematic or statistical uncertainties (Schaye et al., 1999; McDonald et al., 2001; Becker
et al., 2011a; Boera et al., 2014). Further, these methods for determining the tem-
perature rely on correctly calibrating the state of the hydrogen Lyman-α forest with
the gas temperature, which is fraught with difficulty.

A more appealing approach is to measure the ionization state of helium more
directly. Just as the Lyman-α transition from neutral hydrogen (H i) appears as
absorption spectra of radiation from distant quasars, so too does it appear for singly
ionized helium (He ii). This feature appears at 304 Å in the rest-frame of the absorb-
ing gas, a shift of a factor of 4 in frequency space compared to the hydrogen transition
due to the additional proton in the helium nucleus. As with the H i Lyman-α forest,
the very high transition strength means a very small amount of singly ionized helium
can lead to total absorption of the incoming radiation. Typically, neutral fractions of
fHeII & 10−3 can produce a Gunn-Peterson trough (Gunn & Peterson, 1965), making
detection of the early stages of helium reionization difficult. Despite this difficulty,
measuring the ionization status of helium from the He ii Lyman-α forest provides a
more direct probe than using temperature measurements or the H i Lyman-α forest.

Part of the difficulty in observing the He ii Lyman-α forest lies in contamination
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of high-density systems at lower redshift. Lyman-limit systems (LLSs) and damped
Lyman-α systems (DLAs) which are at intermediate redshift (say at zLLS) between the
comparatively high-redshift IGM gas we are interested in observing (say at zIGM and
observers on Earth can absorb much of the radiation above the ionization potential
of hydrogen at 912 Å. Thus, if 912(1 + zLLS) & 304(1 + zIGM), then the lower-redshift
LLS or DLA will obfuscate the He ii Lyman-α forest of interest. Due to the inferred
abundance of LLSs and DLAs at low redshift, only a small number of quasar sight-
lines are suitable for measuring the He ii Lyman-α forest (Møller & Jakobsen, 1990;
Zheng et al., 2005). Indeed, despite having more than 150,000 quasar sightlines from
BOSS alone (Dawson et al., 2013), to date there have been only about 50 sightlines for
which the He ii Lyman-α forest has been measured (Syphers et al., 2009b,a, 2012).
These measurements have provided much insight to the general picture of helium
reionization: at redshifts z > 3, a Gunn-Peterson trough has been detected (Jakob-
sen et al., 1994; Zheng et al., 2008; Syphers & Shull, 2014); below this redshift, helium
reionization becomes patchy, showing extended regions of absorption and transmis-
sion corresponding to the ionization level of the gas (Reimers et al., 1997); finally, by
redshift z ∼ 2.7, helium appears to be totally reionized (Dixon & Furlanetto, 2009;
Worseck et al., 2011). However, information beyond this general picture is difficult to
glean from the current limited set of He ii spectra. To this end, measurements pro-
viding additional information about helium reionization is an important application
of current and ongoing research.

In Chapter 4, we provided a method by which simulation volumes can be populated
with quasars in order to reproduce the quasar luminosity function (QLF) at various
redshift epochs (Masters et al., 2012; Ross et al., 2013; McGreer et al., 2013) as well as
quasar clustering (White et al., 2012). In Chapter 5, we presented a new suite of large-
scale simulations with the purpose of exploring helium reionization. These simulations
include N -body, hydrodynamics, and radiative transfer solved simultaneously, which
allows us to capture the evolution of the IGM with newfound accuracy. Based on the
snapshots of these simulations, we are able to generate synthetic Lyman-α sightlines
for H i and He ii. In this paper, we present results specifically about the He ii spectra,
and discuss ways to learn about the timing of helium reionization.

We organize the rest of this chapter as follows. In Sec. 6.2, we briefly discuss our
suite of simulations. In Sec. 6.3, we discuss the He ii Lyman-α forest, and various
measurements that can be made using the spectra. In Sec. 6.4, we discuss prospects for
detecting helium reionization properties given the current measurements. In Sec. 6.5,
we summarize our findings. Throughout this work, we assume a ΛCDM cosmology
with Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.045, h = 0.7, σ8 = 0.8, and YHe = 0.24. These
values are consistent with the WMAP -9 year results (Hinshaw et al., 2013).
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6.2 Radiation-Hydrodynamic Simulations
In Chapter 5, we present a new suite of hydrodynamic simulations with radiative
transfer, conducted with the goal of studying helium reionization. Here, we summarize
the properties of the simulations that are relevant to the results presented here. The
simulations were run using the RadHydro code with volumes of 200 comoving h−1Mpc
on a side. The large-scale structure is solved using a particle mesh (PM) scheme
with 20483 dark matter particles. The hydrodynamics is solved using a fixed-grid
Eulerian scheme with 20483 grid cells. Radiative transfer is solved using ray tracing
to propagate photons from quasars and a uniform UV background for radiation from
galaxies. The grid for radiative transfer contains 5123 resolution elements, which is
coarser than the resolution of the gas grid by a factor of 4. The simulation code has
already been used to study hydrogen reionization (Trac & Cen, 2007; Trac et al.,
2008; Battaglia et al., 2013b).

The simulations contain two features in particular that bear mentioning. First, the
simulations include a patchy model for hydrogen reionization developed in Battaglia
et al. (2013b). The midpoint of reionization has been set such that z̄re = 8, but in
general, regions of high-density undergo reionization before regions of low density.
By incorporating an “inside-out” reionization scenario, we ensure that the thermal
state of the IGM before helium reionization accurately reflects the impact of hydro-
gen reionization. Second, the contribution of galaxies to the UV background Γgal is
modified on-the-fly in order to reproduce the observed effective optical depth τeff of
the H i Lyman-α forest, defined as:

〈F 〉HI = e−τeff,HI , (6.1)

where 〈F 〉HI is the average flux of the H i Lyman-α forest of the volume, with an
analogous definition for He ii. Values of F ∼ 0 represent total absorption, and values
of F ∼ 1 represent total transmission. Specifically, we match τeff as determined by
BOSS (Lee et al., 2015). Modifying Γgal while the simulations are running means we
do not need to renormalize the Lyman-α forest in post-processing, as previous studies
of the Lyman-α forest have done (e.g., Bolton et al. 2009a). This feature allows us
to more easily compare the results between simulations and observations.

As explained in detail in Chapter 4, the simulation volumes are populated with
quasars such that the observed QLF is matched between redshifts 2 ≤ z ≤ 6 (Mas-
ters et al., 2012; Ross et al., 2013; McGreer et al., 2013), as well as the clustering
measurements at z ∼ 2.4 (White et al., 2012). For individual quasar objects, we use
the SED from Lusso et al. (2015), which has a spectral index of α = 1.7 (fν ∝ ν−α)
for λ ≤ 912 Å, and a spectral index of α = 0.61 for λ > 912 Å.

In Chapter 5, we present a series of 6 simulations, with different quasar proper-
ties. We will now briefly summarize each of these simulations. Simulation H1 is the
fiducial reionization model, which uses the QLF combining the various measurements
at different epochs and the SED of Lusso et al. (2015). Simulation H2 increases the
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amplitude of the QLF by a factor of 2, leading to an earlier reionization scenario.
Simulation H3 decreases the amplitude of the QLF by a factor of 2, leading to a late
reionization time. Simulation H4 increases the normalization of the SED by a factor
of 2, so that a given quasar with a given magnitude M will have a luminosity at 912
Å L912 that is two times greater as that provided by Lusso et al. (2015). Simula-
tion H5 uses a slightly different method for combining the QLF from different epochs
than Simulation H1, but uses the same SED. Simulation H6 uses the same quasar
population as simulation H5, but instead of renormalizing Γgal to match observations,
uses Γgal as specified by Haardt & Madau (2012). By extension, the values of τeff

for the H i Lyman-α forest do not match at all redshifts for this simulation. Finally,
Simulation H7 does not have explicit quasar sources, but instead uses a uniform UV
background with the photoionization and photoheating rates as specified by Haardt
& Madau (2012). As with Simulations H1-H5, these rates are renormalized in order
to match the observed H i τeff . See Paper II for further details about each of the
simulations.

6.3 He ii Lyman-α Forest Measurements
At each time step in the simulation, we generate synthetic Lyman-α sightlines on-
the-fly for H i and He ii. The measurements of τeff,HI for the H i sightlines allow
for modifying Γgal to ensure that the value is matched at all times in the simulation.
For the He ii sightlines, we are able to follow the evolution of τeff,HeII in order to
understand the evolution of the volume. We will now turn to specific observables
related to the He ii Lyman-α forest.

6.3.1 Effective Optical Depth

The effective optical depth τeff , as noted in Eqn. (6.1), is defined in terms of the
average flux in the volume. As with the H i Lyman-α transition, the strength of
the He iitransition ensures that only a very small amount of singly-ionized helium
is necessary to completely absorb incoming radiation. As a result, measurement
of τeff,HeII is most sensitive to the end of reionization. Further, due to the very
large comoving size of He iiiregions (typically tens of Mpc in diameter), there is a
large variation between different sightlines in the simulation volume, or even along
a given sightline. This variation is especially prevalent while helium reionization is
proceeding. In other words, due to the large coherence of the doubly ionized regions,
the observed optical depth can vary greatly from sightline to sightline, and so one
expects there to be a large variance in the measurements. This variation is in addition
to any inherent variance in τeff,HeII, primarily due to density fluctuations.

Figure 6.1 shows τeff,HeII as a function of redshift averaged over the whole simula-
tion volume. The Figure also includes observational data from Worseck et al. (2014).
These quasar spectra were taken using the cosmic origins spectrograph (COS) on
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Figure 6.1: The effective optical depth of singly ionized helium τeff,HeII as a function
of redshift for the different simulations. The black dots represent the observational
data from Worseck et al. (2014), which are taken from HST/COS data. The top
panel shows the results for the different simulations presented in Chapter 5, and the
bottom panel shows the relative difference to the fiducial simulation. As can be seen,
there is a large degree of scatter in the measurements. By extension, none of the
simulations is clearly disfavored. See Sec. 6.3.1 for additional discussion.

the Hubble Space Telescope (HST). These spectra measure τeff,HeII for segments of
about 10 proper Mpc. The large sightline-to-sightline variation is evident in the ob-
servational data, which show very different values of τeff,HeII at the same redshift.
The results from most of the simulations are largely consistent with the data at the
redshifts for which data is available (2.5 . z . 3.5). The main exception to this
is Simulation H3, which completes reionization at a significantly later time than the
other simulations. Quantitatively, the redshift when the volume reaches an ionization
fraction xHeIII ≡ nHeIII/nHe of 99% is z99 ∼ 2.23, compared to the timing of reion-
ization in the fiducial scenario of z99 ∼ 2.69. Given that this simulation completes
reionization significantly later than the other ones, it is not that surprising that the
value of τeff,HeII in Simulation H3 is significantly higher than that of the other ones.

6.3.2 Flux PDF

As discussed in Chapter 5, another tool for analyzing the ionization state of the
medium is the flux PDF. This measurement captures the relative number of pixels
with high transmission. As with τeff,HeII, this statistic is most sensitive to the tail-
end of reionization. Due to the low number of He ii pixels with high transmission
(F & 0.5) before the end of reionization (xHeIII & 0.99), the flux PDF cannot provide
detailed information while reionization is underway. Nevertheless, it can still provide
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Figure 6.2: The flux PDF of the He ii Lyman-α forest at redshifts z ∼ 2.3, 2.5,
and 2.7, from left to right. Note that the flux PDF is very sensitive to the tail end
of reionization: most of the simulations have an ionization fraction xHeIII & 0.99 at
z ∼ 2.7, and yet have a comparatively low number of pixes with high transmission
(F & 0.5). Nevertheless, the ionization fraction can be determined from the overall
shape of the PDF: note that the flux PDF of Simulation H3, which has a very late
reionization time, at z ∼ 2.3 looks comparable to the other simulations at earlier
times z ∼ 2.7. The shaded regions show the error in the measurement of Simulation
H1 computing using bootstrap resampling. For more details, see the discussion in
Sec. 6.3.2.

valuable information about the timing of reionization.
Figure 6.2 shows the He ii flux PDF as measured by the different simulations.

The panels, from left to right, show the volume at redshifts z ∼ 2.3, 2.5, and 2.7.
Note that at redshift z ∼ 2.7, most of the simulations are 99% reionized. Despite this
fact, there are comparatively few pixels with high transmission: for the fiducial case
of Simulation H1, more than 90% of the pixels have flux of F ≤ 0.5. This relatively
strong absorption is related to the strength of the Lyman-α transition, where only a
small amount of He ii is necessary to absorb most of the incoming radiation. Note,
though, that measurement of the flux PDF can still be an important marker of the
timing of reionization. As noted above, Simulation H3 completes reionization at
z99 ∼ 2.23, which is evident in the very different shape of the flux PDF. The flux
PDF of H3 at z ∼ 2.3 is comparable to that of, e.g., Simulation H1 at z ∼ 2.7. Thus,
by measuring the redshift when the central portion of the flux PDF is relatively flat
(e.g., when PDF(F = 0.25) ≈ PDF(F = 0.75)), one can determine the timing of 99%
ionization.

The shaded error regions in Figure 6.2 so 1σ uncertainties, and are calculated
using bootstrap resampling of 50 sightlines and computing the variance within each
flux bin. This number was chosen to coincide roughly with the current number of
He ii sightlines (as noted in Sec. 6.1). Note that these error regions are generally
small, showing that only a few sightlines are necessary to determine the shape of the
flux PDF. As with the H i flux PDF (and further discussed in Appendix C.2, the
continuum level of the measured spectra can have a dramatic effect on the shape of
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the flux PDF. Accordingly, uncertainty in this level can lead to systematic shifts in
the calculated flux PDF. Nevertheless, Figure 6.2 shows that given low systematic
uncertainties, the flux PDF of the He ii Lyman-α forest can be a powerful tool for
determining the ionization state of helium in the IGM.

6.3.3 One-d flux power spectra

In addition to the flux PDF, the one-dimensional power spectrum of the He iiLyman-
α forest can be used to learn important information about the ionization state of the
IGM. The overall amplitude of the power spectrum as well as the shape as a function
of k will change as the ionization state and the size of ionized regions change. As with
the one-dimensional power spectrum for H i, the amplitude on large scales is related
to the overall ionization state, with higher amplitudes corresponding to increased
ionization.

Figure 6.3 shows the one-dimensional power spectrum of the He ii Lyman-α forest.
The primary differences between the different simulations are in the amplitude of the
power spectra. At a given redshift, the amplitude of the power spectrum is directly
related to the value of τeff . Note that Simulation H3 has the largest value of τeff at a
given redshift (c.f., Figure 6.1), and also has the largest amplitude in Figure 6.3. This
can be understood in terms of the amplitude of fluctuations in the flux field: when the
IGM has a relatively low value of τeff , then all points in the volume have a similarly
(high) value of flux. Conversely, when τeff is higher, there are more variations between
regions of high flux and low flux. Thus, the overall amplitude of the power spectrum
is higher.

At z ∼ 2.7, the difference in the power spectrum amplitude at all scales is an order
of magnitude larger than that of the other simulations. Such a dramatic difference
should be detectable, and would allow for a straightforward determination of the
ionization state of the IGM. Most importantly, the differences in the amplitudes of
the IGM as a function of redshift are clear and pronounced, even for reionization
histories that are not fully reionized. Hence, the one-dimensional power spectrum
can be a window into helium reionization at times prior to 99% ionization.

As with Figure 6.2, the shaded regions show 1σ uncertainty in the measurements
using 50 sightlines and bootstrap resampling. At the earliest redshift (z ∼ 3.2),
there is a relatively large uncertainty. The uncertainty is large enough that at most
scales, several of the reionization histories are expected to lie within 1σ of each other.
However, simulations with vastly different values of τeff (as in Simulations H2 and
H3 in Figure 6.1) still show a strong difference in amplitude of the power spectrum.
Thus, the one-dimensional power spectrum can serve as another measurement of the
overall opacity of the volume.

However, at late times, the uncertainty of the power spectra decreases noticeably.
As a result, in principle it becomes easier to distinguish the histories. On the other
hand, there is significant overlap in several of the histories, which is due to having

110



10−4

10−3

10−2

10−1

100

101

102

π
−

1
k
P

(k
)

10−3 10−2 10−1

k [(km/s)−1]

−1.0

−0.5

0.0

0.5

R
el

at
iv

e
di

ff 10−4

10−3

10−2

10−1

100

101

102

π
−

1
k
P

(k
)

10−3 10−2 10−1

k [(km/s)−1]

−1.0

−0.5

0.0

0.5

R
el

at
iv

e
di

ff 10−4

10−3

10−2

10−1

100

101

102

π
−

1
k
P

(k
)

10−3 10−2 10−1

k [(km/s)−1]

−1.0

−0.5

0.0

0.5

R
el

at
iv

e
di

ff

Figure 6.3: The one-dimensional flux power spectrum of the He ii Lyman-α forest.
From left to right, the plots are at redshift z ∼ 2.7, z ∼ 3.0 and z ∼ 3.2. There is a
marked difference in the overall amplitudes of the power spectrum. These differences
are largely due to the difference in τHeII at a given redshift. Compare to Fig. 6.1, and
note that the amplitude of the power spectrum largely tracks the values of τeff . See
the text for additional discussion.

comparable values of τeff . Some of the largest differences that remain are at large
scales. As with the H i Lyman-α forest (and discussed in Sec. 5.5.4), these differences
might be attributable to the large-scale differences in the radiation field. Because the
radiation field is highly non-uniform for He ii ionization level (as opposed to the H i
forest that had a uniform background component from galactic radiation),the large-
scale power may reflect the degree of bias in the sources. Note in particular that
Simulation H6, which has only a uniform UV background and no explicit sources, has
consistently the lowest large-scale power, despite having one of the earliest reionization
times. At all redshifts considered, this simulation shows a lack of power compared to
the simulations with explicit sources. Thus, the large-scale power may be a way to
learn about the bias of sources of helium reionization.

6.4 Discussion
One very pertinent question with these measurements is the degree to which the
reionization history can be determined with a limited number of observations. As
discussed in Sec. 6.1, to date there have been only about 50 observations of the He ii
Lyman-α forest (Syphers et al., 2012). We have shown in Secs. 6.3.2 and 6.3.3 that
the flux PDF and one-dimensional power spectrum provide significant information
about the ionization state of helium. However, it is reasonable to wonder to what
extent current observations are able to determine the ionization state of the IGM.

To this end, we have used bootstrap resampling using 50 sightlines to estimate
the standard deviation for our different scenarios. Figures 6.2 and 6.3 show the
1σ dispersion as measured for 50 sightlines. As noted in the earlier discussion, the
ionization state of helium may be readily detectable in the flux PDF measurement.
Even accounting for uncertainty in the continuum level of the forest, the shape of
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the flux PDF varies strongly as a function of ionization fraction. This variation in
shape is significantly larger than the inherent variation of the flux PDF, and so even
with comparatively few sightlines, a meaningful determination of the ionization level
of helium may be possible given the current data.

6.5 Conclusion
To date, the He ii Lyman-α forest has largely only been used to determine the value
of τeff,HeII. As can be seen from Figure 6.1, there is a very large dispersion in this
measurement, owing to the large sightline-to-sightline variations. Thus, determining
the reionization history from this quantity alone is very difficult, and leads to large
uncertainties in the determination of the redshift of reionization. Additionally, as
discussed earlier, this measurement is largely sensitive to the tail-end of reionization,
and does not yield much information about the intermediate stages of the reionization
process. Accordingly, new applications of the He ii Lyman-α forest would be beneficial
for learning more about the timing and duration of reionization.

To this end, we have presented the flux PDF and the one-dimensional power
spectrum as ways to break the degeneracy present in τeff . These differences are
generally quite large between different simulations, in some cases being larger than
an order of magnitude. Future surveys will hopefully be able to take advantage of
these pronounced differences, and begin to measure the timing and duration of helium
reionization.
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Chapter 7

Conclusions

Over the past two decades, our understanding of reionization has grown by leaps
and bounds. Pure analytic theory provided the general framework of the reionization
picture as it is understood today. Cosmological simulations have grown in their scale
and complexity to provide predictions to unprecedented accuracy. And observational
evidence that promises to manifest just over the horizon should dovetail with the
predictions made thus far, and provide concrete evidence for many of the reioniza-
tion features described by theory and simulations. Meanwhile, there are several key
extensions of the work presented in this thesis that can be extended to make further
discoveries.

7.1 Future Observations of Reionization

7.1.1 Hydrogen Reionization

Observations of hydrogen reionization have been ongoing for many years, and are
reaching a point where the a signal is likely to be detected in the next ten years.
Most of the radio telescopes in the current generation of reionization-era experiments
are interferometers, which consist of a series of antennas whose signals are cross-
correlated. Some of the currently operating telescopes are the Murchison Widefiled
Array (MWA, Bowman et al. 2005), the Low Frequency Array (LOFAR, Harker
et al. 2010), and the Precision Array for Probing the Epoch of Reionization (PAPER,
Parsons et al. 2010). To date, the results from these experiments have provided only
upper-limits to the key observables related to hydrogen reionization. For instance, the
64-element configuration of the PAPER array has placed upper-limits on the 21 cm
3D power spectrum (Ali et al., 2015) and the thermal state of the IGM (Pober et al.,
2015) at specific redshifts relevant to reionization. By assuming some underlying
model for the evolution of the 21 cm signal at different epochs, some constraints can
be placed on the redshift dependence of the power spectrum (Jacobs et al., 2015).
Despite these recent advances, there has yet to be a conclusive detection of the 21 cm
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power spectrum.
Next-generation experiments promise to provide a positive detection of the power

spectrum. The Hydrogen Epoch of Reionization Array (HERA, Pober et al. 2014)
will likely provide such a detection within the next several years. The sensitivity
of the instrument will provide sufficient signal-to-noise so as to overcome the strong
foreground signal. Additionally, the proposed array configurations allow for potential
detection across a variety of redshifts, so the evolution of the 21 cm power spectrum
should be detected as well. This evolution will be invaluable for providing the best
picture of reionization observed to date, and will allow for detailed testing of various
reionization models discussed in the literature. In particular, the ionization fraction
and thermal state of the IGM inferred from these measurements should settle the
question on early reionization caused by X-ray binaries (Mirabel et al., 2011) or
primordial quasars (Madau & Haardt, 2015).

The measurements from HERA also promise to provide information about astro-
physics, as well as improve the constraints on cosmological parameters. One broader
application of the 21 cm power spectrum measurement is to learn about the sources
of ionizing radiation. Specifically, several parameters of semi-analytic models, such
as 21cmfast (Mesinger et al., 2011), can be relatively well constrained given current
forecasts for measurements from HERA (Liu & Parsons, 2016). As to cosmological
parameters, measurements of the CMB made by the WMAP or Planck satellites typ-
ically employ a seven-parameter ΛCDM model. One of these parameters is τreion,
which is the optical depth of photons to the CMB. This parameter is degenerate
with several other ones, most prominently As, the primordial amplitude of the power
spectrum. Note, though, that this degeneracy exists only when analyzing the TT
spectrum, and this degeneracy is broken somewhat by the low-` polarization (EE and
TE) data. Accurately determining τreion from HERA measurements promises to fur-
ther reduce the uncertainty of the remaining cosmological parameters by supplying
a known value (or very narrow range of “prior” values) to the MCMC method (Liu
et al., 2016).

Even further in the future, the Square Kilometer Array (SKA, Koopmans et al.
2015) will provide exquisite measurements of hydrogen reionization, for a large range
of redshifts and k-modes. The increased sensitivity of the array will allow for extract-
ing the full tomographic information of the 21 cm signal. These series of slices will
allow for three-dimensional reconstruction of the density field as traced by 21 cm as a
function of frequency (and hence redshift). Additionally, the SKA should also allow
for the direct imaging of the 21 cm sky, which represents the ultimate aim of radio
astronomy efforts. The SKA is also likely the practical terrestrial limit of sensitiv-
ity of radio interferometers. The detection power of future interferometers could be
helped by constructing an interferometer on the (radio) dark side of the moon, but is
far outside the scope of this work.

As a complementary measurement to the power spectrum of the 21 cm field, the
global signal provides important information about the evolution history during the
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Dark Ages. Prevailing theories of reionization predict a dip in the global signal as
initial the gas couples to Lyman-α radiation from the first stars, and then becomes
heated by photoionization. This transition is expected to appear at redshifts signifi-
cantly higher than hydrogen reionization, for 30 . z . 15. Several experiments have
been proposed to observe this portion of the reionization history, to determine the
temperature of the IGM before reionization. Some of the experiments include the
Experiment to Detect the Global Epoch-of-Reionization Signature (EDGES, Bow-
man et al. 2008; Bowman & Rogers 2010), Large-aperture Experiment to Detect the
Dark Ages (LEDA, Greenhill & Bernardi 2012), SCI-HI (Voytek et al., 2014), and the
satellite-based Dark Ages Radio Explorer (DARE, Mirocha et al. 2015). By detect-
ing the 21 cm signal during the pre-reionization era, these experiments will provide
important information about the initial conditions that led to reionization, such as
when star formation first happened. These experimental efforts are exciting probes
of the very young hydrogen sky, and will help bridge the gap between the CMB era
and reionization.

7.1.2 Helium Reionization

Observational efforts to detect helium reionization have different constraints from
hydrogen reionization, but in some sense can be just as difficult to detect. As I dis-
cussed in Chapters 5 and 6, the clearest and most direct probe of helium reionization
is detecting the He ii Lyman-α forest. By measuring its associated statistics, such
as the flux PDF or one-dimensional power spectrum, the ionization state of the IGM
can be determined. By tracking how these quantities change with redshift, it will be
possible to learn about the timing and duration of reionization. These details will
also indirectly probe the features of quasars, in new and interesting ways.

One of the largest obstacles to measuring the He iiLyman-α forest is dense systems
of hydrogen gas between the background quasar and observers on Earth. Due to the
additional proton in the helium nucleus, the relevant wavelength of the Lyman-α
transition is increased in energy by a factor of four compared to the H iLyman-α
transition (since to first-order the energy difference ∆E ∼ Z2, where Z is the number
of protons). Accordingly, the wavelength of the He iiLyman-α transition is 304 Å,
which is much higher in frequency space than the H iLyman-α transition at 1216 Å.
Accordingly, a dense Lyman-limit system (LLS) or damped Lyman-α system (DLA)
at an intervening lower redshift has the possibility to absorb these higher-energy
photons through photoionization. Any photons with a wavelength of λ ≤ 912 Åin the
rest frame of the LLS can be absorbed by the neutral gas, thus removing it from the
quasar spectrum. For instance, suppose that a background quasar emits radiation
at a rest wavelength of zq = 3.2, and observers on Earth are interested in detecting
the He iiLyman-α forest in the vicinity of the quasar. The absorption in the quasar
spectrum from He iiappears at λ = 304(1 + zq) ≈ 1277 Å in the rest frame on Earth.
Let us assume that as the quasar radiation propagates toward Earth, it encounters a
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comparatively low-redshift LLS at zLLS = 0.4. This dense cloud of neutral hydrogen
will absorb any radiation where λ ≤ 912(1 + zLLS) ≈ 1277 Å! Thus, the He iiforest
will be spoiled by the intervening LLS. Thus, to observe the He iispectra, the distant
quasar spectra cannot encounter a low-redshift LLS or DLA, because the spectra will
suffer irreparable contamination.

This issue of the He iispectra being clouded by low-redshift hydrogen was ex-
plored quantitatively by Møller & Jakobsen (1990). The authors concluded that one
can expect the majority of quasar spectra to intersect at least one LLS, given the
assumed distribution as a function of redshift. Optimistically, one would expect ∼1%
of quasar sightlines showing less than 50% absorption. In practice, the actual num-
ber of sightlines that are clean enough to be used for measuring the He iiLyman-α
forest is less than 0.1%: BOSS has measured spectra for 150,000 objects (Dawson
et al., 2013), but to date only about 50 He iispectra have been measured (Syphers
et al., 2009b,a). Future experiments may be able to find additional candidates for
measuring the helium forest; in the meantime, additional efforts must be devised.

In lieu of making measurements of the entire IGM, it can be fruitful to instead
focus on individual quasars. By learning more about the engines that drive helium
reionization, better models can be used when performing calculations or simulations.
One of the most uncertain properties of quasars (as it relates to helium reionization)
is the lifetime. There is a fundamental challenge associated with determining quasar
lifetimes, in that changes in quasar luminosity are not directly observable. (Perhaps
measurements by future astronomers made in 10 million years will be compared to
those of the SDSS observations. . . ) Therefore, indirect methods of probing quasar
lifetimes must be devised.

One potential method for investigating the lifetime of quasars is to examine the
spectra of quasars that have little angular separation on the sky. Two quasars that
have similar positions on the sky (though perhaps wildly different redshifts) will have
tell-tale signs in their spectra. Specifically, the spectra of the more distant quasar
at redshift z1 will have less absorption in the vicinity of the closer quasar at redshift
z2, relative to the value inferred by τeff,HI(z2). The decrease absorption is due to the
increased local ionization rate induced by the quasar at z2. By performing a statistical
measurement of these quasar proximity zones (and their typical size), the average
lifetime of quasars can be determined (Lidz et al., 2007; Khrykin et al., 2016). These
types of calculations can lead to better models for helium reionization calculations.

7.2 Future Research Directions
There are several interesting extensions that can be made to the simulations presented
here. The current understanding of hydrogen and helium reionization would stand
to benefit significantly by further refinement of the numerical simulations performed
here. I will now discuss several possible avenues for further investigation, which could
provide further understanding of reionization. I will be focusing primarily to the
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extensions of the work on helium reionization simulations, though see Sec. 3.7 for
possible extensions to the work on hydrogen reionization presented here.

One extension to the helium reionization simulations presented here is diversifying
the quasar population. For the work in Chapters 5 and 6, all of the quasars had the
same spectral index, as well as the same peak luminosity as a function of halo mass.
Additionally, all of the sources were populated in halos using the methods outlined in
Chapter 4 using abundance matching. Further, all of the sources emitted radiation
isotropically, with no beaming or directional emission.

Adding variety to the quasar population would generate an interesting comparison
point with the models discussed in this work. This additional study could help show
to what extent variation within a quasar population can affect the major properties
of reionization. Specifically, it would reveal to what extent the hydrogen reionization
timing and duration are fixed by the QLF and average spectral slope alone, or whether
the population variance can play a significant role in the observables. More concretely,
the temperature of the IGM following reionization depends on the hardness of the
emitted quasar spectra; because many of the observables in the H iLyman-α forest
are strongly dependent on the temperature of the IGM, the spectral index variation
can have a dramatic effect. The quasar population could be made even more realistic
with the inclusion of different spectral indices for radio-loud and radio-quiet quasars,
with the number of each type represented accordingly. A potential limitation to this
diversification is the uncertainty of the high-redshift quasar population, so further
observations with regard to these quantities would be tremendously useful.

As mentioned in Chapter 4, abundance matching is not the only method by which
dark matter halos can be populated by quasars. Other methods, such as using HOD
modeling (Richardson et al., 2012) or using the dynamical quantities of the halos
to inform quasar properties (Cen & Safarzadeh, 2015). An alternative mass-to-light
ratio as determined by these other methods could potentially change the conclusions
about helium reionization. However, the impact of these differences would likely
be minimal, due to the fact that the timing and duration of helium reionization are
largely fixed by the quasar luminosity function. Given that these alternative methods
would presumably match the QLF observations, the overall conclusions presented
here should remain intact. Nevertheless it would serve as an interesting check on the
robustness of the conclusions to change the quasar modeling.

Another potential change to the quasar population could be the introduction of
anisotropic emission, or “beaming” to quasar radiation. If the quasars have some
finite opening angle, then there could be interesting effects on the topology of helium
reionization. Recent measurements have hinted at this possibility (Borisova et al.,
2015), so implementing simulations that include this feature could provide very in-
teresting results. It is quite likely that the one-point statistics (such as the average
neutral fraction as a function of redshift, and τeff,HeII would be the same as in the
case of isotropic emission, given the same total photon output over the lifetime of a
given quasar. However, some two-point statistics, such as the one-dimensional and
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three-dimensional power spectra of the He iiLyman-α forest, could change. If the
differences prove to be significant, then measuring these quantities could provide an
alternative method by which one can measure helium reionization properties.

The thermal history of the IGM can be further constrained by looking at higher-
order Lyman series transitions in the H iforest. Lyman-β and Lyman-γ (a transition of
n = 1→ n = 3 and n = 1→ n = 4, respectively) will also produce a forest in quasar
spectra. As with the Lyman-α forest, the amount of radiation absorbed depends on
the density of neutral hydrogen present locally in the IGM. However, because these
transitions are not as strong as the Lyman-α one, the absorption signal saturates at
much higher densities of hydrogen. Thus, instead of saturating for overdensities near
mean density, the absorption would saturate for greater overdensities (Iršič & Viel,
2014). Accordingly, it would allow for probing the temperature at these higher over-
densities, providing additional information about the average temperature-density
relation (Boera et al., 2014). Using simulations to observe these potential differences
would allow for better understanding of some of the systematic effects that may be
present from such measurements, as well as providing guidance for calibrating future
measurements.

An additional extension of this work as applied to the thermal history of the IGM
is to provide better calibration of temperature measurements of the IGM from the
H iLyman-α forest. In particular, the curvature statistic κ (Becker et al., 2011a) has
been used as a proxy for the temperature of the IGM near mean density. One of the
systematic uncertainties of this measurement is the calibration: the relation between
the curvature κ and the gas temperature is established by the use of hydrodynamic
simulations using radiative transfer. However, the radiation field employed in the cal-
ibration assumes is uniform, and does not include any spatial inhomogeneities. Con-
sequently, the spatial variations in the temperature field are not accurately included
in the simulations. As shown in Chapter 5, helium reionization is very anisotropic,
and the heating of the IGM is not well-modeled by using a uniform field. Further, the
calibration process requires applying a power-law relation of temperature-density to
extrapolate from moderate overdensities (where the curvature statistic is most sensi-
tive) to mean density. As discussed in Sec. 5.4.1, the IGM is not well-parameterized
as a single power law. Thus, the simulations presented here can be used to better
apply calibrate measurements of the thermal state of the IGM, and in particular the
curvature statistic.

The future of hydrogen and helium reionization represent very exciting fronts in
astrophysics. The combination of theory, computation, and experiment have led to
exciting new discoveries about these formative periods of the Universe’s history. In
the coming years, further investigation promises to provide the first concrete evidence
of several of the most important features of hydrogen and helium reionization. The
future of reionization is incredibly bright, not only at the prospect of learning about
the first and brightest radiation sources in the Universe, but also because of learning
about the fundamental understanding about the Universe.
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Appendix A

Additional Material for the Light
Cone Effect

A.1 Exclusion of k⊥ = 0 Modes

Modes where k⊥ = 0 correspond to the total flux at a particular frequency defined
by k‖. For radio interferometers, this mode is inaccessible, since interferometers only
measure fluctuations relative to a background level. Alternatively, to probe modes
where k⊥ = 0, the antennas would have to have no separation between them, which
is not possible. These modes would not be detectable in most experiments proposing
to measure the 21 cm brightness temperature (Datta et al., 2012).

In order to determine how the exclusion of the k⊥ = 0 modes changed our pre-
dictions, we performed the preceding analysis both including and excluding these
modes. Removing these modes is roughly equivalent to subtracting the mean tem-
perature from each 2D slice in the xy-plane. Accordingly, the variance measured by
the power spectrum has three components: the change in the average neutral fraction,
the change in this average temperature as a function of redshift, and the average HII
region bubble size as a function of redshift. The removal of k⊥ = 0 essentially elimi-
nates the variance due to the changing average temperature, but it does not eliminate
the contributions from changing neutral fraction contribution or the bubble size.

Throughout the analysis, we computed different statistics both including and ex-
cluding modes where k⊥ = 0. In general, we find that removal of this mode causes the
light cone case to appear similar to the coeval case. However, performing the analysis
with k⊥ = 0 included has theoretical interest, since it explicitly demonstrates that the
light cone effect shifts power from small scales to large scales. Plots similar to Fig-
ures 3.5 and 3.6, but with all of the Fourier modes included, are shown in Figures A.1,
A.2, and A.3.

The inclusion of all Fourier modes in the analysis produces a signal that deviates
by up to two orders of magnitude for large scales (k . 0.05 h/Mpc). This deviation
is with respect to both the light cone effect without these modes, and the coeval case.
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The dramatic increase in power at these scales is largely due to the combined change
in neutral fraction during reionization. In other words, since there is a significant
change in the mean temperature when examining large scales, there is much excess
power on these scales. Note that the ringing in the case of the short reionization
scenario is due to the sharp discontinuity between the front and back of the box.

This effect also introduces a strong anisotropy in the signal. When analyzing the
signal using the power wedges analysis presented in Sec. 3.4.4, we found that the
modes parallel to the line of sight contributed about an order of magnitude more
power than modes perpendicular, with all of this excess being due to the k⊥ = 0
mode.

A.2 Additional Figures
In addition to the plot presented in Figure 3.5, we also computed the light cone
effect for all box sizes and reionization histories with fHI = 0.75, 0.25. These plots
are shown in Figures A.1 and A.3. Also, as mentioned in Appendix A.1, these plots
include all Fourier modes. As in the case of fHI = 0.5 in Figure 3.5, the light cone
effect is still pronounced, though not quite as prominently. As before, the light cone
effect is larger for bigger scales, and is most evident in the 500 Mpc/h sub-box size.
We conclude that regardless of the precise details of reionization, the light cone effect
is an essential consideration for the 3D power spectrum of large volumes.

Figure A.4 shows the anisotropic power spectrum for the medium and small box
sizes. At small scales, there is more power in k⊥ > k‖ modes, with the exception of
k⊥ = 0. Another interesting feature of these plots is how the shape of the isopower
contours changes when the light cone effect is included. As discussed in §3.4.3, the
difference in the extent in redshift space and extent along the line of sky changes
the amount of power for a given overall k. Also, as can be seen in Figure 3.10,
the anisotropy not including the k⊥ = 0 mode is greater for shorter reionization
scenarios. For the smallest sub-box size, there is almost no anisotropy in most of
the plot, because the extent in redshift space is small compared to the duration of
reionization.
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Figure A.1: The same plot as in Figure 3.5, but at a 75% ionization fraction and
with all Fourier modes included. The inclusion of all Fourier modes produces a
dramatic increase in the power spectrum, especially at small k-modes. (See the text in
Appendix A.1 for more discussion.) We also find for the long and fiducial reionization
scenarios that there is more power on large scales for the light cone than the coeval
case. In general, the light cone effect at this neutral fraction is less pronounced,
though still very significant. As in the main case of 50% ionization, the effect is most
noticeable for large box sizes. By extension, in the small sub-box case, the effect is
still not very significant, as is the same for 50% ionization fraction. One can also see
that the shape of the power spectrum has changed dramatically in the case of short
reionization.
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Figure A.2: The same plot as in Figure 3.5, but with all Fourier modes included.
Note that the inclusion of the k⊥ = 0 mode still dramatically increases the power
at small k-modes. On small scales, the inclusion of these modes do not change the
signal significantly.
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Figure A.3: The same plot as in Figures 3.5 and A.1, but at a 25% ionization fraction.
As with the case of a 75% ionization fraction presented in Figure A.1, in general the
difference between the light cone and coeval cases is not as great as 50% ionization.
Nevertheless, is it still an important feature, and especially on the largest scales. One
of the major implications is that the light cone effect is very important at large scales
across a large ionization fraction range. Additionally, as in the coeval case, the light
cone signal peaks at roughly a 50% ionization fraction.
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L = 250 Mpc/h, Fiducial: L = 250 Mpc/h, Long: L = 250 Mpc/h, Short:

L = 125 Mpc/h, Fiducial: L = 125 Mpc/h, Long: L = 125 Mpc/h, Short:

Figure A.4: A comparison of the anisotropic power spectrum across different reion-
ization histories and sub-box sizes. One interesting aspect in these plots is how the
isopower lines are shaped: when the light cone effect is included, there is a change in
the semi-circular contours. The central portion, near values where k⊥ ∼ k‖, has more
power than regions where one component is much larger than the other. This is an
interesting and subtle change in the contribution to the power introduced in the light
cone.

125



Appendix B

Additional Material for Quasars as
Radiation Sources

B.1 Fitting the parameters of the quasar luminosity
function

In order to construct a QLF informed by the observations at all redshifts relevant to
helium reionization, we have combined the measurements of R13, M12, and M13. We
will now briefly summarize the relevant findings of each paper. In all three results,
the QLF is parameterized as a double-power law, according to Eqn. (4.12). R13 uses
quasars identified from SDSS-III Data Release 9 (DR9), and provides a luminosity-
evolution density-evolution (LEDE) model in which the base-10 logarithm of the QLF
normalization, log10 φ

∗, and the break magnitudeM∗, evolve linearly with redshift, as
parameterized in Eqns. (4.13-4.14). The parameters α and β are fixed as a function
of redshift. Nominally, the LEDE fit is valid over the redshift range 2.2 ≤ z ≤ 3.5.
M12 uses data from the COSMOS survey, and measures the four QLF parameters
at z ∼ 3.2 and z ∼ 4. M13 uses quasars identified in SDSS data in Stripe 82 (S82),
and reports the four QLF parameters at z ∼ 5. For all three results, the parameters
themselves and their associated 1σ uncertainties are reported. In the M13 results, the
authors actually provide three different fits to the observed results. In their fiducial
result, they fix the value of β, and fit for the three parameters log10 φ

∗, M∗, and α. In
a second set of parameters, the authors fix the value of α and find the best-fit values
for the other three quantities. Finally, the authors fix M∗, α, and β, and only fit
for log10 φ

∗. The best-fit values for the parameters change significantly in some cases
between the different fits. More importantly, none of these fits seem to be ruled out
conclusively by the data presented in M13, and so we incorporate all of the fits in our
results.

As explained in Sec. 4.2.5, our goal is to combine the observational data from
different epochs. For redshifts z ≤ 3.5, the parameters from R13 are used. At higher
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redshift, the parameters are assumed to vary linearly in redshift. The equations for
the parameters are given in Eqns. (4.16a-4.16d). The constant values are taken to be
those of R13 at z = 3.5, and the slope of the redshift evolution is allowed to take on
a range of values. We will now discuss each of the four parameters in turn.
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Figure B.1: A plot of the evolution of the
QLF parameters as a function of redshift:
the base-ten logarithm of φ∗ (top left), the
break magnitudeM∗ (top right), the faint-
end slope α (bottom left), and the steep-
end slope β (bottom right). Best-fit values
and associated 1σ errors from R13, M12,
and M13 are represented as the solid lines
with shaded error regions, dark-gray tri-
angles, and light-gray stars, respectively.
For the M13 data, all three sets of param-
eters provided by the authors are plotted
at z ∼ 5, slightly offset for visual clarity.
The dashed lines for z > 3.5 show the fidu-
cial evolution of the QLF, and the dotted
lines show the bracketing ranges of values
explored. See the text in Appendix B.1 for
further details.

For the parameter log10 φ
∗, the fidu-

cial value for the slope c1 is chosen to re-
produce the average of the three reported
values of M13 at z ∼ 5. As discussed
in M13, the fits from R13 extrapolated
to z ∼ 5 do not reproduce the overall
normalization well, and predict too high
of a number density. Thus, a steeper
value than the one of R13 is necessary.
The range of values for c1 are chosen to
bracket the range of best-fit values re-
ported by M13.

For the parameter M∗, the fiducial
value of the slope c2 is chosen to repro-
duce the average of the three reported
values of M13 at z ∼ 5. The slope is al-
lowed to take on a range of values that
bracket the three reported values of M13.
Also note that we have converted be-
tween magnitude systems using Mi(z =
2) = M1450 − 1.486, which assumes that
the spectral index α = 0.5. If instead
the value of α = 0.61 is used instead,
as suggested by Lusso et al. (2015) and
used in the calculations of Sec. 4.5, then
conversion is Mi(z = 2) = M1450−1.681.
Further, if the SED from Shang et al.
(2011) is used, the conversion if Mi(z =
2) = M1450 − 2.139. The reason for the
differences is that the K-corrections de-
pend on the spectral index of the SED
(see Eqn. 3 of Richards et al. 2006). By
extension, the QLF can be affected when
combining different data sets. However,
to be consistent with previous works that
have combined disparate data sets in this manner (e.g., R13 and M13), we use the
conversion given by assuming α = 0.5.

For the parameter α, the fiducial value of the slope c3 is chosen to reproduce the
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average of the three reported values of M13 at z ∼ 5. As with the other parameters
discussed, a range of values is also explored which brackets all of the reported values
of M13. Further, the value of α is bounded to lie where α > −2. For α ≤ −2, the
QLF does not converge for low-luminosity objects, and a cutoff luminosity must be
specified below which quasars do not contribute significantly to helium reionization.
To avoid defining such a cutoff luminosity, the value of α is bounded. As a practical
matter, the ultimate goal of this project is to study helium reionization using full
numerical simulations, where the minimum resolved halo mass will set the lower-limit
of quasar luminosities.

Finally, for the parameter β, the fiducial value for the slope c4 is chosen to repro-
duce the average of the values from M13 at z ∼ 5. The range of slopes is chosen to
bracket the values reported by M13. For the fiducial choice of slope, the value of β
does not vary significantly with redshift. This range of values incorporates much of
the parameter space constrained by M13, without the values of β becoming arbitrarily
steep. However, the choice of β ultimately does not significantly affect the ionization
level predicted by Eqn. (4.23).

As a final note, the values of α and β at z ∼ 3.2 from M12 are nominally incon-
sistent with the combined results from R13. However, when looking at the results for
individual redshift bins at z ∼ 3.2 (e.g., Fig. 15 from R13), the uncertainties for the
R13 values are significantly larger, and the results are largely consistent at 1σ. The
values of log10 φ

∗ and M∗ from M12 at z ∼ 3.2 are consistent with the results from
R13, and those at z ∼ 4 are consistent with the linear redshift evolution given by the
requirement of matching the M13 data. Note that in Fig. B.1, we do not plot the
value of log10 φ

∗ at z ∼ 4 from M12, because the reported lower-bound of the error
bars is larger than the best-fit value, which must be positive. Despite this fact, the
best-fit value is very close to the fiducial linear evolution given here.

Figure B.1 shows the measured parameters as a function of redshift, as well as
the assumed high-z evolution for each parameter. The solid lines and shaded regions
show the best-fit parameters from R13, and the individual points with error bars
show the results from M12 and M13. The dashed lines show the fiducial choices for
the parameters, which are chosen as outlined above. The dotted lines show the full
range of parameters explored. The range of parameter combinations is applied to
helium reionization in Figure 4.9 in the top-left panel. Note that, as discussed in
Sec. 4.5, this uncertainty primarily affects the early stages of reionization. Due to the
recombination term in the calculation of the volume filling fraction and the fact that
all reionization histories use the parameters of R13 at z ≤ 3.5, the high-z values for
the QLF do not ultimately affect the timing of reionization significantly; nevertheless,
the different reionization scenarios can leave unique observable signatures on the IGM.
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Redshift selection zeff Light curve L∗eff
1,2 t∗eff

3

High-z 2.51 Lightbulb 12.92 7.62
Exp 12.40 7.14

Fiducial 2.39 Lightbulb 13.29 7.77
Exp 13.05 7.18

Low-z 2.28 Lightbulb 13.17 7.84
Exp 13.15 7.29

Table B.1: A list of the best-fit parameters for our quasar model as a function of
redshift.

B.2 Bias as a function of redshift

In addition to reproducing the “fiducial” sample from the BOSS results, the quasars
from the constructed catalogs were also partitioned by redshift into a “high-redshift”
and “low-redshift” sample in an analogous manner to the auxiliary BOSS samples.
In the case of the BOSS results, the “fiducial” sample is actually the combination of
the “high-redshift” and “low-redshift” samples, so these two datasets are statistically
independent of each other, but not the fiducial sample. For the purposes of comparing
with the quasar catalogs, though, it is possible to compute ξ(s) at distinct points
in redshift, and compare with the BOSS results. The central redshifts for the high-
redshift and low-redshift samples are z = 2.51 and 2.28, respectively. Then an analysis
similar to the above was performed, but at these additional redshifts. This procedure
yields further constraints on the bias as a function of redshift in terms of the model
parameters t0 and γ. Figure B.2 is similar to Figure 4.4, and shows how the selection
of models varies as a function of redshift. In general, we find that the choice of
parameters for our model t0 and γ evolve slightly with redshift. In genereal, the
BOSS measurements show an increase in bias with decreasing redshift. In order to
accommodate this increased bias, the model parameters must vary slightly. In general,
the model favors quasars with increased lifetimes as redshift decreases. Despite this
evolution with redshift, the relationship between log10(t0) and γ remains fairly linear,
and it is still possible to parameterize these models in terms of the characteristic
lifetime and luminosity factors teff and Leff as defined in Eqn. (4.21).

Table B.1 summarizes the changes in best-fit parameters as a function of redshift.
Interestingly, these values change somewhat: as structure continues to build, models
with increasingly higher bias values are preferred. The fact that the best-fit values
change demonstrates that the passive evolution of an increased clustering signal within
a given model is not sufficient: rather, this redshift evolution introduces additional

1Leff and teff as defined in Eqns. (4.21-4.22)
2L∗

eff = log10(Leff/L�)
3t∗eff = log10(teff/yr)
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Figure B.2: Parameter space evolution of t0 and γ from Eqn. (4.3) as a function of
redshift for the lightbulb model (left) and the exponential model (right). As red-
shift decreases, the space of preferred models shifts slightly toward ones with higher
intrinsic clustering. This is in addition to the passive evolution in clustering signal
that each individual model experiences, which constrains the space of applied mod-
els somewhat. Nevertheless, the results are consistent with there being no redshift
evolution.

constraints that we can use to select the most appropriate model. Nevertheless, the
results are consistent with no redshift evolution. The results of White et al. (2012) also
suggest that redshift evolution is minimal. Extending the clustering measurements
to a larger redshift range could provide important constraints on the properties of
quasar hosts.

B.3 Bias as a function of luminosity

We can also examine the dependence of bias as a function of quasar luminosity. In
the preceding analysis, we looked at the fiducial luminosity selection of the BOSS
measurements for clustering, −25 ≥ Mi ≥ −27. In order to break the degeneracy
in Fig. 4.4, we explored the implications of measuring the clustering of quasars with
different luminosity cuts. We examined a high-luminosity cut Mi ≤ −27, and a low-
luminosity cut −23 ≥ Mi ≥ −25. Unfortunately, since the simulation volumes are
only 1 (h−1Gpc)3, there are an insufficient number (∼400) of high-luminosity objects
to constrain the two-point correlation function.

When fitting the functional form of the two-point correlation function, a power
law is used:

ξ(s) =

(
s

s0

)β
. (B.1)
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Figure B.3: The best fit parameter s0

for the two-point correlation function in
the form ξ(s) = (s/s0)−2 as a function
of power-law index γ from Eqn. (4.3) for
the lightbulb and exponential cases us-
ing a fiducial (solid) and low-luminosity
(dashed) luminosity selection. The gray
shaded region shows the BOSS measure-
ment for the fiducial luminosity cut. For
the low-luminosity quasars, we see oppo-
site trends for the two models. For the
lightbulb, more negative values of γ mean
that dimmer quasars have longer lifetimes,
which combined with abundance match-
ing implies they have more massive hosts.
They therefore have larger values of s0

compared to more positive values of γ. In
the exponential case, larger values of γ
show more clustering because the bright
quasars are longer lived, and are more
likely to be included in the low-luminosity
cuts while they are below their peak lumi-
nosity. Since they are abundance matched
to more massive, highly clustered hosts,
this leads to the behavior seen. See the
text for further discussion.

Fits to the function are made for
cases where the exponent β is allowed
to vary, and others with a fixed value of
β = −2 as in White et al. (2012). In both
cases, the clustering length s0 increases
for larger values of the bias. To fit the
best parameters, the parameters s0 and
β that minimized the χ2 = δTC−1δ value
were found, where δ is defined as the dif-
ference between the average ξ(s) and the
functional form and C is the covariance
matrix, calculated in the same way as in
Sec. 4.3.2. These fits were made for the
best-fit models defined in Eqn. (4.21) us-
ing the values in Table B.1.

Figure B.3 shows the value of the
correlation length fits s0 for the fidu-
cial luminosity cut −25 ≥ Mi ≥ −27
(solid lines) and the low-luminosity cut
−23 ≥ Mi ≥ −25 (dashed lines) for
the lightbulb and exponential models.
The data are somewhat noisy, owing to
the comparatively large shot-noise error
in the correlation function measurement.
However, there does seem to be a trend
emerging: in the lightbulb case, for more
negative values of γ, the bias is larger,
with the opposite trend for the exponen-
tial case. In the lightbulb case, this can
be explained by noting, as in Sec. 4.3.2,
that in abundance matching longer life-
times leads to a larger bias in the host
halos. For negative values of γ, less lumi-
nous quasars have longer lifetimes. Sub-
sequently these quasars are being hosted
in more massive halos. This means the
clustering is stronger for large negative
values of γ, implying a larger value of s0.

In the exponential case, the opposite
trend is observed due to the presence of high-Lpeak interlopers. For positive values of
γ, brighter quasars have longer lifetimes, and are more likely to be included in the
low-luminosity selection. Since these hosts are abundance matched to occupy more
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massive, more clustered halo hosts, this leads to a stronger clustering signal, and a
larger value of s0. The evolution is not as strong as in the lightbulb case, however. In
principle, the clustering measurement in different luminosity ranges could help break
the degeneracy of best-fit models.

Unfortunately, in practice this type of measurement might be difficult to actually
make. The change in bias between the extreme values of γ is not very significant,
and the measurement is very noisy. The shaded gray region in Figure B.3 shows the
current 1σ bounds from the BOSS measurement, which has a larger spread than the
variation in s0 as a function of γ. Nevertheless, this ratio is a possible way to break
the degeneracy between the different models.
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Appendix C

Additional Material for Signatures of
Quasar Activity on the IGM

C.1 Renormalizing τeff

In several previous observational studies of the HI Lyman-α forest (Theuns et al.,
2002; Bernardi et al., 2003; Dall’Aglio et al., 2008; Faucher-Giguère et al., 2008),
there was a reported dip in the effective optical depth τeff at z ∼ 3.2. It was pro-
posed that this dip could be related to helium reionization. Several subsequent studies
(Bolton et al., 2009a,b; McQuinn et al., 2009; Compostella et al., 2013) did not repro-
duce this feature. In particular, the functional form of τeff(z) from Lee et al. (2015)
does not include this feature. As explained in Sec. 5.2.3, the usual approach taken in
the simulations is to renormalize the photoionization rate of galaxies Γgal in order to
reproduce τeff(z) by construction. As a result, the potential dip at z ∼ 3.2 would not
appear. To study whether this feature emerges from the simulations without renor-
malization, we have run Simulation H7, which uses the same simulation parameters
as H5, but with Γgal provided by the model of HM12. To isolate the contribution of
the galaxies, the authors of HM12 have furnished a series of photoionization rates and
photoheating rates which only include the contribution from galaxies, and does not
include quasars (P. Madau, private communication). Thus, we are able to determine
if the dip in τeff can be reproduced in our simulations.

C.2 Renormalizing the Lyman-α flux PDF

In Sec. 5.5.2, we discussed the results of measuring the Lyman-α forest flux PDF for
the different simulations. In order to compare against observation, Figure 5.9 shows
the measurement of the flux PDF from Calura et al. (2012) at z ∼ 2.9. There is a
noticeable difference in the shape between the observational and simulated results. As
explained in Sec. 5.5.2, there is a difference in the measured τeff of the measurements
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compared to our simulations, which used the more recent measurements of Lee et al.
(2015) to define the value of τeff(z) that the simulations matched. In order to inves-
tigate whether the difference in the flux PDF shape could be attributed entirely to
the different value of τeff , we adjusted the average flux absorption 〈F 〉 of the volume
to match the lower value of τeff from Calura et al. (2012).
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Figure C.1: A comparison of the Lyman-α forest
flux PDF of Simulation H6 using the default value
of τeff from Lee et al. (2015) (labeled “fiducial” in the
Figure) and a renormalized value of τeff from Calura
et al. (2012), as well as the data from Calura et al.
(2012). Note that the discrepancy at high flux val-
ues is less in the case of the renormalized value of
τeff , which is consistent with the fact that the value
of τeff is smaller for Calura et al. (2012). Never-
theless, the difference in the normalization cannot
account for all of the discrepancy. As shown in
Figure 8 of Calura et al. (2012), the continuum un-
certainty can have a significant effect on the shape
of the flux PDF. Thus, a proper estimation of the
continuum level for observations is essential for un-
derstanding the flux PDF.

Figure C.1 shows the flux
PDF of Simulation H6 renor-
malized to have the same value
of τeff as Calura et al. (2012),
and the measurements. The fig-
ure also shows the original flux
PDF for the default normaliza-
tion. Note that the value of τeff

reported by Lee et al. (2015) is
greater than the value reported
by Calura et al. (2012). Accord-
ingly, when the spectra have
been renormalized to have the
same value of τeff , some of the
discrepancy between the simu-
lations and the measurements
has been removed. Neverthe-
less, there is still some tension
between the measurements, es-
pecially for the bins of high flux
(F ∼ 1). Thus, this differ-
ence cannot be attributed en-
tirely to the difference in τeff .
As noted in Calura et al. (2012),
the placement of the continuum-
level can have a significant ef-
fect on the shape of the flux
PDF. Additionally, the differ-
ence in effective resolution be-
tween the simulations and the
observations may also play some role.

C.3 The Quasar Luminosity Function
In Chapter 4, we provide a method for parameterizing the quasar luminosity function
(QLF) as a function of redshift that combines measurements from Ross et al. (2013),
Masters et al. (2012), and McGreer et al. (2013) (hereafter referred to as R13, M12,
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and M13). These observations provide fits for the QLF at redshifts 2.2 . z . 3.5,
z ∼ 3.2 and z ∼ 4, and z ∼ 5, respectively. All three works parameterize the QLF as
a double-power law, defined by the same four parameters: φ∗, the overall amplitude
of the QLF with units of Mpc−1 mag−1; α, the slope of the faint-end of the QLF; β,
the slope of the bright-end; and M∗, the so-called break magnitude where the QLF
transitions between the slopes α and β. Mathematically, the QLF can be written as:

φ(M) =
φ∗

100.4(α+1)(M−M∗) + 100.4(β+1)(M−M∗)
. (C.1)

To combine the R13, M12, and M13 data sets into a single set of quantities, we
cast the 4 parameters of the QLF (φ∗,M∗, α, and β) as quantities that have evolution
in redshift. We define these parameters as:

log10 φ
∗(z) = log10 φ

∗
0 + c1(z − 3) + c2(z − 3)2, (C.2a)

M∗(z) = M∗
0 + c3(z − 3), (C.2b)

α(z) = α0 + c4(z − 3), (C.2c)
β(z) = β0 + c5(z − 3). (C.2d)

For the case of the overall normalization log10 φ
∗, we include quadratic evolution

with redshift. One should note that the comoving number density of quasars is not
monotonic, and peaks at z ∼ 2 (e.g., Fig. 20 of Richards et al. 2006). Accordingly,
at high redshifts, there is a significant decrease in the overall amplitude in the QLF,
and the redshift evolution is not well fit by a single linear term. Thus, observations
suggest that the redshift evolution of this parameter is not purely linear over such a
large span in redshift. (See Fig. C.2 for a comparison between a linear and quadratic
fit.) The other parameters have redshift evolution that are fit adequately with simple
linear evolution in redshift, and so we only include linear terms to avoid over-fitting.

We will now briefly summarize the relevant findings of R13, M12, and M13. In
all three results, the QLF is parameterized as a double-power law, according to
Eqn. (C.1). R13 uses quasars identified from SDSS-III Data Release 9 (DR9), and
provides a luminosity-evolution density-evolution (LEDE) model in which the base-10
logarithm of the QLF normalization, log10 φ

∗, and the break magnitude M∗, evolve
linearly with redshift. The parameters α and β are fixed as a function of redshift.
Nominally, the LEDE fit is valid over the redshift range 2.2 ≤ z ≤ 3.5. M12 uses
data from the COSMOS survey, and measures the 4 QLF parameters at z ∼ 3.2 and
z ∼ 4. M13 uses quasars identified in SDSS data in Stripe 82 (S82), and reports the 4
QLF parameters at z ∼ 5. For all three results, the parameters themselves and their
associated 1σ uncertainties are reported. The one exception to this is the value of
β from the M13 measurements, which was fixed to a value of β = −4. The authors
report that the value was fixed during the fits since allowing the bright-end slope to
take on any value would result in arbitrarily steep value of β. The authors of M13
state this is due to the low number count of objects at very bright magnitudes. In
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order to prevent the value from being fixed in our composite QLF, we parameterize
β as being an upper limit, with 1σ scatter above the value of β = −4 of σ = 0.4.
This value is inferred from Figure 18 of M13, which shows the joint likelihood of β
and M∗, the break magnitude. At 68% confidence, the authors report β < −3.6.
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Figure C.2: A plot of the evolution of the
QLF parameters as a function of redshift:
the base-ten logarithm of φ∗ (top left), the
break magnitudeM∗ (top right), the faint-
end slope α (bottom left), and the steep-
end slope β (bottom right). Best-fit val-
ues and associated 1σ errors from R13,
M12, and M13 are represented as the black
circles, dark-gray triangles, and light-gray
stars, respectively. The solid lines show the
parameterization of the parameters given
by Equations (C.2a–C.2d) based on these
data, reproduced in Table C.1. For the
evolution of log10 φ

∗, the dashed line shows
the best-fit assuming only linear evolution
in z instead of quadratic, motivating an
empirical need for quadratic evolution. See
the text in Appendix C.3 for further de-
tails.

It should also be noted that M12 and
M13 use different magnitude conventions
from the data in R13. Rather than re-
porting Mi(z = 2), the absolute i-band
magnitude at z = 2, M12 and M13 re-
port magnitudes as M1450, the absolute
magnitude at 1450 Å. In order to convert
between these two systems, we follow
the convention of R13, and use Mi(z =
2) = M1450 − 1.486 (Ross et al., 2013,
Appendix B). We should note, though,
that this conversion assumes a power-law
slope of α = 0.5 (fν ∝ ν−α), and changes
slightly for different spectral indices. Ul-
timately, the conversion between differ-
ent magnitude systems is not important
for our overall conclusions, since for most
of our simulation models, the observ-
ables we are most interested in (espe-
cially the peak in the IGM temperature,
Figure 5.7) are dominated by the QLF at
redshifts z ≤ 3.5. At these redshifts, the
QLF is determined with very small sta-
tistical uncertainty by the measurements
of R13, and thus no conversion between
magnitude systems is necessary.

C.3.1 Model Q1

To combine the data from the different
data sets, we fit for the four QLF pa-
rameters independently as a function of
redshift. The parameters are assumed to
vary linearly in redshift, except for the
base-10 logarithm of the normalization,
which includes quadratic evolution. As
explained above, we would expect that a
purely linear fit of this quantity should
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not be adequate over such a large range in redshift, since the total quasar number
density peaks around z ∼ 2 and turns over. The equations for the parameters are
given in Equations (C.2a–C.2d), and the resulting best-fit values for the parameters
and uncertainties given in Table C.1. Instead of fitting for the evolution of the four
parameters independently, it would be better to find a simultaneous fit to all of the
data spanning the entire redshift range. However, many degeneracies exist between
these parameters, and finding a simultaneous fit to adequately describe all of the data
over a very large redshift range is difficult to achieve.

Parameter Best-fit value
log10 φ

∗
0 −6.48

c1 −0.776
c2 −0.109
M∗

0 −27.2
c3 −0.795
α0 −1.46
c4 −0.324
β0 −3.43
c5 0.0342

Table C.1: A list of the best-fit param-
eters in Equations (C.2a– C.2d) given
the data listed in R13, M12, and M13.
These provide a fit to the luminosity func-
tion through redshift, and ensure that the
abundance of quasars matches observa-
tions as nearly as possible. For additional
details on the parameters and the fitting
procedure, see the text in Appendix C.3.

Figure C.2 shows the measured pa-
rameters as a function of redshift, as well
as the best-fit line for each parameter.
As explained above, for the QLF nor-
malization log10 φ

∗ and break magnitude
M∗, we include the parameters from R13
at z = 2.2, where the parameters are
determined best, and at z = 3, in or-
der to provide good constraints on the
overall normalization at a slightly higher
redshift. Combined with the two points
from M12 (z = 3.2 and z = 4) and the
single point from M13 (z = 5), there
are 5 total data points being fit. For
the cases of α and β from R13, we in-
clude them at z = 2.5, since there is no
explicit redshift dependence included in
the R13 fits. Nevertheless, when looking
at the reported parameters from higher
redshift data (and even when comparing
with the binned data from z ∼ 3 in the
R13 data), there does seem to be redshift

evolution particularly for α. Therefore, our model includes redshift evolution in these
parameters. At z ∼ 2.5, there is very good agreement between the binned QLF and
the fit model of R13. However, we note that the fit values are ultimately not very
sensitive to the choice of redshift. Combined with the results from M12 and M13, this
creates 4 data points to fit. The fit for all of the parameters is reasonably good, with
the notable exception of the steep-end slope β. As noted earlier, constraining β is
observationally difficult due to the low number count of objects. Also worth noting is
that the fits of M12 do not constrain β with their data directly. Their measurements
from the COSMOS field are primarily for faint objects, and are fainter than the break
magnitude M∗. In order to determine β in their fits, M12 use measurements from
Richards et al. (2006) to provide observations of bright objects. The overall result
is little evolution in β over the redshift interval 2.5 . z . 5, with perhaps a slight
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steepening when moving to lower redshifts. This is the opposite trend of α, which
shows a very clear trend of becoming shallower at lower redshifts. Nevertheless, due to
the low overall amplitude of the luminosity function at high magnitudes, the precise
value of β does not significantly affect the predictions for reionization.

C.3.2 Model Q2

As an alternative to finding the best-fit parameterizations is to simply interpolate
between the values reported in R13, M12, and M13. To this end, we take the values
for the parameters φ∗, M∗, α, and β reported by the different studies to be accurate
for their respective redshift ranges. Specifically, we use the values reported by R13
for redshifts z ≤ 3.5, the values of M12 at z ∼ 4, and the values of M13 for redshifts
of z ≥ 5. In order to determine values of the parameters at intermediate redshifts, we
linearly interpolate in redshift. This method produces a QLF which is consistent with
the different measurements by construction, but can introduce some features into the
QLF’s evolution due to the naïve linear interpolation method. We therefore regard
Model Q1 as our fiducial one, and present this one merely as a point of comparison.
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