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Abstract

Two-dimensional materials and their heterostructures o�er a new paradigm for
studying physics, engineering, and materials on the nano-scale. In the course of
this work I argue that layered heterostructures of two-dimensional crystals graphene,
hexagonal boron nitride, and transition metal dichalcogenides provide new and inter-
esting interlayer transport phenomena. Low-energy electron microscopy is employed
to study the surface of atomically thin WSe

2
prepared by metal-organic chemical

vapor deposition on epitaxial graphene substrates, and a method for unambiguously
measuring the number of atomic layers is presented. Using very low-energy electrons
to probe the surface of similar heterostructures, a relationship between extracted
work function di�erences from the layers and the nature of the electrical contact be-
tween them is revealed. An extension of this analysis is applied to surface studies
of MoSe

2
prepared by molecular beam epitaxy on epitaxial graphene. A large work

function di�erence is measured between the MoSe
2
and graphene, and a model is

provided which suggests that this observation results from an exceptional defect den-
sity in the MoSe

2
�lm. I describe a theory for computing tunneling currents between

two-dimensional crystals separated by a thin insulating barrier, and a few situations
resulting in resonant tunneling and negative di�erential resistance are illustrated by
computed examples, as well as observed characteristics, for monolayer and bilayer
graphene tunneling junctions and transistors.
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What could we do with layered structures with just the right layers?
What would the properties of materials be if we could really arrange the
atoms the way we want them? They would be very interesting to investi-
gate theoretically. I can't see exactly what would happen, but I can hardly
doubt that when we have some control of the arrangement of things on a
small scale we will get an enormously greater range of possible properties
that substances can have, and of di�erent things that we can do.

�R. P. Feynman, �There's plenty of room at the bottom,� 1959





Chapter 1

Introduction

The periodic arrangement of atoms known to physicists as the solid state has long
been the playground of condensed matter physicists, materials scientists, electrical
engineers, and the various other experts involved in the �elds of nanoscience and
nanotechnology. In the atomically thin limit, that is, a single sheet of atoms arranged
in a crystalline lattice, the physics that govern particle and quasiparticle behavior
are compressed from the three spatial dimensions we live in down to two. In this
state, many new and interesting phenomena emerge as a result of the reduced dimen-
sionality, and it is the physics of such two-dimensional materials that concerns this
thesis.

Living in a three-dimensional world a�ords us an additional degree of freedom
when dealing with two-dimensional materials. By controlling the physical conditions
and geometry of individual two-dimensional layers with three-dimensional forces, ef-
fects, and substrates, we are able to in�uence the behavior in two dimensions to great
e�ect. Even the simple act of stacking several two-dimensional layers on top of one
another to form a layered structure can cause dramatic changes in the properties of
the individual layers, in addition to the composite layered structure as a whole. In
this thesis, I consider a few select layered structures of dissimilar two-dimensional ma-
terials, two-dimensional heterostructures, and investigate interlayer interactions that
occur between them from the framework of quantum tunneling.

The following sections of this introductory chapter provide background material
pertaining to the �eld of two-dimensional materials and quantum tunneling from the
standpoint of resonant behavior. The thesis contains a mix of experimental obser-
vations and results from computations and simulations of physics. Chapter 2 covers
a few of the major experimental techniques that are employed in the scope of this
work, outlining the method of low-energy electron microscopy and its utility in atom-
ically thin materials research. These methods are applied to thin heterostructures
of tungsten diselenide and epitaxial graphene in Chapter 3, where a novel technique
for counting the number of atomic layers is presented. Chapter 4 covers the topic
of tunneling transport in similar structures, speci�cally identifying two distinct cases
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of electrical transport between the tungsten diselenide and graphene based on the
method of preparation. Heterostructures of molybdenum diselenide and epitaxial
graphene are studied in Chapter 5, wherein the experimental methods developed in
the thesis are utilized to measure the defect density of the crystals.

Additional background for the theory of tunneling between two-dimensional lay-
ers is outlined and extended to include realistic calculations of the electrostatics in
Chapter 6. Chapters 7 and 8 carry this work forward by applying the theory to the
cases of tunneling between monolayers of graphene and bilayers of graphene in great
detail. In Chapter 9, a discussion of ongoing activities related to state-of-the-art as-
sembly of interlayer tunneling heterostructures and devices is provided along with an
outlook toward future prospects. Finally the results of the entirety of this work are
summarized in Chapter 10. My work in this area has been highly productive in the
time that I have had the pleasure of being involved. To this point, portions of the
thesis have appeared in published form in Refs. 1�6, as noted in each relevant section.

1.1 Two-dimensional materials: a new paradigm for

physics in reduced dimensions

Prior to the �rst experimental realization of graphene in 2004,[7] it was widely believed
that layered materials could not exist in a freestanding, atomically thin form. In fact,
Peierls [8], Landau [9], and Mermin [10] each proposed arguments for the fundamental
instability of two-dimensional crystals which were highly regarded for many decades.
Physics research in two-dimensional solid state systems was therefore con�ned to
quantum wells, quasi-two-dimensional layers of electron gas con�ned to a narrow
geometry in one dimension while extending out laterally in the other two, embedded
in bulk (3D) materials.

Within this context, the �rst explicit demonstration of a stable two-dimensional
(2D) material, graphene, was an immense discovery[7, 11] that initiated a new �eld of
research; one that would have great impact on many related �elds in a short period
of time. From the viewpoint of electronic behavior, graphene is a semimetal, meaning
that it conducts electrons freely save for a twice-degenerate point in the band structure
that has a vanishing density-of-states. Apart from this detail, in normal conditions
the electrons in graphene naturally behave as a two-dimensional electron gas (2DEG),
which is in stark contrast to the interfacial engineering required in many conventional
quantum well systems in order to produce 2DEG physics. Since the electrons in
graphene are quantum-mechanically con�ned to the 2D layer, it is 2D physics that
they obey.

Due to the relative ease with which 2D materials could be synthesized, the �eld
of 2D materials research quickly expanded beyond graphene to include insulating
hexagonal boron nitride, semiconducting MoS

2
, and superconducting NbSe

2
,[12�14]

followed by many others.[15, 16] Each of these materials provides a platform for

2
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Figure 1.1: (a) Atomic structure of graphene viewed from the out-of-plane direction,
with side-views also given along two edges (armchair and zig-zag). There are two
carbon atoms per unit cell (shaded area), each belonging to a triangular sublattice
A or B. (b) First Brillouin zone (BZ) of the graphene lattice in reciprocal space.
Inequivalent symmetry points K and K ′ exist at the six corners of the BZ, whereas
M occurs at the midpoint between neighboring K and K ′ points.

investigating interesting and novel physics, but it is the combination of such mate-
rials in particular arrangements, two-dimensional heterostrucutures, that enables the
greatest number of possibilities. As Feynman proposed in his now-famous lecture in
1959, �There's plenty of room at the bottom,� layered heterostructures in particular
are expected to produce new properties and phenomena that are not possible in the
constituent materials alone.[17] This was a great insight, put forth at a time when
fabrication of such structures was well out of the realm of possibility. After many
decades of progress in the �eld, a catalog of 2D materials and advanced methods for
synthesis of these materials into layered structures are �nally available. With these
elements in place, it is the subject of this thesis to consider a few such structures and,
speci�cally, tunneling phenomena that may occur between vertically-stacked layers of
2D crystals.

1.1.1 Graphite in the few-layer limit

The basic properties of atomically thin graphite were �rst derived by Wallace in 1947,
wherein the bands of a single atomic layer of graphite (later designated graphene)
were calculated analytically by the tight-binding method and subsequently used to
derive properties of bulk graphite.[18] In this work, Wallace showed that the planar
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Figure 1.2: (a) Band structure of monolayer graphene produced by the tight-binding
method with nearest-neighbor hopping energy t = 2.8 eV and next-nearest-neighbor
hopping t′ = −0.4 eV. The conduction and valance bands touch at the six corners
of the �rst Brillouin zone, leading to semimetallic behavior. (b) Slice of the band
structure taken from the dashed box in panel (a) along the line of symmetry K ′�Γ�
K, with the conduction and valence bands in blue and red, respectively. The Fermi
level and vacuum level for neutral graphene are labeled as µ and Evac. (c) Blow-up
of the detailed bands near the Dirac point, where E(k‖) is linear and the conduction
and valance bands touch.
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arrangement of carbon atoms in a honeycomb lattice (Fig. 1.1) produced unusual
semimetallic behavior near the Fermi energy for neutral graphene (Fig. 1.2). In a
straightforward tight-binding description, orbitals of the two basis atoms A and B,
each of which decorate a triangular lattice, are parameterized by nearest-neighbor
hopping energy t (from sublattice A to sublattice B) and next-nearest-neighbor hop-
ping energy t′ (hopping within the same sublattice). This description permits an
analytical form for the band structure (the energies of allowed states as a function of
lateral wavevector),[18, 19]

E±(k) = ±t
√

3 + f(k)− t′f(k),

f(k) = 2cos(kya) + 4cos

(
kya

2

)
cos

(√
3

2
kxa

)
,

(1.1)

which is shown for the �rst Brillouin zone(BZ) in Fig. 1.2(a),1 with lattice constant
a = 2.46Å.

The primary result of this simple calculation is that the conduction and valence
bands (+ and − signs in Eq.(1.1), respectively) touch at six points, and most im-
portantly, the energy varies linearly with wavevector near these points, as shown
in Fig. 1.2(c). The linear dependence can be written down explicitly by expanding
Eq. (1.1) around k → K (or K′), where K (K′) is a vector pointing to the high-
symmetry point K (K ′) at the corner of the BZ, where the bands touch,

E±(q) ≈ ±vF |q|+O
(
(q/K )2

)
, (1.2)

where q ≡ k −K and vF ≡
√

3ta
/

2 is the Fermi velocity. The fact that electronic
behavior in this regime is governed by a linear dispersion relation (E ∝ q), typical of
massless particles, is a miraculous result, and a signi�cant departure from the usual
dispersion of electrons, E ≈ k2/2m with e�ective electron mass m. Moreover, the
Fermi velocity vF does not depend on energy at all, whereas it is usually v = k/m ≈√

2E/m . In fact, vF is a constant value near the K and K ′ symmetry points in
graphene, speeding electrons along at close to vF ≈ c/300 ≈ 1× 106 m/s.[18, 19]
Thus the electrons in graphene behave as massless particles with linear dispersion.

This analysis can be taken a step further by noting that a linear dispersion directly
results from a Dirac-like Hamiltonian in two dimensions,[19, 20]

HK = vFσ · k, (1.3a)

HK′ = vFσ
∗ · k, (1.3b)

around the K and K ′ points, where k is now relative to an origin placed at K or K ′,
utilizing the Pauli matrices σ = (σx, σy) and σ∗ = (σx,−σy). The eigenenergies both

1In this section, units are selected such that ~ = 1.
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Figure 1.3: Atomic structure of monolayer hexagonal boron nitride (h-BN) viewed
from the out-of-plane direction. There is one boron atom (blue) and one nitrogen atom
(red) per unit cell (shaded area), populating two inequivalent triangular sublattices.
The in-plane lattice constant of h-BN is 2.50Å, close to 1.6 % larger than that of
graphene, leading to an approximate 1.6 % reduction in the size of the Brillouin zone
in reciprocal space, and hence smaller di�raction patterns by the same amount.

copies of this Hamiltonian are E = ±vFk, as in the linear part of Eq. (1.2), and the
eigenstates (around K and K ′, respectively) have the form

ψ±,K(k) =
1√
2

(
e−iθk/2

±eiθk/2
)
, (1.4a)

ψ±,K′(k) =
1√
2

(
eiθk/2

±e−iθk/2
)
. (1.4b)

These wavefunctions are valid for describing electrons in graphene when |k| << |K| =
4π/3a , and the Dirac-like nature of the electrons in this regime leads to the term Dirac
fermions. As a �nal point of nomenclature, the six points at which the conduction
and valence bands touch are referred to as the Dirac points, and the linear bands
near these points, Dirac cones. There is one valence electron per atomic site in the
graphene lattice, and thus the valence band is completely �lled and the conduction
band empty in neutral graphene at zero temperature. As a result, the Fermi level
in these conditions is found at the energy where the bands touch (Fig. 1.2(b)), the
so-called charge neutrality point.
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1.1.2 Hexagonal boron nitride: an ultra�at wide-band-gap in-

sulator

The semimetallic behavior of graphene is a result of the high symmetry of the lattice of
carbon atoms. Speci�cally, the equivalence of the potentials at the A and B sublattice
sites prevents the existence of a band gap, allowing the conduction and valence bands
to touch at the charge neutrality point. In contrast to this picture, hexagonal boron
nitride (h-BN), although it has the same lattice structure as graphene, possesses
two inequivalent atoms per unit cell (Fig. 1.3), lowering the symmetry compared to
graphene and thus opening up a band gap in the band structure (Fig. 7.2). As such,
h-BN is a wide-band-gap insulator, with a band gap energy near 6 eV.[21] Due to
strong, in-plane covalent bonds and weak interlayer interactions, h-BN is a layered
material, similar to graphite, and it is highly stable in thicknesses down to a single
layer.

Most importantly for graphene studies, however, is that due to its inherent �at-
ness, inertness, and large band gap, h-BN makes a fantastic substrate, encapsulation
layer, and tunneling barrier for 2D heterostructures of all kinds. Boron nitride has
been shown to increase the �atness of supported graphene (roughness or curvature
tend to introduce potential �uctuations in graphene, among other complications),[15]
to vastly reduce spatial potential inhomogeneities in the graphene,[22] and to increase
the electron mobility in graphene by at least one order of magnitude compared to bulk
substrates.[23]

In the scope of this thesis, h-BN will primarily be viewed as a convenient insulat-
ing material; a dielectric material with a permittivity close to 4ε0, and a tunneling
barrier with decay constant κ ≈ 6 nm−1, varying slightly in momentum space (see
Section 7.3). Insofar as the h-BN serves one function or the other is largely a ques-
tion of the thickness, with h-BN substrates and gate dielectrics typically utilizing
≈ 20 nm or so of h-BN layers, whereas tunneling applications require no more than 2
to 6 monolayers to be e�ective. For studies involving low-energy electron microscopy,
it is the high-energy bands (above the vacuum level) that are relevant, and in this
regime h-BN can be considered quite similar to graphene, as will be discussed in
Section 3.4.

1.1.3 Semiconductors in two dimensions: transition metal dichalco-

genides

Shortly after the isolation of graphene in its monolayer form, the �rst true 2D semicon-
ductor was similarly reduced to two dimensions, MoS

2
.[12] This material, a transition

metal dichalcogenide (TMD), possesses strong ionic-covalent bonds within each layer
and weak interlayer interactions, similar to graphene and h-BN, however, there are in
fact three atomic planes comprising each �monolayer� of TMD, as shown schematically
in Fig. 1.4. Each layer of TMD material (with general formula MX

2
) is composed
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Figure 1.4: Atomic structure of a generic transition metal dichalcogenide with the
formula 2H-MX

2
, one with metal M and two chalcogen X atoms per unit cell (for

example M ∈ {W,Mo}, X ∈ {S, Se,Te}). Side views emphasize the coexistence of
three separate atomic planes; the metallic plane being sandwiched between chalco-
gen layers. Lattice constants vary depending on the constituents, but are generally
about 30 % larger than that of graphene, and thus di�raction patterns are easily
di�erentiated from those resulting from graphene.
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of a central atomic layer of transition metal atoms (M) in a triangular sublattice
sandwiched between two atomic layers of chalcogen atoms (X), with the chalcogens
arranged in a trigonal prismatic coordination. 2 Previous studies of bulk MoS

2
es-

tablished that it is an indirect-band-gap semiconductor, meaning that the conduction
band minimum and valence band maximum occur at di�erent points in momentum
space. Early work with MoS

2
in the few-layer limit, however, revealed that reducing

the number of layers leads to an increasing band gap energy, and strikingly, monolayer
MoS

2
obtains a direct band-gap, with conduction and valence band extrema occurring

at the same location.[14] Neither type of band gap is unusual in conventional semi-
conductors, but the transition from one type to the other caused by the reduction in
dimensionality suggests that this is indeed a class of materials worth investigating.

In fact, there are many unique and superlative properties of TMD materials, most
of which are beyond the scope of this thesis. Here, we will primarily be concerned
with the utility of TMD materials as 2D semiconductors, with band gaps, electron
a�nities, and densities-of-states that may prove advantageous for electronic devices,
especially tunneling structures. Along those lines, it is worth pointing out that there
are several possible phases of TMD crystal structures: 2H, 1T, 1T', and 1Td, each
with slightly di�erent arrangement of the metal and chalcogen atoms within each
atomic plane. Throughout the thesis, the samples studied are either assumed or
revealed to be largely of the 2H (hexagonal) variety, as shown in Fig. 1.4, and thus
the distinction will not be made beyond this point.

1.2 Resonant tunneling physics in its various forms

Having established the materials that will enter into the work described in this thesis,
it is the task of this section to introduce the tunneling concepts that arise as moti-
vation, and for reference in later chapters. Whereas Chapters 3 and 5 deal primarily
with materials characterization, abstracted from the intended purpose of fabricating
interlayer tunneling devices, Chapters 4, 7, and 8 involve tunneling directly. The
overarching goal of this work has been to design and eventually fabricate interlayer
tunneling devices that take advantage of 2D�2D tunneling physics to exhibit novel
and desirable electronic behavior. Before we advance to the speci�c modes of tun-
neling that appear in the thesis, we must establish the context in which this work in
relevant. The term resonant tunneling has been used with several, somewhat disjoint
meanings in physics and electrical engineering. The observation that these share in
common is negative di�erential resistance, but the underlying mechanism that causes
this is di�erent in each case. There are whole bodies of literature pertaining to each

2 Conceding that one of these layers is technically not atomically thin, one could more precisely
call this a stoichiometric monolayer, although the distinction is typically irrelevant for situations in
which the electronic behavior is still governed by 2D physics. Hence, for the purposes of this thesis,
the term monolayer will be used to refer to a single stoichiometric monolayer, with three atomic
planes.
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Figure 1.5: Band diagram of an Esaki tunnel diode at resonance. Current tunnels
from conduction to valence band through a narrow depletion region in a highly-doped
p�n junction. Adapted from Ref. 24.
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Figure 1.6: Illustration of voltage-driven negative di�erential resistance (NDR),
referring to the red portion of the current�voltage curve, where dI/dV < 0. Another
form of NDR (current-driven) is also possible, but will not appear in the thesis.

of these mechanisms, so I will only provide a brief overview here for purposes of
comparison to the physics that will be discussed in the thesis.

1.2.1 Esaki tunnel diode

The �rst demonstration of quantum tunneling in a solid state system was, in fact, a
form of resonant tunneling observed by Esaki [25]. By measuring the current across
highly doped germanium in a p�n junction, Esaki more or less stumbled upon the
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Figure 1.7: Band diagram of a double-barrier resonant tunneling diode (RTD) at
resonance. A quantum well is sandwiched between two tunneling barriers with elec-
trodes on the exterior faces. Resonant tunneling occurs for the bias voltage which
causes energetic coincidence of the con�ned state in the quantum well with states in
the electrode regions. Adapted from Ref. 24.

phenomenon which now takes his name (and ultimately led to a shared Nobel Prize,
no less). With an extremely narrow depletion region between the p and n sides of the
junction, carriers can tunnel from the conduction band of the n side to the valence
band of the p side (Fig. 1.5). For the special case of very highly-doped n and p regions
(so-called degenerate doping), the conduction band of the n side is lower in energy
than the valence band of the p side at zero bias (V = 0). In this con�guration, as the
bias is increased from zero the window of allowed states for tunneling becomes smaller
due to the increasing energy of the conduction band (and the lack of available states in
the band gap). This causes the current to decrease with increasing voltage for a small
range of voltages, a phenomenon known as negative di�erential resistance (NDR),
where dI/dV < 0, as shown in Fig. 1.6. The concept of NDR is intriguing given that
current is generally a monotonically-increasing function of voltage in conventional
electronic devices. In practice, this NDR behavior leads to a peak in the tunneling
current with respect to voltage; a type of resonant tunneling.

1.2.2 Double-barrier resonant tunneling diode

Double-barrier resonant tunneling is a familiar example of quantum phenomena of-
ten taught in courses on quantum mechanics. In such examples, the exact solution
of double-barrier tunneling in one dimension is used to show that perfect tunneling
transmission can occur for certain energies coincident with states in the central quan-
tum well. A double-barrier resonant tunneling diode (RTD) is an electronic device
based on this mechanism that produces NDR in its tunneling characteristic due to
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Figure 1.8: Parabolic bands of neighboring quantum wells in momentum space with
an applied bias (a) o�-resonance and (b) on-resonance, leading to negative di�erential
resistance due to requirement of lateral momentum conservation (k‖-conservation).
Adapted from Ref. 26.

the non-linear transmission. In this case, reduced dimensionality in a central quan-
tum well region is employed to discretize the available states such that the resulting
spectrum in the quantum well possesses a single relevant band. The quantum well
is sandwiched by tunneling barriers on either side, with source and drain electrodes
on the exterior faces of the tunneling barriers (Fig. 1.7).[24] A bias is applied across
the source and drain electrodes, causing modulation of the bands in the electrodes,
as well as in the quantum well region. For one bias voltage in particular, the energy
of the available band in the quantum well will coincide with a matching bands in the
electrodes, causing a peak in the transmission coe�cient and subsequent resonant
tunneling through the two barriers, from source to drain.

1.2.3 Lateral momentum conservation in two dimensions

Along the lines of using reduced dimensionality to produce resonant quantum e�ects,
moving to two dimensions can provide many opportunities for resonant behavior. One
important mechanism that forms a central component of the thesis is resonant tun-
neling between two separate two-dimensional electron gases (2DEGs) due to lateral
momentum (or wavevector) conservation. The �rst proposals for this phenomenon
were devised in the context of quasi-2DEGs in double-quantum-well structures.[26�
28] In such a structure, the states of each quantum well are con�ned to a quasi-
two-dimensional volume, causing each band to have well-de�ned momentum in the
lateral directions, but decaying character in the out-of-plane direction (Fig. 1.9). A
bias is applied across the two quantum wells, leading to tunneling from one 2DEG
to the other. For one particular voltage bias, the bands of each 2DEG will be in
complete alignment in momentum space, as in Fig. 1.8(b); this is the resonant tun-
neling condition. At other biases, the bands will not overlap, as in Fig. 1.8(a), or at
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Figure 1.9: Schematic of a 2D�2D tunneling transistor based on a conventional semi-
conductor heterostructure. Tunneling resonance is provided by the reduced number
of states with matching energy and lateral momentum on either side of the tunnel-
ing barrier, similar to the graphene�insulator�graphene tunnel junctions presented in
Chapters 7 and 8. Adapted from Ref. 26.
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least the lines of intersection will be con�ned to a much smaller number of states,
leading to reduced tunneling currents at these other voltages. This manifests as NDR
in the tunneling current, similar to the Esaki diode and RTD mechanisms mentioned
previously, however, in this case the underlying mechanism responsible is the strict
requirement of lateral wavevector-conservation in addition to the usual energy con-
servation (for elastic transitions) between the tunneling states. Two key properties
that enable momentum-conservation to play a role in the transmission are as follows:

1. There must be a greatly reduced number of states with dispersion in the tun-
neling direction (the 2D requirement), otherwise there will be additional bands
which allow tunneling at multiple voltage biases, or even for a voltage contin-
uum, as in 3D crystals.

2. The wavefunctions of each quantum well must be coherent with su�cient lateral
extent so as to have well-de�ned lateral momentum. Localized wavefunctions
are di�use in momentum space and therefore will have signi�cant overlap with
states in the opposing electrode at many biases.

These points will arise again in Chapters 6, 7, and 8 regarding a similar mechanism
in 2D materials, and therefore further details will be reserved for those sections.

As a �nal point to di�erentiate 2D�2D resonant tunneling from Esaki and RTD
tunneling, due to the geometry of a 2D�2D device, with the tunneling area exposed on
both sides of the junction, electrostatic gates may be easily added above and below the
electrodes for modulating the tunneling with a third and forth external voltage bias
(Fig. 1.9). Gate modulation of this sort enables the device to operate as a transistor (a
three- or four-terminal device) as opposed to a simple diode (a two-terminal device).
Transistors are highly sought-after components for myriad electronics applications
involving switching, logic, and memory, and the ability to regulate NDR as a transistor
is very compelling from a circuit perspective.

1.2.4 Many-body e�ects and excitonic condensates

I will emphasize at this point that the tunneling concepts presented in this thesis
deal with single-particle e�ects, that is, tunneling between single-particle states using
physics derived from Bloch band theory and its associated machinery. There are, of
course, other possible many-body e�ects that could play a role in interlayer tunneling
between 2D crystals. It is quite likely that such e�ects, however, play a secondary
role in tunneling transport observed in the standard conditions of electronic compo-
nents (i.e. at room temperature and above). There is, however, one proposal for
interesting many-body tunneling in a heterostructure that is functionally equivalent
to the graphene�insulator�graphene tunnel junction presented in the thesis (see, for
example, Section 6.2.2). This proposed device also involves interlayer tunneling be-
tween graphene sheets separated by a thin insulating barrier, however the underlying
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mechanism for tunneling is based on electron�hole (e−�h+) pairing across the tunnel
barrier, an excitonic state that behaves as a collection of Bosons due to the integral
total spin of each e−�h+ pair. Whereas individual electrons and holes are Fermions,
and therefore cannot occupy the same state simultaneously (the Pauli exclusion prin-
ciple), the excitonic Boson gas of e−�h+ pairs may condense below a certain critical
temperature (given that there are also roughly equal populations of electrons on one
side of the junction and holes on the other), forming a so-called Bose-Einstein con-
densate. In this con�guration, the condensate can allow rapid tunneling through the
junction due to the highly correlated state of the carriers.[29, 30] However, with mod-
ulation in the bias the condensate is expected to degrade (due to charge imbalance),
and thus the tunneling current will reduce, leading to NDR.

Though these e�ects are undeniably intriguing and worthy of pursuit, presently
such e�ects have not been observed in 2D devices. On the other hand, the predictions
of resonant tunneling due to single-particle e�ects in graphene (Refs. 2, 31, 32) and
bilayer graphene (Refs. 33, 34) as presented in the thesis have been observed in the
time since this work began. Therefore, it is single-particle e�ects that will be the
focus of the thesis, and beyond this section many-body e�ects will not be considered
further.
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Chapter 2

Experimental methods

With the goal of studying 2D materials and layered heterostructures composed of 2D
materials, the primary experimental tool I employ is the low-energy electron micro-
scope (LEEM). In the following sections, I describe the apparatus and various modes
of operation as they pertain to investigations of 2D materials. Whereas the imaging
and di�raction modes described in Sections 2.1.1 and 2.1.2 are relatively common-
place amongst users of LEEM, the spectroscopic techniqes introduced in Sections 2.1.3
and 2.2 are less commonly known, and a portion of the work described in this thesis
involves advancing these methods as needed for applications to 2D surface science.
The development of low-energy electron re�ectivity as a method for probing 2D ma-
terials is a high priority in our group, and as such it is also an area in which we
have collectively attained a level of expertise. There are not many LEEM systems,
globally; partly due to the high cost of commercial systems (and the even greater
challenge of designing and building one), and partly due to lack of awareness regard-
ing the advantages of LEEM for studying 2D materials, not to mention surfaces in
general. Therefore it is an additional goal of this thesis, in a small way, to advertise
the qualities of LEEM for studying 2D heterostructures to the broader community.

2.1 Low-energy electron microscopy and re�ectivity

A low-energy electron microscope (LEEM) uses a broad beam of low-energy electrons
to image surfaces by capturing the elastically backscattered electrons with a series of
electron lenses.[35] Electrons are emitted from an electron gun cathode and acceler-
ated through a large negative potential before entering a column of electromagnetic
focusing lenses and de�ectors, the illumination column (see Fig. 2.1). The beam is
curved through a magnetic beam separator before being decelerated to low-energies
between the objective lens and sample surface. The re�ected electrons pass back
through the objective lens and are curved away from the incident beam by the mag-
netic beam separator before entering the imaging column, which uses a second set
of lenses and de�ectors to project the magni�ed image onto a microchannel plate
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Figure 2.1: Diagram of a low-energy electron microscope with 60◦ beam de�ection
design. In contrast to other common electron microscopes, there is a magnetic prism
array separating the illumination and imaging electron beams. Electrons are accel-
erated from the gun cathode through a high-voltage potential and decelerated just
before re�ecting from the sample surface, with a small variable sample bias applied on
top of the decelerating voltage. Re�ected and di�racted electrons pass back through
the beam separator and are refocused into a magni�ed image on a phosphor screen
and the end of the imaging column. An illumination aperture may be used to re-
duce the illuminated region on the same surface (typically utilized for selected-area
di�raction mode). Di�raction patterns occur in the back focal plane of the objective
lens, where a contrast aperture may be inserted for di�raction-contrast and dark-
�eld imaging. With the electron beam turned o�, a UV source may be used for
photoemission electron microscopy.
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Figure 2.2: (a) Specular bright-�eld LEEM image of exfoliated WSe
2
�ake on epitax-

ial graphene on SiC. Field-of-view is approximately 50µm. (b) Dark-�eld (di�raction-
contrast) image formed by placing a contrast aperture on the (01)-spot of the graphene
di�raction pattern. Bright regions correspond to graphene whereas the dark shadow
is covered by WSe

2
. (c) Dark-�eld image formed by placing a contrast aperture on the

(01)-spot of WSe
2
, with the WSe

2
showing as a bright patch in a dark background

of graphene. (d) Di�raction asymmetry image produced by taking the normalized
di�erence of dark-�eld intensities A = (IGr − IWSe2

)
/

(IGr + IWSe2
) . (e) Di�raction

pattern of the regions shown in panels (a)�(d). Encircled spots indicate the positions
of the contrast aperture used to generate the images in panels (a)�(c), as labeled.

and phosphor screen. Depending on the lens currents, several modes of operation are
possible.

2.1.1 Bright-�eld and dark-�eld imaging

For crystalline samples, in addition to 180◦-backscattering, some of the electrons
incident on the sample surface are di�racted. In other words, some electrons scatter
from a reciprocal lattice vector of the periodic potential on the surface and thus
obtain a �nite in-plane momentum component. In imaging mode, typically only the
normally-re�ected electrons are used to form the �nal image, as in Fig. 2.2(a). To
achieve this, a metal contrast aperture is centered on the specular (00)-spot of the
di�raction pattern that forms in the back focal plane of the objective lens, as in circle
�a� in Fig. 2.2(e). This aperture blocks electrons with in-plane momentum, allowing
the �nal image to be formed using only the normally-re�ected electrons.

Contrast in bright-�eld mode typically comes from di�erences in the interactions
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between low-energy electrons and the top few atomic layers on the sample surface.
These interactions can in general be quite complex, or at least material dependent.
Primarily, contrast will arise due to the partial absorption of incident electrons into the
sample due to the presence of surface states and/or inelastic processes. In addition to
providing spatial contrast across sample surfaces, these interactions often have a well-
de�ned energy dependence that can provide a great deal of information, as discussed
in Section 2.1.3 and utilized in Chapters 3 and 4.

By centering the contrast aperture on a di�racted spot, it is possible to form
an image using only electrons di�racted in the direction of the selected spot. This
is called dark-�eld or di�raction-contrast imaging, and can be useful for discerning
between surface features with di�ering crystal structures or orientations. For example,
the di�raction pattern in Fig. 2.2(e) is the result of separate graphene and WSe

2

lattices in the illuminated region. By moving the contrast aperture to each encircled
region and capturing a real-space image, separate bright-�eld and dark-�eld images
are recorded, as shown in panels Figs. 2.2(a)�2.2(c). The dark-�eld images show only
electrons which pass through the particular spot that is centered in the aperture, and
thus are dark wherever electrons are di�racted in a di�erent direction. By taking the
normalized di�erence of two dark-�eld images, A = (IGr − IWSe2

)
/

(IGr + IWSe2
) , a

di�raction asymmetry image is formed, as in Fig. 2.2(d), which eliminates contrast
that does not originate from well-de�ned di�raction.

2.1.2 Electron di�raction in a LEEM

For surfaces with su�cient periodicity, a portion of the incident electrons will obtain
an in-plane momentum component after scattering, traveling along a di�racted tra-
jectory toward the objective lens. The set of di�racted beams from a given surface
is called the di�raction pattern, and appears in the back focal plane (the di�raction
plane) of the objective lens. By adjusting the lens currents in the imaging column, the
image in the back focal plane of the objective lens can be projected onto the imaging
plane of the microscope in lieu of the real-space image of the surface. The result is
that the di�racted electron beams can be imaged directly, as shown in Fig. 2.2(e),
The ability to switch between real-space and momentum-space imaging in LEEM is
similar to transmission and di�raction modes in a transmission electron microscope.
Of course, these are backscattered electrons instead of transmitted ones, and the en-
ergies used for di�raction in a LEEM system are typically between 30 eV and 500 eV,
and hence the technique is called low-energy electron di�raction (LEED).

There are, in fact, dedicated LEED systems which do not require the complex ar-
rangement of electron lenses provided in a LEEM, but there are several advantages to
measuring di�raction patterns in a LEEM as opposed to a standalone LEED system.
The primary advantage of the LEEM optics is that they permit the incident beam to
be focused to a small region of the surface through the use of an illumination aperture
(see Fig. 2.1) in imaging mode. By this method, a speci�c region of the surface can be
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selected for di�raction imaging, so as to obtain a local di�raction pattern, so-called
selected-area di�raction or µLEED.

The latter technique enables micrometer-scale analysis of crystallinity, crystal ori-
entation, and even atomic structure in some cases (through indirect methods). By
relocating the illuminated region and successively capturing µLEED patterns it is
possible compare lateral di�erences in crystal structure. However, for layered 2D
structures in particular, the �nite (albeit short) depth of electron penetration into
the surface allows direct comparison of vertically stacked crystals, for example to
measure crystallographic misorientation (rotation) or di�erences in lattice constant.
With these capabilities at our disposal, µLEED provides excellent complementary
information for surface studies of 2D materials and heterostructures in LEEM.

2.1.3 Spectroscopic analysis with low-energy electron re�ec-

tivity

Low-energy electrons, that is, electrons with kinetic energy E < 500 eV for the pur-
poses of this thesis, interact with surfaces through elastic, quasielastic, and inelastic
channels.[35] Especially at the lowest energies, E < 10 eV, elastic backscattering and
inelastic scattering dominate over forward scattering processes. Unlike electrons with
higher energies, these interactions cannot be described by physics assuming weak in-
elastic scattering or the �rst Born approximation of general scattering theory. The
in�uence of neighboring atoms on atomic potentials is relevant for electrons with en-
ergies less than ≈ 100 eV, and as the incident electron energy decreases further, the
e�ects of charge�charge (correlation) and spin�spin (exchange) interactions become
increasingly important.[36] These e�ects are the relevant ones for the critical range
of energies used for LEEM imaging, between 0 and 20 eV.

In crystalline solids, the periodic lattice of atoms produces a set of energy bands
that depend on crystal wavevector, En(k), the band structure. Forbidden ranges
of energy without states, band gaps, do not in principle admit incident electrons,
and should therefore re�ect all electrons of energy within the band gap. However,
quasielastic electron�phonon scattering can provide a change in momentum with neg-
ligible change in energy, allowing the scattered electrons to �nd allowed states in the
solid.[35] Additionally, the �nite penetration depth of incident electrons, even with
energies in a band gap, opens up the possibility of inelastic processes that further re-
duce elastic backscattering. For these reasons, total re�ection of incident low-energy
electrons is not typically observed. Incident low-energy electrons with energy and
wavevector matching allowed states on the surface may be transmitted into the solid,
leading to reduced re�ectivity. As a result of these e�ects, re�ectivity of low-energy
electrons from crystalline surfaces in general depends on details of the band structure,
lattice excitations, and available inelastic processes.

Electron beam energy in LEEM is modulated by a small bias V applied between
the electron gun cathode and the sample surface (see Fig. 2.3). In our system, an
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Figure 2.3: Electrostatic potential model of a low-energy electron microscope, relat-
ing the high-voltage bias VHV and sample bias V to the Fermi levels µs, µc and vacuum
levels Es

vac
, Ec

vac
of the sample surface and electron gun cathode, respectively. Work

functions of the sample and cathode are denoted Ws and Wc. A simpli�ed schematic
of the sample, objective lens, gun anode and cathode along the illumination beam
path is shown above as it relates to the potentials below, ignoring the e�ects of the
electron lenses and beam de�ectors. Neither the spatial nor energy range is shown to
scale.
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Elmitec LEEM III, electrons are �rst produced by thermionic emission from a LaB
6

crystal cathode which is held at a high voltage VHV = −20 kV with respect to a nearby
anode cylinder. The thermionic electrons are accelerated through this large potential
in order to allow e�cient lensing by a series of electromagnetic lenses that make
up the illumination column of the microscope. To prevent backstreaming of electrons
through the various electron-optical stages, the entire system is operated at ultra-high
vacuum (UHV), with pressures in the beam column typically less than 1× 10−10 Torr.
Just before the electrons reach the surface of the sample, they are decelerated to low
energies by a 104 V/mm �eld emanating from the objective (cathode) lens to the
sample surface. The small sample voltage V is �oated on top of the high-voltage
potential and allows the beam energy to be tuned around the vacuum level of the
sample surface. Speci�cally, the sample and gun cathode Fermi levels may be written
as

µs = e(VHV − V ) (2.1a)

µc = eVHV, (2.1b)

respectively. The vacuum level, the lowest unbound (resting) free-electron level at
each location, is related to the Fermi level in the usual way,

Es
vac

= µs +Ws (2.2a)

Ec
vac

= µc +Wc, (2.2b)

for the sample surface and gun cathode, respectively, with work functions Ws, Wc of
the sample and cathode crystal. Note that in general the work function is a local
quantity, and therefore the vacuum level is also de�ned locally on the surface of a
solid, even in Fermi equilibrium. This point is discussed and utilized in Chapter 4 as
it relates to LEEM measurements.

From Eqs. (2.1) it is clear that the sample bias is proportional to the di�erence
in Fermi levels, eV = µc − µs. Using this and the di�erence of Eqs. (2.2), we �nd

Ec
vac
− Es

vac
= eV −∆W, (2.3)

where we have de�ned the di�erence in sample and cathode work functions,

∆W ≡ Ws −Wc. (2.4)

Due to the thermionic nature of emitted electrons from the gun cathode, the electron
beam energy is primarily concentrated near the vacuum level of the cathode, Ec

vac
.

Details of this energy distribution will be reserved for Chapter 4. Here, it is su�cient
to consider the emitted electrons having energy equal to Ec

vac
, and therefore arriving at

the sample surface with kinetic energy equal to the di�erence in vacuum levels given in
Eq. (2.3), and as shown in Fig. 2.3. Therefore, the kinetic energy of incident electrons
is indeed modulated by the sample bias, V , but shifted by ∆W/e, an important
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distinction that is relevant for any comparison of measured re�ectivity to energy
bands or quantities derived from energy bands. Finally, for small positive biases, 0
to 20 V, LEEM electrons are generally probing unoccupied states that exist slightly
above the vacuum level of the sample surface. These states are �low-energy� insofar as
they correspond to slow free electrons, i.e. with low kinetic energy. However, from the
perspective of states in the solid itself, these states are typically several electronvolts
above the energy range of electronic transport phenomena and would therefore be
considered �high-energy� states of the solid.

To study these states, spectroscopic low-energy electron re�ectivity (or simply
re�ectivity, in this thesis) is utilized. With a clean sample surface in focus, a series
of images is captured while sweeping the sample bias, typically from a small negative
bias, for example −5 V (slightly below the sample vacuum level, depending on work
functions), up to 15 V or 20 V. The sample voltage is swept in 0.1 V increments,
resulting in ≈ 200 to 250 images over the course of an hour or so (depending on beam
intensity and desired signal-to-noise). This procedure is performed with a contrast
aperture (one of three sizes, for choosing the radius of allowed di�raction trajectories)
in place over the specular (00)-spot in the di�raction plane.

The resulting series of images allows a re�ectivity spectrum, that is, re�ected in-
tensity as a function of sample bias I(V ), to be extracted from each pixel in the image
set during post-processing, as shown in Figs. 2.7 and 3.1. In practice, re�ectivity from
groups of neighboring pixels are summed or averaged together to improve signal-to-
noise and to relate extended regions with similar re�ectivity signature. Low-energy
electron re�ectivity is also sometimes referred to by other groups as LEEM-I(V ) since
I(V ) curves are extracted from LEEM images directly, and to contrast with another
method historically called LEED-I(V ), which involves extracting di�racted intensity
from a series of LEED patterns with varying sample bias. The latter technique may
be performed in a LEEM, but is also possible in a conventional LEED system which
has a vastly simpli�ed design and no imaging capability.

The process of extracting spectroscopic information by varying the cathode�
sample bias in LEEM is analogous to sweeping tip�sample bias in scanning tun-
neling spectroscopy (STS), a well-known technique for studying electronic states on
surfaces.[37�39] As a point of distinction, in the former case the states that are spec-
troscopically probed are unoccupied ones above the vacuum level, whereas in the
latter case the states are near the Fermi level and may be occupied or unoccupied
depending on the direction of tunneling current. In terms in experimental execution,
the greatest di�erence between the two methods is that low-energy electron re�ectiv-
ity spectra are obtained for an entire illuminated region all at once, allowing arbitrary
point-to-point comparison during data analysis. For equivalent analysis using scan-
ning tunneling microscopy (STM), an STS spectrum must be individually recorded
for each location in a rastered grid, requiring large data collection times and high sta-
bility of surfaces and experimental conditions. This �nal point is a great advantage for
LEEM-based spectroscopy methods, which allows rapid and routine surface studies
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that would otherwise be impractical or impossible with scanning probe methods.

2.2 Relative work-function extraction from re�ectiv-

ity

As a �nal point related to spectroscopic techniques enabled by low-energy electron
re�ectivity, in this section an additional method is introduced that utilizes the very
low energy part of the spectrum to measure spatial variations in surface electro-
static potentials. In the scope of the thesis, these methods were developed to allow
comparison of work functions between the constituent layers of 2D heterostructures.
Highlights of these works appear in Sections 5.1 and 4.3, but the method is generally
applicable to electron re�ectivity analysis, and is therefore employed in most cases
where re�ectivity is concerned in the thesis (typically, to allow plotting of re�ectivity
curves versus band structure, as opposed to sample bias voltage). The development
of this method, as laid out in this section, has appeared, in part, in published form
in Ref. 4.

The measurement is performed as a function of the sample voltage, V , which is
the potential di�erence between the sample and cathode emitter,

eV = µc − µs, (2.5)

where the Fermi energies of the sample and cathode emitter are denoted by µs and
µc, respectively, as de�ned in Eqs. (2.1). As discussed in Section 2.1.3, the sample
bias is also related to the vacuum levels Es

vac
, Ec

vac
and work functions Ws, Wc of the

sample and cathode as follows,

eV = ∆W + Ec
vac
− Es

vac
, (2.6)

where the di�erence in work functions is de�ned as ∆W ≡ Ws −Wc, as in Eq. (2.4).
For a relatively ideal spectrum such as in Fig. 2.4(a), we see, as a function of

decreasing voltage, a sharp onset (near 1.5 V) at which the re�ectivity rises to unity.
This signi�es the transition to mirror mode of the LEEM;[35, 40] as pictured in
Fig. 2.5(a), for sample voltage lower than this onset, the incident electrons do not
have su�cient energy to reach the surface. Rather, they are re�ected by the electric
�eld (typically 104 V/mm) that extends out from the surface to the objective lens of
the electron optics. This �eld is shown schematically in the context of the illumination
column of a LEEM in Fig. 2.3, whereas a close-up of the �eld near the sample surface
is represented in Fig. 2.5. For a sample voltage equal to the onset voltage, the vacuum
levels of the sample and cathode emitter are aligned. Denoting the onset voltage by
V0, we have

eV0 = ∆W. (2.7)

For voltages greater than the onset, all electrons are re�ected from the sample
surface or absorbed into the sample, as pictured in Fig. 2.5(b).
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Figure 2.4: (a) and (b) Typical re�ectivity spectra (in this case, from graphene on
Cu grown by atmospheric pressure chemical vapor deposition), with (a) displaying
a sharp transition to unit re�ectivity (near 1.5 V sample voltage) and (b) showing a
more gradual transition. (c) and (d) Expanded views of the transition regions from
panels (a) and (b), respectively. Black circles show a �t function, with the arrows
indicating the onset voltages derived from the �t. The two components of the �ts,
for each spectrum, are indicated by the dotted lines.
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Figure 2.5: (a) and (b) Schematic energy diagrams of the distribution N(E) of
electrons incident on the surface of a sample in LEEM. In (a), the electrons are
re�ected by the �eld extending out from the surface, whereas in (b) the electrons
have su�cient energy to reach the surface, where they are partially re�ected and
partially absorbed. For a schematic showing these potentials in the context of the
LEEM, see Fig. 2.3.
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A convenient way to plot re�ectivity spectra is in terms of the energy of a sample
state, as probed by the incident electrons. Electrons emitted from the thermionic
emitter have a well-known energy distribution,

N(ε) =
ε

σ2
c

exp

(
− ε

σc

)
, (2.8)

with σc = kTc where k is Boltzmann's constant, Tc is the temperature of the cathode
emitter, and with ε being the electron energy relative to Ec

vac
.[41] This distribution

is peaked at ε = σc, so that the incident electrons have peak energy of σc + Ec
vac
.

Due to this shift in the peak energy from Ec
vac
, the largest contribution to measured

re�ectivity is similarly shifted. This energy corresponds to the energy of a probed
sample state, which we denote by E. Therefore, for plotting the spectra on an energy
scale we employ

E − Es
vac

= σc + Ec
vac
− Es

vac
(2.9a)

= σc + e(V − V0), (2.9b)

where the second line follows from the �rst by using Eqs. (2.6) and (2.7). In our
labeling of the spectral plots, we drop the superscript �s� from Es

vac
, with E − Evac

understood to refer to the energy of a sample state relative to the vacuum level of
the sample.

To obtain values for σc and V0 from the data, we employ a least-squares �tting
procedure. Consider the situation of Fig. 2.5(a) with V < V0; some electrons of
the incident distribution will be re�ected by the �eld. The number of those mirror-
re�ected electrons is given by

fm(V ) =

∫ ε1

0

[
ε

σ2
c

exp

(
− ε

σc

)]
dε , (2.10)

where the upper limit of integration is ε1 = Es
vac
− Ec

vac
= −e(V − V0). Evaluating

the integral, we �nd

fm(V ) = 1−
(

1− V − V0

σ

)
exp

(
V − V0

σ

)
, (2.11)

where σ ≡ σc/e. The number of electrons re�ected from the sample is given by

fs(V ) = [1− fm(V )] r(E), (2.12)

where r(E) is the re�ectivity of the electrons at an energy given by Eq. (2.9b). No
considering the situation of Fig. 2.5(b) with V > V0, we have no electrons being
re�ected by the �eld, fm(V ) = 0, and the number of electrons being re�ected from
the sample surface is given simply by fs(V ) = r(E). For �tting the observed spectra,
we do not assume that the data are necessarily normalized to unit re�ectivity (for
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example, at large, negative sample voltages). Hence, for the �eld-re�ected electrons,
we employ a �t function of the form

gm(V ) =

{
a0

[
1−

(
1− V−V0

σ

)
exp
(
V−V0
σ

)]
, V ≤ V0

0, V > V0,
(2.13)

where a0 is a �t parameter. For the electrons re�ected from the sample surface,
we must assume some form for the re�ectivity r(E). We expand this function as a
second-degree polynomial about an energy (relative to Es

vac
) of e(V − V0), yielding

the �t function

gs(V ) =

{
Gs

(
1− V−V0

σ

)
exp
(
V−V0
σ

)
, V ≤ V0

Gs, V > V0,
(2.14)

where Gs = b0 + b1(V −V0) + b2(V −V0)2, with b0, b1, and b2 all being �t parameters.
Thus, for a relatively ideal spectrum such as that of Fig. 2.4(a), we �t the data

to gm(V ) + gs(V ), with the �t employing the four linear parameters a0, b0, b1, and b2

along with the two nonlinear parameters V0 and σ. The result is shown in Fig. 2.4(c),
with best-�t values of V0 = 1.385± 0.004 V and σ = 0.121± 0.003 V. We obtain a
very good �t for a voltage window extending over ±1 V or more on either side of
the onset, for spectra such as this, yielding a relative work function ∆W = eV0 with
less than 10 meV uncertainty. The value obtained here for the width of the electron
distribution, 0.12 eV, is typical for a data set such as shown in Fig. 2.4, acquired with
relatively low current through the electron emitter. For higher currents (for example,
for images of smaller surface areas), we obtain widths as large as 0.3 eV or more due to
the higher temperature of the cathode emitter element (full-width at half-maximum is
2.45× greater[41]), consistent with prior reports.[42] We repeat this �tting procedure
for a few relatively ideal spectra on the surface, determining a best-�t value for σ
that characterizes all the spectra. This value is then kept �xed for all subsequent �ts
to that data set.

Now let us consider a spectrum such as that of Fig. 2.4(b), which displays a much
slower approach of the re�ectivity to unity value as the voltage is decreased. This type
of behavior is a signature of lateral �elds on the surface of the sample, arising from
a work function di�erence between neighboring surface areas.[40] Electrons will, in
general, be de�ected from an area of high work function toward an area of lower work
function at Fermi equilibrium, as shown in Fig. 2.6(a). Hence, in the LEEM images
of areas near a transition from high to low work function, the high work function area
will appear dark and the low work function area will appear light, as in Fig. 2.7(a).
This is clearly evident in mirror-mode imaging of surfaces, that is, for sample voltages
V < V0, although it may also a�ect the image contrast at voltages V > V0. Of course,
we would still like to quantitatively obtain the onset voltage values in such cases from
some sort of �t.
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Figure 2.6: Schematic diagram of de�ected beam trajectories near a sample surface
as observed in mirror-mode, near the onset voltage V0. (a) Beam de�ection due
to lateral �elds at the junction of two regions with di�ering work function. The
resulting variation in electrostatic conditions near the surface de�ect incident and
re�ected electrons toward the region of lower work function. (b) Beam de�ection due
to a step height change on a sample surface. In this case, lateral �elds are caused
by curvature of the equipotential surface as it conforms to the sharp di�erence in
topography.
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Figure 2.7: (a) Image distortion due to beam de�ection by surface potential varia-
tions in mirror-mode (close to V0 sample bias). In this case, the higher work function
of a WSe

2
island (dark triangle) compared to the surrounding graphene (light back-

ground area) causes electrons to be de�ected toward the graphene, as in Fig. 2.6(a).
This e�ect manifests as neighboring bright and dark regions at the junction of the
two regions of di�ering work function. (b) Re�ectivity signature of beam de�ection.
Re�ected intensity approaches unity for large negative voltages, with a �at approach
in typical curves, as in curve B, taken from a region without potential variation. On
the low-work function side of a junction (curve A), re�ectivity is augmented over
unity by the extra electrons de�ected from the other side of the junction (curve C).
These e�ects are strongest near the mirror-mode onset. Vertical dashed line indicates
sample bias used to capture image in panel (a).
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Let us consider the situation when electrons are swept away from the spectrum, as
for the spectrum of Fig. 2.4(b), focusing on the �eld-re�ected electrons in particular.
We hypothesize some sort of �loss function� for those missing electrons, which multi-
plies the gm(V ) re�ectivity that occurs in the absence of the loss. Experimentally, it
appears that the loss is most pronounced for voltages near the onset voltage (which
is not surprising since it is for these voltages that the electrons approach nearest to
the surface), and its in�uence decreases gradually as the voltage (energy) is reduced.
We assume a form for the loss function as a second-degree polynomial, expanded in
terms of (V −V0). Thus, for these relatively non-ideal spectra, we �t the mirror-mode
electrons to a function of the form

g̃m(V ) =

{
Gm

[
1−

(
1− V−V0

σ

)
exp
(
V−V0
σ

)]
, V ≤ V0

Gm, V > V0,
(2.15)

where Gm = a0 +a1(V −V0)+a2(V −V0)2, with a0, a1, and a2 all being �t parameters.
For the case of sample-re�ected electrons, we can still use Eq. (2.14) for the �t, since
the e�ect of the lateral �elds on the surface in modifying the re�ectivity will simply
be absorbed in a rede�nition of the b0, b1, and b2 parameters. Figure 2.4(d) shows
an example of this sort of �t to a non-ideal spectrum, utilizing g̃m(V ) + gs(V ), and
with the �t now having six linear parameters a0, a1, a2, b0, b1, and b2, along with one
nonlinear parameter, V0. Again, good �ts are obtained over a voltage range of ±1 V
or more on either side of the onset. The best-�t value for ∆W − eV0 obtained in
this case is 1.53± 0.05 eV. The error is about 10× larger than for �ts of more ideal
spectra.
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Chapter 3

Thickness characterization of

tungsten diselenide using electron

re�ectivity oscillations

In this work, low-energy electron microscopy is employed to probe structural as well
as electronic information in few-layer WSe

2
on epitaxial graphene on SiC. The emer-

gence of unoccupied states in the WSe
2
�graphene heterostructures are studied using

spectroscopic low-energy electron re�ectivity. Re�ectivity minima corresponding to
speci�c WSe

2
states that are localized between the monolayers of each vertical het-

erostructure are shown to reveal the number of layers for each point on the surface.
A theory for the origin of these states is developed and utilized to explain the ex-
perimentally observed featured in the WSe

2
electron re�ectivity. This method allows

for unambiguous counting of WSe
2
layers, and furthermore may be applied to other

2D transition metal dichalcogenide materials. The work described in this chapter
appears in published form in Ref. 6.

3.1 Introduction

Low-energy electron microscopy (LEEM) is a powerful characterization tool for two-
dimensional (2D) materials, since it provides both structural and electronic informa-
tion, the latter dealing with unoccupied states above the surface vacuum level. In
such a system, a beam of electrons with energies between 0 and 20 eV is re�ected
from a sample surface at normal incidence. The short penetration and escape depth
of incident and re�ected electrons with such low energy enables sensitivity to only
the top-few atomic layers. For these reasons, LEEM is highly suited to studies of
2D materials and 2D heterostructures. There have been numerous LEEM studies of
semimetallic graphene[43�48] and insulating hexagonal boron nitride,[4, 49] but the
expanding class of 2D semiconductors remains to be investigated in detail.[5, 50, 51]

Here, we study atomically thin �lms of WSe
2
, a semiconducting transition metal
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dichalcogenide (TMD), that are prepared by metal-organic chemical vapor deposi-
tion (MOCVD) on epitaxial graphene on SiC. Epitaxial graphene (EG) provides
an atomically-�at substrate for TMD growth and carries away excess charge dur-
ing LEEM. Low-energy electron di�raction (LEED) patterns taken from the surface
indicate that the WSe

2
crystals prepared by this method are crystalline and epitax-

ially aligned to the underlying graphene. The preference for well-de�ned rotational
alignment with graphene is promising for future electronic applications that require
integration of 2D semiconducting and metallic components.

By measuring the re�ected intensity of electrons as a function of e�ective beam en-
ergy, it is possible to extract spectroscopic information pertaining to electronic states
at each point in the surface. These spectra, called low-energy electron re�ectivity
(LEER), have been shown to allow unambiguous counting of the number of stacked
monolayers of few-layer graphene and subsequent thickness mapping based on au-
tomated analysis methods.[43, 48] The layer-counting method relies on the presence
of special states which are localized between the atomic layers of graphene, and on
strong coupling between those states and the electrons involved in LEEM imaging.
Since WSe

2
is a another layered material, it is a natural question to ask whether or

not similar states exist between the quasi-2D layers of few-layer WSe
2
and can be

counted by analyzing electron re�ectivity. We show that by carefully considering fea-
tures in the re�ectivity of WSe

2
, it is indeed possible to distinguish monolayer WSe

2

on EG from regions with two layers or more.

3.2 Methods

In this study, epitaxial graphene (EG) formed on 6H-SiC is used as a template for
synthesis of atomically thin WSe

2
crystals. A 1 cm2 piece of diced SiC is etched

in a 10 % H
2
/Ar mixture at 700 Torr and 1500 ◦C for 30 minutes to remove surface

damage caused by wafer polishing. The SiC is subsequently annealed in a pure Ar
environment at 200 Torr and 1620 ◦C for 10 minutes.[52] During the entire process the
SiC substrates are inside a graphite crucible, which reduces the sublimation rate of
Si at high temperatures and hence improves the uniformity of graphene morphology.
WSe

2
synthesis is carried out on EG substrates with conditions as previously reported

by Eichfeld et al.,[53] with the W and Se precursors in this growth being W(CO)
6

and H
2
Se respectively.

Following WSe
2
growth, samples are transferred to an Elmitec LEEM III for char-

acterization. The principal mode of the LEEM directs a broad, monochromatic beam
of electrons at the sample surface at normal incidence. The elastically re�ected elec-
trons are �ltered to allow only non-di�racted trajectories, and the remaining electrons
are refocused into an image of the surface using a series of electron lenses. Images
are captured with a voltage bias applied between the sample surface and the electron
gun, which determines the e�ective energy of the incident electrons.

Computations are performed using the Vienna Ab-Initio Simulation Package (VASP),
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employing the projector-augmented wave method and the Perdew-Burke-Ernzerhof
generalized gradient approximation (PBE-GGA) to the exchange-correlation functional,[54�
57] with a plane-wave energy cuto� of 500 eV. Low-energy electron re�ectivity (LEER)
spectra of free-standing slabs of multilayer 2D materials are computed using a method
described previously.[48, 58] Inelastic e�ects are included in the computations,[59]
employing an imaginary part of the potential, Vi. Following the detailed analysis of
Krasovksii and co-workers,[60�62] in our prior work we employed the phenomenolog-
ical expression Vi = 0.4 eV + 0.06E where E is the energy of a state relative to the
vacuum level.[59] These values for Vi were found to give a reasonably good corre-
spondence between experiment and theory, emphasizing experiments with energies of
0�10 eV. In the present work we are especially concerned with re�ectivity behavior
in the upper part of this range, near 10 eV (and also including energies up to 15 eV).
We �nd that use of the Vi = 0.4 eV + 0.06E expression produces re�ectivities that
are too low (i.e. too much inelastic attenuation) near 10 eV. We therefore use a dif-
ferent expression, Vi = 0.4 eV + 0.03E, for all spectra computed here (i.e. the value
of the slope parameter is reduced by a factor of 2). Comparing theoretical spectra
obtained with these two expressions for Vi, we feel that this new expression might
slightly underestimate inelastic e�ects near 10 eV (and above) in typical 2D materials
that we examine. Nevertheless, this new expression provides a better means of exam-
ining such features in the theory since, again, attenuation near 10 eV is signi�cantly
reduced.

3.3 Experimental results

Figure 3.1 shows LEEM images of the sample surface captured at a few sample volt-
ages, showing the strong dependence of image contrast on sample bias. This depen-
dence can be quanti�ed by recording the re�ected intensity of electrons as a function
of sample voltage for each pixel, in a series of images captured in a voltage sweep.
The resulting low-energy electron re�ectivity (LEER) curves are extracted from the
images for speci�c points or regions of interest to provide spectroscopic information
about the surface. For example, the re�ectivity curves shown in Fig. 3.1(e) were ex-
tracted from the labeled points in panel 3.1(d). The relevant features in such spectra
are re�ectivity minima, which correspond to energies of electronic surface states that
couple with incident electrons, causing transmission into the sample and thus reduced
re�ectivity at those energies.

The broad minimum in spectrum C of Fig. 3.1(e) near 4.0 V is associated with
a state that exists between monolayer graphene and the carbon-rich surface recon-
struction of the SiC below,[43, 48] and therefore indicates the presence of monolayer
graphene in that region of the image. Curve D, which has two minima surround-
ing 4.0 V and a local maximum in the middle, is similarly characteristic of bilayer
graphene. Curves A and B, however, originate from WSe

2
regions, and yield a more

complex set of re�ectivity features with slight variations between the two curves. The
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Figure 3.1: (a)�(d) LEEM images showing a single region of few-layer WSe
2
crystals

on epitaxial graphene on SiC for a few sample bias voltages, as indicated. (e) Re�ected
intensity of electrons extracted from the four labeled points in (d) as a function of
sample voltage for two thicknesses of graphene andWSe

2
. Curves are shifted vertically

for clarity and purposes of illustration. Vertical dashed lines indicate the voltages used
to capture the images in (a)�(d).

35



1 ML

1 ML

1 ML

2 ML

3 ML
many
layers

1 µm
0

4

12

16

H
ei

gh
t (

nm
)

Figure 3.2: Atomic force microscope image of surface height, showing monolayer
(1 ML), bilayer (2 ML), and trilayer (3 ML) regions of WSe

2
on the epitaxial graphene

surface.

largest di�erences in these two curves are the shape of the minimum near 6.1 V and
the presence of a single- or double-minimum around 11.6 V.

Atomic force microscope (AFM) scans of the surface reveal that the majority of
the WSe

2
crystals are monolayer (1 ML) and bilayer (2 ML), with a few instances of

thicker island growth (Fig. 3.2). The height change between the top of a monolayer
crystal and the EG surface is approximately 0.65 nm, similar to other samples pre-
pared by the same method.[53, 63] Electron re�ectivity from one of these monolayer
WSe

2
crystals is shown in curve A of Fig. 3.3(b), with a local minimum at 10 eV. We

ascribe the occurrence of this minimum to a speci�c state which exists in monolayer
WSe

2
, and will be discussed in Section 3.4. Bilayer WSe

2
triangles are also observed

in LEEM as well as AFM. The re�ectivity from one of these triangles, shown in curve
B of Fig. 3.3(b), exhibits two re�ectivity minima surrounding a local maximum at
10 eV. In this case the two minima can be understood to result from a combination
of two nearly-degenerate monolayer-WSe

2
states, and thus this double-minimum is a

signature of bilayer WSe
2
.

To classify the crystals within the imaged region in Fig. 3.4(a), we create a col-
orized map based on the relevant re�ectivity features. Colors are assigned based on
the total re�ectivity of speci�c energy windows for each point on the surface, and the
result is a false-color spectroscopic image, weighted by the spectral components within
each energy window, as in Fig. 3.3(a). From this spectroscopic image, we clearly see
the few-layer graphene areas, which primarily have states within the band gap region
of the WSe

2
spectrum (between 1.5 and 3.5 eV, with high re�ectivity) and appear
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Figure 3.3: (a) False-color spectroscopic image of MOCVD-grown WSe
2
on epitaxial

graphene, for the region shown in Fig. 3.4, with colors assigned to the re�ected in-
tensity of electrons for speci�ed energy windows. (b) Re�ected intensity of electrons
from labeled locations in (a). Curves are shifted vertically for clarity and plotted ver-
sus energy, rather than sample voltage, for comparison with theory. Colored energy
ranges indicate those used to generate the spectroscopic image.
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blue due to the assignment of red and green channels to energies in this regime. Two
WSe

2
re�ectivity minima near 4 and 7 eV, which evolve with the number of layers, are

assigned to green and blue channels, respectively, causing color variations in the map
based on the number of layers. For example, in this color scheme, monolayer WSe

2

appears yellow-hued, while bilayers appear rose-hued, and trilayers appear turquoise
(for a few small triangles in the center of pyramidal structures). The map generated
by this colorization scheme is further evidence of the reproducibility of re�ectivity
analysis for determining WSe

2
thickness.

In another mode of LEEM operation, di�raction patterns are acquired, allowing
direct analysis of the surface structure. We insert a small aperture to reduce the
illuminated area of the surface and collect a di�raction pattern for the local region,
so-called selected area di�raction or µLEED. Di�raction patterns from the encircled
regions in Fig. 3.4(a) show distinct 6-fold di�raction spots from the graphene (larger
wavevector) and WSe

2
(smaller wavevector), with six additional satellite spots sur-

rounding the central, specular (00)-spot, originating from the 6
√

3× 6
√

3�R30◦ sur-
face reconstruction, also known as the bu�er layer of EG�SiC.[44] The WSe

2
spots

form small groups azimuthally-centered on the di�raction pattern of the underlying
graphene. From the angular spread of these points, we �nd that the WSe

2
preferen-

tially forms rotationally aligned with the graphene lattice, within ±2.3◦, for the given
growth conditions. Interestingly, the macroscopic alignment of the triangular crystal
edges seen in the LEEM images are primarily oriented within 60◦ of one another.
This suggests that a speci�c edge termination is preferred by this growth method,
however, from LEEM it is not clear which type.

3.4 Theoretical results

As �rst discussed by Hibino et al.[43, 64] and extensively analyzed in our prior
work,[48, 58, 59, 65] the occurrence of minima in low-energy electron re�ectivity spec-
tra is associated with interlayer states that occur between the 2D planes of van der
Waals (vdW) bonded materials. Such interlayer states arise from the image-potential
states that exist on either side of a single 2D layer,[66, 67] i.e. a monolayer (ML) of
carbon for the case of graphene or ML-WSe

2
for the case of bulk WSe

2
. When 2D

MLs are brought together to form a vdW-bonded bulk material, the image-potential
states of the respective layers combine to form a band of interlayer states.[66] The
image-potential states themselves have energies some 10's of meV below the vacuum
level, but when they combine to form the interlayer states then those states end up
with energies typically in the range of 0�8 eV above the vacuum level, at least for the
case of graphene. 1 As discussed in prior work, the interlayer states are free-electron

1 The interlayer band that we are discussing here, occurring in the 0�8 eV range, is actually
the lowest band of a pair of two bands. The upper band has energy of 14�22 eV, at least for the
case of graphene.[58] The combinations of image-potential states that form the bands are symmetric
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Figure 3.4: (a) LEEM image of WSe
2
�EG�SiC, showing 2 µm triangular WSe

2

islands on a bright background of few-layer epitaxial graphene. (b) Selected-area
di�raction from the circular region labeled �b� in the LEEM image shows six dark,
outer spots from the graphene lattice, with six additional groups of spots associated
with the WSe

2
islands at a smaller wavevector. Surrounding the non-di�racted (00)

spot, there are six satellite spots associated with the 6
√

3×6
√

3�R30◦ reconstruction
of the SiC. (c) Di�raction from the bare graphene region labeled �c� in the LEEM
image shows only the six outer di�raction spots and the 6

√
3 structure also found in

(b), labeled by (1/18 , 1/18).
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like,[66] in the sense that in the spaces between the 2D sheets (the interlayer spaces),
these states have character similar to that of plane wave with wavevector magnitude
of κ0 =

√
2m(E − Evac)/~ where E − Evac is the energy of the state relative to the

vacuum level. The wavefunctions of the interlayer states tend to be concentrated
in the interlayer spaces; they have a local maximum at a location midway between
neighboring 2D planes.

Given a band structure of a vdW-bonded bulk material, we analyze it to deter-
mine the amount of plane-wave character within the interlayer space that each state
exhibits. With the z-direction being along the c-axis of the material, it is only neces-
sary to consider states with wavevector components (kx, ky) = (0, 0) and kz ≡ k. We
de�ne an overlap between a wave function of the material and a plane wave according
to:

σ± =

√
Ac

z2 − z1

∫ z2

z1

φ0,0
ν,±k(z)exp(iκ0z) dz , and (3.1a)

σ ≡ (|σ+|2 + |σ−|2)1/2, (3.1b)

where A is the area of the lateral unit cell of the material and c is the c-axis periodicity,
z1 and z2 de�ne the interlayer space over which the overlap is computed, and φ0,0

ν,±k(z)
is the (Gx, Gy) = (0, 0) Fourier coe�cient of the wave function (equal to the wave
function averaged over the lateral unit cell). We note that this form is the same
as the one we previously introduced in connection with our low-energy re�ectivity
analysis, although in that prior analysis it was evaluated for the case of far-separated
2D layers in a periodic supercell,2 whereas in the present case it is evaluated between
2 ML of a bulk material. All of the evaluations of σ presented below are performed
by computing the overlap over a 2-Å-wide space centered at the midpoint of the
interlayer space, with z2 − z1 = 2Å.

Before examining the band structure for the material of interest, WSe
2
, it is

instructive to �rst review the situation for simpler materials such as graphite and
hexagonal boron nitride (h-BN). Figure 3.5(a) shows the band structure of graphite,
for (kx, ky) = (0, 0). We use symbol sizes for the plotting which, for each state,
are given by some minimum symbol size plus an amount that is proportional to the
computed value of σ for that state. Hence, bands that have signi�cant plane-wave
character (i.e. signi�cant interlayer character) are revealed by the relatively large
symbol sizes. As is well known from prior work,[43, 48] in graphite there is only a
single band with interlayer character, the one labeled �interlayer� at the top of Fig. 3.5.
Importantly, this interlayer band has its origin not in terms of any atomic orbitals in

(antisymmetric) for the lower (upper) band, relative to a location midway between the sheets of 2D
material.

2 An additional distinction between the form introduced in Eq. (3.1) and that used previously in
Ref. 48 is that the former refers to states with ±kz whereas the latter referred to even and odd states
formed by linear combinations of the ±kz states. However, the resulting values for σ are identical
for both cases.
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Figure 3.5: (a) Band structure of graphite, with wavevector varying from Γ to A.
Symbol sizes, beyond a minimum size, are proportional to the value of σ (Eq. (3.1))
for each state. (b) Computed LEER spectra of 3 ML free-standing graphene, with
(blue solid line) and without (red dashed line) inelastic e�ects. Energies are relative
to the vacuum level of the 3-ML slab.
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the material, but rather, it arises from plane waves existing in the interlayer spaces
as already discussed above. All the other bands that are seen in Fig. 3.5(a), however,
can be related to speci�c combinations of atomic orbitals, as labeled at the top of the
�gure.

The situation for graphite is especially simple since there is zero coupling (zero
overlap) between the interlayer band and the overlapping and/or nearby bands.
Speci�cally, we consider the bands labeled 2p∗x,y, 2p∗z, and 3s in Fig. 3.5(a). These
labels are meant to be approximate ones, indicative of the character of the states in
the bands. This character is readily apparent from several types of analysis; examina-
tion of the spherical symmetry of the states relative to atomic locations, tight-binding
modeling of the bands and comparison to �rst-principles results, examination of the
dependence of the bands on interlayer separation, and individual inspection of speci�c
wavefunctions of the states.[68] We �nd that all of the states of these three bands
are orthogonal to the states in the interlayer band. This orthogonality arises for the
states of the 2p∗x,y band due to its composition in terms of in-plane p-orbitals, whereas
it arises for the 2p∗z and 3s bands because the wave functions of states in those bands
have opposite sign on neighboring C atoms of the graphene lattice.

Figure 3.5(b) shows the low-energy electron re�ectivity (LEER) spectrum that
arises from free-standing multilayer graphene containing 3 graphene layers, computed
without and with inelastic e�ects. As is well known from prior work, one re�ectiv-
ity minimum occurs for every interlayer space in the structure. For example, for
3 graphene layers there are 2 interlayer spaces and hence 2 re�ectivity minima.[48]
The theoretical spectrum including inelastic e�ects shown in Fig. 3.5(b) is in good
agreement with experiment.[43, 59] Importantly, since there is no overlap between
the states of the interlayer band and those of overlapping and/or nearby bands, those
bands make no contribution to the resulting LEER spectra.

In Fig. 3.6 we display results for h-BN. Figure 3.6(a) shows the bulk h-BN band
structure, again with symbol sizes computed in accordance with the σ values. The
inequivalence between the B and N atoms of h-BN produces large changes to the
band structure compared to that of graphene, but nevertheless, a single interlayer
band together with a few nearby bands can be identi�ed in Fig. 3.6(a). One of
these nearby bands has 2p∗x,y character; as for graphene, the states of this band are
orthogonal to states of the interlayer band. However, in contrast to the situation
for graphene, the other two nearby bands, which for h-BN have mixed 2p∗z and 3s
character, are not orthogonal to the interlayer band. This di�erence occurs simply
due to the inequivalence of B and N atoms, which destroys the precise orthogonality
described above for graphite. Hence, these two nearby bands acquire some degree of
plane-wave (interlayer) character.

Resulting LEER spectra for 3 MLs of free-standing h-BN, with and without inelas-
tic e�ects, are displayed in Fig. 3.6(b). In the absence of inelastic e�ects, the coupling
of the interlayer character with two of the nearby bands leads to re�ectivity minima
associated with each of the bands. All of the three bands with interlayer character
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Figure 3.6: (a) Band structure of bulk h-BN, with wavevector varying from Γ to A.
Symbol sizes, beyond a minimum size, are proportional to the value of σ (Eq. (3.1))
for each state. (b) Computed LEER spectra of 3 ML of free-standing h-BN, with
(blue solid line) and without (red dashed line) inelastic e�ects. Energies are relative
to the vacuum level of the 3-ML slab.
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in Fig. 3.6(b) display two re�ectivity minima each, arising from the two interlayer
spaces. However, when inelastic e�ects are included, a large amount of broadening
occurs in the spectra, particularly for the two bands with mixed 2p∗z and 3s char-
acter. The re�ectivity maximum that occurs at 8.2 eV between these two bands for
the computation neglecting inelastic e�ects is greatly diminished in size, to become
a weak, local maximum which separates the two minima (at 7.0 and 9.5 eV) of this
band. No discrete thickness oscillations are observed in connection with these min-
ima; the oscillations found in the absence of inelastic e�ects are eliminated when the
inelastic e�ects are included. Experimentally, a broad re�ectivity minimum centered
at about 8.2 eV above the vacuum level has indeed been observed in h-BN LEER
spectra,[4, 49] and two minima (or a minimum and a shoulder) are seen within that
broad minimum. As mentioned in Section 3.2, for the computation of Fig. 3.6(b) we
are employing values for the energy-dependent imaginary part of the potential (which
governs inelastic e�ects) which are somewhat reduced from our typical values, in or-
der to emphasize these features in the 7�11 eV range (which are especially relevant
for the WSe

2
spectra).

Figure 3.7 displays the bulk bands for WSe
2
. There are many more bands than

for graphene or h-BN, arising from the multiplicity of s, p, and d states of the W
and Se atoms. Low-lying bands of interest in Fig. 3.7(a) are numbered 1�7 (with
band 7 being the relatively wide band with signi�cant plane-wave character centered
at 10 eV). From a decomposition of the states into their s, px,y, pz, dz2 , dxz,yz, and
dxy,x2−y2 character (not shown), we �nd that bands 4 and 6, each of which is doubly
degenerate, have purely dxz,yz character, with nodal planes parallel to the xz and
yz planes. Hence, these bands have no plane-wave character, and they make no
contribution to the re�ectivity. Of the remaining bands, band 3 is seen to have the
most plane-wave character, bands 1 and 7 have substantial plane-wave character, and
bands 2 and 5 have a small amount of plane-wave character.

Re�ectivity for free-standing slabs of 1, 2, and 3 MLs of WSe
2
are shown in

Fig. 3.7(b)�(d), respectively. The spectra that do not include inelastic e�ects reveal
thickness oscillations for most of the bands, with the number of minima given by
either the number of layers (n) or the number of interlayer spaces (n− 1), depending
on the particular band. However, with inelastic e�ects included all of these oscilla-
tions disappear, and the respective minima associated with each band appear just
as a single, broad minimum. These broad minima occur at approximately the same
energies (relative to the vacuum level) as the features observed in the experimental
spectra of Section 3.3. For comparison, these experimental curves are reproduced in
Fig. 3.7 as well.

Concerning the small re�ectivity features discussed in Section 3.3 at 4 and 10 eV
which we associate with di�ering thicknesses of the WSe

2
, these are more di�cult to

discern in the theoretical spectra. However, comparing the 1 ML and 2 ML spectra,
we see a signi�cant di�erence in their behavior near 10 eV; the former shows a single,
distinct minimum at 9.7 eV, whereas the latter displays a broad minimum extending
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Figure 3.7: (a) Band structure of bulk WSe
2
, with wavevector varying from Γ to A.

Symbol sizes, beyond a minimum size, are proportional to the value of σ (Eq. (3.1))
for each state. (b)�(d) Computed LEER spectra of 1, 2, and 3 ML of free-standing
WSe

2
as indicated, with (blue solid lines) and without (red dashed lines) inelastic

e�ects. Experimental curves (gray solid lines) from Fig. 3.3 are superimposed for
comparison. Energies are relative to the vacuum level of the respective slabs.
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over about 9.0�10.5 eV (with two minima in the elastic-only computation seen at
either end of this range). For the case of 3 ML of WSe

2
, an even broader minimum

near 10 eV is seen. Of course, an important distinction between the theoretical spectra
of Fig. 3.7 and the experimental spectra of Section 3.3 is that the former are for free-
standing WSe

2
MLs, whereas the latter are for WSe

2
on top of an epitaxial graphene

substrate. This di�erence is further discussed in Section 3.5.

3.5 Discussion

Computation of re�ectivity spectra for WSe
2
on few-layer graphene is quite complex

due to the poor epitaxial �t of the materials and the large size of the supercell
required. Nevertheless, predictions for the evolution of re�ectivity minima for free-
standing slabs of 1-, 2-, and 3-ML WSe

2
appear to be su�cient for interpretation

of the experimentally-measured re�ectivity from WSe
2
�EG�SiC, despite neglecting

the e�ect of the substrate. In comparing the measured results from Section 3.3 to
the computed re�ectivity in Section 3.4, it is important to note that the experimental
curves are measured versus sample voltage VS, and not energy above the vacuum level
E −Evac directly. Due to the work function di�erence ∆W between the electron gun
�lament of the LEEM and the WSe

2
on the sample surface, the experimental curves

are shifted approximately 2.2 V (depending on location) toward higher voltage. Using
a quantitative method for determining the local vacuum level outlined in Ref. 4, the
experimental re�ectivity curves are shifted by ∆W in order to plot the spectra versus
E − Evac = eVS − ∆W + σc, including a small energy shift σc ≈ 0.1 eV to account
for the peak energy of thermionic emission from the gun cathode. With this method
in place, it is possible to plot the experimental re�ectivity curves together with the
computed ones in Fig. 3.7.

It is a known result that high-energy bands computed with PBE-GGA (as dis-
cussed in Section 3.2) are generally lower energy than real bands. As such, the
subsequent computed re�ectivity curves are typically shifted 0.5 to 1 eV lower along
the energy axis compared to experiment.[68] With this in consideration, we conclude
that there is reasonable agreement between the computed and experimental minima
near 0, 7, and 10 eV.

Critically, the minimum near 10 eV in the 1 ML computed re�ectivity curve shown
in Fig. 3.7(b) evolves into a broad, �at minimum in the 2 ML case, as in 3.7(c). The
�at minimum occurs in the computed re�ectivity due to the combined e�ect of two
nearby states, one of which has lower energy and produces a deeper minimum in
the 2-ML case than in the 1-ML case. The elastic-only computed curves show this
behavior most clearly, although the overall e�ect becomes complicated for more than
2 ML. A similar �attening of the minimum near 10 eV is clearly observed in the 1-
and 2-ML experimental curves (gray solid lines in Fig. 3.7(b) and 3.7(c)), although
in the measured curves there are two distinct minima, whereas our best �t shows no
clear oscillations using the inelastic model implemented here. In any case, beyond
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2 ML it may be di�cult to resolve additional minima in measured re�ectivity due to
inelastic e�ects.

The states which form band 3 have strong interlayer character and subsequently
vary as the number of interlayer spaces, n−1. In addition, states from nearby band 2
couple and broaden the resulting re�ectivity minimum such that for 1 ML of WSe

2
,

there is a narrow minimum near 3.3 eV, whereas for 2 ML the minimum is deeper and
shifted to higher energy. This e�ect is also observed in the experimental re�ectivity
outlined in Section 3.3 and therefore provides another signature for discriminating
between 1- and 2-ML WSe

2
. For a greater number of layers, the computed minimum

near 4 eV is expected to broaden and deepen further, but will not develop countable
oscillations like those near 10 eV. It is the wide dispersion of band 7 that allows the
states in the few-layer limit to be resolved, as was the case for the interlayer bands in
graphene and h-BN. Thus, for bands with small dispersion the variation with number
of layers is predicted to be less pronounced.

Finally, although the computations considered here do not include the graphene
or SiC below the WSe

2
layers, it is reasonable to posit that interactions between the

WSe
2
and graphene might have an e�ect on the re�ectivity. In particular, minima

associated with interlayer states in few-layer graphene occupy an energy window from
0�7 eV, as in Fig. 3.5. The band gap in the WSe

2
spectrum between bands 1 and

2 re�ects most electrons with energy in that range, and therefore prevents coupling
to graphene interlayer states below the WSe

2
, however, there may still be coupling

between the upper WSe
2
band gap edge and 7 eV. Whether or not evidence of this

can be observed remains an open question.

3.6 Conclusions

We have shown that low-energy electron re�ectivity measurements of WSe
2
�EG�SiC

yield distinct spectroscopic signatures for WSe
2
and graphene regions. By correlating

the observed LEEM images with AFM scans of the surface, we have identi�ed mono-
layer and bilayer crystals of WSe

2
and labeled the re�ectivity accordingly. Using a

�rst-principles method of calculating electron re�ectivity curves from free-standing
slabs of few-layer WSe

2
, we have assigned the observed features in 1- and 2-ML-

WSe
2
re�ectivity to speci�c states with strong plane-wave character. We argued that

enumeration of these states provides a clear evolution of re�ectivity minima as layer
number increases, and that this evolution allows discrimination between 1- and 2-ML-
WSe

2
from the re�ectivity alone. Furthermore, by numerically analyzing the spectral

features from a LEEM imaging dataset it is possible to generate a colorized map of
WSe

2
layer thickness with high �delity across the image. This method paves a path

forward for quickly determining few-layer WSe
2
�lm thickness with atomic resolution,

and may be applicable to other TMD materials as well. The results and analyses
presented here provide critical insight for future studies of layered heterostructures
including WSe

2
and graphene, as well as LEEM studies of other 2D materials.

47



Chapter 4

Tunneling transport between

transition metal dichalcogenides

Over the last �ve years, many groups have worked to fabricate vertical tunneling de-
vices using graphene, h-BN, and 2D semiconducting transition metal dichalcogenides
(TMDs). Within our own collaboration, we sought to make devices exhibiting both
resonant tunneling (between like bands in either electrode) as well as steep switch-
ing (between unlike bands). Presently, there have been several successful reports of
negative di�erential resistance (NDR) in a number of devices,[63, 69, 70] beyond the
graphene ones discussed in Chapters 7 and 8. An even greater number of studies have
resulted in 2D devices with a similar vertical geometry that display neither NDR nor
steep switching based on vertical tunneling.[71�74]

Needless to say, many groups sought to measure tunneling transport in devices
strikingly similar to the ones we proposed and were considering for experimental
studies. In this fast-moving context, we decided to pursue two paths in parallel:

1. Take advantage of the great progress in grown vertical 2D heterostructures
(largely within our own collaboration) by investigating these structures with
low-energy electron microscopy, a highly-suited tool for studying 2D materials
with which we have a great deal of expertise (as introduced in Chapter 3).

2. Build up a capability to assemble arbitrarily complex vertical heterostructures
of exfoliated 2D materials, with the goal of making high-quality devices with
high throughput (see Chapter 9).

In fact, this work proved to be successful in both approaches, but it is the e�ort
toward objective 1 that will be introduced in this chapter.

4.1 Introduction

Epitaxial growth methods, metal-organic chemical vapor deposition (MOCVD), molec-
ular beam epitaxy (MBE), and powder vaporization (PV), which proceed in a layer-
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by-layer manner, provide many advantages for the synthesis of 2D materials. For
vertical heterostructures in particular, layer-by-layer growth allows direct control of
the constituent materials in a serial fashion, and typically these techniques can be
scaled to large lateral dimensions in a way that is not possible with exfoliated mate-
rials. Hence, a great deal of e�ort has gone into adapting epitaxial growth methods
to form atomic layers of MoS

2
, MoSe

2
, WSe

2
, h-BN, and others on graphene,[50, 52,

68, 75, 76] as well as graphene on h-BN.[77, 78] Graphene itself has been formed
in large-area �lms using CVD on metal foils with varying degrees of quality.[79�83]
Graphene with a high degree of epitaxial registration and uniformity has been demon-
strated by sublimation of Si from the (0001)-surface of SiC, forming epitaxial graphene
(EG).[11, 46, 84, 85] With these techniques available, it was possible to begin devel-
oping processes for a wide range of layered heterostructures and vertical tunneling
devices.

From an interpretation standpoint, the most ideal vertical tunneling structures
would include an h-BN tunneling barrier, but experimentally it is easier and thus
reasonable to begin with stacking TMD layers without an explicit barrier material.
As such, the �rst reports of NDR observed in TMD�TMD vertical tunneling structures
did not posses a well-de�ned barrier, with the hope that the top and bottom electrode
layers would only weakly couple, thus forming an e�ective van der Waals barrier
between the layers. One of these early heterostructures was fabricated by Roy et al.
using exfoliated few-layer WSe

2
on MoS

2
, and the measured NDR characteristic was

attributed by the authors to be due to Esaki tunneling (that is, not due to resonant
momentum-conserving tunneling).[69] Not long after, our collaborators Yan et al.
reported NDR between vertically-stacked SnSe

2
and black phosphorus, both of which

were composed of many layers (50 nm to 100 nm each), also due to Esaki tunneling.[70]
In another work, our close collaborators Lin et al. observed NDR between mono-

layers of WSe
2
and MoSe

2
grown on EG, as well as between MoS

2
and WSe

2
on EG

in separate structures.[63] In both cases, Lin et al. argued that the resonant tun-
neling was occurring between like bands, and hence did not result from an Esaki
mechanism. In this latter work, however, Lin et al. did not fabricate true devices
in the traditional sense, with patterned contacts and well-de�ned device boundaries,
but rather used conducting-AFM (CAFM) to measure current from the tip through
selected vertical heterostructures into the underlying graphene. This allowed high
throughput electrical characterization, but simultaneously provided some ambiguity
in the interpretation of the transport results. To o�er insight in this regard, we turned
to low-energy electron microscopy (LEEM), another high-throughput technique that
would allow us to investigate the structural and electronic properties of these ma-
terials without the complications of device patterning. To begin this investigation,
we focused on simple heterostructures involving a single TMD formed on graphene,
which also showed interesting vertical transport with CAFM,[5, 50, 53] and would
serve as a baseline for studies of more complex structures.

For the work involved in the following sections, Sarah Eichfeld carried out the
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Figure 4.1: Electrical characterization of WSe
2
grown on epitaxial graphene us-

ing conducting-AFM (CAFM). The CAFM tip is positioned on a WSe
2
island and

current is measured through the WSe
2
into the graphene below, as a function of

voltage. Current�voltage characteristics are shown for two substrate types: (i) fully
hydrogenated epitaxial graphene (EGFH) and (ii) partially hydrogenated epitaxial
graphene (EGPH), with current being highly resistive in the latter cases. Currents are
shown for locations on WSe

2
as well as on bare graphene.

growth and sample preparation, Yu-Chuan Lin provided conducting-AFM measure-
ments and leadership for the study, I carried out the LEEM measurements, analysis,
and extracted to work function di�erences, Jun Li provided charge transfer computa-
tions, Yifan Nie performed DFT calculations to obtain the interface dipole energies,
and all contributors provided input in the �nal assembly of the results, with guid-
ance from Kyeongjae Cho, Randall M. Feenstra, and Joshua A. Robinson. This work
appears, in part, as published work in Ref. 5.

4.2 Vertical transport between tungsten diselenide

and epitaxial graphene

Beginning with samples involving the growth of a single TMD overlayer formed on
epitaxial graphene on SiC (EG), our collaborators Lin et al. [5] observed peculiar
bimodal vertical transport from WSe

2
into the graphene below. By placing a CAFM

tip coated with PtIr on monolayer islands of WSe
2
and measuring the current as a

function of bias between the tip and the underlying graphene, Lin et al. noticed that
the resulting current�voltage (I�V ) characteristics varied substantially from sample
to sample. In some cases, the WSe

2
�EG behaved as a diode, with a large increase in
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Figure 4.2: (a) Side-view of epitaxial graphene on SiC, which forms a recon-
structed carbon bu�er layer upon Si-sublimation. Partial covalent bonding between
the bu�er layer and top silicon layer of the SiC prevents graphene-like dispersion
in the bu�er layer, despite its hexagonal arrangement of C-atoms. (b) Side-view of
quasi-freestanding epitaxial graphene on SiC, formed by �owing hydrogen at high
temperature to passivate the dangling bonds on the SiC surface and thus decouple
the bu�er layer, which subsequently becomes an additional graphene layer.

current occurring at biases greater than 1 V, whereas in others the measured currents
were several orders of magnitude larger, even at zero bias, as in Fig. 4.1. To cast
some light on this phenomenon, we consider the growth process used to synthesize
these samples.

4.2.1 Sample fabrication

Due to the isostructural nature of graphene with respect to TMD materials, its atomic
�atness when formed on SiC, and the advantages of having a semi-metallic underlayer,
epitaxial graphene on SiC (EG) was selected as the template for WSe

2
synthesis. Prior

to EG formation, the 6H-SiC substrates employed in this study were etched by �owing
a 10 % H

2
/Ar mixture at 700 Torr to remove subsurface damage due to substrate pol-

ishing. The EG was then formed via a well-known process[85] involving Si-sublimation
from the (0001)-surface of the SiC at 1625 ◦C in a 200 Torr Ar-environment in a pure
graphite heating chamber. Following EG formation, WSe

2
crystals were grown by

Eichfeld et al. via metal-organic chemical vapor deposition (MOCVD) using tungsten
hexacarbonyl (W(CO)

6
) and dimethylselenium ((CH

3
)
2
Se) precursors for W and Se,

as described in Ref. 53. Crucially, in order to prevent carbon impurity incorporation
from the precursors,[53] a 100 % H

2
carrier gas was used during the WSe

2
formation

on the EG. As a side e�ect of �owing H
2
gas at high temperature, depending on the

conditions some hydrogen intercalates between the graphene and SiC.
This too is a well-known e�ect, utilized in many studies to produce so-called quasi-

freestanding epitaxial graphene (QFEG) by passivating the Si dangling bonds at the
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interface of the graphene and SiC.[46] Structural models of EG and QFEG are shown
in Fig. 4.2. To investigate the e�ect of hydrogen intercalation in our fabrication
process, samples were prepared at either 800 ◦C or 930 ◦C during the MOCVD stage,
and characterized with LEEM.

4.3 LEEM analysis of tungsten diselenide�epitaxial

graphene tunneling heterostructures

In order to study the surface and electronic structure of the heterostructure sam-
ples, low-energy electron microscopy (LEEM) with electron energies of 0 to 20 eV is
employed. In addition, low-energy electron re�ectivity (LEER) provides an accurate
means of counting the number of graphene layers as well as extracting the work func-
tion variation over the surface.[4, 48] The LEEM images of WSe

2
�EG from 800 ◦C

WSe
2
growth show triangular islands of WSe

2
with a characteristic size of 1 µm, nu-

cleating preferentially near SiC step edges on the EG surface (Fig. 4.3). The graphene
is found predominantly in monolayer + bu�er layer form, but small bi- and trilayer
graphene crystals are also found on the surface. LEEM analysis indicates that the
bu�er layer is continuous at the interface of the SiC and EG, suggesting that only a
negligible portion of this layer has decoupled during the 800 ◦C WSe

2
growth.

Low-energy electron re�ectivity spectra show of this sample show characteristic
oscillations for graphene and WSe

2
for the respective regions of the surface and allow

material identi�cation in the LEEM images, as shown in Fig. 4.3(b) for the 800 ◦C
WSe

2
growth.[86] Such LEER curves also permit determination of local work function

di�erences on the surface, as described in Section 2.2. For su�ciently low sample
voltages (≈ 2 V) the incident electrons are totally re�ected from the sample, near the
so-called mirror-mode transition (see Section 2.2). The voltage of the mirror-mode
transition V0 corresponds to the work function di�erence, ∆W = eV0, between the
sample surface and the LEEM electron emitter cathode. Detailed �tting of these
transition voltages (energies), locally, for many points on the surface, permits the
extraction of variations in work function across the surface.

The average work function di�erence between the monolayer graphene regions
(which covers the majority of the exposed surface) and the electron emitter is found to
be ∆WGr ≡ 〈WGr −Wem〉 = 1.87± 0.03 eV. The values for bi- and trilayer graphene
regions are similar, and are summarized in Figs. 4.3(b) and 4.4. The average work
function di�erence between WSe

2
and the emitter is ∆WWSe

2
≡
〈
WWSe

2
−Wem

〉
=

2.18± 0.01 eV. Taking the di�erence of the monolayer graphene and WSe
2
work

function di�erences, a vacuum level di�erence of δEvac ≡ ∆WWSe
2
− ∆WGr =

0.31± 0.03 eV is found. Uncertainties in these values are obtained from a combi-
nation of uncertainties in the measurement, analysis, and variations on the sample
surface, and are shown in Fig. 4.4. It is important to note that this observed vacuum
level (work function) di�erence is between (i) WSe

2
�EG, that is, WSe

2
in contact with
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Figure 4.3: (a) Low-energy electron microscopy (LEEM) image of WSe
2
grown on

epitaxial graphene on SiC at 800 ◦C (referenced in text as EGPH), acquired at a sam-
ple voltage of 4.8 V. Labeled points indicate locations of re�ectivity spectra in (b),
which are used to identify the material coverage in the image. Bright triangles are
WSe

2
islands, dark regions are monolayer and few-layer graphene on a graphene-like

bu�er layer at the interface of the graphene and the SiC substrate. (b) Re�ectivity
spectra extracted from labeled locations in (a). ∆W values, to the left of each spec-
trum, quantify the electrostatic potential variation on the surface due to spatial work
function di�erences, and hence the variation in the vacuum level. (c) LEEM image
of WSe

2
grown on epitaxial graphene on SiC at 930 ◦C (referenced in text at EGFH),

acquired at 4.1 V sample bias. Bright regions are WSe
2
crystals, dark regions are few-

layer graphene. (d) Re�ectivity spectra from labeled points in (c), with small feature
characteristic of a released bu�er layer (due to passivated SiC dangling bonds) near
the onset voltage V0 = ∆W/e. ∆W values shows much smaller variation between
graphene and WSe

2
in this sample compared to the 800 ◦C growth sample.
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Figure 4.4: Summary of extracted ∆W values fromWSe
2
�EGPH (dashed) andWSe

2
�

EGFH (solid) samples. Extracted values from a few locations are shown as horizontal
lines for WSe

2
and few-layer graphene. Column labels for few-layer graphene indicate

the total number of graphene-like layers, so 1 + 1 ML refers to 2 ML of graphene
for the EGFH case and 1 ML plus a bu�er layer in the EGPH case. This grouping
highlights the similarity in ∆W values depending on the number of layers. Average
uncertainties are indicated by gray boxes for each grouping of ∆W values.

54



underlying graphene (locations G and H in Fig. 4.3(a)), and (ii) bare graphene regions
which are next to, but not directly below, WSe

2
(locations A and B in Fig. 4.3(a)).

The presence of a vacuum level di�erence in these regions implies that there must be
an interface dipole, and therefore charge transfer, between the WSe

2
and the graphene

below. Consistent with this interpretation, it is noted that re�ectivity curves mea-
sured on the WSe

2
islands from 800 ◦C growth (Fig. 4.3(b)) display a broad, sloping

feature for voltages below the mirror-mode transition. This feature also indicates the
presence of charge, or more speci�cally, electric dipoles on the edges of the triangular
crystals which displace the incident and re�ected electron beam during measurement,
thus reducing the re�ected intensity, as discussed in Section 2.2 and shown, for ex-
ample, in Fig. 2.7(b).

The WSe
2
�EG from the 930 ◦C WSe

2
growth shows similar 1 µm triangle islands

on an EG surface in LEEM (Fig. 4.3(c)), however, the sloping features in re�ectivity
associated with charge accumulations are much smaller than in the sample from the
800 ◦C WSe

2
growth. In addition, the extracted work function di�erences between

the WSe
2
and the underlying graphene (in contact) in the sample from 930 ◦C WSe

2

growth are negligible (δEvac ≡ ∆WWSe
2
−∆WGr = 0.03± 0.03 eV) compared to the

sample grown at 800 ◦C, suggesting limited charge transfer between the layers after
growth of WSe

2
(Fig. 4.3(d)). These observations, along with the presence of an ad-

ditional, small minimum valley in the re�ectivity near the mirror-mode transition,[46]
are attributed to full hydrogenation of the SiC surface, which passivates bonds be-
tween the carbon-rich bu�er layer and the SiC, as shown in Fig. 4.2.

This has the e�ect of releasing the bu�er layer and increasing the count of free-
standing graphene layers in the hydrogenated regions by 1, creating quasi-freestanding
epitaxial graphene (QFEG), which is situated on H-terminated SiC.[87] Based on the
evolution of graphene Raman spectra (see Ref. 5) and the LEEM/LEER investigation
(Fig. 4.3), we conclude that the WSe

2
growth at high temperatures (>900 ◦C) leads

to hydrogen intercalation and formation of fully hydrogenated epitaxial graphene
(EGFH), compared to samples grown at intermediate temperatures (750 ◦C to 850 ◦C)
which form partially hydrogenated epitaxial graphene (EGPH). Concurrently, the
electrical properties of the WSe

2
�EG interface appears to have signi�cantly changed,

as shown in Fig. 4.1.

4.4 Charge transfer in tungsten diselenide�epitaxial

graphene heterostructures

The hydrogenation process is known to have a signi�cant impact on the electrical
properties of graphene on SiC. Epitaxial graphene residing on top of the bu�er layer
reconstruction of graphitized 6H-SiC(0001) is n-type doped[85, 87, 88] due to the
combination of bulk and interface donor states[89, 90] and has a Fermi energy 0.45 eV
above the Dirac point.[90] In contrast, QFEG is known to be p-type doped.[46, 90]
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This change has been explained by the presence of the spontaneous polarization of the
hexagonal 6H-SiC substrate, which lowers the Fermi energy to a position 0.28 eV to
0.30 eV below the Dirac point for complete hydrogenation.[90, 91] This modi�cation in
the doping of graphene can thereby in�uence the electrical transport properties across
the WSe

2
�graphene interface on SiC. In order to elucidate the e�ect on transport

properties, vertical current versus voltage (I�V ) measurements were performed on the
800 ◦C and 930 ◦C WSe

2
growth samples (labeled as WSe

2
�EGPH and WSe

2
�EGFH,

respectively) in conducting-AFM (CAFM).
A CAFM tip with PtIr coating and the graphene serve as the source and drain,

respectively. The WSe
2
�EGPH diode exhibits an I�V characteristic with current turn-

on at a bias greater than 1 V, whereas the WSe
2
�EGFH diode turns on near zero bias

(Fig. 4.1). To understand this di�erence, we consider the LEEM measurements of
these samples. Analysis of the onset voltages measured in Section 4.3 revealed a work
function di�erence δEvac = 0.31 eV between the WSe

2
in contact with monolayer

EGPH and the uncovered monolayer EGPH nearby. From the 930 ◦C growth sample,
the work function di�erence δEvac between the WSe

2
in contact with EGFH and nearby

uncovered bilayer graphene EGFH (due to release of the bu�er layer) is near zero. Each
measured work function di�erence in the layered regions has two components:

1. An intrinsic interface dipole energy resulting from charge redistribution within
the graphene and WSe

2
layers, separately.

2. An extrinsic dipole term resulting from charge transfer between the layers of
WSe

2
and graphene.

The intrinsic interface dipole occurs in response to the di�erence in work functions
in the absence of doping, that is, assuming intrinsic WSe

2
and graphene. This would

be equal to the vacuum level di�erence for undoped WSe
2
and undoped graphene at

Fermi equilibrium. The extrinsic dipole is the component that results from excess
carriers in both layers transferring between the two in order to achieve Fermi equi-
librium. The system as measured in LEEM is of course already in equilibrium, but
these statements serve as models for understanding the source of each term.

To quantify these two components, it is necessary to calculate the intrinsic dipole
energy and thus extract the portion of the measured δEvac that is due to charge
transfer. Density functional theory (DFT) calculations of this intrinsic dipole are per-
formed using the Vienna ab initio simulation package (VASP)[55] with the projector-
augmented wave (PAW) method.[56] The local density approximation (LDA)[92] is
used to describe the exchange-correlation functional with the partial core correction
included. For details of this calculation, see the supplementary information of Ref. 5.
The resulting value for the intrinsic dipole energy is 0.17 eV, with the dipole �eld
pointing from the graphene toward the WSe

2
, that is, the WSe

2
electrostatic poten-

tial is 0.17 eV higher than in the graphene below.
Using this intrinsic dipole, along with the measured work function di�erences,

we propose a model in which the WSe
2
has some unintentional p-type doping, and
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Figure 4.5: Band diagrams illustrating the change in band alignment produced by
charge transfer e�ects at the WSe

2
�EG interface. (a) Alignment of monolayer EGPH

and WSe
2
bands as modeled before and after charge transfer, and hence equilibrium.

Experimentally measured work function di�erence δEvac = 0.31 eV is indicated be-
tween the vacuum level of the graphene before charge transfer (left) and the WSe

2

afterward (right). After balancing the electrostatics, the Fermi level ends up in the
band gap of the WSe

2
. (b) Alignment of bilayer EGFH and WSe

2
bands before and

after charge transfer. The experimentally measured work function di�erence is much
smaller, δEvac = 0.03 eV, and thus there is little charge transfer between the layers,
and therefore the Fermi level ends up near the valence band edge of the WSe

2
.
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Figure 4.6: (a) Model of equilibrium electrostatic potential and band alignment be-
tween regions of EGPH covered by WSe

2
and neighboring bare EGPH regions. Struc-

ture model (not on energy scale) illustrates the layer order in covered region. WSe
2

bands (E(k‖) below each region) are superimposed on graphene bands to highlight
the coexistence of the bands in that region (although, in fact, they are separated
spatially in z, and in momentum space depending on rotation). Energy scale is refer-
enced to the vacuum level of intrinsic graphene E(0)

vac, that is, without doping or the
presence of an interface dipole. The raised part of the dotted line therefore indicates
the e�ect of the WSe

2
�EGPH intrinsic interface dipole, Ein, on the vacuum level. The

total vacuum level change δEvac, including doping and an extrinsic dipole from charge
transfer, is illustrated by the solid line. (b) Equivalent model of equilibrium electro-
static potential and band alignment between regions of EGFH covered by WSe

2
and

neighboring bare EGFH regions.
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subsequent transfer of charge between the EGPH or EGFH and the WSe
2
(combined

with the intrinsic dipole) produces the observed variation in work function. With
knowledge of the doping density of EGPH and EGFH ((4± 1)× 1012 cm−2 n-type and
(1.5± 0.2)× 1013 cm−2 p-type, respectively, from previous electrical studies of EGPH

and EGFH),[87, 93] and using reported values of electron a�nities for monolayer
graphene (4.57 eV) and bilayer graphene (4.71 eV),[94] we compute the transfer of
charge between the WSe

2
and the EGPH or EGFH. This charge transfer, for a given

(unintentional) doping density of the WSe
2
, yields theoretical values for the work

function di�erences; the doping density is determined by matching these di�erences
to experiment. The models for band alignment changes due to charge transfer in the
two samples are shown in Fig. 4.5. For details regarding the dependence of the results
on the input electron a�nities, see the supplementary information of Ref. 5.

For the charge transfer computation, we employ the standard linear band structure
around the K and K ′ points for monolayer graphene in EGPH, and hyperbolic bands
near the band extrema for bilayer graphene in EGFH and for WSe

2
around the K

and K points, based on tight-binding models.[95, 96] The method to compute the
electrostatics is similar to that discussed in Section 6.3 and described by Li et al. [97].
Fig. 4.6 shows the �nal result of this calculation graphically, with band diagrams
of WSe

2
�EGPH and WSe

2
�EGFH interfaces in regions with partial WSe

2
coverage.

Both the intrinsic interface dipole and the extrinsic dipole due to charge transfer are
taken into account, and equilibrium is reached when the Fermi levels are aligned. The
di�erence between the vacuum level of WSe

2
(covering a portion of graphene) and

neighboring, bare graphene is thus a sum of the intrinsic interface dipole e�ect and
the charge transfer e�ect (δEvac in Fig. 4.6).

In order to reach equilibrium between the layers of WSe
2
and uncovered graphene

and simultaneously match the experimental values for relative work function dif-
ferences (0.31 eV and 0.03 eV for WSe

2
�EGPH and WSe

2
�EGFH, respectively), we

determine that unintentional p-type doping of 1.3× 1012 cm−2 in the WSe
2
before

charge transfer is required. In the model, when the WSe
2
is put in contact with

n-type EGPH, electrons transfer from the EGPH to the WSe
2
, leading to nearly com-

plete compensation of the WSe
2
p-type doping and thus negligible carrier density in

the WSe
2
. The Fermi level ends up well inside the band gap of the WSe

2
and near

the charge neutrality point in the graphene (Figs. 4.5(a) and 4.6(a)). For the case
of WSe

2
put into contact with EGFH (which is p-type), s small number of electrons

transfer from the WSe
2
into the EGFH layer, making the WSe

2
more p-type, with a

carrier density of 2.9× 1012 cm−2. Critically, the resulting Fermi level of the WSe
2
�

EGFH remains near the top of the WSe
2
valence band. In summary, the WSe

2
�EGPH

forms a Schottky tunneling barrier (with low conductivity as a result), whereas the
WSe

2
�EGFH forms an ohmic contact (much higher conductivity), leading to a 103×

increase in current in the latter case (Fig. 4.1). Therefore, the main component of the
CAFM current near zero bias for WSe

2
�EGPH is due to tunneling from the CAFM

tip to the graphene through the WSe
2
band gap. On the other hand, for WSe

2
�EGFH,
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Figure 4.7: Schematic of electrical characterization using conducting-AFM (CAFM).
CAFM tip is placed on a WSe

2
crystal and current is measured from the tip to the

graphene side of the vertical junction. (a) Current tunneling through the WSe
2
due

to the Fermi level residing in the band gap of the WSe
2
layer, as in the WSe

2
�EGPH

sample. (b) Current conducting through semiconducting WSe
2
itself, due to the high

carrier density in the WSe
2
and ohmic contact between the WSe

2
and graphene, as

in the WSe
2
�EGFH sample.
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the WSe
2
acts as an electrical short between the CAFM tip and the graphene, and

hence ohmic contact (Fig. 4.7).
For validation of our computed charge transfer calculations, we consider the sum

of the band gap and electron a�nity of the WSe
2
, χWSe2

+ Eg, which is an output
of our model (only the sum enters since the electron density in the WSe

2
conduction

band is negligible). In order to match the observed work function variations, we de-
duce an unintentional doping density in the WSe

2
of 1.3× 1012 cm−2, and the value of

χWSe2
+Eg is determined to be 5.1 eV. This value is consistent with a recently reported

electron a�nity of ≈3.1 eV for WSe
2
using a �rst-principles GW calculation,[98] to-

gether with a band gap of ≈2 eV, which is in agreement with several recently reported
experimental values.[99, 100]

4.5 Impact of tungsten diselenide�epitaxial graphene

characterization

This investigation combining LEEM/LEER, Raman spectroscopy, and electrical char-
acterization revealed that transport across the vertical interface of WSe

2
and graphene

is controllable by the doping of the graphene. Moreover, by varying the temperatures
for WSe

2
growth on epitaxial graphene in a pure H

2
environment, it is possible to tune

the position of the Fermi level in the graphene by partially or fully hydrogenating the
EG�SiC interface. This in turn allows the conductivity of the WSe

2
�EG junction to

be tuned during the WSe
2
formation process. Band alignment models of two di�er-

ent heterostructures were constructed using the measured work function di�erence
between WSe

2
and epitaxial graphene as extracted from electron re�ectivity. Taking

into account their intrinsic interface dipoles and charge transfer, the models suggest
the presence of a Schottky barrier in WSe

2
�EGPH and ohmic contact in WSe

2
�EGFH,

in agreement with measured I�V characteristics. The impact of this work is twofold:
(i) we have demonstrated the feasibility of engineering the interface between a 2D
semiconductor and graphene to allow desirable transport characteristics, and (ii) we
have shown that the nature of such interfaces can be readily probed with a reliable,
high-throughput technique based on imaging with LEEM.
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Chapter 5

Application of work function

extraction method to material

characterization

In Section 2.2, I introduced a method for extracting lateral work function di�er-
ences across the surface of layered two-dimensional heterostructures The analysis
techniques developed in Section 2.2 are applied to re�ectivity of CVD-grown WSe

2

crystals formed on epitaxial graphene in Chapter 4, and the resulting work function
di�erences are used to determine the change in band alignment of the WSe

2
and

graphene layers due to charge transfer in the following sections. Ultimately, these re-
sults are used to explain large di�erences in WSe

2
�graphene contact resistance based

on the preparations methods. The method of relative work function extraction and
determination of charge transfer, however, has other possible applications related to
material characterization as well. In this chapter, I address the utility of low-energy
electron potentiometry, that is, using LEER to extract work function di�erences and
hence the variation in electrostatic potential on surfaces, to examine 2D materials
from a materials characterization standpoint.

In this work, samples were prepared by Suresh Vishwanath, led by Grace Xing.
Patrick Mende recorded the initial LEEM and LEED data, whereas I performed the
spectral analysis, work function extraction, and �nal assembly of the results. Jun Li
provided the computed values from charge balance.

5.1 Defect density in molybdenum diselenide pre-

pared by molecular beam epitaxy

In this study, molybdenum diselenide (MoSe
2
) a 2D semiconducting transition metal

dichalcogenide (TMD) which is isostructural to WSe
2
, was formed on epitaxial graphene

(EG) using molecular beam epitaxy (MBE). Beginning with EG (prepared using
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methods described in Section 4.2.1) as a substrate, electron-beam evaporation of a
Mo source was used simultaneously with a Knudsen cell supplying Se to deposit a
�lm at a rate of ≈ 0.3 monolayers per minute. Film growth was performed at 400 ◦C,
followed by 5 to 10 min of annealing at 400 ◦C with the source shutters closed to re-
move excess selenium.[86] Samples were transferred ex situ to an Elmitec LEEM III
for characterization, following several other characterization stages.[86]

LEEM images of the surface show relatively uniform contrast in large portions of
the surface (similar to the bright region in Fig. 5.1(a)), with larger variation in con-
trast in a few regions with swirling morphology (dark region in Fig. 5.1(a)). Selected-
area di�raction (µLEED) of the bright and dark regions indicate di�ering crystallinity
between the two regions, as shown in Fig. 1 of Ref. 86. In particular, the dark region
is shown to have the expected six-fold di�raction pattern of epitaxial graphene on
SiC, indicating that this is a bare region of the surface, not covered by a MoSe

2
�lm.

On the other hand, di�raction from the bright region is di�usely distributed along
a ring with a radius (reciprocal wavevector) that corresponds to a hexagonal lattice
constant of 3.25± 0.02Å, peaked at six spots along the ring.[86] The six-fold sym-
metry of the ring and the fact that the radius indicates an in-plane lattice constant
very close to that of MoSe

2
(3.28Å) suggest that the bright region is composed of a

polycrystalline MoSe
2
�lm.

Turning to the spectroscopic characteristics of the surface, re�ectivity spectra
taken from a few locations are shown in Fig. 5.1(b). Oscillations between 3 and 7 V in
curves D, G, H, and J are characteristic of interlayer states in few-layer graphene, and
hence allow identi�cation of these regions as graphene, with 1, 2, 3, and 4 layers each,
respectively. Curve A is something new, with re�ectivity minima that resemble those
of WSe

2
, another 2D semiconductor with a similar structure (despite the similarities,

this spectrum is distinct from that of WSe
2
, allowing discrimination between the two

if required). Due to the agreement between the di�raction pattern from the same
bright region with the expected pattern from MoSe

2
, we conclude that this spectrum

and other similar ones from this region (curves B and C) are characteristic of MoSe
2
,

although the thickness of the �lm is not clear from re�ectivity without further detailed
analysis (as is discussed for the case of WSe

2
in Chapter 3).

The mirror-mode onset voltages (discussed in Section 2.2) of the re�ectivity curves
from di�erent locations on this sample vary in a somewhat large range, an indication
of work function di�erences on the sample surface. Furthermore, there are sloping
features in the re�ectivity near the onset voltage, especially for curves extracted from
locations near the border between the MoSe

2
(bright) and graphene (dark) regions.

To investigate these phenomena, we focus on the shape of the re�ectivity for low
voltages, as shown in Fig. 5.1(c). The detailed features of curves D, E, and F are
characteristic of monolayer graphene on a bu�er layer of SiC, in agreement with
the µLEED analysis of the di�raction pattern from the dark region in the image.
Curves A, B, and C, however, are attributed to the MoSe

2
�lm, taken from the

bright region of the image. By carefully �tting the low-voltage part of these spectra
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Figure 5.1: (a) Low-energy electron micrograph of MoSe
2
formed on epitaxial

graphene by molecular beam epitaxy. (b) Electron re�ectivity spectra extracted from
the labeled locations in panel a. Each curve is identi�ed and labeled according to the
characteristic spectrum of the material. 1 ML, 2 ML, and so on refer to the number
of monolayers (ML) of graphene present. (c) Detailed view of re�ectivity near the
onset voltage of a few graphene and MoSe

2
characteristic curves, with vacuum level

di�erences denoted by ∆W .
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Figure 5.2: Nominal hole density of MoSe
2
(before charge transfer) as a function

of nominal electron density in the epitaxial graphene (EG) below; calculated by bal-
ancing the electrostatics of MoSe

2
�EG in order to produce a 0.75 eV work function

di�erence between the layers, as observed in experiment. The band alignment be-
tween MoSe

2
�EG is not precisely known, therefore three curves are shown for di�er-

ent conduction band o�set values, ∆Ec ≡ Ec − Ed, equal to the di�erence between
the MoSe

2
conduction band edge and the graphene Dirac (charge neutrality) point.

The graphene is known to be n-type, with a density in the range of 2× 1012 cm−2 to
6× 1012 cm−2, and therefore the resulting MoSe

2
hole density will fall along one of

the curves in this range.

accoring to the procedure outlined in Section 2.2, we �nd that the onset voltages
(and thus work function di�erences with respect to the electron emitter) are bimodal.
Speci�cally, the sample�cathode work function di�erences in the MoSe

2
region are

all close to ∆WMoSe
2
≈ 2.25 eV, whereas in the graphene regions ∆WGr ≈ 1.5 eV.

These numbers are consistent for many points on the surface, and are therefore taken
to be representative of the entire imaged area. The work function di�erence (or
equivalently, the vacuum level di�erence) between MoSe

2
and graphene is therefore

δEvac = ∆WMoSe
2
−∆WGr = 0.75 eV.

This is a signi�cant e�ect, much larger than that observed in the WSe
2
�EG sam-

ples discussed in Section 4.3. In order to understand this value, we consider possible
doping in the MoSe

2
and graphene which leads to charge transfer and a subsequent

interface dipole. Epitaxial graphene on 6H-SiC(0001), the substrate in this sam-
ple, is known to be n-type with a carrier density in the range of 2× 1012 cm−2 to
6× 1012 cm−2.[87, 93] Without knowing the precise value, it is still possible to es-
timate the MoSe

2
carrier density by calculating the amount of charge transfer re-

quired to produce a 0.75 eV work function di�erence between the layers for a range
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of graphene carrier density values. The result of this calculation is summarized in
Fig. 5.2, and is produced by balancing the electrostatics of a vertical junction of
MoSe

2
�EG subject to the constraint that δEvac = 0.75 eV at Fermi equilibrium (after

charge transfer), as outlined in Section 4.4. In addition, the band alignment between
the layers of MoSe

2
�EG is not precisely known, thus we repeat this calculation using

several reported values for MoSe
2
and graphene electron a�nities,[94, 101�103]

χMoSe2
= Evac − Ec (5.1a)

χGr = Evac − Ed, (5.1b)

to establish the range of possible MoSe
2
doping densities based on conduction band

o�set,
∆Ec ≡ Ec − Ed = χGr − χMoSe2

(5.2)

with MoSe
2
conduction band edge Ec and graphene Dirac point Ed (the charge neu-

trality point of graphene, which is also the conduction band edge since the conduction
and valence bands touch at this point).

With these points addressed, we �nd that the 0.75 eV work function di�erence
between MoSe

2
and epitaxial graphene implies that the MoSe

2
began with a hole

density of approximately 5× 1013 cm−2, using the mean values of graphene electron
density and conduction band o�set (red curve in Fig. 5.2). This is an enormous
number of carriers, which in this model are ascribed to an equivalent defect density
in the MoSe

2
�lm. Speci�cally, these defect states (in this model) manifest as a large

density-of-states near the valence band edge of the MoSe
2
; shallow acceptor states

which accept excess electrons from the graphene and thus generate a large dipole
between the two layers.

Alternatively, it is possible that these defect states exist in a distribution through-
out the band gap of MoSe

2
. In this case the defect density would need to be even

larger than 5× 1013 cm−2 to produce the same 0.75 eV work function di�erence, since
the same total number of defect states spread out over the band gap would only
be partially �lled after the charge transfer process, leading to additional unoccupied
defect states. In other words, the same amount of charge is transferred in both mod-
els, but the shallow acceptor model (with a large number of defect states per unit
energy near the valence band edge) admits a smaller number of defect states, all of
which are �lled during charge transfer. The shallow acceptor model, which implies
that the MoSe

2
begins with large, unintentional p-type doping, therefore provides a

conservative estimate of the defect density in the MoSe
2
; it is more likely that there

are in fact a larger number of defect states present in some distribution across the
band gap. Recently, other workers have established the presence of dense networks of
line defects and mirror-twin-boundaries that result in mid-gap states in MBE-formed
MoSe

2
.[104�106] These results provide further evidence that the MoSe

2
�lm in this

study, also prepared by MBE, is indeed highly defective, with a spatial defect density
of 5× 1013 cm−2 or greater.
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Figure 5.3: Model of equilibrium electrostatic potential and subsequent band align-
ment between regions of epitaxial graphene (EG) covered by MoSe

2
and neighboring

bare EG regions. Structure model (not on energy scale) illustrates the layer order in
covered region. MoSe

2
bands (E(k‖) below each region) are superimposed on graphene

bands in the covered region. Bare graphene regions are n-type, but regions covered
by MoSe

2
become slightly p-type due to charge transfer with the MoSe
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. Energy scale
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or charge transfer.
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Regardless of the energetic distribution of defect states, the quantity of charge
transferred between the graphene and MoSe

2
(which is the same in both models) is

rather large, and produces semiconducting MoSe
2
, with the Fermi level in the band

gap of the MoSe
2
and slightly p-type graphene in covered areas, as shown in Fig. 5.3.

Based on the results of Chapter 4, we therefore conclude that the contact between
the MoSe

2
�lm and the epitaxial graphene below is not ohmic, and would therefore

serve better as a tunneling barrier than as a contact or conducting medium. In this
case, of course, this conclusion is based on LEEM analysis alone, demonstrating an
additional application of the method developed in Chapter 4.
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Chapter 6

Theoretical background

Regarding potential applications of 2D heterostructures, it is the focus to the remain-
der of the thesis to investigate interlayer tunneling in layered heterostructures from a
theoretical perspective. Although the experimental �ndings of the previous chapters
provide meaningful contributions to the �eld on their own, these works are addition-
ally motivated by several key predictions which will be the subject of the following
chapters. Given that there are many exciting and novel properties of 2D materials,
particularly pertaining to electronic behavior, it is therefore expected that there will
be equally novel and exciting properties in electronic devices based on such materi-
als. Interlayer tunneling devices in particular are an interesting starting point for such
considerations since the atomic �atness, lack of dangling bonds, and highly-ordered
nature of clean interfaces between 2D materials have the potential to be superior to
those founds in bulk materials. These properties are highly favorable for tunneling
applications, wherein the width, sharpness, and uniformity of the tunneling barrier
are critical parameters; tunneling rates typically being exponentially-sensitive to such
quantities. A pristine interface between graphene and hexagonal boron nitride, for
example, may very well be the absolute limit of atomic sharpness and uniformity
in condensed matter systems. Moreover, there are topological advantages of using
a layered 2D geometry, beginning with the fact that it is possible to independently
modulate the electrostatic conditions of two opposing 2D layers with �elds from either
side of the junction, not to mention various other consequences related to screening
of charges, in-plane and out-of-plane �elds, and so on.

With these concepts as motivation, we proceed to study interlayer tunneling be-
tween 2D materials in the following chapters with theory and computation. In Chap-
ter 6 we establish the theoretical groundwork for computing tunneling currents be-
tween 2D layers, and the electrostatics necessary to simulate realistic devices. The
theory of 2D�2D tunneling between monolayers of graphene separated by hexagonal
boron nitride is discussed in detail in Chapter 7, followed by comparisons to exper-
imentally measured tunneling currents in similar structures. Chapter 8 addresses
tunneling between bilayers of graphene, which requires additional theoretical com-
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Figure 6.1: Diagram illustrating exact solution to the typical 3D tunneling problem,
with incident and re�ected propagating waves on the left side of the barrier, and
an outgoing transmitted wave on the right. Wavefunctions are separated into z-
dependent and ρ = (x, y) components. For a given state, current is obtained by
integrating the current density (Eq. (6.1)) over the x, y plane.

plexity but allows for interesting new phenomena compared to monolayer graphene.
Finally, a brief summary of experimental progress toward actual fabrication of tun-
neling devices is provided in Chapter 9.

6.1 Interlayer tunneling between 2D materials and

the Bardeen method

Tunneling between sheets of 2D materials requires, in comparison to 3D materials, a
new way of visualizing the tunneling process. To illustrate the situation, let us refer
to Fig. 6.1 which shows the regular tunneling problem between two semi-in�nite 3D
electrodes. Considering a wave incident from the left on the tunnel barrier, then there
will be a re�ected wave in the left-hand electrode and a transmitted wave in the right-
hand electrode. From the ratio of the magnitudes of the transmitted to the incident
wave, one obtains the transmission probability T . Summing up these transmission
probabilities with suitable prefactors, one then obtains the total tunnel current. The
states thus formed are exact eigenstates of the system, and this procedure of obtaining
the current is equivalent to simply computing the current for each state, using

jz =
e~

2mi

[
ψ∗
(
∂ψ

∂z

)
− ψ

(
∂ψ∗

∂z

)]
=

e

m
Re

(
ψ∗

~
i

∂ψ

∂z

)
,

(6.1)

and then summing these individual currents over all the states. This type of solution
of the tunneling problem applies equally well to 1D or 3D electrodes, with the latter
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Figure 6.2: Scheme for considering interlayer 2D�2D tunneling in an exact manner,
with current �owing laterally along each electrode (propagating waves, with possible
re�ection and transmission). Tunneling occurs between the layers in the overlap
region (without propagation in the z-direction), with transmitted states maintaining
their initial lateral momentum after tunneling. Analytic solutions do not exist for this
problem, even for simple band stuctures, and computational solutions are impractical
for realistic band structures.

case handled in a separable manner in which the perpendicular component of the
energy and momentum for each state are employed in the summation needed to
obtain the tunneling current.

Now consider the analogous 2D problem in which the electrodes of Fig. 6.1 are
narrow sheets containing just one (or a few) quantum state(s) in the direction per-
pendicular to the sheets. Such states do not have any momentum perpendicular to
the 2D sheets. That is, the states within the 2D materials are manifestly not prop-
agating ones in the direction perpendicular to the sheets. Hence, there is no obvious
way to apply a similar procedure as used for the 3D problem. For this reason, one
must approach the problem in a di�erent way.

To treat the 2D�2D tunneling problem in an exact manner, one must consider the
current �owing along the 2D electrodes and then passing between the electrodes in a
direction perpendicular to the original current �ow, as pictured in Fig. 6.2. We show
there a propagating state approaching the tunnel junction (overlap area of the two
sheets) from one side of the left-hand electrode. When this state (wavepacket) reaches
the junction, it will spread out into the neighboring electrode, and some fraction of
the state will then propagate (in the same direction as the original state) in the other
electrode. In this way, we can still manage to obtain a transmission probability T for
the tunneling process (and a current for each state), and by suitably summing these
probabilities (or individual currents), the total tunneling current is obtained. This
method for treating the 2D problem is clearly more complicated than that employed
for the 3D problem, since, again, the tunneling process is occurring in a direction
that is perpendicular (or, at least, not collinear) with the propagation direction of
the original state.

Because of this inherent complexity of the 2D�2D tunneling problem, simple an-
alytic solutions for this problem do not exist. Even with very simple models for the
2D electronic band structures, it is necessary to couple plane waves into the junction
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Figure 6.3: Illustration of the 3D�3D tunneling problem in the Bardeen approach.
Wavefunctions are �rst determined using a semi-in�nite barrier (and thus the so-
lutions are non-propagating), and the presence of available states in the opposing
electrode is treated as a perturbation on the initial Hamiltonian on each side of the
barrier. Current is obtained (despite non-propagating waves) through a reformulation
of Fermi's Golden Rule, as described in Eqs. (6.2).

and allow them to �spread out� in the direction perpendicular to their propagation
direction. The non-equilibrium Green's function (NEGF)[107] method provides a for-
malism for achieving this sort of coupling of states from contacts to the 2D materials,
as in the far left edge of the upper 2D sheet in Fig. 6.2 and the far right of the lower
sheet. The solutions thus obtained for the tunneling current are exact, within the
model used for the electronic band structures. However, the overall computational
complexity of the 2D�2D tunneling problem precludes the use of realistic band struc-
tures for the 2D material, and even for very simple band-structure models it is not
possible to obtain analytic solutions for the tunnel current.

Fortunately, an alternative treatment of the tunneling problem exists from the
work of Bardeen [108], and it can be directly employed for the 2D�2D tunneling
problem. This method can also be used for 3D�3D tunneling (as commonly used for
analysis of problems involving the scanning tunneling microscope[109]), and we illus-
trate that situation in Fig. 6.3. The essence of the method is that we start with exact
solutions for the wavefunctions in each electrode in the absence of the opposing elec-
trode, and then in a time-dependent, �rst-order perturbation computation (Fermi's
Golden Rule), we compute the probability of an electron in a state of one electrode
making a transition into a state of the other electrode. Consider the states shown in
the left-hand electrode of Fig. 6.3. Such states are solutions of the single-electrode
problem, with vacuum on one side of the electrode. Due to the presence of the vac-
uum, the states are necessarily non-propagating, that is, they carry no current in the
direction perpendicular to the electrode surface.

Starting with these states of the single-electrode problem, now consider adding the
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opposing electrode to the problem, and then computing the transition of the state in
the left-hand electrode over to a state of the same energy in the right-hand electrode.
Fermi's Golden Rule can be used to obtain the total transition probability, and hence
the tunnel current, for all participating states. At �rst glance it may appear that
such a perturbative treatment is invalid, since certainly the perturbing potential of the
right-hand electrode (its Hartree potential, in a single-particle treatment) is very large,
of order 101 eV to 102 eV. However, Bardeen demonstrated that what is important
for the validity of the approach is not the size of this potential itself, but rather, the
size of the potential multiplied by the probability amplitude (wavefunction squared)
of the state from the left-hand electrode.[108] In other words, so long as the tunneling
barrier is su�ciently high and/or broad, then the approach is valid. Certainly for the
problems that we consider in this thesis, with tunnel barrier containing several layer
of h-BN, this condition is well satis�ed.

A second important result obtained by Bardeen was a reformulation of the ex-
pression from Fermi's Golden Rule into a form that is much more convenient to
evaluate.[108] Recall that in a usual time-dependent perturbation treatment, one
would have to evaluate integrals (matrix elements) that extend over the entire volume
spanned by the potential of the right-hand electrode, that is, involving the potential
of the right-hand electrode and the wavefunctions of both the left- and right-hand
electrodes. Bardeen demonstrated that this type of integral can be rewritten as sim-
ply a surface integral over a boundary that separates the two electrodes, with this
surface integral involving only the wavefunctions of the respective states of the left-
and right-hand electrodes and not the potential of the right-hand electrode,

I =
2πe

~
∑
ij

|Mij|2 δ(Ei − Ej) [fL(Ei)− fR(Ej)] , (6.2a)

Mij =
~2

2m

∫
d2ρ

[
(ψ′i)

∗
(
∂ψj
∂z

)
− ψj

(
∂ψ′i
∂z

)∗]
. (6.2b)

In this way, the tunneling current can be seen to be determined by the �overlap� of
the states of the two electrodes at a location near or at the midpoint of the tunnel
barrier.

The Bardeen method can be applied in a straightforward manner to the 2D�2D
tunneling problem. We simply replace the semi-in�nite electrodes of Fig. 6.3 with
thin sheets of material. The resultant quantum states of the 2D sheets do not have
propagating character in the direction perpendicular to the sheets, however, such
character is not required for application of the Bardeen method.

Hence, a relatively simple solution for the 2D�2D tunneling problem can be ob-
tained with this method. Compared to the situation pictured in Fig. 6.2 for 2D�2D
tunneling, which applies to the exact solution (using the NEGF method), the solution
using the Bardeen method can be illustrated as shown in Fig. 6.4. It is not necessary
to consider the lateral current in the 2D electrodes, nor involve the contacts to those
electrodes. Rather, the method allows us to focus simply on the �ow of current across
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overlap integral

Figure 6.4: Illustration of the Bardeen method applied to 2D�2D tunneling, with
states in each layer computed separately, without the presence of the opposing layer.
The wavefunctions in each layer have no propagating component in the tunneling
direction. As a simpli�cation to standard �rst-order perturbation theory, tunneling
current is computed by evaluating a surface integral in the middle of the barrier using
the matrix element de�ned in Eq. (6.2b), as opposed to computing a full volume
integral over a region containing a perturbing potential.
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the tunnel barrier itself. Of course, the transport of carriers within the sheets may
indeed be important in a full analysis of the problem, depending on the e�cacy of
transport in the sheets compared to across the barrier. Nevertheless, the Bardeen
method allows us to on focus on the �ow of current through only the barrier, as an
initial, important step in the analysis of the entire problem.

6.2 Tunneling between monolayers of graphene

6.2.1 Theoretical formalism

In this section we review the case of tunneling between two graphene sheets as �rst
worked out by Feenstra et al. [110]. This review provides a good illustration of the
Bardeen tunneling method described in Section 6.1, and it also forms the basis for
later work presented in Chapters 7 and 8 of the thesis. We begin by considering
tunneling between two graphene monolayers in the out-of-plane direction, z. In the
Bardeen approach, the tunneling current is computed by calculating the overlap of the
wavefunctions from either side of the tunneling barrier, in the middle of the barrier.
This is a perturbative approach; the barrier is �rst treated as a semi-in�nite object
for each electrode separately, and the introduction of the opposite electrode (with
real states) is viewed as a perturbation on the barrier region. This of course relies on
the assumption of weak overlap in the barrier, as discussed in Section 6.1. Beginning
with a sum over transitions from states α in the left-hand (L) graphene electrode to
states β in the right-hand (R) electrode (and vice-versa),

I = gSgV e
∑
α,β

{
1

ταβ
fL(Eα) [1− fR(Eβ)]− 1

τβα
fR(Eβ) [1− fL(Eα)]

}
, (6.3)

with tunneling rates τ−1
αβ and τ−1

βα for electrons going from L→ R and R→ L, respec-
tively, and Fermi occupation factors fL and fR for each electrode de�ned in the usual
way, f(E) = {1 + exp[(E − µ)/kBT ]}−1.[110] The tunneling transition probabilities,

1

ταβ
=

2π

~
|Mαβ|2 δ(Eα − Eβ) =

1

τβα
, (6.4)

are proportional to the square of a matrix element which includes the wavefunction
overlap evaluated over the 2D surface in the middle of the barrier region,

Mαβ =
~2

2m

∫
dS

(
Ψ∗α

dΨβ

dz
−Ψβ

dΨ∗α
dz

)
, (6.5)

with wavefunctions in the left- and right-hand electrodes Ψα(r, z) and Ψβ(r, z). The
tunneling current including these elements becomes[110]

I = gSgV
2πe

~
∑
α,β

|Mαβ|2 [fL(Eα)− fR(Eβ)] δ(Eα − Eβ), (6.6)
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with spin and valley degeneracies gS, gV = 2. Equation (6.6) echoes the form of
Fermi's Golden Rule from time-dependent perturbation theory, however, with the
reformulation described in Section 6.1

6.2.2 Simulation of tunneling characteristics

Using the formalism developed in Section 6.2.1, we proceed to compute tunneling
current by numerical evaluation of Eq. (6.6) using the wavefunctions for graphene
introduced in Section 1.1.1 with an additional, decaying e−κz component in the out-
of-plane direction. With these wavefunctions, the matrix element is explicitly written
in terms of the wavevectors in each electrode, kL, kR, as evaluated in Section 7.2 and
shown in Eq. (7.4),

MkL,kR
=

~2κ

2AmD
e−κdgω(θL, θR)

∫
dS eiQ·rei(kR−kL)·r (6.7)

with misorientation vector Q introduced to quantify angular rotation ω between the
two graphene lattices, and chiral parts of the wavefunctions gω(θL, θR).

A typical simulated structure is shown in Fig. 6.5(a), with two monolayers of
graphene separated by a few layers of hexagonal boron nitride (h-BN), a 2D insulator.
Tunneling occurs for non-zero values of bias voltage applied between the two graphene
electrodes. For each bias voltage value, the electrostatics are solved independently
(as discussed in Section 6.3), and subsequently used to evaluate the current with
Eq. (6.6). For a given bias voltage, only states with:

1. matching energy (imposed by the δ-function in Eq. (6.6)),

2. matching lateral wavevector (momentum- or k-conservation, due to the ei(kR−kL)·r

term in the surface integral of Eq. (6.7)),

3. and only states between the two Fermi energies (from occupied to unoccupied
states)

are allowed to participate in the tunneling. Due to the restriction of k-conservation in
particular, and the reduced number of bands in two-dimensional graphene compared
to bulk materials, the tunneling current is highly non-linear with respect to bias
voltage.

For example, for rotationally aligned graphene crystals (Q = 0), at one particular
bias voltage the graphene bands from either side of the junction will be energetically
aligned (Fig. 6.5(b)). In this special case, all states between the two Fermi levels
have matching energy and momentum with states on the other side of the junction,
so tunneling occurs between between all of these states simultaneously. On the other
hand, for any other bias voltage the bands will be energetically o�set from one another
(Fig. 6.5(c)), and although there are many states with matching energy in the oppos-
ing electrode, there will in general only be a few states with matching wavevector, and
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Figure 6.5: (a) Schematic for graphene�insulator�graphene (GIG) tunneling struc-
ture, with two monolayers of graphene separated by an insulating barrier, in this
case, a few layers of hexagonal boron nitride. (b) Band diagram for GIG junction at
resonance. (c) Band diagram for GIG junction o�-resonance, in the valley region of
the I�V characteristic. (d) Simulated current�voltage (I�V ) characteristic computed
as described in Section 6.2.1. (e) Simulated electrostatics of the same, showing Fermi
shifts ∆E = µ− φ for each electrode,and potential across the barrier φR − φR.
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thus the current is greatly reduced for all other voltages. Matching states occur at the
intersection of the bands in momentum space, so for graphene electrodes in rotational
alignment, a single ring of states satis�es this condition (red ring in Fig. 6.5(c)) along
each Dirac cone. This leads to resonant tunneling in the current�voltage (I�V ) char-
acteristic (Fig. 6.5(d), and a phenomenon known as negative di�erential resistance
(NDR) in the voltage range where ∂I/∂V < 0.

In principle, upholding strict wavevector conservation would lead to a δ-function-
like spike in the tunneling current at the resonance voltage,[110] however, in practice
there are several sources of decoherence which serve to relax the wavevector conser-
vation condition and thus broaden the resonant tunneling e�ect. To capture this
behavior, the surface integral in the tunneling matrix element de�ned in Eq. (6.5),
normally evaluated over all space in the lateral dimensions, is restricted to a �nite
region of wavefunction coherence[110] as discussed in detail in Chapter 7.

6.3 Electrostatics of layered 2D heterostructures

In order to calculate a tunneling current as a function of bias voltage applied across the
2D layers, the potential di�erence is placed appropriately within the energy arguments
of the Fermi functions and δ-function themselves in Eq. (6.6) such that,

Eα = E(kL) + φL = E(kL) + µL −∆EL, (6.8a)

Eβ = E(kR) + φR = E(kR) + µR −∆ER, (6.8b)

where φL, φR refer to the electrostatic potential energies of each graphene sheet, and
φ ≡ µ − ∆E. Here, we �nd the explicit terms for the electrode Fermi energies, µL
and µR, the di�erence of which is de�ned as the electrostatic potential bias,

eV ≡ µR − µL. (6.9)

In Eqs. (6.8), we have introduced two new quantities, ∆EL and ∆ER, which
represent position of the Fermi level in each electrode relative to the charge neutrality
point of the graphene band structure (as discussed in Section 1.1.1). In the work of
Feenstra et al. [110], these terms were combined into one value, ∆E, which was
equal in magnitude and opposite in sign between the two graphene layers due to the
symmetry of the electrostatics model described therein. In a subsequent work, Zhao
et al. [111] calculated the tunneling current between two graphene sheets sandwiched
between top and bottom gates, with a symmetric geometry and antisymmetric gate
biases in order to enable an analytic form for the tunneling current. The simpli�cation
of symmetric gating again allows the use of a single ∆E term, since the e�ect of the
gate �elds (with opposite biases applied to the opposing electrodes) is to modulate the
position of the bands with respect to the Fermi levels, and given a symmetric geometry
the modulation is of equal magnitude on both sides. Here, for the sake of including
gate modulation in more realistic geometries, we introduce a generalized method for
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calculating the electrostatics of layered 2D structures with arbitrary biases, as an
extension to the work of Feenstra et al. [110] and Zhao et al. [111].

6.3.1 Potentials between two monolayers with top and bottom

gates

This calculation is intended to provide a general formalism for solving the electro-
statics of a gated graphene�insulator�graphene junction in a parallel-plate geometry.
The convention will be to label a back gate with voltage VBG followed by source and
drain electrodes, and a top gate (VS, VD, and VTG, respectively). Switching from the
notation of Section 6.2, the graphene electrodes are now labeled as source (L → S)
and drain (R→ D) in the parlence of electronic transport in �eld-e�ect transistors.

We de�ne the system of conductors with q = ĈV, which for four conductors will
take the explicit form,

q1

q2

q3

q4

 =


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44



V1

V2

V3

V4

, (6.10)

with symmetric coe�cients of capacitance Cij = Cji = ∂qi/∂Vj , which give the total
charge on a each conductor at unit potential, holding all other potentials constant. In
our model (2D layers which extend to in�nity in the lateral dimensions), each conduc-
tor is only sensitive to its immediate neighbors, so a few of these matrix elements are
zero (Cij = 0 for i < |j + 1|). Furthermore, since our overall system is charge neutral∑

i qi = 0 and since the result should not depend on the choice of ground potential
Vi → Vi+δV , it follows that

∑
j Cij = 0, and therefore we write the diagonal elements

as Cii = −∑j Cij,
q1

q2

q3

q4

 =


−C12 C12

C12 −C12 − C23 C23

C23 −C23 − C34 C34

C34 −C34



V1

V2

V3

V4

. (6.11)

For metal gates, we identify the potentials V1 = VBG and V4 = VTG, but the
graphene potentials are de�ned as V2 = −φS/e and V3 = −φD/e in terms of the
electrostatic potentials φi at the charge neutrality point. In addition, we relabel
the capacitances in accordance with each dielectric between elements, C12 = CBG,
C23 = Ct, and C34 = CTG. With these identi�cations, we rewrite the two middle
equations,

qS = CBG(VBG + φS/e) + Ct(φS − φD)/e, (6.12a)

qD = CTG(VTG + φD/e) + Ct(φD − φS)/e. (6.12b)
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The net sheet charge density on each electrode is given by

qi = e [(ni − pi)−Ni] , (6.13)

for electron and hole densities ni, pi and electrostatic doping (externally-induced
carriers) Ni. The charge densities are de�ned in the usual way,

ni =

∫ ∞
φi

dE
ρi(E)

e(E−µi)/kT + 1
, (6.14a)

pi =

∫ φi

−∞
dE

ρi(E)

e(µi−E)/kT + 1
. (6.14b)

We may then solve Eq. (6.12a) for φD and insert the solution into Eq. (6.12b)
to obtain a single equation which must be solved self-consistently to obtain φS. The
result is then inserted back into Eq. (6.12a) to obtain φD. For convenience, we
introduce ∆ED = µD − φD and ∆ES = µS − φS and re-parametrize the problem
in terms of the Fermi shifts ∆ED,S. Solving for the electrostatic potentials φD,S, or
equivalently, the Fermi shifts ∆ED,S, fully describes the electrostatics needed for the
tunneling calculation, as shown in Fig. 6.5(e). In terms of the relevant physics, the
classical capacitances of the tunnel barrier and gate dielectrics appear on the right
sides of Eqs. (6.12), whereas the quantum capacitances of the graphene electrodes
(which are signi�cant given the geometry of the layers) and thermal distribution of
electrons are encoded in the Fermi integrals that appear in the charge terms on the
left sides of these equations.

6.3.2 The special case of bilayer graphene

Due to the fact that the band structure of bilayer graphene (and thus, the density-of-
states, which directly a�ects charge distribution) is modulated by the application of
a transverse electric �eld component, the electrostatics for the double-bilayer tunnel
junction must be solved iteratively. The order of material layers for this section is
back gate�source�drain�top gate, as in Section 6.3.1. We begin by considering each
layer of graphene as a separate monolayer with potential φi for i = 0, 1, 2, 3 in order
to calculate the potential di�erences across each bilayer,

US = φ1 − φ0, (6.15)

UD = φ3 − φ2. (6.16)

We obtain the full set of coupled electrostatic equations for the four monolayers and
two gates by �lling in the matrix equation qi = CijVj with the appropriate potentials
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and capacitance terms,
qBG
q0

q1

q2

q3

qTG

 = Ĉ


VBG
−φ0/e
−φ1/e
−φ2/e
−φ3/e
VTG

 ,

Ĉ =


−CBG CBG
CBG −CBG − CS CS

CS −CS − Ct Ct
Ct −Ct − CD CD

CD −CD − CTG CTG
CTG −CTG

 .

(6.17)

Capacitances are calculated for large parallel plates, Ci = εiε0/di with dielectric
constant εi and interlayer separation di. The net charges are calculated by taking
the di�erence qi = e[(ni − pi) − Ni] between electron ni and hole pi densities and
environmental doping density Ni. Carrier densities are calculated using full Fermi
integrals with the monolayer graphene density of states ρ(E) = 2 |E − µ| /π(~vF )2,

n =

∫
dE ρ(E)f(E). (6.18)

The system of equations (Eq. (6.17)) is reduced to a single equation by sequentially
eliminating each of the potentials φi until one remains, and the �nal equation is solved
numerically to determine the remaining electrostatic potential. This solution is then
inserted back into the system of equations to calculate the remaining potentials, and
subsequently the potential di�erences in Eqs. (6.15) and (6.16).

Given these potentials φi we could, in principle, use them to determine the Fermi
shifts ∆Ei = µi − φi in each bilayer, using φS = (φ0 + φ1)/2 and φD = (φ2 + φ3)/2.
However, it would be more accurate to calculate the Fermi shifts using the proper
bilayer density of states. To do this, we write a new system of equations which treats
each bilayer wholistically,

qBG
qS
qD
qTG

 =


−CBG CBG
CBG −CBG − Ct Ct

Ct −Ct − CTG CTG
CTG −CTG




VBG
−φS/e
−φD/e
VTG

 . (6.19)

At this stage, the new system may be reduced to a single equation in terms of either
φS or φD, but using the bilayer density of states for the charge densities,

ρBL(E,U) =
∑
n

dEn
dk

dk

dn
, (6.20)

81



which is calculated using the tight-binding dispersion for bilayer graphene, and de-
pends on the potential di�erences Ui calculated in the �rst part of the method. Here,
n represents a sub-band index. The remaining equation is solved self-consistantly to
obtain the potential φS (φD), which is re-inserted into the system given in Eq. (6.19)
to determine φD (φS), and subsequently the Fermi shifts ∆ES and ∆ED.
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Chapter 7

Theory of

graphene�insulator�graphene tunnel

junctions

In this chapter, details of graphene�insulator�graphene vertical tunneling structures
are discussed from a theoretical perspective. Momentum conservation in such devices
leads to highly nonlinear current�voltage characteristics, which with gates on the
tunnel junction form potentially useful transistor structures. Two prior theoretical
treatments of such devices are discussed; the treatments are shown to be formally
equivalent, although some di�erences in their implementations are identi�ed. The
limit of zero momentum conservation in the theory is explicitly considered, with a
formula involving the density-of-states of the graphene electrodes recovered in this
limit. Finally, various predictions of the theory are compared to experiment. The
work described in this chapter appears in published form in Refs. 1 and 2.

7.1 Introduction

Recently, several research groups have reported theoretical and/or experimental re-
sults relating to vertical graphene�insulator�graphene (GIG) tunneling structures.
The �rst such report dealt with coupled electron and hole gases in the two opposing
electrodes, predicted to form an exciton condensate that might survive at tempera-
tures as high as room temperature.[29, 30] The presence of this condensate leads to
an enhanced tunnel current (i.e. since the electrons and holes in opposing electrodes
have correlated spatial locations), but for a su�ciently high current the condensate
is expected to be quenched. Hence, a very nonlinear relationship of tunnel current
to voltage across the device, with negative di�erential resistance (NDR), is expected.
With a gate electrode on the device, a transistor-like operation is achieved in a de-
vice termed a BiSFET. We are not aware of experimental observation of the BiSFET
tunnel characteristic to date, although research on such devices is likely continuing.
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Following the BiSFET proposal it was realized by Feenstra et al. [110] that, even
in the absence of electron-hole coupling between the graphene electrodes, the single-
particle tunneling characteristics of GIG devices can be highly nonlinear. The reason
for this behavior arises from momentum conservation in the device, i.e. the require-
ment that the lateral components of the wavefunctions for tunneling states in both
electrodes have the same (or nearly the same) wavevectors. A theory was devel-
oped in which momentum conservation in an actual device was shown to depend on
the crystallographic order of the graphene electrodes, which is limited by a �nite
size tunneling area (grains of the graphene) or through scattering from defects in the
graphene or insulator layers.[110] The e�ective size of ordered regions in the electrodes
can be characterized by a coherence length, with momentum conservation being more
rigorously followed when the coherence length is large.

Experimentally, early results by Britnell et al. [112] from GIG junctions did not
display any NDR. Indeed, their theoretical description of such devices employed a
theory in which momentum conservation is completely neglected. Similarly, NDR
was not seen in early reports from Roy et al. [113] for GIG junctions. However,
later results from Britnell et al. [31] did reveal NDR in the GIG devices, and a
correspondingly more general theory was described in which momentum conservation
is included. Related theories have been recently presented by other authors.[114�116]

In this work we compare the theoretical description by Britnell et al. [31] for GIG
devices to the earlier treatment of Feenstra et al. [110]. We �nd that the two treat-
ments are equivalent, at least in the limit of zero misorientation angle between the
graphene electrodes. This equivalence between the two theories, and the possible
e�ects of misorientation, are discussed in the following section. We also discuss the
limit in which momentum conservation is completely neglected,[112] dealing in par-
ticular with the problem of how to obtain absolute current magnitudes in that case.
In Section 7.3 we focus on hexagonal boron nitride (h-BN) barrier materials, describ-
ing their complex band structure and hence revealing the energy dependence of the
tunneling decay constant. A comparison of the theoretical results with experiment is
given in Section 7.4, and the paper is summarized in Section 7.5.

7.2 Theoretical formalism

In a prior report, Britnell et al. [112] presented experimental data for current�voltage
characteristics of a single-gated GIG junction, and interpreted the characteristics
using a theory in which momentum conservation is completely neglected. As described
in their work, the expression for the current then has the form

I ∝
∫
DL(E)DR(E)T (E) [fL(E)− fR(E)] dE (7.1)

where DL and DR are the densities-of-states for the left- and right-hand electrodes,
respectively, fL and fR are their Fermi-Dirac occupations factors, and T (E) is a
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tunneling transmission term. In this expression the shift in the states and Fermi
energies of the two electrodes due to a voltage bias V between them is contained
within the DL, DR, fL, and fR terms, rather than in the energy arguments themselves
as done in Ref. 112, so as to be consistent with the formalism presented below.

When momentum conservation (wavevector conservation) for the lateral parts of
wavefunctions in the two graphene electrodes is included, then the theory becomes
signi�cantly more complex as discussed in Refs. 110 and 31, which employ theories
that might appear at �rst glance to be quite di�erent. We compare those two theories
in this section, showing that they are actually equivalent for the situation of zero
misorientation angle between the graphene electrodes. We discuss possible e�ects
due to misorientation, and we also identify a few other di�erences in implementation
of the two theories.

In Ref. 110, tunneling between two graphene electrodes is written in the Bardeen
formalism[108, 117�119] in which the current is given by Eq. (6.6),

I = gV
4πe

~
∑
α,β

|Mαβ|2 [fL(Eα)− fR(Eβ)] δ(Eα − Eβ) (7.2)

where gV is the valley degeneracy of graphene, and the summation extends over all
states α, β of the left- and right-hand electrodes, respectively. The matrix element
Mαβ is given by Eq. (6.5),

Mαβ =
~2

2m

∫
dS

(
Ψ∗α

dΨβ

dz
−Ψβ

dΨ∗α
dz

)
(7.3)

where m is the free electron mass and Ψα(r, z) and Ψβ(r, z) are the wavefunctions
of the left- and right-hand electrodes (each of those electrodes taken to be connected
to a semi-in�nite barrier), respectively. For a graphene�insulator�graphene junction,
Mαβ is evaluated in Ref. 110 by assuming the wavefunctions to be separable, with
exponentially decaying z-components and with lateral components that have Bloch
form, yielding

Mαβ =
~2κ

2AmD
e−κdgω(θL, θR)

∫
dS eiQ·rei(kR−kL)·r (7.4)

where gω(θL, θR) is an expression of order unity that involves the overlap of periodic
part of the lateral wavefunctions (θL and θR being the angular orientation of their
wavevector relative to the respective Dirac point), Q is the misorientation vector of
the graphene electrodes with corresponding misorientation angle ω, and where kL
and kR are the lateral wavevectors of the states in the left- and right-hand electrodes,
relative to their respective Dirac points. All other parameters are de�ned precisely as
in Ref. 110. Signi�cantly, in Ref. 110 the surface integral of this equation is restricted
in lateral extent, L, for both the x and y directions. This restriction can arise from
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the lateral extent of the graphene grains in the electrodes, i.e. a �structural coherence
length�, as proposed in Ref. 110.

Turning to the theory of Ref. 31, the matrix element for the tunneling process is
written there as

MS
αβ =

∫
V

dV Ψ∗α(r, z)VS(r, z)Ψβ(r, z) (7.5)

where the integral extends over all space and VS is denoted a �scattering potential�.
In the computations of Ref. 31 this scattering potential is taken to be localized over
the region of the tunnel barrier. Although this form appears to be quite di�erent
than that of Eq. (7.3), we demonstrate now that the two methods are equivalent.

Following Ref. 31, Eq. (7.5) is evaluated as (using notation of the present work)

MS
αβ =

1

AD
e−κdu2

11e
i(θL−θR+ω)/2Ξ

∫
dS eiQ·rei(kR−kL)·r (7.6)

where we have substituted back into Eq. (S11) of Ref. 31 their expression for V̄ ‖S (r)
from their Eqs. (S8) and (S9). For the purpose of comparing this equation to Eq. (7.4),
we have pulled out from the integrand the periodic part of the Bloch function, i.e.
following Ref. 110, to form the u2

11 prefactor. Additionally, we have employed the
sign convention for misorientation from Ref. 110, so that the signs of Q and ω in
Eq. (7.6) are opposite those in Ref. 31. Now, comparing Eqs. (7.4) and (7.6), we
note that the expression gω(θL, θR) in Eq. (7.4) is simply a generalization of the
u2

11e
i(θL−θR+ω)/2 terms in Eq. (7.6) (as shown in the latter part of the derivation in

Ref. 31). With that, we �nd that Eqs. (7.4) and (7.6) produce identical results so long
as we take Ξ = ~2κ/2m . In terms of the scattering potential of Eq. (7.6), assumed
as in Ref. 31 to be separable with VS(r, z) = VS(z)V

‖
S (r), this value of Ξ corresponds

to VS(z) = ~2κ/2md for the case of VS(z) assumed to be constant over the barrier
region. Thus, if Eq. (7.6) is used for computing the tunnel current, then this speci�c
magnitude of VS must be employed (or, for a varying VS(z) across the barrier, some
generalization of this magnitude could be obtained, again through the use of Eqs. (7.3)
and (7.4)). With this speci�c value, the tunneling formalism of Ref. 31 is then seen
to be identical to that of Ref. 110.

It should be noted that our comparison of Eqs. (7.3) and (7.4) with (7.5) and
(7.6) is made on the assumption that the latter equations are being used to compute
the total (or primary) tunnel current. Alternatively, if some secondary source of
scattering in the system is assumed, then Eq. (7.5) can be applied more directly,
with some arbitrary (assumed) value of the scattering potential. This distinction is
emphasized by Duke [117], where he refers to the primary contribution as the �elastic
coherent� one, computed using a matrix element like that of Eq. (7.3), and with any
secondary contribution computed according to a matrix element like that of Eq. (7.5)
(see, e.g. Eq. (18.38) of Ref. 117). In such a computation, however, the secondary
current would be summed together with the primary one. Use of such a summation
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is not discussed by Britnell et al. [31], and so we interpret their equation as indeed
being intended for expressing the total tunnel current.

Despite the equivalence in the formalisms of Refs. 110 and 31, there are a number
of di�erences in the implementation of their theories for producing numerical results.
First, in Ref. 110 a speci�c model for the tunnel barrier was not considered beyond
what would be appropriate for a vacuum barrier (i.e. isotropic band with e�ective
mass of unity). In this respect the treatment of Ref. 31 for a speci�c barrier material
(such as h-BN) is signi�cantly better. In Section 7.3 we extend that sort of treat-
ment, providing theoretical results for the energy dependence of the tunneling decay
constant.

A second di�erence in implementation has to do with the speci�c means of eval-
uating the matrix elements. Consider the surface integral in Eqs. (7.4) and (7.6),
normalized to the area A of the junction,

1

A

∫
dS eiQ·rei∆k·r (7.7)

where ∆k = kR − kL. In Ref. 110, this term is evaluated over a �nite range, −L/2
to +L/2 for both x and y directions, which for zero misorientation leads to

sinc

(
L∆kx

2

)
sinc

(
L∆ky

2

)
(7.8)

For the case of Ref. 31, this part of the matrix element is captured in their V̄ ‖S (q) term
with q ≡ ∆k, which similarly restricts the region over which the tunneling occurs
in a laterally coherent manner. A quantity analogous to that in Eqs. (7.7) or (7.8)
would be V̄ ‖S (q)/A, which in Ref. 31 is modeled as

1

A (q2
c + q2)

(7.9)

where qc is some cut-o� wavelength. If we compare the tunnel currents obtained using
Eqs. (7.8) and (7.9), we �nd fairly good agreement in the dependence of the current
on the parameters L and qc, so long as we take L = 2πq−1

c . However, regarding the
absolute magnitude of the current, we �nd poor agreement between that obtained
from Eqs. (7.8) and (7.9), even with the use of Ξ = ~2κ/2m . This problem arises
from the speci�c dependence of Eq. (7.9) on the area A of the device, which produces
an incorrect dependence of the current on A (it should be noted that Eq. (7.9) was
presented in Ref. 31 primarily as a proportionality, i.e. without focus on the absolute
magnitude of the term). However, if we modify the form of Eq. (7.9) somewhat, we
can obtain current that scales properly with A. In particular, we use

2πq2
c√

A (q2
c + q2)3/2

=
1[

1 + (q/qc)
2]3/2 (7.10)
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Figure 7.1: Comparison of theoretical tunneling currents as a function of the bias
voltage across two graphene electrodes separated by a h-BN insulator using the theo-
ries of (a) Ref. 110 with zero misorientation, varying coherence length L; (b) Ref. 31
with amplitude Ξ = ~2κ/2m , varying qc = 2π/L, and with the modi�ed form of the
scattering potential given in Eq. (7.10). In panel (c), we show the equivalence of the
two theories by computing the total current of a device with a log-normal distribution
of grain sizes with mean coherence length L0 and variance L2

0/10 with the current for
each grain size computed using the theory of Ref. 110.

Equation (7.10) produces very similar results as Eq. (7.8) in terms of both the
parameter-dependence and the absolute magnitude of the current, still considering
zero misorientation.

The equivalence between the two theoretical treatments is illustrated in Fig. 7.1(a)
and 7.1(b), showing a side-by-side comparison of tunneling currents computed us-
ing Eqs. (7.8) and (7.10), respectively, with related parameters L = 2πq−1

c and
Ξ = ~2κ/2m . Although the results are qualitatively similar, we consider Eq. (7.10)
to be slightly preferable compared to Eq. (7.8) for evaluation of the current, since the
latter employs sharp cut-o�s for a single L-value in the x and y directions, which pro-
duce small oscillations in the current�voltage characteristic above the main resonant
peak.[110] These oscillations are not present when Eq. (7.10) is employed, since that
equation is applicable to a distribution of L-values, as is likely more appropriate for a
physical device. We show this equivalence explicitly in Fig. 7.1(c), which is obtained
by computing the total current density for a polycrystalline device with a log-normal
distribution[120] of grain sizes (i.e. a distribution of coherence lengths). Including
such a distribution of grains in a single device averages out secondary oscillations due
to grain size e�ects but preserves the resonant peak structure and yields a tunneling
characteristic similar to that of Eq. (7.10), shown in Fig. 7.1(b). Compared to a com-
putation involving a distribution of grains and multiple calculations with Eq. (7.8), a
straightforward computation using Eq. (7.10) appears to capture the relevant physics
of a macroscopic device in a more compact form, and thus we use Eq. (7.10) in all
subsequent calculations.
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We conclude that the theories of Refs. 110 and 31, employing Eqs. (7.8) or (7.9),
respectively, are actually modeling the same aspect of the tunneling process, namely, a
restriction in the lateral extent over which the wavefunctions maintain their coherence.
In Ref. 110 this was described in terms of a grain size in the graphene. In Ref. 31
this was described in terms of the �scattering potential� of Eq. (7.5), with speci�c
form given by Eq. (7.9) (or with a small modi�cation to that, as in Eq. (7.10)).
Again, the e�ect of this �scattering potential� is to restrict the lateral area over which
coherent tunneling occurs. However, in Ref. 31 it is argued that this restriction is
not due to limited grain sizes in their devices, but rather, arises from other scattering
mechanisms in the system.

Another signi�cant di�erence between the theories of Refs. 110 and 31 is in the
manner in which they deal with angular misorientation between the lattices of the
graphene electrodes. For Ref. 31, it is assumed that there is no dependence on mis-
orientation, with Eq. (7.9) being used in the computations where q = ∆k as de�ned
following Eq. (7.7). That is to say, the factor eiQ·r in Eq. (7.7) is incorporated in their
de�nition of a modi�ed scattering potential V̄ ‖S (r), so that the Fourier transform of
that quantity, V̄ ‖S (q), can be modeled directly by Eq. (7.9) without any further ex-
plicit occurrence of the eiQ·r term. This treatment thus makes a speci�c assumption
about the scattering mechanism (although the speci�c physical mechanism is not
identi�ed).

In contrast, in Ref. 110 the misorientation is fully included, employing Q + ∆k in
the argument of the combined exponentials of Eq. (7.7) where Q is the misorientation
vector. Similarly, writing Eq. (7.8) with inclusion of misorientation we would have
Qx+∆kx andQy+∆ky in the arguments of the sinc-functions, as evaluated in Ref. 110,
rather than just ∆kx and ∆ky. For the present work in which we use the more general
form given by Eq. (7.10), we also evaluate that with |Q + q| in the argument rather
than just q. This procedure is followed for all subsequent computational results in
this work, so that using Eqs. (7.4) and (7.10) our matrix elements are computed as

Mαβ =
~2κ

2mD
e−κd

gω(θL, θR)[
1 + (|Q + q| /qc)2]3/2 (7.11)

with q = ∆k. The current is then given by Eq. (7.2).
Regarding the role of misorientation (as determined by Q), we �nd that this is

a large e�ect, consistent with the results of Ref. 110. In Ref. 31, misorientation is
handled by absorbing the eiQ·r from Eq. (7.7) into their de�nition of the scattering po-
tential V̄ ‖S (q). We do not agree with their argument that the resulting current�voltage
relationship will not show a signi�cant dependence on misorientation. Certainly for
small L (large qc) misorientation is not so important, but we feel that in general the
misorientation will play a large role in determining the current�voltage characteristic.
We thus feel that it is best to leave this issue as an open question for the moment,
hopefully to be addressed experimentally in future work.
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Summarizing this comparison of the theories of Refs. 110 and 31, we �nd the
following: (i) The two theories are formally equivalent, although we �nd that the Ξ
parameter in the latter theory must have a value of ~2κ/2m (and also L is related to qc
by L = 2πq−1

c ). (ii) The scattering term in the latter theory is slightly modi�ed here,
as in Eq. (7.10). With that revision, numerical results from the two theories are in
good agreement for the case of zero misorientation. (iii) For nonzero misorientation,
we believe that the former theory provides the correct form for the tunneling current
at least when �nite grain sizes limit the lateral coherence of the tunneling. For other
scattering mechanisms perhaps misorientation is not so important, as assumed in
Ref. 31, although speci�c identi�cation of such a mechanism remains to be done.
Further work, both experimental and theoretical, is likely needed to evaluate the role
of electrode misorientation in the tunneling.

7.3 Hexagonal boron nitride tunneling barrier

In the work of Britnell et al. [112], some speci�c details of a tunneling barrier con-
sisting of hexagonal boron nitride (h-BN) were described. We extend those consid-
erations here by considering the results of explicit computations of the h-BN band
structure. In Fig. 7.2(a) we display the band structure of h-BN along various high
symmetry directions, computed using density-functional theory with the Vienna Ab
Initio Simulation Package (VASP). We use the Perdew-Burke-Ernzerhof (PBE)[57]
parametrization of the generalized gradient approximation (GGA) for the electron
exchange correlation potential. We use projector augmented wave potentials[56, 121]
with a �xed energy cuto� of 400 eV (the default for N). The cell is �xed with ex-
perimental lattice constants in the calculations. The zero of energy in Fig. 7.2(a) is
chosen to be coincident with the top of the valence band (VB); a band gap of 4.21 eV
separating the VB and the conduction band (CB) is found in our density-functional
computation, signi�cantly less than the experimental value of 6.0 eV,[21] with this
error occurring due to the well-known limitations of density-functional theory.

For tunneling, we require the band structure for complex values of the wavevector
k, as discussed in Ref. 112 by employing simple models for the band structure for
real k values and then analytically continuing those to imaginary k values. The
general behavior of such analytic continuation can be deduced from inspection of
complex band structures for other materials,[122, 123] namely, that the curvature of
bands reverses sign when crossing from real to imaginary k across some critical point
in the band structure, but with the magnitude of curvature (e�ective mass) being
maintained. If the bands with real k approach a critical point with a nonzero slope
(as occurs when the Fourier component of the potential for that particular k value is
zero), then no continuation of the band into imaginary k values occurs. Additionally,
considering whether or not a band with imaginary k value will serve to connect bands
with purely real k (i.e. connecting the VB and CB of h-BN), then the respective states
for the two bands at the critical point must have nonzero overlap,[122] i.e. 〈Ψi|Ψj〉 6= 0
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Figure 7.2: (a) Band structure of hexagonal boron nitride, computed with density-
functional theory. (b) Band structure from a tight-binding model, including only pz
basis states. (c) Complex band structure from the tight-binding model, along the ΓA,
ML, and KH directions. The right-hand and left-hand panels for each direction show
the band structure with varying imaginary part of kz. In these panels, solid lines
denote bands for which Re(kz) is constant, equal to the value at the point where the
right- or left-hand panel joins the center panel. Dashed lines indicate bands for which
both Im(kz) and Re(kz) is varying, in accordance to the lines in the respective Im(kz)
and Re(kz) panels. In the each panel where Im(kz) is varying, the range plotted is
twice as large as in the corresponding panel showing Re(kz).
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for a band with imaginary k connecting states Ψi and Ψj.
To explicitly obtain the complex band structure for h-BN, we employ a tight-

binding model with parameter values adjusted such that the bands approximately
match those of the density-functional computation (except for the band gap, where
the experimental value of 6.0 eV is matched).[21] Results are shown in Fig. 7.2(b),
where we have used a model with only pz-states on the B and N atoms as basis
functions (on-site energies of 6.0 and −1.9 eV, respectively), and assuming both in-
plane and out-of-plane nearest-neighbor B-N interactions (hopping energies of −1.6
and 0.6 eV, respectively) as well as a second-nearest-neighbor in-plane N-N interaction
(−0.3 eV). Additionally, non-orthogonality between both in-plane and out-of-plane
nearest-neighbor B-N pz-orbitals is included (overlap matrix elements of 0.05 and
0.03, respectively). The method of solution for this problem with the non-orthogonal
basis is described, for example, in Ref. 58. Our tight-binding results are similar to
those of Robertson [124].

Comparing Figs. 7.2(a) and 7.2(b), we see that the states derived from the pz-
orbitals are quite clearly apparent in the density-functional results. Some mixing oc-
curs with the other, sp2-derived states of the system, with the mixing being strongest
in the conduction band. However, for our purposes of evaluating the tunneling of
states with large in-plane momentum (near the K or M points), then we note in
particular that along the KH and ML directions the tight-binding description of
the system using only the pz-orbitals works quite well since the sp2-derived states
are separated from the VB and CB edges by about 5 eV. In terms of quantitative
agreement between the tight-binding and density-functional results, the former over-
estimates the band widths for the pz-states along KH (these bands are very �at in the
density-functional results) and it underestimates the band widths for the ΓA direc-
tion. Along ML, the band widths for the tight-binding and density-functional results
are reasonably close, within 15 %, and those values are also in fairly good agreement
with many-body computational results.[125]

From the tight-binding model we can obtain the complex band structure, shown
in Fig. 7.2(c). Those plots are displayed with the same format as Ref. 122. For
example, on the far right-hand side of the plot along the KH direction, in the panel
with varying Im(kz), there is a loop connecting the VB maximum and CB minimum.
This loop is shown by a solid line, indicating that the Re(kz) value for these states
is constant, i.e. it has a value corresponding to the H-point, Re(kz) = π/c, where c
is the lattice constant of 6.66Å. For states with energies within the band gap having
lateral wavevector corresponding to the K-point, then they will decay in the h-BN
with decay constant of κ ≡ Im(kz) according to the values shown by this loop shown
on the far right of Fig. 7.2(c). The wavefunctions of these states will, at the same
time, have a spatial oscillation given by Re(kz) = π/c. This result of a combined
exponential decay plus oscillation is a basic feature of the h-BN eigenstates in the
[0001] direction through the material (states that have exponential decay without any
oscillation are not eigenstates of the system).
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Turning to the ML and ΓA directions shown in Fig. 7.2(c), the situation is more
complicated. The dashed lines seen there in the Re(kz) and Im(kz) panels indicate
eigenstates for which both Re(kz) and Im(kz) are varying as a function of energy.[122]
Focusing on the results in the ML direction, we �nd a maximum value of κ ≡ Im(kz) =
5.2 nm−1 for the (dashed) loop connecting the VB and CB states, at an energy in the
middle of the band gap. For the KH direction, at midgap we �nd a κ value of 4.6 nm−1,
although as discussed above our tight-binding KH bands show too much dispersion;
�atter bands are expected to considerably increase this estimated κ value. Averaging
over angles, we estimate a midgap κ value of &5.0 nm−1. An improved treatment of
the complex band structure will provide a better estimate of this value, as well as
possibly producing a signi�cant dependence of κ on the angle between the graphene
and h-BN lattice.

Regarding the energy dependence of κ, we have found in Fig. 7.2(c) that we have
loops connecting the VB and CB. In the absence of a loop, it is usual to model
the energy dependence as being parabolic with the energy ∆E to a band edge, κ =√

2m∗∆E/~ with some e�ective mass m∗.[31, 110] Now, including the loop, we use
this same formula for κ but with an interpolation formula for an e�ective barrier
height ∆E,

∆E =
(EC − E)(E − EV )

(EC − EV )
(7.12)

where EV is the energy of the VB maximum, EC is the energy of the CB minimum,
and E is the energy of a state within the band gap. For a midgap κ value of κ0, the
e�ective mass is given by m∗ = 2~2κ2

0/(EC − EV ) .

An experimental value for the tunneling decay constant is available from a prior
work of Britnell et al. [126]; computing the slope of their measured tunneling resistance
(on a logarithmic scale) as a function of number of BN layers, we �nd a decay constant
of 6.0 nm−1. The relationship of this value to the midgap κ0 value depends on the
o�set between the boron nitride VB and the Dirac point of the graphene. Britnell
et al. [112] have used an o�set of 1.5 eV (i.e. one quarter of the way up the band
gap),[127] and as discussed in Section 7.4, they have argued that this value accounts
for an observed asymmetry in their device characteristics. As also discussed there,
from comparison of theory to experiment for other devices we derive an o�set value
closer to the middle of the band gap.[2] In any case, in order to be de�nite as to our
choice of decay constant to use in our simulations, we take the experimental value
of 6.0 nm−1 and we assign that to the midgap κ0 value. This experimental value is
slightly greater than that derived from the tight-binding model discussed above, but
still in reasonable agreement considering the uncertainties of the theory. The κ0 value
of 6.0 nm−1 corresponds to an e�ective mass of 0.9 times the free-electron mass.
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Figure 7.3: Theoretical simulation of a GIG device with a back gate, corresponding
to Fig. 4 of Ref. 128. The simulated structure consists of the top layer of graphene,
4 layers of h-BN, the bottom layer of graphene, and 20 nm of h-BN on a silicon
substrate (back gate) with a 300 nm SiO

2
dielectric �lm. Both graphene layers are

assumed to be undoped. Curves are shown for VBG = −55 to 0 V in 5 V increments.
Zero-bias conductance versus gate voltage is shown in the inset. The valence band
o�set that best �ts with the experimental data is found to be ∆EV = 1.5 eV.

7.4 Comparison to experiment

In this section, we display various simulated results for the GIG current�voltage char-
acteristics, selected to provide comparison to experimental results published elsewhere.[31]
The device structures that we consider include either a single gate on the bottom of
the device, or both top and bottom gates sandwiching the main GIG structure. Volt-
ages on the gates are denoted VBG and VTG for the bottom and top, respectively. We
denote the two graphene electrodes as the source and drain, with the drain being the
electrode closest to the top gate and the source closest to the bottom gate. Volt-
ages on the electrodes are denoted VS and VD for the source and drain, respectively.
We consider the current into the drain, ID, as a function of VDS ≡ VD − VS. Gate
voltages are similarly referenced to the source voltage. In all subsequent simulations
we use the two-sided tunneling barrier described by Eq. (7.12). We calculate carrier
densities in the graphene electrodes using the temperature-dependent integrals given
in Eq. (27) of Ref. 110, in contrast to the zero-temperature approximation employed
in the computational results of our previous work.[2, 110, 111]

We �rst consider results obtained on devices that do not display NDR in their
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characteristics, presumably due to a relatively small coherence length for the tunnel-
ing. In Fig. 7.3, we display computed characteristics for a device whose structure
(tunneling barrier thickness and gate dielectric thickness) is identical to that em-
ployed by Ponomarenko et al., Fig. 4 of Ref. 128. This device did not display any
NDR, and thus we simulate the characteristics with a coherence length of L → 0
(that is, employing Eq. (7.1) and correcting the magnitude of the current according
to the discussion following Eq. (A.2)). Our computed curve for zero gate voltage is
essentially identical with that of Ponomarenko et al., and in Fig. 7.3 we display curves
for various other gate voltages as well. Regarding the dependence of the zero-bias
conductance on gate voltage, Ponomarenko et al. observed distinct asymmetry with
respect to the polarity of the gate voltage, and from that they concluded that the
valence band o�set between the h-BN and graphene was approximately 1.5 eV. Our
computation of this gate voltage dependence, shown in the inset of Fig. 7.3, agrees
qualitatively with those of Ref. 128, though our simulation uses the modi�ed form of
the energy dependence of κ as given by Eq. (7.12) and the temperature-dependent
carrier densities mentioned in the previous paragraph (whereas Ponomarenko et al.
appear to use the zero-temperature form of the carrier densities).

In Fig. 7.4 we display computed characteristics for a device whose structure is
identical to that employed by Roy et al., Fig. 5 of Ref. 2. Again, this device did
not display any NDR and we simulate it in the limit of L → 0. We see a sloping
feature in the curves near VDS ≈ 0.25 V, which corresponds to the Fermi level in the
top graphene electrode passing through the vanishing density-of-states at the Dirac
point. There are generally two such features in a given current�voltage curve; one for
each electrode as the Fermi level passes through the Dirac point of that electrode. The
sloping feature described here is due to the same phenomena as the plateau feature
described in Ref. 2, though it is less distinct due to the broadening e�ect of �nite
temperature. Our computed zero-bias conductance versus gate voltage curve is shown
in the inset of Fig. 7.4. In this case, we �nd agreement between experiment and theory
for a valence band o�set of 3 eV (solid curve), i.e. with the graphene Dirac point closer
to the middle of the h-BN band gap. If we use an o�set of 1.5 eV as in Fig. 7.3, we
obtain the curve shown by the dashed line in the inset of Fig. 7.4, which does not
compare well to the experiment. This di�erence between the o�sets obtained for the
devices of Figs. 7.3 and 7.4 is not understood at present, although measurements for
additional device structures will hopefully serve to clarify this situation.

Considering the lack of NDR observed in the devices associated with Figs. 7.3 and
7.4, we have so far allowed the coherence length to serve as a free parameter in the
simulations and made no claims as to the source of wavefunction decoherence. For the
latter device, however, we do have additional evidence which suggests that disorder
in the graphene due to processing steps leads to a vanishing coherence length. Using
Raman spectroscopy, it is possible to identify materials by measuring the amplitude of
inelastically scattered light as a function of energy shift (typically reported in units of
inverse wavelength). The position and relative amplitudes of peaks measured in these
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Figure 7.4: (a) Measured current�voltage characteristic from a GIG device fabricated
with CVD graphene and h-BN. Structure consists of a top gate, 10 nm of a HfO

2

gate dielectric, the top layer of graphene, 4 layers of h-BN, and the bottom layer of
graphene on a doped silicon substrate (back gate) with a 90 nm SiO

2
dielectric �lm.

(b) Theoretical simulation of this GIG device, without momentum conservation, with
top and bottom gates (denoted VTG and VBG). Both graphene layers are p-type
doped with a carrier density of p = 7.4× 1011 cm−2 in each layer. Curves are shown
for VBG = 15 to 30 V in 1.5 V increments. Zero-bias conductance versus back gate
voltage is shown in the inset for a valence band o�set of 3 eV (solid) and 1.5 eV
(dashed). The best agreement with experiment (shown in main panel) is obtained for
a valence band o�set at midgap, ∆E = 3 eV.
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of graphene after transfer of h-BN to make device discussed in Fig. 7.4, showing
enhanced D and D′ peaks due to disorder introduced in processing.
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spectra are characteristic of the vibrational modes present in the sample, and thus
serve as a �ngerprint for the constituent materials. For instance, the sp2 network of
carbon bonds in graphene and bulk graphite yields a doubly-degenerate zone-center
E2g mode (using the Mulliken symbol E2g to represent the point group symmetry
of this mode, as is convention in Raman spectroscopy), leading to a Raman peak at
≈ 1580 cm−1, the so-called G-peak.[129�131] In the presence of disorder, intervalley
elastic scattering from a defect site followed by inelastic scattering with a phonon
leads to a peak at ≈ 1360 cm−1, the D-peak of disordered graphene and graphite.
This is a second-order e�ect involving two scattering events, but nonetheless provides
clear evidence of the presence of defects (and boundaries) in a graphene lattice. An
additional second-order peak emerges around 2700 cm−1 (depending on excitation
wavelength) due to two-phonon scattering, often called the 2D-peak since the relevant
phonons come from the zone-edge, as in theD-peak. However, this transition does not
involve defect scattering and therefore is always present in graphitic-carbon materials,
and thus we refer to this peak as the G′-peak here to emphasize its association with
defect-free scattering in graphene.

Raman spectra from the graphene used to fabricate the CVD-based device from
Ref. 2 are shown in Fig. 7.5, measured before and after several processes steps and
transfer of the h-BN. After processing steps, including Ti deposition, removal, and
h-BN transfer, the graphene Raman spectrum shows a clear D-peak that was not
present before. In addition, there is a shoulder feature to the right of the G-peak
in Fig. 7.5(b) which is similarly associated with disorder in the graphene; the D′-
peak, resulting from a second-order intravalley scattering process.[131] This feature
in particular, present after processing along with the D-peak, helps to distinguish the
D-peak from what could otherwise be interpreted as the E2g mode of h-BN, which
is typically peaked near ≈ 1370 cm−1.[132�134] The emergence of strong D and D′

signatures in Fig. 7.5(b) suggest that processing introduced defects which degraded
the graphene and thus reduced the lateral wavefunction coherence, ultimately causing
a lack of resonance and NDR in the tunneling current.

Let us now turn to devices that do display NDR in their characteristics, indicative
of larger coherence lengths. Figure 7.6 shows simulated results for the device struc-
ture of Britnell et al., Fig. 1 of Ref. 31. This device has essentially the same structure
as the device in Ref. 128, yet exhibits clear NDR for a similar range of gate voltages.
Our simulations of this device in Figs. 7.6(b)�7.6(d) use a lateral coherence length
of 75 nm and a valence band o�set of 1.5 eV (although the results were not sensitive
to the precise value of the o�set). Fig. 7.6(b) shows the result of our theory for zero
misorientation angle between the graphene and the h-BN lattices. The resonant peak
behavior is in good agreement with the experiment; they are also very close to the
simulation results of Britnell et al., since, as argued in Section 7.2, our theory and
their theory are essentially equivalent for the case of zero misorientation angle. Shown
in Figs. 7.6(c) and 7.6(d) are results for other possible values of the misorientation.
We see that a relatively small misorientation angle changes the tunneling current
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Figure 7.6: (a) Measured tunneling characteristics for gated GIG device, adapted
from Ref. 31. (b)�(c) Simulations of resonant tunneling using a geometry correspond-
ing to Fig. 1 of Ref. 31, reproduced in panel (a) for comparison. Tunneling character-
istics are shown for (b) zero misorientation, (c) 0.5◦ of misorientation, and (d) 1.0◦ of
misorientation between the graphene sheets. Curves are shown for VBG = −55 to 15 V
in 5 V increments. Computations are performed at low temperature to match with ex-
periment. The device structure is identical to that of Fig. 7.3, with doping in the top
and bottom layers of graphene set to p = 1.0× 1012 cm−2 and n = 4.4× 1011 cm−2,
respectively.
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(a) (b) (c)

Figure 7.7: (a) Intersection of graphene bands from two electrodes with nonzero
misorientation, at a bias voltage between the two resonant conditions, showing an
elliptical set of states (bold) which conserve both energy and momentum simulta-
neously. (b) Intersecting states for a bias near resonance, extending through the
conduction and valence bands of both electrodes, leading to a large number of al-
lowed tunneling states. There will be a second, similar set of intersection states at
close to opposite bias, resulting in a second resonant tunneling peak. (c) Intersecting
states at a bias beyond the region of resonance, with disallowed tunneling for a band
of states between the extrema of the hyperbolic intersections.
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characteristics signi�cantly, shifting the resonant peaks out to larger bias voltages,
as well as �attening out the currents at low bias. This shift in voltage is caused by
the addition of the misorientation vector Q to the momentum conservation condition,
which pushes the resonance condition out to higher voltages.[110] For certain dop-
ing situations (with nonzero misorientation), there is one positive and one negative
peak in the tunneling characteristic due to the symmetry between the conduction
and valence bands in graphene near the Dirac point. The conditions for energy and
momentum conservation of tunneling states with nonzero misorientation are more
complicated than for the oriented case, with situations such as those shown schemat-
ically in Fig. 7.7, leading to two resonant peaks at nearly opposite voltages. We see
such a peak develop for both signs of VDS in Fig. 7.6(d) (with a misorientation angle
of 1.0◦) over a wide range of gate voltages. Recently, this dual-peak phenomenon has
indeed been observed and reported by Mishchenko et al. [32] in devices with �nite
misorientation.

The overall scale of our computed currents shown in Fig. 7.6 is signi�cantly larger
than what has been observed experimentally, despite the fact that the simulation pa-
rameters are partially derived from the measured value of κ = 6.0 nm−1, as discussed
in Section 7.3. In addition, neither our theory, nor the theory of Britnell et al. can ac-
count for the apparent linear background current observed in the devices with NDR,
as seen in Fig. 1 of Ref. 31. One way to produce a linear background current in the
simulation is to average over all angles, as in Fig. 7 of Ref. 110, however a range of
misorientation angles does not appear to be consistent with this experimental device.
Further work is needed in order to resolve these discrepancies between the theoretical
and the experimental current�voltage characteristics.

7.5 Summary

In summary, we have investigated a number of theoretical issues relating to GIG tun-
nel junctions. Conservation of lateral momentum in such devices leads to nonlinear
current�voltage characteristics of the junction, with a resonant peak occurring when
the Dirac points of the graphene electrodes are aligned.[110] Addition of gate elec-
trode(s) can then produce transistor-type behavior of the devices.[111] Theories de-
scribing the characteristics of the devices have been previously presented in Refs. 110
and 31. Despite the seemingly di�erent derivations used for the two theories, we have
demonstrated here that they are actually equivalent. In both cases, a limitation of
the lateral coherence length leads to broadening of the resonant peak. However, an
important distinction between the two theories is in the manner in which misorien-
tation of the graphene electrodes is treated; it is fully included within the theory of
Ref. 110 in which the limitation of lateral momentum is assumed to arise through
some limited area over which the tunneling occurs, whereas it has no signi�cant e�ect
in the theory of Ref. 31 since the misorientation is folded into the �scattering poten-
tial� of the problem. The theoretical work of Brey [135] fully includes misorientation
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e�ects in the same manner as in Ref. 110.
Experimental results for GIG junctions have been reported,[2, 31, 112] some of

which apparently display little or no momentum conservation, i.e. no resonant peak,
and others of which do display a resonant peak. In the former case the results
can be simulated with a simple formula involving only the density-of-states of the
electrodes.[112] We have used that formula here for simulating recent experimental
data[2] and we have also argued how the absolute magnitude of the current in this
type of computation can be determined. For data in which a resonant peak is ob-
served, we investigate the possible e�ect of electrode misorientation on the results. At
least for the data reported thus far, we �nd that the best comparison with simulation
occurs for zero misorientation angle, a conclusion which is apparently consistent with
the theory of Ref. 31 since it explicitly neglects the role of misorientation. The reason
for this lack of dependence on misorientation angle is not clear at present.

Separately, we have investigated the complex band structure of the h-BN tunneling
barrier material. The values of the tunnel decay constant κ show dependence on the
misorientation angle between the graphene and the h-BN. A quantitative result for
this dependence is not available at present, but it is important to note that even
a relatively small variation in κ can lead to a large variation in the transmission
term e−2κd. Thus, it is possible that the tunneling will be strongly con�ned to a
narrow angular range of lateral wavevectors in the h-BN. To achieve those particular
wavevectors in the h-BN, phonon scattering (or phonon-assisted tunneling) of the
graphene states may play an important role. The presence of a linear background
current in the measured characteristics, much greater than what is obtained in the
simulated current as discussed at the end of Section 7.4, possibly provides evidence
of such phonon participation in the tunneling process.
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Chapter 8

Tunneling between bilayers of

graphene

In this chapter, a theory is developed for calculating vertical tunneling current be-
tween two sheets of bilayer graphene separated by a thin, insulating layer of hexagonal
boron nitride, neglecting many-body e�ects. Results are presented using physical pa-
rameters that enable comparison of the theory with recently reported experimental
results. The observed resonant tunneling and negative di�erential resistance in the
current�voltage characteristics are explained in terms of the electrostatically-induced
band gap, gate voltage modulation, density of states near the band edge, and res-
onances with the upper sub-band. These observations are compared to ones from
similar heterostructures formed with monolayer graphene. The work described in
this chapter appears in published form in Ref. 3.

8.1 Introduction

In contrast to the well-known linear dispersion of monolayer graphene (MLG), charge
carriers near the six corners of the Brillouin zone in an isolated graphene bilayer are
described by a quadratic energy dispersion.[136, 137] An even more intriguing distinc-
tion with MLG is that, under the in�uence of external �elds, the band structure of
bilayer graphene (BLG) near the charge neutrality point becomes quartic, changing
from semi-metallic to semiconducting as a small band gap is induced.[138�140] This
tunability of the band gap can be exploited by introducing gates, doping, and inter-
actions with substrate materials in electronic devices based on BLG.[141�143] In this
paper, we consider these e�ects and others in a 2D to 2D resonant tunneling device
composed of two sheets of BLG separated by a thin, insulating layer of hexagonal
boron nitride (h-BN). In a vertical con�guration with an interlayer bias, tunneling
between two-dimensional electron gases is constrained by simultaneous energy and
momentum conservation, leading to resonances in the current�voltage (I�V ) charac-
teristic and thus regions of negative di�erential resistance (NDR).[33] Such devices
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Figure 8.1: (a) Device structure, with double black lines indicating each graphene
bilayer (BLG) and the group of orange lines representing 4 to 6 layers of h-BN.
(b) Alignment of electronic bands at an o�-resonant interlayer bias voltage; blue
(solid) curves for one bilayer and red (dashed) for the other; (c) at the voltage which
yields the primary tunneling resonance; (d) at a higher voltage which aligns the lower
bands of one bilayer with the higher sub-bands of the other. The largest contribution
to tunneling current occurs near the states where the two bands intersect. Bands
represent energy as a function of in-plane crystal momentum near one of the six
corners of the Brillouin zone.

were originally proposed for conventional 2D quantum wells,[26] but the theory was
recently treated for MLG,[1, 31, 110, 111, 115, 116, 135, 144] and NDR was observed
experimentally in high-quality devices shortly thereafter.[31�33] The theory discussed
in the present work is particularly relevant to the recent observations of Fallahazad
et al.[33]

8.2 Tunneling mechanism

For a given interlayer voltage and for bilayers that are in crytallographic alignment,
the electronic bands of the top and bottom bilayer of graphene will overlap for partic-
ular sets of states with equal energy and crystal momentum (Fig. 8.1). Away from the
resonance voltage, only the states near the intersecting ring(s) can contribute to the
tunneling current (Fig. 8.1(b)). However, for one particular voltage, the electrostatic
potential between the bands will be zero, allowing all states between the two Fermi
levels to tunnel simultaneously (Fig. 8.1(c)). The shape and position of the resulting
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Figure 8.2: Calculated tunnel current density versus interlayer bias between undoped
graphene bilayers for a range of gate voltages. Upper inset: a similar computation for
a larger voltage range highlighting secondary resonances from the higher sub-bands.
Lower inset: a closer view of the VBG = 0 case, varying coherence length, a disorder
parameter in the theory, from 50 nm (solid, light) to 10 nm (solid, dark).

resonant peak in the I�V characteristic depends on the quantity and sign of charge
carriers in each bilayer, and therefore indirectly on external �elds (gate voltages) and
the electrostatic doping conditions.

For example, in the absense of strong doping or substrate interactions, resonance
can be observed for both both positive and negative bias voltages as the back-gate
voltage (VBG) is swept from one sign to the other (Fig. 8.2). Recently, Fallahazad et
al. have observed resonances with precisely this behavior in devices fabricated with
exfoliated BLG/h-BN/BLG on a h-BN/SiO2 substrate.[33] The width and amplitude
of each resonant peak relative to the background (non-resonant) current are deter-
mined by the degree of coherence between tunneling wavefunctions, as is discussed in
detail in Ref. 1.

In addition to the primary resonance, the higher sub-band of one bilayer can
also come into alignment with the lower sub-band of the second bilayer causing a
similar spike in the tunneling current. Secondary resonances as well as an increase in
background current from the upper bands entering the tunneling energy window can
be observed at larger voltages as shown in the upper inset of Fig. 8.2. Interactions
with the upper sub-bands are distinct from monolayer devices, and may provide
opportunities for multi-state logic devices.
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Figure 8.3: (a) Electronic bands in the source (left) and drain (right) electrodes
with the tunneling barrier (band gap of boron nitride) in between at a small positive
bias. Dashed lines indicate the Fermi levels in each bilayer, µi = −eVi; not to scale.
Density of states corresponding to (b) the source electrode and (c) the drain electrode
in the same bias condition as panel (a); energy axes in units of eV. The alignment
of the divergences in the density of states near the valence band edge of each bilayer
produces a large overlap of states and thus a spike in tunneling current.

At a smaller voltage scale, and especially at lower temperatures, it is possible
to observe additional features due to the tunable band gap in BLG. The presence
of a transverse electric �eld across a graphene bilayer induces a potential di�erence
between the two individual layers of graphene. This broken layer symmetry causes
a small band gap to open up around the charge neutrality point which increases
with the magnitude of the potential di�erence across the bilayer. In the tunneling
device modeled here, the interlayer and gate voltages modulate the separate potential
di�erence across each individual bilayer in a coupled system.[143] As a result, the
band gaps in both bilayers vary with voltage (typically at di�erent rates), which
a�ects the overall tunneling current. For non-zero band gap, the precise form of
the energy dispersion is quartic near the gap, as in Figs. 8.1 and 8.3(a). Moreover,
the location of the band gap is a ring of states concentric with the K-point. This
arrangement of states causes divergences in the DOS at the conduction and valence
band edges, which can yield additional spikes in the tunneling current for certain
electrostatic arrangements. Whereas the primary feature in the tunneling current
occurs when the electrostatic potentials in the source φS and drain φD electrodes are
aligned, ∆φ = φS − φD = 0, other features due to overlap of the large DOS near
the band edges can occur when one of the four conditions ∆φ±Eg,S/2±Eg,D/2 = 0
is satis�ed (where Eg,i is the band gap in each bilayer), as in Figs. 8.3 and 8.4.
These features in the I�V characteristic are distinct from those caused directly by
momentum-conserving e�ects with complete band alignment (as in Fig. 8.1) and are
less sensitive to the relaxation of momentum conservation (decoherence), but may
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Figure 8.4: Low-voltage tunneling current for a device with a small amount of
doping on the top (drain) bilayer at 10 K showing a number of small features due to
the alignment of various band-edges, as explained in Fig. 8.3. I�V curves are shifted
vertically for clarity. Numbered insets show the band alignment for each of the four
labeled points along the VBG = 40 V curve. Arrows indicate electron current that
produces the sharp feature in each case.
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be observed in tandem with the latter. In MLG there are no equivalent band edges,
and thus these additional sharp features are absent in monolayer vertical tunneling
devices.

8.3 Theoretical formalism

We use a tight-binding model for the dispersion of BLG with nearest-neighbor hopping
energy γ0 ≈ 3.1 eV, interlayer hopping energy γ1 ≈ 0.4 eV, and interlayer potential
asymmetry U .[96] Higher order considerations such as the trigonal warping of the
bands (azimuthal asymmetry) were found to have a negligible impact on the tunnel-
ing and thus were excluded. The occupation of levels and band gap in each electrode
varies with the set of applied voltages, and thus the electrostatic potentials are re-
quired to calculate the tunneling current. These potentials are determined by �rst
solving a matrix equation qi = CijVj, treating each monolayer of graphene separately,
to obtain the transverse �elds across each bilayer. We then use those �elds to solve
a second matrix equation treating each bilayer with the local DOS for each layer
within the bilayers, as discussed in greater detail in Section 6.3.2. This method can
accomodate both top and bottom gates, though we chose to focus on matching with
devices with only one gate in the present work. Net charges are calculated using full
Fermi integrals qi = e [(ni − pi)−Ni], ni = e

∫
dE ρ(E)f(E) to account for quantum

capacitance and thermal occupation, with environmental doping density Ni. We cal-
culate the tunneling current by summing over the transition rates between all states
in the source and drain bilayers,

I = gsgv
2πe

~
∑
α,β

|Mαβ|2 [fS(Eα)− fD(Eβ)] δ(Eα − Eβ), (8.1)

with spin and valley degeneracies gs, gv and state labels α and β in the source and
drain bilayers.[110] The overlap integrals between states in the source and drain are
contained in the matrix element

Mαβ =
~2

2m

∫
dS

(
Ψ∗α

dΨβ

dz
−Ψβ

dΨ∗α
dz

)
, (8.2)

which is evaluated in a similar way as for MLG in Refs. 110 and 1. We calculate
the surface integral in Eq. (8.2) over a region de�ned by the length scale of wave-
function coherence in the device, a parameter we call the characteristic coherence
length, L. This is a disorder parameter which de�nes the degree of momentum con-
servation and thus controls the width and amplitude of resonant features in the I�V
characteristic. The momentum (wavevector) conservation, chiral (angular) terms,
and crystallographic misorientation are encapsulated in the matrix elements, while
energy conservation is contained in the δ-function that appears in Eq. (8.1).[1, 110]
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In contrast to the theory for MLG devices, for BLG this δ-function must be
evaluated using the quartic dispersion relation in order to capture band-gap and
higher sub-band e�ects. Converting the sums over states in Eq. (8.1) to integrals
over k, we can evaluate the δ-function by changing variables from E to k,

δ[E(kS)− E(kD) + ∆φ]→
∑
i

δ(k − ki)
|f ′(ki)|

(8.3)

for all combinations of bands between each bilayer, where f is equal to the original
argument of the δ-function, ki are the zeros of this argument, and f ′ is the derivative
with respect to k. This procedure allows us to remove one k-integration and proceed
to calculating the current. A small amount of broadening is introduced to handle the
singularities that arise near the band edges (an imaginary term iε is added to the |f ′|
denominator, with epsilon typically equal to 10−2~vF ).

8.4 Comparison to experiment

Comparing our theory with the experimental results of Fallahazad et al.[33], we �nd
for the undoped device at room temperature (Fig. 8.2) very good agreement both in
terms of the peak shapes and the gate-voltage dependence. For the low-temperature
results of Fig. 8.4, small peaks associated with DOS features become prominent, su-
perimposed on a broad momentum-conserving background current. We believe the
situation found in experiment at low temperature is the same, showing a similar sharp
peak superimposed on a smooth background current.[33] The interpretation o�ered in
Ref. 33 associates the sharp peak itself with a momentum-conserving resonant e�ect,
but no origin for the broad background is provided. Alternatively, in our interpre-
tation, both features can be well understood. The data for the undoped device at
room temperature (Fig. 8.2) can be similarly understood within the same framework.
Sharp DOS features are not seen for the latter, either in theory or experiment, since
the higher temperature leads to a reduction in the amplitude of the sharp peaks (at
elevated temperature the tunnel current includes contributions from nearby states
that are thermally occupied, leading to a reduction in strength of the sharp peaks).
This distinction between DOS versus momentum-conserving e�ects, as provided by
our theory, provides an expanded interpretation of the experimental results.[33]

8.5 Conclusions

While resonant tunneling in MLG heterostructures is novel and intriguing, the addi-
tional sub-bands in BLG as well as its unusual behavior in the presence of transverse
�elds provides many additional channels for interesting tunneling phenomena. Al-
though the results presented here were calculated with zero angular misorientation
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(perfect crystallographic alignment) between the two bilayers of graphene, the the-
ory readily computes current for non-zero misorientation, as discussed and observed
in prior work for MLG.[1, 32, 110] Concerning possible misorientation within the
graphene bilayers themselves, this is known experimentally not to occur for the de-
vices of Fallahazad et al.[33] An additional source of misorientation in the device
would be that between the graphene bilayers and the h-BN layers of the tunnel bar-
rier. We have not investigated this e�ect in detail, although referring to prior work
for twisted BLG,[145, 146] it appears that such an e�ect would give rise to a reduced
transmission current through the entire heterostructure. Indeed, for the case of tun-
neling between MLG layers separated by h-BN, computed tunnel currents agree in
detail with experiment, except that the theory is a factor of 103 to 104 too large.[1]
We �nd a similar discrepancy in absolute magnitude of the current for the present sit-
uation of BLG/h-BN devices, and we consider it likely that the reduced conductance
of the BLG/h-BN interface is the source of this discrepancy.

For BLG devices, we �nd that DOS e�ects are largely una�ected by small amounts
of angular misorientation between the bilayers, whereas momentum-conserving reso-
nant peaks are shifted due to the change in conditions required for band intersection,
as in monolayer devices. We note that the electronic properties of the BLG can
be expected to be in�uenced by the neighboring h-BN, in analogy with the MLG
case.[147] Such e�ects are typically on the 1 to 10 meV scale; they will be important
for a very detailed comparison between experiment and theory, but in terms of the
overall distinction that we make here between DOS and momentum-conserving e�ects
these e�ects can be neglected. Similarly, we neglect many-body modi�cations to the
BLG band structure (including many-body e�ects between the two graphene bilayers,
since they are separated in the experiments[33] by 4 to 6 monolayers of h-BN). The
e�ects of external in-plane magnetic �elds have been explored for similar monolayer
and monolayer/bilayer devices,[32, 135, 148] but are not considered here for brevity.
Finally, inelastic e�ects may play a role in some devices, particularly at room tem-
perature, however, we have focused here on elastic interactions, which play a large
role in the relaxation of momentum conservation and subsequently the strength of
resonant behavior compared to background current.
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Chapter 9

Progress toward 2D tunneling devices

In addition to characterizing layered 2D heterostructures with LEEM and perform-
ing simulations of tunneling transport in such structures, we sought to build up a
capability to quickly assemble 2D heterostructures from exfoliated 2D materials in
parallel. The advantages of such a capability are twofold:

1. Exfoliated 2D crystals are typically of very high quality; many outstanding
results from early investigations of 2D materials involve exfoliated materials,
which often provide high crystallinity and purity without much e�ort beyond
obtaining reliable bulk source material.[149, 150]

2. Major strides in experimental techniques for integrating exfoliated crystals into
layered heterostructures have enabled rapid fabrication of such structures with
arbitrary complexity.[23, 74, 151]

Devices can be made on an individual basis by performing electron-beam lithography
in various stages of heterostructure fabrication to pattern critical components such
as electrical contacts, gates, and insulating layers. From the perspective of industrial
production technologies, electron-beam lithography is a slow, serial method for pat-
terning of devices. Moreover, exfoliated crystals, which are typically small in lateral
dimensions and highly variable in terms of yield, are therefore not scalable for pro-
duction. Nevertheless, for the purposes of scienti�c research, exfoliated crystals are
quite ideal.

Despite the relative ease with which 2D devices can be fabricated using exfoliated
materials compared to bottom-up (growth) methods, which are presently lagging be-
hind exfoliation methods in terms of development, the task of making a device from
start to �nish is still rather complicated. The steps involve exfoliation and identi�ca-
tion of useful crystals (by itself, a time-consuming task), a clean and reliable method
of picking up and transferring the layers, one-by-one, to build up the desired het-
erostructure with as few undesirable impurities between the layers as possible,[152]
and �nally several carefully-designed steps to de�ne electrical contacts with suitable
work functions, low contact resistances, and minimal in�uence on the physics of the
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Figure 9.1: Photograph of Wentworth PML8000 probe station and micromanipula-
tor modi�ed for transfer of 2D layers, with (a) Temptronic TPO3020B temperature
controller and heated stage, (b) custom vacuum chuck, (c) substrate with exfoliated
crystals, (d) transfer slide with polymer stack (underneath) used to pick-up and put-
down 2D crystals, (e) micromanipulator arm, and (f) optical microscope for aligning
layers and monitoring assembly.

device itself. Tunneling devices require even more care in design and fabrication given
that tunneling is exponentially sensitive to distance; uniformity of barrier thickness
is essential, meaning intercalated materials and defects are even more critical than in
conventional devices. Finally, crystal orientation between the layers is often highly
relevant to the tunneling, as discussed in Chapter 7. Although di�raction techniques
such as LEED may provide some insight into crystal orientation, integration of di�rac-
tion into the process �ow of fabricating a device is non-trivial.

These di�culties must be overcome, however, if the goal is to measure transport
in real 2D devices. To this end, I will outline the state of progress toward this goal
at Carnegie Mellon University, beginning with my personal contribution to creating
a new user facility in Section 9.1.
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9.1 A new facility for 2D crystal exfoliation and trans-

fer

As part of a collaborative center at Carnegie Mellon University aimed at studying 2D
materials, I designed and out�tted a new facility for the express purpose of exfoliating
and transferring 2D crystals for device fabrication. With the intention of enabling the
cleanest interfaces possible, all equipment and materials in the facility are enclosed in
a custom 130 ft2 clean room area with two large HEPA �lters maintaining a modest
positive pressure with respect to outside air to purge the facility area of the major-
ity of airborne particulates. Inside the clean area are nitrogen-purged and vacuum
storage systems for long-term storage of bulk material sources (with varying degrees
of air sensitivity) and samples, an exfoliation area, optical microscope, atomic force
microscope (AFM), and transfer station (Fig. 9.1).

Exfoliated crystals are prepared by repeated mechanical cleavage (separating the
layers) of a small �ake of bulk material using Scotch tape or polydimethylsiloxane
(PDMS) to achieve a high density of thin (not necessarily 2D) material on the tape
(or PDMS). The tape is then adhered to a separately-prepared clean silicon �chip�
(see item (c) in Fig. 9.1) with a 300 nm SiO

2
oxide layer. Depending on the material,

heat is sometimes used to promote contact between the crystals on the tape and the
SiO

2
/Si surface. The tape is removed from the surface, and if the procedure was

successful then there will be a number of crystals that remain on the surface of the
chip, having cleaved once again from the underside of thicker crystals which remain
stuck to the tape. The fact that this procedure works at all is a bit miraculous, but
indeed, if performed correctly, this method can yield 2D crystals from many types of
layered materials.

Identi�cation of exfoliated crystals proceeds by optical inspection, with the thinnest
crystals (monolayer, bilayer, up to a few layers) being visible, and in fact, distinguish-
able, due to an optical interference e�ect with the 300 nm oxide layer.[153] A single
exfoliation attempt with high-quality graphite onto a 1 cm2 chip typically yields on
the order of 2 useful monolayers of graphene, each with lateral dimensions ranging
from 10µm to 100µm. Exfoliation of bulk h-BN provides similar overall yield, but
fewer monolayers, and TMD materials are notoriously more di�cult to coax into
monolayer form.

Having identi�ed potentially-useful 2D crystals optically, AFM is performed on
the crystals to establish the �atness and cleanliness (absence of hydrocarbons, tape
residue, or other contaminants), and possibly the thickness, although other methods
are typically more reliable for the latter. Crystals with clean surfaces are then as-
sembled into a heterostructure using a dry-transfer method that relies on building
the layered structure from the top, down. The top layer is picked up �rst, using a
special polymer stack on the underside of a glass slide mounted in a micromanipulator
(Fig. 9.1).[23] Subsequent layers are then picked up using the van der Waals interac-
tion with the layer above so that the interface between the two layers does not come
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Figure 9.2: (a) Low-energy electron micrograph of mechanically exfoliated WSe
2
on

epitaxial graphene on SiC, imaged at 4.4 V sample bias. Central bright region is many-
layer WSe

2
, whereas surrounding variegated regions are 3ML and 4ML graphene. (b)

Another micrograph of the same area at 2.6 V, with high contrast within the WSe
2

due to partial electron transparency in the lower (encircled) part of the crystal at this
energy, revealing the pattern of graphene below the WSe

2
layers. (c) Relative work

function map of the surface (electrostatic potential variation, δEvac) highlighting the
large di�erence between WSe

2
and graphene surfaces, calculated using a modi�cation

of the method outlined in Section 2.2.

into contact with any polymer or other contaminant. The layers are picked up in this
way sequentially, starting with the top layer and ending with the bottom layer, at
which point the entire heterostructure (suspended on the transfer slide) is deposited
onto a desired substrate by heating (and melting) the bottom polymer layer, later
removed with chloroform. Although the exposed surfaces of the heterostructure come
into contact with polymers and other chemicals, the interior interfaces are kept atom-
ically clean by the interlayer van der Waals interactions, and thus it is possible to
make extremely high-quality devices with this method.

9.2 Initial studies of exfoliated materials and chal-

lenges

Presently, the methods described in Section 9.1 are successfully being carried out by
me and other users of the facility to fabricate heterostructures. My own work in
this area has led to preliminary studies of exfoliated materials in LEEM, as shown
in Fig. 9.2. Going forward, LEEM will certainly prove to be a valuable tool for
probing heterostructures of exfoliated materials due to the relative ease with which
samples can be prepared for study in LEEM. The expectation is that LEEM will pro-
vide critical information regarding layer thicknesses (Section 3.5), interlayer crystal
orientations (Section 3.3), defect density (Section 5.1), and work function variations
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(Section 4.3), among other quantities. As an extension to measuring point-to-point
variations in work function, there may be cases where spatially-resolved work func-
tion mapping (see Fig. 9.2(c), for example) can be illuminating, especially related to
transport phenomena such as contact resistances and spatial inhomogeneity.

That being said, there are challenges which must be overcome for using LEEM
to study structures that will also be measured with electrical transport. One of
the basic requirements of LEEM samples is that they are able to carry away excess
charge during imaging, so as to prevent charging (which has the e�ect of de�ecting
the beam and thus detrimentally a�ecting the image). The simplest way around
this restriction for small crystals that may be semi-insulating is to place them on
an appropriate, conducting substrate. For example, the sample shown in Fig. 9.2
makes use of epitaxial graphene as a conducting substrate for imaging WSe

2
, which

may be insulating or semiconducting based on the position of the Fermi level (as
discussed in Section 4.4). For measuring transport, however, a conducting substrate
is usually undesirable since it makes contacting the device region with isolated leads a
di�cult task. In addition, devices that require a top gate (for transport modulation)
or encapsulation (for materials and properties that are sensitive to the environment)
will present additional challenges if they are to also be studied with LEEM, since
LEEM is most sensitive to the top-most atomic surface, and the electrons do not
generally penetrate more than a handful of atomic layers in total. These outstanding
questions will be addressed by me and other students in order to make correlated
measurements between LEEM and electrical transport in the near future.

9.3 Layered heterostructures of 2D materials for de-

vice transport

Progress toward making devices from layered heterostructures is also ongoing. Mem-
bers of the Hunt group (users of the transfer facility) and I are currently working
to develop the nanofabrication processes needed to pattern and de�ne device bound-
aries, deposit contacts and gates, and wire bond the �nished devices into chip car-
riers designed for performing transport measurements. These projects are currently
in various stages of achievement, with the e�ort being led by Ben Hunt and his stu-
dent, Devashish Gopalan, in particular. In parallel, e�orts are underway to enable
low-temperature transport with a liquid-He-cooled physical property measurement
system (PPMS), which will be greatly augmented by the addition of a dilution refrig-
erator (an independent system which will allow cooling below 300 mK and will include
a superconducting magnet for �eld-dependent transport measurements) to the Hunt
lab in the Fall of 2016.

In addition to these activities, I have personally been involved in a project to
fabricate monolayer graphene diodes led by Je�rey Weldon and his student, Mohamed
Darwish. Toward this goal, I, with the help of students Jean-Yves Desaules and
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Andrew Ye, have assembled a number of monolayer and bilayer graphene structures
supported by h-BN in order to achieve high mobility in lateral transport through
the graphene layers. Darwish has used the provided structures for subsequent device
nanofabrication steps (patterning and de�ning contacts) along with multiple stages
of characterization.

With these initial steps accomplished, current and future users of the exfoliation
and transfer facility will carry this work forward, with many more results from 2D
heterostructures and devices to follow.
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Chapter 10

Conclusions

In the course of this thesis, I have introduced two-dimensional (2D) materials and their
heterostructures as a new paradigm for the �elds of physics and nanoscience. I argued
that layered heterostructures in particular, that is, individually-stacked monolayers
of di�erent 2D crystals with deliberate arrangement, expand the available parame-
ter space for new physics and interesting phenomena greatly, and within this space I
have chosen to focus on interlayer transport in a few speci�c structures. I outlined the
method of low-energy electron microscopy (LEEM), its utility for studying 2D ma-
terials, and its unique spectroscopic capabilities, which have yet to achieve anywhere
near the noteriety (let alone ubiquity) of optical, x-ray, or scanning probe methods,
despite its complementary relevance.

In Chapters 3, 4, and 5, I presented several examples of these capabilities. I showed
that electron re�ectivity spectra from the surface of few-layer WSe

2
on epitaxial

graphene allow direct discrimination of the number of WSe
2
layers at each point in

a collected series of images. A similar method was previously applied to few-layer
graphene and h-BN by other workers, however, the situation for WSe

2
is far more

complex due to a high level of state-mixing in the WSe
2
band structure and non-

trivial inelastic considerations. By carefully sorting out these details, I have developed
a method for unambiguously identifying monlayer, bilayer, and trilayer WSe

2
, and

hopefully provided insight for applying similar analyses to other transition metal
dichalcogenide (TMD) materials.

Considering the interface between two dissimilar 2D materials, I used the very-low
energy part of re�ectivity spectra to measure relative work function di�erences be-
tween WSe

2
�epitaxial graphene and MoSe

2
�epitaxial graphene. In the former case, a

large di�erence in work function between the WSe
2
and graphene was associated with

Schottky barrier tunneling in conducting-AFM measurements of transport between
the layers, whereas a negligible di�erence in work function resulted in ohmic contact
between the TMD and graphene. The quantitative results for work function di�er-
ences in the two cases were used to model a charge transfer process that provided an
explanation for the change in transport behavior.
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From a methodology standpoint, there are two signi�cant points regarding the
results of this work. Firstly, it is worthwhile to re�ect on the fact that LEEM is a tool
that directly probes unoccupied, unbound states that exist above the vacuum level.
On the other hand, the conclusions drawn from the analyses in Chapter 4 are related
to electrical transport phenomena, which are manifestly relevant to states near the
Fermi level, far below what is directly accessible by LEEM electrons. Therefore, I will
emphasize here that LEEM not only probes a complementary part of the solid state
energy spectrum with respect to other methods, but that measurements obtained
from this unusual high-energy domain can be related to everyday phenomena such as
electrical conduction.

As a second point of this examination, based on the collection of LEEM methods
presented in this thesis, it is remarkable from the perspective of other, more involved
experimental methods, which require contacts, patterning, or other forms of sample
preparation, that the measurements gleaned from such methods are even possible
from what essentially amounts to imaging of surfaces. As a �nal application of the
LEEM methods developed in the earlier chapters, large work function di�erences
between MoSe

2
and epitaxial graphene were measured and provided as evidence (in

tandem with di�raction) of enormous defect density in the MoSe
2
�lms.

In Chapters 6, 7 and 8, e�orts from a parallel thrust aimed at modeling interlayer
tunneling between 2D materials were described and employed to provide predictions
of novel phenomena. Beginning with the general theory established by Bardeen, and
the adaptation of that theory to two dimensions by Feenstra et al. [110], I presented
models for computing tunneling currents between graphene sheets with arbitrary
gate modulation, coherence length, crystallographic misorientation, and an advanced
treatment of the tunneling barrier. The primary prediction of this work is resonant
tunneling behavior that depends strongly on the aforementioned characteristics of
the junction. The model was extended to bilayer graphene tunneling junctions, and
additional phenomena resulting from the unique band structure of bilayer graphene
were illustrated. These predictions were compared to experimental results measured
in monolayer and bilayer graphene based tunneling devices, and the agreement be-
tween the computed and measured tunneling characteristics was shown to be quite
remarkable.

Finally, in Chapter 9 progress toward my own experimental realizations of layered
2D heterostructures and interlayer tunneling devices were discussed in the context of
my involvement in contributing to a collaborative research center at Carnegie Mellon
University. With on eye toward prospective outcomes emerging from these ongoing
e�orts, I have great con�dence that many new and interesting results pertaining to
layered 2D heterostructures are imminent.
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Appendix A

2D�2D tunneling in the

zero-coherence-length limit

We brie�y comment on one additional aspect of the tunneling formalism introduced in
Chapter 7, namely, the use of the density-of-states formula of Eq. (7.1) for computing
tunneling current.[112] This formula is commonly used in tunneling computations,
although obtaining an absolute magnitude of the current is problematic with this
approach since it is not obvious what the appropriate pre-factors in front of the
integral should be. Of course, with the full theory of Eq. (7.2), we can obtain a
current with well-de�ned magnitude. Also, in the limit of L→ 0 of that theory, it is
easily shown that we recover Eq. (7.1). However, when we compute currents in that
limit, i.e. for smaller and smaller L values, then the currents that we obtain (actually
they are current densities, since the computation is for a speci�c L2 area) become
unphysically small. The question we must address is, what is the fundamental source
of this decrease in current density for L→ 0, and can we somehow produce a current
density whose magnitude is physically meaningful even in this limit.

The origin of the unphysical L → 0 limit of the full theory of Eq. (7.2), when
evaluated together with Eq. (7.4) or (7.6) and Eq. (7.7) or (7.10), arises from our as-
sumption of limiting the area over which the surface integral in Eq. (7.2) is performed.
For very small L values, we then encounter a situation in which the tunneling is re-
stricted to a small area of one electrode over to the same small area of the opposite
electrode. This restriction is invalid since we are ignoring the tunneling to neighboring
areas in the opposing electrodes. That is, we must consider spreading (dispersion) of
these states as they extend across the barrier. To properly deal with this situation, we
construct states on each electrode that are restricted to an area L, hence with wave-
functions proportional to [Θ(x+ L/2)−Θ(x− L/2)] [Θ(y + L/2)−Θ(y − L/2)] eik·r

where Θ(x) is a Heaviside step function. We Fourier transform these wavefunctions in
order to deduce their dispersion in the barrier, with each Fourier component extending
into the barrier with an exponential decay constant

κ′ =
√
κ2 + η2, (A.1)
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(assuming equal e�ective masses in the lateral and perpendicular directions) where
η ≡ |η| denotes the lateral wavevector variable in the Fourier transform. On each
electrode the total wavefunction is written as a summation of such states, localized
on adjoining areas. We then work through the Bardeen formalism.

For a given state restricted to an area A = L2 of the left-hand electrode, we can
evaluate contributions to the matrix element Eq. (7.3) from the overlap of that state
with states from all areas of the right-hand electrode. To illustrate our result, we
compare it to the surface integral in Eq. (7.7), for the case of zero misorientation
and where we include a κe−κd term in that integrand (i.e. from the prefactor of
Eq. (7.4)). Whereas Eq. (7.8) was obtained by using an ad hoc restriction of this
surface integral over the area A, we now have a more rigorous treatment using our
constructed wavefunctions. The term analogous to Eq. (7.7) then becomes

1

A

∫
dS κe−κdei∆k·r → A

(2π)2

∑
m,n

∫ ∞
−∞

dηx

∫ ∞
−∞

dηy κ
′e−κ

′d

× sinc

(
(ηx − kR,x)L

2

)
sinc

(
(ηy − kR,y)L

2

)
× sinc

(
(ηx − kL,x)L

2

)
sinc

(
(ηy − kL,y)L

2

)
× ei[(ηx−kR,x)mL(ηy−kR,y)nL]

(A.2)

where m and n label areas of the right-hand electrode, both extending over 0, ±1,
±2, . . . .

The m = n = 0 term of the summation on the right-hand side of Eq. (A.2)
dominates for large L, and in that case the expression on the left-hand side of the
equation (evaluated as in Eq. (7.8)) is recovered. The additional terms in that sum are
negligible for L > 10 nm, but they make important contributions for smaller L values.
Performing the complete summation for small L values becomes computationally
demanding. However, we �nd for the parameters of our simulations described in
Section 7.4 (1.34 nm-wide tunnel barrier with tunneling decay constant 6 nm−1), the
results of the full summation for L → 0 matches well to the result of including only
the m = n = 0 term but with the �xed value of L = 1.4 nm. Therefore, to incorporate
an absolute scale of current densities on computations employing Eq. (7.1), we can
simply adjust the magnitude of the results so that they match that of a computation
employing Eq. (7.4) together with Eq. (7.10) using L = 1.4 nm.

We note that the voltage-dependence of the computation using Eqs. (7.4) and
(7.10) with L = 1.4 nm is very close to that obtained with Eq. (7.1), so in principle
we could simply use the former to report the results. Nevertheless it is desirable
to use the latter for computations in which no trace of momentum conservation is
evident in the experimental data, while at the same time including an estimate of the
absolute magnitude for those current densities. We achieve that goal by matching the
magnitudes of the two computational results. Of course, this same procedure would
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be necessary (and would yield similar results) if employing the theory of Ref. 31, i.e.
Eq. (7.6) together with Eq. (7.9) or (7.10), for very large qc values.
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Appendix B

Details of resonant tunneling model

for graphene and its bilayers

The following sections provide additional details regarding the analytic portion of the
momentum-conserving 2D�2D tunneling calculation, including wavevector matching
(for computing current) and densities-of-states (for solving electrostatics).

B.1 Monolayer graphene

For comparison to the more complicated cases, I will reproduce the equations that
govern resonant tunneling for the monolayer graphene case with elastic scattering.
Using the Bardeen formalism, we have for the tunneling current

Ielas = gVgS
2πe

~
∑
αβ

|Mαβ|2 [fL(Eα)− fR(Eβ)] δ(Eα − Eβ). (B.1)

which involves a sum over all states α, β in each graphene electrode. The matrix
element Mαβ is evaluated using graphene basis functions in Bloch form to obtain

MkRkL =
~2

2m

κe−κd

D
gω(θR, θL)

1

A

∫
dS eiQ·rei(kR−kL)·r, (B.2)

which allows us to write the current as a sum over wavevectors,

Ielas = gVgS
2πe

~

(
~2

2m

)2 ∑
kRkL

(
κe−κd

D

)2

|Λ(∆k)|2 [fL(EL)− fR(ER)] δ(EL − ER),

(B.3)
with Λ(∆k) = gω

A

∫
dS eiQ·rei∆k·r where ∆k = kR − kL and the surface intergral

is taken over an area de�ned by the phase coherence length, L. To evaluate the
delta function which enforces energy conservation, we must convert the sums over
all states to intergrals, and rewrite δ(EL − ER) in terms of wavevectors. Using the

121



linear approximation to the monolayer graphene dispersion E(k) ≈ ~vFk, we write
the energy in each electrode as Ei = E(ki)+φi, where φi is the electrostatic potential
at the Dirac point, and hence for the energy range above both Dirac points (region
I).

EL − ER = E(kL)− E(kR) + φL − φR = ~vF(kL − kR) + eV ′, (B.4)

where eV ′ = φL − φR is the electrostatic potential di�erence between the graphene
electrodes. We replace the delta function of EL − ER with a version in terms of k,

δ(f(kR, kL))→ δ(kR − k0)

|f ′(k0)| , (B.5)

where the zero of f(kR, kL) is found using Eq. (B.4) to be

region I: k0 = kL + eV ′/~vF = kL + k′, (B.6)

with k′ = eV ′/~vF. From this, it follows that |f ′(k0)| = ~vF. This new delta function
removes the integral over the magnitude of kR, leaving two angular integrals and the
integral over kL. For the energy range below both Dirac points (region III), the
energies are negative with respect to the charge neutrality point E(k) ≈ −~vFk and
thus

EL − ER = −~vF(kL − kR) + eV ′, (B.7)

which yields
region III: k0 = kL − k′. (B.8)

Similarly, in the energy range between the two Dirac points (region II), one energy
is positive while the other is negative, and generally

region II: k0 = |k′| − kL. (B.9)

In order to properly determine the electrostatics, one must also compute the num-
ber of carriers in each electrode which requires the density of states. For a dispersion
relation of E(k) ≈ ~vFk in two dimensions with spin and valley degeneracy factors of
2, the occupation factor for each level is

n(k) = gVgS
1

(2π)2
πk2 =

1

π

(
E

~vF

)2

, (B.10)

and thus the density of states is

ρ(E) =
dn

dE
=

2

π

|E|
(~vF)2

. (B.11)

From this, we calculate the electron and hole density in each electrode using

ni =

∫ ∞
φi

dE
ρ(E − φi)

e(E−µi)/kT + 1
= − 2

π

(
kT

~vF

)2

Li2
(
−e(µi−φi)/kT ) (B.12a)

pi =

∫ φi

−∞
dE

ρ(E − φi)
e(µi−E)/kT + 1

= − 2

π

(
kT

~vF

)2

Li2
(
−e(φi−µi)/kT ) , (B.12b)
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with the second-order polylogarithm, Li2(z). In the limit that T → 0, the Fermi-
Dirac function approaches a step-function, and the total number of carriers reduces
to

lim
T→0

ni =

∫ ∞
φi

dE ρ(E − φi)Θ(E − µi) =
1

π

(
µi − φi
~vF

)2

. (B.13)

B.2 Bilayer graphene: parabolic dispersion

The simplest model for bilayer graphene assumes a parabolic dispersion E(k) ≈ αk2,
with the coe�cient of proportionality α = (~vF)2/t⊥ (with interlayer hopping en-
ergy t⊥) extracted from the tight-binding method. Borrowing Eq. (B.3) from the
monolayer case, we proceed to evaluating the delta function δ(EL − ER) for each of
the relevant energy regions. In region I, above both Dirac points (conduction- to
conduction-band tunneling) we have

EL − ER = α(k2
L
− k2

R
) + eV ′, (B.14)

which tends to zero at

region I: k0 =
√
k2
L

+ eV ′/α (B.15)

with the derivative |f ′(k0)| = 2αk0 evaluated at that point. In region III (valence-
to valence-band tunneling) both energies are negative and therefore

EL − ER = −α(k2
L
− k2

R
) + eV ′, (B.16)

which gives us f(k0) = 0 for

region III: k0 =
√
k2
L
− eV ′/α. (B.17)

In region II (unlike-band tunneling), we must examine separate cases for each sign
of eV ′. Doing this, we obtain one equation which holds for both zeros (here k′2 =
|eV ′| /α),

region II: k0 =
√
|eV ′| /α− k2

L
=
√
k′2 − k2

L
. (B.18)

For the electrostatics calculation, we can simply replace the k2 in Eq. (B.10) with
the rearranged dispersion relation k2 = |E| /α to obtain

n(k) = gVgS
1

(2π)2
πk2 =

|E|
πα

. (B.19)

Taking the derivative with respect to energy, we calculate the density of states

ρ(E) =
dn

dE
=

1

πα
, (B.20)

123



which is constant (a well-known result for parabolic dispersion in two dimensions).
The charge densities for each graphene sheet are then easily obtained for �nite tem-
perature,

ni =
1

πα

∫ ∞
φi

dE
1

e(E−µi)/kT + 1
=
kT

πα
ln
(
1 + e(µi−φi)/kT ) (B.21a)

pi =
1

πα

∫ φi

−∞
dE

1

e(µi−E)/kT + 1
=
kT

πα
ln
(
1 + e(φi−µi)/kT ), (B.21b)

as well as in the low-temperature limit,

lim
T→0

ni =
1

πα

∫ ∞
φi

dEΘ(E − µi) =
|µi − φi|
πα

. (B.22)

Curiously, when we calculate the net charge using the temperature-dependent forms
shown in Eqs. (B.21a) and (B.21b), we �nd that the result is independent of temper-
ature and equal to Eq. (B.22),

ni − pi =
kT

πα

[
ln
(
1 + e(µi−φi)/kT )− ln

(
1 + e(φi−µi)/kT )] =

|µi − φi|
πα

. (B.23)

B.3 Bilayer graphene: hyperbolic dispersion

Although the parabolic approximation to the bilayer graphene dispersion is appropri-
ate for very small energies, the true bilayer dispersion quickly becomes non-parabolic
as one extends out to energies that are relevant for o�-resonance currents (high-voltage
behavior). These e�ects can be captured by writing the dispersion in a hyperbolic
form which is parabolic for ~vFk � t⊥ and linear in the opposite limit ~vFk � t⊥,

E ≈ t⊥
2

[√
1 + (k/kc)

2 ± 1

]
, (B.24)

with the transitional value kc = t⊥/2~vF between the two regimes, and where the up-
per (lower) sign corresponds to the higher (lower) energy sub-band. For convenience,
we de�ne h(k) ≡

√
1 + (k/kc)2. Considering only the lower conduction bands of both

electrodes, we write the argument of the delta function in Eq. (B.3) as

EL − ER =
t⊥
2

[h(kL)− h(kR)] + eV ′, (B.25)

and we �nd that the zero occurs when

region I: k0 = kc

√
[h(kL) + 2eV ′/t⊥]2 − 1. (B.26)
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The derivative of Eq. (B.25) gives us |f ′(k0)| = 2αk0/h(k0). In region III (consid-
ering only the upper valence bands), we have negative energies and

EL − ER = −t⊥
2

[h(kL)− h(kR)] + eV ′. (B.27)

The zero of this equation is

region III: k0 = kc

√
[h(kL)− 2eV ′/t⊥]2 − 1. (B.28)

In the unlike-band tunneling region, we evaluate the two cases of positive and negative
eV ′ to obtain

region II: k0 = kc

√
[h(kL)− 2 |eV ′| /t⊥ − 2]2 − 1. (B.29)

Before we begin calculating the carrier densities required for electrostatics, we must
�rst invert the dispersion shown in Eq. (B.24) (for the lower sign),

k2 =

(
2k0

t⊥

)2

|E|
(
|E|+ t⊥

)
=
|E|

(~vF)2

(
|E|+ t⊥

)
. (B.30)

We use this equation to determine the occupation factor for each k,

n(k) = gVgS
1

(2π)2
πk2 =

|E|
π(~vF)2

(
|E|+ t⊥

)
, (B.31)

and take the derivative to get the density of states

ρ(E) =
dn

dE
=

2 |E|+ t⊥
π(~vF)2

=
1

πα
+

2

π

|E|
(~vF)2

, (B.32)

which is in fact a sum of the monolayer and parabolic densities of states. As such,
the carrier densities will be sums of the monolayer and parabolic cases as well;

ni =
kT

πα
ln
(
1 + e(µi−φi)/kT )− 2

π

(
kT

~vF

)2

Li2
(
−e(µi−φi)/kT ) (B.33a)

pi =
kT

πα
ln
(
1 + e(φi−µi)/kT )− 2

π

(
kT

~vF

)2

Li2
(
−e(φi−µi)/kT ) , (B.33b)

and in the low-temperature limit,

lim
T→0

ni =
|µi − φi|
πα

+
1

π

(
µi − φi
~vF

)2

. (B.34)
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Appendix C

Resonant tunneling between

transition metal dichalcogenides

The following sections extend the band model for graphene�graphene interlayer tun-
neling to enable calculation of tunneling current between semiconducting transition
metal dichalcogenides. The described model is uses an approximate form for the semi-
conducting bands around the K and K ′ points of the Brillouin zone, and neglects the
details of the TMD wavefunctions, which in general will be more complicated than
those of graphene.

C.1 Tight-binding model and dispersion

Following the discussion of a simple tight-binding model for monolayers of transition
metal dichalcogenides (TMDs) by Liu et al. [95], we approximate the low-energy
behavior of electrons by expanding the tight-binding Hamiltonian around the K-
point. Keeping only the lowest order term, we write the reduced k · p two-band
Hamiltonian as

H0(k) ≈
(

∆/2 ~v(τkx − iky)
~v(τkx + iky) −∆/2

)
=

(
∆/2 τ~vke−iτφ

τ~vkeiτφ −∆/2

)
, (C.1)

where k = |k|, φ = arctan(kx/ky), τ = ±1 is a valley-index, ∆ is the band gap of
the TMD, and ~v = at in the notation of Liu et al.. The eigenvalues for this simple
model are hyperbolic,

E(k) = ±1

2

√
(2~vk)2 + ∆2. (C.2)

It is possible at this stage to make a simple, parabolic �e�ective mass� approximation
using this result by expanding to lowest order in k,

E(k) = ±1

2

[
∆ +

(2~vk)2

2∆
+O

(
k4
)]
≈ ±

[
∆

2
+

~2k2

2m∗

]
, (C.3)
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Figure C.1: Energy versus wavevector Es(k) around the K-point using a �rst-order
two-band e�ective Hamiltonian with spin-orbit coupling (solid, blue), and a parabolic
e�ective mass approximation (dashed, red). Energy axis in units of eV and k-axis in
nm−1.

with m∗ ≡ ∆/2v2, but the hyperbolic form is at least as compact and a bit more
accurate. We can go a bit further by including spin-orbit coupling (which is relevant
in many 2D TMDs) according to the prescription by Liu et al.,

HS�O ≈ H0(k) +

(
0 0
0 τsλ

)
, (C.4)

for spin-orbit perturbation parameter λ (see Table IV of Ref. 95) and spin-index
s = ±1. The eigenvalues including spin-orbit coupling now take the form,

Es,τ (k) =
1

2

[
τsλ±

√
(2~vk)2 + (∆− τsλ)2

]
. (C.5)

The valley-index τ appears explicitly in the dispersion, indicating that the valley
degeneracy has been lifted by spin-orbit splitting. However, we cannot distinguish
between the spin-states in our device (or rather, between the states involved in spin-
orbit splitting), so we can ignore the valley-index and retain a valley degeneracy factor
of gv = 2,

Es(k) =
1

2

[
sλ±

√
(2~vk)2 + (∆− sλ)2

]
. (C.6)

This dispersion relation is compact enough for direct use in our tunneling calculation,
while also properly capturing the non-parabolicity of the bands at low energies as
well as the primary e�ect of spin-orbit coupling, which is asymmetric for electrons
versus holes. This model will likely be su�cient for computation for both like-band
and unlike-band tunneling modes. In particular, the band-splitting from spin-orbit
coupling will properly capture the e�ect on the density of states near the band edge,
which governs the turn-on characteristic of a device based on unlike-band tunneling,
a tunneling �eld-e�ect transistor (TFET).
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C.2 Energy-conservation between tunneling states in

transition metal dichalcogenides

The modi�cation in the energy-conservation term between monolayer graphene de-
vices and TMD devices is straightforward. The delta function δ(EL − ER) must be
rewritten in terms of the wavevector in each electrode and summed over the available
bands,

δ(EL − ER)→
∑
i

δ(k − ki)
|f ′(ki)|

, (C.7)

where the sum index i runs over s = ±1 for both the conduction and valence bands
(four terms in total). Here, f refers to the original argument of the delta function
and ki are the zeros of that function,

f ≡ EL − ER = E±s (kL)− E±′

s′ (kR) + φL − φR. (C.8)

Solving this expression for zero will require the inversion of Eq. (C.6),

ks(E) =
1

2~v
√

(2E − sλ)2 − (∆− sλ)2, E ≥ ∆

2
or E ≤ −∆

2
+ sλ. (C.9)

Using Eq. (C.9) to evaluate the solution of f = 0 yields

ki = k±s [E±
′

s′ (kR)− eV ′], (C.10)

with eV ′ = φL − φR and where the band gaps ∆L, ∆R and spin-orbit parameters
λL, λR are de�ned separately for each material. The zeros ki de�ne the relationship
between the magnitude of wavevectors imposed by energy conservation, and will di�er
for each of the three energy regions in the tunneling calculation. The limits of each
region in TMDs will extend from the band edges instead of from the Dirac point,
as in monolayer graphene. This is similar to the case of bilayer graphene, where the
band gap creates bands of energy in which no tunneling can occur.

C.3 Density of states and occupation of levels

There are several ways to write the density of states; here, I will use

ρs =
gv
2π
ks

∣∣∣∣dksdE

∣∣∣∣ , (C.11)

summing over spin states and the conduction and valence bands to get the total
density of states. Using Eq. (C.9) we write

dks
dE

=
2E − sλ

~v
√

(2E − sλ)2 − (∆− sλ)2
. (C.12)
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Figure C.2: Total density of states versus energy in units of eV (solid, blue). Dashed
blue lines indicate separate spin contributions. Red dotted lines show the equivalent
density of states from the parabolic e�ective mass approximation in Section 1.

which gives

ks

∣∣∣∣dksdE

∣∣∣∣ =
|2E − sλ|
2π(~v)2

. (C.13)

In the conduction band, E > 0 (also E > ∆/2� λ) and the density of electron states
(summing over spin) takes the form

ρe(E) =
2

π

E

(~v)2
Θ(E −∆/2). (C.14)

Due to the splitting of hole bands, there are two terms for the hole density of states,

ρh(E) =
1

2π(~v)2

{
|2E − λ|Θ(−∆/2 + λ− E) + |2E + λ|Θ(−∆/2− λ− E)

}
.

(C.15)
The total density of states is the sum of the electron and hole parts ρ = ρe + ρh.
There is a notable step in the hole density of states due to spin-orbit splitting. In
Fig. C.2, we see that this e�ect is quite distinct from the equivalent density of states
one gets in the e�ective mass approximation, as shown by the red, dashed line which
exhibits a simple step-function behavior. This feature may be important for the
TFET device since such operation always involves tunneling from one conduction
band to the valence band in the other layer.

For the electrostatics of TMD devices we will need carrier densities for each TMD
layer. The electron density is obtained by integrating Eq. (C.14) with the Fermi
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Figure C.3: Total carrier density (black, dashed line) n + p (nm−2) as a function
of Fermi level (eV). Separate electron (red, solid) and hole (blue, solid) densities are
shown as well.

occupation function,

n =
2
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. (C.16)

The hole density is obtained similarly, albeit with a few more terms,

p =
1
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{∫ −∆/2+λ
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)
− 1

π

(
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(
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)
. (C.17)

The total carrier density n+ p is shown as a function of Fermi level in Fig. C.3, with
a kink caused by the jumps in hole density for negative Fermi energies. Total charge
is de�ned as q = −en+ ep.
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