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Abstract

The mission of the research presented in this thesis is to give computers the

power to sense and react to human activities. Without the ability to sense the

surroundings and understand what humans are doing, computers will not be able

to provide active, timely, appropriate, and considerate services to the humans.

To accomplish this mission, the work stands on the shoulders of two giants:

Machine learning and ubiquitous computing. Because of the ubiquity of sensor-

enabled mobile and wearable devices, there has been an emerging opportunity

to sense, learn, and infer human activities from the sensor data by leveraging

state-of-the-art machine learning algorithms.

While having shown promising results in human activity recognition, most

existing approaches using supervised or semi-supervised learning have two funda-

mental problems. Firstly, most existing approaches require a large set of labeled

sensor data for every target class, which requires a costly e↵ort from human an-

notators. Secondly, an unseen new activity cannot be recognized if no training

samples of that activity are available in the dataset. In light of these problems,

a new approach in this area is proposed in our research.

This thesis presents our novel approach to address the problem of human

activity recognition when few or no training samples of the target activities are

available. The main hypothesis is that the problem can be solved by the proposed

NuActiv activity recognition framework, which consists of modeling the hierar-

chical and sequential structure of human activities, as well as bringing humans in

the loop of model training. By injecting human knowledge about the hierarchical

nature of human activities, a semantic attribute representation and a two-layer

attribute-based learning approach are designed. To model the sequential struc-



ture, a probabilistic graphical model is further proposed to take into account

the temporal dependency of activities and attributes. Finally, an active learning

algorithm is developed to reinforce the recognition accuracy using minimal user

feedback.

The hypothesis and approaches presented in this thesis are validated by two

case studies and real-world experiments on exercise activities and daily life ac-

tivities. Experimental results show that the NuActiv framework can e↵ectively

recognize unseen new activities even without any training data, with up to 70-80%

precision and recall rate. It also outperforms supervised learning with limited

labeled data for the new classes. The results significantly advance the state of

the art in human activity recognition, and represent a promising step towards

bridging the gap between computers and humans.
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Chapter 1

Introduction

“You see, but you do not observe. The distinction is clear.”

— Sherlock Holmes, in The Adventures of Sherlock Holmes (1892)

Story by Sir Arthur Conan Doyle

The research presented in this thesis started with one mission: To give computers the

power to sense and react. Over the years, computers have been redesigned and built to

help humans better than ever before. They have been excellent tools that take humans’

commands and execute them with ever-increasing speed and precision. The problem is that

computers have been good at passive services only: They usually do not know what to do

when there are no commands given. Without the ability to sense the surroundings and

understand what humans are doing, a computer will not be able to truly provide active,

timely, appropriate, and considerate services to the humans.

Computer scientists have been trying to give computers the ability to see and listen

like humans do through research in computer vision and audition. This work is dedicated

to empower computers with a new capability—to “sense” what a person is doing without

necessarily seeing it. This is made possible by the ubiquity of sensors on mobile and wearable

devices. After living on our desks for decades, computers now shrink, multiply, and fade into
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the background of our lives—the phones we use, the watches we wear, and the houses we

live in. Computers are increasingly invisible yet more present than ever at the same time.

As envisioned by Mark Weiser more than two decades ago [93],

“The most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it.”

“Specialized elements of hardware and software, connected by wires, radio waves

and infrared, will be so ubiquitous that no one will notice their presence.”

This vision of ubiquitous computing has now become a reality. It is becoming easier

to acquire a large amount of sensor data from the ubiquitous mobile phones and wearable

devices. However, just as the quote goes in the beginning of this chapter, computers do “see”

a myriad of sensor data but they do not “observe” the meanings, insights, or implications

behind those data. To help computers go from “seeing” to “observing,” the next big question

is: How to infer human activities from these sensor data?

Inferring human activities is challenging because human activities are known to be com-

plex and highly diverse [38]. There is inherently a large semantic gap between the low-level

sensor data and the high-level human activities. Most previous work tried to find a direct

mapping from the low-level sensor data to the high-level activities. However, there are at

least two problems: First, a large set of sensor data and labels is needed for every single

class. Second, the existing approach for activity recognition does not generalize to unseen

new activities. The goal of our research is to tackle these problems by studying the inherent

hierarchical and sequential structure of human activities, and by injecting human knowledge

into the learning process to bridge the gap between sensor data and high-level semantics.
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Figure 1.1: Motivating applications of human activity recognition.

1.1 Motivation and Research Problems

The understanding of context and human activities is a core component that supports and

enables all kinds of context-aware, user-centric mobile applications [2, 16, 43, 44, 66, 87].

As illustrated in Figure 1.1, examples of application areas include user behavior modeling

for marketing and advertising, health care and home monitoring, context-based personal

assistants, social networks, and context-enabled games [43].

As sensor-enabled mobile phones and wearable devices become ubiquitous, there has been

an emerging research opportunity to learn human activities and the surroundings from low-

level sensor data. There has been extensive research on activity recognition using various

sensors and various machine learning algorithms [4, 15, 17, 44, 51, 54, 60, 92, 94]. To recognize

the activity of a user, most existing approaches require two steps: (1) Collect and label a set

of training data for every activity class that the system aims to detect, and (2) classify the

current sensor readings into one of the pre-defined classes. However, labeled examples are

often very time consuming and expensive to obtain, as they require a lot of e↵ort from test

subjects, human annotators, or domain experts. Therefore, it has been reported that a fully
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supervised learning method, where labeled examples from di↵erent context are provided to

the system, would not be practical [59, 83]. More importantly, existing approaches to activity

recognition cannot recognize a previously unseen new activity if there are no training samples

of that activity in the dataset. According to the activity lexicon in the American Time Use

Survey by U.S. Bureau of Labor Statistics [89], there are at least 462 di↵erent activities that

people do in their daily lives. Considering the diversity of people and cultures that were

not covered by the study, the actual number of activities is likely even larger. However,

the fundamental problems in existing activity recognition approaches prevent the systems

from recognizing any previously unseen activity and from extending the approach to tens or

hundreds of di↵erent human activity classes.

In light of these existing problems and limitations, this thesis aims to answer two major

research questions:

Question 1: Given a sequence of sensor data, how to recognize a human activity class,

even when few or no training data for that activity are available?

Question 2: How does an activity recognition system reinforce its recognition accuracy

with a minimal number of requests for ground-truth labels?

In this work, the NuActiv framework is designed to recognize human activity even when

there are no training data for a particular activity class. NuActiv can generalize previously

learned knowledge and extend its capability to recognize new activity classes. The proposed

approach is inspired by the following observations:

• Many human activities and context types share the same underlying semantic at-

tributes : For example, the attributes “Sitting” and “HandsOnTable” can be observed

in both the “having lunch” and “working at desk” activities. Therefore, the statistical

model of an attribute can potentially be transferred from one activity to the another.

• The limits of supervised learning can be overcome by incorporating human knowledge:

Rather than collecting sensor data and labels for every context, using nameable at-
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Table 1.1: Di↵erent learning problems in human activity recognition.

Problem Type
Seen (Instances of target
class in training set)

Unseen (Instances of target
class not in training set)

Known (Target class is
known in training)

Supervised Learning (This
Thesis)

Zero-Shot Learning (This
Thesis)

Unknown (Target class
is unknown in training)

Unsupervised Learning
Anomaly Detection, Rare
Class Discovery, Open Set
Recognition

tributes allows humans to describe a context type without the process of sensor data

collection. For example, one can easily associate the activity “o�ce working” with

the motion-related attributes such as “Sitting,” “HandsOnTable,” and sound-related

attributes such as “PrinterSound,” “KeyboardSound,” and “Conversations.”

Based on these observations, we developed the NuActiv framework to tackle the two

research questions. Question 1 is often referred to as the zero-shot learning problem, where

the goal is to learn a classifier that can recognize unseen new classes that have never appeared

in the training dataset [68]. While having been shown successful in the recent computer vision

literature [42], zero-shot learning has not been studied before in the area of human activity

recognition from sensor data. Table 1.1 defines the di↵erence between learning problems

with seen/unseen and known/unknown classes, and shows how this thesis is positioned in

the problem space.

There are several challenges when applying zero-shot learning to activity recognition.

Firstly, while there exist some well-established attributes in the field of computer vision (such

as shapes and colors), it has not been shown what kinds of representations or attributes are

useful for recognizing human activities from sensor data. Secondly, most previous work on

zero-shot learning focused on static image data, which is inherently di↵erent from sequential

sensor data in activity recognition.

To address these challenges, we studied the hierarchical structure of human activities
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Table 1.2: Semantic hierarchy of human activities and terminology used in this thesis.

Term Description Examples

Activity
Class

A high-level label of a human activity.
Having lunch, playing soccer,
cooking meals

Attribute

A mid-level semantic representation that
describes a high-level activity by human
readable words. The construction of
an attribute set is derived from human
knowledge about the activity classes. The
presence of an attribute is detected by
computing a function over the features.

ArmDown, Standing,
CyclicMotion,
IsTeamSport, MealRelated

Feature

A low-level representation derived or com-
puted from the raw signals. The degen-
erate case is the raw signals themselves.
Though not required, a feature is often a
compact summarization of the raw signal
characteristics, and thus the feature space
is of lower dimension than the signals.

Mean, standard deviation,
pair-wise correlation,
zero-crossing rate.

Sensor Data,
Signals

The raw signals obtained from sensors. {0.36, 0.15,�1.4, 2.1, 3.7, 0.9 . . .}

and designed a new representation by decomposing high-level activities into combinations of

semantic attributes, where each attribute is a human readable term that describes a basic

element or an intrinsic characteristic of an activity. The definition of the term attribute

and its relation to other terms used in this thesis is presented in Table 1.2. The semantic

attributes are detected based on the low-level features, which capture the temporal dynamics

in the sequential sensor data. Using this representation, a two-layer attribute-based learning

algorithm is developed for activity recognition. To further model the sequential structure, a

probabilistic graphical model is proposed to take into account the temporal dependency of

activities and attributes.

For Question 2, to reinforce the activity recognition accuracy by leveraging user feedback,

we extended the previous work in active learning [81] by designing an outlier-aware active

learning algorithm and a hybrid stream/pool-based sampling scheme, which is suitable for
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the scenario of activity recognition using mobile or wearable devices. By integrating active

learning into the framework of zero-shot learning for activity recognition, the system is able

to not only recognize unseen activities but also actively request labels from users when

possible.

This thesis makes contributions to human activity recognition in the field of mobile and

ubiquitous computing, as well as attribute-based zero-shot learning in the field of machine

learning. The main contributions include:

• The design, development, and implementation of a new framework for human activity

recognition even when there are no training data for a particular activity class.

• The novel representation of human activities using bag-of-attributes models and at-

tribute sequence models.

• The design and study of the semantic attribute sequence model, a new and general

zero-shot learning model that is suitable for sequential data.

• The design of an active learning algorithm for activity recognition, which e�ciently

reinforce the recognition accuracy using minimal user feedback.

• The evaluation of the proposed framework on real-world experiments in two activity

domains.

• The first results on zero-shot learning for human activity recognition.

1.2 Thesis Statement

In this thesis, a new machine learning framework for human activity recognition is proposed.

The framework is designed based on the hierarchical and sequential structure of human

activities. Using the proposed framework along with the injection of human knowledge,

an activity recognition system can (1) e↵ectively recognize a new activity class even when
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few or no training examples of that activity are available, and (2) reinforce its recognition

accuracy with a minimal number of requests for ground-truth labels. The thesis presents

a thorough study and evaluation of the proposed framework on real-world datasets in two

activity domains, including daily life activities and exercise activities.

1.3 Thesis Roadmap

The roadmap of the thesis is shown in Figure 1.2. The thesis is organized as follows: In

Chapter 2, the background and related work of activity recognition are presented. The

overview of the proposed NuActiv activity recognition framework, including the feature

extraction, is presented in Chapter 3. In Chapters 4 to 6, we will go through the design

considerations and the details of the proposed approaches. Chapter 4 presents the core idea

of semantic attributes for modeling the hierarchical structure of human activities. Chapter

5 extends Chapter 4 by shifting the focus to another dimension: The sequential structure of

human activities. Chapter 6 brings humans into the loop of reinforcing an activity recognition

system through active learning. We present the dataset collection, evaluation methodology,

experimental results, and discussions in Chapter 7. The conclusion and future work are

discussed in Chapter 8.

8



Human Activity
Recognition

Introduction
(Chapter 1)

Background
(Chapter 2)

child

Evaluation
(Chapter 7)

Conclusion
(Chapter 8)

Proposed
NuActiv

Framework
(Chapter 3)

Signals &
Features

(Section 3.3)
Extraction

Selection Hierarchical
Structure

(Chapter 4)

Semantic
Attributes

Activity
Classifier

Sequential
Structure

(Chapter 5)

Attribute
Sequence

Model

Estimation
&

Inference

Active
Learning

(Chapter 6)

Uncertainty
Sampling

Outlier
Aware-
ness

Figure 1.2: Thesis roadmap.
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Chapter 2

Background and Related Work

This thesis lies in the intersection of two areas. One is human activity recognition in the

field of mobile and ubiquitous computing, and the other is attribute-based zero-shot learning

in the field of machine learning. This chapter will review the background and related work

in the two areas.

2.1 Human Activity Recognition

The general definition of human activity recognition is to output a label of human activity

Y given a set of input observations X. The high-level conceptual block diagram of human

activity recognition is shown in Figure 2.1. The two main parts are sensing and inference.

Sensing

Noise

Human Activity Inference
X Y

Figure 2.1: Conceptual block diagram of human activity recognition. X is the observed
sensor data. Y is the recognized human activity.
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The sensing part measures physical quantities that are correlated with the human activity

and converts them into signals, through a combination of hardware and software components.

The inference part takes the signals as input and outputs an estimation of the human activity

that generated those signals. Since noise exists in the physical world and in the sensing

process, successfully inferring the human activity from the signals is challenging. In recent

years, extensive research has been done to make advances in both of these two parts. These

advances can be viewed from various aspects, including sensing modality, sensor placement,

user engagement, and learning paradigms. We will review these aspects in the following

sections.

2.1.1 Taxonomy

The related work in human activity recognition can be categorized in terms of several aspects.

This section will go through each of these aspects and describe where this thesis is positioned

in the problem space and design space.

Vision-Based vs. Non-Vision Sensor-Based Activity Recognition

Activity recognition systems can be broadly categorized into vision-based systems [2, 88]

and sensor-based systems [17, 44]. In this categorization, sensor-based approaches usually

mean non-visual sensors.

There has been extensive research on vision-based activity recognition because of the

advances in computer vision and the rich information contained in video content [88]. One

of the most important applications of vision-based activity recognition is video surveillance.

Another application is human-computer interaction for entertainment, such as the Kinect

system [101]. While having shown success in the aforementioned applications, vision-based

systems do have several main issues and limitations found by researchers [44]. The first issue

is privacy, because many users do not want to be monitored or videotaped by cameras. In
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other words, the rich information contained in video raises the concern for privacy at the

same time. The second issue is pervasiveness, since it is di�cult to install cameras to target

the users in order to obtain images of their entire body during their daily living activities

[44]. Also, the users need to stay within the view angle and a certain range of the camera,

depending on the capability of the camera. The third issue is computational complexity,

as video processing and understanding are more computationally expensive than processing

audio alone or other non-vision signals. This can be a disadvantage in real-time or mobile

applications with certain resource or time constraints.

Non-vision sensor-based approaches have di↵erent strengths and weaknesses compared

to vision-based approaches, and are suitable for di↵erent types of applications. The early

work on sensor-based activity recognition dates back to the 1990s [20, 34, 44]. Although

non-vision sensor data generally do not contain as rich an information content as video, the

sensors are usually easier to attach to human bodies or install in many other places in the

surroundings. The privacy concern is usually less severe because it is harder to reconstruct

the scene or the user identity from the sensor data. The computational complexity is also

lower than vision-based approaches.

As a result, non-vision sensor-based approaches have received a lot of attention in re-

cent years, with promising applications in context-aware services, recommenders, advertis-

ing, healthcare, and fitness. The focus of this thesis is on making advances in non-vision

sensor-based activity recognition, with applications in context-aware, mobile, and ubiquitous

computing.

External vs. On-Body Sensing

In terms of the relative position between the measuring sensors and the subject being mea-

sured, there are two types of approaches: One that uses external sensors, and the other that

uses on-body sensors. According the the definition [44], in the former, the sensing devices
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are usually fixed at predetermined points of interest, so the inference of activities depends

on the interaction of the users with the sensors. In the latter, the devices are attached to the

user, and the activity recognition systems are usually running in the background to detect

the user’s activities using opportunistic sensing [43].

External sensors usually include video cameras, microphones, and signal transceivers

(infrared, ultrasound, and radio-frequency signals). One typical example is smart home or

smart o�ce systems that monitor the activities of users using the ambient sensors installed

in the building.

On-body sensors usually include but are not limited to: inertial sensors (accelerometers

and gyroscopes) and location sensors (e.g. GPS, cellular network, and Wi-Fi transceivers).

Typical devices used for on-body sensing include the mobile phones that users carry with

them, sensor-enabled wristwatches, wristbands, glasses, shoes, and other wearable devices.

The motivating scenarios and system designs in this thesis are based primarily on the on-

body sensing scheme, though the general ideas of attribute-based learning and active learning

approaches can be applied to external sensing schemes as well.

Participatory and Opportunistic Sensing

Another aspect in the design space of activity recognition and mobile sensing is the level

of user engagement, which can be categorized into participatory sensing and opportunistic

sensing. As defined in [43], in participatory sensing, a user actively engages in the data

collection activity. That is, the user manually determines how, when, what, and where to

sample, and may also provide ground-truth labels to facilitate model training. In oppor-

tunistic sensing, the data collection stage is automated and running in the background with

little to no user involvement. In this thesis, we focus on the scenario of opportunistic sensing,

where the system aims to sense and infer the user’s activities in the background using mobile

and wearable devices, with minimal user engagement in the sensing process.
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Figure 2.2: Comparisons of di↵erent problem settings and learning methods for activity
recognition. Di↵erent shapes represent samples of di↵erent classes. Solid and hollow shapes
represent labeled and unlabeled samples, respectively.

Learning Paradigm

Learning paradigm is about how the model for activity inference is acquired. Most of the

approaches are machine learning-based, which include supervised learning, semi-supervised

learning, unsupervised learning, transfer learning, and active learning. One of the main

contributions of this thesis is introducing the attribute-based zero-shot learning to the field

of human activity recognition. The comparison of di↵erent problem settings and learning

methods for activity recognition is shown in Figure 2.2. As illustrated in the figure, su-

pervised learning only learns from labeled samples (solid shapes) of the target activities.
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Semi-supervised learning leverages additional unlabeled samples (hollow shapes). Trans-

fer learning improves recognition using data in a di↵erent but related task. The proposed

zero-shot learning method generalizes learned mid-level attributes to recognize unseen new

activities. The next few subsections will go into a deeper look at each of the existing learning

paradigms, and explain how this study extends or di↵er from the previous work.

Table 2.1: Summary and comparison of related work in hu-
man activity recognition.

Ref. Learning
Paradigm

Models/
Algorithms

Activity
Domain/Classes

Input Sensor
Data/Devices

Results

[4] Supervised
Learning

k-NN, C4.5
decision tree,
naive Bayes

20 daily life
activities

Accelerometer on
upper arm, wrist,
thigh, leg, hip

50-80%
accuracy

[56] Supervised
Learning

AdaBoost +
hidden Markov
model (HMM),
C4.5 decision tree
+ HMM

15 daily life
activities

Camera,
microphone,
accelerometer,
compass on
wristband

70-80%
accuracy

[64] Supervised
Learning

k-nearest neighbor
(k-NN), SVM,
Decision Trees

10 upper body
exercise activities

Accelerometer and
gyroscope on upper
arm band

94%
accuracy

[13] Supervised
Learning

Naive Bayes,
hidden Markov
models

9 free-weight
exercise activities

Accelerometers on
glove and belt

90%
accuracy

[54] Supervised
Learning

Decision tree,
Gaussian mixture
model (GMM),
SVM, naive Bayes

5 motion classes,
7 sound event
classes

Accelerometer,
microphone, GPS
on mobile phone

Accuracy:
94%
(motion),
84%
(sound)

[96] Supervised
Learning

2-tier framework
+ classifiers
(Decision tree,
AdaBoost, SVM,
naive Bayes,
Bayesian network)

12 home and
o�ce activities

Accelerometers in
pockets (front
shirt, front pants,
back pants)

77%
accuracy
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Ref. Learning
Paradigm

Models/
Algorithms

Activity
Domain/Classes

Input Sensor
Data/Devices

Results

[83] Semi-
Supervised
Learning

Multi-Instance
support vector
machine (SVM),
graph-based label
propagation

PlaceLab dataset
[51], 34 daily life
activities[33]

Accelerometers on
wrist, hip, thigh

Up to
70-80%
accuracy

[84] Semi-
Supervised
Learning

Self-training,
co-training +
pool-based active
learning

9 activities in
PlaceLab dataset
[51]

Accelerometers on
wrist, hip, thigh

40-60%
accuracy

[57] Semi-
Supervised
Learning

Semi-supervised
virtual evidence
boosting (sVEB),
CRF

8 basic physical
activities (sitting,
walking, running,
etc.)

Wearable sensors
(audio, light,
acceleration,
pressure,
temperature,
humidity)

70-85%
accuracy

[8] Transfer
Learning

Layered
conditional
random field
(CRF)

Bookshelf
building, mirror
building

Accelerometer and
gyroscope on upper
arms, forearms, top
back

Outper-
forms
1-layer
model by
10% EER
[79]

[33] Unsupervised
Learning

k-means
clustering, latent
Dirichlet
allocation (LDA)

34 daily life
activities

Accelerometers on
wrist and hip

77%
precision,
66% recall

[61] Unsupervised
Learning

Motif discovery +
HMM

6 dumbbell
exercise activities

Accelerometer on
wrist

88%
precision,
96% recall

[95] Unsupervised
Learning

HMM 26 daily life
activities

RFID reader
bracelet, RFID
tags on home
objects

52%
accuracy

[102] Unsupervised
Learning

Hierarchical
Bayesian network

Reality Mining
dataset [18]

Call logs,
Bluetooth, cell
tower IDs,
application usage,
phone status

⇠70%
area under
curve
(AUC)
[10]
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Ref. Learning
Paradigm

Models/
Algorithms

Activity
Domain/Classes

Input Sensor
Data/Devices

Results

[32] Unsupervised
Learning
(Nonpara-
metric)

Hierarchical
Dirichlet process
HMM, one-class
SVM

PlaceLab
dataset,
abnormal activity
dataset [98]

Sensors (light,
temperature,
microphone,
accelerometer) on
shoulder, waist,
thigh

0.83-0.86
AUC

2.1.2 Supervised Learning

In the field of mobile, wearable, and pervasive computing, extensive research has been done

to recognize human activities (e.g. sitting, walking, running) [4, 8, 43, 54, 60, 72, 83, 84, 92].

In terms of the learning method, the majority of the research in this field used supervised

learning approaches, including discriminative classifiers (e.g. Decision Trees, SVM) and

generative models (e.g. Naive Bayes, Hidden Markov Model), where a classifier is trained on

a large set of labeled examples of every target activity [4, 6, 46, 51, 54, 60, 92]. There has also

been prior study of representing high-level activities as a composite of simple actions, using a

supervised layered dynamic Bayesian network [91]. While many promising results have been

reported, a widely acknowledged problem is that labeled examples are often time consuming

and expensive to obtain, requiring a lot of e↵ort from test subjects, human annotators, or

domain experts [83, 84].

2.1.3 Semi-Supervised and Transfer Learning

To lessen the reliance on labeled training data and to exploit the benefits of abundant

unlabeled data, previous work has incorporated semi-supervised learning into activity or

context recognition systems [52, 57, 59, 83, 84]. Semi-supervised learning approaches can
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improve the recognition accuracy by refining the decision boundary based on the distribution

of the unlabeled data, or by assigning highly-confident estimated labels to the unlabeled

data. Recently, transfer learning has also been explored so that a model learned for one

target class can be transferred to improve the recognition accuracy of another target class

[8, 103]. As a result, the amount of training data required for new applications can be

reduced. While many promising results have been reported, most of the existing approaches

can only recognize activity classes that were included in the training data. Inspired by

previous study, our work presents an early attempt to recognize unseen human activities

with no training data using attribute-based zero-shot learning.

2.1.4 Active Learning

The idea of active learning algorithms is that a machine learning algorithm can perform

better with less training data if it is allowed to choose the data from which it learns [80].

Active learning has been used to improve the accuracy of human activity recognition [50,

52, 84] or to model the interruptibility of a mobile phone user [74]. We extend the previous

work by incorporating active learning in the framework of zero-shot learning for activity

recognition, so that the system is able to not only recognize unseen activities but also actively

request labels from users when possible.

2.1.5 Unsupervised Learning

Another related research direction is unsupervised learning. Unsupervised learning focuses

on clustering or pattern discovery rather than classification [33, 61]. In [38], human activ-

ity understanding is divided into activity recognition and activity pattern discovery. The

first category focuses on accurate detection of human activities based on a pre-defined or

pre-trained activity model, while the second category focuses on finding unknown patterns
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directly from low-level sensor data.

One major area using unsupervised learning is routine discovery, which aims to extract

temporal regularities in people’s daily lives. A routine can be seen as a combination of multi-

ple low-level activities, with di↵erent proportions from one routine to another. For example,

the “Grocery Shopping” routine may involve more “standing” and “walking” activities than

the “O�ce Work” routine.

Most existing approaches for unsupervised routine discovery are based on parametric

topic models such as probabilistic latent semantic analysis (pLSA) [29, 30] or latent Dirichlet

allocation (LDA) [9]. In [33], the authors discover daily routines from wearable sensor data

by first building an activity vocabulary using k-means clustering, and then using LDA to

learn topic proportions for each window of sensor data, which is analogous to a document

containing a collection of words.

Farrahi et al. [19] also apply LDA on labeled cell tower data to automatically discover

routines, including “being at work” or “going home from work”. Zheng et al. [102] propose a

probabilistic generative model for learning users’ latent behavior patterns based on unlabeled

cell tower data. One limitation of these methods is that they all require a heuristic process

for parameter selection, such as the size of vocabulary, the number of topics, and the number

of typical states of a user.

More recently, nonparametric methods have been proposed and applied in the field of

activity recognition and mobile computing. The major benefit of nonparametric approaches

is that the models can be applied without having to find the ideal parameters (e.g. number

of topics or clusters) beforehand. For example, Hu et al. [32] tackles the abnormal activity

recognition problem by using hierarchical Dirichlet process hidden Markov model (HDP-

HMM) to automatically decide the right number of states for HMM. Similarly, Zhu et al.

[104] segment activity sensor reading sequence and group the segments into meaningful

categories by leveraging Sticky HDP-HMM.
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Although labels are not required for unsupervised learning approaches, the output of these

approaches is a set of unnamed clusters which cannot be used for classification or recognition

purposes. To perform recognition, labels are still needed to connect the discovered patterns

to the actual classes.

2.1.6 Rule-Based Approach

There are also some rule-based approaches to activity recognition. In [85], Storf et al.

proposed a multi-agent-based framework using rules and manual configurations written in

the Extensible Markup Language (XML) format. For example, the detection of “a person

staying in front of the kitchen counter” is formulated as a rule of whether the pressure

mat detects a person standing on it for longer than some specified time threshold (e.g., ten

seconds). The authors also use fuzzy reasoning. For example, the detection of the activity

“preparing meal” involves a set of cases and rules, including the combination of usage stove,

usage fridge, stay at kitchen counter, etc. with di↵erent weights for each case. While

simple and suitable for certain condition-action pairs, rule-based approaches may be hard to

apply without much domain knowledge, or when the rules are not straightforward and thus

have to be learned from data.

2.1.7 Human Activity Domain

In terms of the activity domain of interest, some previous work in the area of human activity

recognition focused on daily life activities [33, 51, 83] and some focused on sports and exercise

activities [13, 61, 64]. In this thesis, the proposed approach is evaluated in both activity

domains to validate its e↵ectiveness for general unseen activity recognition.
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2.2 Zero-Shot Learning

The idea of zero-shot learning has recently been explored and has been shown to be useful for

recognizing unseen new classes [21, 27, 36, 45, 67, 68]. Palatucci et al. presented one early

study on the problem of zero-shot learning [68], where the goal is to learn a classifier that

can predict new classes that were omitted from the training dataset. A theoretical analysis

was done to study the conditions under which a classifier can predict novel classes. In a

case study, the authors studied the problem of decoding the word that a human is thinking

of using functional magnetic resonance images (fMRI). The authors used multiple output

linear regression to learn the mapping from raw image data to semantic attributes (referred

to as the semantic output code classifier [68]). That is, a weight matrix W is learned by the

matrix operation over the training data:

W = (XTX+ �I)�1XTA (2.1)

where I is the identity matrix and � is a regularization parameter which avoids overfitting.

X 2 Rn⇥d is a training set of n fMRI examples where each row is the image for a particular

class and d is the number of dimensions of the fMRI image. A 2 Rn⇥p is a matrix of semantic

attributes for those classes, where p is the number of semantic attributes. After training,

given a novel fMRI image x, we can obtain a prediction â of the semantic attributes for this

image by multiplying the image x by the weights W:

â = xW (2.2)

Inspired by their work, our work extends the zero-shot learning framework to handle

sequential data by modeling the sequence and structure of the attributes. Furthermore,

while most previous work used only mid-level attributes for classification, we explore a

hybrid attribute/feature-based activity recognition algorithm to improve the classification
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accuracy on both seen and unseen classes.

2.3 Semantic Attributes

The idea of mid-level semantic attributes has shown promise in the field of computer vision,

including object and scene recognition [22, 42, 71, 75], neural activity recognition [68], and

human action recognition from video frames [22, 49, 97]. For example, in computer vision,

the general idea is to recognize a visual object through a set of human-specified semantic

descriptions (such as shape, color, and texture) of the target objects instead of directly

from the raw images [42]. Compared to our work, these problem domains are inherently

di↵erent from activity recognition because image data are static rather than sequential data.

Furthermore, the image attributes and description for visual objects cannot be directly

applied to the inertial/motion sensor data in activity recognition.

Inspired by these previous studies, we designed and implemented a new activity recog-

nition system using the concept of attribute-based zero-shot learning. In addition, we in-

vestigate the use of attribute sequence models compared to the bag-of-attributes models

used in the related work. The next chapter will introduce NuActiv, the new human activity

recognition framework proposed in this research.
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Chapter 3

Human Activity Recognition

Framework

In the previous chapter, we went through the background of human activity recognition and

the related work in the field of ubiquitous computing and machine learning. In this chapter,

we will first present the scenarios and design considerations that motivate our study and

proposed approach. Then, we will give an overview of the proposed NuActiv human activity

recognition framework.

3.1 Scenarios and Design Considerations

The goal of this work is to study and design a general human activity recognition framework

in the field of mobile, wearable, and pervasive computing. The learning and recognition

framework is independent of sensor data types or device types, so the source of sensor data

is not limited to mobile phones but can also be wearable devices. Wearable mobile devices

are becoming increasingly available in the commercial market [3]. Phones and devices can

be worn as wrist watches (e.g., MotoACTV [63]), glasses (e.g., Google Glass [25]), and more.
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Advances in nano-technology are further driving this trend by introducing flexible materials.

These new wearable devices enable a wide range of context sensing, inference, and pervasive

computing applications [43]. With these considerations in mind, in this work we choose

phones and wristwatches with inertial sensors as examples to demonstrate two scenarios of

activity domain: daily life activities and exercise activities.

The first scenario is daily life activity monitoring [33, 51]. Suppose we have the training

data for two activities “ReadingAtHome” and “Driving”. What if we want to detect if

the user is “ReadingOnTrain”? Instead of hiring subjects to collect and label new sensor

data, our goal is to directly recognize the new activity class “ReadingOnTrain” by reusing

the semantic attributes within the model that we already trained for “ReadingAtHome” and

“Driving”. For example, the pattern of wrist motion when reading a book may be consistent

regardless of the user location. In this case, “ReadingAtHome” and “ReadingOnTrain” may

share the same wrist motion attribute. Furthermore, the velocity or acceleration experienced

by a person on a vehicle, though di↵erent depending on the vehicle type, may be easily

distinguishable from walking, running, or biking. Therefore, the attribute “moving at vehicle

speed” may be found in both the “Driving” and “ReadingOnTrain” activities.

The second scenario is exercise activity detection. Detecting physical exercises and sports

activities is useful for health and fitness monitoring applications [13, 64]. Through exper-

iments on real-world sensor data, we will show that our semantic attribute-based learning

applies well to this activity domain because many exercise activities are built up by the same

underlying attributes, as illustrated in Figure 2.2.

Daily life activities are of greater interest because they comprise the major part of people’s

lives. On the other hand, daily life activities are also arguably of much larger variation

because di↵erent people do the same things di↵erently, and thus are harder to recognize.

Even the same person can do one activity di↵erently at di↵erent times. In this research,

we started by testing our system and algorithms for the exercise activity scenario because
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Figure 3.1: The NuActiv activity recognition framework.

the activities are well-defined, repeatable, and typically of lower variation among di↵erent

people. After observing the e↵ectiveness of our approach on exercise activities, we further

generalized the approach to daily life activities.

3.2 The NuActiv Framework

Based on the aforementioned design considerations, a new activity recognition framework,

NuActiv, is proposed in this thesis. The NuActiv framework, as shown in Figure 3.1, consists

of three main components:

(1) Feature Extraction: This component preprocesses the raw sensor data (or signals)

from various sensor inputs, and extracts low-level features from the processed sensor data.

(Section 3.3).

(2) Semantic Attribute-Based Activity Recognition: This component can be fur-

ther divided into two parts. The first part is Attribute Detection, which transforms low-level

features into a vector of human-readable semantic attributes. The second part is Attribute-

Based Activity Classification, which classifies the detected attribute vector as one of the
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activity classes given the activity-attribute matrix, even if no training data exist for some of

the target activity classes. (Chapter 4 and Chapter 5).

(3) Active Learning: Given the output recognized user activity class, the active learn-

ing component estimates the uncertainty of the recognition result. When the result is esti-

mated to be uncertain using a predefined metric, the user label requester prompts the user

for feedback or ground-truth labels. The labels are then used for re-training and updating

models for attribute detection and activity classification. The function of this component is

to reinforce activity recognition accuracy using minimal user feedback (Chapter 6).

3.3 From Signals to Features: Feature Extraction

The activity recognition framework described in this thesis is agnostic to input data type.

Any kind of sensor data (or signals) can be fed into the system for learning an activity recog-

nition model. We select inertial sensor data, including accelerometer and gyroscope, from two

activity domains—exercise activities and daily life activities—as examples to demonstrate

the e↵ectiveness of the proposed framework.

3.3.1 Sensors

Accelerometer

An accelerometer is a sensor that measures the acceleration experienced by an object relative

to a free-falling frame of reference. A triaxial accelerometer installed on a mobile or wearable

device returns a real-valued estimate of acceleration along the x, y, and z axes (as shown in

Figure 3.2) in units of meter per second squared (m/s2) [72].

28



x 

y 

z 

Figure 3.2: Illustration of the coordinate system of an accelerometer on a mobile phone.
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Figure 3.3: Illustration of the coordinate system of a gyroscope on a mobile phone.

Gyroscope

A gyroscope is a device that can be used to either measure, or maintain, the orientation of

an object [5, 47]. Also known as angular rate sensors or angular velocity sensors, gyroscopes

can sense the angular velocity along the a, b, and c axes of a mobile or wearable device (as

shown in Figure 3.3), in units of radian per second (rad/s).

3.3.2 Motion Features

For an input stream of sensor data, it is assumed that the samples within a window (i.e. a

segment of the input sensor data stream) are a sequence of samples drawn from some random
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variable X. Using a sliding window of length n, features are computed from a sequence of

n samples xt starting at time t = t
0

, namely {xt0 , xt0+1

, . . . , xt0+n�1

}, where t is the discrete

index in the time domain. For each dimension in the coordinate system of accelerometer

and gyroscope, we compute a set of motion features that are widely used and shown useful

in the related work. The feature set includes:

• The mean of the sensor data. Let the sequence of any dimension of the sensor data in

a window be (xt)
t0+n�1

t=t0 , which are regarded as samples drawn from a random variable

X. The mean of the random variable X is computed as:

X = E(X) =
1

n

t0+n�1X

t=t0

xt (3.1)

• The standard deviation. Using the same notation above, it is calculated as:

SX =
p

Var(X) =

vuut 1

n� 1

t0+n�1X

t=t0

(xt �X)2 (3.2)

• The pairwise correlation between each pair of dimensions. Let the sequences of any

two dimensions of the sensor data be (xi,t)
t0+n�1

t=t0 and (xj,t)
t0+n�1

t=t0 .

⇢Xi,Xj =
Cov(Xi, Xj)

SXiSXj

=
E[(Xi �Xi)(Xj �Xj)]

SXiSXj

=

Pt0+n�1

t=t0
(xi,t �Xi)(xj,t �Xj)qPt0+n�1

t=t0
(xi,t �Xi)2

Pt0+n�1

t=t0
(xj,t �Xj)2

(3.3)

• The local slope of sensor data using 1st-order linear regression. That is, find parameters

w = {w
0

, w
1

} that define a line X = w
0

+ w
1

t which best fits the sensor data in the

window. w
1

is then used as the local slope feature.

w
1

=

Pt0+n�1

t=t0
(t� t)(xt �X)

Pt0+n�1

t=t0
(t� t)2

(3.4)
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Figure 3.4: Examples of features extracted from acceleration data for each exercise activity.

• The zero-crossing rate.

ZCR(X) =
1

2(n� 1)

t0+n�1X

t=t0+1

|sgn(xt)� sgn(xt�1

)| (3.5)

Some examples of extracted features are shown in Figure 3.4. The sensor data and

settings used in each dataset are described in Section 7.2. Similar features have been used

in the related work [72, 83, 100]. To capture the temporal dynamics of the features, the

nth-order temporal features are further included. Specifically, the feature vector at time t

is concatenated with those at time t � 1, t � 2, . . . , t � n (n is empirically set to 2 using a

10-fold cross validation on the validation set in our experiments).
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Figure 3.5: Visualization of exercise activity samples in the feature space.

To visualize the e↵ectiveness of the features, we plot the dataset in the feature space in

Figure 3.5. The dimensionality is reduced to 2 for visualization using t-Distributed Stochastic

Neighbor Embedding (t-SNE) [55]. t-SNE visualizes high-dimensional data by giving each

datapoint a location in a two or three-dimensional map. The technique is a variation of

Stochastic Neighbor Embedding (SNE) [28] that is easier to optimize, and generates better

visualizations by reducing the likelihood of crowding points together in the center of the

resulting map. It can be observed from the figure that the samples form natural clusters

with minor overlaps, showing that these features do discriminate.

3.3.3 Time Features

Time is an important factor in human activities. The activities that people engage in often

exhibit patterns that are correlated with the time of day and day of week [33]. For example,
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many people regularly have lunch around 12 p.m. and dinner around 6 p.m. Most people

commute at a certain time of day during the weekdays because of work or school, and engage

in some entertainment activities during the weekends. This is all very useful information

that one can leverage to infer a person’s activities or to rule out the unlikely ones.

The “raw data” of time on most computer systems is a Unix timestamp, defined as

the number of seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC),

Thursday, January 1st, 1970. Widely used time features extracted from the raw data include

time of day, day of week, weekday/weekend, or whether the day is a holiday or not. In our

experiments, we use time of day as the time feature for the daily life activity dataset [33],

as it carries important information about the daily life routines of a user.

3.3.4 Feature Selection

Selecting the right set of features is important for improving the recognition accuracy [100].

One approach to feature selection is based on the mutual information between the features

and the class labels. Based on the co-occurrence of feature values and class labels, we

compute the score of each feature based on the normalized mutual information between the

class label and the feature.

Entropy, in information theory, is a measure of uncertainty in a random variable. In a

feature selection problem, the entropy of the class random variable Y , H(Y ), is defined as:

H(Y ) = E(I(Y )) =
X

y2Y

I(Y )P (Y = y) =
X

y2Y

log

✓
1

P (Y = y)

◆
P (Y = y) (3.6)

where Y is the set of all possible values that Y can take on, and I(Y ) is the self-information

of Y . H(Y ) is the intrinsic uncertainty of Y . When we observe some set of features X, the

remaining uncertainty of Y when X is known is H(Y |X), which is defined as:

H(Y |X) =
X

x2X

P (X = x)H(Y |X = x) (3.7)
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where

H(Y |X = x) =
X

y2Y

log

✓
1

P (Y = y|X = x)

◆
P (Y = y|X = x) (3.8)

If the uncertainty of Y is reduced, it’s easier to predict Y . Therefore, a reasonable way

to measure the e↵ectiveness of an feature is to use the Information Gain, H(Y )�H(Y |X).

However, one issue of using information gain is that it gives an unfair advantage over X with

many keys (i.e. an X that can take on a large number of possible values). We tackle this

problem by using the Normalized Mutual Information, which is defined as:

Î(Y ;X) =
I(Y ;X)

H(X) +H(Y )
=

H(X) +H(Y )�H(X, Y )

H(X) +H(Y )
=

H(Y )�H(Y |X)

H(X) +H(Y )
(3.9)

Since H(Y ) is a constant value that does not depend on X, the feature X that has the lowest

H(Y |X) will have the most information gain H(Y ) � H(Y |X). This information gain will

then be normalized by the denominator (H(X)+H(Y )). Once we have the score defined by

the normalized information gain, we can rank the features by their scores.

While intuitively reasonable and computationally inexpensive, the aforementioned ap-

proach does not necessarily arrive at an optimal subset of features. Given a total number

of D features, the optimal feature subset can only be obtained by doing a full search over

all 2D possible subsets (because each feature can either be included or excluded from the

subset), which can quickly become computationally intractable as D increases.

To solve the computational intractability, two widely used heuristic approaches that

approximate the full search are the forward search and the backward search algorithms [39].

As the name suggests, the forward search algorithm starts with an empty feature subset, and

iteratively adds features one at a time. At each iteration, the feature to be added is the one

that leads to the lowest classification error on the validation set. Conversely, the backward

search algorithm begins with a subset containing all of the features, and iteratively removes

one feature at a time. In a similar manner, the feature to be removed at each iteration is
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the one leading to the lowest classification error.

3.4 Modeling and Recognizing Activities

After the low-level features are extracted from the raw sensor data stream (the “signals”),

the next step is to infer the high-level activity (the “semantics”) from these features. This is

achieved by building a statistical model that e↵ectively describes the relationship between the

signals and the semantics. As mentioned in Chapter 1, our goal is to build a activity model

that is applicable to both supervised/semi-supervised learning as well as zero-shot learning

problems, making it possible to recognize an activity with or without training samples in

the dataset. In the next three chapters, I will present the proposed approach to model and

recognize human activities with this goal in mind. Chapter 4 presents the main idea of using

mid-level semantic attributes to model the hierarchical structure of human activities. In

Chapter 5, the sequential structure of human activities is further taken into consideration.

Finally, in Chapter 6 humans are brought back into the loop to e�ciently improve the

performance of an activity recognition system through active learning.
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Chapter 4

Hierarchical Structure: Semantic

Attribute-Based Activity Recognition

In the previous chapter, the NuActiv activity recognition framework and the methodology

for feature extraction has been presented. In this chapter, we will introduce the core idea of

mid-level semantic attribute-based activity recognition. The idea stems from the study on

the hierarchical nature of human activities.

Human activities exhibit inherent hierarchical structures [8]. The activities that a person

does often begin with one or multiple high-level goals or intents, which can be recursively

broken down into a set of lower-level sub-activities or atomic actions [11, 105]. For example, a

person may first have an intention to do some sports activity. The intention drives the person

to perform sports activities, which may include playing baseball and playing golf. In the

course of doing these activities, several sub-activities are performed. These sub-activities

include swinging, pitching, walking, and running. Each sub-activity can then be further

broken down into fine-grained motions of limbs, joints, and muscles.

Most existing approaches in activity recognition are based on training a k-way classifier

(either directly or by combining multiple binary classifiers) to classify a low-level feature
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vector as one of the k di↵erent high-level activity classes. Scaling such a classifier beyond

a limited number of discrete categories remains an unsolved problem [21]. Furthermore,

the problem is exacerbated by the fact that k-way discrete classifiers treat all labels as

disconnected and unrelated [21].

These observations motivate the study of the hierarchical structure of human activities,

as presented in this chapter. During the modeling phase, a high-level activity is decomposed

into lower-level building blocks (i.e. semantic attributes), each of which in turn generates

motion features according to certain probability distributions. The relationship between

attributes and high-level activities is obtained by injecting human knowledge about the

definitions and descriptions of the activities. During the recognition phase, we take the

reverse route: starting from the low-level signal features, we try to infer the higher-level

semantics of an activity one level at a time. To bridge the semantic gap between low-level

sensor data and high-level human activities, we introduce the notion of mid-level semantic

attributes that allows a smooth transition in the low-to-high-level semantic continuum.

4.1 Problem Definition

The problem of activity recognition can be formalized as follows. Let Y be the class la-

bel, a random variable that can be one of the k classes in the activity class space Y =

{y
1

, y
2

, . . . , yk}. x is a d-dimensional vector containing d input features in the feature

space X. We want to learn a classifier function f : X ! Y where the function outputs

an estimate or prediction of the class y given an input feature vector x. Most of the

existing approaches in activity recognition train the classifier f using a training dataset

Dtrain = {(xi, yi)|i = 1, 2, ..., N}, which contains N pairs of input features and ground-truth

output class labels. If we have training instances for every class in Y, we are able to train a

classifier f . However, if there are no training data for a subset of classes Y, we are not able
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to predict those classes.

This research aims to solve the problem of recognizing previously unseen activity classes.

Suppose Y = {y
1

, y
2

, . . . , ys, ys+1

, . . . , yk} = YS [ YU . YS is the set of seen classes, where

there exists some training data for every class in YS. YU is the unseen classes set where

there are no training data for any class in YU . The problem is: How to recognize an unseen

class y 2 YU?

The idea is to first transform low-level features x into a vector of mid-level semantic

attributes a in the attribute space A. Each attribute corresponds to a human readable

atomic physical motion or a specific characteristic of a complex activity. If every high-level

activity in Y can be mapped to a point in the attribute space A, then it is possible for us to

recognize every activity class y 2 Y given an accurately detected attribute vector a. Since

every semantic attribute in a is a human readable term, the mapping between y and a can

be defined based on human knowledge without training data. Without this attribute layer,

the direct mapping between y and x can only be trained with labeled sensor data, because

x’s are low-level signal features that are hard for humans to interpret directly.

Figure 4.1 illustrates the di↵erence between existing supervised-learning-based approach

and our proposed semantic attribute-based learning approach, using exercise activities as

examples. This fundamental idea of semantic attribute-based learning for activity recogni-

tion can be abstracted as illustrated in Figure 4.2, where each link represents P (A|X), the

probability of the attribute A given a feature X, or P (Y |A), the probability of the class

label Y given an attribute A.

4.2 Semantic Attributes

As explained in Table 1.2, a semantic attribute is a mid-level representation that describes

a high-level activity by human readable words. Broadly speaking, there are two types of
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Figure 4.1: Comparison between the existing supervised learning approach to activity recog-
nition and the proposed semantic attribute-based learning approach. See Table 1.2 for
terminology and definitions.
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Figure 4.2: Graphical representation of semantic attribute-based activity recognition.

semantic attributes: Compositional and non-compositional attributes. The descriptions and

examples of them are shown in Table 4.1. We will present the definition, construction, and

detection of semantic attributes in the following sections.

4.2.1 Representation of Human Activities

There are various kinds of candidate representations of human activities, which are described

as follows:

Body Model-Derived Primitives

One approach is to create a representation based on human anatomy and kinesiology (also

known as human kinetics). That is, one can represent a physical activity using body model-

derived primitives, including the models for torso, limbs, and joints [105]. The body model

provides natural constraints on the relationship between attributes. For example, one cannot

raise one’s hand without lifting one’s forearm. While it benefits from the domain knowledge

of human kinetics, the limitation of this approach is that not all attributes are directly
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Table 4.1: Categorization of semantic attributes: Compositional vs. non-compositional.

Attribute
Type

Description Examples

Compositional
Attribute

An attribute that is an atomic action, a sub-
activity, or a building block that can be com-
bined to constitute a high-level composite
activity. The composition can be a set or a
sequence of attributes, as described in Sec-
tion 4.2.1. This type of attributes is analo-
gous to verbs in natural language grammars.

ArmDown, ArmCurl,
Running, Kicking

Non-
Compositional
Attribute

An attribute that is a description or a char-
acteristic of a high-level activity. Expressed
in natural language, the attribute is a logical
predicate, which can be true or false for an
activity, but is not considered a sub-activity
or a part that constitutes the activity. This
type of attributes is analogous to adjectives
in natural language grammars.

IsCyclicMotion,
IsTeamSport,
IsMealRelated,
IsWorkRelated

associated with the motion of a part of the human body. For example, if we want to use some

descriptive attributes such as “IsWorkRelated,” “IsMealRelated,” or “IsTimeEvening”.

Bag of attributes

In this thesis, we propose the bag-of-attributes representation for human activities. The bag-

of-attributes representation expresses a high-level activity in terms of a set of descriptive

words in natural language. For example, we can represent a set of high-level sports activities

{Soccer, Golf, Baseball} using a set of semantic attributes as follows:

a
Soccer

= [Running = 1, Kicking = 1, Swinging = 0, IsTeamSport = 1]

a
Golf

= [Running = 0, Kicking = 0, Swinging = 1, IsTeamSport = 0]

a
Baseball

= [Running = 1, Kicking = 0, Swinging = 1, IsTeamSport = 1]
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Figure 4.3: Illustration of using the bag-of-attributes representation for zero-shot activity
recognition.

Figure 4.3 illustrates the idea of expressing the activities using bag of attributes in order

to achieve zero-shot learning. When an attribute takes on a value of 1, it means that the

attribute is related to or can be associated with that activity class. By the definition in

this thesis or in the related work [42, 68], it does not necessarily mean that the attribute is

always present. For example, a person playing baseball does not always exhibit the Swinging

attribute, but Swinging is certainly a part of the baseball activity.

The bag-of-attributes representation also does not specify the order in which the at-

tributes occur. For instance, we know that playing soccer involves Running and Kicking,

but the order or the sequence of their occurrence is not specified for simplicity and generality.

As explained in Table 4.1, it is to be noted that an attribute used in the bag-of-attributes

representation is not necessarily a compositional attribute, which is a sub-activity or a part

of a high-level activity. Rather, it can be a non-compositional attribute, which is a descrip-

tion or a characteristic of a high-level activity. For example, the attribute IsTeamSport
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is not a sub-activity that constitute the soccer or baseball activity, but it does describe a

characteristic of those activities. Imagine the case where the players are equipped with some

wearable, miniature radio transceivers that can detect each other in proximity. Then, this

IsTeamSport attribute can then be used directly to boost the confidence in recognizing the

correct sports activity.

Sequence of attributes

In cases where the ordering of actions is important, a possible approach is to use the

sequence-of-attributes representation, which preserves the information about the order of

the attributes. For example, an instance of the “Having Meal” activity [38] can be repre-

sented by a sequence ak of K elements such as

(ak)
K�1

k=0

= (a
0

, a
1

, . . . , aK�1

) = (PickFood, HaveSoup, CutSteak, Drink)

More generally, taking into account the possibility of multiple concurrent actions or at-

tributes, we can even use a directed acyclic graph (DAG) to represent an ordered relationship

between the attributes in an activity. From this point of view, the sequence-of-attributes rep-

resentation can be regarded as a degenerate case of the DAG-based representation. While

being more descriptive, in many cases it is di�cult or impractical to describe an activity

in terms of a sequence of attributes. This is due to several reasons. Firstly, many at-

tributes can occur simultaneously. Secondly, many non-compositional attributes (such as

IsWorkRelated) are general descriptions or characteristics of an activity, rather than an

atomic activity unit that can be put in order. Finally, the inherent variation of an activity

can make it hard to define a specific sequence in which the attributes will be observed.
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Activity−Attribute Matrix
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Squat Upright Row 0 1 0 0 1 0 1

DB Side Raises 0 1 0 0 1 0 0

DB Shoulder Press 1 0 0 0 1 0 0

Dumbbell Curl 0 1 0 0 0 1 0

Triceps Extension 1 0 0 0 0 0 0

Chest Press 0 0 1 0 1 1 0

Push Up 0 1 0 1 0 0 0

Dumbbell Fly 0 0 1 0 1 0 0

Bent−Over Row 0 1 0 0 0 0 1

       

 
 
 
 
 
 
 
 
 
 

Figure 4.4: Activity-attribute matrix for exercise activities. The rows are the activities and
the columns are the attributes.

4.2.2 Activity-Attribute Matrix

After taking into account the pros and cons of each representation, we define an Activity-

Attribute Matrix over the bag of attributes. The Activity-Attribute Matrix encodes the

human knowledge on the relationship between an activity and a set of semantic attributes

that are associated with the activity. For M activities and N attributes, the activity-

attribute matrix is an M ⇥ N matrix where the value of each element aij represents the

level of association between activity i and attribute j. For simplicity, in this work we define

each element as a binary value, indicating whether such an association exist (aij = 1) or not

(aij = 0). It is straightforward to generalize aij to be real-valued (0  aij  1), indicating

the level or confidence of the association. An example of a binary activity-attribute matrix

we manually defined for the exercise activity domain in our experiments is shown in Figure

4.4. The matrix is defined based on the definitions and descriptions of the exercise activities

in the literature [13, 35, 64].
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4.2.3 Attribute Set Construction

Domain Knowledge

In general, an activity-attribute matrix can be manually defined by common-sense knowledge

or domain knowledge [2]. The activity-attribute matrix used in our experiments is an exten-

sion of related work in attribute-based object similarity and classification [37, 42, 49, 97]. A

user can also manually define a custom new activity by describing it using the attributes,

which is equivalent to inserting a row in the matrix.

Text Mining and Deep Learning

Instead of human annotation, some recent work in zero-shot learning and computer vision

has tried to automate the construction of attribute sets and the mappings between attributes

and classes using text mining [21, 69, 82]. The motivation is that modern visual recognition

systems are often limited in their ability to scale to a large number of object categories.

Socher et al. [82] presented a model for zero-shot learning where a deep neural network was

first trained in an unsupervised way from a large collection of images to obtain an image

representation in the hidden layer. In parallel, a neural network language model was trained

to obtain an embedding representation for thousands of common terms. That is, a class label

can be represented in a dw-dimensional word space, where the word vectors are learned from

Wikipedia text in an unsupervised way using the deep neural network. The authors then

trained a linear mapping ✓ between the image representations and the word embeddings

representing a few classes for which they had labeled images:

J(✓) =
X

y2Ys

X

x

(i)2Xy

||wy � ✓x(i)||2 (4.1)

where Ys is the set of seen classes and y is a certain class label. x(i) is the image feature vector

of the i-th training instance, and Xy is the set of all instances that belong to class y. wy is the
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vector representation of class y in the embedding “semantic attribute” space. By minimizing

this objective function, ✓ maps the image representation space onto the embedding semantic

attribute space.

Crowd-Sourcing

An alternative approach is to leverage crowdsourcing platforms such as Amazon Mechanical

Turk [68, 75] to acquire a mapping between classes and attributes. A set of high-level class

labels are presented to the test subjects, who are instructed to associate certain semantic

attributes with each class label. In [69], the system actively choose a set of image samples

that are likely to be nameable based on a nameability model, and a user can either provide

attribute names or an “unnameable” tag. Still, it is more challenging to apply the approach

described in [69] to non-vision-based human activity recognition, because non-vision sensor

data are harder to visualize in a way that users can comprehend.

4.3 Attribute Detection

Given an activity-attribute matrix, the next step is to train a set of attribute detectors so

that we are able to infer the presence/absence of an attribute from the sensor data features.

However, collecting a separate training dataset for every attribute is not practical for several

reasons. First of all, not all of the attributes are sub-activities themselves. Many attributes

are descriptions, characteristics, or consequences of an activity rather than standalone sub-

activities. Therefore, it may not be possible to collect data for an attribute “alone” without

other interference or confounding factors. Furthermore, there can be a large number of

possible attributes. If there were a need to collect many separate training datasets, the

benefit of attribute-based learning would diminish significantly.

Since the goal is only to infer if an attribute is present or not given the feature vector
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(i.e. P (A|X) in Figure 4.2), what we need is one set of positive samples and another set of

negative samples. Therefore, to learn an attribute detector, we reuse the existing training

data by merging the labeled data of all activity classes that are associated with the attribute

as the positive set. Similarly, the negative set consists of the data of all activity classes that

are not associated with the attribute.

After the training sets are constructed, a binary classifier is trained for each attribute.

In general, any type of classifier can be used. We evaluated various classifiers and selected

the Support Vector Machine (SVM) classifier [7] as the optimal implementation. The clas-

sifiers we evaluated are described in the following subsections. The comparison of their

performances is presented in Chapter 7.

4.3.1 Support Vector Machine Classifier

SVM finds the hyperplane wTxi+ b = 0 that maximizes the margin between the data points

of di↵erent classes by optimizing the following Quadratic Programming problem:

min
w,b

1

2
||w||2 + C

nX

i=1

⇠i (4.2)

s.t. ai(w
Txi + b) � 1� ⇠i

⇠i � 0, 8i

where xi and ai are the feature vector and the attribute value for the i-th training sample,

respectively. Parameters w and b control the orientation and the o↵set of the hyperplane.

The parameter C is a regularization term which controls overfitting and the tolerance on the

degree of false classification ⇠i for each sample. After the training phase, we have a trained

attribute detector for each attribute specified in the activity-attribute matrix.

In some cases, we might only have positive or negative examples for an attribute. For

example, this can happen when all of the seen classes in the training data exhibit a certain
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attribute. In such cases, we train the attribute detector using one-class SVM [58], which

classifies a sample as one of the two classes given only training data of one class (positive or

negative).

4.3.2 k-Nearest Neighbor Classifier

In the k-nearest neighbor (k-NN) classifier, a new sample is classified as the majority class

membership of the k closest training data points (ties can be broken at random). In our

experiments, the L
2

distance (i.e. Euclidean distance) metric is used. The resulting decision

boundaries are Voronoi cells, which are composed of hyperplanes that form perpendicular

bisectors of pairs of points from di↵erent classes.

k-NN can be susceptible to noises or outliers because its decision is simply based on the

neighbors, rather than looking at the big picture and finding a general decision boundary.

Another limitation is that classification requires access to the whole training dataset. In cases

where the training data is large or the resource (e.g. storage or transmission bandwidth) on

the device is limited, k-NN may not be the ideal classifier to use.

4.3.3 Decision Tree Classifier

As the name suggests, a decision tree classifier [62] is a tree structure where each intermediate

node (including the root) is a logical predicate L on the input X

L : X �! {0, 1} (4.3)

in which 0 means false and 1 means true, and each leaf node is associated with one class

label. In other words, a decision tree classifier classifies an instance through a sequence of

questions and yes-or-no decisions.

During the training process, the training instances are classified starting from the root by

49



picking one predicate at a time, and then recursively classified until all the samples at a leaf

node belong to the same class. Since the hypothesis space is exponential in the number of

features, a brute-force full search for the optimal tree is usually computationally intractable.

Most decision tree training algorithms thus use a greedy heuristic to find the approximately

optimal tree, which can be suboptimal in the entire hypothesis space. The greedy heuristic

to find the optimal logical predicate for each node is to look at the information gain achieved

after passing the training instances through the predicate. Specifically, the optimal logical

predicate L⇤ for a node is found using the following equation:

L⇤ = argmax
L

I(Y, L(X)) = H(Y )�H(Y |L(X)) (4.4)

where L(X) is a logical predicate operating on the input X. H(Y ) and H(Y |L(X)) is the

entropy of the class labels of the remaining training instances before and after being classified

by L, respectively, where

H(Y ) =
X

y2Y

log

✓
1

P (Y = y)

◆
P (Y = y) (4.5)

H(Y |L(X)) =
X

l2{0,1}

P (L(X) = l)H(Y |L(X) = l) (4.6)

One advantage of using a decision tree for human activity recognition is that the classi-

fication is computationally inexpensive, which is attractive to real-time recognition running

on mobile or wearable devices. A potential drawback is due to the greedy nature in the

training process, which may lead to suboptimal recognition accuracy or overfitting issues if

tree pruning is not handled well [62].

4.3.4 Naive Bayes Classifier

The naive Bayes classifier [62], as shown in Figure 4.5, belongs to the family of Bayesian

networks [86]. The most important assumption of the naive Bayes classifier is that the
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Figure 4.5: The graphical model representation of the Naive Bayes classifier.

features are conditionally independent given the class label [62], which significantly reduces

the number of parameters to train in the model from exponential to linear in the number

of features. Based on this assumption, the conditional probability of observing features

X
1

, X
2

, . . . , Xd given the class random variable Y is formulated as:

P (X
1

, X
2

, . . . , Xd|Y ) =
dY

k=1

P (Xk|Y ) (4.7)

The model parameters P (Xk|Y ) and P (Y ) can be trained through maximum likelihood esti-

mation (MLE) or maximum a posteriori (MAP) estimation. After training, the classification

is done by:

y⇤ = argmax
y

P (Y = y|X
1

, X
2

, . . . , Xd) = argmax
y

P (Y = y)
Qd

k=1

P (Xk|Y )

P (X
1

, X
2

, . . . , Xd)
(4.8)

For continuous-valued data, it is usually assumed that the generative distribution P (X|Y )

follows a Gaussian distribution. Therefore, the accuracy of Naive Bayes classifier can be sub-

optimal when the assumptions of Gaussian-distributed and pair-wise independent features

given a certain class do not hold for the input sensor data features.
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4.4 Attribute-Based Activity Classification

After the attributes are detected, in the attribute space, a nearest-neighbor classifier is

used to recognize the high-level activity given an attribute vector generated from attribute

detectors. Specifically, the activity recognizer takes an attribute vector a = [a
1

, a
2

, . . . , am]

as input and returns the closest high-level activity y⇤ represented in the attribute space Am

according to the activity-attribute matrix. That is,

y⇤ = argmax
y

d(a, ay) (4.9)

where ay is the attribute vector template for class y as specified in the activity-attribute

matrix, and d(·, ·) is the distance between two vectors in the attribute space. In our experi-

ments, Euclidean distance (i.e. L
2

distance) is used as the distance metric. More generally,

the decision can be formulated as:

y⇤ = argmax
y

d(P (a|x), ay) (4.10)

where P (a|x) is the posterior probability of the attributes being a given an observed feature

vector x. This can be thought as using a soft decision rather than a hard, binary decision

on the attributes.

4.5 Hybrid Activity Recognition

While attributes are human readable and can be used to recognize previously unseen new

classes, there is a certain amount of information in the low-level feature space that we do

not want to discard. Transforming low-level features to mid-level attributes has the benefit

for unseen class recognition, but there is an information loss associated with it, just as there

is in the process of feature extraction from raw sensor data.

Inspired by this thought, our idea is to keep the advantages of both feature-based and
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Algorithm 1 Hybrid Feature/Attribute-Based Activity Recognition Algorithm
1: Input: low-level feature vector x
2: Output: estimated activity class y
3: isUnseenClass unseenClassDetection(x);
4: if isUnseenClass = true then
5: Keep only unseen classes in the attribute space;
6: a attributeDetector(x);
7: y  attributeBasedActivityClassifier(a);
8: else
9: Keep only seen classes in the feature space;
10: y  featureBasedActivityClassifier(x);
11: end if
12: return y;

attribute-based activity recognition. Specifically, if we know that a sample belongs to a

seen class where we had training data in the dataset, we can directly apply a feature-based

classifier to directly recognize the activity. On the other hand, if we think that a sample

belongs to a new class that we have not had any training data associated with, we have

to apply attribute-based activity recognition so that we can learn by reusing the known

attributes.

Now the question is: How do we know if a sample belongs to a seen class or an unseen

class? We draw an analogy between this problem and the problem of anomaly detection. A

sample from a seen class is like a typical sample, which is similar to the other samples we

had in the training data. In comparison, a sample from an unseen class is like an “anomaly”

because it does not look like anything that the system has seen before. To approach this

problem, we first train an unseen class detector using the one-class SVM classifier [12],

where only the positive samples (all samples that belong to the seen classes) are given to the

classifier. After using the unseen class detector, we then do a hybrid feature/attribute-based

activity recognition using the algorithm described in Algorithm 1.
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4.6 Discussion

In the current version of our semantic attribute-based learning approach, it is assumed that

there exists a one-to-one mapping between an activity class label and a point in the attribute

space, and that the associations between activities and attributes are fixed. This implies a

fundamental limitation that the lower bound on the minimum number of attributes is:

nA � log
2

nY (4.11)

for nY activity classes and nA di↵erent attributes, assuming binary-valued attributes are

used. From the equation, we can see that in the best case one does not need many attributes

to cover a large number of classes. For example, ten attributes can cover up to 210 = 1024

classes in the best case where no two classes are identical in the attribute space. On the

other hand, in the worst case where many attributes are highly correlated or the classes are

di↵erent in a dimension that is orthogonal to the space spanned by the attribute vectors, the

number of classes covered can be much lower than 2nA . One way to prevent these worst cases

from happening is to select attributes based on their discriminability and detectability, as

discussed in Section 7.4.4. Another possible research direction is to relax the limitation by

incorporating continuous-valued attributes, relative attributes [70], or sequence of attributes.

Furthermore, while we present an initial attempt to evaluate the attribute-based learning

approach on two datasets, it would be beneficial to expand the study to more activity

domains with a larger number of activities, attributes, and users in the future.

In the current implementation, the attributes are manually defined using common-sense

knowledge and domain knowledge as an initial attempt towards zero-shot learning for activity

recognition. To further reduce the e↵ort of one-time manual definition per class, a potential

future direction and part of our ongoing work is to automate the process using web text

mining [69] or crowdsourcing [75] as explored in the zero-shot learning literature.
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As we will see in Chapter 7, our results suggest that the performance of the zero-shot

learning model varies depending on the selected semantic attributes. Therefore, another

future direction is to develop a systematic way for semantic attribute selection based on the

discriminability and detectability of the attributes. Further, to truly exploit the advantages

of both low-level features and mid-level attributes, future work and experiments are to be

done to explore and compare various kinds of algorithms for hybrid feature/attribute-based

activity recognition.
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Chapter 5

Sequential Structure: The Semantic

Attribute Sequence Model

In the previous chapter, semantic attribute-based activity recognition is presented to model

the hierarchical structure of human activities and to reuse semantic attributes as a bridge to

recognize unseen new activity classes. However, so far we have been classifying each window

of sensor data independently and have not taken into account the temporal dependency

between neighboring windows or the temporal arrangement of attributes.

Human activities, similar to most natural phenomena and animal behaviors, are continu-

ous in nature [38]. As a result, a sensor data stream, captured by the sensor-enabled devices

that a person is carrying or encountering, is a time-series with strong temporal dependency.

It has been shown that probabilistic graphical models are useful for modeling various kinds

of time-series data [40, 86]. In this chapter, a probabilistic graphical model—the semantic

attribute sequence model—and its application to recognizing human activities are presented.
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5.1 Problem Definition

In this chapter, we expand the problem definition in Section 4.1. Consider a set of target

human activity classes, Y, that we aim to recognize. Y = YS [ YU = {{y
1

, y
2

, . . . , ys},

{ys+1

, . . . , ys+u}}. YS is the set of seen activity classes, where there exists some training

data for every class. YU is the unseen activity classes set where there are no training data

for any class. The problem is: How to train a model to recognize an unseen activity class

y 2 YU given a set of N training instances {(X(i),y(i))}Ni=1

, each including a sequence

of feature vectors X(i) = {x(i)
1

, . . . ,x(i)
T } and the corresponding ground truth class labels

y(i) = {y(i)
1

, . . . , y
(i)
T }, where y

(i)
t 2 YS 8 t, i ?

5.2 Probabilistic Graphical Models

Two types of probabilistic graphical models are considered for the problem because they

have shown promise in activity recognition [11, 57] and other related fields where the input

time series exhibit a strong temporal dependency, such as speech recognition and natural

language processing [86]. The first type is generative directed model, or often referred to as

the dynamic Bayesian network (DBN). A generative model describes the underlying process

of how the observable data are stochastically generated, typically given some parameters. For

any classification or regression problem, fitting a model to data is essentially approximating

a function f : X �! Y, where X is the input space and Y is the output (target) space. The

way that generative models approach this is to look at how likely an observed value x of

the input random variable X is generated if the value of the target random variable Y were

y. In terms of probability distribution, generative models generally estimate the probability

P (Y |X) using Bayes’ rule:

P (Y |X) =
P (Y )P (X|Y )

P (X)
(5.1)
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where P (X|Y ) is the probability distribution of “generating” X given Y , and P (Y ) is the

prior distribution of the target random variable.

The second type is the conditional random field (CRF), which is a family of undirected,

discriminative graphical model. Compared to generative models, discriminative models make

weaker assumptions. Discriminative models directly approximate the function f : X �! Y.

Probabilistic discriminative models are usually directly in the form of P (Y |X), which is the

posterior probability distribution of the target random variable Y given the input random

variable X.

We will go through the definition, analysis, and comparison of these two types of models,

and how they relate to the expanded problem definition in Section 5.1.

5.2.1 Dynamic Bayesian Networks

Let G be a directed graphical model over n random variables {X
1

, X
2

, . . . , Xn}. G is defined

as a Bayesian Network (BN) if the probability distribution over G can be factorized as:

P (X
1

, X
2

, . . . , Xn) =
nY

i=1

P (Xi|⇡(Xi)) (5.2)

where ⇡(Xi) is the set of parents of Xi (i.e. those nodes pointing directly to the Xi node

via a single directed edge). The equation is also referred to as the chain rule for Bayesian

networks [40].

A Dynamic Bayesian Network (DBN) is a Bayesian Network in which the random vari-

ables are related to each other over adjacent time steps [65]. One simple and widely-used

kind of dynamic Bayesian network is the hidden Markov model (HMM) shown in Figure 5.1,

which can be viewed as the sequential version of the naive Bayes model [86]. Another way to

view it is that dynamic Bayesian networks generalize hidden Markov models by allowing the

state space to be represented in factored form, instead of as a single random variable [65].

Hidden Markov models are suitable for problems where there is a sequence of hidden states
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YtYt�1 Yt+1

xt�1 xt xt+1

Figure 5.1: A hidden Markov model.

(or class labels) exhibiting a temporal dependency, and generating a set of observations at

each time step. As shown in Figure 5.1, Yt is the hidden state at time t, and xt is the

observed feature vector at time t.

Previous work has applied hidden Markov models to human activity recognition, where

Y corresponds the activity class label and x corresponds to the feature vector extracted

from sensor data. However, as explained in Chapter 4, this direct mapping between Y and

x does not generalize well to unseen new classes in a zero-shot learning setting. Therefore,

one intuitive generalization is to introduce the random variable A representing the mid-level

semantic attributes. The resulting dynamic Bayesian network is shown in Figure 5.2, which

can be viewed as a sequential and generative version of the model discussed in Chapter 4.

5.2.2 Relation to The n-gram Model

A sequence of semantic attributes in human activities is similar to a sentence of words in

natural languages. In natural language processing, a statistical language model assigns a

probability to a sequence of m words P (W
1

, . . . ,Wm) using a probability distribution. One

of the most widely used language models is the n-gram model. In an n-gram model, the
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Figure 5.2: Generative probabilistic graphical model: dynamic Bayesian network.

WtWt�1 Wt+1

Figure 5.3: Graphical model representation of a bi-gram model.

probability P (W
1

, . . . ,Wm) of observing a sentence W
1

, . . . ,Wm is modeled as:

P (W
1

, . . . ,Wm) =
mY

i=1

P (Wi|W1

, . . . ,Wi�1

) '
mY

i=1

P (Wi|Wi�n+1

, . . . ,Wi�1

) (5.3)

That is, it is assumed that the probability of observing the i-th word Wi in the context

history of the preceding i� 1 words can be approximated by the probability of observing it

in the shortened context history of the preceding n� 1 words (n-th order Markov property).

For example, in a bi-gram model, the context is the immediately preceding word. That is:

P (W
1

, . . . ,Wm) =
mY

i=1

P (Wi|Wi�1

) (5.4)

Comparing Figure 5.1 to 5.3 and Equation 5.2 to Equation 5.4, we can see that a bi-

gram model can be viewed as a special case of hidden Markov model. In other words, using a
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dynamic Bayesian network with first-order temporal links can be viewed as a generalization

of the bi-gram model.

5.2.3 Conditional Random Fields

Another way to model the relationship between the sequence of activities, attributes, and

sensor data features is through a family of undirected probabilistic graphical models—

conditional random fields. By assuming a di↵erent form of probability distribution over an

undirected graph, conditional random fields focus on the conditional, discriminative probabil-

ity distribution of the hidden states or class variables, rather than the generative distribution

of the observed variables. We first go through the background and definition of the condi-

tional random field, and then in the next few sections present how it can be adapted and

applied to the problem of human activity recognition.

A distribution P
�

over a undirected graph G of n random variables {X
1

, X
2

, . . . , Xn} is

a Gibbs distribution parameterized by a set of factors � = {�
1

(D
1

),�
2

(D
2

), . . . ,�k(Dk)} if

it is defined as follows:

P
�

(X
1

, X
2

, . . . , Xn) =
1

Z(X)
P̃
�

(X
1

, X
2

, . . . , Xn) (5.5)

where

P̃
�

(X
1

, X
2

, . . . , Xn) =
kY

i=1

�k(Dk) (5.6)

Z(X) =
X

X1,...,Xn

P̃
�

(X
1

, X
2

, . . . , Xn) (5.7)

P̃
�

(X
1

, X
2

, . . . , Xn) is an unnormalized measure of the probability, and Z(X) is a normalizing

constant called the partition function, which ensures a normalized probability value between

0 and 1. Each Di is a set of random variables in G. If every Di is a clique (i.e. a complete

subgraph) of G, then the graph is called a Markov network or a Markov random field (MRF).
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Figure 5.4: A linear-chain conditional random field model.

Closely related to Markov random fields, a conditional random field is an undirected

graph G whose nodes consist of two sets of nodes, X [ Y . The graph is associated with a

set of factors � = {�
1

(D
1

),�
2

(D
2

), . . . ,�k(Dk)} such thatDi 6✓X for all i. The conditional

distribution defined over the graph is:

P (Y |X) =
1

Z(X)
P̃ (Y ,X) (5.8)

where

P̃ (Y ,X) =
kY

i=1

�k(Dk) (5.9)

Z(X) =
X

Y

P̃ (Y ,X) (5.10)

One representative example, the linear-chain conditional random field, is shown in Figure

5.4. It can be observed from the form that it is closely related to the hidden Markov model,

with a di↵erent probability distribution defined over the graph. The di↵erence between them

will be further discussed in the next section.
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5.3 Generative vs. Discriminative Models

We now discuss the design considerations of choosing between generative and discriminative

models. Generative models typically impose a stronger assumption on the data generation

process. For example, in most generative models it is assumed that a continuous-valued

random variable (e.g., the value of a sensor reading) follows a Gaussian distribution. This

assumption comes from the central limit theorem in probability theory: Let X
1

, X
2

, . . . , Xn

be a sequence of i.i.d. random variables (of arbitrary distribution), each with mean µ and

variance �2, then the distribution of the standardized sum of Xi’s

Zn =

Pn
i=1

Xi � nµ

�
p
n

converges to a standard normal distribution N(0, 1). That is,

lim
n!1

P

✓Pn
i=1

Xi � nµ

�
p
n

 x

◆
= lim

n!1
P (Zn  x) =

1p
2⇡

Z x

�1
e

�y2

2 dy (5.11)

or equivalently,

X � µ

�/
p
n
�! N(0, 1) (5.12)

However, there exist many features that do not follow the assumption of Gaussian distribu-

tion, or even any kind of parametric distribution. In this case, even with perfect parameter

estimation with infinite training data, there is no way to avoid the model error, which stems

from the fact that the true model (which generates the data) is not included in the model

family we assume.

In comparison, in discriminative models we do not attempt to explain how the observed

data are generated or how likely they occur. We simply try to make a prediction or decision

based on what we have already observed. One of the major advantages of choosing dis-

criminative models is that they are better suited to including rich, overlapping features [86].
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Table 5.1: List of notations used in the semantic attribute sequence model.

Symbol Description

Yt High-level activity class label at time t
At Mid-level semantic attribute at time t

xt
Low-level D-dimensional feature vector at time t.
xt = {X

1,t, X2,t, . . . , XD,t}

�k(V)
The k-th potential function in a probabilistic graphical model
involving a set of vertices V

When the size of the training data is su�ciently representative of the whole input space,

discriminative models usually outperform generative counterparts. On the other hand, when

there are few training data available, generative models often lead to better results because

they make stronger assumptions and are usually less susceptible to the bias of the training

data.

5.4 The Semantic Attribute Sequence Model

Based on the analysis in the previous sections, we propose a probabilistic graphical model—

the Semantic Attribute Sequence model—to model the sequential structure of human activ-

ities and to recognize seen or unseen activities through a layer of semantic attributes [14].

The model is shown in Figure 5.5, and the notations are listed in Table 5.1.

The model is a variation of conditional random field (CRF) [7], which is suitable for

activity recognition because it models the temporal dependency in sequential data [38].

It also supports the use of complex features, whose distributions and dependencies may

not have a simple parametric form, by imposing weaker assumptions on the dependencies

between features compared to hidden Markov models [7, 8]. Given a sequence of observed

features X = {x
1

, . . . ,xT}, the conditional probability distribution of the activity sequence
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xt�1 xt xt+1

�1(A,x)

�3(Y,A)

�2(At, At�1)

Figure 5.5: Discriminative probabilistic graphical model of a sequence of high-level human
activities, mid-level semantic attributes, and observed low-level signal features.

Y = {Y
1

, . . . , YT}, the attribute sequence A = {A
1

, . . . , AT} given X is modeled as:

P (Y ,A|X) =
1

Z(X)

TY

t=1

KY

k=1

�k,t(Yt, At, At�1

,xt) (5.13)

where

Z(X) =
X

Y

X

A

TY

t=1

KY

k=1

�k,t(Yt, At, At�1

,xt) (5.14)

is a normalization term that ensures the probability distribution sums up to one. Each

�k,t = exp (wmfm(Yt, At, At�1

,xt)) is a potential function that consists of a model parameter

wm and a feature function fm defined over a subset of the random variables Y , A, and x.

Our probabilistic graphical model consists of three types of potential functions (thus K = 3

in our current design):

• �
1,t models the probability distribution of an attribute At given a feature vector xt:

�
1,t(At,xt) = exp

 
X

a2A

DX

d=1

wa,dxd,t · I(At = a)

!
(5.15)
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Figure 5.6: The NuActiv activity recognition framework with the semantic attribute sequence
model.

where I(p) is the indicator function that takes the value 1 if the statement p is true,

and takes the value 0 otherwise.

• �
2,t models the temporal dependency between neighboring semantic attribute values,

which can be regarded as a smoothness term between neighboring nodes:

�
2,t(At, At�1

) = exp

 
X

a2A

X

a02A

wa,a0I(At = a)I(At�1

= a0)

!
(5.16)

• �
3,t models the correlation between the activity class Y and the semantic attribute A:

�
3,t(Yt, At) = exp

 
X

y2Y

X

a2A

wy,aI(Yt = y)I(At = a)

!
(5.17)

Figure 5.6 shows how the semantic attribute sequence model fits in the NuActiv activity

recognition framework. As an extension of the approach presented in Chapter 4, the se-

mantic attribute sequence model is an alternative to the two-layer attribute-based activity

recognition. It can be used when temporal dependency is important to the activities, with-

out changing the other parts (the feature extraction part and the active learning part) of

the NuActiv framework.
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5.5 Parameter Estimation

Given the probability distribution defined in Equation 5.13, the likelihood of a training

dataset with N instances is:

L(✓) =
NY

i=1

P (Y (i),A(i)|X(i))

=
NY

i=1

1

Z(X(i))

TY

t=1

KY

k=1

�k,t(Y
(i)
t , A

(i)
t , A

(i)
t�1

,x(i)
t ) (5.18)

where ✓ = {wm} denotes the set of all model parameters to be estimated. During the o✏ine

training phase, the optimal model parameters ✓⇤ = {w⇤
m} are learned by maximum likelihood

estimation (MLE), which maximizes the log-likelihood of the training data L(✓):

logL(✓) =
NX

i=1

TX

t=1

MX

m=1

wmfm(Y
(i)
t , A

(i)
t , A

(i)
t�1

,x(i)
t )�

NX

i=1

logZ(X(i)) (5.19)

where Y
(i)
t , A

(i)
t ,x(i)

t are the class label, attributes, and features of the i-th instance in the

training data, respectively.

5.6 Regularization

While the maximum likelihood estimation can fit the model to the training data, it can

lead to the problem of overfitting. Overfitting occurs when a statistical model describes

random error or noise instead of the underlying relationship. Overfitting generally occurs

when a model is excessively complex, such as having too many parameters relative to the

number of observations. For example, there might be a lot of learned weights wm’s that have

large values, which fit the training data well but generalize to future testing data poorly.

Observing a decrease in the training error and an increase in the testing error at the same

time is an indicator of overfitting. In other words, overfitting occurs when a model begins

to memorize training data rather than learning to generalize from trend.

68



To avoid the overfitting problem, regularization is evaluated and incorporated into the

training process. Specifically, we maximize the regularized log-likelihood of the training data:

logLr(✓) =
NX

i=1

TX

t=1

MX

m=1

wmfm(Y
(i)
t , A

(i)
t , A

(i)
t�1

,x(i)
t )

�
NX

i=1

logZ(X(i))� �
MX

m=1

w2

m (5.20)

where the last term is the L2-regularization term that penalizes large wm values with a

weighting � to prevent overfitting [7]. Adding the L2-regularization term in the log-likelihood

space is equivalent to multiplying the data likelihood by a Gaussian prior. In other words,

instead of maximum likelihood estimation, we use maximum a posteriori (MAP) estimation

where the prior probability of the parameters are Gaussian-distributed. In the experiments,

� is empirically set to 50 based on a cross-validation test. The optimization problem ✓⇤ =

argmax✓ Lr(✓) is solved using L-BFGS [7], a widely used optimization algorithm.

5.7 Inference

The goal of activity recognition is to infer the sequence of activities Y (may be seen or

unseen) given a sequence of observed features X, through a layer of attribute sequence A.

During the online testing phase, the states of the sequence Y , A with maximum likelihood

are inferred using the Junction Tree algorithm [40]. The Junction Tree algorithm is a message

passing algorithm for performing inference by belief propagation in a graphical model. Since

all the target classes in Y are described using the semantic attributes in the attribute space

A in the form of an Activity-Attribute Matrix, we are able to infer the value y⇤t that Yt takes

on even if y⇤t corresponds to an previously unseen new activity, i.e. y⇤t 2 YU .
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5.8 Discussion

The proposed semantic attribute sequence model is only one of the possible models in the

design space. There are many alternatives using either generative or discriminative graphical

models. For example, in our current graphical model, the nodes are only connected to their

immediate neighbors. As a result, long-range dependencies between nodes are not directly

taken into account in this model. In cases where long-range dependencies are important,

additional links can be added between distant class nodes, attribute nodes, or feature nodes.

For example, the skip-chain conditional random field [23, 86], which has shown promise in

natural language processing, can be applied to activity recognition as well.

In addition to adding temporal links, another research direction is to expand the graphical

model vertically. In other words, the model is not limited to the three-layer structure.

Additional layers could be added to represent composite attributes or higher-level complex

activities. As in most machine learning problems, the challenge of having a more complex

model is to balance the tradeo↵ between model complexity and generality, and to avoid

overfitting the training dataset. Further research e↵ort is also required to find out the best

way to acquire human knowledge about the compositionality and relationship of multiple

layers of complex activities and attributes.

70



Chapter 6

Human in The Loop: Active Learning

for Activity Recognition

So far we have focused on the scenario where no training data for the target class are available.

What if we have the opportunity to acquire some ground-truth labeled data from users?

Obviously, if we ask users to label every single sample, we can achieve the best recognition

accuracy possible. However, it is impractical to ask a user to label his/her activity every

single minute because it would be extremely intrusive. The more frequently we prompt the

users for inputs, the more intrusive the system is [81]. This observation motivates us to

design a user feedback loop for the NuActiv system using active learning algorithms [81].

Our idea is simple: We ask a user for labels only when we are highly uncertain about our

recognition result. The intuition is that asking the user to confirm an uncertain recognition

result can help improve the activity recognition system the most. To achieve this, the ideas

and techniques of uncertainty sampling in the field of active learning are used.
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6.1 Problem Definition

The problem of active learning for activity recognition in this work can be formalized as

follows. Let U be a set of unlabeled instances, U = {x(u)}Uu=1

, and L be a set of labeled

instances, L = {(x(l), y(l))}Ll=1

. Let X and Y be the feature space and the activity class

space, respectively. As mentioned in Chapter 4, an activity recognition system is essentially

a classifier function f : X ! Y. Let f ⇤(L) be the optimal classifier trained on L. Suppose

there is a family of select-and-label functions h, which operate on a set of unlabeled instances

and return an instance selected from the set and its label. That is, (x(v), y(v)) = h(U). In

the real-world scenario, h is a process where the system selects an unlabeled instance and

acquires its label from a source, such as a human annotator. Furthermore, let m(f,T) be

a certain performance metric function which returns a real value given a classifier f and a

test set T, where a larger value of m indicates a better performance. For example, m can be

accuracy, precision, recall, or some other measure. Given these definitions, the problem of

active learning is to find an optimal select-and-label function h⇤ such that:

h⇤ = argmax
h

m (f ⇤(L [ {h(U)}),T) (6.1)

That is, active learning aims to find an optimal way to select an instance from a set of

unlabeled instances and obtain its label, such that the performance of the classifier (trained

on the labeled instance set plus the newly labeled instance) is maximized. In the following

sections, we will give an overview of active learning and the details of the approach used in

this work.

6.2 Overview of Active Learning

The idea of active learning algorithms is that a machine learning algorithm can perform

better when presented with less training data if it is allowed to choose the data from which
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Figure 6.1: The active learning part in the NuActiv activity recognition framework.

it learns [80]. This is di↵erent from traditional “passive” learning systems, which gener-

ally induce a hypothesis to explain whatever training data happens to be available (e.g., a

collection of labeled instances) [81].

One common assumption of active learning is that obtaining an instance is significantly

less expensive than obtaining its label. This is true in many real-world applications. For

example, downloading a large collection of images from the internet is relatively low-cost

compared with asking humans to assign class labels to them.

The goal of active learning is to “get the most out of the least.” In other words, the

goal is to achieve a certain amount of targeted improvement on the prediction accuracy of a

learner using as few new labeling actions as possible. With this goal in mind, we integrate

active learning into the NuActiv framework, as highlighted in Figure 6.1. We will describe

the approach in more detail in the following sections.
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Figure 6.2: Illustration of stream-based active learning.

6.3 Sampling Scheme

There are two types of selective sampling schemes. The first one is Stream-Based Sam-

pling(Figure 6.2), where unlabeled instances are typically drawn one at a time from the

input source, and the system must decide whether to query or discard each instance. The

second scheme is Pool-Based Sampling (Figure 6.3), where a large pool of unlabeled data is

available. Having observed all the unlabeled instances, the system can ask for the label of

one instance at a time according to certain decision criteria.

Considering the pros and cons of the two schemes, I propose a hybrid stream/pool based

sampling scheme that is more suitable for the scenario of human activity recognition using

mobile phones or wearable devices. The pool is not so big so that a user forgets what

he/she did during the time interval asked by the system, yet large enough for the system to

select a good sample to ask the user for a ground-truth label. The detailed settings of the

experiments are described in Chapter 7.
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6.4 Uncertainty Sampling Metrics

In this work, several di↵erent metrics are used to measure the uncertainty of a sample x in

the unlabeled sample pool U to the classifier.

6.4.1 Least Confident

Suppose the classifier output is ŷ, which satisfies the condition that

P✓(Y = ŷ|x) � P✓(Y = y0|x), 8y0 6= ŷ (6.2)

Under the least confident sampling metric, the learner will initiate a request for a ground-

truth label when the confidence score of the classifier output ŷ given the input feature x of

a sample is minimum. That is,

x⇤
LC = argmin

x2U
P✓(ŷ|x) (6.3)
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6.4.2 Minimum Margin

The learner initiates a request for a ground-truth label when the di↵erence between the

confidence of the first and the second likely classes (ŷ
1

and ŷ
2

, where where P✓(Y = ŷ
1

|x) �

P✓(Y = ŷ
2

|x) � P✓(Y = y0|x), 8y0 /2 {ŷ
1

, ŷ
2

}) is small:

x⇤
M = argmin

x2U
[P✓(ŷ1|x)� P✓(ŷ2|x)] (6.4)

6.4.3 Maximum Entropy

Entropy, in information theory, is measure of the uncertainty associated with a random

variable. H✓(Y |x) = �
P

y P✓(y|x) logP✓(y|x), given a sample x and classifier model ✓,

measures how uncertain the classifier is about the value of class label Y . Therefore, we can

ask the user for a ground-truth label when the entropy over Y given a specific sample x is

the largest among all x in consideration:

x⇤
H = argmax

x2U

 
�
X

y

P✓(y|x) logP✓(y|x)
!

(6.5)

6.5 Outlier-Aware Uncertainty Sampling

Use of uncertainty sampling, however, can run the risk of choosing outliers as samples to

query [81]. The reason is that outliers are far away from the other samples of the same

class in the feature space; therefore, for most uncertainty metrics we use, outliers are likely

to receive higher uncertainty scores than other samples. Unfortunately, knowing the label

of outliers does not help in training a classifier because outliers are exceptions rather than

representative examples that a classifier should learn from. As a result, actively choosing

outliers for training can even “mislead” the classifier and end up degrading the accuracy.

To mitigate the negative a↵ect of outliers, we used Outlier-Aware Uncertainty Sampling

in tandem with the uncertainty sampling metrics. The idea is to select samples that are
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uncertain but not outliers, i.e., samples that are representative of the underlying distribution

(e.g. in a dense region of the feature space). To determine whether a sample is representative

of the underlying distribution, we calculate the mean similarity between this sample and all

the other samples. If a sample is close to many other samples in the feature space, its mean

similarity with all the other samples will be high; on the other hand, for an outlier that is

far from most samples, the mean similarity will be low. Incorporating this constraint into

the uncertainty sampling metric, the new objective function is:

x⇤
OA = argmax

x2U

 
�(x) · 1

NU

X

x02U

S(x, x0)

!
(6.6)

The first term �(x) refers to one of the uncertainty metrics we described in Section 6.4.

To be consistent with the argmax objective, for Least Confident uncertainty metric, �(x)

is defined as exp(�P✓(ŷ|x)). Similarly, �(x) = exp(�(P✓(ŷ1|x) � P✓(ŷ2|x))) for minimum

margin metric, and �(x) = H✓(Y |x) for the maximum entropy metric. The second term

1

NU

P
x02U S(x, x

0) measures the mean similarity, S(x, x0), between a sample x and all other

samples x0 in the unlabeled sample pool U, where NU is the total number of samples in U.

The complete algorithm is shown in Algorithm 2.

6.6 Discussion

The detailed protocol and the results of the active learning experiment is presented in Section

7.7. In our active learning experiment, it is assumed that the users are willing to provide

labels and all the labels provided by the user are correct. Related study or future work

on usability and interruptibility [74] can be further leveraged to adjust the frequency of

requesting labels from users based on their preferences, and to improve the e↵ectiveness

of active learning in real practice. It would also be beneficial to study the ideal way (e.g.

haptic, gestural, or audio-based interfaces) to engage users to provide labeled data for activity
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Algorithm 2 Outlier-Aware Uncertainty-Sampling Active Learning Algorithm for Activity
Recognition
1: Input: A sequence of initial unlabeled instances U = {xi|i = 1, ..., NU}; A set of initial

labeled instances L = {(xi, yi)|i = 1, ..., NL}; An initial classifier model ✓; A pool window
length Lpwin

2: Output: Updated activity classifier model ✓
3: /* NU: the number of unlabeled samples available in the pool window */
4: while Activity Recognition Service is running do
5: while NU < Lpwin do
6: d getCurrentSensorData();
7: x extractFeatures(d);
8: insert x into U;
9: NU  NU + 1;
10: end while
11: maxScore �1; x⇤  x

1

;
12: for i from 1 to Lpwin do
13: score getOutlierAwareUncertainty(xi);
14: if score > maxScore then
15: maxScore score;
16: x⇤  xi

17: end if
18: end for
19: y⇤  queryForLabel(x);
20: insert (x⇤, y⇤) to L;
21: ✓  trainClassifier(L);
22: Remove all samples in pool U; NU  0;
23: end while
24: return ✓;

recognition using wearable and mobile devices.

In the current algorithm, once the best sample to query is selected from a pool, the rest of

the samples in the pool are discarded and the system begins to collect a new pool of samples.

One possible way to improve this is to keep the top K samples, which are rolled over to the

next pool for consideration. Further user study may be required to evaluate the impact of

asking a user to recall an activity that was performed a while ago, and to determine the

optimal way to select a timeout threshold for unlabeled samples.
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Chapter 7

Evaluation

In the previous chapters, we have covered the major research problems and challenges in hu-

man activity recognition, and have presented the details of the proposed activity recognition

framework.

In this chapter, the e↵ectiveness of the proposed approaches will be evaluated through

system implementation, dataset collection, and real-world experiments. The main questions

that are investigated and answered in this chapter are summarized as follows:

• What is the overall precision and recall rate of unseen activity recognition using Nu-

Activ? How does the performance vary among classes? (Section 7.4.1)

• How does the recognition accuracy change with the number of unseen classes? (Section

7.4.2)

• How does the performance vary with the use of di↵erent classification algorithms for

attribute detectors? (Section 7.4.3)

• How to select attributes based on their importance to unseen activity recognition?

(Section 7.4.4)

• What is the cross-user performance, i.e. when the users in the training set are di↵erent

from those in the testing set? Is the system able to generalize from one or a few users
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to many new users? (Section 7.4.5)

• How does the attribute detection accuracy vary with the position and combination of

the devices and sensors? (Section 7.4.6)

• How does NuActiv perform on recognizing unseen daily life activities? (Section 7.5.2)

• What is the e↵ect of taking into account the sequential structure of human activities

in NuActiv (Section 7.6)?

• How e�ciently can the system reinforce its performance using active learning? How

does the performance vary with di↵erent active learning algorithms? (Section 7.7.1)

• What is the e↵ect of outlier-aware uncertainty sampling on active learning algorithms?

(Section 7.7.2)

7.1 System Implementation

We have implemented and tested the system on Nexus S 4G phones and MotoACTV wrist-

watches [63]. A picture of our system running on these two types of devices is shown in

Figure 7.1. The Nexus S 4G phone has a three-dimensional accelerometer and a gyroscope.

The MotoACTV has a three-dimensional accelerometer. Both have Wi-Fi, Bluetooth radio,

and GPS.

For the software part, we have implemented the code for feature extraction and the clas-

sification algorithm in the Java programming language. The code runs on the Android Oper-

ating System installed on the Nexus S 4G phones and the MotoACTV. For the classification

algorithm, the Support Vector Machine classifier is implemented using the LibSVM library

[12]. The probabilistic graphical model is implemented based on the Undirected Graphical

Model (UGM) toolbox [78]. The screenshots of several operations of the application on the

phone are shown in Figure 7.2.

All of the system components can run on a mobile phone or sensor-enabled wristwatch in
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Figure 7.1: NuActiv running on MotoACTV wristwatch (left) and Nexus S 4G phone (right).

our implementation. In cases where o✏ine model training is needed, the attribute detection

models can be pre-trained on a server and then be downloaded to a mobile device.

7.2 Datasets

7.2.1 Exercise Activity Dataset

We conducted an experiment involving exercise activities on 20 subjects. Each subject is

asked to perform a set of 10 exercise activities as listed in Figure 4.4 with 10 iterations.

Before the experiments, the subjects are given instructions on how to perform each of the

10 exercise activities. More information about these activities can be found in the literature

[13, 64]. During the experiment, each subject is equipped with three sensor-enabled devices:
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Activity Recognition Output ! Requesting User for Labels! Sensor Data & Feature Dashboard!

Figure 7.2: The screenshots of our mobile app running NuActiv activity recognition system.

A Nexus S 4G phones attached to the arm using an armband, a MotoACTV wristwatch,

and a second MotoACTV unit fixed at the hip position using a clip. A pair of three-pound

dumbbells is also provided to the subject to perform some of the free-weight exercises (e.g.

Dumbbell Side Raises, Dumbbell Curl, etc.).

For sensor data collection, we collected accelerometer and gyroscope data using our mo-

bile application with a sampling rate of 30 Hz. The accelerometer and gyroscope data are

acquired through the Sensor API [24] in the Android operating system [73]. The coordinate

system is shown in Figure 7.3. For feature extraction, the sliding window size is empirically

set to 1 second with 50% overlap, based on a 10-fold cross-validation test on the validation

dataset to find the optimal parameter.
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Figure 7.3: Coordinate system relative to a mobile device used by the Sensor API in the
Android operating system. The coordinate system is the same as the one discussed in Figure
3.2 of Section 3.3.1.

7.2.2 Daily-Life Activity Dataset

For the scenario of recognizing daily-life activities, we use a published dataset collected

by Technische Universitat Darmstadt (TU Darmstadt) [33, 83]. The dataset includes 34

daily life activity classes (including the unlabeled class) collected from one subject for seven

days. The sensor data were collected using a wearable sensor platform with a three-axis

accelerometer (ADXL330) worn on the wrist and the hip of the subject. The sampling rate

is 100Hz, and the features are computed from a sliding window of 30 seconds with 50%

overlap.

To apply NuActiv to the TU Darmstadt daily-life activity dataset, we defined a list of 17

attributes (as shown in Table 7.1) and an activity-attribute matrix1 based on the 34 daily life

activities in the dataset. It is to be noted that the list is not mutually exclusive or collectively

exhaustive. We show that these semantic attributes defined by human knowledge can enable

1The activity-attribute matrix can be downloaded from the supplemental materials at http://www.ece.
cmu.edu/

~

hengtzec/data/DLActivityAttributeMatrix.pdf
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Table 7.1: Attribute list for daily life activities.

Type Attribute Name

Basic Sitting, Standing, Walking
Posture PostureUpright, PostureKneeling
Hand/ Arm HandsOnTable, HandAboveChest, WristMovement,

ArmPendulumSwing

Motion Type IsTranslationMotion, IsCyclicMotion, IsIntenseMotion
Relation IsWashingRelated, IsMealRelated
Time IsTimeMorning, IsTimeNoon, IsTimeEvening

unseen activity recognition using NuActiv in Section 7.5.

7.3 Evaluation Methodology

We used leave-two-class-out cross validation, the most widely used validation method used

in the literature of zero-shot/zero-data learning [45, 68]. The validation scheme is used for

recognizing unseen classes that do not have any sample in the training set. The traditional

10-fold cross validation is not applicable to unseen class recognition because it does not leave

out all samples of certain “unseen” classes in the training step, so that every class will have

some samples in the training set.

The leave-two-class-out cross validation works as follows. Suppose there are a total

of N classes. Each time we first train our system on (N � 2) classes, and then test the

discriminative capability of the classifier on the remaining 2 classes that were “unseen” by

the system during the training process. We repeat this test for all
�
N
2

�
unseen/seen class

combinations. Finally, the average performance over all tests is reported.

The results are reported in precision, recall, F
1

-score, and accuracy. These metrics show

di↵erent aspects of the performance of an activity recognition system. Specifically, the
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metrics are defined as follows:

precision =
TP

TP + FP
(7.1)

recall =
TP

TP + FN
(7.2)

F
1

-score =
2 · precision · recall
precision+ recall

(7.3)

accuracy =
TP + TN

TP + TN + FP + FN
(7.4)

where TP , FP , TN , and FN denotes true positive, false positive, true negative, and false

negative, respectively. Precision indicates the percentage of times that a recognition result

made by the system is correct. Recall means the percentage of times that an activity per-

formed by a user is detected by the system. F
1

-score is a integrated measure that combines

both. For overall performance across all classes, the accuracy is computed as the number of

correctly recognized samples divided by the number of all samples in the test set.

7.4 Case Study I: Exercise Activities

7.4.1 Unseen Activity Recognition Result

The confusion matrix of recognizing previously unseen exercise activities is shown in Figure

7.4. The rows indicate ground-truth classes, while the columns indicate recognized classes.

The correct predictions fall on the diagonal, whereas large o↵-diagonal values indicate chal-

lenges for the system. The average accuracy is 79% over all activities, among which the

system achieved a promising recognition accuracy of 80-90% for five activity classes. It is

to be noted that in these results, the target activities are recognized under the situation

that no training data of any target activity class were given to or seen by the system during

the training phase. The results support our hypothesis that unseen new human activities

can be recognized with a respectable accuracy using the proposed semantic-attribute-based
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Figure 7.4: Confusion matrix of recognizing unseen exercise activities using the two-layer
attribute-based recognition presented in Chapter 4. The numbers are shown in percentages
(rows: ground-truth classes; columns: recognized classes).

learning approach in NuActiv.

One observation that we can draw from the experimental result is that misclassification

usually happens when two activities only di↵er in one attribute. In this case, the success

of recognition depends heavily on the detection accuracy of the presence of that particular

attribute. For example, “DumbbellFly” is classified as “ChestPress” because these two

activities are inherently similar and are only di↵erent in the attribute “ArmCurl” (see the

activity-attribute matrix in 4.4). The problem can potentially be overcome by including

additional sensors/modalities so that other discriminative attributes can be used to further

distinguish two similar classes.
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Figure 7.5: Precision and recall rate of recognizing unseen activities using the exercise
dataset.

7.4.2 The Impact of The Number of Unseen Classes

The capability to recognize unseen new activity classes is built on the knowledge learned

from the seen activity classes. As we can imagine, if all the classes were unseen, the system

has nothing to learn from and thus is not able to recognize any activity with reasonable

accuracy. To understand the capability and limitation of our approach, we conducted the

following experiment: For a total of k classes, we vary the number of unseen classes (nu) in

the testing data from 2 to k, where the corresponding number of seen classes (ns = k � nu)

in the training data varies from k� 2 to 0. For each number of unseen classes, we repeat the

test for all
�

k
nu

�
combinations and report the average results.

The result is shown in Figure 7.6, where the total number of classes is ten (k = 10). We

observe that the recognition accuracy gradually degrades as the number of unseen classes in

87



2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

80

90

Number of Unseen Classes in The Testing Data

R
ec

og
ni

tio
n 

Ac
cu

ra
cy

 (%
)

 

 

Semantic Attribute−Based
Baseline

Figure 7.6: Accuracy vs. number of unseen classes in the testing dataset.

the testing data increases (i.e. the number of seen classes in the training data decreases).

This is in accordance with the expectation, because it gradually becomes di�cult for the

system to generalize to a large number of unseen activity classes based on only a few seen

classes. Furthermore, a successful unseen activity recognition relies on an accurate attribute

detection. To accurately detect an attribute, it is important for the training classes to cover

both positive and negative examples of the attribute. Therefore, the larger the seen-to-unseen

class ratio is, the more likely that we can recognize unseen activities e↵ectively.

We also compare our results with a baseline approach. The baseline approach is the

random-guess prediction given the number of unseen classes, which is the best that a su-

pervised learning-based activity recognition system can do, assuming each class is equally

probable and there are no training samples for the target classes. From Figure 7.6, we can

see that our semantic-attribute-based approach is 20-30% better than the baseline for most
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Figure 7.7: F1-score of unseen activity recognition vs. di↵erent classifiers for attribute
detectors.

cases, except for the cases where almost all the classes were unseen (when the system has

seen zero to two classes in the training data). The results suggest that NuActiv is a viable

approach to unseen activity recognition.

7.4.3 Comparison of Di↵erent Attribute Detectors

We also compare the SVM classifier with other classifiers that are widely used in the related

work, including the Decision Tree classifier, Naive Bayes classifier, and k-Nearest Neighbor

(k-NN) classifier [4, 51, 53]. For k-NN, the optimal result with k = 3 is reported.

The results are shown in Figure 7.7. SVM outperforms the Decision Tree and Naive Bayes
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classifier on average and for most of the classes if we break down the results by activity class.

Overall, the accuracy using k-NN is comparable to the result using SVM. However, k-NN

classification requires storage of and access to all the training data. Thus, k-NN is less

scalable for a large dataset and less practical to run on mobile devices given their limited

storage. Therefore, we used SVM for our experiments and implementation on the mobile

devices.

7.4.4 Evaluation of Attribute Selection

We now investigate the importance of each semantic attribute and gain insights into at-

tribute selection. The selection of attributes is important in two aspects. The first one is

discriminability, meaning how well can an attribute discriminate between di↵erent high-level

classes. The second one is detectability, namely how accurately can we detect the presence

or absence of an attribute.

To test the discriminability, we conducted the following experiment: First, we run the

unseen activity recognition test using all nA semantic attributes (nA = 7 for exercise activi-

ties). Then, we run nA tests where each time we exclude one of the attributes and observe

the change of the performance. If the performance drops significantly when an attribute is

excluded, then being able to detect this attribute is important to accurately recognize the

high-level activities. On the other hand, if the performance does not change much without

an attribute, then the attribute is less likely to be important. To test the detectability, we

compute the detection accuracy of each attribute. The accuracy is computed as the num-

ber of times an attribute is correctly detected divided by the number of times an attribute

appears in the samples of the testing data.

The results of the discriminability and detectability test are shown in Figure 7.8 and 7.9,

respectively. From the average F1-score (the rightmost bar group) in Figure 7.8, we can

see that the attributes ArmUp, ArmDown, and ArmFwd have a higher impact on the activity
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Figure 7.8: Discriminability: F1-score vs selected attributes. Each bar in a group represents
an attribute that was unselected.

recognition performance than other attributes. However, from the results broken down by

activity class, we can see that an attribute may be important to some activity classes but not

for other classes. Therefore, the selection of attributes also depends on the characteristics of

the targeted classes. One reason for these phenomena is the inherent attribute-composition of

an activity. Another possible reason is that some attributes are easier to detect than others.

As shown in Figure 7.9, the system generally achieves higher accuracy detecting the first

four attributes (ArmUp, ArmDown, ArmFwd, and ArmBack). These di↵erences in detectability

can be caused by the positions and types of the sensors used, the type of classifier used for

detection, and the consistency of the presence of an attribute given an activity is performed.
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7.4.5 Cross-User Activity Recognition Results

It is important for an activity recognition system to not only be able to recognize the activities

of the users it has seen, but also be able to generalize to the activities of new users it has

never seen before. Our main hypothesis is: The association between an activity and the

semantic attributes, as specified in the activity-attribute matrix, is the same across users.

When di↵erent users perform the same activity, although the low-level sensor data vary, the

mid-level attributes hold across users and thus the trained attribute model can be trained

on one person and applied to another.

To evaluate the generalizability and the limitation of our approach, we randomly divide

the 20 users into two equal sets. While fixing the test set to be the 10 users in the first

held-out set, we iterate the number of training users from 1 to 10, randomly chosen from

the second set. For each test, we repeat the random choice 100 times and report the average

performance.

The results are shown in Figure 7.10. As we can see, the performance stays approximately
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Figure 7.10: Cross-user recognition accuracy vs. number of seen users in the training data.
The testing set includes 10 users that are di↵erent from those in the training data.

constant when the number of seen users in the training data is equal to or greater than five.

Furthermore, the precision, recall, and F1-score are almost the same as the case where the

data of all the users exist in both the training set and the testing set, as shown previously in

Figure 7.5. The F1-score decreases slightly when number of seen users in the training data

falls below four, yet the system can maintain an F1-score of over 70% when having seen 2–4

users in the training data. The edge case happens when the system has only seen one user

in the training set, where the F1-score is 60%. Overall, the system is able to achieve 70-80%

accuracy after training on two or more users in the training set.

7.4.6 Impact of Device Position on Attribute Detection Accuracy

An attribute is often inherently associated with a characteristic of a human activity or

a motion of a specific part of the human body. Therefore, we conducted experiments to

understand how the position or the set of positions at which the sensors are placed a↵ects
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the attribute detection accuracy, which in turns a↵ects the final activity recognition accuracy.

When collecting the exercise activity dataset, we have placed sensor-enabled phones/devices

on three di↵erent body positions of the users (as described in Section 7.2.1).

The experimental results using sensor data from di↵erent body positions is shown in

Figure 7.9. It is observed that while using the upper arm sensors (phone in an armband)

usually achieves better and more stable accuracy than using the wrist sensors (wristwatch),

combining these two data sources leads to improvement in accuracy in some cases. One pos-

sible reason is that while the movement of the wrist is of larger variation and less predictable,

it complements the limitation of what can be observed by the upper arm sensors. Adding

the hip sensor did not improve the accuracy, possibly because most attributes defined in our

case study do not involve changes in lower-body postures. It is to be noted that the results

do depend on the activity domains and sensor types.

7.5 Case Study II: Daily-Life Activities

7.5.1 Reproduction of Results in Previous Work

For the daily life activity recognition experiments, we used the public dataset of 34 daily life

activities provided by TU Darmstadt [33], as described in Section 7.2.2. We first implement

the supervised learning method closely following the experiment protocols in the paper of

the dataset provider [33]. Given that all the classes were seen in the training set, our imple-

mentation achieved 71.2% accuracy, which is very close to 72.7% as reported in the previous

work [33]. This reproduction of previous results confirms that our use and understanding of

the dataset and features are valid.
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Figure 7.11: Precision, recall, and F1-score of recognizing unseen daily life activities in the
TU Darmstadt dataset using NuActiv.
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7.5.2 New Task: Recognizing Previously Unseen New Daily Life

Activity

After successfully reproducing the results in the previous work, we proceeded to a new

problem—recognizing unseen daily life activities—which has not been addressed before in

the activity recognition literature. We applied the NuActiv system and algorithms to the 34-

daily-life dataset [33], and evaluated the performance using the same evaluation methodology

(leave-two-class-out cross validation) as described in Section 7.3. The results are shown in

Figure 7.11. We can see that for some classes the system can achieve high recall and lower

precision, and vice versa for other classes. Overall, the system achieves 60-70% precision

and recall rate for most classes. The mean precision and recall rate is 52.3% and 73.4%,

respectively, averaged over all classes. Some classes, such as “sitting-desk-activities” or

“sitting-talking-on-phone”, do not have a clear di↵erence in attributes since we only have

inertial sensor data available in the dataset. Therefore, the system tends to have a low

precision rate on these classes. This problem can be alleviated by incorporating extra sensing

modalities such as ambient sound. While there is clearly room for improvement, the fact

that our system is able to recognize an unseen daily life activity class with no training data

with a reasonable accuracy is a new result in the field of activity recognition.

7.6 Evaluation of Semantic Attribute Sequence Model

In the previous sections, we have discussed the results using the NuActiv framework with the

attribute-based learning algorithm presented in Chapter 4. In this section, we will discuss

the experimental results where the sequential structure is added to the framework using the

semantic attribute sequence model presented in Chapter 5.
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Figure 7.12: Confusion matrix of unseen exercise activity recognition using the semantic
attribute sequence model presented in Chapter 5. The numbers are shown in percentages
(rows: ground-truth classes; columns: recognized classes).

7.6.1 Case Study I: Unseen Exercise Activity Recognition

As shown in the confusion matrix in Figure 7.12, our approach achieved 76% precision and

72% recall averaged over all activities. The standard deviation of precision and recall across

di↵erent users is 13% and 16%, respectively. The results show that even without training

samples, unseen new activities can be recognized with a promising accuracy. The results

are also comparable to those reported in Section 7.4.1. On the other hand, the limitation of

the approach is observed when two activities only di↵er in one or two attributes (e.g. Push

Up and Dumbbell Side Raises), or when an attribute is not consistent for every person (e.g.

ArmCurl).

We compare our approach with existing supervised learning approach using a linear-chain

CRF [38], which belongs to the same model family except without the semantic attribute

layer. Since supervised learning cannot recognize unseen activities without training samples,

we compare with the cases where it is possible to obtain n samples of each unseen activity

performed and labeled by the users (denoted by n-shot learning). In contrast, zero-shot
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Figure 7.13: Comparison between proposed zero-shot learning and n-shot supervised learning
(n labeled training samples for each target activity).

learning can be thought as having users provide a one-time description of an unseen activity

using the semantic attributes. As shown in Figure 7.13(a), zero-shot learning outperforms

supervised learning with up to 200 labeled samples. This shows that zero-shot learning is

e↵ective for bootstrapping an activity recognition system when su�cient labeled samples for

every activity are not available. On the other hand, in cases where obtaining a large amount

of labeled data is inexpensive for every activity, supervised learning tends to achieve higher

accuracy.
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Figure 7.14: Cross-user recognition accuracy using the semantic attribute sequence model.
The testing set includes 10% of the users, which are di↵erent from those in the training data.

7.6.2 Case Study II: Unseen Daily Life Activity Recognition

We applied the same approach to the daily life activity dataset. The average precision and

recall is 69% and 75%, respectively, which outperformed the results (52.3% precision and

73.4% recall) reported in [16]. The results suggest that the semantic attribute sequence

model can better capture the temporal dependency in the daily life activities, in comparison

to applying an activity classifier to each frame independently [16]. As shown in Figure

7.13(b), the F
1

-score of zero-shot learning outperforms supervised learning approach with

less than 100 labeled samples. Possible reasons for a lower precision than the exercise activity

recognition results include a larger number of di↵erent activity classes, and a larger feature

variation in daily life activities because they are less well-defined than exercise activities.

7.6.3 Cross-User Unseen Activity Recognition Results

As discussed in Section 7.4.5, the ability to apply the model learned from some users to

new users is important for an activity recognition system. Figure 7.14 shows the results

on unseen exercise activity recognition using the semantic attribute sequence model when

the users in the training set and testing set are di↵erent. Our approach achieves a stable
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accuracy of 70-75% when 20% or more users were seen in the training set. The general

trend of the results is similar to those reported in Section 7.4.5 using the semantic attribute-

based activity recognition. The results show the learned attribute sequence model can be

generalized to new users and new activities, and the performance degrades gracefully with

the decrease of seen users. In comparison, in the experiments where the training data and

testing data are drawn from the same user, the average precision and recall increases to 78%

and 76%, respectively.

7.7 Evaluation of Active Learning for Activity Recog-

nition

7.7.1 Comparison of Active Learning Algorithms

In addition to unseen activity recognition, we further evaluate how the system can improve

itself using minimal user feedback. The active learning algorithms we used for the experiment

are explained in Chapter 6.

Following the experiment protocols in the active learning literature [81], our experiment

setting is described as follows. The data set we used is the 34-daily-life dataset [33]. Each

sample is a feature vector extracted from a window of 30 seconds of sensor data. An initial

labeled set L of 50 samples from Day 1 of the dataset is provided to the system. Then, an

unlabeled set U of 11087 samples from the rest of Day 1 to Day 5 is sequentially provided

to the system in time-order. Each time the system improves itself using the newly acquired

labeled data, we evaluate its performance on a separate test set T of 5951 samples from Day

6 and 7. The active learning is performed as described in Algorithm 2, with Lpwin = 100

and SVM classifiers.

The results are shown in Figure 7.15. Using active learning, the classifier generally
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Figure 7.15: Recognition accuracy vs. user labels requested in the active learning experiment.

improves faster (using less labeled samples from the user) than the random baseline (i.e.,

randomly choosing samples from the unlabeled dataset and asking the user for labels without

using active learning approaches). The margin-based uncertainty metric achieved 70% accu-

racy using only 30 labeled samples from the user and converged faster than other approaches.

The entropy and least-confident metrics yielded comparable results.

7.7.2 Outlier-Aware Uncertainty Sampling Results

We further incorporate the outlier-aware uncertainty sampling as described in Section 6.5,

and compare the results with those not using outlier-aware uncertainty sampling. The results

are shown in Figure 7.16. It is observed that given the same number of user-labeled samples

requested by the system, using outlier-aware uncertainty sampling leads to comparable or

better accuracy in some cases when compared to active learning algorithms without outlier-

awareness. In general, though, we do not observe a large improvement on the dataset. The
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(a) Least-confidence-based sampling.
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(b) Margin-based sampling.
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(c) Entropy-based sampling.

Figure 7.16: Comparison between the learning curve of active learning algorithms
with/without outlier-aware uncertainty sampling.

actual amount of improvement depends on the relative weighting between the uncertainty

term and the outlier-awareness term in Equation 6.6, and on whether there are a large

number of outlier samples in the input data.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis presents a study of the hierarchical and sequential structure of human activities,

and proposes a new activity recognition framework. Most existing machine-learning-based

approaches can only classify sensor data into one of the pre-trained classes in the train-

ing data, and thus cannot recognize any previous unseen class without training data. To

overcome the existing challenges and limitations, the new NuActiv framework uses semantic

attribute-based zero-shot learning along with a probabilistic graphical model to recognize

unseen new activity classes. This zero-shot recognition is achieved by injecting human knowl-

edge about the relationship between high-level activities and mid-level semantic attributes,

and by reusing and generalizing the attribute model learned for other seen activities. Fur-

thermore, the active learning approach e�ciently improves the recognition accuracy of the

system using minimal user feedback.

Experimental results show that the proposed approach achieves 70-80% precision and

recall in recognizing previously unseen new activities, and outperforms supervised learning

where hundreds of labeled samples for the unseen activities are provided to the supervised
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learner. This thesis reports the first results on attribute-based zero-shot learning for human

activity recognition. The results extend and advance the state of the art in human activity

recognition, and represent an important step towards bridging the gap between computers

and humans.

8.2 Future Work

Building on the previous work in ubiquitous computing and machine learning, this thesis also

opens doors for many future research opportunities in the related fields. Some possible future

research directions and areas for improvement are summarized in the following subsections.

8.2.1 From One to Many: Group Activity Recognition

This thesis considers and studies the activities that are performed by a single person, rather

than a group of people. One direction of future work is to extend the study from individual

activities to group activities. In general, the notion of a “group” can be a small group of

several people [48], a medium-sized community on a campus, or even a larger population

in an urban environment [1]. There have been a few research projects on group activity

recognition [48, 76, 99], but most of them are vision-based systems. By extending existing

sensor-based activity recognition systems to group activities, we can obtain insights into the

interaction among individuals, family members, coworkers, and more. This allows computers

to have a more holistic understanding about high-level human activities.

8.2.2 From Known to Unknown: Open Set Recognition

As stated in Table 1.1 in Chapter 1, the problems studied in this thesis are learning problems

with known classes, where the names of the target classes to recognize are known at the time

of training and testing. This is also referred to as closed set recognition [77]. In some cases,
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however, we do not have knowledge of the entire set of possible classes. As an example in

human activity recognition, a user may be performing a new job function or engaging in a new

sports activity. It is possible for a system to ask the user for a name for the new activity,

if the pattern is seen repeatedly. Another example is that a patient may perform some

abnormal activities that are not in the set of common daily life activities. There has been

little research on this kind of open set recognition problem, where incomplete knowledge of

the class space is present at training time, and unknown classes can be added to an algorithm

during testing time [31, 77]. Therefore, the ideal approach to detecting unknown/rare classes

[31], distinguishing di↵erent unknown classes, and incorporating human knowledge remains

an open challenge.

8.2.3 From Absolute to Relative: Alternative Representations

The approach and experiments presented in this work are based on an assumption that

each target activity can be represented as a vector of binary attribute values (i.e., a bag-of-

attributes representation). However, there are certain attributes that are similar in nature,

except di↵erent in intensity, frequency, or other aspects. For example, in our current repre-

sentation, {Walking, Jogging, Running, Sprinting} are treated as four di↵erent binary at-

tributes, each of which can be true (present) or false (not present). One alternative represen-

tation is to combine these related attributes into a single attribute such as HumanLocomotion,

which can take on multiple values representing the di↵erence in the speed of movement.

Another research direction is to explore the use of relative attributes [70, 71], such that

it is possible to inject human knowledge in the form of “Activity A has more AttributeX

than Activity B”. For example, in our current representation, we can say that both playing

soccer and playing baseball involves the attribute Running, but we are not able to describe to

which extent that Running is involved in each activity. As an improvement, one can extend

the framework so that an activity recognition system is able to understand the statement
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“Playing soccer has more Running than playing baseball” and use it for training the classifiers.

These alternative representation of attributes will allow a system to better understand and

model the relationship between related high-level activities.

8.2.4 From Single to Parallel: Concurrent Activities

A person can be engaged in several activities concurrently [26, 38]. For example, one can

be watching television while talking to friends and having dinner. These behaviors need

to be recognized using a di↵erent approach from that for sequential activity. Another re-

lated notion is interleaved activities [26]. As an example, if a friend calls you while you are

cooking, you might talk to your friend on the phone for a minute, while you continue or

suspend the cooking activity [38]. As an analogy with operating systems, human activities

are “multi-threaded” rather than “single-threaded.” However, the limitation of most exist-

ing approaches is that only single-threaded activities are supported. Generalizing existing

approaches from recognizing single to concurrent activities can make activity recognition

systems more applicable to real world situations.

8.2.5 From Now to Ever After: Long-Term Behavior Modeling

Most of the activities studied in this thesis are short-term activities, whose duration ranges

from seconds to tens or hundreds of minutes. There are many higher-level human activities

and routines that last for a longer time—e.g. “studying for an exam”, “participating in a

weight watcher program”, “shopping for holiday season”—which are not covered in our study.

These semantics are more complex to understand and are composed by a set or a sequence

of high-level activities. Some previous work focused on the sensing platform design or energy

e�ciency issues of long-term activity monitoring [41, 51, 54, 90]; however, less research has

been conducted on clustering or inferring the long-term behavior. Future research in this
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direction can push the understanding of human activities to the order of days or months.

8.3 Final Thoughts

This is an exciting time to work on human activity recognition. From the sensing point of

view, the source of sensor data not only includes the omnipresent mobile phones, but all

the emerging wearable devices and ambient sensors. From the inference point of view, the

recent advance in machine learning has made it possible to learn high-level concepts about

human activities by leveraging these heterogeneous sensor data, either in a supervised or

unsupervised fashion. I look forward to a day when a computer, with the intelligence to

understand what humans are doing, is not only fast, but also thoughtful and considerate.
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