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A B S T R A C T

Many important scientific and data-driven problems involve quantities that vary

over space and time. Examples include functional magnetic resonance imaging

(fMRI), climate data, or experimental studies in physics, chemistry, and biology.

Principal goals of many methods in statistics, machine learning, and signal pro-

cessing are to use this data and i) extract informative structures and remove noisy,

uninformative parts; ii) understand and reconstruct underlying spatio-temporal dy-

namics that govern these systems; and iii) forecast the data, i.e., describe the system

in the future.

Being data-driven problems, it is important to have methods and algorithms that

work well in practice for a wide range of spatio-temporal processes as well as vari-

ous data types. In this thesis I present such generally applicable statistical methods

that address all three problems in a unifying manner.

I introduce two new techniques for optimal nonparametric forecasting of spatio-

temporal data: hard and mixed LICORS (Light Cone Reconstruction of States).

Hard LICORS is a consistent predictive state estimator and extends previous work

from Shalizi (2003); Shalizi, Haslinger, Rouquier, Klinkner, and Moore (2006); Shal-

izi, Klinkner, and Haslinger (2004) to continuous-valued spatio-temporal fields.

Mixed LICORS builds on a new, fully probabilistic model of light cones and predic-

tive states mappings, and is an EM-like version of hard LICORS. Simulations show

that it has much better finite sample properties than hard LICORS. I also propose

a sparse variant of mixed LICORS, which improves out-of-sample forecasts even

further.
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Both methods can then be used to estimate local statistical complexity (LSC) (Shal-

izi, 2003), a fully automatic technique for pattern discovery in dynamical systems.

Simulations and applications to fMRI data demonstrate that the proposed methods

work well and give useful results in very general scientific settings.

Lastly, I made most methods publicly available as R (R Development Core Team,

2010) or Python (Van Rossum, 2003) packages, so researchers can use these methods

and better understand, forecast, and discover patterns in the data they study.
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Part I

I N T R O D U C T I O N





1
M O T I VAT I O N

My interest is in the future because I am going to spend the rest of my life there.

Charles F. Kettering

1.1 Pattern Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Learning Spatio-Temporal Dynamics From Data . . . . . . . . . . 6

1.3 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Many important scientific and data-driven problems involve quantities which

vary over both space and time. Examples include functional magnetic resonance

imaging (fMRI), climate data, or experimental studies in physics, chemistry, and

biology.

Figure 1.1 displays three examples of spatio-temporal data: (a) is a simulated one-

dimensional field (space extends vertically) observed over time (left to right), which

I use as a running example at several points throughout the thesis; (b) is a snapshot

of an fMRI scan - data that I use to demonstrate the usefulness of the presented

methods for experimental research, in particular neuro-science; and (c) is an easy to

understand toy-example, yet it highlights the main challenges in the understanding

and modeling of spatio-temporal data.

While those exemplary datasets come from three entirely different systems, they

all exhibit non-trivial spatial as well as temporal dependence. That is, events that
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Figure 1.1: Examples of spatio-temporal fields: (a) simulated field where the one-
dimensional space coordinate is vertical and time runs from left to right ( Section
5.4); (b) fMRI snapshot of part of the visual cortex (Section 8.2); (c) - (g) video
snapshots of a candle in the wind (Section 8.1).

happen at location A at time t1 will most likely have an influence on what happens

at location B at t2 > t1. For example, the field in Fig. 1.1a has green horizontal traces

that propagate over time from left to right. Similarly the burning/smoking candle

in Fig. 1.1c – 1.1g has clear temporal and spatial structure. These patterns and how

one follows the other, illustrate what we mean by spatio-temporal dependence.

It is this dependence that many methods in statistics, machine learning, and

signal processing try to use to

1) extract informative structures and remove noisy, uninformative parts;
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2) understand and reconstruct underlying spatio-temporal dynamics that govern

these systems; and

3) forecast the data, i.e., describe the system in the future.

Being data-driven problems, it is important to have methods and algorithms that

work well for a wide range of spatio-temporal problems as well as different data

types. It would be very useful to have an automated method that can extract infor-

mative patterns, learn important dynamics, and also produce optimal forecasts for

any type of dynamical system - without prior knowledge about it.

In this thesis, I present such a generally applicable, statistical methodology and

estimators that address all three challenges in a unifying approach.

1.1 pattern discovery

In pattern recognition or anomaly detection one wants to detect “interesting” or

unusual features (Chandola, Banerjee, and Kumar, 2009), e.g., activity bursts in

fMRI scans (Merriam, Genovese, and Colby, 2007).

A large body of literature in statistics, machine learning, and signal processing

(see Section 2.3) is dedicated to developing new methods and algorithms to find

such patterns. While they work extremely well in a wide-range of applications,

they often do so because they already know what to look for: someone has decided

beforehand what is interesting and what not. When properties of the data do not

align with conditions on the algorithm anymore, they often break down and a new

algorithm has to be developed for the new interesting situation. For example, in

many brain imaging studies, the experimentalist has full control over the shape and

intensity of the stimulus; one can then often use a “matched filter” (or “template

matching”) technique to detect the response to the stimulus in fMRI data (Kruggel,

Cramon, and Descombes, 1999; Marchini and Ripley, 2000). For a different stimulus
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such hand-crafted methods must be modified to match the new stimulus structure

or distribution. This is not only time consuming, but also limited to situations

where the stimulus is known. If the shape of the stimulus is unknown - as often is

the case in real-world settings - it is impossible to design such a filter.

For (upcoming) applications it would be very beneficial to have an algorithm that

tells us automatically - without any user input - what we should concentrate on

and what we can ignore, no matter if we analyze a sound recording or an image,

study weather patterns in satellite images, or brain activity in fMRI data.

Optimally, a measure of interestingness should reflect our intuition of how these

processes evolve over time and in space. If we have such a measure then we can

focus on parts of space-time where this measure suddenly increases (decreases), in-

dicating that something interesting has happened (or stopped to happen) there. For

example, watching an entire video of the burning candle in Fig. 1.1c will become

boring after a while; however, it becomes much more interesting when someone

blows it out (Fig. 1.1d) and smoke starts to rise and forms swirls (Fig. 1.1e – 1.1g).

An appropriate interestingness measure should reflect this increase in information.

In Chapter 4, I present such a statistical measure of complexity and illustrate it

on the simulated dataset in Fig. 1.1a. In Chapter 8 I apply it to the candle video and

to various fMRI datasets in order to detect active brain regions.

1.2 learning spatio-temporal dynamics from data

Another important goal is to understand the underlying dynamics that give rise

to the patterns we see in the data. For example, the weather is a spatio-temporal

system that we would like to understand better - in particular to improve forecasts.

Using a physical approach one would formulate a model based on our scientific un-

derstanding of climate and weather, describe all relationship between the involved
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physical processes using high-dimensional differential equations, and then analyze

this model.

A purely statistical approach - like the one we put forward here - would use the

immense amount of weather data we have gathered over the last centuries - and

especially decades-, and then learn these dynamics from the data. For example,

an algorithm can learn that dark clouds will likely cause rain, or that smoke (heat)

rises. For weather or a flickering candle, such a statistical approach is rather com-

plimentary. However, for not well-understood systems, e.g., information processing

in the brain or disease spread on a social network, a statistical approach that dis-

covers physical, bio-chemical, or socio-economic “laws” from observed data can be

an invaluable tool in scientific research.

As a particularly valuable consequence of being able to learn generative dynam-

ics, consider the challenge of simulating new data with the same spatio-temporal

properties as observed data. Put in other words: what if we only had experimen-

tal data without knowing the underlying mechanisms that generated it; could we

simulate another realization of the same process using only the observed data?

For example, researchers often run many experiments with different starting con-

ditions to gain a better understanding of the processes they study. It would be very

useful to simulate - on a computer - how different starting conditions influence the

system, without having to know its exact mathematical model. Optimally one would

run a small number of experiments, let the algorithm learn the spatio-temporal dy-

namics, and then use these estimates to simulate new experiments on a computer

without having to set up and run expensive, time-consuming and labor-intensive

experiments for each single starting condition.

The answer to this question raised above is yes, since our predictive state esti-

mates and optimal forecasts are distribution-based and can therefore also be used
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for simulations. In Section 6.5 I show how to simulate from estimated dynamics

and Fig. 7.6 illustrates the accuracy of these observation-based simulations.

1.3 forecasting

If a system cannot be influenced directly, then we would at least like to predict

what its future will look like based on the data we have gathered. This is especially

important for systems that do not follow clear, well-understood mechanism, e.g.,

socio-economic dynamics, where it is necessary to make forecasts based on histori-

cal data.

But even for well-understood physical processes, probabilistic forecasts can offer

advantages. For example, to obtain weather forecasts based on a physical climate

and weather model, it is typically necessary to numerically solve the model forward

in time for slightly different starting positions and then make a forecast based on

an aggregated output of the model. Solving these high-dimensional models is very

time-consuming and must be repeated for every single starting condition. That is,

if we want to forecast the weather for tomorrow based on today, we have to run the

same lengthy computations as we did to forecast the weather today from yesterday.

On the contrary, estimation and forecasting in a statistical model are separate.

While it might take a long time to train the model, once we have an estimate we can

almost instantaneously obtain probabilistic forecasts for a great number of different

starting conditions.

In Chapter 3, I show how to construct provably optimal predictors in spatio-

temporal processes. In Chapters 5 & 7, I then propose two methods to estimate

these optimal forecasts from continuous-valued datasets, such as the ones presented

in Fig. 1.1.
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O V E RV I E W

Wie dieses Buch zu lesen sei, um möglicherweise verstanden werden zu können,

habe ich hier anzugeben mir vorgesetzt. Was durch dasselbe mitgetheilt werden soll,

ist ein einziger Gedanke. Dennoch konnte ich, aller Bemühungen ungeachtet,

keinen kürzeren Weg ihn mitzutheilen finden, als dieses ganze Buch.

Arthur Schopenhauer
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10 overview

2.1 thesis outline

The whole is more than the sum of its parts.

Aristotle, Metaphysica

This thesis is composed of five parts.

Part I motivates the type of problems we study (Chapter 1), outlines the structure

of the thesis, and gives an overview of previous work (Chapter 2).

Part II formally defines the prediction problem and presents light cones and pre-

dictive states (Shalizi, 2003) as an optimal way to do forecasting (Chapter 3). Us-

ing these optimal forecasts, I then describe local statistical complexity (LSC) (Shal-

izi, 2003; Shalizi et al., 2004), a measure of complexity in spatio-temporal fields

(Chapter 4).

Part III contains the main results:

chapter 5 : LICORS, a consistent predictive state estimator for continuous-valued

data.

chapter 6 : A statistical model for light cones and predictive states, which embeds

previous work by Shalizi et al. in a fully probabilistic setting. This model

enables us to obtain probabilistic forecasts and to make observation-based

simulations of spatio-temporal processes.

chapter 7 : Mixed LICORS, a nonparametric EM(-like) version of hard LICORS

with largely improved out-of-sample prediction performance.

chapter 8 : Applications of LSC to functional magnetic resonance imaging (fMRI)

data, where we automatically detect active brain regions in very different ex-

periments and thus demonstrate the generality of the proposed methods.

In Part IV, I discuss directions for future research and summarize the contribu-

tions of the thesis (Chapter 9 & 10).
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Finally, Part V presents proofs of main results (Appendix A), references to pub-

licly available software1 implementations of the presented methods (Appendix B),

and references to data sources (Appendix C).

2.2 main results and contributions

2.2.1 LICORS: Light Cone Reconstruction of States

In Chapter 5, I introduce a new, nonparametric forecasting method for data where

continuous values are observed discretely in space and time. The method, light-cone

reconstruction of states (LICORS), uses physical principles to identify predictive states

which are local properties of the system, both in space and time. LICORS discovers

the number of predictive states and their predictive distributions automatically, and

consistently, under mild assumptions on the data source. We provide an algorithm

to implement our method, along with a cross-validation scheme to pick control set-

tings. Simulations show that CV-tuned LICORS outperforms standard methods in

forecasting challenging spatio-temporal dynamics. This estimator provides applied

researchers with a new, highly automatic method to analyze and forecast spatio-

temporal data.

2.2.2 A Statistical Predictive State Model for Spatio-temporal Processes

Previous work by Shalizi et al. was mostly motivated by prediction and pattern

recognition problems in discrete mathematics, physics, and information theory.

While forecasting in itself is important, many real-world spatio-temporal systems

pose interesting questions, which are not directly related to forecasting. For ex-

1 All computations were either done in R (R Development Core Team, 2010) or Python (Van Rossum,
2003). See Appendix B for more details.
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ample, pattern discovery in experimental data, classification of spatio-temporal dy-

namics, estimating dependence between spatio-temporal systems in sociology, pub-

lic health, biology, economics, etc. In Chapter 6, I embed the predictive state space

framework into a fully probabilistic setting, and thus provide the basis for optimal

statistical inference on spatio-temporal data.

2.2.3 Mixed LICORS

Based on this statistical model in Chapter 7 I introduce mixed LICORS, a nonpara-

metric EM-like predictive state space estimator. Mixed LICORS is a soft-thresholding

generalization of (hard) LICORS from Chapter 5. I also propose a generally applica-

ble penalization technique to obtain sparse mixture weights in EM algorithms. Sim-

ulations show that mixed LICORS has much better finite sample properties than

hard LICORS, and that sparsification avoids overfitting and even further improves

the out-of-sample predictive power. Furthermore, mixed LICORS estimates can be

used for observation-based simulations.

2.2.4 Pattern Discovery in fMRI data

Shalizi (2003) introduced local statistical complexity (LSC) as a measure to detect

interesting and important events in a discrete-valued spatio-temporal field. The un-

derlying idea is that statistically optimal predictors not only predict well but - for

this very reason - also reveal inherent dynamic structure in the data. The advantage

of pattern discovery by LSC compared to traditional pattern recognition techniques

is that researchers do not have to know what is interesting beforehand; LSC detects

informative areas in space-time automatically.
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Using the nonparametric LICORS estimator, I extend the methods and algorithms

to continuous-valued processes, which allows researchers to apply LSC to experi-

mental data. In Chapter 8, we apply LSC to high-resolution fMRI data, which gives

an “interestingness” score for each voxel at each moment in time. Traditional tech-

niques often rely on prior knowledge of the stimulus to hand-craft algorithms that

look for pre-defined structures in the observed data (“template matching”). Ap-

plications to various fMRI datasets demonstrate that LSC can automatically detect

brain activity of highly irregular spatio-temporal patterns.

LSC can therefore become an unparalleled tool for applied researchers - in any

field working with spatio-temporal data - to detect important structures in, yet

unknown, dynamical systems.

2.3 literature review (aka past work cone)

Spatio-temporal data being increasingly easy to acquire, manipulate, and visualize,

statisticians have developed methods for statistical inference, reviewed in works like

Cressie and Wikle (2011); Finkenstädt, Held, and Isham (2007). The usual tools are a

combination of ways of describing the distribution of the random field (e.g., various

dependency measures), and stochastic modeling, focusing primarily on parametric

inference, and secondarily on parameter-conditional predictions.

For plain forecasting, classic time series approaches focus on second order sta-

tionary processes, with the particularly popular (vector) auto-regressive models or

- more general - state space models to produce optimal forecasts (Brockwell and

Davis, 1991; Hamilton, 1994). In the machine learning / signal processing litera-

ture, hidden Markov models (HMM) are commonly used (Cappé, Moulines, and

Rydén, 2005). While these approaches are valuable, there is a complementary role

for direct, nonparametric prediction of spatio-temporal data, just as with time series

(Bosq, 1998; Fan and Yao, 2003).
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For the spatio-temporal setting we will use predictive state recovery as our basis

methodology.

2.3.1 Predictive State Space Reconstruction, Forecasting

Predictive state reconstruction estimates the prediction processes introduced by

Knight (1975). Knight’s construction is for stochastic processes X with a single,

continuous time index; but since Xt can take values in infinite-dimensional spaces,

most useful spatial models can implicitly be handled in this way, and by consid-

ering discrete time we avoid many measure-theoretic complications. After Knight,

the same basic construction of the prediction process was independently rediscov-

ered in nonlinear dynamics and physics (Crutchfield and Young, 1989; Shalizi and

Crutchfield, 2001), in machine learning (Jaeger, 2000; Langford, Salakhutdinov, and

Zhang, 2009; Littman, Sutton, and Singh, 2002), and in the philosophy of science

(Salmon, 1984).

Spatio-temporally local prediction processes were introduced in Shalizi (2003);

Shalizi et al. (2004) to study self-organization and system complexity, along lines

suggested by Crutchfield and Young (1989); Grassberger (1986). A related proposal

was made by Parlitz and Merkwirth (2000), and light cones have been used in

stochastic models of crystallization (Capasso and Micheletti, 2002), going back to

Kolmogorov (1937).

While the prediction-process formalism allows for continuous-valued observable

fields, prior work by Shalizi et al. only gave algorithms for discrete-valued fields.

Jänicke et al. used those procedures for continuous-valued fields by discretizing the

data (Jänicke, 2009; Jänicke and Scheuermann, 2010; Jänicke, Wiebel, Scheuermann,

and Kollmann, 2007). It is important to point out that this discretization is not

necessary for the theory or methodology to work, but is only done for statistical

convenience since estimation for discrete-valued random variables often reduces to

simple counting.
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One of the main contributions of this thesis is the development of nonpara-

metric statistical methods that can accurately estimate the predictive states from

continuous-valued data without such a prior discretization step.

2.3.2 Pattern Discovery And Complexity

Local statistical complexity was introduced only recently (Shalizi, 2003) and thus

prior literature is fairly sparse. Shalizi et al. (2006, 2004) use the LSC methodology

and present algorithms to estimate predictive states for discrete valued data. To the

best of my knowledge the only related work independent of Shalizi is (Jänicke, 2009;

Jänicke and Scheuermann, 2010; Jänicke et al., 2007) who worked on computational

improvements of existing algorithms as well as new visualization techniques of LSC

for high dimensional data. They do not, however, statistically improve existing or

propose new algorithms for predictive state space recovery.
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When one admits that nothing is certain one must, I think,

also add that some things are more nearly certain than others.

Bertrand Russell

3.1 Setting and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Light Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Predictive States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Predictive State Process . . . . . . . . . . . . . . . . . . . . . . . . . 25

Many important scientific and data-analytic problems involve fields which vary

over both space and time, e.g., functional magnetic resonance imaging, meteorolog-

ical observations, or experimental studies in physics, chemistry, and biology. An

outstanding objective in studying such data is prediction, where we want to de-

scribe the field in the future.

Spatio-temporal data being increasingly easy to acquire, manipulate and visu-

alize, statisticians have developed corresponding methods for statistical inference,

reviewed in works like Cressie and Wikle (2011); Finkenstädt et al. (2007). The usual

tools are a combination of ways of describing the distribution of the random field

(e.g., various dependency measures), and stochastic modeling, focusing primarily

19
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on parametric inference, and secondarily on parameter-conditional predictions.

In this chapter, I present optimality results from Shalizi (2003), which show how

to construct provably optimal forecasts for spatio-temporal fields. The idea behind

this construction is simply that it takes time for influences to propagate across

space, so we can constrain the search for predictors to a spatio-temporally local

neighborhood at each point.

Notation and concepts introduced here provide the basis for the statistical method-

ology I develop in the remainder of the thesis.

3.1 setting and notation

We observe a random field (X(r, t))r∈S,t∈T in discrete space and time. The field

takes values in a set X, which may be discrete or continuous. Space S is a regular

lattice, equipped with norm ‖r‖. Time T is taken to be the positive integers up to T .

We restrict the setting to the regular lattice and regularly sampled times for the

sake of computational convenience, easier visualization, and much simpler notation.

We want to stress though, that the general concepts of light cones, predictive states,

and the optimality results we outline below also apply to stochastic processes on

arbitrarily shaped spatial domains (e.g., networks) and irregularly sampled time

steps.

3.2 light cones

Suppose that disturbances or influences in the system have a maximum speed of

propagation, c. Then the only events which could affect what happens at a given

(r, t) are those where s 6 t and ‖r − u‖ 6 c(t− s). Since this set grows as s recedes

into the past, we call this the past light cone (PLC) of (r, t). The future light cone (FLC)
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Figure 3.1: Past (red) and future (blue) light cones in a (1+ 1)D (a) and (2+ 1)D (b) field.
Here c, the velocity of signal propagation, is set to 1. The past cone is trun-
cated at a horizon of hp = 3 steps, while the future cone’s horizon is only
hf = 2. The present (green) is included in the future cone (see also Chapter 6,
Proposition 6.1.2).

are all events which could be affected by the present moment (r, t); it thus consists

of all those (u, s), where s > t and ‖r−u‖ 6 c(s− t). Light cones look like triangles

in (1+ 1)D fields, and in (2+ 1)D, pyramids (Fig. 3.1). Denote the configuration in

the past cone of (r, t) by L−(r, t):

L−(r, t) = {X(u, s) | s 6 t, ‖r − u‖ 6 c(t− s)} (3.1)

L+(r, t) is, similarly, the configuration in the future cone.

The spatio-temporal prediction problem is thus: use the configuration of the past

cone, L−(r, t), to forecast the configuration of the future cone, L+(r, t). Light-cone

prediction compromises between capturing global patterns and needing only local

information. We will construct optimal predictors for light cones presently. Light

cones can be defined for spatial extended patches of points. (When the “patch”

becomes the whole spatial lattice, we are back to global prediction.) This leads to a

parallel theory of prediction, but it turns out that the predictive state of a patch is
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determined by the predictive states of its points (Shalizi, 2003, §3.3, Lemma 2 and

Theorem 3), so we lose no information, and gain tractability, by not considering

cones for patches.

Computationally, we need to truncate the cones at a finite number of time steps

— we will call these the past horizon hp of L−, and likewise the future horizon hf

of L+. Doing this reduces L+ and L− to finite-dimensional random vectors. (For

instance, in Fig. 3.1, with hp = 3 and c = 1, `−(r, t) has 15 degrees of freedom.)

The horizons are control settings, and may be tuned through (for example) cross-

validation (§5.4.2). Similarly, when the maximum speed of propagation c is not

given from background knowledge, it is also a control setting.

3.3 predictive states

There is no present or future, only the past,

happening over and over again, now.

Eugene O’Neill

To predict the future L+(r, t) from a particular past configuration, say `−, requires

knowing the conditional distribution

P
(
L+(r, t) | L−(r, t) = `−

)
(3.2)

for all `−. (Subsequently (r, t) may be omitted for readability.) Since treating this

conditional distribution as an arbitrary function of `− is not feasible statistically

or computationally, we try to find a sufficient statistic η of past configurations that

keeps the predictive information:

P
(
L+(r, t) | H(r, t) = η(`−)

)
= P

(
L+(r, t) | L−(r, t) = `−

)
. (3.3)
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t = 0 t = 0 t = 0

t = 0 t = 0 t = 0

Figure 3.2: PLC configurations and their influence on FLCs: P
(
L+ | `−left

)
=

P
(
L+ | `−center

)
6= P

(
L+ | `−right

)
. Thus by Definition 3.3.1 `−left ∼ `−center,

but `−left � `
−
right.

There are usually many sufficient statistics η,η′, . . .. When η and η′ are both suf-

ficient, but η(`−) = f(η′(`−)) for some f, then η is a smaller, more compressed,

summary of the data than η′, and so the former is preferred by Occam’s Razor. The

minimal sufficient statistic ε compresses the data as much as can be done without

losing any predictive power, retaining only what is needed for optimal predictions.

We now construct the minimal sufficient statistic, following Shalizi (2003), to

which we refer for some mathematical details.

Definition 3.3.1 (Equivalent configurations). The past configurations `−i at (r, t) and

`−j at (u, s) are predictively equivalent, (`−i ,(r, t)) ∼ (`−j ,(u, s)), if they predict the same

future with equal probabilities, i.e., if

P
(
L+(r, t) | L−(r, t) = `−i

)
= P

(
L+(u, s) | L−(u, s) = `−j

)
(3.4)
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Figure 3.2 shows three past configurations - `−left, `
−
center, and `−right - each one

with exactly two equally probable FLCs. Even though all PLCs have pairwise

different configurations, the left and center PLC have the same distribution over

FLCs, whereas the right PLC leads to different FLCs. Thus `−left ∼ `−center, but

`−left � `
−
right - and since “∼” is an equivalence class also `−center � `

−
right.

Let [(`−,(r, t))] be the equivalence class of (`−,(r, t)), i.e., the set of all past con-

figurations and coordinates that predict the same future as `− does at (r, t). Let

ε : (`−,(r, t)) 7→
[
`−
]

(3.5)

be the function mapping each (`−,(r, t)) to its predictive equivalence class.

The values ε can take are the predictive states; they are the minimal statistics which

are sufficient for predicting L+ from L− (Shalizi, 2003). That means ε(`−,(r, t)) has

the same predictive information as (`−,(r, t)), i.e.,

P
(
L+(r, t) | (`−,(r, t))

)
= P

(
L+(r, t) | ε(`−,(r, t))

)
. (3.6)

Furthermore, the future is conditional independent of the past given the predic-

tive state

P
(
L+(r, t) | (`−,(r, t)), ε(`−,(r, t))

)
= P

(
L+(r, t) | ε(`−,(r, t))

)
. (3.7)

Eqs. (3.6) and (3.7) are the two main properties I use throughout this work.1 In

particular, in Chapter 6 I embed predictive states and the mapping ε in a statistical

model so these optimal forecasts can be used for more general statistical inference.

1 For additional useful properties of predictive states see Shalizi (2003).
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3.4 predictive state process

Each predictive state has a unique predictive distribution and vice versa. We will

thus slightly abuse notation to denote by E both the set of equivalence classes and

the set of predictive distributions, whose elements we will write εj. We will further

abuse notation by writing the mapping from past cone configurations to predictive

distributions as ε(·), leading to the measure-valued random field

S(r, t) := ε
(
L−(r, t)

)
. (3.8)

One can show that S(r, t) is Markov even if X(r, t) is not (Shalizi, 2003). However,

X is not an ordinary hidden Markov random field, since there is an unusual deter-

ministic dependence between transitions in S and the realization of X, analogous to

that of a chain with complete connections (Fernández and Maillard, 2005).

In the next chapter we use properties of this predictive state process to obtain a

general measure of “interestingness” for spatio-temporal field.
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And so from that, I’ve always been fascinated

with the idea that complexity can come out of such simplicity.

Will Wright
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Many algorithms in statistics, machine learning, and signal processing try to ex-

press data in a better, more interesting coordinates, where interesting can have var-

ious interpretations: principal component analysis (PCA) finds uncorrelated pro-

jections of the data with highest variance (Jolliffe, 2002); independent component

analysis (ICA) tries to decompose the signal into underlying independent sources

(Hyvärinen and Oja, 2000); slow feature analysis (SFA) looks for slowly varying sig-

nals (Wiskott and Sejnowski, 2002); Laplacian graphs and diffusion maps find con-

nected points on non-linear manifolds in high dimensional space (Lee and Wasser-

man, 2010; von Luxburg, 2006).

27
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Although they work extremely well in a wide-range of real world applications,

many algorithms must know what to look for, i.e., someone has to decide before-

hand what is interesting. This works for well-defined tasks such as face/smile

recognition in photos, but it can become very difficult to provide these features

for problems that allow for a great variety of alternatives or features that are highly

non-linear or high dimensional.

As for (upcoming) applications, it would be very beneficial to have an algorithm

that tells us automatically – without any user input – what we should concentrate

on and what to ignore, no matter if we analyze satellite images, recordings of mi-

croscopic heart muscle activity, or fMRI data.

Shalizi (2003); Shalizi et al. (2004) introduce local statistical complexity (LSC), a

statistical method for automatic pattern discovery in spatio-temporal data. The un-

derlying idea of LSC is that statistically optimal predictors do not only predict well

but - for this very reason - reveal important dynamics. Shalizi et al. (2006) estimated

LSC from discrete-valued fields and demonstrated that it can automatically reveal

important spatio-temporal structures. An important contribution of this thesis is to

estimate LSC from continuous-valued processes and thus being able to apply it to

experimental data.

In this chapter, I review definitions and properties of LSC, and illustrate it on the

simulated dataset from Chapter 1 - for convenience replicated in Fig. 4.2a.

4.1 local statistical complexity

Following Crutchfield and Young (1989); Grassberger (1986), the local statistical com-

plexity of the field X(r, t) was defined in Shalizi et al. (2004) as

C(r, t) = − log2P
(
S(r, t) = ε(`−(r, t))

)
, (4.1)
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Figure 4.1: Complexity lies between order and disorder: completely ordered X(r, t) (con-
stant over space and time) as well as completely unordered X(r, t) (independent)
give C(r, t) ≡ 0, otherwise C(r, t) > 0 between these two extremes.

i.e., the minimum number of bits needed to describe the state of the prediction pro-

cess at (r, t) (see also Fig. 4.1). Equivalently, this is the number of bits of information

about the configuration of the PLC which are relevant to predicting the future (Shal-

izi et al., 2004). C(r, t) is a non-negative, real-valued random field, where regions of

high local complexity are ones where fine details of history matter to future evolu-

tion, suggesting them as targets for additional measurement and/or intervention.

In Section 6.6, I give yet another interpretation of LSC in the context of mixture /

hidden-variable models.

4.1.1 Average Complexity

For biological organisms, it is often interesting to know if they have organized over

time. The average complexity at time t

C(t) =

∫
S
C(r, t)dr (4.2)



30 from predictions to pattern discovery

gives a one-dimensional summary of how interesting the field X(r, t) is at time t (see

e.g., Fig. 8.1h). A system has organized between t1 < t2 if the average complexity

has increased, i.e., C(t2) − C(t1) =: ∆C > 0 (Shalizi et al., 2004). Thus jumps in C(t)

immediately show when an interesting event has (stopped to) happened.

Complimentary, a temporal average

C(r) =
∫

T

C(r, t)dt (4.3)

shows a spatial “interestingness map” for each r (see e.g., Fig. 8.2).

4.2 estimating lsc

Shalizi et al. (2004) estimate (4.1) as follows: i) determine the set of different predic-

tive states E (either known from simulations or estimated from data), ii) for each

state, count the total number of PLCs in the state and divide by N to obtain a fre-

quency estimate for the probability of being in a particular state, iii) compute the

information-theoretic entropy of this event, and iv) assign it to location (r, t).

Formally this is,

Ĉ(r, t) = − log2 P̂
(
S(r, t) = ε(`−(r, t))

)
(4.4)

= − log2

∑
(s,u)∈S×T 1 (S(s,u) = ε̂(`−(r, t)))

N
, (4.5)

where S(r, t) is the predictive state process from (3.8).
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4.3 illustration

Simplicity does not precede complexity, but follows it.

Alan Perlis

For the purpose of illustration, we compute C(r, t) for the field in Fig. 4.2a (for

easier comparison this is a replicate of Fig. 1.1a). Since this data was simulated we

know the predictive state space (Fig. 4.2b).

Figure 4.2c shows the complexity at each space-time coordinate, C(r, t), along

with its spatial (top) and temporal (right) average complexity. High complexity is

dark-red, low complexity is yellow. It confirms the first impression of Fig. 1.1a that

the green traces (left to right) are especially important for the evolution of this field;

less complex, but still visible are color switches between neighboring columns, and

the low-complexity background is least important. The spatial average is essentially

constant since the field does not show any variation in spatial complexity over time.

It has thus neither organized nor disorganized over time, ∆Ĉ ≈ 0. The temporal

average also shows that the most interesting areas in space are the horizontal traces,

which act as barriers for information to pass from one horizontal strip to another.

While being a simulated toy-example with a known state space, Fig. 4.2 shows

that LSC is a useful measure to find interesting patterns. In Part III, I show how to

obtain consistent estimates of S(r, t), and - by Slutsky’s theorem (Ash and Doléans-

Dade, 2000) - we thus obtain a consistent estimator Ĉ(r, t) (see also Antos and Kon-

toyiannis, 2001). I then use these estimators on fMRI data to detect interesting brain

activity.
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Figure 4.2: Local statistical complexity for simulated (1+ 1)D field.
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Suam habet fortuna rationem.

(Chance has its reasons.)

Petronius
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Our aim here is to blend modern methods of nonparametric prediction with

insights from nonlinear physics on the organization of spatial dynamics, yield-

ing predictors of spatio-temporal evolution that are computationally efficient and

make minimal assumptions on the data source, but are still accurate and even inter-

pretable.

We achieve this by combining the optimality results from Chapter 3 with a novel

form of nonparametric smoothing, which infers the prediction (regression or con-

ditional probability) function by averaging together similar observations, where

“similarity” is defined in terms of predictive consequences, effectively replacing the

original geometry of the predictor variables with a new one, optimized for forecast-

ing. This new geometry lets us discover underlying structures, as well make fast

and accurate predictions.

Section 5.1 presents our nonparametric statistical methods to estimate the predic-

tive state mapping ε (Eq. (3.5)) from continuous-valued fields. Section 5.2 shows,

under weak conditions on the data-generating process, that our method consistently

estimates the predictive state and corresponding distributions. Section 5.3 gives im-

plementation details. Section 5.4 compares the predictive accuracy to standard time

series techniques via extensive simulations and also proposes a cross-validation

scheme to choose the control settings. Proofs of the main results can be found in

Appendix A.

5.1 optimal nonparametric forecasts for spatio-temporal data

We extend the work of Shalizi (2003); Shalizi et al. (2004) to continuous-valued fields,

introducing statistical methods to estimate and predict non-linear dynamics accu-

rately and efficiently, while still obtaining insight into the spatio-temporal structure.
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See Figure 5.1 for an overview of the method.

To be able to draw useful inferences from a single realization of the process, we

must assume some form of homogeneity or invariance of the conditional distribu-

tions.

Assumption 5.1.1 (Conditional invariance). The predictive distribution of a PLC con-

figuration `− does not change over time or space. That is, for all r, t, all u, s, and all past

light-cone configurations `−,

(`−,(r, t)) ∼ (`−,(u, s)) (5.1)

We may thus regard ∼ as an equivalence relation among PLC configurations, and ε as a

function over `− alone.

This is just conditional invariance, like the conditional stationarity for time series

used in Caires and Ferreira (2005). It would be implied by the field being a Markov

random field with homogeneous transitions, or of course by full stationarity and

spatial invariance, but it is weaker. Assumption 5.1.1 lets us talk about the pre-

dictive distribution of a PLC configuration, regardless of when or where it was

observed, and to draw inferences by pooling such observations. If this assumption

fails, we could in principle still learn a different set of predictive states for each

moment of time and/or each point of space (as in Shalizi (2003)), but this would

need data from multiple realizations of the same process.

Assume we have T consecutive measurements of the field X(r, t), observed over

the lattice S, with N = |S| · T space-time coordinates (r, t) in all. Each one of these N

point-instants has a past and a future light-cone configuration, `−(r, t) and `+(r, t),

represented as, respectively, np and nf dimensional vectors. Since predictive states

are sets of PLC configurations with the same predictive distribution, we need to

test this sameness, based on conditional samples {`+ | `−i }
N
i=1 from the observed
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1. Collect the PLC and FLC configurations, `−(r, t) and `+(r, t), for each
(r, t) in the observed data D = {X(r, 1) , . . . ,X(r, T)}r∈S.

2. To cluster or not to cluster:

a) Assign each point to its own cluster. Only for small N this is
computationally feasible.

b) Perform an initial clustering (e.g., K-means++ (Arthur and Vas-
silvitskii, 2007)) in the PLC configuration space (Section 5.1.1).

3. For each pair of clusters, test whether the estimated conditional FLC
distributions are significantly different, at some fixed level α (Section
5.1.2). If not, merge them and go on. Stop when no more merges are
possible.

4. Treat the remaining clusters as predictive states, and estimate the con-
ditional distributions over FLC configurations.

5. Return the partition of PLC configurations into predictive states, and
the associated predictive distributions.

Figure 5.1: Estimating predictive states from continuous-valued data: in 2a conditional
distributions are tested for each `−i , i = 1, . . . ,N, using a δ-neighborhood (or
k nearest neighbors) of `−i (see Section 5.2.1.1 for details); 2b uses an initial
clustering to reduce complexity of the testing problem from O(N2) to O(K2)
(see also Section 5.1.1).

field. We will apply nonparametric two-sample tests for H0 : P
(
L+ | L− = `ji

)
=

P
(
L+ | L− = `−i

)
pairwise for all i and j. Because there are typically a great many

past light cones (one for each point-instant), and light-cone configurations are them-

selves high-dimensional objects, we generally must do this step-wise.

5.1.1 Partitioning PLC Configurations: Similar Pasts Have Similar Futures

It is often reasonable to assume that the mapping from the past to predictive distri-

butions is regular, so that if two historical configurations are close (in some suitable

metric), then their predictive distributions are also close. This lets us avoid having

to do some pairwise tests, as their results can be deduced from others.
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Assumption 5.1.2 (Continuous histories). For every ρ > 0, there exists a δ > 0 such

that

‖`−i − `−j ‖ < δ⇒ DKL

(
P
(
L+ | `−i

)
|| P

(
L+ | `−j

))
< ρ, (5.2)

where DKL (p || q) is the Kullback-Leibler divergence between distributions p and q

(Kullback, 1968).

Assumption 5.1.2 requires that sufficiently small changes (< δ) in the local past

make only negligible (< ρ) changes to the distribution of local future outcomes.

Statistically, such smoothness-in-distribution lets us pool observations from highly

similar PLC configurations, enhancing efficiency; physically, it reflects the smooth-

ness of reasonable dynamical mechanisms. Chaotic systems, where the exact tra-

jectory depends sensitively on initial conditions, do not present difficulties, since

Assumption 5.1.2 is about the conditional distribution of the future given partial in-

formation on the past, and chaos has long been recognized as a way to stabilize

such distributions, forming the basis for prediction and control of chaos (Kantz and

Schreiber, 2004).

We use Assumption 5.1.2 to justify an initial “pre-clustering” of the PLC configu-

ration space, greatly reducing computational cost with little damage to predictions.

We first divide the PLC configuration space using fast clustering algorithms into

K � N clusters, and then test equality of distributions between clusters (O(K2)),

rather than light cones (O(N2)).

When N is small enough, we can skip this initial pre-clustering. To simplify

exposition, we treat this as assigning each distinct past cone to its own cluster.
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5.1.2 Partitioning Clusters into Predictive States

Each cluster Pk contains a set of similar PLC configurations, and also defines a

sample of conditional FLCs, Fk(δ) = {`+j | `−j ∈ Pk} ∈ RNk×nf , k = 1, . . . ,K. Since

all `−j ∈ Pk have very similar distribution, Fk ∼ Q is an approximate sample from

the predictive distribution P (L+(r, t) | `− ∈ Pk). Lemma 5.2.7, below, shows that

for sufficiently small δ, Fki(δ) is an exact sample of p(ε(Pki)). Thus, to simplify the

exposition, we ignore the ρ difference in this section.

Finding equivalent clusters reduces to testing hypotheses of the form H0 : pki =

pkj based on the two samples Fki(δ) and Fkj(δ). For hf = 0 and c = 1, FLCs are one-

dimensional and we can use a Kolmogorov-Smirnov test (or any other two-sample

univariate test). In general, however, Fk are samples from a very high-dimensional

distribution, and we use nonparametric, multivariate, two-sample tests (see e.g.

Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2007; Rizzo and Székely, 2010;

Rosenbaum, 2005). Any test satisfying Assumption 5.2.14 could be used.

To estimate the predictive states from an initial partitioning of PLC configura-

tions, we iterate through the list of configurations, recursively testing equality of

distributions. To initialize the algorithm, create the first predictive state ε1, contain-

ing the first configuration `−1 . Then take `−2 and test if its distribution is equal to that

of ε1. If it is (at the level α), then put `−2 in ε1; otherwise generate a new predictive

state ε2 with `−2 . Then test the next configuration against all previously established

predictive states and proceed as before. This continues until all configurations have

been assigned to a predictive state.

The predictive distribution of each predictive state can be found by applying any

consistent nonparametric density estimator to the future cone samples belonging

to that state. If we only want point forecasts, we can skip estimating the whole

predictive distribution and just get (e.g.) the mean of the samples.
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5.2 consistency

LICORS consistently recovers the correct assignment of past cone configurations to

predictive states, and the predictive distributions, under weak assumptions on the

data-generating process. These allow for the number of predictive states to grow

slowly with the sample size, so that we have nonparametric consistency. Proofs of

the main results can be found in Appendix A.

5.2.1 Assumptions

Let N = |S×T| be the total number of space-time points at which we observe both

the past and future light cone. We presume that N → ∞, without caring whether

|S|→∞, |T|→∞, or both.

Assumption 5.2.1 (Slowly growing number of predictive states). The number of pre-

dictive states, |E| = m(N) = o
(
N
)
, and always 6 N.

Assumption 5.2.1 only guarantees that at least one of the predictive states grows

in size. To bound testing error probabilities, the number of light cones seen in every

state must grow as N grows.

Assumption 5.2.2 (Increasing number of light cones in each state). The number of

light cones in each state, Nj := |εj|, grows with N: for all εj ∈ E,

lim
N→∞Nj(N) = ∞ (5.3)

Let Nmin = minjNj be the number of samples in the smallest predictive state;

thus also Nmin →∞ for N→∞. Assumption 5.2.2 means that the process re-visits

each predictive state as it evolves, i.e., all states are recurrent. This lets us learn the

predictive distribution of each state from a growing sample of its behavior.
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Assumption 5.2.3 (Bounded conditional distributions). All predictive distributions

εj ∈ E have densities with respect to a common reference measure ν, and 0 < ι < dεj/dν <

κ <∞, for some constants ι and κ.

This merely technical assumption guarantees bounded likelihood ratios.

Assumption 5.2.4 (Distinguishable predictive states). The KL divergence between states

is bounded from below: ∀i 6= j,

0 < dmin 6 DKL
(
εi || εj

)
=: di,j (5.4)

We do not need di,j < ∞. (In fact, DKL
(
εi || εj

)
= ∞ is helpful.) Eq. (5.4) is

automatically satisfied for any fixed number of states. For an increasing state space,

m = m(N), assume

inf
i,j∈m(N)

di,j = dmin > 0 for N→∞. (5.5)

Lemma 5.2.5 (Conditionally independent FLCs). If the cones L+(r, t) and L+(u, s) do

not overlap, then

L+(r, t) ⊥⊥ L+(u, s) | S(r, t) ,S(u, s) . (5.6)

In particular,

P
(
L+(r, t) ,L+(u, s) | S(r, t) ,S(u, s)

)
= P

(
L+(r, t) | S(r, t)

)
P
(
L+(u, s) | S(u, s)

)
.

(5.7)

Corollary 5.2.6. If hf = 0, then FLCs are conditionally independent given their predictive

state.



5.2 consistency 43

5.2.1.1 Getting samples from εi

We get a sample of FLCs from the predictive distribution of `i by first taking all

PLCs in a δ-neighborhood around `i,

Ii(δ) = {j | ‖`−i − `−j ‖ < δ}. (5.8)

For later use, we denote the number of such light cones by Si(N, δ) = |Ii(δ)|. By

Assumption 5.1.2, we get our sample from εi by collecting the corresponding future

cone configurations:

Fi(δ) = {`+j | j ∈ Ii(δ)}, (5.9)

Lemma 5.2.7. For sufficiently small δ > 0, all past configurations in Ii(δ) are predictively

equivalent: ∀j,k ∈ Ii(δ), `−j ∼ `−k . Consequently, all `+j , j ∈ Ii(δ), are drawn from the

same distribution ε(`−i ).

For finite N, it may not be possible in practice to find and use a sufficiently small

δ. With pre-clustering, for instance, some of the clusters may have diameters greater

than the δ which guarantees equality of distribution. Then the samples Fi(δ) are

actually from multiple states. One could circumvent this by using more clusters,

which generally shrinks cluster diameters, but this would also reduce the number

of samples per neighborhood, increasing the error rate of our two-sample tests.

In practice, one must trade off decreasing δ to discover all predictive states and

keeping a low testing error.

Corollary 5.2.8. For sufficiently small δ > 0, and non-overlapping FLCs, all the future

configurations in Fi(δ) are IID samples from ε(`−i ).

In general, for hf > 0, the FLCs in Fi(δ) can be overlapping and the conditional

likelihood does not factorize. Yet, without loss of generality, we can consider only

non-overlapping FLCs. This is because we can explicitly exclude overlapping FLCs
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from Fi(δ), at the cost of reducing the sample size to S̃i(N, δ) 6 Si(N, δ). For each

`i, the maximum number of FLCs which we must thereby exclude, say w, is fixed

geometrically, by c, hf, and the dimension of the space S, and does not grow withN.

The exclusion is thus asymptotically irrelevant, since Si(N,δ)
w 6 S̃i(N, δ) 6 Si(N, δ).

Furthermore, at least formally, it is enough to analyze the univariate, zero-horizon

FLC distributions, which rules out overlaps. This is because longer-horizon FLC

distributions must be consistent with the one-step ahead distributions and the

transition relations of the underlying predictive states. Thus we could get the nf-

dimensional FLC distribution by iteratively combining the univariate FLC distribu-

tions and the predictive state transitions, i.e., by chaining together one-step-ahead

predictions, as in Shalizi and Crutchfield (2001, Corollary 2).

Assumption 5.2.9 (Number of samples from each cone). For each fixed δ > 0, and

each past light cone `i, Si(N, δ) −−−−→
N→∞ ∞.

For each δ, Si(N, δ) is a random variable, and to establish consistency we need

some regularity conditions on how Si grows with N. Let Smin(N, δ) = minj Sj(N, δ)

be the smallest number of samples per δ-neighborhood for each N and δ.

Assumption 5.2.10. For some c̃ > 0,

N ·m(N) ·Ee−c̃d2minSmin(N,δ) −−−−→
N→∞ 0 . (5.10)

Since EetSmin(N,δ) is the moment generating function of Smin, this amounts to

asserting that the number of samples concentrates around its mean while grow-

ing, ruling out pathological cases where Si(N, δ) grows to infinity, but concentrates

around small values.

5.2.2 Consistency in the Oracle Setting

First we consider the setting where an oracle gives us the predictive distributions.
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Assumption 5.2.11 (Oracle: P known). The distributions p1, . . . ,pm(N) ∈ P of each of

the m(N) predictive states are known.

Under Assumption 5.2.11, recovering the predictive state means assigning each

`−i , i = 1, . . . ,N to one of them(N) predictive distributions. We represent the correct

assignment by an N×m(N) binary matrix B, where Bij = 1 iff εj = ε(`−i ). In the

oracle setting, we can consistently estimate B by maximizing the likelihood.

From Lemma 5.2.7, there is a δ > 0 such that the FLCs we consider, Fi(δ) =

{`+i,1, . . . , `+
i,Si(N,δ)}, are actually conditioned on the same (still unknown) predictive

state ε(`−i ). The log-likelihood is thus, by Corollary 5.2.8,

logL (pk; Fi(δ)) =
Si(N,δ)∏
s=1

pk

(
`+i,s

)
, (5.11)

The maximum likelihood estimator (MLE), θ̂MLE(i), assigns PLC `−i to the state

with the largest likelihood. This leads to a binary matrix B̂, where B̂ij = 1 iff

θ̂MLE(i) = j.

Theorem 5.2.12 (Consistency). Under Assumptions 5.1.2, 5.1.1, 5.2.1, 5.2.2, 5.2.3, 5.2.4,

5.2.9, 5.2.10, and 5.2.11, if

Smin(N, δ) · d2min = Ω(logN+ logm(N)) (5.12)

then, asymptotically, predictive states can be recovered perfectly,

P
(

B̂MLE 6= B
)
−−−−→
N→∞ 0 . (5.13)

Corollary 5.2.13. If (5.12) holds, then predictive states can be estimated consistently even

if di,j → 0 as long as the mgf of Smin satisfies Assumption 5.2.10 also for d2min → 0.
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5.2.3 Unknown Predictive States: Two-sample Problem

With a finite number of observations, N, recovering the states is the same as deter-

mining which past cone configurations are predictively equivalent. We represent

this with an N×N binary matrix A, where Aij = 1 if and only if `i ∼ `j. LICORS

gives us an estimate of this matrix, Â, and we will say that the predictive states can

be recovered consistently when

P
(

Â 6= A
)
−−−−→
N→∞ 0 . (5.14)

Since the predictive distributions are unknown, we use nonparametric two-sample

tests to determine whether two past cone configurations are predictively equivalent.

While simulations can always be used to approximate the power of particular tests

against particular alternatives, there do not (yet) seem to be any general expressions

for the power of such tests, analogous to the bounds on likelihood tests in terms of

KL divergence (Kullback, 1968). Nonetheless, we expect that for N → ∞, the prob-

ability of error approaches zero, as long as the true distributions are far enough

apart. We thus make the following assumption.

Assumption 5.2.14. Suppose we have n samples from distribution p, and n′ samples

from distribution q, all IID. Then there exist a positive constants dn,n′ tending to 0 as

n,n′ → ∞, and a sequence of tests Tn,n′ of H0 : p = q vs. H1 : p 6= q with size

α = o
(
min(n,n′)−2

)
, and type II error rate β(α,n,n′) = o

(
min(n,n′)−2

)
so long as p

and q are mutually absolutely continuous and DKL (p || q) > dn,n′ .

If the number of predictive states is constant inN, we can weaken the assumption

to just a sequence of tests whose type I and type II error probabilities both go to

zero supra-quadratically when DKL (p || q) > dmin.
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Theorem 5.2.15 (Consistent predictive state estimation). Under Assumptions 5.1.1,

5.1.2, 5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.9, 5.2.10, and 5.2.14,

P
(

Â 6= A
)
−−−−→
N→∞ 0. (5.15)

5.3 details of implementation and algorithms

We partition the observed PLCs {`−i }
N
i=1 ⊂ Rnp into K = K(δ) disjoint groups

{Pk}
K
k=1, choosing the number of groups so that all have diameters less than δ.

This choice of K(δ) guarantees (Assumption 5.1.2) that all `− ∈ Pk have predictive

distributions that are at most ρ apart. Thus all PLCs within a group Pk are (nearly)

equivalent by Definition 3.3.1. This in turn means we only need to compare predic-

tive distributions between clusters.

5.3.1 Further performance enhancements for testing

While it is better to do O(K2) high-dimensional tests than O(N2), it would be bet-

ter still to speed up each test. Since two distributions are the same only if their

moments are, we can start by testing simply for equality of means, which is fast

and powerful, and do a full distributional test only if we cannot reject on that basis.

For multivariate mean tests we can use the Hotelling test (Abello, Buchsbaum, and

Westbrook, 1998) and its randomized generalization (Lopes, Jacob, and Wainwright,

2011). Yet another strategy to reduce the number of costly high-dimensional, non-

parametric tests is to test various functions f(·) of the samples. If the distributions

of Fki(δ) and Fkj(δ) are the same, then also P (f (Fki(δ))) = P
(
f
(
Fkj(δ)

))
for any

measurable f. Particularly, we can apply random projections (Lopes et al., 2011) to

Fki to go from the high-dimensional Rnf down to the one-dimensional R, followed
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Algorithm 1 Test equality of conditional predictive FLC distributions
P (L+ | clusterID = k)

Input:
F = {`+i }

N
i=1 . . . N×nf array with FLC samples

clusterID . . . labels of PLC partitioning
(step 2a or 2b in Fig. 5.1)

α ∈ [0, 1] . . . significance level α for
testing H0 : P

(
L+ | `−i

)
= P

(
L+ | `−j

)
Output: predictive state labels

kmax = max clusterID
for k = 1, . . . ,kmax do

fetch FLC samples given partition Pk: Fk = {`+i }{i|clusterID[i]==k}

j = k
lasttested = 0; pvalue = 1

while pvalue > α or j 6 kmax do
j = j+ 1

lasttested = j
fetch FLC samples given partition Pj: Fj = {`+i }{i|clusterID[i]==j}

pvalue← test(P (L+ | Pk) = P
(
L+ | Pj

)
| Fk, Fj)

if pvalue < α then
merge cluster j with cluster k: clusterID[clusterID == j] = k

return clusterID

by a Kolmogorov-Smirnov test. Only if these tests can not reject equality for several

projections, one uses multivariate nonparametric tests.

5.4 simulations

To evaluate the non-asymptotic predictive ability of LICORS and to compare it

to more conventional methods, we use the following simulation, designed to be

challenging, but not impossible. X(r, t) is a continuous-valued field in (1 + 1)D,

with a discrete latent state d(r, t). We use “wrap-around” boundary conditions,
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so sites 0 and |S|− 1 are adjacent, and the one spatial dimension is a torus. The

observable field X(r, t) is conditionally Gaussian,

P (X(r, t) | d(r, t)) =


N(d(r, t) , 1), if |d(r, t) | < 4,

N(0, 1), otherwise,

(5.16)

and initial conditions: X(·, 1) = X(·, 2) = 0 ∈ R|S|. (5.17)

The state space d(r, t) evolves with the observable field,

d(r, t) =

[∑2
i=−2 X((r + i) mod |S|, t− 2)

5
−

∑1
i=−1 X((r + i) mod |S|, t− 1)

3

]
,

(5.18)

where [x] is the closest integer to x. In words, Eq. (5.18) says that the latent state

d(r, t) is the rounded difference between the sample average of the 5 nearest sites at

t− 2 and the sample average of the 3 nearest sites at t− 1. Thus hp = 2 and c = 1.

If we include the present in the FLC, (5.16) gives hf = 0, making FLC distributions

one-dimensional and letting us use the Kolmogorov-Smirnov test. As d(r, t) is

integer-valued, a little calculation shows there are 7 predictive states, which we label

with their conditional means as {ε−3, ε−2, . . . , ε2, ε3}. Thus X(r, t) | εk ∼ N(k, 1).

Figure 5.2 shows one realization of (5.16)–(5.18). The latent states have clear

spatial structures, which is obscured in the observed field. Figure 5.3a shows the

true predictive state space S(r, t) (expected value at each (r, t)); the LICORS estimate

Ŝ(r, t) is shown in Fig. 5.3b. LICORS not only accurately estimates S(r, t), but also

learns the prediction rule (5.16) from the observed field X(r, t).
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Figure 5.2: Simulation of (5.16)–(5.18): (a) state-space d(r, t), (b) observed field X(r, t).
Space (100 cells) runs vertically, time (200 steps, first 100 discarded for burn-in)
runs from left to right.
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Figure 5.3: Comparison of true and estimated predictive distributions. (a) true predictive
state S(r, t), with points colored by conditional expectations; (b) LICORS predic-
tions, with states and distributions reconstructed using k = 50 nearest neighbors
(fixed) and hp = 2,α = 0.2 (chosen by cross-validation).

5.4.1 Forecasting Competition: AR, VAR, and LICORS

A brute-force approach to spatio-temporal prediction would treat the whole spatial

configuration at any one time as a single high-dimensional vector, and then use ordi-

nary, parametric time-series methods such as vector auto-regressions (VAR) (Lütke-

pohl, 2007), or non- or semi-nonparametric models (Bosq, 1998; Fan and Yao, 2003).

Such global approaches suffer under the curse of dimensionality: real data sets may

contain millions of space-time points. Hence, fitting global models becomes im-
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practical, even with strong regularization (Bosq and Blanke, 2007). Moreover, such

global models will not be good representations of complex spatial dynamics.

On the other hand, space can be broken up into small patches (in the limit, sin-

gle points), followed by fitting standard time series model to each low-dimensional

patch. Such local strategies (partially) lift the curse of dimensionality and hence

make VAR or nonparametric time-series prediction practical, but creates the prob-

lem of selecting good sizes and shapes for these patches, and ignores spatial depen-

dence across patches.

To show how LICORS escapes this dilemma, we compare it to other forecasting

techniques in a simulation. Using 100 replications of (5.16) – (5.18), with n = 100

points in space, and T = 200 steps in time, we compared LICORS, with and with-

out pre-clustering, to (a) the empirical time-average of each spatial point; (b) a

separate, univariate AR(p) model for each point; a (c) separate VAR(p) for each non-

overlapping spatial patch of 5 points; and the true conditional expectation function.1

Figure 5.4 shows for each predictor the estimated mean squared error (MSE)

for the in-sample (Fig. 5.4a) as well as out-of-sample (Fig. 5.4b) one-step ahead

prediction error. Splitting up space while using standard methods appears not to

help and may even hurt. LICORS performs best among all methods, once hp > 2.

While pre-clustering performs worse than direct estimation, it still predicts much

better than the other methods.

Overall, LICORS with hp = 2 gives the best forecasts, where α = 0.05 was set in

advance. At no point did we make an assumption about the number of predictive

states or the shape of the conditional distribution. Even though the true predictive

distributions are Gaussian, LICORS out-performed the parametric Gaussian models.

Thus we expect to do even better on non-Gaussian fields.

1 The local VAR models were fit with Lasso regularization (Song and Bickel, 2011), as implemented in
the fastVAR package (Wong, 2012). We also tried un-regularized VAR models, but they performed
even worse.
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Figure 5.4: MSEs for LICORS and parametric competitors on (5.16)–(5.18). LICORS with
pre-clustering used K = 200 clusters and varying past horizons; LICORS without
pre-clustering use k = 50 neighbors and hp = 2; both variants fixed α = 0.05.

Even though we know the true light cone size in simulations, the “true” α can not

be obtained directly. It controls the number of estimated predictive states: larger α

implies less merging of clusters, and thus more number of predictive states; smaller

α leads to more merging and hence less states.
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1. Split dataset at its middle in time: Dtrain = {X(r, t)}T/2t=1 and Dtest =
{X(r, t)}Tt=T/2+1

2. For each combination of control settings, do:

a) Training: estimate predictive states from Dtrain

b) Test-set prediction: find predictive state of each PLC ∈ Dtest
and predict its FLC.

c) Error: compare to the observed FLCs ∈ Dtest and evaluate the
loss.

3. Choose the control settings with the smallest test-set loss.

Figure 5.5: Cross-validation to choose control settings given data D = {X(r, t)}Tt=1.

In practice, one does not know the true light cone size nor the true number

of states; they are rather control settings which affect the predictive performance.

As we can accurately measure predictive performance by out-of-sample MSE, we

propose a cross-validation (CV) procedure to tune hp and α.

5.4.2 Cross-validation to Choose Optimal Control Settings

A good method should learn invariant predictive structures, avoiding over-fitting

to the accidents of the observed sample. Ideally, the method should estimate nearly

the same predictive states from (almost) any two realizations of the same system,

while still being sensitive to differences between distinct systems.

Cross-validation is the classic way to handle this sensitivity-stability trade-off,

and we use a data-set splitting version of it here. We simply divide the data set

at its mid-point in time, use its earlier half to find predictive states, and evaluate

the states’ performance on the data’s later half; see Figure 5.5. (Assumption 5.1.1,

of conditional stationarity, is important here.) While quite basic, simulations show

that it does indeed find good control settings.
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Figure 5.6: Cross-validation for LICORS: MSE, using the CV-picked control settings, on the
first half of each realization (“in-sample”), on the second half (“future”), and on
all of an independent realization (“independent”).

Using the same realizations of the model system as in the forecasting competition,

we tried all combinations of hp ∈ {1, 2, 3} and α ∈ {0.3, 0.2, 0.15, 0.1, 0.05, 0.01, 0.001}.

We picked the control settings to do well on the continuation of the sample realiza-

tion, but since this is a simulation, we can also check that these settings perform

well on an independent realization of the same process. Figure 5.6 compares, for the

selected control settings, the in-sample MSE on the first half of each realization, the

MSE on the second half, and the MSE on all of a completely independent realiza-

tion, for both the direct and the pre-clustered versions of LICORS. (As before, direct

estimation does a bit better than pre-clustering.) There is little difference between

the MSEs on the continuation of the training data and on independent data, indi-

cating little over-fitting to accidents of particular sample paths. (See §5.4.3 in the

supplemental information for further details.) Notably, CV picked the optimal hp,

namely 2, on all 100 trials.

As expected, the smaller the value of α picked by CV, the more merging between

clusters, and the smaller the number of states (see Supplemental Figure 5.7). Here,

the true number of states m = 7, but both pre-clustering and direct estimation give

much higher m̂ (10–30 with pre-clustering, 30–90 without). The gap appears to
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be due to cross-validating pushing (in this context) for lower approximation error

and more states, rather than fewer states and lower estimation error (§5.4.3 in the

supplemental information). Having m̂ be substantially larger than m thus does not

degrade out-of-sample predictions.

5.4.3 Excess Risk, Test Size, and Number of Estimated States

Figs. 5.7a and 5.7b show the expected relationship between α and the number of

predictive states recovered m̂: smaller α leads to more merging, and fewer states.

Here the true number of states m = 7, but both pre-clustering and direct estimation

give much higher m̂. Thus LICORS pushes for more states and lower approxima-

tion error, rather than fewer states and lower estimation error. We can check this

explanation by considering the ratio

excess risk :=
MSE(sample i+ 1) using (hp,α)i,CVi

MSE(sample i+ 1) using (hp,α)i+1,min
> 1. (5.19)

Recall that (hp,α)i,CVi is chosen using only sample i, while (hp,α)i+1,min is the

minimizing pair after having evaluated the MSE on sample i+ 1. The best that any

data-driven procedure could do would be to guess (hp,α)i+1,min from sample i, so

the excess risk is > 1, with equality only if CV picked the optimal control settings.

The scatter-plots show that our CV procedure has an excess risk on the order of

10−2 compared to the oracle pair. Hence, even though m̂ is substantially larger

than m, the difference is practically irrelevant for predictions.

5.4.4 Discussion of the Simulations

The simulations showed that LICORS outperforms standard forecasting techniques

by a large margin, even though it presumes very little about the data source. Espe-

cially note that the out-of-sample MSE in Fig. 5.6 is still much lower than the best
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Figure 5.7: Relations between excess risk, test size, and the number of reconstructed states
for LICORS: (a) selected α, number of estimated states, and excess risk (Eq.
(5.19)) for pre-clustered LICORS; (b) the same for direct-estimation LICORS. α
values in are jittered.

parametric in-sample MSE in Fig. 5.4a — even though it uses only half the sample

size. The good performance of the CV procedure (Fig. 5.5) suggests that using it to

find control settings in applications will avoid over-fitting.

In real applicationsNwould typically on the order of millions (rather than merely

2× 104), making pre-clustering essential computationally — at least until O
(
N2
)

comparisons for millions of data points become tractable. Pre-clustering usually

leads to a performance loss as it hides fine structures in the predictive distribution

space (see also the remark below Lemma 5.2.7). However, the in-sample and out-of-

sample MSE comparison showed that this performance loss is small compared to

the gain over standard parametric methods, and further attenuated with CV.

5.5 summary

We present a new nonparametric forecasting method for data where continuous

values are observed on a regular spatial grid at regular time-intervals. Our method,



5.5 summary 57

light-cone reconstruction of causal states (LICORS), uses physical principles to identify

predictive states which are local properties of the system, both in space and time.

LICORS is completely nonparametric, discovering the number of predictive states

and their predictive distributions automatically, and consistently under mild as-

sumptions on the data-generating process. We provide an algorithm to implement

our method, along with a cross-validation scheme to pick control settings. Simu-

lations show that CV-tuned LICORS outperforms standard time series methods in

forecasting challenging spatio-temporal dynamics.





6
T H E S TAT I S T I C S O F L I G H T C O N E S A N D P R E D I C T I V E S TAT E S

You do not understand anything until you learn it more than one way.

Marvin Minsky
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In this chapter I introduce a fully statistical model of light cones and predictive

states, which bridges a gap between their origins in physics and purely data-driven,

computational machine learning approaches for state-space recovery, thus making

it more accessible to a wider (statistical) audience. Such a statistical model is more

apt for solving general inference problems involving spatio-temporal data, since

in a probabilistic, generative framework one can easily incorporate other statistical

methodology. For example, one can perform probabilistic classification based on

samples from spatio-temporal data.

This statistical model also yields a mixture model as well as hidden state inter-

pretation of predictive states. I also show details on probabilistic forecasting given

59
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new data (Section 6.4), and how to simulate a new realization given only observed

data (Section 6.5).

6.1 a statistical predictive states model for spatio-temporal pro-

cesses

Previous work on predictive states and pattern discovery started immediately with

characterizing or estimating the conditional distributions P (L+ | `−). While this

is obviously important for forecasting, a lot of scientific questions are not directly

related to predicting the future.

For general statistical inference from a realization of a stochastic process X1, . . . ,XÑ,

one is first and foremost interested in its joint distribution

P (X1, . . . ,XÑ) . (6.1)

Conditional predictive distributions of any sort can then be derived as needed.

Most results in previous chapters (in particular, Chapter 5) were derived from the

product of the predictive PLC distributions

N∏
i=1

P
(
Xi | `

−
i

)
. (6.2)

It is therefore natural to ask if previously described results and estimators only

work for forecasting, or if they can also be used to solve general statistical inference

problems.

In this section, I show that the limitation to the conditional predictive distribution

is not restrictive since (6.2) is proportional to (6.1).
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Remark 6.1.1 (Analogy to joint pdf of a Markov process). The argument is analogous

to the factorization of the joint pdf of a Markov process of order one,

P (X1, . . . ,XT ) = P (XT | XT−1, . . . ,X1)P (XT−1, . . . ,X1) (6.3)

= P (XT | XT−1)P (XT−1, . . . ,X1) , (6.4)

where the second equality follows by the Markov property. By induction,

P (X1, . . . ,XT ) = P (X1)

T∏
t=2

P (Xt | Xt−1) (6.5)

The joint pdf factorizes to a product of T − 1 conditional probabilities (which are typically

easy to compute) times the initial marginal pdf of X1 (which is typically more difficult to

obtain).

Let θ be the parameter specifying the transition probabilities from t to t+ 1. For large T

the marginal distribution becomes negligible, and we approximate the average log-likelihood

with

1

T
` (θ;X1, . . . ,XT ) =

1

T

T∑
t=2

log P (Xt | Xt−1; θ) +
1

T
log P (X1; θ) (6.6)

=
1

T

T∑
t=2

log P (Xt | Xt−1; θ) +O
(
1/T

)
(6.7)

≈ 1

T

T∑
t=2

log P (Xt | Xt−1; θ) (6.8)

We now show that an analogous result holds for the spatio-temporal process X(r, t).

For simplicity of notation, we choose the index set i = 1, . . . ,N in such a relation

to the spatio-temporal grid (s, t), that the PLC of i1 cannot contain Xi2 if i2 > i1.
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Figure 6.1: Margin of a spatio-temporal field in (1+ 1)D.

This can be guaranteed by iterating through space-time in increasing order over

time (for fixed time the order in space does not matter). Formally,

(s, t) , s ∈ S, t ∈ T→
(
i(t−1)·|S|+1, . . . , i(t−1)·|S|+|S|)

)
= (t− 1) · |S|+ (1, . . . , |S|).

(6.9)

For consistent notation with the rest of this work, assume that we observed the

process on an extended grid S̃× T̃, where S̃ ⊃ S and T̃ = {−(hp − 1), . . . , 0} ∪T.
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Let the extended field have Ñ > N observations, X1, . . . ,XÑ. The margin M are all

X(s,u), (s,u) ∈ S̃× T̃, that do not have a fully observed PLC. Formally,

M = {X(s,u) ,(s,u) ∈ S̃× T̃ | `−(s,u) /∈ X(r, t) ,(r, t) ∈ S×T}. (6.10)

The size of M depends on the past horizon hp as well as the speed of propagation

c, M = M (hp, c).

In Figure 6.1, the extended field X1, . . . ,XÑ “lives” on the red and gray area, all

points with a fully observed PLC, X1, . . . ,XN, are on the red grid. The PLCs of

points in the margin (gray) extend into the unobserved (blue) area; points in the

red area have a PLC that lies fully in the red or partially in the gray, but never in

the blue area. As can be seen in Fig. 6.1, the margin at each t is a constant fraction

of space, thus overall M grows linearly with T ; it does not grow with an increasing

S, but stays constant.

Proposition 6.1.2. The joint pdf of the observable field P (X1, . . . ,XÑ) satisfies

P (X1, . . . ,XÑ) = P (M)

N∏
i=1

P
(
Xi | `

−
i

)
. (6.11)

Proof. For simplicity of notation, assume that X1, . . . ,XN are from the truncated

(red) field, such that all their PLCs are observed (they may lie in M), and the remain-

ing Ñ−N Xjs lie in M (with a PLC that is only partially observed). Furthermore,

let Xk1 := {X1, . . . ,Xk}. Thus,

P
(
{X(s, t) | (s, t) ∈ S̃× T̃}

)
= P

(
XÑ1

)
(6.12)

= P
(
XN1 , M

)
(6.13)

= P
(
XN1 | M

)
P (M) (6.14)
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The first term factorizes as

P
(
XN1 | M

)
= P

(
XN | XN−1

1 , M
)

P
(
XN−1
1 | M

)
(6.15)

= P
(
XN | `−N ∪ {X

N−1
1 , M} \ {`−N}

)
P
(
XN−1
1 | M

)
(6.16)

= P
(
XN | `−N

)
P
(
XN−1
1 | M

)
(6.17)

where the second-to-last equality follows since by (6.9), `−N ⊂ {Xk | 1 6 k < N}∪M,

and the last equality holds since Xi is conditional independent of the rest given its

light cone (due to limits in information propagation over space-time).

By induction,

P (X1, . . . ,XN | M) =

N−1∏
j=0

P
(
XN−j | `

−
N−j

)
=

N∏
i=1

P
(
Xi | `

−
i

)
. (6.18)

This shows that the conditional log-likelihood maximization we use for our es-

timators is equivalent (up to a constant P (M)) to full joint maximum likelihood

estimation (MLE). However, as M grows linearly with T the approximation does

not converge to the full joint for T → ∞. Rather we can think of the conditional

log-likelihood approximation as a reduction in sample size (by a factor of N/Ñ / 1).

Proposition 6.1.2 shows that the focus on conditional predictive distributions does

not restrict the applicability of the light cone model to forecasts only, but is in fact

a generative model for any spatio-temporal process. Thus decomposition (6.11) can

be used as a starting point for other statistical analysis of spatio-temporal data.

6.2 predictive states as optimal parameters in a mixture model

Another way to understand predictive states is as the extremal distributions of an

optimal mixture model (Lauritzen, 1974, 1984).
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To predict any variable L+, we have to know its distribution P (L+). If, as often

happens, that distribution is very complicated, we may try to decompose it into

a mixture of simpler “base” or “extremal” distributions, P (L+ | θ), with mixing

weights π(θ),

P
(
L+
)
=

∫
π(θ)P

(
L+ | θ

)
dθ . (6.19)

The familiar Gaussian mixture model, for instance, makes the extremal distributions

to be Gaussians (with θ indexing both expectations and variances), and makes the

mixing weights π(θ) a combination of delta functions, so that P (L+) becomes a

weighted sum of finitely-many Gaussians.

The conditional predictive distribution of L+ | `− in (6.19) is a weighted average

over the extremal conditional distributions P (L+ | θ, `−),

P
(
L+ | `−

)
=

∫
π(θ|`−)P

(
L+ | θ, `−

)
dθ (6.20)

This only makes the forecasting problem harder, unless

P
(
L+ | θ, `−

)
π(θ | `−) = P

(
L+ | θ̂(`−)

)
δ(θ− θ̂(`−)), (6.21)

that is, unless θ̂(`−) is a predictively sufficient statistic for L+. The most parsimo-

nious mixture model is the one with the minimal sufficient statistic, θ = ε(`−). This

shows that predictive states are the best “parameters” in (6.19) for optimal forecast-

ing. Using them,

P
(
L+
)
=

K∑
j=1

P
(
ε(`−) = sj

)
P
(
L+ | ε(`−) = sj

)
(6.22)

=

K∑
j=1

πj(`
−) · pj

(
L+
)

, (6.23)
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where πj(`−) is the probability that the predictive state of `− is sj, and pj(L+) :=

P
(
L+ | S = sj

)
. Since each light cone has a unique predictive state,

πj(`
−) =


1, if ε(`−) = sj,

0 otherwise.

(6.24)

The predictive distribution given the PLC `−i is just

P
(
L+ | `−i

)
=

K∑
j=1

πj(`
−
i ) · pj

(
L+ | `−i

)
= pε(`−i )

(
L+
)

. (6.25)

Now the forecasting problem simplifies to mapping `−i to its predictive state, ε(`−i ) =

sj; the appropriate distribution-valued forecast is pj(L+), and point forecasts are de-

rived from it as needed.

This mixture-model point of view highlights how prediction benefits from group-

ing points by their predictive consequences, rather than by spatial proximity (as

a Gaussian mixture would do). For us, this means clustering PLC configurations

according to the similarity of their predictive distributions, not according to (say)

the Euclidean geometry. We thus learn a new geometry for the system, which is

optimized for forecasting.

6.3 predictive states as hidden variables

Causa latet, vis est notissima.

(The cause is hidden, but the result is well known.)

Ovidius

Recall that we are ultimately interested in predicting Xi from a given PLC config-

uration `−i . To do this efficiently we assume there exists a deterministic mapping,
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ε(`−i ), with properties (3.6) and (3.7). Thus, knowing ε, the joint predictive distribu-

tion of X(r, t) conditioned on the margin simplifies to

P (X1, . . . ,XN | M; ε) =
N∏
i=1

P
(
Xi | `

−
i ; ε(`−i )

)
(6.26)

=

N∏
i=1

P
(
Xi | ε(`

−
i )
)

, (6.27)

where the second equality follows by Definition 3.3.1 and Eq. (3.7). Any particular

ε implicitly specifies the number of predictive states K and all K predictive distribu-

tions P
(
Xi | ε(`

−
i )
)
. However, in practice only Xi and `−i are observed; the mapping

ε is exactly what we are trying to estimate.

Since the mapping ε and the equivalence classes/predictive states ε(`−) are in a

one-to-one relation, Shalizi (2003) and follow-up literature do not formally distin-

guish between them. Also the hard LICORS estimator from Chapter 5 built directly

on these equivalence classes. For a proper statistical modeling, however, it is impor-

tant to keep the distinction between the predictive state space S and the mapping

ε : `−i → S. Here we make the state variable Si explicit and by this means naturally

obtain a hidden variable model for predictive states.

Let S = {s1, . . . , sK} be the predictive state space, and let Si be the predictive state

at coordinate i; hence

ε : `−i 7→ Si ∈ S = {s1, . . . , sK}. (6.28)

Since ε is unknown, Si is a hidden (random) variable.

Using this latent variable approach (6.27) can be equivalently written as

N∏
i=1

P (Xi | Si) =

N∏
i=1

K∑
j=1

1
(
Si = sj

)
P
(
Xi | Si = sj

)
(6.29)
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The key insight is that (6.29) is the probability density function (pdf) of a K compo-

nent mixture model with complete data, and 1
(
Si = sj

)
is a randomized version of

the unknown mapping ε : `−i 7→ Si.

The observable pdf can be obtained by integrating over the predictive state vari-

able

P (X1, . . . ,XN | M) =

N∏
i=1

P
(
Xi | `

−
i

)
(6.30)

=

N∏
i=1

K∑
j=1

P
(
Si = sj | `

−
i

)
P
(
Xi | ε(`

−
i ) = sj

)
. (6.31)

In Chapter 7, I present a nonparametric EM algorithm for predictive state re-

covery and use soft- and hard thresholding of E
(
1
(
Si = sj

)
| D
)

as a probabilistic

estimate of ε.

6.4 distribution forecasts given new data

Suppose that after fitting a model ε̂∗ to data D we are asked to predict X̃ based on

a new ˜̀−.1 Integrating out Si yields a mixture distribution

P
(
X̃ = x | ˜̀−) = K∑

j=1

P
(
S̃ = sj | ˜̀−) ·P (X̃ = x | S̃ = sj

)
. (6.32)

As P
(
X̃ = x | S̃ = sj

)
does not depend on ˜̀−, we do not have to re-estimate them

for each ˜̀−, but can use density estimates from the training data. The mixture

weights w̃j := P
(
S̃ = sj | ˜̀−) are in general different for each PLC and can again

1 In Section 7.4 we propose one particular way to estimate the quantities presented below. In this
section I just outline the general methodology without giving estimation details.
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be estimated using Bayes’ rule (with the important difference that now we only

condition on ˜̀−, not on X̃):

̂̃w∗j ∝ P̂
(˜̀− | S̃ = sj; ε̂∗

)
× P̂

(
S̃ = sj; ε̂∗

)
(6.33)

After re-normalization of ̂̃w = ( ̂̃w∗1, . . . , ̂̃w∗K), the predictive distribution (6.32) can

be estimated via

P̂
(
X̃ = x | ˜̀−) = K∑

j=1

̂̃w∗j · P̂ (X̃ = x | ε̂∗
)

, (6.34)

where P̂
(
X̃ = x | ε̂∗

)
are state-dependent pdf estimates, e.g., a kernel density esti-

mate (KDE) as we use in (7.15).

A point forecast can then be obtained by a weighted combination of point esti-

mates in each component (e.g., weighted mean), or by the mode of the full distribu-

tion. In the simulations we use the weighted average from each component as the

prediction of X̃.

6.5 simulating spatio-temporal data

Recall that all we need to simulate a spatio-temporal field is i) the predictive state

space S(r, t) with its conditional FLC distributions, ii) and the mapping from PLCs

to the state space. For example, (5.16) – (5.18) fully specify i) and ii) and we can

therefore simulate a field as in Fig. 1.1a.

In most real-world problems, however, researchers typically encounter the oppo-

site: they only observe one (or a few) realization of the system, but the underlying

dynamics are (yet) unknown. Thus one cannot simply simulate new realizations,

but has to perform more experiments.
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Set tmax for the maximum time steps of the simulation:

0. Set initial conditions {X(·,−(hp − 1)) , . . . ,X(·, 0)}. Set t = 1.

1. Fetch PLC configurations of field at time t: Pt = {`−(r, t)}r∈S

2. For each `− ∈ Pt:
a) Draw the state sj from the multinomial S ∼ P

(
S = sj | `

−
)

using
the estimates from (6.33).

b) Draw one sample from X ∼ P
(
x | S = sj

)
using (7.15) and assign

this draw to the X(r, t) corresponding to PLC `− = `−(r, t).

3. If t < tmax, set t = t+ 1 and go to step 1. Otherwise return simulated
field {X(·, 1) , . . . ,X(·, tmax)}.

Figure 6.2: Simulate new observation from spatio-temporal field. True distributions and
mappings can be replaced by (LICORS) estimates and then one can simulate
new data from estimated dynamics (see also Section 7.5).

Since the statistical model of predictive states (and their estimates) specify the

entire distribution, and not only - like many other methods - the conditional mean,

it is possible to simulate a field from the estimated model. Figure 6.2 outlines this

simulation procedure.

Being able to estimate these dynamics and the predictive state space can in prin-

ciple make a lot of expensive, time- and labor-intensive experimental studies, if not

obsolete, then at least much more manageable and easier to plan. Depending on

the variety of dynamics, a statistical model can learn spatio-temporal dynamics al-

ready after a few experiments. Once learned, researchers can use the estimates to

simulate their system from different starting conditions within a couple of minutes

rather than waiting for their experiments to finish in hours, days, or months.

In Chapter 5, I presented a consistent estimator to learn the dynamics. In Chap-

ter 7. I introduce a fully probabilistic algorithm for more general and accurate

estimation of predictive states; in Section 7.5. I demonstrate the accuracy of such

an observation-based simulation.
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6.6 local statistical complexity revisited

The prediction problem simplifies because once we know the predictive state of a

PLC, we can do optimal prediction. For pattern discovery however, predictions per

se are not that important; rather it is the landscape of different predictors that reveal

interesting dynamics. In other words, for pattern discovery the particular predictive

state of a PLC is not critical, but the probability of landing in a given state is. Pattern

discovery should therefore not depend on the conditional distribution of each state,

P
(
L+ | sj

)
, but on the distribution over states, P

(
Si = sj

)
.

This is exactly what LSC does, since for a discrete state space (4.1) is equivalent

to

C(r, t) = − log2P
(
Si = sj

)
, (6.35)

the entropy of the hidden state variable Si. Following the usual interpretation of

entropy (Cox, 2001; Shannon, 1948), C(r, t) informs us about the interesting events

in the predictive state space: states with low probability show interesting patterns;

high-probability states are less interesting.

Since C(r, t) is the entropy of the event that the predictive state process S(r, t)

takes on the observed state at (r, t), another interpretation of Ĉ(r, t) is the surprise

of seeing the particular dynamics at (r, t) after having seen the data.
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It is very certain that, when it is not in our power to determine what is true,
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Equipped with the statistical model of predictive states, I now introduce a prob-

abilistic version of LICORS (Chapter 5). Recall that LICORS uses a combination

of initial pre-clustering with K-means followed by agglomerative clustering. Thus

overall it remains a hard-clustering estimator (hard LICORS). However, experience

with other clustering problems shows that soft threshold often predicts much bet-

ter than hard threshold. Famously, while k-means (Lloyd, 1982) is very fast and

robust, the expectation maximization (EM) algorithm (Dempster, Laird, and Rubin,

1977) in Gaussian mixture models gives better clustering results. Moreover, the mix-

ture model framework admits of a probabilistic interpretation of clustering, and the

assignment of novel observations to clusters.

With this inspiration, we introduce mixed LICORS, a soft-thresholding version

of (hard) LICORS. Mixed LICORS uses the mixture-model setting from Chapter 6,

where the predictive states correspond to the optimal mixing weights on extremal

distributions, which are themselves optimized for forecasting. Our proposed non-

parametric EM-like algorithm then follows naturally.

In Section 7.1, I present the nonparametric EM algorithm. Section 7.2 shows

an automatic selection of the number of components (= predictive states) as well

as penalization strategies to obtain sparse mixture weights. While the former is

restricted to our particular forecasting setting, the latter is generally applicable. In

Section 7.4, we show how to forecast based on an EM estimate. We then evaluate

its performance on simulated data and demonstrate the large improvements in out-

of-sample prediction compared to hard LICORS (Section 7.6).

7.1 em algorithm for predictive state estimation

The EM algorithm we propose is based on the idea that the predictive state is a

hidden variable, Si, taking values in the finite state space S = {s1, . . . , sK}, and the
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mixture weights of PLC `−i are the soft-threshold version of the mapping ε(`−i ). It

is this hidden variable interpretation of predictive states that we use to estimate the

minimal sufficient statistic ε, the hidden state space Si, and the predictive distri-

butions P (Xi | Si). In this light cone and predictive state setting the hidden state

variable and the “parameter” play the same role, since ε maps to S. As we will see

below this results in very similar E and M steps. Figure 7.1 gives an overview of

the proposed algorithm.

The complete data log-likelihood can be obtained from (6.29) as (we omit the

additive constant log P (M))

`(ε;D,SN1 ) =
N∑
i=1

log

 K∑
j=1

1
(
Si = sj

)
P
(
Xi | ε(`

−
i ) = sj

) (7.1)

=

N∑
i=1

K∑
j=1

1
(
Si = sj

)
log P

(
Xi | ε(`

−
i ) = sj

)
, (7.2)

where SN1 := {S1, . . . ,SN} and the second equality follows since 1
(
Si = sj

)
= 1 for

one and only one j, and 0 otherwise.

The “parameters” in (7.2) are ε and K; Xi and `−i are observed, and Si is a hidden

variable. The optimal mapping ε : L− → S is the one that maximizes (7.2):

ε∗ = arg max
ε

`(ε;D,SN1 ). (7.3)

Without any constraints on K or ε the maximum is obtained for K = N and

ε(`−i ) = `
−
i ; “the most faithful description of the data is the data”.1 As this tells us

nothing about the underlying dynamics, we must put some constraints on K and/or

ε to get a useful solution. For now, assume that K � N is fixed and we only have

to estimate ε; in Section 7.2.1, we will give a data-driven procedure to choose K.

1 On the other extreme is a field with only K = 1 predictive state, i.e., the iid case.



76 mixed licors

Input:

D: data {Xi, `−i }
N
i=1

K ∈N: maximum number of states (starting value)

0. Initialization: Set n = 0. Split data in training and test set, Dtrain and
Dtest. Assign each PLC from Dtrain to one state uniformly at random
from {s1, . . . , sK} → ε̂(0). Set Ŵ(0) to a 0/1 matrix, with 1 in row i and
column j, if ε̂(0)(`−i ) = sj, and 0 otherwise.

1. E-step: Update weights Ŵ(n+1) in (7.14) using the conditional distribu-
tion of S given D and current estimate Ŵ(n). Evaluate expected log-
likelihood (7.9).

2. Approximate M-step: Update mixture components P
(
xi | Si = sj

)
with

Ŵ(n+1) using (7.15).

3. Out-of-sample Prediction: Evaluate out-of-sample MSE for ε̂(n+1) and
Ŵ(n+1) by predicting FLCs from PLCs in Dtest. Set n = n+ 1.

4. Temporary convergence: Iterate 1 - 3 until

‖Ŵ(n) − Ŵ(n−1)‖ < δ or ‖`(Ŵ(n);D) − `(Ŵ(n−1);D)‖ < δ∗. (7.4)

Figure 7.1: Mixed LICORS: nonparametric EM algorithm for predictive state recovery in
spatio-temporal data.

7.1.1 Nonparametric Likelihood Approximation

To solve (7.3) with K� Nwe need to evaluate (7.2) for candidate solutions ε. Doing

this directly is not possible since

i) the right hand side (RHS) of (7.2) depends on the unknown Si, and

ii) the component distributions P
(
Xi | ε(`

−
i ) = sj

)
can not be evaluated directly

unless we use a parametric model. Since predictive distributions can have

arbitrary shapes, we do not want to put restrictions on P
(
Xi | ε(`

−
i ) = sj

)
but

use nonparametric methods.
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We solve i) by using a nonparametric variant of the expectation maximization

(EM) algorithm (Dempster et al., 1977); for ii) we follow the nonparametric EM lit-

erature (Benaglia and Hunter, 2009a; Bordes, Chauveau, and Vandekerkhove, 2007;

Hall, Neeman, Pakyari, and Elmore, 2005) and approximate P
(
Xi | ε(`

−
i ) = sj

)
in

the log-likelihood with kernel density estimators (KDEs) using a previous estimate

ε̂(n). That is we approximate (7.2) with

̂̀(n)(ε;D,SN1 ) := ̂̀(ε;D,SN1 , ε(n)) =
N∑
i=1

K∑
j=1

1
(
Si = sj

)
log f̂(n)

(
Xi | ε(`

−
i ) = sj

)
,

(7.5)

where the expression for f̂(n)
(
Xi | ε(`

−
i ) = sj

)
is given below in (7.15).

7.1.2 Expectation Step

The E-step requires the expected log-likelihood

Q(ε | ε(n)) = ES|D;ε(n)`(ε;D,SN1 ), (7.6)

where expectation is taken with respect to P
(
Si = sj | D; ε(n)

)
, the conditional dis-

tribution of the hidden variable Si given the data D and the current estimate ε(n).

Using (7.2) we obtain

Q(ε | ε(n)) =

N∑
i=1

K∑
j=1

P
(
Si = sj | Xi, `−i ; ε(n)(`−i )

)
× log P

(
Xi | ε

(n)(`−i ) = sj

)
.

(7.7)
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As for `(ε;D), we also replace the component distributions with the nonparamet-

ric KDEs and get an approximate expected log-likelihood

Q̂(n)(ε | ε(n)) = ES|D,ε(n)
̂̀(n)(ε;D,SN1 ) (7.8)

=

N∑
i=1

K∑
j=1

P
(
Si = sj | Xi, `−i ; ε(n)(`−i )

)
× log f̂(n)

(
Xi | ε

(n)(`−i ) = sj

)
(7.9)

The conditional distribution of Si given its FLC and PLC, {Xi, `−i }, comes from

Bayes’s rule,

P
(
Si = sj | Xi, `−i

)
∝ P

(
Xi, `−i | Si = sj

)
P
(
Si = sj

)
(7.10)

= P
(
Xi | Si = sj

)
P
(
`−i | Si = sj

)
P
(
Si = sj

)
, (7.11)

where (7.11) holds by conditional independence of Xi and `−i given the state Si.

For brevity, let wij := P
(
Si = sj | Xi, `−i

)
, forming an N× K weight matrix W,

whose rows are probability distributions over states. This wi is the soft-thresholding

version of ε(`−i ), so we can write the expected log-likelihood in terms of W,

Q̂(n)(W | Ŵ(n)) =

N∑
i=1

K∑
j=1

wij × log P
(
Xi | Ŵ(n)

j

)
. (7.12)

The current Ŵ(n) can be used to update (conditional) probabilities in (7.11) by

ŵ
(n+1)
ij ∝ P̂

(
Xi | Si = sj; Ŵ(n)

)
× P̂

(
`−i | Si = sj; Ŵ(n)

)
× P̂

(
Si = sj; Ŵ(n)

)
(7.13)

= f̂(xi | Si = sj; Ŵ(n))×N

(
`−i | µ̂

(n)
j , Σ̂

(n)

j ; Ŵ(n)

)
×
N̂

(n)
j

N
, (7.14)
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where i) N̂(n)
j =

∑N
i=1 Ŵ(n)

ij is the effective sample size of state sj, ii) µ̂(n)j and

Σ̂
(n)

j are weighted mean and covariance matrix estimators of the PLCs using the jth

column of Ŵ(n), and iii) the FLC distribution is estimated with a weighted2 KDE

(wKDE)

f̂(x | Si = sj; Ŵ(n)) =
1

N̂
(n)
j

N∑
i=1

Ŵ(n)
ij Khj(‖xi − x‖), (7.15)

where the weights are again the jth column of Ŵ(n), and Khj(‖xi − x‖) is a kernel

function with a state-dependent bandwidth hj. For all our numerical calculations

we use a Gaussian kernel in the R function density(). To obtain a good, cluster-

adaptive bandwidth hj we only use those xi with j = arg maxkwik in bw.ndr0()

(hard-thresholding of weights; see also Benaglia and Hunter (2009b)). After estima-

tion, each ŵi in (7.14) must be normalized, ŵ(n+1)
ij ← ŵ

(n+1)
ij∑K

j=1 ŵ
(n+1)
ij

.

Ideally, we would use a nonparametric estimate for the PLC distribution, e.g.,

forest density estimators (Chow and Liu, 1968; Liu, Xu, Gu, Gupta, Lafferty, and

Wasserman, 2011). Currently, however, such estimators are too slow to handle many

iterations at large N, so we model state-conditional PLC distributions as multivari-

ate Gaussians. Simulations suggest that this is often adequate in practice.

7.1.3 Approximate Maximization Step

In a parametric model the M-step would solve

ε(n+1) = arg max
ε

Q̂(n)(ε | ε(n)), (7.16)

to improve the estimate. Starting from an initial guess ε(0), the EM algorithm

iterates (7.6) and (7.16) until convergence.

2 We also tried a hard-threshold estimator, but we found that the soft-threshold KDE performed better.
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In nonparametric problems, finding an ε(n+1) that increases Q̂(n)(ε | ε(n)) is

difficult, since wKDEs with non-zero bandwidth are not maximizing the likelihood;

they are not even guaranteed to increase it. Optimizing (7.9) by brute force is not

computationally feasible either, as it would mean searching KN state assignments

(see also Bordes et al., 2007).

However, in our particular setting the parameter space and the expectation of the

hidden variable are the same, in the sense that ŵi is a soft-thresholding version of

ε(`−i ). Furthermore, none of the estimates above requires a deterministic ε map-

ping, but they are all weighted MLEs or KDEs. Thus, like Benaglia and Hunter

(2009a), we take the weights from the E-step, Ŵ(n+1), to update each component

distribution using (7.15). This in turn can then be plugged into (7.5) to update the

likelihood function, and in (7.14) for the next E-step.

The wKDE update does not solve (7.16) nor does it provably increase the log-

likelihood (although in simulations it often does so). We thus use cross-validation

(CV) to select the best Ŵ∗, and henceforth do not rely on an ever increasing log-

likelihood as the usual stopping rule in EM algorithms (see Section 7.6 for details).

7.2 extensions of the em

We propose two additional modifications from standard EM algorithms that sim-

plify interpretation of the results and also improve predictive performance: a) after

convergence to a (local) optimum we merge the two closest components, where

we measure closeness in distribution space (either by distance metric or by a two

sample test); b) we impose sparsity on the mixture weights.

With step a) we incorporate an automatic selection of K, which is a key challenge

in fitting mixture models (Biernacki, Céleux, and Govaert, 1999; Biernacki and Gov-

aert, 1998; Tibshirani, Walther, and Hastie, 2000). Step b) facilitates interpretability

of the results, as ideal cluster assignments are usually preferred over mixtures of

multiple clusters.
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7.2.1 Data-driven Choice of K: Merge Predictive States To Obtain Minimal Sufficiency

The advantage of the mixture model in (6.22) is that predictive states have by defini-

tion similar conditional distributions. Since conditional densities can be tested for

equality by a nonparametric two sample test (or using a distribution metric), we can

merge classes if they are close. We propose a data-driven automatic selection of K,

which solves this key challenge in fitting mixture models: 1) start with a sufficiently

large number of clusters, Kmax < N; 2) test for equality of distribution each time the

EM reaches a (local) optimum; 3) merge until K = 1 (iid case) – step 6 in Fig. 7.1;

4) choose the best model Ŵ∗ by CV.

The stopping criterion can be set in two ways: i) either set a significance level

0 < α < 1 (or minimum distance dmin > 0) and stop merging once equality of

distributions can be rejected (or distance is larger than dmin), ii) or merge until

K = 1 (iid case) and then use cross-validation (CV) to choose an optimal K. Both

approaches eventually stop the algorithm and give an optimal number of clusters.

For the simulation we use the second approach, as it does not require the additional

nuisance parameter α (or dmin).

7.2.2 Induce Sparsity to Mixture Weights for Identifiability

Even though none of the estimates and forecasts we derive requires a unique state

space assignment, it is often desirable to have a unique label for each observation -

if only for easier interpretation and visualization. We say that mixture weights are

sparse if most of the K entries are 0, leaving only a couple of clusters in the weights.

Optimally, we would like one entry to equal one, the remaining K− 1 entries should

equal zero. If this is the case, then the weight vector wi uniquely maps sample i
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Input:

Ŵ∗EM : EM solution from step 4 in Fig. 7.1.

λ > 0: sparsity inducing penalty parameter

5. Sparsity: If λ > 0, move weights to sparser solution using (7.26). Iterate
until R(Ŵ(n+1)

EM,sparse) > R(Ŵ
(n)
EM,sparse).

6. Merging-step: Estimate pairwise distances

d̂jk = dist
(
f̂(n)(x | S = sj), f̂(n)(x | S = sk)

)
for all j,k = 1, . . . ,K, (7.18)

where dist(f,g) is a distance measure (or a two sample test) for distribu-
tions f and g.

a) If K > 1, choose (j(min),k(min)) = arg minj6=k d̂jk and merge corre-
sponding columns of W(n)

W(n)

j(min) ←W(n)

j(min) + W(n)

k(min) (7.19)

Omit the k(min)th column from W(n)

k(min) , set K = K− 1, and start itera-
tions again at 1 in Fig. 7.1

b) If K = 1, return Ŵ∗ and ε̂∗ with the lowest out-of-sample MSE.

Figure 7.2: Sparse extension and automatic selection of K for Mixed LICORS; use after
iterations in Fig. 7.1.

to one and only one cluster (the position of the 1 in wi). Such a vector is usually

denoted as a (canonical) basis vector ej of RK.3

While in simulations many weight vectors converge to one of the K basis vectors,

we want to actively enforce sparser weights. Unique cluster assignments are usually

obtained by assigning sample i the maximum posterior probability state, i.e.,

ε̂(`−i ) = arg max
j
ŵij. (7.17)

3 The j-th basis vector of RK, ej = (0, . . . , 0, 1, 0, . . . , 0), is a K-dimensional vector with all zeros, but a
one at the j-th position. The dimension K is usually implicitly clear from the context.
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As the EM algorithm uses weighted estimation, it is not necessary to find this

deterministic mapping in each step, ε(n)(`−i ), but we only need to hard-threshold

the optimal solution Ŵ∗EM to get ε̂∗EM.

Instead of using (7.17) on each row of Ŵ∗EM, we propose adding a penalty R(W) >

0 to the log-likelihood

`(W;D) − λR(W), (7.20)

where λ > 0 is the regularization parameter. The penalty function should satisfy

R(W) > 0 for all W with equality if and only if for all i, wi = ej for some j.

The functions `(W;D) and R(W) are continuous and differentiable with respect

to W, and Fλ(W) is a continuous function of λ. Furthermore, for λ = 0 the EM

algorithm presented above solves (7.23) (at least locally). For λ → ∞, the penalty

must tend to 0, which can only occur for deterministic cluster assignments, e.g., the

arg max assignment.

However, the arg max assignment not necessarily solve the optimization problem

for λ → ∞, but is only a candidate solution. In fact, simulations show that the

sparse EM solution we propose has better out-of-sample prediction than the arg max

version of the unrestricted Ŵ∗EM.

For λ ∈ (0,∞) the optimal solution

W∗λ = arg max
wi∈∆(K−1)

`(W;D) − λR(W), (7.21)

is a hybrid between the unique cluster and the unrestricted EM solution.

We thus now sparsify the EM algorithm using gradient descent and thus obtain

a more sparse optimal solution Ŵ∗EM,sparse.
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7.2.2.1 Gradient Descent Algorithm to Induce Sparsity

Stated as a minimization problem

Fλ(W) = −`(W;D) + λR(W), (7.22)

we have to solve

W∗λ = arg min
wi∈∆(K−1)

Fλ(W). (7.23)

A gradient descent algorithm obtains a solution to (7.23) by iteratively calculating

W(k+1) = W(k) − tk∇Fλ
(

W(k)
)

(7.24)

= W(k) − tk

(
−∇`

(
W(k)

)
+ λ∇R

(
W(k)

))
, (7.25)

where tk is the step size, and using a starting point W(0). We use W(0) = Ŵ(∗)
EM

after convergence (for a fixed K) for initialization.

Since the gradient of the log-likelihood is in general complicated, we use the

EM algorithm to approximate part of the gradient step. We can view the up-

dated weights in EM algorithm as an implicit gradient update: Ŵ(n+1)
EM ≈ W(k) +

tk∇`
(
W(k)

)
. Thus we can make the temporary EM update Ŵ(n+1)

EM more sparse,

by subtracting a fraction of the gradient (see Bach, Jenatton, Mairal, and Obozinski

(2012, Chapter 7))

W(n+1)
EM,sparse ←W(n+1)

EM − tnλ∇R
(

W(n+1)
)

. (7.26)

Apart from choosing λ we also have to choose tn. For good convergence prop-

erties the step size should usually go to 0 at an appropriate rate as the algorithm

approaches the optimum. Since the EM update counteracts the sparsity inducing

gradient step, a diminishing step size would lead the iterations W(n+1)
EM,sparse ulti-
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mately back to the non-sparse solution Ŵ(n+1)
EM . We thus set tn = 1 for all n, choose

a λ, and then stop updating via (7.26) once 4

R(W(n+1)
EM,sparse) > R(W

(n)
EM,sparse). (7.27)

7.2.2.2 Entropy Penalty

We use an entropy penalty

R(W) =
1

N

N∑
i=1

H (wi) , (7.28)

where H (p) = −
∑K
j=1 pj log2 pj is the entropy (log base 2) of the discrete proba-

bility distribution (p1, . . . ,pK) = p ∈ ∆(K−1). The entropy penalty is a continuous

and twice differentiable function in W with gradient

∇R = −
1

N
(1+ log W) ∈ RN·K×1. (7.29)

In the simulations we use the entropy penalization times log2 K,

Fλ(W) = −`(W;D) + λR(W) log2 K, (7.30)

which not only favors unique assignments, but also “small K” mixtures. Thus, Eq.

(7.26) becomes

Ŵ(n+1) ← Ŵ(n+1)
EM − tnλ

(
1+ logK

(
Ŵ(n+1)
EM

))
. (7.31)

This updating mechanism follows our intuition that weights above the uniform

threshold 1/K should get pushed towards 1, weights below towards 0.5 The log-

4 As an alternative approach one could increase λ by a factor a > 1 once (7.27) holds. This leads to a
sequence of λn →∞ and thus a unique cluster assignment.

5 Since update (7.26) does not guarantee Ŵ(n+1)
i ∈ ∆(K−1), it is necessary to project each row back

onto the probability simplex: we set negative entries in Ŵ(n+1) to 0, and then re-normalize each row
to sum to 1.
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arithm to base K ensures that at least one entry per row will be increased, since

among K classes at least one weight is larger than 1/K with probability one.

This entropy penalization is identical to the negative entropy criterion (NEC) to

choose a good K in mixture models (Biernacki et al., 1999). Here we use the entropy

to guide the algorithm to a more sparse solution.

7.2.2.3 Why LASSO and Ridge Penalties Fail

The entropy penalization is not a standard regularization, rather L2 (ridge) and L1

(LASSO) (Tibshirani, 1996) norms are typically used. Even though the latter have

been used in the context of sparse mixture models - see Mallapragada, Jin, and Jain

(2010) for L2 and Bunea, Tsybakov, and Wegkamp (2009) for L1 penalization - we

want to point out that they do not (!) induce sparsity. The LASSO (Bunea et al.,

2009)“penalizes” the log-likelihood by the same constant for every weight vectors,

since ‖wi‖1 = 1 for all wi ∈ ∆(K−1). The L2 norm (Mallapragada et al., 2010)

actually favors non-trivial mixture weights since ‖wi‖2 6 ‖ej‖2 = 1 with equality if

and only if wi = ej; thus basis vectors - which are as sparse as possible - get larger

penalty. Mallapragada et al. (2010) use this property of the Gaussian prior to make

transitions between iterations more smooth - and the EM algorithm more robust.

Remark 7.2.1 (Sparse Probability Measures). Very recent work by Pilanci, El Ghaoui,

and Chandrasekaran (2012) seems to go in similar directions. However, the full article has

not been made publicly available at the moment of completion of this work.

Remark 7.2.2 (Penalized Fuzzy C Means (PFCM)). During completion of this work it

came to our attention that such an entropy-based penalization approach has been proposed in

the signal and image processing literature, where it is known as penalized fuzzy c means

(PFCM) (Yang, 1993).
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7.3 discussion of the em algorithm

Mixed LICORS is an iterative estimator for the predictive state space assignment

and for the predictive distributions in each state. While it is not a true EM algorithm,

since the M-step is only approximate using KDEs, the estimator arises naturally

from a mixture model and is very similar to a standard, parametric EM. Similarly to

Benaglia and Hunter (2009a), we use deterministic, weighted KDE for the updating

step; we have not implemented the stochastic EM from Bordes et al. (2007) – but in

principle, mixed LICORS can be modified to such a stochastic procedure.

We also propose a sparsity inducing penalty to obtain unique state space assign-

ments. Contrary Bunea et al. (2009) and Mallapragada et al. (2010), our penalty

does not avoid, but induces sparsity. We derive analytic updating rules to obtain

more sparse mixture weights and simulations show (Section 7.6) that sparse mixed

LICORS performs even slightly better than the non-sparse EM.

7.4 forecasting given new data

The estimate Ŵ∗ can be used to forecast X̃ given a new ˜̀− as described in Section

6.4. The component distributions P
(
X̃ = x | S̃ = sj

)
can be estimated independently

from ˜̀− using (7.15). The mapping from PLC to predictive state is represented by

the weight vector w(˜̀−). They are in general different for each ˜̀− and can be

obtained by (6.33). We estimate element j of w(˜̀−) by evaluating the Gaussian

distribution at the new PLC times the frequency of state sj:

ŵj(˜̀−; Ŵ∗) = P̂
(
S̃ = sj | ˜̀−; Ŵ∗

)
∝ P̂

(
˜̀− | S̃ = sj; Ŵ∗

)
× P̂

(
S̃ = sj; Ŵ∗

)
(7.32)

= N
(

˜̀−; µ̂∗(j), Σ̂
∗
(j); Ŵ∗

)
×
N̂∗j
N

,
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where i) N̂(∗)
j =

∑N
i=1 Ŵ(∗)

ij is the effective sample size of state sj, and ii) µ̂(∗)j and

Σ̂
(∗)
j are weighted mean and covariance matrix estimates of the PLCs using the jth

column of Ŵ(∗).

Distribution forecasts for X̃ | ˜̀− can then be obtained by evaluating (6.34) (after

re-normalizing ŵ(˜̀−; Ŵ∗)). Point forecasts can be obtained as needed, e.g., mean,

median, or mode of (6.34). In the simulations we use the weighted average from

each component as the prediction of X̃.

7.5 simulating new data from em estimates

Recall from Section 6.5 that a fully probabilistic model allows us to simulate a

system based on an estimate ε̂∗, rather than having to know the underlying dynam-

ics. Since mixed LICORS estimates distributions and system dynamics at the same

time, we can use Ŵ∗ and f̂∗
(
x | S̃ = sj

)
to simulate another realization of the same

spatio-temporal dynamics as outlined in Section 6.5, Fig. 6.2. For the multinomial

distribution in step 2a, we use re-normalized estimated weights from (7.32). For

step 2b, we can simulate from the weighted KDE in (7.15).

7.6 simulations

Here we show that mixed LICORS largely improves in out-of-sample forecasts com-

pared to hard LICORS, demonstrating the predictive advantages of using a prob-

abilistic model of predictive states. We also compare sparse to non-sparse mixed

LICORS and find that sparsification even further improves predictive power.

We use the same 100 simulations as in Section 5.4, Eqs. (5.16) and (5.18). Recall

that the observable X(r, t) is a continuous-valued (1+ 1)D field with 7 discrete la-

tent states {ε−3, ε−2, . . . , ε2, ε3}. Control parameters are the past horizon hp = 2

and speed of propagation c = 1. The FLC distributions are univariate and are con-
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ditionally Gaussian given the state, X(r, t) | εk = N(k, 1), k = −3, 2, . . . , 2, 3. One

realization of these dynamics for S = {1, . . . , 100} (vertical) and t = 1, . . . , T = 200

(left to right) is shown in Chapter 5, Fig. 5.2b; the corresponding predictive state

space is shown in Fig. 5.3a. While the (usually unobserved) state space has distinc-

tive green temporal traces and also alternating red and blue patches, the observed

field is too noisy to clearly see any of these patterns.

Figures 7.3 and 7.4 summarize two runs of mixed LICORS EM with K = 15 initial

clusters and hp = 2: (a) has no sparsity penalty (λ = 0) and (b) uses λ = 1 with the

entropy penalty. The first 100 time steps were used as training data, and the second

half as test data. The optimal Ŵ∗EM = Ŵ∗λ=0 which minimized the out-of-sample

weighted MSE occurred after 502 iteration, with 9 estimated predictive states. All

trace plots (log-likelihood, MSE, penalty) show large temporary drops (or increases

respectively) when the EM reaches a local optimum and merges two states. After

merging the forecasting performance and log-likelihood quickly return to - or even

surpass - previous optima. The weight matrix Ŵ∗EM in the lower-left shows that

many weight vectors converged to one of the basis vectors (one red, all other blue

per row). The horizontal white line separates training (lower half) from test data

(upper half). The entropy penalty of Ŵ(n+1) quickly iterates to an almost single

state assignment, but still R(Ŵ∗EM) ≈ 0.11.

The penalty plot of the sparse EM in Fig. 7.4 shows that only very few iterations

of (7.26) are needed to move the non-sparse EM solution (R(Ŵ(∗)
EM) ≈ 0.18) to an

extremely sparse estimate (R(Ŵ(∗)
EM,sparse) ≈ 0.03.). This can also be seen in the

weight matrix, where almost every row has only one active (red) entry. As this

enforced sparsification only affects the weights for the training data, the test data

still has several true mixtures over states.

The predictions from Ŵ∗ in Fig. 7.5b show that mixed LICORS is practically

unbiased – compare to the visually indistinguishable true state space in Fig. 7.5a.
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(a) No sparsity λ = 0.

Figure 7.3: Mixed LICORS with hp = 2 and K = 15 starting states. (left) nonpara-
metric estimates of (top) conditional predictive distributions P

(
X = x | S = sj

)
,

(center) marginal state probabilities P
(
S = sj

)
, and (bottom) conditional state

probabilities P
(
Si = sj | Xi, `−i

)
; (right) trace plots for test and training data &

weighted and non-weighted (top) log-likelihood, (center) MSE, and (bottom) en-
tropy penalty R(Ŵ(n)).

The residuals in Fig. 7.5c show no obvious patterns except for a larger variance in

the right half (training vs. test data).



7.6 simulations 91

-6 -4 -2 0 2 4 6

0
0.

1
0.

3

p(
x|

S
)

P
(S

)

0.
02

0.
08

0.
14

state id

P
(S

|x
, P

LC
)

P
LC

 id

2 4 6 8 10

50
00

10
00

0
15

00
0

-5
.0

-3
.5

-2
.0

lo
g-

lik
el

ih
oo

d

1
2

3
4

5

M
S

E

1 155 353 551 749 947

0.
0

0.
4

0.
8

Iteration

pe
na

lty

train
train weighted
test
test weighted

0.
0

0.
4

0.
8

pr
ob

ab
ili

ty

(a) Sparsity λ = 1.

Figure 7.4: Sparse mixed LICORS with λ = 1 after initial convergence with non-sparse EM.
See caption of Fig. 7.3 for details.

7.6.1 Simulating System From Different Initial Conditions

Recall that all simulations use X(·, 1) = X(·, 2) = 0 ∈ R|S| as initial conditions (see

(5.17)). If we want to know the effect of different starting conditions, then we can

simply use Eqs. (5.16) & (5.18) to simulate that system, since they fully specify the

evolution of the stochastic process. In experimental studies, however, researchers
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Figure 7.5: Mixed LICORS model check: (a) true predictive state space S(r, t); (b) estimated
predictive state space using sample average of the estimated predictive state
distribution at each (r, t); (c) residuals.

usually do not have these mechanisms available, but finding them is one of the

main purposes of the experiment in the first place.

Since mixed LICORS estimates joint and conditional predictive distributions, and

not only the conditional mean, it is possible to simulate a new realization from

an estimated model. Figure 6.2 outlines this simulation procedure. We will now

demonstrate that mixed LICORS can be used instead to simulate from different ini-

tial conditions without knowing Eqs. (5.16) & (5.18).
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Figure 7.6: Simulating another realization of (5.16) – (5.18) with different initial conditions.

Figure 7.6a shows a simulation using the true mechanisms in (5.16) & (5.18) with

starting conditions X(·, 1) = −1 and X(·, 2) = ±3 ∈ R|S| in alternating patches of

ten times 3, ten times −3, ten times 3, etc. (total of 10 patches since |S| = 100). The

first couple of columns (on the left) are influenced by different starting conditions,

but the initial effect dies out soon (since hp = 2) and similar structures (left to right

traces) as in simulations with (5.17) emerge (Fig. 5.2).

Figure 7.6b shows simulations solely using the sparse mixed LICORS estimates

in Fig. 7.4. While the patterns are quantitatively different (due to random sam-

pling), the qualitative structures are strikingly similar (compare also Figures 7.6c

and 7.6d). The overall higher complexity is due to the larger estimated state space

in the sparse EM (9 estimated states versus 7 true states); hence probabilities per

state are overall smaller, and hence complexity higher. Mixed LICORS can not only
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Figure 7.7: MSE comparison between (non-sparse) mixed and hard LICORS.

accurately estimate S(r, t), but also learn the optimal prediction rule (5.16) solely

from the observed data X(r, t).

This shows that in principle mixed LICORS can learn state-conditional distri-

butions and predictive state mappings successfully from observed data, and then

regenerate fields with similar spatio-temporal dynamics. This can become very use-

ful in experimental setups, where running another experiment might be very costly

and time-intensive, while running mixed LICORS and simulating on a computer is

very fast and cheap.
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7.6.2 Mixed versus Hard LICORS; Sparse versus Non-Sparse

Here we show that mixed LICORS indeed outperforms hard LICORS over multiple

runs. We use 100 independent realizations of (5.16) – (5.18) and for each one we

train the model on the first, and test it on the second half (future). The optimal

model is the one with lowest out-of-sample future MSE.

We use the EM algorithm as outlined in Fig. 7.1 with Kmax = 15 states, 1000 max-

imum number of iterations, two sparsity levels λ ∈ {0, 1}, and we keep the estimate

with the lowest out-of-sample MSE out of 10 independent runs. The first run is

initialized with a K-means clustering on the PLC space; the remaining state initial-

izations are assigned uniformly at random from {s1, . . . , sK}.
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To test whether mixed LICORS accurately estimates the mapping ε : `− 7→ S, we

also predict FLCs of an independently generated realization of the same underlying

process. If the out-of-sample MSE for the independent field is the same as the

out-of-sample MSE for the future realization of the field it was trained on, then

mixed LICORS is not biased towards random fluctuations in any given realization,

but estimates characteristics of the underlying system. For comparison, we use

weighted forecasting as well as unique-state (arg max rule) predictions.

Figures 7.7 and 7.8 summarize the results for λ = 0 and λ = 1, respectively.

Both the standard EM as well as the sparse EM solutions greatly improve upon

the optimal hard LICORS estimates, with up to 33% reductions for out-of-sample

MSE. Similarly to hard LICORS, the MSE for future and independent realizations

are essentially the same, which shows that mixed LICORS can also learn character-

istic of the system, and is not biased towards random fluctuations in the training

data. Since the optimal weights are often already canonical basis vectors, weighted

prediction does only slightly better than hard-thresholded state predictions.

It is noteworthy that the sparse EM solutions do not overfit as much as the non-

sparse solutions, and also perform better on the test data even compared to the

arg max solutions from non-sparse mixed LICORS (Fig. 7.8). This suggests that

penalty induced EM algorithms might, in general, provide better unique cluster

assignments than the commonly used arg max rule.

7.7 mixed licors versus hard licors

Based on the probabilistic framework from Chapter 6, I introduce mixed LICORS,

a nonparametric EM-like algorithm for estimating the predictive state space of a

spatio-temporal process. Mixed LICORS is a probabilistic generalization of hard

LICORS and can thus be easily adapted to other statistical settings such as classifica-

tion or regression. Simulations show that it greatly outperforms its hard-clustering

predecessor. We also introduce sparsity inducing penalties to obtain unique cluster
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assignments in EM algorithms. Simulations show that this penalty imposed spar-

sity performs better than weighted mixtures, and also better than the commonly

used arg max rule.

However, similarly to other state-of-the-art nonparametric EM algorithms (Bordes

et al., 2007; Hall et al., 2005; Mallapragada et al., 2010), theoretical properties of our

EM are not yet well understood. In particular, the nonparametric estimation of

mixture models can pose identifiability problems (see Benaglia and Hunter, 2009a,

Section 2, and references therin). We demonstrated empirically that it does not

suffer from identifiability problems, and outperforms hard-clustering (identifiable)

methods.

We also demonstrate that mixed LICORS can learn spatio-temporal dynamics

from data, which can then be used for simulating new experiments. Thus mixed

LICORS can in principle make a lot of expensive, time- and labor-intensive experi-

mental studies much more manageable and easier to plan. Such an optimal statis-

tical model can potentially learn spatio-temporal dynamics already after a few ex-

periments. Once learned, researchers can use the estimates to simulate their system

from different starting conditions within a couple of minutes rather than waiting

for their empirical experiments to finish in hours, days, or months.





8
A P P L I C AT I O N S O F L O C A L S TAT I S T I C A L C O M P L E X I T Y

Es ist nicht genug zu wissen - man muss auch anwenden.

Es ist nicht genug zu wollen - man muss auch tun.

(Knowing is not enough, we must apply.

Willing is not enough, we must do.)

Johann Wolfgang von Goethe

8.1 Candle in the Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Functional Magnetic Resonance Imaging . . . . . . . . . . . . . . . 101

8.2.1 Harmonic Stimulus . . . . . . . . . . . . . . . . . . . . . . . 103

8.2.2 Non-harmonic Stimulus . . . . . . . . . . . . . . . . . . . . 104

8.2.3 Multiple Experiments . . . . . . . . . . . . . . . . . . . . . 105

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Since local statistical complexity (LSC) can be directly obtained from a LICORS

estimate, we can readily apply LSC to real-world data for automated pattern dis-

covery. This provides researchers with a purely data-driven algorithm that auto-

matically shows informative areas in space-time without any specification of what

to look for.
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To illustrate the interpretation as well as show the accuracy of LSC in Section

8.1, we revisit the candle example from Chapter 1. In Section 8.2, we apply LSC to

two fMRI datasets and show that it automatically detects irregular spatio-temporal

activity in the brain; activity that traditional techniques fail to find.

8.1 candle in the wind

Reality is not always probable, or likely.

Jorge Luis Borges

For the sake of illustration, we first consider the video of a burning flame that

gets extinguished (recall that a video is a (2+ 1)D spatio-temporal system). We use

this toy-example to demonstrate our approach since it is intuitively clear what the

spatially and temporally interesting events are.

With a resolution of S = 100× 200 pixels and a duration of T = 225 frames, this

video has a total of N = 225× 100× 200 = 4.5× 106 points in space-time, each one

associated with a high-dimensional PLC and FLC. The seven representative frames

(top row of Fig. 8.1) feature a wide range of dynamics from a stable burning candle

to chaotic evolution of smoke. Temporally interesting are the extinction of the flame

in the beginning and the rising smoke that follows. Spatially, we can differentiate

between generally uninteresting background versus interesting foreground (candle,

flame, and smoke); moreover, smoke becomes most interesting whenever it forms

complicated swirls.

Specifying these interesting features by hand and implementing an algorithm to

find them is not only difficult, but also time-consuming. The LSC methodology

presented in Section 4.1 can learn and detect such features automatically from the

data. Here we set hp = 2, hf = 2, and c = 2. Thus the PLC and FLC are 106 and
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Figure 8.1: Candle LSC - average spatial complexity evolving over time: (top) snapshots
of original data X(r, t) at selected t; (middle) Ĉ(r, t) (dark values ↔ high com-
plexity); (bottom) spatial average at each t plus smoothed regression line (red).
Peaks and valleys in average complexity identify interesting/uninteresting dy-
namics: t ≈ 1− 10 flame is burning, t ≈ 12 candle gets blown out, t ≈ 66 smoke
starts to rise, t ≈ 175 smoke starts to move to the right, t ≈ 200 smoke forms
complicated whirls.

107-dimensional vectors, respectively.1 The significance level was set to α = 0.001,

using a starting partition by K-means++ of K = 1 000.

1 We put the present (r, t) in the FLC.
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Figure 8.2: Candle LSC: average temporal complexity distributed over space. Pixel-wise
summary statistics of Ĉ(r, t): (a) median, (b) weighted mean, (c) mean, and
(c) standard deviation. Mean and median distinguish between candle/smoke
and background; also the circular spot on the top is clearly visible. Standard
deviation shows that temporal changes occur only on the left half, but not on
the right or the circular spot on top. Thus we can infer that the candle got
extinguished from the right hand side, and smoke was rising on the left side.

The middle row of Fig. 8.1 shows that Ĉ(r, t) matches our intuitive notion of in-

teresting events in space and time very closely (darker colors correspond to higher

complexity). The candle, the boundary between flame and background, and es-

pecially the glowing candle wick have high complexity; once smoke evolves LSC

identifies it as the most interesting feature in the video.
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The spatial average complexity Ĉ(t) in the bottom row of Fig. 8.1 correctly iden-

tifies interesting moments in the video: candle gets extinguished (t ≈ 12), smoke

starts to rise (t ≈ 66), and smoke starts to swirl at the top (t ≈ 175 and 200).

The temporal average complexity in Fig. 8.2 also provide valuable information.

All three location estimates (median, weighted mean, and median) identify the can-

dle and wick as the most interesting parts, and other interesting events in the upper-

left part of video (especially note the spot in the top-left corner); the right half is

overall uninteresting. The pixel-wise standard deviation shows that also most varia-

tion happens in the left part, whereas the candle, the upper-left spot, and the entire

right half do not vary a lot over time. Thus LSC also tells us that the flame was

blown out from the right, and smoke only evolved in the left half of the image.

This toy-example shows that LSC does indeed reflect and - most importantly -

quantify our intuition of interesting spatio-temporal patterns. We will now apply

LSC to fMRI datasets, where it is not immediately clear what the interesting struc-

tures look like. LSC can therefore inform neuro-scientists about the location and

timing of important spatio-temporal brain activity.

8.2 functional magnetic resonance imaging

An idea which can be used once is a trick.

If it can be used more than once it becomes a method.

George Polya and Gabor Szego

We apply LSC to two datasets from high-resolution fMRI experiments (voxel size

0.75×0.75×0.75mm3) to illustrate its advantages over traditional pattern discovery

methods.

harmonic stimulus : In this experiment the stimulus consisted of concentric an-

nuli alternating with anti-annuli (Fig. 8.3a), which evoked alternating, evenly-
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Figure 8.3: Experimental protocol (top), measurements & ring-pattern identified by using
the modulus of the Fourier transform per voxel averaged over time (bottom).

spaced bands of activity in visual cortex (Fig. 8.3d). The ring size was particu-

larly selected to produce small (≈ 3 mm) activity bands. For further details on

the experimental setup see Schlupeck, Merriam, Sanchez-Panchuelo, Francis,

Bowtell, Velasco, Inati, and Heeger (2010).

For LSC estimation, we use 80 frames with a resolution of 282× 263 pixels;

thus N ≈ 6× 106.

non-harmonic stimulus : See Freeman, Brouwer, Heeger, and Merriam (2011)

for details on the experimental protocol.

Here we analyze 164 frames with 210× 210 pixels each; thus N ≈ 1.2× 107.
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In both analysis, we applied hard LICORS with hp = 4, hf = 2, and c = 1;

control parameters were set to K = 226 (K = 367) initial clusters, and significance

level α = 10−4 (α = 10−3). Predictive states, state probabilities, and LSC were then

estimated automatically from the data.

8.2.1 Harmonic Stimulus

As the stimulus is periodic with a known frequency we use a Fourier-based method

as the comparative baseline technique. The activity bands in Fig. 8.3d were obtained

by computing the amplitude of the Fourier transform of each voxel time series at

the known frequency of the stimulus. This is an example of a “template match-

ing” technique, since the experimentalist controls the stimulus and can particularly

search for voxels that respond at the same frequency. This particular Fourier-based

technique has to use the time dimension to compute relevant statistics. It can there-

fore only give an average response of each voxel over time. On the contrary, LSC

C(r, t) provides estimates across the full spatio-temporal resolution.

This is an ideal test situation since the nonparametric LSC is a complete opposite

to template matching: it does not use any prior knowledge about the stimulus.

Figures 8.4 and 8.5 summarize the LSC estimates. Even though LSC does not

make any assumption on the shape of the stimulus, it detects the same activity

bands (Fig. 8.4), just with more noise. However, we believe that this slightly lower

signal to noise ratio is by far compensated by the higher spatio-temporal resolution

yielding a much better understanding of the dynamics of brain activity. For exam-

ple, contrary to the Fourier technique, C(r, t) can be analyzed over time to see when

those ring patterns turn on and off (upper row of Fig. 8.5).



106 applications of local statistical complexity

(a) Color scale on full range

(b) Color scale on truncated levels

Figure 8.4: LSC results on fMRI of harmonic stimulus: average temporal LSC distributed
over space. Pixel-wise summary statistics of Ĉ(r, t): (a) median, (b) weighted
mean, (c) mean, and (c) standard deviation.

8.2.2 Non-harmonic Stimulus

As the stimulus is not harmonic, Fourier methods are only of limited use, and one

would have to design a new method for this particular stimulus structure. This

is not only very time-consuming but also requires knowledge about the stimulus

and its effect on the information processing in the brain; often this is exactly what

researchers want to infer from their experiments. Here LSC demonstrates its full
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Figure 8.5: fMRI LSC: average spatial complexity evolving over time.

strength as it detects patterns in a completely automatic, nonparametric fashion

and greatly outperforms matched filter techniques.

Using the same Fourier method as for the harmonic stimulus highlights large

activity at the top and some activity at the bottom (Fig. 8.6b). LSC discovers an

additional activity region (stripe on the left in Fig. 8.6a and 8.7). The high spatio-

temporal resolution is another distinctive feature of LSC, and researchers can use it

to very specifically target brain regions of interest. Figure 8.7 shows, for example,

that brain regions respond at different times to the stimulus. Finally, we find that

LSC estimates for this dataset are much less noisy than Fourier-based estimates.

8.2.3 Multiple Experiments

For the non-harmonic stimulus, we have fMRI data from 11 repeated experiments.

This puts us in the rare position to have 11 realization of the same system. By

applying LSC on each one separately, we can obtain a notion of uncertainty in the

estimates.
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(a) Color scale on full range (b) Voxel-wise
Fourier meth-
ods.

(c) Color scale on truncated levels (d) Voxel-wise
Fourier meth-
ods.

Figure 8.6: LSC results on fMRI of non-harmonic stimulus: average temporal LSC dis-
tributed over space. Pixel-wise summary statistics of Ĉ(r, t): (a) median, (b)
weighted mean, (c) mean, and (c) standard deviation.

We first generate an average fMRI scan of all 11 runs – thus reducing noise in

the data–, and then apply LSC to this average dataset (hp = 4, hf = 2, c = 1, and

K = 367, α = 10−3). Results in Fig. 8.4a identify three main activity regions in the

center part plus two spots on the edge (top right and bottom left). The temporal

standard-deviation also identifies those areas with a larger standard deviation. It

is not clear if we can use this pixel-wise standard deviation as a good uncertainty

measure of the spatio-temporal estimate Ĉ(r, t). However, we can apply LSC to

all 11 runs separately, with the same settings as for the average dataset, and use
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Figure 8.7: LSC results on non-harmonic stimulus: average spatial LSC evolving over time.

Figure 8.8: LSC results on subset of average fMRI dataset: snapshots of spatio-temporal
complexity and average spatial LSC evolving over time.

cross-sectional averages and standard deviations to quantify the uncertainty in the

estimates.

Figure 8.10a shows the temporal average LSC of all 11 runs plus cross-experiment

pixel-wise average and standard deviation. As a comparison, it also shows the

temporal average and standard deviation of LSC plus the Fourier estimate from

the average dataset. Except for some deviations in experiment 1 (top right), and
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(a) Color scale on full range

Figure 8.9: LSC results on average fMRI dataset: average temporal complexity distributed
over space. Pixel-wise summary statistics of Ĉ(r, t): (a) median, (b) weighted
mean, (c) mean, and (c) standard deviation.

8 & 9 (stronger activity in top right), LSC consistently estimates the same structures

throughout all experiments. Furthermore, they are the same structures as in the

average dataset, suggesting that LSC estimates from a single realization are proper.

The Fourier estimates, on the other hand, have several shortcomings (Fig. 8.10b):

i) Estimates are much more noisy than LSC estimates and sometimes even lack

any structure (e.g., experiment 2 and 6)

ii) The activity in the bottom half only appears in about half of the experiments,

and is also barely detectable in the average of Fourier methods.

iii) The cross-experiment averages are smaller and have less variation than those

of the average dataset. This indicates that the Fourier method can overestimate

brain activity when using a single realization.

This comparison shows that LSC from one realization is close to the estimates

from multiple realization of the same process. This suggests that LSC estimator

based on a single realization have good frequentist properties.
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(a) LSC with comparison to Fourier (bottom-left)

(b) Fourier with comparison to LSC (bottom-left)

Figure 8.10: Cross-experiment pixel-wise averaged estimates versus estimate on averaged
experimental data based on 11 observations of the same experiment. (top) LSC
estimates; (bottom) Fourier method.
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8.3 summary

Local statistical complexity (LSC) is a method for fully automated pattern discovery

in spatio-temporal data - such as functional magnetic resonance imaging (fMRI) - by

means of optimal local prediction. The underlying idea is that statistically optimal

predictors not only predict well, but - for this very reason - also reveal informative

structure inherent in the system. A major advantage of pattern discovery by LSC over

pattern recognition techniques is that it is not necessary to know what is interesting

beforehand; LSC detects informative areas in space-time automatically.

Simulations on one dimensional space-time fields as well as applications to fMRI

data show that LSC is a very valuable exploratory tool for analyzing spatio-temporal

data. In particular, we show that it can detect highly irregular spatio-temporal brain

activity in fMRI data from very different experimental setups.

LSC can therefore become an unparalleled tool for applied researchers to detect

important structures in, yet unknown, dynamical systems.
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I never think of the future - it comes soon enough.

Albert Einstein
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In Part III, I presented the main results of this thesis. Apart from methodology,

theoretical results, and applied work, one main contribution is the embedding of

light cones, predictive states, and optimal forecasts in a probabilistic setting, which

naturally leads to a statistical model for general statistical inference. This in turn

opens up a wide range of topics for future work and refinements of LICORS and

LSC using machinery and results from statistics and machine learning. Here I will

briefly mention some selected topics.

Such a list can never be complete; the topics I discuss are the ones I find most

prevalent and interesting.
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9.1 scaling licors up to “big data” and online algorithms

While spatio-temporal systems are ubiquitous in scientific research, detailed spatio-

temporal measurements started to become available only recently. One distinc-

tive feature of such data is its large dimensionality. For “small N” – meaning

N ≈ 105 − 106 – the implementations I propose for hard and mixed LICORS work

on the order of minutes on a standard office laptop (2.5 GHz, dual core, 4 GB RAM).

Most spatio-temporal datasets, however, easily exceed this small sample size. For

example, even the low-resolution (100× 200 pixels) and very short (200 frames) can-

dle clip already has about 106 samples. In scientific experimental setups or in plain

HD video data this can easily grow to 1010 or more data points. It is therefore

important to have fast algorithms for LICORS and LSC to also work on “big data”.

Computational speed-ups can be achieved by using a parallel implementation

whenever possible. For example, while the EM algorithm is by construction sequen-

tial, one can trivially parallelize KDE estimation of all states in the E-step or the

update of the posterior weights wi. Similarly, forecasting and simulating can be

accelerated by evaluating the forecast weights w̃ for all new PLCs in parallel.

Possible statistical improvements include online algorithms for kernel density

algorithms (Kristan, Leonardis, and Skočaj, 2011; Lambert, Harrington, Harvey, and

Glodjo, 1999) for faster updating, as well as entirely new methods to estimate the

predictive state space.

9.1.1 Nonparametric High-Dimensional Density Estimation

In the updating step of posterior probabilities (Eq. (7.14)), it is necessary to estimate

P
(
`−i | Si = sj

)
; a possibly very high-dimensional distribution. Since we require
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estimation and evaluation in every iteration of the EM algorithm we have to do

this efficiently. For statistical as well as computational reasons we therefore deviate

slightly from the nonparametric framework and use multivariate Gaussian distribu-

tions to approximate those densities.

Optimally we would like to have a fully nonparametric estimator for this update.

However, such a generalization to a fully nonparametric estimator must be fast

enough to handle both high-dimensional samples as well as large N cases. One

approach could use forest density estimators (Chow and Liu, 1968; Liu et al., 2011),

but other efficient estimators for P
(
`−i | Si = sj

)
can be used.

9.2 continuous state space models

Both theory and proposed estimators work for continuous-valued data, but they

still require a discretized state space. For some problems a continuous state space

might be a better fit for the question we are trying to answer.

Based on the optimal mixture model interpretation of predictive states, one could

use the connection of finite mixture models with mixed membership models. Whereas

in finite mixture models a sample comes with a certain probability from one and

only one cluster, mixed membership models allow one sample to be a true mix of

several clusters. Thus one natural extension of the current work to a continuous

state space could use Dirichlet distributions (or any other continuous distribution

on the probability simplex) on the weights wi. It must be pointed out though, that

especially in our nonparametric setting care must be taken with respect to identifi-

ability of such a model.
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9.3 measures of uncertainty

We currently show that LICORS is a consistent estimator of the predictive state

space, but we do not provide theoretical measures uncertainty of these estimates

based on a single realization. The comparison over multiple datasets in the fMRI

experiments suggests that it is well-behaved, but the theory still lacks of proper un-

certainty bounds (bias, standard errors, confidence intervals, rates of convergence,

etc.). Currently, we overcome this in our application of LSC to fMRI data by using

multiple replications and then estimate sample mean and standard error using the

cross-section. With the fully probabilistic model in Chapter 6, I made this light

cones and predictive states setting more widely accessible to a statistical and ma-

chine learning audience, thus opening the door for further theoretical research on

estimator and algorithm properties.

9.4 applications

Many scientific fields study quantities that vary over space and time. For example,

climatology, organizational biology, computational chemistry, or material sciences

- just to name a few. In this thesis I apply LICORS and LSC in the context of

neuroscience and fMRI experiments. But the methods I develop and the software

I provide are generally applicable: they automatically estimate optimal forecasts

and discover patterns for a very large class of spatio-temporal processes. Thus

researchers can use LICORS and LSC without much modification to optimally fore-

cast and find interesting patterns in their spatio-temporal data. To facilitate such an

analysis, I made most methods publicly available (see Appendix B).
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C O N C L U S I O N

Willst Du Dich am Ganzen erquicken,

so musst Du das Ganze im Kleinsten erblicken.

Johann Wolfgang von Goethe

In this thesis, I develop a generally applicable statistical methodology to address

three challenging problems in the analysis of spatio-temporal data: i) pattern dis-

covery, ii) learning of the underlying spatio-temporal dynamics, and iii) optimal

forecasting.

Previous work in physics and discrete math focused on discrete-valued fields

which limited its use to a small subset of real-world problems. Here I embed predic-

tive state estimation in a statistical framework and obtain fully probabilistic models

and well-behaved estimators for continuous-valued fields. Most results and applica-

tions were motivated on (1+ 1)D and (2+ 1)D fields, but both theory and practice

extend without modification to higher-dimensional and arbitrarily shaped fields.

Based on previous work from Shalizi et al., I present two new nonparametric

predictive state estimators, hard and mixed LICORS, which can be used for opti-

mal prediction of continuous-valued spatio-temporal processes. Hard LICORS is a

provably consistent estimator and simulations show that it also has good finite sam-

ple predictive power. Mixed LICORS is a probabilistic generalization of previously
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proposed algorithms for predictive state recovery; simulations show that it has ex-

cellent finite sample properties. I also apply those methods to fMRI data where the

optimal predictors provide the basis for automated pattern discovery using local

statistical complexity (LSC). Contrary to many algorithms in the statistics, machine

learning, and signal processing literature, LSC can detect interesting dynamical pat-

terns automatically from the data without any prior user input. Last but not least,

I make most methods publicly available in R and Python packages.

This thesis provides researchers with powerful, principled, and highly automatic

methods to analyze and optimally forecast complex spatio-temporal data.
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P R O O F S

This is a one line proof . . . if we start sufficiently far to the left.

Anonymous

a.1 licors consistency in the oracle case

Proof of Theorem 5.2.12. Recall that

θ̂MLE(i) = arg max
pk∈P

logL(pk; Fi(δ)). (A.1)

By the union bound

P
(

B̂MLE 6= B
)
= P

(
N⋃
i=1

{row i is incorrect}

)
(A.2)

6
N∑
i=1

P (row i is incorrect) (A.3)

=

N∑
i=1

P
(
θ̂MLE(i) 6= k | ε(`−i ) = pk

)
. (A.4)

Thus it remains to show that for all i = 1, . . . ,m(N),

P
(
θ̂MLE(i) 6= k | ε(`−i ) = pk

)
−−−−→
N→∞ 0 , (A.5)
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sufficiently fast.

Let

Λ̂
(j,k)
i = logL(pj; Fi(δ)) − logL(pk; Fi(δ)) =

∑
x∈Ii(δ)

log
pj (`

+
x )

pk
(
`+x
) (A.6)

be the log-likelihood ratio between state j and k for the δ-sample of PLC `−i . Since

θ̂MLE(i) maximizes (5.11)

Λ̂
(θ̂MLE(i),k)
i > 0 for all k 6= θ̂MLE(i). (A.7)

For a finite set of alternatives and continuous random variables, Eq. (A.7) has equal-

ity if and only if k = θ̂MLE(i) with probability one. The event {θ̂MLE(i) 6= k | pk} is

equivalent to the existence of at least one jwith Λ̂(j,k)
i > 0, which can be bounded by

P
(
θ̂MLE(i) 6= k | pk

)
=P

(
∃ j : Λ̂(j,k)

i > 0 | ε(`−i ) = pk

)
(A.8)

6
m(N)∑
k=1

P
(
Λ̂

(j,k)
i > 0 | ε(`−i ) = pk

)
. (A.9)

Remark A.1.1 (Different support). We have not made any assumptions on the support of

the predictive state distributions, and so allow for infinite divergence between them. This is

not a difficulty, since infinite KL divergence simply means that the power of likelihood-ratio

tests grows super-exponentially, which only improves our analysis. Therefore, if we only

explicitly treat the case where all KL divergences are finite, we are being conservative.

By Assumption 5.2.3 the log-likelihood ratio for any single FLC is bounded

log
ι

κ
< log

pj (`
+)

pk (`+)
< log

κ

ι
. (A.10)

Λ̂
(j,k)
i is a sum of bounded, IID random variables, so we could use Hoeffding’s

bound (Hoeffding, 1963) on each term in (A.9). However, the number of terms in
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(A.6) is random: first, we condition on Si(N, δ), bound the error probabilities, and

then take an expectation over Si.

Given {Si(N, δ) = si(N, δ)}, Hoeffding’s inequality says

P
(
Λ̂

(j,k)
i > 0 | ε(`−i ) = pk,Si(N, δ) = si(N, δ)

)
6 e−2si(N,δ)DKL(pj||pk)

2
/a2

= e−c̃si(N,δ)d2j,k (A.11)

where a =
(
log κι − log ι

κ

)
> 0 and c̃ = 2c−2. Lower-bounding in the exponent with

the minimum distance dmin = minj,k dj,k, the upper bound becomes independent

of j and k:

m(N)∑
k=1

P
(
Λ̂

(j,k)
i > 0 | ε(`−i ) = pk,Si(N, δ) = si(N, δ)

)
6
m(N)∑
k=1

e−c̃si(N,δ)d2j,k

6m(N)e−c̃si(N,δ)d2min .

(A.12)

Using the union bound again,

P
(

B̂MLE 6= B | Si(N, δ) = si(N, δ)
)
6 m(N)

N∑
i=1

e−c̃si(N,δ)d2min

6 Nm(N)e−c̃smin(N,δ)d2min , (A.13)

where smin(N, δ) = mini si(N, δ). Taking expectation over Smin(N, δ) gives

ES

[
Nm(N)e−c̃smin(N,δ)d2min

]
= Nm(N)

∞∑
s=1

P (Smin(N, δ) = s) e−c̃sd
2
min

= Nm(N)Ee−c̃d
2
minSmin(N,δ)

−−−−→
N→∞ 0 ,

using Assumption 5.2.10 in the last line.
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Proof of Corollary 5.2.13. The divergence between states, di,j, can tend to zero as long

as d2min decays more slowly than the minimum number of samples in each neigh-

borhood of the FLC, Smin(N, δ), grow. Analogous to the proof of Lemma 5.2.7,

choosing δ = o(1) such that ρ goes faster to zero than d2min guarantees that Fi(δ)

only contains samples from the predictive state of PLC `−i .

a.2 licors consistency in the non-oracle case

Proof of Lemma 5.2.5.

P
(
L+(r, t) ,L+(u, s) | S(r, t) ,S(u, s)

)
= P

(
L+(r, t) | L+(u, s) ,S(r, t) ,S(u, s)

)
P
(
L+(u, s) | S(r, t) ,S(u, s)

)
= P

(
L+(r, t) | L+(u, s) ,S(r, t) ,S(u, s)

)
P
(
L+(u, s) | S(u, s)

)
= P

(
L+(r, t) | S(r, t)

)
P
(
L+(u, s) | S(u, s)

)
.

The first equality is simple conditioning, the second equality holds since given the

predictive state at (u, s) the distribution of L+ is independent of the predictive state

at another (r, t), and the last equality holds for the same reason as the second plus

the non-overlap of the FLCs at (r, t) and (u, s).

Proof of Corollary 5.2.6. The FLC of (r, t) with hf = 0 is just the single point X(r, t).

Since two univariate FLCs cannot overlap unless they are equal, the result follows

immediately from Lemma 5.2.5.

Proof of Lemma 5.2.7. By contradiction. Assume that `−j and `−k , with j,k ∈ Ii(δ),

have different predictive states, without loss of generality ε1 and ε2. By Assump-

tion 5.2.4, then, DKL (ε1 || ε2) and DKL (ε2 || ε1) are both at least dmin. By definition

of Ii(δ), ‖`−j − `−k ‖ < 2δ. By Assumption 5.1.2, then, DKL (ε1 || ε2) and DKL (ε2 || ε1)

are both at most ρ(2δ). But by making δ sufficiently small, ρ(2δ) can be made as
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small as desired, and in particular, can be made less than dmin. This is a contradic-

tion, so all past cone configurations in Ii(δ) must be predictively equivalent.

Proof of Corollary 5.2.8. Immediate from combining Lemmas 5.2.7 and 5.2.5.

Proof of Theorem 5.2.15. Before going into the formal proof, we make an observation

regarding nonparametric two-sample tests. Most of these, to have good operating

characteristics, require independent samples. Since we will be applying the tests to

Fi(δ) and Fj(δ),

Properties A.2.1 (Pairwise independent samples). If

Ii(δ)∩ Ij(δ) = ∅. (A.14)

then the samples Fi(δ) are independent of Fj(δ), j 6= i (see (5.8)).

Let ∆ij := ‖`−i − `−j ‖. If ∆ij > 2δ, then (A.14) is satisfied. If ∆ij < 2δ, then a

sample in Fi(δ) might also appear in Fj(δ) and therefore violate the independence

assumption for two sample tests.

For these rare cases redefine the index set Ii(δ) and Ij(δ) such that (A.14) holds.

We can achieve this by excluding the intersection, split it in half ( ±1 sample),

and then re-assign these halves to each index set. For all pairs i 6= j, determine

Ii(δ)∩ Ij(δ) =: Ii∩j(δ). Then let

Ii := Ii \ Ii∩j ∪ {i1, . . . , i|Ii∩j|/2 | ik ∈ Ii∩j} (A.15)

and Ij := Ij \ Ii∩j ∪ {i|Ii∩j|/2, . . . , i|Ii∩j| | ik ∈ Ii∩j}. (A.16)

If Ii∩j = ∅, (A.15)–(A.16) does not change the index set; if Ii∩j 6= ∅, then (A.15)–

(A.16) guarantees an empty intersection.

The proof of consistency relies crucially on a growing index set Ii. The re-

definition in (A.15)–(A.16) does not change the rate at which Si(N, δ) grows, be-

cause in the worst case (for close PLCs) it just divides si(N, δ) and sj(N, δ) in half.
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proof : We first bound the error for each row Âi, and then use a union bound

for the probability of error for Â.

bound error per row For each row Tn,m tests H0 : `i ∼ `j, j > i (due to

symmetry the cases j < i have already been tested before) based on the sample

Fi(δ) ∼ εi and Fj(δ) ∼ εj. The worst-case distance d for the nonparametric test in

Assumption 5.2.14 is d = dmin. For simplicity, consider the first row: here we have

to make N− 1 tests, of which N1 − 1 should correctly accept, and N−N1 should

correctly reject equality of distributions.

P
(

Âj 6= Aj
)

6 (Nj − 1)P
(
(type I) + (N−Nj)

)
P (type II) (A.17)

6 (Nj − 1)α+ (N−Nj)β (α,Smin(N, δ),Smin(N, δ)) (A.18)

6 Njα+ (N−Nj)β (α,Smin(N, δ),Smin(N, δ)) (A.19)

since the worst case, for type II error, is that both samples are as small as possible.

bound error for entire matrix The probability of error for the entire

predictive state clustering can again be bounded using the union bound:

P
(

Â 6= A
)
= P

 N⋃
j=1

{Âj 6= Aj}

 6
N∑
j=1

P
(

Âj 6= Aj
)

(A.20)

6 N (Nmaxα+ (N−Nmin)β (α,Smin(N, δ),Smin(N, δ))) (A.21)

= NNmaxα+ (N2 −NNmin)β (α,Smin(N, δ),Smin(N, δ)) , (A.22)

where Nmax = maxjNj is the number of light cones in the largest predictive state.

Under Assumption 5.2.14, α and β are both o
(
NNmax

)
, so the over-all error prob-

ability tends to zero.
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Everyone knows that debugging is twice as hard as writing a program in the first place.

So if you are as clever as you can be when you write it,

how will you ever debug it?

Brian Kernighan

All computations and simulations were done in R (R Development Core Team,

2010) and Python (Van Rossum, 2003). For detailed references on third party li-

braries see the manuals of the software packages below. For the Python implemen-

tation, I want to highlight the OpenCV library (Bradski, 2000) as a major component

in the implementation of hard LICORS.

b.1 pylicors : a python library for predictive state estimation

pyLICORS provides a Python interface for (hard) LICORS estimation and is publicly

available at http://pypi.python.org/pypi/pyLICORS/. For implementation details,

current status, and future developments check the online manuals.
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b.2 licors & lsc : r packages for estimation and visualization of

predictive states and local statistical complexity

The R packages LICORS and LSC accompany this thesis. At the moment of finish-

ing this manuscript the current versions are 0.1.1 and 0.1, respectively. LICORS

implements mixed LICORS (EM-like algorithm) along with some auxiliary func-

tions. LSC estimates local statistical complexity (LSC) from a given state space, and

also has a wrapper function LICORS2LSC to handle output from LICORS. For details

on the implementation, current status, and future developments check the online

package manuals available at the Comprehensive R Archive Network (CRAN):

- cran.r-project.org/web/packages/LICORS/index.html and

- cran.r-project.org/web/packages/LSC/index.html.

cran.r-project.org/web/packages/LICORS/index.html
cran.r-project.org/web/packages/LSC/index.html
cran.r-project.org
cran.r-project.org/web/packages/LICORS/index.html
cran.r-project.org/web/packages/LSC/index.html


C
D ATA

“Data! Data! Data!” he cried impatiently.

“I can’t make bricks without clay.”

Sherlock Holmes in Sir Arthur Conan Doyle’s

The Adventure Of The Copper Beeches

I use three main datasets in this thesis:

simulations : The (1 + 1)D fields in the simulations are fully specified by Eqs.

(5.16) – (5.18) and can be easily implemented in standard software packages.

For the sake of reproducibility, I made the running example dataset (state

space in Fig. 5.2a and observations in Fig. 5.2b) available in the R package

LICORS, dataset contCA00.

candle video : The candle dataset is a cropped version of publicly available

video “Candle Being Extinguished” (www.youtube.com/watch?v=ucNQhsBOs54).

fmri : The datasets we use in Section 8.2 were courteously shared by Dr. Elisha P.

Merriam. The experimental protocol for the fMRI experiments can be found

in Schlupeck et al. (2010) (harmonic stimulus) and Freeman et al. (2011) (non-

harmonic stimulus).
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